xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 3f0efe05432b1633991114ca4ca330102a561959)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  * Copyright (c) 2023, 2024, Klara Inc.
38  */
39 
40 /*
41  * SPA: Storage Pool Allocator
42  *
43  * This file contains all the routines used when modifying on-disk SPA state.
44  * This includes opening, importing, destroying, exporting a pool, and syncing a
45  * pool.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93 
94 #ifdef	_KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif	/* _KERNEL */
101 
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105 
106 /*
107  * spa_thread() existed on Illumos as a parent thread for the various worker
108  * threads that actually run the pool, as a way to both reference the entire
109  * pool work as a single object, and to share properties like scheduling
110  * options. It has not yet been adapted to Linux or FreeBSD. This define is
111  * used to mark related parts of the code to make things easier for the reader,
112  * and to compile this code out. It can be removed when someone implements it,
113  * moves it to some Illumos-specific place, or removes it entirely.
114  */
115 #undef HAVE_SPA_THREAD
116 
117 /*
118  * The "System Duty Cycle" scheduling class is an Illumos feature to help
119  * prevent CPU-intensive kernel threads from affecting latency on interactive
120  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121  * gated behind a define. On Illumos SDC depends on spa_thread(), but
122  * spa_thread() also has other uses, so this is a separate define.
123  */
124 #undef HAVE_SYSDC
125 
126 /*
127  * The interval, in seconds, at which failed configuration cache file writes
128  * should be retried.
129  */
130 int zfs_ccw_retry_interval = 300;
131 
132 typedef enum zti_modes {
133 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
134 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
135 	ZTI_MODE_SYNC,			/* sync thread assigned */
136 	ZTI_MODE_NULL,			/* don't create a taskq */
137 	ZTI_NMODES
138 } zti_modes_t;
139 
140 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
141 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
143 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
144 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
145 
146 #define	ZTI_N(n)	ZTI_P(n, 1)
147 #define	ZTI_ONE		ZTI_N(1)
148 
149 typedef struct zio_taskq_info {
150 	zti_modes_t zti_mode;
151 	uint_t zti_value;
152 	uint_t zti_count;
153 } zio_taskq_info_t;
154 
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 	"iss", "iss_h", "int", "int_h"
157 };
158 
159 /*
160  * This table defines the taskq settings for each ZFS I/O type. When
161  * initializing a pool, we use this table to create an appropriately sized
162  * taskq. Some operations are low volume and therefore have a small, static
163  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164  * macros. Other operations process a large amount of data; the ZTI_SCALE
165  * macro causes us to create a taskq oriented for throughput. Some operations
166  * are so high frequency and short-lived that the taskq itself can become a
167  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168  * additional degree of parallelism specified by the number of threads per-
169  * taskq and the number of taskqs; when dispatching an event in this case, the
170  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171  * that scales with the number of CPUs.
172  *
173  * The different taskq priorities are to handle the different contexts (issue
174  * and interrupt) and then to reserve threads for high priority I/Os that
175  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
176  * implementation, so separate high priority threads are used there.
177  */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
180 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
181 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
182 #ifdef illumos
183 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
184 #else
185 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
186 #endif
187 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
188 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
190 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
191 };
192 
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197     const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199 
200 /*
201  * Percentage of all CPUs that can be used by the metaslab preload taskq.
202  */
203 static uint_t metaslab_preload_pct = 50;
204 
205 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
206 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
207 
208 #ifdef HAVE_SYSDC
209 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
211 #endif
212 
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216 
217 static uint_t	zio_taskq_write_tpq = 16;
218 
219 /*
220  * Report any spa_load_verify errors found, but do not fail spa_load.
221  * This is used by zdb to analyze non-idle pools.
222  */
223 boolean_t	spa_load_verify_dryrun = B_FALSE;
224 
225 /*
226  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227  * This is used by zdb for spacemaps verification.
228  */
229 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
230 
231 /*
232  * This (illegal) pool name is used when temporarily importing a spa_t in order
233  * to get the vdev stats associated with the imported devices.
234  */
235 #define	TRYIMPORT_NAME	"$import"
236 
237 /*
238  * For debugging purposes: print out vdev tree during pool import.
239  */
240 static int		spa_load_print_vdev_tree = B_FALSE;
241 
242 /*
243  * A non-zero value for zfs_max_missing_tvds means that we allow importing
244  * pools with missing top-level vdevs. This is strictly intended for advanced
245  * pool recovery cases since missing data is almost inevitable. Pools with
246  * missing devices can only be imported read-only for safety reasons, and their
247  * fail-mode will be automatically set to "continue".
248  *
249  * With 1 missing vdev we should be able to import the pool and mount all
250  * datasets. User data that was not modified after the missing device has been
251  * added should be recoverable. This means that snapshots created prior to the
252  * addition of that device should be completely intact.
253  *
254  * With 2 missing vdevs, some datasets may fail to mount since there are
255  * dataset statistics that are stored as regular metadata. Some data might be
256  * recoverable if those vdevs were added recently.
257  *
258  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259  * may be missing entirely. Chances of data recovery are very low. Note that
260  * there are also risks of performing an inadvertent rewind as we might be
261  * missing all the vdevs with the latest uberblocks.
262  */
263 uint64_t	zfs_max_missing_tvds = 0;
264 
265 /*
266  * The parameters below are similar to zfs_max_missing_tvds but are only
267  * intended for a preliminary open of the pool with an untrusted config which
268  * might be incomplete or out-dated.
269  *
270  * We are more tolerant for pools opened from a cachefile since we could have
271  * an out-dated cachefile where a device removal was not registered.
272  * We could have set the limit arbitrarily high but in the case where devices
273  * are really missing we would want to return the proper error codes; we chose
274  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275  * and we get a chance to retrieve the trusted config.
276  */
277 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278 
279 /*
280  * In the case where config was assembled by scanning device paths (/dev/dsks
281  * by default) we are less tolerant since all the existing devices should have
282  * been detected and we want spa_load to return the right error codes.
283  */
284 uint64_t	zfs_max_missing_tvds_scan = 0;
285 
286 /*
287  * Debugging aid that pauses spa_sync() towards the end.
288  */
289 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
290 
291 /*
292  * Variables to indicate the livelist condense zthr func should wait at certain
293  * points for the livelist to be removed - used to test condense/destroy races
294  */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297 
298 /*
299  * Variables to track whether or not condense cancellation has been
300  * triggered in testing.
301  */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304 
305 /*
306  * Variable to track whether or not extra ALLOC blkptrs were added to a
307  * livelist entry while it was being condensed (caused by the way we track
308  * remapped blkptrs in dbuf_remap_impl)
309  */
310 static int zfs_livelist_condense_new_alloc = 0;
311 
312 /*
313  * ==========================================================================
314  * SPA properties routines
315  * ==========================================================================
316  */
317 
318 /*
319  * Add a (source=src, propname=propval) list to an nvlist.
320  */
321 static void
322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323     uint64_t intval, zprop_source_t src)
324 {
325 	const char *propname = zpool_prop_to_name(prop);
326 	nvlist_t *propval;
327 
328 	propval = fnvlist_alloc();
329 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330 
331 	if (strval != NULL)
332 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 	else
334 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335 
336 	fnvlist_add_nvlist(nvl, propname, propval);
337 	nvlist_free(propval);
338 }
339 
340 static int
341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 	zpool_prop_t prop = zpool_name_to_prop(propname);
344 	zprop_source_t src = ZPROP_SRC_NONE;
345 	uint64_t intval;
346 	int err;
347 
348 	/*
349 	 * NB: Not all properties lookups via this API require
350 	 * the spa props lock, so they must explicitly grab it here.
351 	 */
352 	switch (prop) {
353 	case ZPOOL_PROP_DEDUPCACHED:
354 		err = ddt_get_pool_dedup_cached(spa, &intval);
355 		if (err != 0)
356 			return (SET_ERROR(err));
357 		break;
358 	default:
359 		return (SET_ERROR(EINVAL));
360 	}
361 
362 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
363 
364 	return (0);
365 }
366 
367 int
368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369     nvlist_t *outnvl)
370 {
371 	int err = 0;
372 
373 	if (props == NULL)
374 		return (0);
375 
376 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 		err = spa_prop_add(spa, props[i], outnvl);
378 	}
379 
380 	return (err);
381 }
382 
383 /*
384  * Add a user property (source=src, propname=propval) to an nvlist.
385  */
386 static void
387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388     zprop_source_t src)
389 {
390 	nvlist_t *propval;
391 
392 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 	nvlist_free(propval);
397 }
398 
399 /*
400  * Get property values from the spa configuration.
401  */
402 static void
403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 	vdev_t *rvd = spa->spa_root_vdev;
406 	dsl_pool_t *pool = spa->spa_dsl_pool;
407 	uint64_t size, alloc, cap, version;
408 	const zprop_source_t src = ZPROP_SRC_NONE;
409 	spa_config_dirent_t *dp;
410 	metaslab_class_t *mc = spa_normal_class(spa);
411 
412 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413 
414 	if (rvd != NULL) {
415 		alloc = metaslab_class_get_alloc(mc);
416 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419 
420 		size = metaslab_class_get_space(mc);
421 		size += metaslab_class_get_space(spa_special_class(spa));
422 		size += metaslab_class_get_space(spa_dedup_class(spa));
423 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
424 
425 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 		    size - alloc, src);
430 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 		    spa->spa_checkpoint_info.sci_dspace, src);
432 
433 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 		    metaslab_class_fragmentation(mc), src);
435 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 		    metaslab_class_expandable_space(mc), src);
437 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 		    (spa_mode(spa) == SPA_MODE_READ), src);
439 
440 		cap = (size == 0) ? 0 : (alloc * 100 / size);
441 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442 
443 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 		    ddt_get_pool_dedup_ratio(spa), src);
445 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 		    brt_get_used(spa), src);
447 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 		    brt_get_saved(spa), src);
449 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 		    brt_get_ratio(spa), src);
451 
452 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 		    ddt_get_ddt_dsize(spa), src);
454 
455 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 		    rvd->vdev_state, src);
457 
458 		version = spa_version(spa);
459 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
460 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
461 			    version, ZPROP_SRC_DEFAULT);
462 		} else {
463 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
464 			    version, ZPROP_SRC_LOCAL);
465 		}
466 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
467 		    NULL, spa_load_guid(spa), src);
468 	}
469 
470 	if (pool != NULL) {
471 		/*
472 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
473 		 * when opening pools before this version freedir will be NULL.
474 		 */
475 		if (pool->dp_free_dir != NULL) {
476 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
477 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
478 			    src);
479 		} else {
480 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
481 			    NULL, 0, src);
482 		}
483 
484 		if (pool->dp_leak_dir != NULL) {
485 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
486 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
487 			    src);
488 		} else {
489 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
490 			    NULL, 0, src);
491 		}
492 	}
493 
494 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
495 
496 	if (spa->spa_comment != NULL) {
497 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
498 		    0, ZPROP_SRC_LOCAL);
499 	}
500 
501 	if (spa->spa_compatibility != NULL) {
502 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
503 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
504 	}
505 
506 	if (spa->spa_root != NULL)
507 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
508 		    0, ZPROP_SRC_LOCAL);
509 
510 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
511 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
512 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
513 	} else {
514 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
515 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
516 	}
517 
518 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
519 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
520 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
521 	} else {
522 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
523 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
524 	}
525 
526 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 		if (dp->scd_path == NULL) {
528 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
529 			    "none", 0, ZPROP_SRC_LOCAL);
530 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
531 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
532 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
533 		}
534 	}
535 }
536 
537 /*
538  * Get zpool property values.
539  */
540 int
541 spa_prop_get(spa_t *spa, nvlist_t *nv)
542 {
543 	objset_t *mos = spa->spa_meta_objset;
544 	zap_cursor_t zc;
545 	zap_attribute_t za;
546 	dsl_pool_t *dp;
547 	int err = 0;
548 
549 	dp = spa_get_dsl(spa);
550 	dsl_pool_config_enter(dp, FTAG);
551 	mutex_enter(&spa->spa_props_lock);
552 
553 	/*
554 	 * Get properties from the spa config.
555 	 */
556 	spa_prop_get_config(spa, nv);
557 
558 	/* If no pool property object, no more prop to get. */
559 	if (mos == NULL || spa->spa_pool_props_object == 0)
560 		goto out;
561 
562 	/*
563 	 * Get properties from the MOS pool property object.
564 	 */
565 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
566 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
567 	    zap_cursor_advance(&zc)) {
568 		uint64_t intval = 0;
569 		char *strval = NULL;
570 		zprop_source_t src = ZPROP_SRC_DEFAULT;
571 		zpool_prop_t prop;
572 
573 		if ((prop = zpool_name_to_prop(za.za_name)) ==
574 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
575 			continue;
576 
577 		switch (za.za_integer_length) {
578 		case 8:
579 			/* integer property */
580 			if (za.za_first_integer !=
581 			    zpool_prop_default_numeric(prop))
582 				src = ZPROP_SRC_LOCAL;
583 
584 			if (prop == ZPOOL_PROP_BOOTFS) {
585 				dsl_dataset_t *ds = NULL;
586 
587 				err = dsl_dataset_hold_obj(dp,
588 				    za.za_first_integer, FTAG, &ds);
589 				if (err != 0)
590 					break;
591 
592 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
593 				    KM_SLEEP);
594 				dsl_dataset_name(ds, strval);
595 				dsl_dataset_rele(ds, FTAG);
596 			} else {
597 				strval = NULL;
598 				intval = za.za_first_integer;
599 			}
600 
601 			spa_prop_add_list(nv, prop, strval, intval, src);
602 
603 			if (strval != NULL)
604 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
605 
606 			break;
607 
608 		case 1:
609 			/* string property */
610 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
611 			err = zap_lookup(mos, spa->spa_pool_props_object,
612 			    za.za_name, 1, za.za_num_integers, strval);
613 			if (err) {
614 				kmem_free(strval, za.za_num_integers);
615 				break;
616 			}
617 			if (prop != ZPOOL_PROP_INVAL) {
618 				spa_prop_add_list(nv, prop, strval, 0, src);
619 			} else {
620 				src = ZPROP_SRC_LOCAL;
621 				spa_prop_add_user(nv, za.za_name, strval,
622 				    src);
623 			}
624 			kmem_free(strval, za.za_num_integers);
625 			break;
626 
627 		default:
628 			break;
629 		}
630 	}
631 	zap_cursor_fini(&zc);
632 out:
633 	mutex_exit(&spa->spa_props_lock);
634 	dsl_pool_config_exit(dp, FTAG);
635 
636 	if (err && err != ENOENT)
637 		return (err);
638 
639 	return (0);
640 }
641 
642 /*
643  * Validate the given pool properties nvlist and modify the list
644  * for the property values to be set.
645  */
646 static int
647 spa_prop_validate(spa_t *spa, nvlist_t *props)
648 {
649 	nvpair_t *elem;
650 	int error = 0, reset_bootfs = 0;
651 	uint64_t objnum = 0;
652 	boolean_t has_feature = B_FALSE;
653 
654 	elem = NULL;
655 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
656 		uint64_t intval;
657 		const char *strval, *slash, *check, *fname;
658 		const char *propname = nvpair_name(elem);
659 		zpool_prop_t prop = zpool_name_to_prop(propname);
660 
661 		switch (prop) {
662 		case ZPOOL_PROP_INVAL:
663 			/*
664 			 * Sanitize the input.
665 			 */
666 			if (zfs_prop_user(propname)) {
667 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
668 					error = SET_ERROR(ENAMETOOLONG);
669 					break;
670 				}
671 
672 				if (strlen(fnvpair_value_string(elem)) >=
673 				    ZAP_MAXVALUELEN) {
674 					error = SET_ERROR(E2BIG);
675 					break;
676 				}
677 			} else if (zpool_prop_feature(propname)) {
678 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
679 					error = SET_ERROR(EINVAL);
680 					break;
681 				}
682 
683 				if (nvpair_value_uint64(elem, &intval) != 0) {
684 					error = SET_ERROR(EINVAL);
685 					break;
686 				}
687 
688 				if (intval != 0) {
689 					error = SET_ERROR(EINVAL);
690 					break;
691 				}
692 
693 				fname = strchr(propname, '@') + 1;
694 				if (zfeature_lookup_name(fname, NULL) != 0) {
695 					error = SET_ERROR(EINVAL);
696 					break;
697 				}
698 
699 				has_feature = B_TRUE;
700 			} else {
701 				error = SET_ERROR(EINVAL);
702 				break;
703 			}
704 			break;
705 
706 		case ZPOOL_PROP_VERSION:
707 			error = nvpair_value_uint64(elem, &intval);
708 			if (!error &&
709 			    (intval < spa_version(spa) ||
710 			    intval > SPA_VERSION_BEFORE_FEATURES ||
711 			    has_feature))
712 				error = SET_ERROR(EINVAL);
713 			break;
714 
715 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
716 			error = nvpair_value_uint64(elem, &intval);
717 			break;
718 
719 		case ZPOOL_PROP_DELEGATION:
720 		case ZPOOL_PROP_AUTOREPLACE:
721 		case ZPOOL_PROP_LISTSNAPS:
722 		case ZPOOL_PROP_AUTOEXPAND:
723 		case ZPOOL_PROP_AUTOTRIM:
724 			error = nvpair_value_uint64(elem, &intval);
725 			if (!error && intval > 1)
726 				error = SET_ERROR(EINVAL);
727 			break;
728 
729 		case ZPOOL_PROP_MULTIHOST:
730 			error = nvpair_value_uint64(elem, &intval);
731 			if (!error && intval > 1)
732 				error = SET_ERROR(EINVAL);
733 
734 			if (!error) {
735 				uint32_t hostid = zone_get_hostid(NULL);
736 				if (hostid)
737 					spa->spa_hostid = hostid;
738 				else
739 					error = SET_ERROR(ENOTSUP);
740 			}
741 
742 			break;
743 
744 		case ZPOOL_PROP_BOOTFS:
745 			/*
746 			 * If the pool version is less than SPA_VERSION_BOOTFS,
747 			 * or the pool is still being created (version == 0),
748 			 * the bootfs property cannot be set.
749 			 */
750 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
751 				error = SET_ERROR(ENOTSUP);
752 				break;
753 			}
754 
755 			/*
756 			 * Make sure the vdev config is bootable
757 			 */
758 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
759 				error = SET_ERROR(ENOTSUP);
760 				break;
761 			}
762 
763 			reset_bootfs = 1;
764 
765 			error = nvpair_value_string(elem, &strval);
766 
767 			if (!error) {
768 				objset_t *os;
769 
770 				if (strval == NULL || strval[0] == '\0') {
771 					objnum = zpool_prop_default_numeric(
772 					    ZPOOL_PROP_BOOTFS);
773 					break;
774 				}
775 
776 				error = dmu_objset_hold(strval, FTAG, &os);
777 				if (error != 0)
778 					break;
779 
780 				/* Must be ZPL. */
781 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
782 					error = SET_ERROR(ENOTSUP);
783 				} else {
784 					objnum = dmu_objset_id(os);
785 				}
786 				dmu_objset_rele(os, FTAG);
787 			}
788 			break;
789 
790 		case ZPOOL_PROP_FAILUREMODE:
791 			error = nvpair_value_uint64(elem, &intval);
792 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
793 				error = SET_ERROR(EINVAL);
794 
795 			/*
796 			 * This is a special case which only occurs when
797 			 * the pool has completely failed. This allows
798 			 * the user to change the in-core failmode property
799 			 * without syncing it out to disk (I/Os might
800 			 * currently be blocked). We do this by returning
801 			 * EIO to the caller (spa_prop_set) to trick it
802 			 * into thinking we encountered a property validation
803 			 * error.
804 			 */
805 			if (!error && spa_suspended(spa)) {
806 				spa->spa_failmode = intval;
807 				error = SET_ERROR(EIO);
808 			}
809 			break;
810 
811 		case ZPOOL_PROP_CACHEFILE:
812 			if ((error = nvpair_value_string(elem, &strval)) != 0)
813 				break;
814 
815 			if (strval[0] == '\0')
816 				break;
817 
818 			if (strcmp(strval, "none") == 0)
819 				break;
820 
821 			if (strval[0] != '/') {
822 				error = SET_ERROR(EINVAL);
823 				break;
824 			}
825 
826 			slash = strrchr(strval, '/');
827 			ASSERT(slash != NULL);
828 
829 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
830 			    strcmp(slash, "/..") == 0)
831 				error = SET_ERROR(EINVAL);
832 			break;
833 
834 		case ZPOOL_PROP_COMMENT:
835 			if ((error = nvpair_value_string(elem, &strval)) != 0)
836 				break;
837 			for (check = strval; *check != '\0'; check++) {
838 				if (!isprint(*check)) {
839 					error = SET_ERROR(EINVAL);
840 					break;
841 				}
842 			}
843 			if (strlen(strval) > ZPROP_MAX_COMMENT)
844 				error = SET_ERROR(E2BIG);
845 			break;
846 
847 		default:
848 			break;
849 		}
850 
851 		if (error)
852 			break;
853 	}
854 
855 	(void) nvlist_remove_all(props,
856 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
857 
858 	if (!error && reset_bootfs) {
859 		error = nvlist_remove(props,
860 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
861 
862 		if (!error) {
863 			error = nvlist_add_uint64(props,
864 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
865 		}
866 	}
867 
868 	return (error);
869 }
870 
871 void
872 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
873 {
874 	const char *cachefile;
875 	spa_config_dirent_t *dp;
876 
877 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
878 	    &cachefile) != 0)
879 		return;
880 
881 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
882 	    KM_SLEEP);
883 
884 	if (cachefile[0] == '\0')
885 		dp->scd_path = spa_strdup(spa_config_path);
886 	else if (strcmp(cachefile, "none") == 0)
887 		dp->scd_path = NULL;
888 	else
889 		dp->scd_path = spa_strdup(cachefile);
890 
891 	list_insert_head(&spa->spa_config_list, dp);
892 	if (need_sync)
893 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
894 }
895 
896 int
897 spa_prop_set(spa_t *spa, nvlist_t *nvp)
898 {
899 	int error;
900 	nvpair_t *elem = NULL;
901 	boolean_t need_sync = B_FALSE;
902 
903 	if ((error = spa_prop_validate(spa, nvp)) != 0)
904 		return (error);
905 
906 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
907 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
908 
909 		if (prop == ZPOOL_PROP_CACHEFILE ||
910 		    prop == ZPOOL_PROP_ALTROOT ||
911 		    prop == ZPOOL_PROP_READONLY)
912 			continue;
913 
914 		if (prop == ZPOOL_PROP_INVAL &&
915 		    zfs_prop_user(nvpair_name(elem))) {
916 			need_sync = B_TRUE;
917 			break;
918 		}
919 
920 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
921 			uint64_t ver = 0;
922 
923 			if (prop == ZPOOL_PROP_VERSION) {
924 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
925 			} else {
926 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
927 				ver = SPA_VERSION_FEATURES;
928 				need_sync = B_TRUE;
929 			}
930 
931 			/* Save time if the version is already set. */
932 			if (ver == spa_version(spa))
933 				continue;
934 
935 			/*
936 			 * In addition to the pool directory object, we might
937 			 * create the pool properties object, the features for
938 			 * read object, the features for write object, or the
939 			 * feature descriptions object.
940 			 */
941 			error = dsl_sync_task(spa->spa_name, NULL,
942 			    spa_sync_version, &ver,
943 			    6, ZFS_SPACE_CHECK_RESERVED);
944 			if (error)
945 				return (error);
946 			continue;
947 		}
948 
949 		need_sync = B_TRUE;
950 		break;
951 	}
952 
953 	if (need_sync) {
954 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
955 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
956 	}
957 
958 	return (0);
959 }
960 
961 /*
962  * If the bootfs property value is dsobj, clear it.
963  */
964 void
965 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
966 {
967 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
968 		VERIFY(zap_remove(spa->spa_meta_objset,
969 		    spa->spa_pool_props_object,
970 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
971 		spa->spa_bootfs = 0;
972 	}
973 }
974 
975 static int
976 spa_change_guid_check(void *arg, dmu_tx_t *tx)
977 {
978 	uint64_t *newguid __maybe_unused = arg;
979 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
980 	vdev_t *rvd = spa->spa_root_vdev;
981 	uint64_t vdev_state;
982 
983 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
984 		int error = (spa_has_checkpoint(spa)) ?
985 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
986 		return (SET_ERROR(error));
987 	}
988 
989 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
990 	vdev_state = rvd->vdev_state;
991 	spa_config_exit(spa, SCL_STATE, FTAG);
992 
993 	if (vdev_state != VDEV_STATE_HEALTHY)
994 		return (SET_ERROR(ENXIO));
995 
996 	ASSERT3U(spa_guid(spa), !=, *newguid);
997 
998 	return (0);
999 }
1000 
1001 static void
1002 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1003 {
1004 	uint64_t *newguid = arg;
1005 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1006 	uint64_t oldguid;
1007 	vdev_t *rvd = spa->spa_root_vdev;
1008 
1009 	oldguid = spa_guid(spa);
1010 
1011 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1012 	rvd->vdev_guid = *newguid;
1013 	rvd->vdev_guid_sum += (*newguid - oldguid);
1014 	vdev_config_dirty(rvd);
1015 	spa_config_exit(spa, SCL_STATE, FTAG);
1016 
1017 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1018 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1019 }
1020 
1021 /*
1022  * Change the GUID for the pool.  This is done so that we can later
1023  * re-import a pool built from a clone of our own vdevs.  We will modify
1024  * the root vdev's guid, our own pool guid, and then mark all of our
1025  * vdevs dirty.  Note that we must make sure that all our vdevs are
1026  * online when we do this, or else any vdevs that weren't present
1027  * would be orphaned from our pool.  We are also going to issue a
1028  * sysevent to update any watchers.
1029  */
1030 int
1031 spa_change_guid(spa_t *spa)
1032 {
1033 	int error;
1034 	uint64_t guid;
1035 
1036 	mutex_enter(&spa->spa_vdev_top_lock);
1037 	mutex_enter(&spa_namespace_lock);
1038 	guid = spa_generate_guid(NULL);
1039 
1040 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1041 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1042 
1043 	if (error == 0) {
1044 		/*
1045 		 * Clear the kobj flag from all the vdevs to allow
1046 		 * vdev_cache_process_kobj_evt() to post events to all the
1047 		 * vdevs since GUID is updated.
1048 		 */
1049 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1050 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1051 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1052 
1053 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1054 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1055 	}
1056 
1057 	mutex_exit(&spa_namespace_lock);
1058 	mutex_exit(&spa->spa_vdev_top_lock);
1059 
1060 	return (error);
1061 }
1062 
1063 /*
1064  * ==========================================================================
1065  * SPA state manipulation (open/create/destroy/import/export)
1066  * ==========================================================================
1067  */
1068 
1069 static int
1070 spa_error_entry_compare(const void *a, const void *b)
1071 {
1072 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1073 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1074 	int ret;
1075 
1076 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1077 	    sizeof (zbookmark_phys_t));
1078 
1079 	return (TREE_ISIGN(ret));
1080 }
1081 
1082 /*
1083  * Utility function which retrieves copies of the current logs and
1084  * re-initializes them in the process.
1085  */
1086 void
1087 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1088 {
1089 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1090 
1091 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1092 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1093 
1094 	avl_create(&spa->spa_errlist_scrub,
1095 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1096 	    offsetof(spa_error_entry_t, se_avl));
1097 	avl_create(&spa->spa_errlist_last,
1098 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1099 	    offsetof(spa_error_entry_t, se_avl));
1100 }
1101 
1102 static void
1103 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1104 {
1105 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1106 	enum zti_modes mode = ztip->zti_mode;
1107 	uint_t value = ztip->zti_value;
1108 	uint_t count = ztip->zti_count;
1109 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1110 	uint_t cpus, flags = TASKQ_DYNAMIC;
1111 
1112 	switch (mode) {
1113 	case ZTI_MODE_FIXED:
1114 		ASSERT3U(value, >, 0);
1115 		break;
1116 
1117 	case ZTI_MODE_SYNC:
1118 
1119 		/*
1120 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1121 		 * not to exceed the number of spa allocators, and align to it.
1122 		 */
1123 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1124 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1125 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1126 		count = MIN(count, spa->spa_alloc_count);
1127 		while (spa->spa_alloc_count % count != 0 &&
1128 		    spa->spa_alloc_count < count * 2)
1129 			count--;
1130 
1131 		/*
1132 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1133 		 * single taskq may have more threads than 100% of online cpus.
1134 		 */
1135 		value = (zio_taskq_batch_pct + count / 2) / count;
1136 		value = MIN(value, 100);
1137 		flags |= TASKQ_THREADS_CPU_PCT;
1138 		break;
1139 
1140 	case ZTI_MODE_SCALE:
1141 		flags |= TASKQ_THREADS_CPU_PCT;
1142 		/*
1143 		 * We want more taskqs to reduce lock contention, but we want
1144 		 * less for better request ordering and CPU utilization.
1145 		 */
1146 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1147 		if (zio_taskq_batch_tpq > 0) {
1148 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1149 			    zio_taskq_batch_tpq);
1150 		} else {
1151 			/*
1152 			 * Prefer 6 threads per taskq, but no more taskqs
1153 			 * than threads in them on large systems. For 80%:
1154 			 *
1155 			 *                 taskq   taskq   total
1156 			 * cpus    taskqs  percent threads threads
1157 			 * ------- ------- ------- ------- -------
1158 			 * 1       1       80%     1       1
1159 			 * 2       1       80%     1       1
1160 			 * 4       1       80%     3       3
1161 			 * 8       2       40%     3       6
1162 			 * 16      3       27%     4       12
1163 			 * 32      5       16%     5       25
1164 			 * 64      7       11%     7       49
1165 			 * 128     10      8%      10      100
1166 			 * 256     14      6%      15      210
1167 			 */
1168 			count = 1 + cpus / 6;
1169 			while (count * count > cpus)
1170 				count--;
1171 		}
1172 		/* Limit each taskq within 100% to not trigger assertion. */
1173 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1174 		value = (zio_taskq_batch_pct + count / 2) / count;
1175 		break;
1176 
1177 	case ZTI_MODE_NULL:
1178 		tqs->stqs_count = 0;
1179 		tqs->stqs_taskq = NULL;
1180 		return;
1181 
1182 	default:
1183 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1184 		    "spa_taskqs_init()",
1185 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1186 		break;
1187 	}
1188 
1189 	ASSERT3U(count, >, 0);
1190 	tqs->stqs_count = count;
1191 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1192 
1193 	for (uint_t i = 0; i < count; i++) {
1194 		taskq_t *tq;
1195 		char name[32];
1196 
1197 		if (count > 1)
1198 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1199 			    zio_type_name[t], zio_taskq_types[q], i);
1200 		else
1201 			(void) snprintf(name, sizeof (name), "%s_%s",
1202 			    zio_type_name[t], zio_taskq_types[q]);
1203 
1204 #ifdef HAVE_SYSDC
1205 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1206 			(void) zio_taskq_basedc;
1207 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1208 			    spa->spa_proc, zio_taskq_basedc, flags);
1209 		} else {
1210 #endif
1211 			pri_t pri = maxclsyspri;
1212 			/*
1213 			 * The write issue taskq can be extremely CPU
1214 			 * intensive.  Run it at slightly less important
1215 			 * priority than the other taskqs.
1216 			 *
1217 			 * Under Linux and FreeBSD this means incrementing
1218 			 * the priority value as opposed to platforms like
1219 			 * illumos where it should be decremented.
1220 			 *
1221 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1222 			 * are equal then a difference between them is
1223 			 * insignificant.
1224 			 */
1225 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1226 #if defined(__linux__)
1227 				pri++;
1228 #elif defined(__FreeBSD__)
1229 				pri += 4;
1230 #else
1231 #error "unknown OS"
1232 #endif
1233 			}
1234 			tq = taskq_create_proc(name, value, pri, 50,
1235 			    INT_MAX, spa->spa_proc, flags);
1236 #ifdef HAVE_SYSDC
1237 		}
1238 #endif
1239 
1240 		tqs->stqs_taskq[i] = tq;
1241 	}
1242 }
1243 
1244 static void
1245 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1246 {
1247 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1248 
1249 	if (tqs->stqs_taskq == NULL) {
1250 		ASSERT3U(tqs->stqs_count, ==, 0);
1251 		return;
1252 	}
1253 
1254 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1255 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1256 		taskq_destroy(tqs->stqs_taskq[i]);
1257 	}
1258 
1259 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1260 	tqs->stqs_taskq = NULL;
1261 }
1262 
1263 #ifdef _KERNEL
1264 /*
1265  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1266  * by setting zio_taskq_read or zio_taskq_write.
1267  *
1268  * Example (the defaults for READ and WRITE)
1269  *   zio_taskq_read='fixed,1,8 null scale null'
1270  *   zio_taskq_write='sync null scale null'
1271  *
1272  * Each sets the entire row at a time.
1273  *
1274  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1275  * of threads per taskq.
1276  *
1277  * 'null' can only be set on the high-priority queues (queue selection for
1278  * high-priority queues will fall back to the regular queue if the high-pri
1279  * is NULL.
1280  */
1281 static const char *const modes[ZTI_NMODES] = {
1282 	"fixed", "scale", "sync", "null"
1283 };
1284 
1285 /* Parse the incoming config string. Modifies cfg */
1286 static int
1287 spa_taskq_param_set(zio_type_t t, char *cfg)
1288 {
1289 	int err = 0;
1290 
1291 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1292 
1293 	char *next = cfg, *tok, *c;
1294 
1295 	/*
1296 	 * Parse out each element from the string and fill `row`. The entire
1297 	 * row has to be set at once, so any errors are flagged by just
1298 	 * breaking out of this loop early.
1299 	 */
1300 	uint_t q;
1301 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1302 		/* `next` is the start of the config */
1303 		if (next == NULL)
1304 			break;
1305 
1306 		/* Eat up leading space */
1307 		while (isspace(*next))
1308 			next++;
1309 		if (*next == '\0')
1310 			break;
1311 
1312 		/* Mode ends at space or end of string */
1313 		tok = next;
1314 		next = strchr(tok, ' ');
1315 		if (next != NULL) *next++ = '\0';
1316 
1317 		/* Parameters start after a comma */
1318 		c = strchr(tok, ',');
1319 		if (c != NULL) *c++ = '\0';
1320 
1321 		/* Match mode string */
1322 		uint_t mode;
1323 		for (mode = 0; mode < ZTI_NMODES; mode++)
1324 			if (strcmp(tok, modes[mode]) == 0)
1325 				break;
1326 		if (mode == ZTI_NMODES)
1327 			break;
1328 
1329 		/* Invalid canary */
1330 		row[q].zti_mode = ZTI_NMODES;
1331 
1332 		/* Per-mode setup */
1333 		switch (mode) {
1334 
1335 		/*
1336 		 * FIXED is parameterised: number of queues, and number of
1337 		 * threads per queue.
1338 		 */
1339 		case ZTI_MODE_FIXED: {
1340 			/* No parameters? */
1341 			if (c == NULL || *c == '\0')
1342 				break;
1343 
1344 			/* Find next parameter */
1345 			tok = c;
1346 			c = strchr(tok, ',');
1347 			if (c == NULL)
1348 				break;
1349 
1350 			/* Take digits and convert */
1351 			unsigned long long nq;
1352 			if (!(isdigit(*tok)))
1353 				break;
1354 			err = ddi_strtoull(tok, &tok, 10, &nq);
1355 			/* Must succeed and also end at the next param sep */
1356 			if (err != 0 || tok != c)
1357 				break;
1358 
1359 			/* Move past the comma */
1360 			tok++;
1361 			/* Need another number */
1362 			if (!(isdigit(*tok)))
1363 				break;
1364 			/* Remember start to make sure we moved */
1365 			c = tok;
1366 
1367 			/* Take digits */
1368 			unsigned long long ntpq;
1369 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1370 			/* Must succeed, and moved forward */
1371 			if (err != 0 || tok == c || *tok != '\0')
1372 				break;
1373 
1374 			/*
1375 			 * sanity; zero queues/threads make no sense, and
1376 			 * 16K is almost certainly more than anyone will ever
1377 			 * need and avoids silly numbers like UINT32_MAX
1378 			 */
1379 			if (nq == 0 || nq >= 16384 ||
1380 			    ntpq == 0 || ntpq >= 16384)
1381 				break;
1382 
1383 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1384 			row[q] = zti;
1385 			break;
1386 		}
1387 
1388 		case ZTI_MODE_SCALE: {
1389 			const zio_taskq_info_t zti = ZTI_SCALE;
1390 			row[q] = zti;
1391 			break;
1392 		}
1393 
1394 		case ZTI_MODE_SYNC: {
1395 			const zio_taskq_info_t zti = ZTI_SYNC;
1396 			row[q] = zti;
1397 			break;
1398 		}
1399 
1400 		case ZTI_MODE_NULL: {
1401 			/*
1402 			 * Can only null the high-priority queues; the general-
1403 			 * purpose ones have to exist.
1404 			 */
1405 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1406 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1407 				break;
1408 
1409 			const zio_taskq_info_t zti = ZTI_NULL;
1410 			row[q] = zti;
1411 			break;
1412 		}
1413 
1414 		default:
1415 			break;
1416 		}
1417 
1418 		/* Ensure we set a mode */
1419 		if (row[q].zti_mode == ZTI_NMODES)
1420 			break;
1421 	}
1422 
1423 	/* Didn't get a full row, fail */
1424 	if (q < ZIO_TASKQ_TYPES)
1425 		return (SET_ERROR(EINVAL));
1426 
1427 	/* Eat trailing space */
1428 	if (next != NULL)
1429 		while (isspace(*next))
1430 			next++;
1431 
1432 	/* If there's anything left over then fail */
1433 	if (next != NULL && *next != '\0')
1434 		return (SET_ERROR(EINVAL));
1435 
1436 	/* Success! Copy it into the real config */
1437 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1438 		zio_taskqs[t][q] = row[q];
1439 
1440 	return (0);
1441 }
1442 
1443 static int
1444 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1445 {
1446 	int pos = 0;
1447 
1448 	/* Build paramater string from live config */
1449 	const char *sep = "";
1450 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1451 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1452 		if (zti->zti_mode == ZTI_MODE_FIXED)
1453 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1454 			    modes[zti->zti_mode], zti->zti_count,
1455 			    zti->zti_value);
1456 		else
1457 			pos += sprintf(&buf[pos], "%s%s", sep,
1458 			    modes[zti->zti_mode]);
1459 		sep = " ";
1460 	}
1461 
1462 	if (add_newline)
1463 		buf[pos++] = '\n';
1464 	buf[pos] = '\0';
1465 
1466 	return (pos);
1467 }
1468 
1469 #ifdef __linux__
1470 static int
1471 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1472 {
1473 	char *cfg = kmem_strdup(val);
1474 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1475 	kmem_free(cfg, strlen(val)+1);
1476 	return (-err);
1477 }
1478 static int
1479 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1480 {
1481 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1482 }
1483 
1484 static int
1485 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1486 {
1487 	char *cfg = kmem_strdup(val);
1488 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1489 	kmem_free(cfg, strlen(val)+1);
1490 	return (-err);
1491 }
1492 static int
1493 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1494 {
1495 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1496 }
1497 #else
1498 /*
1499  * On FreeBSD load-time parameters can be set up before malloc() is available,
1500  * so we have to do all the parsing work on the stack.
1501  */
1502 #define	SPA_TASKQ_PARAM_MAX	(128)
1503 
1504 static int
1505 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1506 {
1507 	char buf[SPA_TASKQ_PARAM_MAX];
1508 	int err;
1509 
1510 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1511 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1512 	if (err || req->newptr == NULL)
1513 		return (err);
1514 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1515 }
1516 
1517 static int
1518 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1519 {
1520 	char buf[SPA_TASKQ_PARAM_MAX];
1521 	int err;
1522 
1523 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1524 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1525 	if (err || req->newptr == NULL)
1526 		return (err);
1527 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1528 }
1529 #endif
1530 #endif /* _KERNEL */
1531 
1532 /*
1533  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1534  * Note that a type may have multiple discrete taskqs to avoid lock contention
1535  * on the taskq itself.
1536  */
1537 void
1538 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1539     task_func_t *func, zio_t *zio, boolean_t cutinline)
1540 {
1541 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1542 	taskq_t *tq;
1543 
1544 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1545 	ASSERT3U(tqs->stqs_count, !=, 0);
1546 
1547 	/*
1548 	 * NB: We are assuming that the zio can only be dispatched
1549 	 * to a single taskq at a time.  It would be a grievous error
1550 	 * to dispatch the zio to another taskq at the same time.
1551 	 */
1552 	ASSERT(zio);
1553 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1554 
1555 	if (tqs->stqs_count == 1) {
1556 		tq = tqs->stqs_taskq[0];
1557 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1558 	    ZIO_HAS_ALLOCATOR(zio)) {
1559 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1560 	} else {
1561 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1562 	}
1563 
1564 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1565 	    &zio->io_tqent);
1566 }
1567 
1568 static void
1569 spa_create_zio_taskqs(spa_t *spa)
1570 {
1571 	for (int t = 0; t < ZIO_TYPES; t++) {
1572 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1573 			spa_taskqs_init(spa, t, q);
1574 		}
1575 	}
1576 }
1577 
1578 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1579 static void
1580 spa_thread(void *arg)
1581 {
1582 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1583 	callb_cpr_t cprinfo;
1584 
1585 	spa_t *spa = arg;
1586 	user_t *pu = PTOU(curproc);
1587 
1588 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1589 	    spa->spa_name);
1590 
1591 	ASSERT(curproc != &p0);
1592 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1593 	    "zpool-%s", spa->spa_name);
1594 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1595 
1596 	/* bind this thread to the requested psrset */
1597 	if (zio_taskq_psrset_bind != PS_NONE) {
1598 		pool_lock();
1599 		mutex_enter(&cpu_lock);
1600 		mutex_enter(&pidlock);
1601 		mutex_enter(&curproc->p_lock);
1602 
1603 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1604 		    0, NULL, NULL) == 0)  {
1605 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1606 		} else {
1607 			cmn_err(CE_WARN,
1608 			    "Couldn't bind process for zfs pool \"%s\" to "
1609 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1610 		}
1611 
1612 		mutex_exit(&curproc->p_lock);
1613 		mutex_exit(&pidlock);
1614 		mutex_exit(&cpu_lock);
1615 		pool_unlock();
1616 	}
1617 
1618 #ifdef HAVE_SYSDC
1619 	if (zio_taskq_sysdc) {
1620 		sysdc_thread_enter(curthread, 100, 0);
1621 	}
1622 #endif
1623 
1624 	spa->spa_proc = curproc;
1625 	spa->spa_did = curthread->t_did;
1626 
1627 	spa_create_zio_taskqs(spa);
1628 
1629 	mutex_enter(&spa->spa_proc_lock);
1630 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1631 
1632 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1633 	cv_broadcast(&spa->spa_proc_cv);
1634 
1635 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1636 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1637 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1638 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1639 
1640 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1641 	spa->spa_proc_state = SPA_PROC_GONE;
1642 	spa->spa_proc = &p0;
1643 	cv_broadcast(&spa->spa_proc_cv);
1644 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1645 
1646 	mutex_enter(&curproc->p_lock);
1647 	lwp_exit();
1648 }
1649 #endif
1650 
1651 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1652 
1653 /*
1654  * Activate an uninitialized pool.
1655  */
1656 static void
1657 spa_activate(spa_t *spa, spa_mode_t mode)
1658 {
1659 	metaslab_ops_t *msp = metaslab_allocator(spa);
1660 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1661 
1662 	spa->spa_state = POOL_STATE_ACTIVE;
1663 	spa->spa_mode = mode;
1664 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1665 
1666 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1667 	spa->spa_log_class = metaslab_class_create(spa, msp);
1668 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1669 	spa->spa_special_class = metaslab_class_create(spa, msp);
1670 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1671 
1672 	/* Try to create a covering process */
1673 	mutex_enter(&spa->spa_proc_lock);
1674 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1675 	ASSERT(spa->spa_proc == &p0);
1676 	spa->spa_did = 0;
1677 
1678 #ifdef HAVE_SPA_THREAD
1679 	/* Only create a process if we're going to be around a while. */
1680 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1681 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1682 		    NULL, 0) == 0) {
1683 			spa->spa_proc_state = SPA_PROC_CREATED;
1684 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1685 				cv_wait(&spa->spa_proc_cv,
1686 				    &spa->spa_proc_lock);
1687 			}
1688 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1689 			ASSERT(spa->spa_proc != &p0);
1690 			ASSERT(spa->spa_did != 0);
1691 		} else {
1692 #ifdef _KERNEL
1693 			cmn_err(CE_WARN,
1694 			    "Couldn't create process for zfs pool \"%s\"\n",
1695 			    spa->spa_name);
1696 #endif
1697 		}
1698 	}
1699 #endif /* HAVE_SPA_THREAD */
1700 	mutex_exit(&spa->spa_proc_lock);
1701 
1702 	/* If we didn't create a process, we need to create our taskqs. */
1703 	if (spa->spa_proc == &p0) {
1704 		spa_create_zio_taskqs(spa);
1705 	}
1706 
1707 	for (size_t i = 0; i < TXG_SIZE; i++) {
1708 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1709 		    ZIO_FLAG_CANFAIL);
1710 	}
1711 
1712 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1713 	    offsetof(vdev_t, vdev_config_dirty_node));
1714 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1715 	    offsetof(objset_t, os_evicting_node));
1716 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1717 	    offsetof(vdev_t, vdev_state_dirty_node));
1718 
1719 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1720 	    offsetof(struct vdev, vdev_txg_node));
1721 
1722 	avl_create(&spa->spa_errlist_scrub,
1723 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1724 	    offsetof(spa_error_entry_t, se_avl));
1725 	avl_create(&spa->spa_errlist_last,
1726 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1727 	    offsetof(spa_error_entry_t, se_avl));
1728 	avl_create(&spa->spa_errlist_healed,
1729 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1730 	    offsetof(spa_error_entry_t, se_avl));
1731 
1732 	spa_activate_os(spa);
1733 
1734 	spa_keystore_init(&spa->spa_keystore);
1735 
1736 	/*
1737 	 * This taskq is used to perform zvol-minor-related tasks
1738 	 * asynchronously. This has several advantages, including easy
1739 	 * resolution of various deadlocks.
1740 	 *
1741 	 * The taskq must be single threaded to ensure tasks are always
1742 	 * processed in the order in which they were dispatched.
1743 	 *
1744 	 * A taskq per pool allows one to keep the pools independent.
1745 	 * This way if one pool is suspended, it will not impact another.
1746 	 *
1747 	 * The preferred location to dispatch a zvol minor task is a sync
1748 	 * task. In this context, there is easy access to the spa_t and minimal
1749 	 * error handling is required because the sync task must succeed.
1750 	 */
1751 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1752 	    1, INT_MAX, 0);
1753 
1754 	/*
1755 	 * The taskq to preload metaslabs.
1756 	 */
1757 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1758 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1759 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1760 
1761 	/*
1762 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1763 	 * pool traverse code from monopolizing the global (and limited)
1764 	 * system_taskq by inappropriately scheduling long running tasks on it.
1765 	 */
1766 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1767 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1768 
1769 	/*
1770 	 * The taskq to upgrade datasets in this pool. Currently used by
1771 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1772 	 */
1773 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1774 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1775 }
1776 
1777 /*
1778  * Opposite of spa_activate().
1779  */
1780 static void
1781 spa_deactivate(spa_t *spa)
1782 {
1783 	ASSERT(spa->spa_sync_on == B_FALSE);
1784 	ASSERT(spa->spa_dsl_pool == NULL);
1785 	ASSERT(spa->spa_root_vdev == NULL);
1786 	ASSERT(spa->spa_async_zio_root == NULL);
1787 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1788 
1789 	spa_evicting_os_wait(spa);
1790 
1791 	if (spa->spa_zvol_taskq) {
1792 		taskq_destroy(spa->spa_zvol_taskq);
1793 		spa->spa_zvol_taskq = NULL;
1794 	}
1795 
1796 	if (spa->spa_metaslab_taskq) {
1797 		taskq_destroy(spa->spa_metaslab_taskq);
1798 		spa->spa_metaslab_taskq = NULL;
1799 	}
1800 
1801 	if (spa->spa_prefetch_taskq) {
1802 		taskq_destroy(spa->spa_prefetch_taskq);
1803 		spa->spa_prefetch_taskq = NULL;
1804 	}
1805 
1806 	if (spa->spa_upgrade_taskq) {
1807 		taskq_destroy(spa->spa_upgrade_taskq);
1808 		spa->spa_upgrade_taskq = NULL;
1809 	}
1810 
1811 	txg_list_destroy(&spa->spa_vdev_txg_list);
1812 
1813 	list_destroy(&spa->spa_config_dirty_list);
1814 	list_destroy(&spa->spa_evicting_os_list);
1815 	list_destroy(&spa->spa_state_dirty_list);
1816 
1817 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1818 
1819 	for (int t = 0; t < ZIO_TYPES; t++) {
1820 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1821 			spa_taskqs_fini(spa, t, q);
1822 		}
1823 	}
1824 
1825 	for (size_t i = 0; i < TXG_SIZE; i++) {
1826 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1827 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1828 		spa->spa_txg_zio[i] = NULL;
1829 	}
1830 
1831 	metaslab_class_destroy(spa->spa_normal_class);
1832 	spa->spa_normal_class = NULL;
1833 
1834 	metaslab_class_destroy(spa->spa_log_class);
1835 	spa->spa_log_class = NULL;
1836 
1837 	metaslab_class_destroy(spa->spa_embedded_log_class);
1838 	spa->spa_embedded_log_class = NULL;
1839 
1840 	metaslab_class_destroy(spa->spa_special_class);
1841 	spa->spa_special_class = NULL;
1842 
1843 	metaslab_class_destroy(spa->spa_dedup_class);
1844 	spa->spa_dedup_class = NULL;
1845 
1846 	/*
1847 	 * If this was part of an import or the open otherwise failed, we may
1848 	 * still have errors left in the queues.  Empty them just in case.
1849 	 */
1850 	spa_errlog_drain(spa);
1851 	avl_destroy(&spa->spa_errlist_scrub);
1852 	avl_destroy(&spa->spa_errlist_last);
1853 	avl_destroy(&spa->spa_errlist_healed);
1854 
1855 	spa_keystore_fini(&spa->spa_keystore);
1856 
1857 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1858 
1859 	mutex_enter(&spa->spa_proc_lock);
1860 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1861 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1862 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1863 		cv_broadcast(&spa->spa_proc_cv);
1864 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1865 			ASSERT(spa->spa_proc != &p0);
1866 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1867 		}
1868 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1869 		spa->spa_proc_state = SPA_PROC_NONE;
1870 	}
1871 	ASSERT(spa->spa_proc == &p0);
1872 	mutex_exit(&spa->spa_proc_lock);
1873 
1874 	/*
1875 	 * We want to make sure spa_thread() has actually exited the ZFS
1876 	 * module, so that the module can't be unloaded out from underneath
1877 	 * it.
1878 	 */
1879 	if (spa->spa_did != 0) {
1880 		thread_join(spa->spa_did);
1881 		spa->spa_did = 0;
1882 	}
1883 
1884 	spa_deactivate_os(spa);
1885 
1886 }
1887 
1888 /*
1889  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1890  * will create all the necessary vdevs in the appropriate layout, with each vdev
1891  * in the CLOSED state.  This will prep the pool before open/creation/import.
1892  * All vdev validation is done by the vdev_alloc() routine.
1893  */
1894 int
1895 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1896     uint_t id, int atype)
1897 {
1898 	nvlist_t **child;
1899 	uint_t children;
1900 	int error;
1901 
1902 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1903 		return (error);
1904 
1905 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1906 		return (0);
1907 
1908 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1909 	    &child, &children);
1910 
1911 	if (error == ENOENT)
1912 		return (0);
1913 
1914 	if (error) {
1915 		vdev_free(*vdp);
1916 		*vdp = NULL;
1917 		return (SET_ERROR(EINVAL));
1918 	}
1919 
1920 	for (int c = 0; c < children; c++) {
1921 		vdev_t *vd;
1922 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1923 		    atype)) != 0) {
1924 			vdev_free(*vdp);
1925 			*vdp = NULL;
1926 			return (error);
1927 		}
1928 	}
1929 
1930 	ASSERT(*vdp != NULL);
1931 
1932 	return (0);
1933 }
1934 
1935 static boolean_t
1936 spa_should_flush_logs_on_unload(spa_t *spa)
1937 {
1938 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1939 		return (B_FALSE);
1940 
1941 	if (!spa_writeable(spa))
1942 		return (B_FALSE);
1943 
1944 	if (!spa->spa_sync_on)
1945 		return (B_FALSE);
1946 
1947 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1948 		return (B_FALSE);
1949 
1950 	if (zfs_keep_log_spacemaps_at_export)
1951 		return (B_FALSE);
1952 
1953 	return (B_TRUE);
1954 }
1955 
1956 /*
1957  * Opens a transaction that will set the flag that will instruct
1958  * spa_sync to attempt to flush all the metaslabs for that txg.
1959  */
1960 static void
1961 spa_unload_log_sm_flush_all(spa_t *spa)
1962 {
1963 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1964 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1965 
1966 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1967 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1968 
1969 	dmu_tx_commit(tx);
1970 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1971 }
1972 
1973 static void
1974 spa_unload_log_sm_metadata(spa_t *spa)
1975 {
1976 	void *cookie = NULL;
1977 	spa_log_sm_t *sls;
1978 	log_summary_entry_t *e;
1979 
1980 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1981 	    &cookie)) != NULL) {
1982 		VERIFY0(sls->sls_mscount);
1983 		kmem_free(sls, sizeof (spa_log_sm_t));
1984 	}
1985 
1986 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1987 		VERIFY0(e->lse_mscount);
1988 		kmem_free(e, sizeof (log_summary_entry_t));
1989 	}
1990 
1991 	spa->spa_unflushed_stats.sus_nblocks = 0;
1992 	spa->spa_unflushed_stats.sus_memused = 0;
1993 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1994 }
1995 
1996 static void
1997 spa_destroy_aux_threads(spa_t *spa)
1998 {
1999 	if (spa->spa_condense_zthr != NULL) {
2000 		zthr_destroy(spa->spa_condense_zthr);
2001 		spa->spa_condense_zthr = NULL;
2002 	}
2003 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2004 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2005 		spa->spa_checkpoint_discard_zthr = NULL;
2006 	}
2007 	if (spa->spa_livelist_delete_zthr != NULL) {
2008 		zthr_destroy(spa->spa_livelist_delete_zthr);
2009 		spa->spa_livelist_delete_zthr = NULL;
2010 	}
2011 	if (spa->spa_livelist_condense_zthr != NULL) {
2012 		zthr_destroy(spa->spa_livelist_condense_zthr);
2013 		spa->spa_livelist_condense_zthr = NULL;
2014 	}
2015 	if (spa->spa_raidz_expand_zthr != NULL) {
2016 		zthr_destroy(spa->spa_raidz_expand_zthr);
2017 		spa->spa_raidz_expand_zthr = NULL;
2018 	}
2019 }
2020 
2021 /*
2022  * Opposite of spa_load().
2023  */
2024 static void
2025 spa_unload(spa_t *spa)
2026 {
2027 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2028 	    spa->spa_export_thread == curthread);
2029 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2030 
2031 	spa_import_progress_remove(spa_guid(spa));
2032 	spa_load_note(spa, "UNLOADING");
2033 
2034 	spa_wake_waiters(spa);
2035 
2036 	/*
2037 	 * If we have set the spa_final_txg, we have already performed the
2038 	 * tasks below in spa_export_common(). We should not redo it here since
2039 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2040 	 */
2041 	if (spa->spa_final_txg == UINT64_MAX) {
2042 		/*
2043 		 * If the log space map feature is enabled and the pool is
2044 		 * getting exported (but not destroyed), we want to spend some
2045 		 * time flushing as many metaslabs as we can in an attempt to
2046 		 * destroy log space maps and save import time.
2047 		 */
2048 		if (spa_should_flush_logs_on_unload(spa))
2049 			spa_unload_log_sm_flush_all(spa);
2050 
2051 		/*
2052 		 * Stop async tasks.
2053 		 */
2054 		spa_async_suspend(spa);
2055 
2056 		if (spa->spa_root_vdev) {
2057 			vdev_t *root_vdev = spa->spa_root_vdev;
2058 			vdev_initialize_stop_all(root_vdev,
2059 			    VDEV_INITIALIZE_ACTIVE);
2060 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2061 			vdev_autotrim_stop_all(spa);
2062 			vdev_rebuild_stop_all(spa);
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * Stop syncing.
2068 	 */
2069 	if (spa->spa_sync_on) {
2070 		txg_sync_stop(spa->spa_dsl_pool);
2071 		spa->spa_sync_on = B_FALSE;
2072 	}
2073 
2074 	/*
2075 	 * This ensures that there is no async metaslab prefetching
2076 	 * while we attempt to unload the spa.
2077 	 */
2078 	taskq_wait(spa->spa_metaslab_taskq);
2079 
2080 	if (spa->spa_mmp.mmp_thread)
2081 		mmp_thread_stop(spa);
2082 
2083 	/*
2084 	 * Wait for any outstanding async I/O to complete.
2085 	 */
2086 	if (spa->spa_async_zio_root != NULL) {
2087 		for (int i = 0; i < max_ncpus; i++)
2088 			(void) zio_wait(spa->spa_async_zio_root[i]);
2089 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2090 		spa->spa_async_zio_root = NULL;
2091 	}
2092 
2093 	if (spa->spa_vdev_removal != NULL) {
2094 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2095 		spa->spa_vdev_removal = NULL;
2096 	}
2097 
2098 	spa_destroy_aux_threads(spa);
2099 
2100 	spa_condense_fini(spa);
2101 
2102 	bpobj_close(&spa->spa_deferred_bpobj);
2103 
2104 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2105 
2106 	/*
2107 	 * Close all vdevs.
2108 	 */
2109 	if (spa->spa_root_vdev)
2110 		vdev_free(spa->spa_root_vdev);
2111 	ASSERT(spa->spa_root_vdev == NULL);
2112 
2113 	/*
2114 	 * Close the dsl pool.
2115 	 */
2116 	if (spa->spa_dsl_pool) {
2117 		dsl_pool_close(spa->spa_dsl_pool);
2118 		spa->spa_dsl_pool = NULL;
2119 		spa->spa_meta_objset = NULL;
2120 	}
2121 
2122 	ddt_unload(spa);
2123 	brt_unload(spa);
2124 	spa_unload_log_sm_metadata(spa);
2125 
2126 	/*
2127 	 * Drop and purge level 2 cache
2128 	 */
2129 	spa_l2cache_drop(spa);
2130 
2131 	if (spa->spa_spares.sav_vdevs) {
2132 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2133 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2134 		kmem_free(spa->spa_spares.sav_vdevs,
2135 		    spa->spa_spares.sav_count * sizeof (void *));
2136 		spa->spa_spares.sav_vdevs = NULL;
2137 	}
2138 	if (spa->spa_spares.sav_config) {
2139 		nvlist_free(spa->spa_spares.sav_config);
2140 		spa->spa_spares.sav_config = NULL;
2141 	}
2142 	spa->spa_spares.sav_count = 0;
2143 
2144 	if (spa->spa_l2cache.sav_vdevs) {
2145 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2146 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2147 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2148 		}
2149 		kmem_free(spa->spa_l2cache.sav_vdevs,
2150 		    spa->spa_l2cache.sav_count * sizeof (void *));
2151 		spa->spa_l2cache.sav_vdevs = NULL;
2152 	}
2153 	if (spa->spa_l2cache.sav_config) {
2154 		nvlist_free(spa->spa_l2cache.sav_config);
2155 		spa->spa_l2cache.sav_config = NULL;
2156 	}
2157 	spa->spa_l2cache.sav_count = 0;
2158 
2159 	spa->spa_async_suspended = 0;
2160 
2161 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2162 
2163 	if (spa->spa_comment != NULL) {
2164 		spa_strfree(spa->spa_comment);
2165 		spa->spa_comment = NULL;
2166 	}
2167 	if (spa->spa_compatibility != NULL) {
2168 		spa_strfree(spa->spa_compatibility);
2169 		spa->spa_compatibility = NULL;
2170 	}
2171 
2172 	spa->spa_raidz_expand = NULL;
2173 
2174 	spa_config_exit(spa, SCL_ALL, spa);
2175 }
2176 
2177 /*
2178  * Load (or re-load) the current list of vdevs describing the active spares for
2179  * this pool.  When this is called, we have some form of basic information in
2180  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2181  * then re-generate a more complete list including status information.
2182  */
2183 void
2184 spa_load_spares(spa_t *spa)
2185 {
2186 	nvlist_t **spares;
2187 	uint_t nspares;
2188 	int i;
2189 	vdev_t *vd, *tvd;
2190 
2191 #ifndef _KERNEL
2192 	/*
2193 	 * zdb opens both the current state of the pool and the
2194 	 * checkpointed state (if present), with a different spa_t.
2195 	 *
2196 	 * As spare vdevs are shared among open pools, we skip loading
2197 	 * them when we load the checkpointed state of the pool.
2198 	 */
2199 	if (!spa_writeable(spa))
2200 		return;
2201 #endif
2202 
2203 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2204 
2205 	/*
2206 	 * First, close and free any existing spare vdevs.
2207 	 */
2208 	if (spa->spa_spares.sav_vdevs) {
2209 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2210 			vd = spa->spa_spares.sav_vdevs[i];
2211 
2212 			/* Undo the call to spa_activate() below */
2213 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2214 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2215 				spa_spare_remove(tvd);
2216 			vdev_close(vd);
2217 			vdev_free(vd);
2218 		}
2219 
2220 		kmem_free(spa->spa_spares.sav_vdevs,
2221 		    spa->spa_spares.sav_count * sizeof (void *));
2222 	}
2223 
2224 	if (spa->spa_spares.sav_config == NULL)
2225 		nspares = 0;
2226 	else
2227 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2228 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2229 
2230 	spa->spa_spares.sav_count = (int)nspares;
2231 	spa->spa_spares.sav_vdevs = NULL;
2232 
2233 	if (nspares == 0)
2234 		return;
2235 
2236 	/*
2237 	 * Construct the array of vdevs, opening them to get status in the
2238 	 * process.   For each spare, there is potentially two different vdev_t
2239 	 * structures associated with it: one in the list of spares (used only
2240 	 * for basic validation purposes) and one in the active vdev
2241 	 * configuration (if it's spared in).  During this phase we open and
2242 	 * validate each vdev on the spare list.  If the vdev also exists in the
2243 	 * active configuration, then we also mark this vdev as an active spare.
2244 	 */
2245 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2246 	    KM_SLEEP);
2247 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2248 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2249 		    VDEV_ALLOC_SPARE) == 0);
2250 		ASSERT(vd != NULL);
2251 
2252 		spa->spa_spares.sav_vdevs[i] = vd;
2253 
2254 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2255 		    B_FALSE)) != NULL) {
2256 			if (!tvd->vdev_isspare)
2257 				spa_spare_add(tvd);
2258 
2259 			/*
2260 			 * We only mark the spare active if we were successfully
2261 			 * able to load the vdev.  Otherwise, importing a pool
2262 			 * with a bad active spare would result in strange
2263 			 * behavior, because multiple pool would think the spare
2264 			 * is actively in use.
2265 			 *
2266 			 * There is a vulnerability here to an equally bizarre
2267 			 * circumstance, where a dead active spare is later
2268 			 * brought back to life (onlined or otherwise).  Given
2269 			 * the rarity of this scenario, and the extra complexity
2270 			 * it adds, we ignore the possibility.
2271 			 */
2272 			if (!vdev_is_dead(tvd))
2273 				spa_spare_activate(tvd);
2274 		}
2275 
2276 		vd->vdev_top = vd;
2277 		vd->vdev_aux = &spa->spa_spares;
2278 
2279 		if (vdev_open(vd) != 0)
2280 			continue;
2281 
2282 		if (vdev_validate_aux(vd) == 0)
2283 			spa_spare_add(vd);
2284 	}
2285 
2286 	/*
2287 	 * Recompute the stashed list of spares, with status information
2288 	 * this time.
2289 	 */
2290 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2291 
2292 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2293 	    KM_SLEEP);
2294 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2295 		spares[i] = vdev_config_generate(spa,
2296 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2297 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2298 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2299 	    spa->spa_spares.sav_count);
2300 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2301 		nvlist_free(spares[i]);
2302 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2303 }
2304 
2305 /*
2306  * Load (or re-load) the current list of vdevs describing the active l2cache for
2307  * this pool.  When this is called, we have some form of basic information in
2308  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2309  * then re-generate a more complete list including status information.
2310  * Devices which are already active have their details maintained, and are
2311  * not re-opened.
2312  */
2313 void
2314 spa_load_l2cache(spa_t *spa)
2315 {
2316 	nvlist_t **l2cache = NULL;
2317 	uint_t nl2cache;
2318 	int i, j, oldnvdevs;
2319 	uint64_t guid;
2320 	vdev_t *vd, **oldvdevs, **newvdevs;
2321 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2322 
2323 #ifndef _KERNEL
2324 	/*
2325 	 * zdb opens both the current state of the pool and the
2326 	 * checkpointed state (if present), with a different spa_t.
2327 	 *
2328 	 * As L2 caches are part of the ARC which is shared among open
2329 	 * pools, we skip loading them when we load the checkpointed
2330 	 * state of the pool.
2331 	 */
2332 	if (!spa_writeable(spa))
2333 		return;
2334 #endif
2335 
2336 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2337 
2338 	oldvdevs = sav->sav_vdevs;
2339 	oldnvdevs = sav->sav_count;
2340 	sav->sav_vdevs = NULL;
2341 	sav->sav_count = 0;
2342 
2343 	if (sav->sav_config == NULL) {
2344 		nl2cache = 0;
2345 		newvdevs = NULL;
2346 		goto out;
2347 	}
2348 
2349 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2350 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2351 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2352 
2353 	/*
2354 	 * Process new nvlist of vdevs.
2355 	 */
2356 	for (i = 0; i < nl2cache; i++) {
2357 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2358 
2359 		newvdevs[i] = NULL;
2360 		for (j = 0; j < oldnvdevs; j++) {
2361 			vd = oldvdevs[j];
2362 			if (vd != NULL && guid == vd->vdev_guid) {
2363 				/*
2364 				 * Retain previous vdev for add/remove ops.
2365 				 */
2366 				newvdevs[i] = vd;
2367 				oldvdevs[j] = NULL;
2368 				break;
2369 			}
2370 		}
2371 
2372 		if (newvdevs[i] == NULL) {
2373 			/*
2374 			 * Create new vdev
2375 			 */
2376 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2377 			    VDEV_ALLOC_L2CACHE) == 0);
2378 			ASSERT(vd != NULL);
2379 			newvdevs[i] = vd;
2380 
2381 			/*
2382 			 * Commit this vdev as an l2cache device,
2383 			 * even if it fails to open.
2384 			 */
2385 			spa_l2cache_add(vd);
2386 
2387 			vd->vdev_top = vd;
2388 			vd->vdev_aux = sav;
2389 
2390 			spa_l2cache_activate(vd);
2391 
2392 			if (vdev_open(vd) != 0)
2393 				continue;
2394 
2395 			(void) vdev_validate_aux(vd);
2396 
2397 			if (!vdev_is_dead(vd))
2398 				l2arc_add_vdev(spa, vd);
2399 
2400 			/*
2401 			 * Upon cache device addition to a pool or pool
2402 			 * creation with a cache device or if the header
2403 			 * of the device is invalid we issue an async
2404 			 * TRIM command for the whole device which will
2405 			 * execute if l2arc_trim_ahead > 0.
2406 			 */
2407 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2408 		}
2409 	}
2410 
2411 	sav->sav_vdevs = newvdevs;
2412 	sav->sav_count = (int)nl2cache;
2413 
2414 	/*
2415 	 * Recompute the stashed list of l2cache devices, with status
2416 	 * information this time.
2417 	 */
2418 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2419 
2420 	if (sav->sav_count > 0)
2421 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2422 		    KM_SLEEP);
2423 	for (i = 0; i < sav->sav_count; i++)
2424 		l2cache[i] = vdev_config_generate(spa,
2425 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2426 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2427 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2428 
2429 out:
2430 	/*
2431 	 * Purge vdevs that were dropped
2432 	 */
2433 	if (oldvdevs) {
2434 		for (i = 0; i < oldnvdevs; i++) {
2435 			uint64_t pool;
2436 
2437 			vd = oldvdevs[i];
2438 			if (vd != NULL) {
2439 				ASSERT(vd->vdev_isl2cache);
2440 
2441 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2442 				    pool != 0ULL && l2arc_vdev_present(vd))
2443 					l2arc_remove_vdev(vd);
2444 				vdev_clear_stats(vd);
2445 				vdev_free(vd);
2446 			}
2447 		}
2448 
2449 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2450 	}
2451 
2452 	for (i = 0; i < sav->sav_count; i++)
2453 		nvlist_free(l2cache[i]);
2454 	if (sav->sav_count)
2455 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2456 }
2457 
2458 static int
2459 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2460 {
2461 	dmu_buf_t *db;
2462 	char *packed = NULL;
2463 	size_t nvsize = 0;
2464 	int error;
2465 	*value = NULL;
2466 
2467 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2468 	if (error)
2469 		return (error);
2470 
2471 	nvsize = *(uint64_t *)db->db_data;
2472 	dmu_buf_rele(db, FTAG);
2473 
2474 	packed = vmem_alloc(nvsize, KM_SLEEP);
2475 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2476 	    DMU_READ_PREFETCH);
2477 	if (error == 0)
2478 		error = nvlist_unpack(packed, nvsize, value, 0);
2479 	vmem_free(packed, nvsize);
2480 
2481 	return (error);
2482 }
2483 
2484 /*
2485  * Concrete top-level vdevs that are not missing and are not logs. At every
2486  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2487  */
2488 static uint64_t
2489 spa_healthy_core_tvds(spa_t *spa)
2490 {
2491 	vdev_t *rvd = spa->spa_root_vdev;
2492 	uint64_t tvds = 0;
2493 
2494 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2495 		vdev_t *vd = rvd->vdev_child[i];
2496 		if (vd->vdev_islog)
2497 			continue;
2498 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2499 			tvds++;
2500 	}
2501 
2502 	return (tvds);
2503 }
2504 
2505 /*
2506  * Checks to see if the given vdev could not be opened, in which case we post a
2507  * sysevent to notify the autoreplace code that the device has been removed.
2508  */
2509 static void
2510 spa_check_removed(vdev_t *vd)
2511 {
2512 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2513 		spa_check_removed(vd->vdev_child[c]);
2514 
2515 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2516 	    vdev_is_concrete(vd)) {
2517 		zfs_post_autoreplace(vd->vdev_spa, vd);
2518 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2519 	}
2520 }
2521 
2522 static int
2523 spa_check_for_missing_logs(spa_t *spa)
2524 {
2525 	vdev_t *rvd = spa->spa_root_vdev;
2526 
2527 	/*
2528 	 * If we're doing a normal import, then build up any additional
2529 	 * diagnostic information about missing log devices.
2530 	 * We'll pass this up to the user for further processing.
2531 	 */
2532 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2533 		nvlist_t **child, *nv;
2534 		uint64_t idx = 0;
2535 
2536 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2537 		    KM_SLEEP);
2538 		nv = fnvlist_alloc();
2539 
2540 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2541 			vdev_t *tvd = rvd->vdev_child[c];
2542 
2543 			/*
2544 			 * We consider a device as missing only if it failed
2545 			 * to open (i.e. offline or faulted is not considered
2546 			 * as missing).
2547 			 */
2548 			if (tvd->vdev_islog &&
2549 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2550 				child[idx++] = vdev_config_generate(spa, tvd,
2551 				    B_FALSE, VDEV_CONFIG_MISSING);
2552 			}
2553 		}
2554 
2555 		if (idx > 0) {
2556 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2557 			    (const nvlist_t * const *)child, idx);
2558 			fnvlist_add_nvlist(spa->spa_load_info,
2559 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2560 
2561 			for (uint64_t i = 0; i < idx; i++)
2562 				nvlist_free(child[i]);
2563 		}
2564 		nvlist_free(nv);
2565 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2566 
2567 		if (idx > 0) {
2568 			spa_load_failed(spa, "some log devices are missing");
2569 			vdev_dbgmsg_print_tree(rvd, 2);
2570 			return (SET_ERROR(ENXIO));
2571 		}
2572 	} else {
2573 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2574 			vdev_t *tvd = rvd->vdev_child[c];
2575 
2576 			if (tvd->vdev_islog &&
2577 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2578 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2579 				spa_load_note(spa, "some log devices are "
2580 				    "missing, ZIL is dropped.");
2581 				vdev_dbgmsg_print_tree(rvd, 2);
2582 				break;
2583 			}
2584 		}
2585 	}
2586 
2587 	return (0);
2588 }
2589 
2590 /*
2591  * Check for missing log devices
2592  */
2593 static boolean_t
2594 spa_check_logs(spa_t *spa)
2595 {
2596 	boolean_t rv = B_FALSE;
2597 	dsl_pool_t *dp = spa_get_dsl(spa);
2598 
2599 	switch (spa->spa_log_state) {
2600 	default:
2601 		break;
2602 	case SPA_LOG_MISSING:
2603 		/* need to recheck in case slog has been restored */
2604 	case SPA_LOG_UNKNOWN:
2605 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2606 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2607 		if (rv)
2608 			spa_set_log_state(spa, SPA_LOG_MISSING);
2609 		break;
2610 	}
2611 	return (rv);
2612 }
2613 
2614 /*
2615  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2616  */
2617 static boolean_t
2618 spa_passivate_log(spa_t *spa)
2619 {
2620 	vdev_t *rvd = spa->spa_root_vdev;
2621 	boolean_t slog_found = B_FALSE;
2622 
2623 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2624 
2625 	for (int c = 0; c < rvd->vdev_children; c++) {
2626 		vdev_t *tvd = rvd->vdev_child[c];
2627 
2628 		if (tvd->vdev_islog) {
2629 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2630 			metaslab_group_passivate(tvd->vdev_mg);
2631 			slog_found = B_TRUE;
2632 		}
2633 	}
2634 
2635 	return (slog_found);
2636 }
2637 
2638 /*
2639  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2640  */
2641 static void
2642 spa_activate_log(spa_t *spa)
2643 {
2644 	vdev_t *rvd = spa->spa_root_vdev;
2645 
2646 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2647 
2648 	for (int c = 0; c < rvd->vdev_children; c++) {
2649 		vdev_t *tvd = rvd->vdev_child[c];
2650 
2651 		if (tvd->vdev_islog) {
2652 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2653 			metaslab_group_activate(tvd->vdev_mg);
2654 		}
2655 	}
2656 }
2657 
2658 int
2659 spa_reset_logs(spa_t *spa)
2660 {
2661 	int error;
2662 
2663 	error = dmu_objset_find(spa_name(spa), zil_reset,
2664 	    NULL, DS_FIND_CHILDREN);
2665 	if (error == 0) {
2666 		/*
2667 		 * We successfully offlined the log device, sync out the
2668 		 * current txg so that the "stubby" block can be removed
2669 		 * by zil_sync().
2670 		 */
2671 		txg_wait_synced(spa->spa_dsl_pool, 0);
2672 	}
2673 	return (error);
2674 }
2675 
2676 static void
2677 spa_aux_check_removed(spa_aux_vdev_t *sav)
2678 {
2679 	for (int i = 0; i < sav->sav_count; i++)
2680 		spa_check_removed(sav->sav_vdevs[i]);
2681 }
2682 
2683 void
2684 spa_claim_notify(zio_t *zio)
2685 {
2686 	spa_t *spa = zio->io_spa;
2687 
2688 	if (zio->io_error)
2689 		return;
2690 
2691 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2692 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2693 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2694 	mutex_exit(&spa->spa_props_lock);
2695 }
2696 
2697 typedef struct spa_load_error {
2698 	boolean_t	sle_verify_data;
2699 	uint64_t	sle_meta_count;
2700 	uint64_t	sle_data_count;
2701 } spa_load_error_t;
2702 
2703 static void
2704 spa_load_verify_done(zio_t *zio)
2705 {
2706 	blkptr_t *bp = zio->io_bp;
2707 	spa_load_error_t *sle = zio->io_private;
2708 	dmu_object_type_t type = BP_GET_TYPE(bp);
2709 	int error = zio->io_error;
2710 	spa_t *spa = zio->io_spa;
2711 
2712 	abd_free(zio->io_abd);
2713 	if (error) {
2714 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2715 		    type != DMU_OT_INTENT_LOG)
2716 			atomic_inc_64(&sle->sle_meta_count);
2717 		else
2718 			atomic_inc_64(&sle->sle_data_count);
2719 	}
2720 
2721 	mutex_enter(&spa->spa_scrub_lock);
2722 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2723 	cv_broadcast(&spa->spa_scrub_io_cv);
2724 	mutex_exit(&spa->spa_scrub_lock);
2725 }
2726 
2727 /*
2728  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2729  * By default, we set it to 1/16th of the arc.
2730  */
2731 static uint_t spa_load_verify_shift = 4;
2732 static int spa_load_verify_metadata = B_TRUE;
2733 static int spa_load_verify_data = B_TRUE;
2734 
2735 static int
2736 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2737     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2738 {
2739 	zio_t *rio = arg;
2740 	spa_load_error_t *sle = rio->io_private;
2741 
2742 	(void) zilog, (void) dnp;
2743 
2744 	/*
2745 	 * Note: normally this routine will not be called if
2746 	 * spa_load_verify_metadata is not set.  However, it may be useful
2747 	 * to manually set the flag after the traversal has begun.
2748 	 */
2749 	if (!spa_load_verify_metadata)
2750 		return (0);
2751 
2752 	/*
2753 	 * Sanity check the block pointer in order to detect obvious damage
2754 	 * before using the contents in subsequent checks or in zio_read().
2755 	 * When damaged consider it to be a metadata error since we cannot
2756 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2757 	 */
2758 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2759 		atomic_inc_64(&sle->sle_meta_count);
2760 		return (0);
2761 	}
2762 
2763 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2764 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2765 		return (0);
2766 
2767 	if (!BP_IS_METADATA(bp) &&
2768 	    (!spa_load_verify_data || !sle->sle_verify_data))
2769 		return (0);
2770 
2771 	uint64_t maxinflight_bytes =
2772 	    arc_target_bytes() >> spa_load_verify_shift;
2773 	size_t size = BP_GET_PSIZE(bp);
2774 
2775 	mutex_enter(&spa->spa_scrub_lock);
2776 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2777 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2778 	spa->spa_load_verify_bytes += size;
2779 	mutex_exit(&spa->spa_scrub_lock);
2780 
2781 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2782 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2783 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2784 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2785 	return (0);
2786 }
2787 
2788 static int
2789 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2790 {
2791 	(void) dp, (void) arg;
2792 
2793 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2794 		return (SET_ERROR(ENAMETOOLONG));
2795 
2796 	return (0);
2797 }
2798 
2799 static int
2800 spa_load_verify(spa_t *spa)
2801 {
2802 	zio_t *rio;
2803 	spa_load_error_t sle = { 0 };
2804 	zpool_load_policy_t policy;
2805 	boolean_t verify_ok = B_FALSE;
2806 	int error = 0;
2807 
2808 	zpool_get_load_policy(spa->spa_config, &policy);
2809 
2810 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2811 	    policy.zlp_maxmeta == UINT64_MAX)
2812 		return (0);
2813 
2814 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2815 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2816 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2817 	    DS_FIND_CHILDREN);
2818 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2819 	if (error != 0)
2820 		return (error);
2821 
2822 	/*
2823 	 * Verify data only if we are rewinding or error limit was set.
2824 	 * Otherwise nothing except dbgmsg care about it to waste time.
2825 	 */
2826 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2827 	    (policy.zlp_maxdata < UINT64_MAX);
2828 
2829 	rio = zio_root(spa, NULL, &sle,
2830 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2831 
2832 	if (spa_load_verify_metadata) {
2833 		if (spa->spa_extreme_rewind) {
2834 			spa_load_note(spa, "performing a complete scan of the "
2835 			    "pool since extreme rewind is on. This may take "
2836 			    "a very long time.\n  (spa_load_verify_data=%u, "
2837 			    "spa_load_verify_metadata=%u)",
2838 			    spa_load_verify_data, spa_load_verify_metadata);
2839 		}
2840 
2841 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2842 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2843 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2844 	}
2845 
2846 	(void) zio_wait(rio);
2847 	ASSERT0(spa->spa_load_verify_bytes);
2848 
2849 	spa->spa_load_meta_errors = sle.sle_meta_count;
2850 	spa->spa_load_data_errors = sle.sle_data_count;
2851 
2852 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2853 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2854 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2855 		    (u_longlong_t)sle.sle_data_count);
2856 	}
2857 
2858 	if (spa_load_verify_dryrun ||
2859 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2860 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2861 		int64_t loss = 0;
2862 
2863 		verify_ok = B_TRUE;
2864 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2865 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2866 
2867 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2868 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2869 		    spa->spa_load_txg_ts);
2870 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2871 		    loss);
2872 		fnvlist_add_uint64(spa->spa_load_info,
2873 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2874 		fnvlist_add_uint64(spa->spa_load_info,
2875 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2876 	} else {
2877 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2878 	}
2879 
2880 	if (spa_load_verify_dryrun)
2881 		return (0);
2882 
2883 	if (error) {
2884 		if (error != ENXIO && error != EIO)
2885 			error = SET_ERROR(EIO);
2886 		return (error);
2887 	}
2888 
2889 	return (verify_ok ? 0 : EIO);
2890 }
2891 
2892 /*
2893  * Find a value in the pool props object.
2894  */
2895 static void
2896 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2897 {
2898 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2899 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2900 }
2901 
2902 /*
2903  * Find a value in the pool directory object.
2904  */
2905 static int
2906 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2907 {
2908 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2909 	    name, sizeof (uint64_t), 1, val);
2910 
2911 	if (error != 0 && (error != ENOENT || log_enoent)) {
2912 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2913 		    "[error=%d]", name, error);
2914 	}
2915 
2916 	return (error);
2917 }
2918 
2919 static int
2920 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2921 {
2922 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2923 	return (SET_ERROR(err));
2924 }
2925 
2926 boolean_t
2927 spa_livelist_delete_check(spa_t *spa)
2928 {
2929 	return (spa->spa_livelists_to_delete != 0);
2930 }
2931 
2932 static boolean_t
2933 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2934 {
2935 	(void) z;
2936 	spa_t *spa = arg;
2937 	return (spa_livelist_delete_check(spa));
2938 }
2939 
2940 static int
2941 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2942 {
2943 	spa_t *spa = arg;
2944 	zio_free(spa, tx->tx_txg, bp);
2945 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2946 	    -bp_get_dsize_sync(spa, bp),
2947 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2948 	return (0);
2949 }
2950 
2951 static int
2952 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2953 {
2954 	int err;
2955 	zap_cursor_t zc;
2956 	zap_attribute_t za;
2957 	zap_cursor_init(&zc, os, zap_obj);
2958 	err = zap_cursor_retrieve(&zc, &za);
2959 	zap_cursor_fini(&zc);
2960 	if (err == 0)
2961 		*llp = za.za_first_integer;
2962 	return (err);
2963 }
2964 
2965 /*
2966  * Components of livelist deletion that must be performed in syncing
2967  * context: freeing block pointers and updating the pool-wide data
2968  * structures to indicate how much work is left to do
2969  */
2970 typedef struct sublist_delete_arg {
2971 	spa_t *spa;
2972 	dsl_deadlist_t *ll;
2973 	uint64_t key;
2974 	bplist_t *to_free;
2975 } sublist_delete_arg_t;
2976 
2977 static void
2978 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2979 {
2980 	sublist_delete_arg_t *sda = arg;
2981 	spa_t *spa = sda->spa;
2982 	dsl_deadlist_t *ll = sda->ll;
2983 	uint64_t key = sda->key;
2984 	bplist_t *to_free = sda->to_free;
2985 
2986 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2987 	dsl_deadlist_remove_entry(ll, key, tx);
2988 }
2989 
2990 typedef struct livelist_delete_arg {
2991 	spa_t *spa;
2992 	uint64_t ll_obj;
2993 	uint64_t zap_obj;
2994 } livelist_delete_arg_t;
2995 
2996 static void
2997 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2998 {
2999 	livelist_delete_arg_t *lda = arg;
3000 	spa_t *spa = lda->spa;
3001 	uint64_t ll_obj = lda->ll_obj;
3002 	uint64_t zap_obj = lda->zap_obj;
3003 	objset_t *mos = spa->spa_meta_objset;
3004 	uint64_t count;
3005 
3006 	/* free the livelist and decrement the feature count */
3007 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3008 	dsl_deadlist_free(mos, ll_obj, tx);
3009 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3010 	VERIFY0(zap_count(mos, zap_obj, &count));
3011 	if (count == 0) {
3012 		/* no more livelists to delete */
3013 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3014 		    DMU_POOL_DELETED_CLONES, tx));
3015 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3016 		spa->spa_livelists_to_delete = 0;
3017 		spa_notify_waiters(spa);
3018 	}
3019 }
3020 
3021 /*
3022  * Load in the value for the livelist to be removed and open it. Then,
3023  * load its first sublist and determine which block pointers should actually
3024  * be freed. Then, call a synctask which performs the actual frees and updates
3025  * the pool-wide livelist data.
3026  */
3027 static void
3028 spa_livelist_delete_cb(void *arg, zthr_t *z)
3029 {
3030 	spa_t *spa = arg;
3031 	uint64_t ll_obj = 0, count;
3032 	objset_t *mos = spa->spa_meta_objset;
3033 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3034 	/*
3035 	 * Determine the next livelist to delete. This function should only
3036 	 * be called if there is at least one deleted clone.
3037 	 */
3038 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3039 	VERIFY0(zap_count(mos, ll_obj, &count));
3040 	if (count > 0) {
3041 		dsl_deadlist_t *ll;
3042 		dsl_deadlist_entry_t *dle;
3043 		bplist_t to_free;
3044 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3045 		dsl_deadlist_open(ll, mos, ll_obj);
3046 		dle = dsl_deadlist_first(ll);
3047 		ASSERT3P(dle, !=, NULL);
3048 		bplist_create(&to_free);
3049 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3050 		    z, NULL);
3051 		if (err == 0) {
3052 			sublist_delete_arg_t sync_arg = {
3053 			    .spa = spa,
3054 			    .ll = ll,
3055 			    .key = dle->dle_mintxg,
3056 			    .to_free = &to_free
3057 			};
3058 			zfs_dbgmsg("deleting sublist (id %llu) from"
3059 			    " livelist %llu, %lld remaining",
3060 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3061 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3062 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3063 			    sublist_delete_sync, &sync_arg, 0,
3064 			    ZFS_SPACE_CHECK_DESTROY));
3065 		} else {
3066 			VERIFY3U(err, ==, EINTR);
3067 		}
3068 		bplist_clear(&to_free);
3069 		bplist_destroy(&to_free);
3070 		dsl_deadlist_close(ll);
3071 		kmem_free(ll, sizeof (dsl_deadlist_t));
3072 	} else {
3073 		livelist_delete_arg_t sync_arg = {
3074 		    .spa = spa,
3075 		    .ll_obj = ll_obj,
3076 		    .zap_obj = zap_obj
3077 		};
3078 		zfs_dbgmsg("deletion of livelist %llu completed",
3079 		    (u_longlong_t)ll_obj);
3080 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3081 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3082 	}
3083 }
3084 
3085 static void
3086 spa_start_livelist_destroy_thread(spa_t *spa)
3087 {
3088 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3089 	spa->spa_livelist_delete_zthr =
3090 	    zthr_create("z_livelist_destroy",
3091 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3092 	    minclsyspri);
3093 }
3094 
3095 typedef struct livelist_new_arg {
3096 	bplist_t *allocs;
3097 	bplist_t *frees;
3098 } livelist_new_arg_t;
3099 
3100 static int
3101 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3102     dmu_tx_t *tx)
3103 {
3104 	ASSERT(tx == NULL);
3105 	livelist_new_arg_t *lna = arg;
3106 	if (bp_freed) {
3107 		bplist_append(lna->frees, bp);
3108 	} else {
3109 		bplist_append(lna->allocs, bp);
3110 		zfs_livelist_condense_new_alloc++;
3111 	}
3112 	return (0);
3113 }
3114 
3115 typedef struct livelist_condense_arg {
3116 	spa_t *spa;
3117 	bplist_t to_keep;
3118 	uint64_t first_size;
3119 	uint64_t next_size;
3120 } livelist_condense_arg_t;
3121 
3122 static void
3123 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3124 {
3125 	livelist_condense_arg_t *lca = arg;
3126 	spa_t *spa = lca->spa;
3127 	bplist_t new_frees;
3128 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3129 
3130 	/* Have we been cancelled? */
3131 	if (spa->spa_to_condense.cancelled) {
3132 		zfs_livelist_condense_sync_cancel++;
3133 		goto out;
3134 	}
3135 
3136 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3137 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3138 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3139 
3140 	/*
3141 	 * It's possible that the livelist was changed while the zthr was
3142 	 * running. Therefore, we need to check for new blkptrs in the two
3143 	 * entries being condensed and continue to track them in the livelist.
3144 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3145 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3146 	 * we need to sort them into two different bplists.
3147 	 */
3148 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3149 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3150 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3151 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3152 
3153 	bplist_create(&new_frees);
3154 	livelist_new_arg_t new_bps = {
3155 	    .allocs = &lca->to_keep,
3156 	    .frees = &new_frees,
3157 	};
3158 
3159 	if (cur_first_size > lca->first_size) {
3160 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3161 		    livelist_track_new_cb, &new_bps, lca->first_size));
3162 	}
3163 	if (cur_next_size > lca->next_size) {
3164 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3165 		    livelist_track_new_cb, &new_bps, lca->next_size));
3166 	}
3167 
3168 	dsl_deadlist_clear_entry(first, ll, tx);
3169 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3170 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3171 
3172 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3173 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3174 	bplist_destroy(&new_frees);
3175 
3176 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3177 	dsl_dataset_name(ds, dsname);
3178 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3179 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3180 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3181 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3182 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3183 	    (u_longlong_t)cur_next_size,
3184 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3185 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3186 out:
3187 	dmu_buf_rele(ds->ds_dbuf, spa);
3188 	spa->spa_to_condense.ds = NULL;
3189 	bplist_clear(&lca->to_keep);
3190 	bplist_destroy(&lca->to_keep);
3191 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3192 	spa->spa_to_condense.syncing = B_FALSE;
3193 }
3194 
3195 static void
3196 spa_livelist_condense_cb(void *arg, zthr_t *t)
3197 {
3198 	while (zfs_livelist_condense_zthr_pause &&
3199 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3200 		delay(1);
3201 
3202 	spa_t *spa = arg;
3203 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3204 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3205 	uint64_t first_size, next_size;
3206 
3207 	livelist_condense_arg_t *lca =
3208 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3209 	bplist_create(&lca->to_keep);
3210 
3211 	/*
3212 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3213 	 * so we have minimal work in syncing context to condense.
3214 	 *
3215 	 * We save bpobj sizes (first_size and next_size) to use later in
3216 	 * syncing context to determine if entries were added to these sublists
3217 	 * while in open context. This is possible because the clone is still
3218 	 * active and open for normal writes and we want to make sure the new,
3219 	 * unprocessed blockpointers are inserted into the livelist normally.
3220 	 *
3221 	 * Note that dsl_process_sub_livelist() both stores the size number of
3222 	 * blockpointers and iterates over them while the bpobj's lock held, so
3223 	 * the sizes returned to us are consistent which what was actually
3224 	 * processed.
3225 	 */
3226 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3227 	    &first_size);
3228 	if (err == 0)
3229 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3230 		    t, &next_size);
3231 
3232 	if (err == 0) {
3233 		while (zfs_livelist_condense_sync_pause &&
3234 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3235 			delay(1);
3236 
3237 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3238 		dmu_tx_mark_netfree(tx);
3239 		dmu_tx_hold_space(tx, 1);
3240 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3241 		if (err == 0) {
3242 			/*
3243 			 * Prevent the condense zthr restarting before
3244 			 * the synctask completes.
3245 			 */
3246 			spa->spa_to_condense.syncing = B_TRUE;
3247 			lca->spa = spa;
3248 			lca->first_size = first_size;
3249 			lca->next_size = next_size;
3250 			dsl_sync_task_nowait(spa_get_dsl(spa),
3251 			    spa_livelist_condense_sync, lca, tx);
3252 			dmu_tx_commit(tx);
3253 			return;
3254 		}
3255 	}
3256 	/*
3257 	 * Condensing can not continue: either it was externally stopped or
3258 	 * we were unable to assign to a tx because the pool has run out of
3259 	 * space. In the second case, we'll just end up trying to condense
3260 	 * again in a later txg.
3261 	 */
3262 	ASSERT(err != 0);
3263 	bplist_clear(&lca->to_keep);
3264 	bplist_destroy(&lca->to_keep);
3265 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3266 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3267 	spa->spa_to_condense.ds = NULL;
3268 	if (err == EINTR)
3269 		zfs_livelist_condense_zthr_cancel++;
3270 }
3271 
3272 /*
3273  * Check that there is something to condense but that a condense is not
3274  * already in progress and that condensing has not been cancelled.
3275  */
3276 static boolean_t
3277 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3278 {
3279 	(void) z;
3280 	spa_t *spa = arg;
3281 	if ((spa->spa_to_condense.ds != NULL) &&
3282 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3283 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3284 		return (B_TRUE);
3285 	}
3286 	return (B_FALSE);
3287 }
3288 
3289 static void
3290 spa_start_livelist_condensing_thread(spa_t *spa)
3291 {
3292 	spa->spa_to_condense.ds = NULL;
3293 	spa->spa_to_condense.first = NULL;
3294 	spa->spa_to_condense.next = NULL;
3295 	spa->spa_to_condense.syncing = B_FALSE;
3296 	spa->spa_to_condense.cancelled = B_FALSE;
3297 
3298 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3299 	spa->spa_livelist_condense_zthr =
3300 	    zthr_create("z_livelist_condense",
3301 	    spa_livelist_condense_cb_check,
3302 	    spa_livelist_condense_cb, spa, minclsyspri);
3303 }
3304 
3305 static void
3306 spa_spawn_aux_threads(spa_t *spa)
3307 {
3308 	ASSERT(spa_writeable(spa));
3309 
3310 	spa_start_raidz_expansion_thread(spa);
3311 	spa_start_indirect_condensing_thread(spa);
3312 	spa_start_livelist_destroy_thread(spa);
3313 	spa_start_livelist_condensing_thread(spa);
3314 
3315 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3316 	spa->spa_checkpoint_discard_zthr =
3317 	    zthr_create("z_checkpoint_discard",
3318 	    spa_checkpoint_discard_thread_check,
3319 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3320 }
3321 
3322 /*
3323  * Fix up config after a partly-completed split.  This is done with the
3324  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3325  * pool have that entry in their config, but only the splitting one contains
3326  * a list of all the guids of the vdevs that are being split off.
3327  *
3328  * This function determines what to do with that list: either rejoin
3329  * all the disks to the pool, or complete the splitting process.  To attempt
3330  * the rejoin, each disk that is offlined is marked online again, and
3331  * we do a reopen() call.  If the vdev label for every disk that was
3332  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3333  * then we call vdev_split() on each disk, and complete the split.
3334  *
3335  * Otherwise we leave the config alone, with all the vdevs in place in
3336  * the original pool.
3337  */
3338 static void
3339 spa_try_repair(spa_t *spa, nvlist_t *config)
3340 {
3341 	uint_t extracted;
3342 	uint64_t *glist;
3343 	uint_t i, gcount;
3344 	nvlist_t *nvl;
3345 	vdev_t **vd;
3346 	boolean_t attempt_reopen;
3347 
3348 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3349 		return;
3350 
3351 	/* check that the config is complete */
3352 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3353 	    &glist, &gcount) != 0)
3354 		return;
3355 
3356 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3357 
3358 	/* attempt to online all the vdevs & validate */
3359 	attempt_reopen = B_TRUE;
3360 	for (i = 0; i < gcount; i++) {
3361 		if (glist[i] == 0)	/* vdev is hole */
3362 			continue;
3363 
3364 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3365 		if (vd[i] == NULL) {
3366 			/*
3367 			 * Don't bother attempting to reopen the disks;
3368 			 * just do the split.
3369 			 */
3370 			attempt_reopen = B_FALSE;
3371 		} else {
3372 			/* attempt to re-online it */
3373 			vd[i]->vdev_offline = B_FALSE;
3374 		}
3375 	}
3376 
3377 	if (attempt_reopen) {
3378 		vdev_reopen(spa->spa_root_vdev);
3379 
3380 		/* check each device to see what state it's in */
3381 		for (extracted = 0, i = 0; i < gcount; i++) {
3382 			if (vd[i] != NULL &&
3383 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3384 				break;
3385 			++extracted;
3386 		}
3387 	}
3388 
3389 	/*
3390 	 * If every disk has been moved to the new pool, or if we never
3391 	 * even attempted to look at them, then we split them off for
3392 	 * good.
3393 	 */
3394 	if (!attempt_reopen || gcount == extracted) {
3395 		for (i = 0; i < gcount; i++)
3396 			if (vd[i] != NULL)
3397 				vdev_split(vd[i]);
3398 		vdev_reopen(spa->spa_root_vdev);
3399 	}
3400 
3401 	kmem_free(vd, gcount * sizeof (vdev_t *));
3402 }
3403 
3404 static int
3405 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3406 {
3407 	const char *ereport = FM_EREPORT_ZFS_POOL;
3408 	int error;
3409 
3410 	spa->spa_load_state = state;
3411 	(void) spa_import_progress_set_state(spa_guid(spa),
3412 	    spa_load_state(spa));
3413 	spa_import_progress_set_notes(spa, "spa_load()");
3414 
3415 	gethrestime(&spa->spa_loaded_ts);
3416 	error = spa_load_impl(spa, type, &ereport);
3417 
3418 	/*
3419 	 * Don't count references from objsets that are already closed
3420 	 * and are making their way through the eviction process.
3421 	 */
3422 	spa_evicting_os_wait(spa);
3423 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3424 	if (error) {
3425 		if (error != EEXIST) {
3426 			spa->spa_loaded_ts.tv_sec = 0;
3427 			spa->spa_loaded_ts.tv_nsec = 0;
3428 		}
3429 		if (error != EBADF) {
3430 			(void) zfs_ereport_post(ereport, spa,
3431 			    NULL, NULL, NULL, 0);
3432 		}
3433 	}
3434 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3435 	spa->spa_ena = 0;
3436 
3437 	(void) spa_import_progress_set_state(spa_guid(spa),
3438 	    spa_load_state(spa));
3439 
3440 	return (error);
3441 }
3442 
3443 #ifdef ZFS_DEBUG
3444 /*
3445  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3446  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3447  * spa's per-vdev ZAP list.
3448  */
3449 static uint64_t
3450 vdev_count_verify_zaps(vdev_t *vd)
3451 {
3452 	spa_t *spa = vd->vdev_spa;
3453 	uint64_t total = 0;
3454 
3455 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3456 	    vd->vdev_root_zap != 0) {
3457 		total++;
3458 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3459 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3460 	}
3461 	if (vd->vdev_top_zap != 0) {
3462 		total++;
3463 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3464 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3465 	}
3466 	if (vd->vdev_leaf_zap != 0) {
3467 		total++;
3468 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3469 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3470 	}
3471 
3472 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3473 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3474 	}
3475 
3476 	return (total);
3477 }
3478 #else
3479 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3480 #endif
3481 
3482 /*
3483  * Determine whether the activity check is required.
3484  */
3485 static boolean_t
3486 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3487     nvlist_t *config)
3488 {
3489 	uint64_t state = 0;
3490 	uint64_t hostid = 0;
3491 	uint64_t tryconfig_txg = 0;
3492 	uint64_t tryconfig_timestamp = 0;
3493 	uint16_t tryconfig_mmp_seq = 0;
3494 	nvlist_t *nvinfo;
3495 
3496 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3497 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3498 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3499 		    &tryconfig_txg);
3500 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3501 		    &tryconfig_timestamp);
3502 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3503 		    &tryconfig_mmp_seq);
3504 	}
3505 
3506 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3507 
3508 	/*
3509 	 * Disable the MMP activity check - This is used by zdb which
3510 	 * is intended to be used on potentially active pools.
3511 	 */
3512 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3513 		return (B_FALSE);
3514 
3515 	/*
3516 	 * Skip the activity check when the MMP feature is disabled.
3517 	 */
3518 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3519 		return (B_FALSE);
3520 
3521 	/*
3522 	 * If the tryconfig_ values are nonzero, they are the results of an
3523 	 * earlier tryimport.  If they all match the uberblock we just found,
3524 	 * then the pool has not changed and we return false so we do not test
3525 	 * a second time.
3526 	 */
3527 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3528 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3529 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3530 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3531 		return (B_FALSE);
3532 
3533 	/*
3534 	 * Allow the activity check to be skipped when importing the pool
3535 	 * on the same host which last imported it.  Since the hostid from
3536 	 * configuration may be stale use the one read from the label.
3537 	 */
3538 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3539 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3540 
3541 	if (hostid == spa_get_hostid(spa))
3542 		return (B_FALSE);
3543 
3544 	/*
3545 	 * Skip the activity test when the pool was cleanly exported.
3546 	 */
3547 	if (state != POOL_STATE_ACTIVE)
3548 		return (B_FALSE);
3549 
3550 	return (B_TRUE);
3551 }
3552 
3553 /*
3554  * Nanoseconds the activity check must watch for changes on-disk.
3555  */
3556 static uint64_t
3557 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3558 {
3559 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3560 	uint64_t multihost_interval = MSEC2NSEC(
3561 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3562 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3563 	    multihost_interval);
3564 
3565 	/*
3566 	 * Local tunables determine a minimum duration except for the case
3567 	 * where we know when the remote host will suspend the pool if MMP
3568 	 * writes do not land.
3569 	 *
3570 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3571 	 * these cases and times.
3572 	 */
3573 
3574 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3575 
3576 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3577 	    MMP_FAIL_INT(ub) > 0) {
3578 
3579 		/* MMP on remote host will suspend pool after failed writes */
3580 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3581 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3582 
3583 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3584 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3585 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3586 		    (u_longlong_t)MMP_FAIL_INT(ub),
3587 		    (u_longlong_t)MMP_INTERVAL(ub),
3588 		    (u_longlong_t)import_intervals);
3589 
3590 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3591 	    MMP_FAIL_INT(ub) == 0) {
3592 
3593 		/* MMP on remote host will never suspend pool */
3594 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3595 		    ub->ub_mmp_delay) * import_intervals);
3596 
3597 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3598 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3599 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3600 		    (u_longlong_t)MMP_INTERVAL(ub),
3601 		    (u_longlong_t)ub->ub_mmp_delay,
3602 		    (u_longlong_t)import_intervals);
3603 
3604 	} else if (MMP_VALID(ub)) {
3605 		/*
3606 		 * zfs-0.7 compatibility case
3607 		 */
3608 
3609 		import_delay = MAX(import_delay, (multihost_interval +
3610 		    ub->ub_mmp_delay) * import_intervals);
3611 
3612 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3613 		    "import_intervals=%llu leaves=%u",
3614 		    (u_longlong_t)import_delay,
3615 		    (u_longlong_t)ub->ub_mmp_delay,
3616 		    (u_longlong_t)import_intervals,
3617 		    vdev_count_leaves(spa));
3618 	} else {
3619 		/* Using local tunings is the only reasonable option */
3620 		zfs_dbgmsg("pool last imported on non-MMP aware "
3621 		    "host using import_delay=%llu multihost_interval=%llu "
3622 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3623 		    (u_longlong_t)multihost_interval,
3624 		    (u_longlong_t)import_intervals);
3625 	}
3626 
3627 	return (import_delay);
3628 }
3629 
3630 /*
3631  * Remote host activity check.
3632  *
3633  * error results:
3634  *          0 - no activity detected
3635  *  EREMOTEIO - remote activity detected
3636  *      EINTR - user canceled the operation
3637  */
3638 static int
3639 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3640     boolean_t importing)
3641 {
3642 	uint64_t txg = ub->ub_txg;
3643 	uint64_t timestamp = ub->ub_timestamp;
3644 	uint64_t mmp_config = ub->ub_mmp_config;
3645 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3646 	uint64_t import_delay;
3647 	hrtime_t import_expire, now;
3648 	nvlist_t *mmp_label = NULL;
3649 	vdev_t *rvd = spa->spa_root_vdev;
3650 	kcondvar_t cv;
3651 	kmutex_t mtx;
3652 	int error = 0;
3653 
3654 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3655 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3656 	mutex_enter(&mtx);
3657 
3658 	/*
3659 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3660 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3661 	 * the pool is known to be active on another host.
3662 	 *
3663 	 * Otherwise, the pool might be in use on another host.  Check for
3664 	 * changes in the uberblocks on disk if necessary.
3665 	 */
3666 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3667 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3668 		    ZPOOL_CONFIG_LOAD_INFO);
3669 
3670 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3671 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3672 			vdev_uberblock_load(rvd, ub, &mmp_label);
3673 			error = SET_ERROR(EREMOTEIO);
3674 			goto out;
3675 		}
3676 	}
3677 
3678 	import_delay = spa_activity_check_duration(spa, ub);
3679 
3680 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3681 	import_delay += import_delay * random_in_range(250) / 1000;
3682 
3683 	import_expire = gethrtime() + import_delay;
3684 
3685 	if (importing) {
3686 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3687 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3688 	}
3689 
3690 	int iterations = 0;
3691 	while ((now = gethrtime()) < import_expire) {
3692 		if (importing && iterations++ % 30 == 0) {
3693 			spa_import_progress_set_notes(spa, "Checking MMP "
3694 			    "activity, %llu ms remaining",
3695 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3696 		}
3697 
3698 		if (importing) {
3699 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3700 			    NSEC2SEC(import_expire - gethrtime()));
3701 		}
3702 
3703 		vdev_uberblock_load(rvd, ub, &mmp_label);
3704 
3705 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3706 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3707 			zfs_dbgmsg("multihost activity detected "
3708 			    "txg %llu ub_txg  %llu "
3709 			    "timestamp %llu ub_timestamp  %llu "
3710 			    "mmp_config %#llx ub_mmp_config %#llx",
3711 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3712 			    (u_longlong_t)timestamp,
3713 			    (u_longlong_t)ub->ub_timestamp,
3714 			    (u_longlong_t)mmp_config,
3715 			    (u_longlong_t)ub->ub_mmp_config);
3716 
3717 			error = SET_ERROR(EREMOTEIO);
3718 			break;
3719 		}
3720 
3721 		if (mmp_label) {
3722 			nvlist_free(mmp_label);
3723 			mmp_label = NULL;
3724 		}
3725 
3726 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3727 		if (error != -1) {
3728 			error = SET_ERROR(EINTR);
3729 			break;
3730 		}
3731 		error = 0;
3732 	}
3733 
3734 out:
3735 	mutex_exit(&mtx);
3736 	mutex_destroy(&mtx);
3737 	cv_destroy(&cv);
3738 
3739 	/*
3740 	 * If the pool is determined to be active store the status in the
3741 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3742 	 * available from configuration read from disk store them as well.
3743 	 * This allows 'zpool import' to generate a more useful message.
3744 	 *
3745 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3746 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3747 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3748 	 */
3749 	if (error == EREMOTEIO) {
3750 		const char *hostname = "<unknown>";
3751 		uint64_t hostid = 0;
3752 
3753 		if (mmp_label) {
3754 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3755 				hostname = fnvlist_lookup_string(mmp_label,
3756 				    ZPOOL_CONFIG_HOSTNAME);
3757 				fnvlist_add_string(spa->spa_load_info,
3758 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3759 			}
3760 
3761 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3762 				hostid = fnvlist_lookup_uint64(mmp_label,
3763 				    ZPOOL_CONFIG_HOSTID);
3764 				fnvlist_add_uint64(spa->spa_load_info,
3765 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3766 			}
3767 		}
3768 
3769 		fnvlist_add_uint64(spa->spa_load_info,
3770 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3771 		fnvlist_add_uint64(spa->spa_load_info,
3772 		    ZPOOL_CONFIG_MMP_TXG, 0);
3773 
3774 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3775 	}
3776 
3777 	if (mmp_label)
3778 		nvlist_free(mmp_label);
3779 
3780 	return (error);
3781 }
3782 
3783 /*
3784  * Called from zfs_ioc_clear for a pool that was suspended
3785  * after failing mmp write checks.
3786  */
3787 boolean_t
3788 spa_mmp_remote_host_activity(spa_t *spa)
3789 {
3790 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3791 
3792 	nvlist_t *best_label;
3793 	uberblock_t best_ub;
3794 
3795 	/*
3796 	 * Locate the best uberblock on disk
3797 	 */
3798 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3799 	if (best_label) {
3800 		/*
3801 		 * confirm that the best hostid matches our hostid
3802 		 */
3803 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3804 		    spa_get_hostid(spa) !=
3805 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3806 			nvlist_free(best_label);
3807 			return (B_TRUE);
3808 		}
3809 		nvlist_free(best_label);
3810 	} else {
3811 		return (B_TRUE);
3812 	}
3813 
3814 	if (!MMP_VALID(&best_ub) ||
3815 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3816 	    MMP_FAIL_INT(&best_ub) == 0) {
3817 		return (B_TRUE);
3818 	}
3819 
3820 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3821 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3822 		zfs_dbgmsg("txg mismatch detected during pool clear "
3823 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3824 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3825 		    (u_longlong_t)best_ub.ub_txg,
3826 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3827 		    (u_longlong_t)best_ub.ub_timestamp);
3828 		return (B_TRUE);
3829 	}
3830 
3831 	/*
3832 	 * Perform an activity check looking for any remote writer
3833 	 */
3834 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3835 	    B_FALSE) != 0);
3836 }
3837 
3838 static int
3839 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3840 {
3841 	uint64_t hostid;
3842 	const char *hostname;
3843 	uint64_t myhostid = 0;
3844 
3845 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3846 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3847 		hostname = fnvlist_lookup_string(mos_config,
3848 		    ZPOOL_CONFIG_HOSTNAME);
3849 
3850 		myhostid = zone_get_hostid(NULL);
3851 
3852 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3853 			cmn_err(CE_WARN, "pool '%s' could not be "
3854 			    "loaded as it was last accessed by "
3855 			    "another system (host: %s hostid: 0x%llx). "
3856 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3857 			    "ZFS-8000-EY",
3858 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3859 			spa_load_failed(spa, "hostid verification failed: pool "
3860 			    "last accessed by host: %s (hostid: 0x%llx)",
3861 			    hostname, (u_longlong_t)hostid);
3862 			return (SET_ERROR(EBADF));
3863 		}
3864 	}
3865 
3866 	return (0);
3867 }
3868 
3869 static int
3870 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3871 {
3872 	int error = 0;
3873 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3874 	int parse;
3875 	vdev_t *rvd;
3876 	uint64_t pool_guid;
3877 	const char *comment;
3878 	const char *compatibility;
3879 
3880 	/*
3881 	 * Versioning wasn't explicitly added to the label until later, so if
3882 	 * it's not present treat it as the initial version.
3883 	 */
3884 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3885 	    &spa->spa_ubsync.ub_version) != 0)
3886 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3887 
3888 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3889 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3890 		    ZPOOL_CONFIG_POOL_GUID);
3891 		return (SET_ERROR(EINVAL));
3892 	}
3893 
3894 	/*
3895 	 * If we are doing an import, ensure that the pool is not already
3896 	 * imported by checking if its pool guid already exists in the
3897 	 * spa namespace.
3898 	 *
3899 	 * The only case that we allow an already imported pool to be
3900 	 * imported again, is when the pool is checkpointed and we want to
3901 	 * look at its checkpointed state from userland tools like zdb.
3902 	 */
3903 #ifdef _KERNEL
3904 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3905 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3906 	    spa_guid_exists(pool_guid, 0)) {
3907 #else
3908 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3909 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3910 	    spa_guid_exists(pool_guid, 0) &&
3911 	    !spa_importing_readonly_checkpoint(spa)) {
3912 #endif
3913 		spa_load_failed(spa, "a pool with guid %llu is already open",
3914 		    (u_longlong_t)pool_guid);
3915 		return (SET_ERROR(EEXIST));
3916 	}
3917 
3918 	spa->spa_config_guid = pool_guid;
3919 
3920 	nvlist_free(spa->spa_load_info);
3921 	spa->spa_load_info = fnvlist_alloc();
3922 
3923 	ASSERT(spa->spa_comment == NULL);
3924 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3925 		spa->spa_comment = spa_strdup(comment);
3926 
3927 	ASSERT(spa->spa_compatibility == NULL);
3928 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3929 	    &compatibility) == 0)
3930 		spa->spa_compatibility = spa_strdup(compatibility);
3931 
3932 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3933 	    &spa->spa_config_txg);
3934 
3935 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3936 		spa->spa_config_splitting = fnvlist_dup(nvl);
3937 
3938 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3939 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3940 		    ZPOOL_CONFIG_VDEV_TREE);
3941 		return (SET_ERROR(EINVAL));
3942 	}
3943 
3944 	/*
3945 	 * Create "The Godfather" zio to hold all async IOs
3946 	 */
3947 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3948 	    KM_SLEEP);
3949 	for (int i = 0; i < max_ncpus; i++) {
3950 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3951 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3952 		    ZIO_FLAG_GODFATHER);
3953 	}
3954 
3955 	/*
3956 	 * Parse the configuration into a vdev tree.  We explicitly set the
3957 	 * value that will be returned by spa_version() since parsing the
3958 	 * configuration requires knowing the version number.
3959 	 */
3960 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3961 	parse = (type == SPA_IMPORT_EXISTING ?
3962 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3963 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3964 	spa_config_exit(spa, SCL_ALL, FTAG);
3965 
3966 	if (error != 0) {
3967 		spa_load_failed(spa, "unable to parse config [error=%d]",
3968 		    error);
3969 		return (error);
3970 	}
3971 
3972 	ASSERT(spa->spa_root_vdev == rvd);
3973 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3974 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3975 
3976 	if (type != SPA_IMPORT_ASSEMBLE) {
3977 		ASSERT(spa_guid(spa) == pool_guid);
3978 	}
3979 
3980 	return (0);
3981 }
3982 
3983 /*
3984  * Recursively open all vdevs in the vdev tree. This function is called twice:
3985  * first with the untrusted config, then with the trusted config.
3986  */
3987 static int
3988 spa_ld_open_vdevs(spa_t *spa)
3989 {
3990 	int error = 0;
3991 
3992 	/*
3993 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3994 	 * missing/unopenable for the root vdev to be still considered openable.
3995 	 */
3996 	if (spa->spa_trust_config) {
3997 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3998 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3999 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4000 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4001 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4002 	} else {
4003 		spa->spa_missing_tvds_allowed = 0;
4004 	}
4005 
4006 	spa->spa_missing_tvds_allowed =
4007 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4008 
4009 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4010 	error = vdev_open(spa->spa_root_vdev);
4011 	spa_config_exit(spa, SCL_ALL, FTAG);
4012 
4013 	if (spa->spa_missing_tvds != 0) {
4014 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4015 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4016 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4017 			/*
4018 			 * Although theoretically we could allow users to open
4019 			 * incomplete pools in RW mode, we'd need to add a lot
4020 			 * of extra logic (e.g. adjust pool space to account
4021 			 * for missing vdevs).
4022 			 * This limitation also prevents users from accidentally
4023 			 * opening the pool in RW mode during data recovery and
4024 			 * damaging it further.
4025 			 */
4026 			spa_load_note(spa, "pools with missing top-level "
4027 			    "vdevs can only be opened in read-only mode.");
4028 			error = SET_ERROR(ENXIO);
4029 		} else {
4030 			spa_load_note(spa, "current settings allow for maximum "
4031 			    "%lld missing top-level vdevs at this stage.",
4032 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4033 		}
4034 	}
4035 	if (error != 0) {
4036 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4037 		    error);
4038 	}
4039 	if (spa->spa_missing_tvds != 0 || error != 0)
4040 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4041 
4042 	return (error);
4043 }
4044 
4045 /*
4046  * We need to validate the vdev labels against the configuration that
4047  * we have in hand. This function is called twice: first with an untrusted
4048  * config, then with a trusted config. The validation is more strict when the
4049  * config is trusted.
4050  */
4051 static int
4052 spa_ld_validate_vdevs(spa_t *spa)
4053 {
4054 	int error = 0;
4055 	vdev_t *rvd = spa->spa_root_vdev;
4056 
4057 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4058 	error = vdev_validate(rvd);
4059 	spa_config_exit(spa, SCL_ALL, FTAG);
4060 
4061 	if (error != 0) {
4062 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4063 		return (error);
4064 	}
4065 
4066 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4067 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4068 		    "some vdevs");
4069 		vdev_dbgmsg_print_tree(rvd, 2);
4070 		return (SET_ERROR(ENXIO));
4071 	}
4072 
4073 	return (0);
4074 }
4075 
4076 static void
4077 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4078 {
4079 	spa->spa_state = POOL_STATE_ACTIVE;
4080 	spa->spa_ubsync = spa->spa_uberblock;
4081 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4082 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4083 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4084 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4085 	spa->spa_claim_max_txg = spa->spa_first_txg;
4086 	spa->spa_prev_software_version = ub->ub_software_version;
4087 }
4088 
4089 static int
4090 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4091 {
4092 	vdev_t *rvd = spa->spa_root_vdev;
4093 	nvlist_t *label;
4094 	uberblock_t *ub = &spa->spa_uberblock;
4095 	boolean_t activity_check = B_FALSE;
4096 
4097 	/*
4098 	 * If we are opening the checkpointed state of the pool by
4099 	 * rewinding to it, at this point we will have written the
4100 	 * checkpointed uberblock to the vdev labels, so searching
4101 	 * the labels will find the right uberblock.  However, if
4102 	 * we are opening the checkpointed state read-only, we have
4103 	 * not modified the labels. Therefore, we must ignore the
4104 	 * labels and continue using the spa_uberblock that was set
4105 	 * by spa_ld_checkpoint_rewind.
4106 	 *
4107 	 * Note that it would be fine to ignore the labels when
4108 	 * rewinding (opening writeable) as well. However, if we
4109 	 * crash just after writing the labels, we will end up
4110 	 * searching the labels. Doing so in the common case means
4111 	 * that this code path gets exercised normally, rather than
4112 	 * just in the edge case.
4113 	 */
4114 	if (ub->ub_checkpoint_txg != 0 &&
4115 	    spa_importing_readonly_checkpoint(spa)) {
4116 		spa_ld_select_uberblock_done(spa, ub);
4117 		return (0);
4118 	}
4119 
4120 	/*
4121 	 * Find the best uberblock.
4122 	 */
4123 	vdev_uberblock_load(rvd, ub, &label);
4124 
4125 	/*
4126 	 * If we weren't able to find a single valid uberblock, return failure.
4127 	 */
4128 	if (ub->ub_txg == 0) {
4129 		nvlist_free(label);
4130 		spa_load_failed(spa, "no valid uberblock found");
4131 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4132 	}
4133 
4134 	if (spa->spa_load_max_txg != UINT64_MAX) {
4135 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4136 		    (u_longlong_t)spa->spa_load_max_txg);
4137 	}
4138 	spa_load_note(spa, "using uberblock with txg=%llu",
4139 	    (u_longlong_t)ub->ub_txg);
4140 	if (ub->ub_raidz_reflow_info != 0) {
4141 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4142 		    "state=%u offset=%llu",
4143 		    (int)RRSS_GET_STATE(ub),
4144 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4145 	}
4146 
4147 
4148 	/*
4149 	 * For pools which have the multihost property on determine if the
4150 	 * pool is truly inactive and can be safely imported.  Prevent
4151 	 * hosts which don't have a hostid set from importing the pool.
4152 	 */
4153 	activity_check = spa_activity_check_required(spa, ub, label,
4154 	    spa->spa_config);
4155 	if (activity_check) {
4156 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4157 		    spa_get_hostid(spa) == 0) {
4158 			nvlist_free(label);
4159 			fnvlist_add_uint64(spa->spa_load_info,
4160 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4161 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4162 		}
4163 
4164 		int error =
4165 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4166 		if (error) {
4167 			nvlist_free(label);
4168 			return (error);
4169 		}
4170 
4171 		fnvlist_add_uint64(spa->spa_load_info,
4172 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4173 		fnvlist_add_uint64(spa->spa_load_info,
4174 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4175 		fnvlist_add_uint16(spa->spa_load_info,
4176 		    ZPOOL_CONFIG_MMP_SEQ,
4177 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4178 	}
4179 
4180 	/*
4181 	 * If the pool has an unsupported version we can't open it.
4182 	 */
4183 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4184 		nvlist_free(label);
4185 		spa_load_failed(spa, "version %llu is not supported",
4186 		    (u_longlong_t)ub->ub_version);
4187 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4188 	}
4189 
4190 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4191 		nvlist_t *features;
4192 
4193 		/*
4194 		 * If we weren't able to find what's necessary for reading the
4195 		 * MOS in the label, return failure.
4196 		 */
4197 		if (label == NULL) {
4198 			spa_load_failed(spa, "label config unavailable");
4199 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4200 			    ENXIO));
4201 		}
4202 
4203 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4204 		    &features) != 0) {
4205 			nvlist_free(label);
4206 			spa_load_failed(spa, "invalid label: '%s' missing",
4207 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4208 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4209 			    ENXIO));
4210 		}
4211 
4212 		/*
4213 		 * Update our in-core representation with the definitive values
4214 		 * from the label.
4215 		 */
4216 		nvlist_free(spa->spa_label_features);
4217 		spa->spa_label_features = fnvlist_dup(features);
4218 	}
4219 
4220 	nvlist_free(label);
4221 
4222 	/*
4223 	 * Look through entries in the label nvlist's features_for_read. If
4224 	 * there is a feature listed there which we don't understand then we
4225 	 * cannot open a pool.
4226 	 */
4227 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4228 		nvlist_t *unsup_feat;
4229 
4230 		unsup_feat = fnvlist_alloc();
4231 
4232 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4233 		    NULL); nvp != NULL;
4234 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4235 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4236 				fnvlist_add_string(unsup_feat,
4237 				    nvpair_name(nvp), "");
4238 			}
4239 		}
4240 
4241 		if (!nvlist_empty(unsup_feat)) {
4242 			fnvlist_add_nvlist(spa->spa_load_info,
4243 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4244 			nvlist_free(unsup_feat);
4245 			spa_load_failed(spa, "some features are unsupported");
4246 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4247 			    ENOTSUP));
4248 		}
4249 
4250 		nvlist_free(unsup_feat);
4251 	}
4252 
4253 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4254 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4255 		spa_try_repair(spa, spa->spa_config);
4256 		spa_config_exit(spa, SCL_ALL, FTAG);
4257 		nvlist_free(spa->spa_config_splitting);
4258 		spa->spa_config_splitting = NULL;
4259 	}
4260 
4261 	/*
4262 	 * Initialize internal SPA structures.
4263 	 */
4264 	spa_ld_select_uberblock_done(spa, ub);
4265 
4266 	return (0);
4267 }
4268 
4269 static int
4270 spa_ld_open_rootbp(spa_t *spa)
4271 {
4272 	int error = 0;
4273 	vdev_t *rvd = spa->spa_root_vdev;
4274 
4275 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4276 	if (error != 0) {
4277 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4278 		    "[error=%d]", error);
4279 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4280 	}
4281 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4282 
4283 	return (0);
4284 }
4285 
4286 static int
4287 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4288     boolean_t reloading)
4289 {
4290 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4291 	nvlist_t *nv, *mos_config, *policy;
4292 	int error = 0, copy_error;
4293 	uint64_t healthy_tvds, healthy_tvds_mos;
4294 	uint64_t mos_config_txg;
4295 
4296 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4297 	    != 0)
4298 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4299 
4300 	/*
4301 	 * If we're assembling a pool from a split, the config provided is
4302 	 * already trusted so there is nothing to do.
4303 	 */
4304 	if (type == SPA_IMPORT_ASSEMBLE)
4305 		return (0);
4306 
4307 	healthy_tvds = spa_healthy_core_tvds(spa);
4308 
4309 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4310 	    != 0) {
4311 		spa_load_failed(spa, "unable to retrieve MOS config");
4312 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4313 	}
4314 
4315 	/*
4316 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4317 	 * the verification here.
4318 	 */
4319 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4320 		error = spa_verify_host(spa, mos_config);
4321 		if (error != 0) {
4322 			nvlist_free(mos_config);
4323 			return (error);
4324 		}
4325 	}
4326 
4327 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4328 
4329 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4330 
4331 	/*
4332 	 * Build a new vdev tree from the trusted config
4333 	 */
4334 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4335 	if (error != 0) {
4336 		nvlist_free(mos_config);
4337 		spa_config_exit(spa, SCL_ALL, FTAG);
4338 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4339 		    error);
4340 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4341 	}
4342 
4343 	/*
4344 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4345 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4346 	 * paths. We update the trusted MOS config with this information.
4347 	 * We first try to copy the paths with vdev_copy_path_strict, which
4348 	 * succeeds only when both configs have exactly the same vdev tree.
4349 	 * If that fails, we fall back to a more flexible method that has a
4350 	 * best effort policy.
4351 	 */
4352 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4353 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4354 		spa_load_note(spa, "provided vdev tree:");
4355 		vdev_dbgmsg_print_tree(rvd, 2);
4356 		spa_load_note(spa, "MOS vdev tree:");
4357 		vdev_dbgmsg_print_tree(mrvd, 2);
4358 	}
4359 	if (copy_error != 0) {
4360 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4361 		    "back to vdev_copy_path_relaxed");
4362 		vdev_copy_path_relaxed(rvd, mrvd);
4363 	}
4364 
4365 	vdev_close(rvd);
4366 	vdev_free(rvd);
4367 	spa->spa_root_vdev = mrvd;
4368 	rvd = mrvd;
4369 	spa_config_exit(spa, SCL_ALL, FTAG);
4370 
4371 	/*
4372 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4373 	 * hostname may be different to the cached config in ways that should
4374 	 * prevent import.  Userspace can't discover this without a scan, but
4375 	 * we know, so we add these values to LOAD_INFO so the caller can know
4376 	 * the difference.
4377 	 *
4378 	 * Note that we have to do this before the config is regenerated,
4379 	 * because the new config will have the hostid and hostname for this
4380 	 * host, in readiness for import.
4381 	 */
4382 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4383 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4384 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4385 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4386 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4387 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4388 
4389 	/*
4390 	 * We will use spa_config if we decide to reload the spa or if spa_load
4391 	 * fails and we rewind. We must thus regenerate the config using the
4392 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4393 	 * pass settings on how to load the pool and is not stored in the MOS.
4394 	 * We copy it over to our new, trusted config.
4395 	 */
4396 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4397 	    ZPOOL_CONFIG_POOL_TXG);
4398 	nvlist_free(mos_config);
4399 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4400 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4401 	    &policy) == 0)
4402 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4403 	spa_config_set(spa, mos_config);
4404 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4405 
4406 	/*
4407 	 * Now that we got the config from the MOS, we should be more strict
4408 	 * in checking blkptrs and can make assumptions about the consistency
4409 	 * of the vdev tree. spa_trust_config must be set to true before opening
4410 	 * vdevs in order for them to be writeable.
4411 	 */
4412 	spa->spa_trust_config = B_TRUE;
4413 
4414 	/*
4415 	 * Open and validate the new vdev tree
4416 	 */
4417 	error = spa_ld_open_vdevs(spa);
4418 	if (error != 0)
4419 		return (error);
4420 
4421 	error = spa_ld_validate_vdevs(spa);
4422 	if (error != 0)
4423 		return (error);
4424 
4425 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4426 		spa_load_note(spa, "final vdev tree:");
4427 		vdev_dbgmsg_print_tree(rvd, 2);
4428 	}
4429 
4430 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4431 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4432 		/*
4433 		 * Sanity check to make sure that we are indeed loading the
4434 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4435 		 * in the config provided and they happened to be the only ones
4436 		 * to have the latest uberblock, we could involuntarily perform
4437 		 * an extreme rewind.
4438 		 */
4439 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4440 		if (healthy_tvds_mos - healthy_tvds >=
4441 		    SPA_SYNC_MIN_VDEVS) {
4442 			spa_load_note(spa, "config provided misses too many "
4443 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4444 			    (u_longlong_t)healthy_tvds,
4445 			    (u_longlong_t)healthy_tvds_mos);
4446 			spa_load_note(spa, "vdev tree:");
4447 			vdev_dbgmsg_print_tree(rvd, 2);
4448 			if (reloading) {
4449 				spa_load_failed(spa, "config was already "
4450 				    "provided from MOS. Aborting.");
4451 				return (spa_vdev_err(rvd,
4452 				    VDEV_AUX_CORRUPT_DATA, EIO));
4453 			}
4454 			spa_load_note(spa, "spa must be reloaded using MOS "
4455 			    "config");
4456 			return (SET_ERROR(EAGAIN));
4457 		}
4458 	}
4459 
4460 	error = spa_check_for_missing_logs(spa);
4461 	if (error != 0)
4462 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4463 
4464 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4465 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4466 		    "guid sum (%llu != %llu)",
4467 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4468 		    (u_longlong_t)rvd->vdev_guid_sum);
4469 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4470 		    ENXIO));
4471 	}
4472 
4473 	return (0);
4474 }
4475 
4476 static int
4477 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4478 {
4479 	int error = 0;
4480 	vdev_t *rvd = spa->spa_root_vdev;
4481 
4482 	/*
4483 	 * Everything that we read before spa_remove_init() must be stored
4484 	 * on concreted vdevs.  Therefore we do this as early as possible.
4485 	 */
4486 	error = spa_remove_init(spa);
4487 	if (error != 0) {
4488 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4489 		    error);
4490 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4491 	}
4492 
4493 	/*
4494 	 * Retrieve information needed to condense indirect vdev mappings.
4495 	 */
4496 	error = spa_condense_init(spa);
4497 	if (error != 0) {
4498 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4499 		    error);
4500 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4501 	}
4502 
4503 	return (0);
4504 }
4505 
4506 static int
4507 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4508 {
4509 	int error = 0;
4510 	vdev_t *rvd = spa->spa_root_vdev;
4511 
4512 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4513 		boolean_t missing_feat_read = B_FALSE;
4514 		nvlist_t *unsup_feat, *enabled_feat;
4515 
4516 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4517 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4518 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4519 		}
4520 
4521 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4522 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4523 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4524 		}
4525 
4526 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4527 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4528 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4529 		}
4530 
4531 		enabled_feat = fnvlist_alloc();
4532 		unsup_feat = fnvlist_alloc();
4533 
4534 		if (!spa_features_check(spa, B_FALSE,
4535 		    unsup_feat, enabled_feat))
4536 			missing_feat_read = B_TRUE;
4537 
4538 		if (spa_writeable(spa) ||
4539 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4540 			if (!spa_features_check(spa, B_TRUE,
4541 			    unsup_feat, enabled_feat)) {
4542 				*missing_feat_writep = B_TRUE;
4543 			}
4544 		}
4545 
4546 		fnvlist_add_nvlist(spa->spa_load_info,
4547 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4548 
4549 		if (!nvlist_empty(unsup_feat)) {
4550 			fnvlist_add_nvlist(spa->spa_load_info,
4551 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4552 		}
4553 
4554 		fnvlist_free(enabled_feat);
4555 		fnvlist_free(unsup_feat);
4556 
4557 		if (!missing_feat_read) {
4558 			fnvlist_add_boolean(spa->spa_load_info,
4559 			    ZPOOL_CONFIG_CAN_RDONLY);
4560 		}
4561 
4562 		/*
4563 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4564 		 * twofold: to determine whether the pool is available for
4565 		 * import in read-write mode and (if it is not) whether the
4566 		 * pool is available for import in read-only mode. If the pool
4567 		 * is available for import in read-write mode, it is displayed
4568 		 * as available in userland; if it is not available for import
4569 		 * in read-only mode, it is displayed as unavailable in
4570 		 * userland. If the pool is available for import in read-only
4571 		 * mode but not read-write mode, it is displayed as unavailable
4572 		 * in userland with a special note that the pool is actually
4573 		 * available for open in read-only mode.
4574 		 *
4575 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4576 		 * missing a feature for write, we must first determine whether
4577 		 * the pool can be opened read-only before returning to
4578 		 * userland in order to know whether to display the
4579 		 * abovementioned note.
4580 		 */
4581 		if (missing_feat_read || (*missing_feat_writep &&
4582 		    spa_writeable(spa))) {
4583 			spa_load_failed(spa, "pool uses unsupported features");
4584 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4585 			    ENOTSUP));
4586 		}
4587 
4588 		/*
4589 		 * Load refcounts for ZFS features from disk into an in-memory
4590 		 * cache during SPA initialization.
4591 		 */
4592 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4593 			uint64_t refcount;
4594 
4595 			error = feature_get_refcount_from_disk(spa,
4596 			    &spa_feature_table[i], &refcount);
4597 			if (error == 0) {
4598 				spa->spa_feat_refcount_cache[i] = refcount;
4599 			} else if (error == ENOTSUP) {
4600 				spa->spa_feat_refcount_cache[i] =
4601 				    SPA_FEATURE_DISABLED;
4602 			} else {
4603 				spa_load_failed(spa, "error getting refcount "
4604 				    "for feature %s [error=%d]",
4605 				    spa_feature_table[i].fi_guid, error);
4606 				return (spa_vdev_err(rvd,
4607 				    VDEV_AUX_CORRUPT_DATA, EIO));
4608 			}
4609 		}
4610 	}
4611 
4612 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4613 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4614 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4615 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4616 	}
4617 
4618 	/*
4619 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4620 	 * is now a dependency. If this pool has encryption enabled without
4621 	 * bookmark_v2, trigger an errata message.
4622 	 */
4623 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4624 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4625 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4626 	}
4627 
4628 	return (0);
4629 }
4630 
4631 static int
4632 spa_ld_load_special_directories(spa_t *spa)
4633 {
4634 	int error = 0;
4635 	vdev_t *rvd = spa->spa_root_vdev;
4636 
4637 	spa->spa_is_initializing = B_TRUE;
4638 	error = dsl_pool_open(spa->spa_dsl_pool);
4639 	spa->spa_is_initializing = B_FALSE;
4640 	if (error != 0) {
4641 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4642 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4643 	}
4644 
4645 	return (0);
4646 }
4647 
4648 static int
4649 spa_ld_get_props(spa_t *spa)
4650 {
4651 	int error = 0;
4652 	uint64_t obj;
4653 	vdev_t *rvd = spa->spa_root_vdev;
4654 
4655 	/* Grab the checksum salt from the MOS. */
4656 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4657 	    DMU_POOL_CHECKSUM_SALT, 1,
4658 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4659 	    spa->spa_cksum_salt.zcs_bytes);
4660 	if (error == ENOENT) {
4661 		/* Generate a new salt for subsequent use */
4662 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4663 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4664 	} else if (error != 0) {
4665 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4666 		    "MOS [error=%d]", error);
4667 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4668 	}
4669 
4670 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4671 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4672 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4673 	if (error != 0) {
4674 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4675 		    "[error=%d]", error);
4676 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4677 	}
4678 
4679 	/*
4680 	 * Load the bit that tells us to use the new accounting function
4681 	 * (raid-z deflation).  If we have an older pool, this will not
4682 	 * be present.
4683 	 */
4684 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4685 	if (error != 0 && error != ENOENT)
4686 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4687 
4688 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4689 	    &spa->spa_creation_version, B_FALSE);
4690 	if (error != 0 && error != ENOENT)
4691 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4692 
4693 	/*
4694 	 * Load the persistent error log.  If we have an older pool, this will
4695 	 * not be present.
4696 	 */
4697 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4698 	    B_FALSE);
4699 	if (error != 0 && error != ENOENT)
4700 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4701 
4702 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4703 	    &spa->spa_errlog_scrub, B_FALSE);
4704 	if (error != 0 && error != ENOENT)
4705 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4706 
4707 	/*
4708 	 * Load the livelist deletion field. If a livelist is queued for
4709 	 * deletion, indicate that in the spa
4710 	 */
4711 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4712 	    &spa->spa_livelists_to_delete, B_FALSE);
4713 	if (error != 0 && error != ENOENT)
4714 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4715 
4716 	/*
4717 	 * Load the history object.  If we have an older pool, this
4718 	 * will not be present.
4719 	 */
4720 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4721 	if (error != 0 && error != ENOENT)
4722 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4723 
4724 	/*
4725 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4726 	 * be present; in this case, defer its creation to a later time to
4727 	 * avoid dirtying the MOS this early / out of sync context. See
4728 	 * spa_sync_config_object.
4729 	 */
4730 
4731 	/* The sentinel is only available in the MOS config. */
4732 	nvlist_t *mos_config;
4733 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4734 		spa_load_failed(spa, "unable to retrieve MOS config");
4735 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4736 	}
4737 
4738 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4739 	    &spa->spa_all_vdev_zaps, B_FALSE);
4740 
4741 	if (error == ENOENT) {
4742 		VERIFY(!nvlist_exists(mos_config,
4743 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4744 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4745 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4746 	} else if (error != 0) {
4747 		nvlist_free(mos_config);
4748 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4749 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4750 		/*
4751 		 * An older version of ZFS overwrote the sentinel value, so
4752 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4753 		 * destruction to later; see spa_sync_config_object.
4754 		 */
4755 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4756 		/*
4757 		 * We're assuming that no vdevs have had their ZAPs created
4758 		 * before this. Better be sure of it.
4759 		 */
4760 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4761 	}
4762 	nvlist_free(mos_config);
4763 
4764 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4765 
4766 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4767 	    B_FALSE);
4768 	if (error && error != ENOENT)
4769 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4770 
4771 	if (error == 0) {
4772 		uint64_t autoreplace = 0;
4773 
4774 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4775 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4776 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4777 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4778 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4779 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4780 		    &spa->spa_dedup_table_quota);
4781 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4782 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4783 		spa->spa_autoreplace = (autoreplace != 0);
4784 	}
4785 
4786 	/*
4787 	 * If we are importing a pool with missing top-level vdevs,
4788 	 * we enforce that the pool doesn't panic or get suspended on
4789 	 * error since the likelihood of missing data is extremely high.
4790 	 */
4791 	if (spa->spa_missing_tvds > 0 &&
4792 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4793 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4794 		spa_load_note(spa, "forcing failmode to 'continue' "
4795 		    "as some top level vdevs are missing");
4796 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4797 	}
4798 
4799 	return (0);
4800 }
4801 
4802 static int
4803 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4804 {
4805 	int error = 0;
4806 	vdev_t *rvd = spa->spa_root_vdev;
4807 
4808 	/*
4809 	 * If we're assembling the pool from the split-off vdevs of
4810 	 * an existing pool, we don't want to attach the spares & cache
4811 	 * devices.
4812 	 */
4813 
4814 	/*
4815 	 * Load any hot spares for this pool.
4816 	 */
4817 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4818 	    B_FALSE);
4819 	if (error != 0 && error != ENOENT)
4820 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4821 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4822 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4823 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4824 		    &spa->spa_spares.sav_config) != 0) {
4825 			spa_load_failed(spa, "error loading spares nvlist");
4826 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4827 		}
4828 
4829 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4830 		spa_load_spares(spa);
4831 		spa_config_exit(spa, SCL_ALL, FTAG);
4832 	} else if (error == 0) {
4833 		spa->spa_spares.sav_sync = B_TRUE;
4834 	}
4835 
4836 	/*
4837 	 * Load any level 2 ARC devices for this pool.
4838 	 */
4839 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4840 	    &spa->spa_l2cache.sav_object, B_FALSE);
4841 	if (error != 0 && error != ENOENT)
4842 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4843 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4844 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4845 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4846 		    &spa->spa_l2cache.sav_config) != 0) {
4847 			spa_load_failed(spa, "error loading l2cache nvlist");
4848 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4849 		}
4850 
4851 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4852 		spa_load_l2cache(spa);
4853 		spa_config_exit(spa, SCL_ALL, FTAG);
4854 	} else if (error == 0) {
4855 		spa->spa_l2cache.sav_sync = B_TRUE;
4856 	}
4857 
4858 	return (0);
4859 }
4860 
4861 static int
4862 spa_ld_load_vdev_metadata(spa_t *spa)
4863 {
4864 	int error = 0;
4865 	vdev_t *rvd = spa->spa_root_vdev;
4866 
4867 	/*
4868 	 * If the 'multihost' property is set, then never allow a pool to
4869 	 * be imported when the system hostid is zero.  The exception to
4870 	 * this rule is zdb which is always allowed to access pools.
4871 	 */
4872 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4873 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4874 		fnvlist_add_uint64(spa->spa_load_info,
4875 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4876 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4877 	}
4878 
4879 	/*
4880 	 * If the 'autoreplace' property is set, then post a resource notifying
4881 	 * the ZFS DE that it should not issue any faults for unopenable
4882 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4883 	 * unopenable vdevs so that the normal autoreplace handler can take
4884 	 * over.
4885 	 */
4886 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4887 		spa_check_removed(spa->spa_root_vdev);
4888 		/*
4889 		 * For the import case, this is done in spa_import(), because
4890 		 * at this point we're using the spare definitions from
4891 		 * the MOS config, not necessarily from the userland config.
4892 		 */
4893 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4894 			spa_aux_check_removed(&spa->spa_spares);
4895 			spa_aux_check_removed(&spa->spa_l2cache);
4896 		}
4897 	}
4898 
4899 	/*
4900 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4901 	 */
4902 	error = vdev_load(rvd);
4903 	if (error != 0) {
4904 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4905 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4906 	}
4907 
4908 	error = spa_ld_log_spacemaps(spa);
4909 	if (error != 0) {
4910 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4911 		    error);
4912 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4913 	}
4914 
4915 	/*
4916 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4917 	 */
4918 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4919 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4920 	spa_config_exit(spa, SCL_ALL, FTAG);
4921 
4922 	return (0);
4923 }
4924 
4925 static int
4926 spa_ld_load_dedup_tables(spa_t *spa)
4927 {
4928 	int error = 0;
4929 	vdev_t *rvd = spa->spa_root_vdev;
4930 
4931 	error = ddt_load(spa);
4932 	if (error != 0) {
4933 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4934 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4935 	}
4936 
4937 	return (0);
4938 }
4939 
4940 static int
4941 spa_ld_load_brt(spa_t *spa)
4942 {
4943 	int error = 0;
4944 	vdev_t *rvd = spa->spa_root_vdev;
4945 
4946 	error = brt_load(spa);
4947 	if (error != 0) {
4948 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4949 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4950 	}
4951 
4952 	return (0);
4953 }
4954 
4955 static int
4956 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4957 {
4958 	vdev_t *rvd = spa->spa_root_vdev;
4959 
4960 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4961 		boolean_t missing = spa_check_logs(spa);
4962 		if (missing) {
4963 			if (spa->spa_missing_tvds != 0) {
4964 				spa_load_note(spa, "spa_check_logs failed "
4965 				    "so dropping the logs");
4966 			} else {
4967 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4968 				spa_load_failed(spa, "spa_check_logs failed");
4969 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4970 				    ENXIO));
4971 			}
4972 		}
4973 	}
4974 
4975 	return (0);
4976 }
4977 
4978 static int
4979 spa_ld_verify_pool_data(spa_t *spa)
4980 {
4981 	int error = 0;
4982 	vdev_t *rvd = spa->spa_root_vdev;
4983 
4984 	/*
4985 	 * We've successfully opened the pool, verify that we're ready
4986 	 * to start pushing transactions.
4987 	 */
4988 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4989 		error = spa_load_verify(spa);
4990 		if (error != 0) {
4991 			spa_load_failed(spa, "spa_load_verify failed "
4992 			    "[error=%d]", error);
4993 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4994 			    error));
4995 		}
4996 	}
4997 
4998 	return (0);
4999 }
5000 
5001 static void
5002 spa_ld_claim_log_blocks(spa_t *spa)
5003 {
5004 	dmu_tx_t *tx;
5005 	dsl_pool_t *dp = spa_get_dsl(spa);
5006 
5007 	/*
5008 	 * Claim log blocks that haven't been committed yet.
5009 	 * This must all happen in a single txg.
5010 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5011 	 * invoked from zil_claim_log_block()'s i/o done callback.
5012 	 * Price of rollback is that we abandon the log.
5013 	 */
5014 	spa->spa_claiming = B_TRUE;
5015 
5016 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5017 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5018 	    zil_claim, tx, DS_FIND_CHILDREN);
5019 	dmu_tx_commit(tx);
5020 
5021 	spa->spa_claiming = B_FALSE;
5022 
5023 	spa_set_log_state(spa, SPA_LOG_GOOD);
5024 }
5025 
5026 static void
5027 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5028     boolean_t update_config_cache)
5029 {
5030 	vdev_t *rvd = spa->spa_root_vdev;
5031 	int need_update = B_FALSE;
5032 
5033 	/*
5034 	 * If the config cache is stale, or we have uninitialized
5035 	 * metaslabs (see spa_vdev_add()), then update the config.
5036 	 *
5037 	 * If this is a verbatim import, trust the current
5038 	 * in-core spa_config and update the disk labels.
5039 	 */
5040 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5041 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5042 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5043 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5044 		need_update = B_TRUE;
5045 
5046 	for (int c = 0; c < rvd->vdev_children; c++)
5047 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5048 			need_update = B_TRUE;
5049 
5050 	/*
5051 	 * Update the config cache asynchronously in case we're the
5052 	 * root pool, in which case the config cache isn't writable yet.
5053 	 */
5054 	if (need_update)
5055 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5056 }
5057 
5058 static void
5059 spa_ld_prepare_for_reload(spa_t *spa)
5060 {
5061 	spa_mode_t mode = spa->spa_mode;
5062 	int async_suspended = spa->spa_async_suspended;
5063 
5064 	spa_unload(spa);
5065 	spa_deactivate(spa);
5066 	spa_activate(spa, mode);
5067 
5068 	/*
5069 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5070 	 * spa_unload(). We want to restore it back to the original value before
5071 	 * returning as we might be calling spa_async_resume() later.
5072 	 */
5073 	spa->spa_async_suspended = async_suspended;
5074 }
5075 
5076 static int
5077 spa_ld_read_checkpoint_txg(spa_t *spa)
5078 {
5079 	uberblock_t checkpoint;
5080 	int error = 0;
5081 
5082 	ASSERT0(spa->spa_checkpoint_txg);
5083 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5084 	    spa->spa_load_thread == curthread);
5085 
5086 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5087 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5088 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5089 
5090 	if (error == ENOENT)
5091 		return (0);
5092 
5093 	if (error != 0)
5094 		return (error);
5095 
5096 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5097 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5098 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5099 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5100 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5101 
5102 	return (0);
5103 }
5104 
5105 static int
5106 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5107 {
5108 	int error = 0;
5109 
5110 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5111 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5112 
5113 	/*
5114 	 * Never trust the config that is provided unless we are assembling
5115 	 * a pool following a split.
5116 	 * This means don't trust blkptrs and the vdev tree in general. This
5117 	 * also effectively puts the spa in read-only mode since
5118 	 * spa_writeable() checks for spa_trust_config to be true.
5119 	 * We will later load a trusted config from the MOS.
5120 	 */
5121 	if (type != SPA_IMPORT_ASSEMBLE)
5122 		spa->spa_trust_config = B_FALSE;
5123 
5124 	/*
5125 	 * Parse the config provided to create a vdev tree.
5126 	 */
5127 	error = spa_ld_parse_config(spa, type);
5128 	if (error != 0)
5129 		return (error);
5130 
5131 	spa_import_progress_add(spa);
5132 
5133 	/*
5134 	 * Now that we have the vdev tree, try to open each vdev. This involves
5135 	 * opening the underlying physical device, retrieving its geometry and
5136 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5137 	 * based on the success of those operations. After this we'll be ready
5138 	 * to read from the vdevs.
5139 	 */
5140 	error = spa_ld_open_vdevs(spa);
5141 	if (error != 0)
5142 		return (error);
5143 
5144 	/*
5145 	 * Read the label of each vdev and make sure that the GUIDs stored
5146 	 * there match the GUIDs in the config provided.
5147 	 * If we're assembling a new pool that's been split off from an
5148 	 * existing pool, the labels haven't yet been updated so we skip
5149 	 * validation for now.
5150 	 */
5151 	if (type != SPA_IMPORT_ASSEMBLE) {
5152 		error = spa_ld_validate_vdevs(spa);
5153 		if (error != 0)
5154 			return (error);
5155 	}
5156 
5157 	/*
5158 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5159 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5160 	 * get the list of features required to read blkptrs in the MOS from
5161 	 * the vdev label with the best uberblock and verify that our version
5162 	 * of zfs supports them all.
5163 	 */
5164 	error = spa_ld_select_uberblock(spa, type);
5165 	if (error != 0)
5166 		return (error);
5167 
5168 	/*
5169 	 * Pass that uberblock to the dsl_pool layer which will open the root
5170 	 * blkptr. This blkptr points to the latest version of the MOS and will
5171 	 * allow us to read its contents.
5172 	 */
5173 	error = spa_ld_open_rootbp(spa);
5174 	if (error != 0)
5175 		return (error);
5176 
5177 	return (0);
5178 }
5179 
5180 static int
5181 spa_ld_checkpoint_rewind(spa_t *spa)
5182 {
5183 	uberblock_t checkpoint;
5184 	int error = 0;
5185 
5186 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5187 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5188 
5189 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5190 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5191 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5192 
5193 	if (error != 0) {
5194 		spa_load_failed(spa, "unable to retrieve checkpointed "
5195 		    "uberblock from the MOS config [error=%d]", error);
5196 
5197 		if (error == ENOENT)
5198 			error = ZFS_ERR_NO_CHECKPOINT;
5199 
5200 		return (error);
5201 	}
5202 
5203 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5204 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5205 
5206 	/*
5207 	 * We need to update the txg and timestamp of the checkpointed
5208 	 * uberblock to be higher than the latest one. This ensures that
5209 	 * the checkpointed uberblock is selected if we were to close and
5210 	 * reopen the pool right after we've written it in the vdev labels.
5211 	 * (also see block comment in vdev_uberblock_compare)
5212 	 */
5213 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5214 	checkpoint.ub_timestamp = gethrestime_sec();
5215 
5216 	/*
5217 	 * Set current uberblock to be the checkpointed uberblock.
5218 	 */
5219 	spa->spa_uberblock = checkpoint;
5220 
5221 	/*
5222 	 * If we are doing a normal rewind, then the pool is open for
5223 	 * writing and we sync the "updated" checkpointed uberblock to
5224 	 * disk. Once this is done, we've basically rewound the whole
5225 	 * pool and there is no way back.
5226 	 *
5227 	 * There are cases when we don't want to attempt and sync the
5228 	 * checkpointed uberblock to disk because we are opening a
5229 	 * pool as read-only. Specifically, verifying the checkpointed
5230 	 * state with zdb, and importing the checkpointed state to get
5231 	 * a "preview" of its content.
5232 	 */
5233 	if (spa_writeable(spa)) {
5234 		vdev_t *rvd = spa->spa_root_vdev;
5235 
5236 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5237 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5238 		int svdcount = 0;
5239 		int children = rvd->vdev_children;
5240 		int c0 = random_in_range(children);
5241 
5242 		for (int c = 0; c < children; c++) {
5243 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5244 
5245 			/* Stop when revisiting the first vdev */
5246 			if (c > 0 && svd[0] == vd)
5247 				break;
5248 
5249 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5250 			    !vdev_is_concrete(vd))
5251 				continue;
5252 
5253 			svd[svdcount++] = vd;
5254 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5255 				break;
5256 		}
5257 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5258 		if (error == 0)
5259 			spa->spa_last_synced_guid = rvd->vdev_guid;
5260 		spa_config_exit(spa, SCL_ALL, FTAG);
5261 
5262 		if (error != 0) {
5263 			spa_load_failed(spa, "failed to write checkpointed "
5264 			    "uberblock to the vdev labels [error=%d]", error);
5265 			return (error);
5266 		}
5267 	}
5268 
5269 	return (0);
5270 }
5271 
5272 static int
5273 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5274     boolean_t *update_config_cache)
5275 {
5276 	int error;
5277 
5278 	/*
5279 	 * Parse the config for pool, open and validate vdevs,
5280 	 * select an uberblock, and use that uberblock to open
5281 	 * the MOS.
5282 	 */
5283 	error = spa_ld_mos_init(spa, type);
5284 	if (error != 0)
5285 		return (error);
5286 
5287 	/*
5288 	 * Retrieve the trusted config stored in the MOS and use it to create
5289 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5290 	 */
5291 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5292 	if (error == EAGAIN) {
5293 		if (update_config_cache != NULL)
5294 			*update_config_cache = B_TRUE;
5295 
5296 		/*
5297 		 * Redo the loading process with the trusted config if it is
5298 		 * too different from the untrusted config.
5299 		 */
5300 		spa_ld_prepare_for_reload(spa);
5301 		spa_load_note(spa, "RELOADING");
5302 		error = spa_ld_mos_init(spa, type);
5303 		if (error != 0)
5304 			return (error);
5305 
5306 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5307 		if (error != 0)
5308 			return (error);
5309 
5310 	} else if (error != 0) {
5311 		return (error);
5312 	}
5313 
5314 	return (0);
5315 }
5316 
5317 /*
5318  * Load an existing storage pool, using the config provided. This config
5319  * describes which vdevs are part of the pool and is later validated against
5320  * partial configs present in each vdev's label and an entire copy of the
5321  * config stored in the MOS.
5322  */
5323 static int
5324 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5325 {
5326 	int error = 0;
5327 	boolean_t missing_feat_write = B_FALSE;
5328 	boolean_t checkpoint_rewind =
5329 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5330 	boolean_t update_config_cache = B_FALSE;
5331 	hrtime_t load_start = gethrtime();
5332 
5333 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5334 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5335 
5336 	spa_load_note(spa, "LOADING");
5337 
5338 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5339 	if (error != 0)
5340 		return (error);
5341 
5342 	/*
5343 	 * If we are rewinding to the checkpoint then we need to repeat
5344 	 * everything we've done so far in this function but this time
5345 	 * selecting the checkpointed uberblock and using that to open
5346 	 * the MOS.
5347 	 */
5348 	if (checkpoint_rewind) {
5349 		/*
5350 		 * If we are rewinding to the checkpoint update config cache
5351 		 * anyway.
5352 		 */
5353 		update_config_cache = B_TRUE;
5354 
5355 		/*
5356 		 * Extract the checkpointed uberblock from the current MOS
5357 		 * and use this as the pool's uberblock from now on. If the
5358 		 * pool is imported as writeable we also write the checkpoint
5359 		 * uberblock to the labels, making the rewind permanent.
5360 		 */
5361 		error = spa_ld_checkpoint_rewind(spa);
5362 		if (error != 0)
5363 			return (error);
5364 
5365 		/*
5366 		 * Redo the loading process again with the
5367 		 * checkpointed uberblock.
5368 		 */
5369 		spa_ld_prepare_for_reload(spa);
5370 		spa_load_note(spa, "LOADING checkpointed uberblock");
5371 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5372 		if (error != 0)
5373 			return (error);
5374 	}
5375 
5376 	/*
5377 	 * Drop the namespace lock for the rest of the function.
5378 	 */
5379 	spa->spa_load_thread = curthread;
5380 	mutex_exit(&spa_namespace_lock);
5381 
5382 	/*
5383 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5384 	 */
5385 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5386 	error = spa_ld_read_checkpoint_txg(spa);
5387 	if (error != 0)
5388 		goto fail;
5389 
5390 	/*
5391 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5392 	 * from the pool and their contents were re-mapped to other vdevs. Note
5393 	 * that everything that we read before this step must have been
5394 	 * rewritten on concrete vdevs after the last device removal was
5395 	 * initiated. Otherwise we could be reading from indirect vdevs before
5396 	 * we have loaded their mappings.
5397 	 */
5398 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5399 	error = spa_ld_open_indirect_vdev_metadata(spa);
5400 	if (error != 0)
5401 		goto fail;
5402 
5403 	/*
5404 	 * Retrieve the full list of active features from the MOS and check if
5405 	 * they are all supported.
5406 	 */
5407 	spa_import_progress_set_notes(spa, "Checking feature flags");
5408 	error = spa_ld_check_features(spa, &missing_feat_write);
5409 	if (error != 0)
5410 		goto fail;
5411 
5412 	/*
5413 	 * Load several special directories from the MOS needed by the dsl_pool
5414 	 * layer.
5415 	 */
5416 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5417 	error = spa_ld_load_special_directories(spa);
5418 	if (error != 0)
5419 		goto fail;
5420 
5421 	/*
5422 	 * Retrieve pool properties from the MOS.
5423 	 */
5424 	spa_import_progress_set_notes(spa, "Loading properties");
5425 	error = spa_ld_get_props(spa);
5426 	if (error != 0)
5427 		goto fail;
5428 
5429 	/*
5430 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5431 	 * and open them.
5432 	 */
5433 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5434 	error = spa_ld_open_aux_vdevs(spa, type);
5435 	if (error != 0)
5436 		goto fail;
5437 
5438 	/*
5439 	 * Load the metadata for all vdevs. Also check if unopenable devices
5440 	 * should be autoreplaced.
5441 	 */
5442 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5443 	error = spa_ld_load_vdev_metadata(spa);
5444 	if (error != 0)
5445 		goto fail;
5446 
5447 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5448 	error = spa_ld_load_dedup_tables(spa);
5449 	if (error != 0)
5450 		goto fail;
5451 
5452 	spa_import_progress_set_notes(spa, "Loading BRT");
5453 	error = spa_ld_load_brt(spa);
5454 	if (error != 0)
5455 		goto fail;
5456 
5457 	/*
5458 	 * Verify the logs now to make sure we don't have any unexpected errors
5459 	 * when we claim log blocks later.
5460 	 */
5461 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5462 	error = spa_ld_verify_logs(spa, type, ereport);
5463 	if (error != 0)
5464 		goto fail;
5465 
5466 	if (missing_feat_write) {
5467 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5468 
5469 		/*
5470 		 * At this point, we know that we can open the pool in
5471 		 * read-only mode but not read-write mode. We now have enough
5472 		 * information and can return to userland.
5473 		 */
5474 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5475 		    ENOTSUP);
5476 		goto fail;
5477 	}
5478 
5479 	/*
5480 	 * Traverse the last txgs to make sure the pool was left off in a safe
5481 	 * state. When performing an extreme rewind, we verify the whole pool,
5482 	 * which can take a very long time.
5483 	 */
5484 	spa_import_progress_set_notes(spa, "Verifying pool data");
5485 	error = spa_ld_verify_pool_data(spa);
5486 	if (error != 0)
5487 		goto fail;
5488 
5489 	/*
5490 	 * Calculate the deflated space for the pool. This must be done before
5491 	 * we write anything to the pool because we'd need to update the space
5492 	 * accounting using the deflated sizes.
5493 	 */
5494 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5495 	spa_update_dspace(spa);
5496 
5497 	/*
5498 	 * We have now retrieved all the information we needed to open the
5499 	 * pool. If we are importing the pool in read-write mode, a few
5500 	 * additional steps must be performed to finish the import.
5501 	 */
5502 	spa_import_progress_set_notes(spa, "Starting import");
5503 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5504 	    spa->spa_load_max_txg == UINT64_MAX)) {
5505 		uint64_t config_cache_txg = spa->spa_config_txg;
5506 
5507 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5508 
5509 		/*
5510 		 * Before we do any zio_write's, complete the raidz expansion
5511 		 * scratch space copying, if necessary.
5512 		 */
5513 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5514 			vdev_raidz_reflow_copy_scratch(spa);
5515 
5516 		/*
5517 		 * In case of a checkpoint rewind, log the original txg
5518 		 * of the checkpointed uberblock.
5519 		 */
5520 		if (checkpoint_rewind) {
5521 			spa_history_log_internal(spa, "checkpoint rewind",
5522 			    NULL, "rewound state to txg=%llu",
5523 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5524 		}
5525 
5526 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5527 		/*
5528 		 * Traverse the ZIL and claim all blocks.
5529 		 */
5530 		spa_ld_claim_log_blocks(spa);
5531 
5532 		/*
5533 		 * Kick-off the syncing thread.
5534 		 */
5535 		spa->spa_sync_on = B_TRUE;
5536 		txg_sync_start(spa->spa_dsl_pool);
5537 		mmp_thread_start(spa);
5538 
5539 		/*
5540 		 * Wait for all claims to sync.  We sync up to the highest
5541 		 * claimed log block birth time so that claimed log blocks
5542 		 * don't appear to be from the future.  spa_claim_max_txg
5543 		 * will have been set for us by ZIL traversal operations
5544 		 * performed above.
5545 		 */
5546 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5547 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5548 
5549 		/*
5550 		 * Check if we need to request an update of the config. On the
5551 		 * next sync, we would update the config stored in vdev labels
5552 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5553 		 */
5554 		spa_import_progress_set_notes(spa, "Updating configs");
5555 		spa_ld_check_for_config_update(spa, config_cache_txg,
5556 		    update_config_cache);
5557 
5558 		/*
5559 		 * Check if a rebuild was in progress and if so resume it.
5560 		 * Then check all DTLs to see if anything needs resilvering.
5561 		 * The resilver will be deferred if a rebuild was started.
5562 		 */
5563 		spa_import_progress_set_notes(spa, "Starting resilvers");
5564 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5565 			vdev_rebuild_restart(spa);
5566 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5567 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5568 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5569 		}
5570 
5571 		/*
5572 		 * Log the fact that we booted up (so that we can detect if
5573 		 * we rebooted in the middle of an operation).
5574 		 */
5575 		spa_history_log_version(spa, "open", NULL);
5576 
5577 		spa_import_progress_set_notes(spa,
5578 		    "Restarting device removals");
5579 		spa_restart_removal(spa);
5580 		spa_spawn_aux_threads(spa);
5581 
5582 		/*
5583 		 * Delete any inconsistent datasets.
5584 		 *
5585 		 * Note:
5586 		 * Since we may be issuing deletes for clones here,
5587 		 * we make sure to do so after we've spawned all the
5588 		 * auxiliary threads above (from which the livelist
5589 		 * deletion zthr is part of).
5590 		 */
5591 		spa_import_progress_set_notes(spa,
5592 		    "Cleaning up inconsistent objsets");
5593 		(void) dmu_objset_find(spa_name(spa),
5594 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5595 
5596 		/*
5597 		 * Clean up any stale temporary dataset userrefs.
5598 		 */
5599 		spa_import_progress_set_notes(spa,
5600 		    "Cleaning up temporary userrefs");
5601 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5602 
5603 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5604 		spa_import_progress_set_notes(spa, "Restarting initialize");
5605 		vdev_initialize_restart(spa->spa_root_vdev);
5606 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5607 		vdev_trim_restart(spa->spa_root_vdev);
5608 		vdev_autotrim_restart(spa);
5609 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5610 		spa_import_progress_set_notes(spa, "Finished importing");
5611 	}
5612 	zio_handle_import_delay(spa, gethrtime() - load_start);
5613 
5614 	spa_import_progress_remove(spa_guid(spa));
5615 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5616 
5617 	spa_load_note(spa, "LOADED");
5618 fail:
5619 	mutex_enter(&spa_namespace_lock);
5620 	spa->spa_load_thread = NULL;
5621 	cv_broadcast(&spa_namespace_cv);
5622 
5623 	return (error);
5624 
5625 }
5626 
5627 static int
5628 spa_load_retry(spa_t *spa, spa_load_state_t state)
5629 {
5630 	spa_mode_t mode = spa->spa_mode;
5631 
5632 	spa_unload(spa);
5633 	spa_deactivate(spa);
5634 
5635 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5636 
5637 	spa_activate(spa, mode);
5638 	spa_async_suspend(spa);
5639 
5640 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5641 	    (u_longlong_t)spa->spa_load_max_txg);
5642 
5643 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5644 }
5645 
5646 /*
5647  * If spa_load() fails this function will try loading prior txg's. If
5648  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5649  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5650  * function will not rewind the pool and will return the same error as
5651  * spa_load().
5652  */
5653 static int
5654 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5655     int rewind_flags)
5656 {
5657 	nvlist_t *loadinfo = NULL;
5658 	nvlist_t *config = NULL;
5659 	int load_error, rewind_error;
5660 	uint64_t safe_rewind_txg;
5661 	uint64_t min_txg;
5662 
5663 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5664 		spa->spa_load_max_txg = spa->spa_load_txg;
5665 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5666 	} else {
5667 		spa->spa_load_max_txg = max_request;
5668 		if (max_request != UINT64_MAX)
5669 			spa->spa_extreme_rewind = B_TRUE;
5670 	}
5671 
5672 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5673 	if (load_error == 0)
5674 		return (0);
5675 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5676 		/*
5677 		 * When attempting checkpoint-rewind on a pool with no
5678 		 * checkpoint, we should not attempt to load uberblocks
5679 		 * from previous txgs when spa_load fails.
5680 		 */
5681 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5682 		spa_import_progress_remove(spa_guid(spa));
5683 		return (load_error);
5684 	}
5685 
5686 	if (spa->spa_root_vdev != NULL)
5687 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5688 
5689 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5690 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5691 
5692 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5693 		nvlist_free(config);
5694 		spa_import_progress_remove(spa_guid(spa));
5695 		return (load_error);
5696 	}
5697 
5698 	if (state == SPA_LOAD_RECOVER) {
5699 		/* Price of rolling back is discarding txgs, including log */
5700 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5701 	} else {
5702 		/*
5703 		 * If we aren't rolling back save the load info from our first
5704 		 * import attempt so that we can restore it after attempting
5705 		 * to rewind.
5706 		 */
5707 		loadinfo = spa->spa_load_info;
5708 		spa->spa_load_info = fnvlist_alloc();
5709 	}
5710 
5711 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5712 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5713 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5714 	    TXG_INITIAL : safe_rewind_txg;
5715 
5716 	/*
5717 	 * Continue as long as we're finding errors, we're still within
5718 	 * the acceptable rewind range, and we're still finding uberblocks
5719 	 */
5720 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5721 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5722 		if (spa->spa_load_max_txg < safe_rewind_txg)
5723 			spa->spa_extreme_rewind = B_TRUE;
5724 		rewind_error = spa_load_retry(spa, state);
5725 	}
5726 
5727 	spa->spa_extreme_rewind = B_FALSE;
5728 	spa->spa_load_max_txg = UINT64_MAX;
5729 
5730 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5731 		spa_config_set(spa, config);
5732 	else
5733 		nvlist_free(config);
5734 
5735 	if (state == SPA_LOAD_RECOVER) {
5736 		ASSERT3P(loadinfo, ==, NULL);
5737 		spa_import_progress_remove(spa_guid(spa));
5738 		return (rewind_error);
5739 	} else {
5740 		/* Store the rewind info as part of the initial load info */
5741 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5742 		    spa->spa_load_info);
5743 
5744 		/* Restore the initial load info */
5745 		fnvlist_free(spa->spa_load_info);
5746 		spa->spa_load_info = loadinfo;
5747 
5748 		spa_import_progress_remove(spa_guid(spa));
5749 		return (load_error);
5750 	}
5751 }
5752 
5753 /*
5754  * Pool Open/Import
5755  *
5756  * The import case is identical to an open except that the configuration is sent
5757  * down from userland, instead of grabbed from the configuration cache.  For the
5758  * case of an open, the pool configuration will exist in the
5759  * POOL_STATE_UNINITIALIZED state.
5760  *
5761  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5762  * the same time open the pool, without having to keep around the spa_t in some
5763  * ambiguous state.
5764  */
5765 static int
5766 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5767     nvlist_t *nvpolicy, nvlist_t **config)
5768 {
5769 	spa_t *spa;
5770 	spa_load_state_t state = SPA_LOAD_OPEN;
5771 	int error;
5772 	int locked = B_FALSE;
5773 	int firstopen = B_FALSE;
5774 
5775 	*spapp = NULL;
5776 
5777 	/*
5778 	 * As disgusting as this is, we need to support recursive calls to this
5779 	 * function because dsl_dir_open() is called during spa_load(), and ends
5780 	 * up calling spa_open() again.  The real fix is to figure out how to
5781 	 * avoid dsl_dir_open() calling this in the first place.
5782 	 */
5783 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5784 		mutex_enter(&spa_namespace_lock);
5785 		locked = B_TRUE;
5786 	}
5787 
5788 	if ((spa = spa_lookup(pool)) == NULL) {
5789 		if (locked)
5790 			mutex_exit(&spa_namespace_lock);
5791 		return (SET_ERROR(ENOENT));
5792 	}
5793 
5794 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5795 		zpool_load_policy_t policy;
5796 
5797 		firstopen = B_TRUE;
5798 
5799 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5800 		    &policy);
5801 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5802 			state = SPA_LOAD_RECOVER;
5803 
5804 		spa_activate(spa, spa_mode_global);
5805 
5806 		if (state != SPA_LOAD_RECOVER)
5807 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5808 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5809 
5810 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5811 		error = spa_load_best(spa, state, policy.zlp_txg,
5812 		    policy.zlp_rewind);
5813 
5814 		if (error == EBADF) {
5815 			/*
5816 			 * If vdev_validate() returns failure (indicated by
5817 			 * EBADF), it indicates that one of the vdevs indicates
5818 			 * that the pool has been exported or destroyed.  If
5819 			 * this is the case, the config cache is out of sync and
5820 			 * we should remove the pool from the namespace.
5821 			 */
5822 			spa_unload(spa);
5823 			spa_deactivate(spa);
5824 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5825 			spa_remove(spa);
5826 			if (locked)
5827 				mutex_exit(&spa_namespace_lock);
5828 			return (SET_ERROR(ENOENT));
5829 		}
5830 
5831 		if (error) {
5832 			/*
5833 			 * We can't open the pool, but we still have useful
5834 			 * information: the state of each vdev after the
5835 			 * attempted vdev_open().  Return this to the user.
5836 			 */
5837 			if (config != NULL && spa->spa_config) {
5838 				*config = fnvlist_dup(spa->spa_config);
5839 				fnvlist_add_nvlist(*config,
5840 				    ZPOOL_CONFIG_LOAD_INFO,
5841 				    spa->spa_load_info);
5842 			}
5843 			spa_unload(spa);
5844 			spa_deactivate(spa);
5845 			spa->spa_last_open_failed = error;
5846 			if (locked)
5847 				mutex_exit(&spa_namespace_lock);
5848 			*spapp = NULL;
5849 			return (error);
5850 		}
5851 	}
5852 
5853 	spa_open_ref(spa, tag);
5854 
5855 	if (config != NULL)
5856 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5857 
5858 	/*
5859 	 * If we've recovered the pool, pass back any information we
5860 	 * gathered while doing the load.
5861 	 */
5862 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5863 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5864 		    spa->spa_load_info);
5865 	}
5866 
5867 	if (locked) {
5868 		spa->spa_last_open_failed = 0;
5869 		spa->spa_last_ubsync_txg = 0;
5870 		spa->spa_load_txg = 0;
5871 		mutex_exit(&spa_namespace_lock);
5872 	}
5873 
5874 	if (firstopen)
5875 		zvol_create_minors_recursive(spa_name(spa));
5876 
5877 	*spapp = spa;
5878 
5879 	return (0);
5880 }
5881 
5882 int
5883 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5884     nvlist_t *policy, nvlist_t **config)
5885 {
5886 	return (spa_open_common(name, spapp, tag, policy, config));
5887 }
5888 
5889 int
5890 spa_open(const char *name, spa_t **spapp, const void *tag)
5891 {
5892 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5893 }
5894 
5895 /*
5896  * Lookup the given spa_t, incrementing the inject count in the process,
5897  * preventing it from being exported or destroyed.
5898  */
5899 spa_t *
5900 spa_inject_addref(char *name)
5901 {
5902 	spa_t *spa;
5903 
5904 	mutex_enter(&spa_namespace_lock);
5905 	if ((spa = spa_lookup(name)) == NULL) {
5906 		mutex_exit(&spa_namespace_lock);
5907 		return (NULL);
5908 	}
5909 	spa->spa_inject_ref++;
5910 	mutex_exit(&spa_namespace_lock);
5911 
5912 	return (spa);
5913 }
5914 
5915 void
5916 spa_inject_delref(spa_t *spa)
5917 {
5918 	mutex_enter(&spa_namespace_lock);
5919 	spa->spa_inject_ref--;
5920 	mutex_exit(&spa_namespace_lock);
5921 }
5922 
5923 /*
5924  * Add spares device information to the nvlist.
5925  */
5926 static void
5927 spa_add_spares(spa_t *spa, nvlist_t *config)
5928 {
5929 	nvlist_t **spares;
5930 	uint_t i, nspares;
5931 	nvlist_t *nvroot;
5932 	uint64_t guid;
5933 	vdev_stat_t *vs;
5934 	uint_t vsc;
5935 	uint64_t pool;
5936 
5937 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5938 
5939 	if (spa->spa_spares.sav_count == 0)
5940 		return;
5941 
5942 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5943 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5944 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5945 	if (nspares != 0) {
5946 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5947 		    (const nvlist_t * const *)spares, nspares);
5948 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5949 		    &spares, &nspares));
5950 
5951 		/*
5952 		 * Go through and find any spares which have since been
5953 		 * repurposed as an active spare.  If this is the case, update
5954 		 * their status appropriately.
5955 		 */
5956 		for (i = 0; i < nspares; i++) {
5957 			guid = fnvlist_lookup_uint64(spares[i],
5958 			    ZPOOL_CONFIG_GUID);
5959 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5960 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5961 			if (spa_spare_exists(guid, &pool, NULL) &&
5962 			    pool != 0ULL) {
5963 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5964 				vs->vs_aux = VDEV_AUX_SPARED;
5965 			} else {
5966 				vs->vs_state =
5967 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5968 			}
5969 		}
5970 	}
5971 }
5972 
5973 /*
5974  * Add l2cache device information to the nvlist, including vdev stats.
5975  */
5976 static void
5977 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5978 {
5979 	nvlist_t **l2cache;
5980 	uint_t i, j, nl2cache;
5981 	nvlist_t *nvroot;
5982 	uint64_t guid;
5983 	vdev_t *vd;
5984 	vdev_stat_t *vs;
5985 	uint_t vsc;
5986 
5987 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5988 
5989 	if (spa->spa_l2cache.sav_count == 0)
5990 		return;
5991 
5992 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5993 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5994 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5995 	if (nl2cache != 0) {
5996 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5997 		    (const nvlist_t * const *)l2cache, nl2cache);
5998 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5999 		    &l2cache, &nl2cache));
6000 
6001 		/*
6002 		 * Update level 2 cache device stats.
6003 		 */
6004 
6005 		for (i = 0; i < nl2cache; i++) {
6006 			guid = fnvlist_lookup_uint64(l2cache[i],
6007 			    ZPOOL_CONFIG_GUID);
6008 
6009 			vd = NULL;
6010 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6011 				if (guid ==
6012 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6013 					vd = spa->spa_l2cache.sav_vdevs[j];
6014 					break;
6015 				}
6016 			}
6017 			ASSERT(vd != NULL);
6018 
6019 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6020 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6021 			vdev_get_stats(vd, vs);
6022 			vdev_config_generate_stats(vd, l2cache[i]);
6023 
6024 		}
6025 	}
6026 }
6027 
6028 static void
6029 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6030 {
6031 	zap_cursor_t zc;
6032 	zap_attribute_t za;
6033 
6034 	if (spa->spa_feat_for_read_obj != 0) {
6035 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6036 		    spa->spa_feat_for_read_obj);
6037 		    zap_cursor_retrieve(&zc, &za) == 0;
6038 		    zap_cursor_advance(&zc)) {
6039 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6040 			    za.za_num_integers == 1);
6041 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6042 			    za.za_first_integer));
6043 		}
6044 		zap_cursor_fini(&zc);
6045 	}
6046 
6047 	if (spa->spa_feat_for_write_obj != 0) {
6048 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6049 		    spa->spa_feat_for_write_obj);
6050 		    zap_cursor_retrieve(&zc, &za) == 0;
6051 		    zap_cursor_advance(&zc)) {
6052 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6053 			    za.za_num_integers == 1);
6054 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6055 			    za.za_first_integer));
6056 		}
6057 		zap_cursor_fini(&zc);
6058 	}
6059 }
6060 
6061 static void
6062 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6063 {
6064 	int i;
6065 
6066 	for (i = 0; i < SPA_FEATURES; i++) {
6067 		zfeature_info_t feature = spa_feature_table[i];
6068 		uint64_t refcount;
6069 
6070 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6071 			continue;
6072 
6073 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6074 	}
6075 }
6076 
6077 /*
6078  * Store a list of pool features and their reference counts in the
6079  * config.
6080  *
6081  * The first time this is called on a spa, allocate a new nvlist, fetch
6082  * the pool features and reference counts from disk, then save the list
6083  * in the spa. In subsequent calls on the same spa use the saved nvlist
6084  * and refresh its values from the cached reference counts.  This
6085  * ensures we don't block here on I/O on a suspended pool so 'zpool
6086  * clear' can resume the pool.
6087  */
6088 static void
6089 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6090 {
6091 	nvlist_t *features;
6092 
6093 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6094 
6095 	mutex_enter(&spa->spa_feat_stats_lock);
6096 	features = spa->spa_feat_stats;
6097 
6098 	if (features != NULL) {
6099 		spa_feature_stats_from_cache(spa, features);
6100 	} else {
6101 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6102 		spa->spa_feat_stats = features;
6103 		spa_feature_stats_from_disk(spa, features);
6104 	}
6105 
6106 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6107 	    features));
6108 
6109 	mutex_exit(&spa->spa_feat_stats_lock);
6110 }
6111 
6112 int
6113 spa_get_stats(const char *name, nvlist_t **config,
6114     char *altroot, size_t buflen)
6115 {
6116 	int error;
6117 	spa_t *spa;
6118 
6119 	*config = NULL;
6120 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6121 
6122 	if (spa != NULL) {
6123 		/*
6124 		 * This still leaves a window of inconsistency where the spares
6125 		 * or l2cache devices could change and the config would be
6126 		 * self-inconsistent.
6127 		 */
6128 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6129 
6130 		if (*config != NULL) {
6131 			uint64_t loadtimes[2];
6132 
6133 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6134 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6135 			fnvlist_add_uint64_array(*config,
6136 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6137 
6138 			fnvlist_add_uint64(*config,
6139 			    ZPOOL_CONFIG_ERRCOUNT,
6140 			    spa_approx_errlog_size(spa));
6141 
6142 			if (spa_suspended(spa)) {
6143 				fnvlist_add_uint64(*config,
6144 				    ZPOOL_CONFIG_SUSPENDED,
6145 				    spa->spa_failmode);
6146 				fnvlist_add_uint64(*config,
6147 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6148 				    spa->spa_suspended);
6149 			}
6150 
6151 			spa_add_spares(spa, *config);
6152 			spa_add_l2cache(spa, *config);
6153 			spa_add_feature_stats(spa, *config);
6154 		}
6155 	}
6156 
6157 	/*
6158 	 * We want to get the alternate root even for faulted pools, so we cheat
6159 	 * and call spa_lookup() directly.
6160 	 */
6161 	if (altroot) {
6162 		if (spa == NULL) {
6163 			mutex_enter(&spa_namespace_lock);
6164 			spa = spa_lookup(name);
6165 			if (spa)
6166 				spa_altroot(spa, altroot, buflen);
6167 			else
6168 				altroot[0] = '\0';
6169 			spa = NULL;
6170 			mutex_exit(&spa_namespace_lock);
6171 		} else {
6172 			spa_altroot(spa, altroot, buflen);
6173 		}
6174 	}
6175 
6176 	if (spa != NULL) {
6177 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6178 		spa_close(spa, FTAG);
6179 	}
6180 
6181 	return (error);
6182 }
6183 
6184 /*
6185  * Validate that the auxiliary device array is well formed.  We must have an
6186  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6187  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6188  * specified, as long as they are well-formed.
6189  */
6190 static int
6191 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6192     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6193     vdev_labeltype_t label)
6194 {
6195 	nvlist_t **dev;
6196 	uint_t i, ndev;
6197 	vdev_t *vd;
6198 	int error;
6199 
6200 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6201 
6202 	/*
6203 	 * It's acceptable to have no devs specified.
6204 	 */
6205 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6206 		return (0);
6207 
6208 	if (ndev == 0)
6209 		return (SET_ERROR(EINVAL));
6210 
6211 	/*
6212 	 * Make sure the pool is formatted with a version that supports this
6213 	 * device type.
6214 	 */
6215 	if (spa_version(spa) < version)
6216 		return (SET_ERROR(ENOTSUP));
6217 
6218 	/*
6219 	 * Set the pending device list so we correctly handle device in-use
6220 	 * checking.
6221 	 */
6222 	sav->sav_pending = dev;
6223 	sav->sav_npending = ndev;
6224 
6225 	for (i = 0; i < ndev; i++) {
6226 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6227 		    mode)) != 0)
6228 			goto out;
6229 
6230 		if (!vd->vdev_ops->vdev_op_leaf) {
6231 			vdev_free(vd);
6232 			error = SET_ERROR(EINVAL);
6233 			goto out;
6234 		}
6235 
6236 		vd->vdev_top = vd;
6237 
6238 		if ((error = vdev_open(vd)) == 0 &&
6239 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6240 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6241 			    vd->vdev_guid);
6242 		}
6243 
6244 		vdev_free(vd);
6245 
6246 		if (error &&
6247 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6248 			goto out;
6249 		else
6250 			error = 0;
6251 	}
6252 
6253 out:
6254 	sav->sav_pending = NULL;
6255 	sav->sav_npending = 0;
6256 	return (error);
6257 }
6258 
6259 static int
6260 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6261 {
6262 	int error;
6263 
6264 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6265 
6266 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6267 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6268 	    VDEV_LABEL_SPARE)) != 0) {
6269 		return (error);
6270 	}
6271 
6272 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6273 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6274 	    VDEV_LABEL_L2CACHE));
6275 }
6276 
6277 static void
6278 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6279     const char *config)
6280 {
6281 	int i;
6282 
6283 	if (sav->sav_config != NULL) {
6284 		nvlist_t **olddevs;
6285 		uint_t oldndevs;
6286 		nvlist_t **newdevs;
6287 
6288 		/*
6289 		 * Generate new dev list by concatenating with the
6290 		 * current dev list.
6291 		 */
6292 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6293 		    &olddevs, &oldndevs));
6294 
6295 		newdevs = kmem_alloc(sizeof (void *) *
6296 		    (ndevs + oldndevs), KM_SLEEP);
6297 		for (i = 0; i < oldndevs; i++)
6298 			newdevs[i] = fnvlist_dup(olddevs[i]);
6299 		for (i = 0; i < ndevs; i++)
6300 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6301 
6302 		fnvlist_remove(sav->sav_config, config);
6303 
6304 		fnvlist_add_nvlist_array(sav->sav_config, config,
6305 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6306 		for (i = 0; i < oldndevs + ndevs; i++)
6307 			nvlist_free(newdevs[i]);
6308 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6309 	} else {
6310 		/*
6311 		 * Generate a new dev list.
6312 		 */
6313 		sav->sav_config = fnvlist_alloc();
6314 		fnvlist_add_nvlist_array(sav->sav_config, config,
6315 		    (const nvlist_t * const *)devs, ndevs);
6316 	}
6317 }
6318 
6319 /*
6320  * Stop and drop level 2 ARC devices
6321  */
6322 void
6323 spa_l2cache_drop(spa_t *spa)
6324 {
6325 	vdev_t *vd;
6326 	int i;
6327 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6328 
6329 	for (i = 0; i < sav->sav_count; i++) {
6330 		uint64_t pool;
6331 
6332 		vd = sav->sav_vdevs[i];
6333 		ASSERT(vd != NULL);
6334 
6335 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6336 		    pool != 0ULL && l2arc_vdev_present(vd))
6337 			l2arc_remove_vdev(vd);
6338 	}
6339 }
6340 
6341 /*
6342  * Verify encryption parameters for spa creation. If we are encrypting, we must
6343  * have the encryption feature flag enabled.
6344  */
6345 static int
6346 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6347     boolean_t has_encryption)
6348 {
6349 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6350 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6351 	    !has_encryption)
6352 		return (SET_ERROR(ENOTSUP));
6353 
6354 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6355 }
6356 
6357 /*
6358  * Pool Creation
6359  */
6360 int
6361 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6362     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6363 {
6364 	spa_t *spa;
6365 	const char *altroot = NULL;
6366 	vdev_t *rvd;
6367 	dsl_pool_t *dp;
6368 	dmu_tx_t *tx;
6369 	int error = 0;
6370 	uint64_t txg = TXG_INITIAL;
6371 	nvlist_t **spares, **l2cache;
6372 	uint_t nspares, nl2cache;
6373 	uint64_t version, obj, ndraid = 0;
6374 	boolean_t has_features;
6375 	boolean_t has_encryption;
6376 	boolean_t has_allocclass;
6377 	spa_feature_t feat;
6378 	const char *feat_name;
6379 	const char *poolname;
6380 	nvlist_t *nvl;
6381 
6382 	if (props == NULL ||
6383 	    nvlist_lookup_string(props,
6384 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6385 		poolname = (char *)pool;
6386 
6387 	/*
6388 	 * If this pool already exists, return failure.
6389 	 */
6390 	mutex_enter(&spa_namespace_lock);
6391 	if (spa_lookup(poolname) != NULL) {
6392 		mutex_exit(&spa_namespace_lock);
6393 		return (SET_ERROR(EEXIST));
6394 	}
6395 
6396 	/*
6397 	 * Allocate a new spa_t structure.
6398 	 */
6399 	nvl = fnvlist_alloc();
6400 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6401 	(void) nvlist_lookup_string(props,
6402 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6403 	spa = spa_add(poolname, nvl, altroot);
6404 	fnvlist_free(nvl);
6405 	spa_activate(spa, spa_mode_global);
6406 
6407 	if (props && (error = spa_prop_validate(spa, props))) {
6408 		spa_deactivate(spa);
6409 		spa_remove(spa);
6410 		mutex_exit(&spa_namespace_lock);
6411 		return (error);
6412 	}
6413 
6414 	/*
6415 	 * Temporary pool names should never be written to disk.
6416 	 */
6417 	if (poolname != pool)
6418 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6419 
6420 	has_features = B_FALSE;
6421 	has_encryption = B_FALSE;
6422 	has_allocclass = B_FALSE;
6423 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6424 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6425 		if (zpool_prop_feature(nvpair_name(elem))) {
6426 			has_features = B_TRUE;
6427 
6428 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6429 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6430 			if (feat == SPA_FEATURE_ENCRYPTION)
6431 				has_encryption = B_TRUE;
6432 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6433 				has_allocclass = B_TRUE;
6434 		}
6435 	}
6436 
6437 	/* verify encryption params, if they were provided */
6438 	if (dcp != NULL) {
6439 		error = spa_create_check_encryption_params(dcp, has_encryption);
6440 		if (error != 0) {
6441 			spa_deactivate(spa);
6442 			spa_remove(spa);
6443 			mutex_exit(&spa_namespace_lock);
6444 			return (error);
6445 		}
6446 	}
6447 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6448 		spa_deactivate(spa);
6449 		spa_remove(spa);
6450 		mutex_exit(&spa_namespace_lock);
6451 		return (ENOTSUP);
6452 	}
6453 
6454 	if (has_features || nvlist_lookup_uint64(props,
6455 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6456 		version = SPA_VERSION;
6457 	}
6458 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6459 
6460 	spa->spa_first_txg = txg;
6461 	spa->spa_uberblock.ub_txg = txg - 1;
6462 	spa->spa_uberblock.ub_version = version;
6463 	spa->spa_ubsync = spa->spa_uberblock;
6464 	spa->spa_load_state = SPA_LOAD_CREATE;
6465 	spa->spa_removing_phys.sr_state = DSS_NONE;
6466 	spa->spa_removing_phys.sr_removing_vdev = -1;
6467 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6468 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6469 
6470 	/*
6471 	 * Create "The Godfather" zio to hold all async IOs
6472 	 */
6473 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6474 	    KM_SLEEP);
6475 	for (int i = 0; i < max_ncpus; i++) {
6476 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6477 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6478 		    ZIO_FLAG_GODFATHER);
6479 	}
6480 
6481 	/*
6482 	 * Create the root vdev.
6483 	 */
6484 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6485 
6486 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6487 
6488 	ASSERT(error != 0 || rvd != NULL);
6489 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6490 
6491 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6492 		error = SET_ERROR(EINVAL);
6493 
6494 	if (error == 0 &&
6495 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6496 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6497 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6498 		/*
6499 		 * instantiate the metaslab groups (this will dirty the vdevs)
6500 		 * we can no longer error exit past this point
6501 		 */
6502 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6503 			vdev_t *vd = rvd->vdev_child[c];
6504 
6505 			vdev_metaslab_set_size(vd);
6506 			vdev_expand(vd, txg);
6507 		}
6508 	}
6509 
6510 	spa_config_exit(spa, SCL_ALL, FTAG);
6511 
6512 	if (error != 0) {
6513 		spa_unload(spa);
6514 		spa_deactivate(spa);
6515 		spa_remove(spa);
6516 		mutex_exit(&spa_namespace_lock);
6517 		return (error);
6518 	}
6519 
6520 	/*
6521 	 * Get the list of spares, if specified.
6522 	 */
6523 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6524 	    &spares, &nspares) == 0) {
6525 		spa->spa_spares.sav_config = fnvlist_alloc();
6526 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6527 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6528 		    nspares);
6529 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6530 		spa_load_spares(spa);
6531 		spa_config_exit(spa, SCL_ALL, FTAG);
6532 		spa->spa_spares.sav_sync = B_TRUE;
6533 	}
6534 
6535 	/*
6536 	 * Get the list of level 2 cache devices, if specified.
6537 	 */
6538 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6539 	    &l2cache, &nl2cache) == 0) {
6540 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6541 		    NV_UNIQUE_NAME, KM_SLEEP));
6542 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6543 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6544 		    nl2cache);
6545 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6546 		spa_load_l2cache(spa);
6547 		spa_config_exit(spa, SCL_ALL, FTAG);
6548 		spa->spa_l2cache.sav_sync = B_TRUE;
6549 	}
6550 
6551 	spa->spa_is_initializing = B_TRUE;
6552 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6553 	spa->spa_is_initializing = B_FALSE;
6554 
6555 	/*
6556 	 * Create DDTs (dedup tables).
6557 	 */
6558 	ddt_create(spa);
6559 	/*
6560 	 * Create BRT table and BRT table object.
6561 	 */
6562 	brt_create(spa);
6563 
6564 	spa_update_dspace(spa);
6565 
6566 	tx = dmu_tx_create_assigned(dp, txg);
6567 
6568 	/*
6569 	 * Create the pool's history object.
6570 	 */
6571 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6572 		spa_history_create_obj(spa, tx);
6573 
6574 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6575 	spa_history_log_version(spa, "create", tx);
6576 
6577 	/*
6578 	 * Create the pool config object.
6579 	 */
6580 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6581 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6582 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6583 
6584 	if (zap_add(spa->spa_meta_objset,
6585 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6586 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6587 		cmn_err(CE_PANIC, "failed to add pool config");
6588 	}
6589 
6590 	if (zap_add(spa->spa_meta_objset,
6591 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6592 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6593 		cmn_err(CE_PANIC, "failed to add pool version");
6594 	}
6595 
6596 	/* Newly created pools with the right version are always deflated. */
6597 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6598 		spa->spa_deflate = TRUE;
6599 		if (zap_add(spa->spa_meta_objset,
6600 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6601 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6602 			cmn_err(CE_PANIC, "failed to add deflate");
6603 		}
6604 	}
6605 
6606 	/*
6607 	 * Create the deferred-free bpobj.  Turn off compression
6608 	 * because sync-to-convergence takes longer if the blocksize
6609 	 * keeps changing.
6610 	 */
6611 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6612 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6613 	    ZIO_COMPRESS_OFF, tx);
6614 	if (zap_add(spa->spa_meta_objset,
6615 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6616 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6617 		cmn_err(CE_PANIC, "failed to add bpobj");
6618 	}
6619 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6620 	    spa->spa_meta_objset, obj));
6621 
6622 	/*
6623 	 * Generate some random noise for salted checksums to operate on.
6624 	 */
6625 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6626 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6627 
6628 	/*
6629 	 * Set pool properties.
6630 	 */
6631 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6632 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6633 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6634 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6635 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6636 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6637 	spa->spa_dedup_table_quota =
6638 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6639 
6640 	if (props != NULL) {
6641 		spa_configfile_set(spa, props, B_FALSE);
6642 		spa_sync_props(props, tx);
6643 	}
6644 
6645 	for (int i = 0; i < ndraid; i++)
6646 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6647 
6648 	dmu_tx_commit(tx);
6649 
6650 	spa->spa_sync_on = B_TRUE;
6651 	txg_sync_start(dp);
6652 	mmp_thread_start(spa);
6653 	txg_wait_synced(dp, txg);
6654 
6655 	spa_spawn_aux_threads(spa);
6656 
6657 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6658 
6659 	/*
6660 	 * Don't count references from objsets that are already closed
6661 	 * and are making their way through the eviction process.
6662 	 */
6663 	spa_evicting_os_wait(spa);
6664 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6665 	spa->spa_load_state = SPA_LOAD_NONE;
6666 
6667 	spa_import_os(spa);
6668 
6669 	mutex_exit(&spa_namespace_lock);
6670 
6671 	return (0);
6672 }
6673 
6674 /*
6675  * Import a non-root pool into the system.
6676  */
6677 int
6678 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6679 {
6680 	spa_t *spa;
6681 	const char *altroot = NULL;
6682 	spa_load_state_t state = SPA_LOAD_IMPORT;
6683 	zpool_load_policy_t policy;
6684 	spa_mode_t mode = spa_mode_global;
6685 	uint64_t readonly = B_FALSE;
6686 	int error;
6687 	nvlist_t *nvroot;
6688 	nvlist_t **spares, **l2cache;
6689 	uint_t nspares, nl2cache;
6690 
6691 	/*
6692 	 * If a pool with this name exists, return failure.
6693 	 */
6694 	mutex_enter(&spa_namespace_lock);
6695 	if (spa_lookup(pool) != NULL) {
6696 		mutex_exit(&spa_namespace_lock);
6697 		return (SET_ERROR(EEXIST));
6698 	}
6699 
6700 	/*
6701 	 * Create and initialize the spa structure.
6702 	 */
6703 	(void) nvlist_lookup_string(props,
6704 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6705 	(void) nvlist_lookup_uint64(props,
6706 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6707 	if (readonly)
6708 		mode = SPA_MODE_READ;
6709 	spa = spa_add(pool, config, altroot);
6710 	spa->spa_import_flags = flags;
6711 
6712 	/*
6713 	 * Verbatim import - Take a pool and insert it into the namespace
6714 	 * as if it had been loaded at boot.
6715 	 */
6716 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6717 		if (props != NULL)
6718 			spa_configfile_set(spa, props, B_FALSE);
6719 
6720 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6721 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6722 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6723 		mutex_exit(&spa_namespace_lock);
6724 		return (0);
6725 	}
6726 
6727 	spa_activate(spa, mode);
6728 
6729 	/*
6730 	 * Don't start async tasks until we know everything is healthy.
6731 	 */
6732 	spa_async_suspend(spa);
6733 
6734 	zpool_get_load_policy(config, &policy);
6735 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6736 		state = SPA_LOAD_RECOVER;
6737 
6738 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6739 
6740 	if (state != SPA_LOAD_RECOVER) {
6741 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6742 		zfs_dbgmsg("spa_import: importing %s", pool);
6743 	} else {
6744 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6745 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6746 	}
6747 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6748 
6749 	/*
6750 	 * Propagate anything learned while loading the pool and pass it
6751 	 * back to caller (i.e. rewind info, missing devices, etc).
6752 	 */
6753 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6754 
6755 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6756 	/*
6757 	 * Toss any existing sparelist, as it doesn't have any validity
6758 	 * anymore, and conflicts with spa_has_spare().
6759 	 */
6760 	if (spa->spa_spares.sav_config) {
6761 		nvlist_free(spa->spa_spares.sav_config);
6762 		spa->spa_spares.sav_config = NULL;
6763 		spa_load_spares(spa);
6764 	}
6765 	if (spa->spa_l2cache.sav_config) {
6766 		nvlist_free(spa->spa_l2cache.sav_config);
6767 		spa->spa_l2cache.sav_config = NULL;
6768 		spa_load_l2cache(spa);
6769 	}
6770 
6771 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6772 	spa_config_exit(spa, SCL_ALL, FTAG);
6773 
6774 	if (props != NULL)
6775 		spa_configfile_set(spa, props, B_FALSE);
6776 
6777 	if (error != 0 || (props && spa_writeable(spa) &&
6778 	    (error = spa_prop_set(spa, props)))) {
6779 		spa_unload(spa);
6780 		spa_deactivate(spa);
6781 		spa_remove(spa);
6782 		mutex_exit(&spa_namespace_lock);
6783 		return (error);
6784 	}
6785 
6786 	spa_async_resume(spa);
6787 
6788 	/*
6789 	 * Override any spares and level 2 cache devices as specified by
6790 	 * the user, as these may have correct device names/devids, etc.
6791 	 */
6792 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6793 	    &spares, &nspares) == 0) {
6794 		if (spa->spa_spares.sav_config)
6795 			fnvlist_remove(spa->spa_spares.sav_config,
6796 			    ZPOOL_CONFIG_SPARES);
6797 		else
6798 			spa->spa_spares.sav_config = fnvlist_alloc();
6799 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6800 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6801 		    nspares);
6802 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6803 		spa_load_spares(spa);
6804 		spa_config_exit(spa, SCL_ALL, FTAG);
6805 		spa->spa_spares.sav_sync = B_TRUE;
6806 		spa->spa_spares.sav_label_sync = B_TRUE;
6807 	}
6808 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6809 	    &l2cache, &nl2cache) == 0) {
6810 		if (spa->spa_l2cache.sav_config)
6811 			fnvlist_remove(spa->spa_l2cache.sav_config,
6812 			    ZPOOL_CONFIG_L2CACHE);
6813 		else
6814 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6815 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6816 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6817 		    nl2cache);
6818 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6819 		spa_load_l2cache(spa);
6820 		spa_config_exit(spa, SCL_ALL, FTAG);
6821 		spa->spa_l2cache.sav_sync = B_TRUE;
6822 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6823 	}
6824 
6825 	/*
6826 	 * Check for any removed devices.
6827 	 */
6828 	if (spa->spa_autoreplace) {
6829 		spa_aux_check_removed(&spa->spa_spares);
6830 		spa_aux_check_removed(&spa->spa_l2cache);
6831 	}
6832 
6833 	if (spa_writeable(spa)) {
6834 		/*
6835 		 * Update the config cache to include the newly-imported pool.
6836 		 */
6837 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6838 	}
6839 
6840 	/*
6841 	 * It's possible that the pool was expanded while it was exported.
6842 	 * We kick off an async task to handle this for us.
6843 	 */
6844 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6845 
6846 	spa_history_log_version(spa, "import", NULL);
6847 
6848 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6849 
6850 	mutex_exit(&spa_namespace_lock);
6851 
6852 	zvol_create_minors_recursive(pool);
6853 
6854 	spa_import_os(spa);
6855 
6856 	return (0);
6857 }
6858 
6859 nvlist_t *
6860 spa_tryimport(nvlist_t *tryconfig)
6861 {
6862 	nvlist_t *config = NULL;
6863 	const char *poolname, *cachefile;
6864 	spa_t *spa;
6865 	uint64_t state;
6866 	int error;
6867 	zpool_load_policy_t policy;
6868 
6869 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6870 		return (NULL);
6871 
6872 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6873 		return (NULL);
6874 
6875 	/*
6876 	 * Create and initialize the spa structure.
6877 	 */
6878 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6879 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6880 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6881 
6882 	mutex_enter(&spa_namespace_lock);
6883 	spa = spa_add(name, tryconfig, NULL);
6884 	spa_activate(spa, SPA_MODE_READ);
6885 	kmem_free(name, MAXPATHLEN);
6886 
6887 	/*
6888 	 * Rewind pool if a max txg was provided.
6889 	 */
6890 	zpool_get_load_policy(spa->spa_config, &policy);
6891 	if (policy.zlp_txg != UINT64_MAX) {
6892 		spa->spa_load_max_txg = policy.zlp_txg;
6893 		spa->spa_extreme_rewind = B_TRUE;
6894 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6895 		    poolname, (longlong_t)policy.zlp_txg);
6896 	} else {
6897 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6898 	}
6899 
6900 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6901 	    == 0) {
6902 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6903 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6904 	} else {
6905 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6906 	}
6907 
6908 	/*
6909 	 * spa_import() relies on a pool config fetched by spa_try_import()
6910 	 * for spare/cache devices. Import flags are not passed to
6911 	 * spa_tryimport(), which makes it return early due to a missing log
6912 	 * device and missing retrieving the cache device and spare eventually.
6913 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6914 	 * the correct configuration regardless of the missing log device.
6915 	 */
6916 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6917 
6918 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6919 
6920 	/*
6921 	 * If 'tryconfig' was at least parsable, return the current config.
6922 	 */
6923 	if (spa->spa_root_vdev != NULL) {
6924 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6925 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6926 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6927 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6928 		    spa->spa_uberblock.ub_timestamp);
6929 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6930 		    spa->spa_load_info);
6931 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6932 		    spa->spa_errata);
6933 
6934 		/*
6935 		 * If the bootfs property exists on this pool then we
6936 		 * copy it out so that external consumers can tell which
6937 		 * pools are bootable.
6938 		 */
6939 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6940 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6941 
6942 			/*
6943 			 * We have to play games with the name since the
6944 			 * pool was opened as TRYIMPORT_NAME.
6945 			 */
6946 			if (dsl_dsobj_to_dsname(spa_name(spa),
6947 			    spa->spa_bootfs, tmpname) == 0) {
6948 				char *cp;
6949 				char *dsname;
6950 
6951 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6952 
6953 				cp = strchr(tmpname, '/');
6954 				if (cp == NULL) {
6955 					(void) strlcpy(dsname, tmpname,
6956 					    MAXPATHLEN);
6957 				} else {
6958 					(void) snprintf(dsname, MAXPATHLEN,
6959 					    "%s/%s", poolname, ++cp);
6960 				}
6961 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6962 				    dsname);
6963 				kmem_free(dsname, MAXPATHLEN);
6964 			}
6965 			kmem_free(tmpname, MAXPATHLEN);
6966 		}
6967 
6968 		/*
6969 		 * Add the list of hot spares and level 2 cache devices.
6970 		 */
6971 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6972 		spa_add_spares(spa, config);
6973 		spa_add_l2cache(spa, config);
6974 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6975 	}
6976 
6977 	spa_unload(spa);
6978 	spa_deactivate(spa);
6979 	spa_remove(spa);
6980 	mutex_exit(&spa_namespace_lock);
6981 
6982 	return (config);
6983 }
6984 
6985 /*
6986  * Pool export/destroy
6987  *
6988  * The act of destroying or exporting a pool is very simple.  We make sure there
6989  * is no more pending I/O and any references to the pool are gone.  Then, we
6990  * update the pool state and sync all the labels to disk, removing the
6991  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6992  * we don't sync the labels or remove the configuration cache.
6993  */
6994 static int
6995 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6996     boolean_t force, boolean_t hardforce)
6997 {
6998 	int error = 0;
6999 	spa_t *spa;
7000 	hrtime_t export_start = gethrtime();
7001 
7002 	if (oldconfig)
7003 		*oldconfig = NULL;
7004 
7005 	if (!(spa_mode_global & SPA_MODE_WRITE))
7006 		return (SET_ERROR(EROFS));
7007 
7008 	mutex_enter(&spa_namespace_lock);
7009 	if ((spa = spa_lookup(pool)) == NULL) {
7010 		mutex_exit(&spa_namespace_lock);
7011 		return (SET_ERROR(ENOENT));
7012 	}
7013 
7014 	if (spa->spa_is_exporting) {
7015 		/* the pool is being exported by another thread */
7016 		mutex_exit(&spa_namespace_lock);
7017 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7018 	}
7019 	spa->spa_is_exporting = B_TRUE;
7020 
7021 	/*
7022 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7023 	 * and see if we can export.
7024 	 */
7025 	spa_open_ref(spa, FTAG);
7026 	mutex_exit(&spa_namespace_lock);
7027 	spa_async_suspend(spa);
7028 	if (spa->spa_zvol_taskq) {
7029 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7030 		taskq_wait(spa->spa_zvol_taskq);
7031 	}
7032 	mutex_enter(&spa_namespace_lock);
7033 	spa->spa_export_thread = curthread;
7034 	spa_close(spa, FTAG);
7035 
7036 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7037 		mutex_exit(&spa_namespace_lock);
7038 		goto export_spa;
7039 	}
7040 
7041 	/*
7042 	 * The pool will be in core if it's openable, in which case we can
7043 	 * modify its state.  Objsets may be open only because they're dirty,
7044 	 * so we have to force it to sync before checking spa_refcnt.
7045 	 */
7046 	if (spa->spa_sync_on) {
7047 		txg_wait_synced(spa->spa_dsl_pool, 0);
7048 		spa_evicting_os_wait(spa);
7049 	}
7050 
7051 	/*
7052 	 * A pool cannot be exported or destroyed if there are active
7053 	 * references.  If we are resetting a pool, allow references by
7054 	 * fault injection handlers.
7055 	 */
7056 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7057 		error = SET_ERROR(EBUSY);
7058 		goto fail;
7059 	}
7060 
7061 	mutex_exit(&spa_namespace_lock);
7062 	/*
7063 	 * At this point we no longer hold the spa_namespace_lock and
7064 	 * there were no references on the spa. Future spa_lookups will
7065 	 * notice the spa->spa_export_thread and wait until we signal
7066 	 * that we are finshed.
7067 	 */
7068 
7069 	if (spa->spa_sync_on) {
7070 		vdev_t *rvd = spa->spa_root_vdev;
7071 		/*
7072 		 * A pool cannot be exported if it has an active shared spare.
7073 		 * This is to prevent other pools stealing the active spare
7074 		 * from an exported pool. At user's own will, such pool can
7075 		 * be forcedly exported.
7076 		 */
7077 		if (!force && new_state == POOL_STATE_EXPORTED &&
7078 		    spa_has_active_shared_spare(spa)) {
7079 			error = SET_ERROR(EXDEV);
7080 			mutex_enter(&spa_namespace_lock);
7081 			goto fail;
7082 		}
7083 
7084 		/*
7085 		 * We're about to export or destroy this pool. Make sure
7086 		 * we stop all initialization and trim activity here before
7087 		 * we set the spa_final_txg. This will ensure that all
7088 		 * dirty data resulting from the initialization is
7089 		 * committed to disk before we unload the pool.
7090 		 */
7091 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7092 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7093 		vdev_autotrim_stop_all(spa);
7094 		vdev_rebuild_stop_all(spa);
7095 
7096 		/*
7097 		 * We want this to be reflected on every label,
7098 		 * so mark them all dirty.  spa_unload() will do the
7099 		 * final sync that pushes these changes out.
7100 		 */
7101 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7102 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7103 			spa->spa_state = new_state;
7104 			vdev_config_dirty(rvd);
7105 			spa_config_exit(spa, SCL_ALL, FTAG);
7106 		}
7107 
7108 		/*
7109 		 * If the log space map feature is enabled and the pool is
7110 		 * getting exported (but not destroyed), we want to spend some
7111 		 * time flushing as many metaslabs as we can in an attempt to
7112 		 * destroy log space maps and save import time. This has to be
7113 		 * done before we set the spa_final_txg, otherwise
7114 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7115 		 * spa_should_flush_logs_on_unload() should be called after
7116 		 * spa_state has been set to the new_state.
7117 		 */
7118 		if (spa_should_flush_logs_on_unload(spa))
7119 			spa_unload_log_sm_flush_all(spa);
7120 
7121 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7122 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7123 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7124 			    TXG_DEFER_SIZE + 1;
7125 			spa_config_exit(spa, SCL_ALL, FTAG);
7126 		}
7127 	}
7128 
7129 export_spa:
7130 	spa_export_os(spa);
7131 
7132 	if (new_state == POOL_STATE_DESTROYED)
7133 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7134 	else if (new_state == POOL_STATE_EXPORTED)
7135 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7136 
7137 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7138 		spa_unload(spa);
7139 		spa_deactivate(spa);
7140 	}
7141 
7142 	if (oldconfig && spa->spa_config)
7143 		*oldconfig = fnvlist_dup(spa->spa_config);
7144 
7145 	if (new_state == POOL_STATE_EXPORTED)
7146 		zio_handle_export_delay(spa, gethrtime() - export_start);
7147 
7148 	/*
7149 	 * Take the namespace lock for the actual spa_t removal
7150 	 */
7151 	mutex_enter(&spa_namespace_lock);
7152 	if (new_state != POOL_STATE_UNINITIALIZED) {
7153 		if (!hardforce)
7154 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7155 		spa_remove(spa);
7156 	} else {
7157 		/*
7158 		 * If spa_remove() is not called for this spa_t and
7159 		 * there is any possibility that it can be reused,
7160 		 * we make sure to reset the exporting flag.
7161 		 */
7162 		spa->spa_is_exporting = B_FALSE;
7163 		spa->spa_export_thread = NULL;
7164 	}
7165 
7166 	/*
7167 	 * Wake up any waiters in spa_lookup()
7168 	 */
7169 	cv_broadcast(&spa_namespace_cv);
7170 	mutex_exit(&spa_namespace_lock);
7171 	return (0);
7172 
7173 fail:
7174 	spa->spa_is_exporting = B_FALSE;
7175 	spa->spa_export_thread = NULL;
7176 
7177 	spa_async_resume(spa);
7178 	/*
7179 	 * Wake up any waiters in spa_lookup()
7180 	 */
7181 	cv_broadcast(&spa_namespace_cv);
7182 	mutex_exit(&spa_namespace_lock);
7183 	return (error);
7184 }
7185 
7186 /*
7187  * Destroy a storage pool.
7188  */
7189 int
7190 spa_destroy(const char *pool)
7191 {
7192 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7193 	    B_FALSE, B_FALSE));
7194 }
7195 
7196 /*
7197  * Export a storage pool.
7198  */
7199 int
7200 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7201     boolean_t hardforce)
7202 {
7203 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7204 	    force, hardforce));
7205 }
7206 
7207 /*
7208  * Similar to spa_export(), this unloads the spa_t without actually removing it
7209  * from the namespace in any way.
7210  */
7211 int
7212 spa_reset(const char *pool)
7213 {
7214 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7215 	    B_FALSE, B_FALSE));
7216 }
7217 
7218 /*
7219  * ==========================================================================
7220  * Device manipulation
7221  * ==========================================================================
7222  */
7223 
7224 /*
7225  * This is called as a synctask to increment the draid feature flag
7226  */
7227 static void
7228 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7229 {
7230 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7231 	int draid = (int)(uintptr_t)arg;
7232 
7233 	for (int c = 0; c < draid; c++)
7234 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7235 }
7236 
7237 /*
7238  * Add a device to a storage pool.
7239  */
7240 int
7241 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7242 {
7243 	uint64_t txg, ndraid = 0;
7244 	int error;
7245 	vdev_t *rvd = spa->spa_root_vdev;
7246 	vdev_t *vd, *tvd;
7247 	nvlist_t **spares, **l2cache;
7248 	uint_t nspares, nl2cache;
7249 
7250 	ASSERT(spa_writeable(spa));
7251 
7252 	txg = spa_vdev_enter(spa);
7253 
7254 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7255 	    VDEV_ALLOC_ADD)) != 0)
7256 		return (spa_vdev_exit(spa, NULL, txg, error));
7257 
7258 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7259 
7260 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7261 	    &nspares) != 0)
7262 		nspares = 0;
7263 
7264 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7265 	    &nl2cache) != 0)
7266 		nl2cache = 0;
7267 
7268 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7269 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7270 
7271 	if (vd->vdev_children != 0 &&
7272 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7273 		return (spa_vdev_exit(spa, vd, txg, error));
7274 	}
7275 
7276 	/*
7277 	 * The virtual dRAID spares must be added after vdev tree is created
7278 	 * and the vdev guids are generated.  The guid of their associated
7279 	 * dRAID is stored in the config and used when opening the spare.
7280 	 */
7281 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7282 	    rvd->vdev_children)) == 0) {
7283 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7284 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7285 			nspares = 0;
7286 	} else {
7287 		return (spa_vdev_exit(spa, vd, txg, error));
7288 	}
7289 
7290 	/*
7291 	 * We must validate the spares and l2cache devices after checking the
7292 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7293 	 */
7294 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7295 		return (spa_vdev_exit(spa, vd, txg, error));
7296 
7297 	/*
7298 	 * If we are in the middle of a device removal, we can only add
7299 	 * devices which match the existing devices in the pool.
7300 	 * If we are in the middle of a removal, or have some indirect
7301 	 * vdevs, we can not add raidz or dRAID top levels.
7302 	 */
7303 	if (spa->spa_vdev_removal != NULL ||
7304 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7305 		for (int c = 0; c < vd->vdev_children; c++) {
7306 			tvd = vd->vdev_child[c];
7307 			if (spa->spa_vdev_removal != NULL &&
7308 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7309 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7310 			}
7311 			/* Fail if top level vdev is raidz or a dRAID */
7312 			if (vdev_get_nparity(tvd) != 0)
7313 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7314 
7315 			/*
7316 			 * Need the top level mirror to be
7317 			 * a mirror of leaf vdevs only
7318 			 */
7319 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7320 				for (uint64_t cid = 0;
7321 				    cid < tvd->vdev_children; cid++) {
7322 					vdev_t *cvd = tvd->vdev_child[cid];
7323 					if (!cvd->vdev_ops->vdev_op_leaf) {
7324 						return (spa_vdev_exit(spa, vd,
7325 						    txg, EINVAL));
7326 					}
7327 				}
7328 			}
7329 		}
7330 	}
7331 
7332 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7333 		for (int c = 0; c < vd->vdev_children; c++) {
7334 			tvd = vd->vdev_child[c];
7335 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7336 				return (spa_vdev_exit(spa, vd, txg,
7337 				    ZFS_ERR_ASHIFT_MISMATCH));
7338 			}
7339 		}
7340 	}
7341 
7342 	for (int c = 0; c < vd->vdev_children; c++) {
7343 		tvd = vd->vdev_child[c];
7344 		vdev_remove_child(vd, tvd);
7345 		tvd->vdev_id = rvd->vdev_children;
7346 		vdev_add_child(rvd, tvd);
7347 		vdev_config_dirty(tvd);
7348 	}
7349 
7350 	if (nspares != 0) {
7351 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7352 		    ZPOOL_CONFIG_SPARES);
7353 		spa_load_spares(spa);
7354 		spa->spa_spares.sav_sync = B_TRUE;
7355 	}
7356 
7357 	if (nl2cache != 0) {
7358 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7359 		    ZPOOL_CONFIG_L2CACHE);
7360 		spa_load_l2cache(spa);
7361 		spa->spa_l2cache.sav_sync = B_TRUE;
7362 	}
7363 
7364 	/*
7365 	 * We can't increment a feature while holding spa_vdev so we
7366 	 * have to do it in a synctask.
7367 	 */
7368 	if (ndraid != 0) {
7369 		dmu_tx_t *tx;
7370 
7371 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7372 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7373 		    (void *)(uintptr_t)ndraid, tx);
7374 		dmu_tx_commit(tx);
7375 	}
7376 
7377 	/*
7378 	 * We have to be careful when adding new vdevs to an existing pool.
7379 	 * If other threads start allocating from these vdevs before we
7380 	 * sync the config cache, and we lose power, then upon reboot we may
7381 	 * fail to open the pool because there are DVAs that the config cache
7382 	 * can't translate.  Therefore, we first add the vdevs without
7383 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7384 	 * and then let spa_config_update() initialize the new metaslabs.
7385 	 *
7386 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7387 	 * if we lose power at any point in this sequence, the remaining
7388 	 * steps will be completed the next time we load the pool.
7389 	 */
7390 	(void) spa_vdev_exit(spa, vd, txg, 0);
7391 
7392 	mutex_enter(&spa_namespace_lock);
7393 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7394 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7395 	mutex_exit(&spa_namespace_lock);
7396 
7397 	return (0);
7398 }
7399 
7400 /*
7401  * Attach a device to a vdev specified by its guid.  The vdev type can be
7402  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7403  * single device). When the vdev is a single device, a mirror vdev will be
7404  * automatically inserted.
7405  *
7406  * If 'replacing' is specified, the new device is intended to replace the
7407  * existing device; in this case the two devices are made into their own
7408  * mirror using the 'replacing' vdev, which is functionally identical to
7409  * the mirror vdev (it actually reuses all the same ops) but has a few
7410  * extra rules: you can't attach to it after it's been created, and upon
7411  * completion of resilvering, the first disk (the one being replaced)
7412  * is automatically detached.
7413  *
7414  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7415  * should be performed instead of traditional healing reconstruction.  From
7416  * an administrators perspective these are both resilver operations.
7417  */
7418 int
7419 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7420     int rebuild)
7421 {
7422 	uint64_t txg, dtl_max_txg;
7423 	vdev_t *rvd = spa->spa_root_vdev;
7424 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7425 	vdev_ops_t *pvops;
7426 	char *oldvdpath, *newvdpath;
7427 	int newvd_isspare = B_FALSE;
7428 	int error;
7429 
7430 	ASSERT(spa_writeable(spa));
7431 
7432 	txg = spa_vdev_enter(spa);
7433 
7434 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7435 
7436 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7437 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7438 		error = (spa_has_checkpoint(spa)) ?
7439 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7440 		return (spa_vdev_exit(spa, NULL, txg, error));
7441 	}
7442 
7443 	if (rebuild) {
7444 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7445 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7446 
7447 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7448 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7449 			return (spa_vdev_exit(spa, NULL, txg,
7450 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7451 		}
7452 	} else {
7453 		if (vdev_rebuild_active(rvd))
7454 			return (spa_vdev_exit(spa, NULL, txg,
7455 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7456 	}
7457 
7458 	if (spa->spa_vdev_removal != NULL) {
7459 		return (spa_vdev_exit(spa, NULL, txg,
7460 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7461 	}
7462 
7463 	if (oldvd == NULL)
7464 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7465 
7466 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7467 
7468 	if (raidz) {
7469 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7470 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7471 
7472 		/*
7473 		 * Can't expand a raidz while prior expand is in progress.
7474 		 */
7475 		if (spa->spa_raidz_expand != NULL) {
7476 			return (spa_vdev_exit(spa, NULL, txg,
7477 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7478 		}
7479 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7480 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7481 	}
7482 
7483 	if (raidz)
7484 		pvd = oldvd;
7485 	else
7486 		pvd = oldvd->vdev_parent;
7487 
7488 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7489 	    VDEV_ALLOC_ATTACH) != 0)
7490 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7491 
7492 	if (newrootvd->vdev_children != 1)
7493 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7494 
7495 	newvd = newrootvd->vdev_child[0];
7496 
7497 	if (!newvd->vdev_ops->vdev_op_leaf)
7498 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7499 
7500 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7501 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7502 
7503 	/*
7504 	 * log, dedup and special vdevs should not be replaced by spares.
7505 	 */
7506 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7507 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7508 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7509 	}
7510 
7511 	/*
7512 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7513 	 */
7514 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7515 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7516 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7517 	}
7518 
7519 	if (rebuild) {
7520 		/*
7521 		 * For rebuilds, the top vdev must support reconstruction
7522 		 * using only space maps.  This means the only allowable
7523 		 * vdevs types are the root vdev, a mirror, or dRAID.
7524 		 */
7525 		tvd = pvd;
7526 		if (pvd->vdev_top != NULL)
7527 			tvd = pvd->vdev_top;
7528 
7529 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7530 		    tvd->vdev_ops != &vdev_root_ops &&
7531 		    tvd->vdev_ops != &vdev_draid_ops) {
7532 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7533 		}
7534 	}
7535 
7536 	if (!replacing) {
7537 		/*
7538 		 * For attach, the only allowable parent is a mirror or
7539 		 * the root vdev. A raidz vdev can be attached to, but
7540 		 * you cannot attach to a raidz child.
7541 		 */
7542 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7543 		    pvd->vdev_ops != &vdev_root_ops &&
7544 		    !raidz)
7545 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7546 
7547 		pvops = &vdev_mirror_ops;
7548 	} else {
7549 		/*
7550 		 * Active hot spares can only be replaced by inactive hot
7551 		 * spares.
7552 		 */
7553 		if (pvd->vdev_ops == &vdev_spare_ops &&
7554 		    oldvd->vdev_isspare &&
7555 		    !spa_has_spare(spa, newvd->vdev_guid))
7556 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7557 
7558 		/*
7559 		 * If the source is a hot spare, and the parent isn't already a
7560 		 * spare, then we want to create a new hot spare.  Otherwise, we
7561 		 * want to create a replacing vdev.  The user is not allowed to
7562 		 * attach to a spared vdev child unless the 'isspare' state is
7563 		 * the same (spare replaces spare, non-spare replaces
7564 		 * non-spare).
7565 		 */
7566 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7567 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7568 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7569 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7570 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7571 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7572 		}
7573 
7574 		if (newvd->vdev_isspare)
7575 			pvops = &vdev_spare_ops;
7576 		else
7577 			pvops = &vdev_replacing_ops;
7578 	}
7579 
7580 	/*
7581 	 * Make sure the new device is big enough.
7582 	 */
7583 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7584 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7585 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7586 
7587 	/*
7588 	 * The new device cannot have a higher alignment requirement
7589 	 * than the top-level vdev.
7590 	 */
7591 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7592 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7593 
7594 	/*
7595 	 * RAIDZ-expansion-specific checks.
7596 	 */
7597 	if (raidz) {
7598 		if (vdev_raidz_attach_check(newvd) != 0)
7599 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7600 
7601 		/*
7602 		 * Fail early if a child is not healthy or being replaced
7603 		 */
7604 		for (int i = 0; i < oldvd->vdev_children; i++) {
7605 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7606 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7607 				return (spa_vdev_exit(spa, newrootvd, txg,
7608 				    ENXIO));
7609 			}
7610 			/* Also fail if reserved boot area is in-use */
7611 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7612 			    != 0) {
7613 				return (spa_vdev_exit(spa, newrootvd, txg,
7614 				    EADDRINUSE));
7615 			}
7616 		}
7617 	}
7618 
7619 	if (raidz) {
7620 		/*
7621 		 * Note: oldvdpath is freed by spa_strfree(),  but
7622 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7623 		 * move it to a spa_strdup-ed string.
7624 		 */
7625 		char *tmp = kmem_asprintf("raidz%u-%u",
7626 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7627 		oldvdpath = spa_strdup(tmp);
7628 		kmem_strfree(tmp);
7629 	} else {
7630 		oldvdpath = spa_strdup(oldvd->vdev_path);
7631 	}
7632 	newvdpath = spa_strdup(newvd->vdev_path);
7633 
7634 	/*
7635 	 * If this is an in-place replacement, update oldvd's path and devid
7636 	 * to make it distinguishable from newvd, and unopenable from now on.
7637 	 */
7638 	if (strcmp(oldvdpath, newvdpath) == 0) {
7639 		spa_strfree(oldvd->vdev_path);
7640 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7641 		    KM_SLEEP);
7642 		(void) sprintf(oldvd->vdev_path, "%s/old",
7643 		    newvdpath);
7644 		if (oldvd->vdev_devid != NULL) {
7645 			spa_strfree(oldvd->vdev_devid);
7646 			oldvd->vdev_devid = NULL;
7647 		}
7648 		spa_strfree(oldvdpath);
7649 		oldvdpath = spa_strdup(oldvd->vdev_path);
7650 	}
7651 
7652 	/*
7653 	 * If the parent is not a mirror, or if we're replacing, insert the new
7654 	 * mirror/replacing/spare vdev above oldvd.
7655 	 */
7656 	if (!raidz && pvd->vdev_ops != pvops) {
7657 		pvd = vdev_add_parent(oldvd, pvops);
7658 		ASSERT(pvd->vdev_ops == pvops);
7659 		ASSERT(oldvd->vdev_parent == pvd);
7660 	}
7661 
7662 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7663 
7664 	/*
7665 	 * Extract the new device from its root and add it to pvd.
7666 	 */
7667 	vdev_remove_child(newrootvd, newvd);
7668 	newvd->vdev_id = pvd->vdev_children;
7669 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7670 	vdev_add_child(pvd, newvd);
7671 
7672 	/*
7673 	 * Reevaluate the parent vdev state.
7674 	 */
7675 	vdev_propagate_state(pvd);
7676 
7677 	tvd = newvd->vdev_top;
7678 	ASSERT(pvd->vdev_top == tvd);
7679 	ASSERT(tvd->vdev_parent == rvd);
7680 
7681 	vdev_config_dirty(tvd);
7682 
7683 	/*
7684 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7685 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7686 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7687 	 */
7688 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7689 
7690 	if (raidz) {
7691 		/*
7692 		 * Wait for the youngest allocations and frees to sync,
7693 		 * and then wait for the deferral of those frees to finish.
7694 		 */
7695 		spa_vdev_config_exit(spa, NULL,
7696 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7697 
7698 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7699 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7700 		vdev_autotrim_stop_wait(tvd);
7701 
7702 		dtl_max_txg = spa_vdev_config_enter(spa);
7703 
7704 		tvd->vdev_rz_expanding = B_TRUE;
7705 
7706 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7707 		vdev_config_dirty(tvd);
7708 
7709 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7710 		    dtl_max_txg);
7711 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7712 		    newvd, tx);
7713 		dmu_tx_commit(tx);
7714 	} else {
7715 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7716 		    dtl_max_txg - TXG_INITIAL);
7717 
7718 		if (newvd->vdev_isspare) {
7719 			spa_spare_activate(newvd);
7720 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7721 		}
7722 
7723 		newvd_isspare = newvd->vdev_isspare;
7724 
7725 		/*
7726 		 * Mark newvd's DTL dirty in this txg.
7727 		 */
7728 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7729 
7730 		/*
7731 		 * Schedule the resilver or rebuild to restart in the future.
7732 		 * We do this to ensure that dmu_sync-ed blocks have been
7733 		 * stitched into the respective datasets.
7734 		 */
7735 		if (rebuild) {
7736 			newvd->vdev_rebuild_txg = txg;
7737 
7738 			vdev_rebuild(tvd);
7739 		} else {
7740 			newvd->vdev_resilver_txg = txg;
7741 
7742 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7743 			    spa_feature_is_enabled(spa,
7744 			    SPA_FEATURE_RESILVER_DEFER)) {
7745 				vdev_defer_resilver(newvd);
7746 			} else {
7747 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7748 				    dtl_max_txg);
7749 			}
7750 		}
7751 	}
7752 
7753 	if (spa->spa_bootfs)
7754 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7755 
7756 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7757 
7758 	/*
7759 	 * Commit the config
7760 	 */
7761 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7762 
7763 	spa_history_log_internal(spa, "vdev attach", NULL,
7764 	    "%s vdev=%s %s vdev=%s",
7765 	    replacing && newvd_isspare ? "spare in" :
7766 	    replacing ? "replace" : "attach", newvdpath,
7767 	    replacing ? "for" : "to", oldvdpath);
7768 
7769 	spa_strfree(oldvdpath);
7770 	spa_strfree(newvdpath);
7771 
7772 	return (0);
7773 }
7774 
7775 /*
7776  * Detach a device from a mirror or replacing vdev.
7777  *
7778  * If 'replace_done' is specified, only detach if the parent
7779  * is a replacing or a spare vdev.
7780  */
7781 int
7782 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7783 {
7784 	uint64_t txg;
7785 	int error;
7786 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7787 	vdev_t *vd, *pvd, *cvd, *tvd;
7788 	boolean_t unspare = B_FALSE;
7789 	uint64_t unspare_guid = 0;
7790 	char *vdpath;
7791 
7792 	ASSERT(spa_writeable(spa));
7793 
7794 	txg = spa_vdev_detach_enter(spa, guid);
7795 
7796 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7797 
7798 	/*
7799 	 * Besides being called directly from the userland through the
7800 	 * ioctl interface, spa_vdev_detach() can be potentially called
7801 	 * at the end of spa_vdev_resilver_done().
7802 	 *
7803 	 * In the regular case, when we have a checkpoint this shouldn't
7804 	 * happen as we never empty the DTLs of a vdev during the scrub
7805 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7806 	 * should never get here when we have a checkpoint.
7807 	 *
7808 	 * That said, even in a case when we checkpoint the pool exactly
7809 	 * as spa_vdev_resilver_done() calls this function everything
7810 	 * should be fine as the resilver will return right away.
7811 	 */
7812 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7813 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7814 		error = (spa_has_checkpoint(spa)) ?
7815 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7816 		return (spa_vdev_exit(spa, NULL, txg, error));
7817 	}
7818 
7819 	if (vd == NULL)
7820 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7821 
7822 	if (!vd->vdev_ops->vdev_op_leaf)
7823 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7824 
7825 	pvd = vd->vdev_parent;
7826 
7827 	/*
7828 	 * If the parent/child relationship is not as expected, don't do it.
7829 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7830 	 * vdev that's replacing B with C.  The user's intent in replacing
7831 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7832 	 * the replace by detaching C, the expected behavior is to end up
7833 	 * M(A,B).  But suppose that right after deciding to detach C,
7834 	 * the replacement of B completes.  We would have M(A,C), and then
7835 	 * ask to detach C, which would leave us with just A -- not what
7836 	 * the user wanted.  To prevent this, we make sure that the
7837 	 * parent/child relationship hasn't changed -- in this example,
7838 	 * that C's parent is still the replacing vdev R.
7839 	 */
7840 	if (pvd->vdev_guid != pguid && pguid != 0)
7841 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7842 
7843 	/*
7844 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7845 	 */
7846 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7847 	    pvd->vdev_ops != &vdev_spare_ops)
7848 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7849 
7850 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7851 	    spa_version(spa) >= SPA_VERSION_SPARES);
7852 
7853 	/*
7854 	 * Only mirror, replacing, and spare vdevs support detach.
7855 	 */
7856 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7857 	    pvd->vdev_ops != &vdev_mirror_ops &&
7858 	    pvd->vdev_ops != &vdev_spare_ops)
7859 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7860 
7861 	/*
7862 	 * If this device has the only valid copy of some data,
7863 	 * we cannot safely detach it.
7864 	 */
7865 	if (vdev_dtl_required(vd))
7866 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7867 
7868 	ASSERT(pvd->vdev_children >= 2);
7869 
7870 	/*
7871 	 * If we are detaching the second disk from a replacing vdev, then
7872 	 * check to see if we changed the original vdev's path to have "/old"
7873 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7874 	 */
7875 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7876 	    vd->vdev_path != NULL) {
7877 		size_t len = strlen(vd->vdev_path);
7878 
7879 		for (int c = 0; c < pvd->vdev_children; c++) {
7880 			cvd = pvd->vdev_child[c];
7881 
7882 			if (cvd == vd || cvd->vdev_path == NULL)
7883 				continue;
7884 
7885 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7886 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7887 				spa_strfree(cvd->vdev_path);
7888 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7889 				break;
7890 			}
7891 		}
7892 	}
7893 
7894 	/*
7895 	 * If we are detaching the original disk from a normal spare, then it
7896 	 * implies that the spare should become a real disk, and be removed
7897 	 * from the active spare list for the pool.  dRAID spares on the
7898 	 * other hand are coupled to the pool and thus should never be removed
7899 	 * from the spares list.
7900 	 */
7901 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7902 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7903 
7904 		if (last_cvd->vdev_isspare &&
7905 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7906 			unspare = B_TRUE;
7907 		}
7908 	}
7909 
7910 	/*
7911 	 * Erase the disk labels so the disk can be used for other things.
7912 	 * This must be done after all other error cases are handled,
7913 	 * but before we disembowel vd (so we can still do I/O to it).
7914 	 * But if we can't do it, don't treat the error as fatal --
7915 	 * it may be that the unwritability of the disk is the reason
7916 	 * it's being detached!
7917 	 */
7918 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7919 
7920 	/*
7921 	 * Remove vd from its parent and compact the parent's children.
7922 	 */
7923 	vdev_remove_child(pvd, vd);
7924 	vdev_compact_children(pvd);
7925 
7926 	/*
7927 	 * Remember one of the remaining children so we can get tvd below.
7928 	 */
7929 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7930 
7931 	/*
7932 	 * If we need to remove the remaining child from the list of hot spares,
7933 	 * do it now, marking the vdev as no longer a spare in the process.
7934 	 * We must do this before vdev_remove_parent(), because that can
7935 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7936 	 * reason, we must remove the spare now, in the same txg as the detach;
7937 	 * otherwise someone could attach a new sibling, change the GUID, and
7938 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7939 	 */
7940 	if (unspare) {
7941 		ASSERT(cvd->vdev_isspare);
7942 		spa_spare_remove(cvd);
7943 		unspare_guid = cvd->vdev_guid;
7944 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7945 		cvd->vdev_unspare = B_TRUE;
7946 	}
7947 
7948 	/*
7949 	 * If the parent mirror/replacing vdev only has one child,
7950 	 * the parent is no longer needed.  Remove it from the tree.
7951 	 */
7952 	if (pvd->vdev_children == 1) {
7953 		if (pvd->vdev_ops == &vdev_spare_ops)
7954 			cvd->vdev_unspare = B_FALSE;
7955 		vdev_remove_parent(cvd);
7956 	}
7957 
7958 	/*
7959 	 * We don't set tvd until now because the parent we just removed
7960 	 * may have been the previous top-level vdev.
7961 	 */
7962 	tvd = cvd->vdev_top;
7963 	ASSERT(tvd->vdev_parent == rvd);
7964 
7965 	/*
7966 	 * Reevaluate the parent vdev state.
7967 	 */
7968 	vdev_propagate_state(cvd);
7969 
7970 	/*
7971 	 * If the 'autoexpand' property is set on the pool then automatically
7972 	 * try to expand the size of the pool. For example if the device we
7973 	 * just detached was smaller than the others, it may be possible to
7974 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7975 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7976 	 */
7977 	if (spa->spa_autoexpand) {
7978 		vdev_reopen(tvd);
7979 		vdev_expand(tvd, txg);
7980 	}
7981 
7982 	vdev_config_dirty(tvd);
7983 
7984 	/*
7985 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7986 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7987 	 * But first make sure we're not on any *other* txg's DTL list, to
7988 	 * prevent vd from being accessed after it's freed.
7989 	 */
7990 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7991 	for (int t = 0; t < TXG_SIZE; t++)
7992 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7993 	vd->vdev_detached = B_TRUE;
7994 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7995 
7996 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7997 	spa_notify_waiters(spa);
7998 
7999 	/* hang on to the spa before we release the lock */
8000 	spa_open_ref(spa, FTAG);
8001 
8002 	error = spa_vdev_exit(spa, vd, txg, 0);
8003 
8004 	spa_history_log_internal(spa, "detach", NULL,
8005 	    "vdev=%s", vdpath);
8006 	spa_strfree(vdpath);
8007 
8008 	/*
8009 	 * If this was the removal of the original device in a hot spare vdev,
8010 	 * then we want to go through and remove the device from the hot spare
8011 	 * list of every other pool.
8012 	 */
8013 	if (unspare) {
8014 		spa_t *altspa = NULL;
8015 
8016 		mutex_enter(&spa_namespace_lock);
8017 		while ((altspa = spa_next(altspa)) != NULL) {
8018 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8019 			    altspa == spa)
8020 				continue;
8021 
8022 			spa_open_ref(altspa, FTAG);
8023 			mutex_exit(&spa_namespace_lock);
8024 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8025 			mutex_enter(&spa_namespace_lock);
8026 			spa_close(altspa, FTAG);
8027 		}
8028 		mutex_exit(&spa_namespace_lock);
8029 
8030 		/* search the rest of the vdevs for spares to remove */
8031 		spa_vdev_resilver_done(spa);
8032 	}
8033 
8034 	/* all done with the spa; OK to release */
8035 	mutex_enter(&spa_namespace_lock);
8036 	spa_close(spa, FTAG);
8037 	mutex_exit(&spa_namespace_lock);
8038 
8039 	return (error);
8040 }
8041 
8042 static int
8043 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8044     list_t *vd_list)
8045 {
8046 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8047 
8048 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8049 
8050 	/* Look up vdev and ensure it's a leaf. */
8051 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8052 	if (vd == NULL || vd->vdev_detached) {
8053 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8054 		return (SET_ERROR(ENODEV));
8055 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8056 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8057 		return (SET_ERROR(EINVAL));
8058 	} else if (!vdev_writeable(vd)) {
8059 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8060 		return (SET_ERROR(EROFS));
8061 	}
8062 	mutex_enter(&vd->vdev_initialize_lock);
8063 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8064 
8065 	/*
8066 	 * When we activate an initialize action we check to see
8067 	 * if the vdev_initialize_thread is NULL. We do this instead
8068 	 * of using the vdev_initialize_state since there might be
8069 	 * a previous initialization process which has completed but
8070 	 * the thread is not exited.
8071 	 */
8072 	if (cmd_type == POOL_INITIALIZE_START &&
8073 	    (vd->vdev_initialize_thread != NULL ||
8074 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8075 		mutex_exit(&vd->vdev_initialize_lock);
8076 		return (SET_ERROR(EBUSY));
8077 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8078 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8079 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8080 		mutex_exit(&vd->vdev_initialize_lock);
8081 		return (SET_ERROR(ESRCH));
8082 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8083 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8084 		mutex_exit(&vd->vdev_initialize_lock);
8085 		return (SET_ERROR(ESRCH));
8086 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8087 	    vd->vdev_initialize_thread != NULL) {
8088 		mutex_exit(&vd->vdev_initialize_lock);
8089 		return (SET_ERROR(EBUSY));
8090 	}
8091 
8092 	switch (cmd_type) {
8093 	case POOL_INITIALIZE_START:
8094 		vdev_initialize(vd);
8095 		break;
8096 	case POOL_INITIALIZE_CANCEL:
8097 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8098 		break;
8099 	case POOL_INITIALIZE_SUSPEND:
8100 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8101 		break;
8102 	case POOL_INITIALIZE_UNINIT:
8103 		vdev_uninitialize(vd);
8104 		break;
8105 	default:
8106 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8107 	}
8108 	mutex_exit(&vd->vdev_initialize_lock);
8109 
8110 	return (0);
8111 }
8112 
8113 int
8114 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8115     nvlist_t *vdev_errlist)
8116 {
8117 	int total_errors = 0;
8118 	list_t vd_list;
8119 
8120 	list_create(&vd_list, sizeof (vdev_t),
8121 	    offsetof(vdev_t, vdev_initialize_node));
8122 
8123 	/*
8124 	 * We hold the namespace lock through the whole function
8125 	 * to prevent any changes to the pool while we're starting or
8126 	 * stopping initialization. The config and state locks are held so that
8127 	 * we can properly assess the vdev state before we commit to
8128 	 * the initializing operation.
8129 	 */
8130 	mutex_enter(&spa_namespace_lock);
8131 
8132 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8133 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8134 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8135 
8136 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8137 		    &vd_list);
8138 		if (error != 0) {
8139 			char guid_as_str[MAXNAMELEN];
8140 
8141 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8142 			    "%llu", (unsigned long long)vdev_guid);
8143 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8144 			total_errors++;
8145 		}
8146 	}
8147 
8148 	/* Wait for all initialize threads to stop. */
8149 	vdev_initialize_stop_wait(spa, &vd_list);
8150 
8151 	/* Sync out the initializing state */
8152 	txg_wait_synced(spa->spa_dsl_pool, 0);
8153 	mutex_exit(&spa_namespace_lock);
8154 
8155 	list_destroy(&vd_list);
8156 
8157 	return (total_errors);
8158 }
8159 
8160 static int
8161 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8162     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8163 {
8164 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8165 
8166 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8167 
8168 	/* Look up vdev and ensure it's a leaf. */
8169 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8170 	if (vd == NULL || vd->vdev_detached) {
8171 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8172 		return (SET_ERROR(ENODEV));
8173 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8174 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8175 		return (SET_ERROR(EINVAL));
8176 	} else if (!vdev_writeable(vd)) {
8177 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8178 		return (SET_ERROR(EROFS));
8179 	} else if (!vd->vdev_has_trim) {
8180 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8181 		return (SET_ERROR(EOPNOTSUPP));
8182 	} else if (secure && !vd->vdev_has_securetrim) {
8183 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8184 		return (SET_ERROR(EOPNOTSUPP));
8185 	}
8186 	mutex_enter(&vd->vdev_trim_lock);
8187 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8188 
8189 	/*
8190 	 * When we activate a TRIM action we check to see if the
8191 	 * vdev_trim_thread is NULL. We do this instead of using the
8192 	 * vdev_trim_state since there might be a previous TRIM process
8193 	 * which has completed but the thread is not exited.
8194 	 */
8195 	if (cmd_type == POOL_TRIM_START &&
8196 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8197 	    vd->vdev_top->vdev_rz_expanding)) {
8198 		mutex_exit(&vd->vdev_trim_lock);
8199 		return (SET_ERROR(EBUSY));
8200 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8201 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8202 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8203 		mutex_exit(&vd->vdev_trim_lock);
8204 		return (SET_ERROR(ESRCH));
8205 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8206 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8207 		mutex_exit(&vd->vdev_trim_lock);
8208 		return (SET_ERROR(ESRCH));
8209 	}
8210 
8211 	switch (cmd_type) {
8212 	case POOL_TRIM_START:
8213 		vdev_trim(vd, rate, partial, secure);
8214 		break;
8215 	case POOL_TRIM_CANCEL:
8216 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8217 		break;
8218 	case POOL_TRIM_SUSPEND:
8219 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8220 		break;
8221 	default:
8222 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8223 	}
8224 	mutex_exit(&vd->vdev_trim_lock);
8225 
8226 	return (0);
8227 }
8228 
8229 /*
8230  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8231  * TRIM threads for each child vdev.  These threads pass over all of the free
8232  * space in the vdev's metaslabs and issues TRIM commands for that space.
8233  */
8234 int
8235 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8236     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8237 {
8238 	int total_errors = 0;
8239 	list_t vd_list;
8240 
8241 	list_create(&vd_list, sizeof (vdev_t),
8242 	    offsetof(vdev_t, vdev_trim_node));
8243 
8244 	/*
8245 	 * We hold the namespace lock through the whole function
8246 	 * to prevent any changes to the pool while we're starting or
8247 	 * stopping TRIM. The config and state locks are held so that
8248 	 * we can properly assess the vdev state before we commit to
8249 	 * the TRIM operation.
8250 	 */
8251 	mutex_enter(&spa_namespace_lock);
8252 
8253 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8254 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8255 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8256 
8257 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8258 		    rate, partial, secure, &vd_list);
8259 		if (error != 0) {
8260 			char guid_as_str[MAXNAMELEN];
8261 
8262 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8263 			    "%llu", (unsigned long long)vdev_guid);
8264 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8265 			total_errors++;
8266 		}
8267 	}
8268 
8269 	/* Wait for all TRIM threads to stop. */
8270 	vdev_trim_stop_wait(spa, &vd_list);
8271 
8272 	/* Sync out the TRIM state */
8273 	txg_wait_synced(spa->spa_dsl_pool, 0);
8274 	mutex_exit(&spa_namespace_lock);
8275 
8276 	list_destroy(&vd_list);
8277 
8278 	return (total_errors);
8279 }
8280 
8281 /*
8282  * Split a set of devices from their mirrors, and create a new pool from them.
8283  */
8284 int
8285 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8286     nvlist_t *props, boolean_t exp)
8287 {
8288 	int error = 0;
8289 	uint64_t txg, *glist;
8290 	spa_t *newspa;
8291 	uint_t c, children, lastlog;
8292 	nvlist_t **child, *nvl, *tmp;
8293 	dmu_tx_t *tx;
8294 	const char *altroot = NULL;
8295 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8296 	boolean_t activate_slog;
8297 
8298 	ASSERT(spa_writeable(spa));
8299 
8300 	txg = spa_vdev_enter(spa);
8301 
8302 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8303 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8304 		error = (spa_has_checkpoint(spa)) ?
8305 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8306 		return (spa_vdev_exit(spa, NULL, txg, error));
8307 	}
8308 
8309 	/* clear the log and flush everything up to now */
8310 	activate_slog = spa_passivate_log(spa);
8311 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8312 	error = spa_reset_logs(spa);
8313 	txg = spa_vdev_config_enter(spa);
8314 
8315 	if (activate_slog)
8316 		spa_activate_log(spa);
8317 
8318 	if (error != 0)
8319 		return (spa_vdev_exit(spa, NULL, txg, error));
8320 
8321 	/* check new spa name before going any further */
8322 	if (spa_lookup(newname) != NULL)
8323 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8324 
8325 	/*
8326 	 * scan through all the children to ensure they're all mirrors
8327 	 */
8328 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8329 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8330 	    &children) != 0)
8331 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8332 
8333 	/* first, check to ensure we've got the right child count */
8334 	rvd = spa->spa_root_vdev;
8335 	lastlog = 0;
8336 	for (c = 0; c < rvd->vdev_children; c++) {
8337 		vdev_t *vd = rvd->vdev_child[c];
8338 
8339 		/* don't count the holes & logs as children */
8340 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8341 		    !vdev_is_concrete(vd))) {
8342 			if (lastlog == 0)
8343 				lastlog = c;
8344 			continue;
8345 		}
8346 
8347 		lastlog = 0;
8348 	}
8349 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8350 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8351 
8352 	/* next, ensure no spare or cache devices are part of the split */
8353 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8354 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8355 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8356 
8357 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8358 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8359 
8360 	/* then, loop over each vdev and validate it */
8361 	for (c = 0; c < children; c++) {
8362 		uint64_t is_hole = 0;
8363 
8364 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8365 		    &is_hole);
8366 
8367 		if (is_hole != 0) {
8368 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8369 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8370 				continue;
8371 			} else {
8372 				error = SET_ERROR(EINVAL);
8373 				break;
8374 			}
8375 		}
8376 
8377 		/* deal with indirect vdevs */
8378 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8379 		    &vdev_indirect_ops)
8380 			continue;
8381 
8382 		/* which disk is going to be split? */
8383 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8384 		    &glist[c]) != 0) {
8385 			error = SET_ERROR(EINVAL);
8386 			break;
8387 		}
8388 
8389 		/* look it up in the spa */
8390 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8391 		if (vml[c] == NULL) {
8392 			error = SET_ERROR(ENODEV);
8393 			break;
8394 		}
8395 
8396 		/* make sure there's nothing stopping the split */
8397 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8398 		    vml[c]->vdev_islog ||
8399 		    !vdev_is_concrete(vml[c]) ||
8400 		    vml[c]->vdev_isspare ||
8401 		    vml[c]->vdev_isl2cache ||
8402 		    !vdev_writeable(vml[c]) ||
8403 		    vml[c]->vdev_children != 0 ||
8404 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8405 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8406 			error = SET_ERROR(EINVAL);
8407 			break;
8408 		}
8409 
8410 		if (vdev_dtl_required(vml[c]) ||
8411 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8412 			error = SET_ERROR(EBUSY);
8413 			break;
8414 		}
8415 
8416 		/* we need certain info from the top level */
8417 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8418 		    vml[c]->vdev_top->vdev_ms_array);
8419 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8420 		    vml[c]->vdev_top->vdev_ms_shift);
8421 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8422 		    vml[c]->vdev_top->vdev_asize);
8423 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8424 		    vml[c]->vdev_top->vdev_ashift);
8425 
8426 		/* transfer per-vdev ZAPs */
8427 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8428 		VERIFY0(nvlist_add_uint64(child[c],
8429 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8430 
8431 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8432 		VERIFY0(nvlist_add_uint64(child[c],
8433 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8434 		    vml[c]->vdev_parent->vdev_top_zap));
8435 	}
8436 
8437 	if (error != 0) {
8438 		kmem_free(vml, children * sizeof (vdev_t *));
8439 		kmem_free(glist, children * sizeof (uint64_t));
8440 		return (spa_vdev_exit(spa, NULL, txg, error));
8441 	}
8442 
8443 	/* stop writers from using the disks */
8444 	for (c = 0; c < children; c++) {
8445 		if (vml[c] != NULL)
8446 			vml[c]->vdev_offline = B_TRUE;
8447 	}
8448 	vdev_reopen(spa->spa_root_vdev);
8449 
8450 	/*
8451 	 * Temporarily record the splitting vdevs in the spa config.  This
8452 	 * will disappear once the config is regenerated.
8453 	 */
8454 	nvl = fnvlist_alloc();
8455 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8456 	kmem_free(glist, children * sizeof (uint64_t));
8457 
8458 	mutex_enter(&spa->spa_props_lock);
8459 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8460 	mutex_exit(&spa->spa_props_lock);
8461 	spa->spa_config_splitting = nvl;
8462 	vdev_config_dirty(spa->spa_root_vdev);
8463 
8464 	/* configure and create the new pool */
8465 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8466 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8467 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8468 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8469 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8470 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8471 	    spa_generate_guid(NULL));
8472 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8473 	(void) nvlist_lookup_string(props,
8474 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8475 
8476 	/* add the new pool to the namespace */
8477 	newspa = spa_add(newname, config, altroot);
8478 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8479 	newspa->spa_config_txg = spa->spa_config_txg;
8480 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8481 
8482 	/* release the spa config lock, retaining the namespace lock */
8483 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8484 
8485 	if (zio_injection_enabled)
8486 		zio_handle_panic_injection(spa, FTAG, 1);
8487 
8488 	spa_activate(newspa, spa_mode_global);
8489 	spa_async_suspend(newspa);
8490 
8491 	/*
8492 	 * Temporarily stop the initializing and TRIM activity.  We set the
8493 	 * state to ACTIVE so that we know to resume initializing or TRIM
8494 	 * once the split has completed.
8495 	 */
8496 	list_t vd_initialize_list;
8497 	list_create(&vd_initialize_list, sizeof (vdev_t),
8498 	    offsetof(vdev_t, vdev_initialize_node));
8499 
8500 	list_t vd_trim_list;
8501 	list_create(&vd_trim_list, sizeof (vdev_t),
8502 	    offsetof(vdev_t, vdev_trim_node));
8503 
8504 	for (c = 0; c < children; c++) {
8505 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8506 			mutex_enter(&vml[c]->vdev_initialize_lock);
8507 			vdev_initialize_stop(vml[c],
8508 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8509 			mutex_exit(&vml[c]->vdev_initialize_lock);
8510 
8511 			mutex_enter(&vml[c]->vdev_trim_lock);
8512 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8513 			mutex_exit(&vml[c]->vdev_trim_lock);
8514 		}
8515 	}
8516 
8517 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8518 	vdev_trim_stop_wait(spa, &vd_trim_list);
8519 
8520 	list_destroy(&vd_initialize_list);
8521 	list_destroy(&vd_trim_list);
8522 
8523 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8524 	newspa->spa_is_splitting = B_TRUE;
8525 
8526 	/* create the new pool from the disks of the original pool */
8527 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8528 	if (error)
8529 		goto out;
8530 
8531 	/* if that worked, generate a real config for the new pool */
8532 	if (newspa->spa_root_vdev != NULL) {
8533 		newspa->spa_config_splitting = fnvlist_alloc();
8534 		fnvlist_add_uint64(newspa->spa_config_splitting,
8535 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8536 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8537 		    B_TRUE));
8538 	}
8539 
8540 	/* set the props */
8541 	if (props != NULL) {
8542 		spa_configfile_set(newspa, props, B_FALSE);
8543 		error = spa_prop_set(newspa, props);
8544 		if (error)
8545 			goto out;
8546 	}
8547 
8548 	/* flush everything */
8549 	txg = spa_vdev_config_enter(newspa);
8550 	vdev_config_dirty(newspa->spa_root_vdev);
8551 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8552 
8553 	if (zio_injection_enabled)
8554 		zio_handle_panic_injection(spa, FTAG, 2);
8555 
8556 	spa_async_resume(newspa);
8557 
8558 	/* finally, update the original pool's config */
8559 	txg = spa_vdev_config_enter(spa);
8560 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8561 	error = dmu_tx_assign(tx, TXG_WAIT);
8562 	if (error != 0)
8563 		dmu_tx_abort(tx);
8564 	for (c = 0; c < children; c++) {
8565 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8566 			vdev_t *tvd = vml[c]->vdev_top;
8567 
8568 			/*
8569 			 * Need to be sure the detachable VDEV is not
8570 			 * on any *other* txg's DTL list to prevent it
8571 			 * from being accessed after it's freed.
8572 			 */
8573 			for (int t = 0; t < TXG_SIZE; t++) {
8574 				(void) txg_list_remove_this(
8575 				    &tvd->vdev_dtl_list, vml[c], t);
8576 			}
8577 
8578 			vdev_split(vml[c]);
8579 			if (error == 0)
8580 				spa_history_log_internal(spa, "detach", tx,
8581 				    "vdev=%s", vml[c]->vdev_path);
8582 
8583 			vdev_free(vml[c]);
8584 		}
8585 	}
8586 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8587 	vdev_config_dirty(spa->spa_root_vdev);
8588 	spa->spa_config_splitting = NULL;
8589 	nvlist_free(nvl);
8590 	if (error == 0)
8591 		dmu_tx_commit(tx);
8592 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8593 
8594 	if (zio_injection_enabled)
8595 		zio_handle_panic_injection(spa, FTAG, 3);
8596 
8597 	/* split is complete; log a history record */
8598 	spa_history_log_internal(newspa, "split", NULL,
8599 	    "from pool %s", spa_name(spa));
8600 
8601 	newspa->spa_is_splitting = B_FALSE;
8602 	kmem_free(vml, children * sizeof (vdev_t *));
8603 
8604 	/* if we're not going to mount the filesystems in userland, export */
8605 	if (exp)
8606 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8607 		    B_FALSE, B_FALSE);
8608 
8609 	return (error);
8610 
8611 out:
8612 	spa_unload(newspa);
8613 	spa_deactivate(newspa);
8614 	spa_remove(newspa);
8615 
8616 	txg = spa_vdev_config_enter(spa);
8617 
8618 	/* re-online all offlined disks */
8619 	for (c = 0; c < children; c++) {
8620 		if (vml[c] != NULL)
8621 			vml[c]->vdev_offline = B_FALSE;
8622 	}
8623 
8624 	/* restart initializing or trimming disks as necessary */
8625 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8626 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8627 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8628 
8629 	vdev_reopen(spa->spa_root_vdev);
8630 
8631 	nvlist_free(spa->spa_config_splitting);
8632 	spa->spa_config_splitting = NULL;
8633 	(void) spa_vdev_exit(spa, NULL, txg, error);
8634 
8635 	kmem_free(vml, children * sizeof (vdev_t *));
8636 	return (error);
8637 }
8638 
8639 /*
8640  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8641  * currently spared, so we can detach it.
8642  */
8643 static vdev_t *
8644 spa_vdev_resilver_done_hunt(vdev_t *vd)
8645 {
8646 	vdev_t *newvd, *oldvd;
8647 
8648 	for (int c = 0; c < vd->vdev_children; c++) {
8649 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8650 		if (oldvd != NULL)
8651 			return (oldvd);
8652 	}
8653 
8654 	/*
8655 	 * Check for a completed replacement.  We always consider the first
8656 	 * vdev in the list to be the oldest vdev, and the last one to be
8657 	 * the newest (see spa_vdev_attach() for how that works).  In
8658 	 * the case where the newest vdev is faulted, we will not automatically
8659 	 * remove it after a resilver completes.  This is OK as it will require
8660 	 * user intervention to determine which disk the admin wishes to keep.
8661 	 */
8662 	if (vd->vdev_ops == &vdev_replacing_ops) {
8663 		ASSERT(vd->vdev_children > 1);
8664 
8665 		newvd = vd->vdev_child[vd->vdev_children - 1];
8666 		oldvd = vd->vdev_child[0];
8667 
8668 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8669 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8670 		    !vdev_dtl_required(oldvd))
8671 			return (oldvd);
8672 	}
8673 
8674 	/*
8675 	 * Check for a completed resilver with the 'unspare' flag set.
8676 	 * Also potentially update faulted state.
8677 	 */
8678 	if (vd->vdev_ops == &vdev_spare_ops) {
8679 		vdev_t *first = vd->vdev_child[0];
8680 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8681 
8682 		if (last->vdev_unspare) {
8683 			oldvd = first;
8684 			newvd = last;
8685 		} else if (first->vdev_unspare) {
8686 			oldvd = last;
8687 			newvd = first;
8688 		} else {
8689 			oldvd = NULL;
8690 		}
8691 
8692 		if (oldvd != NULL &&
8693 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8694 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8695 		    !vdev_dtl_required(oldvd))
8696 			return (oldvd);
8697 
8698 		vdev_propagate_state(vd);
8699 
8700 		/*
8701 		 * If there are more than two spares attached to a disk,
8702 		 * and those spares are not required, then we want to
8703 		 * attempt to free them up now so that they can be used
8704 		 * by other pools.  Once we're back down to a single
8705 		 * disk+spare, we stop removing them.
8706 		 */
8707 		if (vd->vdev_children > 2) {
8708 			newvd = vd->vdev_child[1];
8709 
8710 			if (newvd->vdev_isspare && last->vdev_isspare &&
8711 			    vdev_dtl_empty(last, DTL_MISSING) &&
8712 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8713 			    !vdev_dtl_required(newvd))
8714 				return (newvd);
8715 		}
8716 	}
8717 
8718 	return (NULL);
8719 }
8720 
8721 static void
8722 spa_vdev_resilver_done(spa_t *spa)
8723 {
8724 	vdev_t *vd, *pvd, *ppvd;
8725 	uint64_t guid, sguid, pguid, ppguid;
8726 
8727 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8728 
8729 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8730 		pvd = vd->vdev_parent;
8731 		ppvd = pvd->vdev_parent;
8732 		guid = vd->vdev_guid;
8733 		pguid = pvd->vdev_guid;
8734 		ppguid = ppvd->vdev_guid;
8735 		sguid = 0;
8736 		/*
8737 		 * If we have just finished replacing a hot spared device, then
8738 		 * we need to detach the parent's first child (the original hot
8739 		 * spare) as well.
8740 		 */
8741 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8742 		    ppvd->vdev_children == 2) {
8743 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8744 			sguid = ppvd->vdev_child[1]->vdev_guid;
8745 		}
8746 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8747 
8748 		spa_config_exit(spa, SCL_ALL, FTAG);
8749 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8750 			return;
8751 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8752 			return;
8753 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8754 	}
8755 
8756 	spa_config_exit(spa, SCL_ALL, FTAG);
8757 
8758 	/*
8759 	 * If a detach was not performed above replace waiters will not have
8760 	 * been notified.  In which case we must do so now.
8761 	 */
8762 	spa_notify_waiters(spa);
8763 }
8764 
8765 /*
8766  * Update the stored path or FRU for this vdev.
8767  */
8768 static int
8769 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8770     boolean_t ispath)
8771 {
8772 	vdev_t *vd;
8773 	boolean_t sync = B_FALSE;
8774 
8775 	ASSERT(spa_writeable(spa));
8776 
8777 	spa_vdev_state_enter(spa, SCL_ALL);
8778 
8779 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8780 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8781 
8782 	if (!vd->vdev_ops->vdev_op_leaf)
8783 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8784 
8785 	if (ispath) {
8786 		if (strcmp(value, vd->vdev_path) != 0) {
8787 			spa_strfree(vd->vdev_path);
8788 			vd->vdev_path = spa_strdup(value);
8789 			sync = B_TRUE;
8790 		}
8791 	} else {
8792 		if (vd->vdev_fru == NULL) {
8793 			vd->vdev_fru = spa_strdup(value);
8794 			sync = B_TRUE;
8795 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8796 			spa_strfree(vd->vdev_fru);
8797 			vd->vdev_fru = spa_strdup(value);
8798 			sync = B_TRUE;
8799 		}
8800 	}
8801 
8802 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8803 }
8804 
8805 int
8806 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8807 {
8808 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8809 }
8810 
8811 int
8812 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8813 {
8814 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8815 }
8816 
8817 /*
8818  * ==========================================================================
8819  * SPA Scanning
8820  * ==========================================================================
8821  */
8822 int
8823 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8824 {
8825 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8826 
8827 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8828 		return (SET_ERROR(EBUSY));
8829 
8830 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8831 }
8832 
8833 int
8834 spa_scan_stop(spa_t *spa)
8835 {
8836 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8837 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8838 		return (SET_ERROR(EBUSY));
8839 
8840 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8841 }
8842 
8843 int
8844 spa_scan(spa_t *spa, pool_scan_func_t func)
8845 {
8846 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8847 
8848 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8849 		return (SET_ERROR(ENOTSUP));
8850 
8851 	if (func == POOL_SCAN_RESILVER &&
8852 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8853 		return (SET_ERROR(ENOTSUP));
8854 
8855 	/*
8856 	 * If a resilver was requested, but there is no DTL on a
8857 	 * writeable leaf device, we have nothing to do.
8858 	 */
8859 	if (func == POOL_SCAN_RESILVER &&
8860 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8861 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8862 		return (0);
8863 	}
8864 
8865 	if (func == POOL_SCAN_ERRORSCRUB &&
8866 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8867 		return (SET_ERROR(ENOTSUP));
8868 
8869 	return (dsl_scan(spa->spa_dsl_pool, func));
8870 }
8871 
8872 /*
8873  * ==========================================================================
8874  * SPA async task processing
8875  * ==========================================================================
8876  */
8877 
8878 static void
8879 spa_async_remove(spa_t *spa, vdev_t *vd)
8880 {
8881 	if (vd->vdev_remove_wanted) {
8882 		vd->vdev_remove_wanted = B_FALSE;
8883 		vd->vdev_delayed_close = B_FALSE;
8884 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8885 
8886 		/*
8887 		 * We want to clear the stats, but we don't want to do a full
8888 		 * vdev_clear() as that will cause us to throw away
8889 		 * degraded/faulted state as well as attempt to reopen the
8890 		 * device, all of which is a waste.
8891 		 */
8892 		vd->vdev_stat.vs_read_errors = 0;
8893 		vd->vdev_stat.vs_write_errors = 0;
8894 		vd->vdev_stat.vs_checksum_errors = 0;
8895 
8896 		vdev_state_dirty(vd->vdev_top);
8897 
8898 		/* Tell userspace that the vdev is gone. */
8899 		zfs_post_remove(spa, vd);
8900 	}
8901 
8902 	for (int c = 0; c < vd->vdev_children; c++)
8903 		spa_async_remove(spa, vd->vdev_child[c]);
8904 }
8905 
8906 static void
8907 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8908 {
8909 	if (vd->vdev_fault_wanted) {
8910 		vd->vdev_fault_wanted = B_FALSE;
8911 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8912 		    VDEV_AUX_ERR_EXCEEDED);
8913 	}
8914 
8915 	for (int c = 0; c < vd->vdev_children; c++)
8916 		spa_async_fault_vdev(spa, vd->vdev_child[c]);
8917 }
8918 
8919 static void
8920 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8921 {
8922 	if (!spa->spa_autoexpand)
8923 		return;
8924 
8925 	for (int c = 0; c < vd->vdev_children; c++) {
8926 		vdev_t *cvd = vd->vdev_child[c];
8927 		spa_async_autoexpand(spa, cvd);
8928 	}
8929 
8930 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8931 		return;
8932 
8933 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8934 }
8935 
8936 static __attribute__((noreturn)) void
8937 spa_async_thread(void *arg)
8938 {
8939 	spa_t *spa = (spa_t *)arg;
8940 	dsl_pool_t *dp = spa->spa_dsl_pool;
8941 	int tasks;
8942 
8943 	ASSERT(spa->spa_sync_on);
8944 
8945 	mutex_enter(&spa->spa_async_lock);
8946 	tasks = spa->spa_async_tasks;
8947 	spa->spa_async_tasks = 0;
8948 	mutex_exit(&spa->spa_async_lock);
8949 
8950 	/*
8951 	 * See if the config needs to be updated.
8952 	 */
8953 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8954 		uint64_t old_space, new_space;
8955 
8956 		mutex_enter(&spa_namespace_lock);
8957 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8958 		old_space += metaslab_class_get_space(spa_special_class(spa));
8959 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8960 		old_space += metaslab_class_get_space(
8961 		    spa_embedded_log_class(spa));
8962 
8963 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8964 
8965 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8966 		new_space += metaslab_class_get_space(spa_special_class(spa));
8967 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8968 		new_space += metaslab_class_get_space(
8969 		    spa_embedded_log_class(spa));
8970 		mutex_exit(&spa_namespace_lock);
8971 
8972 		/*
8973 		 * If the pool grew as a result of the config update,
8974 		 * then log an internal history event.
8975 		 */
8976 		if (new_space != old_space) {
8977 			spa_history_log_internal(spa, "vdev online", NULL,
8978 			    "pool '%s' size: %llu(+%llu)",
8979 			    spa_name(spa), (u_longlong_t)new_space,
8980 			    (u_longlong_t)(new_space - old_space));
8981 		}
8982 	}
8983 
8984 	/*
8985 	 * See if any devices need to be marked REMOVED.
8986 	 */
8987 	if (tasks & SPA_ASYNC_REMOVE) {
8988 		spa_vdev_state_enter(spa, SCL_NONE);
8989 		spa_async_remove(spa, spa->spa_root_vdev);
8990 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8991 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8992 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8993 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8994 		(void) spa_vdev_state_exit(spa, NULL, 0);
8995 	}
8996 
8997 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8998 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8999 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9000 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9001 	}
9002 
9003 	/*
9004 	 * See if any devices need to be marked faulted.
9005 	 */
9006 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9007 		spa_vdev_state_enter(spa, SCL_NONE);
9008 		spa_async_fault_vdev(spa, spa->spa_root_vdev);
9009 		(void) spa_vdev_state_exit(spa, NULL, 0);
9010 	}
9011 
9012 	/*
9013 	 * If any devices are done replacing, detach them.
9014 	 */
9015 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9016 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9017 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9018 		spa_vdev_resilver_done(spa);
9019 	}
9020 
9021 	/*
9022 	 * Kick off a resilver.
9023 	 */
9024 	if (tasks & SPA_ASYNC_RESILVER &&
9025 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9026 	    (!dsl_scan_resilvering(dp) ||
9027 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9028 		dsl_scan_restart_resilver(dp, 0);
9029 
9030 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9031 		mutex_enter(&spa_namespace_lock);
9032 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9033 		vdev_initialize_restart(spa->spa_root_vdev);
9034 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9035 		mutex_exit(&spa_namespace_lock);
9036 	}
9037 
9038 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9039 		mutex_enter(&spa_namespace_lock);
9040 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9041 		vdev_trim_restart(spa->spa_root_vdev);
9042 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9043 		mutex_exit(&spa_namespace_lock);
9044 	}
9045 
9046 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9047 		mutex_enter(&spa_namespace_lock);
9048 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9049 		vdev_autotrim_restart(spa);
9050 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9051 		mutex_exit(&spa_namespace_lock);
9052 	}
9053 
9054 	/*
9055 	 * Kick off L2 cache whole device TRIM.
9056 	 */
9057 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9058 		mutex_enter(&spa_namespace_lock);
9059 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9060 		vdev_trim_l2arc(spa);
9061 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9062 		mutex_exit(&spa_namespace_lock);
9063 	}
9064 
9065 	/*
9066 	 * Kick off L2 cache rebuilding.
9067 	 */
9068 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9069 		mutex_enter(&spa_namespace_lock);
9070 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9071 		l2arc_spa_rebuild_start(spa);
9072 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9073 		mutex_exit(&spa_namespace_lock);
9074 	}
9075 
9076 	/*
9077 	 * Let the world know that we're done.
9078 	 */
9079 	mutex_enter(&spa->spa_async_lock);
9080 	spa->spa_async_thread = NULL;
9081 	cv_broadcast(&spa->spa_async_cv);
9082 	mutex_exit(&spa->spa_async_lock);
9083 	thread_exit();
9084 }
9085 
9086 void
9087 spa_async_suspend(spa_t *spa)
9088 {
9089 	mutex_enter(&spa->spa_async_lock);
9090 	spa->spa_async_suspended++;
9091 	while (spa->spa_async_thread != NULL)
9092 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9093 	mutex_exit(&spa->spa_async_lock);
9094 
9095 	spa_vdev_remove_suspend(spa);
9096 
9097 	zthr_t *condense_thread = spa->spa_condense_zthr;
9098 	if (condense_thread != NULL)
9099 		zthr_cancel(condense_thread);
9100 
9101 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9102 	if (raidz_expand_thread != NULL)
9103 		zthr_cancel(raidz_expand_thread);
9104 
9105 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9106 	if (discard_thread != NULL)
9107 		zthr_cancel(discard_thread);
9108 
9109 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9110 	if (ll_delete_thread != NULL)
9111 		zthr_cancel(ll_delete_thread);
9112 
9113 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9114 	if (ll_condense_thread != NULL)
9115 		zthr_cancel(ll_condense_thread);
9116 }
9117 
9118 void
9119 spa_async_resume(spa_t *spa)
9120 {
9121 	mutex_enter(&spa->spa_async_lock);
9122 	ASSERT(spa->spa_async_suspended != 0);
9123 	spa->spa_async_suspended--;
9124 	mutex_exit(&spa->spa_async_lock);
9125 	spa_restart_removal(spa);
9126 
9127 	zthr_t *condense_thread = spa->spa_condense_zthr;
9128 	if (condense_thread != NULL)
9129 		zthr_resume(condense_thread);
9130 
9131 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9132 	if (raidz_expand_thread != NULL)
9133 		zthr_resume(raidz_expand_thread);
9134 
9135 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9136 	if (discard_thread != NULL)
9137 		zthr_resume(discard_thread);
9138 
9139 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9140 	if (ll_delete_thread != NULL)
9141 		zthr_resume(ll_delete_thread);
9142 
9143 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9144 	if (ll_condense_thread != NULL)
9145 		zthr_resume(ll_condense_thread);
9146 }
9147 
9148 static boolean_t
9149 spa_async_tasks_pending(spa_t *spa)
9150 {
9151 	uint_t non_config_tasks;
9152 	uint_t config_task;
9153 	boolean_t config_task_suspended;
9154 
9155 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9156 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9157 	if (spa->spa_ccw_fail_time == 0) {
9158 		config_task_suspended = B_FALSE;
9159 	} else {
9160 		config_task_suspended =
9161 		    (gethrtime() - spa->spa_ccw_fail_time) <
9162 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9163 	}
9164 
9165 	return (non_config_tasks || (config_task && !config_task_suspended));
9166 }
9167 
9168 static void
9169 spa_async_dispatch(spa_t *spa)
9170 {
9171 	mutex_enter(&spa->spa_async_lock);
9172 	if (spa_async_tasks_pending(spa) &&
9173 	    !spa->spa_async_suspended &&
9174 	    spa->spa_async_thread == NULL)
9175 		spa->spa_async_thread = thread_create(NULL, 0,
9176 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9177 	mutex_exit(&spa->spa_async_lock);
9178 }
9179 
9180 void
9181 spa_async_request(spa_t *spa, int task)
9182 {
9183 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9184 	mutex_enter(&spa->spa_async_lock);
9185 	spa->spa_async_tasks |= task;
9186 	mutex_exit(&spa->spa_async_lock);
9187 }
9188 
9189 int
9190 spa_async_tasks(spa_t *spa)
9191 {
9192 	return (spa->spa_async_tasks);
9193 }
9194 
9195 /*
9196  * ==========================================================================
9197  * SPA syncing routines
9198  * ==========================================================================
9199  */
9200 
9201 
9202 static int
9203 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9204     dmu_tx_t *tx)
9205 {
9206 	bpobj_t *bpo = arg;
9207 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9208 	return (0);
9209 }
9210 
9211 int
9212 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9213 {
9214 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9215 }
9216 
9217 int
9218 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9219 {
9220 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9221 }
9222 
9223 static int
9224 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9225 {
9226 	zio_t *pio = arg;
9227 
9228 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9229 	    pio->io_flags));
9230 	return (0);
9231 }
9232 
9233 static int
9234 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9235     dmu_tx_t *tx)
9236 {
9237 	ASSERT(!bp_freed);
9238 	return (spa_free_sync_cb(arg, bp, tx));
9239 }
9240 
9241 /*
9242  * Note: this simple function is not inlined to make it easier to dtrace the
9243  * amount of time spent syncing frees.
9244  */
9245 static void
9246 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9247 {
9248 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9249 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9250 	VERIFY(zio_wait(zio) == 0);
9251 }
9252 
9253 /*
9254  * Note: this simple function is not inlined to make it easier to dtrace the
9255  * amount of time spent syncing deferred frees.
9256  */
9257 static void
9258 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9259 {
9260 	if (spa_sync_pass(spa) != 1)
9261 		return;
9262 
9263 	/*
9264 	 * Note:
9265 	 * If the log space map feature is active, we stop deferring
9266 	 * frees to the next TXG and therefore running this function
9267 	 * would be considered a no-op as spa_deferred_bpobj should
9268 	 * not have any entries.
9269 	 *
9270 	 * That said we run this function anyway (instead of returning
9271 	 * immediately) for the edge-case scenario where we just
9272 	 * activated the log space map feature in this TXG but we have
9273 	 * deferred frees from the previous TXG.
9274 	 */
9275 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9276 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9277 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9278 	VERIFY0(zio_wait(zio));
9279 }
9280 
9281 static void
9282 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9283 {
9284 	char *packed = NULL;
9285 	size_t bufsize;
9286 	size_t nvsize = 0;
9287 	dmu_buf_t *db;
9288 
9289 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9290 
9291 	/*
9292 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9293 	 * information.  This avoids the dmu_buf_will_dirty() path and
9294 	 * saves us a pre-read to get data we don't actually care about.
9295 	 */
9296 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9297 	packed = vmem_alloc(bufsize, KM_SLEEP);
9298 
9299 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9300 	    KM_SLEEP) == 0);
9301 	memset(packed + nvsize, 0, bufsize - nvsize);
9302 
9303 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9304 
9305 	vmem_free(packed, bufsize);
9306 
9307 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9308 	dmu_buf_will_dirty(db, tx);
9309 	*(uint64_t *)db->db_data = nvsize;
9310 	dmu_buf_rele(db, FTAG);
9311 }
9312 
9313 static void
9314 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9315     const char *config, const char *entry)
9316 {
9317 	nvlist_t *nvroot;
9318 	nvlist_t **list;
9319 	int i;
9320 
9321 	if (!sav->sav_sync)
9322 		return;
9323 
9324 	/*
9325 	 * Update the MOS nvlist describing the list of available devices.
9326 	 * spa_validate_aux() will have already made sure this nvlist is
9327 	 * valid and the vdevs are labeled appropriately.
9328 	 */
9329 	if (sav->sav_object == 0) {
9330 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9331 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9332 		    sizeof (uint64_t), tx);
9333 		VERIFY(zap_update(spa->spa_meta_objset,
9334 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9335 		    &sav->sav_object, tx) == 0);
9336 	}
9337 
9338 	nvroot = fnvlist_alloc();
9339 	if (sav->sav_count == 0) {
9340 		fnvlist_add_nvlist_array(nvroot, config,
9341 		    (const nvlist_t * const *)NULL, 0);
9342 	} else {
9343 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9344 		for (i = 0; i < sav->sav_count; i++)
9345 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9346 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9347 		fnvlist_add_nvlist_array(nvroot, config,
9348 		    (const nvlist_t * const *)list, sav->sav_count);
9349 		for (i = 0; i < sav->sav_count; i++)
9350 			nvlist_free(list[i]);
9351 		kmem_free(list, sav->sav_count * sizeof (void *));
9352 	}
9353 
9354 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9355 	nvlist_free(nvroot);
9356 
9357 	sav->sav_sync = B_FALSE;
9358 }
9359 
9360 /*
9361  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9362  * The all-vdev ZAP must be empty.
9363  */
9364 static void
9365 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9366 {
9367 	spa_t *spa = vd->vdev_spa;
9368 
9369 	if (vd->vdev_root_zap != 0 &&
9370 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9371 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9372 		    vd->vdev_root_zap, tx));
9373 	}
9374 	if (vd->vdev_top_zap != 0) {
9375 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9376 		    vd->vdev_top_zap, tx));
9377 	}
9378 	if (vd->vdev_leaf_zap != 0) {
9379 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9380 		    vd->vdev_leaf_zap, tx));
9381 	}
9382 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9383 		spa_avz_build(vd->vdev_child[i], avz, tx);
9384 	}
9385 }
9386 
9387 static void
9388 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9389 {
9390 	nvlist_t *config;
9391 
9392 	/*
9393 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9394 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9395 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9396 	 * need to rebuild the AVZ although the config may not be dirty.
9397 	 */
9398 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9399 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9400 		return;
9401 
9402 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9403 
9404 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9405 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9406 	    spa->spa_all_vdev_zaps != 0);
9407 
9408 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9409 		/* Make and build the new AVZ */
9410 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9411 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9412 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9413 
9414 		/* Diff old AVZ with new one */
9415 		zap_cursor_t zc;
9416 		zap_attribute_t za;
9417 
9418 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9419 		    spa->spa_all_vdev_zaps);
9420 		    zap_cursor_retrieve(&zc, &za) == 0;
9421 		    zap_cursor_advance(&zc)) {
9422 			uint64_t vdzap = za.za_first_integer;
9423 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9424 			    vdzap) == ENOENT) {
9425 				/*
9426 				 * ZAP is listed in old AVZ but not in new one;
9427 				 * destroy it
9428 				 */
9429 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9430 				    tx));
9431 			}
9432 		}
9433 
9434 		zap_cursor_fini(&zc);
9435 
9436 		/* Destroy the old AVZ */
9437 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9438 		    spa->spa_all_vdev_zaps, tx));
9439 
9440 		/* Replace the old AVZ in the dir obj with the new one */
9441 		VERIFY0(zap_update(spa->spa_meta_objset,
9442 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9443 		    sizeof (new_avz), 1, &new_avz, tx));
9444 
9445 		spa->spa_all_vdev_zaps = new_avz;
9446 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9447 		zap_cursor_t zc;
9448 		zap_attribute_t za;
9449 
9450 		/* Walk through the AVZ and destroy all listed ZAPs */
9451 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9452 		    spa->spa_all_vdev_zaps);
9453 		    zap_cursor_retrieve(&zc, &za) == 0;
9454 		    zap_cursor_advance(&zc)) {
9455 			uint64_t zap = za.za_first_integer;
9456 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9457 		}
9458 
9459 		zap_cursor_fini(&zc);
9460 
9461 		/* Destroy and unlink the AVZ itself */
9462 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9463 		    spa->spa_all_vdev_zaps, tx));
9464 		VERIFY0(zap_remove(spa->spa_meta_objset,
9465 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9466 		spa->spa_all_vdev_zaps = 0;
9467 	}
9468 
9469 	if (spa->spa_all_vdev_zaps == 0) {
9470 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9471 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9472 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9473 	}
9474 	spa->spa_avz_action = AVZ_ACTION_NONE;
9475 
9476 	/* Create ZAPs for vdevs that don't have them. */
9477 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9478 
9479 	config = spa_config_generate(spa, spa->spa_root_vdev,
9480 	    dmu_tx_get_txg(tx), B_FALSE);
9481 
9482 	/*
9483 	 * If we're upgrading the spa version then make sure that
9484 	 * the config object gets updated with the correct version.
9485 	 */
9486 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9487 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9488 		    spa->spa_uberblock.ub_version);
9489 
9490 	spa_config_exit(spa, SCL_STATE, FTAG);
9491 
9492 	nvlist_free(spa->spa_config_syncing);
9493 	spa->spa_config_syncing = config;
9494 
9495 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9496 }
9497 
9498 static void
9499 spa_sync_version(void *arg, dmu_tx_t *tx)
9500 {
9501 	uint64_t *versionp = arg;
9502 	uint64_t version = *versionp;
9503 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9504 
9505 	/*
9506 	 * Setting the version is special cased when first creating the pool.
9507 	 */
9508 	ASSERT(tx->tx_txg != TXG_INITIAL);
9509 
9510 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9511 	ASSERT(version >= spa_version(spa));
9512 
9513 	spa->spa_uberblock.ub_version = version;
9514 	vdev_config_dirty(spa->spa_root_vdev);
9515 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9516 	    (longlong_t)version);
9517 }
9518 
9519 /*
9520  * Set zpool properties.
9521  */
9522 static void
9523 spa_sync_props(void *arg, dmu_tx_t *tx)
9524 {
9525 	nvlist_t *nvp = arg;
9526 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9527 	objset_t *mos = spa->spa_meta_objset;
9528 	nvpair_t *elem = NULL;
9529 
9530 	mutex_enter(&spa->spa_props_lock);
9531 
9532 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9533 		uint64_t intval;
9534 		const char *strval, *fname;
9535 		zpool_prop_t prop;
9536 		const char *propname;
9537 		const char *elemname = nvpair_name(elem);
9538 		zprop_type_t proptype;
9539 		spa_feature_t fid;
9540 
9541 		switch (prop = zpool_name_to_prop(elemname)) {
9542 		case ZPOOL_PROP_VERSION:
9543 			intval = fnvpair_value_uint64(elem);
9544 			/*
9545 			 * The version is synced separately before other
9546 			 * properties and should be correct by now.
9547 			 */
9548 			ASSERT3U(spa_version(spa), >=, intval);
9549 			break;
9550 
9551 		case ZPOOL_PROP_ALTROOT:
9552 			/*
9553 			 * 'altroot' is a non-persistent property. It should
9554 			 * have been set temporarily at creation or import time.
9555 			 */
9556 			ASSERT(spa->spa_root != NULL);
9557 			break;
9558 
9559 		case ZPOOL_PROP_READONLY:
9560 		case ZPOOL_PROP_CACHEFILE:
9561 			/*
9562 			 * 'readonly' and 'cachefile' are also non-persistent
9563 			 * properties.
9564 			 */
9565 			break;
9566 		case ZPOOL_PROP_COMMENT:
9567 			strval = fnvpair_value_string(elem);
9568 			if (spa->spa_comment != NULL)
9569 				spa_strfree(spa->spa_comment);
9570 			spa->spa_comment = spa_strdup(strval);
9571 			/*
9572 			 * We need to dirty the configuration on all the vdevs
9573 			 * so that their labels get updated.  We also need to
9574 			 * update the cache file to keep it in sync with the
9575 			 * MOS version. It's unnecessary to do this for pool
9576 			 * creation since the vdev's configuration has already
9577 			 * been dirtied.
9578 			 */
9579 			if (tx->tx_txg != TXG_INITIAL) {
9580 				vdev_config_dirty(spa->spa_root_vdev);
9581 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9582 			}
9583 			spa_history_log_internal(spa, "set", tx,
9584 			    "%s=%s", elemname, strval);
9585 			break;
9586 		case ZPOOL_PROP_COMPATIBILITY:
9587 			strval = fnvpair_value_string(elem);
9588 			if (spa->spa_compatibility != NULL)
9589 				spa_strfree(spa->spa_compatibility);
9590 			spa->spa_compatibility = spa_strdup(strval);
9591 			/*
9592 			 * Dirty the configuration on vdevs as above.
9593 			 */
9594 			if (tx->tx_txg != TXG_INITIAL) {
9595 				vdev_config_dirty(spa->spa_root_vdev);
9596 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9597 			}
9598 
9599 			spa_history_log_internal(spa, "set", tx,
9600 			    "%s=%s", nvpair_name(elem), strval);
9601 			break;
9602 
9603 		case ZPOOL_PROP_INVAL:
9604 			if (zpool_prop_feature(elemname)) {
9605 				fname = strchr(elemname, '@') + 1;
9606 				VERIFY0(zfeature_lookup_name(fname, &fid));
9607 
9608 				spa_feature_enable(spa, fid, tx);
9609 				spa_history_log_internal(spa, "set", tx,
9610 				    "%s=enabled", elemname);
9611 				break;
9612 			} else if (!zfs_prop_user(elemname)) {
9613 				ASSERT(zpool_prop_feature(elemname));
9614 				break;
9615 			}
9616 			zfs_fallthrough;
9617 		default:
9618 			/*
9619 			 * Set pool property values in the poolprops mos object.
9620 			 */
9621 			if (spa->spa_pool_props_object == 0) {
9622 				spa->spa_pool_props_object =
9623 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9624 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9625 				    tx);
9626 			}
9627 
9628 			/* normalize the property name */
9629 			if (prop == ZPOOL_PROP_INVAL) {
9630 				propname = elemname;
9631 				proptype = PROP_TYPE_STRING;
9632 			} else {
9633 				propname = zpool_prop_to_name(prop);
9634 				proptype = zpool_prop_get_type(prop);
9635 			}
9636 
9637 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9638 				ASSERT(proptype == PROP_TYPE_STRING);
9639 				strval = fnvpair_value_string(elem);
9640 				VERIFY0(zap_update(mos,
9641 				    spa->spa_pool_props_object, propname,
9642 				    1, strlen(strval) + 1, strval, tx));
9643 				spa_history_log_internal(spa, "set", tx,
9644 				    "%s=%s", elemname, strval);
9645 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9646 				intval = fnvpair_value_uint64(elem);
9647 
9648 				if (proptype == PROP_TYPE_INDEX) {
9649 					const char *unused;
9650 					VERIFY0(zpool_prop_index_to_string(
9651 					    prop, intval, &unused));
9652 				}
9653 				VERIFY0(zap_update(mos,
9654 				    spa->spa_pool_props_object, propname,
9655 				    8, 1, &intval, tx));
9656 				spa_history_log_internal(spa, "set", tx,
9657 				    "%s=%lld", elemname,
9658 				    (longlong_t)intval);
9659 
9660 				switch (prop) {
9661 				case ZPOOL_PROP_DELEGATION:
9662 					spa->spa_delegation = intval;
9663 					break;
9664 				case ZPOOL_PROP_BOOTFS:
9665 					spa->spa_bootfs = intval;
9666 					break;
9667 				case ZPOOL_PROP_FAILUREMODE:
9668 					spa->spa_failmode = intval;
9669 					break;
9670 				case ZPOOL_PROP_AUTOTRIM:
9671 					spa->spa_autotrim = intval;
9672 					spa_async_request(spa,
9673 					    SPA_ASYNC_AUTOTRIM_RESTART);
9674 					break;
9675 				case ZPOOL_PROP_AUTOEXPAND:
9676 					spa->spa_autoexpand = intval;
9677 					if (tx->tx_txg != TXG_INITIAL)
9678 						spa_async_request(spa,
9679 						    SPA_ASYNC_AUTOEXPAND);
9680 					break;
9681 				case ZPOOL_PROP_MULTIHOST:
9682 					spa->spa_multihost = intval;
9683 					break;
9684 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9685 					spa->spa_dedup_table_quota = intval;
9686 					break;
9687 				default:
9688 					break;
9689 				}
9690 			} else {
9691 				ASSERT(0); /* not allowed */
9692 			}
9693 		}
9694 
9695 	}
9696 
9697 	mutex_exit(&spa->spa_props_lock);
9698 }
9699 
9700 /*
9701  * Perform one-time upgrade on-disk changes.  spa_version() does not
9702  * reflect the new version this txg, so there must be no changes this
9703  * txg to anything that the upgrade code depends on after it executes.
9704  * Therefore this must be called after dsl_pool_sync() does the sync
9705  * tasks.
9706  */
9707 static void
9708 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9709 {
9710 	if (spa_sync_pass(spa) != 1)
9711 		return;
9712 
9713 	dsl_pool_t *dp = spa->spa_dsl_pool;
9714 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9715 
9716 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9717 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9718 		dsl_pool_create_origin(dp, tx);
9719 
9720 		/* Keeping the origin open increases spa_minref */
9721 		spa->spa_minref += 3;
9722 	}
9723 
9724 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9725 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9726 		dsl_pool_upgrade_clones(dp, tx);
9727 	}
9728 
9729 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9730 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9731 		dsl_pool_upgrade_dir_clones(dp, tx);
9732 
9733 		/* Keeping the freedir open increases spa_minref */
9734 		spa->spa_minref += 3;
9735 	}
9736 
9737 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9738 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9739 		spa_feature_create_zap_objects(spa, tx);
9740 	}
9741 
9742 	/*
9743 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9744 	 * when possibility to use lz4 compression for metadata was added
9745 	 * Old pools that have this feature enabled must be upgraded to have
9746 	 * this feature active
9747 	 */
9748 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9749 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9750 		    SPA_FEATURE_LZ4_COMPRESS);
9751 		boolean_t lz4_ac = spa_feature_is_active(spa,
9752 		    SPA_FEATURE_LZ4_COMPRESS);
9753 
9754 		if (lz4_en && !lz4_ac)
9755 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9756 	}
9757 
9758 	/*
9759 	 * If we haven't written the salt, do so now.  Note that the
9760 	 * feature may not be activated yet, but that's fine since
9761 	 * the presence of this ZAP entry is backwards compatible.
9762 	 */
9763 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9764 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9765 		VERIFY0(zap_add(spa->spa_meta_objset,
9766 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9767 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9768 		    spa->spa_cksum_salt.zcs_bytes, tx));
9769 	}
9770 
9771 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9772 }
9773 
9774 static void
9775 vdev_indirect_state_sync_verify(vdev_t *vd)
9776 {
9777 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9778 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9779 
9780 	if (vd->vdev_ops == &vdev_indirect_ops) {
9781 		ASSERT(vim != NULL);
9782 		ASSERT(vib != NULL);
9783 	}
9784 
9785 	uint64_t obsolete_sm_object = 0;
9786 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9787 	if (obsolete_sm_object != 0) {
9788 		ASSERT(vd->vdev_obsolete_sm != NULL);
9789 		ASSERT(vd->vdev_removing ||
9790 		    vd->vdev_ops == &vdev_indirect_ops);
9791 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9792 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9793 		ASSERT3U(obsolete_sm_object, ==,
9794 		    space_map_object(vd->vdev_obsolete_sm));
9795 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9796 		    space_map_allocated(vd->vdev_obsolete_sm));
9797 	}
9798 	ASSERT(vd->vdev_obsolete_segments != NULL);
9799 
9800 	/*
9801 	 * Since frees / remaps to an indirect vdev can only
9802 	 * happen in syncing context, the obsolete segments
9803 	 * tree must be empty when we start syncing.
9804 	 */
9805 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9806 }
9807 
9808 /*
9809  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9810  * async write queue depth in case it changed. The max queue depth will
9811  * not change in the middle of syncing out this txg.
9812  */
9813 static void
9814 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9815 {
9816 	ASSERT(spa_writeable(spa));
9817 
9818 	vdev_t *rvd = spa->spa_root_vdev;
9819 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9820 	    zfs_vdev_queue_depth_pct / 100;
9821 	metaslab_class_t *normal = spa_normal_class(spa);
9822 	metaslab_class_t *special = spa_special_class(spa);
9823 	metaslab_class_t *dedup = spa_dedup_class(spa);
9824 
9825 	uint64_t slots_per_allocator = 0;
9826 	for (int c = 0; c < rvd->vdev_children; c++) {
9827 		vdev_t *tvd = rvd->vdev_child[c];
9828 
9829 		metaslab_group_t *mg = tvd->vdev_mg;
9830 		if (mg == NULL || !metaslab_group_initialized(mg))
9831 			continue;
9832 
9833 		metaslab_class_t *mc = mg->mg_class;
9834 		if (mc != normal && mc != special && mc != dedup)
9835 			continue;
9836 
9837 		/*
9838 		 * It is safe to do a lock-free check here because only async
9839 		 * allocations look at mg_max_alloc_queue_depth, and async
9840 		 * allocations all happen from spa_sync().
9841 		 */
9842 		for (int i = 0; i < mg->mg_allocators; i++) {
9843 			ASSERT0(zfs_refcount_count(
9844 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9845 		}
9846 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9847 
9848 		for (int i = 0; i < mg->mg_allocators; i++) {
9849 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9850 			    zfs_vdev_def_queue_depth;
9851 		}
9852 		slots_per_allocator += zfs_vdev_def_queue_depth;
9853 	}
9854 
9855 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9856 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9857 		    mca_alloc_slots));
9858 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9859 		    mca_alloc_slots));
9860 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9861 		    mca_alloc_slots));
9862 		normal->mc_allocator[i].mca_alloc_max_slots =
9863 		    slots_per_allocator;
9864 		special->mc_allocator[i].mca_alloc_max_slots =
9865 		    slots_per_allocator;
9866 		dedup->mc_allocator[i].mca_alloc_max_slots =
9867 		    slots_per_allocator;
9868 	}
9869 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9870 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9871 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9872 }
9873 
9874 static void
9875 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9876 {
9877 	ASSERT(spa_writeable(spa));
9878 
9879 	vdev_t *rvd = spa->spa_root_vdev;
9880 	for (int c = 0; c < rvd->vdev_children; c++) {
9881 		vdev_t *vd = rvd->vdev_child[c];
9882 		vdev_indirect_state_sync_verify(vd);
9883 
9884 		if (vdev_indirect_should_condense(vd)) {
9885 			spa_condense_indirect_start_sync(vd, tx);
9886 			break;
9887 		}
9888 	}
9889 }
9890 
9891 static void
9892 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9893 {
9894 	objset_t *mos = spa->spa_meta_objset;
9895 	dsl_pool_t *dp = spa->spa_dsl_pool;
9896 	uint64_t txg = tx->tx_txg;
9897 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9898 
9899 	do {
9900 		int pass = ++spa->spa_sync_pass;
9901 
9902 		spa_sync_config_object(spa, tx);
9903 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9904 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9905 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9906 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9907 		spa_errlog_sync(spa, txg);
9908 		dsl_pool_sync(dp, txg);
9909 
9910 		if (pass < zfs_sync_pass_deferred_free ||
9911 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9912 			/*
9913 			 * If the log space map feature is active we don't
9914 			 * care about deferred frees and the deferred bpobj
9915 			 * as the log space map should effectively have the
9916 			 * same results (i.e. appending only to one object).
9917 			 */
9918 			spa_sync_frees(spa, free_bpl, tx);
9919 		} else {
9920 			/*
9921 			 * We can not defer frees in pass 1, because
9922 			 * we sync the deferred frees later in pass 1.
9923 			 */
9924 			ASSERT3U(pass, >, 1);
9925 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9926 			    &spa->spa_deferred_bpobj, tx);
9927 		}
9928 
9929 		brt_sync(spa, txg);
9930 		ddt_sync(spa, txg);
9931 		dsl_scan_sync(dp, tx);
9932 		dsl_errorscrub_sync(dp, tx);
9933 		svr_sync(spa, tx);
9934 		spa_sync_upgrades(spa, tx);
9935 
9936 		spa_flush_metaslabs(spa, tx);
9937 
9938 		vdev_t *vd = NULL;
9939 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9940 		    != NULL)
9941 			vdev_sync(vd, txg);
9942 
9943 		if (pass == 1) {
9944 			/*
9945 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9946 			 * the config. If that happens, this txg should not
9947 			 * be a no-op. So we must sync the config to the MOS
9948 			 * before checking for no-op.
9949 			 *
9950 			 * Note that when the config is dirty, it will
9951 			 * be written to the MOS (i.e. the MOS will be
9952 			 * dirtied) every time we call spa_sync_config_object()
9953 			 * in this txg.  Therefore we can't call this after
9954 			 * dsl_pool_sync() every pass, because it would
9955 			 * prevent us from converging, since we'd dirty
9956 			 * the MOS every pass.
9957 			 *
9958 			 * Sync tasks can only be processed in pass 1, so
9959 			 * there's no need to do this in later passes.
9960 			 */
9961 			spa_sync_config_object(spa, tx);
9962 		}
9963 
9964 		/*
9965 		 * Note: We need to check if the MOS is dirty because we could
9966 		 * have marked the MOS dirty without updating the uberblock
9967 		 * (e.g. if we have sync tasks but no dirty user data). We need
9968 		 * to check the uberblock's rootbp because it is updated if we
9969 		 * have synced out dirty data (though in this case the MOS will
9970 		 * most likely also be dirty due to second order effects, we
9971 		 * don't want to rely on that here).
9972 		 */
9973 		if (pass == 1 &&
9974 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9975 		    !dmu_objset_is_dirty(mos, txg)) {
9976 			/*
9977 			 * Nothing changed on the first pass, therefore this
9978 			 * TXG is a no-op. Avoid syncing deferred frees, so
9979 			 * that we can keep this TXG as a no-op.
9980 			 */
9981 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9982 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9983 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9984 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9985 			break;
9986 		}
9987 
9988 		spa_sync_deferred_frees(spa, tx);
9989 	} while (dmu_objset_is_dirty(mos, txg));
9990 }
9991 
9992 /*
9993  * Rewrite the vdev configuration (which includes the uberblock) to
9994  * commit the transaction group.
9995  *
9996  * If there are no dirty vdevs, we sync the uberblock to a few random
9997  * top-level vdevs that are known to be visible in the config cache
9998  * (see spa_vdev_add() for a complete description). If there *are* dirty
9999  * vdevs, sync the uberblock to all vdevs.
10000  */
10001 static void
10002 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10003 {
10004 	vdev_t *rvd = spa->spa_root_vdev;
10005 	uint64_t txg = tx->tx_txg;
10006 
10007 	for (;;) {
10008 		int error = 0;
10009 
10010 		/*
10011 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10012 		 * while we're attempting to write the vdev labels.
10013 		 */
10014 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10015 
10016 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10017 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10018 			int svdcount = 0;
10019 			int children = rvd->vdev_children;
10020 			int c0 = random_in_range(children);
10021 
10022 			for (int c = 0; c < children; c++) {
10023 				vdev_t *vd =
10024 				    rvd->vdev_child[(c0 + c) % children];
10025 
10026 				/* Stop when revisiting the first vdev */
10027 				if (c > 0 && svd[0] == vd)
10028 					break;
10029 
10030 				if (vd->vdev_ms_array == 0 ||
10031 				    vd->vdev_islog ||
10032 				    !vdev_is_concrete(vd))
10033 					continue;
10034 
10035 				svd[svdcount++] = vd;
10036 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10037 					break;
10038 			}
10039 			error = vdev_config_sync(svd, svdcount, txg);
10040 		} else {
10041 			error = vdev_config_sync(rvd->vdev_child,
10042 			    rvd->vdev_children, txg);
10043 		}
10044 
10045 		if (error == 0)
10046 			spa->spa_last_synced_guid = rvd->vdev_guid;
10047 
10048 		spa_config_exit(spa, SCL_STATE, FTAG);
10049 
10050 		if (error == 0)
10051 			break;
10052 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10053 		zio_resume_wait(spa);
10054 	}
10055 }
10056 
10057 /*
10058  * Sync the specified transaction group.  New blocks may be dirtied as
10059  * part of the process, so we iterate until it converges.
10060  */
10061 void
10062 spa_sync(spa_t *spa, uint64_t txg)
10063 {
10064 	vdev_t *vd = NULL;
10065 
10066 	VERIFY(spa_writeable(spa));
10067 
10068 	/*
10069 	 * Wait for i/os issued in open context that need to complete
10070 	 * before this txg syncs.
10071 	 */
10072 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10073 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10074 	    ZIO_FLAG_CANFAIL);
10075 
10076 	/*
10077 	 * Now that there can be no more cloning in this transaction group,
10078 	 * but we are still before issuing frees, we can process pending BRT
10079 	 * updates.
10080 	 */
10081 	brt_pending_apply(spa, txg);
10082 
10083 	/*
10084 	 * Lock out configuration changes.
10085 	 */
10086 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10087 
10088 	spa->spa_syncing_txg = txg;
10089 	spa->spa_sync_pass = 0;
10090 
10091 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10092 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10093 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10094 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10095 	}
10096 
10097 	/*
10098 	 * If there are any pending vdev state changes, convert them
10099 	 * into config changes that go out with this transaction group.
10100 	 */
10101 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10102 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10103 		/* Avoid holding the write lock unless actually necessary */
10104 		if (vd->vdev_aux == NULL) {
10105 			vdev_state_clean(vd);
10106 			vdev_config_dirty(vd);
10107 			continue;
10108 		}
10109 		/*
10110 		 * We need the write lock here because, for aux vdevs,
10111 		 * calling vdev_config_dirty() modifies sav_config.
10112 		 * This is ugly and will become unnecessary when we
10113 		 * eliminate the aux vdev wart by integrating all vdevs
10114 		 * into the root vdev tree.
10115 		 */
10116 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10117 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10118 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10119 			vdev_state_clean(vd);
10120 			vdev_config_dirty(vd);
10121 		}
10122 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10123 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10124 	}
10125 	spa_config_exit(spa, SCL_STATE, FTAG);
10126 
10127 	dsl_pool_t *dp = spa->spa_dsl_pool;
10128 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10129 
10130 	spa->spa_sync_starttime = gethrtime();
10131 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10132 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10133 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10134 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10135 
10136 	/*
10137 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10138 	 * set spa_deflate if we have no raid-z vdevs.
10139 	 */
10140 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10141 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10142 		vdev_t *rvd = spa->spa_root_vdev;
10143 
10144 		int i;
10145 		for (i = 0; i < rvd->vdev_children; i++) {
10146 			vd = rvd->vdev_child[i];
10147 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10148 				break;
10149 		}
10150 		if (i == rvd->vdev_children) {
10151 			spa->spa_deflate = TRUE;
10152 			VERIFY0(zap_add(spa->spa_meta_objset,
10153 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10154 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10155 		}
10156 	}
10157 
10158 	spa_sync_adjust_vdev_max_queue_depth(spa);
10159 
10160 	spa_sync_condense_indirect(spa, tx);
10161 
10162 	spa_sync_iterate_to_convergence(spa, tx);
10163 
10164 #ifdef ZFS_DEBUG
10165 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10166 	/*
10167 	 * Make sure that the number of ZAPs for all the vdevs matches
10168 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10169 	 * called if the config is dirty; otherwise there may be
10170 	 * outstanding AVZ operations that weren't completed in
10171 	 * spa_sync_config_object.
10172 	 */
10173 		uint64_t all_vdev_zap_entry_count;
10174 		ASSERT0(zap_count(spa->spa_meta_objset,
10175 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10176 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10177 		    all_vdev_zap_entry_count);
10178 	}
10179 #endif
10180 
10181 	if (spa->spa_vdev_removal != NULL) {
10182 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10183 	}
10184 
10185 	spa_sync_rewrite_vdev_config(spa, tx);
10186 	dmu_tx_commit(tx);
10187 
10188 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10189 	spa->spa_deadman_tqid = 0;
10190 
10191 	/*
10192 	 * Clear the dirty config list.
10193 	 */
10194 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10195 		vdev_config_clean(vd);
10196 
10197 	/*
10198 	 * Now that the new config has synced transactionally,
10199 	 * let it become visible to the config cache.
10200 	 */
10201 	if (spa->spa_config_syncing != NULL) {
10202 		spa_config_set(spa, spa->spa_config_syncing);
10203 		spa->spa_config_txg = txg;
10204 		spa->spa_config_syncing = NULL;
10205 	}
10206 
10207 	dsl_pool_sync_done(dp, txg);
10208 
10209 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10210 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10211 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10212 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10213 	}
10214 
10215 	/*
10216 	 * Update usable space statistics.
10217 	 */
10218 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10219 	    != NULL)
10220 		vdev_sync_done(vd, txg);
10221 
10222 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10223 	metaslab_class_evict_old(spa->spa_log_class, txg);
10224 	/* spa_embedded_log_class has only one metaslab per vdev. */
10225 	metaslab_class_evict_old(spa->spa_special_class, txg);
10226 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10227 
10228 	spa_sync_close_syncing_log_sm(spa);
10229 
10230 	spa_update_dspace(spa);
10231 
10232 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10233 		vdev_autotrim_kick(spa);
10234 
10235 	/*
10236 	 * It had better be the case that we didn't dirty anything
10237 	 * since vdev_config_sync().
10238 	 */
10239 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10240 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10241 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10242 
10243 	while (zfs_pause_spa_sync)
10244 		delay(1);
10245 
10246 	spa->spa_sync_pass = 0;
10247 
10248 	/*
10249 	 * Update the last synced uberblock here. We want to do this at
10250 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10251 	 * will be guaranteed that all the processing associated with
10252 	 * that txg has been completed.
10253 	 */
10254 	spa->spa_ubsync = spa->spa_uberblock;
10255 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10256 
10257 	spa_handle_ignored_writes(spa);
10258 
10259 	/*
10260 	 * If any async tasks have been requested, kick them off.
10261 	 */
10262 	spa_async_dispatch(spa);
10263 }
10264 
10265 /*
10266  * Sync all pools.  We don't want to hold the namespace lock across these
10267  * operations, so we take a reference on the spa_t and drop the lock during the
10268  * sync.
10269  */
10270 void
10271 spa_sync_allpools(void)
10272 {
10273 	spa_t *spa = NULL;
10274 	mutex_enter(&spa_namespace_lock);
10275 	while ((spa = spa_next(spa)) != NULL) {
10276 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10277 		    !spa_writeable(spa) || spa_suspended(spa))
10278 			continue;
10279 		spa_open_ref(spa, FTAG);
10280 		mutex_exit(&spa_namespace_lock);
10281 		txg_wait_synced(spa_get_dsl(spa), 0);
10282 		mutex_enter(&spa_namespace_lock);
10283 		spa_close(spa, FTAG);
10284 	}
10285 	mutex_exit(&spa_namespace_lock);
10286 }
10287 
10288 taskq_t *
10289 spa_sync_tq_create(spa_t *spa, const char *name)
10290 {
10291 	kthread_t **kthreads;
10292 
10293 	ASSERT(spa->spa_sync_tq == NULL);
10294 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10295 
10296 	/*
10297 	 * - do not allow more allocators than cpus.
10298 	 * - there may be more cpus than allocators.
10299 	 * - do not allow more sync taskq threads than allocators or cpus.
10300 	 */
10301 	int nthreads = spa->spa_alloc_count;
10302 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10303 	    nthreads, KM_SLEEP);
10304 
10305 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10306 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10307 	VERIFY(spa->spa_sync_tq != NULL);
10308 	VERIFY(kthreads != NULL);
10309 
10310 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10311 	for (int i = 0; i < nthreads; i++, ti++) {
10312 		ti->sti_thread = kthreads[i];
10313 		ti->sti_allocator = i;
10314 	}
10315 
10316 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10317 	return (spa->spa_sync_tq);
10318 }
10319 
10320 void
10321 spa_sync_tq_destroy(spa_t *spa)
10322 {
10323 	ASSERT(spa->spa_sync_tq != NULL);
10324 
10325 	taskq_wait(spa->spa_sync_tq);
10326 	taskq_destroy(spa->spa_sync_tq);
10327 	kmem_free(spa->spa_syncthreads,
10328 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10329 	spa->spa_sync_tq = NULL;
10330 }
10331 
10332 uint_t
10333 spa_acq_allocator(spa_t *spa)
10334 {
10335 	int i;
10336 
10337 	if (spa->spa_alloc_count == 1)
10338 		return (0);
10339 
10340 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10341 	uint_t r = spa->spa_allocs_use->sau_rotor;
10342 	do {
10343 		if (++r == spa->spa_alloc_count)
10344 			r = 0;
10345 	} while (spa->spa_allocs_use->sau_inuse[r]);
10346 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10347 	spa->spa_allocs_use->sau_rotor = r;
10348 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10349 
10350 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10351 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10352 		if (ti->sti_thread == curthread) {
10353 			ti->sti_allocator = r;
10354 			break;
10355 		}
10356 	}
10357 	ASSERT3S(i, <, spa->spa_alloc_count);
10358 	return (r);
10359 }
10360 
10361 void
10362 spa_rel_allocator(spa_t *spa, uint_t allocator)
10363 {
10364 	if (spa->spa_alloc_count > 1)
10365 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10366 }
10367 
10368 void
10369 spa_select_allocator(zio_t *zio)
10370 {
10371 	zbookmark_phys_t *bm = &zio->io_bookmark;
10372 	spa_t *spa = zio->io_spa;
10373 
10374 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10375 
10376 	/*
10377 	 * A gang block (for example) may have inherited its parent's
10378 	 * allocator, in which case there is nothing further to do here.
10379 	 */
10380 	if (ZIO_HAS_ALLOCATOR(zio))
10381 		return;
10382 
10383 	ASSERT(spa != NULL);
10384 	ASSERT(bm != NULL);
10385 
10386 	/*
10387 	 * First try to use an allocator assigned to the syncthread, and set
10388 	 * the corresponding write issue taskq for the allocator.
10389 	 * Note, we must have an open pool to do this.
10390 	 */
10391 	if (spa->spa_sync_tq != NULL) {
10392 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10393 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10394 			if (ti->sti_thread == curthread) {
10395 				zio->io_allocator = ti->sti_allocator;
10396 				return;
10397 			}
10398 		}
10399 	}
10400 
10401 	/*
10402 	 * We want to try to use as many allocators as possible to help improve
10403 	 * performance, but we also want logically adjacent IOs to be physically
10404 	 * adjacent to improve sequential read performance. We chunk each object
10405 	 * into 2^20 block regions, and then hash based on the objset, object,
10406 	 * level, and region to accomplish both of these goals.
10407 	 */
10408 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10409 	    bm->zb_blkid >> 20);
10410 
10411 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10412 }
10413 
10414 /*
10415  * ==========================================================================
10416  * Miscellaneous routines
10417  * ==========================================================================
10418  */
10419 
10420 /*
10421  * Remove all pools in the system.
10422  */
10423 void
10424 spa_evict_all(void)
10425 {
10426 	spa_t *spa;
10427 
10428 	/*
10429 	 * Remove all cached state.  All pools should be closed now,
10430 	 * so every spa in the AVL tree should be unreferenced.
10431 	 */
10432 	mutex_enter(&spa_namespace_lock);
10433 	while ((spa = spa_next(NULL)) != NULL) {
10434 		/*
10435 		 * Stop async tasks.  The async thread may need to detach
10436 		 * a device that's been replaced, which requires grabbing
10437 		 * spa_namespace_lock, so we must drop it here.
10438 		 */
10439 		spa_open_ref(spa, FTAG);
10440 		mutex_exit(&spa_namespace_lock);
10441 		spa_async_suspend(spa);
10442 		mutex_enter(&spa_namespace_lock);
10443 		spa_close(spa, FTAG);
10444 
10445 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10446 			spa_unload(spa);
10447 			spa_deactivate(spa);
10448 		}
10449 		spa_remove(spa);
10450 	}
10451 	mutex_exit(&spa_namespace_lock);
10452 }
10453 
10454 vdev_t *
10455 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10456 {
10457 	vdev_t *vd;
10458 	int i;
10459 
10460 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10461 		return (vd);
10462 
10463 	if (aux) {
10464 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10465 			vd = spa->spa_l2cache.sav_vdevs[i];
10466 			if (vd->vdev_guid == guid)
10467 				return (vd);
10468 		}
10469 
10470 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10471 			vd = spa->spa_spares.sav_vdevs[i];
10472 			if (vd->vdev_guid == guid)
10473 				return (vd);
10474 		}
10475 	}
10476 
10477 	return (NULL);
10478 }
10479 
10480 void
10481 spa_upgrade(spa_t *spa, uint64_t version)
10482 {
10483 	ASSERT(spa_writeable(spa));
10484 
10485 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10486 
10487 	/*
10488 	 * This should only be called for a non-faulted pool, and since a
10489 	 * future version would result in an unopenable pool, this shouldn't be
10490 	 * possible.
10491 	 */
10492 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10493 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10494 
10495 	spa->spa_uberblock.ub_version = version;
10496 	vdev_config_dirty(spa->spa_root_vdev);
10497 
10498 	spa_config_exit(spa, SCL_ALL, FTAG);
10499 
10500 	txg_wait_synced(spa_get_dsl(spa), 0);
10501 }
10502 
10503 static boolean_t
10504 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10505 {
10506 	(void) spa;
10507 	int i;
10508 	uint64_t vdev_guid;
10509 
10510 	for (i = 0; i < sav->sav_count; i++)
10511 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10512 			return (B_TRUE);
10513 
10514 	for (i = 0; i < sav->sav_npending; i++) {
10515 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10516 		    &vdev_guid) == 0 && vdev_guid == guid)
10517 			return (B_TRUE);
10518 	}
10519 
10520 	return (B_FALSE);
10521 }
10522 
10523 boolean_t
10524 spa_has_l2cache(spa_t *spa, uint64_t guid)
10525 {
10526 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10527 }
10528 
10529 boolean_t
10530 spa_has_spare(spa_t *spa, uint64_t guid)
10531 {
10532 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10533 }
10534 
10535 /*
10536  * Check if a pool has an active shared spare device.
10537  * Note: reference count of an active spare is 2, as a spare and as a replace
10538  */
10539 static boolean_t
10540 spa_has_active_shared_spare(spa_t *spa)
10541 {
10542 	int i, refcnt;
10543 	uint64_t pool;
10544 	spa_aux_vdev_t *sav = &spa->spa_spares;
10545 
10546 	for (i = 0; i < sav->sav_count; i++) {
10547 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10548 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10549 		    refcnt > 2)
10550 			return (B_TRUE);
10551 	}
10552 
10553 	return (B_FALSE);
10554 }
10555 
10556 uint64_t
10557 spa_total_metaslabs(spa_t *spa)
10558 {
10559 	vdev_t *rvd = spa->spa_root_vdev;
10560 
10561 	uint64_t m = 0;
10562 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10563 		vdev_t *vd = rvd->vdev_child[c];
10564 		if (!vdev_is_concrete(vd))
10565 			continue;
10566 		m += vd->vdev_ms_count;
10567 	}
10568 	return (m);
10569 }
10570 
10571 /*
10572  * Notify any waiting threads that some activity has switched from being in-
10573  * progress to not-in-progress so that the thread can wake up and determine
10574  * whether it is finished waiting.
10575  */
10576 void
10577 spa_notify_waiters(spa_t *spa)
10578 {
10579 	/*
10580 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10581 	 * happening between the waiting thread's check and cv_wait.
10582 	 */
10583 	mutex_enter(&spa->spa_activities_lock);
10584 	cv_broadcast(&spa->spa_activities_cv);
10585 	mutex_exit(&spa->spa_activities_lock);
10586 }
10587 
10588 /*
10589  * Notify any waiting threads that the pool is exporting, and then block until
10590  * they are finished using the spa_t.
10591  */
10592 void
10593 spa_wake_waiters(spa_t *spa)
10594 {
10595 	mutex_enter(&spa->spa_activities_lock);
10596 	spa->spa_waiters_cancel = B_TRUE;
10597 	cv_broadcast(&spa->spa_activities_cv);
10598 	while (spa->spa_waiters != 0)
10599 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10600 	spa->spa_waiters_cancel = B_FALSE;
10601 	mutex_exit(&spa->spa_activities_lock);
10602 }
10603 
10604 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10605 static boolean_t
10606 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10607 {
10608 	spa_t *spa = vd->vdev_spa;
10609 
10610 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10611 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10612 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10613 	    activity == ZPOOL_WAIT_TRIM);
10614 
10615 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10616 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10617 
10618 	mutex_exit(&spa->spa_activities_lock);
10619 	mutex_enter(lock);
10620 	mutex_enter(&spa->spa_activities_lock);
10621 
10622 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10623 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10624 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10625 	mutex_exit(lock);
10626 
10627 	if (in_progress)
10628 		return (B_TRUE);
10629 
10630 	for (int i = 0; i < vd->vdev_children; i++) {
10631 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10632 		    activity))
10633 			return (B_TRUE);
10634 	}
10635 
10636 	return (B_FALSE);
10637 }
10638 
10639 /*
10640  * If use_guid is true, this checks whether the vdev specified by guid is
10641  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10642  * is being initialized/trimmed. The caller must hold the config lock and
10643  * spa_activities_lock.
10644  */
10645 static int
10646 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10647     zpool_wait_activity_t activity, boolean_t *in_progress)
10648 {
10649 	mutex_exit(&spa->spa_activities_lock);
10650 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10651 	mutex_enter(&spa->spa_activities_lock);
10652 
10653 	vdev_t *vd;
10654 	if (use_guid) {
10655 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10656 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10657 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10658 			return (EINVAL);
10659 		}
10660 	} else {
10661 		vd = spa->spa_root_vdev;
10662 	}
10663 
10664 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10665 
10666 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10667 	return (0);
10668 }
10669 
10670 /*
10671  * Locking for waiting threads
10672  * ---------------------------
10673  *
10674  * Waiting threads need a way to check whether a given activity is in progress,
10675  * and then, if it is, wait for it to complete. Each activity will have some
10676  * in-memory representation of the relevant on-disk state which can be used to
10677  * determine whether or not the activity is in progress. The in-memory state and
10678  * the locking used to protect it will be different for each activity, and may
10679  * not be suitable for use with a cvar (e.g., some state is protected by the
10680  * config lock). To allow waiting threads to wait without any races, another
10681  * lock, spa_activities_lock, is used.
10682  *
10683  * When the state is checked, both the activity-specific lock (if there is one)
10684  * and spa_activities_lock are held. In some cases, the activity-specific lock
10685  * is acquired explicitly (e.g. the config lock). In others, the locking is
10686  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10687  * thread releases the activity-specific lock and, if the activity is in
10688  * progress, then cv_waits using spa_activities_lock.
10689  *
10690  * The waiting thread is woken when another thread, one completing some
10691  * activity, updates the state of the activity and then calls
10692  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10693  * needs to hold its activity-specific lock when updating the state, and this
10694  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10695  *
10696  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10697  * and because it is held when the waiting thread checks the state of the
10698  * activity, it can never be the case that the completing thread both updates
10699  * the activity state and cv_broadcasts in between the waiting thread's check
10700  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10701  *
10702  * In order to prevent deadlock, when the waiting thread does its check, in some
10703  * cases it will temporarily drop spa_activities_lock in order to acquire the
10704  * activity-specific lock. The order in which spa_activities_lock and the
10705  * activity specific lock are acquired in the waiting thread is determined by
10706  * the order in which they are acquired in the completing thread; if the
10707  * completing thread calls spa_notify_waiters with the activity-specific lock
10708  * held, then the waiting thread must also acquire the activity-specific lock
10709  * first.
10710  */
10711 
10712 static int
10713 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10714     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10715 {
10716 	int error = 0;
10717 
10718 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10719 
10720 	switch (activity) {
10721 	case ZPOOL_WAIT_CKPT_DISCARD:
10722 		*in_progress =
10723 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10724 		    zap_contains(spa_meta_objset(spa),
10725 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10726 		    ENOENT);
10727 		break;
10728 	case ZPOOL_WAIT_FREE:
10729 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10730 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10731 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10732 		    spa_livelist_delete_check(spa));
10733 		break;
10734 	case ZPOOL_WAIT_INITIALIZE:
10735 	case ZPOOL_WAIT_TRIM:
10736 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10737 		    activity, in_progress);
10738 		break;
10739 	case ZPOOL_WAIT_REPLACE:
10740 		mutex_exit(&spa->spa_activities_lock);
10741 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10742 		mutex_enter(&spa->spa_activities_lock);
10743 
10744 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10745 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10746 		break;
10747 	case ZPOOL_WAIT_REMOVE:
10748 		*in_progress = (spa->spa_removing_phys.sr_state ==
10749 		    DSS_SCANNING);
10750 		break;
10751 	case ZPOOL_WAIT_RESILVER:
10752 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10753 		if (*in_progress)
10754 			break;
10755 		zfs_fallthrough;
10756 	case ZPOOL_WAIT_SCRUB:
10757 	{
10758 		boolean_t scanning, paused, is_scrub;
10759 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10760 
10761 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10762 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10763 		paused = dsl_scan_is_paused_scrub(scn);
10764 		*in_progress = (scanning && !paused &&
10765 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10766 		break;
10767 	}
10768 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10769 	{
10770 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10771 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10772 		break;
10773 	}
10774 	default:
10775 		panic("unrecognized value for activity %d", activity);
10776 	}
10777 
10778 	return (error);
10779 }
10780 
10781 static int
10782 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10783     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10784 {
10785 	/*
10786 	 * The tag is used to distinguish between instances of an activity.
10787 	 * 'initialize' and 'trim' are the only activities that we use this for.
10788 	 * The other activities can only have a single instance in progress in a
10789 	 * pool at one time, making the tag unnecessary.
10790 	 *
10791 	 * There can be multiple devices being replaced at once, but since they
10792 	 * all finish once resilvering finishes, we don't bother keeping track
10793 	 * of them individually, we just wait for them all to finish.
10794 	 */
10795 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10796 	    activity != ZPOOL_WAIT_TRIM)
10797 		return (EINVAL);
10798 
10799 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10800 		return (EINVAL);
10801 
10802 	spa_t *spa;
10803 	int error = spa_open(pool, &spa, FTAG);
10804 	if (error != 0)
10805 		return (error);
10806 
10807 	/*
10808 	 * Increment the spa's waiter count so that we can call spa_close and
10809 	 * still ensure that the spa_t doesn't get freed before this thread is
10810 	 * finished with it when the pool is exported. We want to call spa_close
10811 	 * before we start waiting because otherwise the additional ref would
10812 	 * prevent the pool from being exported or destroyed throughout the
10813 	 * potentially long wait.
10814 	 */
10815 	mutex_enter(&spa->spa_activities_lock);
10816 	spa->spa_waiters++;
10817 	spa_close(spa, FTAG);
10818 
10819 	*waited = B_FALSE;
10820 	for (;;) {
10821 		boolean_t in_progress;
10822 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10823 		    &in_progress);
10824 
10825 		if (error || !in_progress || spa->spa_waiters_cancel)
10826 			break;
10827 
10828 		*waited = B_TRUE;
10829 
10830 		if (cv_wait_sig(&spa->spa_activities_cv,
10831 		    &spa->spa_activities_lock) == 0) {
10832 			error = EINTR;
10833 			break;
10834 		}
10835 	}
10836 
10837 	spa->spa_waiters--;
10838 	cv_signal(&spa->spa_waiters_cv);
10839 	mutex_exit(&spa->spa_activities_lock);
10840 
10841 	return (error);
10842 }
10843 
10844 /*
10845  * Wait for a particular instance of the specified activity to complete, where
10846  * the instance is identified by 'tag'
10847  */
10848 int
10849 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10850     boolean_t *waited)
10851 {
10852 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10853 }
10854 
10855 /*
10856  * Wait for all instances of the specified activity complete
10857  */
10858 int
10859 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10860 {
10861 
10862 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10863 }
10864 
10865 sysevent_t *
10866 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10867 {
10868 	sysevent_t *ev = NULL;
10869 #ifdef _KERNEL
10870 	nvlist_t *resource;
10871 
10872 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10873 	if (resource) {
10874 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10875 		ev->resource = resource;
10876 	}
10877 #else
10878 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10879 #endif
10880 	return (ev);
10881 }
10882 
10883 void
10884 spa_event_post(sysevent_t *ev)
10885 {
10886 #ifdef _KERNEL
10887 	if (ev) {
10888 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10889 		kmem_free(ev, sizeof (*ev));
10890 	}
10891 #else
10892 	(void) ev;
10893 #endif
10894 }
10895 
10896 /*
10897  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10898  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10899  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10900  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10901  * or zdb as real changes.
10902  */
10903 void
10904 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10905 {
10906 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10907 }
10908 
10909 /* state manipulation functions */
10910 EXPORT_SYMBOL(spa_open);
10911 EXPORT_SYMBOL(spa_open_rewind);
10912 EXPORT_SYMBOL(spa_get_stats);
10913 EXPORT_SYMBOL(spa_create);
10914 EXPORT_SYMBOL(spa_import);
10915 EXPORT_SYMBOL(spa_tryimport);
10916 EXPORT_SYMBOL(spa_destroy);
10917 EXPORT_SYMBOL(spa_export);
10918 EXPORT_SYMBOL(spa_reset);
10919 EXPORT_SYMBOL(spa_async_request);
10920 EXPORT_SYMBOL(spa_async_suspend);
10921 EXPORT_SYMBOL(spa_async_resume);
10922 EXPORT_SYMBOL(spa_inject_addref);
10923 EXPORT_SYMBOL(spa_inject_delref);
10924 EXPORT_SYMBOL(spa_scan_stat_init);
10925 EXPORT_SYMBOL(spa_scan_get_stats);
10926 
10927 /* device manipulation */
10928 EXPORT_SYMBOL(spa_vdev_add);
10929 EXPORT_SYMBOL(spa_vdev_attach);
10930 EXPORT_SYMBOL(spa_vdev_detach);
10931 EXPORT_SYMBOL(spa_vdev_setpath);
10932 EXPORT_SYMBOL(spa_vdev_setfru);
10933 EXPORT_SYMBOL(spa_vdev_split_mirror);
10934 
10935 /* spare statech is global across all pools) */
10936 EXPORT_SYMBOL(spa_spare_add);
10937 EXPORT_SYMBOL(spa_spare_remove);
10938 EXPORT_SYMBOL(spa_spare_exists);
10939 EXPORT_SYMBOL(spa_spare_activate);
10940 
10941 /* L2ARC statech is global across all pools) */
10942 EXPORT_SYMBOL(spa_l2cache_add);
10943 EXPORT_SYMBOL(spa_l2cache_remove);
10944 EXPORT_SYMBOL(spa_l2cache_exists);
10945 EXPORT_SYMBOL(spa_l2cache_activate);
10946 EXPORT_SYMBOL(spa_l2cache_drop);
10947 
10948 /* scanning */
10949 EXPORT_SYMBOL(spa_scan);
10950 EXPORT_SYMBOL(spa_scan_stop);
10951 
10952 /* spa syncing */
10953 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10954 EXPORT_SYMBOL(spa_sync_allpools);
10955 
10956 /* properties */
10957 EXPORT_SYMBOL(spa_prop_set);
10958 EXPORT_SYMBOL(spa_prop_get);
10959 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10960 
10961 /* asynchronous event notification */
10962 EXPORT_SYMBOL(spa_event_notify);
10963 
10964 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10965 	"Percentage of CPUs to run a metaslab preload taskq");
10966 
10967 /* BEGIN CSTYLED */
10968 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10969 	"log2 fraction of arc that can be used by inflight I/Os when "
10970 	"verifying pool during import");
10971 /* END CSTYLED */
10972 
10973 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10974 	"Set to traverse metadata on pool import");
10975 
10976 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10977 	"Set to traverse data on pool import");
10978 
10979 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10980 	"Print vdev tree to zfs_dbgmsg during pool import");
10981 
10982 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
10983 	"Percentage of CPUs to run an IO worker thread");
10984 
10985 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
10986 	"Number of threads per IO worker taskqueue");
10987 
10988 /* BEGIN CSTYLED */
10989 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10990 	"Allow importing pool with up to this number of missing top-level "
10991 	"vdevs (in read-only mode)");
10992 /* END CSTYLED */
10993 
10994 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10995 	ZMOD_RW, "Set the livelist condense zthr to pause");
10996 
10997 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10998 	ZMOD_RW, "Set the livelist condense synctask to pause");
10999 
11000 /* BEGIN CSTYLED */
11001 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11002 	INT, ZMOD_RW,
11003 	"Whether livelist condensing was canceled in the synctask");
11004 
11005 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11006 	INT, ZMOD_RW,
11007 	"Whether livelist condensing was canceled in the zthr function");
11008 
11009 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11010 	ZMOD_RW,
11011 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11012 	"was being condensed");
11013 
11014 #ifdef _KERNEL
11015 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11016 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11017 	"Configure IO queues for read IO");
11018 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11019 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11020 	"Configure IO queues for write IO");
11021 #endif
11022 /* END CSTYLED */
11023 
11024 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11025 	"Number of CPUs per write issue taskq");
11026