1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 */ 36 37 /* 38 * SPA: Storage Pool Allocator 39 * 40 * This file contains all the routines used when modifying on-disk SPA state. 41 * This includes opening, importing, destroying, exporting a pool, and syncing a 42 * pool. 43 */ 44 45 #include <sys/zfs_context.h> 46 #include <sys/fm/fs/zfs.h> 47 #include <sys/spa_impl.h> 48 #include <sys/zio.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/dmu.h> 51 #include <sys/dmu_tx.h> 52 #include <sys/zap.h> 53 #include <sys/zil.h> 54 #include <sys/ddt.h> 55 #include <sys/vdev_impl.h> 56 #include <sys/vdev_removal.h> 57 #include <sys/vdev_indirect_mapping.h> 58 #include <sys/vdev_indirect_births.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_rebuild.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_disk.h> 63 #include <sys/metaslab.h> 64 #include <sys/metaslab_impl.h> 65 #include <sys/mmp.h> 66 #include <sys/uberblock_impl.h> 67 #include <sys/txg.h> 68 #include <sys/avl.h> 69 #include <sys/bpobj.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/dmu_objset.h> 72 #include <sys/unique.h> 73 #include <sys/dsl_pool.h> 74 #include <sys/dsl_dataset.h> 75 #include <sys/dsl_dir.h> 76 #include <sys/dsl_prop.h> 77 #include <sys/dsl_synctask.h> 78 #include <sys/fs/zfs.h> 79 #include <sys/arc.h> 80 #include <sys/callb.h> 81 #include <sys/systeminfo.h> 82 #include <sys/spa_boot.h> 83 #include <sys/zfs_ioctl.h> 84 #include <sys/dsl_scan.h> 85 #include <sys/zfeature.h> 86 #include <sys/dsl_destroy.h> 87 #include <sys/zvol.h> 88 89 #ifdef _KERNEL 90 #include <sys/fm/protocol.h> 91 #include <sys/fm/util.h> 92 #include <sys/callb.h> 93 #include <sys/zone.h> 94 #include <sys/vmsystm.h> 95 #endif /* _KERNEL */ 96 97 #include "zfs_prop.h" 98 #include "zfs_comutil.h" 99 100 /* 101 * The interval, in seconds, at which failed configuration cache file writes 102 * should be retried. 103 */ 104 int zfs_ccw_retry_interval = 300; 105 106 typedef enum zti_modes { 107 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 108 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 109 ZTI_MODE_NULL, /* don't create a taskq */ 110 ZTI_NMODES 111 } zti_modes_t; 112 113 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 114 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 117 118 #define ZTI_N(n) ZTI_P(n, 1) 119 #define ZTI_ONE ZTI_N(1) 120 121 typedef struct zio_taskq_info { 122 zti_modes_t zti_mode; 123 uint_t zti_value; 124 uint_t zti_count; 125 } zio_taskq_info_t; 126 127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 128 "iss", "iss_h", "int", "int_h" 129 }; 130 131 /* 132 * This table defines the taskq settings for each ZFS I/O type. When 133 * initializing a pool, we use this table to create an appropriately sized 134 * taskq. Some operations are low volume and therefore have a small, static 135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 136 * macros. Other operations process a large amount of data; the ZTI_BATCH 137 * macro causes us to create a taskq oriented for throughput. Some operations 138 * are so high frequency and short-lived that the taskq itself can become a 139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 140 * additional degree of parallelism specified by the number of threads per- 141 * taskq and the number of taskqs; when dispatching an event in this case, the 142 * particular taskq is chosen at random. 143 * 144 * The different taskq priorities are to handle the different contexts (issue 145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 146 * need to be handled with minimum delay. 147 */ 148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 152 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */ 153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 157 }; 158 159 static void spa_sync_version(void *arg, dmu_tx_t *tx); 160 static void spa_sync_props(void *arg, dmu_tx_t *tx); 161 static boolean_t spa_has_active_shared_spare(spa_t *spa); 162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 163 static void spa_vdev_resilver_done(spa_t *spa); 164 165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 167 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 168 169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 170 171 /* 172 * Report any spa_load_verify errors found, but do not fail spa_load. 173 * This is used by zdb to analyze non-idle pools. 174 */ 175 boolean_t spa_load_verify_dryrun = B_FALSE; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * For debugging purposes: print out vdev tree during pool import. 185 */ 186 int spa_load_print_vdev_tree = B_FALSE; 187 188 /* 189 * A non-zero value for zfs_max_missing_tvds means that we allow importing 190 * pools with missing top-level vdevs. This is strictly intended for advanced 191 * pool recovery cases since missing data is almost inevitable. Pools with 192 * missing devices can only be imported read-only for safety reasons, and their 193 * fail-mode will be automatically set to "continue". 194 * 195 * With 1 missing vdev we should be able to import the pool and mount all 196 * datasets. User data that was not modified after the missing device has been 197 * added should be recoverable. This means that snapshots created prior to the 198 * addition of that device should be completely intact. 199 * 200 * With 2 missing vdevs, some datasets may fail to mount since there are 201 * dataset statistics that are stored as regular metadata. Some data might be 202 * recoverable if those vdevs were added recently. 203 * 204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 205 * may be missing entirely. Chances of data recovery are very low. Note that 206 * there are also risks of performing an inadvertent rewind as we might be 207 * missing all the vdevs with the latest uberblocks. 208 */ 209 unsigned long zfs_max_missing_tvds = 0; 210 211 /* 212 * The parameters below are similar to zfs_max_missing_tvds but are only 213 * intended for a preliminary open of the pool with an untrusted config which 214 * might be incomplete or out-dated. 215 * 216 * We are more tolerant for pools opened from a cachefile since we could have 217 * an out-dated cachefile where a device removal was not registered. 218 * We could have set the limit arbitrarily high but in the case where devices 219 * are really missing we would want to return the proper error codes; we chose 220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 221 * and we get a chance to retrieve the trusted config. 222 */ 223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 224 225 /* 226 * In the case where config was assembled by scanning device paths (/dev/dsks 227 * by default) we are less tolerant since all the existing devices should have 228 * been detected and we want spa_load to return the right error codes. 229 */ 230 uint64_t zfs_max_missing_tvds_scan = 0; 231 232 /* 233 * Debugging aid that pauses spa_sync() towards the end. 234 */ 235 boolean_t zfs_pause_spa_sync = B_FALSE; 236 237 /* 238 * Variables to indicate the livelist condense zthr func should wait at certain 239 * points for the livelist to be removed - used to test condense/destroy races 240 */ 241 int zfs_livelist_condense_zthr_pause = 0; 242 int zfs_livelist_condense_sync_pause = 0; 243 244 /* 245 * Variables to track whether or not condense cancellation has been 246 * triggered in testing. 247 */ 248 int zfs_livelist_condense_sync_cancel = 0; 249 int zfs_livelist_condense_zthr_cancel = 0; 250 251 /* 252 * Variable to track whether or not extra ALLOC blkptrs were added to a 253 * livelist entry while it was being condensed (caused by the way we track 254 * remapped blkptrs in dbuf_remap_impl) 255 */ 256 int zfs_livelist_condense_new_alloc = 0; 257 258 /* 259 * ========================================================================== 260 * SPA properties routines 261 * ========================================================================== 262 */ 263 264 /* 265 * Add a (source=src, propname=propval) list to an nvlist. 266 */ 267 static void 268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 269 uint64_t intval, zprop_source_t src) 270 { 271 const char *propname = zpool_prop_to_name(prop); 272 nvlist_t *propval; 273 274 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 275 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 276 277 if (strval != NULL) 278 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 279 else 280 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 281 282 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 283 nvlist_free(propval); 284 } 285 286 /* 287 * Get property values from the spa configuration. 288 */ 289 static void 290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 291 { 292 vdev_t *rvd = spa->spa_root_vdev; 293 dsl_pool_t *pool = spa->spa_dsl_pool; 294 uint64_t size, alloc, cap, version; 295 const zprop_source_t src = ZPROP_SRC_NONE; 296 spa_config_dirent_t *dp; 297 metaslab_class_t *mc = spa_normal_class(spa); 298 299 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 300 301 if (rvd != NULL) { 302 alloc = metaslab_class_get_alloc(mc); 303 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 304 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 305 306 size = metaslab_class_get_space(mc); 307 size += metaslab_class_get_space(spa_special_class(spa)); 308 size += metaslab_class_get_space(spa_dedup_class(spa)); 309 310 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 311 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 312 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 313 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 314 size - alloc, src); 315 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 316 spa->spa_checkpoint_info.sci_dspace, src); 317 318 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 319 metaslab_class_fragmentation(mc), src); 320 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 321 metaslab_class_expandable_space(mc), src); 322 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 323 (spa_mode(spa) == SPA_MODE_READ), src); 324 325 cap = (size == 0) ? 0 : (alloc * 100 / size); 326 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 327 328 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 329 ddt_get_pool_dedup_ratio(spa), src); 330 331 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 332 rvd->vdev_state, src); 333 334 version = spa_version(spa); 335 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 336 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 337 version, ZPROP_SRC_DEFAULT); 338 } else { 339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 340 version, ZPROP_SRC_LOCAL); 341 } 342 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 343 NULL, spa_load_guid(spa), src); 344 } 345 346 if (pool != NULL) { 347 /* 348 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 349 * when opening pools before this version freedir will be NULL. 350 */ 351 if (pool->dp_free_dir != NULL) { 352 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 353 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 354 src); 355 } else { 356 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 357 NULL, 0, src); 358 } 359 360 if (pool->dp_leak_dir != NULL) { 361 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 362 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 363 src); 364 } else { 365 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 366 NULL, 0, src); 367 } 368 } 369 370 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 371 372 if (spa->spa_comment != NULL) { 373 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 374 0, ZPROP_SRC_LOCAL); 375 } 376 377 if (spa->spa_root != NULL) 378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 379 0, ZPROP_SRC_LOCAL); 380 381 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 382 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 383 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 384 } else { 385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 386 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 387 } 388 389 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 390 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 391 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 392 } else { 393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 394 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 395 } 396 397 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 398 if (dp->scd_path == NULL) { 399 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 400 "none", 0, ZPROP_SRC_LOCAL); 401 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 403 dp->scd_path, 0, ZPROP_SRC_LOCAL); 404 } 405 } 406 } 407 408 /* 409 * Get zpool property values. 410 */ 411 int 412 spa_prop_get(spa_t *spa, nvlist_t **nvp) 413 { 414 objset_t *mos = spa->spa_meta_objset; 415 zap_cursor_t zc; 416 zap_attribute_t za; 417 dsl_pool_t *dp; 418 int err; 419 420 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 421 if (err) 422 return (err); 423 424 dp = spa_get_dsl(spa); 425 dsl_pool_config_enter(dp, FTAG); 426 mutex_enter(&spa->spa_props_lock); 427 428 /* 429 * Get properties from the spa config. 430 */ 431 spa_prop_get_config(spa, nvp); 432 433 /* If no pool property object, no more prop to get. */ 434 if (mos == NULL || spa->spa_pool_props_object == 0) 435 goto out; 436 437 /* 438 * Get properties from the MOS pool property object. 439 */ 440 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 441 (err = zap_cursor_retrieve(&zc, &za)) == 0; 442 zap_cursor_advance(&zc)) { 443 uint64_t intval = 0; 444 char *strval = NULL; 445 zprop_source_t src = ZPROP_SRC_DEFAULT; 446 zpool_prop_t prop; 447 448 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 449 continue; 450 451 switch (za.za_integer_length) { 452 case 8: 453 /* integer property */ 454 if (za.za_first_integer != 455 zpool_prop_default_numeric(prop)) 456 src = ZPROP_SRC_LOCAL; 457 458 if (prop == ZPOOL_PROP_BOOTFS) { 459 dsl_dataset_t *ds = NULL; 460 461 err = dsl_dataset_hold_obj(dp, 462 za.za_first_integer, FTAG, &ds); 463 if (err != 0) 464 break; 465 466 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 467 KM_SLEEP); 468 dsl_dataset_name(ds, strval); 469 dsl_dataset_rele(ds, FTAG); 470 } else { 471 strval = NULL; 472 intval = za.za_first_integer; 473 } 474 475 spa_prop_add_list(*nvp, prop, strval, intval, src); 476 477 if (strval != NULL) 478 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 479 480 break; 481 482 case 1: 483 /* string property */ 484 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 485 err = zap_lookup(mos, spa->spa_pool_props_object, 486 za.za_name, 1, za.za_num_integers, strval); 487 if (err) { 488 kmem_free(strval, za.za_num_integers); 489 break; 490 } 491 spa_prop_add_list(*nvp, prop, strval, 0, src); 492 kmem_free(strval, za.za_num_integers); 493 break; 494 495 default: 496 break; 497 } 498 } 499 zap_cursor_fini(&zc); 500 out: 501 mutex_exit(&spa->spa_props_lock); 502 dsl_pool_config_exit(dp, FTAG); 503 if (err && err != ENOENT) { 504 nvlist_free(*nvp); 505 *nvp = NULL; 506 return (err); 507 } 508 509 return (0); 510 } 511 512 /* 513 * Validate the given pool properties nvlist and modify the list 514 * for the property values to be set. 515 */ 516 static int 517 spa_prop_validate(spa_t *spa, nvlist_t *props) 518 { 519 nvpair_t *elem; 520 int error = 0, reset_bootfs = 0; 521 uint64_t objnum = 0; 522 boolean_t has_feature = B_FALSE; 523 524 elem = NULL; 525 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 526 uint64_t intval; 527 char *strval, *slash, *check, *fname; 528 const char *propname = nvpair_name(elem); 529 zpool_prop_t prop = zpool_name_to_prop(propname); 530 531 switch (prop) { 532 case ZPOOL_PROP_INVAL: 533 if (!zpool_prop_feature(propname)) { 534 error = SET_ERROR(EINVAL); 535 break; 536 } 537 538 /* 539 * Sanitize the input. 540 */ 541 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 542 error = SET_ERROR(EINVAL); 543 break; 544 } 545 546 if (nvpair_value_uint64(elem, &intval) != 0) { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 if (intval != 0) { 552 error = SET_ERROR(EINVAL); 553 break; 554 } 555 556 fname = strchr(propname, '@') + 1; 557 if (zfeature_lookup_name(fname, NULL) != 0) { 558 error = SET_ERROR(EINVAL); 559 break; 560 } 561 562 has_feature = B_TRUE; 563 break; 564 565 case ZPOOL_PROP_VERSION: 566 error = nvpair_value_uint64(elem, &intval); 567 if (!error && 568 (intval < spa_version(spa) || 569 intval > SPA_VERSION_BEFORE_FEATURES || 570 has_feature)) 571 error = SET_ERROR(EINVAL); 572 break; 573 574 case ZPOOL_PROP_DELEGATION: 575 case ZPOOL_PROP_AUTOREPLACE: 576 case ZPOOL_PROP_LISTSNAPS: 577 case ZPOOL_PROP_AUTOEXPAND: 578 case ZPOOL_PROP_AUTOTRIM: 579 error = nvpair_value_uint64(elem, &intval); 580 if (!error && intval > 1) 581 error = SET_ERROR(EINVAL); 582 break; 583 584 case ZPOOL_PROP_MULTIHOST: 585 error = nvpair_value_uint64(elem, &intval); 586 if (!error && intval > 1) 587 error = SET_ERROR(EINVAL); 588 589 if (!error) { 590 uint32_t hostid = zone_get_hostid(NULL); 591 if (hostid) 592 spa->spa_hostid = hostid; 593 else 594 error = SET_ERROR(ENOTSUP); 595 } 596 597 break; 598 599 case ZPOOL_PROP_BOOTFS: 600 /* 601 * If the pool version is less than SPA_VERSION_BOOTFS, 602 * or the pool is still being created (version == 0), 603 * the bootfs property cannot be set. 604 */ 605 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 606 error = SET_ERROR(ENOTSUP); 607 break; 608 } 609 610 /* 611 * Make sure the vdev config is bootable 612 */ 613 if (!vdev_is_bootable(spa->spa_root_vdev)) { 614 error = SET_ERROR(ENOTSUP); 615 break; 616 } 617 618 reset_bootfs = 1; 619 620 error = nvpair_value_string(elem, &strval); 621 622 if (!error) { 623 objset_t *os; 624 625 if (strval == NULL || strval[0] == '\0') { 626 objnum = zpool_prop_default_numeric( 627 ZPOOL_PROP_BOOTFS); 628 break; 629 } 630 631 error = dmu_objset_hold(strval, FTAG, &os); 632 if (error != 0) 633 break; 634 635 /* Must be ZPL. */ 636 if (dmu_objset_type(os) != DMU_OST_ZFS) { 637 error = SET_ERROR(ENOTSUP); 638 } else { 639 objnum = dmu_objset_id(os); 640 } 641 dmu_objset_rele(os, FTAG); 642 } 643 break; 644 645 case ZPOOL_PROP_FAILUREMODE: 646 error = nvpair_value_uint64(elem, &intval); 647 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 648 error = SET_ERROR(EINVAL); 649 650 /* 651 * This is a special case which only occurs when 652 * the pool has completely failed. This allows 653 * the user to change the in-core failmode property 654 * without syncing it out to disk (I/Os might 655 * currently be blocked). We do this by returning 656 * EIO to the caller (spa_prop_set) to trick it 657 * into thinking we encountered a property validation 658 * error. 659 */ 660 if (!error && spa_suspended(spa)) { 661 spa->spa_failmode = intval; 662 error = SET_ERROR(EIO); 663 } 664 break; 665 666 case ZPOOL_PROP_CACHEFILE: 667 if ((error = nvpair_value_string(elem, &strval)) != 0) 668 break; 669 670 if (strval[0] == '\0') 671 break; 672 673 if (strcmp(strval, "none") == 0) 674 break; 675 676 if (strval[0] != '/') { 677 error = SET_ERROR(EINVAL); 678 break; 679 } 680 681 slash = strrchr(strval, '/'); 682 ASSERT(slash != NULL); 683 684 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 685 strcmp(slash, "/..") == 0) 686 error = SET_ERROR(EINVAL); 687 break; 688 689 case ZPOOL_PROP_COMMENT: 690 if ((error = nvpair_value_string(elem, &strval)) != 0) 691 break; 692 for (check = strval; *check != '\0'; check++) { 693 if (!isprint(*check)) { 694 error = SET_ERROR(EINVAL); 695 break; 696 } 697 } 698 if (strlen(strval) > ZPROP_MAX_COMMENT) 699 error = SET_ERROR(E2BIG); 700 break; 701 702 default: 703 break; 704 } 705 706 if (error) 707 break; 708 } 709 710 (void) nvlist_remove_all(props, 711 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 712 713 if (!error && reset_bootfs) { 714 error = nvlist_remove(props, 715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 716 717 if (!error) { 718 error = nvlist_add_uint64(props, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 720 } 721 } 722 723 return (error); 724 } 725 726 void 727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 728 { 729 char *cachefile; 730 spa_config_dirent_t *dp; 731 732 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 733 &cachefile) != 0) 734 return; 735 736 dp = kmem_alloc(sizeof (spa_config_dirent_t), 737 KM_SLEEP); 738 739 if (cachefile[0] == '\0') 740 dp->scd_path = spa_strdup(spa_config_path); 741 else if (strcmp(cachefile, "none") == 0) 742 dp->scd_path = NULL; 743 else 744 dp->scd_path = spa_strdup(cachefile); 745 746 list_insert_head(&spa->spa_config_list, dp); 747 if (need_sync) 748 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 749 } 750 751 int 752 spa_prop_set(spa_t *spa, nvlist_t *nvp) 753 { 754 int error; 755 nvpair_t *elem = NULL; 756 boolean_t need_sync = B_FALSE; 757 758 if ((error = spa_prop_validate(spa, nvp)) != 0) 759 return (error); 760 761 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 762 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 763 764 if (prop == ZPOOL_PROP_CACHEFILE || 765 prop == ZPOOL_PROP_ALTROOT || 766 prop == ZPOOL_PROP_READONLY) 767 continue; 768 769 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 770 uint64_t ver; 771 772 if (prop == ZPOOL_PROP_VERSION) { 773 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 774 } else { 775 ASSERT(zpool_prop_feature(nvpair_name(elem))); 776 ver = SPA_VERSION_FEATURES; 777 need_sync = B_TRUE; 778 } 779 780 /* Save time if the version is already set. */ 781 if (ver == spa_version(spa)) 782 continue; 783 784 /* 785 * In addition to the pool directory object, we might 786 * create the pool properties object, the features for 787 * read object, the features for write object, or the 788 * feature descriptions object. 789 */ 790 error = dsl_sync_task(spa->spa_name, NULL, 791 spa_sync_version, &ver, 792 6, ZFS_SPACE_CHECK_RESERVED); 793 if (error) 794 return (error); 795 continue; 796 } 797 798 need_sync = B_TRUE; 799 break; 800 } 801 802 if (need_sync) { 803 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 804 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 805 } 806 807 return (0); 808 } 809 810 /* 811 * If the bootfs property value is dsobj, clear it. 812 */ 813 void 814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 815 { 816 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 817 VERIFY(zap_remove(spa->spa_meta_objset, 818 spa->spa_pool_props_object, 819 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 820 spa->spa_bootfs = 0; 821 } 822 } 823 824 /*ARGSUSED*/ 825 static int 826 spa_change_guid_check(void *arg, dmu_tx_t *tx) 827 { 828 uint64_t *newguid __maybe_unused = arg; 829 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 830 vdev_t *rvd = spa->spa_root_vdev; 831 uint64_t vdev_state; 832 833 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 834 int error = (spa_has_checkpoint(spa)) ? 835 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 836 return (SET_ERROR(error)); 837 } 838 839 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 840 vdev_state = rvd->vdev_state; 841 spa_config_exit(spa, SCL_STATE, FTAG); 842 843 if (vdev_state != VDEV_STATE_HEALTHY) 844 return (SET_ERROR(ENXIO)); 845 846 ASSERT3U(spa_guid(spa), !=, *newguid); 847 848 return (0); 849 } 850 851 static void 852 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 853 { 854 uint64_t *newguid = arg; 855 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 856 uint64_t oldguid; 857 vdev_t *rvd = spa->spa_root_vdev; 858 859 oldguid = spa_guid(spa); 860 861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 862 rvd->vdev_guid = *newguid; 863 rvd->vdev_guid_sum += (*newguid - oldguid); 864 vdev_config_dirty(rvd); 865 spa_config_exit(spa, SCL_STATE, FTAG); 866 867 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 868 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 869 } 870 871 /* 872 * Change the GUID for the pool. This is done so that we can later 873 * re-import a pool built from a clone of our own vdevs. We will modify 874 * the root vdev's guid, our own pool guid, and then mark all of our 875 * vdevs dirty. Note that we must make sure that all our vdevs are 876 * online when we do this, or else any vdevs that weren't present 877 * would be orphaned from our pool. We are also going to issue a 878 * sysevent to update any watchers. 879 */ 880 int 881 spa_change_guid(spa_t *spa) 882 { 883 int error; 884 uint64_t guid; 885 886 mutex_enter(&spa->spa_vdev_top_lock); 887 mutex_enter(&spa_namespace_lock); 888 guid = spa_generate_guid(NULL); 889 890 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 891 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 892 893 if (error == 0) { 894 spa_write_cachefile(spa, B_FALSE, B_TRUE); 895 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 896 } 897 898 mutex_exit(&spa_namespace_lock); 899 mutex_exit(&spa->spa_vdev_top_lock); 900 901 return (error); 902 } 903 904 /* 905 * ========================================================================== 906 * SPA state manipulation (open/create/destroy/import/export) 907 * ========================================================================== 908 */ 909 910 static int 911 spa_error_entry_compare(const void *a, const void *b) 912 { 913 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 914 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 915 int ret; 916 917 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 918 sizeof (zbookmark_phys_t)); 919 920 return (TREE_ISIGN(ret)); 921 } 922 923 /* 924 * Utility function which retrieves copies of the current logs and 925 * re-initializes them in the process. 926 */ 927 void 928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 929 { 930 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 931 932 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 933 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 934 935 avl_create(&spa->spa_errlist_scrub, 936 spa_error_entry_compare, sizeof (spa_error_entry_t), 937 offsetof(spa_error_entry_t, se_avl)); 938 avl_create(&spa->spa_errlist_last, 939 spa_error_entry_compare, sizeof (spa_error_entry_t), 940 offsetof(spa_error_entry_t, se_avl)); 941 } 942 943 static void 944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 945 { 946 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 947 enum zti_modes mode = ztip->zti_mode; 948 uint_t value = ztip->zti_value; 949 uint_t count = ztip->zti_count; 950 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 951 uint_t flags = 0; 952 boolean_t batch = B_FALSE; 953 954 if (mode == ZTI_MODE_NULL) { 955 tqs->stqs_count = 0; 956 tqs->stqs_taskq = NULL; 957 return; 958 } 959 960 ASSERT3U(count, >, 0); 961 962 tqs->stqs_count = count; 963 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 964 965 switch (mode) { 966 case ZTI_MODE_FIXED: 967 ASSERT3U(value, >=, 1); 968 value = MAX(value, 1); 969 flags |= TASKQ_DYNAMIC; 970 break; 971 972 case ZTI_MODE_BATCH: 973 batch = B_TRUE; 974 flags |= TASKQ_THREADS_CPU_PCT; 975 value = MIN(zio_taskq_batch_pct, 100); 976 break; 977 978 default: 979 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 980 "spa_activate()", 981 zio_type_name[t], zio_taskq_types[q], mode, value); 982 break; 983 } 984 985 for (uint_t i = 0; i < count; i++) { 986 taskq_t *tq; 987 char name[32]; 988 989 (void) snprintf(name, sizeof (name), "%s_%s", 990 zio_type_name[t], zio_taskq_types[q]); 991 992 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 993 if (batch) 994 flags |= TASKQ_DC_BATCH; 995 996 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 997 spa->spa_proc, zio_taskq_basedc, flags); 998 } else { 999 pri_t pri = maxclsyspri; 1000 /* 1001 * The write issue taskq can be extremely CPU 1002 * intensive. Run it at slightly less important 1003 * priority than the other taskqs. 1004 * 1005 * Under Linux and FreeBSD this means incrementing 1006 * the priority value as opposed to platforms like 1007 * illumos where it should be decremented. 1008 * 1009 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1010 * are equal then a difference between them is 1011 * insignificant. 1012 */ 1013 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1014 #if defined(__linux__) 1015 pri++; 1016 #elif defined(__FreeBSD__) 1017 pri += 4; 1018 #else 1019 #error "unknown OS" 1020 #endif 1021 } 1022 tq = taskq_create_proc(name, value, pri, 50, 1023 INT_MAX, spa->spa_proc, flags); 1024 } 1025 1026 tqs->stqs_taskq[i] = tq; 1027 } 1028 } 1029 1030 static void 1031 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1032 { 1033 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1034 1035 if (tqs->stqs_taskq == NULL) { 1036 ASSERT3U(tqs->stqs_count, ==, 0); 1037 return; 1038 } 1039 1040 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1041 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1042 taskq_destroy(tqs->stqs_taskq[i]); 1043 } 1044 1045 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1046 tqs->stqs_taskq = NULL; 1047 } 1048 1049 /* 1050 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1051 * Note that a type may have multiple discrete taskqs to avoid lock contention 1052 * on the taskq itself. In that case we choose which taskq at random by using 1053 * the low bits of gethrtime(). 1054 */ 1055 void 1056 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1057 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1058 { 1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1060 taskq_t *tq; 1061 1062 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1063 ASSERT3U(tqs->stqs_count, !=, 0); 1064 1065 if (tqs->stqs_count == 1) { 1066 tq = tqs->stqs_taskq[0]; 1067 } else { 1068 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1069 } 1070 1071 taskq_dispatch_ent(tq, func, arg, flags, ent); 1072 } 1073 1074 /* 1075 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1076 */ 1077 void 1078 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1079 task_func_t *func, void *arg, uint_t flags) 1080 { 1081 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1082 taskq_t *tq; 1083 taskqid_t id; 1084 1085 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1086 ASSERT3U(tqs->stqs_count, !=, 0); 1087 1088 if (tqs->stqs_count == 1) { 1089 tq = tqs->stqs_taskq[0]; 1090 } else { 1091 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1092 } 1093 1094 id = taskq_dispatch(tq, func, arg, flags); 1095 if (id) 1096 taskq_wait_id(tq, id); 1097 } 1098 1099 static void 1100 spa_create_zio_taskqs(spa_t *spa) 1101 { 1102 for (int t = 0; t < ZIO_TYPES; t++) { 1103 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1104 spa_taskqs_init(spa, t, q); 1105 } 1106 } 1107 } 1108 1109 /* 1110 * Disabled until spa_thread() can be adapted for Linux. 1111 */ 1112 #undef HAVE_SPA_THREAD 1113 1114 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1115 static void 1116 spa_thread(void *arg) 1117 { 1118 psetid_t zio_taskq_psrset_bind = PS_NONE; 1119 callb_cpr_t cprinfo; 1120 1121 spa_t *spa = arg; 1122 user_t *pu = PTOU(curproc); 1123 1124 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1125 spa->spa_name); 1126 1127 ASSERT(curproc != &p0); 1128 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1129 "zpool-%s", spa->spa_name); 1130 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1131 1132 /* bind this thread to the requested psrset */ 1133 if (zio_taskq_psrset_bind != PS_NONE) { 1134 pool_lock(); 1135 mutex_enter(&cpu_lock); 1136 mutex_enter(&pidlock); 1137 mutex_enter(&curproc->p_lock); 1138 1139 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1140 0, NULL, NULL) == 0) { 1141 curthread->t_bind_pset = zio_taskq_psrset_bind; 1142 } else { 1143 cmn_err(CE_WARN, 1144 "Couldn't bind process for zfs pool \"%s\" to " 1145 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1146 } 1147 1148 mutex_exit(&curproc->p_lock); 1149 mutex_exit(&pidlock); 1150 mutex_exit(&cpu_lock); 1151 pool_unlock(); 1152 } 1153 1154 if (zio_taskq_sysdc) { 1155 sysdc_thread_enter(curthread, 100, 0); 1156 } 1157 1158 spa->spa_proc = curproc; 1159 spa->spa_did = curthread->t_did; 1160 1161 spa_create_zio_taskqs(spa); 1162 1163 mutex_enter(&spa->spa_proc_lock); 1164 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1165 1166 spa->spa_proc_state = SPA_PROC_ACTIVE; 1167 cv_broadcast(&spa->spa_proc_cv); 1168 1169 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1170 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1171 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1172 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1173 1174 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1175 spa->spa_proc_state = SPA_PROC_GONE; 1176 spa->spa_proc = &p0; 1177 cv_broadcast(&spa->spa_proc_cv); 1178 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1179 1180 mutex_enter(&curproc->p_lock); 1181 lwp_exit(); 1182 } 1183 #endif 1184 1185 /* 1186 * Activate an uninitialized pool. 1187 */ 1188 static void 1189 spa_activate(spa_t *spa, spa_mode_t mode) 1190 { 1191 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1192 1193 spa->spa_state = POOL_STATE_ACTIVE; 1194 spa->spa_mode = mode; 1195 1196 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1197 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1198 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1199 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1200 1201 /* Try to create a covering process */ 1202 mutex_enter(&spa->spa_proc_lock); 1203 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1204 ASSERT(spa->spa_proc == &p0); 1205 spa->spa_did = 0; 1206 1207 #ifdef HAVE_SPA_THREAD 1208 /* Only create a process if we're going to be around a while. */ 1209 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1210 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1211 NULL, 0) == 0) { 1212 spa->spa_proc_state = SPA_PROC_CREATED; 1213 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1214 cv_wait(&spa->spa_proc_cv, 1215 &spa->spa_proc_lock); 1216 } 1217 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1218 ASSERT(spa->spa_proc != &p0); 1219 ASSERT(spa->spa_did != 0); 1220 } else { 1221 #ifdef _KERNEL 1222 cmn_err(CE_WARN, 1223 "Couldn't create process for zfs pool \"%s\"\n", 1224 spa->spa_name); 1225 #endif 1226 } 1227 } 1228 #endif /* HAVE_SPA_THREAD */ 1229 mutex_exit(&spa->spa_proc_lock); 1230 1231 /* If we didn't create a process, we need to create our taskqs. */ 1232 if (spa->spa_proc == &p0) { 1233 spa_create_zio_taskqs(spa); 1234 } 1235 1236 for (size_t i = 0; i < TXG_SIZE; i++) { 1237 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1238 ZIO_FLAG_CANFAIL); 1239 } 1240 1241 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1242 offsetof(vdev_t, vdev_config_dirty_node)); 1243 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1244 offsetof(objset_t, os_evicting_node)); 1245 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1246 offsetof(vdev_t, vdev_state_dirty_node)); 1247 1248 txg_list_create(&spa->spa_vdev_txg_list, spa, 1249 offsetof(struct vdev, vdev_txg_node)); 1250 1251 avl_create(&spa->spa_errlist_scrub, 1252 spa_error_entry_compare, sizeof (spa_error_entry_t), 1253 offsetof(spa_error_entry_t, se_avl)); 1254 avl_create(&spa->spa_errlist_last, 1255 spa_error_entry_compare, sizeof (spa_error_entry_t), 1256 offsetof(spa_error_entry_t, se_avl)); 1257 1258 spa_keystore_init(&spa->spa_keystore); 1259 1260 /* 1261 * This taskq is used to perform zvol-minor-related tasks 1262 * asynchronously. This has several advantages, including easy 1263 * resolution of various deadlocks (zfsonlinux bug #3681). 1264 * 1265 * The taskq must be single threaded to ensure tasks are always 1266 * processed in the order in which they were dispatched. 1267 * 1268 * A taskq per pool allows one to keep the pools independent. 1269 * This way if one pool is suspended, it will not impact another. 1270 * 1271 * The preferred location to dispatch a zvol minor task is a sync 1272 * task. In this context, there is easy access to the spa_t and minimal 1273 * error handling is required because the sync task must succeed. 1274 */ 1275 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1276 1, INT_MAX, 0); 1277 1278 /* 1279 * Taskq dedicated to prefetcher threads: this is used to prevent the 1280 * pool traverse code from monopolizing the global (and limited) 1281 * system_taskq by inappropriately scheduling long running tasks on it. 1282 */ 1283 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus, 1284 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1285 1286 /* 1287 * The taskq to upgrade datasets in this pool. Currently used by 1288 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1289 */ 1290 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus, 1291 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1292 } 1293 1294 /* 1295 * Opposite of spa_activate(). 1296 */ 1297 static void 1298 spa_deactivate(spa_t *spa) 1299 { 1300 ASSERT(spa->spa_sync_on == B_FALSE); 1301 ASSERT(spa->spa_dsl_pool == NULL); 1302 ASSERT(spa->spa_root_vdev == NULL); 1303 ASSERT(spa->spa_async_zio_root == NULL); 1304 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1305 1306 spa_evicting_os_wait(spa); 1307 1308 if (spa->spa_zvol_taskq) { 1309 taskq_destroy(spa->spa_zvol_taskq); 1310 spa->spa_zvol_taskq = NULL; 1311 } 1312 1313 if (spa->spa_prefetch_taskq) { 1314 taskq_destroy(spa->spa_prefetch_taskq); 1315 spa->spa_prefetch_taskq = NULL; 1316 } 1317 1318 if (spa->spa_upgrade_taskq) { 1319 taskq_destroy(spa->spa_upgrade_taskq); 1320 spa->spa_upgrade_taskq = NULL; 1321 } 1322 1323 txg_list_destroy(&spa->spa_vdev_txg_list); 1324 1325 list_destroy(&spa->spa_config_dirty_list); 1326 list_destroy(&spa->spa_evicting_os_list); 1327 list_destroy(&spa->spa_state_dirty_list); 1328 1329 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1330 1331 for (int t = 0; t < ZIO_TYPES; t++) { 1332 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1333 spa_taskqs_fini(spa, t, q); 1334 } 1335 } 1336 1337 for (size_t i = 0; i < TXG_SIZE; i++) { 1338 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1339 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1340 spa->spa_txg_zio[i] = NULL; 1341 } 1342 1343 metaslab_class_destroy(spa->spa_normal_class); 1344 spa->spa_normal_class = NULL; 1345 1346 metaslab_class_destroy(spa->spa_log_class); 1347 spa->spa_log_class = NULL; 1348 1349 metaslab_class_destroy(spa->spa_special_class); 1350 spa->spa_special_class = NULL; 1351 1352 metaslab_class_destroy(spa->spa_dedup_class); 1353 spa->spa_dedup_class = NULL; 1354 1355 /* 1356 * If this was part of an import or the open otherwise failed, we may 1357 * still have errors left in the queues. Empty them just in case. 1358 */ 1359 spa_errlog_drain(spa); 1360 avl_destroy(&spa->spa_errlist_scrub); 1361 avl_destroy(&spa->spa_errlist_last); 1362 1363 spa_keystore_fini(&spa->spa_keystore); 1364 1365 spa->spa_state = POOL_STATE_UNINITIALIZED; 1366 1367 mutex_enter(&spa->spa_proc_lock); 1368 if (spa->spa_proc_state != SPA_PROC_NONE) { 1369 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1370 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1371 cv_broadcast(&spa->spa_proc_cv); 1372 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1373 ASSERT(spa->spa_proc != &p0); 1374 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1375 } 1376 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1377 spa->spa_proc_state = SPA_PROC_NONE; 1378 } 1379 ASSERT(spa->spa_proc == &p0); 1380 mutex_exit(&spa->spa_proc_lock); 1381 1382 /* 1383 * We want to make sure spa_thread() has actually exited the ZFS 1384 * module, so that the module can't be unloaded out from underneath 1385 * it. 1386 */ 1387 if (spa->spa_did != 0) { 1388 thread_join(spa->spa_did); 1389 spa->spa_did = 0; 1390 } 1391 } 1392 1393 /* 1394 * Verify a pool configuration, and construct the vdev tree appropriately. This 1395 * will create all the necessary vdevs in the appropriate layout, with each vdev 1396 * in the CLOSED state. This will prep the pool before open/creation/import. 1397 * All vdev validation is done by the vdev_alloc() routine. 1398 */ 1399 int 1400 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1401 uint_t id, int atype) 1402 { 1403 nvlist_t **child; 1404 uint_t children; 1405 int error; 1406 1407 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1408 return (error); 1409 1410 if ((*vdp)->vdev_ops->vdev_op_leaf) 1411 return (0); 1412 1413 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1414 &child, &children); 1415 1416 if (error == ENOENT) 1417 return (0); 1418 1419 if (error) { 1420 vdev_free(*vdp); 1421 *vdp = NULL; 1422 return (SET_ERROR(EINVAL)); 1423 } 1424 1425 for (int c = 0; c < children; c++) { 1426 vdev_t *vd; 1427 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1428 atype)) != 0) { 1429 vdev_free(*vdp); 1430 *vdp = NULL; 1431 return (error); 1432 } 1433 } 1434 1435 ASSERT(*vdp != NULL); 1436 1437 return (0); 1438 } 1439 1440 static boolean_t 1441 spa_should_flush_logs_on_unload(spa_t *spa) 1442 { 1443 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1444 return (B_FALSE); 1445 1446 if (!spa_writeable(spa)) 1447 return (B_FALSE); 1448 1449 if (!spa->spa_sync_on) 1450 return (B_FALSE); 1451 1452 if (spa_state(spa) != POOL_STATE_EXPORTED) 1453 return (B_FALSE); 1454 1455 if (zfs_keep_log_spacemaps_at_export) 1456 return (B_FALSE); 1457 1458 return (B_TRUE); 1459 } 1460 1461 /* 1462 * Opens a transaction that will set the flag that will instruct 1463 * spa_sync to attempt to flush all the metaslabs for that txg. 1464 */ 1465 static void 1466 spa_unload_log_sm_flush_all(spa_t *spa) 1467 { 1468 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1469 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1470 1471 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1472 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1473 1474 dmu_tx_commit(tx); 1475 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1476 } 1477 1478 static void 1479 spa_unload_log_sm_metadata(spa_t *spa) 1480 { 1481 void *cookie = NULL; 1482 spa_log_sm_t *sls; 1483 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1484 &cookie)) != NULL) { 1485 VERIFY0(sls->sls_mscount); 1486 kmem_free(sls, sizeof (spa_log_sm_t)); 1487 } 1488 1489 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1490 e != NULL; e = list_head(&spa->spa_log_summary)) { 1491 VERIFY0(e->lse_mscount); 1492 list_remove(&spa->spa_log_summary, e); 1493 kmem_free(e, sizeof (log_summary_entry_t)); 1494 } 1495 1496 spa->spa_unflushed_stats.sus_nblocks = 0; 1497 spa->spa_unflushed_stats.sus_memused = 0; 1498 spa->spa_unflushed_stats.sus_blocklimit = 0; 1499 } 1500 1501 static void 1502 spa_destroy_aux_threads(spa_t *spa) 1503 { 1504 if (spa->spa_condense_zthr != NULL) { 1505 zthr_destroy(spa->spa_condense_zthr); 1506 spa->spa_condense_zthr = NULL; 1507 } 1508 if (spa->spa_checkpoint_discard_zthr != NULL) { 1509 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1510 spa->spa_checkpoint_discard_zthr = NULL; 1511 } 1512 if (spa->spa_livelist_delete_zthr != NULL) { 1513 zthr_destroy(spa->spa_livelist_delete_zthr); 1514 spa->spa_livelist_delete_zthr = NULL; 1515 } 1516 if (spa->spa_livelist_condense_zthr != NULL) { 1517 zthr_destroy(spa->spa_livelist_condense_zthr); 1518 spa->spa_livelist_condense_zthr = NULL; 1519 } 1520 } 1521 1522 /* 1523 * Opposite of spa_load(). 1524 */ 1525 static void 1526 spa_unload(spa_t *spa) 1527 { 1528 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1529 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1530 1531 spa_import_progress_remove(spa_guid(spa)); 1532 spa_load_note(spa, "UNLOADING"); 1533 1534 spa_wake_waiters(spa); 1535 1536 /* 1537 * If the log space map feature is enabled and the pool is getting 1538 * exported (but not destroyed), we want to spend some time flushing 1539 * as many metaslabs as we can in an attempt to destroy log space 1540 * maps and save import time. 1541 */ 1542 if (spa_should_flush_logs_on_unload(spa)) 1543 spa_unload_log_sm_flush_all(spa); 1544 1545 /* 1546 * Stop async tasks. 1547 */ 1548 spa_async_suspend(spa); 1549 1550 if (spa->spa_root_vdev) { 1551 vdev_t *root_vdev = spa->spa_root_vdev; 1552 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); 1553 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1554 vdev_autotrim_stop_all(spa); 1555 vdev_rebuild_stop_all(spa); 1556 } 1557 1558 /* 1559 * Stop syncing. 1560 */ 1561 if (spa->spa_sync_on) { 1562 txg_sync_stop(spa->spa_dsl_pool); 1563 spa->spa_sync_on = B_FALSE; 1564 } 1565 1566 /* 1567 * This ensures that there is no async metaslab prefetching 1568 * while we attempt to unload the spa. 1569 */ 1570 if (spa->spa_root_vdev != NULL) { 1571 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1572 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1573 if (vc->vdev_mg != NULL) 1574 taskq_wait(vc->vdev_mg->mg_taskq); 1575 } 1576 } 1577 1578 if (spa->spa_mmp.mmp_thread) 1579 mmp_thread_stop(spa); 1580 1581 /* 1582 * Wait for any outstanding async I/O to complete. 1583 */ 1584 if (spa->spa_async_zio_root != NULL) { 1585 for (int i = 0; i < max_ncpus; i++) 1586 (void) zio_wait(spa->spa_async_zio_root[i]); 1587 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1588 spa->spa_async_zio_root = NULL; 1589 } 1590 1591 if (spa->spa_vdev_removal != NULL) { 1592 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1593 spa->spa_vdev_removal = NULL; 1594 } 1595 1596 spa_destroy_aux_threads(spa); 1597 1598 spa_condense_fini(spa); 1599 1600 bpobj_close(&spa->spa_deferred_bpobj); 1601 1602 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1603 1604 /* 1605 * Close all vdevs. 1606 */ 1607 if (spa->spa_root_vdev) 1608 vdev_free(spa->spa_root_vdev); 1609 ASSERT(spa->spa_root_vdev == NULL); 1610 1611 /* 1612 * Close the dsl pool. 1613 */ 1614 if (spa->spa_dsl_pool) { 1615 dsl_pool_close(spa->spa_dsl_pool); 1616 spa->spa_dsl_pool = NULL; 1617 spa->spa_meta_objset = NULL; 1618 } 1619 1620 ddt_unload(spa); 1621 spa_unload_log_sm_metadata(spa); 1622 1623 /* 1624 * Drop and purge level 2 cache 1625 */ 1626 spa_l2cache_drop(spa); 1627 1628 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1629 vdev_free(spa->spa_spares.sav_vdevs[i]); 1630 if (spa->spa_spares.sav_vdevs) { 1631 kmem_free(spa->spa_spares.sav_vdevs, 1632 spa->spa_spares.sav_count * sizeof (void *)); 1633 spa->spa_spares.sav_vdevs = NULL; 1634 } 1635 if (spa->spa_spares.sav_config) { 1636 nvlist_free(spa->spa_spares.sav_config); 1637 spa->spa_spares.sav_config = NULL; 1638 } 1639 spa->spa_spares.sav_count = 0; 1640 1641 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1642 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1643 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1644 } 1645 if (spa->spa_l2cache.sav_vdevs) { 1646 kmem_free(spa->spa_l2cache.sav_vdevs, 1647 spa->spa_l2cache.sav_count * sizeof (void *)); 1648 spa->spa_l2cache.sav_vdevs = NULL; 1649 } 1650 if (spa->spa_l2cache.sav_config) { 1651 nvlist_free(spa->spa_l2cache.sav_config); 1652 spa->spa_l2cache.sav_config = NULL; 1653 } 1654 spa->spa_l2cache.sav_count = 0; 1655 1656 spa->spa_async_suspended = 0; 1657 1658 spa->spa_indirect_vdevs_loaded = B_FALSE; 1659 1660 if (spa->spa_comment != NULL) { 1661 spa_strfree(spa->spa_comment); 1662 spa->spa_comment = NULL; 1663 } 1664 1665 spa_config_exit(spa, SCL_ALL, spa); 1666 } 1667 1668 /* 1669 * Load (or re-load) the current list of vdevs describing the active spares for 1670 * this pool. When this is called, we have some form of basic information in 1671 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1672 * then re-generate a more complete list including status information. 1673 */ 1674 void 1675 spa_load_spares(spa_t *spa) 1676 { 1677 nvlist_t **spares; 1678 uint_t nspares; 1679 int i; 1680 vdev_t *vd, *tvd; 1681 1682 #ifndef _KERNEL 1683 /* 1684 * zdb opens both the current state of the pool and the 1685 * checkpointed state (if present), with a different spa_t. 1686 * 1687 * As spare vdevs are shared among open pools, we skip loading 1688 * them when we load the checkpointed state of the pool. 1689 */ 1690 if (!spa_writeable(spa)) 1691 return; 1692 #endif 1693 1694 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1695 1696 /* 1697 * First, close and free any existing spare vdevs. 1698 */ 1699 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1700 vd = spa->spa_spares.sav_vdevs[i]; 1701 1702 /* Undo the call to spa_activate() below */ 1703 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1704 B_FALSE)) != NULL && tvd->vdev_isspare) 1705 spa_spare_remove(tvd); 1706 vdev_close(vd); 1707 vdev_free(vd); 1708 } 1709 1710 if (spa->spa_spares.sav_vdevs) 1711 kmem_free(spa->spa_spares.sav_vdevs, 1712 spa->spa_spares.sav_count * sizeof (void *)); 1713 1714 if (spa->spa_spares.sav_config == NULL) 1715 nspares = 0; 1716 else 1717 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1718 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1719 1720 spa->spa_spares.sav_count = (int)nspares; 1721 spa->spa_spares.sav_vdevs = NULL; 1722 1723 if (nspares == 0) 1724 return; 1725 1726 /* 1727 * Construct the array of vdevs, opening them to get status in the 1728 * process. For each spare, there is potentially two different vdev_t 1729 * structures associated with it: one in the list of spares (used only 1730 * for basic validation purposes) and one in the active vdev 1731 * configuration (if it's spared in). During this phase we open and 1732 * validate each vdev on the spare list. If the vdev also exists in the 1733 * active configuration, then we also mark this vdev as an active spare. 1734 */ 1735 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1736 KM_SLEEP); 1737 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1738 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1739 VDEV_ALLOC_SPARE) == 0); 1740 ASSERT(vd != NULL); 1741 1742 spa->spa_spares.sav_vdevs[i] = vd; 1743 1744 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1745 B_FALSE)) != NULL) { 1746 if (!tvd->vdev_isspare) 1747 spa_spare_add(tvd); 1748 1749 /* 1750 * We only mark the spare active if we were successfully 1751 * able to load the vdev. Otherwise, importing a pool 1752 * with a bad active spare would result in strange 1753 * behavior, because multiple pool would think the spare 1754 * is actively in use. 1755 * 1756 * There is a vulnerability here to an equally bizarre 1757 * circumstance, where a dead active spare is later 1758 * brought back to life (onlined or otherwise). Given 1759 * the rarity of this scenario, and the extra complexity 1760 * it adds, we ignore the possibility. 1761 */ 1762 if (!vdev_is_dead(tvd)) 1763 spa_spare_activate(tvd); 1764 } 1765 1766 vd->vdev_top = vd; 1767 vd->vdev_aux = &spa->spa_spares; 1768 1769 if (vdev_open(vd) != 0) 1770 continue; 1771 1772 if (vdev_validate_aux(vd) == 0) 1773 spa_spare_add(vd); 1774 } 1775 1776 /* 1777 * Recompute the stashed list of spares, with status information 1778 * this time. 1779 */ 1780 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1781 DATA_TYPE_NVLIST_ARRAY) == 0); 1782 1783 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1784 KM_SLEEP); 1785 for (i = 0; i < spa->spa_spares.sav_count; i++) 1786 spares[i] = vdev_config_generate(spa, 1787 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1788 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1789 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1790 for (i = 0; i < spa->spa_spares.sav_count; i++) 1791 nvlist_free(spares[i]); 1792 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1793 } 1794 1795 /* 1796 * Load (or re-load) the current list of vdevs describing the active l2cache for 1797 * this pool. When this is called, we have some form of basic information in 1798 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1799 * then re-generate a more complete list including status information. 1800 * Devices which are already active have their details maintained, and are 1801 * not re-opened. 1802 */ 1803 void 1804 spa_load_l2cache(spa_t *spa) 1805 { 1806 nvlist_t **l2cache = NULL; 1807 uint_t nl2cache; 1808 int i, j, oldnvdevs; 1809 uint64_t guid; 1810 vdev_t *vd, **oldvdevs, **newvdevs; 1811 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1812 1813 #ifndef _KERNEL 1814 /* 1815 * zdb opens both the current state of the pool and the 1816 * checkpointed state (if present), with a different spa_t. 1817 * 1818 * As L2 caches are part of the ARC which is shared among open 1819 * pools, we skip loading them when we load the checkpointed 1820 * state of the pool. 1821 */ 1822 if (!spa_writeable(spa)) 1823 return; 1824 #endif 1825 1826 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1827 1828 oldvdevs = sav->sav_vdevs; 1829 oldnvdevs = sav->sav_count; 1830 sav->sav_vdevs = NULL; 1831 sav->sav_count = 0; 1832 1833 if (sav->sav_config == NULL) { 1834 nl2cache = 0; 1835 newvdevs = NULL; 1836 goto out; 1837 } 1838 1839 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1840 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1841 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1842 1843 /* 1844 * Process new nvlist of vdevs. 1845 */ 1846 for (i = 0; i < nl2cache; i++) { 1847 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1848 &guid) == 0); 1849 1850 newvdevs[i] = NULL; 1851 for (j = 0; j < oldnvdevs; j++) { 1852 vd = oldvdevs[j]; 1853 if (vd != NULL && guid == vd->vdev_guid) { 1854 /* 1855 * Retain previous vdev for add/remove ops. 1856 */ 1857 newvdevs[i] = vd; 1858 oldvdevs[j] = NULL; 1859 break; 1860 } 1861 } 1862 1863 if (newvdevs[i] == NULL) { 1864 /* 1865 * Create new vdev 1866 */ 1867 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1868 VDEV_ALLOC_L2CACHE) == 0); 1869 ASSERT(vd != NULL); 1870 newvdevs[i] = vd; 1871 1872 /* 1873 * Commit this vdev as an l2cache device, 1874 * even if it fails to open. 1875 */ 1876 spa_l2cache_add(vd); 1877 1878 vd->vdev_top = vd; 1879 vd->vdev_aux = sav; 1880 1881 spa_l2cache_activate(vd); 1882 1883 if (vdev_open(vd) != 0) 1884 continue; 1885 1886 (void) vdev_validate_aux(vd); 1887 1888 if (!vdev_is_dead(vd)) 1889 l2arc_add_vdev(spa, vd); 1890 1891 /* 1892 * Upon cache device addition to a pool or pool 1893 * creation with a cache device or if the header 1894 * of the device is invalid we issue an async 1895 * TRIM command for the whole device which will 1896 * execute if l2arc_trim_ahead > 0. 1897 */ 1898 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 1899 } 1900 } 1901 1902 sav->sav_vdevs = newvdevs; 1903 sav->sav_count = (int)nl2cache; 1904 1905 /* 1906 * Recompute the stashed list of l2cache devices, with status 1907 * information this time. 1908 */ 1909 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1910 DATA_TYPE_NVLIST_ARRAY) == 0); 1911 1912 if (sav->sav_count > 0) 1913 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 1914 KM_SLEEP); 1915 for (i = 0; i < sav->sav_count; i++) 1916 l2cache[i] = vdev_config_generate(spa, 1917 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1918 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1919 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1920 1921 out: 1922 /* 1923 * Purge vdevs that were dropped 1924 */ 1925 for (i = 0; i < oldnvdevs; i++) { 1926 uint64_t pool; 1927 1928 vd = oldvdevs[i]; 1929 if (vd != NULL) { 1930 ASSERT(vd->vdev_isl2cache); 1931 1932 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1933 pool != 0ULL && l2arc_vdev_present(vd)) 1934 l2arc_remove_vdev(vd); 1935 vdev_clear_stats(vd); 1936 vdev_free(vd); 1937 } 1938 } 1939 1940 if (oldvdevs) 1941 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1942 1943 for (i = 0; i < sav->sav_count; i++) 1944 nvlist_free(l2cache[i]); 1945 if (sav->sav_count) 1946 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1947 } 1948 1949 static int 1950 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1951 { 1952 dmu_buf_t *db; 1953 char *packed = NULL; 1954 size_t nvsize = 0; 1955 int error; 1956 *value = NULL; 1957 1958 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1959 if (error) 1960 return (error); 1961 1962 nvsize = *(uint64_t *)db->db_data; 1963 dmu_buf_rele(db, FTAG); 1964 1965 packed = vmem_alloc(nvsize, KM_SLEEP); 1966 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1967 DMU_READ_PREFETCH); 1968 if (error == 0) 1969 error = nvlist_unpack(packed, nvsize, value, 0); 1970 vmem_free(packed, nvsize); 1971 1972 return (error); 1973 } 1974 1975 /* 1976 * Concrete top-level vdevs that are not missing and are not logs. At every 1977 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1978 */ 1979 static uint64_t 1980 spa_healthy_core_tvds(spa_t *spa) 1981 { 1982 vdev_t *rvd = spa->spa_root_vdev; 1983 uint64_t tvds = 0; 1984 1985 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1986 vdev_t *vd = rvd->vdev_child[i]; 1987 if (vd->vdev_islog) 1988 continue; 1989 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1990 tvds++; 1991 } 1992 1993 return (tvds); 1994 } 1995 1996 /* 1997 * Checks to see if the given vdev could not be opened, in which case we post a 1998 * sysevent to notify the autoreplace code that the device has been removed. 1999 */ 2000 static void 2001 spa_check_removed(vdev_t *vd) 2002 { 2003 for (uint64_t c = 0; c < vd->vdev_children; c++) 2004 spa_check_removed(vd->vdev_child[c]); 2005 2006 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2007 vdev_is_concrete(vd)) { 2008 zfs_post_autoreplace(vd->vdev_spa, vd); 2009 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2010 } 2011 } 2012 2013 static int 2014 spa_check_for_missing_logs(spa_t *spa) 2015 { 2016 vdev_t *rvd = spa->spa_root_vdev; 2017 2018 /* 2019 * If we're doing a normal import, then build up any additional 2020 * diagnostic information about missing log devices. 2021 * We'll pass this up to the user for further processing. 2022 */ 2023 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2024 nvlist_t **child, *nv; 2025 uint64_t idx = 0; 2026 2027 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2028 KM_SLEEP); 2029 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2030 2031 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2032 vdev_t *tvd = rvd->vdev_child[c]; 2033 2034 /* 2035 * We consider a device as missing only if it failed 2036 * to open (i.e. offline or faulted is not considered 2037 * as missing). 2038 */ 2039 if (tvd->vdev_islog && 2040 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2041 child[idx++] = vdev_config_generate(spa, tvd, 2042 B_FALSE, VDEV_CONFIG_MISSING); 2043 } 2044 } 2045 2046 if (idx > 0) { 2047 fnvlist_add_nvlist_array(nv, 2048 ZPOOL_CONFIG_CHILDREN, child, idx); 2049 fnvlist_add_nvlist(spa->spa_load_info, 2050 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2051 2052 for (uint64_t i = 0; i < idx; i++) 2053 nvlist_free(child[i]); 2054 } 2055 nvlist_free(nv); 2056 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2057 2058 if (idx > 0) { 2059 spa_load_failed(spa, "some log devices are missing"); 2060 vdev_dbgmsg_print_tree(rvd, 2); 2061 return (SET_ERROR(ENXIO)); 2062 } 2063 } else { 2064 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2065 vdev_t *tvd = rvd->vdev_child[c]; 2066 2067 if (tvd->vdev_islog && 2068 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2069 spa_set_log_state(spa, SPA_LOG_CLEAR); 2070 spa_load_note(spa, "some log devices are " 2071 "missing, ZIL is dropped."); 2072 vdev_dbgmsg_print_tree(rvd, 2); 2073 break; 2074 } 2075 } 2076 } 2077 2078 return (0); 2079 } 2080 2081 /* 2082 * Check for missing log devices 2083 */ 2084 static boolean_t 2085 spa_check_logs(spa_t *spa) 2086 { 2087 boolean_t rv = B_FALSE; 2088 dsl_pool_t *dp = spa_get_dsl(spa); 2089 2090 switch (spa->spa_log_state) { 2091 default: 2092 break; 2093 case SPA_LOG_MISSING: 2094 /* need to recheck in case slog has been restored */ 2095 case SPA_LOG_UNKNOWN: 2096 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2097 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2098 if (rv) 2099 spa_set_log_state(spa, SPA_LOG_MISSING); 2100 break; 2101 } 2102 return (rv); 2103 } 2104 2105 static boolean_t 2106 spa_passivate_log(spa_t *spa) 2107 { 2108 vdev_t *rvd = spa->spa_root_vdev; 2109 boolean_t slog_found = B_FALSE; 2110 2111 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2112 2113 if (!spa_has_slogs(spa)) 2114 return (B_FALSE); 2115 2116 for (int c = 0; c < rvd->vdev_children; c++) { 2117 vdev_t *tvd = rvd->vdev_child[c]; 2118 metaslab_group_t *mg = tvd->vdev_mg; 2119 2120 if (tvd->vdev_islog) { 2121 metaslab_group_passivate(mg); 2122 slog_found = B_TRUE; 2123 } 2124 } 2125 2126 return (slog_found); 2127 } 2128 2129 static void 2130 spa_activate_log(spa_t *spa) 2131 { 2132 vdev_t *rvd = spa->spa_root_vdev; 2133 2134 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2135 2136 for (int c = 0; c < rvd->vdev_children; c++) { 2137 vdev_t *tvd = rvd->vdev_child[c]; 2138 metaslab_group_t *mg = tvd->vdev_mg; 2139 2140 if (tvd->vdev_islog) 2141 metaslab_group_activate(mg); 2142 } 2143 } 2144 2145 int 2146 spa_reset_logs(spa_t *spa) 2147 { 2148 int error; 2149 2150 error = dmu_objset_find(spa_name(spa), zil_reset, 2151 NULL, DS_FIND_CHILDREN); 2152 if (error == 0) { 2153 /* 2154 * We successfully offlined the log device, sync out the 2155 * current txg so that the "stubby" block can be removed 2156 * by zil_sync(). 2157 */ 2158 txg_wait_synced(spa->spa_dsl_pool, 0); 2159 } 2160 return (error); 2161 } 2162 2163 static void 2164 spa_aux_check_removed(spa_aux_vdev_t *sav) 2165 { 2166 for (int i = 0; i < sav->sav_count; i++) 2167 spa_check_removed(sav->sav_vdevs[i]); 2168 } 2169 2170 void 2171 spa_claim_notify(zio_t *zio) 2172 { 2173 spa_t *spa = zio->io_spa; 2174 2175 if (zio->io_error) 2176 return; 2177 2178 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2179 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2180 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2181 mutex_exit(&spa->spa_props_lock); 2182 } 2183 2184 typedef struct spa_load_error { 2185 uint64_t sle_meta_count; 2186 uint64_t sle_data_count; 2187 } spa_load_error_t; 2188 2189 static void 2190 spa_load_verify_done(zio_t *zio) 2191 { 2192 blkptr_t *bp = zio->io_bp; 2193 spa_load_error_t *sle = zio->io_private; 2194 dmu_object_type_t type = BP_GET_TYPE(bp); 2195 int error = zio->io_error; 2196 spa_t *spa = zio->io_spa; 2197 2198 abd_free(zio->io_abd); 2199 if (error) { 2200 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2201 type != DMU_OT_INTENT_LOG) 2202 atomic_inc_64(&sle->sle_meta_count); 2203 else 2204 atomic_inc_64(&sle->sle_data_count); 2205 } 2206 2207 mutex_enter(&spa->spa_scrub_lock); 2208 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2209 cv_broadcast(&spa->spa_scrub_io_cv); 2210 mutex_exit(&spa->spa_scrub_lock); 2211 } 2212 2213 /* 2214 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2215 * By default, we set it to 1/16th of the arc. 2216 */ 2217 int spa_load_verify_shift = 4; 2218 int spa_load_verify_metadata = B_TRUE; 2219 int spa_load_verify_data = B_TRUE; 2220 2221 /*ARGSUSED*/ 2222 static int 2223 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2224 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2225 { 2226 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2227 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2228 return (0); 2229 /* 2230 * Note: normally this routine will not be called if 2231 * spa_load_verify_metadata is not set. However, it may be useful 2232 * to manually set the flag after the traversal has begun. 2233 */ 2234 if (!spa_load_verify_metadata) 2235 return (0); 2236 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2237 return (0); 2238 2239 uint64_t maxinflight_bytes = 2240 arc_target_bytes() >> spa_load_verify_shift; 2241 zio_t *rio = arg; 2242 size_t size = BP_GET_PSIZE(bp); 2243 2244 mutex_enter(&spa->spa_scrub_lock); 2245 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2246 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2247 spa->spa_load_verify_bytes += size; 2248 mutex_exit(&spa->spa_scrub_lock); 2249 2250 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2251 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2252 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2253 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2254 return (0); 2255 } 2256 2257 /* ARGSUSED */ 2258 static int 2259 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2260 { 2261 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2262 return (SET_ERROR(ENAMETOOLONG)); 2263 2264 return (0); 2265 } 2266 2267 static int 2268 spa_load_verify(spa_t *spa) 2269 { 2270 zio_t *rio; 2271 spa_load_error_t sle = { 0 }; 2272 zpool_load_policy_t policy; 2273 boolean_t verify_ok = B_FALSE; 2274 int error = 0; 2275 2276 zpool_get_load_policy(spa->spa_config, &policy); 2277 2278 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2279 return (0); 2280 2281 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2282 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2283 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2284 DS_FIND_CHILDREN); 2285 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2286 if (error != 0) 2287 return (error); 2288 2289 rio = zio_root(spa, NULL, &sle, 2290 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2291 2292 if (spa_load_verify_metadata) { 2293 if (spa->spa_extreme_rewind) { 2294 spa_load_note(spa, "performing a complete scan of the " 2295 "pool since extreme rewind is on. This may take " 2296 "a very long time.\n (spa_load_verify_data=%u, " 2297 "spa_load_verify_metadata=%u)", 2298 spa_load_verify_data, spa_load_verify_metadata); 2299 } 2300 2301 error = traverse_pool(spa, spa->spa_verify_min_txg, 2302 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2303 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2304 } 2305 2306 (void) zio_wait(rio); 2307 ASSERT0(spa->spa_load_verify_bytes); 2308 2309 spa->spa_load_meta_errors = sle.sle_meta_count; 2310 spa->spa_load_data_errors = sle.sle_data_count; 2311 2312 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2313 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2314 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2315 (u_longlong_t)sle.sle_data_count); 2316 } 2317 2318 if (spa_load_verify_dryrun || 2319 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2320 sle.sle_data_count <= policy.zlp_maxdata)) { 2321 int64_t loss = 0; 2322 2323 verify_ok = B_TRUE; 2324 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2325 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2326 2327 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2328 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2329 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2330 VERIFY(nvlist_add_int64(spa->spa_load_info, 2331 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2332 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2333 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2334 } else { 2335 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2336 } 2337 2338 if (spa_load_verify_dryrun) 2339 return (0); 2340 2341 if (error) { 2342 if (error != ENXIO && error != EIO) 2343 error = SET_ERROR(EIO); 2344 return (error); 2345 } 2346 2347 return (verify_ok ? 0 : EIO); 2348 } 2349 2350 /* 2351 * Find a value in the pool props object. 2352 */ 2353 static void 2354 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2355 { 2356 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2357 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2358 } 2359 2360 /* 2361 * Find a value in the pool directory object. 2362 */ 2363 static int 2364 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2365 { 2366 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2367 name, sizeof (uint64_t), 1, val); 2368 2369 if (error != 0 && (error != ENOENT || log_enoent)) { 2370 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2371 "[error=%d]", name, error); 2372 } 2373 2374 return (error); 2375 } 2376 2377 static int 2378 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2379 { 2380 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2381 return (SET_ERROR(err)); 2382 } 2383 2384 boolean_t 2385 spa_livelist_delete_check(spa_t *spa) 2386 { 2387 return (spa->spa_livelists_to_delete != 0); 2388 } 2389 2390 /* ARGSUSED */ 2391 static boolean_t 2392 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2393 { 2394 spa_t *spa = arg; 2395 return (spa_livelist_delete_check(spa)); 2396 } 2397 2398 static int 2399 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2400 { 2401 spa_t *spa = arg; 2402 zio_free(spa, tx->tx_txg, bp); 2403 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2404 -bp_get_dsize_sync(spa, bp), 2405 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2406 return (0); 2407 } 2408 2409 static int 2410 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2411 { 2412 int err; 2413 zap_cursor_t zc; 2414 zap_attribute_t za; 2415 zap_cursor_init(&zc, os, zap_obj); 2416 err = zap_cursor_retrieve(&zc, &za); 2417 zap_cursor_fini(&zc); 2418 if (err == 0) 2419 *llp = za.za_first_integer; 2420 return (err); 2421 } 2422 2423 /* 2424 * Components of livelist deletion that must be performed in syncing 2425 * context: freeing block pointers and updating the pool-wide data 2426 * structures to indicate how much work is left to do 2427 */ 2428 typedef struct sublist_delete_arg { 2429 spa_t *spa; 2430 dsl_deadlist_t *ll; 2431 uint64_t key; 2432 bplist_t *to_free; 2433 } sublist_delete_arg_t; 2434 2435 static void 2436 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2437 { 2438 sublist_delete_arg_t *sda = arg; 2439 spa_t *spa = sda->spa; 2440 dsl_deadlist_t *ll = sda->ll; 2441 uint64_t key = sda->key; 2442 bplist_t *to_free = sda->to_free; 2443 2444 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2445 dsl_deadlist_remove_entry(ll, key, tx); 2446 } 2447 2448 typedef struct livelist_delete_arg { 2449 spa_t *spa; 2450 uint64_t ll_obj; 2451 uint64_t zap_obj; 2452 } livelist_delete_arg_t; 2453 2454 static void 2455 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2456 { 2457 livelist_delete_arg_t *lda = arg; 2458 spa_t *spa = lda->spa; 2459 uint64_t ll_obj = lda->ll_obj; 2460 uint64_t zap_obj = lda->zap_obj; 2461 objset_t *mos = spa->spa_meta_objset; 2462 uint64_t count; 2463 2464 /* free the livelist and decrement the feature count */ 2465 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2466 dsl_deadlist_free(mos, ll_obj, tx); 2467 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2468 VERIFY0(zap_count(mos, zap_obj, &count)); 2469 if (count == 0) { 2470 /* no more livelists to delete */ 2471 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2472 DMU_POOL_DELETED_CLONES, tx)); 2473 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2474 spa->spa_livelists_to_delete = 0; 2475 spa_notify_waiters(spa); 2476 } 2477 } 2478 2479 /* 2480 * Load in the value for the livelist to be removed and open it. Then, 2481 * load its first sublist and determine which block pointers should actually 2482 * be freed. Then, call a synctask which performs the actual frees and updates 2483 * the pool-wide livelist data. 2484 */ 2485 /* ARGSUSED */ 2486 static void 2487 spa_livelist_delete_cb(void *arg, zthr_t *z) 2488 { 2489 spa_t *spa = arg; 2490 uint64_t ll_obj = 0, count; 2491 objset_t *mos = spa->spa_meta_objset; 2492 uint64_t zap_obj = spa->spa_livelists_to_delete; 2493 /* 2494 * Determine the next livelist to delete. This function should only 2495 * be called if there is at least one deleted clone. 2496 */ 2497 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2498 VERIFY0(zap_count(mos, ll_obj, &count)); 2499 if (count > 0) { 2500 dsl_deadlist_t *ll; 2501 dsl_deadlist_entry_t *dle; 2502 bplist_t to_free; 2503 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 2504 dsl_deadlist_open(ll, mos, ll_obj); 2505 dle = dsl_deadlist_first(ll); 2506 ASSERT3P(dle, !=, NULL); 2507 bplist_create(&to_free); 2508 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2509 z, NULL); 2510 if (err == 0) { 2511 sublist_delete_arg_t sync_arg = { 2512 .spa = spa, 2513 .ll = ll, 2514 .key = dle->dle_mintxg, 2515 .to_free = &to_free 2516 }; 2517 zfs_dbgmsg("deleting sublist (id %llu) from" 2518 " livelist %llu, %d remaining", 2519 dle->dle_bpobj.bpo_object, ll_obj, count - 1); 2520 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2521 sublist_delete_sync, &sync_arg, 0, 2522 ZFS_SPACE_CHECK_DESTROY)); 2523 } else { 2524 VERIFY3U(err, ==, EINTR); 2525 } 2526 bplist_clear(&to_free); 2527 bplist_destroy(&to_free); 2528 dsl_deadlist_close(ll); 2529 kmem_free(ll, sizeof (dsl_deadlist_t)); 2530 } else { 2531 livelist_delete_arg_t sync_arg = { 2532 .spa = spa, 2533 .ll_obj = ll_obj, 2534 .zap_obj = zap_obj 2535 }; 2536 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj); 2537 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2538 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2539 } 2540 } 2541 2542 static void 2543 spa_start_livelist_destroy_thread(spa_t *spa) 2544 { 2545 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2546 spa->spa_livelist_delete_zthr = 2547 zthr_create("z_livelist_destroy", 2548 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa); 2549 } 2550 2551 typedef struct livelist_new_arg { 2552 bplist_t *allocs; 2553 bplist_t *frees; 2554 } livelist_new_arg_t; 2555 2556 static int 2557 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2558 dmu_tx_t *tx) 2559 { 2560 ASSERT(tx == NULL); 2561 livelist_new_arg_t *lna = arg; 2562 if (bp_freed) { 2563 bplist_append(lna->frees, bp); 2564 } else { 2565 bplist_append(lna->allocs, bp); 2566 zfs_livelist_condense_new_alloc++; 2567 } 2568 return (0); 2569 } 2570 2571 typedef struct livelist_condense_arg { 2572 spa_t *spa; 2573 bplist_t to_keep; 2574 uint64_t first_size; 2575 uint64_t next_size; 2576 } livelist_condense_arg_t; 2577 2578 static void 2579 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2580 { 2581 livelist_condense_arg_t *lca = arg; 2582 spa_t *spa = lca->spa; 2583 bplist_t new_frees; 2584 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2585 2586 /* Have we been cancelled? */ 2587 if (spa->spa_to_condense.cancelled) { 2588 zfs_livelist_condense_sync_cancel++; 2589 goto out; 2590 } 2591 2592 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2593 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2594 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2595 2596 /* 2597 * It's possible that the livelist was changed while the zthr was 2598 * running. Therefore, we need to check for new blkptrs in the two 2599 * entries being condensed and continue to track them in the livelist. 2600 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2601 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2602 * we need to sort them into two different bplists. 2603 */ 2604 uint64_t first_obj = first->dle_bpobj.bpo_object; 2605 uint64_t next_obj = next->dle_bpobj.bpo_object; 2606 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2607 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2608 2609 bplist_create(&new_frees); 2610 livelist_new_arg_t new_bps = { 2611 .allocs = &lca->to_keep, 2612 .frees = &new_frees, 2613 }; 2614 2615 if (cur_first_size > lca->first_size) { 2616 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2617 livelist_track_new_cb, &new_bps, lca->first_size)); 2618 } 2619 if (cur_next_size > lca->next_size) { 2620 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2621 livelist_track_new_cb, &new_bps, lca->next_size)); 2622 } 2623 2624 dsl_deadlist_clear_entry(first, ll, tx); 2625 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2626 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2627 2628 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2629 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2630 bplist_destroy(&new_frees); 2631 2632 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2633 dsl_dataset_name(ds, dsname); 2634 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2635 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2636 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj, 2637 cur_first_size, next_obj, cur_next_size, 2638 first->dle_bpobj.bpo_object, 2639 first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2640 out: 2641 dmu_buf_rele(ds->ds_dbuf, spa); 2642 spa->spa_to_condense.ds = NULL; 2643 bplist_clear(&lca->to_keep); 2644 bplist_destroy(&lca->to_keep); 2645 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2646 spa->spa_to_condense.syncing = B_FALSE; 2647 } 2648 2649 static void 2650 spa_livelist_condense_cb(void *arg, zthr_t *t) 2651 { 2652 while (zfs_livelist_condense_zthr_pause && 2653 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2654 delay(1); 2655 2656 spa_t *spa = arg; 2657 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2658 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2659 uint64_t first_size, next_size; 2660 2661 livelist_condense_arg_t *lca = 2662 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2663 bplist_create(&lca->to_keep); 2664 2665 /* 2666 * Process the livelists (matching FREEs and ALLOCs) in open context 2667 * so we have minimal work in syncing context to condense. 2668 * 2669 * We save bpobj sizes (first_size and next_size) to use later in 2670 * syncing context to determine if entries were added to these sublists 2671 * while in open context. This is possible because the clone is still 2672 * active and open for normal writes and we want to make sure the new, 2673 * unprocessed blockpointers are inserted into the livelist normally. 2674 * 2675 * Note that dsl_process_sub_livelist() both stores the size number of 2676 * blockpointers and iterates over them while the bpobj's lock held, so 2677 * the sizes returned to us are consistent which what was actually 2678 * processed. 2679 */ 2680 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2681 &first_size); 2682 if (err == 0) 2683 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2684 t, &next_size); 2685 2686 if (err == 0) { 2687 while (zfs_livelist_condense_sync_pause && 2688 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2689 delay(1); 2690 2691 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2692 dmu_tx_mark_netfree(tx); 2693 dmu_tx_hold_space(tx, 1); 2694 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2695 if (err == 0) { 2696 /* 2697 * Prevent the condense zthr restarting before 2698 * the synctask completes. 2699 */ 2700 spa->spa_to_condense.syncing = B_TRUE; 2701 lca->spa = spa; 2702 lca->first_size = first_size; 2703 lca->next_size = next_size; 2704 dsl_sync_task_nowait(spa_get_dsl(spa), 2705 spa_livelist_condense_sync, lca, tx); 2706 dmu_tx_commit(tx); 2707 return; 2708 } 2709 } 2710 /* 2711 * Condensing can not continue: either it was externally stopped or 2712 * we were unable to assign to a tx because the pool has run out of 2713 * space. In the second case, we'll just end up trying to condense 2714 * again in a later txg. 2715 */ 2716 ASSERT(err != 0); 2717 bplist_clear(&lca->to_keep); 2718 bplist_destroy(&lca->to_keep); 2719 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2720 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2721 spa->spa_to_condense.ds = NULL; 2722 if (err == EINTR) 2723 zfs_livelist_condense_zthr_cancel++; 2724 } 2725 2726 /* ARGSUSED */ 2727 /* 2728 * Check that there is something to condense but that a condense is not 2729 * already in progress and that condensing has not been cancelled. 2730 */ 2731 static boolean_t 2732 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2733 { 2734 spa_t *spa = arg; 2735 if ((spa->spa_to_condense.ds != NULL) && 2736 (spa->spa_to_condense.syncing == B_FALSE) && 2737 (spa->spa_to_condense.cancelled == B_FALSE)) { 2738 return (B_TRUE); 2739 } 2740 return (B_FALSE); 2741 } 2742 2743 static void 2744 spa_start_livelist_condensing_thread(spa_t *spa) 2745 { 2746 spa->spa_to_condense.ds = NULL; 2747 spa->spa_to_condense.first = NULL; 2748 spa->spa_to_condense.next = NULL; 2749 spa->spa_to_condense.syncing = B_FALSE; 2750 spa->spa_to_condense.cancelled = B_FALSE; 2751 2752 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2753 spa->spa_livelist_condense_zthr = 2754 zthr_create("z_livelist_condense", 2755 spa_livelist_condense_cb_check, 2756 spa_livelist_condense_cb, spa); 2757 } 2758 2759 static void 2760 spa_spawn_aux_threads(spa_t *spa) 2761 { 2762 ASSERT(spa_writeable(spa)); 2763 2764 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2765 2766 spa_start_indirect_condensing_thread(spa); 2767 spa_start_livelist_destroy_thread(spa); 2768 spa_start_livelist_condensing_thread(spa); 2769 2770 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2771 spa->spa_checkpoint_discard_zthr = 2772 zthr_create("z_checkpoint_discard", 2773 spa_checkpoint_discard_thread_check, 2774 spa_checkpoint_discard_thread, spa); 2775 } 2776 2777 /* 2778 * Fix up config after a partly-completed split. This is done with the 2779 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2780 * pool have that entry in their config, but only the splitting one contains 2781 * a list of all the guids of the vdevs that are being split off. 2782 * 2783 * This function determines what to do with that list: either rejoin 2784 * all the disks to the pool, or complete the splitting process. To attempt 2785 * the rejoin, each disk that is offlined is marked online again, and 2786 * we do a reopen() call. If the vdev label for every disk that was 2787 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2788 * then we call vdev_split() on each disk, and complete the split. 2789 * 2790 * Otherwise we leave the config alone, with all the vdevs in place in 2791 * the original pool. 2792 */ 2793 static void 2794 spa_try_repair(spa_t *spa, nvlist_t *config) 2795 { 2796 uint_t extracted; 2797 uint64_t *glist; 2798 uint_t i, gcount; 2799 nvlist_t *nvl; 2800 vdev_t **vd; 2801 boolean_t attempt_reopen; 2802 2803 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2804 return; 2805 2806 /* check that the config is complete */ 2807 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2808 &glist, &gcount) != 0) 2809 return; 2810 2811 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2812 2813 /* attempt to online all the vdevs & validate */ 2814 attempt_reopen = B_TRUE; 2815 for (i = 0; i < gcount; i++) { 2816 if (glist[i] == 0) /* vdev is hole */ 2817 continue; 2818 2819 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2820 if (vd[i] == NULL) { 2821 /* 2822 * Don't bother attempting to reopen the disks; 2823 * just do the split. 2824 */ 2825 attempt_reopen = B_FALSE; 2826 } else { 2827 /* attempt to re-online it */ 2828 vd[i]->vdev_offline = B_FALSE; 2829 } 2830 } 2831 2832 if (attempt_reopen) { 2833 vdev_reopen(spa->spa_root_vdev); 2834 2835 /* check each device to see what state it's in */ 2836 for (extracted = 0, i = 0; i < gcount; i++) { 2837 if (vd[i] != NULL && 2838 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2839 break; 2840 ++extracted; 2841 } 2842 } 2843 2844 /* 2845 * If every disk has been moved to the new pool, or if we never 2846 * even attempted to look at them, then we split them off for 2847 * good. 2848 */ 2849 if (!attempt_reopen || gcount == extracted) { 2850 for (i = 0; i < gcount; i++) 2851 if (vd[i] != NULL) 2852 vdev_split(vd[i]); 2853 vdev_reopen(spa->spa_root_vdev); 2854 } 2855 2856 kmem_free(vd, gcount * sizeof (vdev_t *)); 2857 } 2858 2859 static int 2860 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2861 { 2862 char *ereport = FM_EREPORT_ZFS_POOL; 2863 int error; 2864 2865 spa->spa_load_state = state; 2866 (void) spa_import_progress_set_state(spa_guid(spa), 2867 spa_load_state(spa)); 2868 2869 gethrestime(&spa->spa_loaded_ts); 2870 error = spa_load_impl(spa, type, &ereport); 2871 2872 /* 2873 * Don't count references from objsets that are already closed 2874 * and are making their way through the eviction process. 2875 */ 2876 spa_evicting_os_wait(spa); 2877 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2878 if (error) { 2879 if (error != EEXIST) { 2880 spa->spa_loaded_ts.tv_sec = 0; 2881 spa->spa_loaded_ts.tv_nsec = 0; 2882 } 2883 if (error != EBADF) { 2884 (void) zfs_ereport_post(ereport, spa, 2885 NULL, NULL, NULL, 0); 2886 } 2887 } 2888 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2889 spa->spa_ena = 0; 2890 2891 (void) spa_import_progress_set_state(spa_guid(spa), 2892 spa_load_state(spa)); 2893 2894 return (error); 2895 } 2896 2897 #ifdef ZFS_DEBUG 2898 /* 2899 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2900 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2901 * spa's per-vdev ZAP list. 2902 */ 2903 static uint64_t 2904 vdev_count_verify_zaps(vdev_t *vd) 2905 { 2906 spa_t *spa = vd->vdev_spa; 2907 uint64_t total = 0; 2908 2909 if (vd->vdev_top_zap != 0) { 2910 total++; 2911 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2912 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2913 } 2914 if (vd->vdev_leaf_zap != 0) { 2915 total++; 2916 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2917 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2918 } 2919 2920 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2921 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2922 } 2923 2924 return (total); 2925 } 2926 #endif 2927 2928 /* 2929 * Determine whether the activity check is required. 2930 */ 2931 static boolean_t 2932 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2933 nvlist_t *config) 2934 { 2935 uint64_t state = 0; 2936 uint64_t hostid = 0; 2937 uint64_t tryconfig_txg = 0; 2938 uint64_t tryconfig_timestamp = 0; 2939 uint16_t tryconfig_mmp_seq = 0; 2940 nvlist_t *nvinfo; 2941 2942 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2943 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2944 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2945 &tryconfig_txg); 2946 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2947 &tryconfig_timestamp); 2948 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 2949 &tryconfig_mmp_seq); 2950 } 2951 2952 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2953 2954 /* 2955 * Disable the MMP activity check - This is used by zdb which 2956 * is intended to be used on potentially active pools. 2957 */ 2958 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2959 return (B_FALSE); 2960 2961 /* 2962 * Skip the activity check when the MMP feature is disabled. 2963 */ 2964 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2965 return (B_FALSE); 2966 2967 /* 2968 * If the tryconfig_ values are nonzero, they are the results of an 2969 * earlier tryimport. If they all match the uberblock we just found, 2970 * then the pool has not changed and we return false so we do not test 2971 * a second time. 2972 */ 2973 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2974 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 2975 tryconfig_mmp_seq && tryconfig_mmp_seq == 2976 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 2977 return (B_FALSE); 2978 2979 /* 2980 * Allow the activity check to be skipped when importing the pool 2981 * on the same host which last imported it. Since the hostid from 2982 * configuration may be stale use the one read from the label. 2983 */ 2984 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2985 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2986 2987 if (hostid == spa_get_hostid(spa)) 2988 return (B_FALSE); 2989 2990 /* 2991 * Skip the activity test when the pool was cleanly exported. 2992 */ 2993 if (state != POOL_STATE_ACTIVE) 2994 return (B_FALSE); 2995 2996 return (B_TRUE); 2997 } 2998 2999 /* 3000 * Nanoseconds the activity check must watch for changes on-disk. 3001 */ 3002 static uint64_t 3003 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3004 { 3005 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3006 uint64_t multihost_interval = MSEC2NSEC( 3007 MMP_INTERVAL_OK(zfs_multihost_interval)); 3008 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3009 multihost_interval); 3010 3011 /* 3012 * Local tunables determine a minimum duration except for the case 3013 * where we know when the remote host will suspend the pool if MMP 3014 * writes do not land. 3015 * 3016 * See Big Theory comment at the top of mmp.c for the reasoning behind 3017 * these cases and times. 3018 */ 3019 3020 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3021 3022 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3023 MMP_FAIL_INT(ub) > 0) { 3024 3025 /* MMP on remote host will suspend pool after failed writes */ 3026 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3027 MMP_IMPORT_SAFETY_FACTOR / 100; 3028 3029 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3030 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3031 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), 3032 MMP_INTERVAL(ub), import_intervals); 3033 3034 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3035 MMP_FAIL_INT(ub) == 0) { 3036 3037 /* MMP on remote host will never suspend pool */ 3038 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3039 ub->ub_mmp_delay) * import_intervals); 3040 3041 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3042 "mmp_interval=%llu ub_mmp_delay=%llu " 3043 "import_intervals=%u", import_delay, MMP_INTERVAL(ub), 3044 ub->ub_mmp_delay, import_intervals); 3045 3046 } else if (MMP_VALID(ub)) { 3047 /* 3048 * zfs-0.7 compatibility case 3049 */ 3050 3051 import_delay = MAX(import_delay, (multihost_interval + 3052 ub->ub_mmp_delay) * import_intervals); 3053 3054 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3055 "import_intervals=%u leaves=%u", import_delay, 3056 ub->ub_mmp_delay, import_intervals, 3057 vdev_count_leaves(spa)); 3058 } else { 3059 /* Using local tunings is the only reasonable option */ 3060 zfs_dbgmsg("pool last imported on non-MMP aware " 3061 "host using import_delay=%llu multihost_interval=%llu " 3062 "import_intervals=%u", import_delay, multihost_interval, 3063 import_intervals); 3064 } 3065 3066 return (import_delay); 3067 } 3068 3069 /* 3070 * Perform the import activity check. If the user canceled the import or 3071 * we detected activity then fail. 3072 */ 3073 static int 3074 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3075 { 3076 uint64_t txg = ub->ub_txg; 3077 uint64_t timestamp = ub->ub_timestamp; 3078 uint64_t mmp_config = ub->ub_mmp_config; 3079 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3080 uint64_t import_delay; 3081 hrtime_t import_expire; 3082 nvlist_t *mmp_label = NULL; 3083 vdev_t *rvd = spa->spa_root_vdev; 3084 kcondvar_t cv; 3085 kmutex_t mtx; 3086 int error = 0; 3087 3088 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3089 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3090 mutex_enter(&mtx); 3091 3092 /* 3093 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3094 * during the earlier tryimport. If the txg recorded there is 0 then 3095 * the pool is known to be active on another host. 3096 * 3097 * Otherwise, the pool might be in use on another host. Check for 3098 * changes in the uberblocks on disk if necessary. 3099 */ 3100 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3101 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3102 ZPOOL_CONFIG_LOAD_INFO); 3103 3104 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3105 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3106 vdev_uberblock_load(rvd, ub, &mmp_label); 3107 error = SET_ERROR(EREMOTEIO); 3108 goto out; 3109 } 3110 } 3111 3112 import_delay = spa_activity_check_duration(spa, ub); 3113 3114 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3115 import_delay += import_delay * spa_get_random(250) / 1000; 3116 3117 import_expire = gethrtime() + import_delay; 3118 3119 while (gethrtime() < import_expire) { 3120 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3121 NSEC2SEC(import_expire - gethrtime())); 3122 3123 vdev_uberblock_load(rvd, ub, &mmp_label); 3124 3125 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3126 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3127 zfs_dbgmsg("multihost activity detected " 3128 "txg %llu ub_txg %llu " 3129 "timestamp %llu ub_timestamp %llu " 3130 "mmp_config %#llx ub_mmp_config %#llx", 3131 txg, ub->ub_txg, timestamp, ub->ub_timestamp, 3132 mmp_config, ub->ub_mmp_config); 3133 3134 error = SET_ERROR(EREMOTEIO); 3135 break; 3136 } 3137 3138 if (mmp_label) { 3139 nvlist_free(mmp_label); 3140 mmp_label = NULL; 3141 } 3142 3143 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3144 if (error != -1) { 3145 error = SET_ERROR(EINTR); 3146 break; 3147 } 3148 error = 0; 3149 } 3150 3151 out: 3152 mutex_exit(&mtx); 3153 mutex_destroy(&mtx); 3154 cv_destroy(&cv); 3155 3156 /* 3157 * If the pool is determined to be active store the status in the 3158 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3159 * available from configuration read from disk store them as well. 3160 * This allows 'zpool import' to generate a more useful message. 3161 * 3162 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3163 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3164 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3165 */ 3166 if (error == EREMOTEIO) { 3167 char *hostname = "<unknown>"; 3168 uint64_t hostid = 0; 3169 3170 if (mmp_label) { 3171 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3172 hostname = fnvlist_lookup_string(mmp_label, 3173 ZPOOL_CONFIG_HOSTNAME); 3174 fnvlist_add_string(spa->spa_load_info, 3175 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3176 } 3177 3178 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3179 hostid = fnvlist_lookup_uint64(mmp_label, 3180 ZPOOL_CONFIG_HOSTID); 3181 fnvlist_add_uint64(spa->spa_load_info, 3182 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3183 } 3184 } 3185 3186 fnvlist_add_uint64(spa->spa_load_info, 3187 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3188 fnvlist_add_uint64(spa->spa_load_info, 3189 ZPOOL_CONFIG_MMP_TXG, 0); 3190 3191 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3192 } 3193 3194 if (mmp_label) 3195 nvlist_free(mmp_label); 3196 3197 return (error); 3198 } 3199 3200 static int 3201 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3202 { 3203 uint64_t hostid; 3204 char *hostname; 3205 uint64_t myhostid = 0; 3206 3207 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3208 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3209 hostname = fnvlist_lookup_string(mos_config, 3210 ZPOOL_CONFIG_HOSTNAME); 3211 3212 myhostid = zone_get_hostid(NULL); 3213 3214 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3215 cmn_err(CE_WARN, "pool '%s' could not be " 3216 "loaded as it was last accessed by " 3217 "another system (host: %s hostid: 0x%llx). " 3218 "See: https://openzfs.github.io/openzfs-docs/msg/" 3219 "ZFS-8000-EY", 3220 spa_name(spa), hostname, (u_longlong_t)hostid); 3221 spa_load_failed(spa, "hostid verification failed: pool " 3222 "last accessed by host: %s (hostid: 0x%llx)", 3223 hostname, (u_longlong_t)hostid); 3224 return (SET_ERROR(EBADF)); 3225 } 3226 } 3227 3228 return (0); 3229 } 3230 3231 static int 3232 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3233 { 3234 int error = 0; 3235 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3236 int parse; 3237 vdev_t *rvd; 3238 uint64_t pool_guid; 3239 char *comment; 3240 3241 /* 3242 * Versioning wasn't explicitly added to the label until later, so if 3243 * it's not present treat it as the initial version. 3244 */ 3245 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3246 &spa->spa_ubsync.ub_version) != 0) 3247 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3248 3249 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3250 spa_load_failed(spa, "invalid config provided: '%s' missing", 3251 ZPOOL_CONFIG_POOL_GUID); 3252 return (SET_ERROR(EINVAL)); 3253 } 3254 3255 /* 3256 * If we are doing an import, ensure that the pool is not already 3257 * imported by checking if its pool guid already exists in the 3258 * spa namespace. 3259 * 3260 * The only case that we allow an already imported pool to be 3261 * imported again, is when the pool is checkpointed and we want to 3262 * look at its checkpointed state from userland tools like zdb. 3263 */ 3264 #ifdef _KERNEL 3265 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3266 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3267 spa_guid_exists(pool_guid, 0)) { 3268 #else 3269 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3270 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3271 spa_guid_exists(pool_guid, 0) && 3272 !spa_importing_readonly_checkpoint(spa)) { 3273 #endif 3274 spa_load_failed(spa, "a pool with guid %llu is already open", 3275 (u_longlong_t)pool_guid); 3276 return (SET_ERROR(EEXIST)); 3277 } 3278 3279 spa->spa_config_guid = pool_guid; 3280 3281 nvlist_free(spa->spa_load_info); 3282 spa->spa_load_info = fnvlist_alloc(); 3283 3284 ASSERT(spa->spa_comment == NULL); 3285 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3286 spa->spa_comment = spa_strdup(comment); 3287 3288 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3289 &spa->spa_config_txg); 3290 3291 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3292 spa->spa_config_splitting = fnvlist_dup(nvl); 3293 3294 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3295 spa_load_failed(spa, "invalid config provided: '%s' missing", 3296 ZPOOL_CONFIG_VDEV_TREE); 3297 return (SET_ERROR(EINVAL)); 3298 } 3299 3300 /* 3301 * Create "The Godfather" zio to hold all async IOs 3302 */ 3303 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3304 KM_SLEEP); 3305 for (int i = 0; i < max_ncpus; i++) { 3306 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3307 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3308 ZIO_FLAG_GODFATHER); 3309 } 3310 3311 /* 3312 * Parse the configuration into a vdev tree. We explicitly set the 3313 * value that will be returned by spa_version() since parsing the 3314 * configuration requires knowing the version number. 3315 */ 3316 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3317 parse = (type == SPA_IMPORT_EXISTING ? 3318 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3319 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3320 spa_config_exit(spa, SCL_ALL, FTAG); 3321 3322 if (error != 0) { 3323 spa_load_failed(spa, "unable to parse config [error=%d]", 3324 error); 3325 return (error); 3326 } 3327 3328 ASSERT(spa->spa_root_vdev == rvd); 3329 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3330 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3331 3332 if (type != SPA_IMPORT_ASSEMBLE) { 3333 ASSERT(spa_guid(spa) == pool_guid); 3334 } 3335 3336 return (0); 3337 } 3338 3339 /* 3340 * Recursively open all vdevs in the vdev tree. This function is called twice: 3341 * first with the untrusted config, then with the trusted config. 3342 */ 3343 static int 3344 spa_ld_open_vdevs(spa_t *spa) 3345 { 3346 int error = 0; 3347 3348 /* 3349 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3350 * missing/unopenable for the root vdev to be still considered openable. 3351 */ 3352 if (spa->spa_trust_config) { 3353 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3354 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3355 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3356 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3357 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3358 } else { 3359 spa->spa_missing_tvds_allowed = 0; 3360 } 3361 3362 spa->spa_missing_tvds_allowed = 3363 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3364 3365 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3366 error = vdev_open(spa->spa_root_vdev); 3367 spa_config_exit(spa, SCL_ALL, FTAG); 3368 3369 if (spa->spa_missing_tvds != 0) { 3370 spa_load_note(spa, "vdev tree has %lld missing top-level " 3371 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3372 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3373 /* 3374 * Although theoretically we could allow users to open 3375 * incomplete pools in RW mode, we'd need to add a lot 3376 * of extra logic (e.g. adjust pool space to account 3377 * for missing vdevs). 3378 * This limitation also prevents users from accidentally 3379 * opening the pool in RW mode during data recovery and 3380 * damaging it further. 3381 */ 3382 spa_load_note(spa, "pools with missing top-level " 3383 "vdevs can only be opened in read-only mode."); 3384 error = SET_ERROR(ENXIO); 3385 } else { 3386 spa_load_note(spa, "current settings allow for maximum " 3387 "%lld missing top-level vdevs at this stage.", 3388 (u_longlong_t)spa->spa_missing_tvds_allowed); 3389 } 3390 } 3391 if (error != 0) { 3392 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3393 error); 3394 } 3395 if (spa->spa_missing_tvds != 0 || error != 0) 3396 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3397 3398 return (error); 3399 } 3400 3401 /* 3402 * We need to validate the vdev labels against the configuration that 3403 * we have in hand. This function is called twice: first with an untrusted 3404 * config, then with a trusted config. The validation is more strict when the 3405 * config is trusted. 3406 */ 3407 static int 3408 spa_ld_validate_vdevs(spa_t *spa) 3409 { 3410 int error = 0; 3411 vdev_t *rvd = spa->spa_root_vdev; 3412 3413 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3414 error = vdev_validate(rvd); 3415 spa_config_exit(spa, SCL_ALL, FTAG); 3416 3417 if (error != 0) { 3418 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3419 return (error); 3420 } 3421 3422 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3423 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3424 "some vdevs"); 3425 vdev_dbgmsg_print_tree(rvd, 2); 3426 return (SET_ERROR(ENXIO)); 3427 } 3428 3429 return (0); 3430 } 3431 3432 static void 3433 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3434 { 3435 spa->spa_state = POOL_STATE_ACTIVE; 3436 spa->spa_ubsync = spa->spa_uberblock; 3437 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3438 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3439 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3440 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3441 spa->spa_claim_max_txg = spa->spa_first_txg; 3442 spa->spa_prev_software_version = ub->ub_software_version; 3443 } 3444 3445 static int 3446 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3447 { 3448 vdev_t *rvd = spa->spa_root_vdev; 3449 nvlist_t *label; 3450 uberblock_t *ub = &spa->spa_uberblock; 3451 boolean_t activity_check = B_FALSE; 3452 3453 /* 3454 * If we are opening the checkpointed state of the pool by 3455 * rewinding to it, at this point we will have written the 3456 * checkpointed uberblock to the vdev labels, so searching 3457 * the labels will find the right uberblock. However, if 3458 * we are opening the checkpointed state read-only, we have 3459 * not modified the labels. Therefore, we must ignore the 3460 * labels and continue using the spa_uberblock that was set 3461 * by spa_ld_checkpoint_rewind. 3462 * 3463 * Note that it would be fine to ignore the labels when 3464 * rewinding (opening writeable) as well. However, if we 3465 * crash just after writing the labels, we will end up 3466 * searching the labels. Doing so in the common case means 3467 * that this code path gets exercised normally, rather than 3468 * just in the edge case. 3469 */ 3470 if (ub->ub_checkpoint_txg != 0 && 3471 spa_importing_readonly_checkpoint(spa)) { 3472 spa_ld_select_uberblock_done(spa, ub); 3473 return (0); 3474 } 3475 3476 /* 3477 * Find the best uberblock. 3478 */ 3479 vdev_uberblock_load(rvd, ub, &label); 3480 3481 /* 3482 * If we weren't able to find a single valid uberblock, return failure. 3483 */ 3484 if (ub->ub_txg == 0) { 3485 nvlist_free(label); 3486 spa_load_failed(spa, "no valid uberblock found"); 3487 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3488 } 3489 3490 if (spa->spa_load_max_txg != UINT64_MAX) { 3491 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3492 (u_longlong_t)spa->spa_load_max_txg); 3493 } 3494 spa_load_note(spa, "using uberblock with txg=%llu", 3495 (u_longlong_t)ub->ub_txg); 3496 3497 3498 /* 3499 * For pools which have the multihost property on determine if the 3500 * pool is truly inactive and can be safely imported. Prevent 3501 * hosts which don't have a hostid set from importing the pool. 3502 */ 3503 activity_check = spa_activity_check_required(spa, ub, label, 3504 spa->spa_config); 3505 if (activity_check) { 3506 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3507 spa_get_hostid(spa) == 0) { 3508 nvlist_free(label); 3509 fnvlist_add_uint64(spa->spa_load_info, 3510 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3511 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3512 } 3513 3514 int error = spa_activity_check(spa, ub, spa->spa_config); 3515 if (error) { 3516 nvlist_free(label); 3517 return (error); 3518 } 3519 3520 fnvlist_add_uint64(spa->spa_load_info, 3521 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3522 fnvlist_add_uint64(spa->spa_load_info, 3523 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3524 fnvlist_add_uint16(spa->spa_load_info, 3525 ZPOOL_CONFIG_MMP_SEQ, 3526 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3527 } 3528 3529 /* 3530 * If the pool has an unsupported version we can't open it. 3531 */ 3532 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3533 nvlist_free(label); 3534 spa_load_failed(spa, "version %llu is not supported", 3535 (u_longlong_t)ub->ub_version); 3536 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3537 } 3538 3539 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3540 nvlist_t *features; 3541 3542 /* 3543 * If we weren't able to find what's necessary for reading the 3544 * MOS in the label, return failure. 3545 */ 3546 if (label == NULL) { 3547 spa_load_failed(spa, "label config unavailable"); 3548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3549 ENXIO)); 3550 } 3551 3552 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3553 &features) != 0) { 3554 nvlist_free(label); 3555 spa_load_failed(spa, "invalid label: '%s' missing", 3556 ZPOOL_CONFIG_FEATURES_FOR_READ); 3557 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3558 ENXIO)); 3559 } 3560 3561 /* 3562 * Update our in-core representation with the definitive values 3563 * from the label. 3564 */ 3565 nvlist_free(spa->spa_label_features); 3566 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 3567 } 3568 3569 nvlist_free(label); 3570 3571 /* 3572 * Look through entries in the label nvlist's features_for_read. If 3573 * there is a feature listed there which we don't understand then we 3574 * cannot open a pool. 3575 */ 3576 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3577 nvlist_t *unsup_feat; 3578 3579 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 3580 0); 3581 3582 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3583 NULL); nvp != NULL; 3584 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3585 if (!zfeature_is_supported(nvpair_name(nvp))) { 3586 VERIFY(nvlist_add_string(unsup_feat, 3587 nvpair_name(nvp), "") == 0); 3588 } 3589 } 3590 3591 if (!nvlist_empty(unsup_feat)) { 3592 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 3593 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 3594 nvlist_free(unsup_feat); 3595 spa_load_failed(spa, "some features are unsupported"); 3596 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3597 ENOTSUP)); 3598 } 3599 3600 nvlist_free(unsup_feat); 3601 } 3602 3603 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3604 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3605 spa_try_repair(spa, spa->spa_config); 3606 spa_config_exit(spa, SCL_ALL, FTAG); 3607 nvlist_free(spa->spa_config_splitting); 3608 spa->spa_config_splitting = NULL; 3609 } 3610 3611 /* 3612 * Initialize internal SPA structures. 3613 */ 3614 spa_ld_select_uberblock_done(spa, ub); 3615 3616 return (0); 3617 } 3618 3619 static int 3620 spa_ld_open_rootbp(spa_t *spa) 3621 { 3622 int error = 0; 3623 vdev_t *rvd = spa->spa_root_vdev; 3624 3625 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3626 if (error != 0) { 3627 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3628 "[error=%d]", error); 3629 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3630 } 3631 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3632 3633 return (0); 3634 } 3635 3636 static int 3637 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3638 boolean_t reloading) 3639 { 3640 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3641 nvlist_t *nv, *mos_config, *policy; 3642 int error = 0, copy_error; 3643 uint64_t healthy_tvds, healthy_tvds_mos; 3644 uint64_t mos_config_txg; 3645 3646 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3647 != 0) 3648 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3649 3650 /* 3651 * If we're assembling a pool from a split, the config provided is 3652 * already trusted so there is nothing to do. 3653 */ 3654 if (type == SPA_IMPORT_ASSEMBLE) 3655 return (0); 3656 3657 healthy_tvds = spa_healthy_core_tvds(spa); 3658 3659 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3660 != 0) { 3661 spa_load_failed(spa, "unable to retrieve MOS config"); 3662 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3663 } 3664 3665 /* 3666 * If we are doing an open, pool owner wasn't verified yet, thus do 3667 * the verification here. 3668 */ 3669 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3670 error = spa_verify_host(spa, mos_config); 3671 if (error != 0) { 3672 nvlist_free(mos_config); 3673 return (error); 3674 } 3675 } 3676 3677 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3678 3679 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3680 3681 /* 3682 * Build a new vdev tree from the trusted config 3683 */ 3684 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3685 3686 /* 3687 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3688 * obtained by scanning /dev/dsk, then it will have the right vdev 3689 * paths. We update the trusted MOS config with this information. 3690 * We first try to copy the paths with vdev_copy_path_strict, which 3691 * succeeds only when both configs have exactly the same vdev tree. 3692 * If that fails, we fall back to a more flexible method that has a 3693 * best effort policy. 3694 */ 3695 copy_error = vdev_copy_path_strict(rvd, mrvd); 3696 if (copy_error != 0 || spa_load_print_vdev_tree) { 3697 spa_load_note(spa, "provided vdev tree:"); 3698 vdev_dbgmsg_print_tree(rvd, 2); 3699 spa_load_note(spa, "MOS vdev tree:"); 3700 vdev_dbgmsg_print_tree(mrvd, 2); 3701 } 3702 if (copy_error != 0) { 3703 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3704 "back to vdev_copy_path_relaxed"); 3705 vdev_copy_path_relaxed(rvd, mrvd); 3706 } 3707 3708 vdev_close(rvd); 3709 vdev_free(rvd); 3710 spa->spa_root_vdev = mrvd; 3711 rvd = mrvd; 3712 spa_config_exit(spa, SCL_ALL, FTAG); 3713 3714 /* 3715 * We will use spa_config if we decide to reload the spa or if spa_load 3716 * fails and we rewind. We must thus regenerate the config using the 3717 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3718 * pass settings on how to load the pool and is not stored in the MOS. 3719 * We copy it over to our new, trusted config. 3720 */ 3721 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3722 ZPOOL_CONFIG_POOL_TXG); 3723 nvlist_free(mos_config); 3724 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3725 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3726 &policy) == 0) 3727 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3728 spa_config_set(spa, mos_config); 3729 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3730 3731 /* 3732 * Now that we got the config from the MOS, we should be more strict 3733 * in checking blkptrs and can make assumptions about the consistency 3734 * of the vdev tree. spa_trust_config must be set to true before opening 3735 * vdevs in order for them to be writeable. 3736 */ 3737 spa->spa_trust_config = B_TRUE; 3738 3739 /* 3740 * Open and validate the new vdev tree 3741 */ 3742 error = spa_ld_open_vdevs(spa); 3743 if (error != 0) 3744 return (error); 3745 3746 error = spa_ld_validate_vdevs(spa); 3747 if (error != 0) 3748 return (error); 3749 3750 if (copy_error != 0 || spa_load_print_vdev_tree) { 3751 spa_load_note(spa, "final vdev tree:"); 3752 vdev_dbgmsg_print_tree(rvd, 2); 3753 } 3754 3755 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3756 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3757 /* 3758 * Sanity check to make sure that we are indeed loading the 3759 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3760 * in the config provided and they happened to be the only ones 3761 * to have the latest uberblock, we could involuntarily perform 3762 * an extreme rewind. 3763 */ 3764 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3765 if (healthy_tvds_mos - healthy_tvds >= 3766 SPA_SYNC_MIN_VDEVS) { 3767 spa_load_note(spa, "config provided misses too many " 3768 "top-level vdevs compared to MOS (%lld vs %lld). ", 3769 (u_longlong_t)healthy_tvds, 3770 (u_longlong_t)healthy_tvds_mos); 3771 spa_load_note(spa, "vdev tree:"); 3772 vdev_dbgmsg_print_tree(rvd, 2); 3773 if (reloading) { 3774 spa_load_failed(spa, "config was already " 3775 "provided from MOS. Aborting."); 3776 return (spa_vdev_err(rvd, 3777 VDEV_AUX_CORRUPT_DATA, EIO)); 3778 } 3779 spa_load_note(spa, "spa must be reloaded using MOS " 3780 "config"); 3781 return (SET_ERROR(EAGAIN)); 3782 } 3783 } 3784 3785 error = spa_check_for_missing_logs(spa); 3786 if (error != 0) 3787 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3788 3789 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3790 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3791 "guid sum (%llu != %llu)", 3792 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3793 (u_longlong_t)rvd->vdev_guid_sum); 3794 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3795 ENXIO)); 3796 } 3797 3798 return (0); 3799 } 3800 3801 static int 3802 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3803 { 3804 int error = 0; 3805 vdev_t *rvd = spa->spa_root_vdev; 3806 3807 /* 3808 * Everything that we read before spa_remove_init() must be stored 3809 * on concreted vdevs. Therefore we do this as early as possible. 3810 */ 3811 error = spa_remove_init(spa); 3812 if (error != 0) { 3813 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3814 error); 3815 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3816 } 3817 3818 /* 3819 * Retrieve information needed to condense indirect vdev mappings. 3820 */ 3821 error = spa_condense_init(spa); 3822 if (error != 0) { 3823 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3824 error); 3825 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3826 } 3827 3828 return (0); 3829 } 3830 3831 static int 3832 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3833 { 3834 int error = 0; 3835 vdev_t *rvd = spa->spa_root_vdev; 3836 3837 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3838 boolean_t missing_feat_read = B_FALSE; 3839 nvlist_t *unsup_feat, *enabled_feat; 3840 3841 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3842 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3844 } 3845 3846 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3847 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3848 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3849 } 3850 3851 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3852 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3853 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3854 } 3855 3856 enabled_feat = fnvlist_alloc(); 3857 unsup_feat = fnvlist_alloc(); 3858 3859 if (!spa_features_check(spa, B_FALSE, 3860 unsup_feat, enabled_feat)) 3861 missing_feat_read = B_TRUE; 3862 3863 if (spa_writeable(spa) || 3864 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3865 if (!spa_features_check(spa, B_TRUE, 3866 unsup_feat, enabled_feat)) { 3867 *missing_feat_writep = B_TRUE; 3868 } 3869 } 3870 3871 fnvlist_add_nvlist(spa->spa_load_info, 3872 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3873 3874 if (!nvlist_empty(unsup_feat)) { 3875 fnvlist_add_nvlist(spa->spa_load_info, 3876 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3877 } 3878 3879 fnvlist_free(enabled_feat); 3880 fnvlist_free(unsup_feat); 3881 3882 if (!missing_feat_read) { 3883 fnvlist_add_boolean(spa->spa_load_info, 3884 ZPOOL_CONFIG_CAN_RDONLY); 3885 } 3886 3887 /* 3888 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3889 * twofold: to determine whether the pool is available for 3890 * import in read-write mode and (if it is not) whether the 3891 * pool is available for import in read-only mode. If the pool 3892 * is available for import in read-write mode, it is displayed 3893 * as available in userland; if it is not available for import 3894 * in read-only mode, it is displayed as unavailable in 3895 * userland. If the pool is available for import in read-only 3896 * mode but not read-write mode, it is displayed as unavailable 3897 * in userland with a special note that the pool is actually 3898 * available for open in read-only mode. 3899 * 3900 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3901 * missing a feature for write, we must first determine whether 3902 * the pool can be opened read-only before returning to 3903 * userland in order to know whether to display the 3904 * abovementioned note. 3905 */ 3906 if (missing_feat_read || (*missing_feat_writep && 3907 spa_writeable(spa))) { 3908 spa_load_failed(spa, "pool uses unsupported features"); 3909 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3910 ENOTSUP)); 3911 } 3912 3913 /* 3914 * Load refcounts for ZFS features from disk into an in-memory 3915 * cache during SPA initialization. 3916 */ 3917 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3918 uint64_t refcount; 3919 3920 error = feature_get_refcount_from_disk(spa, 3921 &spa_feature_table[i], &refcount); 3922 if (error == 0) { 3923 spa->spa_feat_refcount_cache[i] = refcount; 3924 } else if (error == ENOTSUP) { 3925 spa->spa_feat_refcount_cache[i] = 3926 SPA_FEATURE_DISABLED; 3927 } else { 3928 spa_load_failed(spa, "error getting refcount " 3929 "for feature %s [error=%d]", 3930 spa_feature_table[i].fi_guid, error); 3931 return (spa_vdev_err(rvd, 3932 VDEV_AUX_CORRUPT_DATA, EIO)); 3933 } 3934 } 3935 } 3936 3937 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3938 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3939 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3940 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3941 } 3942 3943 /* 3944 * Encryption was added before bookmark_v2, even though bookmark_v2 3945 * is now a dependency. If this pool has encryption enabled without 3946 * bookmark_v2, trigger an errata message. 3947 */ 3948 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 3949 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 3950 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 3951 } 3952 3953 return (0); 3954 } 3955 3956 static int 3957 spa_ld_load_special_directories(spa_t *spa) 3958 { 3959 int error = 0; 3960 vdev_t *rvd = spa->spa_root_vdev; 3961 3962 spa->spa_is_initializing = B_TRUE; 3963 error = dsl_pool_open(spa->spa_dsl_pool); 3964 spa->spa_is_initializing = B_FALSE; 3965 if (error != 0) { 3966 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3967 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3968 } 3969 3970 return (0); 3971 } 3972 3973 static int 3974 spa_ld_get_props(spa_t *spa) 3975 { 3976 int error = 0; 3977 uint64_t obj; 3978 vdev_t *rvd = spa->spa_root_vdev; 3979 3980 /* Grab the checksum salt from the MOS. */ 3981 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3982 DMU_POOL_CHECKSUM_SALT, 1, 3983 sizeof (spa->spa_cksum_salt.zcs_bytes), 3984 spa->spa_cksum_salt.zcs_bytes); 3985 if (error == ENOENT) { 3986 /* Generate a new salt for subsequent use */ 3987 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3988 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3989 } else if (error != 0) { 3990 spa_load_failed(spa, "unable to retrieve checksum salt from " 3991 "MOS [error=%d]", error); 3992 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3993 } 3994 3995 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3996 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3997 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3998 if (error != 0) { 3999 spa_load_failed(spa, "error opening deferred-frees bpobj " 4000 "[error=%d]", error); 4001 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4002 } 4003 4004 /* 4005 * Load the bit that tells us to use the new accounting function 4006 * (raid-z deflation). If we have an older pool, this will not 4007 * be present. 4008 */ 4009 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4010 if (error != 0 && error != ENOENT) 4011 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4012 4013 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4014 &spa->spa_creation_version, B_FALSE); 4015 if (error != 0 && error != ENOENT) 4016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4017 4018 /* 4019 * Load the persistent error log. If we have an older pool, this will 4020 * not be present. 4021 */ 4022 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4023 B_FALSE); 4024 if (error != 0 && error != ENOENT) 4025 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4026 4027 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4028 &spa->spa_errlog_scrub, B_FALSE); 4029 if (error != 0 && error != ENOENT) 4030 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4031 4032 /* 4033 * Load the livelist deletion field. If a livelist is queued for 4034 * deletion, indicate that in the spa 4035 */ 4036 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4037 &spa->spa_livelists_to_delete, B_FALSE); 4038 if (error != 0 && error != ENOENT) 4039 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4040 4041 /* 4042 * Load the history object. If we have an older pool, this 4043 * will not be present. 4044 */ 4045 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4046 if (error != 0 && error != ENOENT) 4047 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4048 4049 /* 4050 * Load the per-vdev ZAP map. If we have an older pool, this will not 4051 * be present; in this case, defer its creation to a later time to 4052 * avoid dirtying the MOS this early / out of sync context. See 4053 * spa_sync_config_object. 4054 */ 4055 4056 /* The sentinel is only available in the MOS config. */ 4057 nvlist_t *mos_config; 4058 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4059 spa_load_failed(spa, "unable to retrieve MOS config"); 4060 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4061 } 4062 4063 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4064 &spa->spa_all_vdev_zaps, B_FALSE); 4065 4066 if (error == ENOENT) { 4067 VERIFY(!nvlist_exists(mos_config, 4068 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4069 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4070 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4071 } else if (error != 0) { 4072 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4073 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4074 /* 4075 * An older version of ZFS overwrote the sentinel value, so 4076 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4077 * destruction to later; see spa_sync_config_object. 4078 */ 4079 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4080 /* 4081 * We're assuming that no vdevs have had their ZAPs created 4082 * before this. Better be sure of it. 4083 */ 4084 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4085 } 4086 nvlist_free(mos_config); 4087 4088 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4089 4090 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4091 B_FALSE); 4092 if (error && error != ENOENT) 4093 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4094 4095 if (error == 0) { 4096 uint64_t autoreplace; 4097 4098 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4099 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4100 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4101 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4102 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4103 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4104 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4105 spa->spa_autoreplace = (autoreplace != 0); 4106 } 4107 4108 /* 4109 * If we are importing a pool with missing top-level vdevs, 4110 * we enforce that the pool doesn't panic or get suspended on 4111 * error since the likelihood of missing data is extremely high. 4112 */ 4113 if (spa->spa_missing_tvds > 0 && 4114 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4115 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4116 spa_load_note(spa, "forcing failmode to 'continue' " 4117 "as some top level vdevs are missing"); 4118 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4119 } 4120 4121 return (0); 4122 } 4123 4124 static int 4125 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4126 { 4127 int error = 0; 4128 vdev_t *rvd = spa->spa_root_vdev; 4129 4130 /* 4131 * If we're assembling the pool from the split-off vdevs of 4132 * an existing pool, we don't want to attach the spares & cache 4133 * devices. 4134 */ 4135 4136 /* 4137 * Load any hot spares for this pool. 4138 */ 4139 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4140 B_FALSE); 4141 if (error != 0 && error != ENOENT) 4142 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4143 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4144 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4145 if (load_nvlist(spa, spa->spa_spares.sav_object, 4146 &spa->spa_spares.sav_config) != 0) { 4147 spa_load_failed(spa, "error loading spares nvlist"); 4148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4149 } 4150 4151 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4152 spa_load_spares(spa); 4153 spa_config_exit(spa, SCL_ALL, FTAG); 4154 } else if (error == 0) { 4155 spa->spa_spares.sav_sync = B_TRUE; 4156 } 4157 4158 /* 4159 * Load any level 2 ARC devices for this pool. 4160 */ 4161 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4162 &spa->spa_l2cache.sav_object, B_FALSE); 4163 if (error != 0 && error != ENOENT) 4164 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4165 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4166 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4167 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4168 &spa->spa_l2cache.sav_config) != 0) { 4169 spa_load_failed(spa, "error loading l2cache nvlist"); 4170 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4171 } 4172 4173 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4174 spa_load_l2cache(spa); 4175 spa_config_exit(spa, SCL_ALL, FTAG); 4176 } else if (error == 0) { 4177 spa->spa_l2cache.sav_sync = B_TRUE; 4178 } 4179 4180 return (0); 4181 } 4182 4183 static int 4184 spa_ld_load_vdev_metadata(spa_t *spa) 4185 { 4186 int error = 0; 4187 vdev_t *rvd = spa->spa_root_vdev; 4188 4189 /* 4190 * If the 'multihost' property is set, then never allow a pool to 4191 * be imported when the system hostid is zero. The exception to 4192 * this rule is zdb which is always allowed to access pools. 4193 */ 4194 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4195 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4196 fnvlist_add_uint64(spa->spa_load_info, 4197 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4198 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4199 } 4200 4201 /* 4202 * If the 'autoreplace' property is set, then post a resource notifying 4203 * the ZFS DE that it should not issue any faults for unopenable 4204 * devices. We also iterate over the vdevs, and post a sysevent for any 4205 * unopenable vdevs so that the normal autoreplace handler can take 4206 * over. 4207 */ 4208 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4209 spa_check_removed(spa->spa_root_vdev); 4210 /* 4211 * For the import case, this is done in spa_import(), because 4212 * at this point we're using the spare definitions from 4213 * the MOS config, not necessarily from the userland config. 4214 */ 4215 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4216 spa_aux_check_removed(&spa->spa_spares); 4217 spa_aux_check_removed(&spa->spa_l2cache); 4218 } 4219 } 4220 4221 /* 4222 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4223 */ 4224 error = vdev_load(rvd); 4225 if (error != 0) { 4226 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4227 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4228 } 4229 4230 error = spa_ld_log_spacemaps(spa); 4231 if (error != 0) { 4232 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", 4233 error); 4234 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4235 } 4236 4237 /* 4238 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4239 */ 4240 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4241 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4242 spa_config_exit(spa, SCL_ALL, FTAG); 4243 4244 return (0); 4245 } 4246 4247 static int 4248 spa_ld_load_dedup_tables(spa_t *spa) 4249 { 4250 int error = 0; 4251 vdev_t *rvd = spa->spa_root_vdev; 4252 4253 error = ddt_load(spa); 4254 if (error != 0) { 4255 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4256 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4257 } 4258 4259 return (0); 4260 } 4261 4262 static int 4263 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 4264 { 4265 vdev_t *rvd = spa->spa_root_vdev; 4266 4267 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4268 boolean_t missing = spa_check_logs(spa); 4269 if (missing) { 4270 if (spa->spa_missing_tvds != 0) { 4271 spa_load_note(spa, "spa_check_logs failed " 4272 "so dropping the logs"); 4273 } else { 4274 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4275 spa_load_failed(spa, "spa_check_logs failed"); 4276 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4277 ENXIO)); 4278 } 4279 } 4280 } 4281 4282 return (0); 4283 } 4284 4285 static int 4286 spa_ld_verify_pool_data(spa_t *spa) 4287 { 4288 int error = 0; 4289 vdev_t *rvd = spa->spa_root_vdev; 4290 4291 /* 4292 * We've successfully opened the pool, verify that we're ready 4293 * to start pushing transactions. 4294 */ 4295 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4296 error = spa_load_verify(spa); 4297 if (error != 0) { 4298 spa_load_failed(spa, "spa_load_verify failed " 4299 "[error=%d]", error); 4300 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4301 error)); 4302 } 4303 } 4304 4305 return (0); 4306 } 4307 4308 static void 4309 spa_ld_claim_log_blocks(spa_t *spa) 4310 { 4311 dmu_tx_t *tx; 4312 dsl_pool_t *dp = spa_get_dsl(spa); 4313 4314 /* 4315 * Claim log blocks that haven't been committed yet. 4316 * This must all happen in a single txg. 4317 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4318 * invoked from zil_claim_log_block()'s i/o done callback. 4319 * Price of rollback is that we abandon the log. 4320 */ 4321 spa->spa_claiming = B_TRUE; 4322 4323 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4324 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4325 zil_claim, tx, DS_FIND_CHILDREN); 4326 dmu_tx_commit(tx); 4327 4328 spa->spa_claiming = B_FALSE; 4329 4330 spa_set_log_state(spa, SPA_LOG_GOOD); 4331 } 4332 4333 static void 4334 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4335 boolean_t update_config_cache) 4336 { 4337 vdev_t *rvd = spa->spa_root_vdev; 4338 int need_update = B_FALSE; 4339 4340 /* 4341 * If the config cache is stale, or we have uninitialized 4342 * metaslabs (see spa_vdev_add()), then update the config. 4343 * 4344 * If this is a verbatim import, trust the current 4345 * in-core spa_config and update the disk labels. 4346 */ 4347 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4348 spa->spa_load_state == SPA_LOAD_IMPORT || 4349 spa->spa_load_state == SPA_LOAD_RECOVER || 4350 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4351 need_update = B_TRUE; 4352 4353 for (int c = 0; c < rvd->vdev_children; c++) 4354 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4355 need_update = B_TRUE; 4356 4357 /* 4358 * Update the config cache asynchronously in case we're the 4359 * root pool, in which case the config cache isn't writable yet. 4360 */ 4361 if (need_update) 4362 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4363 } 4364 4365 static void 4366 spa_ld_prepare_for_reload(spa_t *spa) 4367 { 4368 spa_mode_t mode = spa->spa_mode; 4369 int async_suspended = spa->spa_async_suspended; 4370 4371 spa_unload(spa); 4372 spa_deactivate(spa); 4373 spa_activate(spa, mode); 4374 4375 /* 4376 * We save the value of spa_async_suspended as it gets reset to 0 by 4377 * spa_unload(). We want to restore it back to the original value before 4378 * returning as we might be calling spa_async_resume() later. 4379 */ 4380 spa->spa_async_suspended = async_suspended; 4381 } 4382 4383 static int 4384 spa_ld_read_checkpoint_txg(spa_t *spa) 4385 { 4386 uberblock_t checkpoint; 4387 int error = 0; 4388 4389 ASSERT0(spa->spa_checkpoint_txg); 4390 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4391 4392 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4393 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4394 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4395 4396 if (error == ENOENT) 4397 return (0); 4398 4399 if (error != 0) 4400 return (error); 4401 4402 ASSERT3U(checkpoint.ub_txg, !=, 0); 4403 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4404 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4405 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4406 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4407 4408 return (0); 4409 } 4410 4411 static int 4412 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4413 { 4414 int error = 0; 4415 4416 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4417 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4418 4419 /* 4420 * Never trust the config that is provided unless we are assembling 4421 * a pool following a split. 4422 * This means don't trust blkptrs and the vdev tree in general. This 4423 * also effectively puts the spa in read-only mode since 4424 * spa_writeable() checks for spa_trust_config to be true. 4425 * We will later load a trusted config from the MOS. 4426 */ 4427 if (type != SPA_IMPORT_ASSEMBLE) 4428 spa->spa_trust_config = B_FALSE; 4429 4430 /* 4431 * Parse the config provided to create a vdev tree. 4432 */ 4433 error = spa_ld_parse_config(spa, type); 4434 if (error != 0) 4435 return (error); 4436 4437 spa_import_progress_add(spa); 4438 4439 /* 4440 * Now that we have the vdev tree, try to open each vdev. This involves 4441 * opening the underlying physical device, retrieving its geometry and 4442 * probing the vdev with a dummy I/O. The state of each vdev will be set 4443 * based on the success of those operations. After this we'll be ready 4444 * to read from the vdevs. 4445 */ 4446 error = spa_ld_open_vdevs(spa); 4447 if (error != 0) 4448 return (error); 4449 4450 /* 4451 * Read the label of each vdev and make sure that the GUIDs stored 4452 * there match the GUIDs in the config provided. 4453 * If we're assembling a new pool that's been split off from an 4454 * existing pool, the labels haven't yet been updated so we skip 4455 * validation for now. 4456 */ 4457 if (type != SPA_IMPORT_ASSEMBLE) { 4458 error = spa_ld_validate_vdevs(spa); 4459 if (error != 0) 4460 return (error); 4461 } 4462 4463 /* 4464 * Read all vdev labels to find the best uberblock (i.e. latest, 4465 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4466 * get the list of features required to read blkptrs in the MOS from 4467 * the vdev label with the best uberblock and verify that our version 4468 * of zfs supports them all. 4469 */ 4470 error = spa_ld_select_uberblock(spa, type); 4471 if (error != 0) 4472 return (error); 4473 4474 /* 4475 * Pass that uberblock to the dsl_pool layer which will open the root 4476 * blkptr. This blkptr points to the latest version of the MOS and will 4477 * allow us to read its contents. 4478 */ 4479 error = spa_ld_open_rootbp(spa); 4480 if (error != 0) 4481 return (error); 4482 4483 return (0); 4484 } 4485 4486 static int 4487 spa_ld_checkpoint_rewind(spa_t *spa) 4488 { 4489 uberblock_t checkpoint; 4490 int error = 0; 4491 4492 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4493 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4494 4495 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4496 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4497 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4498 4499 if (error != 0) { 4500 spa_load_failed(spa, "unable to retrieve checkpointed " 4501 "uberblock from the MOS config [error=%d]", error); 4502 4503 if (error == ENOENT) 4504 error = ZFS_ERR_NO_CHECKPOINT; 4505 4506 return (error); 4507 } 4508 4509 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4510 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4511 4512 /* 4513 * We need to update the txg and timestamp of the checkpointed 4514 * uberblock to be higher than the latest one. This ensures that 4515 * the checkpointed uberblock is selected if we were to close and 4516 * reopen the pool right after we've written it in the vdev labels. 4517 * (also see block comment in vdev_uberblock_compare) 4518 */ 4519 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4520 checkpoint.ub_timestamp = gethrestime_sec(); 4521 4522 /* 4523 * Set current uberblock to be the checkpointed uberblock. 4524 */ 4525 spa->spa_uberblock = checkpoint; 4526 4527 /* 4528 * If we are doing a normal rewind, then the pool is open for 4529 * writing and we sync the "updated" checkpointed uberblock to 4530 * disk. Once this is done, we've basically rewound the whole 4531 * pool and there is no way back. 4532 * 4533 * There are cases when we don't want to attempt and sync the 4534 * checkpointed uberblock to disk because we are opening a 4535 * pool as read-only. Specifically, verifying the checkpointed 4536 * state with zdb, and importing the checkpointed state to get 4537 * a "preview" of its content. 4538 */ 4539 if (spa_writeable(spa)) { 4540 vdev_t *rvd = spa->spa_root_vdev; 4541 4542 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4543 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4544 int svdcount = 0; 4545 int children = rvd->vdev_children; 4546 int c0 = spa_get_random(children); 4547 4548 for (int c = 0; c < children; c++) { 4549 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4550 4551 /* Stop when revisiting the first vdev */ 4552 if (c > 0 && svd[0] == vd) 4553 break; 4554 4555 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4556 !vdev_is_concrete(vd)) 4557 continue; 4558 4559 svd[svdcount++] = vd; 4560 if (svdcount == SPA_SYNC_MIN_VDEVS) 4561 break; 4562 } 4563 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4564 if (error == 0) 4565 spa->spa_last_synced_guid = rvd->vdev_guid; 4566 spa_config_exit(spa, SCL_ALL, FTAG); 4567 4568 if (error != 0) { 4569 spa_load_failed(spa, "failed to write checkpointed " 4570 "uberblock to the vdev labels [error=%d]", error); 4571 return (error); 4572 } 4573 } 4574 4575 return (0); 4576 } 4577 4578 static int 4579 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4580 boolean_t *update_config_cache) 4581 { 4582 int error; 4583 4584 /* 4585 * Parse the config for pool, open and validate vdevs, 4586 * select an uberblock, and use that uberblock to open 4587 * the MOS. 4588 */ 4589 error = spa_ld_mos_init(spa, type); 4590 if (error != 0) 4591 return (error); 4592 4593 /* 4594 * Retrieve the trusted config stored in the MOS and use it to create 4595 * a new, exact version of the vdev tree, then reopen all vdevs. 4596 */ 4597 error = spa_ld_trusted_config(spa, type, B_FALSE); 4598 if (error == EAGAIN) { 4599 if (update_config_cache != NULL) 4600 *update_config_cache = B_TRUE; 4601 4602 /* 4603 * Redo the loading process with the trusted config if it is 4604 * too different from the untrusted config. 4605 */ 4606 spa_ld_prepare_for_reload(spa); 4607 spa_load_note(spa, "RELOADING"); 4608 error = spa_ld_mos_init(spa, type); 4609 if (error != 0) 4610 return (error); 4611 4612 error = spa_ld_trusted_config(spa, type, B_TRUE); 4613 if (error != 0) 4614 return (error); 4615 4616 } else if (error != 0) { 4617 return (error); 4618 } 4619 4620 return (0); 4621 } 4622 4623 /* 4624 * Load an existing storage pool, using the config provided. This config 4625 * describes which vdevs are part of the pool and is later validated against 4626 * partial configs present in each vdev's label and an entire copy of the 4627 * config stored in the MOS. 4628 */ 4629 static int 4630 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4631 { 4632 int error = 0; 4633 boolean_t missing_feat_write = B_FALSE; 4634 boolean_t checkpoint_rewind = 4635 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4636 boolean_t update_config_cache = B_FALSE; 4637 4638 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4639 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4640 4641 spa_load_note(spa, "LOADING"); 4642 4643 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4644 if (error != 0) 4645 return (error); 4646 4647 /* 4648 * If we are rewinding to the checkpoint then we need to repeat 4649 * everything we've done so far in this function but this time 4650 * selecting the checkpointed uberblock and using that to open 4651 * the MOS. 4652 */ 4653 if (checkpoint_rewind) { 4654 /* 4655 * If we are rewinding to the checkpoint update config cache 4656 * anyway. 4657 */ 4658 update_config_cache = B_TRUE; 4659 4660 /* 4661 * Extract the checkpointed uberblock from the current MOS 4662 * and use this as the pool's uberblock from now on. If the 4663 * pool is imported as writeable we also write the checkpoint 4664 * uberblock to the labels, making the rewind permanent. 4665 */ 4666 error = spa_ld_checkpoint_rewind(spa); 4667 if (error != 0) 4668 return (error); 4669 4670 /* 4671 * Redo the loading process again with the 4672 * checkpointed uberblock. 4673 */ 4674 spa_ld_prepare_for_reload(spa); 4675 spa_load_note(spa, "LOADING checkpointed uberblock"); 4676 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4677 if (error != 0) 4678 return (error); 4679 } 4680 4681 /* 4682 * Retrieve the checkpoint txg if the pool has a checkpoint. 4683 */ 4684 error = spa_ld_read_checkpoint_txg(spa); 4685 if (error != 0) 4686 return (error); 4687 4688 /* 4689 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4690 * from the pool and their contents were re-mapped to other vdevs. Note 4691 * that everything that we read before this step must have been 4692 * rewritten on concrete vdevs after the last device removal was 4693 * initiated. Otherwise we could be reading from indirect vdevs before 4694 * we have loaded their mappings. 4695 */ 4696 error = spa_ld_open_indirect_vdev_metadata(spa); 4697 if (error != 0) 4698 return (error); 4699 4700 /* 4701 * Retrieve the full list of active features from the MOS and check if 4702 * they are all supported. 4703 */ 4704 error = spa_ld_check_features(spa, &missing_feat_write); 4705 if (error != 0) 4706 return (error); 4707 4708 /* 4709 * Load several special directories from the MOS needed by the dsl_pool 4710 * layer. 4711 */ 4712 error = spa_ld_load_special_directories(spa); 4713 if (error != 0) 4714 return (error); 4715 4716 /* 4717 * Retrieve pool properties from the MOS. 4718 */ 4719 error = spa_ld_get_props(spa); 4720 if (error != 0) 4721 return (error); 4722 4723 /* 4724 * Retrieve the list of auxiliary devices - cache devices and spares - 4725 * and open them. 4726 */ 4727 error = spa_ld_open_aux_vdevs(spa, type); 4728 if (error != 0) 4729 return (error); 4730 4731 /* 4732 * Load the metadata for all vdevs. Also check if unopenable devices 4733 * should be autoreplaced. 4734 */ 4735 error = spa_ld_load_vdev_metadata(spa); 4736 if (error != 0) 4737 return (error); 4738 4739 error = spa_ld_load_dedup_tables(spa); 4740 if (error != 0) 4741 return (error); 4742 4743 /* 4744 * Verify the logs now to make sure we don't have any unexpected errors 4745 * when we claim log blocks later. 4746 */ 4747 error = spa_ld_verify_logs(spa, type, ereport); 4748 if (error != 0) 4749 return (error); 4750 4751 if (missing_feat_write) { 4752 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4753 4754 /* 4755 * At this point, we know that we can open the pool in 4756 * read-only mode but not read-write mode. We now have enough 4757 * information and can return to userland. 4758 */ 4759 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4760 ENOTSUP)); 4761 } 4762 4763 /* 4764 * Traverse the last txgs to make sure the pool was left off in a safe 4765 * state. When performing an extreme rewind, we verify the whole pool, 4766 * which can take a very long time. 4767 */ 4768 error = spa_ld_verify_pool_data(spa); 4769 if (error != 0) 4770 return (error); 4771 4772 /* 4773 * Calculate the deflated space for the pool. This must be done before 4774 * we write anything to the pool because we'd need to update the space 4775 * accounting using the deflated sizes. 4776 */ 4777 spa_update_dspace(spa); 4778 4779 /* 4780 * We have now retrieved all the information we needed to open the 4781 * pool. If we are importing the pool in read-write mode, a few 4782 * additional steps must be performed to finish the import. 4783 */ 4784 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4785 spa->spa_load_max_txg == UINT64_MAX)) { 4786 uint64_t config_cache_txg = spa->spa_config_txg; 4787 4788 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4789 4790 /* 4791 * In case of a checkpoint rewind, log the original txg 4792 * of the checkpointed uberblock. 4793 */ 4794 if (checkpoint_rewind) { 4795 spa_history_log_internal(spa, "checkpoint rewind", 4796 NULL, "rewound state to txg=%llu", 4797 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4798 } 4799 4800 /* 4801 * Traverse the ZIL and claim all blocks. 4802 */ 4803 spa_ld_claim_log_blocks(spa); 4804 4805 /* 4806 * Kick-off the syncing thread. 4807 */ 4808 spa->spa_sync_on = B_TRUE; 4809 txg_sync_start(spa->spa_dsl_pool); 4810 mmp_thread_start(spa); 4811 4812 /* 4813 * Wait for all claims to sync. We sync up to the highest 4814 * claimed log block birth time so that claimed log blocks 4815 * don't appear to be from the future. spa_claim_max_txg 4816 * will have been set for us by ZIL traversal operations 4817 * performed above. 4818 */ 4819 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4820 4821 /* 4822 * Check if we need to request an update of the config. On the 4823 * next sync, we would update the config stored in vdev labels 4824 * and the cachefile (by default /etc/zfs/zpool.cache). 4825 */ 4826 spa_ld_check_for_config_update(spa, config_cache_txg, 4827 update_config_cache); 4828 4829 /* 4830 * Check if a rebuild was in progress and if so resume it. 4831 * Then check all DTLs to see if anything needs resilvering. 4832 * The resilver will be deferred if a rebuild was started. 4833 */ 4834 if (vdev_rebuild_active(spa->spa_root_vdev)) { 4835 vdev_rebuild_restart(spa); 4836 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4837 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4838 spa_async_request(spa, SPA_ASYNC_RESILVER); 4839 } 4840 4841 /* 4842 * Log the fact that we booted up (so that we can detect if 4843 * we rebooted in the middle of an operation). 4844 */ 4845 spa_history_log_version(spa, "open", NULL); 4846 4847 spa_restart_removal(spa); 4848 spa_spawn_aux_threads(spa); 4849 4850 /* 4851 * Delete any inconsistent datasets. 4852 * 4853 * Note: 4854 * Since we may be issuing deletes for clones here, 4855 * we make sure to do so after we've spawned all the 4856 * auxiliary threads above (from which the livelist 4857 * deletion zthr is part of). 4858 */ 4859 (void) dmu_objset_find(spa_name(spa), 4860 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4861 4862 /* 4863 * Clean up any stale temporary dataset userrefs. 4864 */ 4865 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4866 4867 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4868 vdev_initialize_restart(spa->spa_root_vdev); 4869 vdev_trim_restart(spa->spa_root_vdev); 4870 vdev_autotrim_restart(spa); 4871 spa_config_exit(spa, SCL_CONFIG, FTAG); 4872 } 4873 4874 spa_import_progress_remove(spa_guid(spa)); 4875 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 4876 4877 spa_load_note(spa, "LOADED"); 4878 4879 return (0); 4880 } 4881 4882 static int 4883 spa_load_retry(spa_t *spa, spa_load_state_t state) 4884 { 4885 spa_mode_t mode = spa->spa_mode; 4886 4887 spa_unload(spa); 4888 spa_deactivate(spa); 4889 4890 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4891 4892 spa_activate(spa, mode); 4893 spa_async_suspend(spa); 4894 4895 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4896 (u_longlong_t)spa->spa_load_max_txg); 4897 4898 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4899 } 4900 4901 /* 4902 * If spa_load() fails this function will try loading prior txg's. If 4903 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4904 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4905 * function will not rewind the pool and will return the same error as 4906 * spa_load(). 4907 */ 4908 static int 4909 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4910 int rewind_flags) 4911 { 4912 nvlist_t *loadinfo = NULL; 4913 nvlist_t *config = NULL; 4914 int load_error, rewind_error; 4915 uint64_t safe_rewind_txg; 4916 uint64_t min_txg; 4917 4918 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4919 spa->spa_load_max_txg = spa->spa_load_txg; 4920 spa_set_log_state(spa, SPA_LOG_CLEAR); 4921 } else { 4922 spa->spa_load_max_txg = max_request; 4923 if (max_request != UINT64_MAX) 4924 spa->spa_extreme_rewind = B_TRUE; 4925 } 4926 4927 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4928 if (load_error == 0) 4929 return (0); 4930 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4931 /* 4932 * When attempting checkpoint-rewind on a pool with no 4933 * checkpoint, we should not attempt to load uberblocks 4934 * from previous txgs when spa_load fails. 4935 */ 4936 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4937 spa_import_progress_remove(spa_guid(spa)); 4938 return (load_error); 4939 } 4940 4941 if (spa->spa_root_vdev != NULL) 4942 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4943 4944 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4945 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4946 4947 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4948 nvlist_free(config); 4949 spa_import_progress_remove(spa_guid(spa)); 4950 return (load_error); 4951 } 4952 4953 if (state == SPA_LOAD_RECOVER) { 4954 /* Price of rolling back is discarding txgs, including log */ 4955 spa_set_log_state(spa, SPA_LOG_CLEAR); 4956 } else { 4957 /* 4958 * If we aren't rolling back save the load info from our first 4959 * import attempt so that we can restore it after attempting 4960 * to rewind. 4961 */ 4962 loadinfo = spa->spa_load_info; 4963 spa->spa_load_info = fnvlist_alloc(); 4964 } 4965 4966 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4967 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4968 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4969 TXG_INITIAL : safe_rewind_txg; 4970 4971 /* 4972 * Continue as long as we're finding errors, we're still within 4973 * the acceptable rewind range, and we're still finding uberblocks 4974 */ 4975 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4976 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4977 if (spa->spa_load_max_txg < safe_rewind_txg) 4978 spa->spa_extreme_rewind = B_TRUE; 4979 rewind_error = spa_load_retry(spa, state); 4980 } 4981 4982 spa->spa_extreme_rewind = B_FALSE; 4983 spa->spa_load_max_txg = UINT64_MAX; 4984 4985 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4986 spa_config_set(spa, config); 4987 else 4988 nvlist_free(config); 4989 4990 if (state == SPA_LOAD_RECOVER) { 4991 ASSERT3P(loadinfo, ==, NULL); 4992 spa_import_progress_remove(spa_guid(spa)); 4993 return (rewind_error); 4994 } else { 4995 /* Store the rewind info as part of the initial load info */ 4996 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4997 spa->spa_load_info); 4998 4999 /* Restore the initial load info */ 5000 fnvlist_free(spa->spa_load_info); 5001 spa->spa_load_info = loadinfo; 5002 5003 spa_import_progress_remove(spa_guid(spa)); 5004 return (load_error); 5005 } 5006 } 5007 5008 /* 5009 * Pool Open/Import 5010 * 5011 * The import case is identical to an open except that the configuration is sent 5012 * down from userland, instead of grabbed from the configuration cache. For the 5013 * case of an open, the pool configuration will exist in the 5014 * POOL_STATE_UNINITIALIZED state. 5015 * 5016 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5017 * the same time open the pool, without having to keep around the spa_t in some 5018 * ambiguous state. 5019 */ 5020 static int 5021 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 5022 nvlist_t **config) 5023 { 5024 spa_t *spa; 5025 spa_load_state_t state = SPA_LOAD_OPEN; 5026 int error; 5027 int locked = B_FALSE; 5028 int firstopen = B_FALSE; 5029 5030 *spapp = NULL; 5031 5032 /* 5033 * As disgusting as this is, we need to support recursive calls to this 5034 * function because dsl_dir_open() is called during spa_load(), and ends 5035 * up calling spa_open() again. The real fix is to figure out how to 5036 * avoid dsl_dir_open() calling this in the first place. 5037 */ 5038 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5039 mutex_enter(&spa_namespace_lock); 5040 locked = B_TRUE; 5041 } 5042 5043 if ((spa = spa_lookup(pool)) == NULL) { 5044 if (locked) 5045 mutex_exit(&spa_namespace_lock); 5046 return (SET_ERROR(ENOENT)); 5047 } 5048 5049 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5050 zpool_load_policy_t policy; 5051 5052 firstopen = B_TRUE; 5053 5054 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5055 &policy); 5056 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5057 state = SPA_LOAD_RECOVER; 5058 5059 spa_activate(spa, spa_mode_global); 5060 5061 if (state != SPA_LOAD_RECOVER) 5062 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5063 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5064 5065 zfs_dbgmsg("spa_open_common: opening %s", pool); 5066 error = spa_load_best(spa, state, policy.zlp_txg, 5067 policy.zlp_rewind); 5068 5069 if (error == EBADF) { 5070 /* 5071 * If vdev_validate() returns failure (indicated by 5072 * EBADF), it indicates that one of the vdevs indicates 5073 * that the pool has been exported or destroyed. If 5074 * this is the case, the config cache is out of sync and 5075 * we should remove the pool from the namespace. 5076 */ 5077 spa_unload(spa); 5078 spa_deactivate(spa); 5079 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5080 spa_remove(spa); 5081 if (locked) 5082 mutex_exit(&spa_namespace_lock); 5083 return (SET_ERROR(ENOENT)); 5084 } 5085 5086 if (error) { 5087 /* 5088 * We can't open the pool, but we still have useful 5089 * information: the state of each vdev after the 5090 * attempted vdev_open(). Return this to the user. 5091 */ 5092 if (config != NULL && spa->spa_config) { 5093 VERIFY(nvlist_dup(spa->spa_config, config, 5094 KM_SLEEP) == 0); 5095 VERIFY(nvlist_add_nvlist(*config, 5096 ZPOOL_CONFIG_LOAD_INFO, 5097 spa->spa_load_info) == 0); 5098 } 5099 spa_unload(spa); 5100 spa_deactivate(spa); 5101 spa->spa_last_open_failed = error; 5102 if (locked) 5103 mutex_exit(&spa_namespace_lock); 5104 *spapp = NULL; 5105 return (error); 5106 } 5107 } 5108 5109 spa_open_ref(spa, tag); 5110 5111 if (config != NULL) 5112 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5113 5114 /* 5115 * If we've recovered the pool, pass back any information we 5116 * gathered while doing the load. 5117 */ 5118 if (state == SPA_LOAD_RECOVER) { 5119 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5120 spa->spa_load_info) == 0); 5121 } 5122 5123 if (locked) { 5124 spa->spa_last_open_failed = 0; 5125 spa->spa_last_ubsync_txg = 0; 5126 spa->spa_load_txg = 0; 5127 mutex_exit(&spa_namespace_lock); 5128 } 5129 5130 if (firstopen) 5131 zvol_create_minors_recursive(spa_name(spa)); 5132 5133 *spapp = spa; 5134 5135 return (0); 5136 } 5137 5138 int 5139 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 5140 nvlist_t **config) 5141 { 5142 return (spa_open_common(name, spapp, tag, policy, config)); 5143 } 5144 5145 int 5146 spa_open(const char *name, spa_t **spapp, void *tag) 5147 { 5148 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5149 } 5150 5151 /* 5152 * Lookup the given spa_t, incrementing the inject count in the process, 5153 * preventing it from being exported or destroyed. 5154 */ 5155 spa_t * 5156 spa_inject_addref(char *name) 5157 { 5158 spa_t *spa; 5159 5160 mutex_enter(&spa_namespace_lock); 5161 if ((spa = spa_lookup(name)) == NULL) { 5162 mutex_exit(&spa_namespace_lock); 5163 return (NULL); 5164 } 5165 spa->spa_inject_ref++; 5166 mutex_exit(&spa_namespace_lock); 5167 5168 return (spa); 5169 } 5170 5171 void 5172 spa_inject_delref(spa_t *spa) 5173 { 5174 mutex_enter(&spa_namespace_lock); 5175 spa->spa_inject_ref--; 5176 mutex_exit(&spa_namespace_lock); 5177 } 5178 5179 /* 5180 * Add spares device information to the nvlist. 5181 */ 5182 static void 5183 spa_add_spares(spa_t *spa, nvlist_t *config) 5184 { 5185 nvlist_t **spares; 5186 uint_t i, nspares; 5187 nvlist_t *nvroot; 5188 uint64_t guid; 5189 vdev_stat_t *vs; 5190 uint_t vsc; 5191 uint64_t pool; 5192 5193 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5194 5195 if (spa->spa_spares.sav_count == 0) 5196 return; 5197 5198 VERIFY(nvlist_lookup_nvlist(config, 5199 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5200 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5201 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5202 if (nspares != 0) { 5203 VERIFY(nvlist_add_nvlist_array(nvroot, 5204 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5205 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5206 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5207 5208 /* 5209 * Go through and find any spares which have since been 5210 * repurposed as an active spare. If this is the case, update 5211 * their status appropriately. 5212 */ 5213 for (i = 0; i < nspares; i++) { 5214 VERIFY(nvlist_lookup_uint64(spares[i], 5215 ZPOOL_CONFIG_GUID, &guid) == 0); 5216 if (spa_spare_exists(guid, &pool, NULL) && 5217 pool != 0ULL) { 5218 VERIFY(nvlist_lookup_uint64_array( 5219 spares[i], ZPOOL_CONFIG_VDEV_STATS, 5220 (uint64_t **)&vs, &vsc) == 0); 5221 vs->vs_state = VDEV_STATE_CANT_OPEN; 5222 vs->vs_aux = VDEV_AUX_SPARED; 5223 } 5224 } 5225 } 5226 } 5227 5228 /* 5229 * Add l2cache device information to the nvlist, including vdev stats. 5230 */ 5231 static void 5232 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5233 { 5234 nvlist_t **l2cache; 5235 uint_t i, j, nl2cache; 5236 nvlist_t *nvroot; 5237 uint64_t guid; 5238 vdev_t *vd; 5239 vdev_stat_t *vs; 5240 uint_t vsc; 5241 5242 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5243 5244 if (spa->spa_l2cache.sav_count == 0) 5245 return; 5246 5247 VERIFY(nvlist_lookup_nvlist(config, 5248 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5249 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5250 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5251 if (nl2cache != 0) { 5252 VERIFY(nvlist_add_nvlist_array(nvroot, 5253 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5254 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5255 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5256 5257 /* 5258 * Update level 2 cache device stats. 5259 */ 5260 5261 for (i = 0; i < nl2cache; i++) { 5262 VERIFY(nvlist_lookup_uint64(l2cache[i], 5263 ZPOOL_CONFIG_GUID, &guid) == 0); 5264 5265 vd = NULL; 5266 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5267 if (guid == 5268 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5269 vd = spa->spa_l2cache.sav_vdevs[j]; 5270 break; 5271 } 5272 } 5273 ASSERT(vd != NULL); 5274 5275 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 5276 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 5277 == 0); 5278 vdev_get_stats(vd, vs); 5279 vdev_config_generate_stats(vd, l2cache[i]); 5280 5281 } 5282 } 5283 } 5284 5285 static void 5286 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5287 { 5288 zap_cursor_t zc; 5289 zap_attribute_t za; 5290 5291 if (spa->spa_feat_for_read_obj != 0) { 5292 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5293 spa->spa_feat_for_read_obj); 5294 zap_cursor_retrieve(&zc, &za) == 0; 5295 zap_cursor_advance(&zc)) { 5296 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5297 za.za_num_integers == 1); 5298 VERIFY0(nvlist_add_uint64(features, za.za_name, 5299 za.za_first_integer)); 5300 } 5301 zap_cursor_fini(&zc); 5302 } 5303 5304 if (spa->spa_feat_for_write_obj != 0) { 5305 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5306 spa->spa_feat_for_write_obj); 5307 zap_cursor_retrieve(&zc, &za) == 0; 5308 zap_cursor_advance(&zc)) { 5309 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5310 za.za_num_integers == 1); 5311 VERIFY0(nvlist_add_uint64(features, za.za_name, 5312 za.za_first_integer)); 5313 } 5314 zap_cursor_fini(&zc); 5315 } 5316 } 5317 5318 static void 5319 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5320 { 5321 int i; 5322 5323 for (i = 0; i < SPA_FEATURES; i++) { 5324 zfeature_info_t feature = spa_feature_table[i]; 5325 uint64_t refcount; 5326 5327 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5328 continue; 5329 5330 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5331 } 5332 } 5333 5334 /* 5335 * Store a list of pool features and their reference counts in the 5336 * config. 5337 * 5338 * The first time this is called on a spa, allocate a new nvlist, fetch 5339 * the pool features and reference counts from disk, then save the list 5340 * in the spa. In subsequent calls on the same spa use the saved nvlist 5341 * and refresh its values from the cached reference counts. This 5342 * ensures we don't block here on I/O on a suspended pool so 'zpool 5343 * clear' can resume the pool. 5344 */ 5345 static void 5346 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5347 { 5348 nvlist_t *features; 5349 5350 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5351 5352 mutex_enter(&spa->spa_feat_stats_lock); 5353 features = spa->spa_feat_stats; 5354 5355 if (features != NULL) { 5356 spa_feature_stats_from_cache(spa, features); 5357 } else { 5358 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5359 spa->spa_feat_stats = features; 5360 spa_feature_stats_from_disk(spa, features); 5361 } 5362 5363 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5364 features)); 5365 5366 mutex_exit(&spa->spa_feat_stats_lock); 5367 } 5368 5369 int 5370 spa_get_stats(const char *name, nvlist_t **config, 5371 char *altroot, size_t buflen) 5372 { 5373 int error; 5374 spa_t *spa; 5375 5376 *config = NULL; 5377 error = spa_open_common(name, &spa, FTAG, NULL, config); 5378 5379 if (spa != NULL) { 5380 /* 5381 * This still leaves a window of inconsistency where the spares 5382 * or l2cache devices could change and the config would be 5383 * self-inconsistent. 5384 */ 5385 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5386 5387 if (*config != NULL) { 5388 uint64_t loadtimes[2]; 5389 5390 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5391 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5392 VERIFY(nvlist_add_uint64_array(*config, 5393 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 5394 5395 VERIFY(nvlist_add_uint64(*config, 5396 ZPOOL_CONFIG_ERRCOUNT, 5397 spa_get_errlog_size(spa)) == 0); 5398 5399 if (spa_suspended(spa)) { 5400 VERIFY(nvlist_add_uint64(*config, 5401 ZPOOL_CONFIG_SUSPENDED, 5402 spa->spa_failmode) == 0); 5403 VERIFY(nvlist_add_uint64(*config, 5404 ZPOOL_CONFIG_SUSPENDED_REASON, 5405 spa->spa_suspended) == 0); 5406 } 5407 5408 spa_add_spares(spa, *config); 5409 spa_add_l2cache(spa, *config); 5410 spa_add_feature_stats(spa, *config); 5411 } 5412 } 5413 5414 /* 5415 * We want to get the alternate root even for faulted pools, so we cheat 5416 * and call spa_lookup() directly. 5417 */ 5418 if (altroot) { 5419 if (spa == NULL) { 5420 mutex_enter(&spa_namespace_lock); 5421 spa = spa_lookup(name); 5422 if (spa) 5423 spa_altroot(spa, altroot, buflen); 5424 else 5425 altroot[0] = '\0'; 5426 spa = NULL; 5427 mutex_exit(&spa_namespace_lock); 5428 } else { 5429 spa_altroot(spa, altroot, buflen); 5430 } 5431 } 5432 5433 if (spa != NULL) { 5434 spa_config_exit(spa, SCL_CONFIG, FTAG); 5435 spa_close(spa, FTAG); 5436 } 5437 5438 return (error); 5439 } 5440 5441 /* 5442 * Validate that the auxiliary device array is well formed. We must have an 5443 * array of nvlists, each which describes a valid leaf vdev. If this is an 5444 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5445 * specified, as long as they are well-formed. 5446 */ 5447 static int 5448 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5449 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5450 vdev_labeltype_t label) 5451 { 5452 nvlist_t **dev; 5453 uint_t i, ndev; 5454 vdev_t *vd; 5455 int error; 5456 5457 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5458 5459 /* 5460 * It's acceptable to have no devs specified. 5461 */ 5462 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5463 return (0); 5464 5465 if (ndev == 0) 5466 return (SET_ERROR(EINVAL)); 5467 5468 /* 5469 * Make sure the pool is formatted with a version that supports this 5470 * device type. 5471 */ 5472 if (spa_version(spa) < version) 5473 return (SET_ERROR(ENOTSUP)); 5474 5475 /* 5476 * Set the pending device list so we correctly handle device in-use 5477 * checking. 5478 */ 5479 sav->sav_pending = dev; 5480 sav->sav_npending = ndev; 5481 5482 for (i = 0; i < ndev; i++) { 5483 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5484 mode)) != 0) 5485 goto out; 5486 5487 if (!vd->vdev_ops->vdev_op_leaf) { 5488 vdev_free(vd); 5489 error = SET_ERROR(EINVAL); 5490 goto out; 5491 } 5492 5493 vd->vdev_top = vd; 5494 5495 if ((error = vdev_open(vd)) == 0 && 5496 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5497 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5498 vd->vdev_guid) == 0); 5499 } 5500 5501 vdev_free(vd); 5502 5503 if (error && 5504 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5505 goto out; 5506 else 5507 error = 0; 5508 } 5509 5510 out: 5511 sav->sav_pending = NULL; 5512 sav->sav_npending = 0; 5513 return (error); 5514 } 5515 5516 static int 5517 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5518 { 5519 int error; 5520 5521 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5522 5523 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5524 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5525 VDEV_LABEL_SPARE)) != 0) { 5526 return (error); 5527 } 5528 5529 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5530 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5531 VDEV_LABEL_L2CACHE)); 5532 } 5533 5534 static void 5535 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5536 const char *config) 5537 { 5538 int i; 5539 5540 if (sav->sav_config != NULL) { 5541 nvlist_t **olddevs; 5542 uint_t oldndevs; 5543 nvlist_t **newdevs; 5544 5545 /* 5546 * Generate new dev list by concatenating with the 5547 * current dev list. 5548 */ 5549 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 5550 &olddevs, &oldndevs) == 0); 5551 5552 newdevs = kmem_alloc(sizeof (void *) * 5553 (ndevs + oldndevs), KM_SLEEP); 5554 for (i = 0; i < oldndevs; i++) 5555 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 5556 KM_SLEEP) == 0); 5557 for (i = 0; i < ndevs; i++) 5558 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 5559 KM_SLEEP) == 0); 5560 5561 VERIFY(nvlist_remove(sav->sav_config, config, 5562 DATA_TYPE_NVLIST_ARRAY) == 0); 5563 5564 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 5565 config, newdevs, ndevs + oldndevs) == 0); 5566 for (i = 0; i < oldndevs + ndevs; i++) 5567 nvlist_free(newdevs[i]); 5568 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5569 } else { 5570 /* 5571 * Generate a new dev list. 5572 */ 5573 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 5574 KM_SLEEP) == 0); 5575 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 5576 devs, ndevs) == 0); 5577 } 5578 } 5579 5580 /* 5581 * Stop and drop level 2 ARC devices 5582 */ 5583 void 5584 spa_l2cache_drop(spa_t *spa) 5585 { 5586 vdev_t *vd; 5587 int i; 5588 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5589 5590 for (i = 0; i < sav->sav_count; i++) { 5591 uint64_t pool; 5592 5593 vd = sav->sav_vdevs[i]; 5594 ASSERT(vd != NULL); 5595 5596 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5597 pool != 0ULL && l2arc_vdev_present(vd)) 5598 l2arc_remove_vdev(vd); 5599 } 5600 } 5601 5602 /* 5603 * Verify encryption parameters for spa creation. If we are encrypting, we must 5604 * have the encryption feature flag enabled. 5605 */ 5606 static int 5607 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5608 boolean_t has_encryption) 5609 { 5610 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5611 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5612 !has_encryption) 5613 return (SET_ERROR(ENOTSUP)); 5614 5615 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5616 } 5617 5618 /* 5619 * Pool Creation 5620 */ 5621 int 5622 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5623 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5624 { 5625 spa_t *spa; 5626 char *altroot = NULL; 5627 vdev_t *rvd; 5628 dsl_pool_t *dp; 5629 dmu_tx_t *tx; 5630 int error = 0; 5631 uint64_t txg = TXG_INITIAL; 5632 nvlist_t **spares, **l2cache; 5633 uint_t nspares, nl2cache; 5634 uint64_t version, obj; 5635 boolean_t has_features; 5636 boolean_t has_encryption; 5637 boolean_t has_allocclass; 5638 spa_feature_t feat; 5639 char *feat_name; 5640 char *poolname; 5641 nvlist_t *nvl; 5642 5643 if (props == NULL || 5644 nvlist_lookup_string(props, "tname", &poolname) != 0) 5645 poolname = (char *)pool; 5646 5647 /* 5648 * If this pool already exists, return failure. 5649 */ 5650 mutex_enter(&spa_namespace_lock); 5651 if (spa_lookup(poolname) != NULL) { 5652 mutex_exit(&spa_namespace_lock); 5653 return (SET_ERROR(EEXIST)); 5654 } 5655 5656 /* 5657 * Allocate a new spa_t structure. 5658 */ 5659 nvl = fnvlist_alloc(); 5660 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5661 (void) nvlist_lookup_string(props, 5662 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5663 spa = spa_add(poolname, nvl, altroot); 5664 fnvlist_free(nvl); 5665 spa_activate(spa, spa_mode_global); 5666 5667 if (props && (error = spa_prop_validate(spa, props))) { 5668 spa_deactivate(spa); 5669 spa_remove(spa); 5670 mutex_exit(&spa_namespace_lock); 5671 return (error); 5672 } 5673 5674 /* 5675 * Temporary pool names should never be written to disk. 5676 */ 5677 if (poolname != pool) 5678 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5679 5680 has_features = B_FALSE; 5681 has_encryption = B_FALSE; 5682 has_allocclass = B_FALSE; 5683 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5684 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5685 if (zpool_prop_feature(nvpair_name(elem))) { 5686 has_features = B_TRUE; 5687 5688 feat_name = strchr(nvpair_name(elem), '@') + 1; 5689 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5690 if (feat == SPA_FEATURE_ENCRYPTION) 5691 has_encryption = B_TRUE; 5692 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 5693 has_allocclass = B_TRUE; 5694 } 5695 } 5696 5697 /* verify encryption params, if they were provided */ 5698 if (dcp != NULL) { 5699 error = spa_create_check_encryption_params(dcp, has_encryption); 5700 if (error != 0) { 5701 spa_deactivate(spa); 5702 spa_remove(spa); 5703 mutex_exit(&spa_namespace_lock); 5704 return (error); 5705 } 5706 } 5707 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 5708 spa_deactivate(spa); 5709 spa_remove(spa); 5710 mutex_exit(&spa_namespace_lock); 5711 return (ENOTSUP); 5712 } 5713 5714 if (has_features || nvlist_lookup_uint64(props, 5715 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5716 version = SPA_VERSION; 5717 } 5718 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5719 5720 spa->spa_first_txg = txg; 5721 spa->spa_uberblock.ub_txg = txg - 1; 5722 spa->spa_uberblock.ub_version = version; 5723 spa->spa_ubsync = spa->spa_uberblock; 5724 spa->spa_load_state = SPA_LOAD_CREATE; 5725 spa->spa_removing_phys.sr_state = DSS_NONE; 5726 spa->spa_removing_phys.sr_removing_vdev = -1; 5727 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5728 spa->spa_indirect_vdevs_loaded = B_TRUE; 5729 5730 /* 5731 * Create "The Godfather" zio to hold all async IOs 5732 */ 5733 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5734 KM_SLEEP); 5735 for (int i = 0; i < max_ncpus; i++) { 5736 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5737 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5738 ZIO_FLAG_GODFATHER); 5739 } 5740 5741 /* 5742 * Create the root vdev. 5743 */ 5744 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5745 5746 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5747 5748 ASSERT(error != 0 || rvd != NULL); 5749 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5750 5751 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5752 error = SET_ERROR(EINVAL); 5753 5754 if (error == 0 && 5755 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5756 (error = spa_validate_aux(spa, nvroot, txg, 5757 VDEV_ALLOC_ADD)) == 0) { 5758 /* 5759 * instantiate the metaslab groups (this will dirty the vdevs) 5760 * we can no longer error exit past this point 5761 */ 5762 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5763 vdev_t *vd = rvd->vdev_child[c]; 5764 5765 vdev_metaslab_set_size(vd); 5766 vdev_expand(vd, txg); 5767 } 5768 } 5769 5770 spa_config_exit(spa, SCL_ALL, FTAG); 5771 5772 if (error != 0) { 5773 spa_unload(spa); 5774 spa_deactivate(spa); 5775 spa_remove(spa); 5776 mutex_exit(&spa_namespace_lock); 5777 return (error); 5778 } 5779 5780 /* 5781 * Get the list of spares, if specified. 5782 */ 5783 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5784 &spares, &nspares) == 0) { 5785 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 5786 KM_SLEEP) == 0); 5787 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5788 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5789 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5790 spa_load_spares(spa); 5791 spa_config_exit(spa, SCL_ALL, FTAG); 5792 spa->spa_spares.sav_sync = B_TRUE; 5793 } 5794 5795 /* 5796 * Get the list of level 2 cache devices, if specified. 5797 */ 5798 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5799 &l2cache, &nl2cache) == 0) { 5800 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5801 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5802 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5803 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5804 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5805 spa_load_l2cache(spa); 5806 spa_config_exit(spa, SCL_ALL, FTAG); 5807 spa->spa_l2cache.sav_sync = B_TRUE; 5808 } 5809 5810 spa->spa_is_initializing = B_TRUE; 5811 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5812 spa->spa_is_initializing = B_FALSE; 5813 5814 /* 5815 * Create DDTs (dedup tables). 5816 */ 5817 ddt_create(spa); 5818 5819 spa_update_dspace(spa); 5820 5821 tx = dmu_tx_create_assigned(dp, txg); 5822 5823 /* 5824 * Create the pool's history object. 5825 */ 5826 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 5827 spa_history_create_obj(spa, tx); 5828 5829 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5830 spa_history_log_version(spa, "create", tx); 5831 5832 /* 5833 * Create the pool config object. 5834 */ 5835 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5836 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5837 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5838 5839 if (zap_add(spa->spa_meta_objset, 5840 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5841 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5842 cmn_err(CE_PANIC, "failed to add pool config"); 5843 } 5844 5845 if (zap_add(spa->spa_meta_objset, 5846 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5847 sizeof (uint64_t), 1, &version, tx) != 0) { 5848 cmn_err(CE_PANIC, "failed to add pool version"); 5849 } 5850 5851 /* Newly created pools with the right version are always deflated. */ 5852 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5853 spa->spa_deflate = TRUE; 5854 if (zap_add(spa->spa_meta_objset, 5855 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5856 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5857 cmn_err(CE_PANIC, "failed to add deflate"); 5858 } 5859 } 5860 5861 /* 5862 * Create the deferred-free bpobj. Turn off compression 5863 * because sync-to-convergence takes longer if the blocksize 5864 * keeps changing. 5865 */ 5866 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5867 dmu_object_set_compress(spa->spa_meta_objset, obj, 5868 ZIO_COMPRESS_OFF, tx); 5869 if (zap_add(spa->spa_meta_objset, 5870 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5871 sizeof (uint64_t), 1, &obj, tx) != 0) { 5872 cmn_err(CE_PANIC, "failed to add bpobj"); 5873 } 5874 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5875 spa->spa_meta_objset, obj)); 5876 5877 /* 5878 * Generate some random noise for salted checksums to operate on. 5879 */ 5880 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5881 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5882 5883 /* 5884 * Set pool properties. 5885 */ 5886 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5887 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5888 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5889 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5890 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5891 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 5892 5893 if (props != NULL) { 5894 spa_configfile_set(spa, props, B_FALSE); 5895 spa_sync_props(props, tx); 5896 } 5897 5898 dmu_tx_commit(tx); 5899 5900 spa->spa_sync_on = B_TRUE; 5901 txg_sync_start(dp); 5902 mmp_thread_start(spa); 5903 txg_wait_synced(dp, txg); 5904 5905 spa_spawn_aux_threads(spa); 5906 5907 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5908 5909 /* 5910 * Don't count references from objsets that are already closed 5911 * and are making their way through the eviction process. 5912 */ 5913 spa_evicting_os_wait(spa); 5914 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5915 spa->spa_load_state = SPA_LOAD_NONE; 5916 5917 mutex_exit(&spa_namespace_lock); 5918 5919 return (0); 5920 } 5921 5922 /* 5923 * Import a non-root pool into the system. 5924 */ 5925 int 5926 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5927 { 5928 spa_t *spa; 5929 char *altroot = NULL; 5930 spa_load_state_t state = SPA_LOAD_IMPORT; 5931 zpool_load_policy_t policy; 5932 spa_mode_t mode = spa_mode_global; 5933 uint64_t readonly = B_FALSE; 5934 int error; 5935 nvlist_t *nvroot; 5936 nvlist_t **spares, **l2cache; 5937 uint_t nspares, nl2cache; 5938 5939 /* 5940 * If a pool with this name exists, return failure. 5941 */ 5942 mutex_enter(&spa_namespace_lock); 5943 if (spa_lookup(pool) != NULL) { 5944 mutex_exit(&spa_namespace_lock); 5945 return (SET_ERROR(EEXIST)); 5946 } 5947 5948 /* 5949 * Create and initialize the spa structure. 5950 */ 5951 (void) nvlist_lookup_string(props, 5952 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5953 (void) nvlist_lookup_uint64(props, 5954 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5955 if (readonly) 5956 mode = SPA_MODE_READ; 5957 spa = spa_add(pool, config, altroot); 5958 spa->spa_import_flags = flags; 5959 5960 /* 5961 * Verbatim import - Take a pool and insert it into the namespace 5962 * as if it had been loaded at boot. 5963 */ 5964 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5965 if (props != NULL) 5966 spa_configfile_set(spa, props, B_FALSE); 5967 5968 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5969 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5970 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5971 mutex_exit(&spa_namespace_lock); 5972 return (0); 5973 } 5974 5975 spa_activate(spa, mode); 5976 5977 /* 5978 * Don't start async tasks until we know everything is healthy. 5979 */ 5980 spa_async_suspend(spa); 5981 5982 zpool_get_load_policy(config, &policy); 5983 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5984 state = SPA_LOAD_RECOVER; 5985 5986 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5987 5988 if (state != SPA_LOAD_RECOVER) { 5989 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5990 zfs_dbgmsg("spa_import: importing %s", pool); 5991 } else { 5992 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5993 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5994 } 5995 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5996 5997 /* 5998 * Propagate anything learned while loading the pool and pass it 5999 * back to caller (i.e. rewind info, missing devices, etc). 6000 */ 6001 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6002 spa->spa_load_info) == 0); 6003 6004 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6005 /* 6006 * Toss any existing sparelist, as it doesn't have any validity 6007 * anymore, and conflicts with spa_has_spare(). 6008 */ 6009 if (spa->spa_spares.sav_config) { 6010 nvlist_free(spa->spa_spares.sav_config); 6011 spa->spa_spares.sav_config = NULL; 6012 spa_load_spares(spa); 6013 } 6014 if (spa->spa_l2cache.sav_config) { 6015 nvlist_free(spa->spa_l2cache.sav_config); 6016 spa->spa_l2cache.sav_config = NULL; 6017 spa_load_l2cache(spa); 6018 } 6019 6020 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 6021 &nvroot) == 0); 6022 spa_config_exit(spa, SCL_ALL, FTAG); 6023 6024 if (props != NULL) 6025 spa_configfile_set(spa, props, B_FALSE); 6026 6027 if (error != 0 || (props && spa_writeable(spa) && 6028 (error = spa_prop_set(spa, props)))) { 6029 spa_unload(spa); 6030 spa_deactivate(spa); 6031 spa_remove(spa); 6032 mutex_exit(&spa_namespace_lock); 6033 return (error); 6034 } 6035 6036 spa_async_resume(spa); 6037 6038 /* 6039 * Override any spares and level 2 cache devices as specified by 6040 * the user, as these may have correct device names/devids, etc. 6041 */ 6042 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6043 &spares, &nspares) == 0) { 6044 if (spa->spa_spares.sav_config) 6045 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 6046 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 6047 else 6048 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 6049 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6050 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 6051 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 6052 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6053 spa_load_spares(spa); 6054 spa_config_exit(spa, SCL_ALL, FTAG); 6055 spa->spa_spares.sav_sync = B_TRUE; 6056 } 6057 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6058 &l2cache, &nl2cache) == 0) { 6059 if (spa->spa_l2cache.sav_config) 6060 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 6061 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 6062 else 6063 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 6064 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6065 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6066 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 6067 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6068 spa_load_l2cache(spa); 6069 spa_config_exit(spa, SCL_ALL, FTAG); 6070 spa->spa_l2cache.sav_sync = B_TRUE; 6071 } 6072 6073 /* 6074 * Check for any removed devices. 6075 */ 6076 if (spa->spa_autoreplace) { 6077 spa_aux_check_removed(&spa->spa_spares); 6078 spa_aux_check_removed(&spa->spa_l2cache); 6079 } 6080 6081 if (spa_writeable(spa)) { 6082 /* 6083 * Update the config cache to include the newly-imported pool. 6084 */ 6085 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6086 } 6087 6088 /* 6089 * It's possible that the pool was expanded while it was exported. 6090 * We kick off an async task to handle this for us. 6091 */ 6092 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6093 6094 spa_history_log_version(spa, "import", NULL); 6095 6096 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6097 6098 mutex_exit(&spa_namespace_lock); 6099 6100 zvol_create_minors_recursive(pool); 6101 6102 return (0); 6103 } 6104 6105 nvlist_t * 6106 spa_tryimport(nvlist_t *tryconfig) 6107 { 6108 nvlist_t *config = NULL; 6109 char *poolname, *cachefile; 6110 spa_t *spa; 6111 uint64_t state; 6112 int error; 6113 zpool_load_policy_t policy; 6114 6115 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6116 return (NULL); 6117 6118 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6119 return (NULL); 6120 6121 /* 6122 * Create and initialize the spa structure. 6123 */ 6124 mutex_enter(&spa_namespace_lock); 6125 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6126 spa_activate(spa, SPA_MODE_READ); 6127 6128 /* 6129 * Rewind pool if a max txg was provided. 6130 */ 6131 zpool_get_load_policy(spa->spa_config, &policy); 6132 if (policy.zlp_txg != UINT64_MAX) { 6133 spa->spa_load_max_txg = policy.zlp_txg; 6134 spa->spa_extreme_rewind = B_TRUE; 6135 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6136 poolname, (longlong_t)policy.zlp_txg); 6137 } else { 6138 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6139 } 6140 6141 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6142 == 0) { 6143 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6144 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6145 } else { 6146 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6147 } 6148 6149 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6150 6151 /* 6152 * If 'tryconfig' was at least parsable, return the current config. 6153 */ 6154 if (spa->spa_root_vdev != NULL) { 6155 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6156 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 6157 poolname) == 0); 6158 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6159 state) == 0); 6160 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6161 spa->spa_uberblock.ub_timestamp) == 0); 6162 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6163 spa->spa_load_info) == 0); 6164 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6165 spa->spa_errata) == 0); 6166 6167 /* 6168 * If the bootfs property exists on this pool then we 6169 * copy it out so that external consumers can tell which 6170 * pools are bootable. 6171 */ 6172 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6173 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6174 6175 /* 6176 * We have to play games with the name since the 6177 * pool was opened as TRYIMPORT_NAME. 6178 */ 6179 if (dsl_dsobj_to_dsname(spa_name(spa), 6180 spa->spa_bootfs, tmpname) == 0) { 6181 char *cp; 6182 char *dsname; 6183 6184 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6185 6186 cp = strchr(tmpname, '/'); 6187 if (cp == NULL) { 6188 (void) strlcpy(dsname, tmpname, 6189 MAXPATHLEN); 6190 } else { 6191 (void) snprintf(dsname, MAXPATHLEN, 6192 "%s/%s", poolname, ++cp); 6193 } 6194 VERIFY(nvlist_add_string(config, 6195 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 6196 kmem_free(dsname, MAXPATHLEN); 6197 } 6198 kmem_free(tmpname, MAXPATHLEN); 6199 } 6200 6201 /* 6202 * Add the list of hot spares and level 2 cache devices. 6203 */ 6204 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6205 spa_add_spares(spa, config); 6206 spa_add_l2cache(spa, config); 6207 spa_config_exit(spa, SCL_CONFIG, FTAG); 6208 } 6209 6210 spa_unload(spa); 6211 spa_deactivate(spa); 6212 spa_remove(spa); 6213 mutex_exit(&spa_namespace_lock); 6214 6215 return (config); 6216 } 6217 6218 /* 6219 * Pool export/destroy 6220 * 6221 * The act of destroying or exporting a pool is very simple. We make sure there 6222 * is no more pending I/O and any references to the pool are gone. Then, we 6223 * update the pool state and sync all the labels to disk, removing the 6224 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6225 * we don't sync the labels or remove the configuration cache. 6226 */ 6227 static int 6228 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 6229 boolean_t force, boolean_t hardforce) 6230 { 6231 spa_t *spa; 6232 6233 if (oldconfig) 6234 *oldconfig = NULL; 6235 6236 if (!(spa_mode_global & SPA_MODE_WRITE)) 6237 return (SET_ERROR(EROFS)); 6238 6239 mutex_enter(&spa_namespace_lock); 6240 if ((spa = spa_lookup(pool)) == NULL) { 6241 mutex_exit(&spa_namespace_lock); 6242 return (SET_ERROR(ENOENT)); 6243 } 6244 6245 if (spa->spa_is_exporting) { 6246 /* the pool is being exported by another thread */ 6247 mutex_exit(&spa_namespace_lock); 6248 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6249 } 6250 spa->spa_is_exporting = B_TRUE; 6251 6252 /* 6253 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6254 * reacquire the namespace lock, and see if we can export. 6255 */ 6256 spa_open_ref(spa, FTAG); 6257 mutex_exit(&spa_namespace_lock); 6258 spa_async_suspend(spa); 6259 if (spa->spa_zvol_taskq) { 6260 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6261 taskq_wait(spa->spa_zvol_taskq); 6262 } 6263 mutex_enter(&spa_namespace_lock); 6264 spa_close(spa, FTAG); 6265 6266 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6267 goto export_spa; 6268 /* 6269 * The pool will be in core if it's openable, in which case we can 6270 * modify its state. Objsets may be open only because they're dirty, 6271 * so we have to force it to sync before checking spa_refcnt. 6272 */ 6273 if (spa->spa_sync_on) { 6274 txg_wait_synced(spa->spa_dsl_pool, 0); 6275 spa_evicting_os_wait(spa); 6276 } 6277 6278 /* 6279 * A pool cannot be exported or destroyed if there are active 6280 * references. If we are resetting a pool, allow references by 6281 * fault injection handlers. 6282 */ 6283 if (!spa_refcount_zero(spa) || 6284 (spa->spa_inject_ref != 0 && 6285 new_state != POOL_STATE_UNINITIALIZED)) { 6286 spa_async_resume(spa); 6287 spa->spa_is_exporting = B_FALSE; 6288 mutex_exit(&spa_namespace_lock); 6289 return (SET_ERROR(EBUSY)); 6290 } 6291 6292 if (spa->spa_sync_on) { 6293 /* 6294 * A pool cannot be exported if it has an active shared spare. 6295 * This is to prevent other pools stealing the active spare 6296 * from an exported pool. At user's own will, such pool can 6297 * be forcedly exported. 6298 */ 6299 if (!force && new_state == POOL_STATE_EXPORTED && 6300 spa_has_active_shared_spare(spa)) { 6301 spa_async_resume(spa); 6302 spa->spa_is_exporting = B_FALSE; 6303 mutex_exit(&spa_namespace_lock); 6304 return (SET_ERROR(EXDEV)); 6305 } 6306 6307 /* 6308 * We're about to export or destroy this pool. Make sure 6309 * we stop all initialization and trim activity here before 6310 * we set the spa_final_txg. This will ensure that all 6311 * dirty data resulting from the initialization is 6312 * committed to disk before we unload the pool. 6313 */ 6314 if (spa->spa_root_vdev != NULL) { 6315 vdev_t *rvd = spa->spa_root_vdev; 6316 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6317 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6318 vdev_autotrim_stop_all(spa); 6319 vdev_rebuild_stop_all(spa); 6320 } 6321 6322 /* 6323 * We want this to be reflected on every label, 6324 * so mark them all dirty. spa_unload() will do the 6325 * final sync that pushes these changes out. 6326 */ 6327 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6328 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6329 spa->spa_state = new_state; 6330 spa->spa_final_txg = spa_last_synced_txg(spa) + 6331 TXG_DEFER_SIZE + 1; 6332 vdev_config_dirty(spa->spa_root_vdev); 6333 spa_config_exit(spa, SCL_ALL, FTAG); 6334 } 6335 } 6336 6337 export_spa: 6338 if (new_state == POOL_STATE_DESTROYED) 6339 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6340 else if (new_state == POOL_STATE_EXPORTED) 6341 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6342 6343 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6344 spa_unload(spa); 6345 spa_deactivate(spa); 6346 } 6347 6348 if (oldconfig && spa->spa_config) 6349 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 6350 6351 if (new_state != POOL_STATE_UNINITIALIZED) { 6352 if (!hardforce) 6353 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6354 spa_remove(spa); 6355 } else { 6356 /* 6357 * If spa_remove() is not called for this spa_t and 6358 * there is any possibility that it can be reused, 6359 * we make sure to reset the exporting flag. 6360 */ 6361 spa->spa_is_exporting = B_FALSE; 6362 } 6363 6364 mutex_exit(&spa_namespace_lock); 6365 return (0); 6366 } 6367 6368 /* 6369 * Destroy a storage pool. 6370 */ 6371 int 6372 spa_destroy(char *pool) 6373 { 6374 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6375 B_FALSE, B_FALSE)); 6376 } 6377 6378 /* 6379 * Export a storage pool. 6380 */ 6381 int 6382 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 6383 boolean_t hardforce) 6384 { 6385 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6386 force, hardforce)); 6387 } 6388 6389 /* 6390 * Similar to spa_export(), this unloads the spa_t without actually removing it 6391 * from the namespace in any way. 6392 */ 6393 int 6394 spa_reset(char *pool) 6395 { 6396 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6397 B_FALSE, B_FALSE)); 6398 } 6399 6400 /* 6401 * ========================================================================== 6402 * Device manipulation 6403 * ========================================================================== 6404 */ 6405 6406 /* 6407 * Add a device to a storage pool. 6408 */ 6409 int 6410 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6411 { 6412 uint64_t txg; 6413 int error; 6414 vdev_t *rvd = spa->spa_root_vdev; 6415 vdev_t *vd, *tvd; 6416 nvlist_t **spares, **l2cache; 6417 uint_t nspares, nl2cache; 6418 6419 ASSERT(spa_writeable(spa)); 6420 6421 txg = spa_vdev_enter(spa); 6422 6423 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6424 VDEV_ALLOC_ADD)) != 0) 6425 return (spa_vdev_exit(spa, NULL, txg, error)); 6426 6427 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6428 6429 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6430 &nspares) != 0) 6431 nspares = 0; 6432 6433 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6434 &nl2cache) != 0) 6435 nl2cache = 0; 6436 6437 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6438 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6439 6440 if (vd->vdev_children != 0 && 6441 (error = vdev_create(vd, txg, B_FALSE)) != 0) 6442 return (spa_vdev_exit(spa, vd, txg, error)); 6443 6444 /* 6445 * We must validate the spares and l2cache devices after checking the 6446 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6447 */ 6448 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6449 return (spa_vdev_exit(spa, vd, txg, error)); 6450 6451 /* 6452 * If we are in the middle of a device removal, we can only add 6453 * devices which match the existing devices in the pool. 6454 * If we are in the middle of a removal, or have some indirect 6455 * vdevs, we can not add raidz toplevels. 6456 */ 6457 if (spa->spa_vdev_removal != NULL || 6458 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6459 for (int c = 0; c < vd->vdev_children; c++) { 6460 tvd = vd->vdev_child[c]; 6461 if (spa->spa_vdev_removal != NULL && 6462 tvd->vdev_ashift != spa->spa_max_ashift) { 6463 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6464 } 6465 /* Fail if top level vdev is raidz */ 6466 if (tvd->vdev_ops == &vdev_raidz_ops) { 6467 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6468 } 6469 /* 6470 * Need the top level mirror to be 6471 * a mirror of leaf vdevs only 6472 */ 6473 if (tvd->vdev_ops == &vdev_mirror_ops) { 6474 for (uint64_t cid = 0; 6475 cid < tvd->vdev_children; cid++) { 6476 vdev_t *cvd = tvd->vdev_child[cid]; 6477 if (!cvd->vdev_ops->vdev_op_leaf) { 6478 return (spa_vdev_exit(spa, vd, 6479 txg, EINVAL)); 6480 } 6481 } 6482 } 6483 } 6484 } 6485 6486 for (int c = 0; c < vd->vdev_children; c++) { 6487 tvd = vd->vdev_child[c]; 6488 vdev_remove_child(vd, tvd); 6489 tvd->vdev_id = rvd->vdev_children; 6490 vdev_add_child(rvd, tvd); 6491 vdev_config_dirty(tvd); 6492 } 6493 6494 if (nspares != 0) { 6495 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6496 ZPOOL_CONFIG_SPARES); 6497 spa_load_spares(spa); 6498 spa->spa_spares.sav_sync = B_TRUE; 6499 } 6500 6501 if (nl2cache != 0) { 6502 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6503 ZPOOL_CONFIG_L2CACHE); 6504 spa_load_l2cache(spa); 6505 spa->spa_l2cache.sav_sync = B_TRUE; 6506 } 6507 6508 /* 6509 * We have to be careful when adding new vdevs to an existing pool. 6510 * If other threads start allocating from these vdevs before we 6511 * sync the config cache, and we lose power, then upon reboot we may 6512 * fail to open the pool because there are DVAs that the config cache 6513 * can't translate. Therefore, we first add the vdevs without 6514 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6515 * and then let spa_config_update() initialize the new metaslabs. 6516 * 6517 * spa_load() checks for added-but-not-initialized vdevs, so that 6518 * if we lose power at any point in this sequence, the remaining 6519 * steps will be completed the next time we load the pool. 6520 */ 6521 (void) spa_vdev_exit(spa, vd, txg, 0); 6522 6523 mutex_enter(&spa_namespace_lock); 6524 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6525 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6526 mutex_exit(&spa_namespace_lock); 6527 6528 return (0); 6529 } 6530 6531 /* 6532 * Attach a device to a mirror. The arguments are the path to any device 6533 * in the mirror, and the nvroot for the new device. If the path specifies 6534 * a device that is not mirrored, we automatically insert the mirror vdev. 6535 * 6536 * If 'replacing' is specified, the new device is intended to replace the 6537 * existing device; in this case the two devices are made into their own 6538 * mirror using the 'replacing' vdev, which is functionally identical to 6539 * the mirror vdev (it actually reuses all the same ops) but has a few 6540 * extra rules: you can't attach to it after it's been created, and upon 6541 * completion of resilvering, the first disk (the one being replaced) 6542 * is automatically detached. 6543 * 6544 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6545 * should be performed instead of traditional healing reconstruction. From 6546 * an administrators perspective these are both resilver operations. 6547 */ 6548 int 6549 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6550 int rebuild) 6551 { 6552 uint64_t txg, dtl_max_txg; 6553 vdev_t *rvd = spa->spa_root_vdev; 6554 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6555 vdev_ops_t *pvops; 6556 char *oldvdpath, *newvdpath; 6557 int newvd_isspare; 6558 int error; 6559 6560 ASSERT(spa_writeable(spa)); 6561 6562 txg = spa_vdev_enter(spa); 6563 6564 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6565 6566 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6567 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6568 error = (spa_has_checkpoint(spa)) ? 6569 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6570 return (spa_vdev_exit(spa, NULL, txg, error)); 6571 } 6572 6573 if (rebuild) { 6574 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 6575 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6576 6577 if (dsl_scan_resilvering(spa_get_dsl(spa))) 6578 return (spa_vdev_exit(spa, NULL, txg, 6579 ZFS_ERR_RESILVER_IN_PROGRESS)); 6580 } else { 6581 if (vdev_rebuild_active(rvd)) 6582 return (spa_vdev_exit(spa, NULL, txg, 6583 ZFS_ERR_REBUILD_IN_PROGRESS)); 6584 } 6585 6586 if (spa->spa_vdev_removal != NULL) 6587 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6588 6589 if (oldvd == NULL) 6590 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6591 6592 if (!oldvd->vdev_ops->vdev_op_leaf) 6593 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6594 6595 pvd = oldvd->vdev_parent; 6596 6597 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6598 VDEV_ALLOC_ATTACH)) != 0) 6599 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6600 6601 if (newrootvd->vdev_children != 1) 6602 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6603 6604 newvd = newrootvd->vdev_child[0]; 6605 6606 if (!newvd->vdev_ops->vdev_op_leaf) 6607 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6608 6609 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6610 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6611 6612 /* 6613 * Spares can't replace logs 6614 */ 6615 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6616 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6617 6618 if (rebuild) { 6619 /* 6620 * For rebuilds, the parent vdev must support reconstruction 6621 * using only space maps. This means the only allowable 6622 * parents are the root vdev or a mirror vdev. 6623 */ 6624 if (pvd->vdev_ops != &vdev_mirror_ops && 6625 pvd->vdev_ops != &vdev_root_ops) { 6626 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6627 } 6628 } 6629 6630 if (!replacing) { 6631 /* 6632 * For attach, the only allowable parent is a mirror or the root 6633 * vdev. 6634 */ 6635 if (pvd->vdev_ops != &vdev_mirror_ops && 6636 pvd->vdev_ops != &vdev_root_ops) 6637 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6638 6639 pvops = &vdev_mirror_ops; 6640 } else { 6641 /* 6642 * Active hot spares can only be replaced by inactive hot 6643 * spares. 6644 */ 6645 if (pvd->vdev_ops == &vdev_spare_ops && 6646 oldvd->vdev_isspare && 6647 !spa_has_spare(spa, newvd->vdev_guid)) 6648 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6649 6650 /* 6651 * If the source is a hot spare, and the parent isn't already a 6652 * spare, then we want to create a new hot spare. Otherwise, we 6653 * want to create a replacing vdev. The user is not allowed to 6654 * attach to a spared vdev child unless the 'isspare' state is 6655 * the same (spare replaces spare, non-spare replaces 6656 * non-spare). 6657 */ 6658 if (pvd->vdev_ops == &vdev_replacing_ops && 6659 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6660 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6661 } else if (pvd->vdev_ops == &vdev_spare_ops && 6662 newvd->vdev_isspare != oldvd->vdev_isspare) { 6663 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6664 } 6665 6666 if (newvd->vdev_isspare) 6667 pvops = &vdev_spare_ops; 6668 else 6669 pvops = &vdev_replacing_ops; 6670 } 6671 6672 /* 6673 * Make sure the new device is big enough. 6674 */ 6675 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6676 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6677 6678 /* 6679 * The new device cannot have a higher alignment requirement 6680 * than the top-level vdev. 6681 */ 6682 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6683 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6684 6685 /* 6686 * If this is an in-place replacement, update oldvd's path and devid 6687 * to make it distinguishable from newvd, and unopenable from now on. 6688 */ 6689 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6690 spa_strfree(oldvd->vdev_path); 6691 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6692 KM_SLEEP); 6693 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, 6694 "%s/%s", newvd->vdev_path, "old"); 6695 if (oldvd->vdev_devid != NULL) { 6696 spa_strfree(oldvd->vdev_devid); 6697 oldvd->vdev_devid = NULL; 6698 } 6699 } 6700 6701 /* 6702 * If the parent is not a mirror, or if we're replacing, insert the new 6703 * mirror/replacing/spare vdev above oldvd. 6704 */ 6705 if (pvd->vdev_ops != pvops) 6706 pvd = vdev_add_parent(oldvd, pvops); 6707 6708 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6709 ASSERT(pvd->vdev_ops == pvops); 6710 ASSERT(oldvd->vdev_parent == pvd); 6711 6712 /* 6713 * Extract the new device from its root and add it to pvd. 6714 */ 6715 vdev_remove_child(newrootvd, newvd); 6716 newvd->vdev_id = pvd->vdev_children; 6717 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6718 vdev_add_child(pvd, newvd); 6719 6720 /* 6721 * Reevaluate the parent vdev state. 6722 */ 6723 vdev_propagate_state(pvd); 6724 6725 tvd = newvd->vdev_top; 6726 ASSERT(pvd->vdev_top == tvd); 6727 ASSERT(tvd->vdev_parent == rvd); 6728 6729 vdev_config_dirty(tvd); 6730 6731 /* 6732 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6733 * for any dmu_sync-ed blocks. It will propagate upward when 6734 * spa_vdev_exit() calls vdev_dtl_reassess(). 6735 */ 6736 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6737 6738 vdev_dtl_dirty(newvd, DTL_MISSING, 6739 TXG_INITIAL, dtl_max_txg - TXG_INITIAL); 6740 6741 if (newvd->vdev_isspare) { 6742 spa_spare_activate(newvd); 6743 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6744 } 6745 6746 oldvdpath = spa_strdup(oldvd->vdev_path); 6747 newvdpath = spa_strdup(newvd->vdev_path); 6748 newvd_isspare = newvd->vdev_isspare; 6749 6750 /* 6751 * Mark newvd's DTL dirty in this txg. 6752 */ 6753 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6754 6755 /* 6756 * Schedule the resilver or rebuild to restart in the future. We do 6757 * this to ensure that dmu_sync-ed blocks have been stitched into the 6758 * respective datasets. 6759 */ 6760 if (rebuild) { 6761 newvd->vdev_rebuild_txg = txg; 6762 6763 vdev_rebuild(tvd); 6764 } else { 6765 newvd->vdev_resilver_txg = txg; 6766 6767 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6768 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 6769 vdev_defer_resilver(newvd); 6770 } else { 6771 dsl_scan_restart_resilver(spa->spa_dsl_pool, 6772 dtl_max_txg); 6773 } 6774 } 6775 6776 if (spa->spa_bootfs) 6777 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6778 6779 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6780 6781 /* 6782 * Commit the config 6783 */ 6784 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6785 6786 spa_history_log_internal(spa, "vdev attach", NULL, 6787 "%s vdev=%s %s vdev=%s", 6788 replacing && newvd_isspare ? "spare in" : 6789 replacing ? "replace" : "attach", newvdpath, 6790 replacing ? "for" : "to", oldvdpath); 6791 6792 spa_strfree(oldvdpath); 6793 spa_strfree(newvdpath); 6794 6795 return (0); 6796 } 6797 6798 /* 6799 * Detach a device from a mirror or replacing vdev. 6800 * 6801 * If 'replace_done' is specified, only detach if the parent 6802 * is a replacing vdev. 6803 */ 6804 int 6805 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6806 { 6807 uint64_t txg; 6808 int error; 6809 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 6810 vdev_t *vd, *pvd, *cvd, *tvd; 6811 boolean_t unspare = B_FALSE; 6812 uint64_t unspare_guid = 0; 6813 char *vdpath; 6814 6815 ASSERT(spa_writeable(spa)); 6816 6817 txg = spa_vdev_detach_enter(spa, guid); 6818 6819 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6820 6821 /* 6822 * Besides being called directly from the userland through the 6823 * ioctl interface, spa_vdev_detach() can be potentially called 6824 * at the end of spa_vdev_resilver_done(). 6825 * 6826 * In the regular case, when we have a checkpoint this shouldn't 6827 * happen as we never empty the DTLs of a vdev during the scrub 6828 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6829 * should never get here when we have a checkpoint. 6830 * 6831 * That said, even in a case when we checkpoint the pool exactly 6832 * as spa_vdev_resilver_done() calls this function everything 6833 * should be fine as the resilver will return right away. 6834 */ 6835 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6836 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6837 error = (spa_has_checkpoint(spa)) ? 6838 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6839 return (spa_vdev_exit(spa, NULL, txg, error)); 6840 } 6841 6842 if (vd == NULL) 6843 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6844 6845 if (!vd->vdev_ops->vdev_op_leaf) 6846 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6847 6848 pvd = vd->vdev_parent; 6849 6850 /* 6851 * If the parent/child relationship is not as expected, don't do it. 6852 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6853 * vdev that's replacing B with C. The user's intent in replacing 6854 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6855 * the replace by detaching C, the expected behavior is to end up 6856 * M(A,B). But suppose that right after deciding to detach C, 6857 * the replacement of B completes. We would have M(A,C), and then 6858 * ask to detach C, which would leave us with just A -- not what 6859 * the user wanted. To prevent this, we make sure that the 6860 * parent/child relationship hasn't changed -- in this example, 6861 * that C's parent is still the replacing vdev R. 6862 */ 6863 if (pvd->vdev_guid != pguid && pguid != 0) 6864 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6865 6866 /* 6867 * Only 'replacing' or 'spare' vdevs can be replaced. 6868 */ 6869 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6870 pvd->vdev_ops != &vdev_spare_ops) 6871 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6872 6873 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6874 spa_version(spa) >= SPA_VERSION_SPARES); 6875 6876 /* 6877 * Only mirror, replacing, and spare vdevs support detach. 6878 */ 6879 if (pvd->vdev_ops != &vdev_replacing_ops && 6880 pvd->vdev_ops != &vdev_mirror_ops && 6881 pvd->vdev_ops != &vdev_spare_ops) 6882 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6883 6884 /* 6885 * If this device has the only valid copy of some data, 6886 * we cannot safely detach it. 6887 */ 6888 if (vdev_dtl_required(vd)) 6889 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6890 6891 ASSERT(pvd->vdev_children >= 2); 6892 6893 /* 6894 * If we are detaching the second disk from a replacing vdev, then 6895 * check to see if we changed the original vdev's path to have "/old" 6896 * at the end in spa_vdev_attach(). If so, undo that change now. 6897 */ 6898 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6899 vd->vdev_path != NULL) { 6900 size_t len = strlen(vd->vdev_path); 6901 6902 for (int c = 0; c < pvd->vdev_children; c++) { 6903 cvd = pvd->vdev_child[c]; 6904 6905 if (cvd == vd || cvd->vdev_path == NULL) 6906 continue; 6907 6908 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6909 strcmp(cvd->vdev_path + len, "/old") == 0) { 6910 spa_strfree(cvd->vdev_path); 6911 cvd->vdev_path = spa_strdup(vd->vdev_path); 6912 break; 6913 } 6914 } 6915 } 6916 6917 /* 6918 * If we are detaching the original disk from a spare, then it implies 6919 * that the spare should become a real disk, and be removed from the 6920 * active spare list for the pool. 6921 */ 6922 if (pvd->vdev_ops == &vdev_spare_ops && 6923 vd->vdev_id == 0 && 6924 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6925 unspare = B_TRUE; 6926 6927 /* 6928 * Erase the disk labels so the disk can be used for other things. 6929 * This must be done after all other error cases are handled, 6930 * but before we disembowel vd (so we can still do I/O to it). 6931 * But if we can't do it, don't treat the error as fatal -- 6932 * it may be that the unwritability of the disk is the reason 6933 * it's being detached! 6934 */ 6935 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6936 6937 /* 6938 * Remove vd from its parent and compact the parent's children. 6939 */ 6940 vdev_remove_child(pvd, vd); 6941 vdev_compact_children(pvd); 6942 6943 /* 6944 * Remember one of the remaining children so we can get tvd below. 6945 */ 6946 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6947 6948 /* 6949 * If we need to remove the remaining child from the list of hot spares, 6950 * do it now, marking the vdev as no longer a spare in the process. 6951 * We must do this before vdev_remove_parent(), because that can 6952 * change the GUID if it creates a new toplevel GUID. For a similar 6953 * reason, we must remove the spare now, in the same txg as the detach; 6954 * otherwise someone could attach a new sibling, change the GUID, and 6955 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6956 */ 6957 if (unspare) { 6958 ASSERT(cvd->vdev_isspare); 6959 spa_spare_remove(cvd); 6960 unspare_guid = cvd->vdev_guid; 6961 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6962 cvd->vdev_unspare = B_TRUE; 6963 } 6964 6965 /* 6966 * If the parent mirror/replacing vdev only has one child, 6967 * the parent is no longer needed. Remove it from the tree. 6968 */ 6969 if (pvd->vdev_children == 1) { 6970 if (pvd->vdev_ops == &vdev_spare_ops) 6971 cvd->vdev_unspare = B_FALSE; 6972 vdev_remove_parent(cvd); 6973 } 6974 6975 /* 6976 * We don't set tvd until now because the parent we just removed 6977 * may have been the previous top-level vdev. 6978 */ 6979 tvd = cvd->vdev_top; 6980 ASSERT(tvd->vdev_parent == rvd); 6981 6982 /* 6983 * Reevaluate the parent vdev state. 6984 */ 6985 vdev_propagate_state(cvd); 6986 6987 /* 6988 * If the 'autoexpand' property is set on the pool then automatically 6989 * try to expand the size of the pool. For example if the device we 6990 * just detached was smaller than the others, it may be possible to 6991 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6992 * first so that we can obtain the updated sizes of the leaf vdevs. 6993 */ 6994 if (spa->spa_autoexpand) { 6995 vdev_reopen(tvd); 6996 vdev_expand(tvd, txg); 6997 } 6998 6999 vdev_config_dirty(tvd); 7000 7001 /* 7002 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7003 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7004 * But first make sure we're not on any *other* txg's DTL list, to 7005 * prevent vd from being accessed after it's freed. 7006 */ 7007 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7008 for (int t = 0; t < TXG_SIZE; t++) 7009 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7010 vd->vdev_detached = B_TRUE; 7011 vdev_dirty(tvd, VDD_DTL, vd, txg); 7012 7013 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7014 spa_notify_waiters(spa); 7015 7016 /* hang on to the spa before we release the lock */ 7017 spa_open_ref(spa, FTAG); 7018 7019 error = spa_vdev_exit(spa, vd, txg, 0); 7020 7021 spa_history_log_internal(spa, "detach", NULL, 7022 "vdev=%s", vdpath); 7023 spa_strfree(vdpath); 7024 7025 /* 7026 * If this was the removal of the original device in a hot spare vdev, 7027 * then we want to go through and remove the device from the hot spare 7028 * list of every other pool. 7029 */ 7030 if (unspare) { 7031 spa_t *altspa = NULL; 7032 7033 mutex_enter(&spa_namespace_lock); 7034 while ((altspa = spa_next(altspa)) != NULL) { 7035 if (altspa->spa_state != POOL_STATE_ACTIVE || 7036 altspa == spa) 7037 continue; 7038 7039 spa_open_ref(altspa, FTAG); 7040 mutex_exit(&spa_namespace_lock); 7041 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7042 mutex_enter(&spa_namespace_lock); 7043 spa_close(altspa, FTAG); 7044 } 7045 mutex_exit(&spa_namespace_lock); 7046 7047 /* search the rest of the vdevs for spares to remove */ 7048 spa_vdev_resilver_done(spa); 7049 } 7050 7051 /* all done with the spa; OK to release */ 7052 mutex_enter(&spa_namespace_lock); 7053 spa_close(spa, FTAG); 7054 mutex_exit(&spa_namespace_lock); 7055 7056 return (error); 7057 } 7058 7059 static int 7060 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7061 list_t *vd_list) 7062 { 7063 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7064 7065 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7066 7067 /* Look up vdev and ensure it's a leaf. */ 7068 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7069 if (vd == NULL || vd->vdev_detached) { 7070 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7071 return (SET_ERROR(ENODEV)); 7072 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7073 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7074 return (SET_ERROR(EINVAL)); 7075 } else if (!vdev_writeable(vd)) { 7076 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7077 return (SET_ERROR(EROFS)); 7078 } 7079 mutex_enter(&vd->vdev_initialize_lock); 7080 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7081 7082 /* 7083 * When we activate an initialize action we check to see 7084 * if the vdev_initialize_thread is NULL. We do this instead 7085 * of using the vdev_initialize_state since there might be 7086 * a previous initialization process which has completed but 7087 * the thread is not exited. 7088 */ 7089 if (cmd_type == POOL_INITIALIZE_START && 7090 (vd->vdev_initialize_thread != NULL || 7091 vd->vdev_top->vdev_removing)) { 7092 mutex_exit(&vd->vdev_initialize_lock); 7093 return (SET_ERROR(EBUSY)); 7094 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7095 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7096 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7097 mutex_exit(&vd->vdev_initialize_lock); 7098 return (SET_ERROR(ESRCH)); 7099 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7100 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7101 mutex_exit(&vd->vdev_initialize_lock); 7102 return (SET_ERROR(ESRCH)); 7103 } 7104 7105 switch (cmd_type) { 7106 case POOL_INITIALIZE_START: 7107 vdev_initialize(vd); 7108 break; 7109 case POOL_INITIALIZE_CANCEL: 7110 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7111 break; 7112 case POOL_INITIALIZE_SUSPEND: 7113 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7114 break; 7115 default: 7116 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7117 } 7118 mutex_exit(&vd->vdev_initialize_lock); 7119 7120 return (0); 7121 } 7122 7123 int 7124 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7125 nvlist_t *vdev_errlist) 7126 { 7127 int total_errors = 0; 7128 list_t vd_list; 7129 7130 list_create(&vd_list, sizeof (vdev_t), 7131 offsetof(vdev_t, vdev_initialize_node)); 7132 7133 /* 7134 * We hold the namespace lock through the whole function 7135 * to prevent any changes to the pool while we're starting or 7136 * stopping initialization. The config and state locks are held so that 7137 * we can properly assess the vdev state before we commit to 7138 * the initializing operation. 7139 */ 7140 mutex_enter(&spa_namespace_lock); 7141 7142 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7143 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7144 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7145 7146 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7147 &vd_list); 7148 if (error != 0) { 7149 char guid_as_str[MAXNAMELEN]; 7150 7151 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7152 "%llu", (unsigned long long)vdev_guid); 7153 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7154 total_errors++; 7155 } 7156 } 7157 7158 /* Wait for all initialize threads to stop. */ 7159 vdev_initialize_stop_wait(spa, &vd_list); 7160 7161 /* Sync out the initializing state */ 7162 txg_wait_synced(spa->spa_dsl_pool, 0); 7163 mutex_exit(&spa_namespace_lock); 7164 7165 list_destroy(&vd_list); 7166 7167 return (total_errors); 7168 } 7169 7170 static int 7171 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7172 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7173 { 7174 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7175 7176 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7177 7178 /* Look up vdev and ensure it's a leaf. */ 7179 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7180 if (vd == NULL || vd->vdev_detached) { 7181 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7182 return (SET_ERROR(ENODEV)); 7183 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7184 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7185 return (SET_ERROR(EINVAL)); 7186 } else if (!vdev_writeable(vd)) { 7187 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7188 return (SET_ERROR(EROFS)); 7189 } else if (!vd->vdev_has_trim) { 7190 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7191 return (SET_ERROR(EOPNOTSUPP)); 7192 } else if (secure && !vd->vdev_has_securetrim) { 7193 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7194 return (SET_ERROR(EOPNOTSUPP)); 7195 } 7196 mutex_enter(&vd->vdev_trim_lock); 7197 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7198 7199 /* 7200 * When we activate a TRIM action we check to see if the 7201 * vdev_trim_thread is NULL. We do this instead of using the 7202 * vdev_trim_state since there might be a previous TRIM process 7203 * which has completed but the thread is not exited. 7204 */ 7205 if (cmd_type == POOL_TRIM_START && 7206 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 7207 mutex_exit(&vd->vdev_trim_lock); 7208 return (SET_ERROR(EBUSY)); 7209 } else if (cmd_type == POOL_TRIM_CANCEL && 7210 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7211 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7212 mutex_exit(&vd->vdev_trim_lock); 7213 return (SET_ERROR(ESRCH)); 7214 } else if (cmd_type == POOL_TRIM_SUSPEND && 7215 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7216 mutex_exit(&vd->vdev_trim_lock); 7217 return (SET_ERROR(ESRCH)); 7218 } 7219 7220 switch (cmd_type) { 7221 case POOL_TRIM_START: 7222 vdev_trim(vd, rate, partial, secure); 7223 break; 7224 case POOL_TRIM_CANCEL: 7225 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7226 break; 7227 case POOL_TRIM_SUSPEND: 7228 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7229 break; 7230 default: 7231 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7232 } 7233 mutex_exit(&vd->vdev_trim_lock); 7234 7235 return (0); 7236 } 7237 7238 /* 7239 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7240 * TRIM threads for each child vdev. These threads pass over all of the free 7241 * space in the vdev's metaslabs and issues TRIM commands for that space. 7242 */ 7243 int 7244 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7245 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7246 { 7247 int total_errors = 0; 7248 list_t vd_list; 7249 7250 list_create(&vd_list, sizeof (vdev_t), 7251 offsetof(vdev_t, vdev_trim_node)); 7252 7253 /* 7254 * We hold the namespace lock through the whole function 7255 * to prevent any changes to the pool while we're starting or 7256 * stopping TRIM. The config and state locks are held so that 7257 * we can properly assess the vdev state before we commit to 7258 * the TRIM operation. 7259 */ 7260 mutex_enter(&spa_namespace_lock); 7261 7262 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7263 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7264 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7265 7266 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7267 rate, partial, secure, &vd_list); 7268 if (error != 0) { 7269 char guid_as_str[MAXNAMELEN]; 7270 7271 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7272 "%llu", (unsigned long long)vdev_guid); 7273 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7274 total_errors++; 7275 } 7276 } 7277 7278 /* Wait for all TRIM threads to stop. */ 7279 vdev_trim_stop_wait(spa, &vd_list); 7280 7281 /* Sync out the TRIM state */ 7282 txg_wait_synced(spa->spa_dsl_pool, 0); 7283 mutex_exit(&spa_namespace_lock); 7284 7285 list_destroy(&vd_list); 7286 7287 return (total_errors); 7288 } 7289 7290 /* 7291 * Split a set of devices from their mirrors, and create a new pool from them. 7292 */ 7293 int 7294 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 7295 nvlist_t *props, boolean_t exp) 7296 { 7297 int error = 0; 7298 uint64_t txg, *glist; 7299 spa_t *newspa; 7300 uint_t c, children, lastlog; 7301 nvlist_t **child, *nvl, *tmp; 7302 dmu_tx_t *tx; 7303 char *altroot = NULL; 7304 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7305 boolean_t activate_slog; 7306 7307 ASSERT(spa_writeable(spa)); 7308 7309 txg = spa_vdev_enter(spa); 7310 7311 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7312 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7313 error = (spa_has_checkpoint(spa)) ? 7314 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7315 return (spa_vdev_exit(spa, NULL, txg, error)); 7316 } 7317 7318 /* clear the log and flush everything up to now */ 7319 activate_slog = spa_passivate_log(spa); 7320 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7321 error = spa_reset_logs(spa); 7322 txg = spa_vdev_config_enter(spa); 7323 7324 if (activate_slog) 7325 spa_activate_log(spa); 7326 7327 if (error != 0) 7328 return (spa_vdev_exit(spa, NULL, txg, error)); 7329 7330 /* check new spa name before going any further */ 7331 if (spa_lookup(newname) != NULL) 7332 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7333 7334 /* 7335 * scan through all the children to ensure they're all mirrors 7336 */ 7337 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7338 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7339 &children) != 0) 7340 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7341 7342 /* first, check to ensure we've got the right child count */ 7343 rvd = spa->spa_root_vdev; 7344 lastlog = 0; 7345 for (c = 0; c < rvd->vdev_children; c++) { 7346 vdev_t *vd = rvd->vdev_child[c]; 7347 7348 /* don't count the holes & logs as children */ 7349 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7350 !vdev_is_concrete(vd))) { 7351 if (lastlog == 0) 7352 lastlog = c; 7353 continue; 7354 } 7355 7356 lastlog = 0; 7357 } 7358 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7359 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7360 7361 /* next, ensure no spare or cache devices are part of the split */ 7362 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7363 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7364 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7365 7366 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7367 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7368 7369 /* then, loop over each vdev and validate it */ 7370 for (c = 0; c < children; c++) { 7371 uint64_t is_hole = 0; 7372 7373 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7374 &is_hole); 7375 7376 if (is_hole != 0) { 7377 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7378 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7379 continue; 7380 } else { 7381 error = SET_ERROR(EINVAL); 7382 break; 7383 } 7384 } 7385 7386 /* deal with indirect vdevs */ 7387 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7388 &vdev_indirect_ops) 7389 continue; 7390 7391 /* which disk is going to be split? */ 7392 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7393 &glist[c]) != 0) { 7394 error = SET_ERROR(EINVAL); 7395 break; 7396 } 7397 7398 /* look it up in the spa */ 7399 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7400 if (vml[c] == NULL) { 7401 error = SET_ERROR(ENODEV); 7402 break; 7403 } 7404 7405 /* make sure there's nothing stopping the split */ 7406 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7407 vml[c]->vdev_islog || 7408 !vdev_is_concrete(vml[c]) || 7409 vml[c]->vdev_isspare || 7410 vml[c]->vdev_isl2cache || 7411 !vdev_writeable(vml[c]) || 7412 vml[c]->vdev_children != 0 || 7413 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7414 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7415 error = SET_ERROR(EINVAL); 7416 break; 7417 } 7418 7419 if (vdev_dtl_required(vml[c]) || 7420 vdev_resilver_needed(vml[c], NULL, NULL)) { 7421 error = SET_ERROR(EBUSY); 7422 break; 7423 } 7424 7425 /* we need certain info from the top level */ 7426 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7427 vml[c]->vdev_top->vdev_ms_array) == 0); 7428 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7429 vml[c]->vdev_top->vdev_ms_shift) == 0); 7430 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7431 vml[c]->vdev_top->vdev_asize) == 0); 7432 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7433 vml[c]->vdev_top->vdev_ashift) == 0); 7434 7435 /* transfer per-vdev ZAPs */ 7436 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7437 VERIFY0(nvlist_add_uint64(child[c], 7438 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7439 7440 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7441 VERIFY0(nvlist_add_uint64(child[c], 7442 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7443 vml[c]->vdev_parent->vdev_top_zap)); 7444 } 7445 7446 if (error != 0) { 7447 kmem_free(vml, children * sizeof (vdev_t *)); 7448 kmem_free(glist, children * sizeof (uint64_t)); 7449 return (spa_vdev_exit(spa, NULL, txg, error)); 7450 } 7451 7452 /* stop writers from using the disks */ 7453 for (c = 0; c < children; c++) { 7454 if (vml[c] != NULL) 7455 vml[c]->vdev_offline = B_TRUE; 7456 } 7457 vdev_reopen(spa->spa_root_vdev); 7458 7459 /* 7460 * Temporarily record the splitting vdevs in the spa config. This 7461 * will disappear once the config is regenerated. 7462 */ 7463 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7464 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 7465 glist, children) == 0); 7466 kmem_free(glist, children * sizeof (uint64_t)); 7467 7468 mutex_enter(&spa->spa_props_lock); 7469 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 7470 nvl) == 0); 7471 mutex_exit(&spa->spa_props_lock); 7472 spa->spa_config_splitting = nvl; 7473 vdev_config_dirty(spa->spa_root_vdev); 7474 7475 /* configure and create the new pool */ 7476 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 7477 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7478 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 7479 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7480 spa_version(spa)) == 0); 7481 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 7482 spa->spa_config_txg) == 0); 7483 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7484 spa_generate_guid(NULL)) == 0); 7485 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7486 (void) nvlist_lookup_string(props, 7487 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7488 7489 /* add the new pool to the namespace */ 7490 newspa = spa_add(newname, config, altroot); 7491 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7492 newspa->spa_config_txg = spa->spa_config_txg; 7493 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7494 7495 /* release the spa config lock, retaining the namespace lock */ 7496 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7497 7498 if (zio_injection_enabled) 7499 zio_handle_panic_injection(spa, FTAG, 1); 7500 7501 spa_activate(newspa, spa_mode_global); 7502 spa_async_suspend(newspa); 7503 7504 /* 7505 * Temporarily stop the initializing and TRIM activity. We set the 7506 * state to ACTIVE so that we know to resume initializing or TRIM 7507 * once the split has completed. 7508 */ 7509 list_t vd_initialize_list; 7510 list_create(&vd_initialize_list, sizeof (vdev_t), 7511 offsetof(vdev_t, vdev_initialize_node)); 7512 7513 list_t vd_trim_list; 7514 list_create(&vd_trim_list, sizeof (vdev_t), 7515 offsetof(vdev_t, vdev_trim_node)); 7516 7517 for (c = 0; c < children; c++) { 7518 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7519 mutex_enter(&vml[c]->vdev_initialize_lock); 7520 vdev_initialize_stop(vml[c], 7521 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7522 mutex_exit(&vml[c]->vdev_initialize_lock); 7523 7524 mutex_enter(&vml[c]->vdev_trim_lock); 7525 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7526 mutex_exit(&vml[c]->vdev_trim_lock); 7527 } 7528 } 7529 7530 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7531 vdev_trim_stop_wait(spa, &vd_trim_list); 7532 7533 list_destroy(&vd_initialize_list); 7534 list_destroy(&vd_trim_list); 7535 7536 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7537 newspa->spa_is_splitting = B_TRUE; 7538 7539 /* create the new pool from the disks of the original pool */ 7540 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7541 if (error) 7542 goto out; 7543 7544 /* if that worked, generate a real config for the new pool */ 7545 if (newspa->spa_root_vdev != NULL) { 7546 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 7547 NV_UNIQUE_NAME, KM_SLEEP) == 0); 7548 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 7549 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 7550 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7551 B_TRUE)); 7552 } 7553 7554 /* set the props */ 7555 if (props != NULL) { 7556 spa_configfile_set(newspa, props, B_FALSE); 7557 error = spa_prop_set(newspa, props); 7558 if (error) 7559 goto out; 7560 } 7561 7562 /* flush everything */ 7563 txg = spa_vdev_config_enter(newspa); 7564 vdev_config_dirty(newspa->spa_root_vdev); 7565 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7566 7567 if (zio_injection_enabled) 7568 zio_handle_panic_injection(spa, FTAG, 2); 7569 7570 spa_async_resume(newspa); 7571 7572 /* finally, update the original pool's config */ 7573 txg = spa_vdev_config_enter(spa); 7574 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7575 error = dmu_tx_assign(tx, TXG_WAIT); 7576 if (error != 0) 7577 dmu_tx_abort(tx); 7578 for (c = 0; c < children; c++) { 7579 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7580 vdev_t *tvd = vml[c]->vdev_top; 7581 7582 /* 7583 * Need to be sure the detachable VDEV is not 7584 * on any *other* txg's DTL list to prevent it 7585 * from being accessed after it's freed. 7586 */ 7587 for (int t = 0; t < TXG_SIZE; t++) { 7588 (void) txg_list_remove_this( 7589 &tvd->vdev_dtl_list, vml[c], t); 7590 } 7591 7592 vdev_split(vml[c]); 7593 if (error == 0) 7594 spa_history_log_internal(spa, "detach", tx, 7595 "vdev=%s", vml[c]->vdev_path); 7596 7597 vdev_free(vml[c]); 7598 } 7599 } 7600 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7601 vdev_config_dirty(spa->spa_root_vdev); 7602 spa->spa_config_splitting = NULL; 7603 nvlist_free(nvl); 7604 if (error == 0) 7605 dmu_tx_commit(tx); 7606 (void) spa_vdev_exit(spa, NULL, txg, 0); 7607 7608 if (zio_injection_enabled) 7609 zio_handle_panic_injection(spa, FTAG, 3); 7610 7611 /* split is complete; log a history record */ 7612 spa_history_log_internal(newspa, "split", NULL, 7613 "from pool %s", spa_name(spa)); 7614 7615 newspa->spa_is_splitting = B_FALSE; 7616 kmem_free(vml, children * sizeof (vdev_t *)); 7617 7618 /* if we're not going to mount the filesystems in userland, export */ 7619 if (exp) 7620 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7621 B_FALSE, B_FALSE); 7622 7623 return (error); 7624 7625 out: 7626 spa_unload(newspa); 7627 spa_deactivate(newspa); 7628 spa_remove(newspa); 7629 7630 txg = spa_vdev_config_enter(spa); 7631 7632 /* re-online all offlined disks */ 7633 for (c = 0; c < children; c++) { 7634 if (vml[c] != NULL) 7635 vml[c]->vdev_offline = B_FALSE; 7636 } 7637 7638 /* restart initializing or trimming disks as necessary */ 7639 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7640 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7641 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7642 7643 vdev_reopen(spa->spa_root_vdev); 7644 7645 nvlist_free(spa->spa_config_splitting); 7646 spa->spa_config_splitting = NULL; 7647 (void) spa_vdev_exit(spa, NULL, txg, error); 7648 7649 kmem_free(vml, children * sizeof (vdev_t *)); 7650 return (error); 7651 } 7652 7653 /* 7654 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7655 * currently spared, so we can detach it. 7656 */ 7657 static vdev_t * 7658 spa_vdev_resilver_done_hunt(vdev_t *vd) 7659 { 7660 vdev_t *newvd, *oldvd; 7661 7662 for (int c = 0; c < vd->vdev_children; c++) { 7663 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7664 if (oldvd != NULL) 7665 return (oldvd); 7666 } 7667 7668 /* 7669 * Check for a completed replacement. We always consider the first 7670 * vdev in the list to be the oldest vdev, and the last one to be 7671 * the newest (see spa_vdev_attach() for how that works). In 7672 * the case where the newest vdev is faulted, we will not automatically 7673 * remove it after a resilver completes. This is OK as it will require 7674 * user intervention to determine which disk the admin wishes to keep. 7675 */ 7676 if (vd->vdev_ops == &vdev_replacing_ops) { 7677 ASSERT(vd->vdev_children > 1); 7678 7679 newvd = vd->vdev_child[vd->vdev_children - 1]; 7680 oldvd = vd->vdev_child[0]; 7681 7682 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7683 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7684 !vdev_dtl_required(oldvd)) 7685 return (oldvd); 7686 } 7687 7688 /* 7689 * Check for a completed resilver with the 'unspare' flag set. 7690 * Also potentially update faulted state. 7691 */ 7692 if (vd->vdev_ops == &vdev_spare_ops) { 7693 vdev_t *first = vd->vdev_child[0]; 7694 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7695 7696 if (last->vdev_unspare) { 7697 oldvd = first; 7698 newvd = last; 7699 } else if (first->vdev_unspare) { 7700 oldvd = last; 7701 newvd = first; 7702 } else { 7703 oldvd = NULL; 7704 } 7705 7706 if (oldvd != NULL && 7707 vdev_dtl_empty(newvd, DTL_MISSING) && 7708 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7709 !vdev_dtl_required(oldvd)) 7710 return (oldvd); 7711 7712 vdev_propagate_state(vd); 7713 7714 /* 7715 * If there are more than two spares attached to a disk, 7716 * and those spares are not required, then we want to 7717 * attempt to free them up now so that they can be used 7718 * by other pools. Once we're back down to a single 7719 * disk+spare, we stop removing them. 7720 */ 7721 if (vd->vdev_children > 2) { 7722 newvd = vd->vdev_child[1]; 7723 7724 if (newvd->vdev_isspare && last->vdev_isspare && 7725 vdev_dtl_empty(last, DTL_MISSING) && 7726 vdev_dtl_empty(last, DTL_OUTAGE) && 7727 !vdev_dtl_required(newvd)) 7728 return (newvd); 7729 } 7730 } 7731 7732 return (NULL); 7733 } 7734 7735 static void 7736 spa_vdev_resilver_done(spa_t *spa) 7737 { 7738 vdev_t *vd, *pvd, *ppvd; 7739 uint64_t guid, sguid, pguid, ppguid; 7740 7741 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7742 7743 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7744 pvd = vd->vdev_parent; 7745 ppvd = pvd->vdev_parent; 7746 guid = vd->vdev_guid; 7747 pguid = pvd->vdev_guid; 7748 ppguid = ppvd->vdev_guid; 7749 sguid = 0; 7750 /* 7751 * If we have just finished replacing a hot spared device, then 7752 * we need to detach the parent's first child (the original hot 7753 * spare) as well. 7754 */ 7755 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7756 ppvd->vdev_children == 2) { 7757 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7758 sguid = ppvd->vdev_child[1]->vdev_guid; 7759 } 7760 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7761 7762 spa_config_exit(spa, SCL_ALL, FTAG); 7763 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7764 return; 7765 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7766 return; 7767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7768 } 7769 7770 spa_config_exit(spa, SCL_ALL, FTAG); 7771 7772 /* 7773 * If a detach was not performed above replace waiters will not have 7774 * been notified. In which case we must do so now. 7775 */ 7776 spa_notify_waiters(spa); 7777 } 7778 7779 /* 7780 * Update the stored path or FRU for this vdev. 7781 */ 7782 static int 7783 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7784 boolean_t ispath) 7785 { 7786 vdev_t *vd; 7787 boolean_t sync = B_FALSE; 7788 7789 ASSERT(spa_writeable(spa)); 7790 7791 spa_vdev_state_enter(spa, SCL_ALL); 7792 7793 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 7794 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 7795 7796 if (!vd->vdev_ops->vdev_op_leaf) 7797 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 7798 7799 if (ispath) { 7800 if (strcmp(value, vd->vdev_path) != 0) { 7801 spa_strfree(vd->vdev_path); 7802 vd->vdev_path = spa_strdup(value); 7803 sync = B_TRUE; 7804 } 7805 } else { 7806 if (vd->vdev_fru == NULL) { 7807 vd->vdev_fru = spa_strdup(value); 7808 sync = B_TRUE; 7809 } else if (strcmp(value, vd->vdev_fru) != 0) { 7810 spa_strfree(vd->vdev_fru); 7811 vd->vdev_fru = spa_strdup(value); 7812 sync = B_TRUE; 7813 } 7814 } 7815 7816 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 7817 } 7818 7819 int 7820 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 7821 { 7822 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 7823 } 7824 7825 int 7826 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 7827 { 7828 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 7829 } 7830 7831 /* 7832 * ========================================================================== 7833 * SPA Scanning 7834 * ========================================================================== 7835 */ 7836 int 7837 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 7838 { 7839 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7840 7841 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7842 return (SET_ERROR(EBUSY)); 7843 7844 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 7845 } 7846 7847 int 7848 spa_scan_stop(spa_t *spa) 7849 { 7850 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7851 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7852 return (SET_ERROR(EBUSY)); 7853 return (dsl_scan_cancel(spa->spa_dsl_pool)); 7854 } 7855 7856 int 7857 spa_scan(spa_t *spa, pool_scan_func_t func) 7858 { 7859 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7860 7861 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7862 return (SET_ERROR(ENOTSUP)); 7863 7864 if (func == POOL_SCAN_RESILVER && 7865 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7866 return (SET_ERROR(ENOTSUP)); 7867 7868 /* 7869 * If a resilver was requested, but there is no DTL on a 7870 * writeable leaf device, we have nothing to do. 7871 */ 7872 if (func == POOL_SCAN_RESILVER && 7873 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7874 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7875 return (0); 7876 } 7877 7878 return (dsl_scan(spa->spa_dsl_pool, func)); 7879 } 7880 7881 /* 7882 * ========================================================================== 7883 * SPA async task processing 7884 * ========================================================================== 7885 */ 7886 7887 static void 7888 spa_async_remove(spa_t *spa, vdev_t *vd) 7889 { 7890 if (vd->vdev_remove_wanted) { 7891 vd->vdev_remove_wanted = B_FALSE; 7892 vd->vdev_delayed_close = B_FALSE; 7893 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7894 7895 /* 7896 * We want to clear the stats, but we don't want to do a full 7897 * vdev_clear() as that will cause us to throw away 7898 * degraded/faulted state as well as attempt to reopen the 7899 * device, all of which is a waste. 7900 */ 7901 vd->vdev_stat.vs_read_errors = 0; 7902 vd->vdev_stat.vs_write_errors = 0; 7903 vd->vdev_stat.vs_checksum_errors = 0; 7904 7905 vdev_state_dirty(vd->vdev_top); 7906 } 7907 7908 for (int c = 0; c < vd->vdev_children; c++) 7909 spa_async_remove(spa, vd->vdev_child[c]); 7910 } 7911 7912 static void 7913 spa_async_probe(spa_t *spa, vdev_t *vd) 7914 { 7915 if (vd->vdev_probe_wanted) { 7916 vd->vdev_probe_wanted = B_FALSE; 7917 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7918 } 7919 7920 for (int c = 0; c < vd->vdev_children; c++) 7921 spa_async_probe(spa, vd->vdev_child[c]); 7922 } 7923 7924 static void 7925 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7926 { 7927 if (!spa->spa_autoexpand) 7928 return; 7929 7930 for (int c = 0; c < vd->vdev_children; c++) { 7931 vdev_t *cvd = vd->vdev_child[c]; 7932 spa_async_autoexpand(spa, cvd); 7933 } 7934 7935 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7936 return; 7937 7938 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 7939 } 7940 7941 static void 7942 spa_async_thread(void *arg) 7943 { 7944 spa_t *spa = (spa_t *)arg; 7945 dsl_pool_t *dp = spa->spa_dsl_pool; 7946 int tasks; 7947 7948 ASSERT(spa->spa_sync_on); 7949 7950 mutex_enter(&spa->spa_async_lock); 7951 tasks = spa->spa_async_tasks; 7952 spa->spa_async_tasks = 0; 7953 mutex_exit(&spa->spa_async_lock); 7954 7955 /* 7956 * See if the config needs to be updated. 7957 */ 7958 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7959 uint64_t old_space, new_space; 7960 7961 mutex_enter(&spa_namespace_lock); 7962 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7963 old_space += metaslab_class_get_space(spa_special_class(spa)); 7964 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7965 7966 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7967 7968 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7969 new_space += metaslab_class_get_space(spa_special_class(spa)); 7970 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7971 mutex_exit(&spa_namespace_lock); 7972 7973 /* 7974 * If the pool grew as a result of the config update, 7975 * then log an internal history event. 7976 */ 7977 if (new_space != old_space) { 7978 spa_history_log_internal(spa, "vdev online", NULL, 7979 "pool '%s' size: %llu(+%llu)", 7980 spa_name(spa), (u_longlong_t)new_space, 7981 (u_longlong_t)(new_space - old_space)); 7982 } 7983 } 7984 7985 /* 7986 * See if any devices need to be marked REMOVED. 7987 */ 7988 if (tasks & SPA_ASYNC_REMOVE) { 7989 spa_vdev_state_enter(spa, SCL_NONE); 7990 spa_async_remove(spa, spa->spa_root_vdev); 7991 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7992 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7993 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7994 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7995 (void) spa_vdev_state_exit(spa, NULL, 0); 7996 } 7997 7998 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7999 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8000 spa_async_autoexpand(spa, spa->spa_root_vdev); 8001 spa_config_exit(spa, SCL_CONFIG, FTAG); 8002 } 8003 8004 /* 8005 * See if any devices need to be probed. 8006 */ 8007 if (tasks & SPA_ASYNC_PROBE) { 8008 spa_vdev_state_enter(spa, SCL_NONE); 8009 spa_async_probe(spa, spa->spa_root_vdev); 8010 (void) spa_vdev_state_exit(spa, NULL, 0); 8011 } 8012 8013 /* 8014 * If any devices are done replacing, detach them. 8015 */ 8016 if (tasks & SPA_ASYNC_RESILVER_DONE) 8017 spa_vdev_resilver_done(spa); 8018 8019 /* 8020 * If any devices are done replacing, detach them. Then if no 8021 * top-level vdevs are rebuilding attempt to kick off a scrub. 8022 */ 8023 if (tasks & SPA_ASYNC_REBUILD_DONE) { 8024 spa_vdev_resilver_done(spa); 8025 8026 if (!vdev_rebuild_active(spa->spa_root_vdev)) 8027 (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB); 8028 } 8029 8030 /* 8031 * Kick off a resilver. 8032 */ 8033 if (tasks & SPA_ASYNC_RESILVER && 8034 !vdev_rebuild_active(spa->spa_root_vdev) && 8035 (!dsl_scan_resilvering(dp) || 8036 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8037 dsl_scan_restart_resilver(dp, 0); 8038 8039 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8040 mutex_enter(&spa_namespace_lock); 8041 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8042 vdev_initialize_restart(spa->spa_root_vdev); 8043 spa_config_exit(spa, SCL_CONFIG, FTAG); 8044 mutex_exit(&spa_namespace_lock); 8045 } 8046 8047 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8048 mutex_enter(&spa_namespace_lock); 8049 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8050 vdev_trim_restart(spa->spa_root_vdev); 8051 spa_config_exit(spa, SCL_CONFIG, FTAG); 8052 mutex_exit(&spa_namespace_lock); 8053 } 8054 8055 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8056 mutex_enter(&spa_namespace_lock); 8057 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8058 vdev_autotrim_restart(spa); 8059 spa_config_exit(spa, SCL_CONFIG, FTAG); 8060 mutex_exit(&spa_namespace_lock); 8061 } 8062 8063 /* 8064 * Kick off L2 cache whole device TRIM. 8065 */ 8066 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8067 mutex_enter(&spa_namespace_lock); 8068 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8069 vdev_trim_l2arc(spa); 8070 spa_config_exit(spa, SCL_CONFIG, FTAG); 8071 mutex_exit(&spa_namespace_lock); 8072 } 8073 8074 /* 8075 * Kick off L2 cache rebuilding. 8076 */ 8077 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8078 mutex_enter(&spa_namespace_lock); 8079 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8080 l2arc_spa_rebuild_start(spa); 8081 spa_config_exit(spa, SCL_L2ARC, FTAG); 8082 mutex_exit(&spa_namespace_lock); 8083 } 8084 8085 /* 8086 * Let the world know that we're done. 8087 */ 8088 mutex_enter(&spa->spa_async_lock); 8089 spa->spa_async_thread = NULL; 8090 cv_broadcast(&spa->spa_async_cv); 8091 mutex_exit(&spa->spa_async_lock); 8092 thread_exit(); 8093 } 8094 8095 void 8096 spa_async_suspend(spa_t *spa) 8097 { 8098 mutex_enter(&spa->spa_async_lock); 8099 spa->spa_async_suspended++; 8100 while (spa->spa_async_thread != NULL) 8101 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8102 mutex_exit(&spa->spa_async_lock); 8103 8104 spa_vdev_remove_suspend(spa); 8105 8106 zthr_t *condense_thread = spa->spa_condense_zthr; 8107 if (condense_thread != NULL) 8108 zthr_cancel(condense_thread); 8109 8110 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8111 if (discard_thread != NULL) 8112 zthr_cancel(discard_thread); 8113 8114 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8115 if (ll_delete_thread != NULL) 8116 zthr_cancel(ll_delete_thread); 8117 8118 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8119 if (ll_condense_thread != NULL) 8120 zthr_cancel(ll_condense_thread); 8121 } 8122 8123 void 8124 spa_async_resume(spa_t *spa) 8125 { 8126 mutex_enter(&spa->spa_async_lock); 8127 ASSERT(spa->spa_async_suspended != 0); 8128 spa->spa_async_suspended--; 8129 mutex_exit(&spa->spa_async_lock); 8130 spa_restart_removal(spa); 8131 8132 zthr_t *condense_thread = spa->spa_condense_zthr; 8133 if (condense_thread != NULL) 8134 zthr_resume(condense_thread); 8135 8136 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8137 if (discard_thread != NULL) 8138 zthr_resume(discard_thread); 8139 8140 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8141 if (ll_delete_thread != NULL) 8142 zthr_resume(ll_delete_thread); 8143 8144 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8145 if (ll_condense_thread != NULL) 8146 zthr_resume(ll_condense_thread); 8147 } 8148 8149 static boolean_t 8150 spa_async_tasks_pending(spa_t *spa) 8151 { 8152 uint_t non_config_tasks; 8153 uint_t config_task; 8154 boolean_t config_task_suspended; 8155 8156 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8157 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8158 if (spa->spa_ccw_fail_time == 0) { 8159 config_task_suspended = B_FALSE; 8160 } else { 8161 config_task_suspended = 8162 (gethrtime() - spa->spa_ccw_fail_time) < 8163 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8164 } 8165 8166 return (non_config_tasks || (config_task && !config_task_suspended)); 8167 } 8168 8169 static void 8170 spa_async_dispatch(spa_t *spa) 8171 { 8172 mutex_enter(&spa->spa_async_lock); 8173 if (spa_async_tasks_pending(spa) && 8174 !spa->spa_async_suspended && 8175 spa->spa_async_thread == NULL) 8176 spa->spa_async_thread = thread_create(NULL, 0, 8177 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8178 mutex_exit(&spa->spa_async_lock); 8179 } 8180 8181 void 8182 spa_async_request(spa_t *spa, int task) 8183 { 8184 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8185 mutex_enter(&spa->spa_async_lock); 8186 spa->spa_async_tasks |= task; 8187 mutex_exit(&spa->spa_async_lock); 8188 } 8189 8190 int 8191 spa_async_tasks(spa_t *spa) 8192 { 8193 return (spa->spa_async_tasks); 8194 } 8195 8196 /* 8197 * ========================================================================== 8198 * SPA syncing routines 8199 * ========================================================================== 8200 */ 8201 8202 8203 static int 8204 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8205 dmu_tx_t *tx) 8206 { 8207 bpobj_t *bpo = arg; 8208 bpobj_enqueue(bpo, bp, bp_freed, tx); 8209 return (0); 8210 } 8211 8212 int 8213 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8214 { 8215 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8216 } 8217 8218 int 8219 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8220 { 8221 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8222 } 8223 8224 static int 8225 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8226 { 8227 zio_t *pio = arg; 8228 8229 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8230 pio->io_flags)); 8231 return (0); 8232 } 8233 8234 static int 8235 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8236 dmu_tx_t *tx) 8237 { 8238 ASSERT(!bp_freed); 8239 return (spa_free_sync_cb(arg, bp, tx)); 8240 } 8241 8242 /* 8243 * Note: this simple function is not inlined to make it easier to dtrace the 8244 * amount of time spent syncing frees. 8245 */ 8246 static void 8247 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8248 { 8249 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8250 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8251 VERIFY(zio_wait(zio) == 0); 8252 } 8253 8254 /* 8255 * Note: this simple function is not inlined to make it easier to dtrace the 8256 * amount of time spent syncing deferred frees. 8257 */ 8258 static void 8259 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8260 { 8261 if (spa_sync_pass(spa) != 1) 8262 return; 8263 8264 /* 8265 * Note: 8266 * If the log space map feature is active, we stop deferring 8267 * frees to the next TXG and therefore running this function 8268 * would be considered a no-op as spa_deferred_bpobj should 8269 * not have any entries. 8270 * 8271 * That said we run this function anyway (instead of returning 8272 * immediately) for the edge-case scenario where we just 8273 * activated the log space map feature in this TXG but we have 8274 * deferred frees from the previous TXG. 8275 */ 8276 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8277 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8278 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8279 VERIFY0(zio_wait(zio)); 8280 } 8281 8282 static void 8283 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8284 { 8285 char *packed = NULL; 8286 size_t bufsize; 8287 size_t nvsize = 0; 8288 dmu_buf_t *db; 8289 8290 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8291 8292 /* 8293 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8294 * information. This avoids the dmu_buf_will_dirty() path and 8295 * saves us a pre-read to get data we don't actually care about. 8296 */ 8297 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8298 packed = vmem_alloc(bufsize, KM_SLEEP); 8299 8300 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8301 KM_SLEEP) == 0); 8302 bzero(packed + nvsize, bufsize - nvsize); 8303 8304 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8305 8306 vmem_free(packed, bufsize); 8307 8308 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8309 dmu_buf_will_dirty(db, tx); 8310 *(uint64_t *)db->db_data = nvsize; 8311 dmu_buf_rele(db, FTAG); 8312 } 8313 8314 static void 8315 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8316 const char *config, const char *entry) 8317 { 8318 nvlist_t *nvroot; 8319 nvlist_t **list; 8320 int i; 8321 8322 if (!sav->sav_sync) 8323 return; 8324 8325 /* 8326 * Update the MOS nvlist describing the list of available devices. 8327 * spa_validate_aux() will have already made sure this nvlist is 8328 * valid and the vdevs are labeled appropriately. 8329 */ 8330 if (sav->sav_object == 0) { 8331 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8332 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8333 sizeof (uint64_t), tx); 8334 VERIFY(zap_update(spa->spa_meta_objset, 8335 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8336 &sav->sav_object, tx) == 0); 8337 } 8338 8339 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 8340 if (sav->sav_count == 0) { 8341 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 8342 } else { 8343 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8344 for (i = 0; i < sav->sav_count; i++) 8345 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8346 B_FALSE, VDEV_CONFIG_L2CACHE); 8347 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 8348 sav->sav_count) == 0); 8349 for (i = 0; i < sav->sav_count; i++) 8350 nvlist_free(list[i]); 8351 kmem_free(list, sav->sav_count * sizeof (void *)); 8352 } 8353 8354 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8355 nvlist_free(nvroot); 8356 8357 sav->sav_sync = B_FALSE; 8358 } 8359 8360 /* 8361 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8362 * The all-vdev ZAP must be empty. 8363 */ 8364 static void 8365 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8366 { 8367 spa_t *spa = vd->vdev_spa; 8368 8369 if (vd->vdev_top_zap != 0) { 8370 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8371 vd->vdev_top_zap, tx)); 8372 } 8373 if (vd->vdev_leaf_zap != 0) { 8374 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8375 vd->vdev_leaf_zap, tx)); 8376 } 8377 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8378 spa_avz_build(vd->vdev_child[i], avz, tx); 8379 } 8380 } 8381 8382 static void 8383 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8384 { 8385 nvlist_t *config; 8386 8387 /* 8388 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8389 * its config may not be dirty but we still need to build per-vdev ZAPs. 8390 * Similarly, if the pool is being assembled (e.g. after a split), we 8391 * need to rebuild the AVZ although the config may not be dirty. 8392 */ 8393 if (list_is_empty(&spa->spa_config_dirty_list) && 8394 spa->spa_avz_action == AVZ_ACTION_NONE) 8395 return; 8396 8397 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8398 8399 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8400 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8401 spa->spa_all_vdev_zaps != 0); 8402 8403 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8404 /* Make and build the new AVZ */ 8405 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8406 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8407 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8408 8409 /* Diff old AVZ with new one */ 8410 zap_cursor_t zc; 8411 zap_attribute_t za; 8412 8413 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8414 spa->spa_all_vdev_zaps); 8415 zap_cursor_retrieve(&zc, &za) == 0; 8416 zap_cursor_advance(&zc)) { 8417 uint64_t vdzap = za.za_first_integer; 8418 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8419 vdzap) == ENOENT) { 8420 /* 8421 * ZAP is listed in old AVZ but not in new one; 8422 * destroy it 8423 */ 8424 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8425 tx)); 8426 } 8427 } 8428 8429 zap_cursor_fini(&zc); 8430 8431 /* Destroy the old AVZ */ 8432 VERIFY0(zap_destroy(spa->spa_meta_objset, 8433 spa->spa_all_vdev_zaps, tx)); 8434 8435 /* Replace the old AVZ in the dir obj with the new one */ 8436 VERIFY0(zap_update(spa->spa_meta_objset, 8437 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 8438 sizeof (new_avz), 1, &new_avz, tx)); 8439 8440 spa->spa_all_vdev_zaps = new_avz; 8441 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 8442 zap_cursor_t zc; 8443 zap_attribute_t za; 8444 8445 /* Walk through the AVZ and destroy all listed ZAPs */ 8446 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8447 spa->spa_all_vdev_zaps); 8448 zap_cursor_retrieve(&zc, &za) == 0; 8449 zap_cursor_advance(&zc)) { 8450 uint64_t zap = za.za_first_integer; 8451 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8452 } 8453 8454 zap_cursor_fini(&zc); 8455 8456 /* Destroy and unlink the AVZ itself */ 8457 VERIFY0(zap_destroy(spa->spa_meta_objset, 8458 spa->spa_all_vdev_zaps, tx)); 8459 VERIFY0(zap_remove(spa->spa_meta_objset, 8460 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8461 spa->spa_all_vdev_zaps = 0; 8462 } 8463 8464 if (spa->spa_all_vdev_zaps == 0) { 8465 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8466 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8467 DMU_POOL_VDEV_ZAP_MAP, tx); 8468 } 8469 spa->spa_avz_action = AVZ_ACTION_NONE; 8470 8471 /* Create ZAPs for vdevs that don't have them. */ 8472 vdev_construct_zaps(spa->spa_root_vdev, tx); 8473 8474 config = spa_config_generate(spa, spa->spa_root_vdev, 8475 dmu_tx_get_txg(tx), B_FALSE); 8476 8477 /* 8478 * If we're upgrading the spa version then make sure that 8479 * the config object gets updated with the correct version. 8480 */ 8481 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8482 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8483 spa->spa_uberblock.ub_version); 8484 8485 spa_config_exit(spa, SCL_STATE, FTAG); 8486 8487 nvlist_free(spa->spa_config_syncing); 8488 spa->spa_config_syncing = config; 8489 8490 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8491 } 8492 8493 static void 8494 spa_sync_version(void *arg, dmu_tx_t *tx) 8495 { 8496 uint64_t *versionp = arg; 8497 uint64_t version = *versionp; 8498 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8499 8500 /* 8501 * Setting the version is special cased when first creating the pool. 8502 */ 8503 ASSERT(tx->tx_txg != TXG_INITIAL); 8504 8505 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8506 ASSERT(version >= spa_version(spa)); 8507 8508 spa->spa_uberblock.ub_version = version; 8509 vdev_config_dirty(spa->spa_root_vdev); 8510 spa_history_log_internal(spa, "set", tx, "version=%lld", 8511 (longlong_t)version); 8512 } 8513 8514 /* 8515 * Set zpool properties. 8516 */ 8517 static void 8518 spa_sync_props(void *arg, dmu_tx_t *tx) 8519 { 8520 nvlist_t *nvp = arg; 8521 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8522 objset_t *mos = spa->spa_meta_objset; 8523 nvpair_t *elem = NULL; 8524 8525 mutex_enter(&spa->spa_props_lock); 8526 8527 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8528 uint64_t intval; 8529 char *strval, *fname; 8530 zpool_prop_t prop; 8531 const char *propname; 8532 zprop_type_t proptype; 8533 spa_feature_t fid; 8534 8535 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8536 case ZPOOL_PROP_INVAL: 8537 /* 8538 * We checked this earlier in spa_prop_validate(). 8539 */ 8540 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8541 8542 fname = strchr(nvpair_name(elem), '@') + 1; 8543 VERIFY0(zfeature_lookup_name(fname, &fid)); 8544 8545 spa_feature_enable(spa, fid, tx); 8546 spa_history_log_internal(spa, "set", tx, 8547 "%s=enabled", nvpair_name(elem)); 8548 break; 8549 8550 case ZPOOL_PROP_VERSION: 8551 intval = fnvpair_value_uint64(elem); 8552 /* 8553 * The version is synced separately before other 8554 * properties and should be correct by now. 8555 */ 8556 ASSERT3U(spa_version(spa), >=, intval); 8557 break; 8558 8559 case ZPOOL_PROP_ALTROOT: 8560 /* 8561 * 'altroot' is a non-persistent property. It should 8562 * have been set temporarily at creation or import time. 8563 */ 8564 ASSERT(spa->spa_root != NULL); 8565 break; 8566 8567 case ZPOOL_PROP_READONLY: 8568 case ZPOOL_PROP_CACHEFILE: 8569 /* 8570 * 'readonly' and 'cachefile' are also non-persistent 8571 * properties. 8572 */ 8573 break; 8574 case ZPOOL_PROP_COMMENT: 8575 strval = fnvpair_value_string(elem); 8576 if (spa->spa_comment != NULL) 8577 spa_strfree(spa->spa_comment); 8578 spa->spa_comment = spa_strdup(strval); 8579 /* 8580 * We need to dirty the configuration on all the vdevs 8581 * so that their labels get updated. It's unnecessary 8582 * to do this for pool creation since the vdev's 8583 * configuration has already been dirtied. 8584 */ 8585 if (tx->tx_txg != TXG_INITIAL) 8586 vdev_config_dirty(spa->spa_root_vdev); 8587 spa_history_log_internal(spa, "set", tx, 8588 "%s=%s", nvpair_name(elem), strval); 8589 break; 8590 default: 8591 /* 8592 * Set pool property values in the poolprops mos object. 8593 */ 8594 if (spa->spa_pool_props_object == 0) { 8595 spa->spa_pool_props_object = 8596 zap_create_link(mos, DMU_OT_POOL_PROPS, 8597 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8598 tx); 8599 } 8600 8601 /* normalize the property name */ 8602 propname = zpool_prop_to_name(prop); 8603 proptype = zpool_prop_get_type(prop); 8604 8605 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8606 ASSERT(proptype == PROP_TYPE_STRING); 8607 strval = fnvpair_value_string(elem); 8608 VERIFY0(zap_update(mos, 8609 spa->spa_pool_props_object, propname, 8610 1, strlen(strval) + 1, strval, tx)); 8611 spa_history_log_internal(spa, "set", tx, 8612 "%s=%s", nvpair_name(elem), strval); 8613 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8614 intval = fnvpair_value_uint64(elem); 8615 8616 if (proptype == PROP_TYPE_INDEX) { 8617 const char *unused; 8618 VERIFY0(zpool_prop_index_to_string( 8619 prop, intval, &unused)); 8620 } 8621 VERIFY0(zap_update(mos, 8622 spa->spa_pool_props_object, propname, 8623 8, 1, &intval, tx)); 8624 spa_history_log_internal(spa, "set", tx, 8625 "%s=%lld", nvpair_name(elem), 8626 (longlong_t)intval); 8627 } else { 8628 ASSERT(0); /* not allowed */ 8629 } 8630 8631 switch (prop) { 8632 case ZPOOL_PROP_DELEGATION: 8633 spa->spa_delegation = intval; 8634 break; 8635 case ZPOOL_PROP_BOOTFS: 8636 spa->spa_bootfs = intval; 8637 break; 8638 case ZPOOL_PROP_FAILUREMODE: 8639 spa->spa_failmode = intval; 8640 break; 8641 case ZPOOL_PROP_AUTOTRIM: 8642 spa->spa_autotrim = intval; 8643 spa_async_request(spa, 8644 SPA_ASYNC_AUTOTRIM_RESTART); 8645 break; 8646 case ZPOOL_PROP_AUTOEXPAND: 8647 spa->spa_autoexpand = intval; 8648 if (tx->tx_txg != TXG_INITIAL) 8649 spa_async_request(spa, 8650 SPA_ASYNC_AUTOEXPAND); 8651 break; 8652 case ZPOOL_PROP_MULTIHOST: 8653 spa->spa_multihost = intval; 8654 break; 8655 default: 8656 break; 8657 } 8658 } 8659 8660 } 8661 8662 mutex_exit(&spa->spa_props_lock); 8663 } 8664 8665 /* 8666 * Perform one-time upgrade on-disk changes. spa_version() does not 8667 * reflect the new version this txg, so there must be no changes this 8668 * txg to anything that the upgrade code depends on after it executes. 8669 * Therefore this must be called after dsl_pool_sync() does the sync 8670 * tasks. 8671 */ 8672 static void 8673 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8674 { 8675 if (spa_sync_pass(spa) != 1) 8676 return; 8677 8678 dsl_pool_t *dp = spa->spa_dsl_pool; 8679 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8680 8681 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8682 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8683 dsl_pool_create_origin(dp, tx); 8684 8685 /* Keeping the origin open increases spa_minref */ 8686 spa->spa_minref += 3; 8687 } 8688 8689 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8690 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8691 dsl_pool_upgrade_clones(dp, tx); 8692 } 8693 8694 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8695 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8696 dsl_pool_upgrade_dir_clones(dp, tx); 8697 8698 /* Keeping the freedir open increases spa_minref */ 8699 spa->spa_minref += 3; 8700 } 8701 8702 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8703 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8704 spa_feature_create_zap_objects(spa, tx); 8705 } 8706 8707 /* 8708 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8709 * when possibility to use lz4 compression for metadata was added 8710 * Old pools that have this feature enabled must be upgraded to have 8711 * this feature active 8712 */ 8713 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8714 boolean_t lz4_en = spa_feature_is_enabled(spa, 8715 SPA_FEATURE_LZ4_COMPRESS); 8716 boolean_t lz4_ac = spa_feature_is_active(spa, 8717 SPA_FEATURE_LZ4_COMPRESS); 8718 8719 if (lz4_en && !lz4_ac) 8720 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8721 } 8722 8723 /* 8724 * If we haven't written the salt, do so now. Note that the 8725 * feature may not be activated yet, but that's fine since 8726 * the presence of this ZAP entry is backwards compatible. 8727 */ 8728 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8729 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8730 VERIFY0(zap_add(spa->spa_meta_objset, 8731 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8732 sizeof (spa->spa_cksum_salt.zcs_bytes), 8733 spa->spa_cksum_salt.zcs_bytes, tx)); 8734 } 8735 8736 rrw_exit(&dp->dp_config_rwlock, FTAG); 8737 } 8738 8739 static void 8740 vdev_indirect_state_sync_verify(vdev_t *vd) 8741 { 8742 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 8743 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 8744 8745 if (vd->vdev_ops == &vdev_indirect_ops) { 8746 ASSERT(vim != NULL); 8747 ASSERT(vib != NULL); 8748 } 8749 8750 uint64_t obsolete_sm_object = 0; 8751 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 8752 if (obsolete_sm_object != 0) { 8753 ASSERT(vd->vdev_obsolete_sm != NULL); 8754 ASSERT(vd->vdev_removing || 8755 vd->vdev_ops == &vdev_indirect_ops); 8756 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8757 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8758 ASSERT3U(obsolete_sm_object, ==, 8759 space_map_object(vd->vdev_obsolete_sm)); 8760 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8761 space_map_allocated(vd->vdev_obsolete_sm)); 8762 } 8763 ASSERT(vd->vdev_obsolete_segments != NULL); 8764 8765 /* 8766 * Since frees / remaps to an indirect vdev can only 8767 * happen in syncing context, the obsolete segments 8768 * tree must be empty when we start syncing. 8769 */ 8770 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 8771 } 8772 8773 /* 8774 * Set the top-level vdev's max queue depth. Evaluate each top-level's 8775 * async write queue depth in case it changed. The max queue depth will 8776 * not change in the middle of syncing out this txg. 8777 */ 8778 static void 8779 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 8780 { 8781 ASSERT(spa_writeable(spa)); 8782 8783 vdev_t *rvd = spa->spa_root_vdev; 8784 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 8785 zfs_vdev_queue_depth_pct / 100; 8786 metaslab_class_t *normal = spa_normal_class(spa); 8787 metaslab_class_t *special = spa_special_class(spa); 8788 metaslab_class_t *dedup = spa_dedup_class(spa); 8789 8790 uint64_t slots_per_allocator = 0; 8791 for (int c = 0; c < rvd->vdev_children; c++) { 8792 vdev_t *tvd = rvd->vdev_child[c]; 8793 8794 metaslab_group_t *mg = tvd->vdev_mg; 8795 if (mg == NULL || !metaslab_group_initialized(mg)) 8796 continue; 8797 8798 metaslab_class_t *mc = mg->mg_class; 8799 if (mc != normal && mc != special && mc != dedup) 8800 continue; 8801 8802 /* 8803 * It is safe to do a lock-free check here because only async 8804 * allocations look at mg_max_alloc_queue_depth, and async 8805 * allocations all happen from spa_sync(). 8806 */ 8807 for (int i = 0; i < mg->mg_allocators; i++) { 8808 ASSERT0(zfs_refcount_count( 8809 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 8810 } 8811 mg->mg_max_alloc_queue_depth = max_queue_depth; 8812 8813 for (int i = 0; i < mg->mg_allocators; i++) { 8814 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 8815 zfs_vdev_def_queue_depth; 8816 } 8817 slots_per_allocator += zfs_vdev_def_queue_depth; 8818 } 8819 8820 for (int i = 0; i < spa->spa_alloc_count; i++) { 8821 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 8822 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 8823 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 8824 normal->mc_alloc_max_slots[i] = slots_per_allocator; 8825 special->mc_alloc_max_slots[i] = slots_per_allocator; 8826 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 8827 } 8828 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8829 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8830 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8831 } 8832 8833 static void 8834 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 8835 { 8836 ASSERT(spa_writeable(spa)); 8837 8838 vdev_t *rvd = spa->spa_root_vdev; 8839 for (int c = 0; c < rvd->vdev_children; c++) { 8840 vdev_t *vd = rvd->vdev_child[c]; 8841 vdev_indirect_state_sync_verify(vd); 8842 8843 if (vdev_indirect_should_condense(vd)) { 8844 spa_condense_indirect_start_sync(vd, tx); 8845 break; 8846 } 8847 } 8848 } 8849 8850 static void 8851 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 8852 { 8853 objset_t *mos = spa->spa_meta_objset; 8854 dsl_pool_t *dp = spa->spa_dsl_pool; 8855 uint64_t txg = tx->tx_txg; 8856 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 8857 8858 do { 8859 int pass = ++spa->spa_sync_pass; 8860 8861 spa_sync_config_object(spa, tx); 8862 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 8863 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 8864 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 8865 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 8866 spa_errlog_sync(spa, txg); 8867 dsl_pool_sync(dp, txg); 8868 8869 if (pass < zfs_sync_pass_deferred_free || 8870 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 8871 /* 8872 * If the log space map feature is active we don't 8873 * care about deferred frees and the deferred bpobj 8874 * as the log space map should effectively have the 8875 * same results (i.e. appending only to one object). 8876 */ 8877 spa_sync_frees(spa, free_bpl, tx); 8878 } else { 8879 /* 8880 * We can not defer frees in pass 1, because 8881 * we sync the deferred frees later in pass 1. 8882 */ 8883 ASSERT3U(pass, >, 1); 8884 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 8885 &spa->spa_deferred_bpobj, tx); 8886 } 8887 8888 ddt_sync(spa, txg); 8889 dsl_scan_sync(dp, tx); 8890 svr_sync(spa, tx); 8891 spa_sync_upgrades(spa, tx); 8892 8893 spa_flush_metaslabs(spa, tx); 8894 8895 vdev_t *vd = NULL; 8896 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 8897 != NULL) 8898 vdev_sync(vd, txg); 8899 8900 /* 8901 * Note: We need to check if the MOS is dirty because we could 8902 * have marked the MOS dirty without updating the uberblock 8903 * (e.g. if we have sync tasks but no dirty user data). We need 8904 * to check the uberblock's rootbp because it is updated if we 8905 * have synced out dirty data (though in this case the MOS will 8906 * most likely also be dirty due to second order effects, we 8907 * don't want to rely on that here). 8908 */ 8909 if (pass == 1 && 8910 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 8911 !dmu_objset_is_dirty(mos, txg)) { 8912 /* 8913 * Nothing changed on the first pass, therefore this 8914 * TXG is a no-op. Avoid syncing deferred frees, so 8915 * that we can keep this TXG as a no-op. 8916 */ 8917 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8918 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8919 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 8920 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 8921 break; 8922 } 8923 8924 spa_sync_deferred_frees(spa, tx); 8925 } while (dmu_objset_is_dirty(mos, txg)); 8926 } 8927 8928 /* 8929 * Rewrite the vdev configuration (which includes the uberblock) to 8930 * commit the transaction group. 8931 * 8932 * If there are no dirty vdevs, we sync the uberblock to a few random 8933 * top-level vdevs that are known to be visible in the config cache 8934 * (see spa_vdev_add() for a complete description). If there *are* dirty 8935 * vdevs, sync the uberblock to all vdevs. 8936 */ 8937 static void 8938 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 8939 { 8940 vdev_t *rvd = spa->spa_root_vdev; 8941 uint64_t txg = tx->tx_txg; 8942 8943 for (;;) { 8944 int error = 0; 8945 8946 /* 8947 * We hold SCL_STATE to prevent vdev open/close/etc. 8948 * while we're attempting to write the vdev labels. 8949 */ 8950 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8951 8952 if (list_is_empty(&spa->spa_config_dirty_list)) { 8953 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 8954 int svdcount = 0; 8955 int children = rvd->vdev_children; 8956 int c0 = spa_get_random(children); 8957 8958 for (int c = 0; c < children; c++) { 8959 vdev_t *vd = 8960 rvd->vdev_child[(c0 + c) % children]; 8961 8962 /* Stop when revisiting the first vdev */ 8963 if (c > 0 && svd[0] == vd) 8964 break; 8965 8966 if (vd->vdev_ms_array == 0 || 8967 vd->vdev_islog || 8968 !vdev_is_concrete(vd)) 8969 continue; 8970 8971 svd[svdcount++] = vd; 8972 if (svdcount == SPA_SYNC_MIN_VDEVS) 8973 break; 8974 } 8975 error = vdev_config_sync(svd, svdcount, txg); 8976 } else { 8977 error = vdev_config_sync(rvd->vdev_child, 8978 rvd->vdev_children, txg); 8979 } 8980 8981 if (error == 0) 8982 spa->spa_last_synced_guid = rvd->vdev_guid; 8983 8984 spa_config_exit(spa, SCL_STATE, FTAG); 8985 8986 if (error == 0) 8987 break; 8988 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8989 zio_resume_wait(spa); 8990 } 8991 } 8992 8993 /* 8994 * Sync the specified transaction group. New blocks may be dirtied as 8995 * part of the process, so we iterate until it converges. 8996 */ 8997 void 8998 spa_sync(spa_t *spa, uint64_t txg) 8999 { 9000 vdev_t *vd = NULL; 9001 9002 VERIFY(spa_writeable(spa)); 9003 9004 /* 9005 * Wait for i/os issued in open context that need to complete 9006 * before this txg syncs. 9007 */ 9008 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 9009 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 9010 ZIO_FLAG_CANFAIL); 9011 9012 /* 9013 * Lock out configuration changes. 9014 */ 9015 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9016 9017 spa->spa_syncing_txg = txg; 9018 spa->spa_sync_pass = 0; 9019 9020 for (int i = 0; i < spa->spa_alloc_count; i++) { 9021 mutex_enter(&spa->spa_alloc_locks[i]); 9022 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9023 mutex_exit(&spa->spa_alloc_locks[i]); 9024 } 9025 9026 /* 9027 * If there are any pending vdev state changes, convert them 9028 * into config changes that go out with this transaction group. 9029 */ 9030 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9031 while (list_head(&spa->spa_state_dirty_list) != NULL) { 9032 /* 9033 * We need the write lock here because, for aux vdevs, 9034 * calling vdev_config_dirty() modifies sav_config. 9035 * This is ugly and will become unnecessary when we 9036 * eliminate the aux vdev wart by integrating all vdevs 9037 * into the root vdev tree. 9038 */ 9039 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9040 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9041 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9042 vdev_state_clean(vd); 9043 vdev_config_dirty(vd); 9044 } 9045 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9046 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9047 } 9048 spa_config_exit(spa, SCL_STATE, FTAG); 9049 9050 dsl_pool_t *dp = spa->spa_dsl_pool; 9051 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9052 9053 spa->spa_sync_starttime = gethrtime(); 9054 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9055 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9056 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9057 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9058 9059 /* 9060 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9061 * set spa_deflate if we have no raid-z vdevs. 9062 */ 9063 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9064 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9065 vdev_t *rvd = spa->spa_root_vdev; 9066 9067 int i; 9068 for (i = 0; i < rvd->vdev_children; i++) { 9069 vd = rvd->vdev_child[i]; 9070 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9071 break; 9072 } 9073 if (i == rvd->vdev_children) { 9074 spa->spa_deflate = TRUE; 9075 VERIFY0(zap_add(spa->spa_meta_objset, 9076 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9077 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9078 } 9079 } 9080 9081 spa_sync_adjust_vdev_max_queue_depth(spa); 9082 9083 spa_sync_condense_indirect(spa, tx); 9084 9085 spa_sync_iterate_to_convergence(spa, tx); 9086 9087 #ifdef ZFS_DEBUG 9088 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9089 /* 9090 * Make sure that the number of ZAPs for all the vdevs matches 9091 * the number of ZAPs in the per-vdev ZAP list. This only gets 9092 * called if the config is dirty; otherwise there may be 9093 * outstanding AVZ operations that weren't completed in 9094 * spa_sync_config_object. 9095 */ 9096 uint64_t all_vdev_zap_entry_count; 9097 ASSERT0(zap_count(spa->spa_meta_objset, 9098 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9099 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9100 all_vdev_zap_entry_count); 9101 } 9102 #endif 9103 9104 if (spa->spa_vdev_removal != NULL) { 9105 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9106 } 9107 9108 spa_sync_rewrite_vdev_config(spa, tx); 9109 dmu_tx_commit(tx); 9110 9111 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9112 spa->spa_deadman_tqid = 0; 9113 9114 /* 9115 * Clear the dirty config list. 9116 */ 9117 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9118 vdev_config_clean(vd); 9119 9120 /* 9121 * Now that the new config has synced transactionally, 9122 * let it become visible to the config cache. 9123 */ 9124 if (spa->spa_config_syncing != NULL) { 9125 spa_config_set(spa, spa->spa_config_syncing); 9126 spa->spa_config_txg = txg; 9127 spa->spa_config_syncing = NULL; 9128 } 9129 9130 dsl_pool_sync_done(dp, txg); 9131 9132 for (int i = 0; i < spa->spa_alloc_count; i++) { 9133 mutex_enter(&spa->spa_alloc_locks[i]); 9134 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9135 mutex_exit(&spa->spa_alloc_locks[i]); 9136 } 9137 9138 /* 9139 * Update usable space statistics. 9140 */ 9141 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9142 != NULL) 9143 vdev_sync_done(vd, txg); 9144 9145 metaslab_class_evict_old(spa->spa_normal_class, txg); 9146 metaslab_class_evict_old(spa->spa_log_class, txg); 9147 9148 spa_sync_close_syncing_log_sm(spa); 9149 9150 spa_update_dspace(spa); 9151 9152 /* 9153 * It had better be the case that we didn't dirty anything 9154 * since vdev_config_sync(). 9155 */ 9156 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9157 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9158 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9159 9160 while (zfs_pause_spa_sync) 9161 delay(1); 9162 9163 spa->spa_sync_pass = 0; 9164 9165 /* 9166 * Update the last synced uberblock here. We want to do this at 9167 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9168 * will be guaranteed that all the processing associated with 9169 * that txg has been completed. 9170 */ 9171 spa->spa_ubsync = spa->spa_uberblock; 9172 spa_config_exit(spa, SCL_CONFIG, FTAG); 9173 9174 spa_handle_ignored_writes(spa); 9175 9176 /* 9177 * If any async tasks have been requested, kick them off. 9178 */ 9179 spa_async_dispatch(spa); 9180 } 9181 9182 /* 9183 * Sync all pools. We don't want to hold the namespace lock across these 9184 * operations, so we take a reference on the spa_t and drop the lock during the 9185 * sync. 9186 */ 9187 void 9188 spa_sync_allpools(void) 9189 { 9190 spa_t *spa = NULL; 9191 mutex_enter(&spa_namespace_lock); 9192 while ((spa = spa_next(spa)) != NULL) { 9193 if (spa_state(spa) != POOL_STATE_ACTIVE || 9194 !spa_writeable(spa) || spa_suspended(spa)) 9195 continue; 9196 spa_open_ref(spa, FTAG); 9197 mutex_exit(&spa_namespace_lock); 9198 txg_wait_synced(spa_get_dsl(spa), 0); 9199 mutex_enter(&spa_namespace_lock); 9200 spa_close(spa, FTAG); 9201 } 9202 mutex_exit(&spa_namespace_lock); 9203 } 9204 9205 /* 9206 * ========================================================================== 9207 * Miscellaneous routines 9208 * ========================================================================== 9209 */ 9210 9211 /* 9212 * Remove all pools in the system. 9213 */ 9214 void 9215 spa_evict_all(void) 9216 { 9217 spa_t *spa; 9218 9219 /* 9220 * Remove all cached state. All pools should be closed now, 9221 * so every spa in the AVL tree should be unreferenced. 9222 */ 9223 mutex_enter(&spa_namespace_lock); 9224 while ((spa = spa_next(NULL)) != NULL) { 9225 /* 9226 * Stop async tasks. The async thread may need to detach 9227 * a device that's been replaced, which requires grabbing 9228 * spa_namespace_lock, so we must drop it here. 9229 */ 9230 spa_open_ref(spa, FTAG); 9231 mutex_exit(&spa_namespace_lock); 9232 spa_async_suspend(spa); 9233 mutex_enter(&spa_namespace_lock); 9234 spa_close(spa, FTAG); 9235 9236 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9237 spa_unload(spa); 9238 spa_deactivate(spa); 9239 } 9240 spa_remove(spa); 9241 } 9242 mutex_exit(&spa_namespace_lock); 9243 } 9244 9245 vdev_t * 9246 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9247 { 9248 vdev_t *vd; 9249 int i; 9250 9251 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9252 return (vd); 9253 9254 if (aux) { 9255 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9256 vd = spa->spa_l2cache.sav_vdevs[i]; 9257 if (vd->vdev_guid == guid) 9258 return (vd); 9259 } 9260 9261 for (i = 0; i < spa->spa_spares.sav_count; i++) { 9262 vd = spa->spa_spares.sav_vdevs[i]; 9263 if (vd->vdev_guid == guid) 9264 return (vd); 9265 } 9266 } 9267 9268 return (NULL); 9269 } 9270 9271 void 9272 spa_upgrade(spa_t *spa, uint64_t version) 9273 { 9274 ASSERT(spa_writeable(spa)); 9275 9276 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 9277 9278 /* 9279 * This should only be called for a non-faulted pool, and since a 9280 * future version would result in an unopenable pool, this shouldn't be 9281 * possible. 9282 */ 9283 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 9284 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 9285 9286 spa->spa_uberblock.ub_version = version; 9287 vdev_config_dirty(spa->spa_root_vdev); 9288 9289 spa_config_exit(spa, SCL_ALL, FTAG); 9290 9291 txg_wait_synced(spa_get_dsl(spa), 0); 9292 } 9293 9294 boolean_t 9295 spa_has_spare(spa_t *spa, uint64_t guid) 9296 { 9297 int i; 9298 uint64_t spareguid; 9299 spa_aux_vdev_t *sav = &spa->spa_spares; 9300 9301 for (i = 0; i < sav->sav_count; i++) 9302 if (sav->sav_vdevs[i]->vdev_guid == guid) 9303 return (B_TRUE); 9304 9305 for (i = 0; i < sav->sav_npending; i++) { 9306 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 9307 &spareguid) == 0 && spareguid == guid) 9308 return (B_TRUE); 9309 } 9310 9311 return (B_FALSE); 9312 } 9313 9314 /* 9315 * Check if a pool has an active shared spare device. 9316 * Note: reference count of an active spare is 2, as a spare and as a replace 9317 */ 9318 static boolean_t 9319 spa_has_active_shared_spare(spa_t *spa) 9320 { 9321 int i, refcnt; 9322 uint64_t pool; 9323 spa_aux_vdev_t *sav = &spa->spa_spares; 9324 9325 for (i = 0; i < sav->sav_count; i++) { 9326 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 9327 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 9328 refcnt > 2) 9329 return (B_TRUE); 9330 } 9331 9332 return (B_FALSE); 9333 } 9334 9335 uint64_t 9336 spa_total_metaslabs(spa_t *spa) 9337 { 9338 vdev_t *rvd = spa->spa_root_vdev; 9339 9340 uint64_t m = 0; 9341 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 9342 vdev_t *vd = rvd->vdev_child[c]; 9343 if (!vdev_is_concrete(vd)) 9344 continue; 9345 m += vd->vdev_ms_count; 9346 } 9347 return (m); 9348 } 9349 9350 /* 9351 * Notify any waiting threads that some activity has switched from being in- 9352 * progress to not-in-progress so that the thread can wake up and determine 9353 * whether it is finished waiting. 9354 */ 9355 void 9356 spa_notify_waiters(spa_t *spa) 9357 { 9358 /* 9359 * Acquiring spa_activities_lock here prevents the cv_broadcast from 9360 * happening between the waiting thread's check and cv_wait. 9361 */ 9362 mutex_enter(&spa->spa_activities_lock); 9363 cv_broadcast(&spa->spa_activities_cv); 9364 mutex_exit(&spa->spa_activities_lock); 9365 } 9366 9367 /* 9368 * Notify any waiting threads that the pool is exporting, and then block until 9369 * they are finished using the spa_t. 9370 */ 9371 void 9372 spa_wake_waiters(spa_t *spa) 9373 { 9374 mutex_enter(&spa->spa_activities_lock); 9375 spa->spa_waiters_cancel = B_TRUE; 9376 cv_broadcast(&spa->spa_activities_cv); 9377 while (spa->spa_waiters != 0) 9378 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 9379 spa->spa_waiters_cancel = B_FALSE; 9380 mutex_exit(&spa->spa_activities_lock); 9381 } 9382 9383 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 9384 static boolean_t 9385 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 9386 { 9387 spa_t *spa = vd->vdev_spa; 9388 9389 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 9390 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9391 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 9392 activity == ZPOOL_WAIT_TRIM); 9393 9394 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 9395 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 9396 9397 mutex_exit(&spa->spa_activities_lock); 9398 mutex_enter(lock); 9399 mutex_enter(&spa->spa_activities_lock); 9400 9401 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 9402 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 9403 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 9404 mutex_exit(lock); 9405 9406 if (in_progress) 9407 return (B_TRUE); 9408 9409 for (int i = 0; i < vd->vdev_children; i++) { 9410 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 9411 activity)) 9412 return (B_TRUE); 9413 } 9414 9415 return (B_FALSE); 9416 } 9417 9418 /* 9419 * If use_guid is true, this checks whether the vdev specified by guid is 9420 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 9421 * is being initialized/trimmed. The caller must hold the config lock and 9422 * spa_activities_lock. 9423 */ 9424 static int 9425 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 9426 zpool_wait_activity_t activity, boolean_t *in_progress) 9427 { 9428 mutex_exit(&spa->spa_activities_lock); 9429 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9430 mutex_enter(&spa->spa_activities_lock); 9431 9432 vdev_t *vd; 9433 if (use_guid) { 9434 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 9435 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 9436 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9437 return (EINVAL); 9438 } 9439 } else { 9440 vd = spa->spa_root_vdev; 9441 } 9442 9443 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 9444 9445 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9446 return (0); 9447 } 9448 9449 /* 9450 * Locking for waiting threads 9451 * --------------------------- 9452 * 9453 * Waiting threads need a way to check whether a given activity is in progress, 9454 * and then, if it is, wait for it to complete. Each activity will have some 9455 * in-memory representation of the relevant on-disk state which can be used to 9456 * determine whether or not the activity is in progress. The in-memory state and 9457 * the locking used to protect it will be different for each activity, and may 9458 * not be suitable for use with a cvar (e.g., some state is protected by the 9459 * config lock). To allow waiting threads to wait without any races, another 9460 * lock, spa_activities_lock, is used. 9461 * 9462 * When the state is checked, both the activity-specific lock (if there is one) 9463 * and spa_activities_lock are held. In some cases, the activity-specific lock 9464 * is acquired explicitly (e.g. the config lock). In others, the locking is 9465 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 9466 * thread releases the activity-specific lock and, if the activity is in 9467 * progress, then cv_waits using spa_activities_lock. 9468 * 9469 * The waiting thread is woken when another thread, one completing some 9470 * activity, updates the state of the activity and then calls 9471 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 9472 * needs to hold its activity-specific lock when updating the state, and this 9473 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 9474 * 9475 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 9476 * and because it is held when the waiting thread checks the state of the 9477 * activity, it can never be the case that the completing thread both updates 9478 * the activity state and cv_broadcasts in between the waiting thread's check 9479 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 9480 * 9481 * In order to prevent deadlock, when the waiting thread does its check, in some 9482 * cases it will temporarily drop spa_activities_lock in order to acquire the 9483 * activity-specific lock. The order in which spa_activities_lock and the 9484 * activity specific lock are acquired in the waiting thread is determined by 9485 * the order in which they are acquired in the completing thread; if the 9486 * completing thread calls spa_notify_waiters with the activity-specific lock 9487 * held, then the waiting thread must also acquire the activity-specific lock 9488 * first. 9489 */ 9490 9491 static int 9492 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 9493 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 9494 { 9495 int error = 0; 9496 9497 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9498 9499 switch (activity) { 9500 case ZPOOL_WAIT_CKPT_DISCARD: 9501 *in_progress = 9502 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 9503 zap_contains(spa_meta_objset(spa), 9504 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 9505 ENOENT); 9506 break; 9507 case ZPOOL_WAIT_FREE: 9508 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 9509 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 9510 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 9511 spa_livelist_delete_check(spa)); 9512 break; 9513 case ZPOOL_WAIT_INITIALIZE: 9514 case ZPOOL_WAIT_TRIM: 9515 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 9516 activity, in_progress); 9517 break; 9518 case ZPOOL_WAIT_REPLACE: 9519 mutex_exit(&spa->spa_activities_lock); 9520 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9521 mutex_enter(&spa->spa_activities_lock); 9522 9523 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 9524 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9525 break; 9526 case ZPOOL_WAIT_REMOVE: 9527 *in_progress = (spa->spa_removing_phys.sr_state == 9528 DSS_SCANNING); 9529 break; 9530 case ZPOOL_WAIT_RESILVER: 9531 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) 9532 break; 9533 /* fall through */ 9534 case ZPOOL_WAIT_SCRUB: 9535 { 9536 boolean_t scanning, paused, is_scrub; 9537 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 9538 9539 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 9540 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 9541 paused = dsl_scan_is_paused_scrub(scn); 9542 *in_progress = (scanning && !paused && 9543 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 9544 break; 9545 } 9546 default: 9547 panic("unrecognized value for activity %d", activity); 9548 } 9549 9550 return (error); 9551 } 9552 9553 static int 9554 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 9555 boolean_t use_tag, uint64_t tag, boolean_t *waited) 9556 { 9557 /* 9558 * The tag is used to distinguish between instances of an activity. 9559 * 'initialize' and 'trim' are the only activities that we use this for. 9560 * The other activities can only have a single instance in progress in a 9561 * pool at one time, making the tag unnecessary. 9562 * 9563 * There can be multiple devices being replaced at once, but since they 9564 * all finish once resilvering finishes, we don't bother keeping track 9565 * of them individually, we just wait for them all to finish. 9566 */ 9567 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 9568 activity != ZPOOL_WAIT_TRIM) 9569 return (EINVAL); 9570 9571 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 9572 return (EINVAL); 9573 9574 spa_t *spa; 9575 int error = spa_open(pool, &spa, FTAG); 9576 if (error != 0) 9577 return (error); 9578 9579 /* 9580 * Increment the spa's waiter count so that we can call spa_close and 9581 * still ensure that the spa_t doesn't get freed before this thread is 9582 * finished with it when the pool is exported. We want to call spa_close 9583 * before we start waiting because otherwise the additional ref would 9584 * prevent the pool from being exported or destroyed throughout the 9585 * potentially long wait. 9586 */ 9587 mutex_enter(&spa->spa_activities_lock); 9588 spa->spa_waiters++; 9589 spa_close(spa, FTAG); 9590 9591 *waited = B_FALSE; 9592 for (;;) { 9593 boolean_t in_progress; 9594 error = spa_activity_in_progress(spa, activity, use_tag, tag, 9595 &in_progress); 9596 9597 if (error || !in_progress || spa->spa_waiters_cancel) 9598 break; 9599 9600 *waited = B_TRUE; 9601 9602 if (cv_wait_sig(&spa->spa_activities_cv, 9603 &spa->spa_activities_lock) == 0) { 9604 error = EINTR; 9605 break; 9606 } 9607 } 9608 9609 spa->spa_waiters--; 9610 cv_signal(&spa->spa_waiters_cv); 9611 mutex_exit(&spa->spa_activities_lock); 9612 9613 return (error); 9614 } 9615 9616 /* 9617 * Wait for a particular instance of the specified activity to complete, where 9618 * the instance is identified by 'tag' 9619 */ 9620 int 9621 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 9622 boolean_t *waited) 9623 { 9624 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 9625 } 9626 9627 /* 9628 * Wait for all instances of the specified activity complete 9629 */ 9630 int 9631 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 9632 { 9633 9634 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 9635 } 9636 9637 sysevent_t * 9638 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9639 { 9640 sysevent_t *ev = NULL; 9641 #ifdef _KERNEL 9642 nvlist_t *resource; 9643 9644 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 9645 if (resource) { 9646 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 9647 ev->resource = resource; 9648 } 9649 #endif 9650 return (ev); 9651 } 9652 9653 void 9654 spa_event_post(sysevent_t *ev) 9655 { 9656 #ifdef _KERNEL 9657 if (ev) { 9658 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 9659 kmem_free(ev, sizeof (*ev)); 9660 } 9661 #endif 9662 } 9663 9664 /* 9665 * Post a zevent corresponding to the given sysevent. The 'name' must be one 9666 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 9667 * filled in from the spa and (optionally) the vdev. This doesn't do anything 9668 * in the userland libzpool, as we don't want consumers to misinterpret ztest 9669 * or zdb as real changes. 9670 */ 9671 void 9672 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9673 { 9674 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 9675 } 9676 9677 /* state manipulation functions */ 9678 EXPORT_SYMBOL(spa_open); 9679 EXPORT_SYMBOL(spa_open_rewind); 9680 EXPORT_SYMBOL(spa_get_stats); 9681 EXPORT_SYMBOL(spa_create); 9682 EXPORT_SYMBOL(spa_import); 9683 EXPORT_SYMBOL(spa_tryimport); 9684 EXPORT_SYMBOL(spa_destroy); 9685 EXPORT_SYMBOL(spa_export); 9686 EXPORT_SYMBOL(spa_reset); 9687 EXPORT_SYMBOL(spa_async_request); 9688 EXPORT_SYMBOL(spa_async_suspend); 9689 EXPORT_SYMBOL(spa_async_resume); 9690 EXPORT_SYMBOL(spa_inject_addref); 9691 EXPORT_SYMBOL(spa_inject_delref); 9692 EXPORT_SYMBOL(spa_scan_stat_init); 9693 EXPORT_SYMBOL(spa_scan_get_stats); 9694 9695 /* device manipulation */ 9696 EXPORT_SYMBOL(spa_vdev_add); 9697 EXPORT_SYMBOL(spa_vdev_attach); 9698 EXPORT_SYMBOL(spa_vdev_detach); 9699 EXPORT_SYMBOL(spa_vdev_setpath); 9700 EXPORT_SYMBOL(spa_vdev_setfru); 9701 EXPORT_SYMBOL(spa_vdev_split_mirror); 9702 9703 /* spare statech is global across all pools) */ 9704 EXPORT_SYMBOL(spa_spare_add); 9705 EXPORT_SYMBOL(spa_spare_remove); 9706 EXPORT_SYMBOL(spa_spare_exists); 9707 EXPORT_SYMBOL(spa_spare_activate); 9708 9709 /* L2ARC statech is global across all pools) */ 9710 EXPORT_SYMBOL(spa_l2cache_add); 9711 EXPORT_SYMBOL(spa_l2cache_remove); 9712 EXPORT_SYMBOL(spa_l2cache_exists); 9713 EXPORT_SYMBOL(spa_l2cache_activate); 9714 EXPORT_SYMBOL(spa_l2cache_drop); 9715 9716 /* scanning */ 9717 EXPORT_SYMBOL(spa_scan); 9718 EXPORT_SYMBOL(spa_scan_stop); 9719 9720 /* spa syncing */ 9721 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 9722 EXPORT_SYMBOL(spa_sync_allpools); 9723 9724 /* properties */ 9725 EXPORT_SYMBOL(spa_prop_set); 9726 EXPORT_SYMBOL(spa_prop_get); 9727 EXPORT_SYMBOL(spa_prop_clear_bootfs); 9728 9729 /* asynchronous event notification */ 9730 EXPORT_SYMBOL(spa_event_notify); 9731 9732 /* BEGIN CSTYLED */ 9733 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW, 9734 "log2(fraction of arc that can be used by inflight I/Os when " 9735 "verifying pool during import"); 9736 9737 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 9738 "Set to traverse metadata on pool import"); 9739 9740 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 9741 "Set to traverse data on pool import"); 9742 9743 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 9744 "Print vdev tree to zfs_dbgmsg during pool import"); 9745 9746 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 9747 "Percentage of CPUs to run an IO worker thread"); 9748 9749 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW, 9750 "Allow importing pool with up to this number of missing top-level " 9751 "vdevs (in read-only mode)"); 9752 9753 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, 9754 "Set the livelist condense zthr to pause"); 9755 9756 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, 9757 "Set the livelist condense synctask to pause"); 9758 9759 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, 9760 "Whether livelist condensing was canceled in the synctask"); 9761 9762 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, 9763 "Whether livelist condensing was canceled in the zthr function"); 9764 9765 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, 9766 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 9767 "was being condensed"); 9768 /* END CSTYLED */ 9769