xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 54b955f4df5e76b5679ba7f3eb6bb2d5fc62923d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/brt.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_rebuild.h>
63 #include <sys/vdev_trim.h>
64 #include <sys/vdev_disk.h>
65 #include <sys/vdev_draid.h>
66 #include <sys/metaslab.h>
67 #include <sys/metaslab_impl.h>
68 #include <sys/mmp.h>
69 #include <sys/uberblock_impl.h>
70 #include <sys/txg.h>
71 #include <sys/avl.h>
72 #include <sys/bpobj.h>
73 #include <sys/dmu_traverse.h>
74 #include <sys/dmu_objset.h>
75 #include <sys/unique.h>
76 #include <sys/dsl_pool.h>
77 #include <sys/dsl_dataset.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_synctask.h>
81 #include <sys/fs/zfs.h>
82 #include <sys/arc.h>
83 #include <sys/callb.h>
84 #include <sys/systeminfo.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
168     const char **ereport);
169 static void spa_vdev_resilver_done(spa_t *spa);
170 
171 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
172 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
173 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
174 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
175 
176 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
177 
178 /*
179  * Report any spa_load_verify errors found, but do not fail spa_load.
180  * This is used by zdb to analyze non-idle pools.
181  */
182 boolean_t	spa_load_verify_dryrun = B_FALSE;
183 
184 /*
185  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
186  * This is used by zdb for spacemaps verification.
187  */
188 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
189 
190 /*
191  * This (illegal) pool name is used when temporarily importing a spa_t in order
192  * to get the vdev stats associated with the imported devices.
193  */
194 #define	TRYIMPORT_NAME	"$import"
195 
196 /*
197  * For debugging purposes: print out vdev tree during pool import.
198  */
199 static int		spa_load_print_vdev_tree = B_FALSE;
200 
201 /*
202  * A non-zero value for zfs_max_missing_tvds means that we allow importing
203  * pools with missing top-level vdevs. This is strictly intended for advanced
204  * pool recovery cases since missing data is almost inevitable. Pools with
205  * missing devices can only be imported read-only for safety reasons, and their
206  * fail-mode will be automatically set to "continue".
207  *
208  * With 1 missing vdev we should be able to import the pool and mount all
209  * datasets. User data that was not modified after the missing device has been
210  * added should be recoverable. This means that snapshots created prior to the
211  * addition of that device should be completely intact.
212  *
213  * With 2 missing vdevs, some datasets may fail to mount since there are
214  * dataset statistics that are stored as regular metadata. Some data might be
215  * recoverable if those vdevs were added recently.
216  *
217  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
218  * may be missing entirely. Chances of data recovery are very low. Note that
219  * there are also risks of performing an inadvertent rewind as we might be
220  * missing all the vdevs with the latest uberblocks.
221  */
222 uint64_t	zfs_max_missing_tvds = 0;
223 
224 /*
225  * The parameters below are similar to zfs_max_missing_tvds but are only
226  * intended for a preliminary open of the pool with an untrusted config which
227  * might be incomplete or out-dated.
228  *
229  * We are more tolerant for pools opened from a cachefile since we could have
230  * an out-dated cachefile where a device removal was not registered.
231  * We could have set the limit arbitrarily high but in the case where devices
232  * are really missing we would want to return the proper error codes; we chose
233  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
234  * and we get a chance to retrieve the trusted config.
235  */
236 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
237 
238 /*
239  * In the case where config was assembled by scanning device paths (/dev/dsks
240  * by default) we are less tolerant since all the existing devices should have
241  * been detected and we want spa_load to return the right error codes.
242  */
243 uint64_t	zfs_max_missing_tvds_scan = 0;
244 
245 /*
246  * Debugging aid that pauses spa_sync() towards the end.
247  */
248 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
249 
250 /*
251  * Variables to indicate the livelist condense zthr func should wait at certain
252  * points for the livelist to be removed - used to test condense/destroy races
253  */
254 static int zfs_livelist_condense_zthr_pause = 0;
255 static int zfs_livelist_condense_sync_pause = 0;
256 
257 /*
258  * Variables to track whether or not condense cancellation has been
259  * triggered in testing.
260  */
261 static int zfs_livelist_condense_sync_cancel = 0;
262 static int zfs_livelist_condense_zthr_cancel = 0;
263 
264 /*
265  * Variable to track whether or not extra ALLOC blkptrs were added to a
266  * livelist entry while it was being condensed (caused by the way we track
267  * remapped blkptrs in dbuf_remap_impl)
268  */
269 static int zfs_livelist_condense_new_alloc = 0;
270 
271 /*
272  * ==========================================================================
273  * SPA properties routines
274  * ==========================================================================
275  */
276 
277 /*
278  * Add a (source=src, propname=propval) list to an nvlist.
279  */
280 static void
281 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
282     uint64_t intval, zprop_source_t src)
283 {
284 	const char *propname = zpool_prop_to_name(prop);
285 	nvlist_t *propval;
286 
287 	propval = fnvlist_alloc();
288 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
289 
290 	if (strval != NULL)
291 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
292 	else
293 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
294 
295 	fnvlist_add_nvlist(nvl, propname, propval);
296 	nvlist_free(propval);
297 }
298 
299 /*
300  * Add a user property (source=src, propname=propval) to an nvlist.
301  */
302 static void
303 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
304     zprop_source_t src)
305 {
306 	nvlist_t *propval;
307 
308 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
309 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
310 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
311 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
312 	nvlist_free(propval);
313 }
314 
315 /*
316  * Get property values from the spa configuration.
317  */
318 static void
319 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
320 {
321 	vdev_t *rvd = spa->spa_root_vdev;
322 	dsl_pool_t *pool = spa->spa_dsl_pool;
323 	uint64_t size, alloc, cap, version;
324 	const zprop_source_t src = ZPROP_SRC_NONE;
325 	spa_config_dirent_t *dp;
326 	metaslab_class_t *mc = spa_normal_class(spa);
327 
328 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
329 
330 	if (rvd != NULL) {
331 		alloc = metaslab_class_get_alloc(mc);
332 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
333 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
334 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
335 
336 		size = metaslab_class_get_space(mc);
337 		size += metaslab_class_get_space(spa_special_class(spa));
338 		size += metaslab_class_get_space(spa_dedup_class(spa));
339 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
340 
341 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
343 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
344 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
345 		    size - alloc, src);
346 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
347 		    spa->spa_checkpoint_info.sci_dspace, src);
348 
349 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
350 		    metaslab_class_fragmentation(mc), src);
351 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
352 		    metaslab_class_expandable_space(mc), src);
353 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
354 		    (spa_mode(spa) == SPA_MODE_READ), src);
355 
356 		cap = (size == 0) ? 0 : (alloc * 100 / size);
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
358 
359 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
360 		    ddt_get_pool_dedup_ratio(spa), src);
361 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
362 		    brt_get_used(spa), src);
363 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
364 		    brt_get_saved(spa), src);
365 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
366 		    brt_get_ratio(spa), src);
367 
368 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
369 		    rvd->vdev_state, src);
370 
371 		version = spa_version(spa);
372 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
373 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
374 			    version, ZPROP_SRC_DEFAULT);
375 		} else {
376 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
377 			    version, ZPROP_SRC_LOCAL);
378 		}
379 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
380 		    NULL, spa_load_guid(spa), src);
381 	}
382 
383 	if (pool != NULL) {
384 		/*
385 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
386 		 * when opening pools before this version freedir will be NULL.
387 		 */
388 		if (pool->dp_free_dir != NULL) {
389 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
390 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
391 			    src);
392 		} else {
393 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
394 			    NULL, 0, src);
395 		}
396 
397 		if (pool->dp_leak_dir != NULL) {
398 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
399 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
400 			    src);
401 		} else {
402 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
403 			    NULL, 0, src);
404 		}
405 	}
406 
407 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
408 
409 	if (spa->spa_comment != NULL) {
410 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
411 		    0, ZPROP_SRC_LOCAL);
412 	}
413 
414 	if (spa->spa_compatibility != NULL) {
415 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
416 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
417 	}
418 
419 	if (spa->spa_root != NULL)
420 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
421 		    0, ZPROP_SRC_LOCAL);
422 
423 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
424 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
425 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
426 	} else {
427 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
428 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
429 	}
430 
431 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
432 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
433 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
434 	} else {
435 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
436 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
437 	}
438 
439 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
440 		if (dp->scd_path == NULL) {
441 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
442 			    "none", 0, ZPROP_SRC_LOCAL);
443 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
444 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
445 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
446 		}
447 	}
448 }
449 
450 /*
451  * Get zpool property values.
452  */
453 int
454 spa_prop_get(spa_t *spa, nvlist_t **nvp)
455 {
456 	objset_t *mos = spa->spa_meta_objset;
457 	zap_cursor_t zc;
458 	zap_attribute_t za;
459 	dsl_pool_t *dp;
460 	int err;
461 
462 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
463 	if (err)
464 		return (err);
465 
466 	dp = spa_get_dsl(spa);
467 	dsl_pool_config_enter(dp, FTAG);
468 	mutex_enter(&spa->spa_props_lock);
469 
470 	/*
471 	 * Get properties from the spa config.
472 	 */
473 	spa_prop_get_config(spa, nvp);
474 
475 	/* If no pool property object, no more prop to get. */
476 	if (mos == NULL || spa->spa_pool_props_object == 0)
477 		goto out;
478 
479 	/*
480 	 * Get properties from the MOS pool property object.
481 	 */
482 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
483 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
484 	    zap_cursor_advance(&zc)) {
485 		uint64_t intval = 0;
486 		char *strval = NULL;
487 		zprop_source_t src = ZPROP_SRC_DEFAULT;
488 		zpool_prop_t prop;
489 
490 		if ((prop = zpool_name_to_prop(za.za_name)) ==
491 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
492 			continue;
493 
494 		switch (za.za_integer_length) {
495 		case 8:
496 			/* integer property */
497 			if (za.za_first_integer !=
498 			    zpool_prop_default_numeric(prop))
499 				src = ZPROP_SRC_LOCAL;
500 
501 			if (prop == ZPOOL_PROP_BOOTFS) {
502 				dsl_dataset_t *ds = NULL;
503 
504 				err = dsl_dataset_hold_obj(dp,
505 				    za.za_first_integer, FTAG, &ds);
506 				if (err != 0)
507 					break;
508 
509 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
510 				    KM_SLEEP);
511 				dsl_dataset_name(ds, strval);
512 				dsl_dataset_rele(ds, FTAG);
513 			} else {
514 				strval = NULL;
515 				intval = za.za_first_integer;
516 			}
517 
518 			spa_prop_add_list(*nvp, prop, strval, intval, src);
519 
520 			if (strval != NULL)
521 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
522 
523 			break;
524 
525 		case 1:
526 			/* string property */
527 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
528 			err = zap_lookup(mos, spa->spa_pool_props_object,
529 			    za.za_name, 1, za.za_num_integers, strval);
530 			if (err) {
531 				kmem_free(strval, za.za_num_integers);
532 				break;
533 			}
534 			if (prop != ZPOOL_PROP_INVAL) {
535 				spa_prop_add_list(*nvp, prop, strval, 0, src);
536 			} else {
537 				src = ZPROP_SRC_LOCAL;
538 				spa_prop_add_user(*nvp, za.za_name, strval,
539 				    src);
540 			}
541 			kmem_free(strval, za.za_num_integers);
542 			break;
543 
544 		default:
545 			break;
546 		}
547 	}
548 	zap_cursor_fini(&zc);
549 out:
550 	mutex_exit(&spa->spa_props_lock);
551 	dsl_pool_config_exit(dp, FTAG);
552 	if (err && err != ENOENT) {
553 		nvlist_free(*nvp);
554 		*nvp = NULL;
555 		return (err);
556 	}
557 
558 	return (0);
559 }
560 
561 /*
562  * Validate the given pool properties nvlist and modify the list
563  * for the property values to be set.
564  */
565 static int
566 spa_prop_validate(spa_t *spa, nvlist_t *props)
567 {
568 	nvpair_t *elem;
569 	int error = 0, reset_bootfs = 0;
570 	uint64_t objnum = 0;
571 	boolean_t has_feature = B_FALSE;
572 
573 	elem = NULL;
574 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
575 		uint64_t intval;
576 		const char *strval, *slash, *check, *fname;
577 		const char *propname = nvpair_name(elem);
578 		zpool_prop_t prop = zpool_name_to_prop(propname);
579 
580 		switch (prop) {
581 		case ZPOOL_PROP_INVAL:
582 			/*
583 			 * Sanitize the input.
584 			 */
585 			if (zfs_prop_user(propname)) {
586 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
587 					error = SET_ERROR(ENAMETOOLONG);
588 					break;
589 				}
590 
591 				if (strlen(fnvpair_value_string(elem)) >=
592 				    ZAP_MAXVALUELEN) {
593 					error = SET_ERROR(E2BIG);
594 					break;
595 				}
596 			} else if (zpool_prop_feature(propname)) {
597 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
598 					error = SET_ERROR(EINVAL);
599 					break;
600 				}
601 
602 				if (nvpair_value_uint64(elem, &intval) != 0) {
603 					error = SET_ERROR(EINVAL);
604 					break;
605 				}
606 
607 				if (intval != 0) {
608 					error = SET_ERROR(EINVAL);
609 					break;
610 				}
611 
612 				fname = strchr(propname, '@') + 1;
613 				if (zfeature_lookup_name(fname, NULL) != 0) {
614 					error = SET_ERROR(EINVAL);
615 					break;
616 				}
617 
618 				has_feature = B_TRUE;
619 			} else {
620 				error = SET_ERROR(EINVAL);
621 				break;
622 			}
623 			break;
624 
625 		case ZPOOL_PROP_VERSION:
626 			error = nvpair_value_uint64(elem, &intval);
627 			if (!error &&
628 			    (intval < spa_version(spa) ||
629 			    intval > SPA_VERSION_BEFORE_FEATURES ||
630 			    has_feature))
631 				error = SET_ERROR(EINVAL);
632 			break;
633 
634 		case ZPOOL_PROP_DELEGATION:
635 		case ZPOOL_PROP_AUTOREPLACE:
636 		case ZPOOL_PROP_LISTSNAPS:
637 		case ZPOOL_PROP_AUTOEXPAND:
638 		case ZPOOL_PROP_AUTOTRIM:
639 			error = nvpair_value_uint64(elem, &intval);
640 			if (!error && intval > 1)
641 				error = SET_ERROR(EINVAL);
642 			break;
643 
644 		case ZPOOL_PROP_MULTIHOST:
645 			error = nvpair_value_uint64(elem, &intval);
646 			if (!error && intval > 1)
647 				error = SET_ERROR(EINVAL);
648 
649 			if (!error) {
650 				uint32_t hostid = zone_get_hostid(NULL);
651 				if (hostid)
652 					spa->spa_hostid = hostid;
653 				else
654 					error = SET_ERROR(ENOTSUP);
655 			}
656 
657 			break;
658 
659 		case ZPOOL_PROP_BOOTFS:
660 			/*
661 			 * If the pool version is less than SPA_VERSION_BOOTFS,
662 			 * or the pool is still being created (version == 0),
663 			 * the bootfs property cannot be set.
664 			 */
665 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
666 				error = SET_ERROR(ENOTSUP);
667 				break;
668 			}
669 
670 			/*
671 			 * Make sure the vdev config is bootable
672 			 */
673 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
674 				error = SET_ERROR(ENOTSUP);
675 				break;
676 			}
677 
678 			reset_bootfs = 1;
679 
680 			error = nvpair_value_string(elem, &strval);
681 
682 			if (!error) {
683 				objset_t *os;
684 
685 				if (strval == NULL || strval[0] == '\0') {
686 					objnum = zpool_prop_default_numeric(
687 					    ZPOOL_PROP_BOOTFS);
688 					break;
689 				}
690 
691 				error = dmu_objset_hold(strval, FTAG, &os);
692 				if (error != 0)
693 					break;
694 
695 				/* Must be ZPL. */
696 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
697 					error = SET_ERROR(ENOTSUP);
698 				} else {
699 					objnum = dmu_objset_id(os);
700 				}
701 				dmu_objset_rele(os, FTAG);
702 			}
703 			break;
704 
705 		case ZPOOL_PROP_FAILUREMODE:
706 			error = nvpair_value_uint64(elem, &intval);
707 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
708 				error = SET_ERROR(EINVAL);
709 
710 			/*
711 			 * This is a special case which only occurs when
712 			 * the pool has completely failed. This allows
713 			 * the user to change the in-core failmode property
714 			 * without syncing it out to disk (I/Os might
715 			 * currently be blocked). We do this by returning
716 			 * EIO to the caller (spa_prop_set) to trick it
717 			 * into thinking we encountered a property validation
718 			 * error.
719 			 */
720 			if (!error && spa_suspended(spa)) {
721 				spa->spa_failmode = intval;
722 				error = SET_ERROR(EIO);
723 			}
724 			break;
725 
726 		case ZPOOL_PROP_CACHEFILE:
727 			if ((error = nvpair_value_string(elem, &strval)) != 0)
728 				break;
729 
730 			if (strval[0] == '\0')
731 				break;
732 
733 			if (strcmp(strval, "none") == 0)
734 				break;
735 
736 			if (strval[0] != '/') {
737 				error = SET_ERROR(EINVAL);
738 				break;
739 			}
740 
741 			slash = strrchr(strval, '/');
742 			ASSERT(slash != NULL);
743 
744 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
745 			    strcmp(slash, "/..") == 0)
746 				error = SET_ERROR(EINVAL);
747 			break;
748 
749 		case ZPOOL_PROP_COMMENT:
750 			if ((error = nvpair_value_string(elem, &strval)) != 0)
751 				break;
752 			for (check = strval; *check != '\0'; check++) {
753 				if (!isprint(*check)) {
754 					error = SET_ERROR(EINVAL);
755 					break;
756 				}
757 			}
758 			if (strlen(strval) > ZPROP_MAX_COMMENT)
759 				error = SET_ERROR(E2BIG);
760 			break;
761 
762 		default:
763 			break;
764 		}
765 
766 		if (error)
767 			break;
768 	}
769 
770 	(void) nvlist_remove_all(props,
771 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
772 
773 	if (!error && reset_bootfs) {
774 		error = nvlist_remove(props,
775 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
776 
777 		if (!error) {
778 			error = nvlist_add_uint64(props,
779 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
780 		}
781 	}
782 
783 	return (error);
784 }
785 
786 void
787 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
788 {
789 	const char *cachefile;
790 	spa_config_dirent_t *dp;
791 
792 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
793 	    &cachefile) != 0)
794 		return;
795 
796 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
797 	    KM_SLEEP);
798 
799 	if (cachefile[0] == '\0')
800 		dp->scd_path = spa_strdup(spa_config_path);
801 	else if (strcmp(cachefile, "none") == 0)
802 		dp->scd_path = NULL;
803 	else
804 		dp->scd_path = spa_strdup(cachefile);
805 
806 	list_insert_head(&spa->spa_config_list, dp);
807 	if (need_sync)
808 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
809 }
810 
811 int
812 spa_prop_set(spa_t *spa, nvlist_t *nvp)
813 {
814 	int error;
815 	nvpair_t *elem = NULL;
816 	boolean_t need_sync = B_FALSE;
817 
818 	if ((error = spa_prop_validate(spa, nvp)) != 0)
819 		return (error);
820 
821 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
822 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
823 
824 		if (prop == ZPOOL_PROP_CACHEFILE ||
825 		    prop == ZPOOL_PROP_ALTROOT ||
826 		    prop == ZPOOL_PROP_READONLY)
827 			continue;
828 
829 		if (prop == ZPOOL_PROP_INVAL &&
830 		    zfs_prop_user(nvpair_name(elem))) {
831 			need_sync = B_TRUE;
832 			break;
833 		}
834 
835 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
836 			uint64_t ver = 0;
837 
838 			if (prop == ZPOOL_PROP_VERSION) {
839 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
840 			} else {
841 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
842 				ver = SPA_VERSION_FEATURES;
843 				need_sync = B_TRUE;
844 			}
845 
846 			/* Save time if the version is already set. */
847 			if (ver == spa_version(spa))
848 				continue;
849 
850 			/*
851 			 * In addition to the pool directory object, we might
852 			 * create the pool properties object, the features for
853 			 * read object, the features for write object, or the
854 			 * feature descriptions object.
855 			 */
856 			error = dsl_sync_task(spa->spa_name, NULL,
857 			    spa_sync_version, &ver,
858 			    6, ZFS_SPACE_CHECK_RESERVED);
859 			if (error)
860 				return (error);
861 			continue;
862 		}
863 
864 		need_sync = B_TRUE;
865 		break;
866 	}
867 
868 	if (need_sync) {
869 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
870 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
871 	}
872 
873 	return (0);
874 }
875 
876 /*
877  * If the bootfs property value is dsobj, clear it.
878  */
879 void
880 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
881 {
882 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
883 		VERIFY(zap_remove(spa->spa_meta_objset,
884 		    spa->spa_pool_props_object,
885 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
886 		spa->spa_bootfs = 0;
887 	}
888 }
889 
890 static int
891 spa_change_guid_check(void *arg, dmu_tx_t *tx)
892 {
893 	uint64_t *newguid __maybe_unused = arg;
894 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
895 	vdev_t *rvd = spa->spa_root_vdev;
896 	uint64_t vdev_state;
897 
898 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
899 		int error = (spa_has_checkpoint(spa)) ?
900 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
901 		return (SET_ERROR(error));
902 	}
903 
904 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
905 	vdev_state = rvd->vdev_state;
906 	spa_config_exit(spa, SCL_STATE, FTAG);
907 
908 	if (vdev_state != VDEV_STATE_HEALTHY)
909 		return (SET_ERROR(ENXIO));
910 
911 	ASSERT3U(spa_guid(spa), !=, *newguid);
912 
913 	return (0);
914 }
915 
916 static void
917 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
918 {
919 	uint64_t *newguid = arg;
920 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
921 	uint64_t oldguid;
922 	vdev_t *rvd = spa->spa_root_vdev;
923 
924 	oldguid = spa_guid(spa);
925 
926 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
927 	rvd->vdev_guid = *newguid;
928 	rvd->vdev_guid_sum += (*newguid - oldguid);
929 	vdev_config_dirty(rvd);
930 	spa_config_exit(spa, SCL_STATE, FTAG);
931 
932 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
933 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
934 }
935 
936 /*
937  * Change the GUID for the pool.  This is done so that we can later
938  * re-import a pool built from a clone of our own vdevs.  We will modify
939  * the root vdev's guid, our own pool guid, and then mark all of our
940  * vdevs dirty.  Note that we must make sure that all our vdevs are
941  * online when we do this, or else any vdevs that weren't present
942  * would be orphaned from our pool.  We are also going to issue a
943  * sysevent to update any watchers.
944  */
945 int
946 spa_change_guid(spa_t *spa)
947 {
948 	int error;
949 	uint64_t guid;
950 
951 	mutex_enter(&spa->spa_vdev_top_lock);
952 	mutex_enter(&spa_namespace_lock);
953 	guid = spa_generate_guid(NULL);
954 
955 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
956 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
957 
958 	if (error == 0) {
959 		/*
960 		 * Clear the kobj flag from all the vdevs to allow
961 		 * vdev_cache_process_kobj_evt() to post events to all the
962 		 * vdevs since GUID is updated.
963 		 */
964 		vdev_clear_kobj_evt(spa->spa_root_vdev);
965 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
966 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
967 
968 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
969 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
970 	}
971 
972 	mutex_exit(&spa_namespace_lock);
973 	mutex_exit(&spa->spa_vdev_top_lock);
974 
975 	return (error);
976 }
977 
978 /*
979  * ==========================================================================
980  * SPA state manipulation (open/create/destroy/import/export)
981  * ==========================================================================
982  */
983 
984 static int
985 spa_error_entry_compare(const void *a, const void *b)
986 {
987 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
988 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
989 	int ret;
990 
991 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
992 	    sizeof (zbookmark_phys_t));
993 
994 	return (TREE_ISIGN(ret));
995 }
996 
997 /*
998  * Utility function which retrieves copies of the current logs and
999  * re-initializes them in the process.
1000  */
1001 void
1002 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1003 {
1004 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1005 
1006 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1007 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1008 
1009 	avl_create(&spa->spa_errlist_scrub,
1010 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1011 	    offsetof(spa_error_entry_t, se_avl));
1012 	avl_create(&spa->spa_errlist_last,
1013 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1014 	    offsetof(spa_error_entry_t, se_avl));
1015 }
1016 
1017 static void
1018 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1019 {
1020 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1021 	enum zti_modes mode = ztip->zti_mode;
1022 	uint_t value = ztip->zti_value;
1023 	uint_t count = ztip->zti_count;
1024 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025 	uint_t cpus, flags = TASKQ_DYNAMIC;
1026 	boolean_t batch = B_FALSE;
1027 
1028 	switch (mode) {
1029 	case ZTI_MODE_FIXED:
1030 		ASSERT3U(value, >, 0);
1031 		break;
1032 
1033 	case ZTI_MODE_BATCH:
1034 		batch = B_TRUE;
1035 		flags |= TASKQ_THREADS_CPU_PCT;
1036 		value = MIN(zio_taskq_batch_pct, 100);
1037 		break;
1038 
1039 	case ZTI_MODE_SCALE:
1040 		flags |= TASKQ_THREADS_CPU_PCT;
1041 		/*
1042 		 * We want more taskqs to reduce lock contention, but we want
1043 		 * less for better request ordering and CPU utilization.
1044 		 */
1045 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1046 		if (zio_taskq_batch_tpq > 0) {
1047 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1048 			    zio_taskq_batch_tpq);
1049 		} else {
1050 			/*
1051 			 * Prefer 6 threads per taskq, but no more taskqs
1052 			 * than threads in them on large systems. For 80%:
1053 			 *
1054 			 *                 taskq   taskq   total
1055 			 * cpus    taskqs  percent threads threads
1056 			 * ------- ------- ------- ------- -------
1057 			 * 1       1       80%     1       1
1058 			 * 2       1       80%     1       1
1059 			 * 4       1       80%     3       3
1060 			 * 8       2       40%     3       6
1061 			 * 16      3       27%     4       12
1062 			 * 32      5       16%     5       25
1063 			 * 64      7       11%     7       49
1064 			 * 128     10      8%      10      100
1065 			 * 256     14      6%      15      210
1066 			 */
1067 			count = 1 + cpus / 6;
1068 			while (count * count > cpus)
1069 				count--;
1070 		}
1071 		/* Limit each taskq within 100% to not trigger assertion. */
1072 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1073 		value = (zio_taskq_batch_pct + count / 2) / count;
1074 		break;
1075 
1076 	case ZTI_MODE_NULL:
1077 		tqs->stqs_count = 0;
1078 		tqs->stqs_taskq = NULL;
1079 		return;
1080 
1081 	default:
1082 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1083 		    "spa_activate()",
1084 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1085 		break;
1086 	}
1087 
1088 	ASSERT3U(count, >, 0);
1089 	tqs->stqs_count = count;
1090 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1091 
1092 	for (uint_t i = 0; i < count; i++) {
1093 		taskq_t *tq;
1094 		char name[32];
1095 
1096 		if (count > 1)
1097 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1098 			    zio_type_name[t], zio_taskq_types[q], i);
1099 		else
1100 			(void) snprintf(name, sizeof (name), "%s_%s",
1101 			    zio_type_name[t], zio_taskq_types[q]);
1102 
1103 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1104 			if (batch)
1105 				flags |= TASKQ_DC_BATCH;
1106 
1107 			(void) zio_taskq_basedc;
1108 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1109 			    spa->spa_proc, zio_taskq_basedc, flags);
1110 		} else {
1111 			pri_t pri = maxclsyspri;
1112 			/*
1113 			 * The write issue taskq can be extremely CPU
1114 			 * intensive.  Run it at slightly less important
1115 			 * priority than the other taskqs.
1116 			 *
1117 			 * Under Linux and FreeBSD this means incrementing
1118 			 * the priority value as opposed to platforms like
1119 			 * illumos where it should be decremented.
1120 			 *
1121 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1122 			 * are equal then a difference between them is
1123 			 * insignificant.
1124 			 */
1125 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1126 #if defined(__linux__)
1127 				pri++;
1128 #elif defined(__FreeBSD__)
1129 				pri += 4;
1130 #else
1131 #error "unknown OS"
1132 #endif
1133 			}
1134 			tq = taskq_create_proc(name, value, pri, 50,
1135 			    INT_MAX, spa->spa_proc, flags);
1136 		}
1137 
1138 		tqs->stqs_taskq[i] = tq;
1139 	}
1140 }
1141 
1142 static void
1143 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1144 {
1145 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1146 
1147 	if (tqs->stqs_taskq == NULL) {
1148 		ASSERT3U(tqs->stqs_count, ==, 0);
1149 		return;
1150 	}
1151 
1152 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1153 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1154 		taskq_destroy(tqs->stqs_taskq[i]);
1155 	}
1156 
1157 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1158 	tqs->stqs_taskq = NULL;
1159 }
1160 
1161 /*
1162  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1163  * Note that a type may have multiple discrete taskqs to avoid lock contention
1164  * on the taskq itself. In that case we choose which taskq at random by using
1165  * the low bits of gethrtime().
1166  */
1167 void
1168 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1169     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1170 {
1171 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1172 	taskq_t *tq;
1173 
1174 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1175 	ASSERT3U(tqs->stqs_count, !=, 0);
1176 
1177 	if (tqs->stqs_count == 1) {
1178 		tq = tqs->stqs_taskq[0];
1179 	} else {
1180 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1181 	}
1182 
1183 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1184 }
1185 
1186 /*
1187  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1188  */
1189 void
1190 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1191     task_func_t *func, void *arg, uint_t flags)
1192 {
1193 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1194 	taskq_t *tq;
1195 	taskqid_t id;
1196 
1197 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1198 	ASSERT3U(tqs->stqs_count, !=, 0);
1199 
1200 	if (tqs->stqs_count == 1) {
1201 		tq = tqs->stqs_taskq[0];
1202 	} else {
1203 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1204 	}
1205 
1206 	id = taskq_dispatch(tq, func, arg, flags);
1207 	if (id)
1208 		taskq_wait_id(tq, id);
1209 }
1210 
1211 static void
1212 spa_create_zio_taskqs(spa_t *spa)
1213 {
1214 	for (int t = 0; t < ZIO_TYPES; t++) {
1215 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1216 			spa_taskqs_init(spa, t, q);
1217 		}
1218 	}
1219 }
1220 
1221 /*
1222  * Disabled until spa_thread() can be adapted for Linux.
1223  */
1224 #undef HAVE_SPA_THREAD
1225 
1226 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1227 static void
1228 spa_thread(void *arg)
1229 {
1230 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1231 	callb_cpr_t cprinfo;
1232 
1233 	spa_t *spa = arg;
1234 	user_t *pu = PTOU(curproc);
1235 
1236 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1237 	    spa->spa_name);
1238 
1239 	ASSERT(curproc != &p0);
1240 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1241 	    "zpool-%s", spa->spa_name);
1242 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1243 
1244 	/* bind this thread to the requested psrset */
1245 	if (zio_taskq_psrset_bind != PS_NONE) {
1246 		pool_lock();
1247 		mutex_enter(&cpu_lock);
1248 		mutex_enter(&pidlock);
1249 		mutex_enter(&curproc->p_lock);
1250 
1251 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1252 		    0, NULL, NULL) == 0)  {
1253 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1254 		} else {
1255 			cmn_err(CE_WARN,
1256 			    "Couldn't bind process for zfs pool \"%s\" to "
1257 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1258 		}
1259 
1260 		mutex_exit(&curproc->p_lock);
1261 		mutex_exit(&pidlock);
1262 		mutex_exit(&cpu_lock);
1263 		pool_unlock();
1264 	}
1265 
1266 	if (zio_taskq_sysdc) {
1267 		sysdc_thread_enter(curthread, 100, 0);
1268 	}
1269 
1270 	spa->spa_proc = curproc;
1271 	spa->spa_did = curthread->t_did;
1272 
1273 	spa_create_zio_taskqs(spa);
1274 
1275 	mutex_enter(&spa->spa_proc_lock);
1276 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1277 
1278 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1279 	cv_broadcast(&spa->spa_proc_cv);
1280 
1281 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1282 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1283 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1284 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1285 
1286 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1287 	spa->spa_proc_state = SPA_PROC_GONE;
1288 	spa->spa_proc = &p0;
1289 	cv_broadcast(&spa->spa_proc_cv);
1290 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1291 
1292 	mutex_enter(&curproc->p_lock);
1293 	lwp_exit();
1294 }
1295 #endif
1296 
1297 /*
1298  * Activate an uninitialized pool.
1299  */
1300 static void
1301 spa_activate(spa_t *spa, spa_mode_t mode)
1302 {
1303 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1304 
1305 	spa->spa_state = POOL_STATE_ACTIVE;
1306 	spa->spa_mode = mode;
1307 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1308 
1309 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1310 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1311 	spa->spa_embedded_log_class =
1312 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1313 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1314 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1315 
1316 	/* Try to create a covering process */
1317 	mutex_enter(&spa->spa_proc_lock);
1318 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1319 	ASSERT(spa->spa_proc == &p0);
1320 	spa->spa_did = 0;
1321 
1322 	(void) spa_create_process;
1323 #ifdef HAVE_SPA_THREAD
1324 	/* Only create a process if we're going to be around a while. */
1325 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1326 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1327 		    NULL, 0) == 0) {
1328 			spa->spa_proc_state = SPA_PROC_CREATED;
1329 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1330 				cv_wait(&spa->spa_proc_cv,
1331 				    &spa->spa_proc_lock);
1332 			}
1333 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1334 			ASSERT(spa->spa_proc != &p0);
1335 			ASSERT(spa->spa_did != 0);
1336 		} else {
1337 #ifdef _KERNEL
1338 			cmn_err(CE_WARN,
1339 			    "Couldn't create process for zfs pool \"%s\"\n",
1340 			    spa->spa_name);
1341 #endif
1342 		}
1343 	}
1344 #endif /* HAVE_SPA_THREAD */
1345 	mutex_exit(&spa->spa_proc_lock);
1346 
1347 	/* If we didn't create a process, we need to create our taskqs. */
1348 	if (spa->spa_proc == &p0) {
1349 		spa_create_zio_taskqs(spa);
1350 	}
1351 
1352 	for (size_t i = 0; i < TXG_SIZE; i++) {
1353 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1354 		    ZIO_FLAG_CANFAIL);
1355 	}
1356 
1357 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1358 	    offsetof(vdev_t, vdev_config_dirty_node));
1359 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1360 	    offsetof(objset_t, os_evicting_node));
1361 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1362 	    offsetof(vdev_t, vdev_state_dirty_node));
1363 
1364 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1365 	    offsetof(struct vdev, vdev_txg_node));
1366 
1367 	avl_create(&spa->spa_errlist_scrub,
1368 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1369 	    offsetof(spa_error_entry_t, se_avl));
1370 	avl_create(&spa->spa_errlist_last,
1371 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1372 	    offsetof(spa_error_entry_t, se_avl));
1373 	avl_create(&spa->spa_errlist_healed,
1374 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1375 	    offsetof(spa_error_entry_t, se_avl));
1376 
1377 	spa_activate_os(spa);
1378 
1379 	spa_keystore_init(&spa->spa_keystore);
1380 
1381 	/*
1382 	 * This taskq is used to perform zvol-minor-related tasks
1383 	 * asynchronously. This has several advantages, including easy
1384 	 * resolution of various deadlocks.
1385 	 *
1386 	 * The taskq must be single threaded to ensure tasks are always
1387 	 * processed in the order in which they were dispatched.
1388 	 *
1389 	 * A taskq per pool allows one to keep the pools independent.
1390 	 * This way if one pool is suspended, it will not impact another.
1391 	 *
1392 	 * The preferred location to dispatch a zvol minor task is a sync
1393 	 * task. In this context, there is easy access to the spa_t and minimal
1394 	 * error handling is required because the sync task must succeed.
1395 	 */
1396 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1397 	    1, INT_MAX, 0);
1398 
1399 	/*
1400 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1401 	 * pool traverse code from monopolizing the global (and limited)
1402 	 * system_taskq by inappropriately scheduling long running tasks on it.
1403 	 */
1404 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1405 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1406 
1407 	/*
1408 	 * The taskq to upgrade datasets in this pool. Currently used by
1409 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1410 	 */
1411 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1412 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1413 }
1414 
1415 /*
1416  * Opposite of spa_activate().
1417  */
1418 static void
1419 spa_deactivate(spa_t *spa)
1420 {
1421 	ASSERT(spa->spa_sync_on == B_FALSE);
1422 	ASSERT(spa->spa_dsl_pool == NULL);
1423 	ASSERT(spa->spa_root_vdev == NULL);
1424 	ASSERT(spa->spa_async_zio_root == NULL);
1425 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1426 
1427 	spa_evicting_os_wait(spa);
1428 
1429 	if (spa->spa_zvol_taskq) {
1430 		taskq_destroy(spa->spa_zvol_taskq);
1431 		spa->spa_zvol_taskq = NULL;
1432 	}
1433 
1434 	if (spa->spa_prefetch_taskq) {
1435 		taskq_destroy(spa->spa_prefetch_taskq);
1436 		spa->spa_prefetch_taskq = NULL;
1437 	}
1438 
1439 	if (spa->spa_upgrade_taskq) {
1440 		taskq_destroy(spa->spa_upgrade_taskq);
1441 		spa->spa_upgrade_taskq = NULL;
1442 	}
1443 
1444 	txg_list_destroy(&spa->spa_vdev_txg_list);
1445 
1446 	list_destroy(&spa->spa_config_dirty_list);
1447 	list_destroy(&spa->spa_evicting_os_list);
1448 	list_destroy(&spa->spa_state_dirty_list);
1449 
1450 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1451 
1452 	for (int t = 0; t < ZIO_TYPES; t++) {
1453 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1454 			spa_taskqs_fini(spa, t, q);
1455 		}
1456 	}
1457 
1458 	for (size_t i = 0; i < TXG_SIZE; i++) {
1459 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1460 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1461 		spa->spa_txg_zio[i] = NULL;
1462 	}
1463 
1464 	metaslab_class_destroy(spa->spa_normal_class);
1465 	spa->spa_normal_class = NULL;
1466 
1467 	metaslab_class_destroy(spa->spa_log_class);
1468 	spa->spa_log_class = NULL;
1469 
1470 	metaslab_class_destroy(spa->spa_embedded_log_class);
1471 	spa->spa_embedded_log_class = NULL;
1472 
1473 	metaslab_class_destroy(spa->spa_special_class);
1474 	spa->spa_special_class = NULL;
1475 
1476 	metaslab_class_destroy(spa->spa_dedup_class);
1477 	spa->spa_dedup_class = NULL;
1478 
1479 	/*
1480 	 * If this was part of an import or the open otherwise failed, we may
1481 	 * still have errors left in the queues.  Empty them just in case.
1482 	 */
1483 	spa_errlog_drain(spa);
1484 	avl_destroy(&spa->spa_errlist_scrub);
1485 	avl_destroy(&spa->spa_errlist_last);
1486 	avl_destroy(&spa->spa_errlist_healed);
1487 
1488 	spa_keystore_fini(&spa->spa_keystore);
1489 
1490 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1491 
1492 	mutex_enter(&spa->spa_proc_lock);
1493 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1494 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1495 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1496 		cv_broadcast(&spa->spa_proc_cv);
1497 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1498 			ASSERT(spa->spa_proc != &p0);
1499 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1500 		}
1501 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1502 		spa->spa_proc_state = SPA_PROC_NONE;
1503 	}
1504 	ASSERT(spa->spa_proc == &p0);
1505 	mutex_exit(&spa->spa_proc_lock);
1506 
1507 	/*
1508 	 * We want to make sure spa_thread() has actually exited the ZFS
1509 	 * module, so that the module can't be unloaded out from underneath
1510 	 * it.
1511 	 */
1512 	if (spa->spa_did != 0) {
1513 		thread_join(spa->spa_did);
1514 		spa->spa_did = 0;
1515 	}
1516 
1517 	spa_deactivate_os(spa);
1518 
1519 }
1520 
1521 /*
1522  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1523  * will create all the necessary vdevs in the appropriate layout, with each vdev
1524  * in the CLOSED state.  This will prep the pool before open/creation/import.
1525  * All vdev validation is done by the vdev_alloc() routine.
1526  */
1527 int
1528 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1529     uint_t id, int atype)
1530 {
1531 	nvlist_t **child;
1532 	uint_t children;
1533 	int error;
1534 
1535 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1536 		return (error);
1537 
1538 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1539 		return (0);
1540 
1541 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1542 	    &child, &children);
1543 
1544 	if (error == ENOENT)
1545 		return (0);
1546 
1547 	if (error) {
1548 		vdev_free(*vdp);
1549 		*vdp = NULL;
1550 		return (SET_ERROR(EINVAL));
1551 	}
1552 
1553 	for (int c = 0; c < children; c++) {
1554 		vdev_t *vd;
1555 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1556 		    atype)) != 0) {
1557 			vdev_free(*vdp);
1558 			*vdp = NULL;
1559 			return (error);
1560 		}
1561 	}
1562 
1563 	ASSERT(*vdp != NULL);
1564 
1565 	return (0);
1566 }
1567 
1568 static boolean_t
1569 spa_should_flush_logs_on_unload(spa_t *spa)
1570 {
1571 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1572 		return (B_FALSE);
1573 
1574 	if (!spa_writeable(spa))
1575 		return (B_FALSE);
1576 
1577 	if (!spa->spa_sync_on)
1578 		return (B_FALSE);
1579 
1580 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1581 		return (B_FALSE);
1582 
1583 	if (zfs_keep_log_spacemaps_at_export)
1584 		return (B_FALSE);
1585 
1586 	return (B_TRUE);
1587 }
1588 
1589 /*
1590  * Opens a transaction that will set the flag that will instruct
1591  * spa_sync to attempt to flush all the metaslabs for that txg.
1592  */
1593 static void
1594 spa_unload_log_sm_flush_all(spa_t *spa)
1595 {
1596 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1597 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1598 
1599 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1600 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1601 
1602 	dmu_tx_commit(tx);
1603 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1604 }
1605 
1606 static void
1607 spa_unload_log_sm_metadata(spa_t *spa)
1608 {
1609 	void *cookie = NULL;
1610 	spa_log_sm_t *sls;
1611 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1612 	    &cookie)) != NULL) {
1613 		VERIFY0(sls->sls_mscount);
1614 		kmem_free(sls, sizeof (spa_log_sm_t));
1615 	}
1616 
1617 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1618 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1619 		VERIFY0(e->lse_mscount);
1620 		list_remove(&spa->spa_log_summary, e);
1621 		kmem_free(e, sizeof (log_summary_entry_t));
1622 	}
1623 
1624 	spa->spa_unflushed_stats.sus_nblocks = 0;
1625 	spa->spa_unflushed_stats.sus_memused = 0;
1626 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1627 }
1628 
1629 static void
1630 spa_destroy_aux_threads(spa_t *spa)
1631 {
1632 	if (spa->spa_condense_zthr != NULL) {
1633 		zthr_destroy(spa->spa_condense_zthr);
1634 		spa->spa_condense_zthr = NULL;
1635 	}
1636 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1637 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1638 		spa->spa_checkpoint_discard_zthr = NULL;
1639 	}
1640 	if (spa->spa_livelist_delete_zthr != NULL) {
1641 		zthr_destroy(spa->spa_livelist_delete_zthr);
1642 		spa->spa_livelist_delete_zthr = NULL;
1643 	}
1644 	if (spa->spa_livelist_condense_zthr != NULL) {
1645 		zthr_destroy(spa->spa_livelist_condense_zthr);
1646 		spa->spa_livelist_condense_zthr = NULL;
1647 	}
1648 }
1649 
1650 /*
1651  * Opposite of spa_load().
1652  */
1653 static void
1654 spa_unload(spa_t *spa)
1655 {
1656 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1657 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1658 
1659 	spa_import_progress_remove(spa_guid(spa));
1660 	spa_load_note(spa, "UNLOADING");
1661 
1662 	spa_wake_waiters(spa);
1663 
1664 	/*
1665 	 * If we have set the spa_final_txg, we have already performed the
1666 	 * tasks below in spa_export_common(). We should not redo it here since
1667 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1668 	 */
1669 	if (spa->spa_final_txg == UINT64_MAX) {
1670 		/*
1671 		 * If the log space map feature is enabled and the pool is
1672 		 * getting exported (but not destroyed), we want to spend some
1673 		 * time flushing as many metaslabs as we can in an attempt to
1674 		 * destroy log space maps and save import time.
1675 		 */
1676 		if (spa_should_flush_logs_on_unload(spa))
1677 			spa_unload_log_sm_flush_all(spa);
1678 
1679 		/*
1680 		 * Stop async tasks.
1681 		 */
1682 		spa_async_suspend(spa);
1683 
1684 		if (spa->spa_root_vdev) {
1685 			vdev_t *root_vdev = spa->spa_root_vdev;
1686 			vdev_initialize_stop_all(root_vdev,
1687 			    VDEV_INITIALIZE_ACTIVE);
1688 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1689 			vdev_autotrim_stop_all(spa);
1690 			vdev_rebuild_stop_all(spa);
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * Stop syncing.
1696 	 */
1697 	if (spa->spa_sync_on) {
1698 		txg_sync_stop(spa->spa_dsl_pool);
1699 		spa->spa_sync_on = B_FALSE;
1700 	}
1701 
1702 	/*
1703 	 * This ensures that there is no async metaslab prefetching
1704 	 * while we attempt to unload the spa.
1705 	 */
1706 	if (spa->spa_root_vdev != NULL) {
1707 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1708 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1709 			if (vc->vdev_mg != NULL)
1710 				taskq_wait(vc->vdev_mg->mg_taskq);
1711 		}
1712 	}
1713 
1714 	if (spa->spa_mmp.mmp_thread)
1715 		mmp_thread_stop(spa);
1716 
1717 	/*
1718 	 * Wait for any outstanding async I/O to complete.
1719 	 */
1720 	if (spa->spa_async_zio_root != NULL) {
1721 		for (int i = 0; i < max_ncpus; i++)
1722 			(void) zio_wait(spa->spa_async_zio_root[i]);
1723 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1724 		spa->spa_async_zio_root = NULL;
1725 	}
1726 
1727 	if (spa->spa_vdev_removal != NULL) {
1728 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1729 		spa->spa_vdev_removal = NULL;
1730 	}
1731 
1732 	spa_destroy_aux_threads(spa);
1733 
1734 	spa_condense_fini(spa);
1735 
1736 	bpobj_close(&spa->spa_deferred_bpobj);
1737 
1738 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1739 
1740 	/*
1741 	 * Close all vdevs.
1742 	 */
1743 	if (spa->spa_root_vdev)
1744 		vdev_free(spa->spa_root_vdev);
1745 	ASSERT(spa->spa_root_vdev == NULL);
1746 
1747 	/*
1748 	 * Close the dsl pool.
1749 	 */
1750 	if (spa->spa_dsl_pool) {
1751 		dsl_pool_close(spa->spa_dsl_pool);
1752 		spa->spa_dsl_pool = NULL;
1753 		spa->spa_meta_objset = NULL;
1754 	}
1755 
1756 	ddt_unload(spa);
1757 	brt_unload(spa);
1758 	spa_unload_log_sm_metadata(spa);
1759 
1760 	/*
1761 	 * Drop and purge level 2 cache
1762 	 */
1763 	spa_l2cache_drop(spa);
1764 
1765 	if (spa->spa_spares.sav_vdevs) {
1766 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
1767 			vdev_free(spa->spa_spares.sav_vdevs[i]);
1768 		kmem_free(spa->spa_spares.sav_vdevs,
1769 		    spa->spa_spares.sav_count * sizeof (void *));
1770 		spa->spa_spares.sav_vdevs = NULL;
1771 	}
1772 	if (spa->spa_spares.sav_config) {
1773 		nvlist_free(spa->spa_spares.sav_config);
1774 		spa->spa_spares.sav_config = NULL;
1775 	}
1776 	spa->spa_spares.sav_count = 0;
1777 
1778 	if (spa->spa_l2cache.sav_vdevs) {
1779 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1780 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1781 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1782 		}
1783 		kmem_free(spa->spa_l2cache.sav_vdevs,
1784 		    spa->spa_l2cache.sav_count * sizeof (void *));
1785 		spa->spa_l2cache.sav_vdevs = NULL;
1786 	}
1787 	if (spa->spa_l2cache.sav_config) {
1788 		nvlist_free(spa->spa_l2cache.sav_config);
1789 		spa->spa_l2cache.sav_config = NULL;
1790 	}
1791 	spa->spa_l2cache.sav_count = 0;
1792 
1793 	spa->spa_async_suspended = 0;
1794 
1795 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1796 
1797 	if (spa->spa_comment != NULL) {
1798 		spa_strfree(spa->spa_comment);
1799 		spa->spa_comment = NULL;
1800 	}
1801 	if (spa->spa_compatibility != NULL) {
1802 		spa_strfree(spa->spa_compatibility);
1803 		spa->spa_compatibility = NULL;
1804 	}
1805 
1806 	spa_config_exit(spa, SCL_ALL, spa);
1807 }
1808 
1809 /*
1810  * Load (or re-load) the current list of vdevs describing the active spares for
1811  * this pool.  When this is called, we have some form of basic information in
1812  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1813  * then re-generate a more complete list including status information.
1814  */
1815 void
1816 spa_load_spares(spa_t *spa)
1817 {
1818 	nvlist_t **spares;
1819 	uint_t nspares;
1820 	int i;
1821 	vdev_t *vd, *tvd;
1822 
1823 #ifndef _KERNEL
1824 	/*
1825 	 * zdb opens both the current state of the pool and the
1826 	 * checkpointed state (if present), with a different spa_t.
1827 	 *
1828 	 * As spare vdevs are shared among open pools, we skip loading
1829 	 * them when we load the checkpointed state of the pool.
1830 	 */
1831 	if (!spa_writeable(spa))
1832 		return;
1833 #endif
1834 
1835 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1836 
1837 	/*
1838 	 * First, close and free any existing spare vdevs.
1839 	 */
1840 	if (spa->spa_spares.sav_vdevs) {
1841 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
1842 			vd = spa->spa_spares.sav_vdevs[i];
1843 
1844 			/* Undo the call to spa_activate() below */
1845 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1846 			    B_FALSE)) != NULL && tvd->vdev_isspare)
1847 				spa_spare_remove(tvd);
1848 			vdev_close(vd);
1849 			vdev_free(vd);
1850 		}
1851 
1852 		kmem_free(spa->spa_spares.sav_vdevs,
1853 		    spa->spa_spares.sav_count * sizeof (void *));
1854 	}
1855 
1856 	if (spa->spa_spares.sav_config == NULL)
1857 		nspares = 0;
1858 	else
1859 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1860 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1861 
1862 	spa->spa_spares.sav_count = (int)nspares;
1863 	spa->spa_spares.sav_vdevs = NULL;
1864 
1865 	if (nspares == 0)
1866 		return;
1867 
1868 	/*
1869 	 * Construct the array of vdevs, opening them to get status in the
1870 	 * process.   For each spare, there is potentially two different vdev_t
1871 	 * structures associated with it: one in the list of spares (used only
1872 	 * for basic validation purposes) and one in the active vdev
1873 	 * configuration (if it's spared in).  During this phase we open and
1874 	 * validate each vdev on the spare list.  If the vdev also exists in the
1875 	 * active configuration, then we also mark this vdev as an active spare.
1876 	 */
1877 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1878 	    KM_SLEEP);
1879 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1880 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1881 		    VDEV_ALLOC_SPARE) == 0);
1882 		ASSERT(vd != NULL);
1883 
1884 		spa->spa_spares.sav_vdevs[i] = vd;
1885 
1886 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1887 		    B_FALSE)) != NULL) {
1888 			if (!tvd->vdev_isspare)
1889 				spa_spare_add(tvd);
1890 
1891 			/*
1892 			 * We only mark the spare active if we were successfully
1893 			 * able to load the vdev.  Otherwise, importing a pool
1894 			 * with a bad active spare would result in strange
1895 			 * behavior, because multiple pool would think the spare
1896 			 * is actively in use.
1897 			 *
1898 			 * There is a vulnerability here to an equally bizarre
1899 			 * circumstance, where a dead active spare is later
1900 			 * brought back to life (onlined or otherwise).  Given
1901 			 * the rarity of this scenario, and the extra complexity
1902 			 * it adds, we ignore the possibility.
1903 			 */
1904 			if (!vdev_is_dead(tvd))
1905 				spa_spare_activate(tvd);
1906 		}
1907 
1908 		vd->vdev_top = vd;
1909 		vd->vdev_aux = &spa->spa_spares;
1910 
1911 		if (vdev_open(vd) != 0)
1912 			continue;
1913 
1914 		if (vdev_validate_aux(vd) == 0)
1915 			spa_spare_add(vd);
1916 	}
1917 
1918 	/*
1919 	 * Recompute the stashed list of spares, with status information
1920 	 * this time.
1921 	 */
1922 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1923 
1924 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1925 	    KM_SLEEP);
1926 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1927 		spares[i] = vdev_config_generate(spa,
1928 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1929 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1930 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1931 	    spa->spa_spares.sav_count);
1932 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1933 		nvlist_free(spares[i]);
1934 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1935 }
1936 
1937 /*
1938  * Load (or re-load) the current list of vdevs describing the active l2cache for
1939  * this pool.  When this is called, we have some form of basic information in
1940  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1941  * then re-generate a more complete list including status information.
1942  * Devices which are already active have their details maintained, and are
1943  * not re-opened.
1944  */
1945 void
1946 spa_load_l2cache(spa_t *spa)
1947 {
1948 	nvlist_t **l2cache = NULL;
1949 	uint_t nl2cache;
1950 	int i, j, oldnvdevs;
1951 	uint64_t guid;
1952 	vdev_t *vd, **oldvdevs, **newvdevs;
1953 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1954 
1955 #ifndef _KERNEL
1956 	/*
1957 	 * zdb opens both the current state of the pool and the
1958 	 * checkpointed state (if present), with a different spa_t.
1959 	 *
1960 	 * As L2 caches are part of the ARC which is shared among open
1961 	 * pools, we skip loading them when we load the checkpointed
1962 	 * state of the pool.
1963 	 */
1964 	if (!spa_writeable(spa))
1965 		return;
1966 #endif
1967 
1968 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1969 
1970 	oldvdevs = sav->sav_vdevs;
1971 	oldnvdevs = sav->sav_count;
1972 	sav->sav_vdevs = NULL;
1973 	sav->sav_count = 0;
1974 
1975 	if (sav->sav_config == NULL) {
1976 		nl2cache = 0;
1977 		newvdevs = NULL;
1978 		goto out;
1979 	}
1980 
1981 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1982 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1983 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1984 
1985 	/*
1986 	 * Process new nvlist of vdevs.
1987 	 */
1988 	for (i = 0; i < nl2cache; i++) {
1989 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1990 
1991 		newvdevs[i] = NULL;
1992 		for (j = 0; j < oldnvdevs; j++) {
1993 			vd = oldvdevs[j];
1994 			if (vd != NULL && guid == vd->vdev_guid) {
1995 				/*
1996 				 * Retain previous vdev for add/remove ops.
1997 				 */
1998 				newvdevs[i] = vd;
1999 				oldvdevs[j] = NULL;
2000 				break;
2001 			}
2002 		}
2003 
2004 		if (newvdevs[i] == NULL) {
2005 			/*
2006 			 * Create new vdev
2007 			 */
2008 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2009 			    VDEV_ALLOC_L2CACHE) == 0);
2010 			ASSERT(vd != NULL);
2011 			newvdevs[i] = vd;
2012 
2013 			/*
2014 			 * Commit this vdev as an l2cache device,
2015 			 * even if it fails to open.
2016 			 */
2017 			spa_l2cache_add(vd);
2018 
2019 			vd->vdev_top = vd;
2020 			vd->vdev_aux = sav;
2021 
2022 			spa_l2cache_activate(vd);
2023 
2024 			if (vdev_open(vd) != 0)
2025 				continue;
2026 
2027 			(void) vdev_validate_aux(vd);
2028 
2029 			if (!vdev_is_dead(vd))
2030 				l2arc_add_vdev(spa, vd);
2031 
2032 			/*
2033 			 * Upon cache device addition to a pool or pool
2034 			 * creation with a cache device or if the header
2035 			 * of the device is invalid we issue an async
2036 			 * TRIM command for the whole device which will
2037 			 * execute if l2arc_trim_ahead > 0.
2038 			 */
2039 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2040 		}
2041 	}
2042 
2043 	sav->sav_vdevs = newvdevs;
2044 	sav->sav_count = (int)nl2cache;
2045 
2046 	/*
2047 	 * Recompute the stashed list of l2cache devices, with status
2048 	 * information this time.
2049 	 */
2050 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2051 
2052 	if (sav->sav_count > 0)
2053 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2054 		    KM_SLEEP);
2055 	for (i = 0; i < sav->sav_count; i++)
2056 		l2cache[i] = vdev_config_generate(spa,
2057 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2058 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2059 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2060 
2061 out:
2062 	/*
2063 	 * Purge vdevs that were dropped
2064 	 */
2065 	if (oldvdevs) {
2066 		for (i = 0; i < oldnvdevs; i++) {
2067 			uint64_t pool;
2068 
2069 			vd = oldvdevs[i];
2070 			if (vd != NULL) {
2071 				ASSERT(vd->vdev_isl2cache);
2072 
2073 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2074 				    pool != 0ULL && l2arc_vdev_present(vd))
2075 					l2arc_remove_vdev(vd);
2076 				vdev_clear_stats(vd);
2077 				vdev_free(vd);
2078 			}
2079 		}
2080 
2081 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2082 	}
2083 
2084 	for (i = 0; i < sav->sav_count; i++)
2085 		nvlist_free(l2cache[i]);
2086 	if (sav->sav_count)
2087 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2088 }
2089 
2090 static int
2091 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2092 {
2093 	dmu_buf_t *db;
2094 	char *packed = NULL;
2095 	size_t nvsize = 0;
2096 	int error;
2097 	*value = NULL;
2098 
2099 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2100 	if (error)
2101 		return (error);
2102 
2103 	nvsize = *(uint64_t *)db->db_data;
2104 	dmu_buf_rele(db, FTAG);
2105 
2106 	packed = vmem_alloc(nvsize, KM_SLEEP);
2107 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2108 	    DMU_READ_PREFETCH);
2109 	if (error == 0)
2110 		error = nvlist_unpack(packed, nvsize, value, 0);
2111 	vmem_free(packed, nvsize);
2112 
2113 	return (error);
2114 }
2115 
2116 /*
2117  * Concrete top-level vdevs that are not missing and are not logs. At every
2118  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2119  */
2120 static uint64_t
2121 spa_healthy_core_tvds(spa_t *spa)
2122 {
2123 	vdev_t *rvd = spa->spa_root_vdev;
2124 	uint64_t tvds = 0;
2125 
2126 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2127 		vdev_t *vd = rvd->vdev_child[i];
2128 		if (vd->vdev_islog)
2129 			continue;
2130 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2131 			tvds++;
2132 	}
2133 
2134 	return (tvds);
2135 }
2136 
2137 /*
2138  * Checks to see if the given vdev could not be opened, in which case we post a
2139  * sysevent to notify the autoreplace code that the device has been removed.
2140  */
2141 static void
2142 spa_check_removed(vdev_t *vd)
2143 {
2144 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2145 		spa_check_removed(vd->vdev_child[c]);
2146 
2147 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2148 	    vdev_is_concrete(vd)) {
2149 		zfs_post_autoreplace(vd->vdev_spa, vd);
2150 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2151 	}
2152 }
2153 
2154 static int
2155 spa_check_for_missing_logs(spa_t *spa)
2156 {
2157 	vdev_t *rvd = spa->spa_root_vdev;
2158 
2159 	/*
2160 	 * If we're doing a normal import, then build up any additional
2161 	 * diagnostic information about missing log devices.
2162 	 * We'll pass this up to the user for further processing.
2163 	 */
2164 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2165 		nvlist_t **child, *nv;
2166 		uint64_t idx = 0;
2167 
2168 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2169 		    KM_SLEEP);
2170 		nv = fnvlist_alloc();
2171 
2172 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2173 			vdev_t *tvd = rvd->vdev_child[c];
2174 
2175 			/*
2176 			 * We consider a device as missing only if it failed
2177 			 * to open (i.e. offline or faulted is not considered
2178 			 * as missing).
2179 			 */
2180 			if (tvd->vdev_islog &&
2181 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2182 				child[idx++] = vdev_config_generate(spa, tvd,
2183 				    B_FALSE, VDEV_CONFIG_MISSING);
2184 			}
2185 		}
2186 
2187 		if (idx > 0) {
2188 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2189 			    (const nvlist_t * const *)child, idx);
2190 			fnvlist_add_nvlist(spa->spa_load_info,
2191 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2192 
2193 			for (uint64_t i = 0; i < idx; i++)
2194 				nvlist_free(child[i]);
2195 		}
2196 		nvlist_free(nv);
2197 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2198 
2199 		if (idx > 0) {
2200 			spa_load_failed(spa, "some log devices are missing");
2201 			vdev_dbgmsg_print_tree(rvd, 2);
2202 			return (SET_ERROR(ENXIO));
2203 		}
2204 	} else {
2205 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2206 			vdev_t *tvd = rvd->vdev_child[c];
2207 
2208 			if (tvd->vdev_islog &&
2209 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2210 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2211 				spa_load_note(spa, "some log devices are "
2212 				    "missing, ZIL is dropped.");
2213 				vdev_dbgmsg_print_tree(rvd, 2);
2214 				break;
2215 			}
2216 		}
2217 	}
2218 
2219 	return (0);
2220 }
2221 
2222 /*
2223  * Check for missing log devices
2224  */
2225 static boolean_t
2226 spa_check_logs(spa_t *spa)
2227 {
2228 	boolean_t rv = B_FALSE;
2229 	dsl_pool_t *dp = spa_get_dsl(spa);
2230 
2231 	switch (spa->spa_log_state) {
2232 	default:
2233 		break;
2234 	case SPA_LOG_MISSING:
2235 		/* need to recheck in case slog has been restored */
2236 	case SPA_LOG_UNKNOWN:
2237 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2238 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2239 		if (rv)
2240 			spa_set_log_state(spa, SPA_LOG_MISSING);
2241 		break;
2242 	}
2243 	return (rv);
2244 }
2245 
2246 /*
2247  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2248  */
2249 static boolean_t
2250 spa_passivate_log(spa_t *spa)
2251 {
2252 	vdev_t *rvd = spa->spa_root_vdev;
2253 	boolean_t slog_found = B_FALSE;
2254 
2255 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2256 
2257 	for (int c = 0; c < rvd->vdev_children; c++) {
2258 		vdev_t *tvd = rvd->vdev_child[c];
2259 
2260 		if (tvd->vdev_islog) {
2261 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2262 			metaslab_group_passivate(tvd->vdev_mg);
2263 			slog_found = B_TRUE;
2264 		}
2265 	}
2266 
2267 	return (slog_found);
2268 }
2269 
2270 /*
2271  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2272  */
2273 static void
2274 spa_activate_log(spa_t *spa)
2275 {
2276 	vdev_t *rvd = spa->spa_root_vdev;
2277 
2278 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2279 
2280 	for (int c = 0; c < rvd->vdev_children; c++) {
2281 		vdev_t *tvd = rvd->vdev_child[c];
2282 
2283 		if (tvd->vdev_islog) {
2284 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2285 			metaslab_group_activate(tvd->vdev_mg);
2286 		}
2287 	}
2288 }
2289 
2290 int
2291 spa_reset_logs(spa_t *spa)
2292 {
2293 	int error;
2294 
2295 	error = dmu_objset_find(spa_name(spa), zil_reset,
2296 	    NULL, DS_FIND_CHILDREN);
2297 	if (error == 0) {
2298 		/*
2299 		 * We successfully offlined the log device, sync out the
2300 		 * current txg so that the "stubby" block can be removed
2301 		 * by zil_sync().
2302 		 */
2303 		txg_wait_synced(spa->spa_dsl_pool, 0);
2304 	}
2305 	return (error);
2306 }
2307 
2308 static void
2309 spa_aux_check_removed(spa_aux_vdev_t *sav)
2310 {
2311 	for (int i = 0; i < sav->sav_count; i++)
2312 		spa_check_removed(sav->sav_vdevs[i]);
2313 }
2314 
2315 void
2316 spa_claim_notify(zio_t *zio)
2317 {
2318 	spa_t *spa = zio->io_spa;
2319 
2320 	if (zio->io_error)
2321 		return;
2322 
2323 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2324 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2325 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2326 	mutex_exit(&spa->spa_props_lock);
2327 }
2328 
2329 typedef struct spa_load_error {
2330 	boolean_t	sle_verify_data;
2331 	uint64_t	sle_meta_count;
2332 	uint64_t	sle_data_count;
2333 } spa_load_error_t;
2334 
2335 static void
2336 spa_load_verify_done(zio_t *zio)
2337 {
2338 	blkptr_t *bp = zio->io_bp;
2339 	spa_load_error_t *sle = zio->io_private;
2340 	dmu_object_type_t type = BP_GET_TYPE(bp);
2341 	int error = zio->io_error;
2342 	spa_t *spa = zio->io_spa;
2343 
2344 	abd_free(zio->io_abd);
2345 	if (error) {
2346 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2347 		    type != DMU_OT_INTENT_LOG)
2348 			atomic_inc_64(&sle->sle_meta_count);
2349 		else
2350 			atomic_inc_64(&sle->sle_data_count);
2351 	}
2352 
2353 	mutex_enter(&spa->spa_scrub_lock);
2354 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2355 	cv_broadcast(&spa->spa_scrub_io_cv);
2356 	mutex_exit(&spa->spa_scrub_lock);
2357 }
2358 
2359 /*
2360  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2361  * By default, we set it to 1/16th of the arc.
2362  */
2363 static uint_t spa_load_verify_shift = 4;
2364 static int spa_load_verify_metadata = B_TRUE;
2365 static int spa_load_verify_data = B_TRUE;
2366 
2367 static int
2368 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2369     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2370 {
2371 	zio_t *rio = arg;
2372 	spa_load_error_t *sle = rio->io_private;
2373 
2374 	(void) zilog, (void) dnp;
2375 
2376 	/*
2377 	 * Note: normally this routine will not be called if
2378 	 * spa_load_verify_metadata is not set.  However, it may be useful
2379 	 * to manually set the flag after the traversal has begun.
2380 	 */
2381 	if (!spa_load_verify_metadata)
2382 		return (0);
2383 
2384 	/*
2385 	 * Sanity check the block pointer in order to detect obvious damage
2386 	 * before using the contents in subsequent checks or in zio_read().
2387 	 * When damaged consider it to be a metadata error since we cannot
2388 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2389 	 */
2390 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2391 		atomic_inc_64(&sle->sle_meta_count);
2392 		return (0);
2393 	}
2394 
2395 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2396 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2397 		return (0);
2398 
2399 	if (!BP_IS_METADATA(bp) &&
2400 	    (!spa_load_verify_data || !sle->sle_verify_data))
2401 		return (0);
2402 
2403 	uint64_t maxinflight_bytes =
2404 	    arc_target_bytes() >> spa_load_verify_shift;
2405 	size_t size = BP_GET_PSIZE(bp);
2406 
2407 	mutex_enter(&spa->spa_scrub_lock);
2408 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2409 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2410 	spa->spa_load_verify_bytes += size;
2411 	mutex_exit(&spa->spa_scrub_lock);
2412 
2413 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2414 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2415 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2416 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2417 	return (0);
2418 }
2419 
2420 static int
2421 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2422 {
2423 	(void) dp, (void) arg;
2424 
2425 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2426 		return (SET_ERROR(ENAMETOOLONG));
2427 
2428 	return (0);
2429 }
2430 
2431 static int
2432 spa_load_verify(spa_t *spa)
2433 {
2434 	zio_t *rio;
2435 	spa_load_error_t sle = { 0 };
2436 	zpool_load_policy_t policy;
2437 	boolean_t verify_ok = B_FALSE;
2438 	int error = 0;
2439 
2440 	zpool_get_load_policy(spa->spa_config, &policy);
2441 
2442 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2443 	    policy.zlp_maxmeta == UINT64_MAX)
2444 		return (0);
2445 
2446 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2447 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2448 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2449 	    DS_FIND_CHILDREN);
2450 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2451 	if (error != 0)
2452 		return (error);
2453 
2454 	/*
2455 	 * Verify data only if we are rewinding or error limit was set.
2456 	 * Otherwise nothing except dbgmsg care about it to waste time.
2457 	 */
2458 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2459 	    (policy.zlp_maxdata < UINT64_MAX);
2460 
2461 	rio = zio_root(spa, NULL, &sle,
2462 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2463 
2464 	if (spa_load_verify_metadata) {
2465 		if (spa->spa_extreme_rewind) {
2466 			spa_load_note(spa, "performing a complete scan of the "
2467 			    "pool since extreme rewind is on. This may take "
2468 			    "a very long time.\n  (spa_load_verify_data=%u, "
2469 			    "spa_load_verify_metadata=%u)",
2470 			    spa_load_verify_data, spa_load_verify_metadata);
2471 		}
2472 
2473 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2474 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2475 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2476 	}
2477 
2478 	(void) zio_wait(rio);
2479 	ASSERT0(spa->spa_load_verify_bytes);
2480 
2481 	spa->spa_load_meta_errors = sle.sle_meta_count;
2482 	spa->spa_load_data_errors = sle.sle_data_count;
2483 
2484 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2485 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2486 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2487 		    (u_longlong_t)sle.sle_data_count);
2488 	}
2489 
2490 	if (spa_load_verify_dryrun ||
2491 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2492 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2493 		int64_t loss = 0;
2494 
2495 		verify_ok = B_TRUE;
2496 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2497 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2498 
2499 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2500 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2501 		    spa->spa_load_txg_ts);
2502 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2503 		    loss);
2504 		fnvlist_add_uint64(spa->spa_load_info,
2505 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2506 		fnvlist_add_uint64(spa->spa_load_info,
2507 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2508 	} else {
2509 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2510 	}
2511 
2512 	if (spa_load_verify_dryrun)
2513 		return (0);
2514 
2515 	if (error) {
2516 		if (error != ENXIO && error != EIO)
2517 			error = SET_ERROR(EIO);
2518 		return (error);
2519 	}
2520 
2521 	return (verify_ok ? 0 : EIO);
2522 }
2523 
2524 /*
2525  * Find a value in the pool props object.
2526  */
2527 static void
2528 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2529 {
2530 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2531 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2532 }
2533 
2534 /*
2535  * Find a value in the pool directory object.
2536  */
2537 static int
2538 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2539 {
2540 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2541 	    name, sizeof (uint64_t), 1, val);
2542 
2543 	if (error != 0 && (error != ENOENT || log_enoent)) {
2544 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2545 		    "[error=%d]", name, error);
2546 	}
2547 
2548 	return (error);
2549 }
2550 
2551 static int
2552 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2553 {
2554 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2555 	return (SET_ERROR(err));
2556 }
2557 
2558 boolean_t
2559 spa_livelist_delete_check(spa_t *spa)
2560 {
2561 	return (spa->spa_livelists_to_delete != 0);
2562 }
2563 
2564 static boolean_t
2565 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2566 {
2567 	(void) z;
2568 	spa_t *spa = arg;
2569 	return (spa_livelist_delete_check(spa));
2570 }
2571 
2572 static int
2573 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2574 {
2575 	spa_t *spa = arg;
2576 	zio_free(spa, tx->tx_txg, bp);
2577 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2578 	    -bp_get_dsize_sync(spa, bp),
2579 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2580 	return (0);
2581 }
2582 
2583 static int
2584 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2585 {
2586 	int err;
2587 	zap_cursor_t zc;
2588 	zap_attribute_t za;
2589 	zap_cursor_init(&zc, os, zap_obj);
2590 	err = zap_cursor_retrieve(&zc, &za);
2591 	zap_cursor_fini(&zc);
2592 	if (err == 0)
2593 		*llp = za.za_first_integer;
2594 	return (err);
2595 }
2596 
2597 /*
2598  * Components of livelist deletion that must be performed in syncing
2599  * context: freeing block pointers and updating the pool-wide data
2600  * structures to indicate how much work is left to do
2601  */
2602 typedef struct sublist_delete_arg {
2603 	spa_t *spa;
2604 	dsl_deadlist_t *ll;
2605 	uint64_t key;
2606 	bplist_t *to_free;
2607 } sublist_delete_arg_t;
2608 
2609 static void
2610 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2611 {
2612 	sublist_delete_arg_t *sda = arg;
2613 	spa_t *spa = sda->spa;
2614 	dsl_deadlist_t *ll = sda->ll;
2615 	uint64_t key = sda->key;
2616 	bplist_t *to_free = sda->to_free;
2617 
2618 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2619 	dsl_deadlist_remove_entry(ll, key, tx);
2620 }
2621 
2622 typedef struct livelist_delete_arg {
2623 	spa_t *spa;
2624 	uint64_t ll_obj;
2625 	uint64_t zap_obj;
2626 } livelist_delete_arg_t;
2627 
2628 static void
2629 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2630 {
2631 	livelist_delete_arg_t *lda = arg;
2632 	spa_t *spa = lda->spa;
2633 	uint64_t ll_obj = lda->ll_obj;
2634 	uint64_t zap_obj = lda->zap_obj;
2635 	objset_t *mos = spa->spa_meta_objset;
2636 	uint64_t count;
2637 
2638 	/* free the livelist and decrement the feature count */
2639 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2640 	dsl_deadlist_free(mos, ll_obj, tx);
2641 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2642 	VERIFY0(zap_count(mos, zap_obj, &count));
2643 	if (count == 0) {
2644 		/* no more livelists to delete */
2645 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2646 		    DMU_POOL_DELETED_CLONES, tx));
2647 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2648 		spa->spa_livelists_to_delete = 0;
2649 		spa_notify_waiters(spa);
2650 	}
2651 }
2652 
2653 /*
2654  * Load in the value for the livelist to be removed and open it. Then,
2655  * load its first sublist and determine which block pointers should actually
2656  * be freed. Then, call a synctask which performs the actual frees and updates
2657  * the pool-wide livelist data.
2658  */
2659 static void
2660 spa_livelist_delete_cb(void *arg, zthr_t *z)
2661 {
2662 	spa_t *spa = arg;
2663 	uint64_t ll_obj = 0, count;
2664 	objset_t *mos = spa->spa_meta_objset;
2665 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2666 	/*
2667 	 * Determine the next livelist to delete. This function should only
2668 	 * be called if there is at least one deleted clone.
2669 	 */
2670 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2671 	VERIFY0(zap_count(mos, ll_obj, &count));
2672 	if (count > 0) {
2673 		dsl_deadlist_t *ll;
2674 		dsl_deadlist_entry_t *dle;
2675 		bplist_t to_free;
2676 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2677 		dsl_deadlist_open(ll, mos, ll_obj);
2678 		dle = dsl_deadlist_first(ll);
2679 		ASSERT3P(dle, !=, NULL);
2680 		bplist_create(&to_free);
2681 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2682 		    z, NULL);
2683 		if (err == 0) {
2684 			sublist_delete_arg_t sync_arg = {
2685 			    .spa = spa,
2686 			    .ll = ll,
2687 			    .key = dle->dle_mintxg,
2688 			    .to_free = &to_free
2689 			};
2690 			zfs_dbgmsg("deleting sublist (id %llu) from"
2691 			    " livelist %llu, %lld remaining",
2692 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2693 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2694 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2695 			    sublist_delete_sync, &sync_arg, 0,
2696 			    ZFS_SPACE_CHECK_DESTROY));
2697 		} else {
2698 			VERIFY3U(err, ==, EINTR);
2699 		}
2700 		bplist_clear(&to_free);
2701 		bplist_destroy(&to_free);
2702 		dsl_deadlist_close(ll);
2703 		kmem_free(ll, sizeof (dsl_deadlist_t));
2704 	} else {
2705 		livelist_delete_arg_t sync_arg = {
2706 		    .spa = spa,
2707 		    .ll_obj = ll_obj,
2708 		    .zap_obj = zap_obj
2709 		};
2710 		zfs_dbgmsg("deletion of livelist %llu completed",
2711 		    (u_longlong_t)ll_obj);
2712 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2713 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2714 	}
2715 }
2716 
2717 static void
2718 spa_start_livelist_destroy_thread(spa_t *spa)
2719 {
2720 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2721 	spa->spa_livelist_delete_zthr =
2722 	    zthr_create("z_livelist_destroy",
2723 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2724 	    minclsyspri);
2725 }
2726 
2727 typedef struct livelist_new_arg {
2728 	bplist_t *allocs;
2729 	bplist_t *frees;
2730 } livelist_new_arg_t;
2731 
2732 static int
2733 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2734     dmu_tx_t *tx)
2735 {
2736 	ASSERT(tx == NULL);
2737 	livelist_new_arg_t *lna = arg;
2738 	if (bp_freed) {
2739 		bplist_append(lna->frees, bp);
2740 	} else {
2741 		bplist_append(lna->allocs, bp);
2742 		zfs_livelist_condense_new_alloc++;
2743 	}
2744 	return (0);
2745 }
2746 
2747 typedef struct livelist_condense_arg {
2748 	spa_t *spa;
2749 	bplist_t to_keep;
2750 	uint64_t first_size;
2751 	uint64_t next_size;
2752 } livelist_condense_arg_t;
2753 
2754 static void
2755 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2756 {
2757 	livelist_condense_arg_t *lca = arg;
2758 	spa_t *spa = lca->spa;
2759 	bplist_t new_frees;
2760 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2761 
2762 	/* Have we been cancelled? */
2763 	if (spa->spa_to_condense.cancelled) {
2764 		zfs_livelist_condense_sync_cancel++;
2765 		goto out;
2766 	}
2767 
2768 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2769 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2770 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2771 
2772 	/*
2773 	 * It's possible that the livelist was changed while the zthr was
2774 	 * running. Therefore, we need to check for new blkptrs in the two
2775 	 * entries being condensed and continue to track them in the livelist.
2776 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2777 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2778 	 * we need to sort them into two different bplists.
2779 	 */
2780 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2781 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2782 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2783 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2784 
2785 	bplist_create(&new_frees);
2786 	livelist_new_arg_t new_bps = {
2787 	    .allocs = &lca->to_keep,
2788 	    .frees = &new_frees,
2789 	};
2790 
2791 	if (cur_first_size > lca->first_size) {
2792 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2793 		    livelist_track_new_cb, &new_bps, lca->first_size));
2794 	}
2795 	if (cur_next_size > lca->next_size) {
2796 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2797 		    livelist_track_new_cb, &new_bps, lca->next_size));
2798 	}
2799 
2800 	dsl_deadlist_clear_entry(first, ll, tx);
2801 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2802 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2803 
2804 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2805 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2806 	bplist_destroy(&new_frees);
2807 
2808 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2809 	dsl_dataset_name(ds, dsname);
2810 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2811 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2812 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2813 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2814 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2815 	    (u_longlong_t)cur_next_size,
2816 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2817 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2818 out:
2819 	dmu_buf_rele(ds->ds_dbuf, spa);
2820 	spa->spa_to_condense.ds = NULL;
2821 	bplist_clear(&lca->to_keep);
2822 	bplist_destroy(&lca->to_keep);
2823 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2824 	spa->spa_to_condense.syncing = B_FALSE;
2825 }
2826 
2827 static void
2828 spa_livelist_condense_cb(void *arg, zthr_t *t)
2829 {
2830 	while (zfs_livelist_condense_zthr_pause &&
2831 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2832 		delay(1);
2833 
2834 	spa_t *spa = arg;
2835 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2836 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2837 	uint64_t first_size, next_size;
2838 
2839 	livelist_condense_arg_t *lca =
2840 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2841 	bplist_create(&lca->to_keep);
2842 
2843 	/*
2844 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2845 	 * so we have minimal work in syncing context to condense.
2846 	 *
2847 	 * We save bpobj sizes (first_size and next_size) to use later in
2848 	 * syncing context to determine if entries were added to these sublists
2849 	 * while in open context. This is possible because the clone is still
2850 	 * active and open for normal writes and we want to make sure the new,
2851 	 * unprocessed blockpointers are inserted into the livelist normally.
2852 	 *
2853 	 * Note that dsl_process_sub_livelist() both stores the size number of
2854 	 * blockpointers and iterates over them while the bpobj's lock held, so
2855 	 * the sizes returned to us are consistent which what was actually
2856 	 * processed.
2857 	 */
2858 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2859 	    &first_size);
2860 	if (err == 0)
2861 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2862 		    t, &next_size);
2863 
2864 	if (err == 0) {
2865 		while (zfs_livelist_condense_sync_pause &&
2866 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2867 			delay(1);
2868 
2869 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2870 		dmu_tx_mark_netfree(tx);
2871 		dmu_tx_hold_space(tx, 1);
2872 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2873 		if (err == 0) {
2874 			/*
2875 			 * Prevent the condense zthr restarting before
2876 			 * the synctask completes.
2877 			 */
2878 			spa->spa_to_condense.syncing = B_TRUE;
2879 			lca->spa = spa;
2880 			lca->first_size = first_size;
2881 			lca->next_size = next_size;
2882 			dsl_sync_task_nowait(spa_get_dsl(spa),
2883 			    spa_livelist_condense_sync, lca, tx);
2884 			dmu_tx_commit(tx);
2885 			return;
2886 		}
2887 	}
2888 	/*
2889 	 * Condensing can not continue: either it was externally stopped or
2890 	 * we were unable to assign to a tx because the pool has run out of
2891 	 * space. In the second case, we'll just end up trying to condense
2892 	 * again in a later txg.
2893 	 */
2894 	ASSERT(err != 0);
2895 	bplist_clear(&lca->to_keep);
2896 	bplist_destroy(&lca->to_keep);
2897 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2898 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2899 	spa->spa_to_condense.ds = NULL;
2900 	if (err == EINTR)
2901 		zfs_livelist_condense_zthr_cancel++;
2902 }
2903 
2904 /*
2905  * Check that there is something to condense but that a condense is not
2906  * already in progress and that condensing has not been cancelled.
2907  */
2908 static boolean_t
2909 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2910 {
2911 	(void) z;
2912 	spa_t *spa = arg;
2913 	if ((spa->spa_to_condense.ds != NULL) &&
2914 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2915 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2916 		return (B_TRUE);
2917 	}
2918 	return (B_FALSE);
2919 }
2920 
2921 static void
2922 spa_start_livelist_condensing_thread(spa_t *spa)
2923 {
2924 	spa->spa_to_condense.ds = NULL;
2925 	spa->spa_to_condense.first = NULL;
2926 	spa->spa_to_condense.next = NULL;
2927 	spa->spa_to_condense.syncing = B_FALSE;
2928 	spa->spa_to_condense.cancelled = B_FALSE;
2929 
2930 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2931 	spa->spa_livelist_condense_zthr =
2932 	    zthr_create("z_livelist_condense",
2933 	    spa_livelist_condense_cb_check,
2934 	    spa_livelist_condense_cb, spa, minclsyspri);
2935 }
2936 
2937 static void
2938 spa_spawn_aux_threads(spa_t *spa)
2939 {
2940 	ASSERT(spa_writeable(spa));
2941 
2942 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2943 
2944 	spa_start_indirect_condensing_thread(spa);
2945 	spa_start_livelist_destroy_thread(spa);
2946 	spa_start_livelist_condensing_thread(spa);
2947 
2948 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2949 	spa->spa_checkpoint_discard_zthr =
2950 	    zthr_create("z_checkpoint_discard",
2951 	    spa_checkpoint_discard_thread_check,
2952 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2953 }
2954 
2955 /*
2956  * Fix up config after a partly-completed split.  This is done with the
2957  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2958  * pool have that entry in their config, but only the splitting one contains
2959  * a list of all the guids of the vdevs that are being split off.
2960  *
2961  * This function determines what to do with that list: either rejoin
2962  * all the disks to the pool, or complete the splitting process.  To attempt
2963  * the rejoin, each disk that is offlined is marked online again, and
2964  * we do a reopen() call.  If the vdev label for every disk that was
2965  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2966  * then we call vdev_split() on each disk, and complete the split.
2967  *
2968  * Otherwise we leave the config alone, with all the vdevs in place in
2969  * the original pool.
2970  */
2971 static void
2972 spa_try_repair(spa_t *spa, nvlist_t *config)
2973 {
2974 	uint_t extracted;
2975 	uint64_t *glist;
2976 	uint_t i, gcount;
2977 	nvlist_t *nvl;
2978 	vdev_t **vd;
2979 	boolean_t attempt_reopen;
2980 
2981 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2982 		return;
2983 
2984 	/* check that the config is complete */
2985 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2986 	    &glist, &gcount) != 0)
2987 		return;
2988 
2989 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2990 
2991 	/* attempt to online all the vdevs & validate */
2992 	attempt_reopen = B_TRUE;
2993 	for (i = 0; i < gcount; i++) {
2994 		if (glist[i] == 0)	/* vdev is hole */
2995 			continue;
2996 
2997 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2998 		if (vd[i] == NULL) {
2999 			/*
3000 			 * Don't bother attempting to reopen the disks;
3001 			 * just do the split.
3002 			 */
3003 			attempt_reopen = B_FALSE;
3004 		} else {
3005 			/* attempt to re-online it */
3006 			vd[i]->vdev_offline = B_FALSE;
3007 		}
3008 	}
3009 
3010 	if (attempt_reopen) {
3011 		vdev_reopen(spa->spa_root_vdev);
3012 
3013 		/* check each device to see what state it's in */
3014 		for (extracted = 0, i = 0; i < gcount; i++) {
3015 			if (vd[i] != NULL &&
3016 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3017 				break;
3018 			++extracted;
3019 		}
3020 	}
3021 
3022 	/*
3023 	 * If every disk has been moved to the new pool, or if we never
3024 	 * even attempted to look at them, then we split them off for
3025 	 * good.
3026 	 */
3027 	if (!attempt_reopen || gcount == extracted) {
3028 		for (i = 0; i < gcount; i++)
3029 			if (vd[i] != NULL)
3030 				vdev_split(vd[i]);
3031 		vdev_reopen(spa->spa_root_vdev);
3032 	}
3033 
3034 	kmem_free(vd, gcount * sizeof (vdev_t *));
3035 }
3036 
3037 static int
3038 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3039 {
3040 	const char *ereport = FM_EREPORT_ZFS_POOL;
3041 	int error;
3042 
3043 	spa->spa_load_state = state;
3044 	(void) spa_import_progress_set_state(spa_guid(spa),
3045 	    spa_load_state(spa));
3046 
3047 	gethrestime(&spa->spa_loaded_ts);
3048 	error = spa_load_impl(spa, type, &ereport);
3049 
3050 	/*
3051 	 * Don't count references from objsets that are already closed
3052 	 * and are making their way through the eviction process.
3053 	 */
3054 	spa_evicting_os_wait(spa);
3055 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3056 	if (error) {
3057 		if (error != EEXIST) {
3058 			spa->spa_loaded_ts.tv_sec = 0;
3059 			spa->spa_loaded_ts.tv_nsec = 0;
3060 		}
3061 		if (error != EBADF) {
3062 			(void) zfs_ereport_post(ereport, spa,
3063 			    NULL, NULL, NULL, 0);
3064 		}
3065 	}
3066 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3067 	spa->spa_ena = 0;
3068 
3069 	(void) spa_import_progress_set_state(spa_guid(spa),
3070 	    spa_load_state(spa));
3071 
3072 	return (error);
3073 }
3074 
3075 #ifdef ZFS_DEBUG
3076 /*
3077  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3078  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3079  * spa's per-vdev ZAP list.
3080  */
3081 static uint64_t
3082 vdev_count_verify_zaps(vdev_t *vd)
3083 {
3084 	spa_t *spa = vd->vdev_spa;
3085 	uint64_t total = 0;
3086 
3087 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3088 	    vd->vdev_root_zap != 0) {
3089 		total++;
3090 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3091 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3092 	}
3093 	if (vd->vdev_top_zap != 0) {
3094 		total++;
3095 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3096 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3097 	}
3098 	if (vd->vdev_leaf_zap != 0) {
3099 		total++;
3100 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3101 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3102 	}
3103 
3104 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3105 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3106 	}
3107 
3108 	return (total);
3109 }
3110 #else
3111 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3112 #endif
3113 
3114 /*
3115  * Determine whether the activity check is required.
3116  */
3117 static boolean_t
3118 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3119     nvlist_t *config)
3120 {
3121 	uint64_t state = 0;
3122 	uint64_t hostid = 0;
3123 	uint64_t tryconfig_txg = 0;
3124 	uint64_t tryconfig_timestamp = 0;
3125 	uint16_t tryconfig_mmp_seq = 0;
3126 	nvlist_t *nvinfo;
3127 
3128 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3129 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3130 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3131 		    &tryconfig_txg);
3132 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3133 		    &tryconfig_timestamp);
3134 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3135 		    &tryconfig_mmp_seq);
3136 	}
3137 
3138 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3139 
3140 	/*
3141 	 * Disable the MMP activity check - This is used by zdb which
3142 	 * is intended to be used on potentially active pools.
3143 	 */
3144 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3145 		return (B_FALSE);
3146 
3147 	/*
3148 	 * Skip the activity check when the MMP feature is disabled.
3149 	 */
3150 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3151 		return (B_FALSE);
3152 
3153 	/*
3154 	 * If the tryconfig_ values are nonzero, they are the results of an
3155 	 * earlier tryimport.  If they all match the uberblock we just found,
3156 	 * then the pool has not changed and we return false so we do not test
3157 	 * a second time.
3158 	 */
3159 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3160 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3161 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3162 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3163 		return (B_FALSE);
3164 
3165 	/*
3166 	 * Allow the activity check to be skipped when importing the pool
3167 	 * on the same host which last imported it.  Since the hostid from
3168 	 * configuration may be stale use the one read from the label.
3169 	 */
3170 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3171 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3172 
3173 	if (hostid == spa_get_hostid(spa))
3174 		return (B_FALSE);
3175 
3176 	/*
3177 	 * Skip the activity test when the pool was cleanly exported.
3178 	 */
3179 	if (state != POOL_STATE_ACTIVE)
3180 		return (B_FALSE);
3181 
3182 	return (B_TRUE);
3183 }
3184 
3185 /*
3186  * Nanoseconds the activity check must watch for changes on-disk.
3187  */
3188 static uint64_t
3189 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3190 {
3191 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3192 	uint64_t multihost_interval = MSEC2NSEC(
3193 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3194 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3195 	    multihost_interval);
3196 
3197 	/*
3198 	 * Local tunables determine a minimum duration except for the case
3199 	 * where we know when the remote host will suspend the pool if MMP
3200 	 * writes do not land.
3201 	 *
3202 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3203 	 * these cases and times.
3204 	 */
3205 
3206 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3207 
3208 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3209 	    MMP_FAIL_INT(ub) > 0) {
3210 
3211 		/* MMP on remote host will suspend pool after failed writes */
3212 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3213 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3214 
3215 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3216 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3217 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3218 		    (u_longlong_t)MMP_FAIL_INT(ub),
3219 		    (u_longlong_t)MMP_INTERVAL(ub),
3220 		    (u_longlong_t)import_intervals);
3221 
3222 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3223 	    MMP_FAIL_INT(ub) == 0) {
3224 
3225 		/* MMP on remote host will never suspend pool */
3226 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3227 		    ub->ub_mmp_delay) * import_intervals);
3228 
3229 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3230 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3231 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3232 		    (u_longlong_t)MMP_INTERVAL(ub),
3233 		    (u_longlong_t)ub->ub_mmp_delay,
3234 		    (u_longlong_t)import_intervals);
3235 
3236 	} else if (MMP_VALID(ub)) {
3237 		/*
3238 		 * zfs-0.7 compatibility case
3239 		 */
3240 
3241 		import_delay = MAX(import_delay, (multihost_interval +
3242 		    ub->ub_mmp_delay) * import_intervals);
3243 
3244 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3245 		    "import_intervals=%llu leaves=%u",
3246 		    (u_longlong_t)import_delay,
3247 		    (u_longlong_t)ub->ub_mmp_delay,
3248 		    (u_longlong_t)import_intervals,
3249 		    vdev_count_leaves(spa));
3250 	} else {
3251 		/* Using local tunings is the only reasonable option */
3252 		zfs_dbgmsg("pool last imported on non-MMP aware "
3253 		    "host using import_delay=%llu multihost_interval=%llu "
3254 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3255 		    (u_longlong_t)multihost_interval,
3256 		    (u_longlong_t)import_intervals);
3257 	}
3258 
3259 	return (import_delay);
3260 }
3261 
3262 /*
3263  * Perform the import activity check.  If the user canceled the import or
3264  * we detected activity then fail.
3265  */
3266 static int
3267 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3268 {
3269 	uint64_t txg = ub->ub_txg;
3270 	uint64_t timestamp = ub->ub_timestamp;
3271 	uint64_t mmp_config = ub->ub_mmp_config;
3272 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3273 	uint64_t import_delay;
3274 	hrtime_t import_expire;
3275 	nvlist_t *mmp_label = NULL;
3276 	vdev_t *rvd = spa->spa_root_vdev;
3277 	kcondvar_t cv;
3278 	kmutex_t mtx;
3279 	int error = 0;
3280 
3281 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3282 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3283 	mutex_enter(&mtx);
3284 
3285 	/*
3286 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3287 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3288 	 * the pool is known to be active on another host.
3289 	 *
3290 	 * Otherwise, the pool might be in use on another host.  Check for
3291 	 * changes in the uberblocks on disk if necessary.
3292 	 */
3293 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3294 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3295 		    ZPOOL_CONFIG_LOAD_INFO);
3296 
3297 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3298 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3299 			vdev_uberblock_load(rvd, ub, &mmp_label);
3300 			error = SET_ERROR(EREMOTEIO);
3301 			goto out;
3302 		}
3303 	}
3304 
3305 	import_delay = spa_activity_check_duration(spa, ub);
3306 
3307 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3308 	import_delay += import_delay * random_in_range(250) / 1000;
3309 
3310 	import_expire = gethrtime() + import_delay;
3311 
3312 	while (gethrtime() < import_expire) {
3313 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3314 		    NSEC2SEC(import_expire - gethrtime()));
3315 
3316 		vdev_uberblock_load(rvd, ub, &mmp_label);
3317 
3318 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3319 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3320 			zfs_dbgmsg("multihost activity detected "
3321 			    "txg %llu ub_txg  %llu "
3322 			    "timestamp %llu ub_timestamp  %llu "
3323 			    "mmp_config %#llx ub_mmp_config %#llx",
3324 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3325 			    (u_longlong_t)timestamp,
3326 			    (u_longlong_t)ub->ub_timestamp,
3327 			    (u_longlong_t)mmp_config,
3328 			    (u_longlong_t)ub->ub_mmp_config);
3329 
3330 			error = SET_ERROR(EREMOTEIO);
3331 			break;
3332 		}
3333 
3334 		if (mmp_label) {
3335 			nvlist_free(mmp_label);
3336 			mmp_label = NULL;
3337 		}
3338 
3339 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3340 		if (error != -1) {
3341 			error = SET_ERROR(EINTR);
3342 			break;
3343 		}
3344 		error = 0;
3345 	}
3346 
3347 out:
3348 	mutex_exit(&mtx);
3349 	mutex_destroy(&mtx);
3350 	cv_destroy(&cv);
3351 
3352 	/*
3353 	 * If the pool is determined to be active store the status in the
3354 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3355 	 * available from configuration read from disk store them as well.
3356 	 * This allows 'zpool import' to generate a more useful message.
3357 	 *
3358 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3359 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3360 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3361 	 */
3362 	if (error == EREMOTEIO) {
3363 		const char *hostname = "<unknown>";
3364 		uint64_t hostid = 0;
3365 
3366 		if (mmp_label) {
3367 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3368 				hostname = fnvlist_lookup_string(mmp_label,
3369 				    ZPOOL_CONFIG_HOSTNAME);
3370 				fnvlist_add_string(spa->spa_load_info,
3371 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3372 			}
3373 
3374 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3375 				hostid = fnvlist_lookup_uint64(mmp_label,
3376 				    ZPOOL_CONFIG_HOSTID);
3377 				fnvlist_add_uint64(spa->spa_load_info,
3378 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3379 			}
3380 		}
3381 
3382 		fnvlist_add_uint64(spa->spa_load_info,
3383 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3384 		fnvlist_add_uint64(spa->spa_load_info,
3385 		    ZPOOL_CONFIG_MMP_TXG, 0);
3386 
3387 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3388 	}
3389 
3390 	if (mmp_label)
3391 		nvlist_free(mmp_label);
3392 
3393 	return (error);
3394 }
3395 
3396 static int
3397 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3398 {
3399 	uint64_t hostid;
3400 	const char *hostname;
3401 	uint64_t myhostid = 0;
3402 
3403 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3404 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3405 		hostname = fnvlist_lookup_string(mos_config,
3406 		    ZPOOL_CONFIG_HOSTNAME);
3407 
3408 		myhostid = zone_get_hostid(NULL);
3409 
3410 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3411 			cmn_err(CE_WARN, "pool '%s' could not be "
3412 			    "loaded as it was last accessed by "
3413 			    "another system (host: %s hostid: 0x%llx). "
3414 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3415 			    "ZFS-8000-EY",
3416 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3417 			spa_load_failed(spa, "hostid verification failed: pool "
3418 			    "last accessed by host: %s (hostid: 0x%llx)",
3419 			    hostname, (u_longlong_t)hostid);
3420 			return (SET_ERROR(EBADF));
3421 		}
3422 	}
3423 
3424 	return (0);
3425 }
3426 
3427 static int
3428 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3429 {
3430 	int error = 0;
3431 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3432 	int parse;
3433 	vdev_t *rvd;
3434 	uint64_t pool_guid;
3435 	const char *comment;
3436 	const char *compatibility;
3437 
3438 	/*
3439 	 * Versioning wasn't explicitly added to the label until later, so if
3440 	 * it's not present treat it as the initial version.
3441 	 */
3442 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3443 	    &spa->spa_ubsync.ub_version) != 0)
3444 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3445 
3446 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3447 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3448 		    ZPOOL_CONFIG_POOL_GUID);
3449 		return (SET_ERROR(EINVAL));
3450 	}
3451 
3452 	/*
3453 	 * If we are doing an import, ensure that the pool is not already
3454 	 * imported by checking if its pool guid already exists in the
3455 	 * spa namespace.
3456 	 *
3457 	 * The only case that we allow an already imported pool to be
3458 	 * imported again, is when the pool is checkpointed and we want to
3459 	 * look at its checkpointed state from userland tools like zdb.
3460 	 */
3461 #ifdef _KERNEL
3462 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3463 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3464 	    spa_guid_exists(pool_guid, 0)) {
3465 #else
3466 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3467 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3468 	    spa_guid_exists(pool_guid, 0) &&
3469 	    !spa_importing_readonly_checkpoint(spa)) {
3470 #endif
3471 		spa_load_failed(spa, "a pool with guid %llu is already open",
3472 		    (u_longlong_t)pool_guid);
3473 		return (SET_ERROR(EEXIST));
3474 	}
3475 
3476 	spa->spa_config_guid = pool_guid;
3477 
3478 	nvlist_free(spa->spa_load_info);
3479 	spa->spa_load_info = fnvlist_alloc();
3480 
3481 	ASSERT(spa->spa_comment == NULL);
3482 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3483 		spa->spa_comment = spa_strdup(comment);
3484 
3485 	ASSERT(spa->spa_compatibility == NULL);
3486 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3487 	    &compatibility) == 0)
3488 		spa->spa_compatibility = spa_strdup(compatibility);
3489 
3490 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3491 	    &spa->spa_config_txg);
3492 
3493 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3494 		spa->spa_config_splitting = fnvlist_dup(nvl);
3495 
3496 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3497 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3498 		    ZPOOL_CONFIG_VDEV_TREE);
3499 		return (SET_ERROR(EINVAL));
3500 	}
3501 
3502 	/*
3503 	 * Create "The Godfather" zio to hold all async IOs
3504 	 */
3505 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3506 	    KM_SLEEP);
3507 	for (int i = 0; i < max_ncpus; i++) {
3508 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3509 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3510 		    ZIO_FLAG_GODFATHER);
3511 	}
3512 
3513 	/*
3514 	 * Parse the configuration into a vdev tree.  We explicitly set the
3515 	 * value that will be returned by spa_version() since parsing the
3516 	 * configuration requires knowing the version number.
3517 	 */
3518 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3519 	parse = (type == SPA_IMPORT_EXISTING ?
3520 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3521 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3522 	spa_config_exit(spa, SCL_ALL, FTAG);
3523 
3524 	if (error != 0) {
3525 		spa_load_failed(spa, "unable to parse config [error=%d]",
3526 		    error);
3527 		return (error);
3528 	}
3529 
3530 	ASSERT(spa->spa_root_vdev == rvd);
3531 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3532 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3533 
3534 	if (type != SPA_IMPORT_ASSEMBLE) {
3535 		ASSERT(spa_guid(spa) == pool_guid);
3536 	}
3537 
3538 	return (0);
3539 }
3540 
3541 /*
3542  * Recursively open all vdevs in the vdev tree. This function is called twice:
3543  * first with the untrusted config, then with the trusted config.
3544  */
3545 static int
3546 spa_ld_open_vdevs(spa_t *spa)
3547 {
3548 	int error = 0;
3549 
3550 	/*
3551 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3552 	 * missing/unopenable for the root vdev to be still considered openable.
3553 	 */
3554 	if (spa->spa_trust_config) {
3555 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3556 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3557 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3558 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3559 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3560 	} else {
3561 		spa->spa_missing_tvds_allowed = 0;
3562 	}
3563 
3564 	spa->spa_missing_tvds_allowed =
3565 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3566 
3567 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3568 	error = vdev_open(spa->spa_root_vdev);
3569 	spa_config_exit(spa, SCL_ALL, FTAG);
3570 
3571 	if (spa->spa_missing_tvds != 0) {
3572 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3573 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3574 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3575 			/*
3576 			 * Although theoretically we could allow users to open
3577 			 * incomplete pools in RW mode, we'd need to add a lot
3578 			 * of extra logic (e.g. adjust pool space to account
3579 			 * for missing vdevs).
3580 			 * This limitation also prevents users from accidentally
3581 			 * opening the pool in RW mode during data recovery and
3582 			 * damaging it further.
3583 			 */
3584 			spa_load_note(spa, "pools with missing top-level "
3585 			    "vdevs can only be opened in read-only mode.");
3586 			error = SET_ERROR(ENXIO);
3587 		} else {
3588 			spa_load_note(spa, "current settings allow for maximum "
3589 			    "%lld missing top-level vdevs at this stage.",
3590 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3591 		}
3592 	}
3593 	if (error != 0) {
3594 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3595 		    error);
3596 	}
3597 	if (spa->spa_missing_tvds != 0 || error != 0)
3598 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3599 
3600 	return (error);
3601 }
3602 
3603 /*
3604  * We need to validate the vdev labels against the configuration that
3605  * we have in hand. This function is called twice: first with an untrusted
3606  * config, then with a trusted config. The validation is more strict when the
3607  * config is trusted.
3608  */
3609 static int
3610 spa_ld_validate_vdevs(spa_t *spa)
3611 {
3612 	int error = 0;
3613 	vdev_t *rvd = spa->spa_root_vdev;
3614 
3615 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3616 	error = vdev_validate(rvd);
3617 	spa_config_exit(spa, SCL_ALL, FTAG);
3618 
3619 	if (error != 0) {
3620 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3621 		return (error);
3622 	}
3623 
3624 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3625 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3626 		    "some vdevs");
3627 		vdev_dbgmsg_print_tree(rvd, 2);
3628 		return (SET_ERROR(ENXIO));
3629 	}
3630 
3631 	return (0);
3632 }
3633 
3634 static void
3635 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3636 {
3637 	spa->spa_state = POOL_STATE_ACTIVE;
3638 	spa->spa_ubsync = spa->spa_uberblock;
3639 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3640 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3641 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3642 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3643 	spa->spa_claim_max_txg = spa->spa_first_txg;
3644 	spa->spa_prev_software_version = ub->ub_software_version;
3645 }
3646 
3647 static int
3648 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3649 {
3650 	vdev_t *rvd = spa->spa_root_vdev;
3651 	nvlist_t *label;
3652 	uberblock_t *ub = &spa->spa_uberblock;
3653 	boolean_t activity_check = B_FALSE;
3654 
3655 	/*
3656 	 * If we are opening the checkpointed state of the pool by
3657 	 * rewinding to it, at this point we will have written the
3658 	 * checkpointed uberblock to the vdev labels, so searching
3659 	 * the labels will find the right uberblock.  However, if
3660 	 * we are opening the checkpointed state read-only, we have
3661 	 * not modified the labels. Therefore, we must ignore the
3662 	 * labels and continue using the spa_uberblock that was set
3663 	 * by spa_ld_checkpoint_rewind.
3664 	 *
3665 	 * Note that it would be fine to ignore the labels when
3666 	 * rewinding (opening writeable) as well. However, if we
3667 	 * crash just after writing the labels, we will end up
3668 	 * searching the labels. Doing so in the common case means
3669 	 * that this code path gets exercised normally, rather than
3670 	 * just in the edge case.
3671 	 */
3672 	if (ub->ub_checkpoint_txg != 0 &&
3673 	    spa_importing_readonly_checkpoint(spa)) {
3674 		spa_ld_select_uberblock_done(spa, ub);
3675 		return (0);
3676 	}
3677 
3678 	/*
3679 	 * Find the best uberblock.
3680 	 */
3681 	vdev_uberblock_load(rvd, ub, &label);
3682 
3683 	/*
3684 	 * If we weren't able to find a single valid uberblock, return failure.
3685 	 */
3686 	if (ub->ub_txg == 0) {
3687 		nvlist_free(label);
3688 		spa_load_failed(spa, "no valid uberblock found");
3689 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3690 	}
3691 
3692 	if (spa->spa_load_max_txg != UINT64_MAX) {
3693 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3694 		    (u_longlong_t)spa->spa_load_max_txg);
3695 	}
3696 	spa_load_note(spa, "using uberblock with txg=%llu",
3697 	    (u_longlong_t)ub->ub_txg);
3698 
3699 
3700 	/*
3701 	 * For pools which have the multihost property on determine if the
3702 	 * pool is truly inactive and can be safely imported.  Prevent
3703 	 * hosts which don't have a hostid set from importing the pool.
3704 	 */
3705 	activity_check = spa_activity_check_required(spa, ub, label,
3706 	    spa->spa_config);
3707 	if (activity_check) {
3708 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3709 		    spa_get_hostid(spa) == 0) {
3710 			nvlist_free(label);
3711 			fnvlist_add_uint64(spa->spa_load_info,
3712 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3713 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3714 		}
3715 
3716 		int error = spa_activity_check(spa, ub, spa->spa_config);
3717 		if (error) {
3718 			nvlist_free(label);
3719 			return (error);
3720 		}
3721 
3722 		fnvlist_add_uint64(spa->spa_load_info,
3723 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3724 		fnvlist_add_uint64(spa->spa_load_info,
3725 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3726 		fnvlist_add_uint16(spa->spa_load_info,
3727 		    ZPOOL_CONFIG_MMP_SEQ,
3728 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3729 	}
3730 
3731 	/*
3732 	 * If the pool has an unsupported version we can't open it.
3733 	 */
3734 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3735 		nvlist_free(label);
3736 		spa_load_failed(spa, "version %llu is not supported",
3737 		    (u_longlong_t)ub->ub_version);
3738 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3739 	}
3740 
3741 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3742 		nvlist_t *features;
3743 
3744 		/*
3745 		 * If we weren't able to find what's necessary for reading the
3746 		 * MOS in the label, return failure.
3747 		 */
3748 		if (label == NULL) {
3749 			spa_load_failed(spa, "label config unavailable");
3750 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3751 			    ENXIO));
3752 		}
3753 
3754 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3755 		    &features) != 0) {
3756 			nvlist_free(label);
3757 			spa_load_failed(spa, "invalid label: '%s' missing",
3758 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3759 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3760 			    ENXIO));
3761 		}
3762 
3763 		/*
3764 		 * Update our in-core representation with the definitive values
3765 		 * from the label.
3766 		 */
3767 		nvlist_free(spa->spa_label_features);
3768 		spa->spa_label_features = fnvlist_dup(features);
3769 	}
3770 
3771 	nvlist_free(label);
3772 
3773 	/*
3774 	 * Look through entries in the label nvlist's features_for_read. If
3775 	 * there is a feature listed there which we don't understand then we
3776 	 * cannot open a pool.
3777 	 */
3778 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3779 		nvlist_t *unsup_feat;
3780 
3781 		unsup_feat = fnvlist_alloc();
3782 
3783 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3784 		    NULL); nvp != NULL;
3785 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3786 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3787 				fnvlist_add_string(unsup_feat,
3788 				    nvpair_name(nvp), "");
3789 			}
3790 		}
3791 
3792 		if (!nvlist_empty(unsup_feat)) {
3793 			fnvlist_add_nvlist(spa->spa_load_info,
3794 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3795 			nvlist_free(unsup_feat);
3796 			spa_load_failed(spa, "some features are unsupported");
3797 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3798 			    ENOTSUP));
3799 		}
3800 
3801 		nvlist_free(unsup_feat);
3802 	}
3803 
3804 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3805 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3806 		spa_try_repair(spa, spa->spa_config);
3807 		spa_config_exit(spa, SCL_ALL, FTAG);
3808 		nvlist_free(spa->spa_config_splitting);
3809 		spa->spa_config_splitting = NULL;
3810 	}
3811 
3812 	/*
3813 	 * Initialize internal SPA structures.
3814 	 */
3815 	spa_ld_select_uberblock_done(spa, ub);
3816 
3817 	return (0);
3818 }
3819 
3820 static int
3821 spa_ld_open_rootbp(spa_t *spa)
3822 {
3823 	int error = 0;
3824 	vdev_t *rvd = spa->spa_root_vdev;
3825 
3826 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3827 	if (error != 0) {
3828 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3829 		    "[error=%d]", error);
3830 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3831 	}
3832 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3833 
3834 	return (0);
3835 }
3836 
3837 static int
3838 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3839     boolean_t reloading)
3840 {
3841 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3842 	nvlist_t *nv, *mos_config, *policy;
3843 	int error = 0, copy_error;
3844 	uint64_t healthy_tvds, healthy_tvds_mos;
3845 	uint64_t mos_config_txg;
3846 
3847 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3848 	    != 0)
3849 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3850 
3851 	/*
3852 	 * If we're assembling a pool from a split, the config provided is
3853 	 * already trusted so there is nothing to do.
3854 	 */
3855 	if (type == SPA_IMPORT_ASSEMBLE)
3856 		return (0);
3857 
3858 	healthy_tvds = spa_healthy_core_tvds(spa);
3859 
3860 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3861 	    != 0) {
3862 		spa_load_failed(spa, "unable to retrieve MOS config");
3863 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3864 	}
3865 
3866 	/*
3867 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3868 	 * the verification here.
3869 	 */
3870 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3871 		error = spa_verify_host(spa, mos_config);
3872 		if (error != 0) {
3873 			nvlist_free(mos_config);
3874 			return (error);
3875 		}
3876 	}
3877 
3878 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3879 
3880 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3881 
3882 	/*
3883 	 * Build a new vdev tree from the trusted config
3884 	 */
3885 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3886 	if (error != 0) {
3887 		nvlist_free(mos_config);
3888 		spa_config_exit(spa, SCL_ALL, FTAG);
3889 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3890 		    error);
3891 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3892 	}
3893 
3894 	/*
3895 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3896 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3897 	 * paths. We update the trusted MOS config with this information.
3898 	 * We first try to copy the paths with vdev_copy_path_strict, which
3899 	 * succeeds only when both configs have exactly the same vdev tree.
3900 	 * If that fails, we fall back to a more flexible method that has a
3901 	 * best effort policy.
3902 	 */
3903 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3904 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3905 		spa_load_note(spa, "provided vdev tree:");
3906 		vdev_dbgmsg_print_tree(rvd, 2);
3907 		spa_load_note(spa, "MOS vdev tree:");
3908 		vdev_dbgmsg_print_tree(mrvd, 2);
3909 	}
3910 	if (copy_error != 0) {
3911 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3912 		    "back to vdev_copy_path_relaxed");
3913 		vdev_copy_path_relaxed(rvd, mrvd);
3914 	}
3915 
3916 	vdev_close(rvd);
3917 	vdev_free(rvd);
3918 	spa->spa_root_vdev = mrvd;
3919 	rvd = mrvd;
3920 	spa_config_exit(spa, SCL_ALL, FTAG);
3921 
3922 	/*
3923 	 * We will use spa_config if we decide to reload the spa or if spa_load
3924 	 * fails and we rewind. We must thus regenerate the config using the
3925 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3926 	 * pass settings on how to load the pool and is not stored in the MOS.
3927 	 * We copy it over to our new, trusted config.
3928 	 */
3929 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3930 	    ZPOOL_CONFIG_POOL_TXG);
3931 	nvlist_free(mos_config);
3932 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3933 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3934 	    &policy) == 0)
3935 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3936 	spa_config_set(spa, mos_config);
3937 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3938 
3939 	/*
3940 	 * Now that we got the config from the MOS, we should be more strict
3941 	 * in checking blkptrs and can make assumptions about the consistency
3942 	 * of the vdev tree. spa_trust_config must be set to true before opening
3943 	 * vdevs in order for them to be writeable.
3944 	 */
3945 	spa->spa_trust_config = B_TRUE;
3946 
3947 	/*
3948 	 * Open and validate the new vdev tree
3949 	 */
3950 	error = spa_ld_open_vdevs(spa);
3951 	if (error != 0)
3952 		return (error);
3953 
3954 	error = spa_ld_validate_vdevs(spa);
3955 	if (error != 0)
3956 		return (error);
3957 
3958 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3959 		spa_load_note(spa, "final vdev tree:");
3960 		vdev_dbgmsg_print_tree(rvd, 2);
3961 	}
3962 
3963 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3964 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3965 		/*
3966 		 * Sanity check to make sure that we are indeed loading the
3967 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3968 		 * in the config provided and they happened to be the only ones
3969 		 * to have the latest uberblock, we could involuntarily perform
3970 		 * an extreme rewind.
3971 		 */
3972 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3973 		if (healthy_tvds_mos - healthy_tvds >=
3974 		    SPA_SYNC_MIN_VDEVS) {
3975 			spa_load_note(spa, "config provided misses too many "
3976 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3977 			    (u_longlong_t)healthy_tvds,
3978 			    (u_longlong_t)healthy_tvds_mos);
3979 			spa_load_note(spa, "vdev tree:");
3980 			vdev_dbgmsg_print_tree(rvd, 2);
3981 			if (reloading) {
3982 				spa_load_failed(spa, "config was already "
3983 				    "provided from MOS. Aborting.");
3984 				return (spa_vdev_err(rvd,
3985 				    VDEV_AUX_CORRUPT_DATA, EIO));
3986 			}
3987 			spa_load_note(spa, "spa must be reloaded using MOS "
3988 			    "config");
3989 			return (SET_ERROR(EAGAIN));
3990 		}
3991 	}
3992 
3993 	error = spa_check_for_missing_logs(spa);
3994 	if (error != 0)
3995 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3996 
3997 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3998 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3999 		    "guid sum (%llu != %llu)",
4000 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4001 		    (u_longlong_t)rvd->vdev_guid_sum);
4002 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4003 		    ENXIO));
4004 	}
4005 
4006 	return (0);
4007 }
4008 
4009 static int
4010 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4011 {
4012 	int error = 0;
4013 	vdev_t *rvd = spa->spa_root_vdev;
4014 
4015 	/*
4016 	 * Everything that we read before spa_remove_init() must be stored
4017 	 * on concreted vdevs.  Therefore we do this as early as possible.
4018 	 */
4019 	error = spa_remove_init(spa);
4020 	if (error != 0) {
4021 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4022 		    error);
4023 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4024 	}
4025 
4026 	/*
4027 	 * Retrieve information needed to condense indirect vdev mappings.
4028 	 */
4029 	error = spa_condense_init(spa);
4030 	if (error != 0) {
4031 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4032 		    error);
4033 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4034 	}
4035 
4036 	return (0);
4037 }
4038 
4039 static int
4040 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4041 {
4042 	int error = 0;
4043 	vdev_t *rvd = spa->spa_root_vdev;
4044 
4045 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4046 		boolean_t missing_feat_read = B_FALSE;
4047 		nvlist_t *unsup_feat, *enabled_feat;
4048 
4049 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4050 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4051 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4052 		}
4053 
4054 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4055 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4056 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4057 		}
4058 
4059 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4060 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4061 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4062 		}
4063 
4064 		enabled_feat = fnvlist_alloc();
4065 		unsup_feat = fnvlist_alloc();
4066 
4067 		if (!spa_features_check(spa, B_FALSE,
4068 		    unsup_feat, enabled_feat))
4069 			missing_feat_read = B_TRUE;
4070 
4071 		if (spa_writeable(spa) ||
4072 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4073 			if (!spa_features_check(spa, B_TRUE,
4074 			    unsup_feat, enabled_feat)) {
4075 				*missing_feat_writep = B_TRUE;
4076 			}
4077 		}
4078 
4079 		fnvlist_add_nvlist(spa->spa_load_info,
4080 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4081 
4082 		if (!nvlist_empty(unsup_feat)) {
4083 			fnvlist_add_nvlist(spa->spa_load_info,
4084 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4085 		}
4086 
4087 		fnvlist_free(enabled_feat);
4088 		fnvlist_free(unsup_feat);
4089 
4090 		if (!missing_feat_read) {
4091 			fnvlist_add_boolean(spa->spa_load_info,
4092 			    ZPOOL_CONFIG_CAN_RDONLY);
4093 		}
4094 
4095 		/*
4096 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4097 		 * twofold: to determine whether the pool is available for
4098 		 * import in read-write mode and (if it is not) whether the
4099 		 * pool is available for import in read-only mode. If the pool
4100 		 * is available for import in read-write mode, it is displayed
4101 		 * as available in userland; if it is not available for import
4102 		 * in read-only mode, it is displayed as unavailable in
4103 		 * userland. If the pool is available for import in read-only
4104 		 * mode but not read-write mode, it is displayed as unavailable
4105 		 * in userland with a special note that the pool is actually
4106 		 * available for open in read-only mode.
4107 		 *
4108 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4109 		 * missing a feature for write, we must first determine whether
4110 		 * the pool can be opened read-only before returning to
4111 		 * userland in order to know whether to display the
4112 		 * abovementioned note.
4113 		 */
4114 		if (missing_feat_read || (*missing_feat_writep &&
4115 		    spa_writeable(spa))) {
4116 			spa_load_failed(spa, "pool uses unsupported features");
4117 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4118 			    ENOTSUP));
4119 		}
4120 
4121 		/*
4122 		 * Load refcounts for ZFS features from disk into an in-memory
4123 		 * cache during SPA initialization.
4124 		 */
4125 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4126 			uint64_t refcount;
4127 
4128 			error = feature_get_refcount_from_disk(spa,
4129 			    &spa_feature_table[i], &refcount);
4130 			if (error == 0) {
4131 				spa->spa_feat_refcount_cache[i] = refcount;
4132 			} else if (error == ENOTSUP) {
4133 				spa->spa_feat_refcount_cache[i] =
4134 				    SPA_FEATURE_DISABLED;
4135 			} else {
4136 				spa_load_failed(spa, "error getting refcount "
4137 				    "for feature %s [error=%d]",
4138 				    spa_feature_table[i].fi_guid, error);
4139 				return (spa_vdev_err(rvd,
4140 				    VDEV_AUX_CORRUPT_DATA, EIO));
4141 			}
4142 		}
4143 	}
4144 
4145 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4146 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4147 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4148 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4149 	}
4150 
4151 	/*
4152 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4153 	 * is now a dependency. If this pool has encryption enabled without
4154 	 * bookmark_v2, trigger an errata message.
4155 	 */
4156 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4157 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4158 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4159 	}
4160 
4161 	return (0);
4162 }
4163 
4164 static int
4165 spa_ld_load_special_directories(spa_t *spa)
4166 {
4167 	int error = 0;
4168 	vdev_t *rvd = spa->spa_root_vdev;
4169 
4170 	spa->spa_is_initializing = B_TRUE;
4171 	error = dsl_pool_open(spa->spa_dsl_pool);
4172 	spa->spa_is_initializing = B_FALSE;
4173 	if (error != 0) {
4174 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4175 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4176 	}
4177 
4178 	return (0);
4179 }
4180 
4181 static int
4182 spa_ld_get_props(spa_t *spa)
4183 {
4184 	int error = 0;
4185 	uint64_t obj;
4186 	vdev_t *rvd = spa->spa_root_vdev;
4187 
4188 	/* Grab the checksum salt from the MOS. */
4189 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4190 	    DMU_POOL_CHECKSUM_SALT, 1,
4191 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4192 	    spa->spa_cksum_salt.zcs_bytes);
4193 	if (error == ENOENT) {
4194 		/* Generate a new salt for subsequent use */
4195 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4196 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4197 	} else if (error != 0) {
4198 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4199 		    "MOS [error=%d]", error);
4200 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4201 	}
4202 
4203 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4204 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4205 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4206 	if (error != 0) {
4207 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4208 		    "[error=%d]", error);
4209 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4210 	}
4211 
4212 	/*
4213 	 * Load the bit that tells us to use the new accounting function
4214 	 * (raid-z deflation).  If we have an older pool, this will not
4215 	 * be present.
4216 	 */
4217 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4218 	if (error != 0 && error != ENOENT)
4219 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4220 
4221 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4222 	    &spa->spa_creation_version, B_FALSE);
4223 	if (error != 0 && error != ENOENT)
4224 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4225 
4226 	/*
4227 	 * Load the persistent error log.  If we have an older pool, this will
4228 	 * not be present.
4229 	 */
4230 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4231 	    B_FALSE);
4232 	if (error != 0 && error != ENOENT)
4233 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4234 
4235 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4236 	    &spa->spa_errlog_scrub, B_FALSE);
4237 	if (error != 0 && error != ENOENT)
4238 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4239 
4240 	/*
4241 	 * Load the livelist deletion field. If a livelist is queued for
4242 	 * deletion, indicate that in the spa
4243 	 */
4244 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4245 	    &spa->spa_livelists_to_delete, B_FALSE);
4246 	if (error != 0 && error != ENOENT)
4247 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4248 
4249 	/*
4250 	 * Load the history object.  If we have an older pool, this
4251 	 * will not be present.
4252 	 */
4253 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4254 	if (error != 0 && error != ENOENT)
4255 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4256 
4257 	/*
4258 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4259 	 * be present; in this case, defer its creation to a later time to
4260 	 * avoid dirtying the MOS this early / out of sync context. See
4261 	 * spa_sync_config_object.
4262 	 */
4263 
4264 	/* The sentinel is only available in the MOS config. */
4265 	nvlist_t *mos_config;
4266 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4267 		spa_load_failed(spa, "unable to retrieve MOS config");
4268 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4269 	}
4270 
4271 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4272 	    &spa->spa_all_vdev_zaps, B_FALSE);
4273 
4274 	if (error == ENOENT) {
4275 		VERIFY(!nvlist_exists(mos_config,
4276 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4277 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4278 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4279 	} else if (error != 0) {
4280 		nvlist_free(mos_config);
4281 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4282 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4283 		/*
4284 		 * An older version of ZFS overwrote the sentinel value, so
4285 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4286 		 * destruction to later; see spa_sync_config_object.
4287 		 */
4288 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4289 		/*
4290 		 * We're assuming that no vdevs have had their ZAPs created
4291 		 * before this. Better be sure of it.
4292 		 */
4293 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4294 	}
4295 	nvlist_free(mos_config);
4296 
4297 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4298 
4299 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4300 	    B_FALSE);
4301 	if (error && error != ENOENT)
4302 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4303 
4304 	if (error == 0) {
4305 		uint64_t autoreplace = 0;
4306 
4307 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4308 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4309 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4310 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4311 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4312 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4313 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4314 		spa->spa_autoreplace = (autoreplace != 0);
4315 	}
4316 
4317 	/*
4318 	 * If we are importing a pool with missing top-level vdevs,
4319 	 * we enforce that the pool doesn't panic or get suspended on
4320 	 * error since the likelihood of missing data is extremely high.
4321 	 */
4322 	if (spa->spa_missing_tvds > 0 &&
4323 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4324 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4325 		spa_load_note(spa, "forcing failmode to 'continue' "
4326 		    "as some top level vdevs are missing");
4327 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4328 	}
4329 
4330 	return (0);
4331 }
4332 
4333 static int
4334 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4335 {
4336 	int error = 0;
4337 	vdev_t *rvd = spa->spa_root_vdev;
4338 
4339 	/*
4340 	 * If we're assembling the pool from the split-off vdevs of
4341 	 * an existing pool, we don't want to attach the spares & cache
4342 	 * devices.
4343 	 */
4344 
4345 	/*
4346 	 * Load any hot spares for this pool.
4347 	 */
4348 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4349 	    B_FALSE);
4350 	if (error != 0 && error != ENOENT)
4351 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4352 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4353 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4354 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4355 		    &spa->spa_spares.sav_config) != 0) {
4356 			spa_load_failed(spa, "error loading spares nvlist");
4357 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4358 		}
4359 
4360 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4361 		spa_load_spares(spa);
4362 		spa_config_exit(spa, SCL_ALL, FTAG);
4363 	} else if (error == 0) {
4364 		spa->spa_spares.sav_sync = B_TRUE;
4365 	}
4366 
4367 	/*
4368 	 * Load any level 2 ARC devices for this pool.
4369 	 */
4370 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4371 	    &spa->spa_l2cache.sav_object, B_FALSE);
4372 	if (error != 0 && error != ENOENT)
4373 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4374 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4375 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4376 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4377 		    &spa->spa_l2cache.sav_config) != 0) {
4378 			spa_load_failed(spa, "error loading l2cache nvlist");
4379 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4380 		}
4381 
4382 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4383 		spa_load_l2cache(spa);
4384 		spa_config_exit(spa, SCL_ALL, FTAG);
4385 	} else if (error == 0) {
4386 		spa->spa_l2cache.sav_sync = B_TRUE;
4387 	}
4388 
4389 	return (0);
4390 }
4391 
4392 static int
4393 spa_ld_load_vdev_metadata(spa_t *spa)
4394 {
4395 	int error = 0;
4396 	vdev_t *rvd = spa->spa_root_vdev;
4397 
4398 	/*
4399 	 * If the 'multihost' property is set, then never allow a pool to
4400 	 * be imported when the system hostid is zero.  The exception to
4401 	 * this rule is zdb which is always allowed to access pools.
4402 	 */
4403 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4404 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4405 		fnvlist_add_uint64(spa->spa_load_info,
4406 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4407 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4408 	}
4409 
4410 	/*
4411 	 * If the 'autoreplace' property is set, then post a resource notifying
4412 	 * the ZFS DE that it should not issue any faults for unopenable
4413 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4414 	 * unopenable vdevs so that the normal autoreplace handler can take
4415 	 * over.
4416 	 */
4417 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4418 		spa_check_removed(spa->spa_root_vdev);
4419 		/*
4420 		 * For the import case, this is done in spa_import(), because
4421 		 * at this point we're using the spare definitions from
4422 		 * the MOS config, not necessarily from the userland config.
4423 		 */
4424 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4425 			spa_aux_check_removed(&spa->spa_spares);
4426 			spa_aux_check_removed(&spa->spa_l2cache);
4427 		}
4428 	}
4429 
4430 	/*
4431 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4432 	 */
4433 	error = vdev_load(rvd);
4434 	if (error != 0) {
4435 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4436 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4437 	}
4438 
4439 	error = spa_ld_log_spacemaps(spa);
4440 	if (error != 0) {
4441 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4442 		    error);
4443 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4444 	}
4445 
4446 	/*
4447 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4448 	 */
4449 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4450 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4451 	spa_config_exit(spa, SCL_ALL, FTAG);
4452 
4453 	return (0);
4454 }
4455 
4456 static int
4457 spa_ld_load_dedup_tables(spa_t *spa)
4458 {
4459 	int error = 0;
4460 	vdev_t *rvd = spa->spa_root_vdev;
4461 
4462 	error = ddt_load(spa);
4463 	if (error != 0) {
4464 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4465 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4466 	}
4467 
4468 	return (0);
4469 }
4470 
4471 static int
4472 spa_ld_load_brt(spa_t *spa)
4473 {
4474 	int error = 0;
4475 	vdev_t *rvd = spa->spa_root_vdev;
4476 
4477 	error = brt_load(spa);
4478 	if (error != 0) {
4479 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4480 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4481 	}
4482 
4483 	return (0);
4484 }
4485 
4486 static int
4487 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4488 {
4489 	vdev_t *rvd = spa->spa_root_vdev;
4490 
4491 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4492 		boolean_t missing = spa_check_logs(spa);
4493 		if (missing) {
4494 			if (spa->spa_missing_tvds != 0) {
4495 				spa_load_note(spa, "spa_check_logs failed "
4496 				    "so dropping the logs");
4497 			} else {
4498 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4499 				spa_load_failed(spa, "spa_check_logs failed");
4500 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4501 				    ENXIO));
4502 			}
4503 		}
4504 	}
4505 
4506 	return (0);
4507 }
4508 
4509 static int
4510 spa_ld_verify_pool_data(spa_t *spa)
4511 {
4512 	int error = 0;
4513 	vdev_t *rvd = spa->spa_root_vdev;
4514 
4515 	/*
4516 	 * We've successfully opened the pool, verify that we're ready
4517 	 * to start pushing transactions.
4518 	 */
4519 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4520 		error = spa_load_verify(spa);
4521 		if (error != 0) {
4522 			spa_load_failed(spa, "spa_load_verify failed "
4523 			    "[error=%d]", error);
4524 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4525 			    error));
4526 		}
4527 	}
4528 
4529 	return (0);
4530 }
4531 
4532 static void
4533 spa_ld_claim_log_blocks(spa_t *spa)
4534 {
4535 	dmu_tx_t *tx;
4536 	dsl_pool_t *dp = spa_get_dsl(spa);
4537 
4538 	/*
4539 	 * Claim log blocks that haven't been committed yet.
4540 	 * This must all happen in a single txg.
4541 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4542 	 * invoked from zil_claim_log_block()'s i/o done callback.
4543 	 * Price of rollback is that we abandon the log.
4544 	 */
4545 	spa->spa_claiming = B_TRUE;
4546 
4547 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4548 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4549 	    zil_claim, tx, DS_FIND_CHILDREN);
4550 	dmu_tx_commit(tx);
4551 
4552 	spa->spa_claiming = B_FALSE;
4553 
4554 	spa_set_log_state(spa, SPA_LOG_GOOD);
4555 }
4556 
4557 static void
4558 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4559     boolean_t update_config_cache)
4560 {
4561 	vdev_t *rvd = spa->spa_root_vdev;
4562 	int need_update = B_FALSE;
4563 
4564 	/*
4565 	 * If the config cache is stale, or we have uninitialized
4566 	 * metaslabs (see spa_vdev_add()), then update the config.
4567 	 *
4568 	 * If this is a verbatim import, trust the current
4569 	 * in-core spa_config and update the disk labels.
4570 	 */
4571 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4572 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4573 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4574 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4575 		need_update = B_TRUE;
4576 
4577 	for (int c = 0; c < rvd->vdev_children; c++)
4578 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4579 			need_update = B_TRUE;
4580 
4581 	/*
4582 	 * Update the config cache asynchronously in case we're the
4583 	 * root pool, in which case the config cache isn't writable yet.
4584 	 */
4585 	if (need_update)
4586 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4587 }
4588 
4589 static void
4590 spa_ld_prepare_for_reload(spa_t *spa)
4591 {
4592 	spa_mode_t mode = spa->spa_mode;
4593 	int async_suspended = spa->spa_async_suspended;
4594 
4595 	spa_unload(spa);
4596 	spa_deactivate(spa);
4597 	spa_activate(spa, mode);
4598 
4599 	/*
4600 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4601 	 * spa_unload(). We want to restore it back to the original value before
4602 	 * returning as we might be calling spa_async_resume() later.
4603 	 */
4604 	spa->spa_async_suspended = async_suspended;
4605 }
4606 
4607 static int
4608 spa_ld_read_checkpoint_txg(spa_t *spa)
4609 {
4610 	uberblock_t checkpoint;
4611 	int error = 0;
4612 
4613 	ASSERT0(spa->spa_checkpoint_txg);
4614 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4615 
4616 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4617 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4618 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4619 
4620 	if (error == ENOENT)
4621 		return (0);
4622 
4623 	if (error != 0)
4624 		return (error);
4625 
4626 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4627 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4628 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4629 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4630 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4631 
4632 	return (0);
4633 }
4634 
4635 static int
4636 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4637 {
4638 	int error = 0;
4639 
4640 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4641 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4642 
4643 	/*
4644 	 * Never trust the config that is provided unless we are assembling
4645 	 * a pool following a split.
4646 	 * This means don't trust blkptrs and the vdev tree in general. This
4647 	 * also effectively puts the spa in read-only mode since
4648 	 * spa_writeable() checks for spa_trust_config to be true.
4649 	 * We will later load a trusted config from the MOS.
4650 	 */
4651 	if (type != SPA_IMPORT_ASSEMBLE)
4652 		spa->spa_trust_config = B_FALSE;
4653 
4654 	/*
4655 	 * Parse the config provided to create a vdev tree.
4656 	 */
4657 	error = spa_ld_parse_config(spa, type);
4658 	if (error != 0)
4659 		return (error);
4660 
4661 	spa_import_progress_add(spa);
4662 
4663 	/*
4664 	 * Now that we have the vdev tree, try to open each vdev. This involves
4665 	 * opening the underlying physical device, retrieving its geometry and
4666 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4667 	 * based on the success of those operations. After this we'll be ready
4668 	 * to read from the vdevs.
4669 	 */
4670 	error = spa_ld_open_vdevs(spa);
4671 	if (error != 0)
4672 		return (error);
4673 
4674 	/*
4675 	 * Read the label of each vdev and make sure that the GUIDs stored
4676 	 * there match the GUIDs in the config provided.
4677 	 * If we're assembling a new pool that's been split off from an
4678 	 * existing pool, the labels haven't yet been updated so we skip
4679 	 * validation for now.
4680 	 */
4681 	if (type != SPA_IMPORT_ASSEMBLE) {
4682 		error = spa_ld_validate_vdevs(spa);
4683 		if (error != 0)
4684 			return (error);
4685 	}
4686 
4687 	/*
4688 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4689 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4690 	 * get the list of features required to read blkptrs in the MOS from
4691 	 * the vdev label with the best uberblock and verify that our version
4692 	 * of zfs supports them all.
4693 	 */
4694 	error = spa_ld_select_uberblock(spa, type);
4695 	if (error != 0)
4696 		return (error);
4697 
4698 	/*
4699 	 * Pass that uberblock to the dsl_pool layer which will open the root
4700 	 * blkptr. This blkptr points to the latest version of the MOS and will
4701 	 * allow us to read its contents.
4702 	 */
4703 	error = spa_ld_open_rootbp(spa);
4704 	if (error != 0)
4705 		return (error);
4706 
4707 	return (0);
4708 }
4709 
4710 static int
4711 spa_ld_checkpoint_rewind(spa_t *spa)
4712 {
4713 	uberblock_t checkpoint;
4714 	int error = 0;
4715 
4716 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4717 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4718 
4719 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4720 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4721 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4722 
4723 	if (error != 0) {
4724 		spa_load_failed(spa, "unable to retrieve checkpointed "
4725 		    "uberblock from the MOS config [error=%d]", error);
4726 
4727 		if (error == ENOENT)
4728 			error = ZFS_ERR_NO_CHECKPOINT;
4729 
4730 		return (error);
4731 	}
4732 
4733 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4734 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4735 
4736 	/*
4737 	 * We need to update the txg and timestamp of the checkpointed
4738 	 * uberblock to be higher than the latest one. This ensures that
4739 	 * the checkpointed uberblock is selected if we were to close and
4740 	 * reopen the pool right after we've written it in the vdev labels.
4741 	 * (also see block comment in vdev_uberblock_compare)
4742 	 */
4743 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4744 	checkpoint.ub_timestamp = gethrestime_sec();
4745 
4746 	/*
4747 	 * Set current uberblock to be the checkpointed uberblock.
4748 	 */
4749 	spa->spa_uberblock = checkpoint;
4750 
4751 	/*
4752 	 * If we are doing a normal rewind, then the pool is open for
4753 	 * writing and we sync the "updated" checkpointed uberblock to
4754 	 * disk. Once this is done, we've basically rewound the whole
4755 	 * pool and there is no way back.
4756 	 *
4757 	 * There are cases when we don't want to attempt and sync the
4758 	 * checkpointed uberblock to disk because we are opening a
4759 	 * pool as read-only. Specifically, verifying the checkpointed
4760 	 * state with zdb, and importing the checkpointed state to get
4761 	 * a "preview" of its content.
4762 	 */
4763 	if (spa_writeable(spa)) {
4764 		vdev_t *rvd = spa->spa_root_vdev;
4765 
4766 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4767 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4768 		int svdcount = 0;
4769 		int children = rvd->vdev_children;
4770 		int c0 = random_in_range(children);
4771 
4772 		for (int c = 0; c < children; c++) {
4773 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4774 
4775 			/* Stop when revisiting the first vdev */
4776 			if (c > 0 && svd[0] == vd)
4777 				break;
4778 
4779 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4780 			    !vdev_is_concrete(vd))
4781 				continue;
4782 
4783 			svd[svdcount++] = vd;
4784 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4785 				break;
4786 		}
4787 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4788 		if (error == 0)
4789 			spa->spa_last_synced_guid = rvd->vdev_guid;
4790 		spa_config_exit(spa, SCL_ALL, FTAG);
4791 
4792 		if (error != 0) {
4793 			spa_load_failed(spa, "failed to write checkpointed "
4794 			    "uberblock to the vdev labels [error=%d]", error);
4795 			return (error);
4796 		}
4797 	}
4798 
4799 	return (0);
4800 }
4801 
4802 static int
4803 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4804     boolean_t *update_config_cache)
4805 {
4806 	int error;
4807 
4808 	/*
4809 	 * Parse the config for pool, open and validate vdevs,
4810 	 * select an uberblock, and use that uberblock to open
4811 	 * the MOS.
4812 	 */
4813 	error = spa_ld_mos_init(spa, type);
4814 	if (error != 0)
4815 		return (error);
4816 
4817 	/*
4818 	 * Retrieve the trusted config stored in the MOS and use it to create
4819 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4820 	 */
4821 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4822 	if (error == EAGAIN) {
4823 		if (update_config_cache != NULL)
4824 			*update_config_cache = B_TRUE;
4825 
4826 		/*
4827 		 * Redo the loading process with the trusted config if it is
4828 		 * too different from the untrusted config.
4829 		 */
4830 		spa_ld_prepare_for_reload(spa);
4831 		spa_load_note(spa, "RELOADING");
4832 		error = spa_ld_mos_init(spa, type);
4833 		if (error != 0)
4834 			return (error);
4835 
4836 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4837 		if (error != 0)
4838 			return (error);
4839 
4840 	} else if (error != 0) {
4841 		return (error);
4842 	}
4843 
4844 	return (0);
4845 }
4846 
4847 /*
4848  * Load an existing storage pool, using the config provided. This config
4849  * describes which vdevs are part of the pool and is later validated against
4850  * partial configs present in each vdev's label and an entire copy of the
4851  * config stored in the MOS.
4852  */
4853 static int
4854 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4855 {
4856 	int error = 0;
4857 	boolean_t missing_feat_write = B_FALSE;
4858 	boolean_t checkpoint_rewind =
4859 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4860 	boolean_t update_config_cache = B_FALSE;
4861 
4862 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4863 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4864 
4865 	spa_load_note(spa, "LOADING");
4866 
4867 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4868 	if (error != 0)
4869 		return (error);
4870 
4871 	/*
4872 	 * If we are rewinding to the checkpoint then we need to repeat
4873 	 * everything we've done so far in this function but this time
4874 	 * selecting the checkpointed uberblock and using that to open
4875 	 * the MOS.
4876 	 */
4877 	if (checkpoint_rewind) {
4878 		/*
4879 		 * If we are rewinding to the checkpoint update config cache
4880 		 * anyway.
4881 		 */
4882 		update_config_cache = B_TRUE;
4883 
4884 		/*
4885 		 * Extract the checkpointed uberblock from the current MOS
4886 		 * and use this as the pool's uberblock from now on. If the
4887 		 * pool is imported as writeable we also write the checkpoint
4888 		 * uberblock to the labels, making the rewind permanent.
4889 		 */
4890 		error = spa_ld_checkpoint_rewind(spa);
4891 		if (error != 0)
4892 			return (error);
4893 
4894 		/*
4895 		 * Redo the loading process again with the
4896 		 * checkpointed uberblock.
4897 		 */
4898 		spa_ld_prepare_for_reload(spa);
4899 		spa_load_note(spa, "LOADING checkpointed uberblock");
4900 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4901 		if (error != 0)
4902 			return (error);
4903 	}
4904 
4905 	/*
4906 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4907 	 */
4908 	error = spa_ld_read_checkpoint_txg(spa);
4909 	if (error != 0)
4910 		return (error);
4911 
4912 	/*
4913 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4914 	 * from the pool and their contents were re-mapped to other vdevs. Note
4915 	 * that everything that we read before this step must have been
4916 	 * rewritten on concrete vdevs after the last device removal was
4917 	 * initiated. Otherwise we could be reading from indirect vdevs before
4918 	 * we have loaded their mappings.
4919 	 */
4920 	error = spa_ld_open_indirect_vdev_metadata(spa);
4921 	if (error != 0)
4922 		return (error);
4923 
4924 	/*
4925 	 * Retrieve the full list of active features from the MOS and check if
4926 	 * they are all supported.
4927 	 */
4928 	error = spa_ld_check_features(spa, &missing_feat_write);
4929 	if (error != 0)
4930 		return (error);
4931 
4932 	/*
4933 	 * Load several special directories from the MOS needed by the dsl_pool
4934 	 * layer.
4935 	 */
4936 	error = spa_ld_load_special_directories(spa);
4937 	if (error != 0)
4938 		return (error);
4939 
4940 	/*
4941 	 * Retrieve pool properties from the MOS.
4942 	 */
4943 	error = spa_ld_get_props(spa);
4944 	if (error != 0)
4945 		return (error);
4946 
4947 	/*
4948 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4949 	 * and open them.
4950 	 */
4951 	error = spa_ld_open_aux_vdevs(spa, type);
4952 	if (error != 0)
4953 		return (error);
4954 
4955 	/*
4956 	 * Load the metadata for all vdevs. Also check if unopenable devices
4957 	 * should be autoreplaced.
4958 	 */
4959 	error = spa_ld_load_vdev_metadata(spa);
4960 	if (error != 0)
4961 		return (error);
4962 
4963 	error = spa_ld_load_dedup_tables(spa);
4964 	if (error != 0)
4965 		return (error);
4966 
4967 	error = spa_ld_load_brt(spa);
4968 	if (error != 0)
4969 		return (error);
4970 
4971 	/*
4972 	 * Verify the logs now to make sure we don't have any unexpected errors
4973 	 * when we claim log blocks later.
4974 	 */
4975 	error = spa_ld_verify_logs(spa, type, ereport);
4976 	if (error != 0)
4977 		return (error);
4978 
4979 	if (missing_feat_write) {
4980 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4981 
4982 		/*
4983 		 * At this point, we know that we can open the pool in
4984 		 * read-only mode but not read-write mode. We now have enough
4985 		 * information and can return to userland.
4986 		 */
4987 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4988 		    ENOTSUP));
4989 	}
4990 
4991 	/*
4992 	 * Traverse the last txgs to make sure the pool was left off in a safe
4993 	 * state. When performing an extreme rewind, we verify the whole pool,
4994 	 * which can take a very long time.
4995 	 */
4996 	error = spa_ld_verify_pool_data(spa);
4997 	if (error != 0)
4998 		return (error);
4999 
5000 	/*
5001 	 * Calculate the deflated space for the pool. This must be done before
5002 	 * we write anything to the pool because we'd need to update the space
5003 	 * accounting using the deflated sizes.
5004 	 */
5005 	spa_update_dspace(spa);
5006 
5007 	/*
5008 	 * We have now retrieved all the information we needed to open the
5009 	 * pool. If we are importing the pool in read-write mode, a few
5010 	 * additional steps must be performed to finish the import.
5011 	 */
5012 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5013 	    spa->spa_load_max_txg == UINT64_MAX)) {
5014 		uint64_t config_cache_txg = spa->spa_config_txg;
5015 
5016 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5017 
5018 		/*
5019 		 * In case of a checkpoint rewind, log the original txg
5020 		 * of the checkpointed uberblock.
5021 		 */
5022 		if (checkpoint_rewind) {
5023 			spa_history_log_internal(spa, "checkpoint rewind",
5024 			    NULL, "rewound state to txg=%llu",
5025 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5026 		}
5027 
5028 		/*
5029 		 * Traverse the ZIL and claim all blocks.
5030 		 */
5031 		spa_ld_claim_log_blocks(spa);
5032 
5033 		/*
5034 		 * Kick-off the syncing thread.
5035 		 */
5036 		spa->spa_sync_on = B_TRUE;
5037 		txg_sync_start(spa->spa_dsl_pool);
5038 		mmp_thread_start(spa);
5039 
5040 		/*
5041 		 * Wait for all claims to sync.  We sync up to the highest
5042 		 * claimed log block birth time so that claimed log blocks
5043 		 * don't appear to be from the future.  spa_claim_max_txg
5044 		 * will have been set for us by ZIL traversal operations
5045 		 * performed above.
5046 		 */
5047 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5048 
5049 		/*
5050 		 * Check if we need to request an update of the config. On the
5051 		 * next sync, we would update the config stored in vdev labels
5052 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5053 		 */
5054 		spa_ld_check_for_config_update(spa, config_cache_txg,
5055 		    update_config_cache);
5056 
5057 		/*
5058 		 * Check if a rebuild was in progress and if so resume it.
5059 		 * Then check all DTLs to see if anything needs resilvering.
5060 		 * The resilver will be deferred if a rebuild was started.
5061 		 */
5062 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5063 			vdev_rebuild_restart(spa);
5064 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5065 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5066 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5067 		}
5068 
5069 		/*
5070 		 * Log the fact that we booted up (so that we can detect if
5071 		 * we rebooted in the middle of an operation).
5072 		 */
5073 		spa_history_log_version(spa, "open", NULL);
5074 
5075 		spa_restart_removal(spa);
5076 		spa_spawn_aux_threads(spa);
5077 
5078 		/*
5079 		 * Delete any inconsistent datasets.
5080 		 *
5081 		 * Note:
5082 		 * Since we may be issuing deletes for clones here,
5083 		 * we make sure to do so after we've spawned all the
5084 		 * auxiliary threads above (from which the livelist
5085 		 * deletion zthr is part of).
5086 		 */
5087 		(void) dmu_objset_find(spa_name(spa),
5088 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5089 
5090 		/*
5091 		 * Clean up any stale temporary dataset userrefs.
5092 		 */
5093 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5094 
5095 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5096 		vdev_initialize_restart(spa->spa_root_vdev);
5097 		vdev_trim_restart(spa->spa_root_vdev);
5098 		vdev_autotrim_restart(spa);
5099 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5100 	}
5101 
5102 	spa_import_progress_remove(spa_guid(spa));
5103 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5104 
5105 	spa_load_note(spa, "LOADED");
5106 
5107 	return (0);
5108 }
5109 
5110 static int
5111 spa_load_retry(spa_t *spa, spa_load_state_t state)
5112 {
5113 	spa_mode_t mode = spa->spa_mode;
5114 
5115 	spa_unload(spa);
5116 	spa_deactivate(spa);
5117 
5118 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5119 
5120 	spa_activate(spa, mode);
5121 	spa_async_suspend(spa);
5122 
5123 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5124 	    (u_longlong_t)spa->spa_load_max_txg);
5125 
5126 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5127 }
5128 
5129 /*
5130  * If spa_load() fails this function will try loading prior txg's. If
5131  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5132  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5133  * function will not rewind the pool and will return the same error as
5134  * spa_load().
5135  */
5136 static int
5137 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5138     int rewind_flags)
5139 {
5140 	nvlist_t *loadinfo = NULL;
5141 	nvlist_t *config = NULL;
5142 	int load_error, rewind_error;
5143 	uint64_t safe_rewind_txg;
5144 	uint64_t min_txg;
5145 
5146 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5147 		spa->spa_load_max_txg = spa->spa_load_txg;
5148 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5149 	} else {
5150 		spa->spa_load_max_txg = max_request;
5151 		if (max_request != UINT64_MAX)
5152 			spa->spa_extreme_rewind = B_TRUE;
5153 	}
5154 
5155 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5156 	if (load_error == 0)
5157 		return (0);
5158 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5159 		/*
5160 		 * When attempting checkpoint-rewind on a pool with no
5161 		 * checkpoint, we should not attempt to load uberblocks
5162 		 * from previous txgs when spa_load fails.
5163 		 */
5164 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5165 		spa_import_progress_remove(spa_guid(spa));
5166 		return (load_error);
5167 	}
5168 
5169 	if (spa->spa_root_vdev != NULL)
5170 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5171 
5172 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5173 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5174 
5175 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5176 		nvlist_free(config);
5177 		spa_import_progress_remove(spa_guid(spa));
5178 		return (load_error);
5179 	}
5180 
5181 	if (state == SPA_LOAD_RECOVER) {
5182 		/* Price of rolling back is discarding txgs, including log */
5183 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5184 	} else {
5185 		/*
5186 		 * If we aren't rolling back save the load info from our first
5187 		 * import attempt so that we can restore it after attempting
5188 		 * to rewind.
5189 		 */
5190 		loadinfo = spa->spa_load_info;
5191 		spa->spa_load_info = fnvlist_alloc();
5192 	}
5193 
5194 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5195 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5196 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5197 	    TXG_INITIAL : safe_rewind_txg;
5198 
5199 	/*
5200 	 * Continue as long as we're finding errors, we're still within
5201 	 * the acceptable rewind range, and we're still finding uberblocks
5202 	 */
5203 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5204 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5205 		if (spa->spa_load_max_txg < safe_rewind_txg)
5206 			spa->spa_extreme_rewind = B_TRUE;
5207 		rewind_error = spa_load_retry(spa, state);
5208 	}
5209 
5210 	spa->spa_extreme_rewind = B_FALSE;
5211 	spa->spa_load_max_txg = UINT64_MAX;
5212 
5213 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5214 		spa_config_set(spa, config);
5215 	else
5216 		nvlist_free(config);
5217 
5218 	if (state == SPA_LOAD_RECOVER) {
5219 		ASSERT3P(loadinfo, ==, NULL);
5220 		spa_import_progress_remove(spa_guid(spa));
5221 		return (rewind_error);
5222 	} else {
5223 		/* Store the rewind info as part of the initial load info */
5224 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5225 		    spa->spa_load_info);
5226 
5227 		/* Restore the initial load info */
5228 		fnvlist_free(spa->spa_load_info);
5229 		spa->spa_load_info = loadinfo;
5230 
5231 		spa_import_progress_remove(spa_guid(spa));
5232 		return (load_error);
5233 	}
5234 }
5235 
5236 /*
5237  * Pool Open/Import
5238  *
5239  * The import case is identical to an open except that the configuration is sent
5240  * down from userland, instead of grabbed from the configuration cache.  For the
5241  * case of an open, the pool configuration will exist in the
5242  * POOL_STATE_UNINITIALIZED state.
5243  *
5244  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5245  * the same time open the pool, without having to keep around the spa_t in some
5246  * ambiguous state.
5247  */
5248 static int
5249 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5250     nvlist_t *nvpolicy, nvlist_t **config)
5251 {
5252 	spa_t *spa;
5253 	spa_load_state_t state = SPA_LOAD_OPEN;
5254 	int error;
5255 	int locked = B_FALSE;
5256 	int firstopen = B_FALSE;
5257 
5258 	*spapp = NULL;
5259 
5260 	/*
5261 	 * As disgusting as this is, we need to support recursive calls to this
5262 	 * function because dsl_dir_open() is called during spa_load(), and ends
5263 	 * up calling spa_open() again.  The real fix is to figure out how to
5264 	 * avoid dsl_dir_open() calling this in the first place.
5265 	 */
5266 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5267 		mutex_enter(&spa_namespace_lock);
5268 		locked = B_TRUE;
5269 	}
5270 
5271 	if ((spa = spa_lookup(pool)) == NULL) {
5272 		if (locked)
5273 			mutex_exit(&spa_namespace_lock);
5274 		return (SET_ERROR(ENOENT));
5275 	}
5276 
5277 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5278 		zpool_load_policy_t policy;
5279 
5280 		firstopen = B_TRUE;
5281 
5282 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5283 		    &policy);
5284 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5285 			state = SPA_LOAD_RECOVER;
5286 
5287 		spa_activate(spa, spa_mode_global);
5288 
5289 		if (state != SPA_LOAD_RECOVER)
5290 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5291 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5292 
5293 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5294 		error = spa_load_best(spa, state, policy.zlp_txg,
5295 		    policy.zlp_rewind);
5296 
5297 		if (error == EBADF) {
5298 			/*
5299 			 * If vdev_validate() returns failure (indicated by
5300 			 * EBADF), it indicates that one of the vdevs indicates
5301 			 * that the pool has been exported or destroyed.  If
5302 			 * this is the case, the config cache is out of sync and
5303 			 * we should remove the pool from the namespace.
5304 			 */
5305 			spa_unload(spa);
5306 			spa_deactivate(spa);
5307 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5308 			spa_remove(spa);
5309 			if (locked)
5310 				mutex_exit(&spa_namespace_lock);
5311 			return (SET_ERROR(ENOENT));
5312 		}
5313 
5314 		if (error) {
5315 			/*
5316 			 * We can't open the pool, but we still have useful
5317 			 * information: the state of each vdev after the
5318 			 * attempted vdev_open().  Return this to the user.
5319 			 */
5320 			if (config != NULL && spa->spa_config) {
5321 				*config = fnvlist_dup(spa->spa_config);
5322 				fnvlist_add_nvlist(*config,
5323 				    ZPOOL_CONFIG_LOAD_INFO,
5324 				    spa->spa_load_info);
5325 			}
5326 			spa_unload(spa);
5327 			spa_deactivate(spa);
5328 			spa->spa_last_open_failed = error;
5329 			if (locked)
5330 				mutex_exit(&spa_namespace_lock);
5331 			*spapp = NULL;
5332 			return (error);
5333 		}
5334 	}
5335 
5336 	spa_open_ref(spa, tag);
5337 
5338 	if (config != NULL)
5339 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5340 
5341 	/*
5342 	 * If we've recovered the pool, pass back any information we
5343 	 * gathered while doing the load.
5344 	 */
5345 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5346 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5347 		    spa->spa_load_info);
5348 	}
5349 
5350 	if (locked) {
5351 		spa->spa_last_open_failed = 0;
5352 		spa->spa_last_ubsync_txg = 0;
5353 		spa->spa_load_txg = 0;
5354 		mutex_exit(&spa_namespace_lock);
5355 	}
5356 
5357 	if (firstopen)
5358 		zvol_create_minors_recursive(spa_name(spa));
5359 
5360 	*spapp = spa;
5361 
5362 	return (0);
5363 }
5364 
5365 int
5366 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5367     nvlist_t *policy, nvlist_t **config)
5368 {
5369 	return (spa_open_common(name, spapp, tag, policy, config));
5370 }
5371 
5372 int
5373 spa_open(const char *name, spa_t **spapp, const void *tag)
5374 {
5375 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5376 }
5377 
5378 /*
5379  * Lookup the given spa_t, incrementing the inject count in the process,
5380  * preventing it from being exported or destroyed.
5381  */
5382 spa_t *
5383 spa_inject_addref(char *name)
5384 {
5385 	spa_t *spa;
5386 
5387 	mutex_enter(&spa_namespace_lock);
5388 	if ((spa = spa_lookup(name)) == NULL) {
5389 		mutex_exit(&spa_namespace_lock);
5390 		return (NULL);
5391 	}
5392 	spa->spa_inject_ref++;
5393 	mutex_exit(&spa_namespace_lock);
5394 
5395 	return (spa);
5396 }
5397 
5398 void
5399 spa_inject_delref(spa_t *spa)
5400 {
5401 	mutex_enter(&spa_namespace_lock);
5402 	spa->spa_inject_ref--;
5403 	mutex_exit(&spa_namespace_lock);
5404 }
5405 
5406 /*
5407  * Add spares device information to the nvlist.
5408  */
5409 static void
5410 spa_add_spares(spa_t *spa, nvlist_t *config)
5411 {
5412 	nvlist_t **spares;
5413 	uint_t i, nspares;
5414 	nvlist_t *nvroot;
5415 	uint64_t guid;
5416 	vdev_stat_t *vs;
5417 	uint_t vsc;
5418 	uint64_t pool;
5419 
5420 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5421 
5422 	if (spa->spa_spares.sav_count == 0)
5423 		return;
5424 
5425 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5426 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5427 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5428 	if (nspares != 0) {
5429 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5430 		    (const nvlist_t * const *)spares, nspares);
5431 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5432 		    &spares, &nspares));
5433 
5434 		/*
5435 		 * Go through and find any spares which have since been
5436 		 * repurposed as an active spare.  If this is the case, update
5437 		 * their status appropriately.
5438 		 */
5439 		for (i = 0; i < nspares; i++) {
5440 			guid = fnvlist_lookup_uint64(spares[i],
5441 			    ZPOOL_CONFIG_GUID);
5442 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5443 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5444 			if (spa_spare_exists(guid, &pool, NULL) &&
5445 			    pool != 0ULL) {
5446 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5447 				vs->vs_aux = VDEV_AUX_SPARED;
5448 			} else {
5449 				vs->vs_state =
5450 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5451 			}
5452 		}
5453 	}
5454 }
5455 
5456 /*
5457  * Add l2cache device information to the nvlist, including vdev stats.
5458  */
5459 static void
5460 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5461 {
5462 	nvlist_t **l2cache;
5463 	uint_t i, j, nl2cache;
5464 	nvlist_t *nvroot;
5465 	uint64_t guid;
5466 	vdev_t *vd;
5467 	vdev_stat_t *vs;
5468 	uint_t vsc;
5469 
5470 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5471 
5472 	if (spa->spa_l2cache.sav_count == 0)
5473 		return;
5474 
5475 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5476 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5477 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5478 	if (nl2cache != 0) {
5479 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5480 		    (const nvlist_t * const *)l2cache, nl2cache);
5481 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5482 		    &l2cache, &nl2cache));
5483 
5484 		/*
5485 		 * Update level 2 cache device stats.
5486 		 */
5487 
5488 		for (i = 0; i < nl2cache; i++) {
5489 			guid = fnvlist_lookup_uint64(l2cache[i],
5490 			    ZPOOL_CONFIG_GUID);
5491 
5492 			vd = NULL;
5493 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5494 				if (guid ==
5495 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5496 					vd = spa->spa_l2cache.sav_vdevs[j];
5497 					break;
5498 				}
5499 			}
5500 			ASSERT(vd != NULL);
5501 
5502 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5503 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5504 			vdev_get_stats(vd, vs);
5505 			vdev_config_generate_stats(vd, l2cache[i]);
5506 
5507 		}
5508 	}
5509 }
5510 
5511 static void
5512 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5513 {
5514 	zap_cursor_t zc;
5515 	zap_attribute_t za;
5516 
5517 	if (spa->spa_feat_for_read_obj != 0) {
5518 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5519 		    spa->spa_feat_for_read_obj);
5520 		    zap_cursor_retrieve(&zc, &za) == 0;
5521 		    zap_cursor_advance(&zc)) {
5522 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5523 			    za.za_num_integers == 1);
5524 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5525 			    za.za_first_integer));
5526 		}
5527 		zap_cursor_fini(&zc);
5528 	}
5529 
5530 	if (spa->spa_feat_for_write_obj != 0) {
5531 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5532 		    spa->spa_feat_for_write_obj);
5533 		    zap_cursor_retrieve(&zc, &za) == 0;
5534 		    zap_cursor_advance(&zc)) {
5535 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5536 			    za.za_num_integers == 1);
5537 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5538 			    za.za_first_integer));
5539 		}
5540 		zap_cursor_fini(&zc);
5541 	}
5542 }
5543 
5544 static void
5545 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5546 {
5547 	int i;
5548 
5549 	for (i = 0; i < SPA_FEATURES; i++) {
5550 		zfeature_info_t feature = spa_feature_table[i];
5551 		uint64_t refcount;
5552 
5553 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5554 			continue;
5555 
5556 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5557 	}
5558 }
5559 
5560 /*
5561  * Store a list of pool features and their reference counts in the
5562  * config.
5563  *
5564  * The first time this is called on a spa, allocate a new nvlist, fetch
5565  * the pool features and reference counts from disk, then save the list
5566  * in the spa. In subsequent calls on the same spa use the saved nvlist
5567  * and refresh its values from the cached reference counts.  This
5568  * ensures we don't block here on I/O on a suspended pool so 'zpool
5569  * clear' can resume the pool.
5570  */
5571 static void
5572 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5573 {
5574 	nvlist_t *features;
5575 
5576 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5577 
5578 	mutex_enter(&spa->spa_feat_stats_lock);
5579 	features = spa->spa_feat_stats;
5580 
5581 	if (features != NULL) {
5582 		spa_feature_stats_from_cache(spa, features);
5583 	} else {
5584 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5585 		spa->spa_feat_stats = features;
5586 		spa_feature_stats_from_disk(spa, features);
5587 	}
5588 
5589 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5590 	    features));
5591 
5592 	mutex_exit(&spa->spa_feat_stats_lock);
5593 }
5594 
5595 int
5596 spa_get_stats(const char *name, nvlist_t **config,
5597     char *altroot, size_t buflen)
5598 {
5599 	int error;
5600 	spa_t *spa;
5601 
5602 	*config = NULL;
5603 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5604 
5605 	if (spa != NULL) {
5606 		/*
5607 		 * This still leaves a window of inconsistency where the spares
5608 		 * or l2cache devices could change and the config would be
5609 		 * self-inconsistent.
5610 		 */
5611 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5612 
5613 		if (*config != NULL) {
5614 			uint64_t loadtimes[2];
5615 
5616 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5617 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5618 			fnvlist_add_uint64_array(*config,
5619 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5620 
5621 			fnvlist_add_uint64(*config,
5622 			    ZPOOL_CONFIG_ERRCOUNT,
5623 			    spa_approx_errlog_size(spa));
5624 
5625 			if (spa_suspended(spa)) {
5626 				fnvlist_add_uint64(*config,
5627 				    ZPOOL_CONFIG_SUSPENDED,
5628 				    spa->spa_failmode);
5629 				fnvlist_add_uint64(*config,
5630 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5631 				    spa->spa_suspended);
5632 			}
5633 
5634 			spa_add_spares(spa, *config);
5635 			spa_add_l2cache(spa, *config);
5636 			spa_add_feature_stats(spa, *config);
5637 		}
5638 	}
5639 
5640 	/*
5641 	 * We want to get the alternate root even for faulted pools, so we cheat
5642 	 * and call spa_lookup() directly.
5643 	 */
5644 	if (altroot) {
5645 		if (spa == NULL) {
5646 			mutex_enter(&spa_namespace_lock);
5647 			spa = spa_lookup(name);
5648 			if (spa)
5649 				spa_altroot(spa, altroot, buflen);
5650 			else
5651 				altroot[0] = '\0';
5652 			spa = NULL;
5653 			mutex_exit(&spa_namespace_lock);
5654 		} else {
5655 			spa_altroot(spa, altroot, buflen);
5656 		}
5657 	}
5658 
5659 	if (spa != NULL) {
5660 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5661 		spa_close(spa, FTAG);
5662 	}
5663 
5664 	return (error);
5665 }
5666 
5667 /*
5668  * Validate that the auxiliary device array is well formed.  We must have an
5669  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5670  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5671  * specified, as long as they are well-formed.
5672  */
5673 static int
5674 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5675     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5676     vdev_labeltype_t label)
5677 {
5678 	nvlist_t **dev;
5679 	uint_t i, ndev;
5680 	vdev_t *vd;
5681 	int error;
5682 
5683 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5684 
5685 	/*
5686 	 * It's acceptable to have no devs specified.
5687 	 */
5688 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5689 		return (0);
5690 
5691 	if (ndev == 0)
5692 		return (SET_ERROR(EINVAL));
5693 
5694 	/*
5695 	 * Make sure the pool is formatted with a version that supports this
5696 	 * device type.
5697 	 */
5698 	if (spa_version(spa) < version)
5699 		return (SET_ERROR(ENOTSUP));
5700 
5701 	/*
5702 	 * Set the pending device list so we correctly handle device in-use
5703 	 * checking.
5704 	 */
5705 	sav->sav_pending = dev;
5706 	sav->sav_npending = ndev;
5707 
5708 	for (i = 0; i < ndev; i++) {
5709 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5710 		    mode)) != 0)
5711 			goto out;
5712 
5713 		if (!vd->vdev_ops->vdev_op_leaf) {
5714 			vdev_free(vd);
5715 			error = SET_ERROR(EINVAL);
5716 			goto out;
5717 		}
5718 
5719 		vd->vdev_top = vd;
5720 
5721 		if ((error = vdev_open(vd)) == 0 &&
5722 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5723 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5724 			    vd->vdev_guid);
5725 		}
5726 
5727 		vdev_free(vd);
5728 
5729 		if (error &&
5730 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5731 			goto out;
5732 		else
5733 			error = 0;
5734 	}
5735 
5736 out:
5737 	sav->sav_pending = NULL;
5738 	sav->sav_npending = 0;
5739 	return (error);
5740 }
5741 
5742 static int
5743 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5744 {
5745 	int error;
5746 
5747 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5748 
5749 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5750 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5751 	    VDEV_LABEL_SPARE)) != 0) {
5752 		return (error);
5753 	}
5754 
5755 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5756 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5757 	    VDEV_LABEL_L2CACHE));
5758 }
5759 
5760 static void
5761 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5762     const char *config)
5763 {
5764 	int i;
5765 
5766 	if (sav->sav_config != NULL) {
5767 		nvlist_t **olddevs;
5768 		uint_t oldndevs;
5769 		nvlist_t **newdevs;
5770 
5771 		/*
5772 		 * Generate new dev list by concatenating with the
5773 		 * current dev list.
5774 		 */
5775 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5776 		    &olddevs, &oldndevs));
5777 
5778 		newdevs = kmem_alloc(sizeof (void *) *
5779 		    (ndevs + oldndevs), KM_SLEEP);
5780 		for (i = 0; i < oldndevs; i++)
5781 			newdevs[i] = fnvlist_dup(olddevs[i]);
5782 		for (i = 0; i < ndevs; i++)
5783 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5784 
5785 		fnvlist_remove(sav->sav_config, config);
5786 
5787 		fnvlist_add_nvlist_array(sav->sav_config, config,
5788 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5789 		for (i = 0; i < oldndevs + ndevs; i++)
5790 			nvlist_free(newdevs[i]);
5791 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5792 	} else {
5793 		/*
5794 		 * Generate a new dev list.
5795 		 */
5796 		sav->sav_config = fnvlist_alloc();
5797 		fnvlist_add_nvlist_array(sav->sav_config, config,
5798 		    (const nvlist_t * const *)devs, ndevs);
5799 	}
5800 }
5801 
5802 /*
5803  * Stop and drop level 2 ARC devices
5804  */
5805 void
5806 spa_l2cache_drop(spa_t *spa)
5807 {
5808 	vdev_t *vd;
5809 	int i;
5810 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5811 
5812 	for (i = 0; i < sav->sav_count; i++) {
5813 		uint64_t pool;
5814 
5815 		vd = sav->sav_vdevs[i];
5816 		ASSERT(vd != NULL);
5817 
5818 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5819 		    pool != 0ULL && l2arc_vdev_present(vd))
5820 			l2arc_remove_vdev(vd);
5821 	}
5822 }
5823 
5824 /*
5825  * Verify encryption parameters for spa creation. If we are encrypting, we must
5826  * have the encryption feature flag enabled.
5827  */
5828 static int
5829 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5830     boolean_t has_encryption)
5831 {
5832 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5833 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5834 	    !has_encryption)
5835 		return (SET_ERROR(ENOTSUP));
5836 
5837 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5838 }
5839 
5840 /*
5841  * Pool Creation
5842  */
5843 int
5844 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5845     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5846 {
5847 	spa_t *spa;
5848 	const char *altroot = NULL;
5849 	vdev_t *rvd;
5850 	dsl_pool_t *dp;
5851 	dmu_tx_t *tx;
5852 	int error = 0;
5853 	uint64_t txg = TXG_INITIAL;
5854 	nvlist_t **spares, **l2cache;
5855 	uint_t nspares, nl2cache;
5856 	uint64_t version, obj, ndraid = 0;
5857 	boolean_t has_features;
5858 	boolean_t has_encryption;
5859 	boolean_t has_allocclass;
5860 	spa_feature_t feat;
5861 	const char *feat_name;
5862 	const char *poolname;
5863 	nvlist_t *nvl;
5864 
5865 	if (props == NULL ||
5866 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5867 		poolname = (char *)pool;
5868 
5869 	/*
5870 	 * If this pool already exists, return failure.
5871 	 */
5872 	mutex_enter(&spa_namespace_lock);
5873 	if (spa_lookup(poolname) != NULL) {
5874 		mutex_exit(&spa_namespace_lock);
5875 		return (SET_ERROR(EEXIST));
5876 	}
5877 
5878 	/*
5879 	 * Allocate a new spa_t structure.
5880 	 */
5881 	nvl = fnvlist_alloc();
5882 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5883 	(void) nvlist_lookup_string(props,
5884 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5885 	spa = spa_add(poolname, nvl, altroot);
5886 	fnvlist_free(nvl);
5887 	spa_activate(spa, spa_mode_global);
5888 
5889 	if (props && (error = spa_prop_validate(spa, props))) {
5890 		spa_deactivate(spa);
5891 		spa_remove(spa);
5892 		mutex_exit(&spa_namespace_lock);
5893 		return (error);
5894 	}
5895 
5896 	/*
5897 	 * Temporary pool names should never be written to disk.
5898 	 */
5899 	if (poolname != pool)
5900 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5901 
5902 	has_features = B_FALSE;
5903 	has_encryption = B_FALSE;
5904 	has_allocclass = B_FALSE;
5905 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5906 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5907 		if (zpool_prop_feature(nvpair_name(elem))) {
5908 			has_features = B_TRUE;
5909 
5910 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5911 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5912 			if (feat == SPA_FEATURE_ENCRYPTION)
5913 				has_encryption = B_TRUE;
5914 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5915 				has_allocclass = B_TRUE;
5916 		}
5917 	}
5918 
5919 	/* verify encryption params, if they were provided */
5920 	if (dcp != NULL) {
5921 		error = spa_create_check_encryption_params(dcp, has_encryption);
5922 		if (error != 0) {
5923 			spa_deactivate(spa);
5924 			spa_remove(spa);
5925 			mutex_exit(&spa_namespace_lock);
5926 			return (error);
5927 		}
5928 	}
5929 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5930 		spa_deactivate(spa);
5931 		spa_remove(spa);
5932 		mutex_exit(&spa_namespace_lock);
5933 		return (ENOTSUP);
5934 	}
5935 
5936 	if (has_features || nvlist_lookup_uint64(props,
5937 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5938 		version = SPA_VERSION;
5939 	}
5940 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5941 
5942 	spa->spa_first_txg = txg;
5943 	spa->spa_uberblock.ub_txg = txg - 1;
5944 	spa->spa_uberblock.ub_version = version;
5945 	spa->spa_ubsync = spa->spa_uberblock;
5946 	spa->spa_load_state = SPA_LOAD_CREATE;
5947 	spa->spa_removing_phys.sr_state = DSS_NONE;
5948 	spa->spa_removing_phys.sr_removing_vdev = -1;
5949 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5950 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5951 
5952 	/*
5953 	 * Create "The Godfather" zio to hold all async IOs
5954 	 */
5955 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5956 	    KM_SLEEP);
5957 	for (int i = 0; i < max_ncpus; i++) {
5958 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5959 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5960 		    ZIO_FLAG_GODFATHER);
5961 	}
5962 
5963 	/*
5964 	 * Create the root vdev.
5965 	 */
5966 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5967 
5968 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5969 
5970 	ASSERT(error != 0 || rvd != NULL);
5971 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5972 
5973 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5974 		error = SET_ERROR(EINVAL);
5975 
5976 	if (error == 0 &&
5977 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5978 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5979 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5980 		/*
5981 		 * instantiate the metaslab groups (this will dirty the vdevs)
5982 		 * we can no longer error exit past this point
5983 		 */
5984 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5985 			vdev_t *vd = rvd->vdev_child[c];
5986 
5987 			vdev_metaslab_set_size(vd);
5988 			vdev_expand(vd, txg);
5989 		}
5990 	}
5991 
5992 	spa_config_exit(spa, SCL_ALL, FTAG);
5993 
5994 	if (error != 0) {
5995 		spa_unload(spa);
5996 		spa_deactivate(spa);
5997 		spa_remove(spa);
5998 		mutex_exit(&spa_namespace_lock);
5999 		return (error);
6000 	}
6001 
6002 	/*
6003 	 * Get the list of spares, if specified.
6004 	 */
6005 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6006 	    &spares, &nspares) == 0) {
6007 		spa->spa_spares.sav_config = fnvlist_alloc();
6008 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6009 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6010 		    nspares);
6011 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6012 		spa_load_spares(spa);
6013 		spa_config_exit(spa, SCL_ALL, FTAG);
6014 		spa->spa_spares.sav_sync = B_TRUE;
6015 	}
6016 
6017 	/*
6018 	 * Get the list of level 2 cache devices, if specified.
6019 	 */
6020 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6021 	    &l2cache, &nl2cache) == 0) {
6022 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6023 		    NV_UNIQUE_NAME, KM_SLEEP));
6024 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6025 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6026 		    nl2cache);
6027 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6028 		spa_load_l2cache(spa);
6029 		spa_config_exit(spa, SCL_ALL, FTAG);
6030 		spa->spa_l2cache.sav_sync = B_TRUE;
6031 	}
6032 
6033 	spa->spa_is_initializing = B_TRUE;
6034 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6035 	spa->spa_is_initializing = B_FALSE;
6036 
6037 	/*
6038 	 * Create DDTs (dedup tables).
6039 	 */
6040 	ddt_create(spa);
6041 	/*
6042 	 * Create BRT table and BRT table object.
6043 	 */
6044 	brt_create(spa);
6045 
6046 	spa_update_dspace(spa);
6047 
6048 	tx = dmu_tx_create_assigned(dp, txg);
6049 
6050 	/*
6051 	 * Create the pool's history object.
6052 	 */
6053 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6054 		spa_history_create_obj(spa, tx);
6055 
6056 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6057 	spa_history_log_version(spa, "create", tx);
6058 
6059 	/*
6060 	 * Create the pool config object.
6061 	 */
6062 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6063 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6064 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6065 
6066 	if (zap_add(spa->spa_meta_objset,
6067 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6068 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6069 		cmn_err(CE_PANIC, "failed to add pool config");
6070 	}
6071 
6072 	if (zap_add(spa->spa_meta_objset,
6073 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6074 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6075 		cmn_err(CE_PANIC, "failed to add pool version");
6076 	}
6077 
6078 	/* Newly created pools with the right version are always deflated. */
6079 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6080 		spa->spa_deflate = TRUE;
6081 		if (zap_add(spa->spa_meta_objset,
6082 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6083 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6084 			cmn_err(CE_PANIC, "failed to add deflate");
6085 		}
6086 	}
6087 
6088 	/*
6089 	 * Create the deferred-free bpobj.  Turn off compression
6090 	 * because sync-to-convergence takes longer if the blocksize
6091 	 * keeps changing.
6092 	 */
6093 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6094 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6095 	    ZIO_COMPRESS_OFF, tx);
6096 	if (zap_add(spa->spa_meta_objset,
6097 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6098 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6099 		cmn_err(CE_PANIC, "failed to add bpobj");
6100 	}
6101 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6102 	    spa->spa_meta_objset, obj));
6103 
6104 	/*
6105 	 * Generate some random noise for salted checksums to operate on.
6106 	 */
6107 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6108 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6109 
6110 	/*
6111 	 * Set pool properties.
6112 	 */
6113 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6114 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6115 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6116 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6117 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6118 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6119 
6120 	if (props != NULL) {
6121 		spa_configfile_set(spa, props, B_FALSE);
6122 		spa_sync_props(props, tx);
6123 	}
6124 
6125 	for (int i = 0; i < ndraid; i++)
6126 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6127 
6128 	dmu_tx_commit(tx);
6129 
6130 	spa->spa_sync_on = B_TRUE;
6131 	txg_sync_start(dp);
6132 	mmp_thread_start(spa);
6133 	txg_wait_synced(dp, txg);
6134 
6135 	spa_spawn_aux_threads(spa);
6136 
6137 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6138 
6139 	/*
6140 	 * Don't count references from objsets that are already closed
6141 	 * and are making their way through the eviction process.
6142 	 */
6143 	spa_evicting_os_wait(spa);
6144 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6145 	spa->spa_load_state = SPA_LOAD_NONE;
6146 
6147 	spa_import_os(spa);
6148 
6149 	mutex_exit(&spa_namespace_lock);
6150 
6151 	return (0);
6152 }
6153 
6154 /*
6155  * Import a non-root pool into the system.
6156  */
6157 int
6158 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6159 {
6160 	spa_t *spa;
6161 	const char *altroot = NULL;
6162 	spa_load_state_t state = SPA_LOAD_IMPORT;
6163 	zpool_load_policy_t policy;
6164 	spa_mode_t mode = spa_mode_global;
6165 	uint64_t readonly = B_FALSE;
6166 	int error;
6167 	nvlist_t *nvroot;
6168 	nvlist_t **spares, **l2cache;
6169 	uint_t nspares, nl2cache;
6170 
6171 	/*
6172 	 * If a pool with this name exists, return failure.
6173 	 */
6174 	mutex_enter(&spa_namespace_lock);
6175 	if (spa_lookup(pool) != NULL) {
6176 		mutex_exit(&spa_namespace_lock);
6177 		return (SET_ERROR(EEXIST));
6178 	}
6179 
6180 	/*
6181 	 * Create and initialize the spa structure.
6182 	 */
6183 	(void) nvlist_lookup_string(props,
6184 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6185 	(void) nvlist_lookup_uint64(props,
6186 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6187 	if (readonly)
6188 		mode = SPA_MODE_READ;
6189 	spa = spa_add(pool, config, altroot);
6190 	spa->spa_import_flags = flags;
6191 
6192 	/*
6193 	 * Verbatim import - Take a pool and insert it into the namespace
6194 	 * as if it had been loaded at boot.
6195 	 */
6196 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6197 		if (props != NULL)
6198 			spa_configfile_set(spa, props, B_FALSE);
6199 
6200 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6201 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6202 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6203 		mutex_exit(&spa_namespace_lock);
6204 		return (0);
6205 	}
6206 
6207 	spa_activate(spa, mode);
6208 
6209 	/*
6210 	 * Don't start async tasks until we know everything is healthy.
6211 	 */
6212 	spa_async_suspend(spa);
6213 
6214 	zpool_get_load_policy(config, &policy);
6215 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6216 		state = SPA_LOAD_RECOVER;
6217 
6218 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6219 
6220 	if (state != SPA_LOAD_RECOVER) {
6221 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6222 		zfs_dbgmsg("spa_import: importing %s", pool);
6223 	} else {
6224 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6225 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6226 	}
6227 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6228 
6229 	/*
6230 	 * Propagate anything learned while loading the pool and pass it
6231 	 * back to caller (i.e. rewind info, missing devices, etc).
6232 	 */
6233 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6234 
6235 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6236 	/*
6237 	 * Toss any existing sparelist, as it doesn't have any validity
6238 	 * anymore, and conflicts with spa_has_spare().
6239 	 */
6240 	if (spa->spa_spares.sav_config) {
6241 		nvlist_free(spa->spa_spares.sav_config);
6242 		spa->spa_spares.sav_config = NULL;
6243 		spa_load_spares(spa);
6244 	}
6245 	if (spa->spa_l2cache.sav_config) {
6246 		nvlist_free(spa->spa_l2cache.sav_config);
6247 		spa->spa_l2cache.sav_config = NULL;
6248 		spa_load_l2cache(spa);
6249 	}
6250 
6251 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6252 	spa_config_exit(spa, SCL_ALL, FTAG);
6253 
6254 	if (props != NULL)
6255 		spa_configfile_set(spa, props, B_FALSE);
6256 
6257 	if (error != 0 || (props && spa_writeable(spa) &&
6258 	    (error = spa_prop_set(spa, props)))) {
6259 		spa_unload(spa);
6260 		spa_deactivate(spa);
6261 		spa_remove(spa);
6262 		mutex_exit(&spa_namespace_lock);
6263 		return (error);
6264 	}
6265 
6266 	spa_async_resume(spa);
6267 
6268 	/*
6269 	 * Override any spares and level 2 cache devices as specified by
6270 	 * the user, as these may have correct device names/devids, etc.
6271 	 */
6272 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6273 	    &spares, &nspares) == 0) {
6274 		if (spa->spa_spares.sav_config)
6275 			fnvlist_remove(spa->spa_spares.sav_config,
6276 			    ZPOOL_CONFIG_SPARES);
6277 		else
6278 			spa->spa_spares.sav_config = fnvlist_alloc();
6279 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6280 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6281 		    nspares);
6282 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6283 		spa_load_spares(spa);
6284 		spa_config_exit(spa, SCL_ALL, FTAG);
6285 		spa->spa_spares.sav_sync = B_TRUE;
6286 	}
6287 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6288 	    &l2cache, &nl2cache) == 0) {
6289 		if (spa->spa_l2cache.sav_config)
6290 			fnvlist_remove(spa->spa_l2cache.sav_config,
6291 			    ZPOOL_CONFIG_L2CACHE);
6292 		else
6293 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6294 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6295 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6296 		    nl2cache);
6297 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6298 		spa_load_l2cache(spa);
6299 		spa_config_exit(spa, SCL_ALL, FTAG);
6300 		spa->spa_l2cache.sav_sync = B_TRUE;
6301 	}
6302 
6303 	/*
6304 	 * Check for any removed devices.
6305 	 */
6306 	if (spa->spa_autoreplace) {
6307 		spa_aux_check_removed(&spa->spa_spares);
6308 		spa_aux_check_removed(&spa->spa_l2cache);
6309 	}
6310 
6311 	if (spa_writeable(spa)) {
6312 		/*
6313 		 * Update the config cache to include the newly-imported pool.
6314 		 */
6315 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6316 	}
6317 
6318 	/*
6319 	 * It's possible that the pool was expanded while it was exported.
6320 	 * We kick off an async task to handle this for us.
6321 	 */
6322 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6323 
6324 	spa_history_log_version(spa, "import", NULL);
6325 
6326 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6327 
6328 	mutex_exit(&spa_namespace_lock);
6329 
6330 	zvol_create_minors_recursive(pool);
6331 
6332 	spa_import_os(spa);
6333 
6334 	return (0);
6335 }
6336 
6337 nvlist_t *
6338 spa_tryimport(nvlist_t *tryconfig)
6339 {
6340 	nvlist_t *config = NULL;
6341 	const char *poolname, *cachefile;
6342 	spa_t *spa;
6343 	uint64_t state;
6344 	int error;
6345 	zpool_load_policy_t policy;
6346 
6347 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6348 		return (NULL);
6349 
6350 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6351 		return (NULL);
6352 
6353 	/*
6354 	 * Create and initialize the spa structure.
6355 	 */
6356 	mutex_enter(&spa_namespace_lock);
6357 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6358 	spa_activate(spa, SPA_MODE_READ);
6359 
6360 	/*
6361 	 * Rewind pool if a max txg was provided.
6362 	 */
6363 	zpool_get_load_policy(spa->spa_config, &policy);
6364 	if (policy.zlp_txg != UINT64_MAX) {
6365 		spa->spa_load_max_txg = policy.zlp_txg;
6366 		spa->spa_extreme_rewind = B_TRUE;
6367 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6368 		    poolname, (longlong_t)policy.zlp_txg);
6369 	} else {
6370 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6371 	}
6372 
6373 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6374 	    == 0) {
6375 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6376 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6377 	} else {
6378 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6379 	}
6380 
6381 	/*
6382 	 * spa_import() relies on a pool config fetched by spa_try_import()
6383 	 * for spare/cache devices. Import flags are not passed to
6384 	 * spa_tryimport(), which makes it return early due to a missing log
6385 	 * device and missing retrieving the cache device and spare eventually.
6386 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6387 	 * the correct configuration regardless of the missing log device.
6388 	 */
6389 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6390 
6391 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6392 
6393 	/*
6394 	 * If 'tryconfig' was at least parsable, return the current config.
6395 	 */
6396 	if (spa->spa_root_vdev != NULL) {
6397 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6398 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6399 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6400 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6401 		    spa->spa_uberblock.ub_timestamp);
6402 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6403 		    spa->spa_load_info);
6404 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6405 		    spa->spa_errata);
6406 
6407 		/*
6408 		 * If the bootfs property exists on this pool then we
6409 		 * copy it out so that external consumers can tell which
6410 		 * pools are bootable.
6411 		 */
6412 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6413 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6414 
6415 			/*
6416 			 * We have to play games with the name since the
6417 			 * pool was opened as TRYIMPORT_NAME.
6418 			 */
6419 			if (dsl_dsobj_to_dsname(spa_name(spa),
6420 			    spa->spa_bootfs, tmpname) == 0) {
6421 				char *cp;
6422 				char *dsname;
6423 
6424 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6425 
6426 				cp = strchr(tmpname, '/');
6427 				if (cp == NULL) {
6428 					(void) strlcpy(dsname, tmpname,
6429 					    MAXPATHLEN);
6430 				} else {
6431 					(void) snprintf(dsname, MAXPATHLEN,
6432 					    "%s/%s", poolname, ++cp);
6433 				}
6434 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6435 				    dsname);
6436 				kmem_free(dsname, MAXPATHLEN);
6437 			}
6438 			kmem_free(tmpname, MAXPATHLEN);
6439 		}
6440 
6441 		/*
6442 		 * Add the list of hot spares and level 2 cache devices.
6443 		 */
6444 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6445 		spa_add_spares(spa, config);
6446 		spa_add_l2cache(spa, config);
6447 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6448 	}
6449 
6450 	spa_unload(spa);
6451 	spa_deactivate(spa);
6452 	spa_remove(spa);
6453 	mutex_exit(&spa_namespace_lock);
6454 
6455 	return (config);
6456 }
6457 
6458 /*
6459  * Pool export/destroy
6460  *
6461  * The act of destroying or exporting a pool is very simple.  We make sure there
6462  * is no more pending I/O and any references to the pool are gone.  Then, we
6463  * update the pool state and sync all the labels to disk, removing the
6464  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6465  * we don't sync the labels or remove the configuration cache.
6466  */
6467 static int
6468 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6469     boolean_t force, boolean_t hardforce)
6470 {
6471 	int error;
6472 	spa_t *spa;
6473 
6474 	if (oldconfig)
6475 		*oldconfig = NULL;
6476 
6477 	if (!(spa_mode_global & SPA_MODE_WRITE))
6478 		return (SET_ERROR(EROFS));
6479 
6480 	mutex_enter(&spa_namespace_lock);
6481 	if ((spa = spa_lookup(pool)) == NULL) {
6482 		mutex_exit(&spa_namespace_lock);
6483 		return (SET_ERROR(ENOENT));
6484 	}
6485 
6486 	if (spa->spa_is_exporting) {
6487 		/* the pool is being exported by another thread */
6488 		mutex_exit(&spa_namespace_lock);
6489 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6490 	}
6491 	spa->spa_is_exporting = B_TRUE;
6492 
6493 	/*
6494 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6495 	 * reacquire the namespace lock, and see if we can export.
6496 	 */
6497 	spa_open_ref(spa, FTAG);
6498 	mutex_exit(&spa_namespace_lock);
6499 	spa_async_suspend(spa);
6500 	if (spa->spa_zvol_taskq) {
6501 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6502 		taskq_wait(spa->spa_zvol_taskq);
6503 	}
6504 	mutex_enter(&spa_namespace_lock);
6505 	spa_close(spa, FTAG);
6506 
6507 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6508 		goto export_spa;
6509 	/*
6510 	 * The pool will be in core if it's openable, in which case we can
6511 	 * modify its state.  Objsets may be open only because they're dirty,
6512 	 * so we have to force it to sync before checking spa_refcnt.
6513 	 */
6514 	if (spa->spa_sync_on) {
6515 		txg_wait_synced(spa->spa_dsl_pool, 0);
6516 		spa_evicting_os_wait(spa);
6517 	}
6518 
6519 	/*
6520 	 * A pool cannot be exported or destroyed if there are active
6521 	 * references.  If we are resetting a pool, allow references by
6522 	 * fault injection handlers.
6523 	 */
6524 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6525 		error = SET_ERROR(EBUSY);
6526 		goto fail;
6527 	}
6528 
6529 	if (spa->spa_sync_on) {
6530 		vdev_t *rvd = spa->spa_root_vdev;
6531 		/*
6532 		 * A pool cannot be exported if it has an active shared spare.
6533 		 * This is to prevent other pools stealing the active spare
6534 		 * from an exported pool. At user's own will, such pool can
6535 		 * be forcedly exported.
6536 		 */
6537 		if (!force && new_state == POOL_STATE_EXPORTED &&
6538 		    spa_has_active_shared_spare(spa)) {
6539 			error = SET_ERROR(EXDEV);
6540 			goto fail;
6541 		}
6542 
6543 		/*
6544 		 * We're about to export or destroy this pool. Make sure
6545 		 * we stop all initialization and trim activity here before
6546 		 * we set the spa_final_txg. This will ensure that all
6547 		 * dirty data resulting from the initialization is
6548 		 * committed to disk before we unload the pool.
6549 		 */
6550 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6551 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6552 		vdev_autotrim_stop_all(spa);
6553 		vdev_rebuild_stop_all(spa);
6554 
6555 		/*
6556 		 * We want this to be reflected on every label,
6557 		 * so mark them all dirty.  spa_unload() will do the
6558 		 * final sync that pushes these changes out.
6559 		 */
6560 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6561 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6562 			spa->spa_state = new_state;
6563 			vdev_config_dirty(rvd);
6564 			spa_config_exit(spa, SCL_ALL, FTAG);
6565 		}
6566 
6567 		/*
6568 		 * If the log space map feature is enabled and the pool is
6569 		 * getting exported (but not destroyed), we want to spend some
6570 		 * time flushing as many metaslabs as we can in an attempt to
6571 		 * destroy log space maps and save import time. This has to be
6572 		 * done before we set the spa_final_txg, otherwise
6573 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6574 		 * spa_should_flush_logs_on_unload() should be called after
6575 		 * spa_state has been set to the new_state.
6576 		 */
6577 		if (spa_should_flush_logs_on_unload(spa))
6578 			spa_unload_log_sm_flush_all(spa);
6579 
6580 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6581 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6582 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6583 			    TXG_DEFER_SIZE + 1;
6584 			spa_config_exit(spa, SCL_ALL, FTAG);
6585 		}
6586 	}
6587 
6588 export_spa:
6589 	spa_export_os(spa);
6590 
6591 	if (new_state == POOL_STATE_DESTROYED)
6592 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6593 	else if (new_state == POOL_STATE_EXPORTED)
6594 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6595 
6596 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6597 		spa_unload(spa);
6598 		spa_deactivate(spa);
6599 	}
6600 
6601 	if (oldconfig && spa->spa_config)
6602 		*oldconfig = fnvlist_dup(spa->spa_config);
6603 
6604 	if (new_state != POOL_STATE_UNINITIALIZED) {
6605 		if (!hardforce)
6606 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6607 		spa_remove(spa);
6608 	} else {
6609 		/*
6610 		 * If spa_remove() is not called for this spa_t and
6611 		 * there is any possibility that it can be reused,
6612 		 * we make sure to reset the exporting flag.
6613 		 */
6614 		spa->spa_is_exporting = B_FALSE;
6615 	}
6616 
6617 	mutex_exit(&spa_namespace_lock);
6618 	return (0);
6619 
6620 fail:
6621 	spa->spa_is_exporting = B_FALSE;
6622 	spa_async_resume(spa);
6623 	mutex_exit(&spa_namespace_lock);
6624 	return (error);
6625 }
6626 
6627 /*
6628  * Destroy a storage pool.
6629  */
6630 int
6631 spa_destroy(const char *pool)
6632 {
6633 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6634 	    B_FALSE, B_FALSE));
6635 }
6636 
6637 /*
6638  * Export a storage pool.
6639  */
6640 int
6641 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6642     boolean_t hardforce)
6643 {
6644 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6645 	    force, hardforce));
6646 }
6647 
6648 /*
6649  * Similar to spa_export(), this unloads the spa_t without actually removing it
6650  * from the namespace in any way.
6651  */
6652 int
6653 spa_reset(const char *pool)
6654 {
6655 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6656 	    B_FALSE, B_FALSE));
6657 }
6658 
6659 /*
6660  * ==========================================================================
6661  * Device manipulation
6662  * ==========================================================================
6663  */
6664 
6665 /*
6666  * This is called as a synctask to increment the draid feature flag
6667  */
6668 static void
6669 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6670 {
6671 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6672 	int draid = (int)(uintptr_t)arg;
6673 
6674 	for (int c = 0; c < draid; c++)
6675 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6676 }
6677 
6678 /*
6679  * Add a device to a storage pool.
6680  */
6681 int
6682 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6683 {
6684 	uint64_t txg, ndraid = 0;
6685 	int error;
6686 	vdev_t *rvd = spa->spa_root_vdev;
6687 	vdev_t *vd, *tvd;
6688 	nvlist_t **spares, **l2cache;
6689 	uint_t nspares, nl2cache;
6690 
6691 	ASSERT(spa_writeable(spa));
6692 
6693 	txg = spa_vdev_enter(spa);
6694 
6695 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6696 	    VDEV_ALLOC_ADD)) != 0)
6697 		return (spa_vdev_exit(spa, NULL, txg, error));
6698 
6699 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6700 
6701 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6702 	    &nspares) != 0)
6703 		nspares = 0;
6704 
6705 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6706 	    &nl2cache) != 0)
6707 		nl2cache = 0;
6708 
6709 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6710 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6711 
6712 	if (vd->vdev_children != 0 &&
6713 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6714 		return (spa_vdev_exit(spa, vd, txg, error));
6715 	}
6716 
6717 	/*
6718 	 * The virtual dRAID spares must be added after vdev tree is created
6719 	 * and the vdev guids are generated.  The guid of their associated
6720 	 * dRAID is stored in the config and used when opening the spare.
6721 	 */
6722 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6723 	    rvd->vdev_children)) == 0) {
6724 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6725 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6726 			nspares = 0;
6727 	} else {
6728 		return (spa_vdev_exit(spa, vd, txg, error));
6729 	}
6730 
6731 	/*
6732 	 * We must validate the spares and l2cache devices after checking the
6733 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6734 	 */
6735 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6736 		return (spa_vdev_exit(spa, vd, txg, error));
6737 
6738 	/*
6739 	 * If we are in the middle of a device removal, we can only add
6740 	 * devices which match the existing devices in the pool.
6741 	 * If we are in the middle of a removal, or have some indirect
6742 	 * vdevs, we can not add raidz or dRAID top levels.
6743 	 */
6744 	if (spa->spa_vdev_removal != NULL ||
6745 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6746 		for (int c = 0; c < vd->vdev_children; c++) {
6747 			tvd = vd->vdev_child[c];
6748 			if (spa->spa_vdev_removal != NULL &&
6749 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6750 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6751 			}
6752 			/* Fail if top level vdev is raidz or a dRAID */
6753 			if (vdev_get_nparity(tvd) != 0)
6754 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6755 
6756 			/*
6757 			 * Need the top level mirror to be
6758 			 * a mirror of leaf vdevs only
6759 			 */
6760 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6761 				for (uint64_t cid = 0;
6762 				    cid < tvd->vdev_children; cid++) {
6763 					vdev_t *cvd = tvd->vdev_child[cid];
6764 					if (!cvd->vdev_ops->vdev_op_leaf) {
6765 						return (spa_vdev_exit(spa, vd,
6766 						    txg, EINVAL));
6767 					}
6768 				}
6769 			}
6770 		}
6771 	}
6772 
6773 	for (int c = 0; c < vd->vdev_children; c++) {
6774 		tvd = vd->vdev_child[c];
6775 		vdev_remove_child(vd, tvd);
6776 		tvd->vdev_id = rvd->vdev_children;
6777 		vdev_add_child(rvd, tvd);
6778 		vdev_config_dirty(tvd);
6779 	}
6780 
6781 	if (nspares != 0) {
6782 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6783 		    ZPOOL_CONFIG_SPARES);
6784 		spa_load_spares(spa);
6785 		spa->spa_spares.sav_sync = B_TRUE;
6786 	}
6787 
6788 	if (nl2cache != 0) {
6789 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6790 		    ZPOOL_CONFIG_L2CACHE);
6791 		spa_load_l2cache(spa);
6792 		spa->spa_l2cache.sav_sync = B_TRUE;
6793 	}
6794 
6795 	/*
6796 	 * We can't increment a feature while holding spa_vdev so we
6797 	 * have to do it in a synctask.
6798 	 */
6799 	if (ndraid != 0) {
6800 		dmu_tx_t *tx;
6801 
6802 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6803 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6804 		    (void *)(uintptr_t)ndraid, tx);
6805 		dmu_tx_commit(tx);
6806 	}
6807 
6808 	/*
6809 	 * We have to be careful when adding new vdevs to an existing pool.
6810 	 * If other threads start allocating from these vdevs before we
6811 	 * sync the config cache, and we lose power, then upon reboot we may
6812 	 * fail to open the pool because there are DVAs that the config cache
6813 	 * can't translate.  Therefore, we first add the vdevs without
6814 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6815 	 * and then let spa_config_update() initialize the new metaslabs.
6816 	 *
6817 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6818 	 * if we lose power at any point in this sequence, the remaining
6819 	 * steps will be completed the next time we load the pool.
6820 	 */
6821 	(void) spa_vdev_exit(spa, vd, txg, 0);
6822 
6823 	mutex_enter(&spa_namespace_lock);
6824 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6825 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6826 	mutex_exit(&spa_namespace_lock);
6827 
6828 	return (0);
6829 }
6830 
6831 /*
6832  * Attach a device to a mirror.  The arguments are the path to any device
6833  * in the mirror, and the nvroot for the new device.  If the path specifies
6834  * a device that is not mirrored, we automatically insert the mirror vdev.
6835  *
6836  * If 'replacing' is specified, the new device is intended to replace the
6837  * existing device; in this case the two devices are made into their own
6838  * mirror using the 'replacing' vdev, which is functionally identical to
6839  * the mirror vdev (it actually reuses all the same ops) but has a few
6840  * extra rules: you can't attach to it after it's been created, and upon
6841  * completion of resilvering, the first disk (the one being replaced)
6842  * is automatically detached.
6843  *
6844  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6845  * should be performed instead of traditional healing reconstruction.  From
6846  * an administrators perspective these are both resilver operations.
6847  */
6848 int
6849 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6850     int rebuild)
6851 {
6852 	uint64_t txg, dtl_max_txg;
6853 	vdev_t *rvd = spa->spa_root_vdev;
6854 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6855 	vdev_ops_t *pvops;
6856 	char *oldvdpath, *newvdpath;
6857 	int newvd_isspare;
6858 	int error;
6859 
6860 	ASSERT(spa_writeable(spa));
6861 
6862 	txg = spa_vdev_enter(spa);
6863 
6864 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6865 
6866 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6867 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6868 		error = (spa_has_checkpoint(spa)) ?
6869 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6870 		return (spa_vdev_exit(spa, NULL, txg, error));
6871 	}
6872 
6873 	if (rebuild) {
6874 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6875 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6876 
6877 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6878 			return (spa_vdev_exit(spa, NULL, txg,
6879 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6880 	} else {
6881 		if (vdev_rebuild_active(rvd))
6882 			return (spa_vdev_exit(spa, NULL, txg,
6883 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6884 	}
6885 
6886 	if (spa->spa_vdev_removal != NULL)
6887 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6888 
6889 	if (oldvd == NULL)
6890 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6891 
6892 	if (!oldvd->vdev_ops->vdev_op_leaf)
6893 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6894 
6895 	pvd = oldvd->vdev_parent;
6896 
6897 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6898 	    VDEV_ALLOC_ATTACH) != 0)
6899 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6900 
6901 	if (newrootvd->vdev_children != 1)
6902 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6903 
6904 	newvd = newrootvd->vdev_child[0];
6905 
6906 	if (!newvd->vdev_ops->vdev_op_leaf)
6907 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6908 
6909 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6910 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6911 
6912 	/*
6913 	 * log, dedup and special vdevs should not be replaced by spares.
6914 	 */
6915 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6916 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6917 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6918 	}
6919 
6920 	/*
6921 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6922 	 */
6923 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6924 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6925 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6926 	}
6927 
6928 	if (rebuild) {
6929 		/*
6930 		 * For rebuilds, the top vdev must support reconstruction
6931 		 * using only space maps.  This means the only allowable
6932 		 * vdevs types are the root vdev, a mirror, or dRAID.
6933 		 */
6934 		tvd = pvd;
6935 		if (pvd->vdev_top != NULL)
6936 			tvd = pvd->vdev_top;
6937 
6938 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6939 		    tvd->vdev_ops != &vdev_root_ops &&
6940 		    tvd->vdev_ops != &vdev_draid_ops) {
6941 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6942 		}
6943 	}
6944 
6945 	if (!replacing) {
6946 		/*
6947 		 * For attach, the only allowable parent is a mirror or the root
6948 		 * vdev.
6949 		 */
6950 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6951 		    pvd->vdev_ops != &vdev_root_ops)
6952 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6953 
6954 		pvops = &vdev_mirror_ops;
6955 	} else {
6956 		/*
6957 		 * Active hot spares can only be replaced by inactive hot
6958 		 * spares.
6959 		 */
6960 		if (pvd->vdev_ops == &vdev_spare_ops &&
6961 		    oldvd->vdev_isspare &&
6962 		    !spa_has_spare(spa, newvd->vdev_guid))
6963 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6964 
6965 		/*
6966 		 * If the source is a hot spare, and the parent isn't already a
6967 		 * spare, then we want to create a new hot spare.  Otherwise, we
6968 		 * want to create a replacing vdev.  The user is not allowed to
6969 		 * attach to a spared vdev child unless the 'isspare' state is
6970 		 * the same (spare replaces spare, non-spare replaces
6971 		 * non-spare).
6972 		 */
6973 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6974 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6975 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6976 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6977 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6978 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6979 		}
6980 
6981 		if (newvd->vdev_isspare)
6982 			pvops = &vdev_spare_ops;
6983 		else
6984 			pvops = &vdev_replacing_ops;
6985 	}
6986 
6987 	/*
6988 	 * Make sure the new device is big enough.
6989 	 */
6990 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6991 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6992 
6993 	/*
6994 	 * The new device cannot have a higher alignment requirement
6995 	 * than the top-level vdev.
6996 	 */
6997 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6998 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6999 
7000 	/*
7001 	 * If this is an in-place replacement, update oldvd's path and devid
7002 	 * to make it distinguishable from newvd, and unopenable from now on.
7003 	 */
7004 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
7005 		spa_strfree(oldvd->vdev_path);
7006 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
7007 		    KM_SLEEP);
7008 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
7009 		    "%s/%s", newvd->vdev_path, "old");
7010 		if (oldvd->vdev_devid != NULL) {
7011 			spa_strfree(oldvd->vdev_devid);
7012 			oldvd->vdev_devid = NULL;
7013 		}
7014 	}
7015 
7016 	/*
7017 	 * If the parent is not a mirror, or if we're replacing, insert the new
7018 	 * mirror/replacing/spare vdev above oldvd.
7019 	 */
7020 	if (pvd->vdev_ops != pvops)
7021 		pvd = vdev_add_parent(oldvd, pvops);
7022 
7023 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7024 	ASSERT(pvd->vdev_ops == pvops);
7025 	ASSERT(oldvd->vdev_parent == pvd);
7026 
7027 	/*
7028 	 * Extract the new device from its root and add it to pvd.
7029 	 */
7030 	vdev_remove_child(newrootvd, newvd);
7031 	newvd->vdev_id = pvd->vdev_children;
7032 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7033 	vdev_add_child(pvd, newvd);
7034 
7035 	/*
7036 	 * Reevaluate the parent vdev state.
7037 	 */
7038 	vdev_propagate_state(pvd);
7039 
7040 	tvd = newvd->vdev_top;
7041 	ASSERT(pvd->vdev_top == tvd);
7042 	ASSERT(tvd->vdev_parent == rvd);
7043 
7044 	vdev_config_dirty(tvd);
7045 
7046 	/*
7047 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7048 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7049 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7050 	 */
7051 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7052 
7053 	vdev_dtl_dirty(newvd, DTL_MISSING,
7054 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
7055 
7056 	if (newvd->vdev_isspare) {
7057 		spa_spare_activate(newvd);
7058 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7059 	}
7060 
7061 	oldvdpath = spa_strdup(oldvd->vdev_path);
7062 	newvdpath = spa_strdup(newvd->vdev_path);
7063 	newvd_isspare = newvd->vdev_isspare;
7064 
7065 	/*
7066 	 * Mark newvd's DTL dirty in this txg.
7067 	 */
7068 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
7069 
7070 	/*
7071 	 * Schedule the resilver or rebuild to restart in the future. We do
7072 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
7073 	 * respective datasets.
7074 	 */
7075 	if (rebuild) {
7076 		newvd->vdev_rebuild_txg = txg;
7077 
7078 		vdev_rebuild(tvd);
7079 	} else {
7080 		newvd->vdev_resilver_txg = txg;
7081 
7082 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7083 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7084 			vdev_defer_resilver(newvd);
7085 		} else {
7086 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
7087 			    dtl_max_txg);
7088 		}
7089 	}
7090 
7091 	if (spa->spa_bootfs)
7092 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7093 
7094 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7095 
7096 	/*
7097 	 * Commit the config
7098 	 */
7099 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7100 
7101 	spa_history_log_internal(spa, "vdev attach", NULL,
7102 	    "%s vdev=%s %s vdev=%s",
7103 	    replacing && newvd_isspare ? "spare in" :
7104 	    replacing ? "replace" : "attach", newvdpath,
7105 	    replacing ? "for" : "to", oldvdpath);
7106 
7107 	spa_strfree(oldvdpath);
7108 	spa_strfree(newvdpath);
7109 
7110 	return (0);
7111 }
7112 
7113 /*
7114  * Detach a device from a mirror or replacing vdev.
7115  *
7116  * If 'replace_done' is specified, only detach if the parent
7117  * is a replacing or a spare vdev.
7118  */
7119 int
7120 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7121 {
7122 	uint64_t txg;
7123 	int error;
7124 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7125 	vdev_t *vd, *pvd, *cvd, *tvd;
7126 	boolean_t unspare = B_FALSE;
7127 	uint64_t unspare_guid = 0;
7128 	char *vdpath;
7129 
7130 	ASSERT(spa_writeable(spa));
7131 
7132 	txg = spa_vdev_detach_enter(spa, guid);
7133 
7134 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7135 
7136 	/*
7137 	 * Besides being called directly from the userland through the
7138 	 * ioctl interface, spa_vdev_detach() can be potentially called
7139 	 * at the end of spa_vdev_resilver_done().
7140 	 *
7141 	 * In the regular case, when we have a checkpoint this shouldn't
7142 	 * happen as we never empty the DTLs of a vdev during the scrub
7143 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7144 	 * should never get here when we have a checkpoint.
7145 	 *
7146 	 * That said, even in a case when we checkpoint the pool exactly
7147 	 * as spa_vdev_resilver_done() calls this function everything
7148 	 * should be fine as the resilver will return right away.
7149 	 */
7150 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7151 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7152 		error = (spa_has_checkpoint(spa)) ?
7153 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7154 		return (spa_vdev_exit(spa, NULL, txg, error));
7155 	}
7156 
7157 	if (vd == NULL)
7158 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7159 
7160 	if (!vd->vdev_ops->vdev_op_leaf)
7161 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7162 
7163 	pvd = vd->vdev_parent;
7164 
7165 	/*
7166 	 * If the parent/child relationship is not as expected, don't do it.
7167 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7168 	 * vdev that's replacing B with C.  The user's intent in replacing
7169 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7170 	 * the replace by detaching C, the expected behavior is to end up
7171 	 * M(A,B).  But suppose that right after deciding to detach C,
7172 	 * the replacement of B completes.  We would have M(A,C), and then
7173 	 * ask to detach C, which would leave us with just A -- not what
7174 	 * the user wanted.  To prevent this, we make sure that the
7175 	 * parent/child relationship hasn't changed -- in this example,
7176 	 * that C's parent is still the replacing vdev R.
7177 	 */
7178 	if (pvd->vdev_guid != pguid && pguid != 0)
7179 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7180 
7181 	/*
7182 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7183 	 */
7184 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7185 	    pvd->vdev_ops != &vdev_spare_ops)
7186 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7187 
7188 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7189 	    spa_version(spa) >= SPA_VERSION_SPARES);
7190 
7191 	/*
7192 	 * Only mirror, replacing, and spare vdevs support detach.
7193 	 */
7194 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7195 	    pvd->vdev_ops != &vdev_mirror_ops &&
7196 	    pvd->vdev_ops != &vdev_spare_ops)
7197 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7198 
7199 	/*
7200 	 * If this device has the only valid copy of some data,
7201 	 * we cannot safely detach it.
7202 	 */
7203 	if (vdev_dtl_required(vd))
7204 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7205 
7206 	ASSERT(pvd->vdev_children >= 2);
7207 
7208 	/*
7209 	 * If we are detaching the second disk from a replacing vdev, then
7210 	 * check to see if we changed the original vdev's path to have "/old"
7211 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7212 	 */
7213 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7214 	    vd->vdev_path != NULL) {
7215 		size_t len = strlen(vd->vdev_path);
7216 
7217 		for (int c = 0; c < pvd->vdev_children; c++) {
7218 			cvd = pvd->vdev_child[c];
7219 
7220 			if (cvd == vd || cvd->vdev_path == NULL)
7221 				continue;
7222 
7223 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7224 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7225 				spa_strfree(cvd->vdev_path);
7226 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7227 				break;
7228 			}
7229 		}
7230 	}
7231 
7232 	/*
7233 	 * If we are detaching the original disk from a normal spare, then it
7234 	 * implies that the spare should become a real disk, and be removed
7235 	 * from the active spare list for the pool.  dRAID spares on the
7236 	 * other hand are coupled to the pool and thus should never be removed
7237 	 * from the spares list.
7238 	 */
7239 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7240 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7241 
7242 		if (last_cvd->vdev_isspare &&
7243 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7244 			unspare = B_TRUE;
7245 		}
7246 	}
7247 
7248 	/*
7249 	 * Erase the disk labels so the disk can be used for other things.
7250 	 * This must be done after all other error cases are handled,
7251 	 * but before we disembowel vd (so we can still do I/O to it).
7252 	 * But if we can't do it, don't treat the error as fatal --
7253 	 * it may be that the unwritability of the disk is the reason
7254 	 * it's being detached!
7255 	 */
7256 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7257 
7258 	/*
7259 	 * Remove vd from its parent and compact the parent's children.
7260 	 */
7261 	vdev_remove_child(pvd, vd);
7262 	vdev_compact_children(pvd);
7263 
7264 	/*
7265 	 * Remember one of the remaining children so we can get tvd below.
7266 	 */
7267 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7268 
7269 	/*
7270 	 * If we need to remove the remaining child from the list of hot spares,
7271 	 * do it now, marking the vdev as no longer a spare in the process.
7272 	 * We must do this before vdev_remove_parent(), because that can
7273 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7274 	 * reason, we must remove the spare now, in the same txg as the detach;
7275 	 * otherwise someone could attach a new sibling, change the GUID, and
7276 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7277 	 */
7278 	if (unspare) {
7279 		ASSERT(cvd->vdev_isspare);
7280 		spa_spare_remove(cvd);
7281 		unspare_guid = cvd->vdev_guid;
7282 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7283 		cvd->vdev_unspare = B_TRUE;
7284 	}
7285 
7286 	/*
7287 	 * If the parent mirror/replacing vdev only has one child,
7288 	 * the parent is no longer needed.  Remove it from the tree.
7289 	 */
7290 	if (pvd->vdev_children == 1) {
7291 		if (pvd->vdev_ops == &vdev_spare_ops)
7292 			cvd->vdev_unspare = B_FALSE;
7293 		vdev_remove_parent(cvd);
7294 	}
7295 
7296 	/*
7297 	 * We don't set tvd until now because the parent we just removed
7298 	 * may have been the previous top-level vdev.
7299 	 */
7300 	tvd = cvd->vdev_top;
7301 	ASSERT(tvd->vdev_parent == rvd);
7302 
7303 	/*
7304 	 * Reevaluate the parent vdev state.
7305 	 */
7306 	vdev_propagate_state(cvd);
7307 
7308 	/*
7309 	 * If the 'autoexpand' property is set on the pool then automatically
7310 	 * try to expand the size of the pool. For example if the device we
7311 	 * just detached was smaller than the others, it may be possible to
7312 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7313 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7314 	 */
7315 	if (spa->spa_autoexpand) {
7316 		vdev_reopen(tvd);
7317 		vdev_expand(tvd, txg);
7318 	}
7319 
7320 	vdev_config_dirty(tvd);
7321 
7322 	/*
7323 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7324 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7325 	 * But first make sure we're not on any *other* txg's DTL list, to
7326 	 * prevent vd from being accessed after it's freed.
7327 	 */
7328 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7329 	for (int t = 0; t < TXG_SIZE; t++)
7330 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7331 	vd->vdev_detached = B_TRUE;
7332 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7333 
7334 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7335 	spa_notify_waiters(spa);
7336 
7337 	/* hang on to the spa before we release the lock */
7338 	spa_open_ref(spa, FTAG);
7339 
7340 	error = spa_vdev_exit(spa, vd, txg, 0);
7341 
7342 	spa_history_log_internal(spa, "detach", NULL,
7343 	    "vdev=%s", vdpath);
7344 	spa_strfree(vdpath);
7345 
7346 	/*
7347 	 * If this was the removal of the original device in a hot spare vdev,
7348 	 * then we want to go through and remove the device from the hot spare
7349 	 * list of every other pool.
7350 	 */
7351 	if (unspare) {
7352 		spa_t *altspa = NULL;
7353 
7354 		mutex_enter(&spa_namespace_lock);
7355 		while ((altspa = spa_next(altspa)) != NULL) {
7356 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7357 			    altspa == spa)
7358 				continue;
7359 
7360 			spa_open_ref(altspa, FTAG);
7361 			mutex_exit(&spa_namespace_lock);
7362 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7363 			mutex_enter(&spa_namespace_lock);
7364 			spa_close(altspa, FTAG);
7365 		}
7366 		mutex_exit(&spa_namespace_lock);
7367 
7368 		/* search the rest of the vdevs for spares to remove */
7369 		spa_vdev_resilver_done(spa);
7370 	}
7371 
7372 	/* all done with the spa; OK to release */
7373 	mutex_enter(&spa_namespace_lock);
7374 	spa_close(spa, FTAG);
7375 	mutex_exit(&spa_namespace_lock);
7376 
7377 	return (error);
7378 }
7379 
7380 static int
7381 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7382     list_t *vd_list)
7383 {
7384 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7385 
7386 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7387 
7388 	/* Look up vdev and ensure it's a leaf. */
7389 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7390 	if (vd == NULL || vd->vdev_detached) {
7391 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7392 		return (SET_ERROR(ENODEV));
7393 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7394 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7395 		return (SET_ERROR(EINVAL));
7396 	} else if (!vdev_writeable(vd)) {
7397 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7398 		return (SET_ERROR(EROFS));
7399 	}
7400 	mutex_enter(&vd->vdev_initialize_lock);
7401 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7402 
7403 	/*
7404 	 * When we activate an initialize action we check to see
7405 	 * if the vdev_initialize_thread is NULL. We do this instead
7406 	 * of using the vdev_initialize_state since there might be
7407 	 * a previous initialization process which has completed but
7408 	 * the thread is not exited.
7409 	 */
7410 	if (cmd_type == POOL_INITIALIZE_START &&
7411 	    (vd->vdev_initialize_thread != NULL ||
7412 	    vd->vdev_top->vdev_removing)) {
7413 		mutex_exit(&vd->vdev_initialize_lock);
7414 		return (SET_ERROR(EBUSY));
7415 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7416 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7417 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7418 		mutex_exit(&vd->vdev_initialize_lock);
7419 		return (SET_ERROR(ESRCH));
7420 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7421 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7422 		mutex_exit(&vd->vdev_initialize_lock);
7423 		return (SET_ERROR(ESRCH));
7424 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7425 	    vd->vdev_initialize_thread != NULL) {
7426 		mutex_exit(&vd->vdev_initialize_lock);
7427 		return (SET_ERROR(EBUSY));
7428 	}
7429 
7430 	switch (cmd_type) {
7431 	case POOL_INITIALIZE_START:
7432 		vdev_initialize(vd);
7433 		break;
7434 	case POOL_INITIALIZE_CANCEL:
7435 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7436 		break;
7437 	case POOL_INITIALIZE_SUSPEND:
7438 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7439 		break;
7440 	case POOL_INITIALIZE_UNINIT:
7441 		vdev_uninitialize(vd);
7442 		break;
7443 	default:
7444 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7445 	}
7446 	mutex_exit(&vd->vdev_initialize_lock);
7447 
7448 	return (0);
7449 }
7450 
7451 int
7452 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7453     nvlist_t *vdev_errlist)
7454 {
7455 	int total_errors = 0;
7456 	list_t vd_list;
7457 
7458 	list_create(&vd_list, sizeof (vdev_t),
7459 	    offsetof(vdev_t, vdev_initialize_node));
7460 
7461 	/*
7462 	 * We hold the namespace lock through the whole function
7463 	 * to prevent any changes to the pool while we're starting or
7464 	 * stopping initialization. The config and state locks are held so that
7465 	 * we can properly assess the vdev state before we commit to
7466 	 * the initializing operation.
7467 	 */
7468 	mutex_enter(&spa_namespace_lock);
7469 
7470 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7471 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7472 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7473 
7474 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7475 		    &vd_list);
7476 		if (error != 0) {
7477 			char guid_as_str[MAXNAMELEN];
7478 
7479 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7480 			    "%llu", (unsigned long long)vdev_guid);
7481 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7482 			total_errors++;
7483 		}
7484 	}
7485 
7486 	/* Wait for all initialize threads to stop. */
7487 	vdev_initialize_stop_wait(spa, &vd_list);
7488 
7489 	/* Sync out the initializing state */
7490 	txg_wait_synced(spa->spa_dsl_pool, 0);
7491 	mutex_exit(&spa_namespace_lock);
7492 
7493 	list_destroy(&vd_list);
7494 
7495 	return (total_errors);
7496 }
7497 
7498 static int
7499 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7500     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7501 {
7502 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7503 
7504 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7505 
7506 	/* Look up vdev and ensure it's a leaf. */
7507 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7508 	if (vd == NULL || vd->vdev_detached) {
7509 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7510 		return (SET_ERROR(ENODEV));
7511 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7512 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7513 		return (SET_ERROR(EINVAL));
7514 	} else if (!vdev_writeable(vd)) {
7515 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7516 		return (SET_ERROR(EROFS));
7517 	} else if (!vd->vdev_has_trim) {
7518 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7519 		return (SET_ERROR(EOPNOTSUPP));
7520 	} else if (secure && !vd->vdev_has_securetrim) {
7521 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7522 		return (SET_ERROR(EOPNOTSUPP));
7523 	}
7524 	mutex_enter(&vd->vdev_trim_lock);
7525 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7526 
7527 	/*
7528 	 * When we activate a TRIM action we check to see if the
7529 	 * vdev_trim_thread is NULL. We do this instead of using the
7530 	 * vdev_trim_state since there might be a previous TRIM process
7531 	 * which has completed but the thread is not exited.
7532 	 */
7533 	if (cmd_type == POOL_TRIM_START &&
7534 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7535 		mutex_exit(&vd->vdev_trim_lock);
7536 		return (SET_ERROR(EBUSY));
7537 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7538 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7539 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7540 		mutex_exit(&vd->vdev_trim_lock);
7541 		return (SET_ERROR(ESRCH));
7542 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7543 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7544 		mutex_exit(&vd->vdev_trim_lock);
7545 		return (SET_ERROR(ESRCH));
7546 	}
7547 
7548 	switch (cmd_type) {
7549 	case POOL_TRIM_START:
7550 		vdev_trim(vd, rate, partial, secure);
7551 		break;
7552 	case POOL_TRIM_CANCEL:
7553 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7554 		break;
7555 	case POOL_TRIM_SUSPEND:
7556 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7557 		break;
7558 	default:
7559 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7560 	}
7561 	mutex_exit(&vd->vdev_trim_lock);
7562 
7563 	return (0);
7564 }
7565 
7566 /*
7567  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7568  * TRIM threads for each child vdev.  These threads pass over all of the free
7569  * space in the vdev's metaslabs and issues TRIM commands for that space.
7570  */
7571 int
7572 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7573     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7574 {
7575 	int total_errors = 0;
7576 	list_t vd_list;
7577 
7578 	list_create(&vd_list, sizeof (vdev_t),
7579 	    offsetof(vdev_t, vdev_trim_node));
7580 
7581 	/*
7582 	 * We hold the namespace lock through the whole function
7583 	 * to prevent any changes to the pool while we're starting or
7584 	 * stopping TRIM. The config and state locks are held so that
7585 	 * we can properly assess the vdev state before we commit to
7586 	 * the TRIM operation.
7587 	 */
7588 	mutex_enter(&spa_namespace_lock);
7589 
7590 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7591 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7592 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7593 
7594 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7595 		    rate, partial, secure, &vd_list);
7596 		if (error != 0) {
7597 			char guid_as_str[MAXNAMELEN];
7598 
7599 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7600 			    "%llu", (unsigned long long)vdev_guid);
7601 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7602 			total_errors++;
7603 		}
7604 	}
7605 
7606 	/* Wait for all TRIM threads to stop. */
7607 	vdev_trim_stop_wait(spa, &vd_list);
7608 
7609 	/* Sync out the TRIM state */
7610 	txg_wait_synced(spa->spa_dsl_pool, 0);
7611 	mutex_exit(&spa_namespace_lock);
7612 
7613 	list_destroy(&vd_list);
7614 
7615 	return (total_errors);
7616 }
7617 
7618 /*
7619  * Split a set of devices from their mirrors, and create a new pool from them.
7620  */
7621 int
7622 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7623     nvlist_t *props, boolean_t exp)
7624 {
7625 	int error = 0;
7626 	uint64_t txg, *glist;
7627 	spa_t *newspa;
7628 	uint_t c, children, lastlog;
7629 	nvlist_t **child, *nvl, *tmp;
7630 	dmu_tx_t *tx;
7631 	const char *altroot = NULL;
7632 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7633 	boolean_t activate_slog;
7634 
7635 	ASSERT(spa_writeable(spa));
7636 
7637 	txg = spa_vdev_enter(spa);
7638 
7639 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7640 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7641 		error = (spa_has_checkpoint(spa)) ?
7642 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7643 		return (spa_vdev_exit(spa, NULL, txg, error));
7644 	}
7645 
7646 	/* clear the log and flush everything up to now */
7647 	activate_slog = spa_passivate_log(spa);
7648 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7649 	error = spa_reset_logs(spa);
7650 	txg = spa_vdev_config_enter(spa);
7651 
7652 	if (activate_slog)
7653 		spa_activate_log(spa);
7654 
7655 	if (error != 0)
7656 		return (spa_vdev_exit(spa, NULL, txg, error));
7657 
7658 	/* check new spa name before going any further */
7659 	if (spa_lookup(newname) != NULL)
7660 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7661 
7662 	/*
7663 	 * scan through all the children to ensure they're all mirrors
7664 	 */
7665 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7666 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7667 	    &children) != 0)
7668 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7669 
7670 	/* first, check to ensure we've got the right child count */
7671 	rvd = spa->spa_root_vdev;
7672 	lastlog = 0;
7673 	for (c = 0; c < rvd->vdev_children; c++) {
7674 		vdev_t *vd = rvd->vdev_child[c];
7675 
7676 		/* don't count the holes & logs as children */
7677 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7678 		    !vdev_is_concrete(vd))) {
7679 			if (lastlog == 0)
7680 				lastlog = c;
7681 			continue;
7682 		}
7683 
7684 		lastlog = 0;
7685 	}
7686 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7687 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7688 
7689 	/* next, ensure no spare or cache devices are part of the split */
7690 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7691 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7692 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7693 
7694 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7695 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7696 
7697 	/* then, loop over each vdev and validate it */
7698 	for (c = 0; c < children; c++) {
7699 		uint64_t is_hole = 0;
7700 
7701 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7702 		    &is_hole);
7703 
7704 		if (is_hole != 0) {
7705 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7706 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7707 				continue;
7708 			} else {
7709 				error = SET_ERROR(EINVAL);
7710 				break;
7711 			}
7712 		}
7713 
7714 		/* deal with indirect vdevs */
7715 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7716 		    &vdev_indirect_ops)
7717 			continue;
7718 
7719 		/* which disk is going to be split? */
7720 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7721 		    &glist[c]) != 0) {
7722 			error = SET_ERROR(EINVAL);
7723 			break;
7724 		}
7725 
7726 		/* look it up in the spa */
7727 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7728 		if (vml[c] == NULL) {
7729 			error = SET_ERROR(ENODEV);
7730 			break;
7731 		}
7732 
7733 		/* make sure there's nothing stopping the split */
7734 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7735 		    vml[c]->vdev_islog ||
7736 		    !vdev_is_concrete(vml[c]) ||
7737 		    vml[c]->vdev_isspare ||
7738 		    vml[c]->vdev_isl2cache ||
7739 		    !vdev_writeable(vml[c]) ||
7740 		    vml[c]->vdev_children != 0 ||
7741 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7742 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7743 			error = SET_ERROR(EINVAL);
7744 			break;
7745 		}
7746 
7747 		if (vdev_dtl_required(vml[c]) ||
7748 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7749 			error = SET_ERROR(EBUSY);
7750 			break;
7751 		}
7752 
7753 		/* we need certain info from the top level */
7754 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7755 		    vml[c]->vdev_top->vdev_ms_array);
7756 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7757 		    vml[c]->vdev_top->vdev_ms_shift);
7758 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7759 		    vml[c]->vdev_top->vdev_asize);
7760 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7761 		    vml[c]->vdev_top->vdev_ashift);
7762 
7763 		/* transfer per-vdev ZAPs */
7764 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7765 		VERIFY0(nvlist_add_uint64(child[c],
7766 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7767 
7768 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7769 		VERIFY0(nvlist_add_uint64(child[c],
7770 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7771 		    vml[c]->vdev_parent->vdev_top_zap));
7772 	}
7773 
7774 	if (error != 0) {
7775 		kmem_free(vml, children * sizeof (vdev_t *));
7776 		kmem_free(glist, children * sizeof (uint64_t));
7777 		return (spa_vdev_exit(spa, NULL, txg, error));
7778 	}
7779 
7780 	/* stop writers from using the disks */
7781 	for (c = 0; c < children; c++) {
7782 		if (vml[c] != NULL)
7783 			vml[c]->vdev_offline = B_TRUE;
7784 	}
7785 	vdev_reopen(spa->spa_root_vdev);
7786 
7787 	/*
7788 	 * Temporarily record the splitting vdevs in the spa config.  This
7789 	 * will disappear once the config is regenerated.
7790 	 */
7791 	nvl = fnvlist_alloc();
7792 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7793 	kmem_free(glist, children * sizeof (uint64_t));
7794 
7795 	mutex_enter(&spa->spa_props_lock);
7796 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7797 	mutex_exit(&spa->spa_props_lock);
7798 	spa->spa_config_splitting = nvl;
7799 	vdev_config_dirty(spa->spa_root_vdev);
7800 
7801 	/* configure and create the new pool */
7802 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7803 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7804 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7805 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7806 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7807 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7808 	    spa_generate_guid(NULL));
7809 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7810 	(void) nvlist_lookup_string(props,
7811 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7812 
7813 	/* add the new pool to the namespace */
7814 	newspa = spa_add(newname, config, altroot);
7815 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7816 	newspa->spa_config_txg = spa->spa_config_txg;
7817 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7818 
7819 	/* release the spa config lock, retaining the namespace lock */
7820 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7821 
7822 	if (zio_injection_enabled)
7823 		zio_handle_panic_injection(spa, FTAG, 1);
7824 
7825 	spa_activate(newspa, spa_mode_global);
7826 	spa_async_suspend(newspa);
7827 
7828 	/*
7829 	 * Temporarily stop the initializing and TRIM activity.  We set the
7830 	 * state to ACTIVE so that we know to resume initializing or TRIM
7831 	 * once the split has completed.
7832 	 */
7833 	list_t vd_initialize_list;
7834 	list_create(&vd_initialize_list, sizeof (vdev_t),
7835 	    offsetof(vdev_t, vdev_initialize_node));
7836 
7837 	list_t vd_trim_list;
7838 	list_create(&vd_trim_list, sizeof (vdev_t),
7839 	    offsetof(vdev_t, vdev_trim_node));
7840 
7841 	for (c = 0; c < children; c++) {
7842 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7843 			mutex_enter(&vml[c]->vdev_initialize_lock);
7844 			vdev_initialize_stop(vml[c],
7845 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7846 			mutex_exit(&vml[c]->vdev_initialize_lock);
7847 
7848 			mutex_enter(&vml[c]->vdev_trim_lock);
7849 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7850 			mutex_exit(&vml[c]->vdev_trim_lock);
7851 		}
7852 	}
7853 
7854 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7855 	vdev_trim_stop_wait(spa, &vd_trim_list);
7856 
7857 	list_destroy(&vd_initialize_list);
7858 	list_destroy(&vd_trim_list);
7859 
7860 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7861 	newspa->spa_is_splitting = B_TRUE;
7862 
7863 	/* create the new pool from the disks of the original pool */
7864 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7865 	if (error)
7866 		goto out;
7867 
7868 	/* if that worked, generate a real config for the new pool */
7869 	if (newspa->spa_root_vdev != NULL) {
7870 		newspa->spa_config_splitting = fnvlist_alloc();
7871 		fnvlist_add_uint64(newspa->spa_config_splitting,
7872 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7873 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7874 		    B_TRUE));
7875 	}
7876 
7877 	/* set the props */
7878 	if (props != NULL) {
7879 		spa_configfile_set(newspa, props, B_FALSE);
7880 		error = spa_prop_set(newspa, props);
7881 		if (error)
7882 			goto out;
7883 	}
7884 
7885 	/* flush everything */
7886 	txg = spa_vdev_config_enter(newspa);
7887 	vdev_config_dirty(newspa->spa_root_vdev);
7888 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7889 
7890 	if (zio_injection_enabled)
7891 		zio_handle_panic_injection(spa, FTAG, 2);
7892 
7893 	spa_async_resume(newspa);
7894 
7895 	/* finally, update the original pool's config */
7896 	txg = spa_vdev_config_enter(spa);
7897 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7898 	error = dmu_tx_assign(tx, TXG_WAIT);
7899 	if (error != 0)
7900 		dmu_tx_abort(tx);
7901 	for (c = 0; c < children; c++) {
7902 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7903 			vdev_t *tvd = vml[c]->vdev_top;
7904 
7905 			/*
7906 			 * Need to be sure the detachable VDEV is not
7907 			 * on any *other* txg's DTL list to prevent it
7908 			 * from being accessed after it's freed.
7909 			 */
7910 			for (int t = 0; t < TXG_SIZE; t++) {
7911 				(void) txg_list_remove_this(
7912 				    &tvd->vdev_dtl_list, vml[c], t);
7913 			}
7914 
7915 			vdev_split(vml[c]);
7916 			if (error == 0)
7917 				spa_history_log_internal(spa, "detach", tx,
7918 				    "vdev=%s", vml[c]->vdev_path);
7919 
7920 			vdev_free(vml[c]);
7921 		}
7922 	}
7923 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7924 	vdev_config_dirty(spa->spa_root_vdev);
7925 	spa->spa_config_splitting = NULL;
7926 	nvlist_free(nvl);
7927 	if (error == 0)
7928 		dmu_tx_commit(tx);
7929 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7930 
7931 	if (zio_injection_enabled)
7932 		zio_handle_panic_injection(spa, FTAG, 3);
7933 
7934 	/* split is complete; log a history record */
7935 	spa_history_log_internal(newspa, "split", NULL,
7936 	    "from pool %s", spa_name(spa));
7937 
7938 	newspa->spa_is_splitting = B_FALSE;
7939 	kmem_free(vml, children * sizeof (vdev_t *));
7940 
7941 	/* if we're not going to mount the filesystems in userland, export */
7942 	if (exp)
7943 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7944 		    B_FALSE, B_FALSE);
7945 
7946 	return (error);
7947 
7948 out:
7949 	spa_unload(newspa);
7950 	spa_deactivate(newspa);
7951 	spa_remove(newspa);
7952 
7953 	txg = spa_vdev_config_enter(spa);
7954 
7955 	/* re-online all offlined disks */
7956 	for (c = 0; c < children; c++) {
7957 		if (vml[c] != NULL)
7958 			vml[c]->vdev_offline = B_FALSE;
7959 	}
7960 
7961 	/* restart initializing or trimming disks as necessary */
7962 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7963 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7964 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7965 
7966 	vdev_reopen(spa->spa_root_vdev);
7967 
7968 	nvlist_free(spa->spa_config_splitting);
7969 	spa->spa_config_splitting = NULL;
7970 	(void) spa_vdev_exit(spa, NULL, txg, error);
7971 
7972 	kmem_free(vml, children * sizeof (vdev_t *));
7973 	return (error);
7974 }
7975 
7976 /*
7977  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7978  * currently spared, so we can detach it.
7979  */
7980 static vdev_t *
7981 spa_vdev_resilver_done_hunt(vdev_t *vd)
7982 {
7983 	vdev_t *newvd, *oldvd;
7984 
7985 	for (int c = 0; c < vd->vdev_children; c++) {
7986 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7987 		if (oldvd != NULL)
7988 			return (oldvd);
7989 	}
7990 
7991 	/*
7992 	 * Check for a completed replacement.  We always consider the first
7993 	 * vdev in the list to be the oldest vdev, and the last one to be
7994 	 * the newest (see spa_vdev_attach() for how that works).  In
7995 	 * the case where the newest vdev is faulted, we will not automatically
7996 	 * remove it after a resilver completes.  This is OK as it will require
7997 	 * user intervention to determine which disk the admin wishes to keep.
7998 	 */
7999 	if (vd->vdev_ops == &vdev_replacing_ops) {
8000 		ASSERT(vd->vdev_children > 1);
8001 
8002 		newvd = vd->vdev_child[vd->vdev_children - 1];
8003 		oldvd = vd->vdev_child[0];
8004 
8005 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8006 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8007 		    !vdev_dtl_required(oldvd))
8008 			return (oldvd);
8009 	}
8010 
8011 	/*
8012 	 * Check for a completed resilver with the 'unspare' flag set.
8013 	 * Also potentially update faulted state.
8014 	 */
8015 	if (vd->vdev_ops == &vdev_spare_ops) {
8016 		vdev_t *first = vd->vdev_child[0];
8017 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8018 
8019 		if (last->vdev_unspare) {
8020 			oldvd = first;
8021 			newvd = last;
8022 		} else if (first->vdev_unspare) {
8023 			oldvd = last;
8024 			newvd = first;
8025 		} else {
8026 			oldvd = NULL;
8027 		}
8028 
8029 		if (oldvd != NULL &&
8030 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8031 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8032 		    !vdev_dtl_required(oldvd))
8033 			return (oldvd);
8034 
8035 		vdev_propagate_state(vd);
8036 
8037 		/*
8038 		 * If there are more than two spares attached to a disk,
8039 		 * and those spares are not required, then we want to
8040 		 * attempt to free them up now so that they can be used
8041 		 * by other pools.  Once we're back down to a single
8042 		 * disk+spare, we stop removing them.
8043 		 */
8044 		if (vd->vdev_children > 2) {
8045 			newvd = vd->vdev_child[1];
8046 
8047 			if (newvd->vdev_isspare && last->vdev_isspare &&
8048 			    vdev_dtl_empty(last, DTL_MISSING) &&
8049 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8050 			    !vdev_dtl_required(newvd))
8051 				return (newvd);
8052 		}
8053 	}
8054 
8055 	return (NULL);
8056 }
8057 
8058 static void
8059 spa_vdev_resilver_done(spa_t *spa)
8060 {
8061 	vdev_t *vd, *pvd, *ppvd;
8062 	uint64_t guid, sguid, pguid, ppguid;
8063 
8064 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8065 
8066 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8067 		pvd = vd->vdev_parent;
8068 		ppvd = pvd->vdev_parent;
8069 		guid = vd->vdev_guid;
8070 		pguid = pvd->vdev_guid;
8071 		ppguid = ppvd->vdev_guid;
8072 		sguid = 0;
8073 		/*
8074 		 * If we have just finished replacing a hot spared device, then
8075 		 * we need to detach the parent's first child (the original hot
8076 		 * spare) as well.
8077 		 */
8078 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8079 		    ppvd->vdev_children == 2) {
8080 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8081 			sguid = ppvd->vdev_child[1]->vdev_guid;
8082 		}
8083 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8084 
8085 		spa_config_exit(spa, SCL_ALL, FTAG);
8086 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8087 			return;
8088 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8089 			return;
8090 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8091 	}
8092 
8093 	spa_config_exit(spa, SCL_ALL, FTAG);
8094 
8095 	/*
8096 	 * If a detach was not performed above replace waiters will not have
8097 	 * been notified.  In which case we must do so now.
8098 	 */
8099 	spa_notify_waiters(spa);
8100 }
8101 
8102 /*
8103  * Update the stored path or FRU for this vdev.
8104  */
8105 static int
8106 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8107     boolean_t ispath)
8108 {
8109 	vdev_t *vd;
8110 	boolean_t sync = B_FALSE;
8111 
8112 	ASSERT(spa_writeable(spa));
8113 
8114 	spa_vdev_state_enter(spa, SCL_ALL);
8115 
8116 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8117 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8118 
8119 	if (!vd->vdev_ops->vdev_op_leaf)
8120 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8121 
8122 	if (ispath) {
8123 		if (strcmp(value, vd->vdev_path) != 0) {
8124 			spa_strfree(vd->vdev_path);
8125 			vd->vdev_path = spa_strdup(value);
8126 			sync = B_TRUE;
8127 		}
8128 	} else {
8129 		if (vd->vdev_fru == NULL) {
8130 			vd->vdev_fru = spa_strdup(value);
8131 			sync = B_TRUE;
8132 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8133 			spa_strfree(vd->vdev_fru);
8134 			vd->vdev_fru = spa_strdup(value);
8135 			sync = B_TRUE;
8136 		}
8137 	}
8138 
8139 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8140 }
8141 
8142 int
8143 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8144 {
8145 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8146 }
8147 
8148 int
8149 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8150 {
8151 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8152 }
8153 
8154 /*
8155  * ==========================================================================
8156  * SPA Scanning
8157  * ==========================================================================
8158  */
8159 int
8160 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8161 {
8162 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8163 
8164 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8165 		return (SET_ERROR(EBUSY));
8166 
8167 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8168 }
8169 
8170 int
8171 spa_scan_stop(spa_t *spa)
8172 {
8173 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8174 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8175 		return (SET_ERROR(EBUSY));
8176 
8177 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8178 }
8179 
8180 int
8181 spa_scan(spa_t *spa, pool_scan_func_t func)
8182 {
8183 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8184 
8185 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8186 		return (SET_ERROR(ENOTSUP));
8187 
8188 	if (func == POOL_SCAN_RESILVER &&
8189 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8190 		return (SET_ERROR(ENOTSUP));
8191 
8192 	/*
8193 	 * If a resilver was requested, but there is no DTL on a
8194 	 * writeable leaf device, we have nothing to do.
8195 	 */
8196 	if (func == POOL_SCAN_RESILVER &&
8197 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8198 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8199 		return (0);
8200 	}
8201 
8202 	if (func == POOL_SCAN_ERRORSCRUB &&
8203 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8204 		return (SET_ERROR(ENOTSUP));
8205 
8206 	return (dsl_scan(spa->spa_dsl_pool, func));
8207 }
8208 
8209 /*
8210  * ==========================================================================
8211  * SPA async task processing
8212  * ==========================================================================
8213  */
8214 
8215 static void
8216 spa_async_remove(spa_t *spa, vdev_t *vd)
8217 {
8218 	if (vd->vdev_remove_wanted) {
8219 		vd->vdev_remove_wanted = B_FALSE;
8220 		vd->vdev_delayed_close = B_FALSE;
8221 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8222 
8223 		/*
8224 		 * We want to clear the stats, but we don't want to do a full
8225 		 * vdev_clear() as that will cause us to throw away
8226 		 * degraded/faulted state as well as attempt to reopen the
8227 		 * device, all of which is a waste.
8228 		 */
8229 		vd->vdev_stat.vs_read_errors = 0;
8230 		vd->vdev_stat.vs_write_errors = 0;
8231 		vd->vdev_stat.vs_checksum_errors = 0;
8232 
8233 		vdev_state_dirty(vd->vdev_top);
8234 
8235 		/* Tell userspace that the vdev is gone. */
8236 		zfs_post_remove(spa, vd);
8237 	}
8238 
8239 	for (int c = 0; c < vd->vdev_children; c++)
8240 		spa_async_remove(spa, vd->vdev_child[c]);
8241 }
8242 
8243 static void
8244 spa_async_probe(spa_t *spa, vdev_t *vd)
8245 {
8246 	if (vd->vdev_probe_wanted) {
8247 		vd->vdev_probe_wanted = B_FALSE;
8248 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8249 	}
8250 
8251 	for (int c = 0; c < vd->vdev_children; c++)
8252 		spa_async_probe(spa, vd->vdev_child[c]);
8253 }
8254 
8255 static void
8256 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8257 {
8258 	if (!spa->spa_autoexpand)
8259 		return;
8260 
8261 	for (int c = 0; c < vd->vdev_children; c++) {
8262 		vdev_t *cvd = vd->vdev_child[c];
8263 		spa_async_autoexpand(spa, cvd);
8264 	}
8265 
8266 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8267 		return;
8268 
8269 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8270 }
8271 
8272 static __attribute__((noreturn)) void
8273 spa_async_thread(void *arg)
8274 {
8275 	spa_t *spa = (spa_t *)arg;
8276 	dsl_pool_t *dp = spa->spa_dsl_pool;
8277 	int tasks;
8278 
8279 	ASSERT(spa->spa_sync_on);
8280 
8281 	mutex_enter(&spa->spa_async_lock);
8282 	tasks = spa->spa_async_tasks;
8283 	spa->spa_async_tasks = 0;
8284 	mutex_exit(&spa->spa_async_lock);
8285 
8286 	/*
8287 	 * See if the config needs to be updated.
8288 	 */
8289 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8290 		uint64_t old_space, new_space;
8291 
8292 		mutex_enter(&spa_namespace_lock);
8293 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8294 		old_space += metaslab_class_get_space(spa_special_class(spa));
8295 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8296 		old_space += metaslab_class_get_space(
8297 		    spa_embedded_log_class(spa));
8298 
8299 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8300 
8301 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8302 		new_space += metaslab_class_get_space(spa_special_class(spa));
8303 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8304 		new_space += metaslab_class_get_space(
8305 		    spa_embedded_log_class(spa));
8306 		mutex_exit(&spa_namespace_lock);
8307 
8308 		/*
8309 		 * If the pool grew as a result of the config update,
8310 		 * then log an internal history event.
8311 		 */
8312 		if (new_space != old_space) {
8313 			spa_history_log_internal(spa, "vdev online", NULL,
8314 			    "pool '%s' size: %llu(+%llu)",
8315 			    spa_name(spa), (u_longlong_t)new_space,
8316 			    (u_longlong_t)(new_space - old_space));
8317 		}
8318 	}
8319 
8320 	/*
8321 	 * See if any devices need to be marked REMOVED.
8322 	 */
8323 	if (tasks & SPA_ASYNC_REMOVE) {
8324 		spa_vdev_state_enter(spa, SCL_NONE);
8325 		spa_async_remove(spa, spa->spa_root_vdev);
8326 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8327 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8328 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8329 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8330 		(void) spa_vdev_state_exit(spa, NULL, 0);
8331 	}
8332 
8333 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8334 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8335 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8336 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8337 	}
8338 
8339 	/*
8340 	 * See if any devices need to be probed.
8341 	 */
8342 	if (tasks & SPA_ASYNC_PROBE) {
8343 		spa_vdev_state_enter(spa, SCL_NONE);
8344 		spa_async_probe(spa, spa->spa_root_vdev);
8345 		(void) spa_vdev_state_exit(spa, NULL, 0);
8346 	}
8347 
8348 	/*
8349 	 * If any devices are done replacing, detach them.
8350 	 */
8351 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8352 	    tasks & SPA_ASYNC_REBUILD_DONE ||
8353 	    tasks & SPA_ASYNC_DETACH_SPARE) {
8354 		spa_vdev_resilver_done(spa);
8355 	}
8356 
8357 	/*
8358 	 * Kick off a resilver.
8359 	 */
8360 	if (tasks & SPA_ASYNC_RESILVER &&
8361 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8362 	    (!dsl_scan_resilvering(dp) ||
8363 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8364 		dsl_scan_restart_resilver(dp, 0);
8365 
8366 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8367 		mutex_enter(&spa_namespace_lock);
8368 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8369 		vdev_initialize_restart(spa->spa_root_vdev);
8370 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8371 		mutex_exit(&spa_namespace_lock);
8372 	}
8373 
8374 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8375 		mutex_enter(&spa_namespace_lock);
8376 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8377 		vdev_trim_restart(spa->spa_root_vdev);
8378 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8379 		mutex_exit(&spa_namespace_lock);
8380 	}
8381 
8382 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8383 		mutex_enter(&spa_namespace_lock);
8384 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8385 		vdev_autotrim_restart(spa);
8386 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8387 		mutex_exit(&spa_namespace_lock);
8388 	}
8389 
8390 	/*
8391 	 * Kick off L2 cache whole device TRIM.
8392 	 */
8393 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8394 		mutex_enter(&spa_namespace_lock);
8395 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8396 		vdev_trim_l2arc(spa);
8397 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8398 		mutex_exit(&spa_namespace_lock);
8399 	}
8400 
8401 	/*
8402 	 * Kick off L2 cache rebuilding.
8403 	 */
8404 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8405 		mutex_enter(&spa_namespace_lock);
8406 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8407 		l2arc_spa_rebuild_start(spa);
8408 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8409 		mutex_exit(&spa_namespace_lock);
8410 	}
8411 
8412 	/*
8413 	 * Let the world know that we're done.
8414 	 */
8415 	mutex_enter(&spa->spa_async_lock);
8416 	spa->spa_async_thread = NULL;
8417 	cv_broadcast(&spa->spa_async_cv);
8418 	mutex_exit(&spa->spa_async_lock);
8419 	thread_exit();
8420 }
8421 
8422 void
8423 spa_async_suspend(spa_t *spa)
8424 {
8425 	mutex_enter(&spa->spa_async_lock);
8426 	spa->spa_async_suspended++;
8427 	while (spa->spa_async_thread != NULL)
8428 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8429 	mutex_exit(&spa->spa_async_lock);
8430 
8431 	spa_vdev_remove_suspend(spa);
8432 
8433 	zthr_t *condense_thread = spa->spa_condense_zthr;
8434 	if (condense_thread != NULL)
8435 		zthr_cancel(condense_thread);
8436 
8437 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8438 	if (discard_thread != NULL)
8439 		zthr_cancel(discard_thread);
8440 
8441 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8442 	if (ll_delete_thread != NULL)
8443 		zthr_cancel(ll_delete_thread);
8444 
8445 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8446 	if (ll_condense_thread != NULL)
8447 		zthr_cancel(ll_condense_thread);
8448 }
8449 
8450 void
8451 spa_async_resume(spa_t *spa)
8452 {
8453 	mutex_enter(&spa->spa_async_lock);
8454 	ASSERT(spa->spa_async_suspended != 0);
8455 	spa->spa_async_suspended--;
8456 	mutex_exit(&spa->spa_async_lock);
8457 	spa_restart_removal(spa);
8458 
8459 	zthr_t *condense_thread = spa->spa_condense_zthr;
8460 	if (condense_thread != NULL)
8461 		zthr_resume(condense_thread);
8462 
8463 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8464 	if (discard_thread != NULL)
8465 		zthr_resume(discard_thread);
8466 
8467 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8468 	if (ll_delete_thread != NULL)
8469 		zthr_resume(ll_delete_thread);
8470 
8471 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8472 	if (ll_condense_thread != NULL)
8473 		zthr_resume(ll_condense_thread);
8474 }
8475 
8476 static boolean_t
8477 spa_async_tasks_pending(spa_t *spa)
8478 {
8479 	uint_t non_config_tasks;
8480 	uint_t config_task;
8481 	boolean_t config_task_suspended;
8482 
8483 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8484 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8485 	if (spa->spa_ccw_fail_time == 0) {
8486 		config_task_suspended = B_FALSE;
8487 	} else {
8488 		config_task_suspended =
8489 		    (gethrtime() - spa->spa_ccw_fail_time) <
8490 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8491 	}
8492 
8493 	return (non_config_tasks || (config_task && !config_task_suspended));
8494 }
8495 
8496 static void
8497 spa_async_dispatch(spa_t *spa)
8498 {
8499 	mutex_enter(&spa->spa_async_lock);
8500 	if (spa_async_tasks_pending(spa) &&
8501 	    !spa->spa_async_suspended &&
8502 	    spa->spa_async_thread == NULL)
8503 		spa->spa_async_thread = thread_create(NULL, 0,
8504 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8505 	mutex_exit(&spa->spa_async_lock);
8506 }
8507 
8508 void
8509 spa_async_request(spa_t *spa, int task)
8510 {
8511 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8512 	mutex_enter(&spa->spa_async_lock);
8513 	spa->spa_async_tasks |= task;
8514 	mutex_exit(&spa->spa_async_lock);
8515 }
8516 
8517 int
8518 spa_async_tasks(spa_t *spa)
8519 {
8520 	return (spa->spa_async_tasks);
8521 }
8522 
8523 /*
8524  * ==========================================================================
8525  * SPA syncing routines
8526  * ==========================================================================
8527  */
8528 
8529 
8530 static int
8531 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8532     dmu_tx_t *tx)
8533 {
8534 	bpobj_t *bpo = arg;
8535 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8536 	return (0);
8537 }
8538 
8539 int
8540 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8541 {
8542 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8543 }
8544 
8545 int
8546 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8547 {
8548 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8549 }
8550 
8551 static int
8552 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8553 {
8554 	zio_t *pio = arg;
8555 
8556 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8557 	    pio->io_flags));
8558 	return (0);
8559 }
8560 
8561 static int
8562 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8563     dmu_tx_t *tx)
8564 {
8565 	ASSERT(!bp_freed);
8566 	return (spa_free_sync_cb(arg, bp, tx));
8567 }
8568 
8569 /*
8570  * Note: this simple function is not inlined to make it easier to dtrace the
8571  * amount of time spent syncing frees.
8572  */
8573 static void
8574 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8575 {
8576 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8577 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8578 	VERIFY(zio_wait(zio) == 0);
8579 }
8580 
8581 /*
8582  * Note: this simple function is not inlined to make it easier to dtrace the
8583  * amount of time spent syncing deferred frees.
8584  */
8585 static void
8586 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8587 {
8588 	if (spa_sync_pass(spa) != 1)
8589 		return;
8590 
8591 	/*
8592 	 * Note:
8593 	 * If the log space map feature is active, we stop deferring
8594 	 * frees to the next TXG and therefore running this function
8595 	 * would be considered a no-op as spa_deferred_bpobj should
8596 	 * not have any entries.
8597 	 *
8598 	 * That said we run this function anyway (instead of returning
8599 	 * immediately) for the edge-case scenario where we just
8600 	 * activated the log space map feature in this TXG but we have
8601 	 * deferred frees from the previous TXG.
8602 	 */
8603 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8604 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8605 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8606 	VERIFY0(zio_wait(zio));
8607 }
8608 
8609 static void
8610 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8611 {
8612 	char *packed = NULL;
8613 	size_t bufsize;
8614 	size_t nvsize = 0;
8615 	dmu_buf_t *db;
8616 
8617 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8618 
8619 	/*
8620 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8621 	 * information.  This avoids the dmu_buf_will_dirty() path and
8622 	 * saves us a pre-read to get data we don't actually care about.
8623 	 */
8624 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8625 	packed = vmem_alloc(bufsize, KM_SLEEP);
8626 
8627 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8628 	    KM_SLEEP) == 0);
8629 	memset(packed + nvsize, 0, bufsize - nvsize);
8630 
8631 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8632 
8633 	vmem_free(packed, bufsize);
8634 
8635 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8636 	dmu_buf_will_dirty(db, tx);
8637 	*(uint64_t *)db->db_data = nvsize;
8638 	dmu_buf_rele(db, FTAG);
8639 }
8640 
8641 static void
8642 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8643     const char *config, const char *entry)
8644 {
8645 	nvlist_t *nvroot;
8646 	nvlist_t **list;
8647 	int i;
8648 
8649 	if (!sav->sav_sync)
8650 		return;
8651 
8652 	/*
8653 	 * Update the MOS nvlist describing the list of available devices.
8654 	 * spa_validate_aux() will have already made sure this nvlist is
8655 	 * valid and the vdevs are labeled appropriately.
8656 	 */
8657 	if (sav->sav_object == 0) {
8658 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8659 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8660 		    sizeof (uint64_t), tx);
8661 		VERIFY(zap_update(spa->spa_meta_objset,
8662 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8663 		    &sav->sav_object, tx) == 0);
8664 	}
8665 
8666 	nvroot = fnvlist_alloc();
8667 	if (sav->sav_count == 0) {
8668 		fnvlist_add_nvlist_array(nvroot, config,
8669 		    (const nvlist_t * const *)NULL, 0);
8670 	} else {
8671 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8672 		for (i = 0; i < sav->sav_count; i++)
8673 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8674 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8675 		fnvlist_add_nvlist_array(nvroot, config,
8676 		    (const nvlist_t * const *)list, sav->sav_count);
8677 		for (i = 0; i < sav->sav_count; i++)
8678 			nvlist_free(list[i]);
8679 		kmem_free(list, sav->sav_count * sizeof (void *));
8680 	}
8681 
8682 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8683 	nvlist_free(nvroot);
8684 
8685 	sav->sav_sync = B_FALSE;
8686 }
8687 
8688 /*
8689  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8690  * The all-vdev ZAP must be empty.
8691  */
8692 static void
8693 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8694 {
8695 	spa_t *spa = vd->vdev_spa;
8696 
8697 	if (vd->vdev_root_zap != 0 &&
8698 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8699 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8700 		    vd->vdev_root_zap, tx));
8701 	}
8702 	if (vd->vdev_top_zap != 0) {
8703 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8704 		    vd->vdev_top_zap, tx));
8705 	}
8706 	if (vd->vdev_leaf_zap != 0) {
8707 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8708 		    vd->vdev_leaf_zap, tx));
8709 	}
8710 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8711 		spa_avz_build(vd->vdev_child[i], avz, tx);
8712 	}
8713 }
8714 
8715 static void
8716 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8717 {
8718 	nvlist_t *config;
8719 
8720 	/*
8721 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8722 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8723 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8724 	 * need to rebuild the AVZ although the config may not be dirty.
8725 	 */
8726 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8727 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8728 		return;
8729 
8730 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8731 
8732 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8733 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8734 	    spa->spa_all_vdev_zaps != 0);
8735 
8736 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8737 		/* Make and build the new AVZ */
8738 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8739 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8740 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8741 
8742 		/* Diff old AVZ with new one */
8743 		zap_cursor_t zc;
8744 		zap_attribute_t za;
8745 
8746 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8747 		    spa->spa_all_vdev_zaps);
8748 		    zap_cursor_retrieve(&zc, &za) == 0;
8749 		    zap_cursor_advance(&zc)) {
8750 			uint64_t vdzap = za.za_first_integer;
8751 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8752 			    vdzap) == ENOENT) {
8753 				/*
8754 				 * ZAP is listed in old AVZ but not in new one;
8755 				 * destroy it
8756 				 */
8757 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8758 				    tx));
8759 			}
8760 		}
8761 
8762 		zap_cursor_fini(&zc);
8763 
8764 		/* Destroy the old AVZ */
8765 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8766 		    spa->spa_all_vdev_zaps, tx));
8767 
8768 		/* Replace the old AVZ in the dir obj with the new one */
8769 		VERIFY0(zap_update(spa->spa_meta_objset,
8770 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8771 		    sizeof (new_avz), 1, &new_avz, tx));
8772 
8773 		spa->spa_all_vdev_zaps = new_avz;
8774 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8775 		zap_cursor_t zc;
8776 		zap_attribute_t za;
8777 
8778 		/* Walk through the AVZ and destroy all listed ZAPs */
8779 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8780 		    spa->spa_all_vdev_zaps);
8781 		    zap_cursor_retrieve(&zc, &za) == 0;
8782 		    zap_cursor_advance(&zc)) {
8783 			uint64_t zap = za.za_first_integer;
8784 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8785 		}
8786 
8787 		zap_cursor_fini(&zc);
8788 
8789 		/* Destroy and unlink the AVZ itself */
8790 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8791 		    spa->spa_all_vdev_zaps, tx));
8792 		VERIFY0(zap_remove(spa->spa_meta_objset,
8793 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8794 		spa->spa_all_vdev_zaps = 0;
8795 	}
8796 
8797 	if (spa->spa_all_vdev_zaps == 0) {
8798 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8799 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8800 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8801 	}
8802 	spa->spa_avz_action = AVZ_ACTION_NONE;
8803 
8804 	/* Create ZAPs for vdevs that don't have them. */
8805 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8806 
8807 	config = spa_config_generate(spa, spa->spa_root_vdev,
8808 	    dmu_tx_get_txg(tx), B_FALSE);
8809 
8810 	/*
8811 	 * If we're upgrading the spa version then make sure that
8812 	 * the config object gets updated with the correct version.
8813 	 */
8814 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8815 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8816 		    spa->spa_uberblock.ub_version);
8817 
8818 	spa_config_exit(spa, SCL_STATE, FTAG);
8819 
8820 	nvlist_free(spa->spa_config_syncing);
8821 	spa->spa_config_syncing = config;
8822 
8823 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8824 }
8825 
8826 static void
8827 spa_sync_version(void *arg, dmu_tx_t *tx)
8828 {
8829 	uint64_t *versionp = arg;
8830 	uint64_t version = *versionp;
8831 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8832 
8833 	/*
8834 	 * Setting the version is special cased when first creating the pool.
8835 	 */
8836 	ASSERT(tx->tx_txg != TXG_INITIAL);
8837 
8838 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8839 	ASSERT(version >= spa_version(spa));
8840 
8841 	spa->spa_uberblock.ub_version = version;
8842 	vdev_config_dirty(spa->spa_root_vdev);
8843 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8844 	    (longlong_t)version);
8845 }
8846 
8847 /*
8848  * Set zpool properties.
8849  */
8850 static void
8851 spa_sync_props(void *arg, dmu_tx_t *tx)
8852 {
8853 	nvlist_t *nvp = arg;
8854 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8855 	objset_t *mos = spa->spa_meta_objset;
8856 	nvpair_t *elem = NULL;
8857 
8858 	mutex_enter(&spa->spa_props_lock);
8859 
8860 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8861 		uint64_t intval;
8862 		const char *strval, *fname;
8863 		zpool_prop_t prop;
8864 		const char *propname;
8865 		const char *elemname = nvpair_name(elem);
8866 		zprop_type_t proptype;
8867 		spa_feature_t fid;
8868 
8869 		switch (prop = zpool_name_to_prop(elemname)) {
8870 		case ZPOOL_PROP_VERSION:
8871 			intval = fnvpair_value_uint64(elem);
8872 			/*
8873 			 * The version is synced separately before other
8874 			 * properties and should be correct by now.
8875 			 */
8876 			ASSERT3U(spa_version(spa), >=, intval);
8877 			break;
8878 
8879 		case ZPOOL_PROP_ALTROOT:
8880 			/*
8881 			 * 'altroot' is a non-persistent property. It should
8882 			 * have been set temporarily at creation or import time.
8883 			 */
8884 			ASSERT(spa->spa_root != NULL);
8885 			break;
8886 
8887 		case ZPOOL_PROP_READONLY:
8888 		case ZPOOL_PROP_CACHEFILE:
8889 			/*
8890 			 * 'readonly' and 'cachefile' are also non-persistent
8891 			 * properties.
8892 			 */
8893 			break;
8894 		case ZPOOL_PROP_COMMENT:
8895 			strval = fnvpair_value_string(elem);
8896 			if (spa->spa_comment != NULL)
8897 				spa_strfree(spa->spa_comment);
8898 			spa->spa_comment = spa_strdup(strval);
8899 			/*
8900 			 * We need to dirty the configuration on all the vdevs
8901 			 * so that their labels get updated.  We also need to
8902 			 * update the cache file to keep it in sync with the
8903 			 * MOS version. It's unnecessary to do this for pool
8904 			 * creation since the vdev's configuration has already
8905 			 * been dirtied.
8906 			 */
8907 			if (tx->tx_txg != TXG_INITIAL) {
8908 				vdev_config_dirty(spa->spa_root_vdev);
8909 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8910 			}
8911 			spa_history_log_internal(spa, "set", tx,
8912 			    "%s=%s", elemname, strval);
8913 			break;
8914 		case ZPOOL_PROP_COMPATIBILITY:
8915 			strval = fnvpair_value_string(elem);
8916 			if (spa->spa_compatibility != NULL)
8917 				spa_strfree(spa->spa_compatibility);
8918 			spa->spa_compatibility = spa_strdup(strval);
8919 			/*
8920 			 * Dirty the configuration on vdevs as above.
8921 			 */
8922 			if (tx->tx_txg != TXG_INITIAL) {
8923 				vdev_config_dirty(spa->spa_root_vdev);
8924 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8925 			}
8926 
8927 			spa_history_log_internal(spa, "set", tx,
8928 			    "%s=%s", nvpair_name(elem), strval);
8929 			break;
8930 
8931 		case ZPOOL_PROP_INVAL:
8932 			if (zpool_prop_feature(elemname)) {
8933 				fname = strchr(elemname, '@') + 1;
8934 				VERIFY0(zfeature_lookup_name(fname, &fid));
8935 
8936 				spa_feature_enable(spa, fid, tx);
8937 				spa_history_log_internal(spa, "set", tx,
8938 				    "%s=enabled", elemname);
8939 				break;
8940 			} else if (!zfs_prop_user(elemname)) {
8941 				ASSERT(zpool_prop_feature(elemname));
8942 				break;
8943 			}
8944 			zfs_fallthrough;
8945 		default:
8946 			/*
8947 			 * Set pool property values in the poolprops mos object.
8948 			 */
8949 			if (spa->spa_pool_props_object == 0) {
8950 				spa->spa_pool_props_object =
8951 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8952 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8953 				    tx);
8954 			}
8955 
8956 			/* normalize the property name */
8957 			if (prop == ZPOOL_PROP_INVAL) {
8958 				propname = elemname;
8959 				proptype = PROP_TYPE_STRING;
8960 			} else {
8961 				propname = zpool_prop_to_name(prop);
8962 				proptype = zpool_prop_get_type(prop);
8963 			}
8964 
8965 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8966 				ASSERT(proptype == PROP_TYPE_STRING);
8967 				strval = fnvpair_value_string(elem);
8968 				VERIFY0(zap_update(mos,
8969 				    spa->spa_pool_props_object, propname,
8970 				    1, strlen(strval) + 1, strval, tx));
8971 				spa_history_log_internal(spa, "set", tx,
8972 				    "%s=%s", elemname, strval);
8973 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8974 				intval = fnvpair_value_uint64(elem);
8975 
8976 				if (proptype == PROP_TYPE_INDEX) {
8977 					const char *unused;
8978 					VERIFY0(zpool_prop_index_to_string(
8979 					    prop, intval, &unused));
8980 				}
8981 				VERIFY0(zap_update(mos,
8982 				    spa->spa_pool_props_object, propname,
8983 				    8, 1, &intval, tx));
8984 				spa_history_log_internal(spa, "set", tx,
8985 				    "%s=%lld", elemname,
8986 				    (longlong_t)intval);
8987 
8988 				switch (prop) {
8989 				case ZPOOL_PROP_DELEGATION:
8990 					spa->spa_delegation = intval;
8991 					break;
8992 				case ZPOOL_PROP_BOOTFS:
8993 					spa->spa_bootfs = intval;
8994 					break;
8995 				case ZPOOL_PROP_FAILUREMODE:
8996 					spa->spa_failmode = intval;
8997 					break;
8998 				case ZPOOL_PROP_AUTOTRIM:
8999 					spa->spa_autotrim = intval;
9000 					spa_async_request(spa,
9001 					    SPA_ASYNC_AUTOTRIM_RESTART);
9002 					break;
9003 				case ZPOOL_PROP_AUTOEXPAND:
9004 					spa->spa_autoexpand = intval;
9005 					if (tx->tx_txg != TXG_INITIAL)
9006 						spa_async_request(spa,
9007 						    SPA_ASYNC_AUTOEXPAND);
9008 					break;
9009 				case ZPOOL_PROP_MULTIHOST:
9010 					spa->spa_multihost = intval;
9011 					break;
9012 				default:
9013 					break;
9014 				}
9015 			} else {
9016 				ASSERT(0); /* not allowed */
9017 			}
9018 		}
9019 
9020 	}
9021 
9022 	mutex_exit(&spa->spa_props_lock);
9023 }
9024 
9025 /*
9026  * Perform one-time upgrade on-disk changes.  spa_version() does not
9027  * reflect the new version this txg, so there must be no changes this
9028  * txg to anything that the upgrade code depends on after it executes.
9029  * Therefore this must be called after dsl_pool_sync() does the sync
9030  * tasks.
9031  */
9032 static void
9033 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9034 {
9035 	if (spa_sync_pass(spa) != 1)
9036 		return;
9037 
9038 	dsl_pool_t *dp = spa->spa_dsl_pool;
9039 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9040 
9041 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9042 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9043 		dsl_pool_create_origin(dp, tx);
9044 
9045 		/* Keeping the origin open increases spa_minref */
9046 		spa->spa_minref += 3;
9047 	}
9048 
9049 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9050 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9051 		dsl_pool_upgrade_clones(dp, tx);
9052 	}
9053 
9054 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9055 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9056 		dsl_pool_upgrade_dir_clones(dp, tx);
9057 
9058 		/* Keeping the freedir open increases spa_minref */
9059 		spa->spa_minref += 3;
9060 	}
9061 
9062 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9063 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9064 		spa_feature_create_zap_objects(spa, tx);
9065 	}
9066 
9067 	/*
9068 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9069 	 * when possibility to use lz4 compression for metadata was added
9070 	 * Old pools that have this feature enabled must be upgraded to have
9071 	 * this feature active
9072 	 */
9073 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9074 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9075 		    SPA_FEATURE_LZ4_COMPRESS);
9076 		boolean_t lz4_ac = spa_feature_is_active(spa,
9077 		    SPA_FEATURE_LZ4_COMPRESS);
9078 
9079 		if (lz4_en && !lz4_ac)
9080 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9081 	}
9082 
9083 	/*
9084 	 * If we haven't written the salt, do so now.  Note that the
9085 	 * feature may not be activated yet, but that's fine since
9086 	 * the presence of this ZAP entry is backwards compatible.
9087 	 */
9088 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9089 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9090 		VERIFY0(zap_add(spa->spa_meta_objset,
9091 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9092 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9093 		    spa->spa_cksum_salt.zcs_bytes, tx));
9094 	}
9095 
9096 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9097 }
9098 
9099 static void
9100 vdev_indirect_state_sync_verify(vdev_t *vd)
9101 {
9102 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9103 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9104 
9105 	if (vd->vdev_ops == &vdev_indirect_ops) {
9106 		ASSERT(vim != NULL);
9107 		ASSERT(vib != NULL);
9108 	}
9109 
9110 	uint64_t obsolete_sm_object = 0;
9111 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9112 	if (obsolete_sm_object != 0) {
9113 		ASSERT(vd->vdev_obsolete_sm != NULL);
9114 		ASSERT(vd->vdev_removing ||
9115 		    vd->vdev_ops == &vdev_indirect_ops);
9116 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9117 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9118 		ASSERT3U(obsolete_sm_object, ==,
9119 		    space_map_object(vd->vdev_obsolete_sm));
9120 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9121 		    space_map_allocated(vd->vdev_obsolete_sm));
9122 	}
9123 	ASSERT(vd->vdev_obsolete_segments != NULL);
9124 
9125 	/*
9126 	 * Since frees / remaps to an indirect vdev can only
9127 	 * happen in syncing context, the obsolete segments
9128 	 * tree must be empty when we start syncing.
9129 	 */
9130 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9131 }
9132 
9133 /*
9134  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9135  * async write queue depth in case it changed. The max queue depth will
9136  * not change in the middle of syncing out this txg.
9137  */
9138 static void
9139 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9140 {
9141 	ASSERT(spa_writeable(spa));
9142 
9143 	vdev_t *rvd = spa->spa_root_vdev;
9144 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9145 	    zfs_vdev_queue_depth_pct / 100;
9146 	metaslab_class_t *normal = spa_normal_class(spa);
9147 	metaslab_class_t *special = spa_special_class(spa);
9148 	metaslab_class_t *dedup = spa_dedup_class(spa);
9149 
9150 	uint64_t slots_per_allocator = 0;
9151 	for (int c = 0; c < rvd->vdev_children; c++) {
9152 		vdev_t *tvd = rvd->vdev_child[c];
9153 
9154 		metaslab_group_t *mg = tvd->vdev_mg;
9155 		if (mg == NULL || !metaslab_group_initialized(mg))
9156 			continue;
9157 
9158 		metaslab_class_t *mc = mg->mg_class;
9159 		if (mc != normal && mc != special && mc != dedup)
9160 			continue;
9161 
9162 		/*
9163 		 * It is safe to do a lock-free check here because only async
9164 		 * allocations look at mg_max_alloc_queue_depth, and async
9165 		 * allocations all happen from spa_sync().
9166 		 */
9167 		for (int i = 0; i < mg->mg_allocators; i++) {
9168 			ASSERT0(zfs_refcount_count(
9169 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9170 		}
9171 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9172 
9173 		for (int i = 0; i < mg->mg_allocators; i++) {
9174 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9175 			    zfs_vdev_def_queue_depth;
9176 		}
9177 		slots_per_allocator += zfs_vdev_def_queue_depth;
9178 	}
9179 
9180 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9181 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9182 		    mca_alloc_slots));
9183 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9184 		    mca_alloc_slots));
9185 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9186 		    mca_alloc_slots));
9187 		normal->mc_allocator[i].mca_alloc_max_slots =
9188 		    slots_per_allocator;
9189 		special->mc_allocator[i].mca_alloc_max_slots =
9190 		    slots_per_allocator;
9191 		dedup->mc_allocator[i].mca_alloc_max_slots =
9192 		    slots_per_allocator;
9193 	}
9194 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9195 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9196 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9197 }
9198 
9199 static void
9200 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9201 {
9202 	ASSERT(spa_writeable(spa));
9203 
9204 	vdev_t *rvd = spa->spa_root_vdev;
9205 	for (int c = 0; c < rvd->vdev_children; c++) {
9206 		vdev_t *vd = rvd->vdev_child[c];
9207 		vdev_indirect_state_sync_verify(vd);
9208 
9209 		if (vdev_indirect_should_condense(vd)) {
9210 			spa_condense_indirect_start_sync(vd, tx);
9211 			break;
9212 		}
9213 	}
9214 }
9215 
9216 static void
9217 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9218 {
9219 	objset_t *mos = spa->spa_meta_objset;
9220 	dsl_pool_t *dp = spa->spa_dsl_pool;
9221 	uint64_t txg = tx->tx_txg;
9222 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9223 
9224 	do {
9225 		int pass = ++spa->spa_sync_pass;
9226 
9227 		spa_sync_config_object(spa, tx);
9228 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9229 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9230 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9231 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9232 		spa_errlog_sync(spa, txg);
9233 		dsl_pool_sync(dp, txg);
9234 
9235 		if (pass < zfs_sync_pass_deferred_free ||
9236 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9237 			/*
9238 			 * If the log space map feature is active we don't
9239 			 * care about deferred frees and the deferred bpobj
9240 			 * as the log space map should effectively have the
9241 			 * same results (i.e. appending only to one object).
9242 			 */
9243 			spa_sync_frees(spa, free_bpl, tx);
9244 		} else {
9245 			/*
9246 			 * We can not defer frees in pass 1, because
9247 			 * we sync the deferred frees later in pass 1.
9248 			 */
9249 			ASSERT3U(pass, >, 1);
9250 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9251 			    &spa->spa_deferred_bpobj, tx);
9252 		}
9253 
9254 		brt_sync(spa, txg);
9255 		ddt_sync(spa, txg);
9256 		dsl_scan_sync(dp, tx);
9257 		dsl_errorscrub_sync(dp, tx);
9258 		svr_sync(spa, tx);
9259 		spa_sync_upgrades(spa, tx);
9260 
9261 		spa_flush_metaslabs(spa, tx);
9262 
9263 		vdev_t *vd = NULL;
9264 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9265 		    != NULL)
9266 			vdev_sync(vd, txg);
9267 
9268 		/*
9269 		 * Note: We need to check if the MOS is dirty because we could
9270 		 * have marked the MOS dirty without updating the uberblock
9271 		 * (e.g. if we have sync tasks but no dirty user data). We need
9272 		 * to check the uberblock's rootbp because it is updated if we
9273 		 * have synced out dirty data (though in this case the MOS will
9274 		 * most likely also be dirty due to second order effects, we
9275 		 * don't want to rely on that here).
9276 		 */
9277 		if (pass == 1 &&
9278 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9279 		    !dmu_objset_is_dirty(mos, txg)) {
9280 			/*
9281 			 * Nothing changed on the first pass, therefore this
9282 			 * TXG is a no-op. Avoid syncing deferred frees, so
9283 			 * that we can keep this TXG as a no-op.
9284 			 */
9285 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9286 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9287 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9288 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9289 			break;
9290 		}
9291 
9292 		spa_sync_deferred_frees(spa, tx);
9293 	} while (dmu_objset_is_dirty(mos, txg));
9294 }
9295 
9296 /*
9297  * Rewrite the vdev configuration (which includes the uberblock) to
9298  * commit the transaction group.
9299  *
9300  * If there are no dirty vdevs, we sync the uberblock to a few random
9301  * top-level vdevs that are known to be visible in the config cache
9302  * (see spa_vdev_add() for a complete description). If there *are* dirty
9303  * vdevs, sync the uberblock to all vdevs.
9304  */
9305 static void
9306 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9307 {
9308 	vdev_t *rvd = spa->spa_root_vdev;
9309 	uint64_t txg = tx->tx_txg;
9310 
9311 	for (;;) {
9312 		int error = 0;
9313 
9314 		/*
9315 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9316 		 * while we're attempting to write the vdev labels.
9317 		 */
9318 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9319 
9320 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9321 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9322 			int svdcount = 0;
9323 			int children = rvd->vdev_children;
9324 			int c0 = random_in_range(children);
9325 
9326 			for (int c = 0; c < children; c++) {
9327 				vdev_t *vd =
9328 				    rvd->vdev_child[(c0 + c) % children];
9329 
9330 				/* Stop when revisiting the first vdev */
9331 				if (c > 0 && svd[0] == vd)
9332 					break;
9333 
9334 				if (vd->vdev_ms_array == 0 ||
9335 				    vd->vdev_islog ||
9336 				    !vdev_is_concrete(vd))
9337 					continue;
9338 
9339 				svd[svdcount++] = vd;
9340 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9341 					break;
9342 			}
9343 			error = vdev_config_sync(svd, svdcount, txg);
9344 		} else {
9345 			error = vdev_config_sync(rvd->vdev_child,
9346 			    rvd->vdev_children, txg);
9347 		}
9348 
9349 		if (error == 0)
9350 			spa->spa_last_synced_guid = rvd->vdev_guid;
9351 
9352 		spa_config_exit(spa, SCL_STATE, FTAG);
9353 
9354 		if (error == 0)
9355 			break;
9356 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9357 		zio_resume_wait(spa);
9358 	}
9359 }
9360 
9361 /*
9362  * Sync the specified transaction group.  New blocks may be dirtied as
9363  * part of the process, so we iterate until it converges.
9364  */
9365 void
9366 spa_sync(spa_t *spa, uint64_t txg)
9367 {
9368 	vdev_t *vd = NULL;
9369 
9370 	VERIFY(spa_writeable(spa));
9371 
9372 	/*
9373 	 * Wait for i/os issued in open context that need to complete
9374 	 * before this txg syncs.
9375 	 */
9376 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9377 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9378 	    ZIO_FLAG_CANFAIL);
9379 
9380 	/*
9381 	 * Now that there can be no more cloning in this transaction group,
9382 	 * but we are still before issuing frees, we can process pending BRT
9383 	 * updates.
9384 	 */
9385 	brt_pending_apply(spa, txg);
9386 
9387 	/*
9388 	 * Lock out configuration changes.
9389 	 */
9390 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9391 
9392 	spa->spa_syncing_txg = txg;
9393 	spa->spa_sync_pass = 0;
9394 
9395 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9396 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9397 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9398 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9399 	}
9400 
9401 	/*
9402 	 * If there are any pending vdev state changes, convert them
9403 	 * into config changes that go out with this transaction group.
9404 	 */
9405 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9406 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9407 		/* Avoid holding the write lock unless actually necessary */
9408 		if (vd->vdev_aux == NULL) {
9409 			vdev_state_clean(vd);
9410 			vdev_config_dirty(vd);
9411 			continue;
9412 		}
9413 		/*
9414 		 * We need the write lock here because, for aux vdevs,
9415 		 * calling vdev_config_dirty() modifies sav_config.
9416 		 * This is ugly and will become unnecessary when we
9417 		 * eliminate the aux vdev wart by integrating all vdevs
9418 		 * into the root vdev tree.
9419 		 */
9420 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9421 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9422 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9423 			vdev_state_clean(vd);
9424 			vdev_config_dirty(vd);
9425 		}
9426 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9427 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9428 	}
9429 	spa_config_exit(spa, SCL_STATE, FTAG);
9430 
9431 	dsl_pool_t *dp = spa->spa_dsl_pool;
9432 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9433 
9434 	spa->spa_sync_starttime = gethrtime();
9435 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9436 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9437 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9438 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9439 
9440 	/*
9441 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9442 	 * set spa_deflate if we have no raid-z vdevs.
9443 	 */
9444 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9445 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9446 		vdev_t *rvd = spa->spa_root_vdev;
9447 
9448 		int i;
9449 		for (i = 0; i < rvd->vdev_children; i++) {
9450 			vd = rvd->vdev_child[i];
9451 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9452 				break;
9453 		}
9454 		if (i == rvd->vdev_children) {
9455 			spa->spa_deflate = TRUE;
9456 			VERIFY0(zap_add(spa->spa_meta_objset,
9457 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9458 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9459 		}
9460 	}
9461 
9462 	spa_sync_adjust_vdev_max_queue_depth(spa);
9463 
9464 	spa_sync_condense_indirect(spa, tx);
9465 
9466 	spa_sync_iterate_to_convergence(spa, tx);
9467 
9468 #ifdef ZFS_DEBUG
9469 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9470 	/*
9471 	 * Make sure that the number of ZAPs for all the vdevs matches
9472 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9473 	 * called if the config is dirty; otherwise there may be
9474 	 * outstanding AVZ operations that weren't completed in
9475 	 * spa_sync_config_object.
9476 	 */
9477 		uint64_t all_vdev_zap_entry_count;
9478 		ASSERT0(zap_count(spa->spa_meta_objset,
9479 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9480 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9481 		    all_vdev_zap_entry_count);
9482 	}
9483 #endif
9484 
9485 	if (spa->spa_vdev_removal != NULL) {
9486 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9487 	}
9488 
9489 	spa_sync_rewrite_vdev_config(spa, tx);
9490 	dmu_tx_commit(tx);
9491 
9492 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9493 	spa->spa_deadman_tqid = 0;
9494 
9495 	/*
9496 	 * Clear the dirty config list.
9497 	 */
9498 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9499 		vdev_config_clean(vd);
9500 
9501 	/*
9502 	 * Now that the new config has synced transactionally,
9503 	 * let it become visible to the config cache.
9504 	 */
9505 	if (spa->spa_config_syncing != NULL) {
9506 		spa_config_set(spa, spa->spa_config_syncing);
9507 		spa->spa_config_txg = txg;
9508 		spa->spa_config_syncing = NULL;
9509 	}
9510 
9511 	dsl_pool_sync_done(dp, txg);
9512 
9513 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9514 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9515 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9516 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9517 	}
9518 
9519 	/*
9520 	 * Update usable space statistics.
9521 	 */
9522 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9523 	    != NULL)
9524 		vdev_sync_done(vd, txg);
9525 
9526 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9527 	metaslab_class_evict_old(spa->spa_log_class, txg);
9528 
9529 	spa_sync_close_syncing_log_sm(spa);
9530 
9531 	spa_update_dspace(spa);
9532 
9533 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9534 		vdev_autotrim_kick(spa);
9535 
9536 	/*
9537 	 * It had better be the case that we didn't dirty anything
9538 	 * since vdev_config_sync().
9539 	 */
9540 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9541 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9542 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9543 
9544 	while (zfs_pause_spa_sync)
9545 		delay(1);
9546 
9547 	spa->spa_sync_pass = 0;
9548 
9549 	/*
9550 	 * Update the last synced uberblock here. We want to do this at
9551 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9552 	 * will be guaranteed that all the processing associated with
9553 	 * that txg has been completed.
9554 	 */
9555 	spa->spa_ubsync = spa->spa_uberblock;
9556 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9557 
9558 	spa_handle_ignored_writes(spa);
9559 
9560 	/*
9561 	 * If any async tasks have been requested, kick them off.
9562 	 */
9563 	spa_async_dispatch(spa);
9564 }
9565 
9566 /*
9567  * Sync all pools.  We don't want to hold the namespace lock across these
9568  * operations, so we take a reference on the spa_t and drop the lock during the
9569  * sync.
9570  */
9571 void
9572 spa_sync_allpools(void)
9573 {
9574 	spa_t *spa = NULL;
9575 	mutex_enter(&spa_namespace_lock);
9576 	while ((spa = spa_next(spa)) != NULL) {
9577 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9578 		    !spa_writeable(spa) || spa_suspended(spa))
9579 			continue;
9580 		spa_open_ref(spa, FTAG);
9581 		mutex_exit(&spa_namespace_lock);
9582 		txg_wait_synced(spa_get_dsl(spa), 0);
9583 		mutex_enter(&spa_namespace_lock);
9584 		spa_close(spa, FTAG);
9585 	}
9586 	mutex_exit(&spa_namespace_lock);
9587 }
9588 
9589 /*
9590  * ==========================================================================
9591  * Miscellaneous routines
9592  * ==========================================================================
9593  */
9594 
9595 /*
9596  * Remove all pools in the system.
9597  */
9598 void
9599 spa_evict_all(void)
9600 {
9601 	spa_t *spa;
9602 
9603 	/*
9604 	 * Remove all cached state.  All pools should be closed now,
9605 	 * so every spa in the AVL tree should be unreferenced.
9606 	 */
9607 	mutex_enter(&spa_namespace_lock);
9608 	while ((spa = spa_next(NULL)) != NULL) {
9609 		/*
9610 		 * Stop async tasks.  The async thread may need to detach
9611 		 * a device that's been replaced, which requires grabbing
9612 		 * spa_namespace_lock, so we must drop it here.
9613 		 */
9614 		spa_open_ref(spa, FTAG);
9615 		mutex_exit(&spa_namespace_lock);
9616 		spa_async_suspend(spa);
9617 		mutex_enter(&spa_namespace_lock);
9618 		spa_close(spa, FTAG);
9619 
9620 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9621 			spa_unload(spa);
9622 			spa_deactivate(spa);
9623 		}
9624 		spa_remove(spa);
9625 	}
9626 	mutex_exit(&spa_namespace_lock);
9627 }
9628 
9629 vdev_t *
9630 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9631 {
9632 	vdev_t *vd;
9633 	int i;
9634 
9635 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9636 		return (vd);
9637 
9638 	if (aux) {
9639 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9640 			vd = spa->spa_l2cache.sav_vdevs[i];
9641 			if (vd->vdev_guid == guid)
9642 				return (vd);
9643 		}
9644 
9645 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9646 			vd = spa->spa_spares.sav_vdevs[i];
9647 			if (vd->vdev_guid == guid)
9648 				return (vd);
9649 		}
9650 	}
9651 
9652 	return (NULL);
9653 }
9654 
9655 void
9656 spa_upgrade(spa_t *spa, uint64_t version)
9657 {
9658 	ASSERT(spa_writeable(spa));
9659 
9660 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9661 
9662 	/*
9663 	 * This should only be called for a non-faulted pool, and since a
9664 	 * future version would result in an unopenable pool, this shouldn't be
9665 	 * possible.
9666 	 */
9667 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9668 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9669 
9670 	spa->spa_uberblock.ub_version = version;
9671 	vdev_config_dirty(spa->spa_root_vdev);
9672 
9673 	spa_config_exit(spa, SCL_ALL, FTAG);
9674 
9675 	txg_wait_synced(spa_get_dsl(spa), 0);
9676 }
9677 
9678 static boolean_t
9679 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9680 {
9681 	(void) spa;
9682 	int i;
9683 	uint64_t vdev_guid;
9684 
9685 	for (i = 0; i < sav->sav_count; i++)
9686 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9687 			return (B_TRUE);
9688 
9689 	for (i = 0; i < sav->sav_npending; i++) {
9690 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9691 		    &vdev_guid) == 0 && vdev_guid == guid)
9692 			return (B_TRUE);
9693 	}
9694 
9695 	return (B_FALSE);
9696 }
9697 
9698 boolean_t
9699 spa_has_l2cache(spa_t *spa, uint64_t guid)
9700 {
9701 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9702 }
9703 
9704 boolean_t
9705 spa_has_spare(spa_t *spa, uint64_t guid)
9706 {
9707 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9708 }
9709 
9710 /*
9711  * Check if a pool has an active shared spare device.
9712  * Note: reference count of an active spare is 2, as a spare and as a replace
9713  */
9714 static boolean_t
9715 spa_has_active_shared_spare(spa_t *spa)
9716 {
9717 	int i, refcnt;
9718 	uint64_t pool;
9719 	spa_aux_vdev_t *sav = &spa->spa_spares;
9720 
9721 	for (i = 0; i < sav->sav_count; i++) {
9722 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9723 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9724 		    refcnt > 2)
9725 			return (B_TRUE);
9726 	}
9727 
9728 	return (B_FALSE);
9729 }
9730 
9731 uint64_t
9732 spa_total_metaslabs(spa_t *spa)
9733 {
9734 	vdev_t *rvd = spa->spa_root_vdev;
9735 
9736 	uint64_t m = 0;
9737 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9738 		vdev_t *vd = rvd->vdev_child[c];
9739 		if (!vdev_is_concrete(vd))
9740 			continue;
9741 		m += vd->vdev_ms_count;
9742 	}
9743 	return (m);
9744 }
9745 
9746 /*
9747  * Notify any waiting threads that some activity has switched from being in-
9748  * progress to not-in-progress so that the thread can wake up and determine
9749  * whether it is finished waiting.
9750  */
9751 void
9752 spa_notify_waiters(spa_t *spa)
9753 {
9754 	/*
9755 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9756 	 * happening between the waiting thread's check and cv_wait.
9757 	 */
9758 	mutex_enter(&spa->spa_activities_lock);
9759 	cv_broadcast(&spa->spa_activities_cv);
9760 	mutex_exit(&spa->spa_activities_lock);
9761 }
9762 
9763 /*
9764  * Notify any waiting threads that the pool is exporting, and then block until
9765  * they are finished using the spa_t.
9766  */
9767 void
9768 spa_wake_waiters(spa_t *spa)
9769 {
9770 	mutex_enter(&spa->spa_activities_lock);
9771 	spa->spa_waiters_cancel = B_TRUE;
9772 	cv_broadcast(&spa->spa_activities_cv);
9773 	while (spa->spa_waiters != 0)
9774 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9775 	spa->spa_waiters_cancel = B_FALSE;
9776 	mutex_exit(&spa->spa_activities_lock);
9777 }
9778 
9779 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9780 static boolean_t
9781 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9782 {
9783 	spa_t *spa = vd->vdev_spa;
9784 
9785 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9786 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9787 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9788 	    activity == ZPOOL_WAIT_TRIM);
9789 
9790 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9791 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9792 
9793 	mutex_exit(&spa->spa_activities_lock);
9794 	mutex_enter(lock);
9795 	mutex_enter(&spa->spa_activities_lock);
9796 
9797 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9798 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9799 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9800 	mutex_exit(lock);
9801 
9802 	if (in_progress)
9803 		return (B_TRUE);
9804 
9805 	for (int i = 0; i < vd->vdev_children; i++) {
9806 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9807 		    activity))
9808 			return (B_TRUE);
9809 	}
9810 
9811 	return (B_FALSE);
9812 }
9813 
9814 /*
9815  * If use_guid is true, this checks whether the vdev specified by guid is
9816  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9817  * is being initialized/trimmed. The caller must hold the config lock and
9818  * spa_activities_lock.
9819  */
9820 static int
9821 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9822     zpool_wait_activity_t activity, boolean_t *in_progress)
9823 {
9824 	mutex_exit(&spa->spa_activities_lock);
9825 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9826 	mutex_enter(&spa->spa_activities_lock);
9827 
9828 	vdev_t *vd;
9829 	if (use_guid) {
9830 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9831 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9832 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9833 			return (EINVAL);
9834 		}
9835 	} else {
9836 		vd = spa->spa_root_vdev;
9837 	}
9838 
9839 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9840 
9841 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9842 	return (0);
9843 }
9844 
9845 /*
9846  * Locking for waiting threads
9847  * ---------------------------
9848  *
9849  * Waiting threads need a way to check whether a given activity is in progress,
9850  * and then, if it is, wait for it to complete. Each activity will have some
9851  * in-memory representation of the relevant on-disk state which can be used to
9852  * determine whether or not the activity is in progress. The in-memory state and
9853  * the locking used to protect it will be different for each activity, and may
9854  * not be suitable for use with a cvar (e.g., some state is protected by the
9855  * config lock). To allow waiting threads to wait without any races, another
9856  * lock, spa_activities_lock, is used.
9857  *
9858  * When the state is checked, both the activity-specific lock (if there is one)
9859  * and spa_activities_lock are held. In some cases, the activity-specific lock
9860  * is acquired explicitly (e.g. the config lock). In others, the locking is
9861  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9862  * thread releases the activity-specific lock and, if the activity is in
9863  * progress, then cv_waits using spa_activities_lock.
9864  *
9865  * The waiting thread is woken when another thread, one completing some
9866  * activity, updates the state of the activity and then calls
9867  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9868  * needs to hold its activity-specific lock when updating the state, and this
9869  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9870  *
9871  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9872  * and because it is held when the waiting thread checks the state of the
9873  * activity, it can never be the case that the completing thread both updates
9874  * the activity state and cv_broadcasts in between the waiting thread's check
9875  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9876  *
9877  * In order to prevent deadlock, when the waiting thread does its check, in some
9878  * cases it will temporarily drop spa_activities_lock in order to acquire the
9879  * activity-specific lock. The order in which spa_activities_lock and the
9880  * activity specific lock are acquired in the waiting thread is determined by
9881  * the order in which they are acquired in the completing thread; if the
9882  * completing thread calls spa_notify_waiters with the activity-specific lock
9883  * held, then the waiting thread must also acquire the activity-specific lock
9884  * first.
9885  */
9886 
9887 static int
9888 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9889     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9890 {
9891 	int error = 0;
9892 
9893 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9894 
9895 	switch (activity) {
9896 	case ZPOOL_WAIT_CKPT_DISCARD:
9897 		*in_progress =
9898 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9899 		    zap_contains(spa_meta_objset(spa),
9900 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9901 		    ENOENT);
9902 		break;
9903 	case ZPOOL_WAIT_FREE:
9904 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9905 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9906 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9907 		    spa_livelist_delete_check(spa));
9908 		break;
9909 	case ZPOOL_WAIT_INITIALIZE:
9910 	case ZPOOL_WAIT_TRIM:
9911 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9912 		    activity, in_progress);
9913 		break;
9914 	case ZPOOL_WAIT_REPLACE:
9915 		mutex_exit(&spa->spa_activities_lock);
9916 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9917 		mutex_enter(&spa->spa_activities_lock);
9918 
9919 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9920 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9921 		break;
9922 	case ZPOOL_WAIT_REMOVE:
9923 		*in_progress = (spa->spa_removing_phys.sr_state ==
9924 		    DSS_SCANNING);
9925 		break;
9926 	case ZPOOL_WAIT_RESILVER:
9927 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9928 			break;
9929 		zfs_fallthrough;
9930 	case ZPOOL_WAIT_SCRUB:
9931 	{
9932 		boolean_t scanning, paused, is_scrub;
9933 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9934 
9935 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9936 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9937 		paused = dsl_scan_is_paused_scrub(scn);
9938 		*in_progress = (scanning && !paused &&
9939 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9940 		break;
9941 	}
9942 	default:
9943 		panic("unrecognized value for activity %d", activity);
9944 	}
9945 
9946 	return (error);
9947 }
9948 
9949 static int
9950 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9951     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9952 {
9953 	/*
9954 	 * The tag is used to distinguish between instances of an activity.
9955 	 * 'initialize' and 'trim' are the only activities that we use this for.
9956 	 * The other activities can only have a single instance in progress in a
9957 	 * pool at one time, making the tag unnecessary.
9958 	 *
9959 	 * There can be multiple devices being replaced at once, but since they
9960 	 * all finish once resilvering finishes, we don't bother keeping track
9961 	 * of them individually, we just wait for them all to finish.
9962 	 */
9963 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9964 	    activity != ZPOOL_WAIT_TRIM)
9965 		return (EINVAL);
9966 
9967 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9968 		return (EINVAL);
9969 
9970 	spa_t *spa;
9971 	int error = spa_open(pool, &spa, FTAG);
9972 	if (error != 0)
9973 		return (error);
9974 
9975 	/*
9976 	 * Increment the spa's waiter count so that we can call spa_close and
9977 	 * still ensure that the spa_t doesn't get freed before this thread is
9978 	 * finished with it when the pool is exported. We want to call spa_close
9979 	 * before we start waiting because otherwise the additional ref would
9980 	 * prevent the pool from being exported or destroyed throughout the
9981 	 * potentially long wait.
9982 	 */
9983 	mutex_enter(&spa->spa_activities_lock);
9984 	spa->spa_waiters++;
9985 	spa_close(spa, FTAG);
9986 
9987 	*waited = B_FALSE;
9988 	for (;;) {
9989 		boolean_t in_progress;
9990 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9991 		    &in_progress);
9992 
9993 		if (error || !in_progress || spa->spa_waiters_cancel)
9994 			break;
9995 
9996 		*waited = B_TRUE;
9997 
9998 		if (cv_wait_sig(&spa->spa_activities_cv,
9999 		    &spa->spa_activities_lock) == 0) {
10000 			error = EINTR;
10001 			break;
10002 		}
10003 	}
10004 
10005 	spa->spa_waiters--;
10006 	cv_signal(&spa->spa_waiters_cv);
10007 	mutex_exit(&spa->spa_activities_lock);
10008 
10009 	return (error);
10010 }
10011 
10012 /*
10013  * Wait for a particular instance of the specified activity to complete, where
10014  * the instance is identified by 'tag'
10015  */
10016 int
10017 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10018     boolean_t *waited)
10019 {
10020 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10021 }
10022 
10023 /*
10024  * Wait for all instances of the specified activity complete
10025  */
10026 int
10027 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10028 {
10029 
10030 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10031 }
10032 
10033 sysevent_t *
10034 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10035 {
10036 	sysevent_t *ev = NULL;
10037 #ifdef _KERNEL
10038 	nvlist_t *resource;
10039 
10040 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10041 	if (resource) {
10042 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10043 		ev->resource = resource;
10044 	}
10045 #else
10046 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10047 #endif
10048 	return (ev);
10049 }
10050 
10051 void
10052 spa_event_post(sysevent_t *ev)
10053 {
10054 #ifdef _KERNEL
10055 	if (ev) {
10056 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10057 		kmem_free(ev, sizeof (*ev));
10058 	}
10059 #else
10060 	(void) ev;
10061 #endif
10062 }
10063 
10064 /*
10065  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10066  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10067  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10068  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10069  * or zdb as real changes.
10070  */
10071 void
10072 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10073 {
10074 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10075 }
10076 
10077 /* state manipulation functions */
10078 EXPORT_SYMBOL(spa_open);
10079 EXPORT_SYMBOL(spa_open_rewind);
10080 EXPORT_SYMBOL(spa_get_stats);
10081 EXPORT_SYMBOL(spa_create);
10082 EXPORT_SYMBOL(spa_import);
10083 EXPORT_SYMBOL(spa_tryimport);
10084 EXPORT_SYMBOL(spa_destroy);
10085 EXPORT_SYMBOL(spa_export);
10086 EXPORT_SYMBOL(spa_reset);
10087 EXPORT_SYMBOL(spa_async_request);
10088 EXPORT_SYMBOL(spa_async_suspend);
10089 EXPORT_SYMBOL(spa_async_resume);
10090 EXPORT_SYMBOL(spa_inject_addref);
10091 EXPORT_SYMBOL(spa_inject_delref);
10092 EXPORT_SYMBOL(spa_scan_stat_init);
10093 EXPORT_SYMBOL(spa_scan_get_stats);
10094 
10095 /* device manipulation */
10096 EXPORT_SYMBOL(spa_vdev_add);
10097 EXPORT_SYMBOL(spa_vdev_attach);
10098 EXPORT_SYMBOL(spa_vdev_detach);
10099 EXPORT_SYMBOL(spa_vdev_setpath);
10100 EXPORT_SYMBOL(spa_vdev_setfru);
10101 EXPORT_SYMBOL(spa_vdev_split_mirror);
10102 
10103 /* spare statech is global across all pools) */
10104 EXPORT_SYMBOL(spa_spare_add);
10105 EXPORT_SYMBOL(spa_spare_remove);
10106 EXPORT_SYMBOL(spa_spare_exists);
10107 EXPORT_SYMBOL(spa_spare_activate);
10108 
10109 /* L2ARC statech is global across all pools) */
10110 EXPORT_SYMBOL(spa_l2cache_add);
10111 EXPORT_SYMBOL(spa_l2cache_remove);
10112 EXPORT_SYMBOL(spa_l2cache_exists);
10113 EXPORT_SYMBOL(spa_l2cache_activate);
10114 EXPORT_SYMBOL(spa_l2cache_drop);
10115 
10116 /* scanning */
10117 EXPORT_SYMBOL(spa_scan);
10118 EXPORT_SYMBOL(spa_scan_stop);
10119 
10120 /* spa syncing */
10121 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10122 EXPORT_SYMBOL(spa_sync_allpools);
10123 
10124 /* properties */
10125 EXPORT_SYMBOL(spa_prop_set);
10126 EXPORT_SYMBOL(spa_prop_get);
10127 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10128 
10129 /* asynchronous event notification */
10130 EXPORT_SYMBOL(spa_event_notify);
10131 
10132 /* BEGIN CSTYLED */
10133 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10134 	"log2 fraction of arc that can be used by inflight I/Os when "
10135 	"verifying pool during import");
10136 /* END CSTYLED */
10137 
10138 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10139 	"Set to traverse metadata on pool import");
10140 
10141 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10142 	"Set to traverse data on pool import");
10143 
10144 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10145 	"Print vdev tree to zfs_dbgmsg during pool import");
10146 
10147 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10148 	"Percentage of CPUs to run an IO worker thread");
10149 
10150 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10151 	"Number of threads per IO worker taskqueue");
10152 
10153 /* BEGIN CSTYLED */
10154 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10155 	"Allow importing pool with up to this number of missing top-level "
10156 	"vdevs (in read-only mode)");
10157 /* END CSTYLED */
10158 
10159 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10160 	ZMOD_RW, "Set the livelist condense zthr to pause");
10161 
10162 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10163 	ZMOD_RW, "Set the livelist condense synctask to pause");
10164 
10165 /* BEGIN CSTYLED */
10166 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10167 	INT, ZMOD_RW,
10168 	"Whether livelist condensing was canceled in the synctask");
10169 
10170 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10171 	INT, ZMOD_RW,
10172 	"Whether livelist condensing was canceled in the zthr function");
10173 
10174 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10175 	ZMOD_RW,
10176 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10177 	"was being condensed");
10178 /* END CSTYLED */
10179