xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 4f8f43b06ed07e96a250855488cc531799d5b78f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  */
38 
39 /*
40  * SPA: Storage Pool Allocator
41  *
42  * This file contains all the routines used when modifying on-disk SPA state.
43  * This includes opening, importing, destroying, exporting a pool, and syncing a
44  * pool.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_draid.h>
67 #include <sys/metaslab.h>
68 #include <sys/metaslab_impl.h>
69 #include <sys/mmp.h>
70 #include <sys/uberblock_impl.h>
71 #include <sys/txg.h>
72 #include <sys/avl.h>
73 #include <sys/bpobj.h>
74 #include <sys/dmu_traverse.h>
75 #include <sys/dmu_objset.h>
76 #include <sys/unique.h>
77 #include <sys/dsl_pool.h>
78 #include <sys/dsl_dataset.h>
79 #include <sys/dsl_dir.h>
80 #include <sys/dsl_prop.h>
81 #include <sys/dsl_synctask.h>
82 #include <sys/fs/zfs.h>
83 #include <sys/arc.h>
84 #include <sys/callb.h>
85 #include <sys/systeminfo.h>
86 #include <sys/zfs_ioctl.h>
87 #include <sys/dsl_scan.h>
88 #include <sys/zfeature.h>
89 #include <sys/dsl_destroy.h>
90 #include <sys/zvol.h>
91 
92 #ifdef	_KERNEL
93 #include <sys/fm/protocol.h>
94 #include <sys/fm/util.h>
95 #include <sys/callb.h>
96 #include <sys/zone.h>
97 #include <sys/vmsystm.h>
98 #endif	/* _KERNEL */
99 
100 #include "zfs_prop.h"
101 #include "zfs_comutil.h"
102 
103 /*
104  * The interval, in seconds, at which failed configuration cache file writes
105  * should be retried.
106  */
107 int zfs_ccw_retry_interval = 300;
108 
109 typedef enum zti_modes {
110 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
111 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
112 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
113 	ZTI_MODE_NULL,			/* don't create a taskq */
114 	ZTI_NMODES
115 } zti_modes_t;
116 
117 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
118 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
119 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
120 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
121 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
122 
123 #define	ZTI_N(n)	ZTI_P(n, 1)
124 #define	ZTI_ONE		ZTI_N(1)
125 
126 typedef struct zio_taskq_info {
127 	zti_modes_t zti_mode;
128 	uint_t zti_value;
129 	uint_t zti_count;
130 } zio_taskq_info_t;
131 
132 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
133 	"iss", "iss_h", "int", "int_h"
134 };
135 
136 /*
137  * This table defines the taskq settings for each ZFS I/O type. When
138  * initializing a pool, we use this table to create an appropriately sized
139  * taskq. Some operations are low volume and therefore have a small, static
140  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
141  * macros. Other operations process a large amount of data; the ZTI_BATCH
142  * macro causes us to create a taskq oriented for throughput. Some operations
143  * are so high frequency and short-lived that the taskq itself can become a
144  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
145  * additional degree of parallelism specified by the number of threads per-
146  * taskq and the number of taskqs; when dispatching an event in this case, the
147  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
148  * but with number of taskqs also scaling with number of CPUs.
149  *
150  * The different taskq priorities are to handle the different contexts (issue
151  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
152  * need to be handled with minimum delay.
153  */
154 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
155 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
156 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
157 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
158 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
159 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
161 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
162 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
163 };
164 
165 static void spa_sync_version(void *arg, dmu_tx_t *tx);
166 static void spa_sync_props(void *arg, dmu_tx_t *tx);
167 static boolean_t spa_has_active_shared_spare(spa_t *spa);
168 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
169     const char **ereport);
170 static void spa_vdev_resilver_done(spa_t *spa);
171 
172 /*
173  * Percentage of all CPUs that can be used by the metaslab preload taskq.
174  */
175 static uint_t metaslab_preload_pct = 50;
176 
177 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
178 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
179 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
180 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
181 
182 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
183 
184 /*
185  * Report any spa_load_verify errors found, but do not fail spa_load.
186  * This is used by zdb to analyze non-idle pools.
187  */
188 boolean_t	spa_load_verify_dryrun = B_FALSE;
189 
190 /*
191  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
192  * This is used by zdb for spacemaps verification.
193  */
194 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
195 
196 /*
197  * This (illegal) pool name is used when temporarily importing a spa_t in order
198  * to get the vdev stats associated with the imported devices.
199  */
200 #define	TRYIMPORT_NAME	"$import"
201 
202 /*
203  * For debugging purposes: print out vdev tree during pool import.
204  */
205 static int		spa_load_print_vdev_tree = B_FALSE;
206 
207 /*
208  * A non-zero value for zfs_max_missing_tvds means that we allow importing
209  * pools with missing top-level vdevs. This is strictly intended for advanced
210  * pool recovery cases since missing data is almost inevitable. Pools with
211  * missing devices can only be imported read-only for safety reasons, and their
212  * fail-mode will be automatically set to "continue".
213  *
214  * With 1 missing vdev we should be able to import the pool and mount all
215  * datasets. User data that was not modified after the missing device has been
216  * added should be recoverable. This means that snapshots created prior to the
217  * addition of that device should be completely intact.
218  *
219  * With 2 missing vdevs, some datasets may fail to mount since there are
220  * dataset statistics that are stored as regular metadata. Some data might be
221  * recoverable if those vdevs were added recently.
222  *
223  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
224  * may be missing entirely. Chances of data recovery are very low. Note that
225  * there are also risks of performing an inadvertent rewind as we might be
226  * missing all the vdevs with the latest uberblocks.
227  */
228 uint64_t	zfs_max_missing_tvds = 0;
229 
230 /*
231  * The parameters below are similar to zfs_max_missing_tvds but are only
232  * intended for a preliminary open of the pool with an untrusted config which
233  * might be incomplete or out-dated.
234  *
235  * We are more tolerant for pools opened from a cachefile since we could have
236  * an out-dated cachefile where a device removal was not registered.
237  * We could have set the limit arbitrarily high but in the case where devices
238  * are really missing we would want to return the proper error codes; we chose
239  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
240  * and we get a chance to retrieve the trusted config.
241  */
242 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
243 
244 /*
245  * In the case where config was assembled by scanning device paths (/dev/dsks
246  * by default) we are less tolerant since all the existing devices should have
247  * been detected and we want spa_load to return the right error codes.
248  */
249 uint64_t	zfs_max_missing_tvds_scan = 0;
250 
251 /*
252  * Debugging aid that pauses spa_sync() towards the end.
253  */
254 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
255 
256 /*
257  * Variables to indicate the livelist condense zthr func should wait at certain
258  * points for the livelist to be removed - used to test condense/destroy races
259  */
260 static int zfs_livelist_condense_zthr_pause = 0;
261 static int zfs_livelist_condense_sync_pause = 0;
262 
263 /*
264  * Variables to track whether or not condense cancellation has been
265  * triggered in testing.
266  */
267 static int zfs_livelist_condense_sync_cancel = 0;
268 static int zfs_livelist_condense_zthr_cancel = 0;
269 
270 /*
271  * Variable to track whether or not extra ALLOC blkptrs were added to a
272  * livelist entry while it was being condensed (caused by the way we track
273  * remapped blkptrs in dbuf_remap_impl)
274  */
275 static int zfs_livelist_condense_new_alloc = 0;
276 
277 /*
278  * ==========================================================================
279  * SPA properties routines
280  * ==========================================================================
281  */
282 
283 /*
284  * Add a (source=src, propname=propval) list to an nvlist.
285  */
286 static void
287 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
288     uint64_t intval, zprop_source_t src)
289 {
290 	const char *propname = zpool_prop_to_name(prop);
291 	nvlist_t *propval;
292 
293 	propval = fnvlist_alloc();
294 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
295 
296 	if (strval != NULL)
297 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
298 	else
299 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
300 
301 	fnvlist_add_nvlist(nvl, propname, propval);
302 	nvlist_free(propval);
303 }
304 
305 /*
306  * Add a user property (source=src, propname=propval) to an nvlist.
307  */
308 static void
309 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
310     zprop_source_t src)
311 {
312 	nvlist_t *propval;
313 
314 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
315 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
316 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
317 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
318 	nvlist_free(propval);
319 }
320 
321 /*
322  * Get property values from the spa configuration.
323  */
324 static void
325 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
326 {
327 	vdev_t *rvd = spa->spa_root_vdev;
328 	dsl_pool_t *pool = spa->spa_dsl_pool;
329 	uint64_t size, alloc, cap, version;
330 	const zprop_source_t src = ZPROP_SRC_NONE;
331 	spa_config_dirent_t *dp;
332 	metaslab_class_t *mc = spa_normal_class(spa);
333 
334 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
335 
336 	if (rvd != NULL) {
337 		alloc = metaslab_class_get_alloc(mc);
338 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
339 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
340 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
341 
342 		size = metaslab_class_get_space(mc);
343 		size += metaslab_class_get_space(spa_special_class(spa));
344 		size += metaslab_class_get_space(spa_dedup_class(spa));
345 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
346 
347 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
348 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
349 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
350 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
351 		    size - alloc, src);
352 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
353 		    spa->spa_checkpoint_info.sci_dspace, src);
354 
355 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
356 		    metaslab_class_fragmentation(mc), src);
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
358 		    metaslab_class_expandable_space(mc), src);
359 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
360 		    (spa_mode(spa) == SPA_MODE_READ), src);
361 
362 		cap = (size == 0) ? 0 : (alloc * 100 / size);
363 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
364 
365 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
366 		    ddt_get_pool_dedup_ratio(spa), src);
367 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
368 		    brt_get_used(spa), src);
369 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
370 		    brt_get_saved(spa), src);
371 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
372 		    brt_get_ratio(spa), src);
373 
374 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
375 		    rvd->vdev_state, src);
376 
377 		version = spa_version(spa);
378 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
380 			    version, ZPROP_SRC_DEFAULT);
381 		} else {
382 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
383 			    version, ZPROP_SRC_LOCAL);
384 		}
385 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
386 		    NULL, spa_load_guid(spa), src);
387 	}
388 
389 	if (pool != NULL) {
390 		/*
391 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
392 		 * when opening pools before this version freedir will be NULL.
393 		 */
394 		if (pool->dp_free_dir != NULL) {
395 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
396 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
397 			    src);
398 		} else {
399 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
400 			    NULL, 0, src);
401 		}
402 
403 		if (pool->dp_leak_dir != NULL) {
404 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
405 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
406 			    src);
407 		} else {
408 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
409 			    NULL, 0, src);
410 		}
411 	}
412 
413 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
414 
415 	if (spa->spa_comment != NULL) {
416 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
417 		    0, ZPROP_SRC_LOCAL);
418 	}
419 
420 	if (spa->spa_compatibility != NULL) {
421 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
422 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
423 	}
424 
425 	if (spa->spa_root != NULL)
426 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
427 		    0, ZPROP_SRC_LOCAL);
428 
429 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
430 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
431 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
432 	} else {
433 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
434 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
435 	}
436 
437 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
438 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
439 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
440 	} else {
441 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
442 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
443 	}
444 
445 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
446 		if (dp->scd_path == NULL) {
447 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
448 			    "none", 0, ZPROP_SRC_LOCAL);
449 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
450 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
451 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
452 		}
453 	}
454 }
455 
456 /*
457  * Get zpool property values.
458  */
459 int
460 spa_prop_get(spa_t *spa, nvlist_t **nvp)
461 {
462 	objset_t *mos = spa->spa_meta_objset;
463 	zap_cursor_t zc;
464 	zap_attribute_t za;
465 	dsl_pool_t *dp;
466 	int err;
467 
468 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
469 	if (err)
470 		return (err);
471 
472 	dp = spa_get_dsl(spa);
473 	dsl_pool_config_enter(dp, FTAG);
474 	mutex_enter(&spa->spa_props_lock);
475 
476 	/*
477 	 * Get properties from the spa config.
478 	 */
479 	spa_prop_get_config(spa, nvp);
480 
481 	/* If no pool property object, no more prop to get. */
482 	if (mos == NULL || spa->spa_pool_props_object == 0)
483 		goto out;
484 
485 	/*
486 	 * Get properties from the MOS pool property object.
487 	 */
488 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
489 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
490 	    zap_cursor_advance(&zc)) {
491 		uint64_t intval = 0;
492 		char *strval = NULL;
493 		zprop_source_t src = ZPROP_SRC_DEFAULT;
494 		zpool_prop_t prop;
495 
496 		if ((prop = zpool_name_to_prop(za.za_name)) ==
497 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
498 			continue;
499 
500 		switch (za.za_integer_length) {
501 		case 8:
502 			/* integer property */
503 			if (za.za_first_integer !=
504 			    zpool_prop_default_numeric(prop))
505 				src = ZPROP_SRC_LOCAL;
506 
507 			if (prop == ZPOOL_PROP_BOOTFS) {
508 				dsl_dataset_t *ds = NULL;
509 
510 				err = dsl_dataset_hold_obj(dp,
511 				    za.za_first_integer, FTAG, &ds);
512 				if (err != 0)
513 					break;
514 
515 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
516 				    KM_SLEEP);
517 				dsl_dataset_name(ds, strval);
518 				dsl_dataset_rele(ds, FTAG);
519 			} else {
520 				strval = NULL;
521 				intval = za.za_first_integer;
522 			}
523 
524 			spa_prop_add_list(*nvp, prop, strval, intval, src);
525 
526 			if (strval != NULL)
527 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
528 
529 			break;
530 
531 		case 1:
532 			/* string property */
533 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
534 			err = zap_lookup(mos, spa->spa_pool_props_object,
535 			    za.za_name, 1, za.za_num_integers, strval);
536 			if (err) {
537 				kmem_free(strval, za.za_num_integers);
538 				break;
539 			}
540 			if (prop != ZPOOL_PROP_INVAL) {
541 				spa_prop_add_list(*nvp, prop, strval, 0, src);
542 			} else {
543 				src = ZPROP_SRC_LOCAL;
544 				spa_prop_add_user(*nvp, za.za_name, strval,
545 				    src);
546 			}
547 			kmem_free(strval, za.za_num_integers);
548 			break;
549 
550 		default:
551 			break;
552 		}
553 	}
554 	zap_cursor_fini(&zc);
555 out:
556 	mutex_exit(&spa->spa_props_lock);
557 	dsl_pool_config_exit(dp, FTAG);
558 	if (err && err != ENOENT) {
559 		nvlist_free(*nvp);
560 		*nvp = NULL;
561 		return (err);
562 	}
563 
564 	return (0);
565 }
566 
567 /*
568  * Validate the given pool properties nvlist and modify the list
569  * for the property values to be set.
570  */
571 static int
572 spa_prop_validate(spa_t *spa, nvlist_t *props)
573 {
574 	nvpair_t *elem;
575 	int error = 0, reset_bootfs = 0;
576 	uint64_t objnum = 0;
577 	boolean_t has_feature = B_FALSE;
578 
579 	elem = NULL;
580 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
581 		uint64_t intval;
582 		const char *strval, *slash, *check, *fname;
583 		const char *propname = nvpair_name(elem);
584 		zpool_prop_t prop = zpool_name_to_prop(propname);
585 
586 		switch (prop) {
587 		case ZPOOL_PROP_INVAL:
588 			/*
589 			 * Sanitize the input.
590 			 */
591 			if (zfs_prop_user(propname)) {
592 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
593 					error = SET_ERROR(ENAMETOOLONG);
594 					break;
595 				}
596 
597 				if (strlen(fnvpair_value_string(elem)) >=
598 				    ZAP_MAXVALUELEN) {
599 					error = SET_ERROR(E2BIG);
600 					break;
601 				}
602 			} else if (zpool_prop_feature(propname)) {
603 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
604 					error = SET_ERROR(EINVAL);
605 					break;
606 				}
607 
608 				if (nvpair_value_uint64(elem, &intval) != 0) {
609 					error = SET_ERROR(EINVAL);
610 					break;
611 				}
612 
613 				if (intval != 0) {
614 					error = SET_ERROR(EINVAL);
615 					break;
616 				}
617 
618 				fname = strchr(propname, '@') + 1;
619 				if (zfeature_lookup_name(fname, NULL) != 0) {
620 					error = SET_ERROR(EINVAL);
621 					break;
622 				}
623 
624 				has_feature = B_TRUE;
625 			} else {
626 				error = SET_ERROR(EINVAL);
627 				break;
628 			}
629 			break;
630 
631 		case ZPOOL_PROP_VERSION:
632 			error = nvpair_value_uint64(elem, &intval);
633 			if (!error &&
634 			    (intval < spa_version(spa) ||
635 			    intval > SPA_VERSION_BEFORE_FEATURES ||
636 			    has_feature))
637 				error = SET_ERROR(EINVAL);
638 			break;
639 
640 		case ZPOOL_PROP_DELEGATION:
641 		case ZPOOL_PROP_AUTOREPLACE:
642 		case ZPOOL_PROP_LISTSNAPS:
643 		case ZPOOL_PROP_AUTOEXPAND:
644 		case ZPOOL_PROP_AUTOTRIM:
645 			error = nvpair_value_uint64(elem, &intval);
646 			if (!error && intval > 1)
647 				error = SET_ERROR(EINVAL);
648 			break;
649 
650 		case ZPOOL_PROP_MULTIHOST:
651 			error = nvpair_value_uint64(elem, &intval);
652 			if (!error && intval > 1)
653 				error = SET_ERROR(EINVAL);
654 
655 			if (!error) {
656 				uint32_t hostid = zone_get_hostid(NULL);
657 				if (hostid)
658 					spa->spa_hostid = hostid;
659 				else
660 					error = SET_ERROR(ENOTSUP);
661 			}
662 
663 			break;
664 
665 		case ZPOOL_PROP_BOOTFS:
666 			/*
667 			 * If the pool version is less than SPA_VERSION_BOOTFS,
668 			 * or the pool is still being created (version == 0),
669 			 * the bootfs property cannot be set.
670 			 */
671 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
672 				error = SET_ERROR(ENOTSUP);
673 				break;
674 			}
675 
676 			/*
677 			 * Make sure the vdev config is bootable
678 			 */
679 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
680 				error = SET_ERROR(ENOTSUP);
681 				break;
682 			}
683 
684 			reset_bootfs = 1;
685 
686 			error = nvpair_value_string(elem, &strval);
687 
688 			if (!error) {
689 				objset_t *os;
690 
691 				if (strval == NULL || strval[0] == '\0') {
692 					objnum = zpool_prop_default_numeric(
693 					    ZPOOL_PROP_BOOTFS);
694 					break;
695 				}
696 
697 				error = dmu_objset_hold(strval, FTAG, &os);
698 				if (error != 0)
699 					break;
700 
701 				/* Must be ZPL. */
702 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
703 					error = SET_ERROR(ENOTSUP);
704 				} else {
705 					objnum = dmu_objset_id(os);
706 				}
707 				dmu_objset_rele(os, FTAG);
708 			}
709 			break;
710 
711 		case ZPOOL_PROP_FAILUREMODE:
712 			error = nvpair_value_uint64(elem, &intval);
713 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
714 				error = SET_ERROR(EINVAL);
715 
716 			/*
717 			 * This is a special case which only occurs when
718 			 * the pool has completely failed. This allows
719 			 * the user to change the in-core failmode property
720 			 * without syncing it out to disk (I/Os might
721 			 * currently be blocked). We do this by returning
722 			 * EIO to the caller (spa_prop_set) to trick it
723 			 * into thinking we encountered a property validation
724 			 * error.
725 			 */
726 			if (!error && spa_suspended(spa)) {
727 				spa->spa_failmode = intval;
728 				error = SET_ERROR(EIO);
729 			}
730 			break;
731 
732 		case ZPOOL_PROP_CACHEFILE:
733 			if ((error = nvpair_value_string(elem, &strval)) != 0)
734 				break;
735 
736 			if (strval[0] == '\0')
737 				break;
738 
739 			if (strcmp(strval, "none") == 0)
740 				break;
741 
742 			if (strval[0] != '/') {
743 				error = SET_ERROR(EINVAL);
744 				break;
745 			}
746 
747 			slash = strrchr(strval, '/');
748 			ASSERT(slash != NULL);
749 
750 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
751 			    strcmp(slash, "/..") == 0)
752 				error = SET_ERROR(EINVAL);
753 			break;
754 
755 		case ZPOOL_PROP_COMMENT:
756 			if ((error = nvpair_value_string(elem, &strval)) != 0)
757 				break;
758 			for (check = strval; *check != '\0'; check++) {
759 				if (!isprint(*check)) {
760 					error = SET_ERROR(EINVAL);
761 					break;
762 				}
763 			}
764 			if (strlen(strval) > ZPROP_MAX_COMMENT)
765 				error = SET_ERROR(E2BIG);
766 			break;
767 
768 		default:
769 			break;
770 		}
771 
772 		if (error)
773 			break;
774 	}
775 
776 	(void) nvlist_remove_all(props,
777 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
778 
779 	if (!error && reset_bootfs) {
780 		error = nvlist_remove(props,
781 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
782 
783 		if (!error) {
784 			error = nvlist_add_uint64(props,
785 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
786 		}
787 	}
788 
789 	return (error);
790 }
791 
792 void
793 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
794 {
795 	const char *cachefile;
796 	spa_config_dirent_t *dp;
797 
798 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
799 	    &cachefile) != 0)
800 		return;
801 
802 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
803 	    KM_SLEEP);
804 
805 	if (cachefile[0] == '\0')
806 		dp->scd_path = spa_strdup(spa_config_path);
807 	else if (strcmp(cachefile, "none") == 0)
808 		dp->scd_path = NULL;
809 	else
810 		dp->scd_path = spa_strdup(cachefile);
811 
812 	list_insert_head(&spa->spa_config_list, dp);
813 	if (need_sync)
814 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
815 }
816 
817 int
818 spa_prop_set(spa_t *spa, nvlist_t *nvp)
819 {
820 	int error;
821 	nvpair_t *elem = NULL;
822 	boolean_t need_sync = B_FALSE;
823 
824 	if ((error = spa_prop_validate(spa, nvp)) != 0)
825 		return (error);
826 
827 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
828 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
829 
830 		if (prop == ZPOOL_PROP_CACHEFILE ||
831 		    prop == ZPOOL_PROP_ALTROOT ||
832 		    prop == ZPOOL_PROP_READONLY)
833 			continue;
834 
835 		if (prop == ZPOOL_PROP_INVAL &&
836 		    zfs_prop_user(nvpair_name(elem))) {
837 			need_sync = B_TRUE;
838 			break;
839 		}
840 
841 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
842 			uint64_t ver = 0;
843 
844 			if (prop == ZPOOL_PROP_VERSION) {
845 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
846 			} else {
847 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
848 				ver = SPA_VERSION_FEATURES;
849 				need_sync = B_TRUE;
850 			}
851 
852 			/* Save time if the version is already set. */
853 			if (ver == spa_version(spa))
854 				continue;
855 
856 			/*
857 			 * In addition to the pool directory object, we might
858 			 * create the pool properties object, the features for
859 			 * read object, the features for write object, or the
860 			 * feature descriptions object.
861 			 */
862 			error = dsl_sync_task(spa->spa_name, NULL,
863 			    spa_sync_version, &ver,
864 			    6, ZFS_SPACE_CHECK_RESERVED);
865 			if (error)
866 				return (error);
867 			continue;
868 		}
869 
870 		need_sync = B_TRUE;
871 		break;
872 	}
873 
874 	if (need_sync) {
875 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
876 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
877 	}
878 
879 	return (0);
880 }
881 
882 /*
883  * If the bootfs property value is dsobj, clear it.
884  */
885 void
886 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
887 {
888 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
889 		VERIFY(zap_remove(spa->spa_meta_objset,
890 		    spa->spa_pool_props_object,
891 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
892 		spa->spa_bootfs = 0;
893 	}
894 }
895 
896 static int
897 spa_change_guid_check(void *arg, dmu_tx_t *tx)
898 {
899 	uint64_t *newguid __maybe_unused = arg;
900 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
901 	vdev_t *rvd = spa->spa_root_vdev;
902 	uint64_t vdev_state;
903 
904 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
905 		int error = (spa_has_checkpoint(spa)) ?
906 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
907 		return (SET_ERROR(error));
908 	}
909 
910 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
911 	vdev_state = rvd->vdev_state;
912 	spa_config_exit(spa, SCL_STATE, FTAG);
913 
914 	if (vdev_state != VDEV_STATE_HEALTHY)
915 		return (SET_ERROR(ENXIO));
916 
917 	ASSERT3U(spa_guid(spa), !=, *newguid);
918 
919 	return (0);
920 }
921 
922 static void
923 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
924 {
925 	uint64_t *newguid = arg;
926 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
927 	uint64_t oldguid;
928 	vdev_t *rvd = spa->spa_root_vdev;
929 
930 	oldguid = spa_guid(spa);
931 
932 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
933 	rvd->vdev_guid = *newguid;
934 	rvd->vdev_guid_sum += (*newguid - oldguid);
935 	vdev_config_dirty(rvd);
936 	spa_config_exit(spa, SCL_STATE, FTAG);
937 
938 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
939 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
940 }
941 
942 /*
943  * Change the GUID for the pool.  This is done so that we can later
944  * re-import a pool built from a clone of our own vdevs.  We will modify
945  * the root vdev's guid, our own pool guid, and then mark all of our
946  * vdevs dirty.  Note that we must make sure that all our vdevs are
947  * online when we do this, or else any vdevs that weren't present
948  * would be orphaned from our pool.  We are also going to issue a
949  * sysevent to update any watchers.
950  */
951 int
952 spa_change_guid(spa_t *spa)
953 {
954 	int error;
955 	uint64_t guid;
956 
957 	mutex_enter(&spa->spa_vdev_top_lock);
958 	mutex_enter(&spa_namespace_lock);
959 	guid = spa_generate_guid(NULL);
960 
961 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
962 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
963 
964 	if (error == 0) {
965 		/*
966 		 * Clear the kobj flag from all the vdevs to allow
967 		 * vdev_cache_process_kobj_evt() to post events to all the
968 		 * vdevs since GUID is updated.
969 		 */
970 		vdev_clear_kobj_evt(spa->spa_root_vdev);
971 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
972 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
973 
974 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
975 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
976 	}
977 
978 	mutex_exit(&spa_namespace_lock);
979 	mutex_exit(&spa->spa_vdev_top_lock);
980 
981 	return (error);
982 }
983 
984 /*
985  * ==========================================================================
986  * SPA state manipulation (open/create/destroy/import/export)
987  * ==========================================================================
988  */
989 
990 static int
991 spa_error_entry_compare(const void *a, const void *b)
992 {
993 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
994 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
995 	int ret;
996 
997 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
998 	    sizeof (zbookmark_phys_t));
999 
1000 	return (TREE_ISIGN(ret));
1001 }
1002 
1003 /*
1004  * Utility function which retrieves copies of the current logs and
1005  * re-initializes them in the process.
1006  */
1007 void
1008 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1009 {
1010 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1011 
1012 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1013 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1014 
1015 	avl_create(&spa->spa_errlist_scrub,
1016 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1017 	    offsetof(spa_error_entry_t, se_avl));
1018 	avl_create(&spa->spa_errlist_last,
1019 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1020 	    offsetof(spa_error_entry_t, se_avl));
1021 }
1022 
1023 static void
1024 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1025 {
1026 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1027 	enum zti_modes mode = ztip->zti_mode;
1028 	uint_t value = ztip->zti_value;
1029 	uint_t count = ztip->zti_count;
1030 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1031 	uint_t cpus, flags = TASKQ_DYNAMIC;
1032 	boolean_t batch = B_FALSE;
1033 
1034 	switch (mode) {
1035 	case ZTI_MODE_FIXED:
1036 		ASSERT3U(value, >, 0);
1037 		break;
1038 
1039 	case ZTI_MODE_BATCH:
1040 		batch = B_TRUE;
1041 		flags |= TASKQ_THREADS_CPU_PCT;
1042 		value = MIN(zio_taskq_batch_pct, 100);
1043 		break;
1044 
1045 	case ZTI_MODE_SCALE:
1046 		flags |= TASKQ_THREADS_CPU_PCT;
1047 		/*
1048 		 * We want more taskqs to reduce lock contention, but we want
1049 		 * less for better request ordering and CPU utilization.
1050 		 */
1051 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1052 		if (zio_taskq_batch_tpq > 0) {
1053 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1054 			    zio_taskq_batch_tpq);
1055 		} else {
1056 			/*
1057 			 * Prefer 6 threads per taskq, but no more taskqs
1058 			 * than threads in them on large systems. For 80%:
1059 			 *
1060 			 *                 taskq   taskq   total
1061 			 * cpus    taskqs  percent threads threads
1062 			 * ------- ------- ------- ------- -------
1063 			 * 1       1       80%     1       1
1064 			 * 2       1       80%     1       1
1065 			 * 4       1       80%     3       3
1066 			 * 8       2       40%     3       6
1067 			 * 16      3       27%     4       12
1068 			 * 32      5       16%     5       25
1069 			 * 64      7       11%     7       49
1070 			 * 128     10      8%      10      100
1071 			 * 256     14      6%      15      210
1072 			 */
1073 			count = 1 + cpus / 6;
1074 			while (count * count > cpus)
1075 				count--;
1076 		}
1077 		/* Limit each taskq within 100% to not trigger assertion. */
1078 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1079 		value = (zio_taskq_batch_pct + count / 2) / count;
1080 		break;
1081 
1082 	case ZTI_MODE_NULL:
1083 		tqs->stqs_count = 0;
1084 		tqs->stqs_taskq = NULL;
1085 		return;
1086 
1087 	default:
1088 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1089 		    "spa_activate()",
1090 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1091 		break;
1092 	}
1093 
1094 	ASSERT3U(count, >, 0);
1095 	tqs->stqs_count = count;
1096 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1097 
1098 	for (uint_t i = 0; i < count; i++) {
1099 		taskq_t *tq;
1100 		char name[32];
1101 
1102 		if (count > 1)
1103 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1104 			    zio_type_name[t], zio_taskq_types[q], i);
1105 		else
1106 			(void) snprintf(name, sizeof (name), "%s_%s",
1107 			    zio_type_name[t], zio_taskq_types[q]);
1108 
1109 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1110 			if (batch)
1111 				flags |= TASKQ_DC_BATCH;
1112 
1113 			(void) zio_taskq_basedc;
1114 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1115 			    spa->spa_proc, zio_taskq_basedc, flags);
1116 		} else {
1117 			pri_t pri = maxclsyspri;
1118 			/*
1119 			 * The write issue taskq can be extremely CPU
1120 			 * intensive.  Run it at slightly less important
1121 			 * priority than the other taskqs.
1122 			 *
1123 			 * Under Linux and FreeBSD this means incrementing
1124 			 * the priority value as opposed to platforms like
1125 			 * illumos where it should be decremented.
1126 			 *
1127 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1128 			 * are equal then a difference between them is
1129 			 * insignificant.
1130 			 */
1131 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1132 #if defined(__linux__)
1133 				pri++;
1134 #elif defined(__FreeBSD__)
1135 				pri += 4;
1136 #else
1137 #error "unknown OS"
1138 #endif
1139 			}
1140 			tq = taskq_create_proc(name, value, pri, 50,
1141 			    INT_MAX, spa->spa_proc, flags);
1142 		}
1143 
1144 		tqs->stqs_taskq[i] = tq;
1145 	}
1146 }
1147 
1148 static void
1149 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1150 {
1151 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1152 
1153 	if (tqs->stqs_taskq == NULL) {
1154 		ASSERT3U(tqs->stqs_count, ==, 0);
1155 		return;
1156 	}
1157 
1158 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1159 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1160 		taskq_destroy(tqs->stqs_taskq[i]);
1161 	}
1162 
1163 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1164 	tqs->stqs_taskq = NULL;
1165 }
1166 
1167 /*
1168  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1169  * Note that a type may have multiple discrete taskqs to avoid lock contention
1170  * on the taskq itself. In that case we choose which taskq at random by using
1171  * the low bits of gethrtime().
1172  */
1173 void
1174 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1175     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1176 {
1177 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1178 	taskq_t *tq;
1179 
1180 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1181 	ASSERT3U(tqs->stqs_count, !=, 0);
1182 
1183 	if (tqs->stqs_count == 1) {
1184 		tq = tqs->stqs_taskq[0];
1185 	} else {
1186 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1187 	}
1188 
1189 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1190 }
1191 
1192 /*
1193  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1194  */
1195 void
1196 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1197     task_func_t *func, void *arg, uint_t flags)
1198 {
1199 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1200 	taskq_t *tq;
1201 	taskqid_t id;
1202 
1203 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1204 	ASSERT3U(tqs->stqs_count, !=, 0);
1205 
1206 	if (tqs->stqs_count == 1) {
1207 		tq = tqs->stqs_taskq[0];
1208 	} else {
1209 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1210 	}
1211 
1212 	id = taskq_dispatch(tq, func, arg, flags);
1213 	if (id)
1214 		taskq_wait_id(tq, id);
1215 }
1216 
1217 static void
1218 spa_create_zio_taskqs(spa_t *spa)
1219 {
1220 	for (int t = 0; t < ZIO_TYPES; t++) {
1221 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1222 			spa_taskqs_init(spa, t, q);
1223 		}
1224 	}
1225 }
1226 
1227 /*
1228  * Disabled until spa_thread() can be adapted for Linux.
1229  */
1230 #undef HAVE_SPA_THREAD
1231 
1232 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1233 static void
1234 spa_thread(void *arg)
1235 {
1236 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1237 	callb_cpr_t cprinfo;
1238 
1239 	spa_t *spa = arg;
1240 	user_t *pu = PTOU(curproc);
1241 
1242 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1243 	    spa->spa_name);
1244 
1245 	ASSERT(curproc != &p0);
1246 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1247 	    "zpool-%s", spa->spa_name);
1248 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1249 
1250 	/* bind this thread to the requested psrset */
1251 	if (zio_taskq_psrset_bind != PS_NONE) {
1252 		pool_lock();
1253 		mutex_enter(&cpu_lock);
1254 		mutex_enter(&pidlock);
1255 		mutex_enter(&curproc->p_lock);
1256 
1257 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1258 		    0, NULL, NULL) == 0)  {
1259 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1260 		} else {
1261 			cmn_err(CE_WARN,
1262 			    "Couldn't bind process for zfs pool \"%s\" to "
1263 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1264 		}
1265 
1266 		mutex_exit(&curproc->p_lock);
1267 		mutex_exit(&pidlock);
1268 		mutex_exit(&cpu_lock);
1269 		pool_unlock();
1270 	}
1271 
1272 	if (zio_taskq_sysdc) {
1273 		sysdc_thread_enter(curthread, 100, 0);
1274 	}
1275 
1276 	spa->spa_proc = curproc;
1277 	spa->spa_did = curthread->t_did;
1278 
1279 	spa_create_zio_taskqs(spa);
1280 
1281 	mutex_enter(&spa->spa_proc_lock);
1282 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1283 
1284 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1285 	cv_broadcast(&spa->spa_proc_cv);
1286 
1287 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1288 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1289 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1290 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1291 
1292 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1293 	spa->spa_proc_state = SPA_PROC_GONE;
1294 	spa->spa_proc = &p0;
1295 	cv_broadcast(&spa->spa_proc_cv);
1296 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1297 
1298 	mutex_enter(&curproc->p_lock);
1299 	lwp_exit();
1300 }
1301 #endif
1302 
1303 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1304 
1305 /*
1306  * Activate an uninitialized pool.
1307  */
1308 static void
1309 spa_activate(spa_t *spa, spa_mode_t mode)
1310 {
1311 	metaslab_ops_t *msp = metaslab_allocator(spa);
1312 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1313 
1314 	spa->spa_state = POOL_STATE_ACTIVE;
1315 	spa->spa_mode = mode;
1316 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1317 
1318 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1319 	spa->spa_log_class = metaslab_class_create(spa, msp);
1320 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1321 	spa->spa_special_class = metaslab_class_create(spa, msp);
1322 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1323 
1324 	/* Try to create a covering process */
1325 	mutex_enter(&spa->spa_proc_lock);
1326 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1327 	ASSERT(spa->spa_proc == &p0);
1328 	spa->spa_did = 0;
1329 
1330 	(void) spa_create_process;
1331 #ifdef HAVE_SPA_THREAD
1332 	/* Only create a process if we're going to be around a while. */
1333 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1334 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1335 		    NULL, 0) == 0) {
1336 			spa->spa_proc_state = SPA_PROC_CREATED;
1337 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1338 				cv_wait(&spa->spa_proc_cv,
1339 				    &spa->spa_proc_lock);
1340 			}
1341 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1342 			ASSERT(spa->spa_proc != &p0);
1343 			ASSERT(spa->spa_did != 0);
1344 		} else {
1345 #ifdef _KERNEL
1346 			cmn_err(CE_WARN,
1347 			    "Couldn't create process for zfs pool \"%s\"\n",
1348 			    spa->spa_name);
1349 #endif
1350 		}
1351 	}
1352 #endif /* HAVE_SPA_THREAD */
1353 	mutex_exit(&spa->spa_proc_lock);
1354 
1355 	/* If we didn't create a process, we need to create our taskqs. */
1356 	if (spa->spa_proc == &p0) {
1357 		spa_create_zio_taskqs(spa);
1358 	}
1359 
1360 	for (size_t i = 0; i < TXG_SIZE; i++) {
1361 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1362 		    ZIO_FLAG_CANFAIL);
1363 	}
1364 
1365 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1366 	    offsetof(vdev_t, vdev_config_dirty_node));
1367 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1368 	    offsetof(objset_t, os_evicting_node));
1369 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1370 	    offsetof(vdev_t, vdev_state_dirty_node));
1371 
1372 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1373 	    offsetof(struct vdev, vdev_txg_node));
1374 
1375 	avl_create(&spa->spa_errlist_scrub,
1376 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1377 	    offsetof(spa_error_entry_t, se_avl));
1378 	avl_create(&spa->spa_errlist_last,
1379 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1380 	    offsetof(spa_error_entry_t, se_avl));
1381 	avl_create(&spa->spa_errlist_healed,
1382 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1383 	    offsetof(spa_error_entry_t, se_avl));
1384 
1385 	spa_activate_os(spa);
1386 
1387 	spa_keystore_init(&spa->spa_keystore);
1388 
1389 	/*
1390 	 * This taskq is used to perform zvol-minor-related tasks
1391 	 * asynchronously. This has several advantages, including easy
1392 	 * resolution of various deadlocks.
1393 	 *
1394 	 * The taskq must be single threaded to ensure tasks are always
1395 	 * processed in the order in which they were dispatched.
1396 	 *
1397 	 * A taskq per pool allows one to keep the pools independent.
1398 	 * This way if one pool is suspended, it will not impact another.
1399 	 *
1400 	 * The preferred location to dispatch a zvol minor task is a sync
1401 	 * task. In this context, there is easy access to the spa_t and minimal
1402 	 * error handling is required because the sync task must succeed.
1403 	 */
1404 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1405 	    1, INT_MAX, 0);
1406 
1407 	/*
1408 	 * The taskq to preload metaslabs.
1409 	 */
1410 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1411 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1412 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1413 
1414 	/*
1415 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1416 	 * pool traverse code from monopolizing the global (and limited)
1417 	 * system_taskq by inappropriately scheduling long running tasks on it.
1418 	 */
1419 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1420 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1421 
1422 	/*
1423 	 * The taskq to upgrade datasets in this pool. Currently used by
1424 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1425 	 */
1426 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1427 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1428 }
1429 
1430 /*
1431  * Opposite of spa_activate().
1432  */
1433 static void
1434 spa_deactivate(spa_t *spa)
1435 {
1436 	ASSERT(spa->spa_sync_on == B_FALSE);
1437 	ASSERT(spa->spa_dsl_pool == NULL);
1438 	ASSERT(spa->spa_root_vdev == NULL);
1439 	ASSERT(spa->spa_async_zio_root == NULL);
1440 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1441 
1442 	spa_evicting_os_wait(spa);
1443 
1444 	if (spa->spa_zvol_taskq) {
1445 		taskq_destroy(spa->spa_zvol_taskq);
1446 		spa->spa_zvol_taskq = NULL;
1447 	}
1448 
1449 	if (spa->spa_metaslab_taskq) {
1450 		taskq_destroy(spa->spa_metaslab_taskq);
1451 		spa->spa_metaslab_taskq = NULL;
1452 	}
1453 
1454 	if (spa->spa_prefetch_taskq) {
1455 		taskq_destroy(spa->spa_prefetch_taskq);
1456 		spa->spa_prefetch_taskq = NULL;
1457 	}
1458 
1459 	if (spa->spa_upgrade_taskq) {
1460 		taskq_destroy(spa->spa_upgrade_taskq);
1461 		spa->spa_upgrade_taskq = NULL;
1462 	}
1463 
1464 	txg_list_destroy(&spa->spa_vdev_txg_list);
1465 
1466 	list_destroy(&spa->spa_config_dirty_list);
1467 	list_destroy(&spa->spa_evicting_os_list);
1468 	list_destroy(&spa->spa_state_dirty_list);
1469 
1470 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1471 
1472 	for (int t = 0; t < ZIO_TYPES; t++) {
1473 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1474 			spa_taskqs_fini(spa, t, q);
1475 		}
1476 	}
1477 
1478 	for (size_t i = 0; i < TXG_SIZE; i++) {
1479 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1480 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1481 		spa->spa_txg_zio[i] = NULL;
1482 	}
1483 
1484 	metaslab_class_destroy(spa->spa_normal_class);
1485 	spa->spa_normal_class = NULL;
1486 
1487 	metaslab_class_destroy(spa->spa_log_class);
1488 	spa->spa_log_class = NULL;
1489 
1490 	metaslab_class_destroy(spa->spa_embedded_log_class);
1491 	spa->spa_embedded_log_class = NULL;
1492 
1493 	metaslab_class_destroy(spa->spa_special_class);
1494 	spa->spa_special_class = NULL;
1495 
1496 	metaslab_class_destroy(spa->spa_dedup_class);
1497 	spa->spa_dedup_class = NULL;
1498 
1499 	/*
1500 	 * If this was part of an import or the open otherwise failed, we may
1501 	 * still have errors left in the queues.  Empty them just in case.
1502 	 */
1503 	spa_errlog_drain(spa);
1504 	avl_destroy(&spa->spa_errlist_scrub);
1505 	avl_destroy(&spa->spa_errlist_last);
1506 	avl_destroy(&spa->spa_errlist_healed);
1507 
1508 	spa_keystore_fini(&spa->spa_keystore);
1509 
1510 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1511 
1512 	mutex_enter(&spa->spa_proc_lock);
1513 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1514 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1515 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1516 		cv_broadcast(&spa->spa_proc_cv);
1517 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1518 			ASSERT(spa->spa_proc != &p0);
1519 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1520 		}
1521 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1522 		spa->spa_proc_state = SPA_PROC_NONE;
1523 	}
1524 	ASSERT(spa->spa_proc == &p0);
1525 	mutex_exit(&spa->spa_proc_lock);
1526 
1527 	/*
1528 	 * We want to make sure spa_thread() has actually exited the ZFS
1529 	 * module, so that the module can't be unloaded out from underneath
1530 	 * it.
1531 	 */
1532 	if (spa->spa_did != 0) {
1533 		thread_join(spa->spa_did);
1534 		spa->spa_did = 0;
1535 	}
1536 
1537 	spa_deactivate_os(spa);
1538 
1539 }
1540 
1541 /*
1542  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1543  * will create all the necessary vdevs in the appropriate layout, with each vdev
1544  * in the CLOSED state.  This will prep the pool before open/creation/import.
1545  * All vdev validation is done by the vdev_alloc() routine.
1546  */
1547 int
1548 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1549     uint_t id, int atype)
1550 {
1551 	nvlist_t **child;
1552 	uint_t children;
1553 	int error;
1554 
1555 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1556 		return (error);
1557 
1558 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1559 		return (0);
1560 
1561 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1562 	    &child, &children);
1563 
1564 	if (error == ENOENT)
1565 		return (0);
1566 
1567 	if (error) {
1568 		vdev_free(*vdp);
1569 		*vdp = NULL;
1570 		return (SET_ERROR(EINVAL));
1571 	}
1572 
1573 	for (int c = 0; c < children; c++) {
1574 		vdev_t *vd;
1575 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1576 		    atype)) != 0) {
1577 			vdev_free(*vdp);
1578 			*vdp = NULL;
1579 			return (error);
1580 		}
1581 	}
1582 
1583 	ASSERT(*vdp != NULL);
1584 
1585 	return (0);
1586 }
1587 
1588 static boolean_t
1589 spa_should_flush_logs_on_unload(spa_t *spa)
1590 {
1591 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1592 		return (B_FALSE);
1593 
1594 	if (!spa_writeable(spa))
1595 		return (B_FALSE);
1596 
1597 	if (!spa->spa_sync_on)
1598 		return (B_FALSE);
1599 
1600 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1601 		return (B_FALSE);
1602 
1603 	if (zfs_keep_log_spacemaps_at_export)
1604 		return (B_FALSE);
1605 
1606 	return (B_TRUE);
1607 }
1608 
1609 /*
1610  * Opens a transaction that will set the flag that will instruct
1611  * spa_sync to attempt to flush all the metaslabs for that txg.
1612  */
1613 static void
1614 spa_unload_log_sm_flush_all(spa_t *spa)
1615 {
1616 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1617 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1618 
1619 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1620 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1621 
1622 	dmu_tx_commit(tx);
1623 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1624 }
1625 
1626 static void
1627 spa_unload_log_sm_metadata(spa_t *spa)
1628 {
1629 	void *cookie = NULL;
1630 	spa_log_sm_t *sls;
1631 	log_summary_entry_t *e;
1632 
1633 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1634 	    &cookie)) != NULL) {
1635 		VERIFY0(sls->sls_mscount);
1636 		kmem_free(sls, sizeof (spa_log_sm_t));
1637 	}
1638 
1639 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1640 		VERIFY0(e->lse_mscount);
1641 		kmem_free(e, sizeof (log_summary_entry_t));
1642 	}
1643 
1644 	spa->spa_unflushed_stats.sus_nblocks = 0;
1645 	spa->spa_unflushed_stats.sus_memused = 0;
1646 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1647 }
1648 
1649 static void
1650 spa_destroy_aux_threads(spa_t *spa)
1651 {
1652 	if (spa->spa_condense_zthr != NULL) {
1653 		zthr_destroy(spa->spa_condense_zthr);
1654 		spa->spa_condense_zthr = NULL;
1655 	}
1656 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1657 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1658 		spa->spa_checkpoint_discard_zthr = NULL;
1659 	}
1660 	if (spa->spa_livelist_delete_zthr != NULL) {
1661 		zthr_destroy(spa->spa_livelist_delete_zthr);
1662 		spa->spa_livelist_delete_zthr = NULL;
1663 	}
1664 	if (spa->spa_livelist_condense_zthr != NULL) {
1665 		zthr_destroy(spa->spa_livelist_condense_zthr);
1666 		spa->spa_livelist_condense_zthr = NULL;
1667 	}
1668 }
1669 
1670 /*
1671  * Opposite of spa_load().
1672  */
1673 static void
1674 spa_unload(spa_t *spa)
1675 {
1676 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1677 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1678 
1679 	spa_import_progress_remove(spa_guid(spa));
1680 	spa_load_note(spa, "UNLOADING");
1681 
1682 	spa_wake_waiters(spa);
1683 
1684 	/*
1685 	 * If we have set the spa_final_txg, we have already performed the
1686 	 * tasks below in spa_export_common(). We should not redo it here since
1687 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1688 	 */
1689 	if (spa->spa_final_txg == UINT64_MAX) {
1690 		/*
1691 		 * If the log space map feature is enabled and the pool is
1692 		 * getting exported (but not destroyed), we want to spend some
1693 		 * time flushing as many metaslabs as we can in an attempt to
1694 		 * destroy log space maps and save import time.
1695 		 */
1696 		if (spa_should_flush_logs_on_unload(spa))
1697 			spa_unload_log_sm_flush_all(spa);
1698 
1699 		/*
1700 		 * Stop async tasks.
1701 		 */
1702 		spa_async_suspend(spa);
1703 
1704 		if (spa->spa_root_vdev) {
1705 			vdev_t *root_vdev = spa->spa_root_vdev;
1706 			vdev_initialize_stop_all(root_vdev,
1707 			    VDEV_INITIALIZE_ACTIVE);
1708 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1709 			vdev_autotrim_stop_all(spa);
1710 			vdev_rebuild_stop_all(spa);
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * Stop syncing.
1716 	 */
1717 	if (spa->spa_sync_on) {
1718 		txg_sync_stop(spa->spa_dsl_pool);
1719 		spa->spa_sync_on = B_FALSE;
1720 	}
1721 
1722 	/*
1723 	 * This ensures that there is no async metaslab prefetching
1724 	 * while we attempt to unload the spa.
1725 	 */
1726 	taskq_wait(spa->spa_metaslab_taskq);
1727 
1728 	if (spa->spa_mmp.mmp_thread)
1729 		mmp_thread_stop(spa);
1730 
1731 	/*
1732 	 * Wait for any outstanding async I/O to complete.
1733 	 */
1734 	if (spa->spa_async_zio_root != NULL) {
1735 		for (int i = 0; i < max_ncpus; i++)
1736 			(void) zio_wait(spa->spa_async_zio_root[i]);
1737 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1738 		spa->spa_async_zio_root = NULL;
1739 	}
1740 
1741 	if (spa->spa_vdev_removal != NULL) {
1742 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1743 		spa->spa_vdev_removal = NULL;
1744 	}
1745 
1746 	spa_destroy_aux_threads(spa);
1747 
1748 	spa_condense_fini(spa);
1749 
1750 	bpobj_close(&spa->spa_deferred_bpobj);
1751 
1752 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1753 
1754 	/*
1755 	 * Close all vdevs.
1756 	 */
1757 	if (spa->spa_root_vdev)
1758 		vdev_free(spa->spa_root_vdev);
1759 	ASSERT(spa->spa_root_vdev == NULL);
1760 
1761 	/*
1762 	 * Close the dsl pool.
1763 	 */
1764 	if (spa->spa_dsl_pool) {
1765 		dsl_pool_close(spa->spa_dsl_pool);
1766 		spa->spa_dsl_pool = NULL;
1767 		spa->spa_meta_objset = NULL;
1768 	}
1769 
1770 	ddt_unload(spa);
1771 	brt_unload(spa);
1772 	spa_unload_log_sm_metadata(spa);
1773 
1774 	/*
1775 	 * Drop and purge level 2 cache
1776 	 */
1777 	spa_l2cache_drop(spa);
1778 
1779 	if (spa->spa_spares.sav_vdevs) {
1780 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
1781 			vdev_free(spa->spa_spares.sav_vdevs[i]);
1782 		kmem_free(spa->spa_spares.sav_vdevs,
1783 		    spa->spa_spares.sav_count * sizeof (void *));
1784 		spa->spa_spares.sav_vdevs = NULL;
1785 	}
1786 	if (spa->spa_spares.sav_config) {
1787 		nvlist_free(spa->spa_spares.sav_config);
1788 		spa->spa_spares.sav_config = NULL;
1789 	}
1790 	spa->spa_spares.sav_count = 0;
1791 
1792 	if (spa->spa_l2cache.sav_vdevs) {
1793 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1794 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1795 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1796 		}
1797 		kmem_free(spa->spa_l2cache.sav_vdevs,
1798 		    spa->spa_l2cache.sav_count * sizeof (void *));
1799 		spa->spa_l2cache.sav_vdevs = NULL;
1800 	}
1801 	if (spa->spa_l2cache.sav_config) {
1802 		nvlist_free(spa->spa_l2cache.sav_config);
1803 		spa->spa_l2cache.sav_config = NULL;
1804 	}
1805 	spa->spa_l2cache.sav_count = 0;
1806 
1807 	spa->spa_async_suspended = 0;
1808 
1809 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1810 
1811 	if (spa->spa_comment != NULL) {
1812 		spa_strfree(spa->spa_comment);
1813 		spa->spa_comment = NULL;
1814 	}
1815 	if (spa->spa_compatibility != NULL) {
1816 		spa_strfree(spa->spa_compatibility);
1817 		spa->spa_compatibility = NULL;
1818 	}
1819 
1820 	spa_config_exit(spa, SCL_ALL, spa);
1821 }
1822 
1823 /*
1824  * Load (or re-load) the current list of vdevs describing the active spares for
1825  * this pool.  When this is called, we have some form of basic information in
1826  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1827  * then re-generate a more complete list including status information.
1828  */
1829 void
1830 spa_load_spares(spa_t *spa)
1831 {
1832 	nvlist_t **spares;
1833 	uint_t nspares;
1834 	int i;
1835 	vdev_t *vd, *tvd;
1836 
1837 #ifndef _KERNEL
1838 	/*
1839 	 * zdb opens both the current state of the pool and the
1840 	 * checkpointed state (if present), with a different spa_t.
1841 	 *
1842 	 * As spare vdevs are shared among open pools, we skip loading
1843 	 * them when we load the checkpointed state of the pool.
1844 	 */
1845 	if (!spa_writeable(spa))
1846 		return;
1847 #endif
1848 
1849 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1850 
1851 	/*
1852 	 * First, close and free any existing spare vdevs.
1853 	 */
1854 	if (spa->spa_spares.sav_vdevs) {
1855 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
1856 			vd = spa->spa_spares.sav_vdevs[i];
1857 
1858 			/* Undo the call to spa_activate() below */
1859 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1860 			    B_FALSE)) != NULL && tvd->vdev_isspare)
1861 				spa_spare_remove(tvd);
1862 			vdev_close(vd);
1863 			vdev_free(vd);
1864 		}
1865 
1866 		kmem_free(spa->spa_spares.sav_vdevs,
1867 		    spa->spa_spares.sav_count * sizeof (void *));
1868 	}
1869 
1870 	if (spa->spa_spares.sav_config == NULL)
1871 		nspares = 0;
1872 	else
1873 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1874 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1875 
1876 	spa->spa_spares.sav_count = (int)nspares;
1877 	spa->spa_spares.sav_vdevs = NULL;
1878 
1879 	if (nspares == 0)
1880 		return;
1881 
1882 	/*
1883 	 * Construct the array of vdevs, opening them to get status in the
1884 	 * process.   For each spare, there is potentially two different vdev_t
1885 	 * structures associated with it: one in the list of spares (used only
1886 	 * for basic validation purposes) and one in the active vdev
1887 	 * configuration (if it's spared in).  During this phase we open and
1888 	 * validate each vdev on the spare list.  If the vdev also exists in the
1889 	 * active configuration, then we also mark this vdev as an active spare.
1890 	 */
1891 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1892 	    KM_SLEEP);
1893 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1894 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1895 		    VDEV_ALLOC_SPARE) == 0);
1896 		ASSERT(vd != NULL);
1897 
1898 		spa->spa_spares.sav_vdevs[i] = vd;
1899 
1900 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1901 		    B_FALSE)) != NULL) {
1902 			if (!tvd->vdev_isspare)
1903 				spa_spare_add(tvd);
1904 
1905 			/*
1906 			 * We only mark the spare active if we were successfully
1907 			 * able to load the vdev.  Otherwise, importing a pool
1908 			 * with a bad active spare would result in strange
1909 			 * behavior, because multiple pool would think the spare
1910 			 * is actively in use.
1911 			 *
1912 			 * There is a vulnerability here to an equally bizarre
1913 			 * circumstance, where a dead active spare is later
1914 			 * brought back to life (onlined or otherwise).  Given
1915 			 * the rarity of this scenario, and the extra complexity
1916 			 * it adds, we ignore the possibility.
1917 			 */
1918 			if (!vdev_is_dead(tvd))
1919 				spa_spare_activate(tvd);
1920 		}
1921 
1922 		vd->vdev_top = vd;
1923 		vd->vdev_aux = &spa->spa_spares;
1924 
1925 		if (vdev_open(vd) != 0)
1926 			continue;
1927 
1928 		if (vdev_validate_aux(vd) == 0)
1929 			spa_spare_add(vd);
1930 	}
1931 
1932 	/*
1933 	 * Recompute the stashed list of spares, with status information
1934 	 * this time.
1935 	 */
1936 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1937 
1938 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1939 	    KM_SLEEP);
1940 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1941 		spares[i] = vdev_config_generate(spa,
1942 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1943 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1944 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1945 	    spa->spa_spares.sav_count);
1946 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1947 		nvlist_free(spares[i]);
1948 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1949 }
1950 
1951 /*
1952  * Load (or re-load) the current list of vdevs describing the active l2cache for
1953  * this pool.  When this is called, we have some form of basic information in
1954  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1955  * then re-generate a more complete list including status information.
1956  * Devices which are already active have their details maintained, and are
1957  * not re-opened.
1958  */
1959 void
1960 spa_load_l2cache(spa_t *spa)
1961 {
1962 	nvlist_t **l2cache = NULL;
1963 	uint_t nl2cache;
1964 	int i, j, oldnvdevs;
1965 	uint64_t guid;
1966 	vdev_t *vd, **oldvdevs, **newvdevs;
1967 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1968 
1969 #ifndef _KERNEL
1970 	/*
1971 	 * zdb opens both the current state of the pool and the
1972 	 * checkpointed state (if present), with a different spa_t.
1973 	 *
1974 	 * As L2 caches are part of the ARC which is shared among open
1975 	 * pools, we skip loading them when we load the checkpointed
1976 	 * state of the pool.
1977 	 */
1978 	if (!spa_writeable(spa))
1979 		return;
1980 #endif
1981 
1982 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1983 
1984 	oldvdevs = sav->sav_vdevs;
1985 	oldnvdevs = sav->sav_count;
1986 	sav->sav_vdevs = NULL;
1987 	sav->sav_count = 0;
1988 
1989 	if (sav->sav_config == NULL) {
1990 		nl2cache = 0;
1991 		newvdevs = NULL;
1992 		goto out;
1993 	}
1994 
1995 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1996 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1997 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1998 
1999 	/*
2000 	 * Process new nvlist of vdevs.
2001 	 */
2002 	for (i = 0; i < nl2cache; i++) {
2003 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2004 
2005 		newvdevs[i] = NULL;
2006 		for (j = 0; j < oldnvdevs; j++) {
2007 			vd = oldvdevs[j];
2008 			if (vd != NULL && guid == vd->vdev_guid) {
2009 				/*
2010 				 * Retain previous vdev for add/remove ops.
2011 				 */
2012 				newvdevs[i] = vd;
2013 				oldvdevs[j] = NULL;
2014 				break;
2015 			}
2016 		}
2017 
2018 		if (newvdevs[i] == NULL) {
2019 			/*
2020 			 * Create new vdev
2021 			 */
2022 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2023 			    VDEV_ALLOC_L2CACHE) == 0);
2024 			ASSERT(vd != NULL);
2025 			newvdevs[i] = vd;
2026 
2027 			/*
2028 			 * Commit this vdev as an l2cache device,
2029 			 * even if it fails to open.
2030 			 */
2031 			spa_l2cache_add(vd);
2032 
2033 			vd->vdev_top = vd;
2034 			vd->vdev_aux = sav;
2035 
2036 			spa_l2cache_activate(vd);
2037 
2038 			if (vdev_open(vd) != 0)
2039 				continue;
2040 
2041 			(void) vdev_validate_aux(vd);
2042 
2043 			if (!vdev_is_dead(vd))
2044 				l2arc_add_vdev(spa, vd);
2045 
2046 			/*
2047 			 * Upon cache device addition to a pool or pool
2048 			 * creation with a cache device or if the header
2049 			 * of the device is invalid we issue an async
2050 			 * TRIM command for the whole device which will
2051 			 * execute if l2arc_trim_ahead > 0.
2052 			 */
2053 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2054 		}
2055 	}
2056 
2057 	sav->sav_vdevs = newvdevs;
2058 	sav->sav_count = (int)nl2cache;
2059 
2060 	/*
2061 	 * Recompute the stashed list of l2cache devices, with status
2062 	 * information this time.
2063 	 */
2064 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2065 
2066 	if (sav->sav_count > 0)
2067 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2068 		    KM_SLEEP);
2069 	for (i = 0; i < sav->sav_count; i++)
2070 		l2cache[i] = vdev_config_generate(spa,
2071 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2072 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2073 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2074 
2075 out:
2076 	/*
2077 	 * Purge vdevs that were dropped
2078 	 */
2079 	if (oldvdevs) {
2080 		for (i = 0; i < oldnvdevs; i++) {
2081 			uint64_t pool;
2082 
2083 			vd = oldvdevs[i];
2084 			if (vd != NULL) {
2085 				ASSERT(vd->vdev_isl2cache);
2086 
2087 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2088 				    pool != 0ULL && l2arc_vdev_present(vd))
2089 					l2arc_remove_vdev(vd);
2090 				vdev_clear_stats(vd);
2091 				vdev_free(vd);
2092 			}
2093 		}
2094 
2095 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2096 	}
2097 
2098 	for (i = 0; i < sav->sav_count; i++)
2099 		nvlist_free(l2cache[i]);
2100 	if (sav->sav_count)
2101 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2102 }
2103 
2104 static int
2105 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2106 {
2107 	dmu_buf_t *db;
2108 	char *packed = NULL;
2109 	size_t nvsize = 0;
2110 	int error;
2111 	*value = NULL;
2112 
2113 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2114 	if (error)
2115 		return (error);
2116 
2117 	nvsize = *(uint64_t *)db->db_data;
2118 	dmu_buf_rele(db, FTAG);
2119 
2120 	packed = vmem_alloc(nvsize, KM_SLEEP);
2121 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2122 	    DMU_READ_PREFETCH);
2123 	if (error == 0)
2124 		error = nvlist_unpack(packed, nvsize, value, 0);
2125 	vmem_free(packed, nvsize);
2126 
2127 	return (error);
2128 }
2129 
2130 /*
2131  * Concrete top-level vdevs that are not missing and are not logs. At every
2132  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2133  */
2134 static uint64_t
2135 spa_healthy_core_tvds(spa_t *spa)
2136 {
2137 	vdev_t *rvd = spa->spa_root_vdev;
2138 	uint64_t tvds = 0;
2139 
2140 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2141 		vdev_t *vd = rvd->vdev_child[i];
2142 		if (vd->vdev_islog)
2143 			continue;
2144 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2145 			tvds++;
2146 	}
2147 
2148 	return (tvds);
2149 }
2150 
2151 /*
2152  * Checks to see if the given vdev could not be opened, in which case we post a
2153  * sysevent to notify the autoreplace code that the device has been removed.
2154  */
2155 static void
2156 spa_check_removed(vdev_t *vd)
2157 {
2158 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2159 		spa_check_removed(vd->vdev_child[c]);
2160 
2161 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2162 	    vdev_is_concrete(vd)) {
2163 		zfs_post_autoreplace(vd->vdev_spa, vd);
2164 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2165 	}
2166 }
2167 
2168 static int
2169 spa_check_for_missing_logs(spa_t *spa)
2170 {
2171 	vdev_t *rvd = spa->spa_root_vdev;
2172 
2173 	/*
2174 	 * If we're doing a normal import, then build up any additional
2175 	 * diagnostic information about missing log devices.
2176 	 * We'll pass this up to the user for further processing.
2177 	 */
2178 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2179 		nvlist_t **child, *nv;
2180 		uint64_t idx = 0;
2181 
2182 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2183 		    KM_SLEEP);
2184 		nv = fnvlist_alloc();
2185 
2186 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2187 			vdev_t *tvd = rvd->vdev_child[c];
2188 
2189 			/*
2190 			 * We consider a device as missing only if it failed
2191 			 * to open (i.e. offline or faulted is not considered
2192 			 * as missing).
2193 			 */
2194 			if (tvd->vdev_islog &&
2195 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2196 				child[idx++] = vdev_config_generate(spa, tvd,
2197 				    B_FALSE, VDEV_CONFIG_MISSING);
2198 			}
2199 		}
2200 
2201 		if (idx > 0) {
2202 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2203 			    (const nvlist_t * const *)child, idx);
2204 			fnvlist_add_nvlist(spa->spa_load_info,
2205 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2206 
2207 			for (uint64_t i = 0; i < idx; i++)
2208 				nvlist_free(child[i]);
2209 		}
2210 		nvlist_free(nv);
2211 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2212 
2213 		if (idx > 0) {
2214 			spa_load_failed(spa, "some log devices are missing");
2215 			vdev_dbgmsg_print_tree(rvd, 2);
2216 			return (SET_ERROR(ENXIO));
2217 		}
2218 	} else {
2219 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2220 			vdev_t *tvd = rvd->vdev_child[c];
2221 
2222 			if (tvd->vdev_islog &&
2223 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2224 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2225 				spa_load_note(spa, "some log devices are "
2226 				    "missing, ZIL is dropped.");
2227 				vdev_dbgmsg_print_tree(rvd, 2);
2228 				break;
2229 			}
2230 		}
2231 	}
2232 
2233 	return (0);
2234 }
2235 
2236 /*
2237  * Check for missing log devices
2238  */
2239 static boolean_t
2240 spa_check_logs(spa_t *spa)
2241 {
2242 	boolean_t rv = B_FALSE;
2243 	dsl_pool_t *dp = spa_get_dsl(spa);
2244 
2245 	switch (spa->spa_log_state) {
2246 	default:
2247 		break;
2248 	case SPA_LOG_MISSING:
2249 		/* need to recheck in case slog has been restored */
2250 	case SPA_LOG_UNKNOWN:
2251 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2252 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2253 		if (rv)
2254 			spa_set_log_state(spa, SPA_LOG_MISSING);
2255 		break;
2256 	}
2257 	return (rv);
2258 }
2259 
2260 /*
2261  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2262  */
2263 static boolean_t
2264 spa_passivate_log(spa_t *spa)
2265 {
2266 	vdev_t *rvd = spa->spa_root_vdev;
2267 	boolean_t slog_found = B_FALSE;
2268 
2269 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2270 
2271 	for (int c = 0; c < rvd->vdev_children; c++) {
2272 		vdev_t *tvd = rvd->vdev_child[c];
2273 
2274 		if (tvd->vdev_islog) {
2275 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2276 			metaslab_group_passivate(tvd->vdev_mg);
2277 			slog_found = B_TRUE;
2278 		}
2279 	}
2280 
2281 	return (slog_found);
2282 }
2283 
2284 /*
2285  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2286  */
2287 static void
2288 spa_activate_log(spa_t *spa)
2289 {
2290 	vdev_t *rvd = spa->spa_root_vdev;
2291 
2292 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2293 
2294 	for (int c = 0; c < rvd->vdev_children; c++) {
2295 		vdev_t *tvd = rvd->vdev_child[c];
2296 
2297 		if (tvd->vdev_islog) {
2298 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2299 			metaslab_group_activate(tvd->vdev_mg);
2300 		}
2301 	}
2302 }
2303 
2304 int
2305 spa_reset_logs(spa_t *spa)
2306 {
2307 	int error;
2308 
2309 	error = dmu_objset_find(spa_name(spa), zil_reset,
2310 	    NULL, DS_FIND_CHILDREN);
2311 	if (error == 0) {
2312 		/*
2313 		 * We successfully offlined the log device, sync out the
2314 		 * current txg so that the "stubby" block can be removed
2315 		 * by zil_sync().
2316 		 */
2317 		txg_wait_synced(spa->spa_dsl_pool, 0);
2318 	}
2319 	return (error);
2320 }
2321 
2322 static void
2323 spa_aux_check_removed(spa_aux_vdev_t *sav)
2324 {
2325 	for (int i = 0; i < sav->sav_count; i++)
2326 		spa_check_removed(sav->sav_vdevs[i]);
2327 }
2328 
2329 void
2330 spa_claim_notify(zio_t *zio)
2331 {
2332 	spa_t *spa = zio->io_spa;
2333 
2334 	if (zio->io_error)
2335 		return;
2336 
2337 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2338 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2339 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2340 	mutex_exit(&spa->spa_props_lock);
2341 }
2342 
2343 typedef struct spa_load_error {
2344 	boolean_t	sle_verify_data;
2345 	uint64_t	sle_meta_count;
2346 	uint64_t	sle_data_count;
2347 } spa_load_error_t;
2348 
2349 static void
2350 spa_load_verify_done(zio_t *zio)
2351 {
2352 	blkptr_t *bp = zio->io_bp;
2353 	spa_load_error_t *sle = zio->io_private;
2354 	dmu_object_type_t type = BP_GET_TYPE(bp);
2355 	int error = zio->io_error;
2356 	spa_t *spa = zio->io_spa;
2357 
2358 	abd_free(zio->io_abd);
2359 	if (error) {
2360 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2361 		    type != DMU_OT_INTENT_LOG)
2362 			atomic_inc_64(&sle->sle_meta_count);
2363 		else
2364 			atomic_inc_64(&sle->sle_data_count);
2365 	}
2366 
2367 	mutex_enter(&spa->spa_scrub_lock);
2368 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2369 	cv_broadcast(&spa->spa_scrub_io_cv);
2370 	mutex_exit(&spa->spa_scrub_lock);
2371 }
2372 
2373 /*
2374  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2375  * By default, we set it to 1/16th of the arc.
2376  */
2377 static uint_t spa_load_verify_shift = 4;
2378 static int spa_load_verify_metadata = B_TRUE;
2379 static int spa_load_verify_data = B_TRUE;
2380 
2381 static int
2382 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2383     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2384 {
2385 	zio_t *rio = arg;
2386 	spa_load_error_t *sle = rio->io_private;
2387 
2388 	(void) zilog, (void) dnp;
2389 
2390 	/*
2391 	 * Note: normally this routine will not be called if
2392 	 * spa_load_verify_metadata is not set.  However, it may be useful
2393 	 * to manually set the flag after the traversal has begun.
2394 	 */
2395 	if (!spa_load_verify_metadata)
2396 		return (0);
2397 
2398 	/*
2399 	 * Sanity check the block pointer in order to detect obvious damage
2400 	 * before using the contents in subsequent checks or in zio_read().
2401 	 * When damaged consider it to be a metadata error since we cannot
2402 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2403 	 */
2404 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2405 		atomic_inc_64(&sle->sle_meta_count);
2406 		return (0);
2407 	}
2408 
2409 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2410 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2411 		return (0);
2412 
2413 	if (!BP_IS_METADATA(bp) &&
2414 	    (!spa_load_verify_data || !sle->sle_verify_data))
2415 		return (0);
2416 
2417 	uint64_t maxinflight_bytes =
2418 	    arc_target_bytes() >> spa_load_verify_shift;
2419 	size_t size = BP_GET_PSIZE(bp);
2420 
2421 	mutex_enter(&spa->spa_scrub_lock);
2422 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2423 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2424 	spa->spa_load_verify_bytes += size;
2425 	mutex_exit(&spa->spa_scrub_lock);
2426 
2427 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2428 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2429 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2430 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2431 	return (0);
2432 }
2433 
2434 static int
2435 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2436 {
2437 	(void) dp, (void) arg;
2438 
2439 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2440 		return (SET_ERROR(ENAMETOOLONG));
2441 
2442 	return (0);
2443 }
2444 
2445 static int
2446 spa_load_verify(spa_t *spa)
2447 {
2448 	zio_t *rio;
2449 	spa_load_error_t sle = { 0 };
2450 	zpool_load_policy_t policy;
2451 	boolean_t verify_ok = B_FALSE;
2452 	int error = 0;
2453 
2454 	zpool_get_load_policy(spa->spa_config, &policy);
2455 
2456 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2457 	    policy.zlp_maxmeta == UINT64_MAX)
2458 		return (0);
2459 
2460 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2461 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2462 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2463 	    DS_FIND_CHILDREN);
2464 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2465 	if (error != 0)
2466 		return (error);
2467 
2468 	/*
2469 	 * Verify data only if we are rewinding or error limit was set.
2470 	 * Otherwise nothing except dbgmsg care about it to waste time.
2471 	 */
2472 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2473 	    (policy.zlp_maxdata < UINT64_MAX);
2474 
2475 	rio = zio_root(spa, NULL, &sle,
2476 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2477 
2478 	if (spa_load_verify_metadata) {
2479 		if (spa->spa_extreme_rewind) {
2480 			spa_load_note(spa, "performing a complete scan of the "
2481 			    "pool since extreme rewind is on. This may take "
2482 			    "a very long time.\n  (spa_load_verify_data=%u, "
2483 			    "spa_load_verify_metadata=%u)",
2484 			    spa_load_verify_data, spa_load_verify_metadata);
2485 		}
2486 
2487 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2488 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2489 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2490 	}
2491 
2492 	(void) zio_wait(rio);
2493 	ASSERT0(spa->spa_load_verify_bytes);
2494 
2495 	spa->spa_load_meta_errors = sle.sle_meta_count;
2496 	spa->spa_load_data_errors = sle.sle_data_count;
2497 
2498 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2499 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2500 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2501 		    (u_longlong_t)sle.sle_data_count);
2502 	}
2503 
2504 	if (spa_load_verify_dryrun ||
2505 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2506 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2507 		int64_t loss = 0;
2508 
2509 		verify_ok = B_TRUE;
2510 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2511 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2512 
2513 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2514 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2515 		    spa->spa_load_txg_ts);
2516 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2517 		    loss);
2518 		fnvlist_add_uint64(spa->spa_load_info,
2519 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2520 		fnvlist_add_uint64(spa->spa_load_info,
2521 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2522 	} else {
2523 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2524 	}
2525 
2526 	if (spa_load_verify_dryrun)
2527 		return (0);
2528 
2529 	if (error) {
2530 		if (error != ENXIO && error != EIO)
2531 			error = SET_ERROR(EIO);
2532 		return (error);
2533 	}
2534 
2535 	return (verify_ok ? 0 : EIO);
2536 }
2537 
2538 /*
2539  * Find a value in the pool props object.
2540  */
2541 static void
2542 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2543 {
2544 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2545 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2546 }
2547 
2548 /*
2549  * Find a value in the pool directory object.
2550  */
2551 static int
2552 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2553 {
2554 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2555 	    name, sizeof (uint64_t), 1, val);
2556 
2557 	if (error != 0 && (error != ENOENT || log_enoent)) {
2558 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2559 		    "[error=%d]", name, error);
2560 	}
2561 
2562 	return (error);
2563 }
2564 
2565 static int
2566 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2567 {
2568 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2569 	return (SET_ERROR(err));
2570 }
2571 
2572 boolean_t
2573 spa_livelist_delete_check(spa_t *spa)
2574 {
2575 	return (spa->spa_livelists_to_delete != 0);
2576 }
2577 
2578 static boolean_t
2579 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2580 {
2581 	(void) z;
2582 	spa_t *spa = arg;
2583 	return (spa_livelist_delete_check(spa));
2584 }
2585 
2586 static int
2587 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2588 {
2589 	spa_t *spa = arg;
2590 	zio_free(spa, tx->tx_txg, bp);
2591 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2592 	    -bp_get_dsize_sync(spa, bp),
2593 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2594 	return (0);
2595 }
2596 
2597 static int
2598 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2599 {
2600 	int err;
2601 	zap_cursor_t zc;
2602 	zap_attribute_t za;
2603 	zap_cursor_init(&zc, os, zap_obj);
2604 	err = zap_cursor_retrieve(&zc, &za);
2605 	zap_cursor_fini(&zc);
2606 	if (err == 0)
2607 		*llp = za.za_first_integer;
2608 	return (err);
2609 }
2610 
2611 /*
2612  * Components of livelist deletion that must be performed in syncing
2613  * context: freeing block pointers and updating the pool-wide data
2614  * structures to indicate how much work is left to do
2615  */
2616 typedef struct sublist_delete_arg {
2617 	spa_t *spa;
2618 	dsl_deadlist_t *ll;
2619 	uint64_t key;
2620 	bplist_t *to_free;
2621 } sublist_delete_arg_t;
2622 
2623 static void
2624 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2625 {
2626 	sublist_delete_arg_t *sda = arg;
2627 	spa_t *spa = sda->spa;
2628 	dsl_deadlist_t *ll = sda->ll;
2629 	uint64_t key = sda->key;
2630 	bplist_t *to_free = sda->to_free;
2631 
2632 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2633 	dsl_deadlist_remove_entry(ll, key, tx);
2634 }
2635 
2636 typedef struct livelist_delete_arg {
2637 	spa_t *spa;
2638 	uint64_t ll_obj;
2639 	uint64_t zap_obj;
2640 } livelist_delete_arg_t;
2641 
2642 static void
2643 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2644 {
2645 	livelist_delete_arg_t *lda = arg;
2646 	spa_t *spa = lda->spa;
2647 	uint64_t ll_obj = lda->ll_obj;
2648 	uint64_t zap_obj = lda->zap_obj;
2649 	objset_t *mos = spa->spa_meta_objset;
2650 	uint64_t count;
2651 
2652 	/* free the livelist and decrement the feature count */
2653 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2654 	dsl_deadlist_free(mos, ll_obj, tx);
2655 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2656 	VERIFY0(zap_count(mos, zap_obj, &count));
2657 	if (count == 0) {
2658 		/* no more livelists to delete */
2659 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2660 		    DMU_POOL_DELETED_CLONES, tx));
2661 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2662 		spa->spa_livelists_to_delete = 0;
2663 		spa_notify_waiters(spa);
2664 	}
2665 }
2666 
2667 /*
2668  * Load in the value for the livelist to be removed and open it. Then,
2669  * load its first sublist and determine which block pointers should actually
2670  * be freed. Then, call a synctask which performs the actual frees and updates
2671  * the pool-wide livelist data.
2672  */
2673 static void
2674 spa_livelist_delete_cb(void *arg, zthr_t *z)
2675 {
2676 	spa_t *spa = arg;
2677 	uint64_t ll_obj = 0, count;
2678 	objset_t *mos = spa->spa_meta_objset;
2679 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2680 	/*
2681 	 * Determine the next livelist to delete. This function should only
2682 	 * be called if there is at least one deleted clone.
2683 	 */
2684 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2685 	VERIFY0(zap_count(mos, ll_obj, &count));
2686 	if (count > 0) {
2687 		dsl_deadlist_t *ll;
2688 		dsl_deadlist_entry_t *dle;
2689 		bplist_t to_free;
2690 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2691 		dsl_deadlist_open(ll, mos, ll_obj);
2692 		dle = dsl_deadlist_first(ll);
2693 		ASSERT3P(dle, !=, NULL);
2694 		bplist_create(&to_free);
2695 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2696 		    z, NULL);
2697 		if (err == 0) {
2698 			sublist_delete_arg_t sync_arg = {
2699 			    .spa = spa,
2700 			    .ll = ll,
2701 			    .key = dle->dle_mintxg,
2702 			    .to_free = &to_free
2703 			};
2704 			zfs_dbgmsg("deleting sublist (id %llu) from"
2705 			    " livelist %llu, %lld remaining",
2706 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2707 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2708 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2709 			    sublist_delete_sync, &sync_arg, 0,
2710 			    ZFS_SPACE_CHECK_DESTROY));
2711 		} else {
2712 			VERIFY3U(err, ==, EINTR);
2713 		}
2714 		bplist_clear(&to_free);
2715 		bplist_destroy(&to_free);
2716 		dsl_deadlist_close(ll);
2717 		kmem_free(ll, sizeof (dsl_deadlist_t));
2718 	} else {
2719 		livelist_delete_arg_t sync_arg = {
2720 		    .spa = spa,
2721 		    .ll_obj = ll_obj,
2722 		    .zap_obj = zap_obj
2723 		};
2724 		zfs_dbgmsg("deletion of livelist %llu completed",
2725 		    (u_longlong_t)ll_obj);
2726 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2727 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2728 	}
2729 }
2730 
2731 static void
2732 spa_start_livelist_destroy_thread(spa_t *spa)
2733 {
2734 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2735 	spa->spa_livelist_delete_zthr =
2736 	    zthr_create("z_livelist_destroy",
2737 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2738 	    minclsyspri);
2739 }
2740 
2741 typedef struct livelist_new_arg {
2742 	bplist_t *allocs;
2743 	bplist_t *frees;
2744 } livelist_new_arg_t;
2745 
2746 static int
2747 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2748     dmu_tx_t *tx)
2749 {
2750 	ASSERT(tx == NULL);
2751 	livelist_new_arg_t *lna = arg;
2752 	if (bp_freed) {
2753 		bplist_append(lna->frees, bp);
2754 	} else {
2755 		bplist_append(lna->allocs, bp);
2756 		zfs_livelist_condense_new_alloc++;
2757 	}
2758 	return (0);
2759 }
2760 
2761 typedef struct livelist_condense_arg {
2762 	spa_t *spa;
2763 	bplist_t to_keep;
2764 	uint64_t first_size;
2765 	uint64_t next_size;
2766 } livelist_condense_arg_t;
2767 
2768 static void
2769 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2770 {
2771 	livelist_condense_arg_t *lca = arg;
2772 	spa_t *spa = lca->spa;
2773 	bplist_t new_frees;
2774 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2775 
2776 	/* Have we been cancelled? */
2777 	if (spa->spa_to_condense.cancelled) {
2778 		zfs_livelist_condense_sync_cancel++;
2779 		goto out;
2780 	}
2781 
2782 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2783 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2784 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2785 
2786 	/*
2787 	 * It's possible that the livelist was changed while the zthr was
2788 	 * running. Therefore, we need to check for new blkptrs in the two
2789 	 * entries being condensed and continue to track them in the livelist.
2790 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2791 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2792 	 * we need to sort them into two different bplists.
2793 	 */
2794 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2795 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2796 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2797 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2798 
2799 	bplist_create(&new_frees);
2800 	livelist_new_arg_t new_bps = {
2801 	    .allocs = &lca->to_keep,
2802 	    .frees = &new_frees,
2803 	};
2804 
2805 	if (cur_first_size > lca->first_size) {
2806 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2807 		    livelist_track_new_cb, &new_bps, lca->first_size));
2808 	}
2809 	if (cur_next_size > lca->next_size) {
2810 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2811 		    livelist_track_new_cb, &new_bps, lca->next_size));
2812 	}
2813 
2814 	dsl_deadlist_clear_entry(first, ll, tx);
2815 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2816 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2817 
2818 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2819 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2820 	bplist_destroy(&new_frees);
2821 
2822 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2823 	dsl_dataset_name(ds, dsname);
2824 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2825 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2826 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2827 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2828 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2829 	    (u_longlong_t)cur_next_size,
2830 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2831 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2832 out:
2833 	dmu_buf_rele(ds->ds_dbuf, spa);
2834 	spa->spa_to_condense.ds = NULL;
2835 	bplist_clear(&lca->to_keep);
2836 	bplist_destroy(&lca->to_keep);
2837 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2838 	spa->spa_to_condense.syncing = B_FALSE;
2839 }
2840 
2841 static void
2842 spa_livelist_condense_cb(void *arg, zthr_t *t)
2843 {
2844 	while (zfs_livelist_condense_zthr_pause &&
2845 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2846 		delay(1);
2847 
2848 	spa_t *spa = arg;
2849 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2850 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2851 	uint64_t first_size, next_size;
2852 
2853 	livelist_condense_arg_t *lca =
2854 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2855 	bplist_create(&lca->to_keep);
2856 
2857 	/*
2858 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2859 	 * so we have minimal work in syncing context to condense.
2860 	 *
2861 	 * We save bpobj sizes (first_size and next_size) to use later in
2862 	 * syncing context to determine if entries were added to these sublists
2863 	 * while in open context. This is possible because the clone is still
2864 	 * active and open for normal writes and we want to make sure the new,
2865 	 * unprocessed blockpointers are inserted into the livelist normally.
2866 	 *
2867 	 * Note that dsl_process_sub_livelist() both stores the size number of
2868 	 * blockpointers and iterates over them while the bpobj's lock held, so
2869 	 * the sizes returned to us are consistent which what was actually
2870 	 * processed.
2871 	 */
2872 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2873 	    &first_size);
2874 	if (err == 0)
2875 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2876 		    t, &next_size);
2877 
2878 	if (err == 0) {
2879 		while (zfs_livelist_condense_sync_pause &&
2880 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2881 			delay(1);
2882 
2883 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2884 		dmu_tx_mark_netfree(tx);
2885 		dmu_tx_hold_space(tx, 1);
2886 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2887 		if (err == 0) {
2888 			/*
2889 			 * Prevent the condense zthr restarting before
2890 			 * the synctask completes.
2891 			 */
2892 			spa->spa_to_condense.syncing = B_TRUE;
2893 			lca->spa = spa;
2894 			lca->first_size = first_size;
2895 			lca->next_size = next_size;
2896 			dsl_sync_task_nowait(spa_get_dsl(spa),
2897 			    spa_livelist_condense_sync, lca, tx);
2898 			dmu_tx_commit(tx);
2899 			return;
2900 		}
2901 	}
2902 	/*
2903 	 * Condensing can not continue: either it was externally stopped or
2904 	 * we were unable to assign to a tx because the pool has run out of
2905 	 * space. In the second case, we'll just end up trying to condense
2906 	 * again in a later txg.
2907 	 */
2908 	ASSERT(err != 0);
2909 	bplist_clear(&lca->to_keep);
2910 	bplist_destroy(&lca->to_keep);
2911 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2912 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2913 	spa->spa_to_condense.ds = NULL;
2914 	if (err == EINTR)
2915 		zfs_livelist_condense_zthr_cancel++;
2916 }
2917 
2918 /*
2919  * Check that there is something to condense but that a condense is not
2920  * already in progress and that condensing has not been cancelled.
2921  */
2922 static boolean_t
2923 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2924 {
2925 	(void) z;
2926 	spa_t *spa = arg;
2927 	if ((spa->spa_to_condense.ds != NULL) &&
2928 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2929 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2930 		return (B_TRUE);
2931 	}
2932 	return (B_FALSE);
2933 }
2934 
2935 static void
2936 spa_start_livelist_condensing_thread(spa_t *spa)
2937 {
2938 	spa->spa_to_condense.ds = NULL;
2939 	spa->spa_to_condense.first = NULL;
2940 	spa->spa_to_condense.next = NULL;
2941 	spa->spa_to_condense.syncing = B_FALSE;
2942 	spa->spa_to_condense.cancelled = B_FALSE;
2943 
2944 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2945 	spa->spa_livelist_condense_zthr =
2946 	    zthr_create("z_livelist_condense",
2947 	    spa_livelist_condense_cb_check,
2948 	    spa_livelist_condense_cb, spa, minclsyspri);
2949 }
2950 
2951 static void
2952 spa_spawn_aux_threads(spa_t *spa)
2953 {
2954 	ASSERT(spa_writeable(spa));
2955 
2956 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2957 
2958 	spa_start_indirect_condensing_thread(spa);
2959 	spa_start_livelist_destroy_thread(spa);
2960 	spa_start_livelist_condensing_thread(spa);
2961 
2962 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2963 	spa->spa_checkpoint_discard_zthr =
2964 	    zthr_create("z_checkpoint_discard",
2965 	    spa_checkpoint_discard_thread_check,
2966 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2967 }
2968 
2969 /*
2970  * Fix up config after a partly-completed split.  This is done with the
2971  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2972  * pool have that entry in their config, but only the splitting one contains
2973  * a list of all the guids of the vdevs that are being split off.
2974  *
2975  * This function determines what to do with that list: either rejoin
2976  * all the disks to the pool, or complete the splitting process.  To attempt
2977  * the rejoin, each disk that is offlined is marked online again, and
2978  * we do a reopen() call.  If the vdev label for every disk that was
2979  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2980  * then we call vdev_split() on each disk, and complete the split.
2981  *
2982  * Otherwise we leave the config alone, with all the vdevs in place in
2983  * the original pool.
2984  */
2985 static void
2986 spa_try_repair(spa_t *spa, nvlist_t *config)
2987 {
2988 	uint_t extracted;
2989 	uint64_t *glist;
2990 	uint_t i, gcount;
2991 	nvlist_t *nvl;
2992 	vdev_t **vd;
2993 	boolean_t attempt_reopen;
2994 
2995 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2996 		return;
2997 
2998 	/* check that the config is complete */
2999 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3000 	    &glist, &gcount) != 0)
3001 		return;
3002 
3003 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3004 
3005 	/* attempt to online all the vdevs & validate */
3006 	attempt_reopen = B_TRUE;
3007 	for (i = 0; i < gcount; i++) {
3008 		if (glist[i] == 0)	/* vdev is hole */
3009 			continue;
3010 
3011 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3012 		if (vd[i] == NULL) {
3013 			/*
3014 			 * Don't bother attempting to reopen the disks;
3015 			 * just do the split.
3016 			 */
3017 			attempt_reopen = B_FALSE;
3018 		} else {
3019 			/* attempt to re-online it */
3020 			vd[i]->vdev_offline = B_FALSE;
3021 		}
3022 	}
3023 
3024 	if (attempt_reopen) {
3025 		vdev_reopen(spa->spa_root_vdev);
3026 
3027 		/* check each device to see what state it's in */
3028 		for (extracted = 0, i = 0; i < gcount; i++) {
3029 			if (vd[i] != NULL &&
3030 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3031 				break;
3032 			++extracted;
3033 		}
3034 	}
3035 
3036 	/*
3037 	 * If every disk has been moved to the new pool, or if we never
3038 	 * even attempted to look at them, then we split them off for
3039 	 * good.
3040 	 */
3041 	if (!attempt_reopen || gcount == extracted) {
3042 		for (i = 0; i < gcount; i++)
3043 			if (vd[i] != NULL)
3044 				vdev_split(vd[i]);
3045 		vdev_reopen(spa->spa_root_vdev);
3046 	}
3047 
3048 	kmem_free(vd, gcount * sizeof (vdev_t *));
3049 }
3050 
3051 static int
3052 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3053 {
3054 	const char *ereport = FM_EREPORT_ZFS_POOL;
3055 	int error;
3056 
3057 	spa->spa_load_state = state;
3058 	(void) spa_import_progress_set_state(spa_guid(spa),
3059 	    spa_load_state(spa));
3060 
3061 	gethrestime(&spa->spa_loaded_ts);
3062 	error = spa_load_impl(spa, type, &ereport);
3063 
3064 	/*
3065 	 * Don't count references from objsets that are already closed
3066 	 * and are making their way through the eviction process.
3067 	 */
3068 	spa_evicting_os_wait(spa);
3069 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3070 	if (error) {
3071 		if (error != EEXIST) {
3072 			spa->spa_loaded_ts.tv_sec = 0;
3073 			spa->spa_loaded_ts.tv_nsec = 0;
3074 		}
3075 		if (error != EBADF) {
3076 			(void) zfs_ereport_post(ereport, spa,
3077 			    NULL, NULL, NULL, 0);
3078 		}
3079 	}
3080 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3081 	spa->spa_ena = 0;
3082 
3083 	(void) spa_import_progress_set_state(spa_guid(spa),
3084 	    spa_load_state(spa));
3085 
3086 	return (error);
3087 }
3088 
3089 #ifdef ZFS_DEBUG
3090 /*
3091  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3092  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3093  * spa's per-vdev ZAP list.
3094  */
3095 static uint64_t
3096 vdev_count_verify_zaps(vdev_t *vd)
3097 {
3098 	spa_t *spa = vd->vdev_spa;
3099 	uint64_t total = 0;
3100 
3101 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3102 	    vd->vdev_root_zap != 0) {
3103 		total++;
3104 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3105 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3106 	}
3107 	if (vd->vdev_top_zap != 0) {
3108 		total++;
3109 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3110 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3111 	}
3112 	if (vd->vdev_leaf_zap != 0) {
3113 		total++;
3114 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3115 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3116 	}
3117 
3118 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3119 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3120 	}
3121 
3122 	return (total);
3123 }
3124 #else
3125 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3126 #endif
3127 
3128 /*
3129  * Determine whether the activity check is required.
3130  */
3131 static boolean_t
3132 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3133     nvlist_t *config)
3134 {
3135 	uint64_t state = 0;
3136 	uint64_t hostid = 0;
3137 	uint64_t tryconfig_txg = 0;
3138 	uint64_t tryconfig_timestamp = 0;
3139 	uint16_t tryconfig_mmp_seq = 0;
3140 	nvlist_t *nvinfo;
3141 
3142 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3143 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3144 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3145 		    &tryconfig_txg);
3146 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3147 		    &tryconfig_timestamp);
3148 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3149 		    &tryconfig_mmp_seq);
3150 	}
3151 
3152 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3153 
3154 	/*
3155 	 * Disable the MMP activity check - This is used by zdb which
3156 	 * is intended to be used on potentially active pools.
3157 	 */
3158 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3159 		return (B_FALSE);
3160 
3161 	/*
3162 	 * Skip the activity check when the MMP feature is disabled.
3163 	 */
3164 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3165 		return (B_FALSE);
3166 
3167 	/*
3168 	 * If the tryconfig_ values are nonzero, they are the results of an
3169 	 * earlier tryimport.  If they all match the uberblock we just found,
3170 	 * then the pool has not changed and we return false so we do not test
3171 	 * a second time.
3172 	 */
3173 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3174 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3175 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3176 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3177 		return (B_FALSE);
3178 
3179 	/*
3180 	 * Allow the activity check to be skipped when importing the pool
3181 	 * on the same host which last imported it.  Since the hostid from
3182 	 * configuration may be stale use the one read from the label.
3183 	 */
3184 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3185 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3186 
3187 	if (hostid == spa_get_hostid(spa))
3188 		return (B_FALSE);
3189 
3190 	/*
3191 	 * Skip the activity test when the pool was cleanly exported.
3192 	 */
3193 	if (state != POOL_STATE_ACTIVE)
3194 		return (B_FALSE);
3195 
3196 	return (B_TRUE);
3197 }
3198 
3199 /*
3200  * Nanoseconds the activity check must watch for changes on-disk.
3201  */
3202 static uint64_t
3203 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3204 {
3205 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3206 	uint64_t multihost_interval = MSEC2NSEC(
3207 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3208 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3209 	    multihost_interval);
3210 
3211 	/*
3212 	 * Local tunables determine a minimum duration except for the case
3213 	 * where we know when the remote host will suspend the pool if MMP
3214 	 * writes do not land.
3215 	 *
3216 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3217 	 * these cases and times.
3218 	 */
3219 
3220 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3221 
3222 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3223 	    MMP_FAIL_INT(ub) > 0) {
3224 
3225 		/* MMP on remote host will suspend pool after failed writes */
3226 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3227 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3228 
3229 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3230 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3231 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3232 		    (u_longlong_t)MMP_FAIL_INT(ub),
3233 		    (u_longlong_t)MMP_INTERVAL(ub),
3234 		    (u_longlong_t)import_intervals);
3235 
3236 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3237 	    MMP_FAIL_INT(ub) == 0) {
3238 
3239 		/* MMP on remote host will never suspend pool */
3240 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3241 		    ub->ub_mmp_delay) * import_intervals);
3242 
3243 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3244 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3245 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3246 		    (u_longlong_t)MMP_INTERVAL(ub),
3247 		    (u_longlong_t)ub->ub_mmp_delay,
3248 		    (u_longlong_t)import_intervals);
3249 
3250 	} else if (MMP_VALID(ub)) {
3251 		/*
3252 		 * zfs-0.7 compatibility case
3253 		 */
3254 
3255 		import_delay = MAX(import_delay, (multihost_interval +
3256 		    ub->ub_mmp_delay) * import_intervals);
3257 
3258 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3259 		    "import_intervals=%llu leaves=%u",
3260 		    (u_longlong_t)import_delay,
3261 		    (u_longlong_t)ub->ub_mmp_delay,
3262 		    (u_longlong_t)import_intervals,
3263 		    vdev_count_leaves(spa));
3264 	} else {
3265 		/* Using local tunings is the only reasonable option */
3266 		zfs_dbgmsg("pool last imported on non-MMP aware "
3267 		    "host using import_delay=%llu multihost_interval=%llu "
3268 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3269 		    (u_longlong_t)multihost_interval,
3270 		    (u_longlong_t)import_intervals);
3271 	}
3272 
3273 	return (import_delay);
3274 }
3275 
3276 /*
3277  * Perform the import activity check.  If the user canceled the import or
3278  * we detected activity then fail.
3279  */
3280 static int
3281 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3282 {
3283 	uint64_t txg = ub->ub_txg;
3284 	uint64_t timestamp = ub->ub_timestamp;
3285 	uint64_t mmp_config = ub->ub_mmp_config;
3286 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3287 	uint64_t import_delay;
3288 	hrtime_t import_expire;
3289 	nvlist_t *mmp_label = NULL;
3290 	vdev_t *rvd = spa->spa_root_vdev;
3291 	kcondvar_t cv;
3292 	kmutex_t mtx;
3293 	int error = 0;
3294 
3295 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3296 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3297 	mutex_enter(&mtx);
3298 
3299 	/*
3300 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3301 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3302 	 * the pool is known to be active on another host.
3303 	 *
3304 	 * Otherwise, the pool might be in use on another host.  Check for
3305 	 * changes in the uberblocks on disk if necessary.
3306 	 */
3307 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3308 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3309 		    ZPOOL_CONFIG_LOAD_INFO);
3310 
3311 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3312 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3313 			vdev_uberblock_load(rvd, ub, &mmp_label);
3314 			error = SET_ERROR(EREMOTEIO);
3315 			goto out;
3316 		}
3317 	}
3318 
3319 	import_delay = spa_activity_check_duration(spa, ub);
3320 
3321 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3322 	import_delay += import_delay * random_in_range(250) / 1000;
3323 
3324 	import_expire = gethrtime() + import_delay;
3325 
3326 	while (gethrtime() < import_expire) {
3327 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3328 		    NSEC2SEC(import_expire - gethrtime()));
3329 
3330 		vdev_uberblock_load(rvd, ub, &mmp_label);
3331 
3332 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3333 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3334 			zfs_dbgmsg("multihost activity detected "
3335 			    "txg %llu ub_txg  %llu "
3336 			    "timestamp %llu ub_timestamp  %llu "
3337 			    "mmp_config %#llx ub_mmp_config %#llx",
3338 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3339 			    (u_longlong_t)timestamp,
3340 			    (u_longlong_t)ub->ub_timestamp,
3341 			    (u_longlong_t)mmp_config,
3342 			    (u_longlong_t)ub->ub_mmp_config);
3343 
3344 			error = SET_ERROR(EREMOTEIO);
3345 			break;
3346 		}
3347 
3348 		if (mmp_label) {
3349 			nvlist_free(mmp_label);
3350 			mmp_label = NULL;
3351 		}
3352 
3353 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3354 		if (error != -1) {
3355 			error = SET_ERROR(EINTR);
3356 			break;
3357 		}
3358 		error = 0;
3359 	}
3360 
3361 out:
3362 	mutex_exit(&mtx);
3363 	mutex_destroy(&mtx);
3364 	cv_destroy(&cv);
3365 
3366 	/*
3367 	 * If the pool is determined to be active store the status in the
3368 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3369 	 * available from configuration read from disk store them as well.
3370 	 * This allows 'zpool import' to generate a more useful message.
3371 	 *
3372 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3373 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3374 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3375 	 */
3376 	if (error == EREMOTEIO) {
3377 		const char *hostname = "<unknown>";
3378 		uint64_t hostid = 0;
3379 
3380 		if (mmp_label) {
3381 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3382 				hostname = fnvlist_lookup_string(mmp_label,
3383 				    ZPOOL_CONFIG_HOSTNAME);
3384 				fnvlist_add_string(spa->spa_load_info,
3385 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3386 			}
3387 
3388 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3389 				hostid = fnvlist_lookup_uint64(mmp_label,
3390 				    ZPOOL_CONFIG_HOSTID);
3391 				fnvlist_add_uint64(spa->spa_load_info,
3392 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3393 			}
3394 		}
3395 
3396 		fnvlist_add_uint64(spa->spa_load_info,
3397 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3398 		fnvlist_add_uint64(spa->spa_load_info,
3399 		    ZPOOL_CONFIG_MMP_TXG, 0);
3400 
3401 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3402 	}
3403 
3404 	if (mmp_label)
3405 		nvlist_free(mmp_label);
3406 
3407 	return (error);
3408 }
3409 
3410 static int
3411 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3412 {
3413 	uint64_t hostid;
3414 	const char *hostname;
3415 	uint64_t myhostid = 0;
3416 
3417 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3418 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3419 		hostname = fnvlist_lookup_string(mos_config,
3420 		    ZPOOL_CONFIG_HOSTNAME);
3421 
3422 		myhostid = zone_get_hostid(NULL);
3423 
3424 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3425 			cmn_err(CE_WARN, "pool '%s' could not be "
3426 			    "loaded as it was last accessed by "
3427 			    "another system (host: %s hostid: 0x%llx). "
3428 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3429 			    "ZFS-8000-EY",
3430 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3431 			spa_load_failed(spa, "hostid verification failed: pool "
3432 			    "last accessed by host: %s (hostid: 0x%llx)",
3433 			    hostname, (u_longlong_t)hostid);
3434 			return (SET_ERROR(EBADF));
3435 		}
3436 	}
3437 
3438 	return (0);
3439 }
3440 
3441 static int
3442 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3443 {
3444 	int error = 0;
3445 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3446 	int parse;
3447 	vdev_t *rvd;
3448 	uint64_t pool_guid;
3449 	const char *comment;
3450 	const char *compatibility;
3451 
3452 	/*
3453 	 * Versioning wasn't explicitly added to the label until later, so if
3454 	 * it's not present treat it as the initial version.
3455 	 */
3456 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3457 	    &spa->spa_ubsync.ub_version) != 0)
3458 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3459 
3460 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3461 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3462 		    ZPOOL_CONFIG_POOL_GUID);
3463 		return (SET_ERROR(EINVAL));
3464 	}
3465 
3466 	/*
3467 	 * If we are doing an import, ensure that the pool is not already
3468 	 * imported by checking if its pool guid already exists in the
3469 	 * spa namespace.
3470 	 *
3471 	 * The only case that we allow an already imported pool to be
3472 	 * imported again, is when the pool is checkpointed and we want to
3473 	 * look at its checkpointed state from userland tools like zdb.
3474 	 */
3475 #ifdef _KERNEL
3476 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3477 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3478 	    spa_guid_exists(pool_guid, 0)) {
3479 #else
3480 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3481 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3482 	    spa_guid_exists(pool_guid, 0) &&
3483 	    !spa_importing_readonly_checkpoint(spa)) {
3484 #endif
3485 		spa_load_failed(spa, "a pool with guid %llu is already open",
3486 		    (u_longlong_t)pool_guid);
3487 		return (SET_ERROR(EEXIST));
3488 	}
3489 
3490 	spa->spa_config_guid = pool_guid;
3491 
3492 	nvlist_free(spa->spa_load_info);
3493 	spa->spa_load_info = fnvlist_alloc();
3494 
3495 	ASSERT(spa->spa_comment == NULL);
3496 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3497 		spa->spa_comment = spa_strdup(comment);
3498 
3499 	ASSERT(spa->spa_compatibility == NULL);
3500 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3501 	    &compatibility) == 0)
3502 		spa->spa_compatibility = spa_strdup(compatibility);
3503 
3504 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3505 	    &spa->spa_config_txg);
3506 
3507 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3508 		spa->spa_config_splitting = fnvlist_dup(nvl);
3509 
3510 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3511 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3512 		    ZPOOL_CONFIG_VDEV_TREE);
3513 		return (SET_ERROR(EINVAL));
3514 	}
3515 
3516 	/*
3517 	 * Create "The Godfather" zio to hold all async IOs
3518 	 */
3519 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3520 	    KM_SLEEP);
3521 	for (int i = 0; i < max_ncpus; i++) {
3522 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3523 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3524 		    ZIO_FLAG_GODFATHER);
3525 	}
3526 
3527 	/*
3528 	 * Parse the configuration into a vdev tree.  We explicitly set the
3529 	 * value that will be returned by spa_version() since parsing the
3530 	 * configuration requires knowing the version number.
3531 	 */
3532 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3533 	parse = (type == SPA_IMPORT_EXISTING ?
3534 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3535 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3536 	spa_config_exit(spa, SCL_ALL, FTAG);
3537 
3538 	if (error != 0) {
3539 		spa_load_failed(spa, "unable to parse config [error=%d]",
3540 		    error);
3541 		return (error);
3542 	}
3543 
3544 	ASSERT(spa->spa_root_vdev == rvd);
3545 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3546 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3547 
3548 	if (type != SPA_IMPORT_ASSEMBLE) {
3549 		ASSERT(spa_guid(spa) == pool_guid);
3550 	}
3551 
3552 	return (0);
3553 }
3554 
3555 /*
3556  * Recursively open all vdevs in the vdev tree. This function is called twice:
3557  * first with the untrusted config, then with the trusted config.
3558  */
3559 static int
3560 spa_ld_open_vdevs(spa_t *spa)
3561 {
3562 	int error = 0;
3563 
3564 	/*
3565 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3566 	 * missing/unopenable for the root vdev to be still considered openable.
3567 	 */
3568 	if (spa->spa_trust_config) {
3569 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3570 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3571 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3572 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3573 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3574 	} else {
3575 		spa->spa_missing_tvds_allowed = 0;
3576 	}
3577 
3578 	spa->spa_missing_tvds_allowed =
3579 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3580 
3581 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3582 	error = vdev_open(spa->spa_root_vdev);
3583 	spa_config_exit(spa, SCL_ALL, FTAG);
3584 
3585 	if (spa->spa_missing_tvds != 0) {
3586 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3587 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3588 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3589 			/*
3590 			 * Although theoretically we could allow users to open
3591 			 * incomplete pools in RW mode, we'd need to add a lot
3592 			 * of extra logic (e.g. adjust pool space to account
3593 			 * for missing vdevs).
3594 			 * This limitation also prevents users from accidentally
3595 			 * opening the pool in RW mode during data recovery and
3596 			 * damaging it further.
3597 			 */
3598 			spa_load_note(spa, "pools with missing top-level "
3599 			    "vdevs can only be opened in read-only mode.");
3600 			error = SET_ERROR(ENXIO);
3601 		} else {
3602 			spa_load_note(spa, "current settings allow for maximum "
3603 			    "%lld missing top-level vdevs at this stage.",
3604 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3605 		}
3606 	}
3607 	if (error != 0) {
3608 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3609 		    error);
3610 	}
3611 	if (spa->spa_missing_tvds != 0 || error != 0)
3612 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3613 
3614 	return (error);
3615 }
3616 
3617 /*
3618  * We need to validate the vdev labels against the configuration that
3619  * we have in hand. This function is called twice: first with an untrusted
3620  * config, then with a trusted config. The validation is more strict when the
3621  * config is trusted.
3622  */
3623 static int
3624 spa_ld_validate_vdevs(spa_t *spa)
3625 {
3626 	int error = 0;
3627 	vdev_t *rvd = spa->spa_root_vdev;
3628 
3629 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3630 	error = vdev_validate(rvd);
3631 	spa_config_exit(spa, SCL_ALL, FTAG);
3632 
3633 	if (error != 0) {
3634 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3635 		return (error);
3636 	}
3637 
3638 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3639 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3640 		    "some vdevs");
3641 		vdev_dbgmsg_print_tree(rvd, 2);
3642 		return (SET_ERROR(ENXIO));
3643 	}
3644 
3645 	return (0);
3646 }
3647 
3648 static void
3649 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3650 {
3651 	spa->spa_state = POOL_STATE_ACTIVE;
3652 	spa->spa_ubsync = spa->spa_uberblock;
3653 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3654 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3655 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3656 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3657 	spa->spa_claim_max_txg = spa->spa_first_txg;
3658 	spa->spa_prev_software_version = ub->ub_software_version;
3659 }
3660 
3661 static int
3662 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3663 {
3664 	vdev_t *rvd = spa->spa_root_vdev;
3665 	nvlist_t *label;
3666 	uberblock_t *ub = &spa->spa_uberblock;
3667 	boolean_t activity_check = B_FALSE;
3668 
3669 	/*
3670 	 * If we are opening the checkpointed state of the pool by
3671 	 * rewinding to it, at this point we will have written the
3672 	 * checkpointed uberblock to the vdev labels, so searching
3673 	 * the labels will find the right uberblock.  However, if
3674 	 * we are opening the checkpointed state read-only, we have
3675 	 * not modified the labels. Therefore, we must ignore the
3676 	 * labels and continue using the spa_uberblock that was set
3677 	 * by spa_ld_checkpoint_rewind.
3678 	 *
3679 	 * Note that it would be fine to ignore the labels when
3680 	 * rewinding (opening writeable) as well. However, if we
3681 	 * crash just after writing the labels, we will end up
3682 	 * searching the labels. Doing so in the common case means
3683 	 * that this code path gets exercised normally, rather than
3684 	 * just in the edge case.
3685 	 */
3686 	if (ub->ub_checkpoint_txg != 0 &&
3687 	    spa_importing_readonly_checkpoint(spa)) {
3688 		spa_ld_select_uberblock_done(spa, ub);
3689 		return (0);
3690 	}
3691 
3692 	/*
3693 	 * Find the best uberblock.
3694 	 */
3695 	vdev_uberblock_load(rvd, ub, &label);
3696 
3697 	/*
3698 	 * If we weren't able to find a single valid uberblock, return failure.
3699 	 */
3700 	if (ub->ub_txg == 0) {
3701 		nvlist_free(label);
3702 		spa_load_failed(spa, "no valid uberblock found");
3703 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3704 	}
3705 
3706 	if (spa->spa_load_max_txg != UINT64_MAX) {
3707 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3708 		    (u_longlong_t)spa->spa_load_max_txg);
3709 	}
3710 	spa_load_note(spa, "using uberblock with txg=%llu",
3711 	    (u_longlong_t)ub->ub_txg);
3712 
3713 
3714 	/*
3715 	 * For pools which have the multihost property on determine if the
3716 	 * pool is truly inactive and can be safely imported.  Prevent
3717 	 * hosts which don't have a hostid set from importing the pool.
3718 	 */
3719 	activity_check = spa_activity_check_required(spa, ub, label,
3720 	    spa->spa_config);
3721 	if (activity_check) {
3722 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3723 		    spa_get_hostid(spa) == 0) {
3724 			nvlist_free(label);
3725 			fnvlist_add_uint64(spa->spa_load_info,
3726 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3727 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3728 		}
3729 
3730 		int error = spa_activity_check(spa, ub, spa->spa_config);
3731 		if (error) {
3732 			nvlist_free(label);
3733 			return (error);
3734 		}
3735 
3736 		fnvlist_add_uint64(spa->spa_load_info,
3737 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3738 		fnvlist_add_uint64(spa->spa_load_info,
3739 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3740 		fnvlist_add_uint16(spa->spa_load_info,
3741 		    ZPOOL_CONFIG_MMP_SEQ,
3742 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3743 	}
3744 
3745 	/*
3746 	 * If the pool has an unsupported version we can't open it.
3747 	 */
3748 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3749 		nvlist_free(label);
3750 		spa_load_failed(spa, "version %llu is not supported",
3751 		    (u_longlong_t)ub->ub_version);
3752 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3753 	}
3754 
3755 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3756 		nvlist_t *features;
3757 
3758 		/*
3759 		 * If we weren't able to find what's necessary for reading the
3760 		 * MOS in the label, return failure.
3761 		 */
3762 		if (label == NULL) {
3763 			spa_load_failed(spa, "label config unavailable");
3764 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3765 			    ENXIO));
3766 		}
3767 
3768 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3769 		    &features) != 0) {
3770 			nvlist_free(label);
3771 			spa_load_failed(spa, "invalid label: '%s' missing",
3772 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3773 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3774 			    ENXIO));
3775 		}
3776 
3777 		/*
3778 		 * Update our in-core representation with the definitive values
3779 		 * from the label.
3780 		 */
3781 		nvlist_free(spa->spa_label_features);
3782 		spa->spa_label_features = fnvlist_dup(features);
3783 	}
3784 
3785 	nvlist_free(label);
3786 
3787 	/*
3788 	 * Look through entries in the label nvlist's features_for_read. If
3789 	 * there is a feature listed there which we don't understand then we
3790 	 * cannot open a pool.
3791 	 */
3792 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3793 		nvlist_t *unsup_feat;
3794 
3795 		unsup_feat = fnvlist_alloc();
3796 
3797 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3798 		    NULL); nvp != NULL;
3799 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3800 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3801 				fnvlist_add_string(unsup_feat,
3802 				    nvpair_name(nvp), "");
3803 			}
3804 		}
3805 
3806 		if (!nvlist_empty(unsup_feat)) {
3807 			fnvlist_add_nvlist(spa->spa_load_info,
3808 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3809 			nvlist_free(unsup_feat);
3810 			spa_load_failed(spa, "some features are unsupported");
3811 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3812 			    ENOTSUP));
3813 		}
3814 
3815 		nvlist_free(unsup_feat);
3816 	}
3817 
3818 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3819 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3820 		spa_try_repair(spa, spa->spa_config);
3821 		spa_config_exit(spa, SCL_ALL, FTAG);
3822 		nvlist_free(spa->spa_config_splitting);
3823 		spa->spa_config_splitting = NULL;
3824 	}
3825 
3826 	/*
3827 	 * Initialize internal SPA structures.
3828 	 */
3829 	spa_ld_select_uberblock_done(spa, ub);
3830 
3831 	return (0);
3832 }
3833 
3834 static int
3835 spa_ld_open_rootbp(spa_t *spa)
3836 {
3837 	int error = 0;
3838 	vdev_t *rvd = spa->spa_root_vdev;
3839 
3840 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3841 	if (error != 0) {
3842 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3843 		    "[error=%d]", error);
3844 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3845 	}
3846 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3847 
3848 	return (0);
3849 }
3850 
3851 static int
3852 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3853     boolean_t reloading)
3854 {
3855 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3856 	nvlist_t *nv, *mos_config, *policy;
3857 	int error = 0, copy_error;
3858 	uint64_t healthy_tvds, healthy_tvds_mos;
3859 	uint64_t mos_config_txg;
3860 
3861 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3862 	    != 0)
3863 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3864 
3865 	/*
3866 	 * If we're assembling a pool from a split, the config provided is
3867 	 * already trusted so there is nothing to do.
3868 	 */
3869 	if (type == SPA_IMPORT_ASSEMBLE)
3870 		return (0);
3871 
3872 	healthy_tvds = spa_healthy_core_tvds(spa);
3873 
3874 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3875 	    != 0) {
3876 		spa_load_failed(spa, "unable to retrieve MOS config");
3877 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3878 	}
3879 
3880 	/*
3881 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3882 	 * the verification here.
3883 	 */
3884 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3885 		error = spa_verify_host(spa, mos_config);
3886 		if (error != 0) {
3887 			nvlist_free(mos_config);
3888 			return (error);
3889 		}
3890 	}
3891 
3892 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3893 
3894 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3895 
3896 	/*
3897 	 * Build a new vdev tree from the trusted config
3898 	 */
3899 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3900 	if (error != 0) {
3901 		nvlist_free(mos_config);
3902 		spa_config_exit(spa, SCL_ALL, FTAG);
3903 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3904 		    error);
3905 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3906 	}
3907 
3908 	/*
3909 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3910 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3911 	 * paths. We update the trusted MOS config with this information.
3912 	 * We first try to copy the paths with vdev_copy_path_strict, which
3913 	 * succeeds only when both configs have exactly the same vdev tree.
3914 	 * If that fails, we fall back to a more flexible method that has a
3915 	 * best effort policy.
3916 	 */
3917 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3918 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3919 		spa_load_note(spa, "provided vdev tree:");
3920 		vdev_dbgmsg_print_tree(rvd, 2);
3921 		spa_load_note(spa, "MOS vdev tree:");
3922 		vdev_dbgmsg_print_tree(mrvd, 2);
3923 	}
3924 	if (copy_error != 0) {
3925 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3926 		    "back to vdev_copy_path_relaxed");
3927 		vdev_copy_path_relaxed(rvd, mrvd);
3928 	}
3929 
3930 	vdev_close(rvd);
3931 	vdev_free(rvd);
3932 	spa->spa_root_vdev = mrvd;
3933 	rvd = mrvd;
3934 	spa_config_exit(spa, SCL_ALL, FTAG);
3935 
3936 	/*
3937 	 * If 'zpool import' used a cached config, then the on-disk hostid and
3938 	 * hostname may be different to the cached config in ways that should
3939 	 * prevent import.  Userspace can't discover this without a scan, but
3940 	 * we know, so we add these values to LOAD_INFO so the caller can know
3941 	 * the difference.
3942 	 *
3943 	 * Note that we have to do this before the config is regenerated,
3944 	 * because the new config will have the hostid and hostname for this
3945 	 * host, in readiness for import.
3946 	 */
3947 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
3948 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
3949 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
3950 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
3951 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
3952 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
3953 
3954 	/*
3955 	 * We will use spa_config if we decide to reload the spa or if spa_load
3956 	 * fails and we rewind. We must thus regenerate the config using the
3957 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3958 	 * pass settings on how to load the pool and is not stored in the MOS.
3959 	 * We copy it over to our new, trusted config.
3960 	 */
3961 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3962 	    ZPOOL_CONFIG_POOL_TXG);
3963 	nvlist_free(mos_config);
3964 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3965 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3966 	    &policy) == 0)
3967 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3968 	spa_config_set(spa, mos_config);
3969 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3970 
3971 	/*
3972 	 * Now that we got the config from the MOS, we should be more strict
3973 	 * in checking blkptrs and can make assumptions about the consistency
3974 	 * of the vdev tree. spa_trust_config must be set to true before opening
3975 	 * vdevs in order for them to be writeable.
3976 	 */
3977 	spa->spa_trust_config = B_TRUE;
3978 
3979 	/*
3980 	 * Open and validate the new vdev tree
3981 	 */
3982 	error = spa_ld_open_vdevs(spa);
3983 	if (error != 0)
3984 		return (error);
3985 
3986 	error = spa_ld_validate_vdevs(spa);
3987 	if (error != 0)
3988 		return (error);
3989 
3990 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3991 		spa_load_note(spa, "final vdev tree:");
3992 		vdev_dbgmsg_print_tree(rvd, 2);
3993 	}
3994 
3995 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3996 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3997 		/*
3998 		 * Sanity check to make sure that we are indeed loading the
3999 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4000 		 * in the config provided and they happened to be the only ones
4001 		 * to have the latest uberblock, we could involuntarily perform
4002 		 * an extreme rewind.
4003 		 */
4004 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4005 		if (healthy_tvds_mos - healthy_tvds >=
4006 		    SPA_SYNC_MIN_VDEVS) {
4007 			spa_load_note(spa, "config provided misses too many "
4008 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4009 			    (u_longlong_t)healthy_tvds,
4010 			    (u_longlong_t)healthy_tvds_mos);
4011 			spa_load_note(spa, "vdev tree:");
4012 			vdev_dbgmsg_print_tree(rvd, 2);
4013 			if (reloading) {
4014 				spa_load_failed(spa, "config was already "
4015 				    "provided from MOS. Aborting.");
4016 				return (spa_vdev_err(rvd,
4017 				    VDEV_AUX_CORRUPT_DATA, EIO));
4018 			}
4019 			spa_load_note(spa, "spa must be reloaded using MOS "
4020 			    "config");
4021 			return (SET_ERROR(EAGAIN));
4022 		}
4023 	}
4024 
4025 	error = spa_check_for_missing_logs(spa);
4026 	if (error != 0)
4027 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4028 
4029 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4030 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4031 		    "guid sum (%llu != %llu)",
4032 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4033 		    (u_longlong_t)rvd->vdev_guid_sum);
4034 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4035 		    ENXIO));
4036 	}
4037 
4038 	return (0);
4039 }
4040 
4041 static int
4042 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4043 {
4044 	int error = 0;
4045 	vdev_t *rvd = spa->spa_root_vdev;
4046 
4047 	/*
4048 	 * Everything that we read before spa_remove_init() must be stored
4049 	 * on concreted vdevs.  Therefore we do this as early as possible.
4050 	 */
4051 	error = spa_remove_init(spa);
4052 	if (error != 0) {
4053 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4054 		    error);
4055 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4056 	}
4057 
4058 	/*
4059 	 * Retrieve information needed to condense indirect vdev mappings.
4060 	 */
4061 	error = spa_condense_init(spa);
4062 	if (error != 0) {
4063 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4064 		    error);
4065 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4066 	}
4067 
4068 	return (0);
4069 }
4070 
4071 static int
4072 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4073 {
4074 	int error = 0;
4075 	vdev_t *rvd = spa->spa_root_vdev;
4076 
4077 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4078 		boolean_t missing_feat_read = B_FALSE;
4079 		nvlist_t *unsup_feat, *enabled_feat;
4080 
4081 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4082 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4083 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4084 		}
4085 
4086 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4087 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4088 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4089 		}
4090 
4091 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4092 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4093 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4094 		}
4095 
4096 		enabled_feat = fnvlist_alloc();
4097 		unsup_feat = fnvlist_alloc();
4098 
4099 		if (!spa_features_check(spa, B_FALSE,
4100 		    unsup_feat, enabled_feat))
4101 			missing_feat_read = B_TRUE;
4102 
4103 		if (spa_writeable(spa) ||
4104 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4105 			if (!spa_features_check(spa, B_TRUE,
4106 			    unsup_feat, enabled_feat)) {
4107 				*missing_feat_writep = B_TRUE;
4108 			}
4109 		}
4110 
4111 		fnvlist_add_nvlist(spa->spa_load_info,
4112 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4113 
4114 		if (!nvlist_empty(unsup_feat)) {
4115 			fnvlist_add_nvlist(spa->spa_load_info,
4116 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4117 		}
4118 
4119 		fnvlist_free(enabled_feat);
4120 		fnvlist_free(unsup_feat);
4121 
4122 		if (!missing_feat_read) {
4123 			fnvlist_add_boolean(spa->spa_load_info,
4124 			    ZPOOL_CONFIG_CAN_RDONLY);
4125 		}
4126 
4127 		/*
4128 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4129 		 * twofold: to determine whether the pool is available for
4130 		 * import in read-write mode and (if it is not) whether the
4131 		 * pool is available for import in read-only mode. If the pool
4132 		 * is available for import in read-write mode, it is displayed
4133 		 * as available in userland; if it is not available for import
4134 		 * in read-only mode, it is displayed as unavailable in
4135 		 * userland. If the pool is available for import in read-only
4136 		 * mode but not read-write mode, it is displayed as unavailable
4137 		 * in userland with a special note that the pool is actually
4138 		 * available for open in read-only mode.
4139 		 *
4140 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4141 		 * missing a feature for write, we must first determine whether
4142 		 * the pool can be opened read-only before returning to
4143 		 * userland in order to know whether to display the
4144 		 * abovementioned note.
4145 		 */
4146 		if (missing_feat_read || (*missing_feat_writep &&
4147 		    spa_writeable(spa))) {
4148 			spa_load_failed(spa, "pool uses unsupported features");
4149 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4150 			    ENOTSUP));
4151 		}
4152 
4153 		/*
4154 		 * Load refcounts for ZFS features from disk into an in-memory
4155 		 * cache during SPA initialization.
4156 		 */
4157 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4158 			uint64_t refcount;
4159 
4160 			error = feature_get_refcount_from_disk(spa,
4161 			    &spa_feature_table[i], &refcount);
4162 			if (error == 0) {
4163 				spa->spa_feat_refcount_cache[i] = refcount;
4164 			} else if (error == ENOTSUP) {
4165 				spa->spa_feat_refcount_cache[i] =
4166 				    SPA_FEATURE_DISABLED;
4167 			} else {
4168 				spa_load_failed(spa, "error getting refcount "
4169 				    "for feature %s [error=%d]",
4170 				    spa_feature_table[i].fi_guid, error);
4171 				return (spa_vdev_err(rvd,
4172 				    VDEV_AUX_CORRUPT_DATA, EIO));
4173 			}
4174 		}
4175 	}
4176 
4177 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4178 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4179 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4180 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4181 	}
4182 
4183 	/*
4184 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4185 	 * is now a dependency. If this pool has encryption enabled without
4186 	 * bookmark_v2, trigger an errata message.
4187 	 */
4188 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4189 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4190 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4191 	}
4192 
4193 	return (0);
4194 }
4195 
4196 static int
4197 spa_ld_load_special_directories(spa_t *spa)
4198 {
4199 	int error = 0;
4200 	vdev_t *rvd = spa->spa_root_vdev;
4201 
4202 	spa->spa_is_initializing = B_TRUE;
4203 	error = dsl_pool_open(spa->spa_dsl_pool);
4204 	spa->spa_is_initializing = B_FALSE;
4205 	if (error != 0) {
4206 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4207 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4208 	}
4209 
4210 	return (0);
4211 }
4212 
4213 static int
4214 spa_ld_get_props(spa_t *spa)
4215 {
4216 	int error = 0;
4217 	uint64_t obj;
4218 	vdev_t *rvd = spa->spa_root_vdev;
4219 
4220 	/* Grab the checksum salt from the MOS. */
4221 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4222 	    DMU_POOL_CHECKSUM_SALT, 1,
4223 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4224 	    spa->spa_cksum_salt.zcs_bytes);
4225 	if (error == ENOENT) {
4226 		/* Generate a new salt for subsequent use */
4227 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4228 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4229 	} else if (error != 0) {
4230 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4231 		    "MOS [error=%d]", error);
4232 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4233 	}
4234 
4235 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4236 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4237 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4238 	if (error != 0) {
4239 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4240 		    "[error=%d]", error);
4241 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4242 	}
4243 
4244 	/*
4245 	 * Load the bit that tells us to use the new accounting function
4246 	 * (raid-z deflation).  If we have an older pool, this will not
4247 	 * be present.
4248 	 */
4249 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4250 	if (error != 0 && error != ENOENT)
4251 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4252 
4253 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4254 	    &spa->spa_creation_version, B_FALSE);
4255 	if (error != 0 && error != ENOENT)
4256 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4257 
4258 	/*
4259 	 * Load the persistent error log.  If we have an older pool, this will
4260 	 * not be present.
4261 	 */
4262 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4263 	    B_FALSE);
4264 	if (error != 0 && error != ENOENT)
4265 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4266 
4267 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4268 	    &spa->spa_errlog_scrub, B_FALSE);
4269 	if (error != 0 && error != ENOENT)
4270 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4271 
4272 	/*
4273 	 * Load the livelist deletion field. If a livelist is queued for
4274 	 * deletion, indicate that in the spa
4275 	 */
4276 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4277 	    &spa->spa_livelists_to_delete, B_FALSE);
4278 	if (error != 0 && error != ENOENT)
4279 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4280 
4281 	/*
4282 	 * Load the history object.  If we have an older pool, this
4283 	 * will not be present.
4284 	 */
4285 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4286 	if (error != 0 && error != ENOENT)
4287 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4288 
4289 	/*
4290 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4291 	 * be present; in this case, defer its creation to a later time to
4292 	 * avoid dirtying the MOS this early / out of sync context. See
4293 	 * spa_sync_config_object.
4294 	 */
4295 
4296 	/* The sentinel is only available in the MOS config. */
4297 	nvlist_t *mos_config;
4298 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4299 		spa_load_failed(spa, "unable to retrieve MOS config");
4300 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4301 	}
4302 
4303 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4304 	    &spa->spa_all_vdev_zaps, B_FALSE);
4305 
4306 	if (error == ENOENT) {
4307 		VERIFY(!nvlist_exists(mos_config,
4308 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4309 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4310 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4311 	} else if (error != 0) {
4312 		nvlist_free(mos_config);
4313 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4314 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4315 		/*
4316 		 * An older version of ZFS overwrote the sentinel value, so
4317 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4318 		 * destruction to later; see spa_sync_config_object.
4319 		 */
4320 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4321 		/*
4322 		 * We're assuming that no vdevs have had their ZAPs created
4323 		 * before this. Better be sure of it.
4324 		 */
4325 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4326 	}
4327 	nvlist_free(mos_config);
4328 
4329 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4330 
4331 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4332 	    B_FALSE);
4333 	if (error && error != ENOENT)
4334 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4335 
4336 	if (error == 0) {
4337 		uint64_t autoreplace = 0;
4338 
4339 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4340 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4341 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4342 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4343 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4344 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4345 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4346 		spa->spa_autoreplace = (autoreplace != 0);
4347 	}
4348 
4349 	/*
4350 	 * If we are importing a pool with missing top-level vdevs,
4351 	 * we enforce that the pool doesn't panic or get suspended on
4352 	 * error since the likelihood of missing data is extremely high.
4353 	 */
4354 	if (spa->spa_missing_tvds > 0 &&
4355 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4356 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4357 		spa_load_note(spa, "forcing failmode to 'continue' "
4358 		    "as some top level vdevs are missing");
4359 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4360 	}
4361 
4362 	return (0);
4363 }
4364 
4365 static int
4366 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4367 {
4368 	int error = 0;
4369 	vdev_t *rvd = spa->spa_root_vdev;
4370 
4371 	/*
4372 	 * If we're assembling the pool from the split-off vdevs of
4373 	 * an existing pool, we don't want to attach the spares & cache
4374 	 * devices.
4375 	 */
4376 
4377 	/*
4378 	 * Load any hot spares for this pool.
4379 	 */
4380 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4381 	    B_FALSE);
4382 	if (error != 0 && error != ENOENT)
4383 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4384 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4385 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4386 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4387 		    &spa->spa_spares.sav_config) != 0) {
4388 			spa_load_failed(spa, "error loading spares nvlist");
4389 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4390 		}
4391 
4392 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4393 		spa_load_spares(spa);
4394 		spa_config_exit(spa, SCL_ALL, FTAG);
4395 	} else if (error == 0) {
4396 		spa->spa_spares.sav_sync = B_TRUE;
4397 	}
4398 
4399 	/*
4400 	 * Load any level 2 ARC devices for this pool.
4401 	 */
4402 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4403 	    &spa->spa_l2cache.sav_object, B_FALSE);
4404 	if (error != 0 && error != ENOENT)
4405 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4406 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4407 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4408 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4409 		    &spa->spa_l2cache.sav_config) != 0) {
4410 			spa_load_failed(spa, "error loading l2cache nvlist");
4411 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4412 		}
4413 
4414 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4415 		spa_load_l2cache(spa);
4416 		spa_config_exit(spa, SCL_ALL, FTAG);
4417 	} else if (error == 0) {
4418 		spa->spa_l2cache.sav_sync = B_TRUE;
4419 	}
4420 
4421 	return (0);
4422 }
4423 
4424 static int
4425 spa_ld_load_vdev_metadata(spa_t *spa)
4426 {
4427 	int error = 0;
4428 	vdev_t *rvd = spa->spa_root_vdev;
4429 
4430 	/*
4431 	 * If the 'multihost' property is set, then never allow a pool to
4432 	 * be imported when the system hostid is zero.  The exception to
4433 	 * this rule is zdb which is always allowed to access pools.
4434 	 */
4435 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4436 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4437 		fnvlist_add_uint64(spa->spa_load_info,
4438 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4439 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4440 	}
4441 
4442 	/*
4443 	 * If the 'autoreplace' property is set, then post a resource notifying
4444 	 * the ZFS DE that it should not issue any faults for unopenable
4445 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4446 	 * unopenable vdevs so that the normal autoreplace handler can take
4447 	 * over.
4448 	 */
4449 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4450 		spa_check_removed(spa->spa_root_vdev);
4451 		/*
4452 		 * For the import case, this is done in spa_import(), because
4453 		 * at this point we're using the spare definitions from
4454 		 * the MOS config, not necessarily from the userland config.
4455 		 */
4456 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4457 			spa_aux_check_removed(&spa->spa_spares);
4458 			spa_aux_check_removed(&spa->spa_l2cache);
4459 		}
4460 	}
4461 
4462 	/*
4463 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4464 	 */
4465 	error = vdev_load(rvd);
4466 	if (error != 0) {
4467 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4468 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4469 	}
4470 
4471 	error = spa_ld_log_spacemaps(spa);
4472 	if (error != 0) {
4473 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4474 		    error);
4475 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4476 	}
4477 
4478 	/*
4479 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4480 	 */
4481 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4482 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4483 	spa_config_exit(spa, SCL_ALL, FTAG);
4484 
4485 	return (0);
4486 }
4487 
4488 static int
4489 spa_ld_load_dedup_tables(spa_t *spa)
4490 {
4491 	int error = 0;
4492 	vdev_t *rvd = spa->spa_root_vdev;
4493 
4494 	error = ddt_load(spa);
4495 	if (error != 0) {
4496 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4497 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4498 	}
4499 
4500 	return (0);
4501 }
4502 
4503 static int
4504 spa_ld_load_brt(spa_t *spa)
4505 {
4506 	int error = 0;
4507 	vdev_t *rvd = spa->spa_root_vdev;
4508 
4509 	error = brt_load(spa);
4510 	if (error != 0) {
4511 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4512 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4513 	}
4514 
4515 	return (0);
4516 }
4517 
4518 static int
4519 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4520 {
4521 	vdev_t *rvd = spa->spa_root_vdev;
4522 
4523 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4524 		boolean_t missing = spa_check_logs(spa);
4525 		if (missing) {
4526 			if (spa->spa_missing_tvds != 0) {
4527 				spa_load_note(spa, "spa_check_logs failed "
4528 				    "so dropping the logs");
4529 			} else {
4530 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4531 				spa_load_failed(spa, "spa_check_logs failed");
4532 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4533 				    ENXIO));
4534 			}
4535 		}
4536 	}
4537 
4538 	return (0);
4539 }
4540 
4541 static int
4542 spa_ld_verify_pool_data(spa_t *spa)
4543 {
4544 	int error = 0;
4545 	vdev_t *rvd = spa->spa_root_vdev;
4546 
4547 	/*
4548 	 * We've successfully opened the pool, verify that we're ready
4549 	 * to start pushing transactions.
4550 	 */
4551 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4552 		error = spa_load_verify(spa);
4553 		if (error != 0) {
4554 			spa_load_failed(spa, "spa_load_verify failed "
4555 			    "[error=%d]", error);
4556 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4557 			    error));
4558 		}
4559 	}
4560 
4561 	return (0);
4562 }
4563 
4564 static void
4565 spa_ld_claim_log_blocks(spa_t *spa)
4566 {
4567 	dmu_tx_t *tx;
4568 	dsl_pool_t *dp = spa_get_dsl(spa);
4569 
4570 	/*
4571 	 * Claim log blocks that haven't been committed yet.
4572 	 * This must all happen in a single txg.
4573 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4574 	 * invoked from zil_claim_log_block()'s i/o done callback.
4575 	 * Price of rollback is that we abandon the log.
4576 	 */
4577 	spa->spa_claiming = B_TRUE;
4578 
4579 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4580 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4581 	    zil_claim, tx, DS_FIND_CHILDREN);
4582 	dmu_tx_commit(tx);
4583 
4584 	spa->spa_claiming = B_FALSE;
4585 
4586 	spa_set_log_state(spa, SPA_LOG_GOOD);
4587 }
4588 
4589 static void
4590 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4591     boolean_t update_config_cache)
4592 {
4593 	vdev_t *rvd = spa->spa_root_vdev;
4594 	int need_update = B_FALSE;
4595 
4596 	/*
4597 	 * If the config cache is stale, or we have uninitialized
4598 	 * metaslabs (see spa_vdev_add()), then update the config.
4599 	 *
4600 	 * If this is a verbatim import, trust the current
4601 	 * in-core spa_config and update the disk labels.
4602 	 */
4603 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4604 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4605 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4606 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4607 		need_update = B_TRUE;
4608 
4609 	for (int c = 0; c < rvd->vdev_children; c++)
4610 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4611 			need_update = B_TRUE;
4612 
4613 	/*
4614 	 * Update the config cache asynchronously in case we're the
4615 	 * root pool, in which case the config cache isn't writable yet.
4616 	 */
4617 	if (need_update)
4618 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4619 }
4620 
4621 static void
4622 spa_ld_prepare_for_reload(spa_t *spa)
4623 {
4624 	spa_mode_t mode = spa->spa_mode;
4625 	int async_suspended = spa->spa_async_suspended;
4626 
4627 	spa_unload(spa);
4628 	spa_deactivate(spa);
4629 	spa_activate(spa, mode);
4630 
4631 	/*
4632 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4633 	 * spa_unload(). We want to restore it back to the original value before
4634 	 * returning as we might be calling spa_async_resume() later.
4635 	 */
4636 	spa->spa_async_suspended = async_suspended;
4637 }
4638 
4639 static int
4640 spa_ld_read_checkpoint_txg(spa_t *spa)
4641 {
4642 	uberblock_t checkpoint;
4643 	int error = 0;
4644 
4645 	ASSERT0(spa->spa_checkpoint_txg);
4646 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4647 
4648 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4649 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4650 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4651 
4652 	if (error == ENOENT)
4653 		return (0);
4654 
4655 	if (error != 0)
4656 		return (error);
4657 
4658 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4659 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4660 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4661 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4662 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4663 
4664 	return (0);
4665 }
4666 
4667 static int
4668 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4669 {
4670 	int error = 0;
4671 
4672 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4673 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4674 
4675 	/*
4676 	 * Never trust the config that is provided unless we are assembling
4677 	 * a pool following a split.
4678 	 * This means don't trust blkptrs and the vdev tree in general. This
4679 	 * also effectively puts the spa in read-only mode since
4680 	 * spa_writeable() checks for spa_trust_config to be true.
4681 	 * We will later load a trusted config from the MOS.
4682 	 */
4683 	if (type != SPA_IMPORT_ASSEMBLE)
4684 		spa->spa_trust_config = B_FALSE;
4685 
4686 	/*
4687 	 * Parse the config provided to create a vdev tree.
4688 	 */
4689 	error = spa_ld_parse_config(spa, type);
4690 	if (error != 0)
4691 		return (error);
4692 
4693 	spa_import_progress_add(spa);
4694 
4695 	/*
4696 	 * Now that we have the vdev tree, try to open each vdev. This involves
4697 	 * opening the underlying physical device, retrieving its geometry and
4698 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4699 	 * based on the success of those operations. After this we'll be ready
4700 	 * to read from the vdevs.
4701 	 */
4702 	error = spa_ld_open_vdevs(spa);
4703 	if (error != 0)
4704 		return (error);
4705 
4706 	/*
4707 	 * Read the label of each vdev and make sure that the GUIDs stored
4708 	 * there match the GUIDs in the config provided.
4709 	 * If we're assembling a new pool that's been split off from an
4710 	 * existing pool, the labels haven't yet been updated so we skip
4711 	 * validation for now.
4712 	 */
4713 	if (type != SPA_IMPORT_ASSEMBLE) {
4714 		error = spa_ld_validate_vdevs(spa);
4715 		if (error != 0)
4716 			return (error);
4717 	}
4718 
4719 	/*
4720 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4721 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4722 	 * get the list of features required to read blkptrs in the MOS from
4723 	 * the vdev label with the best uberblock and verify that our version
4724 	 * of zfs supports them all.
4725 	 */
4726 	error = spa_ld_select_uberblock(spa, type);
4727 	if (error != 0)
4728 		return (error);
4729 
4730 	/*
4731 	 * Pass that uberblock to the dsl_pool layer which will open the root
4732 	 * blkptr. This blkptr points to the latest version of the MOS and will
4733 	 * allow us to read its contents.
4734 	 */
4735 	error = spa_ld_open_rootbp(spa);
4736 	if (error != 0)
4737 		return (error);
4738 
4739 	return (0);
4740 }
4741 
4742 static int
4743 spa_ld_checkpoint_rewind(spa_t *spa)
4744 {
4745 	uberblock_t checkpoint;
4746 	int error = 0;
4747 
4748 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4749 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4750 
4751 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4752 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4753 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4754 
4755 	if (error != 0) {
4756 		spa_load_failed(spa, "unable to retrieve checkpointed "
4757 		    "uberblock from the MOS config [error=%d]", error);
4758 
4759 		if (error == ENOENT)
4760 			error = ZFS_ERR_NO_CHECKPOINT;
4761 
4762 		return (error);
4763 	}
4764 
4765 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4766 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4767 
4768 	/*
4769 	 * We need to update the txg and timestamp of the checkpointed
4770 	 * uberblock to be higher than the latest one. This ensures that
4771 	 * the checkpointed uberblock is selected if we were to close and
4772 	 * reopen the pool right after we've written it in the vdev labels.
4773 	 * (also see block comment in vdev_uberblock_compare)
4774 	 */
4775 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4776 	checkpoint.ub_timestamp = gethrestime_sec();
4777 
4778 	/*
4779 	 * Set current uberblock to be the checkpointed uberblock.
4780 	 */
4781 	spa->spa_uberblock = checkpoint;
4782 
4783 	/*
4784 	 * If we are doing a normal rewind, then the pool is open for
4785 	 * writing and we sync the "updated" checkpointed uberblock to
4786 	 * disk. Once this is done, we've basically rewound the whole
4787 	 * pool and there is no way back.
4788 	 *
4789 	 * There are cases when we don't want to attempt and sync the
4790 	 * checkpointed uberblock to disk because we are opening a
4791 	 * pool as read-only. Specifically, verifying the checkpointed
4792 	 * state with zdb, and importing the checkpointed state to get
4793 	 * a "preview" of its content.
4794 	 */
4795 	if (spa_writeable(spa)) {
4796 		vdev_t *rvd = spa->spa_root_vdev;
4797 
4798 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4799 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4800 		int svdcount = 0;
4801 		int children = rvd->vdev_children;
4802 		int c0 = random_in_range(children);
4803 
4804 		for (int c = 0; c < children; c++) {
4805 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4806 
4807 			/* Stop when revisiting the first vdev */
4808 			if (c > 0 && svd[0] == vd)
4809 				break;
4810 
4811 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4812 			    !vdev_is_concrete(vd))
4813 				continue;
4814 
4815 			svd[svdcount++] = vd;
4816 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4817 				break;
4818 		}
4819 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4820 		if (error == 0)
4821 			spa->spa_last_synced_guid = rvd->vdev_guid;
4822 		spa_config_exit(spa, SCL_ALL, FTAG);
4823 
4824 		if (error != 0) {
4825 			spa_load_failed(spa, "failed to write checkpointed "
4826 			    "uberblock to the vdev labels [error=%d]", error);
4827 			return (error);
4828 		}
4829 	}
4830 
4831 	return (0);
4832 }
4833 
4834 static int
4835 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4836     boolean_t *update_config_cache)
4837 {
4838 	int error;
4839 
4840 	/*
4841 	 * Parse the config for pool, open and validate vdevs,
4842 	 * select an uberblock, and use that uberblock to open
4843 	 * the MOS.
4844 	 */
4845 	error = spa_ld_mos_init(spa, type);
4846 	if (error != 0)
4847 		return (error);
4848 
4849 	/*
4850 	 * Retrieve the trusted config stored in the MOS and use it to create
4851 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4852 	 */
4853 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4854 	if (error == EAGAIN) {
4855 		if (update_config_cache != NULL)
4856 			*update_config_cache = B_TRUE;
4857 
4858 		/*
4859 		 * Redo the loading process with the trusted config if it is
4860 		 * too different from the untrusted config.
4861 		 */
4862 		spa_ld_prepare_for_reload(spa);
4863 		spa_load_note(spa, "RELOADING");
4864 		error = spa_ld_mos_init(spa, type);
4865 		if (error != 0)
4866 			return (error);
4867 
4868 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4869 		if (error != 0)
4870 			return (error);
4871 
4872 	} else if (error != 0) {
4873 		return (error);
4874 	}
4875 
4876 	return (0);
4877 }
4878 
4879 /*
4880  * Load an existing storage pool, using the config provided. This config
4881  * describes which vdevs are part of the pool and is later validated against
4882  * partial configs present in each vdev's label and an entire copy of the
4883  * config stored in the MOS.
4884  */
4885 static int
4886 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4887 {
4888 	int error = 0;
4889 	boolean_t missing_feat_write = B_FALSE;
4890 	boolean_t checkpoint_rewind =
4891 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4892 	boolean_t update_config_cache = B_FALSE;
4893 
4894 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4895 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4896 
4897 	spa_load_note(spa, "LOADING");
4898 
4899 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4900 	if (error != 0)
4901 		return (error);
4902 
4903 	/*
4904 	 * If we are rewinding to the checkpoint then we need to repeat
4905 	 * everything we've done so far in this function but this time
4906 	 * selecting the checkpointed uberblock and using that to open
4907 	 * the MOS.
4908 	 */
4909 	if (checkpoint_rewind) {
4910 		/*
4911 		 * If we are rewinding to the checkpoint update config cache
4912 		 * anyway.
4913 		 */
4914 		update_config_cache = B_TRUE;
4915 
4916 		/*
4917 		 * Extract the checkpointed uberblock from the current MOS
4918 		 * and use this as the pool's uberblock from now on. If the
4919 		 * pool is imported as writeable we also write the checkpoint
4920 		 * uberblock to the labels, making the rewind permanent.
4921 		 */
4922 		error = spa_ld_checkpoint_rewind(spa);
4923 		if (error != 0)
4924 			return (error);
4925 
4926 		/*
4927 		 * Redo the loading process again with the
4928 		 * checkpointed uberblock.
4929 		 */
4930 		spa_ld_prepare_for_reload(spa);
4931 		spa_load_note(spa, "LOADING checkpointed uberblock");
4932 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4933 		if (error != 0)
4934 			return (error);
4935 	}
4936 
4937 	/*
4938 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4939 	 */
4940 	error = spa_ld_read_checkpoint_txg(spa);
4941 	if (error != 0)
4942 		return (error);
4943 
4944 	/*
4945 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4946 	 * from the pool and their contents were re-mapped to other vdevs. Note
4947 	 * that everything that we read before this step must have been
4948 	 * rewritten on concrete vdevs after the last device removal was
4949 	 * initiated. Otherwise we could be reading from indirect vdevs before
4950 	 * we have loaded their mappings.
4951 	 */
4952 	error = spa_ld_open_indirect_vdev_metadata(spa);
4953 	if (error != 0)
4954 		return (error);
4955 
4956 	/*
4957 	 * Retrieve the full list of active features from the MOS and check if
4958 	 * they are all supported.
4959 	 */
4960 	error = spa_ld_check_features(spa, &missing_feat_write);
4961 	if (error != 0)
4962 		return (error);
4963 
4964 	/*
4965 	 * Load several special directories from the MOS needed by the dsl_pool
4966 	 * layer.
4967 	 */
4968 	error = spa_ld_load_special_directories(spa);
4969 	if (error != 0)
4970 		return (error);
4971 
4972 	/*
4973 	 * Retrieve pool properties from the MOS.
4974 	 */
4975 	error = spa_ld_get_props(spa);
4976 	if (error != 0)
4977 		return (error);
4978 
4979 	/*
4980 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4981 	 * and open them.
4982 	 */
4983 	error = spa_ld_open_aux_vdevs(spa, type);
4984 	if (error != 0)
4985 		return (error);
4986 
4987 	/*
4988 	 * Load the metadata for all vdevs. Also check if unopenable devices
4989 	 * should be autoreplaced.
4990 	 */
4991 	error = spa_ld_load_vdev_metadata(spa);
4992 	if (error != 0)
4993 		return (error);
4994 
4995 	error = spa_ld_load_dedup_tables(spa);
4996 	if (error != 0)
4997 		return (error);
4998 
4999 	error = spa_ld_load_brt(spa);
5000 	if (error != 0)
5001 		return (error);
5002 
5003 	/*
5004 	 * Verify the logs now to make sure we don't have any unexpected errors
5005 	 * when we claim log blocks later.
5006 	 */
5007 	error = spa_ld_verify_logs(spa, type, ereport);
5008 	if (error != 0)
5009 		return (error);
5010 
5011 	if (missing_feat_write) {
5012 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5013 
5014 		/*
5015 		 * At this point, we know that we can open the pool in
5016 		 * read-only mode but not read-write mode. We now have enough
5017 		 * information and can return to userland.
5018 		 */
5019 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5020 		    ENOTSUP));
5021 	}
5022 
5023 	/*
5024 	 * Traverse the last txgs to make sure the pool was left off in a safe
5025 	 * state. When performing an extreme rewind, we verify the whole pool,
5026 	 * which can take a very long time.
5027 	 */
5028 	error = spa_ld_verify_pool_data(spa);
5029 	if (error != 0)
5030 		return (error);
5031 
5032 	/*
5033 	 * Calculate the deflated space for the pool. This must be done before
5034 	 * we write anything to the pool because we'd need to update the space
5035 	 * accounting using the deflated sizes.
5036 	 */
5037 	spa_update_dspace(spa);
5038 
5039 	/*
5040 	 * We have now retrieved all the information we needed to open the
5041 	 * pool. If we are importing the pool in read-write mode, a few
5042 	 * additional steps must be performed to finish the import.
5043 	 */
5044 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5045 	    spa->spa_load_max_txg == UINT64_MAX)) {
5046 		uint64_t config_cache_txg = spa->spa_config_txg;
5047 
5048 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5049 
5050 		/*
5051 		 * In case of a checkpoint rewind, log the original txg
5052 		 * of the checkpointed uberblock.
5053 		 */
5054 		if (checkpoint_rewind) {
5055 			spa_history_log_internal(spa, "checkpoint rewind",
5056 			    NULL, "rewound state to txg=%llu",
5057 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5058 		}
5059 
5060 		/*
5061 		 * Traverse the ZIL and claim all blocks.
5062 		 */
5063 		spa_ld_claim_log_blocks(spa);
5064 
5065 		/*
5066 		 * Kick-off the syncing thread.
5067 		 */
5068 		spa->spa_sync_on = B_TRUE;
5069 		txg_sync_start(spa->spa_dsl_pool);
5070 		mmp_thread_start(spa);
5071 
5072 		/*
5073 		 * Wait for all claims to sync.  We sync up to the highest
5074 		 * claimed log block birth time so that claimed log blocks
5075 		 * don't appear to be from the future.  spa_claim_max_txg
5076 		 * will have been set for us by ZIL traversal operations
5077 		 * performed above.
5078 		 */
5079 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5080 
5081 		/*
5082 		 * Check if we need to request an update of the config. On the
5083 		 * next sync, we would update the config stored in vdev labels
5084 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5085 		 */
5086 		spa_ld_check_for_config_update(spa, config_cache_txg,
5087 		    update_config_cache);
5088 
5089 		/*
5090 		 * Check if a rebuild was in progress and if so resume it.
5091 		 * Then check all DTLs to see if anything needs resilvering.
5092 		 * The resilver will be deferred if a rebuild was started.
5093 		 */
5094 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5095 			vdev_rebuild_restart(spa);
5096 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5097 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5098 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5099 		}
5100 
5101 		/*
5102 		 * Log the fact that we booted up (so that we can detect if
5103 		 * we rebooted in the middle of an operation).
5104 		 */
5105 		spa_history_log_version(spa, "open", NULL);
5106 
5107 		spa_restart_removal(spa);
5108 		spa_spawn_aux_threads(spa);
5109 
5110 		/*
5111 		 * Delete any inconsistent datasets.
5112 		 *
5113 		 * Note:
5114 		 * Since we may be issuing deletes for clones here,
5115 		 * we make sure to do so after we've spawned all the
5116 		 * auxiliary threads above (from which the livelist
5117 		 * deletion zthr is part of).
5118 		 */
5119 		(void) dmu_objset_find(spa_name(spa),
5120 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5121 
5122 		/*
5123 		 * Clean up any stale temporary dataset userrefs.
5124 		 */
5125 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5126 
5127 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5128 		vdev_initialize_restart(spa->spa_root_vdev);
5129 		vdev_trim_restart(spa->spa_root_vdev);
5130 		vdev_autotrim_restart(spa);
5131 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5132 	}
5133 
5134 	spa_import_progress_remove(spa_guid(spa));
5135 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5136 
5137 	spa_load_note(spa, "LOADED");
5138 
5139 	return (0);
5140 }
5141 
5142 static int
5143 spa_load_retry(spa_t *spa, spa_load_state_t state)
5144 {
5145 	spa_mode_t mode = spa->spa_mode;
5146 
5147 	spa_unload(spa);
5148 	spa_deactivate(spa);
5149 
5150 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5151 
5152 	spa_activate(spa, mode);
5153 	spa_async_suspend(spa);
5154 
5155 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5156 	    (u_longlong_t)spa->spa_load_max_txg);
5157 
5158 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5159 }
5160 
5161 /*
5162  * If spa_load() fails this function will try loading prior txg's. If
5163  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5164  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5165  * function will not rewind the pool and will return the same error as
5166  * spa_load().
5167  */
5168 static int
5169 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5170     int rewind_flags)
5171 {
5172 	nvlist_t *loadinfo = NULL;
5173 	nvlist_t *config = NULL;
5174 	int load_error, rewind_error;
5175 	uint64_t safe_rewind_txg;
5176 	uint64_t min_txg;
5177 
5178 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5179 		spa->spa_load_max_txg = spa->spa_load_txg;
5180 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5181 	} else {
5182 		spa->spa_load_max_txg = max_request;
5183 		if (max_request != UINT64_MAX)
5184 			spa->spa_extreme_rewind = B_TRUE;
5185 	}
5186 
5187 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5188 	if (load_error == 0)
5189 		return (0);
5190 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5191 		/*
5192 		 * When attempting checkpoint-rewind on a pool with no
5193 		 * checkpoint, we should not attempt to load uberblocks
5194 		 * from previous txgs when spa_load fails.
5195 		 */
5196 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5197 		spa_import_progress_remove(spa_guid(spa));
5198 		return (load_error);
5199 	}
5200 
5201 	if (spa->spa_root_vdev != NULL)
5202 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5203 
5204 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5205 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5206 
5207 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5208 		nvlist_free(config);
5209 		spa_import_progress_remove(spa_guid(spa));
5210 		return (load_error);
5211 	}
5212 
5213 	if (state == SPA_LOAD_RECOVER) {
5214 		/* Price of rolling back is discarding txgs, including log */
5215 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5216 	} else {
5217 		/*
5218 		 * If we aren't rolling back save the load info from our first
5219 		 * import attempt so that we can restore it after attempting
5220 		 * to rewind.
5221 		 */
5222 		loadinfo = spa->spa_load_info;
5223 		spa->spa_load_info = fnvlist_alloc();
5224 	}
5225 
5226 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5227 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5228 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5229 	    TXG_INITIAL : safe_rewind_txg;
5230 
5231 	/*
5232 	 * Continue as long as we're finding errors, we're still within
5233 	 * the acceptable rewind range, and we're still finding uberblocks
5234 	 */
5235 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5236 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5237 		if (spa->spa_load_max_txg < safe_rewind_txg)
5238 			spa->spa_extreme_rewind = B_TRUE;
5239 		rewind_error = spa_load_retry(spa, state);
5240 	}
5241 
5242 	spa->spa_extreme_rewind = B_FALSE;
5243 	spa->spa_load_max_txg = UINT64_MAX;
5244 
5245 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5246 		spa_config_set(spa, config);
5247 	else
5248 		nvlist_free(config);
5249 
5250 	if (state == SPA_LOAD_RECOVER) {
5251 		ASSERT3P(loadinfo, ==, NULL);
5252 		spa_import_progress_remove(spa_guid(spa));
5253 		return (rewind_error);
5254 	} else {
5255 		/* Store the rewind info as part of the initial load info */
5256 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5257 		    spa->spa_load_info);
5258 
5259 		/* Restore the initial load info */
5260 		fnvlist_free(spa->spa_load_info);
5261 		spa->spa_load_info = loadinfo;
5262 
5263 		spa_import_progress_remove(spa_guid(spa));
5264 		return (load_error);
5265 	}
5266 }
5267 
5268 /*
5269  * Pool Open/Import
5270  *
5271  * The import case is identical to an open except that the configuration is sent
5272  * down from userland, instead of grabbed from the configuration cache.  For the
5273  * case of an open, the pool configuration will exist in the
5274  * POOL_STATE_UNINITIALIZED state.
5275  *
5276  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5277  * the same time open the pool, without having to keep around the spa_t in some
5278  * ambiguous state.
5279  */
5280 static int
5281 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5282     nvlist_t *nvpolicy, nvlist_t **config)
5283 {
5284 	spa_t *spa;
5285 	spa_load_state_t state = SPA_LOAD_OPEN;
5286 	int error;
5287 	int locked = B_FALSE;
5288 	int firstopen = B_FALSE;
5289 
5290 	*spapp = NULL;
5291 
5292 	/*
5293 	 * As disgusting as this is, we need to support recursive calls to this
5294 	 * function because dsl_dir_open() is called during spa_load(), and ends
5295 	 * up calling spa_open() again.  The real fix is to figure out how to
5296 	 * avoid dsl_dir_open() calling this in the first place.
5297 	 */
5298 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5299 		mutex_enter(&spa_namespace_lock);
5300 		locked = B_TRUE;
5301 	}
5302 
5303 	if ((spa = spa_lookup(pool)) == NULL) {
5304 		if (locked)
5305 			mutex_exit(&spa_namespace_lock);
5306 		return (SET_ERROR(ENOENT));
5307 	}
5308 
5309 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5310 		zpool_load_policy_t policy;
5311 
5312 		firstopen = B_TRUE;
5313 
5314 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5315 		    &policy);
5316 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5317 			state = SPA_LOAD_RECOVER;
5318 
5319 		spa_activate(spa, spa_mode_global);
5320 
5321 		if (state != SPA_LOAD_RECOVER)
5322 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5323 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5324 
5325 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5326 		error = spa_load_best(spa, state, policy.zlp_txg,
5327 		    policy.zlp_rewind);
5328 
5329 		if (error == EBADF) {
5330 			/*
5331 			 * If vdev_validate() returns failure (indicated by
5332 			 * EBADF), it indicates that one of the vdevs indicates
5333 			 * that the pool has been exported or destroyed.  If
5334 			 * this is the case, the config cache is out of sync and
5335 			 * we should remove the pool from the namespace.
5336 			 */
5337 			spa_unload(spa);
5338 			spa_deactivate(spa);
5339 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5340 			spa_remove(spa);
5341 			if (locked)
5342 				mutex_exit(&spa_namespace_lock);
5343 			return (SET_ERROR(ENOENT));
5344 		}
5345 
5346 		if (error) {
5347 			/*
5348 			 * We can't open the pool, but we still have useful
5349 			 * information: the state of each vdev after the
5350 			 * attempted vdev_open().  Return this to the user.
5351 			 */
5352 			if (config != NULL && spa->spa_config) {
5353 				*config = fnvlist_dup(spa->spa_config);
5354 				fnvlist_add_nvlist(*config,
5355 				    ZPOOL_CONFIG_LOAD_INFO,
5356 				    spa->spa_load_info);
5357 			}
5358 			spa_unload(spa);
5359 			spa_deactivate(spa);
5360 			spa->spa_last_open_failed = error;
5361 			if (locked)
5362 				mutex_exit(&spa_namespace_lock);
5363 			*spapp = NULL;
5364 			return (error);
5365 		}
5366 	}
5367 
5368 	spa_open_ref(spa, tag);
5369 
5370 	if (config != NULL)
5371 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5372 
5373 	/*
5374 	 * If we've recovered the pool, pass back any information we
5375 	 * gathered while doing the load.
5376 	 */
5377 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5378 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5379 		    spa->spa_load_info);
5380 	}
5381 
5382 	if (locked) {
5383 		spa->spa_last_open_failed = 0;
5384 		spa->spa_last_ubsync_txg = 0;
5385 		spa->spa_load_txg = 0;
5386 		mutex_exit(&spa_namespace_lock);
5387 	}
5388 
5389 	if (firstopen)
5390 		zvol_create_minors_recursive(spa_name(spa));
5391 
5392 	*spapp = spa;
5393 
5394 	return (0);
5395 }
5396 
5397 int
5398 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5399     nvlist_t *policy, nvlist_t **config)
5400 {
5401 	return (spa_open_common(name, spapp, tag, policy, config));
5402 }
5403 
5404 int
5405 spa_open(const char *name, spa_t **spapp, const void *tag)
5406 {
5407 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5408 }
5409 
5410 /*
5411  * Lookup the given spa_t, incrementing the inject count in the process,
5412  * preventing it from being exported or destroyed.
5413  */
5414 spa_t *
5415 spa_inject_addref(char *name)
5416 {
5417 	spa_t *spa;
5418 
5419 	mutex_enter(&spa_namespace_lock);
5420 	if ((spa = spa_lookup(name)) == NULL) {
5421 		mutex_exit(&spa_namespace_lock);
5422 		return (NULL);
5423 	}
5424 	spa->spa_inject_ref++;
5425 	mutex_exit(&spa_namespace_lock);
5426 
5427 	return (spa);
5428 }
5429 
5430 void
5431 spa_inject_delref(spa_t *spa)
5432 {
5433 	mutex_enter(&spa_namespace_lock);
5434 	spa->spa_inject_ref--;
5435 	mutex_exit(&spa_namespace_lock);
5436 }
5437 
5438 /*
5439  * Add spares device information to the nvlist.
5440  */
5441 static void
5442 spa_add_spares(spa_t *spa, nvlist_t *config)
5443 {
5444 	nvlist_t **spares;
5445 	uint_t i, nspares;
5446 	nvlist_t *nvroot;
5447 	uint64_t guid;
5448 	vdev_stat_t *vs;
5449 	uint_t vsc;
5450 	uint64_t pool;
5451 
5452 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5453 
5454 	if (spa->spa_spares.sav_count == 0)
5455 		return;
5456 
5457 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5458 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5459 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5460 	if (nspares != 0) {
5461 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5462 		    (const nvlist_t * const *)spares, nspares);
5463 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5464 		    &spares, &nspares));
5465 
5466 		/*
5467 		 * Go through and find any spares which have since been
5468 		 * repurposed as an active spare.  If this is the case, update
5469 		 * their status appropriately.
5470 		 */
5471 		for (i = 0; i < nspares; i++) {
5472 			guid = fnvlist_lookup_uint64(spares[i],
5473 			    ZPOOL_CONFIG_GUID);
5474 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5475 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5476 			if (spa_spare_exists(guid, &pool, NULL) &&
5477 			    pool != 0ULL) {
5478 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5479 				vs->vs_aux = VDEV_AUX_SPARED;
5480 			} else {
5481 				vs->vs_state =
5482 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5483 			}
5484 		}
5485 	}
5486 }
5487 
5488 /*
5489  * Add l2cache device information to the nvlist, including vdev stats.
5490  */
5491 static void
5492 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5493 {
5494 	nvlist_t **l2cache;
5495 	uint_t i, j, nl2cache;
5496 	nvlist_t *nvroot;
5497 	uint64_t guid;
5498 	vdev_t *vd;
5499 	vdev_stat_t *vs;
5500 	uint_t vsc;
5501 
5502 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5503 
5504 	if (spa->spa_l2cache.sav_count == 0)
5505 		return;
5506 
5507 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5508 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5509 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5510 	if (nl2cache != 0) {
5511 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5512 		    (const nvlist_t * const *)l2cache, nl2cache);
5513 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5514 		    &l2cache, &nl2cache));
5515 
5516 		/*
5517 		 * Update level 2 cache device stats.
5518 		 */
5519 
5520 		for (i = 0; i < nl2cache; i++) {
5521 			guid = fnvlist_lookup_uint64(l2cache[i],
5522 			    ZPOOL_CONFIG_GUID);
5523 
5524 			vd = NULL;
5525 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5526 				if (guid ==
5527 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5528 					vd = spa->spa_l2cache.sav_vdevs[j];
5529 					break;
5530 				}
5531 			}
5532 			ASSERT(vd != NULL);
5533 
5534 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5535 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5536 			vdev_get_stats(vd, vs);
5537 			vdev_config_generate_stats(vd, l2cache[i]);
5538 
5539 		}
5540 	}
5541 }
5542 
5543 static void
5544 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5545 {
5546 	zap_cursor_t zc;
5547 	zap_attribute_t za;
5548 
5549 	if (spa->spa_feat_for_read_obj != 0) {
5550 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5551 		    spa->spa_feat_for_read_obj);
5552 		    zap_cursor_retrieve(&zc, &za) == 0;
5553 		    zap_cursor_advance(&zc)) {
5554 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5555 			    za.za_num_integers == 1);
5556 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5557 			    za.za_first_integer));
5558 		}
5559 		zap_cursor_fini(&zc);
5560 	}
5561 
5562 	if (spa->spa_feat_for_write_obj != 0) {
5563 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5564 		    spa->spa_feat_for_write_obj);
5565 		    zap_cursor_retrieve(&zc, &za) == 0;
5566 		    zap_cursor_advance(&zc)) {
5567 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5568 			    za.za_num_integers == 1);
5569 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5570 			    za.za_first_integer));
5571 		}
5572 		zap_cursor_fini(&zc);
5573 	}
5574 }
5575 
5576 static void
5577 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5578 {
5579 	int i;
5580 
5581 	for (i = 0; i < SPA_FEATURES; i++) {
5582 		zfeature_info_t feature = spa_feature_table[i];
5583 		uint64_t refcount;
5584 
5585 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5586 			continue;
5587 
5588 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5589 	}
5590 }
5591 
5592 /*
5593  * Store a list of pool features and their reference counts in the
5594  * config.
5595  *
5596  * The first time this is called on a spa, allocate a new nvlist, fetch
5597  * the pool features and reference counts from disk, then save the list
5598  * in the spa. In subsequent calls on the same spa use the saved nvlist
5599  * and refresh its values from the cached reference counts.  This
5600  * ensures we don't block here on I/O on a suspended pool so 'zpool
5601  * clear' can resume the pool.
5602  */
5603 static void
5604 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5605 {
5606 	nvlist_t *features;
5607 
5608 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5609 
5610 	mutex_enter(&spa->spa_feat_stats_lock);
5611 	features = spa->spa_feat_stats;
5612 
5613 	if (features != NULL) {
5614 		spa_feature_stats_from_cache(spa, features);
5615 	} else {
5616 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5617 		spa->spa_feat_stats = features;
5618 		spa_feature_stats_from_disk(spa, features);
5619 	}
5620 
5621 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5622 	    features));
5623 
5624 	mutex_exit(&spa->spa_feat_stats_lock);
5625 }
5626 
5627 int
5628 spa_get_stats(const char *name, nvlist_t **config,
5629     char *altroot, size_t buflen)
5630 {
5631 	int error;
5632 	spa_t *spa;
5633 
5634 	*config = NULL;
5635 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5636 
5637 	if (spa != NULL) {
5638 		/*
5639 		 * This still leaves a window of inconsistency where the spares
5640 		 * or l2cache devices could change and the config would be
5641 		 * self-inconsistent.
5642 		 */
5643 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5644 
5645 		if (*config != NULL) {
5646 			uint64_t loadtimes[2];
5647 
5648 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5649 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5650 			fnvlist_add_uint64_array(*config,
5651 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5652 
5653 			fnvlist_add_uint64(*config,
5654 			    ZPOOL_CONFIG_ERRCOUNT,
5655 			    spa_approx_errlog_size(spa));
5656 
5657 			if (spa_suspended(spa)) {
5658 				fnvlist_add_uint64(*config,
5659 				    ZPOOL_CONFIG_SUSPENDED,
5660 				    spa->spa_failmode);
5661 				fnvlist_add_uint64(*config,
5662 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5663 				    spa->spa_suspended);
5664 			}
5665 
5666 			spa_add_spares(spa, *config);
5667 			spa_add_l2cache(spa, *config);
5668 			spa_add_feature_stats(spa, *config);
5669 		}
5670 	}
5671 
5672 	/*
5673 	 * We want to get the alternate root even for faulted pools, so we cheat
5674 	 * and call spa_lookup() directly.
5675 	 */
5676 	if (altroot) {
5677 		if (spa == NULL) {
5678 			mutex_enter(&spa_namespace_lock);
5679 			spa = spa_lookup(name);
5680 			if (spa)
5681 				spa_altroot(spa, altroot, buflen);
5682 			else
5683 				altroot[0] = '\0';
5684 			spa = NULL;
5685 			mutex_exit(&spa_namespace_lock);
5686 		} else {
5687 			spa_altroot(spa, altroot, buflen);
5688 		}
5689 	}
5690 
5691 	if (spa != NULL) {
5692 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5693 		spa_close(spa, FTAG);
5694 	}
5695 
5696 	return (error);
5697 }
5698 
5699 /*
5700  * Validate that the auxiliary device array is well formed.  We must have an
5701  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5702  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5703  * specified, as long as they are well-formed.
5704  */
5705 static int
5706 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5707     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5708     vdev_labeltype_t label)
5709 {
5710 	nvlist_t **dev;
5711 	uint_t i, ndev;
5712 	vdev_t *vd;
5713 	int error;
5714 
5715 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5716 
5717 	/*
5718 	 * It's acceptable to have no devs specified.
5719 	 */
5720 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5721 		return (0);
5722 
5723 	if (ndev == 0)
5724 		return (SET_ERROR(EINVAL));
5725 
5726 	/*
5727 	 * Make sure the pool is formatted with a version that supports this
5728 	 * device type.
5729 	 */
5730 	if (spa_version(spa) < version)
5731 		return (SET_ERROR(ENOTSUP));
5732 
5733 	/*
5734 	 * Set the pending device list so we correctly handle device in-use
5735 	 * checking.
5736 	 */
5737 	sav->sav_pending = dev;
5738 	sav->sav_npending = ndev;
5739 
5740 	for (i = 0; i < ndev; i++) {
5741 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5742 		    mode)) != 0)
5743 			goto out;
5744 
5745 		if (!vd->vdev_ops->vdev_op_leaf) {
5746 			vdev_free(vd);
5747 			error = SET_ERROR(EINVAL);
5748 			goto out;
5749 		}
5750 
5751 		vd->vdev_top = vd;
5752 
5753 		if ((error = vdev_open(vd)) == 0 &&
5754 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5755 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5756 			    vd->vdev_guid);
5757 		}
5758 
5759 		vdev_free(vd);
5760 
5761 		if (error &&
5762 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5763 			goto out;
5764 		else
5765 			error = 0;
5766 	}
5767 
5768 out:
5769 	sav->sav_pending = NULL;
5770 	sav->sav_npending = 0;
5771 	return (error);
5772 }
5773 
5774 static int
5775 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5776 {
5777 	int error;
5778 
5779 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5780 
5781 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5782 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5783 	    VDEV_LABEL_SPARE)) != 0) {
5784 		return (error);
5785 	}
5786 
5787 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5788 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5789 	    VDEV_LABEL_L2CACHE));
5790 }
5791 
5792 static void
5793 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5794     const char *config)
5795 {
5796 	int i;
5797 
5798 	if (sav->sav_config != NULL) {
5799 		nvlist_t **olddevs;
5800 		uint_t oldndevs;
5801 		nvlist_t **newdevs;
5802 
5803 		/*
5804 		 * Generate new dev list by concatenating with the
5805 		 * current dev list.
5806 		 */
5807 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5808 		    &olddevs, &oldndevs));
5809 
5810 		newdevs = kmem_alloc(sizeof (void *) *
5811 		    (ndevs + oldndevs), KM_SLEEP);
5812 		for (i = 0; i < oldndevs; i++)
5813 			newdevs[i] = fnvlist_dup(olddevs[i]);
5814 		for (i = 0; i < ndevs; i++)
5815 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5816 
5817 		fnvlist_remove(sav->sav_config, config);
5818 
5819 		fnvlist_add_nvlist_array(sav->sav_config, config,
5820 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5821 		for (i = 0; i < oldndevs + ndevs; i++)
5822 			nvlist_free(newdevs[i]);
5823 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5824 	} else {
5825 		/*
5826 		 * Generate a new dev list.
5827 		 */
5828 		sav->sav_config = fnvlist_alloc();
5829 		fnvlist_add_nvlist_array(sav->sav_config, config,
5830 		    (const nvlist_t * const *)devs, ndevs);
5831 	}
5832 }
5833 
5834 /*
5835  * Stop and drop level 2 ARC devices
5836  */
5837 void
5838 spa_l2cache_drop(spa_t *spa)
5839 {
5840 	vdev_t *vd;
5841 	int i;
5842 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5843 
5844 	for (i = 0; i < sav->sav_count; i++) {
5845 		uint64_t pool;
5846 
5847 		vd = sav->sav_vdevs[i];
5848 		ASSERT(vd != NULL);
5849 
5850 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5851 		    pool != 0ULL && l2arc_vdev_present(vd))
5852 			l2arc_remove_vdev(vd);
5853 	}
5854 }
5855 
5856 /*
5857  * Verify encryption parameters for spa creation. If we are encrypting, we must
5858  * have the encryption feature flag enabled.
5859  */
5860 static int
5861 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5862     boolean_t has_encryption)
5863 {
5864 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5865 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5866 	    !has_encryption)
5867 		return (SET_ERROR(ENOTSUP));
5868 
5869 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5870 }
5871 
5872 /*
5873  * Pool Creation
5874  */
5875 int
5876 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5877     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5878 {
5879 	spa_t *spa;
5880 	const char *altroot = NULL;
5881 	vdev_t *rvd;
5882 	dsl_pool_t *dp;
5883 	dmu_tx_t *tx;
5884 	int error = 0;
5885 	uint64_t txg = TXG_INITIAL;
5886 	nvlist_t **spares, **l2cache;
5887 	uint_t nspares, nl2cache;
5888 	uint64_t version, obj, ndraid = 0;
5889 	boolean_t has_features;
5890 	boolean_t has_encryption;
5891 	boolean_t has_allocclass;
5892 	spa_feature_t feat;
5893 	const char *feat_name;
5894 	const char *poolname;
5895 	nvlist_t *nvl;
5896 
5897 	if (props == NULL ||
5898 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5899 		poolname = (char *)pool;
5900 
5901 	/*
5902 	 * If this pool already exists, return failure.
5903 	 */
5904 	mutex_enter(&spa_namespace_lock);
5905 	if (spa_lookup(poolname) != NULL) {
5906 		mutex_exit(&spa_namespace_lock);
5907 		return (SET_ERROR(EEXIST));
5908 	}
5909 
5910 	/*
5911 	 * Allocate a new spa_t structure.
5912 	 */
5913 	nvl = fnvlist_alloc();
5914 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5915 	(void) nvlist_lookup_string(props,
5916 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5917 	spa = spa_add(poolname, nvl, altroot);
5918 	fnvlist_free(nvl);
5919 	spa_activate(spa, spa_mode_global);
5920 
5921 	if (props && (error = spa_prop_validate(spa, props))) {
5922 		spa_deactivate(spa);
5923 		spa_remove(spa);
5924 		mutex_exit(&spa_namespace_lock);
5925 		return (error);
5926 	}
5927 
5928 	/*
5929 	 * Temporary pool names should never be written to disk.
5930 	 */
5931 	if (poolname != pool)
5932 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5933 
5934 	has_features = B_FALSE;
5935 	has_encryption = B_FALSE;
5936 	has_allocclass = B_FALSE;
5937 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5938 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5939 		if (zpool_prop_feature(nvpair_name(elem))) {
5940 			has_features = B_TRUE;
5941 
5942 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5943 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5944 			if (feat == SPA_FEATURE_ENCRYPTION)
5945 				has_encryption = B_TRUE;
5946 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5947 				has_allocclass = B_TRUE;
5948 		}
5949 	}
5950 
5951 	/* verify encryption params, if they were provided */
5952 	if (dcp != NULL) {
5953 		error = spa_create_check_encryption_params(dcp, has_encryption);
5954 		if (error != 0) {
5955 			spa_deactivate(spa);
5956 			spa_remove(spa);
5957 			mutex_exit(&spa_namespace_lock);
5958 			return (error);
5959 		}
5960 	}
5961 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5962 		spa_deactivate(spa);
5963 		spa_remove(spa);
5964 		mutex_exit(&spa_namespace_lock);
5965 		return (ENOTSUP);
5966 	}
5967 
5968 	if (has_features || nvlist_lookup_uint64(props,
5969 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5970 		version = SPA_VERSION;
5971 	}
5972 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5973 
5974 	spa->spa_first_txg = txg;
5975 	spa->spa_uberblock.ub_txg = txg - 1;
5976 	spa->spa_uberblock.ub_version = version;
5977 	spa->spa_ubsync = spa->spa_uberblock;
5978 	spa->spa_load_state = SPA_LOAD_CREATE;
5979 	spa->spa_removing_phys.sr_state = DSS_NONE;
5980 	spa->spa_removing_phys.sr_removing_vdev = -1;
5981 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5982 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5983 
5984 	/*
5985 	 * Create "The Godfather" zio to hold all async IOs
5986 	 */
5987 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5988 	    KM_SLEEP);
5989 	for (int i = 0; i < max_ncpus; i++) {
5990 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5991 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5992 		    ZIO_FLAG_GODFATHER);
5993 	}
5994 
5995 	/*
5996 	 * Create the root vdev.
5997 	 */
5998 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5999 
6000 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6001 
6002 	ASSERT(error != 0 || rvd != NULL);
6003 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6004 
6005 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6006 		error = SET_ERROR(EINVAL);
6007 
6008 	if (error == 0 &&
6009 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6010 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6011 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6012 		/*
6013 		 * instantiate the metaslab groups (this will dirty the vdevs)
6014 		 * we can no longer error exit past this point
6015 		 */
6016 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6017 			vdev_t *vd = rvd->vdev_child[c];
6018 
6019 			vdev_metaslab_set_size(vd);
6020 			vdev_expand(vd, txg);
6021 		}
6022 	}
6023 
6024 	spa_config_exit(spa, SCL_ALL, FTAG);
6025 
6026 	if (error != 0) {
6027 		spa_unload(spa);
6028 		spa_deactivate(spa);
6029 		spa_remove(spa);
6030 		mutex_exit(&spa_namespace_lock);
6031 		return (error);
6032 	}
6033 
6034 	/*
6035 	 * Get the list of spares, if specified.
6036 	 */
6037 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6038 	    &spares, &nspares) == 0) {
6039 		spa->spa_spares.sav_config = fnvlist_alloc();
6040 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6041 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6042 		    nspares);
6043 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6044 		spa_load_spares(spa);
6045 		spa_config_exit(spa, SCL_ALL, FTAG);
6046 		spa->spa_spares.sav_sync = B_TRUE;
6047 	}
6048 
6049 	/*
6050 	 * Get the list of level 2 cache devices, if specified.
6051 	 */
6052 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6053 	    &l2cache, &nl2cache) == 0) {
6054 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6055 		    NV_UNIQUE_NAME, KM_SLEEP));
6056 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6057 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6058 		    nl2cache);
6059 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6060 		spa_load_l2cache(spa);
6061 		spa_config_exit(spa, SCL_ALL, FTAG);
6062 		spa->spa_l2cache.sav_sync = B_TRUE;
6063 	}
6064 
6065 	spa->spa_is_initializing = B_TRUE;
6066 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6067 	spa->spa_is_initializing = B_FALSE;
6068 
6069 	/*
6070 	 * Create DDTs (dedup tables).
6071 	 */
6072 	ddt_create(spa);
6073 	/*
6074 	 * Create BRT table and BRT table object.
6075 	 */
6076 	brt_create(spa);
6077 
6078 	spa_update_dspace(spa);
6079 
6080 	tx = dmu_tx_create_assigned(dp, txg);
6081 
6082 	/*
6083 	 * Create the pool's history object.
6084 	 */
6085 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6086 		spa_history_create_obj(spa, tx);
6087 
6088 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6089 	spa_history_log_version(spa, "create", tx);
6090 
6091 	/*
6092 	 * Create the pool config object.
6093 	 */
6094 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6095 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6096 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6097 
6098 	if (zap_add(spa->spa_meta_objset,
6099 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6100 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6101 		cmn_err(CE_PANIC, "failed to add pool config");
6102 	}
6103 
6104 	if (zap_add(spa->spa_meta_objset,
6105 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6106 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6107 		cmn_err(CE_PANIC, "failed to add pool version");
6108 	}
6109 
6110 	/* Newly created pools with the right version are always deflated. */
6111 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6112 		spa->spa_deflate = TRUE;
6113 		if (zap_add(spa->spa_meta_objset,
6114 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6115 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6116 			cmn_err(CE_PANIC, "failed to add deflate");
6117 		}
6118 	}
6119 
6120 	/*
6121 	 * Create the deferred-free bpobj.  Turn off compression
6122 	 * because sync-to-convergence takes longer if the blocksize
6123 	 * keeps changing.
6124 	 */
6125 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6126 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6127 	    ZIO_COMPRESS_OFF, tx);
6128 	if (zap_add(spa->spa_meta_objset,
6129 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6130 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6131 		cmn_err(CE_PANIC, "failed to add bpobj");
6132 	}
6133 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6134 	    spa->spa_meta_objset, obj));
6135 
6136 	/*
6137 	 * Generate some random noise for salted checksums to operate on.
6138 	 */
6139 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6140 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6141 
6142 	/*
6143 	 * Set pool properties.
6144 	 */
6145 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6146 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6147 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6148 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6149 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6150 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6151 
6152 	if (props != NULL) {
6153 		spa_configfile_set(spa, props, B_FALSE);
6154 		spa_sync_props(props, tx);
6155 	}
6156 
6157 	for (int i = 0; i < ndraid; i++)
6158 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6159 
6160 	dmu_tx_commit(tx);
6161 
6162 	spa->spa_sync_on = B_TRUE;
6163 	txg_sync_start(dp);
6164 	mmp_thread_start(spa);
6165 	txg_wait_synced(dp, txg);
6166 
6167 	spa_spawn_aux_threads(spa);
6168 
6169 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6170 
6171 	/*
6172 	 * Don't count references from objsets that are already closed
6173 	 * and are making their way through the eviction process.
6174 	 */
6175 	spa_evicting_os_wait(spa);
6176 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6177 	spa->spa_load_state = SPA_LOAD_NONE;
6178 
6179 	spa_import_os(spa);
6180 
6181 	mutex_exit(&spa_namespace_lock);
6182 
6183 	return (0);
6184 }
6185 
6186 /*
6187  * Import a non-root pool into the system.
6188  */
6189 int
6190 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6191 {
6192 	spa_t *spa;
6193 	const char *altroot = NULL;
6194 	spa_load_state_t state = SPA_LOAD_IMPORT;
6195 	zpool_load_policy_t policy;
6196 	spa_mode_t mode = spa_mode_global;
6197 	uint64_t readonly = B_FALSE;
6198 	int error;
6199 	nvlist_t *nvroot;
6200 	nvlist_t **spares, **l2cache;
6201 	uint_t nspares, nl2cache;
6202 
6203 	/*
6204 	 * If a pool with this name exists, return failure.
6205 	 */
6206 	mutex_enter(&spa_namespace_lock);
6207 	if (spa_lookup(pool) != NULL) {
6208 		mutex_exit(&spa_namespace_lock);
6209 		return (SET_ERROR(EEXIST));
6210 	}
6211 
6212 	/*
6213 	 * Create and initialize the spa structure.
6214 	 */
6215 	(void) nvlist_lookup_string(props,
6216 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6217 	(void) nvlist_lookup_uint64(props,
6218 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6219 	if (readonly)
6220 		mode = SPA_MODE_READ;
6221 	spa = spa_add(pool, config, altroot);
6222 	spa->spa_import_flags = flags;
6223 
6224 	/*
6225 	 * Verbatim import - Take a pool and insert it into the namespace
6226 	 * as if it had been loaded at boot.
6227 	 */
6228 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6229 		if (props != NULL)
6230 			spa_configfile_set(spa, props, B_FALSE);
6231 
6232 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6233 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6234 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6235 		mutex_exit(&spa_namespace_lock);
6236 		return (0);
6237 	}
6238 
6239 	spa_activate(spa, mode);
6240 
6241 	/*
6242 	 * Don't start async tasks until we know everything is healthy.
6243 	 */
6244 	spa_async_suspend(spa);
6245 
6246 	zpool_get_load_policy(config, &policy);
6247 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6248 		state = SPA_LOAD_RECOVER;
6249 
6250 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6251 
6252 	if (state != SPA_LOAD_RECOVER) {
6253 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6254 		zfs_dbgmsg("spa_import: importing %s", pool);
6255 	} else {
6256 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6257 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6258 	}
6259 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6260 
6261 	/*
6262 	 * Propagate anything learned while loading the pool and pass it
6263 	 * back to caller (i.e. rewind info, missing devices, etc).
6264 	 */
6265 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6266 
6267 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6268 	/*
6269 	 * Toss any existing sparelist, as it doesn't have any validity
6270 	 * anymore, and conflicts with spa_has_spare().
6271 	 */
6272 	if (spa->spa_spares.sav_config) {
6273 		nvlist_free(spa->spa_spares.sav_config);
6274 		spa->spa_spares.sav_config = NULL;
6275 		spa_load_spares(spa);
6276 	}
6277 	if (spa->spa_l2cache.sav_config) {
6278 		nvlist_free(spa->spa_l2cache.sav_config);
6279 		spa->spa_l2cache.sav_config = NULL;
6280 		spa_load_l2cache(spa);
6281 	}
6282 
6283 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6284 	spa_config_exit(spa, SCL_ALL, FTAG);
6285 
6286 	if (props != NULL)
6287 		spa_configfile_set(spa, props, B_FALSE);
6288 
6289 	if (error != 0 || (props && spa_writeable(spa) &&
6290 	    (error = spa_prop_set(spa, props)))) {
6291 		spa_unload(spa);
6292 		spa_deactivate(spa);
6293 		spa_remove(spa);
6294 		mutex_exit(&spa_namespace_lock);
6295 		return (error);
6296 	}
6297 
6298 	spa_async_resume(spa);
6299 
6300 	/*
6301 	 * Override any spares and level 2 cache devices as specified by
6302 	 * the user, as these may have correct device names/devids, etc.
6303 	 */
6304 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6305 	    &spares, &nspares) == 0) {
6306 		if (spa->spa_spares.sav_config)
6307 			fnvlist_remove(spa->spa_spares.sav_config,
6308 			    ZPOOL_CONFIG_SPARES);
6309 		else
6310 			spa->spa_spares.sav_config = fnvlist_alloc();
6311 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6312 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6313 		    nspares);
6314 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6315 		spa_load_spares(spa);
6316 		spa_config_exit(spa, SCL_ALL, FTAG);
6317 		spa->spa_spares.sav_sync = B_TRUE;
6318 	}
6319 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6320 	    &l2cache, &nl2cache) == 0) {
6321 		if (spa->spa_l2cache.sav_config)
6322 			fnvlist_remove(spa->spa_l2cache.sav_config,
6323 			    ZPOOL_CONFIG_L2CACHE);
6324 		else
6325 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6326 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6327 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6328 		    nl2cache);
6329 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6330 		spa_load_l2cache(spa);
6331 		spa_config_exit(spa, SCL_ALL, FTAG);
6332 		spa->spa_l2cache.sav_sync = B_TRUE;
6333 	}
6334 
6335 	/*
6336 	 * Check for any removed devices.
6337 	 */
6338 	if (spa->spa_autoreplace) {
6339 		spa_aux_check_removed(&spa->spa_spares);
6340 		spa_aux_check_removed(&spa->spa_l2cache);
6341 	}
6342 
6343 	if (spa_writeable(spa)) {
6344 		/*
6345 		 * Update the config cache to include the newly-imported pool.
6346 		 */
6347 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6348 	}
6349 
6350 	/*
6351 	 * It's possible that the pool was expanded while it was exported.
6352 	 * We kick off an async task to handle this for us.
6353 	 */
6354 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6355 
6356 	spa_history_log_version(spa, "import", NULL);
6357 
6358 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6359 
6360 	mutex_exit(&spa_namespace_lock);
6361 
6362 	zvol_create_minors_recursive(pool);
6363 
6364 	spa_import_os(spa);
6365 
6366 	return (0);
6367 }
6368 
6369 nvlist_t *
6370 spa_tryimport(nvlist_t *tryconfig)
6371 {
6372 	nvlist_t *config = NULL;
6373 	const char *poolname, *cachefile;
6374 	spa_t *spa;
6375 	uint64_t state;
6376 	int error;
6377 	zpool_load_policy_t policy;
6378 
6379 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6380 		return (NULL);
6381 
6382 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6383 		return (NULL);
6384 
6385 	/*
6386 	 * Create and initialize the spa structure.
6387 	 */
6388 	mutex_enter(&spa_namespace_lock);
6389 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6390 	spa_activate(spa, SPA_MODE_READ);
6391 
6392 	/*
6393 	 * Rewind pool if a max txg was provided.
6394 	 */
6395 	zpool_get_load_policy(spa->spa_config, &policy);
6396 	if (policy.zlp_txg != UINT64_MAX) {
6397 		spa->spa_load_max_txg = policy.zlp_txg;
6398 		spa->spa_extreme_rewind = B_TRUE;
6399 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6400 		    poolname, (longlong_t)policy.zlp_txg);
6401 	} else {
6402 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6403 	}
6404 
6405 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6406 	    == 0) {
6407 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6408 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6409 	} else {
6410 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6411 	}
6412 
6413 	/*
6414 	 * spa_import() relies on a pool config fetched by spa_try_import()
6415 	 * for spare/cache devices. Import flags are not passed to
6416 	 * spa_tryimport(), which makes it return early due to a missing log
6417 	 * device and missing retrieving the cache device and spare eventually.
6418 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6419 	 * the correct configuration regardless of the missing log device.
6420 	 */
6421 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6422 
6423 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6424 
6425 	/*
6426 	 * If 'tryconfig' was at least parsable, return the current config.
6427 	 */
6428 	if (spa->spa_root_vdev != NULL) {
6429 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6430 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6431 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6432 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6433 		    spa->spa_uberblock.ub_timestamp);
6434 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6435 		    spa->spa_load_info);
6436 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6437 		    spa->spa_errata);
6438 
6439 		/*
6440 		 * If the bootfs property exists on this pool then we
6441 		 * copy it out so that external consumers can tell which
6442 		 * pools are bootable.
6443 		 */
6444 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6445 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6446 
6447 			/*
6448 			 * We have to play games with the name since the
6449 			 * pool was opened as TRYIMPORT_NAME.
6450 			 */
6451 			if (dsl_dsobj_to_dsname(spa_name(spa),
6452 			    spa->spa_bootfs, tmpname) == 0) {
6453 				char *cp;
6454 				char *dsname;
6455 
6456 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6457 
6458 				cp = strchr(tmpname, '/');
6459 				if (cp == NULL) {
6460 					(void) strlcpy(dsname, tmpname,
6461 					    MAXPATHLEN);
6462 				} else {
6463 					(void) snprintf(dsname, MAXPATHLEN,
6464 					    "%s/%s", poolname, ++cp);
6465 				}
6466 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6467 				    dsname);
6468 				kmem_free(dsname, MAXPATHLEN);
6469 			}
6470 			kmem_free(tmpname, MAXPATHLEN);
6471 		}
6472 
6473 		/*
6474 		 * Add the list of hot spares and level 2 cache devices.
6475 		 */
6476 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6477 		spa_add_spares(spa, config);
6478 		spa_add_l2cache(spa, config);
6479 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6480 	}
6481 
6482 	spa_unload(spa);
6483 	spa_deactivate(spa);
6484 	spa_remove(spa);
6485 	mutex_exit(&spa_namespace_lock);
6486 
6487 	return (config);
6488 }
6489 
6490 /*
6491  * Pool export/destroy
6492  *
6493  * The act of destroying or exporting a pool is very simple.  We make sure there
6494  * is no more pending I/O and any references to the pool are gone.  Then, we
6495  * update the pool state and sync all the labels to disk, removing the
6496  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6497  * we don't sync the labels or remove the configuration cache.
6498  */
6499 static int
6500 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6501     boolean_t force, boolean_t hardforce)
6502 {
6503 	int error;
6504 	spa_t *spa;
6505 
6506 	if (oldconfig)
6507 		*oldconfig = NULL;
6508 
6509 	if (!(spa_mode_global & SPA_MODE_WRITE))
6510 		return (SET_ERROR(EROFS));
6511 
6512 	mutex_enter(&spa_namespace_lock);
6513 	if ((spa = spa_lookup(pool)) == NULL) {
6514 		mutex_exit(&spa_namespace_lock);
6515 		return (SET_ERROR(ENOENT));
6516 	}
6517 
6518 	if (spa->spa_is_exporting) {
6519 		/* the pool is being exported by another thread */
6520 		mutex_exit(&spa_namespace_lock);
6521 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6522 	}
6523 	spa->spa_is_exporting = B_TRUE;
6524 
6525 	/*
6526 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6527 	 * reacquire the namespace lock, and see if we can export.
6528 	 */
6529 	spa_open_ref(spa, FTAG);
6530 	mutex_exit(&spa_namespace_lock);
6531 	spa_async_suspend(spa);
6532 	if (spa->spa_zvol_taskq) {
6533 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6534 		taskq_wait(spa->spa_zvol_taskq);
6535 	}
6536 	mutex_enter(&spa_namespace_lock);
6537 	spa_close(spa, FTAG);
6538 
6539 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6540 		goto export_spa;
6541 	/*
6542 	 * The pool will be in core if it's openable, in which case we can
6543 	 * modify its state.  Objsets may be open only because they're dirty,
6544 	 * so we have to force it to sync before checking spa_refcnt.
6545 	 */
6546 	if (spa->spa_sync_on) {
6547 		txg_wait_synced(spa->spa_dsl_pool, 0);
6548 		spa_evicting_os_wait(spa);
6549 	}
6550 
6551 	/*
6552 	 * A pool cannot be exported or destroyed if there are active
6553 	 * references.  If we are resetting a pool, allow references by
6554 	 * fault injection handlers.
6555 	 */
6556 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6557 		error = SET_ERROR(EBUSY);
6558 		goto fail;
6559 	}
6560 
6561 	if (spa->spa_sync_on) {
6562 		vdev_t *rvd = spa->spa_root_vdev;
6563 		/*
6564 		 * A pool cannot be exported if it has an active shared spare.
6565 		 * This is to prevent other pools stealing the active spare
6566 		 * from an exported pool. At user's own will, such pool can
6567 		 * be forcedly exported.
6568 		 */
6569 		if (!force && new_state == POOL_STATE_EXPORTED &&
6570 		    spa_has_active_shared_spare(spa)) {
6571 			error = SET_ERROR(EXDEV);
6572 			goto fail;
6573 		}
6574 
6575 		/*
6576 		 * We're about to export or destroy this pool. Make sure
6577 		 * we stop all initialization and trim activity here before
6578 		 * we set the spa_final_txg. This will ensure that all
6579 		 * dirty data resulting from the initialization is
6580 		 * committed to disk before we unload the pool.
6581 		 */
6582 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6583 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6584 		vdev_autotrim_stop_all(spa);
6585 		vdev_rebuild_stop_all(spa);
6586 
6587 		/*
6588 		 * We want this to be reflected on every label,
6589 		 * so mark them all dirty.  spa_unload() will do the
6590 		 * final sync that pushes these changes out.
6591 		 */
6592 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6593 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6594 			spa->spa_state = new_state;
6595 			vdev_config_dirty(rvd);
6596 			spa_config_exit(spa, SCL_ALL, FTAG);
6597 		}
6598 
6599 		/*
6600 		 * If the log space map feature is enabled and the pool is
6601 		 * getting exported (but not destroyed), we want to spend some
6602 		 * time flushing as many metaslabs as we can in an attempt to
6603 		 * destroy log space maps and save import time. This has to be
6604 		 * done before we set the spa_final_txg, otherwise
6605 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6606 		 * spa_should_flush_logs_on_unload() should be called after
6607 		 * spa_state has been set to the new_state.
6608 		 */
6609 		if (spa_should_flush_logs_on_unload(spa))
6610 			spa_unload_log_sm_flush_all(spa);
6611 
6612 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6613 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6614 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6615 			    TXG_DEFER_SIZE + 1;
6616 			spa_config_exit(spa, SCL_ALL, FTAG);
6617 		}
6618 	}
6619 
6620 export_spa:
6621 	spa_export_os(spa);
6622 
6623 	if (new_state == POOL_STATE_DESTROYED)
6624 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6625 	else if (new_state == POOL_STATE_EXPORTED)
6626 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6627 
6628 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6629 		spa_unload(spa);
6630 		spa_deactivate(spa);
6631 	}
6632 
6633 	if (oldconfig && spa->spa_config)
6634 		*oldconfig = fnvlist_dup(spa->spa_config);
6635 
6636 	if (new_state != POOL_STATE_UNINITIALIZED) {
6637 		if (!hardforce)
6638 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6639 		spa_remove(spa);
6640 	} else {
6641 		/*
6642 		 * If spa_remove() is not called for this spa_t and
6643 		 * there is any possibility that it can be reused,
6644 		 * we make sure to reset the exporting flag.
6645 		 */
6646 		spa->spa_is_exporting = B_FALSE;
6647 	}
6648 
6649 	mutex_exit(&spa_namespace_lock);
6650 	return (0);
6651 
6652 fail:
6653 	spa->spa_is_exporting = B_FALSE;
6654 	spa_async_resume(spa);
6655 	mutex_exit(&spa_namespace_lock);
6656 	return (error);
6657 }
6658 
6659 /*
6660  * Destroy a storage pool.
6661  */
6662 int
6663 spa_destroy(const char *pool)
6664 {
6665 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6666 	    B_FALSE, B_FALSE));
6667 }
6668 
6669 /*
6670  * Export a storage pool.
6671  */
6672 int
6673 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6674     boolean_t hardforce)
6675 {
6676 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6677 	    force, hardforce));
6678 }
6679 
6680 /*
6681  * Similar to spa_export(), this unloads the spa_t without actually removing it
6682  * from the namespace in any way.
6683  */
6684 int
6685 spa_reset(const char *pool)
6686 {
6687 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6688 	    B_FALSE, B_FALSE));
6689 }
6690 
6691 /*
6692  * ==========================================================================
6693  * Device manipulation
6694  * ==========================================================================
6695  */
6696 
6697 /*
6698  * This is called as a synctask to increment the draid feature flag
6699  */
6700 static void
6701 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6702 {
6703 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6704 	int draid = (int)(uintptr_t)arg;
6705 
6706 	for (int c = 0; c < draid; c++)
6707 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6708 }
6709 
6710 /*
6711  * Add a device to a storage pool.
6712  */
6713 int
6714 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6715 {
6716 	uint64_t txg, ndraid = 0;
6717 	int error;
6718 	vdev_t *rvd = spa->spa_root_vdev;
6719 	vdev_t *vd, *tvd;
6720 	nvlist_t **spares, **l2cache;
6721 	uint_t nspares, nl2cache;
6722 
6723 	ASSERT(spa_writeable(spa));
6724 
6725 	txg = spa_vdev_enter(spa);
6726 
6727 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6728 	    VDEV_ALLOC_ADD)) != 0)
6729 		return (spa_vdev_exit(spa, NULL, txg, error));
6730 
6731 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6732 
6733 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6734 	    &nspares) != 0)
6735 		nspares = 0;
6736 
6737 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6738 	    &nl2cache) != 0)
6739 		nl2cache = 0;
6740 
6741 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6742 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6743 
6744 	if (vd->vdev_children != 0 &&
6745 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6746 		return (spa_vdev_exit(spa, vd, txg, error));
6747 	}
6748 
6749 	/*
6750 	 * The virtual dRAID spares must be added after vdev tree is created
6751 	 * and the vdev guids are generated.  The guid of their associated
6752 	 * dRAID is stored in the config and used when opening the spare.
6753 	 */
6754 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6755 	    rvd->vdev_children)) == 0) {
6756 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6757 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6758 			nspares = 0;
6759 	} else {
6760 		return (spa_vdev_exit(spa, vd, txg, error));
6761 	}
6762 
6763 	/*
6764 	 * We must validate the spares and l2cache devices after checking the
6765 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6766 	 */
6767 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6768 		return (spa_vdev_exit(spa, vd, txg, error));
6769 
6770 	/*
6771 	 * If we are in the middle of a device removal, we can only add
6772 	 * devices which match the existing devices in the pool.
6773 	 * If we are in the middle of a removal, or have some indirect
6774 	 * vdevs, we can not add raidz or dRAID top levels.
6775 	 */
6776 	if (spa->spa_vdev_removal != NULL ||
6777 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6778 		for (int c = 0; c < vd->vdev_children; c++) {
6779 			tvd = vd->vdev_child[c];
6780 			if (spa->spa_vdev_removal != NULL &&
6781 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6782 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6783 			}
6784 			/* Fail if top level vdev is raidz or a dRAID */
6785 			if (vdev_get_nparity(tvd) != 0)
6786 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6787 
6788 			/*
6789 			 * Need the top level mirror to be
6790 			 * a mirror of leaf vdevs only
6791 			 */
6792 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6793 				for (uint64_t cid = 0;
6794 				    cid < tvd->vdev_children; cid++) {
6795 					vdev_t *cvd = tvd->vdev_child[cid];
6796 					if (!cvd->vdev_ops->vdev_op_leaf) {
6797 						return (spa_vdev_exit(spa, vd,
6798 						    txg, EINVAL));
6799 					}
6800 				}
6801 			}
6802 		}
6803 	}
6804 
6805 	for (int c = 0; c < vd->vdev_children; c++) {
6806 		tvd = vd->vdev_child[c];
6807 		vdev_remove_child(vd, tvd);
6808 		tvd->vdev_id = rvd->vdev_children;
6809 		vdev_add_child(rvd, tvd);
6810 		vdev_config_dirty(tvd);
6811 	}
6812 
6813 	if (nspares != 0) {
6814 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6815 		    ZPOOL_CONFIG_SPARES);
6816 		spa_load_spares(spa);
6817 		spa->spa_spares.sav_sync = B_TRUE;
6818 	}
6819 
6820 	if (nl2cache != 0) {
6821 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6822 		    ZPOOL_CONFIG_L2CACHE);
6823 		spa_load_l2cache(spa);
6824 		spa->spa_l2cache.sav_sync = B_TRUE;
6825 	}
6826 
6827 	/*
6828 	 * We can't increment a feature while holding spa_vdev so we
6829 	 * have to do it in a synctask.
6830 	 */
6831 	if (ndraid != 0) {
6832 		dmu_tx_t *tx;
6833 
6834 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6835 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6836 		    (void *)(uintptr_t)ndraid, tx);
6837 		dmu_tx_commit(tx);
6838 	}
6839 
6840 	/*
6841 	 * We have to be careful when adding new vdevs to an existing pool.
6842 	 * If other threads start allocating from these vdevs before we
6843 	 * sync the config cache, and we lose power, then upon reboot we may
6844 	 * fail to open the pool because there are DVAs that the config cache
6845 	 * can't translate.  Therefore, we first add the vdevs without
6846 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6847 	 * and then let spa_config_update() initialize the new metaslabs.
6848 	 *
6849 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6850 	 * if we lose power at any point in this sequence, the remaining
6851 	 * steps will be completed the next time we load the pool.
6852 	 */
6853 	(void) spa_vdev_exit(spa, vd, txg, 0);
6854 
6855 	mutex_enter(&spa_namespace_lock);
6856 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6857 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6858 	mutex_exit(&spa_namespace_lock);
6859 
6860 	return (0);
6861 }
6862 
6863 /*
6864  * Attach a device to a mirror.  The arguments are the path to any device
6865  * in the mirror, and the nvroot for the new device.  If the path specifies
6866  * a device that is not mirrored, we automatically insert the mirror vdev.
6867  *
6868  * If 'replacing' is specified, the new device is intended to replace the
6869  * existing device; in this case the two devices are made into their own
6870  * mirror using the 'replacing' vdev, which is functionally identical to
6871  * the mirror vdev (it actually reuses all the same ops) but has a few
6872  * extra rules: you can't attach to it after it's been created, and upon
6873  * completion of resilvering, the first disk (the one being replaced)
6874  * is automatically detached.
6875  *
6876  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6877  * should be performed instead of traditional healing reconstruction.  From
6878  * an administrators perspective these are both resilver operations.
6879  */
6880 int
6881 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6882     int rebuild)
6883 {
6884 	uint64_t txg, dtl_max_txg;
6885 	vdev_t *rvd = spa->spa_root_vdev;
6886 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6887 	vdev_ops_t *pvops;
6888 	char *oldvdpath, *newvdpath;
6889 	int newvd_isspare;
6890 	int error;
6891 
6892 	ASSERT(spa_writeable(spa));
6893 
6894 	txg = spa_vdev_enter(spa);
6895 
6896 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6897 
6898 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6899 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6900 		error = (spa_has_checkpoint(spa)) ?
6901 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6902 		return (spa_vdev_exit(spa, NULL, txg, error));
6903 	}
6904 
6905 	if (rebuild) {
6906 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6907 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6908 
6909 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
6910 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
6911 			return (spa_vdev_exit(spa, NULL, txg,
6912 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6913 		}
6914 	} else {
6915 		if (vdev_rebuild_active(rvd))
6916 			return (spa_vdev_exit(spa, NULL, txg,
6917 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6918 	}
6919 
6920 	if (spa->spa_vdev_removal != NULL)
6921 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6922 
6923 	if (oldvd == NULL)
6924 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6925 
6926 	if (!oldvd->vdev_ops->vdev_op_leaf)
6927 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6928 
6929 	pvd = oldvd->vdev_parent;
6930 
6931 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6932 	    VDEV_ALLOC_ATTACH) != 0)
6933 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6934 
6935 	if (newrootvd->vdev_children != 1)
6936 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6937 
6938 	newvd = newrootvd->vdev_child[0];
6939 
6940 	if (!newvd->vdev_ops->vdev_op_leaf)
6941 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6942 
6943 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6944 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6945 
6946 	/*
6947 	 * log, dedup and special vdevs should not be replaced by spares.
6948 	 */
6949 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6950 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6951 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6952 	}
6953 
6954 	/*
6955 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6956 	 */
6957 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6958 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6959 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6960 	}
6961 
6962 	if (rebuild) {
6963 		/*
6964 		 * For rebuilds, the top vdev must support reconstruction
6965 		 * using only space maps.  This means the only allowable
6966 		 * vdevs types are the root vdev, a mirror, or dRAID.
6967 		 */
6968 		tvd = pvd;
6969 		if (pvd->vdev_top != NULL)
6970 			tvd = pvd->vdev_top;
6971 
6972 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6973 		    tvd->vdev_ops != &vdev_root_ops &&
6974 		    tvd->vdev_ops != &vdev_draid_ops) {
6975 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6976 		}
6977 	}
6978 
6979 	if (!replacing) {
6980 		/*
6981 		 * For attach, the only allowable parent is a mirror or the root
6982 		 * vdev.
6983 		 */
6984 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6985 		    pvd->vdev_ops != &vdev_root_ops)
6986 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6987 
6988 		pvops = &vdev_mirror_ops;
6989 	} else {
6990 		/*
6991 		 * Active hot spares can only be replaced by inactive hot
6992 		 * spares.
6993 		 */
6994 		if (pvd->vdev_ops == &vdev_spare_ops &&
6995 		    oldvd->vdev_isspare &&
6996 		    !spa_has_spare(spa, newvd->vdev_guid))
6997 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6998 
6999 		/*
7000 		 * If the source is a hot spare, and the parent isn't already a
7001 		 * spare, then we want to create a new hot spare.  Otherwise, we
7002 		 * want to create a replacing vdev.  The user is not allowed to
7003 		 * attach to a spared vdev child unless the 'isspare' state is
7004 		 * the same (spare replaces spare, non-spare replaces
7005 		 * non-spare).
7006 		 */
7007 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7008 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7009 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7010 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7011 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7012 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7013 		}
7014 
7015 		if (newvd->vdev_isspare)
7016 			pvops = &vdev_spare_ops;
7017 		else
7018 			pvops = &vdev_replacing_ops;
7019 	}
7020 
7021 	/*
7022 	 * Make sure the new device is big enough.
7023 	 */
7024 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
7025 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7026 
7027 	/*
7028 	 * The new device cannot have a higher alignment requirement
7029 	 * than the top-level vdev.
7030 	 */
7031 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7032 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7033 
7034 	/*
7035 	 * If this is an in-place replacement, update oldvd's path and devid
7036 	 * to make it distinguishable from newvd, and unopenable from now on.
7037 	 */
7038 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
7039 		spa_strfree(oldvd->vdev_path);
7040 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
7041 		    KM_SLEEP);
7042 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
7043 		    "%s/%s", newvd->vdev_path, "old");
7044 		if (oldvd->vdev_devid != NULL) {
7045 			spa_strfree(oldvd->vdev_devid);
7046 			oldvd->vdev_devid = NULL;
7047 		}
7048 	}
7049 
7050 	/*
7051 	 * If the parent is not a mirror, or if we're replacing, insert the new
7052 	 * mirror/replacing/spare vdev above oldvd.
7053 	 */
7054 	if (pvd->vdev_ops != pvops)
7055 		pvd = vdev_add_parent(oldvd, pvops);
7056 
7057 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7058 	ASSERT(pvd->vdev_ops == pvops);
7059 	ASSERT(oldvd->vdev_parent == pvd);
7060 
7061 	/*
7062 	 * Extract the new device from its root and add it to pvd.
7063 	 */
7064 	vdev_remove_child(newrootvd, newvd);
7065 	newvd->vdev_id = pvd->vdev_children;
7066 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7067 	vdev_add_child(pvd, newvd);
7068 
7069 	/*
7070 	 * Reevaluate the parent vdev state.
7071 	 */
7072 	vdev_propagate_state(pvd);
7073 
7074 	tvd = newvd->vdev_top;
7075 	ASSERT(pvd->vdev_top == tvd);
7076 	ASSERT(tvd->vdev_parent == rvd);
7077 
7078 	vdev_config_dirty(tvd);
7079 
7080 	/*
7081 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7082 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7083 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7084 	 */
7085 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7086 
7087 	vdev_dtl_dirty(newvd, DTL_MISSING,
7088 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
7089 
7090 	if (newvd->vdev_isspare) {
7091 		spa_spare_activate(newvd);
7092 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7093 	}
7094 
7095 	oldvdpath = spa_strdup(oldvd->vdev_path);
7096 	newvdpath = spa_strdup(newvd->vdev_path);
7097 	newvd_isspare = newvd->vdev_isspare;
7098 
7099 	/*
7100 	 * Mark newvd's DTL dirty in this txg.
7101 	 */
7102 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
7103 
7104 	/*
7105 	 * Schedule the resilver or rebuild to restart in the future. We do
7106 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
7107 	 * respective datasets.
7108 	 */
7109 	if (rebuild) {
7110 		newvd->vdev_rebuild_txg = txg;
7111 
7112 		vdev_rebuild(tvd);
7113 	} else {
7114 		newvd->vdev_resilver_txg = txg;
7115 
7116 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7117 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7118 			vdev_defer_resilver(newvd);
7119 		} else {
7120 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
7121 			    dtl_max_txg);
7122 		}
7123 	}
7124 
7125 	if (spa->spa_bootfs)
7126 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7127 
7128 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7129 
7130 	/*
7131 	 * Commit the config
7132 	 */
7133 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7134 
7135 	spa_history_log_internal(spa, "vdev attach", NULL,
7136 	    "%s vdev=%s %s vdev=%s",
7137 	    replacing && newvd_isspare ? "spare in" :
7138 	    replacing ? "replace" : "attach", newvdpath,
7139 	    replacing ? "for" : "to", oldvdpath);
7140 
7141 	spa_strfree(oldvdpath);
7142 	spa_strfree(newvdpath);
7143 
7144 	return (0);
7145 }
7146 
7147 /*
7148  * Detach a device from a mirror or replacing vdev.
7149  *
7150  * If 'replace_done' is specified, only detach if the parent
7151  * is a replacing or a spare vdev.
7152  */
7153 int
7154 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7155 {
7156 	uint64_t txg;
7157 	int error;
7158 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7159 	vdev_t *vd, *pvd, *cvd, *tvd;
7160 	boolean_t unspare = B_FALSE;
7161 	uint64_t unspare_guid = 0;
7162 	char *vdpath;
7163 
7164 	ASSERT(spa_writeable(spa));
7165 
7166 	txg = spa_vdev_detach_enter(spa, guid);
7167 
7168 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7169 
7170 	/*
7171 	 * Besides being called directly from the userland through the
7172 	 * ioctl interface, spa_vdev_detach() can be potentially called
7173 	 * at the end of spa_vdev_resilver_done().
7174 	 *
7175 	 * In the regular case, when we have a checkpoint this shouldn't
7176 	 * happen as we never empty the DTLs of a vdev during the scrub
7177 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7178 	 * should never get here when we have a checkpoint.
7179 	 *
7180 	 * That said, even in a case when we checkpoint the pool exactly
7181 	 * as spa_vdev_resilver_done() calls this function everything
7182 	 * should be fine as the resilver will return right away.
7183 	 */
7184 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7185 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7186 		error = (spa_has_checkpoint(spa)) ?
7187 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7188 		return (spa_vdev_exit(spa, NULL, txg, error));
7189 	}
7190 
7191 	if (vd == NULL)
7192 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7193 
7194 	if (!vd->vdev_ops->vdev_op_leaf)
7195 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7196 
7197 	pvd = vd->vdev_parent;
7198 
7199 	/*
7200 	 * If the parent/child relationship is not as expected, don't do it.
7201 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7202 	 * vdev that's replacing B with C.  The user's intent in replacing
7203 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7204 	 * the replace by detaching C, the expected behavior is to end up
7205 	 * M(A,B).  But suppose that right after deciding to detach C,
7206 	 * the replacement of B completes.  We would have M(A,C), and then
7207 	 * ask to detach C, which would leave us with just A -- not what
7208 	 * the user wanted.  To prevent this, we make sure that the
7209 	 * parent/child relationship hasn't changed -- in this example,
7210 	 * that C's parent is still the replacing vdev R.
7211 	 */
7212 	if (pvd->vdev_guid != pguid && pguid != 0)
7213 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7214 
7215 	/*
7216 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7217 	 */
7218 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7219 	    pvd->vdev_ops != &vdev_spare_ops)
7220 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7221 
7222 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7223 	    spa_version(spa) >= SPA_VERSION_SPARES);
7224 
7225 	/*
7226 	 * Only mirror, replacing, and spare vdevs support detach.
7227 	 */
7228 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7229 	    pvd->vdev_ops != &vdev_mirror_ops &&
7230 	    pvd->vdev_ops != &vdev_spare_ops)
7231 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7232 
7233 	/*
7234 	 * If this device has the only valid copy of some data,
7235 	 * we cannot safely detach it.
7236 	 */
7237 	if (vdev_dtl_required(vd))
7238 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7239 
7240 	ASSERT(pvd->vdev_children >= 2);
7241 
7242 	/*
7243 	 * If we are detaching the second disk from a replacing vdev, then
7244 	 * check to see if we changed the original vdev's path to have "/old"
7245 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7246 	 */
7247 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7248 	    vd->vdev_path != NULL) {
7249 		size_t len = strlen(vd->vdev_path);
7250 
7251 		for (int c = 0; c < pvd->vdev_children; c++) {
7252 			cvd = pvd->vdev_child[c];
7253 
7254 			if (cvd == vd || cvd->vdev_path == NULL)
7255 				continue;
7256 
7257 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7258 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7259 				spa_strfree(cvd->vdev_path);
7260 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7261 				break;
7262 			}
7263 		}
7264 	}
7265 
7266 	/*
7267 	 * If we are detaching the original disk from a normal spare, then it
7268 	 * implies that the spare should become a real disk, and be removed
7269 	 * from the active spare list for the pool.  dRAID spares on the
7270 	 * other hand are coupled to the pool and thus should never be removed
7271 	 * from the spares list.
7272 	 */
7273 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7274 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7275 
7276 		if (last_cvd->vdev_isspare &&
7277 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7278 			unspare = B_TRUE;
7279 		}
7280 	}
7281 
7282 	/*
7283 	 * Erase the disk labels so the disk can be used for other things.
7284 	 * This must be done after all other error cases are handled,
7285 	 * but before we disembowel vd (so we can still do I/O to it).
7286 	 * But if we can't do it, don't treat the error as fatal --
7287 	 * it may be that the unwritability of the disk is the reason
7288 	 * it's being detached!
7289 	 */
7290 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7291 
7292 	/*
7293 	 * Remove vd from its parent and compact the parent's children.
7294 	 */
7295 	vdev_remove_child(pvd, vd);
7296 	vdev_compact_children(pvd);
7297 
7298 	/*
7299 	 * Remember one of the remaining children so we can get tvd below.
7300 	 */
7301 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7302 
7303 	/*
7304 	 * If we need to remove the remaining child from the list of hot spares,
7305 	 * do it now, marking the vdev as no longer a spare in the process.
7306 	 * We must do this before vdev_remove_parent(), because that can
7307 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7308 	 * reason, we must remove the spare now, in the same txg as the detach;
7309 	 * otherwise someone could attach a new sibling, change the GUID, and
7310 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7311 	 */
7312 	if (unspare) {
7313 		ASSERT(cvd->vdev_isspare);
7314 		spa_spare_remove(cvd);
7315 		unspare_guid = cvd->vdev_guid;
7316 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7317 		cvd->vdev_unspare = B_TRUE;
7318 	}
7319 
7320 	/*
7321 	 * If the parent mirror/replacing vdev only has one child,
7322 	 * the parent is no longer needed.  Remove it from the tree.
7323 	 */
7324 	if (pvd->vdev_children == 1) {
7325 		if (pvd->vdev_ops == &vdev_spare_ops)
7326 			cvd->vdev_unspare = B_FALSE;
7327 		vdev_remove_parent(cvd);
7328 	}
7329 
7330 	/*
7331 	 * We don't set tvd until now because the parent we just removed
7332 	 * may have been the previous top-level vdev.
7333 	 */
7334 	tvd = cvd->vdev_top;
7335 	ASSERT(tvd->vdev_parent == rvd);
7336 
7337 	/*
7338 	 * Reevaluate the parent vdev state.
7339 	 */
7340 	vdev_propagate_state(cvd);
7341 
7342 	/*
7343 	 * If the 'autoexpand' property is set on the pool then automatically
7344 	 * try to expand the size of the pool. For example if the device we
7345 	 * just detached was smaller than the others, it may be possible to
7346 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7347 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7348 	 */
7349 	if (spa->spa_autoexpand) {
7350 		vdev_reopen(tvd);
7351 		vdev_expand(tvd, txg);
7352 	}
7353 
7354 	vdev_config_dirty(tvd);
7355 
7356 	/*
7357 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7358 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7359 	 * But first make sure we're not on any *other* txg's DTL list, to
7360 	 * prevent vd from being accessed after it's freed.
7361 	 */
7362 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7363 	for (int t = 0; t < TXG_SIZE; t++)
7364 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7365 	vd->vdev_detached = B_TRUE;
7366 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7367 
7368 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7369 	spa_notify_waiters(spa);
7370 
7371 	/* hang on to the spa before we release the lock */
7372 	spa_open_ref(spa, FTAG);
7373 
7374 	error = spa_vdev_exit(spa, vd, txg, 0);
7375 
7376 	spa_history_log_internal(spa, "detach", NULL,
7377 	    "vdev=%s", vdpath);
7378 	spa_strfree(vdpath);
7379 
7380 	/*
7381 	 * If this was the removal of the original device in a hot spare vdev,
7382 	 * then we want to go through and remove the device from the hot spare
7383 	 * list of every other pool.
7384 	 */
7385 	if (unspare) {
7386 		spa_t *altspa = NULL;
7387 
7388 		mutex_enter(&spa_namespace_lock);
7389 		while ((altspa = spa_next(altspa)) != NULL) {
7390 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7391 			    altspa == spa)
7392 				continue;
7393 
7394 			spa_open_ref(altspa, FTAG);
7395 			mutex_exit(&spa_namespace_lock);
7396 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7397 			mutex_enter(&spa_namespace_lock);
7398 			spa_close(altspa, FTAG);
7399 		}
7400 		mutex_exit(&spa_namespace_lock);
7401 
7402 		/* search the rest of the vdevs for spares to remove */
7403 		spa_vdev_resilver_done(spa);
7404 	}
7405 
7406 	/* all done with the spa; OK to release */
7407 	mutex_enter(&spa_namespace_lock);
7408 	spa_close(spa, FTAG);
7409 	mutex_exit(&spa_namespace_lock);
7410 
7411 	return (error);
7412 }
7413 
7414 static int
7415 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7416     list_t *vd_list)
7417 {
7418 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7419 
7420 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7421 
7422 	/* Look up vdev and ensure it's a leaf. */
7423 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7424 	if (vd == NULL || vd->vdev_detached) {
7425 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7426 		return (SET_ERROR(ENODEV));
7427 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7428 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7429 		return (SET_ERROR(EINVAL));
7430 	} else if (!vdev_writeable(vd)) {
7431 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7432 		return (SET_ERROR(EROFS));
7433 	}
7434 	mutex_enter(&vd->vdev_initialize_lock);
7435 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7436 
7437 	/*
7438 	 * When we activate an initialize action we check to see
7439 	 * if the vdev_initialize_thread is NULL. We do this instead
7440 	 * of using the vdev_initialize_state since there might be
7441 	 * a previous initialization process which has completed but
7442 	 * the thread is not exited.
7443 	 */
7444 	if (cmd_type == POOL_INITIALIZE_START &&
7445 	    (vd->vdev_initialize_thread != NULL ||
7446 	    vd->vdev_top->vdev_removing)) {
7447 		mutex_exit(&vd->vdev_initialize_lock);
7448 		return (SET_ERROR(EBUSY));
7449 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7450 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7451 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7452 		mutex_exit(&vd->vdev_initialize_lock);
7453 		return (SET_ERROR(ESRCH));
7454 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7455 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7456 		mutex_exit(&vd->vdev_initialize_lock);
7457 		return (SET_ERROR(ESRCH));
7458 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7459 	    vd->vdev_initialize_thread != NULL) {
7460 		mutex_exit(&vd->vdev_initialize_lock);
7461 		return (SET_ERROR(EBUSY));
7462 	}
7463 
7464 	switch (cmd_type) {
7465 	case POOL_INITIALIZE_START:
7466 		vdev_initialize(vd);
7467 		break;
7468 	case POOL_INITIALIZE_CANCEL:
7469 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7470 		break;
7471 	case POOL_INITIALIZE_SUSPEND:
7472 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7473 		break;
7474 	case POOL_INITIALIZE_UNINIT:
7475 		vdev_uninitialize(vd);
7476 		break;
7477 	default:
7478 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7479 	}
7480 	mutex_exit(&vd->vdev_initialize_lock);
7481 
7482 	return (0);
7483 }
7484 
7485 int
7486 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7487     nvlist_t *vdev_errlist)
7488 {
7489 	int total_errors = 0;
7490 	list_t vd_list;
7491 
7492 	list_create(&vd_list, sizeof (vdev_t),
7493 	    offsetof(vdev_t, vdev_initialize_node));
7494 
7495 	/*
7496 	 * We hold the namespace lock through the whole function
7497 	 * to prevent any changes to the pool while we're starting or
7498 	 * stopping initialization. The config and state locks are held so that
7499 	 * we can properly assess the vdev state before we commit to
7500 	 * the initializing operation.
7501 	 */
7502 	mutex_enter(&spa_namespace_lock);
7503 
7504 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7505 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7506 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7507 
7508 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7509 		    &vd_list);
7510 		if (error != 0) {
7511 			char guid_as_str[MAXNAMELEN];
7512 
7513 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7514 			    "%llu", (unsigned long long)vdev_guid);
7515 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7516 			total_errors++;
7517 		}
7518 	}
7519 
7520 	/* Wait for all initialize threads to stop. */
7521 	vdev_initialize_stop_wait(spa, &vd_list);
7522 
7523 	/* Sync out the initializing state */
7524 	txg_wait_synced(spa->spa_dsl_pool, 0);
7525 	mutex_exit(&spa_namespace_lock);
7526 
7527 	list_destroy(&vd_list);
7528 
7529 	return (total_errors);
7530 }
7531 
7532 static int
7533 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7534     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7535 {
7536 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7537 
7538 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7539 
7540 	/* Look up vdev and ensure it's a leaf. */
7541 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7542 	if (vd == NULL || vd->vdev_detached) {
7543 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7544 		return (SET_ERROR(ENODEV));
7545 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7546 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7547 		return (SET_ERROR(EINVAL));
7548 	} else if (!vdev_writeable(vd)) {
7549 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7550 		return (SET_ERROR(EROFS));
7551 	} else if (!vd->vdev_has_trim) {
7552 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7553 		return (SET_ERROR(EOPNOTSUPP));
7554 	} else if (secure && !vd->vdev_has_securetrim) {
7555 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7556 		return (SET_ERROR(EOPNOTSUPP));
7557 	}
7558 	mutex_enter(&vd->vdev_trim_lock);
7559 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7560 
7561 	/*
7562 	 * When we activate a TRIM action we check to see if the
7563 	 * vdev_trim_thread is NULL. We do this instead of using the
7564 	 * vdev_trim_state since there might be a previous TRIM process
7565 	 * which has completed but the thread is not exited.
7566 	 */
7567 	if (cmd_type == POOL_TRIM_START &&
7568 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7569 		mutex_exit(&vd->vdev_trim_lock);
7570 		return (SET_ERROR(EBUSY));
7571 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7572 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7573 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7574 		mutex_exit(&vd->vdev_trim_lock);
7575 		return (SET_ERROR(ESRCH));
7576 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7577 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7578 		mutex_exit(&vd->vdev_trim_lock);
7579 		return (SET_ERROR(ESRCH));
7580 	}
7581 
7582 	switch (cmd_type) {
7583 	case POOL_TRIM_START:
7584 		vdev_trim(vd, rate, partial, secure);
7585 		break;
7586 	case POOL_TRIM_CANCEL:
7587 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7588 		break;
7589 	case POOL_TRIM_SUSPEND:
7590 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7591 		break;
7592 	default:
7593 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7594 	}
7595 	mutex_exit(&vd->vdev_trim_lock);
7596 
7597 	return (0);
7598 }
7599 
7600 /*
7601  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7602  * TRIM threads for each child vdev.  These threads pass over all of the free
7603  * space in the vdev's metaslabs and issues TRIM commands for that space.
7604  */
7605 int
7606 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7607     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7608 {
7609 	int total_errors = 0;
7610 	list_t vd_list;
7611 
7612 	list_create(&vd_list, sizeof (vdev_t),
7613 	    offsetof(vdev_t, vdev_trim_node));
7614 
7615 	/*
7616 	 * We hold the namespace lock through the whole function
7617 	 * to prevent any changes to the pool while we're starting or
7618 	 * stopping TRIM. The config and state locks are held so that
7619 	 * we can properly assess the vdev state before we commit to
7620 	 * the TRIM operation.
7621 	 */
7622 	mutex_enter(&spa_namespace_lock);
7623 
7624 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7625 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7626 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7627 
7628 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7629 		    rate, partial, secure, &vd_list);
7630 		if (error != 0) {
7631 			char guid_as_str[MAXNAMELEN];
7632 
7633 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7634 			    "%llu", (unsigned long long)vdev_guid);
7635 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7636 			total_errors++;
7637 		}
7638 	}
7639 
7640 	/* Wait for all TRIM threads to stop. */
7641 	vdev_trim_stop_wait(spa, &vd_list);
7642 
7643 	/* Sync out the TRIM state */
7644 	txg_wait_synced(spa->spa_dsl_pool, 0);
7645 	mutex_exit(&spa_namespace_lock);
7646 
7647 	list_destroy(&vd_list);
7648 
7649 	return (total_errors);
7650 }
7651 
7652 /*
7653  * Split a set of devices from their mirrors, and create a new pool from them.
7654  */
7655 int
7656 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7657     nvlist_t *props, boolean_t exp)
7658 {
7659 	int error = 0;
7660 	uint64_t txg, *glist;
7661 	spa_t *newspa;
7662 	uint_t c, children, lastlog;
7663 	nvlist_t **child, *nvl, *tmp;
7664 	dmu_tx_t *tx;
7665 	const char *altroot = NULL;
7666 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7667 	boolean_t activate_slog;
7668 
7669 	ASSERT(spa_writeable(spa));
7670 
7671 	txg = spa_vdev_enter(spa);
7672 
7673 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7674 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7675 		error = (spa_has_checkpoint(spa)) ?
7676 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7677 		return (spa_vdev_exit(spa, NULL, txg, error));
7678 	}
7679 
7680 	/* clear the log and flush everything up to now */
7681 	activate_slog = spa_passivate_log(spa);
7682 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7683 	error = spa_reset_logs(spa);
7684 	txg = spa_vdev_config_enter(spa);
7685 
7686 	if (activate_slog)
7687 		spa_activate_log(spa);
7688 
7689 	if (error != 0)
7690 		return (spa_vdev_exit(spa, NULL, txg, error));
7691 
7692 	/* check new spa name before going any further */
7693 	if (spa_lookup(newname) != NULL)
7694 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7695 
7696 	/*
7697 	 * scan through all the children to ensure they're all mirrors
7698 	 */
7699 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7700 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7701 	    &children) != 0)
7702 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7703 
7704 	/* first, check to ensure we've got the right child count */
7705 	rvd = spa->spa_root_vdev;
7706 	lastlog = 0;
7707 	for (c = 0; c < rvd->vdev_children; c++) {
7708 		vdev_t *vd = rvd->vdev_child[c];
7709 
7710 		/* don't count the holes & logs as children */
7711 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7712 		    !vdev_is_concrete(vd))) {
7713 			if (lastlog == 0)
7714 				lastlog = c;
7715 			continue;
7716 		}
7717 
7718 		lastlog = 0;
7719 	}
7720 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7721 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7722 
7723 	/* next, ensure no spare or cache devices are part of the split */
7724 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7725 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7726 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7727 
7728 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7729 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7730 
7731 	/* then, loop over each vdev and validate it */
7732 	for (c = 0; c < children; c++) {
7733 		uint64_t is_hole = 0;
7734 
7735 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7736 		    &is_hole);
7737 
7738 		if (is_hole != 0) {
7739 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7740 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7741 				continue;
7742 			} else {
7743 				error = SET_ERROR(EINVAL);
7744 				break;
7745 			}
7746 		}
7747 
7748 		/* deal with indirect vdevs */
7749 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7750 		    &vdev_indirect_ops)
7751 			continue;
7752 
7753 		/* which disk is going to be split? */
7754 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7755 		    &glist[c]) != 0) {
7756 			error = SET_ERROR(EINVAL);
7757 			break;
7758 		}
7759 
7760 		/* look it up in the spa */
7761 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7762 		if (vml[c] == NULL) {
7763 			error = SET_ERROR(ENODEV);
7764 			break;
7765 		}
7766 
7767 		/* make sure there's nothing stopping the split */
7768 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7769 		    vml[c]->vdev_islog ||
7770 		    !vdev_is_concrete(vml[c]) ||
7771 		    vml[c]->vdev_isspare ||
7772 		    vml[c]->vdev_isl2cache ||
7773 		    !vdev_writeable(vml[c]) ||
7774 		    vml[c]->vdev_children != 0 ||
7775 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7776 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7777 			error = SET_ERROR(EINVAL);
7778 			break;
7779 		}
7780 
7781 		if (vdev_dtl_required(vml[c]) ||
7782 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7783 			error = SET_ERROR(EBUSY);
7784 			break;
7785 		}
7786 
7787 		/* we need certain info from the top level */
7788 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7789 		    vml[c]->vdev_top->vdev_ms_array);
7790 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7791 		    vml[c]->vdev_top->vdev_ms_shift);
7792 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7793 		    vml[c]->vdev_top->vdev_asize);
7794 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7795 		    vml[c]->vdev_top->vdev_ashift);
7796 
7797 		/* transfer per-vdev ZAPs */
7798 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7799 		VERIFY0(nvlist_add_uint64(child[c],
7800 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7801 
7802 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7803 		VERIFY0(nvlist_add_uint64(child[c],
7804 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7805 		    vml[c]->vdev_parent->vdev_top_zap));
7806 	}
7807 
7808 	if (error != 0) {
7809 		kmem_free(vml, children * sizeof (vdev_t *));
7810 		kmem_free(glist, children * sizeof (uint64_t));
7811 		return (spa_vdev_exit(spa, NULL, txg, error));
7812 	}
7813 
7814 	/* stop writers from using the disks */
7815 	for (c = 0; c < children; c++) {
7816 		if (vml[c] != NULL)
7817 			vml[c]->vdev_offline = B_TRUE;
7818 	}
7819 	vdev_reopen(spa->spa_root_vdev);
7820 
7821 	/*
7822 	 * Temporarily record the splitting vdevs in the spa config.  This
7823 	 * will disappear once the config is regenerated.
7824 	 */
7825 	nvl = fnvlist_alloc();
7826 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7827 	kmem_free(glist, children * sizeof (uint64_t));
7828 
7829 	mutex_enter(&spa->spa_props_lock);
7830 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7831 	mutex_exit(&spa->spa_props_lock);
7832 	spa->spa_config_splitting = nvl;
7833 	vdev_config_dirty(spa->spa_root_vdev);
7834 
7835 	/* configure and create the new pool */
7836 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7837 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7838 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7839 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7840 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7841 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7842 	    spa_generate_guid(NULL));
7843 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7844 	(void) nvlist_lookup_string(props,
7845 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7846 
7847 	/* add the new pool to the namespace */
7848 	newspa = spa_add(newname, config, altroot);
7849 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7850 	newspa->spa_config_txg = spa->spa_config_txg;
7851 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7852 
7853 	/* release the spa config lock, retaining the namespace lock */
7854 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7855 
7856 	if (zio_injection_enabled)
7857 		zio_handle_panic_injection(spa, FTAG, 1);
7858 
7859 	spa_activate(newspa, spa_mode_global);
7860 	spa_async_suspend(newspa);
7861 
7862 	/*
7863 	 * Temporarily stop the initializing and TRIM activity.  We set the
7864 	 * state to ACTIVE so that we know to resume initializing or TRIM
7865 	 * once the split has completed.
7866 	 */
7867 	list_t vd_initialize_list;
7868 	list_create(&vd_initialize_list, sizeof (vdev_t),
7869 	    offsetof(vdev_t, vdev_initialize_node));
7870 
7871 	list_t vd_trim_list;
7872 	list_create(&vd_trim_list, sizeof (vdev_t),
7873 	    offsetof(vdev_t, vdev_trim_node));
7874 
7875 	for (c = 0; c < children; c++) {
7876 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7877 			mutex_enter(&vml[c]->vdev_initialize_lock);
7878 			vdev_initialize_stop(vml[c],
7879 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7880 			mutex_exit(&vml[c]->vdev_initialize_lock);
7881 
7882 			mutex_enter(&vml[c]->vdev_trim_lock);
7883 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7884 			mutex_exit(&vml[c]->vdev_trim_lock);
7885 		}
7886 	}
7887 
7888 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7889 	vdev_trim_stop_wait(spa, &vd_trim_list);
7890 
7891 	list_destroy(&vd_initialize_list);
7892 	list_destroy(&vd_trim_list);
7893 
7894 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7895 	newspa->spa_is_splitting = B_TRUE;
7896 
7897 	/* create the new pool from the disks of the original pool */
7898 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7899 	if (error)
7900 		goto out;
7901 
7902 	/* if that worked, generate a real config for the new pool */
7903 	if (newspa->spa_root_vdev != NULL) {
7904 		newspa->spa_config_splitting = fnvlist_alloc();
7905 		fnvlist_add_uint64(newspa->spa_config_splitting,
7906 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7907 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7908 		    B_TRUE));
7909 	}
7910 
7911 	/* set the props */
7912 	if (props != NULL) {
7913 		spa_configfile_set(newspa, props, B_FALSE);
7914 		error = spa_prop_set(newspa, props);
7915 		if (error)
7916 			goto out;
7917 	}
7918 
7919 	/* flush everything */
7920 	txg = spa_vdev_config_enter(newspa);
7921 	vdev_config_dirty(newspa->spa_root_vdev);
7922 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7923 
7924 	if (zio_injection_enabled)
7925 		zio_handle_panic_injection(spa, FTAG, 2);
7926 
7927 	spa_async_resume(newspa);
7928 
7929 	/* finally, update the original pool's config */
7930 	txg = spa_vdev_config_enter(spa);
7931 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7932 	error = dmu_tx_assign(tx, TXG_WAIT);
7933 	if (error != 0)
7934 		dmu_tx_abort(tx);
7935 	for (c = 0; c < children; c++) {
7936 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7937 			vdev_t *tvd = vml[c]->vdev_top;
7938 
7939 			/*
7940 			 * Need to be sure the detachable VDEV is not
7941 			 * on any *other* txg's DTL list to prevent it
7942 			 * from being accessed after it's freed.
7943 			 */
7944 			for (int t = 0; t < TXG_SIZE; t++) {
7945 				(void) txg_list_remove_this(
7946 				    &tvd->vdev_dtl_list, vml[c], t);
7947 			}
7948 
7949 			vdev_split(vml[c]);
7950 			if (error == 0)
7951 				spa_history_log_internal(spa, "detach", tx,
7952 				    "vdev=%s", vml[c]->vdev_path);
7953 
7954 			vdev_free(vml[c]);
7955 		}
7956 	}
7957 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7958 	vdev_config_dirty(spa->spa_root_vdev);
7959 	spa->spa_config_splitting = NULL;
7960 	nvlist_free(nvl);
7961 	if (error == 0)
7962 		dmu_tx_commit(tx);
7963 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7964 
7965 	if (zio_injection_enabled)
7966 		zio_handle_panic_injection(spa, FTAG, 3);
7967 
7968 	/* split is complete; log a history record */
7969 	spa_history_log_internal(newspa, "split", NULL,
7970 	    "from pool %s", spa_name(spa));
7971 
7972 	newspa->spa_is_splitting = B_FALSE;
7973 	kmem_free(vml, children * sizeof (vdev_t *));
7974 
7975 	/* if we're not going to mount the filesystems in userland, export */
7976 	if (exp)
7977 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7978 		    B_FALSE, B_FALSE);
7979 
7980 	return (error);
7981 
7982 out:
7983 	spa_unload(newspa);
7984 	spa_deactivate(newspa);
7985 	spa_remove(newspa);
7986 
7987 	txg = spa_vdev_config_enter(spa);
7988 
7989 	/* re-online all offlined disks */
7990 	for (c = 0; c < children; c++) {
7991 		if (vml[c] != NULL)
7992 			vml[c]->vdev_offline = B_FALSE;
7993 	}
7994 
7995 	/* restart initializing or trimming disks as necessary */
7996 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7997 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7998 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7999 
8000 	vdev_reopen(spa->spa_root_vdev);
8001 
8002 	nvlist_free(spa->spa_config_splitting);
8003 	spa->spa_config_splitting = NULL;
8004 	(void) spa_vdev_exit(spa, NULL, txg, error);
8005 
8006 	kmem_free(vml, children * sizeof (vdev_t *));
8007 	return (error);
8008 }
8009 
8010 /*
8011  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8012  * currently spared, so we can detach it.
8013  */
8014 static vdev_t *
8015 spa_vdev_resilver_done_hunt(vdev_t *vd)
8016 {
8017 	vdev_t *newvd, *oldvd;
8018 
8019 	for (int c = 0; c < vd->vdev_children; c++) {
8020 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8021 		if (oldvd != NULL)
8022 			return (oldvd);
8023 	}
8024 
8025 	/*
8026 	 * Check for a completed replacement.  We always consider the first
8027 	 * vdev in the list to be the oldest vdev, and the last one to be
8028 	 * the newest (see spa_vdev_attach() for how that works).  In
8029 	 * the case where the newest vdev is faulted, we will not automatically
8030 	 * remove it after a resilver completes.  This is OK as it will require
8031 	 * user intervention to determine which disk the admin wishes to keep.
8032 	 */
8033 	if (vd->vdev_ops == &vdev_replacing_ops) {
8034 		ASSERT(vd->vdev_children > 1);
8035 
8036 		newvd = vd->vdev_child[vd->vdev_children - 1];
8037 		oldvd = vd->vdev_child[0];
8038 
8039 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8040 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8041 		    !vdev_dtl_required(oldvd))
8042 			return (oldvd);
8043 	}
8044 
8045 	/*
8046 	 * Check for a completed resilver with the 'unspare' flag set.
8047 	 * Also potentially update faulted state.
8048 	 */
8049 	if (vd->vdev_ops == &vdev_spare_ops) {
8050 		vdev_t *first = vd->vdev_child[0];
8051 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8052 
8053 		if (last->vdev_unspare) {
8054 			oldvd = first;
8055 			newvd = last;
8056 		} else if (first->vdev_unspare) {
8057 			oldvd = last;
8058 			newvd = first;
8059 		} else {
8060 			oldvd = NULL;
8061 		}
8062 
8063 		if (oldvd != NULL &&
8064 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8065 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8066 		    !vdev_dtl_required(oldvd))
8067 			return (oldvd);
8068 
8069 		vdev_propagate_state(vd);
8070 
8071 		/*
8072 		 * If there are more than two spares attached to a disk,
8073 		 * and those spares are not required, then we want to
8074 		 * attempt to free them up now so that they can be used
8075 		 * by other pools.  Once we're back down to a single
8076 		 * disk+spare, we stop removing them.
8077 		 */
8078 		if (vd->vdev_children > 2) {
8079 			newvd = vd->vdev_child[1];
8080 
8081 			if (newvd->vdev_isspare && last->vdev_isspare &&
8082 			    vdev_dtl_empty(last, DTL_MISSING) &&
8083 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8084 			    !vdev_dtl_required(newvd))
8085 				return (newvd);
8086 		}
8087 	}
8088 
8089 	return (NULL);
8090 }
8091 
8092 static void
8093 spa_vdev_resilver_done(spa_t *spa)
8094 {
8095 	vdev_t *vd, *pvd, *ppvd;
8096 	uint64_t guid, sguid, pguid, ppguid;
8097 
8098 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8099 
8100 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8101 		pvd = vd->vdev_parent;
8102 		ppvd = pvd->vdev_parent;
8103 		guid = vd->vdev_guid;
8104 		pguid = pvd->vdev_guid;
8105 		ppguid = ppvd->vdev_guid;
8106 		sguid = 0;
8107 		/*
8108 		 * If we have just finished replacing a hot spared device, then
8109 		 * we need to detach the parent's first child (the original hot
8110 		 * spare) as well.
8111 		 */
8112 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8113 		    ppvd->vdev_children == 2) {
8114 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8115 			sguid = ppvd->vdev_child[1]->vdev_guid;
8116 		}
8117 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8118 
8119 		spa_config_exit(spa, SCL_ALL, FTAG);
8120 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8121 			return;
8122 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8123 			return;
8124 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8125 	}
8126 
8127 	spa_config_exit(spa, SCL_ALL, FTAG);
8128 
8129 	/*
8130 	 * If a detach was not performed above replace waiters will not have
8131 	 * been notified.  In which case we must do so now.
8132 	 */
8133 	spa_notify_waiters(spa);
8134 }
8135 
8136 /*
8137  * Update the stored path or FRU for this vdev.
8138  */
8139 static int
8140 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8141     boolean_t ispath)
8142 {
8143 	vdev_t *vd;
8144 	boolean_t sync = B_FALSE;
8145 
8146 	ASSERT(spa_writeable(spa));
8147 
8148 	spa_vdev_state_enter(spa, SCL_ALL);
8149 
8150 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8151 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8152 
8153 	if (!vd->vdev_ops->vdev_op_leaf)
8154 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8155 
8156 	if (ispath) {
8157 		if (strcmp(value, vd->vdev_path) != 0) {
8158 			spa_strfree(vd->vdev_path);
8159 			vd->vdev_path = spa_strdup(value);
8160 			sync = B_TRUE;
8161 		}
8162 	} else {
8163 		if (vd->vdev_fru == NULL) {
8164 			vd->vdev_fru = spa_strdup(value);
8165 			sync = B_TRUE;
8166 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8167 			spa_strfree(vd->vdev_fru);
8168 			vd->vdev_fru = spa_strdup(value);
8169 			sync = B_TRUE;
8170 		}
8171 	}
8172 
8173 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8174 }
8175 
8176 int
8177 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8178 {
8179 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8180 }
8181 
8182 int
8183 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8184 {
8185 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8186 }
8187 
8188 /*
8189  * ==========================================================================
8190  * SPA Scanning
8191  * ==========================================================================
8192  */
8193 int
8194 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8195 {
8196 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8197 
8198 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8199 		return (SET_ERROR(EBUSY));
8200 
8201 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8202 }
8203 
8204 int
8205 spa_scan_stop(spa_t *spa)
8206 {
8207 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8208 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8209 		return (SET_ERROR(EBUSY));
8210 
8211 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8212 }
8213 
8214 int
8215 spa_scan(spa_t *spa, pool_scan_func_t func)
8216 {
8217 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8218 
8219 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8220 		return (SET_ERROR(ENOTSUP));
8221 
8222 	if (func == POOL_SCAN_RESILVER &&
8223 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8224 		return (SET_ERROR(ENOTSUP));
8225 
8226 	/*
8227 	 * If a resilver was requested, but there is no DTL on a
8228 	 * writeable leaf device, we have nothing to do.
8229 	 */
8230 	if (func == POOL_SCAN_RESILVER &&
8231 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8232 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8233 		return (0);
8234 	}
8235 
8236 	if (func == POOL_SCAN_ERRORSCRUB &&
8237 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8238 		return (SET_ERROR(ENOTSUP));
8239 
8240 	return (dsl_scan(spa->spa_dsl_pool, func));
8241 }
8242 
8243 /*
8244  * ==========================================================================
8245  * SPA async task processing
8246  * ==========================================================================
8247  */
8248 
8249 static void
8250 spa_async_remove(spa_t *spa, vdev_t *vd)
8251 {
8252 	if (vd->vdev_remove_wanted) {
8253 		vd->vdev_remove_wanted = B_FALSE;
8254 		vd->vdev_delayed_close = B_FALSE;
8255 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8256 
8257 		/*
8258 		 * We want to clear the stats, but we don't want to do a full
8259 		 * vdev_clear() as that will cause us to throw away
8260 		 * degraded/faulted state as well as attempt to reopen the
8261 		 * device, all of which is a waste.
8262 		 */
8263 		vd->vdev_stat.vs_read_errors = 0;
8264 		vd->vdev_stat.vs_write_errors = 0;
8265 		vd->vdev_stat.vs_checksum_errors = 0;
8266 
8267 		vdev_state_dirty(vd->vdev_top);
8268 
8269 		/* Tell userspace that the vdev is gone. */
8270 		zfs_post_remove(spa, vd);
8271 	}
8272 
8273 	for (int c = 0; c < vd->vdev_children; c++)
8274 		spa_async_remove(spa, vd->vdev_child[c]);
8275 }
8276 
8277 static void
8278 spa_async_probe(spa_t *spa, vdev_t *vd)
8279 {
8280 	if (vd->vdev_probe_wanted) {
8281 		vd->vdev_probe_wanted = B_FALSE;
8282 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8283 	}
8284 
8285 	for (int c = 0; c < vd->vdev_children; c++)
8286 		spa_async_probe(spa, vd->vdev_child[c]);
8287 }
8288 
8289 static void
8290 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8291 {
8292 	if (!spa->spa_autoexpand)
8293 		return;
8294 
8295 	for (int c = 0; c < vd->vdev_children; c++) {
8296 		vdev_t *cvd = vd->vdev_child[c];
8297 		spa_async_autoexpand(spa, cvd);
8298 	}
8299 
8300 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8301 		return;
8302 
8303 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8304 }
8305 
8306 static __attribute__((noreturn)) void
8307 spa_async_thread(void *arg)
8308 {
8309 	spa_t *spa = (spa_t *)arg;
8310 	dsl_pool_t *dp = spa->spa_dsl_pool;
8311 	int tasks;
8312 
8313 	ASSERT(spa->spa_sync_on);
8314 
8315 	mutex_enter(&spa->spa_async_lock);
8316 	tasks = spa->spa_async_tasks;
8317 	spa->spa_async_tasks = 0;
8318 	mutex_exit(&spa->spa_async_lock);
8319 
8320 	/*
8321 	 * See if the config needs to be updated.
8322 	 */
8323 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8324 		uint64_t old_space, new_space;
8325 
8326 		mutex_enter(&spa_namespace_lock);
8327 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8328 		old_space += metaslab_class_get_space(spa_special_class(spa));
8329 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8330 		old_space += metaslab_class_get_space(
8331 		    spa_embedded_log_class(spa));
8332 
8333 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8334 
8335 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8336 		new_space += metaslab_class_get_space(spa_special_class(spa));
8337 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8338 		new_space += metaslab_class_get_space(
8339 		    spa_embedded_log_class(spa));
8340 		mutex_exit(&spa_namespace_lock);
8341 
8342 		/*
8343 		 * If the pool grew as a result of the config update,
8344 		 * then log an internal history event.
8345 		 */
8346 		if (new_space != old_space) {
8347 			spa_history_log_internal(spa, "vdev online", NULL,
8348 			    "pool '%s' size: %llu(+%llu)",
8349 			    spa_name(spa), (u_longlong_t)new_space,
8350 			    (u_longlong_t)(new_space - old_space));
8351 		}
8352 	}
8353 
8354 	/*
8355 	 * See if any devices need to be marked REMOVED.
8356 	 */
8357 	if (tasks & SPA_ASYNC_REMOVE) {
8358 		spa_vdev_state_enter(spa, SCL_NONE);
8359 		spa_async_remove(spa, spa->spa_root_vdev);
8360 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8361 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8362 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8363 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8364 		(void) spa_vdev_state_exit(spa, NULL, 0);
8365 	}
8366 
8367 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8368 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8369 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8370 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8371 	}
8372 
8373 	/*
8374 	 * See if any devices need to be probed.
8375 	 */
8376 	if (tasks & SPA_ASYNC_PROBE) {
8377 		spa_vdev_state_enter(spa, SCL_NONE);
8378 		spa_async_probe(spa, spa->spa_root_vdev);
8379 		(void) spa_vdev_state_exit(spa, NULL, 0);
8380 	}
8381 
8382 	/*
8383 	 * If any devices are done replacing, detach them.
8384 	 */
8385 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8386 	    tasks & SPA_ASYNC_REBUILD_DONE ||
8387 	    tasks & SPA_ASYNC_DETACH_SPARE) {
8388 		spa_vdev_resilver_done(spa);
8389 	}
8390 
8391 	/*
8392 	 * Kick off a resilver.
8393 	 */
8394 	if (tasks & SPA_ASYNC_RESILVER &&
8395 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8396 	    (!dsl_scan_resilvering(dp) ||
8397 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8398 		dsl_scan_restart_resilver(dp, 0);
8399 
8400 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8401 		mutex_enter(&spa_namespace_lock);
8402 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8403 		vdev_initialize_restart(spa->spa_root_vdev);
8404 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8405 		mutex_exit(&spa_namespace_lock);
8406 	}
8407 
8408 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8409 		mutex_enter(&spa_namespace_lock);
8410 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8411 		vdev_trim_restart(spa->spa_root_vdev);
8412 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8413 		mutex_exit(&spa_namespace_lock);
8414 	}
8415 
8416 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8417 		mutex_enter(&spa_namespace_lock);
8418 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8419 		vdev_autotrim_restart(spa);
8420 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8421 		mutex_exit(&spa_namespace_lock);
8422 	}
8423 
8424 	/*
8425 	 * Kick off L2 cache whole device TRIM.
8426 	 */
8427 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8428 		mutex_enter(&spa_namespace_lock);
8429 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8430 		vdev_trim_l2arc(spa);
8431 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8432 		mutex_exit(&spa_namespace_lock);
8433 	}
8434 
8435 	/*
8436 	 * Kick off L2 cache rebuilding.
8437 	 */
8438 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8439 		mutex_enter(&spa_namespace_lock);
8440 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8441 		l2arc_spa_rebuild_start(spa);
8442 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8443 		mutex_exit(&spa_namespace_lock);
8444 	}
8445 
8446 	/*
8447 	 * Let the world know that we're done.
8448 	 */
8449 	mutex_enter(&spa->spa_async_lock);
8450 	spa->spa_async_thread = NULL;
8451 	cv_broadcast(&spa->spa_async_cv);
8452 	mutex_exit(&spa->spa_async_lock);
8453 	thread_exit();
8454 }
8455 
8456 void
8457 spa_async_suspend(spa_t *spa)
8458 {
8459 	mutex_enter(&spa->spa_async_lock);
8460 	spa->spa_async_suspended++;
8461 	while (spa->spa_async_thread != NULL)
8462 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8463 	mutex_exit(&spa->spa_async_lock);
8464 
8465 	spa_vdev_remove_suspend(spa);
8466 
8467 	zthr_t *condense_thread = spa->spa_condense_zthr;
8468 	if (condense_thread != NULL)
8469 		zthr_cancel(condense_thread);
8470 
8471 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8472 	if (discard_thread != NULL)
8473 		zthr_cancel(discard_thread);
8474 
8475 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8476 	if (ll_delete_thread != NULL)
8477 		zthr_cancel(ll_delete_thread);
8478 
8479 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8480 	if (ll_condense_thread != NULL)
8481 		zthr_cancel(ll_condense_thread);
8482 }
8483 
8484 void
8485 spa_async_resume(spa_t *spa)
8486 {
8487 	mutex_enter(&spa->spa_async_lock);
8488 	ASSERT(spa->spa_async_suspended != 0);
8489 	spa->spa_async_suspended--;
8490 	mutex_exit(&spa->spa_async_lock);
8491 	spa_restart_removal(spa);
8492 
8493 	zthr_t *condense_thread = spa->spa_condense_zthr;
8494 	if (condense_thread != NULL)
8495 		zthr_resume(condense_thread);
8496 
8497 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8498 	if (discard_thread != NULL)
8499 		zthr_resume(discard_thread);
8500 
8501 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8502 	if (ll_delete_thread != NULL)
8503 		zthr_resume(ll_delete_thread);
8504 
8505 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8506 	if (ll_condense_thread != NULL)
8507 		zthr_resume(ll_condense_thread);
8508 }
8509 
8510 static boolean_t
8511 spa_async_tasks_pending(spa_t *spa)
8512 {
8513 	uint_t non_config_tasks;
8514 	uint_t config_task;
8515 	boolean_t config_task_suspended;
8516 
8517 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8518 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8519 	if (spa->spa_ccw_fail_time == 0) {
8520 		config_task_suspended = B_FALSE;
8521 	} else {
8522 		config_task_suspended =
8523 		    (gethrtime() - spa->spa_ccw_fail_time) <
8524 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8525 	}
8526 
8527 	return (non_config_tasks || (config_task && !config_task_suspended));
8528 }
8529 
8530 static void
8531 spa_async_dispatch(spa_t *spa)
8532 {
8533 	mutex_enter(&spa->spa_async_lock);
8534 	if (spa_async_tasks_pending(spa) &&
8535 	    !spa->spa_async_suspended &&
8536 	    spa->spa_async_thread == NULL)
8537 		spa->spa_async_thread = thread_create(NULL, 0,
8538 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8539 	mutex_exit(&spa->spa_async_lock);
8540 }
8541 
8542 void
8543 spa_async_request(spa_t *spa, int task)
8544 {
8545 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8546 	mutex_enter(&spa->spa_async_lock);
8547 	spa->spa_async_tasks |= task;
8548 	mutex_exit(&spa->spa_async_lock);
8549 }
8550 
8551 int
8552 spa_async_tasks(spa_t *spa)
8553 {
8554 	return (spa->spa_async_tasks);
8555 }
8556 
8557 /*
8558  * ==========================================================================
8559  * SPA syncing routines
8560  * ==========================================================================
8561  */
8562 
8563 
8564 static int
8565 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8566     dmu_tx_t *tx)
8567 {
8568 	bpobj_t *bpo = arg;
8569 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8570 	return (0);
8571 }
8572 
8573 int
8574 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8575 {
8576 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8577 }
8578 
8579 int
8580 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8581 {
8582 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8583 }
8584 
8585 static int
8586 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8587 {
8588 	zio_t *pio = arg;
8589 
8590 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8591 	    pio->io_flags));
8592 	return (0);
8593 }
8594 
8595 static int
8596 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8597     dmu_tx_t *tx)
8598 {
8599 	ASSERT(!bp_freed);
8600 	return (spa_free_sync_cb(arg, bp, tx));
8601 }
8602 
8603 /*
8604  * Note: this simple function is not inlined to make it easier to dtrace the
8605  * amount of time spent syncing frees.
8606  */
8607 static void
8608 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8609 {
8610 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8611 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8612 	VERIFY(zio_wait(zio) == 0);
8613 }
8614 
8615 /*
8616  * Note: this simple function is not inlined to make it easier to dtrace the
8617  * amount of time spent syncing deferred frees.
8618  */
8619 static void
8620 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8621 {
8622 	if (spa_sync_pass(spa) != 1)
8623 		return;
8624 
8625 	/*
8626 	 * Note:
8627 	 * If the log space map feature is active, we stop deferring
8628 	 * frees to the next TXG and therefore running this function
8629 	 * would be considered a no-op as spa_deferred_bpobj should
8630 	 * not have any entries.
8631 	 *
8632 	 * That said we run this function anyway (instead of returning
8633 	 * immediately) for the edge-case scenario where we just
8634 	 * activated the log space map feature in this TXG but we have
8635 	 * deferred frees from the previous TXG.
8636 	 */
8637 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8638 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8639 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8640 	VERIFY0(zio_wait(zio));
8641 }
8642 
8643 static void
8644 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8645 {
8646 	char *packed = NULL;
8647 	size_t bufsize;
8648 	size_t nvsize = 0;
8649 	dmu_buf_t *db;
8650 
8651 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8652 
8653 	/*
8654 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8655 	 * information.  This avoids the dmu_buf_will_dirty() path and
8656 	 * saves us a pre-read to get data we don't actually care about.
8657 	 */
8658 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8659 	packed = vmem_alloc(bufsize, KM_SLEEP);
8660 
8661 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8662 	    KM_SLEEP) == 0);
8663 	memset(packed + nvsize, 0, bufsize - nvsize);
8664 
8665 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8666 
8667 	vmem_free(packed, bufsize);
8668 
8669 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8670 	dmu_buf_will_dirty(db, tx);
8671 	*(uint64_t *)db->db_data = nvsize;
8672 	dmu_buf_rele(db, FTAG);
8673 }
8674 
8675 static void
8676 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8677     const char *config, const char *entry)
8678 {
8679 	nvlist_t *nvroot;
8680 	nvlist_t **list;
8681 	int i;
8682 
8683 	if (!sav->sav_sync)
8684 		return;
8685 
8686 	/*
8687 	 * Update the MOS nvlist describing the list of available devices.
8688 	 * spa_validate_aux() will have already made sure this nvlist is
8689 	 * valid and the vdevs are labeled appropriately.
8690 	 */
8691 	if (sav->sav_object == 0) {
8692 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8693 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8694 		    sizeof (uint64_t), tx);
8695 		VERIFY(zap_update(spa->spa_meta_objset,
8696 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8697 		    &sav->sav_object, tx) == 0);
8698 	}
8699 
8700 	nvroot = fnvlist_alloc();
8701 	if (sav->sav_count == 0) {
8702 		fnvlist_add_nvlist_array(nvroot, config,
8703 		    (const nvlist_t * const *)NULL, 0);
8704 	} else {
8705 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8706 		for (i = 0; i < sav->sav_count; i++)
8707 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8708 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8709 		fnvlist_add_nvlist_array(nvroot, config,
8710 		    (const nvlist_t * const *)list, sav->sav_count);
8711 		for (i = 0; i < sav->sav_count; i++)
8712 			nvlist_free(list[i]);
8713 		kmem_free(list, sav->sav_count * sizeof (void *));
8714 	}
8715 
8716 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8717 	nvlist_free(nvroot);
8718 
8719 	sav->sav_sync = B_FALSE;
8720 }
8721 
8722 /*
8723  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8724  * The all-vdev ZAP must be empty.
8725  */
8726 static void
8727 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8728 {
8729 	spa_t *spa = vd->vdev_spa;
8730 
8731 	if (vd->vdev_root_zap != 0 &&
8732 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8733 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8734 		    vd->vdev_root_zap, tx));
8735 	}
8736 	if (vd->vdev_top_zap != 0) {
8737 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8738 		    vd->vdev_top_zap, tx));
8739 	}
8740 	if (vd->vdev_leaf_zap != 0) {
8741 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8742 		    vd->vdev_leaf_zap, tx));
8743 	}
8744 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8745 		spa_avz_build(vd->vdev_child[i], avz, tx);
8746 	}
8747 }
8748 
8749 static void
8750 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8751 {
8752 	nvlist_t *config;
8753 
8754 	/*
8755 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8756 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8757 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8758 	 * need to rebuild the AVZ although the config may not be dirty.
8759 	 */
8760 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8761 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8762 		return;
8763 
8764 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8765 
8766 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8767 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8768 	    spa->spa_all_vdev_zaps != 0);
8769 
8770 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8771 		/* Make and build the new AVZ */
8772 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8773 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8774 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8775 
8776 		/* Diff old AVZ with new one */
8777 		zap_cursor_t zc;
8778 		zap_attribute_t za;
8779 
8780 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8781 		    spa->spa_all_vdev_zaps);
8782 		    zap_cursor_retrieve(&zc, &za) == 0;
8783 		    zap_cursor_advance(&zc)) {
8784 			uint64_t vdzap = za.za_first_integer;
8785 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8786 			    vdzap) == ENOENT) {
8787 				/*
8788 				 * ZAP is listed in old AVZ but not in new one;
8789 				 * destroy it
8790 				 */
8791 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8792 				    tx));
8793 			}
8794 		}
8795 
8796 		zap_cursor_fini(&zc);
8797 
8798 		/* Destroy the old AVZ */
8799 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8800 		    spa->spa_all_vdev_zaps, tx));
8801 
8802 		/* Replace the old AVZ in the dir obj with the new one */
8803 		VERIFY0(zap_update(spa->spa_meta_objset,
8804 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8805 		    sizeof (new_avz), 1, &new_avz, tx));
8806 
8807 		spa->spa_all_vdev_zaps = new_avz;
8808 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8809 		zap_cursor_t zc;
8810 		zap_attribute_t za;
8811 
8812 		/* Walk through the AVZ and destroy all listed ZAPs */
8813 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8814 		    spa->spa_all_vdev_zaps);
8815 		    zap_cursor_retrieve(&zc, &za) == 0;
8816 		    zap_cursor_advance(&zc)) {
8817 			uint64_t zap = za.za_first_integer;
8818 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8819 		}
8820 
8821 		zap_cursor_fini(&zc);
8822 
8823 		/* Destroy and unlink the AVZ itself */
8824 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8825 		    spa->spa_all_vdev_zaps, tx));
8826 		VERIFY0(zap_remove(spa->spa_meta_objset,
8827 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8828 		spa->spa_all_vdev_zaps = 0;
8829 	}
8830 
8831 	if (spa->spa_all_vdev_zaps == 0) {
8832 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8833 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8834 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8835 	}
8836 	spa->spa_avz_action = AVZ_ACTION_NONE;
8837 
8838 	/* Create ZAPs for vdevs that don't have them. */
8839 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8840 
8841 	config = spa_config_generate(spa, spa->spa_root_vdev,
8842 	    dmu_tx_get_txg(tx), B_FALSE);
8843 
8844 	/*
8845 	 * If we're upgrading the spa version then make sure that
8846 	 * the config object gets updated with the correct version.
8847 	 */
8848 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8849 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8850 		    spa->spa_uberblock.ub_version);
8851 
8852 	spa_config_exit(spa, SCL_STATE, FTAG);
8853 
8854 	nvlist_free(spa->spa_config_syncing);
8855 	spa->spa_config_syncing = config;
8856 
8857 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8858 }
8859 
8860 static void
8861 spa_sync_version(void *arg, dmu_tx_t *tx)
8862 {
8863 	uint64_t *versionp = arg;
8864 	uint64_t version = *versionp;
8865 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8866 
8867 	/*
8868 	 * Setting the version is special cased when first creating the pool.
8869 	 */
8870 	ASSERT(tx->tx_txg != TXG_INITIAL);
8871 
8872 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8873 	ASSERT(version >= spa_version(spa));
8874 
8875 	spa->spa_uberblock.ub_version = version;
8876 	vdev_config_dirty(spa->spa_root_vdev);
8877 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8878 	    (longlong_t)version);
8879 }
8880 
8881 /*
8882  * Set zpool properties.
8883  */
8884 static void
8885 spa_sync_props(void *arg, dmu_tx_t *tx)
8886 {
8887 	nvlist_t *nvp = arg;
8888 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8889 	objset_t *mos = spa->spa_meta_objset;
8890 	nvpair_t *elem = NULL;
8891 
8892 	mutex_enter(&spa->spa_props_lock);
8893 
8894 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8895 		uint64_t intval;
8896 		const char *strval, *fname;
8897 		zpool_prop_t prop;
8898 		const char *propname;
8899 		const char *elemname = nvpair_name(elem);
8900 		zprop_type_t proptype;
8901 		spa_feature_t fid;
8902 
8903 		switch (prop = zpool_name_to_prop(elemname)) {
8904 		case ZPOOL_PROP_VERSION:
8905 			intval = fnvpair_value_uint64(elem);
8906 			/*
8907 			 * The version is synced separately before other
8908 			 * properties and should be correct by now.
8909 			 */
8910 			ASSERT3U(spa_version(spa), >=, intval);
8911 			break;
8912 
8913 		case ZPOOL_PROP_ALTROOT:
8914 			/*
8915 			 * 'altroot' is a non-persistent property. It should
8916 			 * have been set temporarily at creation or import time.
8917 			 */
8918 			ASSERT(spa->spa_root != NULL);
8919 			break;
8920 
8921 		case ZPOOL_PROP_READONLY:
8922 		case ZPOOL_PROP_CACHEFILE:
8923 			/*
8924 			 * 'readonly' and 'cachefile' are also non-persistent
8925 			 * properties.
8926 			 */
8927 			break;
8928 		case ZPOOL_PROP_COMMENT:
8929 			strval = fnvpair_value_string(elem);
8930 			if (spa->spa_comment != NULL)
8931 				spa_strfree(spa->spa_comment);
8932 			spa->spa_comment = spa_strdup(strval);
8933 			/*
8934 			 * We need to dirty the configuration on all the vdevs
8935 			 * so that their labels get updated.  We also need to
8936 			 * update the cache file to keep it in sync with the
8937 			 * MOS version. It's unnecessary to do this for pool
8938 			 * creation since the vdev's configuration has already
8939 			 * been dirtied.
8940 			 */
8941 			if (tx->tx_txg != TXG_INITIAL) {
8942 				vdev_config_dirty(spa->spa_root_vdev);
8943 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8944 			}
8945 			spa_history_log_internal(spa, "set", tx,
8946 			    "%s=%s", elemname, strval);
8947 			break;
8948 		case ZPOOL_PROP_COMPATIBILITY:
8949 			strval = fnvpair_value_string(elem);
8950 			if (spa->spa_compatibility != NULL)
8951 				spa_strfree(spa->spa_compatibility);
8952 			spa->spa_compatibility = spa_strdup(strval);
8953 			/*
8954 			 * Dirty the configuration on vdevs as above.
8955 			 */
8956 			if (tx->tx_txg != TXG_INITIAL) {
8957 				vdev_config_dirty(spa->spa_root_vdev);
8958 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8959 			}
8960 
8961 			spa_history_log_internal(spa, "set", tx,
8962 			    "%s=%s", nvpair_name(elem), strval);
8963 			break;
8964 
8965 		case ZPOOL_PROP_INVAL:
8966 			if (zpool_prop_feature(elemname)) {
8967 				fname = strchr(elemname, '@') + 1;
8968 				VERIFY0(zfeature_lookup_name(fname, &fid));
8969 
8970 				spa_feature_enable(spa, fid, tx);
8971 				spa_history_log_internal(spa, "set", tx,
8972 				    "%s=enabled", elemname);
8973 				break;
8974 			} else if (!zfs_prop_user(elemname)) {
8975 				ASSERT(zpool_prop_feature(elemname));
8976 				break;
8977 			}
8978 			zfs_fallthrough;
8979 		default:
8980 			/*
8981 			 * Set pool property values in the poolprops mos object.
8982 			 */
8983 			if (spa->spa_pool_props_object == 0) {
8984 				spa->spa_pool_props_object =
8985 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8986 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8987 				    tx);
8988 			}
8989 
8990 			/* normalize the property name */
8991 			if (prop == ZPOOL_PROP_INVAL) {
8992 				propname = elemname;
8993 				proptype = PROP_TYPE_STRING;
8994 			} else {
8995 				propname = zpool_prop_to_name(prop);
8996 				proptype = zpool_prop_get_type(prop);
8997 			}
8998 
8999 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9000 				ASSERT(proptype == PROP_TYPE_STRING);
9001 				strval = fnvpair_value_string(elem);
9002 				VERIFY0(zap_update(mos,
9003 				    spa->spa_pool_props_object, propname,
9004 				    1, strlen(strval) + 1, strval, tx));
9005 				spa_history_log_internal(spa, "set", tx,
9006 				    "%s=%s", elemname, strval);
9007 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9008 				intval = fnvpair_value_uint64(elem);
9009 
9010 				if (proptype == PROP_TYPE_INDEX) {
9011 					const char *unused;
9012 					VERIFY0(zpool_prop_index_to_string(
9013 					    prop, intval, &unused));
9014 				}
9015 				VERIFY0(zap_update(mos,
9016 				    spa->spa_pool_props_object, propname,
9017 				    8, 1, &intval, tx));
9018 				spa_history_log_internal(spa, "set", tx,
9019 				    "%s=%lld", elemname,
9020 				    (longlong_t)intval);
9021 
9022 				switch (prop) {
9023 				case ZPOOL_PROP_DELEGATION:
9024 					spa->spa_delegation = intval;
9025 					break;
9026 				case ZPOOL_PROP_BOOTFS:
9027 					spa->spa_bootfs = intval;
9028 					break;
9029 				case ZPOOL_PROP_FAILUREMODE:
9030 					spa->spa_failmode = intval;
9031 					break;
9032 				case ZPOOL_PROP_AUTOTRIM:
9033 					spa->spa_autotrim = intval;
9034 					spa_async_request(spa,
9035 					    SPA_ASYNC_AUTOTRIM_RESTART);
9036 					break;
9037 				case ZPOOL_PROP_AUTOEXPAND:
9038 					spa->spa_autoexpand = intval;
9039 					if (tx->tx_txg != TXG_INITIAL)
9040 						spa_async_request(spa,
9041 						    SPA_ASYNC_AUTOEXPAND);
9042 					break;
9043 				case ZPOOL_PROP_MULTIHOST:
9044 					spa->spa_multihost = intval;
9045 					break;
9046 				default:
9047 					break;
9048 				}
9049 			} else {
9050 				ASSERT(0); /* not allowed */
9051 			}
9052 		}
9053 
9054 	}
9055 
9056 	mutex_exit(&spa->spa_props_lock);
9057 }
9058 
9059 /*
9060  * Perform one-time upgrade on-disk changes.  spa_version() does not
9061  * reflect the new version this txg, so there must be no changes this
9062  * txg to anything that the upgrade code depends on after it executes.
9063  * Therefore this must be called after dsl_pool_sync() does the sync
9064  * tasks.
9065  */
9066 static void
9067 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9068 {
9069 	if (spa_sync_pass(spa) != 1)
9070 		return;
9071 
9072 	dsl_pool_t *dp = spa->spa_dsl_pool;
9073 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9074 
9075 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9076 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9077 		dsl_pool_create_origin(dp, tx);
9078 
9079 		/* Keeping the origin open increases spa_minref */
9080 		spa->spa_minref += 3;
9081 	}
9082 
9083 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9084 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9085 		dsl_pool_upgrade_clones(dp, tx);
9086 	}
9087 
9088 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9089 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9090 		dsl_pool_upgrade_dir_clones(dp, tx);
9091 
9092 		/* Keeping the freedir open increases spa_minref */
9093 		spa->spa_minref += 3;
9094 	}
9095 
9096 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9097 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9098 		spa_feature_create_zap_objects(spa, tx);
9099 	}
9100 
9101 	/*
9102 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9103 	 * when possibility to use lz4 compression for metadata was added
9104 	 * Old pools that have this feature enabled must be upgraded to have
9105 	 * this feature active
9106 	 */
9107 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9108 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9109 		    SPA_FEATURE_LZ4_COMPRESS);
9110 		boolean_t lz4_ac = spa_feature_is_active(spa,
9111 		    SPA_FEATURE_LZ4_COMPRESS);
9112 
9113 		if (lz4_en && !lz4_ac)
9114 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9115 	}
9116 
9117 	/*
9118 	 * If we haven't written the salt, do so now.  Note that the
9119 	 * feature may not be activated yet, but that's fine since
9120 	 * the presence of this ZAP entry is backwards compatible.
9121 	 */
9122 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9123 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9124 		VERIFY0(zap_add(spa->spa_meta_objset,
9125 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9126 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9127 		    spa->spa_cksum_salt.zcs_bytes, tx));
9128 	}
9129 
9130 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9131 }
9132 
9133 static void
9134 vdev_indirect_state_sync_verify(vdev_t *vd)
9135 {
9136 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9137 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9138 
9139 	if (vd->vdev_ops == &vdev_indirect_ops) {
9140 		ASSERT(vim != NULL);
9141 		ASSERT(vib != NULL);
9142 	}
9143 
9144 	uint64_t obsolete_sm_object = 0;
9145 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9146 	if (obsolete_sm_object != 0) {
9147 		ASSERT(vd->vdev_obsolete_sm != NULL);
9148 		ASSERT(vd->vdev_removing ||
9149 		    vd->vdev_ops == &vdev_indirect_ops);
9150 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9151 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9152 		ASSERT3U(obsolete_sm_object, ==,
9153 		    space_map_object(vd->vdev_obsolete_sm));
9154 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9155 		    space_map_allocated(vd->vdev_obsolete_sm));
9156 	}
9157 	ASSERT(vd->vdev_obsolete_segments != NULL);
9158 
9159 	/*
9160 	 * Since frees / remaps to an indirect vdev can only
9161 	 * happen in syncing context, the obsolete segments
9162 	 * tree must be empty when we start syncing.
9163 	 */
9164 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9165 }
9166 
9167 /*
9168  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9169  * async write queue depth in case it changed. The max queue depth will
9170  * not change in the middle of syncing out this txg.
9171  */
9172 static void
9173 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9174 {
9175 	ASSERT(spa_writeable(spa));
9176 
9177 	vdev_t *rvd = spa->spa_root_vdev;
9178 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9179 	    zfs_vdev_queue_depth_pct / 100;
9180 	metaslab_class_t *normal = spa_normal_class(spa);
9181 	metaslab_class_t *special = spa_special_class(spa);
9182 	metaslab_class_t *dedup = spa_dedup_class(spa);
9183 
9184 	uint64_t slots_per_allocator = 0;
9185 	for (int c = 0; c < rvd->vdev_children; c++) {
9186 		vdev_t *tvd = rvd->vdev_child[c];
9187 
9188 		metaslab_group_t *mg = tvd->vdev_mg;
9189 		if (mg == NULL || !metaslab_group_initialized(mg))
9190 			continue;
9191 
9192 		metaslab_class_t *mc = mg->mg_class;
9193 		if (mc != normal && mc != special && mc != dedup)
9194 			continue;
9195 
9196 		/*
9197 		 * It is safe to do a lock-free check here because only async
9198 		 * allocations look at mg_max_alloc_queue_depth, and async
9199 		 * allocations all happen from spa_sync().
9200 		 */
9201 		for (int i = 0; i < mg->mg_allocators; i++) {
9202 			ASSERT0(zfs_refcount_count(
9203 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9204 		}
9205 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9206 
9207 		for (int i = 0; i < mg->mg_allocators; i++) {
9208 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9209 			    zfs_vdev_def_queue_depth;
9210 		}
9211 		slots_per_allocator += zfs_vdev_def_queue_depth;
9212 	}
9213 
9214 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9215 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9216 		    mca_alloc_slots));
9217 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9218 		    mca_alloc_slots));
9219 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9220 		    mca_alloc_slots));
9221 		normal->mc_allocator[i].mca_alloc_max_slots =
9222 		    slots_per_allocator;
9223 		special->mc_allocator[i].mca_alloc_max_slots =
9224 		    slots_per_allocator;
9225 		dedup->mc_allocator[i].mca_alloc_max_slots =
9226 		    slots_per_allocator;
9227 	}
9228 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9229 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9230 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9231 }
9232 
9233 static void
9234 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9235 {
9236 	ASSERT(spa_writeable(spa));
9237 
9238 	vdev_t *rvd = spa->spa_root_vdev;
9239 	for (int c = 0; c < rvd->vdev_children; c++) {
9240 		vdev_t *vd = rvd->vdev_child[c];
9241 		vdev_indirect_state_sync_verify(vd);
9242 
9243 		if (vdev_indirect_should_condense(vd)) {
9244 			spa_condense_indirect_start_sync(vd, tx);
9245 			break;
9246 		}
9247 	}
9248 }
9249 
9250 static void
9251 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9252 {
9253 	objset_t *mos = spa->spa_meta_objset;
9254 	dsl_pool_t *dp = spa->spa_dsl_pool;
9255 	uint64_t txg = tx->tx_txg;
9256 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9257 
9258 	do {
9259 		int pass = ++spa->spa_sync_pass;
9260 
9261 		spa_sync_config_object(spa, tx);
9262 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9263 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9264 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9265 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9266 		spa_errlog_sync(spa, txg);
9267 		dsl_pool_sync(dp, txg);
9268 
9269 		if (pass < zfs_sync_pass_deferred_free ||
9270 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9271 			/*
9272 			 * If the log space map feature is active we don't
9273 			 * care about deferred frees and the deferred bpobj
9274 			 * as the log space map should effectively have the
9275 			 * same results (i.e. appending only to one object).
9276 			 */
9277 			spa_sync_frees(spa, free_bpl, tx);
9278 		} else {
9279 			/*
9280 			 * We can not defer frees in pass 1, because
9281 			 * we sync the deferred frees later in pass 1.
9282 			 */
9283 			ASSERT3U(pass, >, 1);
9284 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9285 			    &spa->spa_deferred_bpobj, tx);
9286 		}
9287 
9288 		brt_sync(spa, txg);
9289 		ddt_sync(spa, txg);
9290 		dsl_scan_sync(dp, tx);
9291 		dsl_errorscrub_sync(dp, tx);
9292 		svr_sync(spa, tx);
9293 		spa_sync_upgrades(spa, tx);
9294 
9295 		spa_flush_metaslabs(spa, tx);
9296 
9297 		vdev_t *vd = NULL;
9298 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9299 		    != NULL)
9300 			vdev_sync(vd, txg);
9301 
9302 		/*
9303 		 * Note: We need to check if the MOS is dirty because we could
9304 		 * have marked the MOS dirty without updating the uberblock
9305 		 * (e.g. if we have sync tasks but no dirty user data). We need
9306 		 * to check the uberblock's rootbp because it is updated if we
9307 		 * have synced out dirty data (though in this case the MOS will
9308 		 * most likely also be dirty due to second order effects, we
9309 		 * don't want to rely on that here).
9310 		 */
9311 		if (pass == 1 &&
9312 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9313 		    !dmu_objset_is_dirty(mos, txg)) {
9314 			/*
9315 			 * Nothing changed on the first pass, therefore this
9316 			 * TXG is a no-op. Avoid syncing deferred frees, so
9317 			 * that we can keep this TXG as a no-op.
9318 			 */
9319 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9320 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9321 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9322 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9323 			break;
9324 		}
9325 
9326 		spa_sync_deferred_frees(spa, tx);
9327 	} while (dmu_objset_is_dirty(mos, txg));
9328 }
9329 
9330 /*
9331  * Rewrite the vdev configuration (which includes the uberblock) to
9332  * commit the transaction group.
9333  *
9334  * If there are no dirty vdevs, we sync the uberblock to a few random
9335  * top-level vdevs that are known to be visible in the config cache
9336  * (see spa_vdev_add() for a complete description). If there *are* dirty
9337  * vdevs, sync the uberblock to all vdevs.
9338  */
9339 static void
9340 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9341 {
9342 	vdev_t *rvd = spa->spa_root_vdev;
9343 	uint64_t txg = tx->tx_txg;
9344 
9345 	for (;;) {
9346 		int error = 0;
9347 
9348 		/*
9349 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9350 		 * while we're attempting to write the vdev labels.
9351 		 */
9352 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9353 
9354 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9355 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9356 			int svdcount = 0;
9357 			int children = rvd->vdev_children;
9358 			int c0 = random_in_range(children);
9359 
9360 			for (int c = 0; c < children; c++) {
9361 				vdev_t *vd =
9362 				    rvd->vdev_child[(c0 + c) % children];
9363 
9364 				/* Stop when revisiting the first vdev */
9365 				if (c > 0 && svd[0] == vd)
9366 					break;
9367 
9368 				if (vd->vdev_ms_array == 0 ||
9369 				    vd->vdev_islog ||
9370 				    !vdev_is_concrete(vd))
9371 					continue;
9372 
9373 				svd[svdcount++] = vd;
9374 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9375 					break;
9376 			}
9377 			error = vdev_config_sync(svd, svdcount, txg);
9378 		} else {
9379 			error = vdev_config_sync(rvd->vdev_child,
9380 			    rvd->vdev_children, txg);
9381 		}
9382 
9383 		if (error == 0)
9384 			spa->spa_last_synced_guid = rvd->vdev_guid;
9385 
9386 		spa_config_exit(spa, SCL_STATE, FTAG);
9387 
9388 		if (error == 0)
9389 			break;
9390 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9391 		zio_resume_wait(spa);
9392 	}
9393 }
9394 
9395 /*
9396  * Sync the specified transaction group.  New blocks may be dirtied as
9397  * part of the process, so we iterate until it converges.
9398  */
9399 void
9400 spa_sync(spa_t *spa, uint64_t txg)
9401 {
9402 	vdev_t *vd = NULL;
9403 
9404 	VERIFY(spa_writeable(spa));
9405 
9406 	/*
9407 	 * Wait for i/os issued in open context that need to complete
9408 	 * before this txg syncs.
9409 	 */
9410 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9411 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9412 	    ZIO_FLAG_CANFAIL);
9413 
9414 	/*
9415 	 * Now that there can be no more cloning in this transaction group,
9416 	 * but we are still before issuing frees, we can process pending BRT
9417 	 * updates.
9418 	 */
9419 	brt_pending_apply(spa, txg);
9420 
9421 	/*
9422 	 * Lock out configuration changes.
9423 	 */
9424 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9425 
9426 	spa->spa_syncing_txg = txg;
9427 	spa->spa_sync_pass = 0;
9428 
9429 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9430 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9431 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9432 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9433 	}
9434 
9435 	/*
9436 	 * If there are any pending vdev state changes, convert them
9437 	 * into config changes that go out with this transaction group.
9438 	 */
9439 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9440 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9441 		/* Avoid holding the write lock unless actually necessary */
9442 		if (vd->vdev_aux == NULL) {
9443 			vdev_state_clean(vd);
9444 			vdev_config_dirty(vd);
9445 			continue;
9446 		}
9447 		/*
9448 		 * We need the write lock here because, for aux vdevs,
9449 		 * calling vdev_config_dirty() modifies sav_config.
9450 		 * This is ugly and will become unnecessary when we
9451 		 * eliminate the aux vdev wart by integrating all vdevs
9452 		 * into the root vdev tree.
9453 		 */
9454 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9455 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9456 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9457 			vdev_state_clean(vd);
9458 			vdev_config_dirty(vd);
9459 		}
9460 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9461 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9462 	}
9463 	spa_config_exit(spa, SCL_STATE, FTAG);
9464 
9465 	dsl_pool_t *dp = spa->spa_dsl_pool;
9466 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9467 
9468 	spa->spa_sync_starttime = gethrtime();
9469 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9470 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9471 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9472 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9473 
9474 	/*
9475 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9476 	 * set spa_deflate if we have no raid-z vdevs.
9477 	 */
9478 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9479 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9480 		vdev_t *rvd = spa->spa_root_vdev;
9481 
9482 		int i;
9483 		for (i = 0; i < rvd->vdev_children; i++) {
9484 			vd = rvd->vdev_child[i];
9485 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9486 				break;
9487 		}
9488 		if (i == rvd->vdev_children) {
9489 			spa->spa_deflate = TRUE;
9490 			VERIFY0(zap_add(spa->spa_meta_objset,
9491 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9492 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9493 		}
9494 	}
9495 
9496 	spa_sync_adjust_vdev_max_queue_depth(spa);
9497 
9498 	spa_sync_condense_indirect(spa, tx);
9499 
9500 	spa_sync_iterate_to_convergence(spa, tx);
9501 
9502 #ifdef ZFS_DEBUG
9503 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9504 	/*
9505 	 * Make sure that the number of ZAPs for all the vdevs matches
9506 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9507 	 * called if the config is dirty; otherwise there may be
9508 	 * outstanding AVZ operations that weren't completed in
9509 	 * spa_sync_config_object.
9510 	 */
9511 		uint64_t all_vdev_zap_entry_count;
9512 		ASSERT0(zap_count(spa->spa_meta_objset,
9513 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9514 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9515 		    all_vdev_zap_entry_count);
9516 	}
9517 #endif
9518 
9519 	if (spa->spa_vdev_removal != NULL) {
9520 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9521 	}
9522 
9523 	spa_sync_rewrite_vdev_config(spa, tx);
9524 	dmu_tx_commit(tx);
9525 
9526 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9527 	spa->spa_deadman_tqid = 0;
9528 
9529 	/*
9530 	 * Clear the dirty config list.
9531 	 */
9532 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9533 		vdev_config_clean(vd);
9534 
9535 	/*
9536 	 * Now that the new config has synced transactionally,
9537 	 * let it become visible to the config cache.
9538 	 */
9539 	if (spa->spa_config_syncing != NULL) {
9540 		spa_config_set(spa, spa->spa_config_syncing);
9541 		spa->spa_config_txg = txg;
9542 		spa->spa_config_syncing = NULL;
9543 	}
9544 
9545 	dsl_pool_sync_done(dp, txg);
9546 
9547 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9548 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9549 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9550 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9551 	}
9552 
9553 	/*
9554 	 * Update usable space statistics.
9555 	 */
9556 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9557 	    != NULL)
9558 		vdev_sync_done(vd, txg);
9559 
9560 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9561 	metaslab_class_evict_old(spa->spa_log_class, txg);
9562 
9563 	spa_sync_close_syncing_log_sm(spa);
9564 
9565 	spa_update_dspace(spa);
9566 
9567 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9568 		vdev_autotrim_kick(spa);
9569 
9570 	/*
9571 	 * It had better be the case that we didn't dirty anything
9572 	 * since vdev_config_sync().
9573 	 */
9574 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9575 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9576 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9577 
9578 	while (zfs_pause_spa_sync)
9579 		delay(1);
9580 
9581 	spa->spa_sync_pass = 0;
9582 
9583 	/*
9584 	 * Update the last synced uberblock here. We want to do this at
9585 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9586 	 * will be guaranteed that all the processing associated with
9587 	 * that txg has been completed.
9588 	 */
9589 	spa->spa_ubsync = spa->spa_uberblock;
9590 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9591 
9592 	spa_handle_ignored_writes(spa);
9593 
9594 	/*
9595 	 * If any async tasks have been requested, kick them off.
9596 	 */
9597 	spa_async_dispatch(spa);
9598 }
9599 
9600 /*
9601  * Sync all pools.  We don't want to hold the namespace lock across these
9602  * operations, so we take a reference on the spa_t and drop the lock during the
9603  * sync.
9604  */
9605 void
9606 spa_sync_allpools(void)
9607 {
9608 	spa_t *spa = NULL;
9609 	mutex_enter(&spa_namespace_lock);
9610 	while ((spa = spa_next(spa)) != NULL) {
9611 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9612 		    !spa_writeable(spa) || spa_suspended(spa))
9613 			continue;
9614 		spa_open_ref(spa, FTAG);
9615 		mutex_exit(&spa_namespace_lock);
9616 		txg_wait_synced(spa_get_dsl(spa), 0);
9617 		mutex_enter(&spa_namespace_lock);
9618 		spa_close(spa, FTAG);
9619 	}
9620 	mutex_exit(&spa_namespace_lock);
9621 }
9622 
9623 /*
9624  * ==========================================================================
9625  * Miscellaneous routines
9626  * ==========================================================================
9627  */
9628 
9629 /*
9630  * Remove all pools in the system.
9631  */
9632 void
9633 spa_evict_all(void)
9634 {
9635 	spa_t *spa;
9636 
9637 	/*
9638 	 * Remove all cached state.  All pools should be closed now,
9639 	 * so every spa in the AVL tree should be unreferenced.
9640 	 */
9641 	mutex_enter(&spa_namespace_lock);
9642 	while ((spa = spa_next(NULL)) != NULL) {
9643 		/*
9644 		 * Stop async tasks.  The async thread may need to detach
9645 		 * a device that's been replaced, which requires grabbing
9646 		 * spa_namespace_lock, so we must drop it here.
9647 		 */
9648 		spa_open_ref(spa, FTAG);
9649 		mutex_exit(&spa_namespace_lock);
9650 		spa_async_suspend(spa);
9651 		mutex_enter(&spa_namespace_lock);
9652 		spa_close(spa, FTAG);
9653 
9654 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9655 			spa_unload(spa);
9656 			spa_deactivate(spa);
9657 		}
9658 		spa_remove(spa);
9659 	}
9660 	mutex_exit(&spa_namespace_lock);
9661 }
9662 
9663 vdev_t *
9664 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9665 {
9666 	vdev_t *vd;
9667 	int i;
9668 
9669 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9670 		return (vd);
9671 
9672 	if (aux) {
9673 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9674 			vd = spa->spa_l2cache.sav_vdevs[i];
9675 			if (vd->vdev_guid == guid)
9676 				return (vd);
9677 		}
9678 
9679 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9680 			vd = spa->spa_spares.sav_vdevs[i];
9681 			if (vd->vdev_guid == guid)
9682 				return (vd);
9683 		}
9684 	}
9685 
9686 	return (NULL);
9687 }
9688 
9689 void
9690 spa_upgrade(spa_t *spa, uint64_t version)
9691 {
9692 	ASSERT(spa_writeable(spa));
9693 
9694 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9695 
9696 	/*
9697 	 * This should only be called for a non-faulted pool, and since a
9698 	 * future version would result in an unopenable pool, this shouldn't be
9699 	 * possible.
9700 	 */
9701 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9702 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9703 
9704 	spa->spa_uberblock.ub_version = version;
9705 	vdev_config_dirty(spa->spa_root_vdev);
9706 
9707 	spa_config_exit(spa, SCL_ALL, FTAG);
9708 
9709 	txg_wait_synced(spa_get_dsl(spa), 0);
9710 }
9711 
9712 static boolean_t
9713 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9714 {
9715 	(void) spa;
9716 	int i;
9717 	uint64_t vdev_guid;
9718 
9719 	for (i = 0; i < sav->sav_count; i++)
9720 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9721 			return (B_TRUE);
9722 
9723 	for (i = 0; i < sav->sav_npending; i++) {
9724 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9725 		    &vdev_guid) == 0 && vdev_guid == guid)
9726 			return (B_TRUE);
9727 	}
9728 
9729 	return (B_FALSE);
9730 }
9731 
9732 boolean_t
9733 spa_has_l2cache(spa_t *spa, uint64_t guid)
9734 {
9735 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9736 }
9737 
9738 boolean_t
9739 spa_has_spare(spa_t *spa, uint64_t guid)
9740 {
9741 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9742 }
9743 
9744 /*
9745  * Check if a pool has an active shared spare device.
9746  * Note: reference count of an active spare is 2, as a spare and as a replace
9747  */
9748 static boolean_t
9749 spa_has_active_shared_spare(spa_t *spa)
9750 {
9751 	int i, refcnt;
9752 	uint64_t pool;
9753 	spa_aux_vdev_t *sav = &spa->spa_spares;
9754 
9755 	for (i = 0; i < sav->sav_count; i++) {
9756 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9757 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9758 		    refcnt > 2)
9759 			return (B_TRUE);
9760 	}
9761 
9762 	return (B_FALSE);
9763 }
9764 
9765 uint64_t
9766 spa_total_metaslabs(spa_t *spa)
9767 {
9768 	vdev_t *rvd = spa->spa_root_vdev;
9769 
9770 	uint64_t m = 0;
9771 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9772 		vdev_t *vd = rvd->vdev_child[c];
9773 		if (!vdev_is_concrete(vd))
9774 			continue;
9775 		m += vd->vdev_ms_count;
9776 	}
9777 	return (m);
9778 }
9779 
9780 /*
9781  * Notify any waiting threads that some activity has switched from being in-
9782  * progress to not-in-progress so that the thread can wake up and determine
9783  * whether it is finished waiting.
9784  */
9785 void
9786 spa_notify_waiters(spa_t *spa)
9787 {
9788 	/*
9789 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9790 	 * happening between the waiting thread's check and cv_wait.
9791 	 */
9792 	mutex_enter(&spa->spa_activities_lock);
9793 	cv_broadcast(&spa->spa_activities_cv);
9794 	mutex_exit(&spa->spa_activities_lock);
9795 }
9796 
9797 /*
9798  * Notify any waiting threads that the pool is exporting, and then block until
9799  * they are finished using the spa_t.
9800  */
9801 void
9802 spa_wake_waiters(spa_t *spa)
9803 {
9804 	mutex_enter(&spa->spa_activities_lock);
9805 	spa->spa_waiters_cancel = B_TRUE;
9806 	cv_broadcast(&spa->spa_activities_cv);
9807 	while (spa->spa_waiters != 0)
9808 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9809 	spa->spa_waiters_cancel = B_FALSE;
9810 	mutex_exit(&spa->spa_activities_lock);
9811 }
9812 
9813 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9814 static boolean_t
9815 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9816 {
9817 	spa_t *spa = vd->vdev_spa;
9818 
9819 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9820 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9821 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9822 	    activity == ZPOOL_WAIT_TRIM);
9823 
9824 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9825 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9826 
9827 	mutex_exit(&spa->spa_activities_lock);
9828 	mutex_enter(lock);
9829 	mutex_enter(&spa->spa_activities_lock);
9830 
9831 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9832 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9833 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9834 	mutex_exit(lock);
9835 
9836 	if (in_progress)
9837 		return (B_TRUE);
9838 
9839 	for (int i = 0; i < vd->vdev_children; i++) {
9840 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9841 		    activity))
9842 			return (B_TRUE);
9843 	}
9844 
9845 	return (B_FALSE);
9846 }
9847 
9848 /*
9849  * If use_guid is true, this checks whether the vdev specified by guid is
9850  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9851  * is being initialized/trimmed. The caller must hold the config lock and
9852  * spa_activities_lock.
9853  */
9854 static int
9855 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9856     zpool_wait_activity_t activity, boolean_t *in_progress)
9857 {
9858 	mutex_exit(&spa->spa_activities_lock);
9859 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9860 	mutex_enter(&spa->spa_activities_lock);
9861 
9862 	vdev_t *vd;
9863 	if (use_guid) {
9864 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9865 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9866 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9867 			return (EINVAL);
9868 		}
9869 	} else {
9870 		vd = spa->spa_root_vdev;
9871 	}
9872 
9873 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9874 
9875 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9876 	return (0);
9877 }
9878 
9879 /*
9880  * Locking for waiting threads
9881  * ---------------------------
9882  *
9883  * Waiting threads need a way to check whether a given activity is in progress,
9884  * and then, if it is, wait for it to complete. Each activity will have some
9885  * in-memory representation of the relevant on-disk state which can be used to
9886  * determine whether or not the activity is in progress. The in-memory state and
9887  * the locking used to protect it will be different for each activity, and may
9888  * not be suitable for use with a cvar (e.g., some state is protected by the
9889  * config lock). To allow waiting threads to wait without any races, another
9890  * lock, spa_activities_lock, is used.
9891  *
9892  * When the state is checked, both the activity-specific lock (if there is one)
9893  * and spa_activities_lock are held. In some cases, the activity-specific lock
9894  * is acquired explicitly (e.g. the config lock). In others, the locking is
9895  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9896  * thread releases the activity-specific lock and, if the activity is in
9897  * progress, then cv_waits using spa_activities_lock.
9898  *
9899  * The waiting thread is woken when another thread, one completing some
9900  * activity, updates the state of the activity and then calls
9901  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9902  * needs to hold its activity-specific lock when updating the state, and this
9903  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9904  *
9905  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9906  * and because it is held when the waiting thread checks the state of the
9907  * activity, it can never be the case that the completing thread both updates
9908  * the activity state and cv_broadcasts in between the waiting thread's check
9909  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9910  *
9911  * In order to prevent deadlock, when the waiting thread does its check, in some
9912  * cases it will temporarily drop spa_activities_lock in order to acquire the
9913  * activity-specific lock. The order in which spa_activities_lock and the
9914  * activity specific lock are acquired in the waiting thread is determined by
9915  * the order in which they are acquired in the completing thread; if the
9916  * completing thread calls spa_notify_waiters with the activity-specific lock
9917  * held, then the waiting thread must also acquire the activity-specific lock
9918  * first.
9919  */
9920 
9921 static int
9922 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9923     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9924 {
9925 	int error = 0;
9926 
9927 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9928 
9929 	switch (activity) {
9930 	case ZPOOL_WAIT_CKPT_DISCARD:
9931 		*in_progress =
9932 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9933 		    zap_contains(spa_meta_objset(spa),
9934 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9935 		    ENOENT);
9936 		break;
9937 	case ZPOOL_WAIT_FREE:
9938 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9939 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9940 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9941 		    spa_livelist_delete_check(spa));
9942 		break;
9943 	case ZPOOL_WAIT_INITIALIZE:
9944 	case ZPOOL_WAIT_TRIM:
9945 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9946 		    activity, in_progress);
9947 		break;
9948 	case ZPOOL_WAIT_REPLACE:
9949 		mutex_exit(&spa->spa_activities_lock);
9950 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9951 		mutex_enter(&spa->spa_activities_lock);
9952 
9953 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9954 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9955 		break;
9956 	case ZPOOL_WAIT_REMOVE:
9957 		*in_progress = (spa->spa_removing_phys.sr_state ==
9958 		    DSS_SCANNING);
9959 		break;
9960 	case ZPOOL_WAIT_RESILVER:
9961 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9962 			break;
9963 		zfs_fallthrough;
9964 	case ZPOOL_WAIT_SCRUB:
9965 	{
9966 		boolean_t scanning, paused, is_scrub;
9967 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9968 
9969 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9970 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9971 		paused = dsl_scan_is_paused_scrub(scn);
9972 		*in_progress = (scanning && !paused &&
9973 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9974 		break;
9975 	}
9976 	default:
9977 		panic("unrecognized value for activity %d", activity);
9978 	}
9979 
9980 	return (error);
9981 }
9982 
9983 static int
9984 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9985     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9986 {
9987 	/*
9988 	 * The tag is used to distinguish between instances of an activity.
9989 	 * 'initialize' and 'trim' are the only activities that we use this for.
9990 	 * The other activities can only have a single instance in progress in a
9991 	 * pool at one time, making the tag unnecessary.
9992 	 *
9993 	 * There can be multiple devices being replaced at once, but since they
9994 	 * all finish once resilvering finishes, we don't bother keeping track
9995 	 * of them individually, we just wait for them all to finish.
9996 	 */
9997 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9998 	    activity != ZPOOL_WAIT_TRIM)
9999 		return (EINVAL);
10000 
10001 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10002 		return (EINVAL);
10003 
10004 	spa_t *spa;
10005 	int error = spa_open(pool, &spa, FTAG);
10006 	if (error != 0)
10007 		return (error);
10008 
10009 	/*
10010 	 * Increment the spa's waiter count so that we can call spa_close and
10011 	 * still ensure that the spa_t doesn't get freed before this thread is
10012 	 * finished with it when the pool is exported. We want to call spa_close
10013 	 * before we start waiting because otherwise the additional ref would
10014 	 * prevent the pool from being exported or destroyed throughout the
10015 	 * potentially long wait.
10016 	 */
10017 	mutex_enter(&spa->spa_activities_lock);
10018 	spa->spa_waiters++;
10019 	spa_close(spa, FTAG);
10020 
10021 	*waited = B_FALSE;
10022 	for (;;) {
10023 		boolean_t in_progress;
10024 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10025 		    &in_progress);
10026 
10027 		if (error || !in_progress || spa->spa_waiters_cancel)
10028 			break;
10029 
10030 		*waited = B_TRUE;
10031 
10032 		if (cv_wait_sig(&spa->spa_activities_cv,
10033 		    &spa->spa_activities_lock) == 0) {
10034 			error = EINTR;
10035 			break;
10036 		}
10037 	}
10038 
10039 	spa->spa_waiters--;
10040 	cv_signal(&spa->spa_waiters_cv);
10041 	mutex_exit(&spa->spa_activities_lock);
10042 
10043 	return (error);
10044 }
10045 
10046 /*
10047  * Wait for a particular instance of the specified activity to complete, where
10048  * the instance is identified by 'tag'
10049  */
10050 int
10051 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10052     boolean_t *waited)
10053 {
10054 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10055 }
10056 
10057 /*
10058  * Wait for all instances of the specified activity complete
10059  */
10060 int
10061 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10062 {
10063 
10064 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10065 }
10066 
10067 sysevent_t *
10068 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10069 {
10070 	sysevent_t *ev = NULL;
10071 #ifdef _KERNEL
10072 	nvlist_t *resource;
10073 
10074 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10075 	if (resource) {
10076 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10077 		ev->resource = resource;
10078 	}
10079 #else
10080 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10081 #endif
10082 	return (ev);
10083 }
10084 
10085 void
10086 spa_event_post(sysevent_t *ev)
10087 {
10088 #ifdef _KERNEL
10089 	if (ev) {
10090 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10091 		kmem_free(ev, sizeof (*ev));
10092 	}
10093 #else
10094 	(void) ev;
10095 #endif
10096 }
10097 
10098 /*
10099  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10100  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10101  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10102  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10103  * or zdb as real changes.
10104  */
10105 void
10106 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10107 {
10108 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10109 }
10110 
10111 /* state manipulation functions */
10112 EXPORT_SYMBOL(spa_open);
10113 EXPORT_SYMBOL(spa_open_rewind);
10114 EXPORT_SYMBOL(spa_get_stats);
10115 EXPORT_SYMBOL(spa_create);
10116 EXPORT_SYMBOL(spa_import);
10117 EXPORT_SYMBOL(spa_tryimport);
10118 EXPORT_SYMBOL(spa_destroy);
10119 EXPORT_SYMBOL(spa_export);
10120 EXPORT_SYMBOL(spa_reset);
10121 EXPORT_SYMBOL(spa_async_request);
10122 EXPORT_SYMBOL(spa_async_suspend);
10123 EXPORT_SYMBOL(spa_async_resume);
10124 EXPORT_SYMBOL(spa_inject_addref);
10125 EXPORT_SYMBOL(spa_inject_delref);
10126 EXPORT_SYMBOL(spa_scan_stat_init);
10127 EXPORT_SYMBOL(spa_scan_get_stats);
10128 
10129 /* device manipulation */
10130 EXPORT_SYMBOL(spa_vdev_add);
10131 EXPORT_SYMBOL(spa_vdev_attach);
10132 EXPORT_SYMBOL(spa_vdev_detach);
10133 EXPORT_SYMBOL(spa_vdev_setpath);
10134 EXPORT_SYMBOL(spa_vdev_setfru);
10135 EXPORT_SYMBOL(spa_vdev_split_mirror);
10136 
10137 /* spare statech is global across all pools) */
10138 EXPORT_SYMBOL(spa_spare_add);
10139 EXPORT_SYMBOL(spa_spare_remove);
10140 EXPORT_SYMBOL(spa_spare_exists);
10141 EXPORT_SYMBOL(spa_spare_activate);
10142 
10143 /* L2ARC statech is global across all pools) */
10144 EXPORT_SYMBOL(spa_l2cache_add);
10145 EXPORT_SYMBOL(spa_l2cache_remove);
10146 EXPORT_SYMBOL(spa_l2cache_exists);
10147 EXPORT_SYMBOL(spa_l2cache_activate);
10148 EXPORT_SYMBOL(spa_l2cache_drop);
10149 
10150 /* scanning */
10151 EXPORT_SYMBOL(spa_scan);
10152 EXPORT_SYMBOL(spa_scan_stop);
10153 
10154 /* spa syncing */
10155 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10156 EXPORT_SYMBOL(spa_sync_allpools);
10157 
10158 /* properties */
10159 EXPORT_SYMBOL(spa_prop_set);
10160 EXPORT_SYMBOL(spa_prop_get);
10161 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10162 
10163 /* asynchronous event notification */
10164 EXPORT_SYMBOL(spa_event_notify);
10165 
10166 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10167 	"Percentage of CPUs to run a metaslab preload taskq");
10168 
10169 /* BEGIN CSTYLED */
10170 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10171 	"log2 fraction of arc that can be used by inflight I/Os when "
10172 	"verifying pool during import");
10173 /* END CSTYLED */
10174 
10175 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10176 	"Set to traverse metadata on pool import");
10177 
10178 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10179 	"Set to traverse data on pool import");
10180 
10181 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10182 	"Print vdev tree to zfs_dbgmsg during pool import");
10183 
10184 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10185 	"Percentage of CPUs to run an IO worker thread");
10186 
10187 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10188 	"Number of threads per IO worker taskqueue");
10189 
10190 /* BEGIN CSTYLED */
10191 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10192 	"Allow importing pool with up to this number of missing top-level "
10193 	"vdevs (in read-only mode)");
10194 /* END CSTYLED */
10195 
10196 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10197 	ZMOD_RW, "Set the livelist condense zthr to pause");
10198 
10199 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10200 	ZMOD_RW, "Set the livelist condense synctask to pause");
10201 
10202 /* BEGIN CSTYLED */
10203 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10204 	INT, ZMOD_RW,
10205 	"Whether livelist condensing was canceled in the synctask");
10206 
10207 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10208 	INT, ZMOD_RW,
10209 	"Whether livelist condensing was canceled in the zthr function");
10210 
10211 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10212 	ZMOD_RW,
10213 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10214 	"was being condensed");
10215 /* END CSTYLED */
10216