1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 37 * Copyright (c) 2024, Klara Inc. 38 */ 39 40 /* 41 * SPA: Storage Pool Allocator 42 * 43 * This file contains all the routines used when modifying on-disk SPA state. 44 * This includes opening, importing, destroying, exporting a pool, and syncing a 45 * pool. 46 */ 47 48 #include <sys/zfs_context.h> 49 #include <sys/fm/fs/zfs.h> 50 #include <sys/spa_impl.h> 51 #include <sys/zio.h> 52 #include <sys/zio_checksum.h> 53 #include <sys/dmu.h> 54 #include <sys/dmu_tx.h> 55 #include <sys/zap.h> 56 #include <sys/zil.h> 57 #include <sys/brt.h> 58 #include <sys/ddt.h> 59 #include <sys/vdev_impl.h> 60 #include <sys/vdev_removal.h> 61 #include <sys/vdev_indirect_mapping.h> 62 #include <sys/vdev_indirect_births.h> 63 #include <sys/vdev_initialize.h> 64 #include <sys/vdev_rebuild.h> 65 #include <sys/vdev_trim.h> 66 #include <sys/vdev_disk.h> 67 #include <sys/vdev_raidz.h> 68 #include <sys/vdev_draid.h> 69 #include <sys/metaslab.h> 70 #include <sys/metaslab_impl.h> 71 #include <sys/mmp.h> 72 #include <sys/uberblock_impl.h> 73 #include <sys/txg.h> 74 #include <sys/avl.h> 75 #include <sys/bpobj.h> 76 #include <sys/dmu_traverse.h> 77 #include <sys/dmu_objset.h> 78 #include <sys/unique.h> 79 #include <sys/dsl_pool.h> 80 #include <sys/dsl_dataset.h> 81 #include <sys/dsl_dir.h> 82 #include <sys/dsl_prop.h> 83 #include <sys/dsl_synctask.h> 84 #include <sys/fs/zfs.h> 85 #include <sys/arc.h> 86 #include <sys/callb.h> 87 #include <sys/systeminfo.h> 88 #include <sys/zfs_ioctl.h> 89 #include <sys/dsl_scan.h> 90 #include <sys/zfeature.h> 91 #include <sys/dsl_destroy.h> 92 #include <sys/zvol.h> 93 94 #ifdef _KERNEL 95 #include <sys/fm/protocol.h> 96 #include <sys/fm/util.h> 97 #include <sys/callb.h> 98 #include <sys/zone.h> 99 #include <sys/vmsystm.h> 100 #endif /* _KERNEL */ 101 102 #include "zfs_prop.h" 103 #include "zfs_comutil.h" 104 #include <cityhash.h> 105 106 /* 107 * spa_thread() existed on Illumos as a parent thread for the various worker 108 * threads that actually run the pool, as a way to both reference the entire 109 * pool work as a single object, and to share properties like scheduling 110 * options. It has not yet been adapted to Linux or FreeBSD. This define is 111 * used to mark related parts of the code to make things easier for the reader, 112 * and to compile this code out. It can be removed when someone implements it, 113 * moves it to some Illumos-specific place, or removes it entirely. 114 */ 115 #undef HAVE_SPA_THREAD 116 117 /* 118 * The "System Duty Cycle" scheduling class is an Illumos feature to help 119 * prevent CPU-intensive kernel threads from affecting latency on interactive 120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 121 * gated behind a define. On Illumos SDC depends on spa_thread(), but 122 * spa_thread() also has other uses, so this is a separate define. 123 */ 124 #undef HAVE_SYSDC 125 126 /* 127 * The interval, in seconds, at which failed configuration cache file writes 128 * should be retried. 129 */ 130 int zfs_ccw_retry_interval = 300; 131 132 typedef enum zti_modes { 133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 135 ZTI_MODE_SYNC, /* sync thread assigned */ 136 ZTI_MODE_NULL, /* don't create a taskq */ 137 ZTI_NMODES 138 } zti_modes_t; 139 140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 145 146 #define ZTI_N(n) ZTI_P(n, 1) 147 #define ZTI_ONE ZTI_N(1) 148 149 typedef struct zio_taskq_info { 150 zti_modes_t zti_mode; 151 uint_t zti_value; 152 uint_t zti_count; 153 } zio_taskq_info_t; 154 155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 156 "iss", "iss_h", "int", "int_h" 157 }; 158 159 /* 160 * This table defines the taskq settings for each ZFS I/O type. When 161 * initializing a pool, we use this table to create an appropriately sized 162 * taskq. Some operations are low volume and therefore have a small, static 163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 164 * macros. Other operations process a large amount of data; the ZTI_SCALE 165 * macro causes us to create a taskq oriented for throughput. Some operations 166 * are so high frequency and short-lived that the taskq itself can become a 167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 168 * additional degree of parallelism specified by the number of threads per- 169 * taskq and the number of taskqs; when dispatching an event in this case, the 170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 171 * that scales with the number of CPUs. 172 * 173 * The different taskq priorities are to handle the different contexts (issue 174 * and interrupt) and then to reserve threads for high priority I/Os that 175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT 176 * implementation, so separate high priority threads are used there. 177 */ 178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 182 #ifdef illumos 183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 184 #else 185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */ 186 #endif 187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */ 190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 191 }; 192 193 static void spa_sync_version(void *arg, dmu_tx_t *tx); 194 static void spa_sync_props(void *arg, dmu_tx_t *tx); 195 static boolean_t spa_has_active_shared_spare(spa_t *spa); 196 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 197 const char **ereport); 198 static void spa_vdev_resilver_done(spa_t *spa); 199 200 /* 201 * Percentage of all CPUs that can be used by the metaslab preload taskq. 202 */ 203 static uint_t metaslab_preload_pct = 50; 204 205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 207 208 #ifdef HAVE_SYSDC 209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 211 #endif 212 213 #ifdef HAVE_SPA_THREAD 214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 215 #endif 216 217 static uint_t zio_taskq_write_tpq = 16; 218 219 /* 220 * Report any spa_load_verify errors found, but do not fail spa_load. 221 * This is used by zdb to analyze non-idle pools. 222 */ 223 boolean_t spa_load_verify_dryrun = B_FALSE; 224 225 /* 226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 227 * This is used by zdb for spacemaps verification. 228 */ 229 boolean_t spa_mode_readable_spacemaps = B_FALSE; 230 231 /* 232 * This (illegal) pool name is used when temporarily importing a spa_t in order 233 * to get the vdev stats associated with the imported devices. 234 */ 235 #define TRYIMPORT_NAME "$import" 236 237 /* 238 * For debugging purposes: print out vdev tree during pool import. 239 */ 240 static int spa_load_print_vdev_tree = B_FALSE; 241 242 /* 243 * A non-zero value for zfs_max_missing_tvds means that we allow importing 244 * pools with missing top-level vdevs. This is strictly intended for advanced 245 * pool recovery cases since missing data is almost inevitable. Pools with 246 * missing devices can only be imported read-only for safety reasons, and their 247 * fail-mode will be automatically set to "continue". 248 * 249 * With 1 missing vdev we should be able to import the pool and mount all 250 * datasets. User data that was not modified after the missing device has been 251 * added should be recoverable. This means that snapshots created prior to the 252 * addition of that device should be completely intact. 253 * 254 * With 2 missing vdevs, some datasets may fail to mount since there are 255 * dataset statistics that are stored as regular metadata. Some data might be 256 * recoverable if those vdevs were added recently. 257 * 258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 259 * may be missing entirely. Chances of data recovery are very low. Note that 260 * there are also risks of performing an inadvertent rewind as we might be 261 * missing all the vdevs with the latest uberblocks. 262 */ 263 uint64_t zfs_max_missing_tvds = 0; 264 265 /* 266 * The parameters below are similar to zfs_max_missing_tvds but are only 267 * intended for a preliminary open of the pool with an untrusted config which 268 * might be incomplete or out-dated. 269 * 270 * We are more tolerant for pools opened from a cachefile since we could have 271 * an out-dated cachefile where a device removal was not registered. 272 * We could have set the limit arbitrarily high but in the case where devices 273 * are really missing we would want to return the proper error codes; we chose 274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 275 * and we get a chance to retrieve the trusted config. 276 */ 277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 278 279 /* 280 * In the case where config was assembled by scanning device paths (/dev/dsks 281 * by default) we are less tolerant since all the existing devices should have 282 * been detected and we want spa_load to return the right error codes. 283 */ 284 uint64_t zfs_max_missing_tvds_scan = 0; 285 286 /* 287 * Debugging aid that pauses spa_sync() towards the end. 288 */ 289 static const boolean_t zfs_pause_spa_sync = B_FALSE; 290 291 /* 292 * Variables to indicate the livelist condense zthr func should wait at certain 293 * points for the livelist to be removed - used to test condense/destroy races 294 */ 295 static int zfs_livelist_condense_zthr_pause = 0; 296 static int zfs_livelist_condense_sync_pause = 0; 297 298 /* 299 * Variables to track whether or not condense cancellation has been 300 * triggered in testing. 301 */ 302 static int zfs_livelist_condense_sync_cancel = 0; 303 static int zfs_livelist_condense_zthr_cancel = 0; 304 305 /* 306 * Variable to track whether or not extra ALLOC blkptrs were added to a 307 * livelist entry while it was being condensed (caused by the way we track 308 * remapped blkptrs in dbuf_remap_impl) 309 */ 310 static int zfs_livelist_condense_new_alloc = 0; 311 312 /* 313 * ========================================================================== 314 * SPA properties routines 315 * ========================================================================== 316 */ 317 318 /* 319 * Add a (source=src, propname=propval) list to an nvlist. 320 */ 321 static void 322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 323 uint64_t intval, zprop_source_t src) 324 { 325 const char *propname = zpool_prop_to_name(prop); 326 nvlist_t *propval; 327 328 propval = fnvlist_alloc(); 329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 330 331 if (strval != NULL) 332 fnvlist_add_string(propval, ZPROP_VALUE, strval); 333 else 334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 335 336 fnvlist_add_nvlist(nvl, propname, propval); 337 nvlist_free(propval); 338 } 339 340 /* 341 * Add a user property (source=src, propname=propval) to an nvlist. 342 */ 343 static void 344 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 345 zprop_source_t src) 346 { 347 nvlist_t *propval; 348 349 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 350 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 351 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 352 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 353 nvlist_free(propval); 354 } 355 356 /* 357 * Get property values from the spa configuration. 358 */ 359 static void 360 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 361 { 362 vdev_t *rvd = spa->spa_root_vdev; 363 dsl_pool_t *pool = spa->spa_dsl_pool; 364 uint64_t size, alloc, cap, version; 365 const zprop_source_t src = ZPROP_SRC_NONE; 366 spa_config_dirent_t *dp; 367 metaslab_class_t *mc = spa_normal_class(spa); 368 369 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 370 371 if (rvd != NULL) { 372 alloc = metaslab_class_get_alloc(mc); 373 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 374 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 375 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 376 377 size = metaslab_class_get_space(mc); 378 size += metaslab_class_get_space(spa_special_class(spa)); 379 size += metaslab_class_get_space(spa_dedup_class(spa)); 380 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 381 382 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 383 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 384 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 385 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 386 size - alloc, src); 387 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 388 spa->spa_checkpoint_info.sci_dspace, src); 389 390 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 391 metaslab_class_fragmentation(mc), src); 392 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 393 metaslab_class_expandable_space(mc), src); 394 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 395 (spa_mode(spa) == SPA_MODE_READ), src); 396 397 cap = (size == 0) ? 0 : (alloc * 100 / size); 398 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 399 400 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 401 ddt_get_pool_dedup_ratio(spa), src); 402 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL, 403 brt_get_used(spa), src); 404 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL, 405 brt_get_saved(spa), src); 406 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL, 407 brt_get_ratio(spa), src); 408 409 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 410 rvd->vdev_state, src); 411 412 version = spa_version(spa); 413 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 414 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 415 version, ZPROP_SRC_DEFAULT); 416 } else { 417 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 418 version, ZPROP_SRC_LOCAL); 419 } 420 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 421 NULL, spa_load_guid(spa), src); 422 } 423 424 if (pool != NULL) { 425 /* 426 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 427 * when opening pools before this version freedir will be NULL. 428 */ 429 if (pool->dp_free_dir != NULL) { 430 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 431 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 432 src); 433 } else { 434 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 435 NULL, 0, src); 436 } 437 438 if (pool->dp_leak_dir != NULL) { 439 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 440 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 441 src); 442 } else { 443 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 444 NULL, 0, src); 445 } 446 } 447 448 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 449 450 if (spa->spa_comment != NULL) { 451 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 452 0, ZPROP_SRC_LOCAL); 453 } 454 455 if (spa->spa_compatibility != NULL) { 456 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY, 457 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 458 } 459 460 if (spa->spa_root != NULL) 461 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 462 0, ZPROP_SRC_LOCAL); 463 464 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 465 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 466 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 467 } else { 468 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 469 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 470 } 471 472 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 473 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 474 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 475 } else { 476 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 477 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 478 } 479 480 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 481 if (dp->scd_path == NULL) { 482 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 483 "none", 0, ZPROP_SRC_LOCAL); 484 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 485 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 486 dp->scd_path, 0, ZPROP_SRC_LOCAL); 487 } 488 } 489 } 490 491 /* 492 * Get zpool property values. 493 */ 494 int 495 spa_prop_get(spa_t *spa, nvlist_t **nvp) 496 { 497 objset_t *mos = spa->spa_meta_objset; 498 zap_cursor_t zc; 499 zap_attribute_t za; 500 dsl_pool_t *dp; 501 int err; 502 503 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 504 if (err) 505 return (err); 506 507 dp = spa_get_dsl(spa); 508 dsl_pool_config_enter(dp, FTAG); 509 mutex_enter(&spa->spa_props_lock); 510 511 /* 512 * Get properties from the spa config. 513 */ 514 spa_prop_get_config(spa, nvp); 515 516 /* If no pool property object, no more prop to get. */ 517 if (mos == NULL || spa->spa_pool_props_object == 0) 518 goto out; 519 520 /* 521 * Get properties from the MOS pool property object. 522 */ 523 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 524 (err = zap_cursor_retrieve(&zc, &za)) == 0; 525 zap_cursor_advance(&zc)) { 526 uint64_t intval = 0; 527 char *strval = NULL; 528 zprop_source_t src = ZPROP_SRC_DEFAULT; 529 zpool_prop_t prop; 530 531 if ((prop = zpool_name_to_prop(za.za_name)) == 532 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name)) 533 continue; 534 535 switch (za.za_integer_length) { 536 case 8: 537 /* integer property */ 538 if (za.za_first_integer != 539 zpool_prop_default_numeric(prop)) 540 src = ZPROP_SRC_LOCAL; 541 542 if (prop == ZPOOL_PROP_BOOTFS) { 543 dsl_dataset_t *ds = NULL; 544 545 err = dsl_dataset_hold_obj(dp, 546 za.za_first_integer, FTAG, &ds); 547 if (err != 0) 548 break; 549 550 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 551 KM_SLEEP); 552 dsl_dataset_name(ds, strval); 553 dsl_dataset_rele(ds, FTAG); 554 } else { 555 strval = NULL; 556 intval = za.za_first_integer; 557 } 558 559 spa_prop_add_list(*nvp, prop, strval, intval, src); 560 561 if (strval != NULL) 562 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 563 564 break; 565 566 case 1: 567 /* string property */ 568 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 569 err = zap_lookup(mos, spa->spa_pool_props_object, 570 za.za_name, 1, za.za_num_integers, strval); 571 if (err) { 572 kmem_free(strval, za.za_num_integers); 573 break; 574 } 575 if (prop != ZPOOL_PROP_INVAL) { 576 spa_prop_add_list(*nvp, prop, strval, 0, src); 577 } else { 578 src = ZPROP_SRC_LOCAL; 579 spa_prop_add_user(*nvp, za.za_name, strval, 580 src); 581 } 582 kmem_free(strval, za.za_num_integers); 583 break; 584 585 default: 586 break; 587 } 588 } 589 zap_cursor_fini(&zc); 590 out: 591 mutex_exit(&spa->spa_props_lock); 592 dsl_pool_config_exit(dp, FTAG); 593 if (err && err != ENOENT) { 594 nvlist_free(*nvp); 595 *nvp = NULL; 596 return (err); 597 } 598 599 return (0); 600 } 601 602 /* 603 * Validate the given pool properties nvlist and modify the list 604 * for the property values to be set. 605 */ 606 static int 607 spa_prop_validate(spa_t *spa, nvlist_t *props) 608 { 609 nvpair_t *elem; 610 int error = 0, reset_bootfs = 0; 611 uint64_t objnum = 0; 612 boolean_t has_feature = B_FALSE; 613 614 elem = NULL; 615 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 616 uint64_t intval; 617 const char *strval, *slash, *check, *fname; 618 const char *propname = nvpair_name(elem); 619 zpool_prop_t prop = zpool_name_to_prop(propname); 620 621 switch (prop) { 622 case ZPOOL_PROP_INVAL: 623 /* 624 * Sanitize the input. 625 */ 626 if (zfs_prop_user(propname)) { 627 if (strlen(propname) >= ZAP_MAXNAMELEN) { 628 error = SET_ERROR(ENAMETOOLONG); 629 break; 630 } 631 632 if (strlen(fnvpair_value_string(elem)) >= 633 ZAP_MAXVALUELEN) { 634 error = SET_ERROR(E2BIG); 635 break; 636 } 637 } else if (zpool_prop_feature(propname)) { 638 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 639 error = SET_ERROR(EINVAL); 640 break; 641 } 642 643 if (nvpair_value_uint64(elem, &intval) != 0) { 644 error = SET_ERROR(EINVAL); 645 break; 646 } 647 648 if (intval != 0) { 649 error = SET_ERROR(EINVAL); 650 break; 651 } 652 653 fname = strchr(propname, '@') + 1; 654 if (zfeature_lookup_name(fname, NULL) != 0) { 655 error = SET_ERROR(EINVAL); 656 break; 657 } 658 659 has_feature = B_TRUE; 660 } else { 661 error = SET_ERROR(EINVAL); 662 break; 663 } 664 break; 665 666 case ZPOOL_PROP_VERSION: 667 error = nvpair_value_uint64(elem, &intval); 668 if (!error && 669 (intval < spa_version(spa) || 670 intval > SPA_VERSION_BEFORE_FEATURES || 671 has_feature)) 672 error = SET_ERROR(EINVAL); 673 break; 674 675 case ZPOOL_PROP_DELEGATION: 676 case ZPOOL_PROP_AUTOREPLACE: 677 case ZPOOL_PROP_LISTSNAPS: 678 case ZPOOL_PROP_AUTOEXPAND: 679 case ZPOOL_PROP_AUTOTRIM: 680 error = nvpair_value_uint64(elem, &intval); 681 if (!error && intval > 1) 682 error = SET_ERROR(EINVAL); 683 break; 684 685 case ZPOOL_PROP_MULTIHOST: 686 error = nvpair_value_uint64(elem, &intval); 687 if (!error && intval > 1) 688 error = SET_ERROR(EINVAL); 689 690 if (!error) { 691 uint32_t hostid = zone_get_hostid(NULL); 692 if (hostid) 693 spa->spa_hostid = hostid; 694 else 695 error = SET_ERROR(ENOTSUP); 696 } 697 698 break; 699 700 case ZPOOL_PROP_BOOTFS: 701 /* 702 * If the pool version is less than SPA_VERSION_BOOTFS, 703 * or the pool is still being created (version == 0), 704 * the bootfs property cannot be set. 705 */ 706 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 707 error = SET_ERROR(ENOTSUP); 708 break; 709 } 710 711 /* 712 * Make sure the vdev config is bootable 713 */ 714 if (!vdev_is_bootable(spa->spa_root_vdev)) { 715 error = SET_ERROR(ENOTSUP); 716 break; 717 } 718 719 reset_bootfs = 1; 720 721 error = nvpair_value_string(elem, &strval); 722 723 if (!error) { 724 objset_t *os; 725 726 if (strval == NULL || strval[0] == '\0') { 727 objnum = zpool_prop_default_numeric( 728 ZPOOL_PROP_BOOTFS); 729 break; 730 } 731 732 error = dmu_objset_hold(strval, FTAG, &os); 733 if (error != 0) 734 break; 735 736 /* Must be ZPL. */ 737 if (dmu_objset_type(os) != DMU_OST_ZFS) { 738 error = SET_ERROR(ENOTSUP); 739 } else { 740 objnum = dmu_objset_id(os); 741 } 742 dmu_objset_rele(os, FTAG); 743 } 744 break; 745 746 case ZPOOL_PROP_FAILUREMODE: 747 error = nvpair_value_uint64(elem, &intval); 748 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 749 error = SET_ERROR(EINVAL); 750 751 /* 752 * This is a special case which only occurs when 753 * the pool has completely failed. This allows 754 * the user to change the in-core failmode property 755 * without syncing it out to disk (I/Os might 756 * currently be blocked). We do this by returning 757 * EIO to the caller (spa_prop_set) to trick it 758 * into thinking we encountered a property validation 759 * error. 760 */ 761 if (!error && spa_suspended(spa)) { 762 spa->spa_failmode = intval; 763 error = SET_ERROR(EIO); 764 } 765 break; 766 767 case ZPOOL_PROP_CACHEFILE: 768 if ((error = nvpair_value_string(elem, &strval)) != 0) 769 break; 770 771 if (strval[0] == '\0') 772 break; 773 774 if (strcmp(strval, "none") == 0) 775 break; 776 777 if (strval[0] != '/') { 778 error = SET_ERROR(EINVAL); 779 break; 780 } 781 782 slash = strrchr(strval, '/'); 783 ASSERT(slash != NULL); 784 785 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 786 strcmp(slash, "/..") == 0) 787 error = SET_ERROR(EINVAL); 788 break; 789 790 case ZPOOL_PROP_COMMENT: 791 if ((error = nvpair_value_string(elem, &strval)) != 0) 792 break; 793 for (check = strval; *check != '\0'; check++) { 794 if (!isprint(*check)) { 795 error = SET_ERROR(EINVAL); 796 break; 797 } 798 } 799 if (strlen(strval) > ZPROP_MAX_COMMENT) 800 error = SET_ERROR(E2BIG); 801 break; 802 803 default: 804 break; 805 } 806 807 if (error) 808 break; 809 } 810 811 (void) nvlist_remove_all(props, 812 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 813 814 if (!error && reset_bootfs) { 815 error = nvlist_remove(props, 816 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 817 818 if (!error) { 819 error = nvlist_add_uint64(props, 820 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 821 } 822 } 823 824 return (error); 825 } 826 827 void 828 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 829 { 830 const char *cachefile; 831 spa_config_dirent_t *dp; 832 833 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 834 &cachefile) != 0) 835 return; 836 837 dp = kmem_alloc(sizeof (spa_config_dirent_t), 838 KM_SLEEP); 839 840 if (cachefile[0] == '\0') 841 dp->scd_path = spa_strdup(spa_config_path); 842 else if (strcmp(cachefile, "none") == 0) 843 dp->scd_path = NULL; 844 else 845 dp->scd_path = spa_strdup(cachefile); 846 847 list_insert_head(&spa->spa_config_list, dp); 848 if (need_sync) 849 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 850 } 851 852 int 853 spa_prop_set(spa_t *spa, nvlist_t *nvp) 854 { 855 int error; 856 nvpair_t *elem = NULL; 857 boolean_t need_sync = B_FALSE; 858 859 if ((error = spa_prop_validate(spa, nvp)) != 0) 860 return (error); 861 862 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 863 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 864 865 if (prop == ZPOOL_PROP_CACHEFILE || 866 prop == ZPOOL_PROP_ALTROOT || 867 prop == ZPOOL_PROP_READONLY) 868 continue; 869 870 if (prop == ZPOOL_PROP_INVAL && 871 zfs_prop_user(nvpair_name(elem))) { 872 need_sync = B_TRUE; 873 break; 874 } 875 876 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 877 uint64_t ver = 0; 878 879 if (prop == ZPOOL_PROP_VERSION) { 880 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 881 } else { 882 ASSERT(zpool_prop_feature(nvpair_name(elem))); 883 ver = SPA_VERSION_FEATURES; 884 need_sync = B_TRUE; 885 } 886 887 /* Save time if the version is already set. */ 888 if (ver == spa_version(spa)) 889 continue; 890 891 /* 892 * In addition to the pool directory object, we might 893 * create the pool properties object, the features for 894 * read object, the features for write object, or the 895 * feature descriptions object. 896 */ 897 error = dsl_sync_task(spa->spa_name, NULL, 898 spa_sync_version, &ver, 899 6, ZFS_SPACE_CHECK_RESERVED); 900 if (error) 901 return (error); 902 continue; 903 } 904 905 need_sync = B_TRUE; 906 break; 907 } 908 909 if (need_sync) { 910 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 911 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 912 } 913 914 return (0); 915 } 916 917 /* 918 * If the bootfs property value is dsobj, clear it. 919 */ 920 void 921 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 922 { 923 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 924 VERIFY(zap_remove(spa->spa_meta_objset, 925 spa->spa_pool_props_object, 926 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 927 spa->spa_bootfs = 0; 928 } 929 } 930 931 static int 932 spa_change_guid_check(void *arg, dmu_tx_t *tx) 933 { 934 uint64_t *newguid __maybe_unused = arg; 935 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 936 vdev_t *rvd = spa->spa_root_vdev; 937 uint64_t vdev_state; 938 939 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 940 int error = (spa_has_checkpoint(spa)) ? 941 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 942 return (SET_ERROR(error)); 943 } 944 945 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 946 vdev_state = rvd->vdev_state; 947 spa_config_exit(spa, SCL_STATE, FTAG); 948 949 if (vdev_state != VDEV_STATE_HEALTHY) 950 return (SET_ERROR(ENXIO)); 951 952 ASSERT3U(spa_guid(spa), !=, *newguid); 953 954 return (0); 955 } 956 957 static void 958 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 959 { 960 uint64_t *newguid = arg; 961 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 962 uint64_t oldguid; 963 vdev_t *rvd = spa->spa_root_vdev; 964 965 oldguid = spa_guid(spa); 966 967 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 968 rvd->vdev_guid = *newguid; 969 rvd->vdev_guid_sum += (*newguid - oldguid); 970 vdev_config_dirty(rvd); 971 spa_config_exit(spa, SCL_STATE, FTAG); 972 973 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 974 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 975 } 976 977 /* 978 * Change the GUID for the pool. This is done so that we can later 979 * re-import a pool built from a clone of our own vdevs. We will modify 980 * the root vdev's guid, our own pool guid, and then mark all of our 981 * vdevs dirty. Note that we must make sure that all our vdevs are 982 * online when we do this, or else any vdevs that weren't present 983 * would be orphaned from our pool. We are also going to issue a 984 * sysevent to update any watchers. 985 */ 986 int 987 spa_change_guid(spa_t *spa) 988 { 989 int error; 990 uint64_t guid; 991 992 mutex_enter(&spa->spa_vdev_top_lock); 993 mutex_enter(&spa_namespace_lock); 994 guid = spa_generate_guid(NULL); 995 996 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 997 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 998 999 if (error == 0) { 1000 /* 1001 * Clear the kobj flag from all the vdevs to allow 1002 * vdev_cache_process_kobj_evt() to post events to all the 1003 * vdevs since GUID is updated. 1004 */ 1005 vdev_clear_kobj_evt(spa->spa_root_vdev); 1006 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1007 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1008 1009 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1010 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1011 } 1012 1013 mutex_exit(&spa_namespace_lock); 1014 mutex_exit(&spa->spa_vdev_top_lock); 1015 1016 return (error); 1017 } 1018 1019 /* 1020 * ========================================================================== 1021 * SPA state manipulation (open/create/destroy/import/export) 1022 * ========================================================================== 1023 */ 1024 1025 static int 1026 spa_error_entry_compare(const void *a, const void *b) 1027 { 1028 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1029 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1030 int ret; 1031 1032 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1033 sizeof (zbookmark_phys_t)); 1034 1035 return (TREE_ISIGN(ret)); 1036 } 1037 1038 /* 1039 * Utility function which retrieves copies of the current logs and 1040 * re-initializes them in the process. 1041 */ 1042 void 1043 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1044 { 1045 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1046 1047 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1048 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1049 1050 avl_create(&spa->spa_errlist_scrub, 1051 spa_error_entry_compare, sizeof (spa_error_entry_t), 1052 offsetof(spa_error_entry_t, se_avl)); 1053 avl_create(&spa->spa_errlist_last, 1054 spa_error_entry_compare, sizeof (spa_error_entry_t), 1055 offsetof(spa_error_entry_t, se_avl)); 1056 } 1057 1058 static void 1059 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1060 { 1061 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1062 enum zti_modes mode = ztip->zti_mode; 1063 uint_t value = ztip->zti_value; 1064 uint_t count = ztip->zti_count; 1065 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1066 uint_t cpus, flags = TASKQ_DYNAMIC; 1067 1068 switch (mode) { 1069 case ZTI_MODE_FIXED: 1070 ASSERT3U(value, >, 0); 1071 break; 1072 1073 case ZTI_MODE_SYNC: 1074 1075 /* 1076 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs, 1077 * not to exceed the number of spa allocators, and align to it. 1078 */ 1079 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1080 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq)); 1081 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1082 count = MIN(count, spa->spa_alloc_count); 1083 while (spa->spa_alloc_count % count != 0 && 1084 spa->spa_alloc_count < count * 2) 1085 count--; 1086 1087 /* 1088 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1089 * single taskq may have more threads than 100% of online cpus. 1090 */ 1091 value = (zio_taskq_batch_pct + count / 2) / count; 1092 value = MIN(value, 100); 1093 flags |= TASKQ_THREADS_CPU_PCT; 1094 break; 1095 1096 case ZTI_MODE_SCALE: 1097 flags |= TASKQ_THREADS_CPU_PCT; 1098 /* 1099 * We want more taskqs to reduce lock contention, but we want 1100 * less for better request ordering and CPU utilization. 1101 */ 1102 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1103 if (zio_taskq_batch_tpq > 0) { 1104 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1105 zio_taskq_batch_tpq); 1106 } else { 1107 /* 1108 * Prefer 6 threads per taskq, but no more taskqs 1109 * than threads in them on large systems. For 80%: 1110 * 1111 * taskq taskq total 1112 * cpus taskqs percent threads threads 1113 * ------- ------- ------- ------- ------- 1114 * 1 1 80% 1 1 1115 * 2 1 80% 1 1 1116 * 4 1 80% 3 3 1117 * 8 2 40% 3 6 1118 * 16 3 27% 4 12 1119 * 32 5 16% 5 25 1120 * 64 7 11% 7 49 1121 * 128 10 8% 10 100 1122 * 256 14 6% 15 210 1123 */ 1124 count = 1 + cpus / 6; 1125 while (count * count > cpus) 1126 count--; 1127 } 1128 /* Limit each taskq within 100% to not trigger assertion. */ 1129 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1130 value = (zio_taskq_batch_pct + count / 2) / count; 1131 break; 1132 1133 case ZTI_MODE_NULL: 1134 tqs->stqs_count = 0; 1135 tqs->stqs_taskq = NULL; 1136 return; 1137 1138 default: 1139 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1140 "spa_taskqs_init()", 1141 zio_type_name[t], zio_taskq_types[q], mode, value); 1142 break; 1143 } 1144 1145 ASSERT3U(count, >, 0); 1146 tqs->stqs_count = count; 1147 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1148 1149 for (uint_t i = 0; i < count; i++) { 1150 taskq_t *tq; 1151 char name[32]; 1152 1153 if (count > 1) 1154 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1155 zio_type_name[t], zio_taskq_types[q], i); 1156 else 1157 (void) snprintf(name, sizeof (name), "%s_%s", 1158 zio_type_name[t], zio_taskq_types[q]); 1159 1160 #ifdef HAVE_SYSDC 1161 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1162 (void) zio_taskq_basedc; 1163 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1164 spa->spa_proc, zio_taskq_basedc, flags); 1165 } else { 1166 #endif 1167 pri_t pri = maxclsyspri; 1168 /* 1169 * The write issue taskq can be extremely CPU 1170 * intensive. Run it at slightly less important 1171 * priority than the other taskqs. 1172 * 1173 * Under Linux and FreeBSD this means incrementing 1174 * the priority value as opposed to platforms like 1175 * illumos where it should be decremented. 1176 * 1177 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1178 * are equal then a difference between them is 1179 * insignificant. 1180 */ 1181 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1182 #if defined(__linux__) 1183 pri++; 1184 #elif defined(__FreeBSD__) 1185 pri += 4; 1186 #else 1187 #error "unknown OS" 1188 #endif 1189 } 1190 tq = taskq_create_proc(name, value, pri, 50, 1191 INT_MAX, spa->spa_proc, flags); 1192 #ifdef HAVE_SYSDC 1193 } 1194 #endif 1195 1196 tqs->stqs_taskq[i] = tq; 1197 } 1198 } 1199 1200 static void 1201 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1202 { 1203 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1204 1205 if (tqs->stqs_taskq == NULL) { 1206 ASSERT3U(tqs->stqs_count, ==, 0); 1207 return; 1208 } 1209 1210 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1211 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1212 taskq_destroy(tqs->stqs_taskq[i]); 1213 } 1214 1215 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1216 tqs->stqs_taskq = NULL; 1217 } 1218 1219 #ifdef _KERNEL 1220 /* 1221 * The READ and WRITE rows of zio_taskqs are configurable at module load time 1222 * by setting zio_taskq_read or zio_taskq_write. 1223 * 1224 * Example (the defaults for READ and WRITE) 1225 * zio_taskq_read='fixed,1,8 null scale null' 1226 * zio_taskq_write='sync null scale null' 1227 * 1228 * Each sets the entire row at a time. 1229 * 1230 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number 1231 * of threads per taskq. 1232 * 1233 * 'null' can only be set on the high-priority queues (queue selection for 1234 * high-priority queues will fall back to the regular queue if the high-pri 1235 * is NULL. 1236 */ 1237 static const char *const modes[ZTI_NMODES] = { 1238 "fixed", "scale", "sync", "null" 1239 }; 1240 1241 /* Parse the incoming config string. Modifies cfg */ 1242 static int 1243 spa_taskq_param_set(zio_type_t t, char *cfg) 1244 { 1245 int err = 0; 1246 1247 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}}; 1248 1249 char *next = cfg, *tok, *c; 1250 1251 /* 1252 * Parse out each element from the string and fill `row`. The entire 1253 * row has to be set at once, so any errors are flagged by just 1254 * breaking out of this loop early. 1255 */ 1256 uint_t q; 1257 for (q = 0; q < ZIO_TASKQ_TYPES; q++) { 1258 /* `next` is the start of the config */ 1259 if (next == NULL) 1260 break; 1261 1262 /* Eat up leading space */ 1263 while (isspace(*next)) 1264 next++; 1265 if (*next == '\0') 1266 break; 1267 1268 /* Mode ends at space or end of string */ 1269 tok = next; 1270 next = strchr(tok, ' '); 1271 if (next != NULL) *next++ = '\0'; 1272 1273 /* Parameters start after a comma */ 1274 c = strchr(tok, ','); 1275 if (c != NULL) *c++ = '\0'; 1276 1277 /* Match mode string */ 1278 uint_t mode; 1279 for (mode = 0; mode < ZTI_NMODES; mode++) 1280 if (strcmp(tok, modes[mode]) == 0) 1281 break; 1282 if (mode == ZTI_NMODES) 1283 break; 1284 1285 /* Invalid canary */ 1286 row[q].zti_mode = ZTI_NMODES; 1287 1288 /* Per-mode setup */ 1289 switch (mode) { 1290 1291 /* 1292 * FIXED is parameterised: number of queues, and number of 1293 * threads per queue. 1294 */ 1295 case ZTI_MODE_FIXED: { 1296 /* No parameters? */ 1297 if (c == NULL || *c == '\0') 1298 break; 1299 1300 /* Find next parameter */ 1301 tok = c; 1302 c = strchr(tok, ','); 1303 if (c == NULL) 1304 break; 1305 1306 /* Take digits and convert */ 1307 unsigned long long nq; 1308 if (!(isdigit(*tok))) 1309 break; 1310 err = ddi_strtoull(tok, &tok, 10, &nq); 1311 /* Must succeed and also end at the next param sep */ 1312 if (err != 0 || tok != c) 1313 break; 1314 1315 /* Move past the comma */ 1316 tok++; 1317 /* Need another number */ 1318 if (!(isdigit(*tok))) 1319 break; 1320 /* Remember start to make sure we moved */ 1321 c = tok; 1322 1323 /* Take digits */ 1324 unsigned long long ntpq; 1325 err = ddi_strtoull(tok, &tok, 10, &ntpq); 1326 /* Must succeed, and moved forward */ 1327 if (err != 0 || tok == c || *tok != '\0') 1328 break; 1329 1330 /* 1331 * sanity; zero queues/threads make no sense, and 1332 * 16K is almost certainly more than anyone will ever 1333 * need and avoids silly numbers like UINT32_MAX 1334 */ 1335 if (nq == 0 || nq >= 16384 || 1336 ntpq == 0 || ntpq >= 16384) 1337 break; 1338 1339 const zio_taskq_info_t zti = ZTI_P(ntpq, nq); 1340 row[q] = zti; 1341 break; 1342 } 1343 1344 case ZTI_MODE_SCALE: { 1345 const zio_taskq_info_t zti = ZTI_SCALE; 1346 row[q] = zti; 1347 break; 1348 } 1349 1350 case ZTI_MODE_SYNC: { 1351 const zio_taskq_info_t zti = ZTI_SYNC; 1352 row[q] = zti; 1353 break; 1354 } 1355 1356 case ZTI_MODE_NULL: { 1357 /* 1358 * Can only null the high-priority queues; the general- 1359 * purpose ones have to exist. 1360 */ 1361 if (q != ZIO_TASKQ_ISSUE_HIGH && 1362 q != ZIO_TASKQ_INTERRUPT_HIGH) 1363 break; 1364 1365 const zio_taskq_info_t zti = ZTI_NULL; 1366 row[q] = zti; 1367 break; 1368 } 1369 1370 default: 1371 break; 1372 } 1373 1374 /* Ensure we set a mode */ 1375 if (row[q].zti_mode == ZTI_NMODES) 1376 break; 1377 } 1378 1379 /* Didn't get a full row, fail */ 1380 if (q < ZIO_TASKQ_TYPES) 1381 return (SET_ERROR(EINVAL)); 1382 1383 /* Eat trailing space */ 1384 if (next != NULL) 1385 while (isspace(*next)) 1386 next++; 1387 1388 /* If there's anything left over then fail */ 1389 if (next != NULL && *next != '\0') 1390 return (SET_ERROR(EINVAL)); 1391 1392 /* Success! Copy it into the real config */ 1393 for (q = 0; q < ZIO_TASKQ_TYPES; q++) 1394 zio_taskqs[t][q] = row[q]; 1395 1396 return (0); 1397 } 1398 1399 static int 1400 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline) 1401 { 1402 int pos = 0; 1403 1404 /* Build paramater string from live config */ 1405 const char *sep = ""; 1406 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) { 1407 const zio_taskq_info_t *zti = &zio_taskqs[t][q]; 1408 if (zti->zti_mode == ZTI_MODE_FIXED) 1409 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep, 1410 modes[zti->zti_mode], zti->zti_count, 1411 zti->zti_value); 1412 else 1413 pos += sprintf(&buf[pos], "%s%s", sep, 1414 modes[zti->zti_mode]); 1415 sep = " "; 1416 } 1417 1418 if (add_newline) 1419 buf[pos++] = '\n'; 1420 buf[pos] = '\0'; 1421 1422 return (pos); 1423 } 1424 1425 #ifdef __linux__ 1426 static int 1427 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp) 1428 { 1429 char *cfg = kmem_strdup(val); 1430 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg); 1431 kmem_free(cfg, strlen(val)+1); 1432 return (-err); 1433 } 1434 static int 1435 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp) 1436 { 1437 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE)); 1438 } 1439 1440 static int 1441 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp) 1442 { 1443 char *cfg = kmem_strdup(val); 1444 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg); 1445 kmem_free(cfg, strlen(val)+1); 1446 return (-err); 1447 } 1448 static int 1449 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp) 1450 { 1451 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE)); 1452 } 1453 #else 1454 /* 1455 * On FreeBSD load-time parameters can be set up before malloc() is available, 1456 * so we have to do all the parsing work on the stack. 1457 */ 1458 #define SPA_TASKQ_PARAM_MAX (128) 1459 1460 static int 1461 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS) 1462 { 1463 char buf[SPA_TASKQ_PARAM_MAX]; 1464 int err; 1465 1466 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE); 1467 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1468 if (err || req->newptr == NULL) 1469 return (err); 1470 return (spa_taskq_param_set(ZIO_TYPE_READ, buf)); 1471 } 1472 1473 static int 1474 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS) 1475 { 1476 char buf[SPA_TASKQ_PARAM_MAX]; 1477 int err; 1478 1479 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE); 1480 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1481 if (err || req->newptr == NULL) 1482 return (err); 1483 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf)); 1484 } 1485 #endif 1486 #endif /* _KERNEL */ 1487 1488 /* 1489 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1490 * Note that a type may have multiple discrete taskqs to avoid lock contention 1491 * on the taskq itself. 1492 */ 1493 void 1494 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1495 task_func_t *func, zio_t *zio, boolean_t cutinline) 1496 { 1497 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1498 taskq_t *tq; 1499 1500 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1501 ASSERT3U(tqs->stqs_count, !=, 0); 1502 1503 /* 1504 * NB: We are assuming that the zio can only be dispatched 1505 * to a single taskq at a time. It would be a grievous error 1506 * to dispatch the zio to another taskq at the same time. 1507 */ 1508 ASSERT(zio); 1509 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1510 1511 if (tqs->stqs_count == 1) { 1512 tq = tqs->stqs_taskq[0]; 1513 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1514 ZIO_HAS_ALLOCATOR(zio)) { 1515 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count]; 1516 } else { 1517 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1518 } 1519 1520 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0, 1521 &zio->io_tqent); 1522 } 1523 1524 static void 1525 spa_create_zio_taskqs(spa_t *spa) 1526 { 1527 for (int t = 0; t < ZIO_TYPES; t++) { 1528 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1529 spa_taskqs_init(spa, t, q); 1530 } 1531 } 1532 } 1533 1534 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1535 static void 1536 spa_thread(void *arg) 1537 { 1538 psetid_t zio_taskq_psrset_bind = PS_NONE; 1539 callb_cpr_t cprinfo; 1540 1541 spa_t *spa = arg; 1542 user_t *pu = PTOU(curproc); 1543 1544 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1545 spa->spa_name); 1546 1547 ASSERT(curproc != &p0); 1548 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1549 "zpool-%s", spa->spa_name); 1550 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1551 1552 /* bind this thread to the requested psrset */ 1553 if (zio_taskq_psrset_bind != PS_NONE) { 1554 pool_lock(); 1555 mutex_enter(&cpu_lock); 1556 mutex_enter(&pidlock); 1557 mutex_enter(&curproc->p_lock); 1558 1559 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1560 0, NULL, NULL) == 0) { 1561 curthread->t_bind_pset = zio_taskq_psrset_bind; 1562 } else { 1563 cmn_err(CE_WARN, 1564 "Couldn't bind process for zfs pool \"%s\" to " 1565 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1566 } 1567 1568 mutex_exit(&curproc->p_lock); 1569 mutex_exit(&pidlock); 1570 mutex_exit(&cpu_lock); 1571 pool_unlock(); 1572 } 1573 1574 #ifdef HAVE_SYSDC 1575 if (zio_taskq_sysdc) { 1576 sysdc_thread_enter(curthread, 100, 0); 1577 } 1578 #endif 1579 1580 spa->spa_proc = curproc; 1581 spa->spa_did = curthread->t_did; 1582 1583 spa_create_zio_taskqs(spa); 1584 1585 mutex_enter(&spa->spa_proc_lock); 1586 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1587 1588 spa->spa_proc_state = SPA_PROC_ACTIVE; 1589 cv_broadcast(&spa->spa_proc_cv); 1590 1591 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1592 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1593 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1594 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1595 1596 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1597 spa->spa_proc_state = SPA_PROC_GONE; 1598 spa->spa_proc = &p0; 1599 cv_broadcast(&spa->spa_proc_cv); 1600 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1601 1602 mutex_enter(&curproc->p_lock); 1603 lwp_exit(); 1604 } 1605 #endif 1606 1607 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1608 1609 /* 1610 * Activate an uninitialized pool. 1611 */ 1612 static void 1613 spa_activate(spa_t *spa, spa_mode_t mode) 1614 { 1615 metaslab_ops_t *msp = metaslab_allocator(spa); 1616 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1617 1618 spa->spa_state = POOL_STATE_ACTIVE; 1619 spa->spa_mode = mode; 1620 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1621 1622 spa->spa_normal_class = metaslab_class_create(spa, msp); 1623 spa->spa_log_class = metaslab_class_create(spa, msp); 1624 spa->spa_embedded_log_class = metaslab_class_create(spa, msp); 1625 spa->spa_special_class = metaslab_class_create(spa, msp); 1626 spa->spa_dedup_class = metaslab_class_create(spa, msp); 1627 1628 /* Try to create a covering process */ 1629 mutex_enter(&spa->spa_proc_lock); 1630 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1631 ASSERT(spa->spa_proc == &p0); 1632 spa->spa_did = 0; 1633 1634 #ifdef HAVE_SPA_THREAD 1635 /* Only create a process if we're going to be around a while. */ 1636 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1637 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1638 NULL, 0) == 0) { 1639 spa->spa_proc_state = SPA_PROC_CREATED; 1640 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1641 cv_wait(&spa->spa_proc_cv, 1642 &spa->spa_proc_lock); 1643 } 1644 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1645 ASSERT(spa->spa_proc != &p0); 1646 ASSERT(spa->spa_did != 0); 1647 } else { 1648 #ifdef _KERNEL 1649 cmn_err(CE_WARN, 1650 "Couldn't create process for zfs pool \"%s\"\n", 1651 spa->spa_name); 1652 #endif 1653 } 1654 } 1655 #endif /* HAVE_SPA_THREAD */ 1656 mutex_exit(&spa->spa_proc_lock); 1657 1658 /* If we didn't create a process, we need to create our taskqs. */ 1659 if (spa->spa_proc == &p0) { 1660 spa_create_zio_taskqs(spa); 1661 } 1662 1663 for (size_t i = 0; i < TXG_SIZE; i++) { 1664 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1665 ZIO_FLAG_CANFAIL); 1666 } 1667 1668 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1669 offsetof(vdev_t, vdev_config_dirty_node)); 1670 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1671 offsetof(objset_t, os_evicting_node)); 1672 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1673 offsetof(vdev_t, vdev_state_dirty_node)); 1674 1675 txg_list_create(&spa->spa_vdev_txg_list, spa, 1676 offsetof(struct vdev, vdev_txg_node)); 1677 1678 avl_create(&spa->spa_errlist_scrub, 1679 spa_error_entry_compare, sizeof (spa_error_entry_t), 1680 offsetof(spa_error_entry_t, se_avl)); 1681 avl_create(&spa->spa_errlist_last, 1682 spa_error_entry_compare, sizeof (spa_error_entry_t), 1683 offsetof(spa_error_entry_t, se_avl)); 1684 avl_create(&spa->spa_errlist_healed, 1685 spa_error_entry_compare, sizeof (spa_error_entry_t), 1686 offsetof(spa_error_entry_t, se_avl)); 1687 1688 spa_activate_os(spa); 1689 1690 spa_keystore_init(&spa->spa_keystore); 1691 1692 /* 1693 * This taskq is used to perform zvol-minor-related tasks 1694 * asynchronously. This has several advantages, including easy 1695 * resolution of various deadlocks. 1696 * 1697 * The taskq must be single threaded to ensure tasks are always 1698 * processed in the order in which they were dispatched. 1699 * 1700 * A taskq per pool allows one to keep the pools independent. 1701 * This way if one pool is suspended, it will not impact another. 1702 * 1703 * The preferred location to dispatch a zvol minor task is a sync 1704 * task. In this context, there is easy access to the spa_t and minimal 1705 * error handling is required because the sync task must succeed. 1706 */ 1707 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1708 1, INT_MAX, 0); 1709 1710 /* 1711 * The taskq to preload metaslabs. 1712 */ 1713 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1714 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1715 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1716 1717 /* 1718 * Taskq dedicated to prefetcher threads: this is used to prevent the 1719 * pool traverse code from monopolizing the global (and limited) 1720 * system_taskq by inappropriately scheduling long running tasks on it. 1721 */ 1722 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1723 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1724 1725 /* 1726 * The taskq to upgrade datasets in this pool. Currently used by 1727 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1728 */ 1729 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1730 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1731 } 1732 1733 /* 1734 * Opposite of spa_activate(). 1735 */ 1736 static void 1737 spa_deactivate(spa_t *spa) 1738 { 1739 ASSERT(spa->spa_sync_on == B_FALSE); 1740 ASSERT(spa->spa_dsl_pool == NULL); 1741 ASSERT(spa->spa_root_vdev == NULL); 1742 ASSERT(spa->spa_async_zio_root == NULL); 1743 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1744 1745 spa_evicting_os_wait(spa); 1746 1747 if (spa->spa_zvol_taskq) { 1748 taskq_destroy(spa->spa_zvol_taskq); 1749 spa->spa_zvol_taskq = NULL; 1750 } 1751 1752 if (spa->spa_metaslab_taskq) { 1753 taskq_destroy(spa->spa_metaslab_taskq); 1754 spa->spa_metaslab_taskq = NULL; 1755 } 1756 1757 if (spa->spa_prefetch_taskq) { 1758 taskq_destroy(spa->spa_prefetch_taskq); 1759 spa->spa_prefetch_taskq = NULL; 1760 } 1761 1762 if (spa->spa_upgrade_taskq) { 1763 taskq_destroy(spa->spa_upgrade_taskq); 1764 spa->spa_upgrade_taskq = NULL; 1765 } 1766 1767 txg_list_destroy(&spa->spa_vdev_txg_list); 1768 1769 list_destroy(&spa->spa_config_dirty_list); 1770 list_destroy(&spa->spa_evicting_os_list); 1771 list_destroy(&spa->spa_state_dirty_list); 1772 1773 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1774 1775 for (int t = 0; t < ZIO_TYPES; t++) { 1776 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1777 spa_taskqs_fini(spa, t, q); 1778 } 1779 } 1780 1781 for (size_t i = 0; i < TXG_SIZE; i++) { 1782 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1783 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1784 spa->spa_txg_zio[i] = NULL; 1785 } 1786 1787 metaslab_class_destroy(spa->spa_normal_class); 1788 spa->spa_normal_class = NULL; 1789 1790 metaslab_class_destroy(spa->spa_log_class); 1791 spa->spa_log_class = NULL; 1792 1793 metaslab_class_destroy(spa->spa_embedded_log_class); 1794 spa->spa_embedded_log_class = NULL; 1795 1796 metaslab_class_destroy(spa->spa_special_class); 1797 spa->spa_special_class = NULL; 1798 1799 metaslab_class_destroy(spa->spa_dedup_class); 1800 spa->spa_dedup_class = NULL; 1801 1802 /* 1803 * If this was part of an import or the open otherwise failed, we may 1804 * still have errors left in the queues. Empty them just in case. 1805 */ 1806 spa_errlog_drain(spa); 1807 avl_destroy(&spa->spa_errlist_scrub); 1808 avl_destroy(&spa->spa_errlist_last); 1809 avl_destroy(&spa->spa_errlist_healed); 1810 1811 spa_keystore_fini(&spa->spa_keystore); 1812 1813 spa->spa_state = POOL_STATE_UNINITIALIZED; 1814 1815 mutex_enter(&spa->spa_proc_lock); 1816 if (spa->spa_proc_state != SPA_PROC_NONE) { 1817 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1818 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1819 cv_broadcast(&spa->spa_proc_cv); 1820 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1821 ASSERT(spa->spa_proc != &p0); 1822 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1823 } 1824 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1825 spa->spa_proc_state = SPA_PROC_NONE; 1826 } 1827 ASSERT(spa->spa_proc == &p0); 1828 mutex_exit(&spa->spa_proc_lock); 1829 1830 /* 1831 * We want to make sure spa_thread() has actually exited the ZFS 1832 * module, so that the module can't be unloaded out from underneath 1833 * it. 1834 */ 1835 if (spa->spa_did != 0) { 1836 thread_join(spa->spa_did); 1837 spa->spa_did = 0; 1838 } 1839 1840 spa_deactivate_os(spa); 1841 1842 } 1843 1844 /* 1845 * Verify a pool configuration, and construct the vdev tree appropriately. This 1846 * will create all the necessary vdevs in the appropriate layout, with each vdev 1847 * in the CLOSED state. This will prep the pool before open/creation/import. 1848 * All vdev validation is done by the vdev_alloc() routine. 1849 */ 1850 int 1851 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1852 uint_t id, int atype) 1853 { 1854 nvlist_t **child; 1855 uint_t children; 1856 int error; 1857 1858 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1859 return (error); 1860 1861 if ((*vdp)->vdev_ops->vdev_op_leaf) 1862 return (0); 1863 1864 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1865 &child, &children); 1866 1867 if (error == ENOENT) 1868 return (0); 1869 1870 if (error) { 1871 vdev_free(*vdp); 1872 *vdp = NULL; 1873 return (SET_ERROR(EINVAL)); 1874 } 1875 1876 for (int c = 0; c < children; c++) { 1877 vdev_t *vd; 1878 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1879 atype)) != 0) { 1880 vdev_free(*vdp); 1881 *vdp = NULL; 1882 return (error); 1883 } 1884 } 1885 1886 ASSERT(*vdp != NULL); 1887 1888 return (0); 1889 } 1890 1891 static boolean_t 1892 spa_should_flush_logs_on_unload(spa_t *spa) 1893 { 1894 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1895 return (B_FALSE); 1896 1897 if (!spa_writeable(spa)) 1898 return (B_FALSE); 1899 1900 if (!spa->spa_sync_on) 1901 return (B_FALSE); 1902 1903 if (spa_state(spa) != POOL_STATE_EXPORTED) 1904 return (B_FALSE); 1905 1906 if (zfs_keep_log_spacemaps_at_export) 1907 return (B_FALSE); 1908 1909 return (B_TRUE); 1910 } 1911 1912 /* 1913 * Opens a transaction that will set the flag that will instruct 1914 * spa_sync to attempt to flush all the metaslabs for that txg. 1915 */ 1916 static void 1917 spa_unload_log_sm_flush_all(spa_t *spa) 1918 { 1919 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1920 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1921 1922 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1923 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1924 1925 dmu_tx_commit(tx); 1926 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1927 } 1928 1929 static void 1930 spa_unload_log_sm_metadata(spa_t *spa) 1931 { 1932 void *cookie = NULL; 1933 spa_log_sm_t *sls; 1934 log_summary_entry_t *e; 1935 1936 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1937 &cookie)) != NULL) { 1938 VERIFY0(sls->sls_mscount); 1939 kmem_free(sls, sizeof (spa_log_sm_t)); 1940 } 1941 1942 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 1943 VERIFY0(e->lse_mscount); 1944 kmem_free(e, sizeof (log_summary_entry_t)); 1945 } 1946 1947 spa->spa_unflushed_stats.sus_nblocks = 0; 1948 spa->spa_unflushed_stats.sus_memused = 0; 1949 spa->spa_unflushed_stats.sus_blocklimit = 0; 1950 } 1951 1952 static void 1953 spa_destroy_aux_threads(spa_t *spa) 1954 { 1955 if (spa->spa_condense_zthr != NULL) { 1956 zthr_destroy(spa->spa_condense_zthr); 1957 spa->spa_condense_zthr = NULL; 1958 } 1959 if (spa->spa_checkpoint_discard_zthr != NULL) { 1960 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1961 spa->spa_checkpoint_discard_zthr = NULL; 1962 } 1963 if (spa->spa_livelist_delete_zthr != NULL) { 1964 zthr_destroy(spa->spa_livelist_delete_zthr); 1965 spa->spa_livelist_delete_zthr = NULL; 1966 } 1967 if (spa->spa_livelist_condense_zthr != NULL) { 1968 zthr_destroy(spa->spa_livelist_condense_zthr); 1969 spa->spa_livelist_condense_zthr = NULL; 1970 } 1971 if (spa->spa_raidz_expand_zthr != NULL) { 1972 zthr_destroy(spa->spa_raidz_expand_zthr); 1973 spa->spa_raidz_expand_zthr = NULL; 1974 } 1975 } 1976 1977 /* 1978 * Opposite of spa_load(). 1979 */ 1980 static void 1981 spa_unload(spa_t *spa) 1982 { 1983 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 1984 spa->spa_export_thread == curthread); 1985 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1986 1987 spa_import_progress_remove(spa_guid(spa)); 1988 spa_load_note(spa, "UNLOADING"); 1989 1990 spa_wake_waiters(spa); 1991 1992 /* 1993 * If we have set the spa_final_txg, we have already performed the 1994 * tasks below in spa_export_common(). We should not redo it here since 1995 * we delay the final TXGs beyond what spa_final_txg is set at. 1996 */ 1997 if (spa->spa_final_txg == UINT64_MAX) { 1998 /* 1999 * If the log space map feature is enabled and the pool is 2000 * getting exported (but not destroyed), we want to spend some 2001 * time flushing as many metaslabs as we can in an attempt to 2002 * destroy log space maps and save import time. 2003 */ 2004 if (spa_should_flush_logs_on_unload(spa)) 2005 spa_unload_log_sm_flush_all(spa); 2006 2007 /* 2008 * Stop async tasks. 2009 */ 2010 spa_async_suspend(spa); 2011 2012 if (spa->spa_root_vdev) { 2013 vdev_t *root_vdev = spa->spa_root_vdev; 2014 vdev_initialize_stop_all(root_vdev, 2015 VDEV_INITIALIZE_ACTIVE); 2016 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 2017 vdev_autotrim_stop_all(spa); 2018 vdev_rebuild_stop_all(spa); 2019 } 2020 } 2021 2022 /* 2023 * Stop syncing. 2024 */ 2025 if (spa->spa_sync_on) { 2026 txg_sync_stop(spa->spa_dsl_pool); 2027 spa->spa_sync_on = B_FALSE; 2028 } 2029 2030 /* 2031 * This ensures that there is no async metaslab prefetching 2032 * while we attempt to unload the spa. 2033 */ 2034 taskq_wait(spa->spa_metaslab_taskq); 2035 2036 if (spa->spa_mmp.mmp_thread) 2037 mmp_thread_stop(spa); 2038 2039 /* 2040 * Wait for any outstanding async I/O to complete. 2041 */ 2042 if (spa->spa_async_zio_root != NULL) { 2043 for (int i = 0; i < max_ncpus; i++) 2044 (void) zio_wait(spa->spa_async_zio_root[i]); 2045 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 2046 spa->spa_async_zio_root = NULL; 2047 } 2048 2049 if (spa->spa_vdev_removal != NULL) { 2050 spa_vdev_removal_destroy(spa->spa_vdev_removal); 2051 spa->spa_vdev_removal = NULL; 2052 } 2053 2054 spa_destroy_aux_threads(spa); 2055 2056 spa_condense_fini(spa); 2057 2058 bpobj_close(&spa->spa_deferred_bpobj); 2059 2060 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 2061 2062 /* 2063 * Close all vdevs. 2064 */ 2065 if (spa->spa_root_vdev) 2066 vdev_free(spa->spa_root_vdev); 2067 ASSERT(spa->spa_root_vdev == NULL); 2068 2069 /* 2070 * Close the dsl pool. 2071 */ 2072 if (spa->spa_dsl_pool) { 2073 dsl_pool_close(spa->spa_dsl_pool); 2074 spa->spa_dsl_pool = NULL; 2075 spa->spa_meta_objset = NULL; 2076 } 2077 2078 ddt_unload(spa); 2079 brt_unload(spa); 2080 spa_unload_log_sm_metadata(spa); 2081 2082 /* 2083 * Drop and purge level 2 cache 2084 */ 2085 spa_l2cache_drop(spa); 2086 2087 if (spa->spa_spares.sav_vdevs) { 2088 for (int i = 0; i < spa->spa_spares.sav_count; i++) 2089 vdev_free(spa->spa_spares.sav_vdevs[i]); 2090 kmem_free(spa->spa_spares.sav_vdevs, 2091 spa->spa_spares.sav_count * sizeof (void *)); 2092 spa->spa_spares.sav_vdevs = NULL; 2093 } 2094 if (spa->spa_spares.sav_config) { 2095 nvlist_free(spa->spa_spares.sav_config); 2096 spa->spa_spares.sav_config = NULL; 2097 } 2098 spa->spa_spares.sav_count = 0; 2099 2100 if (spa->spa_l2cache.sav_vdevs) { 2101 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 2102 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 2103 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 2104 } 2105 kmem_free(spa->spa_l2cache.sav_vdevs, 2106 spa->spa_l2cache.sav_count * sizeof (void *)); 2107 spa->spa_l2cache.sav_vdevs = NULL; 2108 } 2109 if (spa->spa_l2cache.sav_config) { 2110 nvlist_free(spa->spa_l2cache.sav_config); 2111 spa->spa_l2cache.sav_config = NULL; 2112 } 2113 spa->spa_l2cache.sav_count = 0; 2114 2115 spa->spa_async_suspended = 0; 2116 2117 spa->spa_indirect_vdevs_loaded = B_FALSE; 2118 2119 if (spa->spa_comment != NULL) { 2120 spa_strfree(spa->spa_comment); 2121 spa->spa_comment = NULL; 2122 } 2123 if (spa->spa_compatibility != NULL) { 2124 spa_strfree(spa->spa_compatibility); 2125 spa->spa_compatibility = NULL; 2126 } 2127 2128 spa->spa_raidz_expand = NULL; 2129 2130 spa_config_exit(spa, SCL_ALL, spa); 2131 } 2132 2133 /* 2134 * Load (or re-load) the current list of vdevs describing the active spares for 2135 * this pool. When this is called, we have some form of basic information in 2136 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 2137 * then re-generate a more complete list including status information. 2138 */ 2139 void 2140 spa_load_spares(spa_t *spa) 2141 { 2142 nvlist_t **spares; 2143 uint_t nspares; 2144 int i; 2145 vdev_t *vd, *tvd; 2146 2147 #ifndef _KERNEL 2148 /* 2149 * zdb opens both the current state of the pool and the 2150 * checkpointed state (if present), with a different spa_t. 2151 * 2152 * As spare vdevs are shared among open pools, we skip loading 2153 * them when we load the checkpointed state of the pool. 2154 */ 2155 if (!spa_writeable(spa)) 2156 return; 2157 #endif 2158 2159 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2160 2161 /* 2162 * First, close and free any existing spare vdevs. 2163 */ 2164 if (spa->spa_spares.sav_vdevs) { 2165 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2166 vd = spa->spa_spares.sav_vdevs[i]; 2167 2168 /* Undo the call to spa_activate() below */ 2169 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2170 B_FALSE)) != NULL && tvd->vdev_isspare) 2171 spa_spare_remove(tvd); 2172 vdev_close(vd); 2173 vdev_free(vd); 2174 } 2175 2176 kmem_free(spa->spa_spares.sav_vdevs, 2177 spa->spa_spares.sav_count * sizeof (void *)); 2178 } 2179 2180 if (spa->spa_spares.sav_config == NULL) 2181 nspares = 0; 2182 else 2183 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2184 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 2185 2186 spa->spa_spares.sav_count = (int)nspares; 2187 spa->spa_spares.sav_vdevs = NULL; 2188 2189 if (nspares == 0) 2190 return; 2191 2192 /* 2193 * Construct the array of vdevs, opening them to get status in the 2194 * process. For each spare, there is potentially two different vdev_t 2195 * structures associated with it: one in the list of spares (used only 2196 * for basic validation purposes) and one in the active vdev 2197 * configuration (if it's spared in). During this phase we open and 2198 * validate each vdev on the spare list. If the vdev also exists in the 2199 * active configuration, then we also mark this vdev as an active spare. 2200 */ 2201 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 2202 KM_SLEEP); 2203 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2204 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 2205 VDEV_ALLOC_SPARE) == 0); 2206 ASSERT(vd != NULL); 2207 2208 spa->spa_spares.sav_vdevs[i] = vd; 2209 2210 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2211 B_FALSE)) != NULL) { 2212 if (!tvd->vdev_isspare) 2213 spa_spare_add(tvd); 2214 2215 /* 2216 * We only mark the spare active if we were successfully 2217 * able to load the vdev. Otherwise, importing a pool 2218 * with a bad active spare would result in strange 2219 * behavior, because multiple pool would think the spare 2220 * is actively in use. 2221 * 2222 * There is a vulnerability here to an equally bizarre 2223 * circumstance, where a dead active spare is later 2224 * brought back to life (onlined or otherwise). Given 2225 * the rarity of this scenario, and the extra complexity 2226 * it adds, we ignore the possibility. 2227 */ 2228 if (!vdev_is_dead(tvd)) 2229 spa_spare_activate(tvd); 2230 } 2231 2232 vd->vdev_top = vd; 2233 vd->vdev_aux = &spa->spa_spares; 2234 2235 if (vdev_open(vd) != 0) 2236 continue; 2237 2238 if (vdev_validate_aux(vd) == 0) 2239 spa_spare_add(vd); 2240 } 2241 2242 /* 2243 * Recompute the stashed list of spares, with status information 2244 * this time. 2245 */ 2246 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 2247 2248 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 2249 KM_SLEEP); 2250 for (i = 0; i < spa->spa_spares.sav_count; i++) 2251 spares[i] = vdev_config_generate(spa, 2252 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 2253 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 2254 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 2255 spa->spa_spares.sav_count); 2256 for (i = 0; i < spa->spa_spares.sav_count; i++) 2257 nvlist_free(spares[i]); 2258 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2259 } 2260 2261 /* 2262 * Load (or re-load) the current list of vdevs describing the active l2cache for 2263 * this pool. When this is called, we have some form of basic information in 2264 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2265 * then re-generate a more complete list including status information. 2266 * Devices which are already active have their details maintained, and are 2267 * not re-opened. 2268 */ 2269 void 2270 spa_load_l2cache(spa_t *spa) 2271 { 2272 nvlist_t **l2cache = NULL; 2273 uint_t nl2cache; 2274 int i, j, oldnvdevs; 2275 uint64_t guid; 2276 vdev_t *vd, **oldvdevs, **newvdevs; 2277 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2278 2279 #ifndef _KERNEL 2280 /* 2281 * zdb opens both the current state of the pool and the 2282 * checkpointed state (if present), with a different spa_t. 2283 * 2284 * As L2 caches are part of the ARC which is shared among open 2285 * pools, we skip loading them when we load the checkpointed 2286 * state of the pool. 2287 */ 2288 if (!spa_writeable(spa)) 2289 return; 2290 #endif 2291 2292 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2293 2294 oldvdevs = sav->sav_vdevs; 2295 oldnvdevs = sav->sav_count; 2296 sav->sav_vdevs = NULL; 2297 sav->sav_count = 0; 2298 2299 if (sav->sav_config == NULL) { 2300 nl2cache = 0; 2301 newvdevs = NULL; 2302 goto out; 2303 } 2304 2305 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2306 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2307 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2308 2309 /* 2310 * Process new nvlist of vdevs. 2311 */ 2312 for (i = 0; i < nl2cache; i++) { 2313 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2314 2315 newvdevs[i] = NULL; 2316 for (j = 0; j < oldnvdevs; j++) { 2317 vd = oldvdevs[j]; 2318 if (vd != NULL && guid == vd->vdev_guid) { 2319 /* 2320 * Retain previous vdev for add/remove ops. 2321 */ 2322 newvdevs[i] = vd; 2323 oldvdevs[j] = NULL; 2324 break; 2325 } 2326 } 2327 2328 if (newvdevs[i] == NULL) { 2329 /* 2330 * Create new vdev 2331 */ 2332 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2333 VDEV_ALLOC_L2CACHE) == 0); 2334 ASSERT(vd != NULL); 2335 newvdevs[i] = vd; 2336 2337 /* 2338 * Commit this vdev as an l2cache device, 2339 * even if it fails to open. 2340 */ 2341 spa_l2cache_add(vd); 2342 2343 vd->vdev_top = vd; 2344 vd->vdev_aux = sav; 2345 2346 spa_l2cache_activate(vd); 2347 2348 if (vdev_open(vd) != 0) 2349 continue; 2350 2351 (void) vdev_validate_aux(vd); 2352 2353 if (!vdev_is_dead(vd)) 2354 l2arc_add_vdev(spa, vd); 2355 2356 /* 2357 * Upon cache device addition to a pool or pool 2358 * creation with a cache device or if the header 2359 * of the device is invalid we issue an async 2360 * TRIM command for the whole device which will 2361 * execute if l2arc_trim_ahead > 0. 2362 */ 2363 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2364 } 2365 } 2366 2367 sav->sav_vdevs = newvdevs; 2368 sav->sav_count = (int)nl2cache; 2369 2370 /* 2371 * Recompute the stashed list of l2cache devices, with status 2372 * information this time. 2373 */ 2374 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2375 2376 if (sav->sav_count > 0) 2377 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2378 KM_SLEEP); 2379 for (i = 0; i < sav->sav_count; i++) 2380 l2cache[i] = vdev_config_generate(spa, 2381 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2382 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2383 (const nvlist_t * const *)l2cache, sav->sav_count); 2384 2385 out: 2386 /* 2387 * Purge vdevs that were dropped 2388 */ 2389 if (oldvdevs) { 2390 for (i = 0; i < oldnvdevs; i++) { 2391 uint64_t pool; 2392 2393 vd = oldvdevs[i]; 2394 if (vd != NULL) { 2395 ASSERT(vd->vdev_isl2cache); 2396 2397 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2398 pool != 0ULL && l2arc_vdev_present(vd)) 2399 l2arc_remove_vdev(vd); 2400 vdev_clear_stats(vd); 2401 vdev_free(vd); 2402 } 2403 } 2404 2405 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2406 } 2407 2408 for (i = 0; i < sav->sav_count; i++) 2409 nvlist_free(l2cache[i]); 2410 if (sav->sav_count) 2411 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2412 } 2413 2414 static int 2415 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2416 { 2417 dmu_buf_t *db; 2418 char *packed = NULL; 2419 size_t nvsize = 0; 2420 int error; 2421 *value = NULL; 2422 2423 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2424 if (error) 2425 return (error); 2426 2427 nvsize = *(uint64_t *)db->db_data; 2428 dmu_buf_rele(db, FTAG); 2429 2430 packed = vmem_alloc(nvsize, KM_SLEEP); 2431 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2432 DMU_READ_PREFETCH); 2433 if (error == 0) 2434 error = nvlist_unpack(packed, nvsize, value, 0); 2435 vmem_free(packed, nvsize); 2436 2437 return (error); 2438 } 2439 2440 /* 2441 * Concrete top-level vdevs that are not missing and are not logs. At every 2442 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2443 */ 2444 static uint64_t 2445 spa_healthy_core_tvds(spa_t *spa) 2446 { 2447 vdev_t *rvd = spa->spa_root_vdev; 2448 uint64_t tvds = 0; 2449 2450 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2451 vdev_t *vd = rvd->vdev_child[i]; 2452 if (vd->vdev_islog) 2453 continue; 2454 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2455 tvds++; 2456 } 2457 2458 return (tvds); 2459 } 2460 2461 /* 2462 * Checks to see if the given vdev could not be opened, in which case we post a 2463 * sysevent to notify the autoreplace code that the device has been removed. 2464 */ 2465 static void 2466 spa_check_removed(vdev_t *vd) 2467 { 2468 for (uint64_t c = 0; c < vd->vdev_children; c++) 2469 spa_check_removed(vd->vdev_child[c]); 2470 2471 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2472 vdev_is_concrete(vd)) { 2473 zfs_post_autoreplace(vd->vdev_spa, vd); 2474 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2475 } 2476 } 2477 2478 static int 2479 spa_check_for_missing_logs(spa_t *spa) 2480 { 2481 vdev_t *rvd = spa->spa_root_vdev; 2482 2483 /* 2484 * If we're doing a normal import, then build up any additional 2485 * diagnostic information about missing log devices. 2486 * We'll pass this up to the user for further processing. 2487 */ 2488 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2489 nvlist_t **child, *nv; 2490 uint64_t idx = 0; 2491 2492 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2493 KM_SLEEP); 2494 nv = fnvlist_alloc(); 2495 2496 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2497 vdev_t *tvd = rvd->vdev_child[c]; 2498 2499 /* 2500 * We consider a device as missing only if it failed 2501 * to open (i.e. offline or faulted is not considered 2502 * as missing). 2503 */ 2504 if (tvd->vdev_islog && 2505 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2506 child[idx++] = vdev_config_generate(spa, tvd, 2507 B_FALSE, VDEV_CONFIG_MISSING); 2508 } 2509 } 2510 2511 if (idx > 0) { 2512 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2513 (const nvlist_t * const *)child, idx); 2514 fnvlist_add_nvlist(spa->spa_load_info, 2515 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2516 2517 for (uint64_t i = 0; i < idx; i++) 2518 nvlist_free(child[i]); 2519 } 2520 nvlist_free(nv); 2521 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2522 2523 if (idx > 0) { 2524 spa_load_failed(spa, "some log devices are missing"); 2525 vdev_dbgmsg_print_tree(rvd, 2); 2526 return (SET_ERROR(ENXIO)); 2527 } 2528 } else { 2529 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2530 vdev_t *tvd = rvd->vdev_child[c]; 2531 2532 if (tvd->vdev_islog && 2533 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2534 spa_set_log_state(spa, SPA_LOG_CLEAR); 2535 spa_load_note(spa, "some log devices are " 2536 "missing, ZIL is dropped."); 2537 vdev_dbgmsg_print_tree(rvd, 2); 2538 break; 2539 } 2540 } 2541 } 2542 2543 return (0); 2544 } 2545 2546 /* 2547 * Check for missing log devices 2548 */ 2549 static boolean_t 2550 spa_check_logs(spa_t *spa) 2551 { 2552 boolean_t rv = B_FALSE; 2553 dsl_pool_t *dp = spa_get_dsl(spa); 2554 2555 switch (spa->spa_log_state) { 2556 default: 2557 break; 2558 case SPA_LOG_MISSING: 2559 /* need to recheck in case slog has been restored */ 2560 case SPA_LOG_UNKNOWN: 2561 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2562 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2563 if (rv) 2564 spa_set_log_state(spa, SPA_LOG_MISSING); 2565 break; 2566 } 2567 return (rv); 2568 } 2569 2570 /* 2571 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2572 */ 2573 static boolean_t 2574 spa_passivate_log(spa_t *spa) 2575 { 2576 vdev_t *rvd = spa->spa_root_vdev; 2577 boolean_t slog_found = B_FALSE; 2578 2579 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2580 2581 for (int c = 0; c < rvd->vdev_children; c++) { 2582 vdev_t *tvd = rvd->vdev_child[c]; 2583 2584 if (tvd->vdev_islog) { 2585 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2586 metaslab_group_passivate(tvd->vdev_mg); 2587 slog_found = B_TRUE; 2588 } 2589 } 2590 2591 return (slog_found); 2592 } 2593 2594 /* 2595 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2596 */ 2597 static void 2598 spa_activate_log(spa_t *spa) 2599 { 2600 vdev_t *rvd = spa->spa_root_vdev; 2601 2602 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2603 2604 for (int c = 0; c < rvd->vdev_children; c++) { 2605 vdev_t *tvd = rvd->vdev_child[c]; 2606 2607 if (tvd->vdev_islog) { 2608 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2609 metaslab_group_activate(tvd->vdev_mg); 2610 } 2611 } 2612 } 2613 2614 int 2615 spa_reset_logs(spa_t *spa) 2616 { 2617 int error; 2618 2619 error = dmu_objset_find(spa_name(spa), zil_reset, 2620 NULL, DS_FIND_CHILDREN); 2621 if (error == 0) { 2622 /* 2623 * We successfully offlined the log device, sync out the 2624 * current txg so that the "stubby" block can be removed 2625 * by zil_sync(). 2626 */ 2627 txg_wait_synced(spa->spa_dsl_pool, 0); 2628 } 2629 return (error); 2630 } 2631 2632 static void 2633 spa_aux_check_removed(spa_aux_vdev_t *sav) 2634 { 2635 for (int i = 0; i < sav->sav_count; i++) 2636 spa_check_removed(sav->sav_vdevs[i]); 2637 } 2638 2639 void 2640 spa_claim_notify(zio_t *zio) 2641 { 2642 spa_t *spa = zio->io_spa; 2643 2644 if (zio->io_error) 2645 return; 2646 2647 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2648 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp)) 2649 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp); 2650 mutex_exit(&spa->spa_props_lock); 2651 } 2652 2653 typedef struct spa_load_error { 2654 boolean_t sle_verify_data; 2655 uint64_t sle_meta_count; 2656 uint64_t sle_data_count; 2657 } spa_load_error_t; 2658 2659 static void 2660 spa_load_verify_done(zio_t *zio) 2661 { 2662 blkptr_t *bp = zio->io_bp; 2663 spa_load_error_t *sle = zio->io_private; 2664 dmu_object_type_t type = BP_GET_TYPE(bp); 2665 int error = zio->io_error; 2666 spa_t *spa = zio->io_spa; 2667 2668 abd_free(zio->io_abd); 2669 if (error) { 2670 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2671 type != DMU_OT_INTENT_LOG) 2672 atomic_inc_64(&sle->sle_meta_count); 2673 else 2674 atomic_inc_64(&sle->sle_data_count); 2675 } 2676 2677 mutex_enter(&spa->spa_scrub_lock); 2678 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2679 cv_broadcast(&spa->spa_scrub_io_cv); 2680 mutex_exit(&spa->spa_scrub_lock); 2681 } 2682 2683 /* 2684 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2685 * By default, we set it to 1/16th of the arc. 2686 */ 2687 static uint_t spa_load_verify_shift = 4; 2688 static int spa_load_verify_metadata = B_TRUE; 2689 static int spa_load_verify_data = B_TRUE; 2690 2691 static int 2692 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2693 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2694 { 2695 zio_t *rio = arg; 2696 spa_load_error_t *sle = rio->io_private; 2697 2698 (void) zilog, (void) dnp; 2699 2700 /* 2701 * Note: normally this routine will not be called if 2702 * spa_load_verify_metadata is not set. However, it may be useful 2703 * to manually set the flag after the traversal has begun. 2704 */ 2705 if (!spa_load_verify_metadata) 2706 return (0); 2707 2708 /* 2709 * Sanity check the block pointer in order to detect obvious damage 2710 * before using the contents in subsequent checks or in zio_read(). 2711 * When damaged consider it to be a metadata error since we cannot 2712 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2713 */ 2714 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2715 atomic_inc_64(&sle->sle_meta_count); 2716 return (0); 2717 } 2718 2719 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2720 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2721 return (0); 2722 2723 if (!BP_IS_METADATA(bp) && 2724 (!spa_load_verify_data || !sle->sle_verify_data)) 2725 return (0); 2726 2727 uint64_t maxinflight_bytes = 2728 arc_target_bytes() >> spa_load_verify_shift; 2729 size_t size = BP_GET_PSIZE(bp); 2730 2731 mutex_enter(&spa->spa_scrub_lock); 2732 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2733 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2734 spa->spa_load_verify_bytes += size; 2735 mutex_exit(&spa->spa_scrub_lock); 2736 2737 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2738 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2739 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2740 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2741 return (0); 2742 } 2743 2744 static int 2745 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2746 { 2747 (void) dp, (void) arg; 2748 2749 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2750 return (SET_ERROR(ENAMETOOLONG)); 2751 2752 return (0); 2753 } 2754 2755 static int 2756 spa_load_verify(spa_t *spa) 2757 { 2758 zio_t *rio; 2759 spa_load_error_t sle = { 0 }; 2760 zpool_load_policy_t policy; 2761 boolean_t verify_ok = B_FALSE; 2762 int error = 0; 2763 2764 zpool_get_load_policy(spa->spa_config, &policy); 2765 2766 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2767 policy.zlp_maxmeta == UINT64_MAX) 2768 return (0); 2769 2770 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2771 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2772 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2773 DS_FIND_CHILDREN); 2774 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2775 if (error != 0) 2776 return (error); 2777 2778 /* 2779 * Verify data only if we are rewinding or error limit was set. 2780 * Otherwise nothing except dbgmsg care about it to waste time. 2781 */ 2782 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2783 (policy.zlp_maxdata < UINT64_MAX); 2784 2785 rio = zio_root(spa, NULL, &sle, 2786 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2787 2788 if (spa_load_verify_metadata) { 2789 if (spa->spa_extreme_rewind) { 2790 spa_load_note(spa, "performing a complete scan of the " 2791 "pool since extreme rewind is on. This may take " 2792 "a very long time.\n (spa_load_verify_data=%u, " 2793 "spa_load_verify_metadata=%u)", 2794 spa_load_verify_data, spa_load_verify_metadata); 2795 } 2796 2797 error = traverse_pool(spa, spa->spa_verify_min_txg, 2798 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2799 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2800 } 2801 2802 (void) zio_wait(rio); 2803 ASSERT0(spa->spa_load_verify_bytes); 2804 2805 spa->spa_load_meta_errors = sle.sle_meta_count; 2806 spa->spa_load_data_errors = sle.sle_data_count; 2807 2808 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2809 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2810 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2811 (u_longlong_t)sle.sle_data_count); 2812 } 2813 2814 if (spa_load_verify_dryrun || 2815 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2816 sle.sle_data_count <= policy.zlp_maxdata)) { 2817 int64_t loss = 0; 2818 2819 verify_ok = B_TRUE; 2820 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2821 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2822 2823 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2824 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2825 spa->spa_load_txg_ts); 2826 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2827 loss); 2828 fnvlist_add_uint64(spa->spa_load_info, 2829 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2830 fnvlist_add_uint64(spa->spa_load_info, 2831 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2832 } else { 2833 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2834 } 2835 2836 if (spa_load_verify_dryrun) 2837 return (0); 2838 2839 if (error) { 2840 if (error != ENXIO && error != EIO) 2841 error = SET_ERROR(EIO); 2842 return (error); 2843 } 2844 2845 return (verify_ok ? 0 : EIO); 2846 } 2847 2848 /* 2849 * Find a value in the pool props object. 2850 */ 2851 static void 2852 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2853 { 2854 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2855 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2856 } 2857 2858 /* 2859 * Find a value in the pool directory object. 2860 */ 2861 static int 2862 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2863 { 2864 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2865 name, sizeof (uint64_t), 1, val); 2866 2867 if (error != 0 && (error != ENOENT || log_enoent)) { 2868 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2869 "[error=%d]", name, error); 2870 } 2871 2872 return (error); 2873 } 2874 2875 static int 2876 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2877 { 2878 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2879 return (SET_ERROR(err)); 2880 } 2881 2882 boolean_t 2883 spa_livelist_delete_check(spa_t *spa) 2884 { 2885 return (spa->spa_livelists_to_delete != 0); 2886 } 2887 2888 static boolean_t 2889 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2890 { 2891 (void) z; 2892 spa_t *spa = arg; 2893 return (spa_livelist_delete_check(spa)); 2894 } 2895 2896 static int 2897 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2898 { 2899 spa_t *spa = arg; 2900 zio_free(spa, tx->tx_txg, bp); 2901 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2902 -bp_get_dsize_sync(spa, bp), 2903 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2904 return (0); 2905 } 2906 2907 static int 2908 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2909 { 2910 int err; 2911 zap_cursor_t zc; 2912 zap_attribute_t za; 2913 zap_cursor_init(&zc, os, zap_obj); 2914 err = zap_cursor_retrieve(&zc, &za); 2915 zap_cursor_fini(&zc); 2916 if (err == 0) 2917 *llp = za.za_first_integer; 2918 return (err); 2919 } 2920 2921 /* 2922 * Components of livelist deletion that must be performed in syncing 2923 * context: freeing block pointers and updating the pool-wide data 2924 * structures to indicate how much work is left to do 2925 */ 2926 typedef struct sublist_delete_arg { 2927 spa_t *spa; 2928 dsl_deadlist_t *ll; 2929 uint64_t key; 2930 bplist_t *to_free; 2931 } sublist_delete_arg_t; 2932 2933 static void 2934 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2935 { 2936 sublist_delete_arg_t *sda = arg; 2937 spa_t *spa = sda->spa; 2938 dsl_deadlist_t *ll = sda->ll; 2939 uint64_t key = sda->key; 2940 bplist_t *to_free = sda->to_free; 2941 2942 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2943 dsl_deadlist_remove_entry(ll, key, tx); 2944 } 2945 2946 typedef struct livelist_delete_arg { 2947 spa_t *spa; 2948 uint64_t ll_obj; 2949 uint64_t zap_obj; 2950 } livelist_delete_arg_t; 2951 2952 static void 2953 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2954 { 2955 livelist_delete_arg_t *lda = arg; 2956 spa_t *spa = lda->spa; 2957 uint64_t ll_obj = lda->ll_obj; 2958 uint64_t zap_obj = lda->zap_obj; 2959 objset_t *mos = spa->spa_meta_objset; 2960 uint64_t count; 2961 2962 /* free the livelist and decrement the feature count */ 2963 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2964 dsl_deadlist_free(mos, ll_obj, tx); 2965 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2966 VERIFY0(zap_count(mos, zap_obj, &count)); 2967 if (count == 0) { 2968 /* no more livelists to delete */ 2969 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2970 DMU_POOL_DELETED_CLONES, tx)); 2971 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2972 spa->spa_livelists_to_delete = 0; 2973 spa_notify_waiters(spa); 2974 } 2975 } 2976 2977 /* 2978 * Load in the value for the livelist to be removed and open it. Then, 2979 * load its first sublist and determine which block pointers should actually 2980 * be freed. Then, call a synctask which performs the actual frees and updates 2981 * the pool-wide livelist data. 2982 */ 2983 static void 2984 spa_livelist_delete_cb(void *arg, zthr_t *z) 2985 { 2986 spa_t *spa = arg; 2987 uint64_t ll_obj = 0, count; 2988 objset_t *mos = spa->spa_meta_objset; 2989 uint64_t zap_obj = spa->spa_livelists_to_delete; 2990 /* 2991 * Determine the next livelist to delete. This function should only 2992 * be called if there is at least one deleted clone. 2993 */ 2994 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2995 VERIFY0(zap_count(mos, ll_obj, &count)); 2996 if (count > 0) { 2997 dsl_deadlist_t *ll; 2998 dsl_deadlist_entry_t *dle; 2999 bplist_t to_free; 3000 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 3001 dsl_deadlist_open(ll, mos, ll_obj); 3002 dle = dsl_deadlist_first(ll); 3003 ASSERT3P(dle, !=, NULL); 3004 bplist_create(&to_free); 3005 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 3006 z, NULL); 3007 if (err == 0) { 3008 sublist_delete_arg_t sync_arg = { 3009 .spa = spa, 3010 .ll = ll, 3011 .key = dle->dle_mintxg, 3012 .to_free = &to_free 3013 }; 3014 zfs_dbgmsg("deleting sublist (id %llu) from" 3015 " livelist %llu, %lld remaining", 3016 (u_longlong_t)dle->dle_bpobj.bpo_object, 3017 (u_longlong_t)ll_obj, (longlong_t)count - 1); 3018 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 3019 sublist_delete_sync, &sync_arg, 0, 3020 ZFS_SPACE_CHECK_DESTROY)); 3021 } else { 3022 VERIFY3U(err, ==, EINTR); 3023 } 3024 bplist_clear(&to_free); 3025 bplist_destroy(&to_free); 3026 dsl_deadlist_close(ll); 3027 kmem_free(ll, sizeof (dsl_deadlist_t)); 3028 } else { 3029 livelist_delete_arg_t sync_arg = { 3030 .spa = spa, 3031 .ll_obj = ll_obj, 3032 .zap_obj = zap_obj 3033 }; 3034 zfs_dbgmsg("deletion of livelist %llu completed", 3035 (u_longlong_t)ll_obj); 3036 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 3037 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 3038 } 3039 } 3040 3041 static void 3042 spa_start_livelist_destroy_thread(spa_t *spa) 3043 { 3044 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 3045 spa->spa_livelist_delete_zthr = 3046 zthr_create("z_livelist_destroy", 3047 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 3048 minclsyspri); 3049 } 3050 3051 typedef struct livelist_new_arg { 3052 bplist_t *allocs; 3053 bplist_t *frees; 3054 } livelist_new_arg_t; 3055 3056 static int 3057 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3058 dmu_tx_t *tx) 3059 { 3060 ASSERT(tx == NULL); 3061 livelist_new_arg_t *lna = arg; 3062 if (bp_freed) { 3063 bplist_append(lna->frees, bp); 3064 } else { 3065 bplist_append(lna->allocs, bp); 3066 zfs_livelist_condense_new_alloc++; 3067 } 3068 return (0); 3069 } 3070 3071 typedef struct livelist_condense_arg { 3072 spa_t *spa; 3073 bplist_t to_keep; 3074 uint64_t first_size; 3075 uint64_t next_size; 3076 } livelist_condense_arg_t; 3077 3078 static void 3079 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 3080 { 3081 livelist_condense_arg_t *lca = arg; 3082 spa_t *spa = lca->spa; 3083 bplist_t new_frees; 3084 dsl_dataset_t *ds = spa->spa_to_condense.ds; 3085 3086 /* Have we been cancelled? */ 3087 if (spa->spa_to_condense.cancelled) { 3088 zfs_livelist_condense_sync_cancel++; 3089 goto out; 3090 } 3091 3092 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3093 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3094 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 3095 3096 /* 3097 * It's possible that the livelist was changed while the zthr was 3098 * running. Therefore, we need to check for new blkptrs in the two 3099 * entries being condensed and continue to track them in the livelist. 3100 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 3101 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 3102 * we need to sort them into two different bplists. 3103 */ 3104 uint64_t first_obj = first->dle_bpobj.bpo_object; 3105 uint64_t next_obj = next->dle_bpobj.bpo_object; 3106 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3107 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3108 3109 bplist_create(&new_frees); 3110 livelist_new_arg_t new_bps = { 3111 .allocs = &lca->to_keep, 3112 .frees = &new_frees, 3113 }; 3114 3115 if (cur_first_size > lca->first_size) { 3116 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 3117 livelist_track_new_cb, &new_bps, lca->first_size)); 3118 } 3119 if (cur_next_size > lca->next_size) { 3120 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 3121 livelist_track_new_cb, &new_bps, lca->next_size)); 3122 } 3123 3124 dsl_deadlist_clear_entry(first, ll, tx); 3125 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 3126 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 3127 3128 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 3129 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 3130 bplist_destroy(&new_frees); 3131 3132 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 3133 dsl_dataset_name(ds, dsname); 3134 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 3135 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 3136 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 3137 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 3138 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 3139 (u_longlong_t)cur_next_size, 3140 (u_longlong_t)first->dle_bpobj.bpo_object, 3141 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 3142 out: 3143 dmu_buf_rele(ds->ds_dbuf, spa); 3144 spa->spa_to_condense.ds = NULL; 3145 bplist_clear(&lca->to_keep); 3146 bplist_destroy(&lca->to_keep); 3147 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3148 spa->spa_to_condense.syncing = B_FALSE; 3149 } 3150 3151 static void 3152 spa_livelist_condense_cb(void *arg, zthr_t *t) 3153 { 3154 while (zfs_livelist_condense_zthr_pause && 3155 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3156 delay(1); 3157 3158 spa_t *spa = arg; 3159 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3160 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3161 uint64_t first_size, next_size; 3162 3163 livelist_condense_arg_t *lca = 3164 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 3165 bplist_create(&lca->to_keep); 3166 3167 /* 3168 * Process the livelists (matching FREEs and ALLOCs) in open context 3169 * so we have minimal work in syncing context to condense. 3170 * 3171 * We save bpobj sizes (first_size and next_size) to use later in 3172 * syncing context to determine if entries were added to these sublists 3173 * while in open context. This is possible because the clone is still 3174 * active and open for normal writes and we want to make sure the new, 3175 * unprocessed blockpointers are inserted into the livelist normally. 3176 * 3177 * Note that dsl_process_sub_livelist() both stores the size number of 3178 * blockpointers and iterates over them while the bpobj's lock held, so 3179 * the sizes returned to us are consistent which what was actually 3180 * processed. 3181 */ 3182 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 3183 &first_size); 3184 if (err == 0) 3185 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 3186 t, &next_size); 3187 3188 if (err == 0) { 3189 while (zfs_livelist_condense_sync_pause && 3190 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3191 delay(1); 3192 3193 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 3194 dmu_tx_mark_netfree(tx); 3195 dmu_tx_hold_space(tx, 1); 3196 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 3197 if (err == 0) { 3198 /* 3199 * Prevent the condense zthr restarting before 3200 * the synctask completes. 3201 */ 3202 spa->spa_to_condense.syncing = B_TRUE; 3203 lca->spa = spa; 3204 lca->first_size = first_size; 3205 lca->next_size = next_size; 3206 dsl_sync_task_nowait(spa_get_dsl(spa), 3207 spa_livelist_condense_sync, lca, tx); 3208 dmu_tx_commit(tx); 3209 return; 3210 } 3211 } 3212 /* 3213 * Condensing can not continue: either it was externally stopped or 3214 * we were unable to assign to a tx because the pool has run out of 3215 * space. In the second case, we'll just end up trying to condense 3216 * again in a later txg. 3217 */ 3218 ASSERT(err != 0); 3219 bplist_clear(&lca->to_keep); 3220 bplist_destroy(&lca->to_keep); 3221 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3222 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 3223 spa->spa_to_condense.ds = NULL; 3224 if (err == EINTR) 3225 zfs_livelist_condense_zthr_cancel++; 3226 } 3227 3228 /* 3229 * Check that there is something to condense but that a condense is not 3230 * already in progress and that condensing has not been cancelled. 3231 */ 3232 static boolean_t 3233 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 3234 { 3235 (void) z; 3236 spa_t *spa = arg; 3237 if ((spa->spa_to_condense.ds != NULL) && 3238 (spa->spa_to_condense.syncing == B_FALSE) && 3239 (spa->spa_to_condense.cancelled == B_FALSE)) { 3240 return (B_TRUE); 3241 } 3242 return (B_FALSE); 3243 } 3244 3245 static void 3246 spa_start_livelist_condensing_thread(spa_t *spa) 3247 { 3248 spa->spa_to_condense.ds = NULL; 3249 spa->spa_to_condense.first = NULL; 3250 spa->spa_to_condense.next = NULL; 3251 spa->spa_to_condense.syncing = B_FALSE; 3252 spa->spa_to_condense.cancelled = B_FALSE; 3253 3254 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 3255 spa->spa_livelist_condense_zthr = 3256 zthr_create("z_livelist_condense", 3257 spa_livelist_condense_cb_check, 3258 spa_livelist_condense_cb, spa, minclsyspri); 3259 } 3260 3261 static void 3262 spa_spawn_aux_threads(spa_t *spa) 3263 { 3264 ASSERT(spa_writeable(spa)); 3265 3266 spa_start_raidz_expansion_thread(spa); 3267 spa_start_indirect_condensing_thread(spa); 3268 spa_start_livelist_destroy_thread(spa); 3269 spa_start_livelist_condensing_thread(spa); 3270 3271 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3272 spa->spa_checkpoint_discard_zthr = 3273 zthr_create("z_checkpoint_discard", 3274 spa_checkpoint_discard_thread_check, 3275 spa_checkpoint_discard_thread, spa, minclsyspri); 3276 } 3277 3278 /* 3279 * Fix up config after a partly-completed split. This is done with the 3280 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3281 * pool have that entry in their config, but only the splitting one contains 3282 * a list of all the guids of the vdevs that are being split off. 3283 * 3284 * This function determines what to do with that list: either rejoin 3285 * all the disks to the pool, or complete the splitting process. To attempt 3286 * the rejoin, each disk that is offlined is marked online again, and 3287 * we do a reopen() call. If the vdev label for every disk that was 3288 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3289 * then we call vdev_split() on each disk, and complete the split. 3290 * 3291 * Otherwise we leave the config alone, with all the vdevs in place in 3292 * the original pool. 3293 */ 3294 static void 3295 spa_try_repair(spa_t *spa, nvlist_t *config) 3296 { 3297 uint_t extracted; 3298 uint64_t *glist; 3299 uint_t i, gcount; 3300 nvlist_t *nvl; 3301 vdev_t **vd; 3302 boolean_t attempt_reopen; 3303 3304 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3305 return; 3306 3307 /* check that the config is complete */ 3308 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3309 &glist, &gcount) != 0) 3310 return; 3311 3312 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3313 3314 /* attempt to online all the vdevs & validate */ 3315 attempt_reopen = B_TRUE; 3316 for (i = 0; i < gcount; i++) { 3317 if (glist[i] == 0) /* vdev is hole */ 3318 continue; 3319 3320 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3321 if (vd[i] == NULL) { 3322 /* 3323 * Don't bother attempting to reopen the disks; 3324 * just do the split. 3325 */ 3326 attempt_reopen = B_FALSE; 3327 } else { 3328 /* attempt to re-online it */ 3329 vd[i]->vdev_offline = B_FALSE; 3330 } 3331 } 3332 3333 if (attempt_reopen) { 3334 vdev_reopen(spa->spa_root_vdev); 3335 3336 /* check each device to see what state it's in */ 3337 for (extracted = 0, i = 0; i < gcount; i++) { 3338 if (vd[i] != NULL && 3339 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3340 break; 3341 ++extracted; 3342 } 3343 } 3344 3345 /* 3346 * If every disk has been moved to the new pool, or if we never 3347 * even attempted to look at them, then we split them off for 3348 * good. 3349 */ 3350 if (!attempt_reopen || gcount == extracted) { 3351 for (i = 0; i < gcount; i++) 3352 if (vd[i] != NULL) 3353 vdev_split(vd[i]); 3354 vdev_reopen(spa->spa_root_vdev); 3355 } 3356 3357 kmem_free(vd, gcount * sizeof (vdev_t *)); 3358 } 3359 3360 static int 3361 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3362 { 3363 const char *ereport = FM_EREPORT_ZFS_POOL; 3364 int error; 3365 3366 spa->spa_load_state = state; 3367 (void) spa_import_progress_set_state(spa_guid(spa), 3368 spa_load_state(spa)); 3369 spa_import_progress_set_notes(spa, "spa_load()"); 3370 3371 gethrestime(&spa->spa_loaded_ts); 3372 error = spa_load_impl(spa, type, &ereport); 3373 3374 /* 3375 * Don't count references from objsets that are already closed 3376 * and are making their way through the eviction process. 3377 */ 3378 spa_evicting_os_wait(spa); 3379 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3380 if (error) { 3381 if (error != EEXIST) { 3382 spa->spa_loaded_ts.tv_sec = 0; 3383 spa->spa_loaded_ts.tv_nsec = 0; 3384 } 3385 if (error != EBADF) { 3386 (void) zfs_ereport_post(ereport, spa, 3387 NULL, NULL, NULL, 0); 3388 } 3389 } 3390 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3391 spa->spa_ena = 0; 3392 3393 (void) spa_import_progress_set_state(spa_guid(spa), 3394 spa_load_state(spa)); 3395 3396 return (error); 3397 } 3398 3399 #ifdef ZFS_DEBUG 3400 /* 3401 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3402 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3403 * spa's per-vdev ZAP list. 3404 */ 3405 static uint64_t 3406 vdev_count_verify_zaps(vdev_t *vd) 3407 { 3408 spa_t *spa = vd->vdev_spa; 3409 uint64_t total = 0; 3410 3411 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3412 vd->vdev_root_zap != 0) { 3413 total++; 3414 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3415 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3416 } 3417 if (vd->vdev_top_zap != 0) { 3418 total++; 3419 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3420 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3421 } 3422 if (vd->vdev_leaf_zap != 0) { 3423 total++; 3424 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3425 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3426 } 3427 3428 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3429 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3430 } 3431 3432 return (total); 3433 } 3434 #else 3435 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3436 #endif 3437 3438 /* 3439 * Determine whether the activity check is required. 3440 */ 3441 static boolean_t 3442 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3443 nvlist_t *config) 3444 { 3445 uint64_t state = 0; 3446 uint64_t hostid = 0; 3447 uint64_t tryconfig_txg = 0; 3448 uint64_t tryconfig_timestamp = 0; 3449 uint16_t tryconfig_mmp_seq = 0; 3450 nvlist_t *nvinfo; 3451 3452 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3453 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3454 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3455 &tryconfig_txg); 3456 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3457 &tryconfig_timestamp); 3458 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3459 &tryconfig_mmp_seq); 3460 } 3461 3462 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3463 3464 /* 3465 * Disable the MMP activity check - This is used by zdb which 3466 * is intended to be used on potentially active pools. 3467 */ 3468 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3469 return (B_FALSE); 3470 3471 /* 3472 * Skip the activity check when the MMP feature is disabled. 3473 */ 3474 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3475 return (B_FALSE); 3476 3477 /* 3478 * If the tryconfig_ values are nonzero, they are the results of an 3479 * earlier tryimport. If they all match the uberblock we just found, 3480 * then the pool has not changed and we return false so we do not test 3481 * a second time. 3482 */ 3483 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3484 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3485 tryconfig_mmp_seq && tryconfig_mmp_seq == 3486 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3487 return (B_FALSE); 3488 3489 /* 3490 * Allow the activity check to be skipped when importing the pool 3491 * on the same host which last imported it. Since the hostid from 3492 * configuration may be stale use the one read from the label. 3493 */ 3494 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3495 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3496 3497 if (hostid == spa_get_hostid(spa)) 3498 return (B_FALSE); 3499 3500 /* 3501 * Skip the activity test when the pool was cleanly exported. 3502 */ 3503 if (state != POOL_STATE_ACTIVE) 3504 return (B_FALSE); 3505 3506 return (B_TRUE); 3507 } 3508 3509 /* 3510 * Nanoseconds the activity check must watch for changes on-disk. 3511 */ 3512 static uint64_t 3513 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3514 { 3515 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3516 uint64_t multihost_interval = MSEC2NSEC( 3517 MMP_INTERVAL_OK(zfs_multihost_interval)); 3518 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3519 multihost_interval); 3520 3521 /* 3522 * Local tunables determine a minimum duration except for the case 3523 * where we know when the remote host will suspend the pool if MMP 3524 * writes do not land. 3525 * 3526 * See Big Theory comment at the top of mmp.c for the reasoning behind 3527 * these cases and times. 3528 */ 3529 3530 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3531 3532 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3533 MMP_FAIL_INT(ub) > 0) { 3534 3535 /* MMP on remote host will suspend pool after failed writes */ 3536 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3537 MMP_IMPORT_SAFETY_FACTOR / 100; 3538 3539 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3540 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3541 "import_intervals=%llu", (u_longlong_t)import_delay, 3542 (u_longlong_t)MMP_FAIL_INT(ub), 3543 (u_longlong_t)MMP_INTERVAL(ub), 3544 (u_longlong_t)import_intervals); 3545 3546 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3547 MMP_FAIL_INT(ub) == 0) { 3548 3549 /* MMP on remote host will never suspend pool */ 3550 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3551 ub->ub_mmp_delay) * import_intervals); 3552 3553 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3554 "mmp_interval=%llu ub_mmp_delay=%llu " 3555 "import_intervals=%llu", (u_longlong_t)import_delay, 3556 (u_longlong_t)MMP_INTERVAL(ub), 3557 (u_longlong_t)ub->ub_mmp_delay, 3558 (u_longlong_t)import_intervals); 3559 3560 } else if (MMP_VALID(ub)) { 3561 /* 3562 * zfs-0.7 compatibility case 3563 */ 3564 3565 import_delay = MAX(import_delay, (multihost_interval + 3566 ub->ub_mmp_delay) * import_intervals); 3567 3568 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3569 "import_intervals=%llu leaves=%u", 3570 (u_longlong_t)import_delay, 3571 (u_longlong_t)ub->ub_mmp_delay, 3572 (u_longlong_t)import_intervals, 3573 vdev_count_leaves(spa)); 3574 } else { 3575 /* Using local tunings is the only reasonable option */ 3576 zfs_dbgmsg("pool last imported on non-MMP aware " 3577 "host using import_delay=%llu multihost_interval=%llu " 3578 "import_intervals=%llu", (u_longlong_t)import_delay, 3579 (u_longlong_t)multihost_interval, 3580 (u_longlong_t)import_intervals); 3581 } 3582 3583 return (import_delay); 3584 } 3585 3586 /* 3587 * Remote host activity check. 3588 * 3589 * error results: 3590 * 0 - no activity detected 3591 * EREMOTEIO - remote activity detected 3592 * EINTR - user canceled the operation 3593 */ 3594 static int 3595 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config, 3596 boolean_t importing) 3597 { 3598 uint64_t txg = ub->ub_txg; 3599 uint64_t timestamp = ub->ub_timestamp; 3600 uint64_t mmp_config = ub->ub_mmp_config; 3601 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3602 uint64_t import_delay; 3603 hrtime_t import_expire, now; 3604 nvlist_t *mmp_label = NULL; 3605 vdev_t *rvd = spa->spa_root_vdev; 3606 kcondvar_t cv; 3607 kmutex_t mtx; 3608 int error = 0; 3609 3610 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3611 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3612 mutex_enter(&mtx); 3613 3614 /* 3615 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3616 * during the earlier tryimport. If the txg recorded there is 0 then 3617 * the pool is known to be active on another host. 3618 * 3619 * Otherwise, the pool might be in use on another host. Check for 3620 * changes in the uberblocks on disk if necessary. 3621 */ 3622 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3623 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3624 ZPOOL_CONFIG_LOAD_INFO); 3625 3626 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3627 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3628 vdev_uberblock_load(rvd, ub, &mmp_label); 3629 error = SET_ERROR(EREMOTEIO); 3630 goto out; 3631 } 3632 } 3633 3634 import_delay = spa_activity_check_duration(spa, ub); 3635 3636 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3637 import_delay += import_delay * random_in_range(250) / 1000; 3638 3639 import_expire = gethrtime() + import_delay; 3640 3641 if (importing) { 3642 spa_import_progress_set_notes(spa, "Checking MMP activity, " 3643 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3644 } 3645 3646 int iterations = 0; 3647 while ((now = gethrtime()) < import_expire) { 3648 if (importing && iterations++ % 30 == 0) { 3649 spa_import_progress_set_notes(spa, "Checking MMP " 3650 "activity, %llu ms remaining", 3651 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3652 } 3653 3654 if (importing) { 3655 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3656 NSEC2SEC(import_expire - gethrtime())); 3657 } 3658 3659 vdev_uberblock_load(rvd, ub, &mmp_label); 3660 3661 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3662 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3663 zfs_dbgmsg("multihost activity detected " 3664 "txg %llu ub_txg %llu " 3665 "timestamp %llu ub_timestamp %llu " 3666 "mmp_config %#llx ub_mmp_config %#llx", 3667 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3668 (u_longlong_t)timestamp, 3669 (u_longlong_t)ub->ub_timestamp, 3670 (u_longlong_t)mmp_config, 3671 (u_longlong_t)ub->ub_mmp_config); 3672 3673 error = SET_ERROR(EREMOTEIO); 3674 break; 3675 } 3676 3677 if (mmp_label) { 3678 nvlist_free(mmp_label); 3679 mmp_label = NULL; 3680 } 3681 3682 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3683 if (error != -1) { 3684 error = SET_ERROR(EINTR); 3685 break; 3686 } 3687 error = 0; 3688 } 3689 3690 out: 3691 mutex_exit(&mtx); 3692 mutex_destroy(&mtx); 3693 cv_destroy(&cv); 3694 3695 /* 3696 * If the pool is determined to be active store the status in the 3697 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3698 * available from configuration read from disk store them as well. 3699 * This allows 'zpool import' to generate a more useful message. 3700 * 3701 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3702 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3703 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3704 */ 3705 if (error == EREMOTEIO) { 3706 const char *hostname = "<unknown>"; 3707 uint64_t hostid = 0; 3708 3709 if (mmp_label) { 3710 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3711 hostname = fnvlist_lookup_string(mmp_label, 3712 ZPOOL_CONFIG_HOSTNAME); 3713 fnvlist_add_string(spa->spa_load_info, 3714 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3715 } 3716 3717 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3718 hostid = fnvlist_lookup_uint64(mmp_label, 3719 ZPOOL_CONFIG_HOSTID); 3720 fnvlist_add_uint64(spa->spa_load_info, 3721 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3722 } 3723 } 3724 3725 fnvlist_add_uint64(spa->spa_load_info, 3726 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3727 fnvlist_add_uint64(spa->spa_load_info, 3728 ZPOOL_CONFIG_MMP_TXG, 0); 3729 3730 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3731 } 3732 3733 if (mmp_label) 3734 nvlist_free(mmp_label); 3735 3736 return (error); 3737 } 3738 3739 /* 3740 * Called from zfs_ioc_clear for a pool that was suspended 3741 * after failing mmp write checks. 3742 */ 3743 boolean_t 3744 spa_mmp_remote_host_activity(spa_t *spa) 3745 { 3746 ASSERT(spa_multihost(spa) && spa_suspended(spa)); 3747 3748 nvlist_t *best_label; 3749 uberblock_t best_ub; 3750 3751 /* 3752 * Locate the best uberblock on disk 3753 */ 3754 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label); 3755 if (best_label) { 3756 /* 3757 * confirm that the best hostid matches our hostid 3758 */ 3759 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) && 3760 spa_get_hostid(spa) != 3761 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) { 3762 nvlist_free(best_label); 3763 return (B_TRUE); 3764 } 3765 nvlist_free(best_label); 3766 } else { 3767 return (B_TRUE); 3768 } 3769 3770 if (!MMP_VALID(&best_ub) || 3771 !MMP_FAIL_INT_VALID(&best_ub) || 3772 MMP_FAIL_INT(&best_ub) == 0) { 3773 return (B_TRUE); 3774 } 3775 3776 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg || 3777 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) { 3778 zfs_dbgmsg("txg mismatch detected during pool clear " 3779 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu", 3780 (u_longlong_t)spa->spa_uberblock.ub_txg, 3781 (u_longlong_t)best_ub.ub_txg, 3782 (u_longlong_t)spa->spa_uberblock.ub_timestamp, 3783 (u_longlong_t)best_ub.ub_timestamp); 3784 return (B_TRUE); 3785 } 3786 3787 /* 3788 * Perform an activity check looking for any remote writer 3789 */ 3790 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config, 3791 B_FALSE) != 0); 3792 } 3793 3794 static int 3795 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3796 { 3797 uint64_t hostid; 3798 const char *hostname; 3799 uint64_t myhostid = 0; 3800 3801 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3802 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3803 hostname = fnvlist_lookup_string(mos_config, 3804 ZPOOL_CONFIG_HOSTNAME); 3805 3806 myhostid = zone_get_hostid(NULL); 3807 3808 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3809 cmn_err(CE_WARN, "pool '%s' could not be " 3810 "loaded as it was last accessed by " 3811 "another system (host: %s hostid: 0x%llx). " 3812 "See: https://openzfs.github.io/openzfs-docs/msg/" 3813 "ZFS-8000-EY", 3814 spa_name(spa), hostname, (u_longlong_t)hostid); 3815 spa_load_failed(spa, "hostid verification failed: pool " 3816 "last accessed by host: %s (hostid: 0x%llx)", 3817 hostname, (u_longlong_t)hostid); 3818 return (SET_ERROR(EBADF)); 3819 } 3820 } 3821 3822 return (0); 3823 } 3824 3825 static int 3826 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3827 { 3828 int error = 0; 3829 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3830 int parse; 3831 vdev_t *rvd; 3832 uint64_t pool_guid; 3833 const char *comment; 3834 const char *compatibility; 3835 3836 /* 3837 * Versioning wasn't explicitly added to the label until later, so if 3838 * it's not present treat it as the initial version. 3839 */ 3840 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3841 &spa->spa_ubsync.ub_version) != 0) 3842 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3843 3844 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3845 spa_load_failed(spa, "invalid config provided: '%s' missing", 3846 ZPOOL_CONFIG_POOL_GUID); 3847 return (SET_ERROR(EINVAL)); 3848 } 3849 3850 /* 3851 * If we are doing an import, ensure that the pool is not already 3852 * imported by checking if its pool guid already exists in the 3853 * spa namespace. 3854 * 3855 * The only case that we allow an already imported pool to be 3856 * imported again, is when the pool is checkpointed and we want to 3857 * look at its checkpointed state from userland tools like zdb. 3858 */ 3859 #ifdef _KERNEL 3860 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3861 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3862 spa_guid_exists(pool_guid, 0)) { 3863 #else 3864 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3865 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3866 spa_guid_exists(pool_guid, 0) && 3867 !spa_importing_readonly_checkpoint(spa)) { 3868 #endif 3869 spa_load_failed(spa, "a pool with guid %llu is already open", 3870 (u_longlong_t)pool_guid); 3871 return (SET_ERROR(EEXIST)); 3872 } 3873 3874 spa->spa_config_guid = pool_guid; 3875 3876 nvlist_free(spa->spa_load_info); 3877 spa->spa_load_info = fnvlist_alloc(); 3878 3879 ASSERT(spa->spa_comment == NULL); 3880 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3881 spa->spa_comment = spa_strdup(comment); 3882 3883 ASSERT(spa->spa_compatibility == NULL); 3884 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3885 &compatibility) == 0) 3886 spa->spa_compatibility = spa_strdup(compatibility); 3887 3888 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3889 &spa->spa_config_txg); 3890 3891 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3892 spa->spa_config_splitting = fnvlist_dup(nvl); 3893 3894 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3895 spa_load_failed(spa, "invalid config provided: '%s' missing", 3896 ZPOOL_CONFIG_VDEV_TREE); 3897 return (SET_ERROR(EINVAL)); 3898 } 3899 3900 /* 3901 * Create "The Godfather" zio to hold all async IOs 3902 */ 3903 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3904 KM_SLEEP); 3905 for (int i = 0; i < max_ncpus; i++) { 3906 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3907 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3908 ZIO_FLAG_GODFATHER); 3909 } 3910 3911 /* 3912 * Parse the configuration into a vdev tree. We explicitly set the 3913 * value that will be returned by spa_version() since parsing the 3914 * configuration requires knowing the version number. 3915 */ 3916 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3917 parse = (type == SPA_IMPORT_EXISTING ? 3918 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3919 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3920 spa_config_exit(spa, SCL_ALL, FTAG); 3921 3922 if (error != 0) { 3923 spa_load_failed(spa, "unable to parse config [error=%d]", 3924 error); 3925 return (error); 3926 } 3927 3928 ASSERT(spa->spa_root_vdev == rvd); 3929 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3930 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3931 3932 if (type != SPA_IMPORT_ASSEMBLE) { 3933 ASSERT(spa_guid(spa) == pool_guid); 3934 } 3935 3936 return (0); 3937 } 3938 3939 /* 3940 * Recursively open all vdevs in the vdev tree. This function is called twice: 3941 * first with the untrusted config, then with the trusted config. 3942 */ 3943 static int 3944 spa_ld_open_vdevs(spa_t *spa) 3945 { 3946 int error = 0; 3947 3948 /* 3949 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3950 * missing/unopenable for the root vdev to be still considered openable. 3951 */ 3952 if (spa->spa_trust_config) { 3953 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3954 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3955 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3956 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3957 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3958 } else { 3959 spa->spa_missing_tvds_allowed = 0; 3960 } 3961 3962 spa->spa_missing_tvds_allowed = 3963 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3964 3965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3966 error = vdev_open(spa->spa_root_vdev); 3967 spa_config_exit(spa, SCL_ALL, FTAG); 3968 3969 if (spa->spa_missing_tvds != 0) { 3970 spa_load_note(spa, "vdev tree has %lld missing top-level " 3971 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3972 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3973 /* 3974 * Although theoretically we could allow users to open 3975 * incomplete pools in RW mode, we'd need to add a lot 3976 * of extra logic (e.g. adjust pool space to account 3977 * for missing vdevs). 3978 * This limitation also prevents users from accidentally 3979 * opening the pool in RW mode during data recovery and 3980 * damaging it further. 3981 */ 3982 spa_load_note(spa, "pools with missing top-level " 3983 "vdevs can only be opened in read-only mode."); 3984 error = SET_ERROR(ENXIO); 3985 } else { 3986 spa_load_note(spa, "current settings allow for maximum " 3987 "%lld missing top-level vdevs at this stage.", 3988 (u_longlong_t)spa->spa_missing_tvds_allowed); 3989 } 3990 } 3991 if (error != 0) { 3992 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3993 error); 3994 } 3995 if (spa->spa_missing_tvds != 0 || error != 0) 3996 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3997 3998 return (error); 3999 } 4000 4001 /* 4002 * We need to validate the vdev labels against the configuration that 4003 * we have in hand. This function is called twice: first with an untrusted 4004 * config, then with a trusted config. The validation is more strict when the 4005 * config is trusted. 4006 */ 4007 static int 4008 spa_ld_validate_vdevs(spa_t *spa) 4009 { 4010 int error = 0; 4011 vdev_t *rvd = spa->spa_root_vdev; 4012 4013 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4014 error = vdev_validate(rvd); 4015 spa_config_exit(spa, SCL_ALL, FTAG); 4016 4017 if (error != 0) { 4018 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 4019 return (error); 4020 } 4021 4022 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 4023 spa_load_failed(spa, "cannot open vdev tree after invalidating " 4024 "some vdevs"); 4025 vdev_dbgmsg_print_tree(rvd, 2); 4026 return (SET_ERROR(ENXIO)); 4027 } 4028 4029 return (0); 4030 } 4031 4032 static void 4033 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 4034 { 4035 spa->spa_state = POOL_STATE_ACTIVE; 4036 spa->spa_ubsync = spa->spa_uberblock; 4037 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 4038 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 4039 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 4040 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 4041 spa->spa_claim_max_txg = spa->spa_first_txg; 4042 spa->spa_prev_software_version = ub->ub_software_version; 4043 } 4044 4045 static int 4046 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 4047 { 4048 vdev_t *rvd = spa->spa_root_vdev; 4049 nvlist_t *label; 4050 uberblock_t *ub = &spa->spa_uberblock; 4051 boolean_t activity_check = B_FALSE; 4052 4053 /* 4054 * If we are opening the checkpointed state of the pool by 4055 * rewinding to it, at this point we will have written the 4056 * checkpointed uberblock to the vdev labels, so searching 4057 * the labels will find the right uberblock. However, if 4058 * we are opening the checkpointed state read-only, we have 4059 * not modified the labels. Therefore, we must ignore the 4060 * labels and continue using the spa_uberblock that was set 4061 * by spa_ld_checkpoint_rewind. 4062 * 4063 * Note that it would be fine to ignore the labels when 4064 * rewinding (opening writeable) as well. However, if we 4065 * crash just after writing the labels, we will end up 4066 * searching the labels. Doing so in the common case means 4067 * that this code path gets exercised normally, rather than 4068 * just in the edge case. 4069 */ 4070 if (ub->ub_checkpoint_txg != 0 && 4071 spa_importing_readonly_checkpoint(spa)) { 4072 spa_ld_select_uberblock_done(spa, ub); 4073 return (0); 4074 } 4075 4076 /* 4077 * Find the best uberblock. 4078 */ 4079 vdev_uberblock_load(rvd, ub, &label); 4080 4081 /* 4082 * If we weren't able to find a single valid uberblock, return failure. 4083 */ 4084 if (ub->ub_txg == 0) { 4085 nvlist_free(label); 4086 spa_load_failed(spa, "no valid uberblock found"); 4087 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 4088 } 4089 4090 if (spa->spa_load_max_txg != UINT64_MAX) { 4091 (void) spa_import_progress_set_max_txg(spa_guid(spa), 4092 (u_longlong_t)spa->spa_load_max_txg); 4093 } 4094 spa_load_note(spa, "using uberblock with txg=%llu", 4095 (u_longlong_t)ub->ub_txg); 4096 if (ub->ub_raidz_reflow_info != 0) { 4097 spa_load_note(spa, "uberblock raidz_reflow_info: " 4098 "state=%u offset=%llu", 4099 (int)RRSS_GET_STATE(ub), 4100 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4101 } 4102 4103 4104 /* 4105 * For pools which have the multihost property on determine if the 4106 * pool is truly inactive and can be safely imported. Prevent 4107 * hosts which don't have a hostid set from importing the pool. 4108 */ 4109 activity_check = spa_activity_check_required(spa, ub, label, 4110 spa->spa_config); 4111 if (activity_check) { 4112 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 4113 spa_get_hostid(spa) == 0) { 4114 nvlist_free(label); 4115 fnvlist_add_uint64(spa->spa_load_info, 4116 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4117 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4118 } 4119 4120 int error = 4121 spa_activity_check(spa, ub, spa->spa_config, B_TRUE); 4122 if (error) { 4123 nvlist_free(label); 4124 return (error); 4125 } 4126 4127 fnvlist_add_uint64(spa->spa_load_info, 4128 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 4129 fnvlist_add_uint64(spa->spa_load_info, 4130 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 4131 fnvlist_add_uint16(spa->spa_load_info, 4132 ZPOOL_CONFIG_MMP_SEQ, 4133 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 4134 } 4135 4136 /* 4137 * If the pool has an unsupported version we can't open it. 4138 */ 4139 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 4140 nvlist_free(label); 4141 spa_load_failed(spa, "version %llu is not supported", 4142 (u_longlong_t)ub->ub_version); 4143 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 4144 } 4145 4146 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4147 nvlist_t *features; 4148 4149 /* 4150 * If we weren't able to find what's necessary for reading the 4151 * MOS in the label, return failure. 4152 */ 4153 if (label == NULL) { 4154 spa_load_failed(spa, "label config unavailable"); 4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4156 ENXIO)); 4157 } 4158 4159 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 4160 &features) != 0) { 4161 nvlist_free(label); 4162 spa_load_failed(spa, "invalid label: '%s' missing", 4163 ZPOOL_CONFIG_FEATURES_FOR_READ); 4164 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4165 ENXIO)); 4166 } 4167 4168 /* 4169 * Update our in-core representation with the definitive values 4170 * from the label. 4171 */ 4172 nvlist_free(spa->spa_label_features); 4173 spa->spa_label_features = fnvlist_dup(features); 4174 } 4175 4176 nvlist_free(label); 4177 4178 /* 4179 * Look through entries in the label nvlist's features_for_read. If 4180 * there is a feature listed there which we don't understand then we 4181 * cannot open a pool. 4182 */ 4183 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4184 nvlist_t *unsup_feat; 4185 4186 unsup_feat = fnvlist_alloc(); 4187 4188 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 4189 NULL); nvp != NULL; 4190 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 4191 if (!zfeature_is_supported(nvpair_name(nvp))) { 4192 fnvlist_add_string(unsup_feat, 4193 nvpair_name(nvp), ""); 4194 } 4195 } 4196 4197 if (!nvlist_empty(unsup_feat)) { 4198 fnvlist_add_nvlist(spa->spa_load_info, 4199 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4200 nvlist_free(unsup_feat); 4201 spa_load_failed(spa, "some features are unsupported"); 4202 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4203 ENOTSUP)); 4204 } 4205 4206 nvlist_free(unsup_feat); 4207 } 4208 4209 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 4210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4211 spa_try_repair(spa, spa->spa_config); 4212 spa_config_exit(spa, SCL_ALL, FTAG); 4213 nvlist_free(spa->spa_config_splitting); 4214 spa->spa_config_splitting = NULL; 4215 } 4216 4217 /* 4218 * Initialize internal SPA structures. 4219 */ 4220 spa_ld_select_uberblock_done(spa, ub); 4221 4222 return (0); 4223 } 4224 4225 static int 4226 spa_ld_open_rootbp(spa_t *spa) 4227 { 4228 int error = 0; 4229 vdev_t *rvd = spa->spa_root_vdev; 4230 4231 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 4232 if (error != 0) { 4233 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 4234 "[error=%d]", error); 4235 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4236 } 4237 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 4238 4239 return (0); 4240 } 4241 4242 static int 4243 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 4244 boolean_t reloading) 4245 { 4246 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 4247 nvlist_t *nv, *mos_config, *policy; 4248 int error = 0, copy_error; 4249 uint64_t healthy_tvds, healthy_tvds_mos; 4250 uint64_t mos_config_txg; 4251 4252 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 4253 != 0) 4254 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4255 4256 /* 4257 * If we're assembling a pool from a split, the config provided is 4258 * already trusted so there is nothing to do. 4259 */ 4260 if (type == SPA_IMPORT_ASSEMBLE) 4261 return (0); 4262 4263 healthy_tvds = spa_healthy_core_tvds(spa); 4264 4265 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 4266 != 0) { 4267 spa_load_failed(spa, "unable to retrieve MOS config"); 4268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4269 } 4270 4271 /* 4272 * If we are doing an open, pool owner wasn't verified yet, thus do 4273 * the verification here. 4274 */ 4275 if (spa->spa_load_state == SPA_LOAD_OPEN) { 4276 error = spa_verify_host(spa, mos_config); 4277 if (error != 0) { 4278 nvlist_free(mos_config); 4279 return (error); 4280 } 4281 } 4282 4283 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 4284 4285 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4286 4287 /* 4288 * Build a new vdev tree from the trusted config 4289 */ 4290 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 4291 if (error != 0) { 4292 nvlist_free(mos_config); 4293 spa_config_exit(spa, SCL_ALL, FTAG); 4294 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 4295 error); 4296 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4297 } 4298 4299 /* 4300 * Vdev paths in the MOS may be obsolete. If the untrusted config was 4301 * obtained by scanning /dev/dsk, then it will have the right vdev 4302 * paths. We update the trusted MOS config with this information. 4303 * We first try to copy the paths with vdev_copy_path_strict, which 4304 * succeeds only when both configs have exactly the same vdev tree. 4305 * If that fails, we fall back to a more flexible method that has a 4306 * best effort policy. 4307 */ 4308 copy_error = vdev_copy_path_strict(rvd, mrvd); 4309 if (copy_error != 0 || spa_load_print_vdev_tree) { 4310 spa_load_note(spa, "provided vdev tree:"); 4311 vdev_dbgmsg_print_tree(rvd, 2); 4312 spa_load_note(spa, "MOS vdev tree:"); 4313 vdev_dbgmsg_print_tree(mrvd, 2); 4314 } 4315 if (copy_error != 0) { 4316 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 4317 "back to vdev_copy_path_relaxed"); 4318 vdev_copy_path_relaxed(rvd, mrvd); 4319 } 4320 4321 vdev_close(rvd); 4322 vdev_free(rvd); 4323 spa->spa_root_vdev = mrvd; 4324 rvd = mrvd; 4325 spa_config_exit(spa, SCL_ALL, FTAG); 4326 4327 /* 4328 * If 'zpool import' used a cached config, then the on-disk hostid and 4329 * hostname may be different to the cached config in ways that should 4330 * prevent import. Userspace can't discover this without a scan, but 4331 * we know, so we add these values to LOAD_INFO so the caller can know 4332 * the difference. 4333 * 4334 * Note that we have to do this before the config is regenerated, 4335 * because the new config will have the hostid and hostname for this 4336 * host, in readiness for import. 4337 */ 4338 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4339 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4340 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4341 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4342 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4343 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4344 4345 /* 4346 * We will use spa_config if we decide to reload the spa or if spa_load 4347 * fails and we rewind. We must thus regenerate the config using the 4348 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4349 * pass settings on how to load the pool and is not stored in the MOS. 4350 * We copy it over to our new, trusted config. 4351 */ 4352 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4353 ZPOOL_CONFIG_POOL_TXG); 4354 nvlist_free(mos_config); 4355 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4356 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4357 &policy) == 0) 4358 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4359 spa_config_set(spa, mos_config); 4360 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4361 4362 /* 4363 * Now that we got the config from the MOS, we should be more strict 4364 * in checking blkptrs and can make assumptions about the consistency 4365 * of the vdev tree. spa_trust_config must be set to true before opening 4366 * vdevs in order for them to be writeable. 4367 */ 4368 spa->spa_trust_config = B_TRUE; 4369 4370 /* 4371 * Open and validate the new vdev tree 4372 */ 4373 error = spa_ld_open_vdevs(spa); 4374 if (error != 0) 4375 return (error); 4376 4377 error = spa_ld_validate_vdevs(spa); 4378 if (error != 0) 4379 return (error); 4380 4381 if (copy_error != 0 || spa_load_print_vdev_tree) { 4382 spa_load_note(spa, "final vdev tree:"); 4383 vdev_dbgmsg_print_tree(rvd, 2); 4384 } 4385 4386 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4387 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4388 /* 4389 * Sanity check to make sure that we are indeed loading the 4390 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4391 * in the config provided and they happened to be the only ones 4392 * to have the latest uberblock, we could involuntarily perform 4393 * an extreme rewind. 4394 */ 4395 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4396 if (healthy_tvds_mos - healthy_tvds >= 4397 SPA_SYNC_MIN_VDEVS) { 4398 spa_load_note(spa, "config provided misses too many " 4399 "top-level vdevs compared to MOS (%lld vs %lld). ", 4400 (u_longlong_t)healthy_tvds, 4401 (u_longlong_t)healthy_tvds_mos); 4402 spa_load_note(spa, "vdev tree:"); 4403 vdev_dbgmsg_print_tree(rvd, 2); 4404 if (reloading) { 4405 spa_load_failed(spa, "config was already " 4406 "provided from MOS. Aborting."); 4407 return (spa_vdev_err(rvd, 4408 VDEV_AUX_CORRUPT_DATA, EIO)); 4409 } 4410 spa_load_note(spa, "spa must be reloaded using MOS " 4411 "config"); 4412 return (SET_ERROR(EAGAIN)); 4413 } 4414 } 4415 4416 error = spa_check_for_missing_logs(spa); 4417 if (error != 0) 4418 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4419 4420 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4421 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4422 "guid sum (%llu != %llu)", 4423 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4424 (u_longlong_t)rvd->vdev_guid_sum); 4425 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4426 ENXIO)); 4427 } 4428 4429 return (0); 4430 } 4431 4432 static int 4433 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4434 { 4435 int error = 0; 4436 vdev_t *rvd = spa->spa_root_vdev; 4437 4438 /* 4439 * Everything that we read before spa_remove_init() must be stored 4440 * on concreted vdevs. Therefore we do this as early as possible. 4441 */ 4442 error = spa_remove_init(spa); 4443 if (error != 0) { 4444 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4445 error); 4446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4447 } 4448 4449 /* 4450 * Retrieve information needed to condense indirect vdev mappings. 4451 */ 4452 error = spa_condense_init(spa); 4453 if (error != 0) { 4454 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4455 error); 4456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4457 } 4458 4459 return (0); 4460 } 4461 4462 static int 4463 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4464 { 4465 int error = 0; 4466 vdev_t *rvd = spa->spa_root_vdev; 4467 4468 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4469 boolean_t missing_feat_read = B_FALSE; 4470 nvlist_t *unsup_feat, *enabled_feat; 4471 4472 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4473 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4475 } 4476 4477 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4478 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4480 } 4481 4482 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4483 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4485 } 4486 4487 enabled_feat = fnvlist_alloc(); 4488 unsup_feat = fnvlist_alloc(); 4489 4490 if (!spa_features_check(spa, B_FALSE, 4491 unsup_feat, enabled_feat)) 4492 missing_feat_read = B_TRUE; 4493 4494 if (spa_writeable(spa) || 4495 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4496 if (!spa_features_check(spa, B_TRUE, 4497 unsup_feat, enabled_feat)) { 4498 *missing_feat_writep = B_TRUE; 4499 } 4500 } 4501 4502 fnvlist_add_nvlist(spa->spa_load_info, 4503 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4504 4505 if (!nvlist_empty(unsup_feat)) { 4506 fnvlist_add_nvlist(spa->spa_load_info, 4507 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4508 } 4509 4510 fnvlist_free(enabled_feat); 4511 fnvlist_free(unsup_feat); 4512 4513 if (!missing_feat_read) { 4514 fnvlist_add_boolean(spa->spa_load_info, 4515 ZPOOL_CONFIG_CAN_RDONLY); 4516 } 4517 4518 /* 4519 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4520 * twofold: to determine whether the pool is available for 4521 * import in read-write mode and (if it is not) whether the 4522 * pool is available for import in read-only mode. If the pool 4523 * is available for import in read-write mode, it is displayed 4524 * as available in userland; if it is not available for import 4525 * in read-only mode, it is displayed as unavailable in 4526 * userland. If the pool is available for import in read-only 4527 * mode but not read-write mode, it is displayed as unavailable 4528 * in userland with a special note that the pool is actually 4529 * available for open in read-only mode. 4530 * 4531 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4532 * missing a feature for write, we must first determine whether 4533 * the pool can be opened read-only before returning to 4534 * userland in order to know whether to display the 4535 * abovementioned note. 4536 */ 4537 if (missing_feat_read || (*missing_feat_writep && 4538 spa_writeable(spa))) { 4539 spa_load_failed(spa, "pool uses unsupported features"); 4540 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4541 ENOTSUP)); 4542 } 4543 4544 /* 4545 * Load refcounts for ZFS features from disk into an in-memory 4546 * cache during SPA initialization. 4547 */ 4548 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4549 uint64_t refcount; 4550 4551 error = feature_get_refcount_from_disk(spa, 4552 &spa_feature_table[i], &refcount); 4553 if (error == 0) { 4554 spa->spa_feat_refcount_cache[i] = refcount; 4555 } else if (error == ENOTSUP) { 4556 spa->spa_feat_refcount_cache[i] = 4557 SPA_FEATURE_DISABLED; 4558 } else { 4559 spa_load_failed(spa, "error getting refcount " 4560 "for feature %s [error=%d]", 4561 spa_feature_table[i].fi_guid, error); 4562 return (spa_vdev_err(rvd, 4563 VDEV_AUX_CORRUPT_DATA, EIO)); 4564 } 4565 } 4566 } 4567 4568 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4569 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4570 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4572 } 4573 4574 /* 4575 * Encryption was added before bookmark_v2, even though bookmark_v2 4576 * is now a dependency. If this pool has encryption enabled without 4577 * bookmark_v2, trigger an errata message. 4578 */ 4579 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4580 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4581 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4582 } 4583 4584 return (0); 4585 } 4586 4587 static int 4588 spa_ld_load_special_directories(spa_t *spa) 4589 { 4590 int error = 0; 4591 vdev_t *rvd = spa->spa_root_vdev; 4592 4593 spa->spa_is_initializing = B_TRUE; 4594 error = dsl_pool_open(spa->spa_dsl_pool); 4595 spa->spa_is_initializing = B_FALSE; 4596 if (error != 0) { 4597 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4598 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4599 } 4600 4601 return (0); 4602 } 4603 4604 static int 4605 spa_ld_get_props(spa_t *spa) 4606 { 4607 int error = 0; 4608 uint64_t obj; 4609 vdev_t *rvd = spa->spa_root_vdev; 4610 4611 /* Grab the checksum salt from the MOS. */ 4612 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4613 DMU_POOL_CHECKSUM_SALT, 1, 4614 sizeof (spa->spa_cksum_salt.zcs_bytes), 4615 spa->spa_cksum_salt.zcs_bytes); 4616 if (error == ENOENT) { 4617 /* Generate a new salt for subsequent use */ 4618 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4619 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4620 } else if (error != 0) { 4621 spa_load_failed(spa, "unable to retrieve checksum salt from " 4622 "MOS [error=%d]", error); 4623 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4624 } 4625 4626 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4627 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4628 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4629 if (error != 0) { 4630 spa_load_failed(spa, "error opening deferred-frees bpobj " 4631 "[error=%d]", error); 4632 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4633 } 4634 4635 /* 4636 * Load the bit that tells us to use the new accounting function 4637 * (raid-z deflation). If we have an older pool, this will not 4638 * be present. 4639 */ 4640 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4641 if (error != 0 && error != ENOENT) 4642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4643 4644 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4645 &spa->spa_creation_version, B_FALSE); 4646 if (error != 0 && error != ENOENT) 4647 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4648 4649 /* 4650 * Load the persistent error log. If we have an older pool, this will 4651 * not be present. 4652 */ 4653 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4654 B_FALSE); 4655 if (error != 0 && error != ENOENT) 4656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4657 4658 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4659 &spa->spa_errlog_scrub, B_FALSE); 4660 if (error != 0 && error != ENOENT) 4661 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4662 4663 /* 4664 * Load the livelist deletion field. If a livelist is queued for 4665 * deletion, indicate that in the spa 4666 */ 4667 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4668 &spa->spa_livelists_to_delete, B_FALSE); 4669 if (error != 0 && error != ENOENT) 4670 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4671 4672 /* 4673 * Load the history object. If we have an older pool, this 4674 * will not be present. 4675 */ 4676 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4677 if (error != 0 && error != ENOENT) 4678 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4679 4680 /* 4681 * Load the per-vdev ZAP map. If we have an older pool, this will not 4682 * be present; in this case, defer its creation to a later time to 4683 * avoid dirtying the MOS this early / out of sync context. See 4684 * spa_sync_config_object. 4685 */ 4686 4687 /* The sentinel is only available in the MOS config. */ 4688 nvlist_t *mos_config; 4689 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4690 spa_load_failed(spa, "unable to retrieve MOS config"); 4691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4692 } 4693 4694 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4695 &spa->spa_all_vdev_zaps, B_FALSE); 4696 4697 if (error == ENOENT) { 4698 VERIFY(!nvlist_exists(mos_config, 4699 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4700 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4701 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4702 } else if (error != 0) { 4703 nvlist_free(mos_config); 4704 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4705 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4706 /* 4707 * An older version of ZFS overwrote the sentinel value, so 4708 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4709 * destruction to later; see spa_sync_config_object. 4710 */ 4711 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4712 /* 4713 * We're assuming that no vdevs have had their ZAPs created 4714 * before this. Better be sure of it. 4715 */ 4716 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4717 } 4718 nvlist_free(mos_config); 4719 4720 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4721 4722 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4723 B_FALSE); 4724 if (error && error != ENOENT) 4725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4726 4727 if (error == 0) { 4728 uint64_t autoreplace = 0; 4729 4730 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4731 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4732 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4733 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4734 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4735 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4736 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4737 spa->spa_autoreplace = (autoreplace != 0); 4738 } 4739 4740 /* 4741 * If we are importing a pool with missing top-level vdevs, 4742 * we enforce that the pool doesn't panic or get suspended on 4743 * error since the likelihood of missing data is extremely high. 4744 */ 4745 if (spa->spa_missing_tvds > 0 && 4746 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4747 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4748 spa_load_note(spa, "forcing failmode to 'continue' " 4749 "as some top level vdevs are missing"); 4750 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4751 } 4752 4753 return (0); 4754 } 4755 4756 static int 4757 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4758 { 4759 int error = 0; 4760 vdev_t *rvd = spa->spa_root_vdev; 4761 4762 /* 4763 * If we're assembling the pool from the split-off vdevs of 4764 * an existing pool, we don't want to attach the spares & cache 4765 * devices. 4766 */ 4767 4768 /* 4769 * Load any hot spares for this pool. 4770 */ 4771 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4772 B_FALSE); 4773 if (error != 0 && error != ENOENT) 4774 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4775 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4776 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4777 if (load_nvlist(spa, spa->spa_spares.sav_object, 4778 &spa->spa_spares.sav_config) != 0) { 4779 spa_load_failed(spa, "error loading spares nvlist"); 4780 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4781 } 4782 4783 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4784 spa_load_spares(spa); 4785 spa_config_exit(spa, SCL_ALL, FTAG); 4786 } else if (error == 0) { 4787 spa->spa_spares.sav_sync = B_TRUE; 4788 } 4789 4790 /* 4791 * Load any level 2 ARC devices for this pool. 4792 */ 4793 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4794 &spa->spa_l2cache.sav_object, B_FALSE); 4795 if (error != 0 && error != ENOENT) 4796 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4797 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4798 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4799 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4800 &spa->spa_l2cache.sav_config) != 0) { 4801 spa_load_failed(spa, "error loading l2cache nvlist"); 4802 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4803 } 4804 4805 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4806 spa_load_l2cache(spa); 4807 spa_config_exit(spa, SCL_ALL, FTAG); 4808 } else if (error == 0) { 4809 spa->spa_l2cache.sav_sync = B_TRUE; 4810 } 4811 4812 return (0); 4813 } 4814 4815 static int 4816 spa_ld_load_vdev_metadata(spa_t *spa) 4817 { 4818 int error = 0; 4819 vdev_t *rvd = spa->spa_root_vdev; 4820 4821 /* 4822 * If the 'multihost' property is set, then never allow a pool to 4823 * be imported when the system hostid is zero. The exception to 4824 * this rule is zdb which is always allowed to access pools. 4825 */ 4826 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4827 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4828 fnvlist_add_uint64(spa->spa_load_info, 4829 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4830 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4831 } 4832 4833 /* 4834 * If the 'autoreplace' property is set, then post a resource notifying 4835 * the ZFS DE that it should not issue any faults for unopenable 4836 * devices. We also iterate over the vdevs, and post a sysevent for any 4837 * unopenable vdevs so that the normal autoreplace handler can take 4838 * over. 4839 */ 4840 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4841 spa_check_removed(spa->spa_root_vdev); 4842 /* 4843 * For the import case, this is done in spa_import(), because 4844 * at this point we're using the spare definitions from 4845 * the MOS config, not necessarily from the userland config. 4846 */ 4847 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4848 spa_aux_check_removed(&spa->spa_spares); 4849 spa_aux_check_removed(&spa->spa_l2cache); 4850 } 4851 } 4852 4853 /* 4854 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4855 */ 4856 error = vdev_load(rvd); 4857 if (error != 0) { 4858 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4859 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4860 } 4861 4862 error = spa_ld_log_spacemaps(spa); 4863 if (error != 0) { 4864 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4865 error); 4866 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4867 } 4868 4869 /* 4870 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4871 */ 4872 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4873 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4874 spa_config_exit(spa, SCL_ALL, FTAG); 4875 4876 return (0); 4877 } 4878 4879 static int 4880 spa_ld_load_dedup_tables(spa_t *spa) 4881 { 4882 int error = 0; 4883 vdev_t *rvd = spa->spa_root_vdev; 4884 4885 error = ddt_load(spa); 4886 if (error != 0) { 4887 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4889 } 4890 4891 return (0); 4892 } 4893 4894 static int 4895 spa_ld_load_brt(spa_t *spa) 4896 { 4897 int error = 0; 4898 vdev_t *rvd = spa->spa_root_vdev; 4899 4900 error = brt_load(spa); 4901 if (error != 0) { 4902 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4903 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4904 } 4905 4906 return (0); 4907 } 4908 4909 static int 4910 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4911 { 4912 vdev_t *rvd = spa->spa_root_vdev; 4913 4914 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4915 boolean_t missing = spa_check_logs(spa); 4916 if (missing) { 4917 if (spa->spa_missing_tvds != 0) { 4918 spa_load_note(spa, "spa_check_logs failed " 4919 "so dropping the logs"); 4920 } else { 4921 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4922 spa_load_failed(spa, "spa_check_logs failed"); 4923 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4924 ENXIO)); 4925 } 4926 } 4927 } 4928 4929 return (0); 4930 } 4931 4932 static int 4933 spa_ld_verify_pool_data(spa_t *spa) 4934 { 4935 int error = 0; 4936 vdev_t *rvd = spa->spa_root_vdev; 4937 4938 /* 4939 * We've successfully opened the pool, verify that we're ready 4940 * to start pushing transactions. 4941 */ 4942 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4943 error = spa_load_verify(spa); 4944 if (error != 0) { 4945 spa_load_failed(spa, "spa_load_verify failed " 4946 "[error=%d]", error); 4947 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4948 error)); 4949 } 4950 } 4951 4952 return (0); 4953 } 4954 4955 static void 4956 spa_ld_claim_log_blocks(spa_t *spa) 4957 { 4958 dmu_tx_t *tx; 4959 dsl_pool_t *dp = spa_get_dsl(spa); 4960 4961 /* 4962 * Claim log blocks that haven't been committed yet. 4963 * This must all happen in a single txg. 4964 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4965 * invoked from zil_claim_log_block()'s i/o done callback. 4966 * Price of rollback is that we abandon the log. 4967 */ 4968 spa->spa_claiming = B_TRUE; 4969 4970 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4971 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4972 zil_claim, tx, DS_FIND_CHILDREN); 4973 dmu_tx_commit(tx); 4974 4975 spa->spa_claiming = B_FALSE; 4976 4977 spa_set_log_state(spa, SPA_LOG_GOOD); 4978 } 4979 4980 static void 4981 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4982 boolean_t update_config_cache) 4983 { 4984 vdev_t *rvd = spa->spa_root_vdev; 4985 int need_update = B_FALSE; 4986 4987 /* 4988 * If the config cache is stale, or we have uninitialized 4989 * metaslabs (see spa_vdev_add()), then update the config. 4990 * 4991 * If this is a verbatim import, trust the current 4992 * in-core spa_config and update the disk labels. 4993 */ 4994 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4995 spa->spa_load_state == SPA_LOAD_IMPORT || 4996 spa->spa_load_state == SPA_LOAD_RECOVER || 4997 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4998 need_update = B_TRUE; 4999 5000 for (int c = 0; c < rvd->vdev_children; c++) 5001 if (rvd->vdev_child[c]->vdev_ms_array == 0) 5002 need_update = B_TRUE; 5003 5004 /* 5005 * Update the config cache asynchronously in case we're the 5006 * root pool, in which case the config cache isn't writable yet. 5007 */ 5008 if (need_update) 5009 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 5010 } 5011 5012 static void 5013 spa_ld_prepare_for_reload(spa_t *spa) 5014 { 5015 spa_mode_t mode = spa->spa_mode; 5016 int async_suspended = spa->spa_async_suspended; 5017 5018 spa_unload(spa); 5019 spa_deactivate(spa); 5020 spa_activate(spa, mode); 5021 5022 /* 5023 * We save the value of spa_async_suspended as it gets reset to 0 by 5024 * spa_unload(). We want to restore it back to the original value before 5025 * returning as we might be calling spa_async_resume() later. 5026 */ 5027 spa->spa_async_suspended = async_suspended; 5028 } 5029 5030 static int 5031 spa_ld_read_checkpoint_txg(spa_t *spa) 5032 { 5033 uberblock_t checkpoint; 5034 int error = 0; 5035 5036 ASSERT0(spa->spa_checkpoint_txg); 5037 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 5038 spa->spa_load_thread == curthread); 5039 5040 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5041 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5042 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5043 5044 if (error == ENOENT) 5045 return (0); 5046 5047 if (error != 0) 5048 return (error); 5049 5050 ASSERT3U(checkpoint.ub_txg, !=, 0); 5051 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 5052 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 5053 spa->spa_checkpoint_txg = checkpoint.ub_txg; 5054 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 5055 5056 return (0); 5057 } 5058 5059 static int 5060 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 5061 { 5062 int error = 0; 5063 5064 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5065 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5066 5067 /* 5068 * Never trust the config that is provided unless we are assembling 5069 * a pool following a split. 5070 * This means don't trust blkptrs and the vdev tree in general. This 5071 * also effectively puts the spa in read-only mode since 5072 * spa_writeable() checks for spa_trust_config to be true. 5073 * We will later load a trusted config from the MOS. 5074 */ 5075 if (type != SPA_IMPORT_ASSEMBLE) 5076 spa->spa_trust_config = B_FALSE; 5077 5078 /* 5079 * Parse the config provided to create a vdev tree. 5080 */ 5081 error = spa_ld_parse_config(spa, type); 5082 if (error != 0) 5083 return (error); 5084 5085 spa_import_progress_add(spa); 5086 5087 /* 5088 * Now that we have the vdev tree, try to open each vdev. This involves 5089 * opening the underlying physical device, retrieving its geometry and 5090 * probing the vdev with a dummy I/O. The state of each vdev will be set 5091 * based on the success of those operations. After this we'll be ready 5092 * to read from the vdevs. 5093 */ 5094 error = spa_ld_open_vdevs(spa); 5095 if (error != 0) 5096 return (error); 5097 5098 /* 5099 * Read the label of each vdev and make sure that the GUIDs stored 5100 * there match the GUIDs in the config provided. 5101 * If we're assembling a new pool that's been split off from an 5102 * existing pool, the labels haven't yet been updated so we skip 5103 * validation for now. 5104 */ 5105 if (type != SPA_IMPORT_ASSEMBLE) { 5106 error = spa_ld_validate_vdevs(spa); 5107 if (error != 0) 5108 return (error); 5109 } 5110 5111 /* 5112 * Read all vdev labels to find the best uberblock (i.e. latest, 5113 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 5114 * get the list of features required to read blkptrs in the MOS from 5115 * the vdev label with the best uberblock and verify that our version 5116 * of zfs supports them all. 5117 */ 5118 error = spa_ld_select_uberblock(spa, type); 5119 if (error != 0) 5120 return (error); 5121 5122 /* 5123 * Pass that uberblock to the dsl_pool layer which will open the root 5124 * blkptr. This blkptr points to the latest version of the MOS and will 5125 * allow us to read its contents. 5126 */ 5127 error = spa_ld_open_rootbp(spa); 5128 if (error != 0) 5129 return (error); 5130 5131 return (0); 5132 } 5133 5134 static int 5135 spa_ld_checkpoint_rewind(spa_t *spa) 5136 { 5137 uberblock_t checkpoint; 5138 int error = 0; 5139 5140 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5141 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5142 5143 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5144 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5145 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5146 5147 if (error != 0) { 5148 spa_load_failed(spa, "unable to retrieve checkpointed " 5149 "uberblock from the MOS config [error=%d]", error); 5150 5151 if (error == ENOENT) 5152 error = ZFS_ERR_NO_CHECKPOINT; 5153 5154 return (error); 5155 } 5156 5157 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 5158 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 5159 5160 /* 5161 * We need to update the txg and timestamp of the checkpointed 5162 * uberblock to be higher than the latest one. This ensures that 5163 * the checkpointed uberblock is selected if we were to close and 5164 * reopen the pool right after we've written it in the vdev labels. 5165 * (also see block comment in vdev_uberblock_compare) 5166 */ 5167 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 5168 checkpoint.ub_timestamp = gethrestime_sec(); 5169 5170 /* 5171 * Set current uberblock to be the checkpointed uberblock. 5172 */ 5173 spa->spa_uberblock = checkpoint; 5174 5175 /* 5176 * If we are doing a normal rewind, then the pool is open for 5177 * writing and we sync the "updated" checkpointed uberblock to 5178 * disk. Once this is done, we've basically rewound the whole 5179 * pool and there is no way back. 5180 * 5181 * There are cases when we don't want to attempt and sync the 5182 * checkpointed uberblock to disk because we are opening a 5183 * pool as read-only. Specifically, verifying the checkpointed 5184 * state with zdb, and importing the checkpointed state to get 5185 * a "preview" of its content. 5186 */ 5187 if (spa_writeable(spa)) { 5188 vdev_t *rvd = spa->spa_root_vdev; 5189 5190 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5191 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 5192 int svdcount = 0; 5193 int children = rvd->vdev_children; 5194 int c0 = random_in_range(children); 5195 5196 for (int c = 0; c < children; c++) { 5197 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 5198 5199 /* Stop when revisiting the first vdev */ 5200 if (c > 0 && svd[0] == vd) 5201 break; 5202 5203 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 5204 !vdev_is_concrete(vd)) 5205 continue; 5206 5207 svd[svdcount++] = vd; 5208 if (svdcount == SPA_SYNC_MIN_VDEVS) 5209 break; 5210 } 5211 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 5212 if (error == 0) 5213 spa->spa_last_synced_guid = rvd->vdev_guid; 5214 spa_config_exit(spa, SCL_ALL, FTAG); 5215 5216 if (error != 0) { 5217 spa_load_failed(spa, "failed to write checkpointed " 5218 "uberblock to the vdev labels [error=%d]", error); 5219 return (error); 5220 } 5221 } 5222 5223 return (0); 5224 } 5225 5226 static int 5227 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 5228 boolean_t *update_config_cache) 5229 { 5230 int error; 5231 5232 /* 5233 * Parse the config for pool, open and validate vdevs, 5234 * select an uberblock, and use that uberblock to open 5235 * the MOS. 5236 */ 5237 error = spa_ld_mos_init(spa, type); 5238 if (error != 0) 5239 return (error); 5240 5241 /* 5242 * Retrieve the trusted config stored in the MOS and use it to create 5243 * a new, exact version of the vdev tree, then reopen all vdevs. 5244 */ 5245 error = spa_ld_trusted_config(spa, type, B_FALSE); 5246 if (error == EAGAIN) { 5247 if (update_config_cache != NULL) 5248 *update_config_cache = B_TRUE; 5249 5250 /* 5251 * Redo the loading process with the trusted config if it is 5252 * too different from the untrusted config. 5253 */ 5254 spa_ld_prepare_for_reload(spa); 5255 spa_load_note(spa, "RELOADING"); 5256 error = spa_ld_mos_init(spa, type); 5257 if (error != 0) 5258 return (error); 5259 5260 error = spa_ld_trusted_config(spa, type, B_TRUE); 5261 if (error != 0) 5262 return (error); 5263 5264 } else if (error != 0) { 5265 return (error); 5266 } 5267 5268 return (0); 5269 } 5270 5271 /* 5272 * Load an existing storage pool, using the config provided. This config 5273 * describes which vdevs are part of the pool and is later validated against 5274 * partial configs present in each vdev's label and an entire copy of the 5275 * config stored in the MOS. 5276 */ 5277 static int 5278 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 5279 { 5280 int error = 0; 5281 boolean_t missing_feat_write = B_FALSE; 5282 boolean_t checkpoint_rewind = 5283 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5284 boolean_t update_config_cache = B_FALSE; 5285 hrtime_t load_start = gethrtime(); 5286 5287 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5288 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5289 5290 spa_load_note(spa, "LOADING"); 5291 5292 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 5293 if (error != 0) 5294 return (error); 5295 5296 /* 5297 * If we are rewinding to the checkpoint then we need to repeat 5298 * everything we've done so far in this function but this time 5299 * selecting the checkpointed uberblock and using that to open 5300 * the MOS. 5301 */ 5302 if (checkpoint_rewind) { 5303 /* 5304 * If we are rewinding to the checkpoint update config cache 5305 * anyway. 5306 */ 5307 update_config_cache = B_TRUE; 5308 5309 /* 5310 * Extract the checkpointed uberblock from the current MOS 5311 * and use this as the pool's uberblock from now on. If the 5312 * pool is imported as writeable we also write the checkpoint 5313 * uberblock to the labels, making the rewind permanent. 5314 */ 5315 error = spa_ld_checkpoint_rewind(spa); 5316 if (error != 0) 5317 return (error); 5318 5319 /* 5320 * Redo the loading process again with the 5321 * checkpointed uberblock. 5322 */ 5323 spa_ld_prepare_for_reload(spa); 5324 spa_load_note(spa, "LOADING checkpointed uberblock"); 5325 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5326 if (error != 0) 5327 return (error); 5328 } 5329 5330 /* 5331 * Drop the namespace lock for the rest of the function. 5332 */ 5333 spa->spa_load_thread = curthread; 5334 mutex_exit(&spa_namespace_lock); 5335 5336 /* 5337 * Retrieve the checkpoint txg if the pool has a checkpoint. 5338 */ 5339 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5340 error = spa_ld_read_checkpoint_txg(spa); 5341 if (error != 0) 5342 goto fail; 5343 5344 /* 5345 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5346 * from the pool and their contents were re-mapped to other vdevs. Note 5347 * that everything that we read before this step must have been 5348 * rewritten on concrete vdevs after the last device removal was 5349 * initiated. Otherwise we could be reading from indirect vdevs before 5350 * we have loaded their mappings. 5351 */ 5352 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5353 error = spa_ld_open_indirect_vdev_metadata(spa); 5354 if (error != 0) 5355 goto fail; 5356 5357 /* 5358 * Retrieve the full list of active features from the MOS and check if 5359 * they are all supported. 5360 */ 5361 spa_import_progress_set_notes(spa, "Checking feature flags"); 5362 error = spa_ld_check_features(spa, &missing_feat_write); 5363 if (error != 0) 5364 goto fail; 5365 5366 /* 5367 * Load several special directories from the MOS needed by the dsl_pool 5368 * layer. 5369 */ 5370 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5371 error = spa_ld_load_special_directories(spa); 5372 if (error != 0) 5373 goto fail; 5374 5375 /* 5376 * Retrieve pool properties from the MOS. 5377 */ 5378 spa_import_progress_set_notes(spa, "Loading properties"); 5379 error = spa_ld_get_props(spa); 5380 if (error != 0) 5381 goto fail; 5382 5383 /* 5384 * Retrieve the list of auxiliary devices - cache devices and spares - 5385 * and open them. 5386 */ 5387 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5388 error = spa_ld_open_aux_vdevs(spa, type); 5389 if (error != 0) 5390 goto fail; 5391 5392 /* 5393 * Load the metadata for all vdevs. Also check if unopenable devices 5394 * should be autoreplaced. 5395 */ 5396 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5397 error = spa_ld_load_vdev_metadata(spa); 5398 if (error != 0) 5399 goto fail; 5400 5401 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5402 error = spa_ld_load_dedup_tables(spa); 5403 if (error != 0) 5404 goto fail; 5405 5406 spa_import_progress_set_notes(spa, "Loading BRT"); 5407 error = spa_ld_load_brt(spa); 5408 if (error != 0) 5409 goto fail; 5410 5411 /* 5412 * Verify the logs now to make sure we don't have any unexpected errors 5413 * when we claim log blocks later. 5414 */ 5415 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5416 error = spa_ld_verify_logs(spa, type, ereport); 5417 if (error != 0) 5418 goto fail; 5419 5420 if (missing_feat_write) { 5421 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5422 5423 /* 5424 * At this point, we know that we can open the pool in 5425 * read-only mode but not read-write mode. We now have enough 5426 * information and can return to userland. 5427 */ 5428 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5429 ENOTSUP); 5430 goto fail; 5431 } 5432 5433 /* 5434 * Traverse the last txgs to make sure the pool was left off in a safe 5435 * state. When performing an extreme rewind, we verify the whole pool, 5436 * which can take a very long time. 5437 */ 5438 spa_import_progress_set_notes(spa, "Verifying pool data"); 5439 error = spa_ld_verify_pool_data(spa); 5440 if (error != 0) 5441 goto fail; 5442 5443 /* 5444 * Calculate the deflated space for the pool. This must be done before 5445 * we write anything to the pool because we'd need to update the space 5446 * accounting using the deflated sizes. 5447 */ 5448 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5449 spa_update_dspace(spa); 5450 5451 /* 5452 * We have now retrieved all the information we needed to open the 5453 * pool. If we are importing the pool in read-write mode, a few 5454 * additional steps must be performed to finish the import. 5455 */ 5456 spa_import_progress_set_notes(spa, "Starting import"); 5457 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5458 spa->spa_load_max_txg == UINT64_MAX)) { 5459 uint64_t config_cache_txg = spa->spa_config_txg; 5460 5461 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5462 5463 /* 5464 * Before we do any zio_write's, complete the raidz expansion 5465 * scratch space copying, if necessary. 5466 */ 5467 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5468 vdev_raidz_reflow_copy_scratch(spa); 5469 5470 /* 5471 * In case of a checkpoint rewind, log the original txg 5472 * of the checkpointed uberblock. 5473 */ 5474 if (checkpoint_rewind) { 5475 spa_history_log_internal(spa, "checkpoint rewind", 5476 NULL, "rewound state to txg=%llu", 5477 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5478 } 5479 5480 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5481 /* 5482 * Traverse the ZIL and claim all blocks. 5483 */ 5484 spa_ld_claim_log_blocks(spa); 5485 5486 /* 5487 * Kick-off the syncing thread. 5488 */ 5489 spa->spa_sync_on = B_TRUE; 5490 txg_sync_start(spa->spa_dsl_pool); 5491 mmp_thread_start(spa); 5492 5493 /* 5494 * Wait for all claims to sync. We sync up to the highest 5495 * claimed log block birth time so that claimed log blocks 5496 * don't appear to be from the future. spa_claim_max_txg 5497 * will have been set for us by ZIL traversal operations 5498 * performed above. 5499 */ 5500 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5501 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5502 5503 /* 5504 * Check if we need to request an update of the config. On the 5505 * next sync, we would update the config stored in vdev labels 5506 * and the cachefile (by default /etc/zfs/zpool.cache). 5507 */ 5508 spa_import_progress_set_notes(spa, "Updating configs"); 5509 spa_ld_check_for_config_update(spa, config_cache_txg, 5510 update_config_cache); 5511 5512 /* 5513 * Check if a rebuild was in progress and if so resume it. 5514 * Then check all DTLs to see if anything needs resilvering. 5515 * The resilver will be deferred if a rebuild was started. 5516 */ 5517 spa_import_progress_set_notes(spa, "Starting resilvers"); 5518 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5519 vdev_rebuild_restart(spa); 5520 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5521 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5522 spa_async_request(spa, SPA_ASYNC_RESILVER); 5523 } 5524 5525 /* 5526 * Log the fact that we booted up (so that we can detect if 5527 * we rebooted in the middle of an operation). 5528 */ 5529 spa_history_log_version(spa, "open", NULL); 5530 5531 spa_import_progress_set_notes(spa, 5532 "Restarting device removals"); 5533 spa_restart_removal(spa); 5534 spa_spawn_aux_threads(spa); 5535 5536 /* 5537 * Delete any inconsistent datasets. 5538 * 5539 * Note: 5540 * Since we may be issuing deletes for clones here, 5541 * we make sure to do so after we've spawned all the 5542 * auxiliary threads above (from which the livelist 5543 * deletion zthr is part of). 5544 */ 5545 spa_import_progress_set_notes(spa, 5546 "Cleaning up inconsistent objsets"); 5547 (void) dmu_objset_find(spa_name(spa), 5548 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5549 5550 /* 5551 * Clean up any stale temporary dataset userrefs. 5552 */ 5553 spa_import_progress_set_notes(spa, 5554 "Cleaning up temporary userrefs"); 5555 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5556 5557 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5558 spa_import_progress_set_notes(spa, "Restarting initialize"); 5559 vdev_initialize_restart(spa->spa_root_vdev); 5560 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5561 vdev_trim_restart(spa->spa_root_vdev); 5562 vdev_autotrim_restart(spa); 5563 spa_config_exit(spa, SCL_CONFIG, FTAG); 5564 spa_import_progress_set_notes(spa, "Finished importing"); 5565 } 5566 zio_handle_import_delay(spa, gethrtime() - load_start); 5567 5568 spa_import_progress_remove(spa_guid(spa)); 5569 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5570 5571 spa_load_note(spa, "LOADED"); 5572 fail: 5573 mutex_enter(&spa_namespace_lock); 5574 spa->spa_load_thread = NULL; 5575 cv_broadcast(&spa_namespace_cv); 5576 5577 return (error); 5578 5579 } 5580 5581 static int 5582 spa_load_retry(spa_t *spa, spa_load_state_t state) 5583 { 5584 spa_mode_t mode = spa->spa_mode; 5585 5586 spa_unload(spa); 5587 spa_deactivate(spa); 5588 5589 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5590 5591 spa_activate(spa, mode); 5592 spa_async_suspend(spa); 5593 5594 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5595 (u_longlong_t)spa->spa_load_max_txg); 5596 5597 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5598 } 5599 5600 /* 5601 * If spa_load() fails this function will try loading prior txg's. If 5602 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5603 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5604 * function will not rewind the pool and will return the same error as 5605 * spa_load(). 5606 */ 5607 static int 5608 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5609 int rewind_flags) 5610 { 5611 nvlist_t *loadinfo = NULL; 5612 nvlist_t *config = NULL; 5613 int load_error, rewind_error; 5614 uint64_t safe_rewind_txg; 5615 uint64_t min_txg; 5616 5617 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5618 spa->spa_load_max_txg = spa->spa_load_txg; 5619 spa_set_log_state(spa, SPA_LOG_CLEAR); 5620 } else { 5621 spa->spa_load_max_txg = max_request; 5622 if (max_request != UINT64_MAX) 5623 spa->spa_extreme_rewind = B_TRUE; 5624 } 5625 5626 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5627 if (load_error == 0) 5628 return (0); 5629 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5630 /* 5631 * When attempting checkpoint-rewind on a pool with no 5632 * checkpoint, we should not attempt to load uberblocks 5633 * from previous txgs when spa_load fails. 5634 */ 5635 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5636 spa_import_progress_remove(spa_guid(spa)); 5637 return (load_error); 5638 } 5639 5640 if (spa->spa_root_vdev != NULL) 5641 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5642 5643 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5644 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5645 5646 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5647 nvlist_free(config); 5648 spa_import_progress_remove(spa_guid(spa)); 5649 return (load_error); 5650 } 5651 5652 if (state == SPA_LOAD_RECOVER) { 5653 /* Price of rolling back is discarding txgs, including log */ 5654 spa_set_log_state(spa, SPA_LOG_CLEAR); 5655 } else { 5656 /* 5657 * If we aren't rolling back save the load info from our first 5658 * import attempt so that we can restore it after attempting 5659 * to rewind. 5660 */ 5661 loadinfo = spa->spa_load_info; 5662 spa->spa_load_info = fnvlist_alloc(); 5663 } 5664 5665 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5666 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5667 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5668 TXG_INITIAL : safe_rewind_txg; 5669 5670 /* 5671 * Continue as long as we're finding errors, we're still within 5672 * the acceptable rewind range, and we're still finding uberblocks 5673 */ 5674 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5675 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5676 if (spa->spa_load_max_txg < safe_rewind_txg) 5677 spa->spa_extreme_rewind = B_TRUE; 5678 rewind_error = spa_load_retry(spa, state); 5679 } 5680 5681 spa->spa_extreme_rewind = B_FALSE; 5682 spa->spa_load_max_txg = UINT64_MAX; 5683 5684 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5685 spa_config_set(spa, config); 5686 else 5687 nvlist_free(config); 5688 5689 if (state == SPA_LOAD_RECOVER) { 5690 ASSERT3P(loadinfo, ==, NULL); 5691 spa_import_progress_remove(spa_guid(spa)); 5692 return (rewind_error); 5693 } else { 5694 /* Store the rewind info as part of the initial load info */ 5695 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5696 spa->spa_load_info); 5697 5698 /* Restore the initial load info */ 5699 fnvlist_free(spa->spa_load_info); 5700 spa->spa_load_info = loadinfo; 5701 5702 spa_import_progress_remove(spa_guid(spa)); 5703 return (load_error); 5704 } 5705 } 5706 5707 /* 5708 * Pool Open/Import 5709 * 5710 * The import case is identical to an open except that the configuration is sent 5711 * down from userland, instead of grabbed from the configuration cache. For the 5712 * case of an open, the pool configuration will exist in the 5713 * POOL_STATE_UNINITIALIZED state. 5714 * 5715 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5716 * the same time open the pool, without having to keep around the spa_t in some 5717 * ambiguous state. 5718 */ 5719 static int 5720 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5721 nvlist_t *nvpolicy, nvlist_t **config) 5722 { 5723 spa_t *spa; 5724 spa_load_state_t state = SPA_LOAD_OPEN; 5725 int error; 5726 int locked = B_FALSE; 5727 int firstopen = B_FALSE; 5728 5729 *spapp = NULL; 5730 5731 /* 5732 * As disgusting as this is, we need to support recursive calls to this 5733 * function because dsl_dir_open() is called during spa_load(), and ends 5734 * up calling spa_open() again. The real fix is to figure out how to 5735 * avoid dsl_dir_open() calling this in the first place. 5736 */ 5737 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5738 mutex_enter(&spa_namespace_lock); 5739 locked = B_TRUE; 5740 } 5741 5742 if ((spa = spa_lookup(pool)) == NULL) { 5743 if (locked) 5744 mutex_exit(&spa_namespace_lock); 5745 return (SET_ERROR(ENOENT)); 5746 } 5747 5748 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5749 zpool_load_policy_t policy; 5750 5751 firstopen = B_TRUE; 5752 5753 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5754 &policy); 5755 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5756 state = SPA_LOAD_RECOVER; 5757 5758 spa_activate(spa, spa_mode_global); 5759 5760 if (state != SPA_LOAD_RECOVER) 5761 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5762 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5763 5764 zfs_dbgmsg("spa_open_common: opening %s", pool); 5765 error = spa_load_best(spa, state, policy.zlp_txg, 5766 policy.zlp_rewind); 5767 5768 if (error == EBADF) { 5769 /* 5770 * If vdev_validate() returns failure (indicated by 5771 * EBADF), it indicates that one of the vdevs indicates 5772 * that the pool has been exported or destroyed. If 5773 * this is the case, the config cache is out of sync and 5774 * we should remove the pool from the namespace. 5775 */ 5776 spa_unload(spa); 5777 spa_deactivate(spa); 5778 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5779 spa_remove(spa); 5780 if (locked) 5781 mutex_exit(&spa_namespace_lock); 5782 return (SET_ERROR(ENOENT)); 5783 } 5784 5785 if (error) { 5786 /* 5787 * We can't open the pool, but we still have useful 5788 * information: the state of each vdev after the 5789 * attempted vdev_open(). Return this to the user. 5790 */ 5791 if (config != NULL && spa->spa_config) { 5792 *config = fnvlist_dup(spa->spa_config); 5793 fnvlist_add_nvlist(*config, 5794 ZPOOL_CONFIG_LOAD_INFO, 5795 spa->spa_load_info); 5796 } 5797 spa_unload(spa); 5798 spa_deactivate(spa); 5799 spa->spa_last_open_failed = error; 5800 if (locked) 5801 mutex_exit(&spa_namespace_lock); 5802 *spapp = NULL; 5803 return (error); 5804 } 5805 } 5806 5807 spa_open_ref(spa, tag); 5808 5809 if (config != NULL) 5810 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5811 5812 /* 5813 * If we've recovered the pool, pass back any information we 5814 * gathered while doing the load. 5815 */ 5816 if (state == SPA_LOAD_RECOVER && config != NULL) { 5817 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5818 spa->spa_load_info); 5819 } 5820 5821 if (locked) { 5822 spa->spa_last_open_failed = 0; 5823 spa->spa_last_ubsync_txg = 0; 5824 spa->spa_load_txg = 0; 5825 mutex_exit(&spa_namespace_lock); 5826 } 5827 5828 if (firstopen) 5829 zvol_create_minors_recursive(spa_name(spa)); 5830 5831 *spapp = spa; 5832 5833 return (0); 5834 } 5835 5836 int 5837 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5838 nvlist_t *policy, nvlist_t **config) 5839 { 5840 return (spa_open_common(name, spapp, tag, policy, config)); 5841 } 5842 5843 int 5844 spa_open(const char *name, spa_t **spapp, const void *tag) 5845 { 5846 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5847 } 5848 5849 /* 5850 * Lookup the given spa_t, incrementing the inject count in the process, 5851 * preventing it from being exported or destroyed. 5852 */ 5853 spa_t * 5854 spa_inject_addref(char *name) 5855 { 5856 spa_t *spa; 5857 5858 mutex_enter(&spa_namespace_lock); 5859 if ((spa = spa_lookup(name)) == NULL) { 5860 mutex_exit(&spa_namespace_lock); 5861 return (NULL); 5862 } 5863 spa->spa_inject_ref++; 5864 mutex_exit(&spa_namespace_lock); 5865 5866 return (spa); 5867 } 5868 5869 void 5870 spa_inject_delref(spa_t *spa) 5871 { 5872 mutex_enter(&spa_namespace_lock); 5873 spa->spa_inject_ref--; 5874 mutex_exit(&spa_namespace_lock); 5875 } 5876 5877 /* 5878 * Add spares device information to the nvlist. 5879 */ 5880 static void 5881 spa_add_spares(spa_t *spa, nvlist_t *config) 5882 { 5883 nvlist_t **spares; 5884 uint_t i, nspares; 5885 nvlist_t *nvroot; 5886 uint64_t guid; 5887 vdev_stat_t *vs; 5888 uint_t vsc; 5889 uint64_t pool; 5890 5891 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5892 5893 if (spa->spa_spares.sav_count == 0) 5894 return; 5895 5896 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5897 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5898 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5899 if (nspares != 0) { 5900 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5901 (const nvlist_t * const *)spares, nspares); 5902 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5903 &spares, &nspares)); 5904 5905 /* 5906 * Go through and find any spares which have since been 5907 * repurposed as an active spare. If this is the case, update 5908 * their status appropriately. 5909 */ 5910 for (i = 0; i < nspares; i++) { 5911 guid = fnvlist_lookup_uint64(spares[i], 5912 ZPOOL_CONFIG_GUID); 5913 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5914 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5915 if (spa_spare_exists(guid, &pool, NULL) && 5916 pool != 0ULL) { 5917 vs->vs_state = VDEV_STATE_CANT_OPEN; 5918 vs->vs_aux = VDEV_AUX_SPARED; 5919 } else { 5920 vs->vs_state = 5921 spa->spa_spares.sav_vdevs[i]->vdev_state; 5922 } 5923 } 5924 } 5925 } 5926 5927 /* 5928 * Add l2cache device information to the nvlist, including vdev stats. 5929 */ 5930 static void 5931 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5932 { 5933 nvlist_t **l2cache; 5934 uint_t i, j, nl2cache; 5935 nvlist_t *nvroot; 5936 uint64_t guid; 5937 vdev_t *vd; 5938 vdev_stat_t *vs; 5939 uint_t vsc; 5940 5941 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5942 5943 if (spa->spa_l2cache.sav_count == 0) 5944 return; 5945 5946 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5947 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5948 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 5949 if (nl2cache != 0) { 5950 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5951 (const nvlist_t * const *)l2cache, nl2cache); 5952 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5953 &l2cache, &nl2cache)); 5954 5955 /* 5956 * Update level 2 cache device stats. 5957 */ 5958 5959 for (i = 0; i < nl2cache; i++) { 5960 guid = fnvlist_lookup_uint64(l2cache[i], 5961 ZPOOL_CONFIG_GUID); 5962 5963 vd = NULL; 5964 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5965 if (guid == 5966 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5967 vd = spa->spa_l2cache.sav_vdevs[j]; 5968 break; 5969 } 5970 } 5971 ASSERT(vd != NULL); 5972 5973 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 5974 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5975 vdev_get_stats(vd, vs); 5976 vdev_config_generate_stats(vd, l2cache[i]); 5977 5978 } 5979 } 5980 } 5981 5982 static void 5983 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5984 { 5985 zap_cursor_t zc; 5986 zap_attribute_t za; 5987 5988 if (spa->spa_feat_for_read_obj != 0) { 5989 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5990 spa->spa_feat_for_read_obj); 5991 zap_cursor_retrieve(&zc, &za) == 0; 5992 zap_cursor_advance(&zc)) { 5993 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5994 za.za_num_integers == 1); 5995 VERIFY0(nvlist_add_uint64(features, za.za_name, 5996 za.za_first_integer)); 5997 } 5998 zap_cursor_fini(&zc); 5999 } 6000 6001 if (spa->spa_feat_for_write_obj != 0) { 6002 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6003 spa->spa_feat_for_write_obj); 6004 zap_cursor_retrieve(&zc, &za) == 0; 6005 zap_cursor_advance(&zc)) { 6006 ASSERT(za.za_integer_length == sizeof (uint64_t) && 6007 za.za_num_integers == 1); 6008 VERIFY0(nvlist_add_uint64(features, za.za_name, 6009 za.za_first_integer)); 6010 } 6011 zap_cursor_fini(&zc); 6012 } 6013 } 6014 6015 static void 6016 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 6017 { 6018 int i; 6019 6020 for (i = 0; i < SPA_FEATURES; i++) { 6021 zfeature_info_t feature = spa_feature_table[i]; 6022 uint64_t refcount; 6023 6024 if (feature_get_refcount(spa, &feature, &refcount) != 0) 6025 continue; 6026 6027 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 6028 } 6029 } 6030 6031 /* 6032 * Store a list of pool features and their reference counts in the 6033 * config. 6034 * 6035 * The first time this is called on a spa, allocate a new nvlist, fetch 6036 * the pool features and reference counts from disk, then save the list 6037 * in the spa. In subsequent calls on the same spa use the saved nvlist 6038 * and refresh its values from the cached reference counts. This 6039 * ensures we don't block here on I/O on a suspended pool so 'zpool 6040 * clear' can resume the pool. 6041 */ 6042 static void 6043 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 6044 { 6045 nvlist_t *features; 6046 6047 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6048 6049 mutex_enter(&spa->spa_feat_stats_lock); 6050 features = spa->spa_feat_stats; 6051 6052 if (features != NULL) { 6053 spa_feature_stats_from_cache(spa, features); 6054 } else { 6055 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 6056 spa->spa_feat_stats = features; 6057 spa_feature_stats_from_disk(spa, features); 6058 } 6059 6060 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 6061 features)); 6062 6063 mutex_exit(&spa->spa_feat_stats_lock); 6064 } 6065 6066 int 6067 spa_get_stats(const char *name, nvlist_t **config, 6068 char *altroot, size_t buflen) 6069 { 6070 int error; 6071 spa_t *spa; 6072 6073 *config = NULL; 6074 error = spa_open_common(name, &spa, FTAG, NULL, config); 6075 6076 if (spa != NULL) { 6077 /* 6078 * This still leaves a window of inconsistency where the spares 6079 * or l2cache devices could change and the config would be 6080 * self-inconsistent. 6081 */ 6082 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6083 6084 if (*config != NULL) { 6085 uint64_t loadtimes[2]; 6086 6087 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 6088 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 6089 fnvlist_add_uint64_array(*config, 6090 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 6091 6092 fnvlist_add_uint64(*config, 6093 ZPOOL_CONFIG_ERRCOUNT, 6094 spa_approx_errlog_size(spa)); 6095 6096 if (spa_suspended(spa)) { 6097 fnvlist_add_uint64(*config, 6098 ZPOOL_CONFIG_SUSPENDED, 6099 spa->spa_failmode); 6100 fnvlist_add_uint64(*config, 6101 ZPOOL_CONFIG_SUSPENDED_REASON, 6102 spa->spa_suspended); 6103 } 6104 6105 spa_add_spares(spa, *config); 6106 spa_add_l2cache(spa, *config); 6107 spa_add_feature_stats(spa, *config); 6108 } 6109 } 6110 6111 /* 6112 * We want to get the alternate root even for faulted pools, so we cheat 6113 * and call spa_lookup() directly. 6114 */ 6115 if (altroot) { 6116 if (spa == NULL) { 6117 mutex_enter(&spa_namespace_lock); 6118 spa = spa_lookup(name); 6119 if (spa) 6120 spa_altroot(spa, altroot, buflen); 6121 else 6122 altroot[0] = '\0'; 6123 spa = NULL; 6124 mutex_exit(&spa_namespace_lock); 6125 } else { 6126 spa_altroot(spa, altroot, buflen); 6127 } 6128 } 6129 6130 if (spa != NULL) { 6131 spa_config_exit(spa, SCL_CONFIG, FTAG); 6132 spa_close(spa, FTAG); 6133 } 6134 6135 return (error); 6136 } 6137 6138 /* 6139 * Validate that the auxiliary device array is well formed. We must have an 6140 * array of nvlists, each which describes a valid leaf vdev. If this is an 6141 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 6142 * specified, as long as they are well-formed. 6143 */ 6144 static int 6145 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 6146 spa_aux_vdev_t *sav, const char *config, uint64_t version, 6147 vdev_labeltype_t label) 6148 { 6149 nvlist_t **dev; 6150 uint_t i, ndev; 6151 vdev_t *vd; 6152 int error; 6153 6154 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6155 6156 /* 6157 * It's acceptable to have no devs specified. 6158 */ 6159 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 6160 return (0); 6161 6162 if (ndev == 0) 6163 return (SET_ERROR(EINVAL)); 6164 6165 /* 6166 * Make sure the pool is formatted with a version that supports this 6167 * device type. 6168 */ 6169 if (spa_version(spa) < version) 6170 return (SET_ERROR(ENOTSUP)); 6171 6172 /* 6173 * Set the pending device list so we correctly handle device in-use 6174 * checking. 6175 */ 6176 sav->sav_pending = dev; 6177 sav->sav_npending = ndev; 6178 6179 for (i = 0; i < ndev; i++) { 6180 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 6181 mode)) != 0) 6182 goto out; 6183 6184 if (!vd->vdev_ops->vdev_op_leaf) { 6185 vdev_free(vd); 6186 error = SET_ERROR(EINVAL); 6187 goto out; 6188 } 6189 6190 vd->vdev_top = vd; 6191 6192 if ((error = vdev_open(vd)) == 0 && 6193 (error = vdev_label_init(vd, crtxg, label)) == 0) { 6194 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 6195 vd->vdev_guid); 6196 } 6197 6198 vdev_free(vd); 6199 6200 if (error && 6201 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 6202 goto out; 6203 else 6204 error = 0; 6205 } 6206 6207 out: 6208 sav->sav_pending = NULL; 6209 sav->sav_npending = 0; 6210 return (error); 6211 } 6212 6213 static int 6214 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 6215 { 6216 int error; 6217 6218 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6219 6220 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6221 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 6222 VDEV_LABEL_SPARE)) != 0) { 6223 return (error); 6224 } 6225 6226 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6227 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 6228 VDEV_LABEL_L2CACHE)); 6229 } 6230 6231 static void 6232 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 6233 const char *config) 6234 { 6235 int i; 6236 6237 if (sav->sav_config != NULL) { 6238 nvlist_t **olddevs; 6239 uint_t oldndevs; 6240 nvlist_t **newdevs; 6241 6242 /* 6243 * Generate new dev list by concatenating with the 6244 * current dev list. 6245 */ 6246 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 6247 &olddevs, &oldndevs)); 6248 6249 newdevs = kmem_alloc(sizeof (void *) * 6250 (ndevs + oldndevs), KM_SLEEP); 6251 for (i = 0; i < oldndevs; i++) 6252 newdevs[i] = fnvlist_dup(olddevs[i]); 6253 for (i = 0; i < ndevs; i++) 6254 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 6255 6256 fnvlist_remove(sav->sav_config, config); 6257 6258 fnvlist_add_nvlist_array(sav->sav_config, config, 6259 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 6260 for (i = 0; i < oldndevs + ndevs; i++) 6261 nvlist_free(newdevs[i]); 6262 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 6263 } else { 6264 /* 6265 * Generate a new dev list. 6266 */ 6267 sav->sav_config = fnvlist_alloc(); 6268 fnvlist_add_nvlist_array(sav->sav_config, config, 6269 (const nvlist_t * const *)devs, ndevs); 6270 } 6271 } 6272 6273 /* 6274 * Stop and drop level 2 ARC devices 6275 */ 6276 void 6277 spa_l2cache_drop(spa_t *spa) 6278 { 6279 vdev_t *vd; 6280 int i; 6281 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6282 6283 for (i = 0; i < sav->sav_count; i++) { 6284 uint64_t pool; 6285 6286 vd = sav->sav_vdevs[i]; 6287 ASSERT(vd != NULL); 6288 6289 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 6290 pool != 0ULL && l2arc_vdev_present(vd)) 6291 l2arc_remove_vdev(vd); 6292 } 6293 } 6294 6295 /* 6296 * Verify encryption parameters for spa creation. If we are encrypting, we must 6297 * have the encryption feature flag enabled. 6298 */ 6299 static int 6300 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 6301 boolean_t has_encryption) 6302 { 6303 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 6304 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 6305 !has_encryption) 6306 return (SET_ERROR(ENOTSUP)); 6307 6308 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 6309 } 6310 6311 /* 6312 * Pool Creation 6313 */ 6314 int 6315 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 6316 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 6317 { 6318 spa_t *spa; 6319 const char *altroot = NULL; 6320 vdev_t *rvd; 6321 dsl_pool_t *dp; 6322 dmu_tx_t *tx; 6323 int error = 0; 6324 uint64_t txg = TXG_INITIAL; 6325 nvlist_t **spares, **l2cache; 6326 uint_t nspares, nl2cache; 6327 uint64_t version, obj, ndraid = 0; 6328 boolean_t has_features; 6329 boolean_t has_encryption; 6330 boolean_t has_allocclass; 6331 spa_feature_t feat; 6332 const char *feat_name; 6333 const char *poolname; 6334 nvlist_t *nvl; 6335 6336 if (props == NULL || 6337 nvlist_lookup_string(props, 6338 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 6339 poolname = (char *)pool; 6340 6341 /* 6342 * If this pool already exists, return failure. 6343 */ 6344 mutex_enter(&spa_namespace_lock); 6345 if (spa_lookup(poolname) != NULL) { 6346 mutex_exit(&spa_namespace_lock); 6347 return (SET_ERROR(EEXIST)); 6348 } 6349 6350 /* 6351 * Allocate a new spa_t structure. 6352 */ 6353 nvl = fnvlist_alloc(); 6354 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6355 (void) nvlist_lookup_string(props, 6356 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6357 spa = spa_add(poolname, nvl, altroot); 6358 fnvlist_free(nvl); 6359 spa_activate(spa, spa_mode_global); 6360 6361 if (props && (error = spa_prop_validate(spa, props))) { 6362 spa_deactivate(spa); 6363 spa_remove(spa); 6364 mutex_exit(&spa_namespace_lock); 6365 return (error); 6366 } 6367 6368 /* 6369 * Temporary pool names should never be written to disk. 6370 */ 6371 if (poolname != pool) 6372 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6373 6374 has_features = B_FALSE; 6375 has_encryption = B_FALSE; 6376 has_allocclass = B_FALSE; 6377 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6378 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6379 if (zpool_prop_feature(nvpair_name(elem))) { 6380 has_features = B_TRUE; 6381 6382 feat_name = strchr(nvpair_name(elem), '@') + 1; 6383 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6384 if (feat == SPA_FEATURE_ENCRYPTION) 6385 has_encryption = B_TRUE; 6386 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6387 has_allocclass = B_TRUE; 6388 } 6389 } 6390 6391 /* verify encryption params, if they were provided */ 6392 if (dcp != NULL) { 6393 error = spa_create_check_encryption_params(dcp, has_encryption); 6394 if (error != 0) { 6395 spa_deactivate(spa); 6396 spa_remove(spa); 6397 mutex_exit(&spa_namespace_lock); 6398 return (error); 6399 } 6400 } 6401 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6402 spa_deactivate(spa); 6403 spa_remove(spa); 6404 mutex_exit(&spa_namespace_lock); 6405 return (ENOTSUP); 6406 } 6407 6408 if (has_features || nvlist_lookup_uint64(props, 6409 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6410 version = SPA_VERSION; 6411 } 6412 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6413 6414 spa->spa_first_txg = txg; 6415 spa->spa_uberblock.ub_txg = txg - 1; 6416 spa->spa_uberblock.ub_version = version; 6417 spa->spa_ubsync = spa->spa_uberblock; 6418 spa->spa_load_state = SPA_LOAD_CREATE; 6419 spa->spa_removing_phys.sr_state = DSS_NONE; 6420 spa->spa_removing_phys.sr_removing_vdev = -1; 6421 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6422 spa->spa_indirect_vdevs_loaded = B_TRUE; 6423 6424 /* 6425 * Create "The Godfather" zio to hold all async IOs 6426 */ 6427 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6428 KM_SLEEP); 6429 for (int i = 0; i < max_ncpus; i++) { 6430 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6431 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6432 ZIO_FLAG_GODFATHER); 6433 } 6434 6435 /* 6436 * Create the root vdev. 6437 */ 6438 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6439 6440 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6441 6442 ASSERT(error != 0 || rvd != NULL); 6443 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6444 6445 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6446 error = SET_ERROR(EINVAL); 6447 6448 if (error == 0 && 6449 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6450 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6451 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6452 /* 6453 * instantiate the metaslab groups (this will dirty the vdevs) 6454 * we can no longer error exit past this point 6455 */ 6456 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6457 vdev_t *vd = rvd->vdev_child[c]; 6458 6459 vdev_metaslab_set_size(vd); 6460 vdev_expand(vd, txg); 6461 } 6462 } 6463 6464 spa_config_exit(spa, SCL_ALL, FTAG); 6465 6466 if (error != 0) { 6467 spa_unload(spa); 6468 spa_deactivate(spa); 6469 spa_remove(spa); 6470 mutex_exit(&spa_namespace_lock); 6471 return (error); 6472 } 6473 6474 /* 6475 * Get the list of spares, if specified. 6476 */ 6477 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6478 &spares, &nspares) == 0) { 6479 spa->spa_spares.sav_config = fnvlist_alloc(); 6480 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6481 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6482 nspares); 6483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6484 spa_load_spares(spa); 6485 spa_config_exit(spa, SCL_ALL, FTAG); 6486 spa->spa_spares.sav_sync = B_TRUE; 6487 } 6488 6489 /* 6490 * Get the list of level 2 cache devices, if specified. 6491 */ 6492 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6493 &l2cache, &nl2cache) == 0) { 6494 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6495 NV_UNIQUE_NAME, KM_SLEEP)); 6496 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6497 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6498 nl2cache); 6499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6500 spa_load_l2cache(spa); 6501 spa_config_exit(spa, SCL_ALL, FTAG); 6502 spa->spa_l2cache.sav_sync = B_TRUE; 6503 } 6504 6505 spa->spa_is_initializing = B_TRUE; 6506 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6507 spa->spa_is_initializing = B_FALSE; 6508 6509 /* 6510 * Create DDTs (dedup tables). 6511 */ 6512 ddt_create(spa); 6513 /* 6514 * Create BRT table and BRT table object. 6515 */ 6516 brt_create(spa); 6517 6518 spa_update_dspace(spa); 6519 6520 tx = dmu_tx_create_assigned(dp, txg); 6521 6522 /* 6523 * Create the pool's history object. 6524 */ 6525 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6526 spa_history_create_obj(spa, tx); 6527 6528 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6529 spa_history_log_version(spa, "create", tx); 6530 6531 /* 6532 * Create the pool config object. 6533 */ 6534 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6535 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6536 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6537 6538 if (zap_add(spa->spa_meta_objset, 6539 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6540 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6541 cmn_err(CE_PANIC, "failed to add pool config"); 6542 } 6543 6544 if (zap_add(spa->spa_meta_objset, 6545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6546 sizeof (uint64_t), 1, &version, tx) != 0) { 6547 cmn_err(CE_PANIC, "failed to add pool version"); 6548 } 6549 6550 /* Newly created pools with the right version are always deflated. */ 6551 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6552 spa->spa_deflate = TRUE; 6553 if (zap_add(spa->spa_meta_objset, 6554 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6555 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6556 cmn_err(CE_PANIC, "failed to add deflate"); 6557 } 6558 } 6559 6560 /* 6561 * Create the deferred-free bpobj. Turn off compression 6562 * because sync-to-convergence takes longer if the blocksize 6563 * keeps changing. 6564 */ 6565 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6566 dmu_object_set_compress(spa->spa_meta_objset, obj, 6567 ZIO_COMPRESS_OFF, tx); 6568 if (zap_add(spa->spa_meta_objset, 6569 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6570 sizeof (uint64_t), 1, &obj, tx) != 0) { 6571 cmn_err(CE_PANIC, "failed to add bpobj"); 6572 } 6573 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6574 spa->spa_meta_objset, obj)); 6575 6576 /* 6577 * Generate some random noise for salted checksums to operate on. 6578 */ 6579 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6580 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6581 6582 /* 6583 * Set pool properties. 6584 */ 6585 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6586 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6587 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6588 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6589 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6590 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6591 6592 if (props != NULL) { 6593 spa_configfile_set(spa, props, B_FALSE); 6594 spa_sync_props(props, tx); 6595 } 6596 6597 for (int i = 0; i < ndraid; i++) 6598 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6599 6600 dmu_tx_commit(tx); 6601 6602 spa->spa_sync_on = B_TRUE; 6603 txg_sync_start(dp); 6604 mmp_thread_start(spa); 6605 txg_wait_synced(dp, txg); 6606 6607 spa_spawn_aux_threads(spa); 6608 6609 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6610 6611 /* 6612 * Don't count references from objsets that are already closed 6613 * and are making their way through the eviction process. 6614 */ 6615 spa_evicting_os_wait(spa); 6616 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6617 spa->spa_load_state = SPA_LOAD_NONE; 6618 6619 spa_import_os(spa); 6620 6621 mutex_exit(&spa_namespace_lock); 6622 6623 return (0); 6624 } 6625 6626 /* 6627 * Import a non-root pool into the system. 6628 */ 6629 int 6630 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6631 { 6632 spa_t *spa; 6633 const char *altroot = NULL; 6634 spa_load_state_t state = SPA_LOAD_IMPORT; 6635 zpool_load_policy_t policy; 6636 spa_mode_t mode = spa_mode_global; 6637 uint64_t readonly = B_FALSE; 6638 int error; 6639 nvlist_t *nvroot; 6640 nvlist_t **spares, **l2cache; 6641 uint_t nspares, nl2cache; 6642 6643 /* 6644 * If a pool with this name exists, return failure. 6645 */ 6646 mutex_enter(&spa_namespace_lock); 6647 if (spa_lookup(pool) != NULL) { 6648 mutex_exit(&spa_namespace_lock); 6649 return (SET_ERROR(EEXIST)); 6650 } 6651 6652 /* 6653 * Create and initialize the spa structure. 6654 */ 6655 (void) nvlist_lookup_string(props, 6656 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6657 (void) nvlist_lookup_uint64(props, 6658 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6659 if (readonly) 6660 mode = SPA_MODE_READ; 6661 spa = spa_add(pool, config, altroot); 6662 spa->spa_import_flags = flags; 6663 6664 /* 6665 * Verbatim import - Take a pool and insert it into the namespace 6666 * as if it had been loaded at boot. 6667 */ 6668 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6669 if (props != NULL) 6670 spa_configfile_set(spa, props, B_FALSE); 6671 6672 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6673 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6674 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6675 mutex_exit(&spa_namespace_lock); 6676 return (0); 6677 } 6678 6679 spa_activate(spa, mode); 6680 6681 /* 6682 * Don't start async tasks until we know everything is healthy. 6683 */ 6684 spa_async_suspend(spa); 6685 6686 zpool_get_load_policy(config, &policy); 6687 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6688 state = SPA_LOAD_RECOVER; 6689 6690 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6691 6692 if (state != SPA_LOAD_RECOVER) { 6693 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6694 zfs_dbgmsg("spa_import: importing %s", pool); 6695 } else { 6696 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6697 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6698 } 6699 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6700 6701 /* 6702 * Propagate anything learned while loading the pool and pass it 6703 * back to caller (i.e. rewind info, missing devices, etc). 6704 */ 6705 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6706 6707 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6708 /* 6709 * Toss any existing sparelist, as it doesn't have any validity 6710 * anymore, and conflicts with spa_has_spare(). 6711 */ 6712 if (spa->spa_spares.sav_config) { 6713 nvlist_free(spa->spa_spares.sav_config); 6714 spa->spa_spares.sav_config = NULL; 6715 spa_load_spares(spa); 6716 } 6717 if (spa->spa_l2cache.sav_config) { 6718 nvlist_free(spa->spa_l2cache.sav_config); 6719 spa->spa_l2cache.sav_config = NULL; 6720 spa_load_l2cache(spa); 6721 } 6722 6723 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6724 spa_config_exit(spa, SCL_ALL, FTAG); 6725 6726 if (props != NULL) 6727 spa_configfile_set(spa, props, B_FALSE); 6728 6729 if (error != 0 || (props && spa_writeable(spa) && 6730 (error = spa_prop_set(spa, props)))) { 6731 spa_unload(spa); 6732 spa_deactivate(spa); 6733 spa_remove(spa); 6734 mutex_exit(&spa_namespace_lock); 6735 return (error); 6736 } 6737 6738 spa_async_resume(spa); 6739 6740 /* 6741 * Override any spares and level 2 cache devices as specified by 6742 * the user, as these may have correct device names/devids, etc. 6743 */ 6744 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6745 &spares, &nspares) == 0) { 6746 if (spa->spa_spares.sav_config) 6747 fnvlist_remove(spa->spa_spares.sav_config, 6748 ZPOOL_CONFIG_SPARES); 6749 else 6750 spa->spa_spares.sav_config = fnvlist_alloc(); 6751 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6752 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6753 nspares); 6754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6755 spa_load_spares(spa); 6756 spa_config_exit(spa, SCL_ALL, FTAG); 6757 spa->spa_spares.sav_sync = B_TRUE; 6758 } 6759 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6760 &l2cache, &nl2cache) == 0) { 6761 if (spa->spa_l2cache.sav_config) 6762 fnvlist_remove(spa->spa_l2cache.sav_config, 6763 ZPOOL_CONFIG_L2CACHE); 6764 else 6765 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6766 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6767 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6768 nl2cache); 6769 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6770 spa_load_l2cache(spa); 6771 spa_config_exit(spa, SCL_ALL, FTAG); 6772 spa->spa_l2cache.sav_sync = B_TRUE; 6773 } 6774 6775 /* 6776 * Check for any removed devices. 6777 */ 6778 if (spa->spa_autoreplace) { 6779 spa_aux_check_removed(&spa->spa_spares); 6780 spa_aux_check_removed(&spa->spa_l2cache); 6781 } 6782 6783 if (spa_writeable(spa)) { 6784 /* 6785 * Update the config cache to include the newly-imported pool. 6786 */ 6787 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6788 } 6789 6790 /* 6791 * It's possible that the pool was expanded while it was exported. 6792 * We kick off an async task to handle this for us. 6793 */ 6794 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6795 6796 spa_history_log_version(spa, "import", NULL); 6797 6798 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6799 6800 mutex_exit(&spa_namespace_lock); 6801 6802 zvol_create_minors_recursive(pool); 6803 6804 spa_import_os(spa); 6805 6806 return (0); 6807 } 6808 6809 nvlist_t * 6810 spa_tryimport(nvlist_t *tryconfig) 6811 { 6812 nvlist_t *config = NULL; 6813 const char *poolname, *cachefile; 6814 spa_t *spa; 6815 uint64_t state; 6816 int error; 6817 zpool_load_policy_t policy; 6818 6819 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6820 return (NULL); 6821 6822 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6823 return (NULL); 6824 6825 /* 6826 * Create and initialize the spa structure. 6827 */ 6828 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6829 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s", 6830 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname); 6831 6832 mutex_enter(&spa_namespace_lock); 6833 spa = spa_add(name, tryconfig, NULL); 6834 spa_activate(spa, SPA_MODE_READ); 6835 kmem_free(name, MAXPATHLEN); 6836 6837 /* 6838 * Rewind pool if a max txg was provided. 6839 */ 6840 zpool_get_load_policy(spa->spa_config, &policy); 6841 if (policy.zlp_txg != UINT64_MAX) { 6842 spa->spa_load_max_txg = policy.zlp_txg; 6843 spa->spa_extreme_rewind = B_TRUE; 6844 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6845 poolname, (longlong_t)policy.zlp_txg); 6846 } else { 6847 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6848 } 6849 6850 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6851 == 0) { 6852 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6853 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6854 } else { 6855 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6856 } 6857 6858 /* 6859 * spa_import() relies on a pool config fetched by spa_try_import() 6860 * for spare/cache devices. Import flags are not passed to 6861 * spa_tryimport(), which makes it return early due to a missing log 6862 * device and missing retrieving the cache device and spare eventually. 6863 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6864 * the correct configuration regardless of the missing log device. 6865 */ 6866 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6867 6868 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6869 6870 /* 6871 * If 'tryconfig' was at least parsable, return the current config. 6872 */ 6873 if (spa->spa_root_vdev != NULL) { 6874 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6875 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6876 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6877 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6878 spa->spa_uberblock.ub_timestamp); 6879 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6880 spa->spa_load_info); 6881 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6882 spa->spa_errata); 6883 6884 /* 6885 * If the bootfs property exists on this pool then we 6886 * copy it out so that external consumers can tell which 6887 * pools are bootable. 6888 */ 6889 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6890 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6891 6892 /* 6893 * We have to play games with the name since the 6894 * pool was opened as TRYIMPORT_NAME. 6895 */ 6896 if (dsl_dsobj_to_dsname(spa_name(spa), 6897 spa->spa_bootfs, tmpname) == 0) { 6898 char *cp; 6899 char *dsname; 6900 6901 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6902 6903 cp = strchr(tmpname, '/'); 6904 if (cp == NULL) { 6905 (void) strlcpy(dsname, tmpname, 6906 MAXPATHLEN); 6907 } else { 6908 (void) snprintf(dsname, MAXPATHLEN, 6909 "%s/%s", poolname, ++cp); 6910 } 6911 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6912 dsname); 6913 kmem_free(dsname, MAXPATHLEN); 6914 } 6915 kmem_free(tmpname, MAXPATHLEN); 6916 } 6917 6918 /* 6919 * Add the list of hot spares and level 2 cache devices. 6920 */ 6921 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6922 spa_add_spares(spa, config); 6923 spa_add_l2cache(spa, config); 6924 spa_config_exit(spa, SCL_CONFIG, FTAG); 6925 } 6926 6927 spa_unload(spa); 6928 spa_deactivate(spa); 6929 spa_remove(spa); 6930 mutex_exit(&spa_namespace_lock); 6931 6932 return (config); 6933 } 6934 6935 /* 6936 * Pool export/destroy 6937 * 6938 * The act of destroying or exporting a pool is very simple. We make sure there 6939 * is no more pending I/O and any references to the pool are gone. Then, we 6940 * update the pool state and sync all the labels to disk, removing the 6941 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6942 * we don't sync the labels or remove the configuration cache. 6943 */ 6944 static int 6945 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 6946 boolean_t force, boolean_t hardforce) 6947 { 6948 int error = 0; 6949 spa_t *spa; 6950 hrtime_t export_start = gethrtime(); 6951 6952 if (oldconfig) 6953 *oldconfig = NULL; 6954 6955 if (!(spa_mode_global & SPA_MODE_WRITE)) 6956 return (SET_ERROR(EROFS)); 6957 6958 mutex_enter(&spa_namespace_lock); 6959 if ((spa = spa_lookup(pool)) == NULL) { 6960 mutex_exit(&spa_namespace_lock); 6961 return (SET_ERROR(ENOENT)); 6962 } 6963 6964 if (spa->spa_is_exporting) { 6965 /* the pool is being exported by another thread */ 6966 mutex_exit(&spa_namespace_lock); 6967 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6968 } 6969 spa->spa_is_exporting = B_TRUE; 6970 6971 /* 6972 * Put a hold on the pool, drop the namespace lock, stop async tasks 6973 * and see if we can export. 6974 */ 6975 spa_open_ref(spa, FTAG); 6976 mutex_exit(&spa_namespace_lock); 6977 spa_async_suspend(spa); 6978 if (spa->spa_zvol_taskq) { 6979 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6980 taskq_wait(spa->spa_zvol_taskq); 6981 } 6982 mutex_enter(&spa_namespace_lock); 6983 spa->spa_export_thread = curthread; 6984 spa_close(spa, FTAG); 6985 6986 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 6987 mutex_exit(&spa_namespace_lock); 6988 goto export_spa; 6989 } 6990 6991 /* 6992 * The pool will be in core if it's openable, in which case we can 6993 * modify its state. Objsets may be open only because they're dirty, 6994 * so we have to force it to sync before checking spa_refcnt. 6995 */ 6996 if (spa->spa_sync_on) { 6997 txg_wait_synced(spa->spa_dsl_pool, 0); 6998 spa_evicting_os_wait(spa); 6999 } 7000 7001 /* 7002 * A pool cannot be exported or destroyed if there are active 7003 * references. If we are resetting a pool, allow references by 7004 * fault injection handlers. 7005 */ 7006 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 7007 error = SET_ERROR(EBUSY); 7008 goto fail; 7009 } 7010 7011 mutex_exit(&spa_namespace_lock); 7012 /* 7013 * At this point we no longer hold the spa_namespace_lock and 7014 * there were no references on the spa. Future spa_lookups will 7015 * notice the spa->spa_export_thread and wait until we signal 7016 * that we are finshed. 7017 */ 7018 7019 if (spa->spa_sync_on) { 7020 vdev_t *rvd = spa->spa_root_vdev; 7021 /* 7022 * A pool cannot be exported if it has an active shared spare. 7023 * This is to prevent other pools stealing the active spare 7024 * from an exported pool. At user's own will, such pool can 7025 * be forcedly exported. 7026 */ 7027 if (!force && new_state == POOL_STATE_EXPORTED && 7028 spa_has_active_shared_spare(spa)) { 7029 error = SET_ERROR(EXDEV); 7030 mutex_enter(&spa_namespace_lock); 7031 goto fail; 7032 } 7033 7034 /* 7035 * We're about to export or destroy this pool. Make sure 7036 * we stop all initialization and trim activity here before 7037 * we set the spa_final_txg. This will ensure that all 7038 * dirty data resulting from the initialization is 7039 * committed to disk before we unload the pool. 7040 */ 7041 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 7042 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 7043 vdev_autotrim_stop_all(spa); 7044 vdev_rebuild_stop_all(spa); 7045 7046 /* 7047 * We want this to be reflected on every label, 7048 * so mark them all dirty. spa_unload() will do the 7049 * final sync that pushes these changes out. 7050 */ 7051 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7052 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7053 spa->spa_state = new_state; 7054 vdev_config_dirty(rvd); 7055 spa_config_exit(spa, SCL_ALL, FTAG); 7056 } 7057 7058 /* 7059 * If the log space map feature is enabled and the pool is 7060 * getting exported (but not destroyed), we want to spend some 7061 * time flushing as many metaslabs as we can in an attempt to 7062 * destroy log space maps and save import time. This has to be 7063 * done before we set the spa_final_txg, otherwise 7064 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 7065 * spa_should_flush_logs_on_unload() should be called after 7066 * spa_state has been set to the new_state. 7067 */ 7068 if (spa_should_flush_logs_on_unload(spa)) 7069 spa_unload_log_sm_flush_all(spa); 7070 7071 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7072 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7073 spa->spa_final_txg = spa_last_synced_txg(spa) + 7074 TXG_DEFER_SIZE + 1; 7075 spa_config_exit(spa, SCL_ALL, FTAG); 7076 } 7077 } 7078 7079 export_spa: 7080 spa_export_os(spa); 7081 7082 if (new_state == POOL_STATE_DESTROYED) 7083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 7084 else if (new_state == POOL_STATE_EXPORTED) 7085 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 7086 7087 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7088 spa_unload(spa); 7089 spa_deactivate(spa); 7090 } 7091 7092 if (oldconfig && spa->spa_config) 7093 *oldconfig = fnvlist_dup(spa->spa_config); 7094 7095 if (new_state == POOL_STATE_EXPORTED) 7096 zio_handle_export_delay(spa, gethrtime() - export_start); 7097 7098 /* 7099 * Take the namespace lock for the actual spa_t removal 7100 */ 7101 mutex_enter(&spa_namespace_lock); 7102 if (new_state != POOL_STATE_UNINITIALIZED) { 7103 if (!hardforce) 7104 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 7105 spa_remove(spa); 7106 } else { 7107 /* 7108 * If spa_remove() is not called for this spa_t and 7109 * there is any possibility that it can be reused, 7110 * we make sure to reset the exporting flag. 7111 */ 7112 spa->spa_is_exporting = B_FALSE; 7113 spa->spa_export_thread = NULL; 7114 } 7115 7116 /* 7117 * Wake up any waiters in spa_lookup() 7118 */ 7119 cv_broadcast(&spa_namespace_cv); 7120 mutex_exit(&spa_namespace_lock); 7121 return (0); 7122 7123 fail: 7124 spa->spa_is_exporting = B_FALSE; 7125 spa->spa_export_thread = NULL; 7126 7127 spa_async_resume(spa); 7128 /* 7129 * Wake up any waiters in spa_lookup() 7130 */ 7131 cv_broadcast(&spa_namespace_cv); 7132 mutex_exit(&spa_namespace_lock); 7133 return (error); 7134 } 7135 7136 /* 7137 * Destroy a storage pool. 7138 */ 7139 int 7140 spa_destroy(const char *pool) 7141 { 7142 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 7143 B_FALSE, B_FALSE)); 7144 } 7145 7146 /* 7147 * Export a storage pool. 7148 */ 7149 int 7150 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 7151 boolean_t hardforce) 7152 { 7153 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 7154 force, hardforce)); 7155 } 7156 7157 /* 7158 * Similar to spa_export(), this unloads the spa_t without actually removing it 7159 * from the namespace in any way. 7160 */ 7161 int 7162 spa_reset(const char *pool) 7163 { 7164 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 7165 B_FALSE, B_FALSE)); 7166 } 7167 7168 /* 7169 * ========================================================================== 7170 * Device manipulation 7171 * ========================================================================== 7172 */ 7173 7174 /* 7175 * This is called as a synctask to increment the draid feature flag 7176 */ 7177 static void 7178 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 7179 { 7180 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7181 int draid = (int)(uintptr_t)arg; 7182 7183 for (int c = 0; c < draid; c++) 7184 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 7185 } 7186 7187 /* 7188 * Add a device to a storage pool. 7189 */ 7190 int 7191 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift) 7192 { 7193 uint64_t txg, ndraid = 0; 7194 int error; 7195 vdev_t *rvd = spa->spa_root_vdev; 7196 vdev_t *vd, *tvd; 7197 nvlist_t **spares, **l2cache; 7198 uint_t nspares, nl2cache; 7199 7200 ASSERT(spa_writeable(spa)); 7201 7202 txg = spa_vdev_enter(spa); 7203 7204 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 7205 VDEV_ALLOC_ADD)) != 0) 7206 return (spa_vdev_exit(spa, NULL, txg, error)); 7207 7208 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 7209 7210 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 7211 &nspares) != 0) 7212 nspares = 0; 7213 7214 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 7215 &nl2cache) != 0) 7216 nl2cache = 0; 7217 7218 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 7219 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7220 7221 if (vd->vdev_children != 0 && 7222 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 7223 return (spa_vdev_exit(spa, vd, txg, error)); 7224 } 7225 7226 /* 7227 * The virtual dRAID spares must be added after vdev tree is created 7228 * and the vdev guids are generated. The guid of their associated 7229 * dRAID is stored in the config and used when opening the spare. 7230 */ 7231 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 7232 rvd->vdev_children)) == 0) { 7233 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 7234 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 7235 nspares = 0; 7236 } else { 7237 return (spa_vdev_exit(spa, vd, txg, error)); 7238 } 7239 7240 /* 7241 * We must validate the spares and l2cache devices after checking the 7242 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 7243 */ 7244 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 7245 return (spa_vdev_exit(spa, vd, txg, error)); 7246 7247 /* 7248 * If we are in the middle of a device removal, we can only add 7249 * devices which match the existing devices in the pool. 7250 * If we are in the middle of a removal, or have some indirect 7251 * vdevs, we can not add raidz or dRAID top levels. 7252 */ 7253 if (spa->spa_vdev_removal != NULL || 7254 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7255 for (int c = 0; c < vd->vdev_children; c++) { 7256 tvd = vd->vdev_child[c]; 7257 if (spa->spa_vdev_removal != NULL && 7258 tvd->vdev_ashift != spa->spa_max_ashift) { 7259 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7260 } 7261 /* Fail if top level vdev is raidz or a dRAID */ 7262 if (vdev_get_nparity(tvd) != 0) 7263 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7264 7265 /* 7266 * Need the top level mirror to be 7267 * a mirror of leaf vdevs only 7268 */ 7269 if (tvd->vdev_ops == &vdev_mirror_ops) { 7270 for (uint64_t cid = 0; 7271 cid < tvd->vdev_children; cid++) { 7272 vdev_t *cvd = tvd->vdev_child[cid]; 7273 if (!cvd->vdev_ops->vdev_op_leaf) { 7274 return (spa_vdev_exit(spa, vd, 7275 txg, EINVAL)); 7276 } 7277 } 7278 } 7279 } 7280 } 7281 7282 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) { 7283 for (int c = 0; c < vd->vdev_children; c++) { 7284 tvd = vd->vdev_child[c]; 7285 if (tvd->vdev_ashift != spa->spa_max_ashift) { 7286 return (spa_vdev_exit(spa, vd, txg, 7287 ZFS_ERR_ASHIFT_MISMATCH)); 7288 } 7289 } 7290 } 7291 7292 for (int c = 0; c < vd->vdev_children; c++) { 7293 tvd = vd->vdev_child[c]; 7294 vdev_remove_child(vd, tvd); 7295 tvd->vdev_id = rvd->vdev_children; 7296 vdev_add_child(rvd, tvd); 7297 vdev_config_dirty(tvd); 7298 } 7299 7300 if (nspares != 0) { 7301 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 7302 ZPOOL_CONFIG_SPARES); 7303 spa_load_spares(spa); 7304 spa->spa_spares.sav_sync = B_TRUE; 7305 } 7306 7307 if (nl2cache != 0) { 7308 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 7309 ZPOOL_CONFIG_L2CACHE); 7310 spa_load_l2cache(spa); 7311 spa->spa_l2cache.sav_sync = B_TRUE; 7312 } 7313 7314 /* 7315 * We can't increment a feature while holding spa_vdev so we 7316 * have to do it in a synctask. 7317 */ 7318 if (ndraid != 0) { 7319 dmu_tx_t *tx; 7320 7321 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 7322 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 7323 (void *)(uintptr_t)ndraid, tx); 7324 dmu_tx_commit(tx); 7325 } 7326 7327 /* 7328 * We have to be careful when adding new vdevs to an existing pool. 7329 * If other threads start allocating from these vdevs before we 7330 * sync the config cache, and we lose power, then upon reboot we may 7331 * fail to open the pool because there are DVAs that the config cache 7332 * can't translate. Therefore, we first add the vdevs without 7333 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 7334 * and then let spa_config_update() initialize the new metaslabs. 7335 * 7336 * spa_load() checks for added-but-not-initialized vdevs, so that 7337 * if we lose power at any point in this sequence, the remaining 7338 * steps will be completed the next time we load the pool. 7339 */ 7340 (void) spa_vdev_exit(spa, vd, txg, 0); 7341 7342 mutex_enter(&spa_namespace_lock); 7343 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7344 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 7345 mutex_exit(&spa_namespace_lock); 7346 7347 return (0); 7348 } 7349 7350 /* 7351 * Attach a device to a vdev specified by its guid. The vdev type can be 7352 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 7353 * single device). When the vdev is a single device, a mirror vdev will be 7354 * automatically inserted. 7355 * 7356 * If 'replacing' is specified, the new device is intended to replace the 7357 * existing device; in this case the two devices are made into their own 7358 * mirror using the 'replacing' vdev, which is functionally identical to 7359 * the mirror vdev (it actually reuses all the same ops) but has a few 7360 * extra rules: you can't attach to it after it's been created, and upon 7361 * completion of resilvering, the first disk (the one being replaced) 7362 * is automatically detached. 7363 * 7364 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 7365 * should be performed instead of traditional healing reconstruction. From 7366 * an administrators perspective these are both resilver operations. 7367 */ 7368 int 7369 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 7370 int rebuild) 7371 { 7372 uint64_t txg, dtl_max_txg; 7373 vdev_t *rvd = spa->spa_root_vdev; 7374 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 7375 vdev_ops_t *pvops; 7376 char *oldvdpath, *newvdpath; 7377 int newvd_isspare = B_FALSE; 7378 int error; 7379 7380 ASSERT(spa_writeable(spa)); 7381 7382 txg = spa_vdev_enter(spa); 7383 7384 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7385 7386 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7387 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7388 error = (spa_has_checkpoint(spa)) ? 7389 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7390 return (spa_vdev_exit(spa, NULL, txg, error)); 7391 } 7392 7393 if (rebuild) { 7394 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7395 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7396 7397 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7398 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7399 return (spa_vdev_exit(spa, NULL, txg, 7400 ZFS_ERR_RESILVER_IN_PROGRESS)); 7401 } 7402 } else { 7403 if (vdev_rebuild_active(rvd)) 7404 return (spa_vdev_exit(spa, NULL, txg, 7405 ZFS_ERR_REBUILD_IN_PROGRESS)); 7406 } 7407 7408 if (spa->spa_vdev_removal != NULL) { 7409 return (spa_vdev_exit(spa, NULL, txg, 7410 ZFS_ERR_DEVRM_IN_PROGRESS)); 7411 } 7412 7413 if (oldvd == NULL) 7414 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7415 7416 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7417 7418 if (raidz) { 7419 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7420 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7421 7422 /* 7423 * Can't expand a raidz while prior expand is in progress. 7424 */ 7425 if (spa->spa_raidz_expand != NULL) { 7426 return (spa_vdev_exit(spa, NULL, txg, 7427 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7428 } 7429 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7430 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7431 } 7432 7433 if (raidz) 7434 pvd = oldvd; 7435 else 7436 pvd = oldvd->vdev_parent; 7437 7438 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7439 VDEV_ALLOC_ATTACH) != 0) 7440 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7441 7442 if (newrootvd->vdev_children != 1) 7443 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7444 7445 newvd = newrootvd->vdev_child[0]; 7446 7447 if (!newvd->vdev_ops->vdev_op_leaf) 7448 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7449 7450 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7451 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7452 7453 /* 7454 * log, dedup and special vdevs should not be replaced by spares. 7455 */ 7456 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7457 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7458 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7459 } 7460 7461 /* 7462 * A dRAID spare can only replace a child of its parent dRAID vdev. 7463 */ 7464 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7465 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7466 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7467 } 7468 7469 if (rebuild) { 7470 /* 7471 * For rebuilds, the top vdev must support reconstruction 7472 * using only space maps. This means the only allowable 7473 * vdevs types are the root vdev, a mirror, or dRAID. 7474 */ 7475 tvd = pvd; 7476 if (pvd->vdev_top != NULL) 7477 tvd = pvd->vdev_top; 7478 7479 if (tvd->vdev_ops != &vdev_mirror_ops && 7480 tvd->vdev_ops != &vdev_root_ops && 7481 tvd->vdev_ops != &vdev_draid_ops) { 7482 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7483 } 7484 } 7485 7486 if (!replacing) { 7487 /* 7488 * For attach, the only allowable parent is a mirror or 7489 * the root vdev. A raidz vdev can be attached to, but 7490 * you cannot attach to a raidz child. 7491 */ 7492 if (pvd->vdev_ops != &vdev_mirror_ops && 7493 pvd->vdev_ops != &vdev_root_ops && 7494 !raidz) 7495 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7496 7497 pvops = &vdev_mirror_ops; 7498 } else { 7499 /* 7500 * Active hot spares can only be replaced by inactive hot 7501 * spares. 7502 */ 7503 if (pvd->vdev_ops == &vdev_spare_ops && 7504 oldvd->vdev_isspare && 7505 !spa_has_spare(spa, newvd->vdev_guid)) 7506 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7507 7508 /* 7509 * If the source is a hot spare, and the parent isn't already a 7510 * spare, then we want to create a new hot spare. Otherwise, we 7511 * want to create a replacing vdev. The user is not allowed to 7512 * attach to a spared vdev child unless the 'isspare' state is 7513 * the same (spare replaces spare, non-spare replaces 7514 * non-spare). 7515 */ 7516 if (pvd->vdev_ops == &vdev_replacing_ops && 7517 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7519 } else if (pvd->vdev_ops == &vdev_spare_ops && 7520 newvd->vdev_isspare != oldvd->vdev_isspare) { 7521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7522 } 7523 7524 if (newvd->vdev_isspare) 7525 pvops = &vdev_spare_ops; 7526 else 7527 pvops = &vdev_replacing_ops; 7528 } 7529 7530 /* 7531 * Make sure the new device is big enough. 7532 */ 7533 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7534 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7535 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7536 7537 /* 7538 * The new device cannot have a higher alignment requirement 7539 * than the top-level vdev. 7540 */ 7541 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 7542 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7543 7544 /* 7545 * RAIDZ-expansion-specific checks. 7546 */ 7547 if (raidz) { 7548 if (vdev_raidz_attach_check(newvd) != 0) 7549 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7550 7551 /* 7552 * Fail early if a child is not healthy or being replaced 7553 */ 7554 for (int i = 0; i < oldvd->vdev_children; i++) { 7555 if (vdev_is_dead(oldvd->vdev_child[i]) || 7556 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7557 return (spa_vdev_exit(spa, newrootvd, txg, 7558 ENXIO)); 7559 } 7560 /* Also fail if reserved boot area is in-use */ 7561 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7562 != 0) { 7563 return (spa_vdev_exit(spa, newrootvd, txg, 7564 EADDRINUSE)); 7565 } 7566 } 7567 } 7568 7569 if (raidz) { 7570 /* 7571 * Note: oldvdpath is freed by spa_strfree(), but 7572 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7573 * move it to a spa_strdup-ed string. 7574 */ 7575 char *tmp = kmem_asprintf("raidz%u-%u", 7576 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7577 oldvdpath = spa_strdup(tmp); 7578 kmem_strfree(tmp); 7579 } else { 7580 oldvdpath = spa_strdup(oldvd->vdev_path); 7581 } 7582 newvdpath = spa_strdup(newvd->vdev_path); 7583 7584 /* 7585 * If this is an in-place replacement, update oldvd's path and devid 7586 * to make it distinguishable from newvd, and unopenable from now on. 7587 */ 7588 if (strcmp(oldvdpath, newvdpath) == 0) { 7589 spa_strfree(oldvd->vdev_path); 7590 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7591 KM_SLEEP); 7592 (void) sprintf(oldvd->vdev_path, "%s/old", 7593 newvdpath); 7594 if (oldvd->vdev_devid != NULL) { 7595 spa_strfree(oldvd->vdev_devid); 7596 oldvd->vdev_devid = NULL; 7597 } 7598 spa_strfree(oldvdpath); 7599 oldvdpath = spa_strdup(oldvd->vdev_path); 7600 } 7601 7602 /* 7603 * If the parent is not a mirror, or if we're replacing, insert the new 7604 * mirror/replacing/spare vdev above oldvd. 7605 */ 7606 if (!raidz && pvd->vdev_ops != pvops) { 7607 pvd = vdev_add_parent(oldvd, pvops); 7608 ASSERT(pvd->vdev_ops == pvops); 7609 ASSERT(oldvd->vdev_parent == pvd); 7610 } 7611 7612 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7613 7614 /* 7615 * Extract the new device from its root and add it to pvd. 7616 */ 7617 vdev_remove_child(newrootvd, newvd); 7618 newvd->vdev_id = pvd->vdev_children; 7619 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7620 vdev_add_child(pvd, newvd); 7621 7622 /* 7623 * Reevaluate the parent vdev state. 7624 */ 7625 vdev_propagate_state(pvd); 7626 7627 tvd = newvd->vdev_top; 7628 ASSERT(pvd->vdev_top == tvd); 7629 ASSERT(tvd->vdev_parent == rvd); 7630 7631 vdev_config_dirty(tvd); 7632 7633 /* 7634 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7635 * for any dmu_sync-ed blocks. It will propagate upward when 7636 * spa_vdev_exit() calls vdev_dtl_reassess(). 7637 */ 7638 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7639 7640 if (raidz) { 7641 /* 7642 * Wait for the youngest allocations and frees to sync, 7643 * and then wait for the deferral of those frees to finish. 7644 */ 7645 spa_vdev_config_exit(spa, NULL, 7646 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7647 7648 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7649 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7650 vdev_autotrim_stop_wait(tvd); 7651 7652 dtl_max_txg = spa_vdev_config_enter(spa); 7653 7654 tvd->vdev_rz_expanding = B_TRUE; 7655 7656 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7657 vdev_config_dirty(tvd); 7658 7659 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7660 dtl_max_txg); 7661 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7662 newvd, tx); 7663 dmu_tx_commit(tx); 7664 } else { 7665 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7666 dtl_max_txg - TXG_INITIAL); 7667 7668 if (newvd->vdev_isspare) { 7669 spa_spare_activate(newvd); 7670 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7671 } 7672 7673 newvd_isspare = newvd->vdev_isspare; 7674 7675 /* 7676 * Mark newvd's DTL dirty in this txg. 7677 */ 7678 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7679 7680 /* 7681 * Schedule the resilver or rebuild to restart in the future. 7682 * We do this to ensure that dmu_sync-ed blocks have been 7683 * stitched into the respective datasets. 7684 */ 7685 if (rebuild) { 7686 newvd->vdev_rebuild_txg = txg; 7687 7688 vdev_rebuild(tvd); 7689 } else { 7690 newvd->vdev_resilver_txg = txg; 7691 7692 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7693 spa_feature_is_enabled(spa, 7694 SPA_FEATURE_RESILVER_DEFER)) { 7695 vdev_defer_resilver(newvd); 7696 } else { 7697 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7698 dtl_max_txg); 7699 } 7700 } 7701 } 7702 7703 if (spa->spa_bootfs) 7704 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7705 7706 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7707 7708 /* 7709 * Commit the config 7710 */ 7711 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7712 7713 spa_history_log_internal(spa, "vdev attach", NULL, 7714 "%s vdev=%s %s vdev=%s", 7715 replacing && newvd_isspare ? "spare in" : 7716 replacing ? "replace" : "attach", newvdpath, 7717 replacing ? "for" : "to", oldvdpath); 7718 7719 spa_strfree(oldvdpath); 7720 spa_strfree(newvdpath); 7721 7722 return (0); 7723 } 7724 7725 /* 7726 * Detach a device from a mirror or replacing vdev. 7727 * 7728 * If 'replace_done' is specified, only detach if the parent 7729 * is a replacing or a spare vdev. 7730 */ 7731 int 7732 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7733 { 7734 uint64_t txg; 7735 int error; 7736 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7737 vdev_t *vd, *pvd, *cvd, *tvd; 7738 boolean_t unspare = B_FALSE; 7739 uint64_t unspare_guid = 0; 7740 char *vdpath; 7741 7742 ASSERT(spa_writeable(spa)); 7743 7744 txg = spa_vdev_detach_enter(spa, guid); 7745 7746 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7747 7748 /* 7749 * Besides being called directly from the userland through the 7750 * ioctl interface, spa_vdev_detach() can be potentially called 7751 * at the end of spa_vdev_resilver_done(). 7752 * 7753 * In the regular case, when we have a checkpoint this shouldn't 7754 * happen as we never empty the DTLs of a vdev during the scrub 7755 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7756 * should never get here when we have a checkpoint. 7757 * 7758 * That said, even in a case when we checkpoint the pool exactly 7759 * as spa_vdev_resilver_done() calls this function everything 7760 * should be fine as the resilver will return right away. 7761 */ 7762 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7763 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7764 error = (spa_has_checkpoint(spa)) ? 7765 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7766 return (spa_vdev_exit(spa, NULL, txg, error)); 7767 } 7768 7769 if (vd == NULL) 7770 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7771 7772 if (!vd->vdev_ops->vdev_op_leaf) 7773 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7774 7775 pvd = vd->vdev_parent; 7776 7777 /* 7778 * If the parent/child relationship is not as expected, don't do it. 7779 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7780 * vdev that's replacing B with C. The user's intent in replacing 7781 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7782 * the replace by detaching C, the expected behavior is to end up 7783 * M(A,B). But suppose that right after deciding to detach C, 7784 * the replacement of B completes. We would have M(A,C), and then 7785 * ask to detach C, which would leave us with just A -- not what 7786 * the user wanted. To prevent this, we make sure that the 7787 * parent/child relationship hasn't changed -- in this example, 7788 * that C's parent is still the replacing vdev R. 7789 */ 7790 if (pvd->vdev_guid != pguid && pguid != 0) 7791 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7792 7793 /* 7794 * Only 'replacing' or 'spare' vdevs can be replaced. 7795 */ 7796 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7797 pvd->vdev_ops != &vdev_spare_ops) 7798 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7799 7800 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7801 spa_version(spa) >= SPA_VERSION_SPARES); 7802 7803 /* 7804 * Only mirror, replacing, and spare vdevs support detach. 7805 */ 7806 if (pvd->vdev_ops != &vdev_replacing_ops && 7807 pvd->vdev_ops != &vdev_mirror_ops && 7808 pvd->vdev_ops != &vdev_spare_ops) 7809 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7810 7811 /* 7812 * If this device has the only valid copy of some data, 7813 * we cannot safely detach it. 7814 */ 7815 if (vdev_dtl_required(vd)) 7816 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7817 7818 ASSERT(pvd->vdev_children >= 2); 7819 7820 /* 7821 * If we are detaching the second disk from a replacing vdev, then 7822 * check to see if we changed the original vdev's path to have "/old" 7823 * at the end in spa_vdev_attach(). If so, undo that change now. 7824 */ 7825 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7826 vd->vdev_path != NULL) { 7827 size_t len = strlen(vd->vdev_path); 7828 7829 for (int c = 0; c < pvd->vdev_children; c++) { 7830 cvd = pvd->vdev_child[c]; 7831 7832 if (cvd == vd || cvd->vdev_path == NULL) 7833 continue; 7834 7835 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 7836 strcmp(cvd->vdev_path + len, "/old") == 0) { 7837 spa_strfree(cvd->vdev_path); 7838 cvd->vdev_path = spa_strdup(vd->vdev_path); 7839 break; 7840 } 7841 } 7842 } 7843 7844 /* 7845 * If we are detaching the original disk from a normal spare, then it 7846 * implies that the spare should become a real disk, and be removed 7847 * from the active spare list for the pool. dRAID spares on the 7848 * other hand are coupled to the pool and thus should never be removed 7849 * from the spares list. 7850 */ 7851 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 7852 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7853 7854 if (last_cvd->vdev_isspare && 7855 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 7856 unspare = B_TRUE; 7857 } 7858 } 7859 7860 /* 7861 * Erase the disk labels so the disk can be used for other things. 7862 * This must be done after all other error cases are handled, 7863 * but before we disembowel vd (so we can still do I/O to it). 7864 * But if we can't do it, don't treat the error as fatal -- 7865 * it may be that the unwritability of the disk is the reason 7866 * it's being detached! 7867 */ 7868 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 7869 7870 /* 7871 * Remove vd from its parent and compact the parent's children. 7872 */ 7873 vdev_remove_child(pvd, vd); 7874 vdev_compact_children(pvd); 7875 7876 /* 7877 * Remember one of the remaining children so we can get tvd below. 7878 */ 7879 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 7880 7881 /* 7882 * If we need to remove the remaining child from the list of hot spares, 7883 * do it now, marking the vdev as no longer a spare in the process. 7884 * We must do this before vdev_remove_parent(), because that can 7885 * change the GUID if it creates a new toplevel GUID. For a similar 7886 * reason, we must remove the spare now, in the same txg as the detach; 7887 * otherwise someone could attach a new sibling, change the GUID, and 7888 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 7889 */ 7890 if (unspare) { 7891 ASSERT(cvd->vdev_isspare); 7892 spa_spare_remove(cvd); 7893 unspare_guid = cvd->vdev_guid; 7894 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 7895 cvd->vdev_unspare = B_TRUE; 7896 } 7897 7898 /* 7899 * If the parent mirror/replacing vdev only has one child, 7900 * the parent is no longer needed. Remove it from the tree. 7901 */ 7902 if (pvd->vdev_children == 1) { 7903 if (pvd->vdev_ops == &vdev_spare_ops) 7904 cvd->vdev_unspare = B_FALSE; 7905 vdev_remove_parent(cvd); 7906 } 7907 7908 /* 7909 * We don't set tvd until now because the parent we just removed 7910 * may have been the previous top-level vdev. 7911 */ 7912 tvd = cvd->vdev_top; 7913 ASSERT(tvd->vdev_parent == rvd); 7914 7915 /* 7916 * Reevaluate the parent vdev state. 7917 */ 7918 vdev_propagate_state(cvd); 7919 7920 /* 7921 * If the 'autoexpand' property is set on the pool then automatically 7922 * try to expand the size of the pool. For example if the device we 7923 * just detached was smaller than the others, it may be possible to 7924 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 7925 * first so that we can obtain the updated sizes of the leaf vdevs. 7926 */ 7927 if (spa->spa_autoexpand) { 7928 vdev_reopen(tvd); 7929 vdev_expand(tvd, txg); 7930 } 7931 7932 vdev_config_dirty(tvd); 7933 7934 /* 7935 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 7936 * vd->vdev_detached is set and free vd's DTL object in syncing context. 7937 * But first make sure we're not on any *other* txg's DTL list, to 7938 * prevent vd from being accessed after it's freed. 7939 */ 7940 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 7941 for (int t = 0; t < TXG_SIZE; t++) 7942 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 7943 vd->vdev_detached = B_TRUE; 7944 vdev_dirty(tvd, VDD_DTL, vd, txg); 7945 7946 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7947 spa_notify_waiters(spa); 7948 7949 /* hang on to the spa before we release the lock */ 7950 spa_open_ref(spa, FTAG); 7951 7952 error = spa_vdev_exit(spa, vd, txg, 0); 7953 7954 spa_history_log_internal(spa, "detach", NULL, 7955 "vdev=%s", vdpath); 7956 spa_strfree(vdpath); 7957 7958 /* 7959 * If this was the removal of the original device in a hot spare vdev, 7960 * then we want to go through and remove the device from the hot spare 7961 * list of every other pool. 7962 */ 7963 if (unspare) { 7964 spa_t *altspa = NULL; 7965 7966 mutex_enter(&spa_namespace_lock); 7967 while ((altspa = spa_next(altspa)) != NULL) { 7968 if (altspa->spa_state != POOL_STATE_ACTIVE || 7969 altspa == spa) 7970 continue; 7971 7972 spa_open_ref(altspa, FTAG); 7973 mutex_exit(&spa_namespace_lock); 7974 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7975 mutex_enter(&spa_namespace_lock); 7976 spa_close(altspa, FTAG); 7977 } 7978 mutex_exit(&spa_namespace_lock); 7979 7980 /* search the rest of the vdevs for spares to remove */ 7981 spa_vdev_resilver_done(spa); 7982 } 7983 7984 /* all done with the spa; OK to release */ 7985 mutex_enter(&spa_namespace_lock); 7986 spa_close(spa, FTAG); 7987 mutex_exit(&spa_namespace_lock); 7988 7989 return (error); 7990 } 7991 7992 static int 7993 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7994 list_t *vd_list) 7995 { 7996 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7997 7998 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7999 8000 /* Look up vdev and ensure it's a leaf. */ 8001 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8002 if (vd == NULL || vd->vdev_detached) { 8003 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8004 return (SET_ERROR(ENODEV)); 8005 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8006 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8007 return (SET_ERROR(EINVAL)); 8008 } else if (!vdev_writeable(vd)) { 8009 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8010 return (SET_ERROR(EROFS)); 8011 } 8012 mutex_enter(&vd->vdev_initialize_lock); 8013 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8014 8015 /* 8016 * When we activate an initialize action we check to see 8017 * if the vdev_initialize_thread is NULL. We do this instead 8018 * of using the vdev_initialize_state since there might be 8019 * a previous initialization process which has completed but 8020 * the thread is not exited. 8021 */ 8022 if (cmd_type == POOL_INITIALIZE_START && 8023 (vd->vdev_initialize_thread != NULL || 8024 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 8025 mutex_exit(&vd->vdev_initialize_lock); 8026 return (SET_ERROR(EBUSY)); 8027 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 8028 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 8029 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 8030 mutex_exit(&vd->vdev_initialize_lock); 8031 return (SET_ERROR(ESRCH)); 8032 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 8033 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 8034 mutex_exit(&vd->vdev_initialize_lock); 8035 return (SET_ERROR(ESRCH)); 8036 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 8037 vd->vdev_initialize_thread != NULL) { 8038 mutex_exit(&vd->vdev_initialize_lock); 8039 return (SET_ERROR(EBUSY)); 8040 } 8041 8042 switch (cmd_type) { 8043 case POOL_INITIALIZE_START: 8044 vdev_initialize(vd); 8045 break; 8046 case POOL_INITIALIZE_CANCEL: 8047 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 8048 break; 8049 case POOL_INITIALIZE_SUSPEND: 8050 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 8051 break; 8052 case POOL_INITIALIZE_UNINIT: 8053 vdev_uninitialize(vd); 8054 break; 8055 default: 8056 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8057 } 8058 mutex_exit(&vd->vdev_initialize_lock); 8059 8060 return (0); 8061 } 8062 8063 int 8064 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 8065 nvlist_t *vdev_errlist) 8066 { 8067 int total_errors = 0; 8068 list_t vd_list; 8069 8070 list_create(&vd_list, sizeof (vdev_t), 8071 offsetof(vdev_t, vdev_initialize_node)); 8072 8073 /* 8074 * We hold the namespace lock through the whole function 8075 * to prevent any changes to the pool while we're starting or 8076 * stopping initialization. The config and state locks are held so that 8077 * we can properly assess the vdev state before we commit to 8078 * the initializing operation. 8079 */ 8080 mutex_enter(&spa_namespace_lock); 8081 8082 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8083 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8084 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8085 8086 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 8087 &vd_list); 8088 if (error != 0) { 8089 char guid_as_str[MAXNAMELEN]; 8090 8091 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8092 "%llu", (unsigned long long)vdev_guid); 8093 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8094 total_errors++; 8095 } 8096 } 8097 8098 /* Wait for all initialize threads to stop. */ 8099 vdev_initialize_stop_wait(spa, &vd_list); 8100 8101 /* Sync out the initializing state */ 8102 txg_wait_synced(spa->spa_dsl_pool, 0); 8103 mutex_exit(&spa_namespace_lock); 8104 8105 list_destroy(&vd_list); 8106 8107 return (total_errors); 8108 } 8109 8110 static int 8111 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8112 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 8113 { 8114 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8115 8116 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8117 8118 /* Look up vdev and ensure it's a leaf. */ 8119 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8120 if (vd == NULL || vd->vdev_detached) { 8121 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8122 return (SET_ERROR(ENODEV)); 8123 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8125 return (SET_ERROR(EINVAL)); 8126 } else if (!vdev_writeable(vd)) { 8127 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8128 return (SET_ERROR(EROFS)); 8129 } else if (!vd->vdev_has_trim) { 8130 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8131 return (SET_ERROR(EOPNOTSUPP)); 8132 } else if (secure && !vd->vdev_has_securetrim) { 8133 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8134 return (SET_ERROR(EOPNOTSUPP)); 8135 } 8136 mutex_enter(&vd->vdev_trim_lock); 8137 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8138 8139 /* 8140 * When we activate a TRIM action we check to see if the 8141 * vdev_trim_thread is NULL. We do this instead of using the 8142 * vdev_trim_state since there might be a previous TRIM process 8143 * which has completed but the thread is not exited. 8144 */ 8145 if (cmd_type == POOL_TRIM_START && 8146 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 8147 vd->vdev_top->vdev_rz_expanding)) { 8148 mutex_exit(&vd->vdev_trim_lock); 8149 return (SET_ERROR(EBUSY)); 8150 } else if (cmd_type == POOL_TRIM_CANCEL && 8151 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 8152 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 8153 mutex_exit(&vd->vdev_trim_lock); 8154 return (SET_ERROR(ESRCH)); 8155 } else if (cmd_type == POOL_TRIM_SUSPEND && 8156 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 8157 mutex_exit(&vd->vdev_trim_lock); 8158 return (SET_ERROR(ESRCH)); 8159 } 8160 8161 switch (cmd_type) { 8162 case POOL_TRIM_START: 8163 vdev_trim(vd, rate, partial, secure); 8164 break; 8165 case POOL_TRIM_CANCEL: 8166 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 8167 break; 8168 case POOL_TRIM_SUSPEND: 8169 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 8170 break; 8171 default: 8172 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8173 } 8174 mutex_exit(&vd->vdev_trim_lock); 8175 8176 return (0); 8177 } 8178 8179 /* 8180 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 8181 * TRIM threads for each child vdev. These threads pass over all of the free 8182 * space in the vdev's metaslabs and issues TRIM commands for that space. 8183 */ 8184 int 8185 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 8186 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 8187 { 8188 int total_errors = 0; 8189 list_t vd_list; 8190 8191 list_create(&vd_list, sizeof (vdev_t), 8192 offsetof(vdev_t, vdev_trim_node)); 8193 8194 /* 8195 * We hold the namespace lock through the whole function 8196 * to prevent any changes to the pool while we're starting or 8197 * stopping TRIM. The config and state locks are held so that 8198 * we can properly assess the vdev state before we commit to 8199 * the TRIM operation. 8200 */ 8201 mutex_enter(&spa_namespace_lock); 8202 8203 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8204 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8205 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8206 8207 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 8208 rate, partial, secure, &vd_list); 8209 if (error != 0) { 8210 char guid_as_str[MAXNAMELEN]; 8211 8212 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8213 "%llu", (unsigned long long)vdev_guid); 8214 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8215 total_errors++; 8216 } 8217 } 8218 8219 /* Wait for all TRIM threads to stop. */ 8220 vdev_trim_stop_wait(spa, &vd_list); 8221 8222 /* Sync out the TRIM state */ 8223 txg_wait_synced(spa->spa_dsl_pool, 0); 8224 mutex_exit(&spa_namespace_lock); 8225 8226 list_destroy(&vd_list); 8227 8228 return (total_errors); 8229 } 8230 8231 /* 8232 * Split a set of devices from their mirrors, and create a new pool from them. 8233 */ 8234 int 8235 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 8236 nvlist_t *props, boolean_t exp) 8237 { 8238 int error = 0; 8239 uint64_t txg, *glist; 8240 spa_t *newspa; 8241 uint_t c, children, lastlog; 8242 nvlist_t **child, *nvl, *tmp; 8243 dmu_tx_t *tx; 8244 const char *altroot = NULL; 8245 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 8246 boolean_t activate_slog; 8247 8248 ASSERT(spa_writeable(spa)); 8249 8250 txg = spa_vdev_enter(spa); 8251 8252 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8253 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 8254 error = (spa_has_checkpoint(spa)) ? 8255 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 8256 return (spa_vdev_exit(spa, NULL, txg, error)); 8257 } 8258 8259 /* clear the log and flush everything up to now */ 8260 activate_slog = spa_passivate_log(spa); 8261 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8262 error = spa_reset_logs(spa); 8263 txg = spa_vdev_config_enter(spa); 8264 8265 if (activate_slog) 8266 spa_activate_log(spa); 8267 8268 if (error != 0) 8269 return (spa_vdev_exit(spa, NULL, txg, error)); 8270 8271 /* check new spa name before going any further */ 8272 if (spa_lookup(newname) != NULL) 8273 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 8274 8275 /* 8276 * scan through all the children to ensure they're all mirrors 8277 */ 8278 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 8279 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 8280 &children) != 0) 8281 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8282 8283 /* first, check to ensure we've got the right child count */ 8284 rvd = spa->spa_root_vdev; 8285 lastlog = 0; 8286 for (c = 0; c < rvd->vdev_children; c++) { 8287 vdev_t *vd = rvd->vdev_child[c]; 8288 8289 /* don't count the holes & logs as children */ 8290 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 8291 !vdev_is_concrete(vd))) { 8292 if (lastlog == 0) 8293 lastlog = c; 8294 continue; 8295 } 8296 8297 lastlog = 0; 8298 } 8299 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 8300 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8301 8302 /* next, ensure no spare or cache devices are part of the split */ 8303 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 8304 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 8305 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8306 8307 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 8308 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 8309 8310 /* then, loop over each vdev and validate it */ 8311 for (c = 0; c < children; c++) { 8312 uint64_t is_hole = 0; 8313 8314 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 8315 &is_hole); 8316 8317 if (is_hole != 0) { 8318 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 8319 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 8320 continue; 8321 } else { 8322 error = SET_ERROR(EINVAL); 8323 break; 8324 } 8325 } 8326 8327 /* deal with indirect vdevs */ 8328 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 8329 &vdev_indirect_ops) 8330 continue; 8331 8332 /* which disk is going to be split? */ 8333 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 8334 &glist[c]) != 0) { 8335 error = SET_ERROR(EINVAL); 8336 break; 8337 } 8338 8339 /* look it up in the spa */ 8340 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 8341 if (vml[c] == NULL) { 8342 error = SET_ERROR(ENODEV); 8343 break; 8344 } 8345 8346 /* make sure there's nothing stopping the split */ 8347 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 8348 vml[c]->vdev_islog || 8349 !vdev_is_concrete(vml[c]) || 8350 vml[c]->vdev_isspare || 8351 vml[c]->vdev_isl2cache || 8352 !vdev_writeable(vml[c]) || 8353 vml[c]->vdev_children != 0 || 8354 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 8355 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 8356 error = SET_ERROR(EINVAL); 8357 break; 8358 } 8359 8360 if (vdev_dtl_required(vml[c]) || 8361 vdev_resilver_needed(vml[c], NULL, NULL)) { 8362 error = SET_ERROR(EBUSY); 8363 break; 8364 } 8365 8366 /* we need certain info from the top level */ 8367 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 8368 vml[c]->vdev_top->vdev_ms_array); 8369 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 8370 vml[c]->vdev_top->vdev_ms_shift); 8371 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 8372 vml[c]->vdev_top->vdev_asize); 8373 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 8374 vml[c]->vdev_top->vdev_ashift); 8375 8376 /* transfer per-vdev ZAPs */ 8377 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 8378 VERIFY0(nvlist_add_uint64(child[c], 8379 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 8380 8381 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 8382 VERIFY0(nvlist_add_uint64(child[c], 8383 ZPOOL_CONFIG_VDEV_TOP_ZAP, 8384 vml[c]->vdev_parent->vdev_top_zap)); 8385 } 8386 8387 if (error != 0) { 8388 kmem_free(vml, children * sizeof (vdev_t *)); 8389 kmem_free(glist, children * sizeof (uint64_t)); 8390 return (spa_vdev_exit(spa, NULL, txg, error)); 8391 } 8392 8393 /* stop writers from using the disks */ 8394 for (c = 0; c < children; c++) { 8395 if (vml[c] != NULL) 8396 vml[c]->vdev_offline = B_TRUE; 8397 } 8398 vdev_reopen(spa->spa_root_vdev); 8399 8400 /* 8401 * Temporarily record the splitting vdevs in the spa config. This 8402 * will disappear once the config is regenerated. 8403 */ 8404 nvl = fnvlist_alloc(); 8405 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8406 kmem_free(glist, children * sizeof (uint64_t)); 8407 8408 mutex_enter(&spa->spa_props_lock); 8409 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8410 mutex_exit(&spa->spa_props_lock); 8411 spa->spa_config_splitting = nvl; 8412 vdev_config_dirty(spa->spa_root_vdev); 8413 8414 /* configure and create the new pool */ 8415 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8416 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8417 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8418 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8419 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8420 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8421 spa_generate_guid(NULL)); 8422 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8423 (void) nvlist_lookup_string(props, 8424 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8425 8426 /* add the new pool to the namespace */ 8427 newspa = spa_add(newname, config, altroot); 8428 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8429 newspa->spa_config_txg = spa->spa_config_txg; 8430 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8431 8432 /* release the spa config lock, retaining the namespace lock */ 8433 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8434 8435 if (zio_injection_enabled) 8436 zio_handle_panic_injection(spa, FTAG, 1); 8437 8438 spa_activate(newspa, spa_mode_global); 8439 spa_async_suspend(newspa); 8440 8441 /* 8442 * Temporarily stop the initializing and TRIM activity. We set the 8443 * state to ACTIVE so that we know to resume initializing or TRIM 8444 * once the split has completed. 8445 */ 8446 list_t vd_initialize_list; 8447 list_create(&vd_initialize_list, sizeof (vdev_t), 8448 offsetof(vdev_t, vdev_initialize_node)); 8449 8450 list_t vd_trim_list; 8451 list_create(&vd_trim_list, sizeof (vdev_t), 8452 offsetof(vdev_t, vdev_trim_node)); 8453 8454 for (c = 0; c < children; c++) { 8455 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8456 mutex_enter(&vml[c]->vdev_initialize_lock); 8457 vdev_initialize_stop(vml[c], 8458 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8459 mutex_exit(&vml[c]->vdev_initialize_lock); 8460 8461 mutex_enter(&vml[c]->vdev_trim_lock); 8462 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8463 mutex_exit(&vml[c]->vdev_trim_lock); 8464 } 8465 } 8466 8467 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8468 vdev_trim_stop_wait(spa, &vd_trim_list); 8469 8470 list_destroy(&vd_initialize_list); 8471 list_destroy(&vd_trim_list); 8472 8473 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8474 newspa->spa_is_splitting = B_TRUE; 8475 8476 /* create the new pool from the disks of the original pool */ 8477 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8478 if (error) 8479 goto out; 8480 8481 /* if that worked, generate a real config for the new pool */ 8482 if (newspa->spa_root_vdev != NULL) { 8483 newspa->spa_config_splitting = fnvlist_alloc(); 8484 fnvlist_add_uint64(newspa->spa_config_splitting, 8485 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8486 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8487 B_TRUE)); 8488 } 8489 8490 /* set the props */ 8491 if (props != NULL) { 8492 spa_configfile_set(newspa, props, B_FALSE); 8493 error = spa_prop_set(newspa, props); 8494 if (error) 8495 goto out; 8496 } 8497 8498 /* flush everything */ 8499 txg = spa_vdev_config_enter(newspa); 8500 vdev_config_dirty(newspa->spa_root_vdev); 8501 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8502 8503 if (zio_injection_enabled) 8504 zio_handle_panic_injection(spa, FTAG, 2); 8505 8506 spa_async_resume(newspa); 8507 8508 /* finally, update the original pool's config */ 8509 txg = spa_vdev_config_enter(spa); 8510 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8511 error = dmu_tx_assign(tx, TXG_WAIT); 8512 if (error != 0) 8513 dmu_tx_abort(tx); 8514 for (c = 0; c < children; c++) { 8515 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8516 vdev_t *tvd = vml[c]->vdev_top; 8517 8518 /* 8519 * Need to be sure the detachable VDEV is not 8520 * on any *other* txg's DTL list to prevent it 8521 * from being accessed after it's freed. 8522 */ 8523 for (int t = 0; t < TXG_SIZE; t++) { 8524 (void) txg_list_remove_this( 8525 &tvd->vdev_dtl_list, vml[c], t); 8526 } 8527 8528 vdev_split(vml[c]); 8529 if (error == 0) 8530 spa_history_log_internal(spa, "detach", tx, 8531 "vdev=%s", vml[c]->vdev_path); 8532 8533 vdev_free(vml[c]); 8534 } 8535 } 8536 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8537 vdev_config_dirty(spa->spa_root_vdev); 8538 spa->spa_config_splitting = NULL; 8539 nvlist_free(nvl); 8540 if (error == 0) 8541 dmu_tx_commit(tx); 8542 (void) spa_vdev_exit(spa, NULL, txg, 0); 8543 8544 if (zio_injection_enabled) 8545 zio_handle_panic_injection(spa, FTAG, 3); 8546 8547 /* split is complete; log a history record */ 8548 spa_history_log_internal(newspa, "split", NULL, 8549 "from pool %s", spa_name(spa)); 8550 8551 newspa->spa_is_splitting = B_FALSE; 8552 kmem_free(vml, children * sizeof (vdev_t *)); 8553 8554 /* if we're not going to mount the filesystems in userland, export */ 8555 if (exp) 8556 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8557 B_FALSE, B_FALSE); 8558 8559 return (error); 8560 8561 out: 8562 spa_unload(newspa); 8563 spa_deactivate(newspa); 8564 spa_remove(newspa); 8565 8566 txg = spa_vdev_config_enter(spa); 8567 8568 /* re-online all offlined disks */ 8569 for (c = 0; c < children; c++) { 8570 if (vml[c] != NULL) 8571 vml[c]->vdev_offline = B_FALSE; 8572 } 8573 8574 /* restart initializing or trimming disks as necessary */ 8575 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8576 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8577 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8578 8579 vdev_reopen(spa->spa_root_vdev); 8580 8581 nvlist_free(spa->spa_config_splitting); 8582 spa->spa_config_splitting = NULL; 8583 (void) spa_vdev_exit(spa, NULL, txg, error); 8584 8585 kmem_free(vml, children * sizeof (vdev_t *)); 8586 return (error); 8587 } 8588 8589 /* 8590 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8591 * currently spared, so we can detach it. 8592 */ 8593 static vdev_t * 8594 spa_vdev_resilver_done_hunt(vdev_t *vd) 8595 { 8596 vdev_t *newvd, *oldvd; 8597 8598 for (int c = 0; c < vd->vdev_children; c++) { 8599 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8600 if (oldvd != NULL) 8601 return (oldvd); 8602 } 8603 8604 /* 8605 * Check for a completed replacement. We always consider the first 8606 * vdev in the list to be the oldest vdev, and the last one to be 8607 * the newest (see spa_vdev_attach() for how that works). In 8608 * the case where the newest vdev is faulted, we will not automatically 8609 * remove it after a resilver completes. This is OK as it will require 8610 * user intervention to determine which disk the admin wishes to keep. 8611 */ 8612 if (vd->vdev_ops == &vdev_replacing_ops) { 8613 ASSERT(vd->vdev_children > 1); 8614 8615 newvd = vd->vdev_child[vd->vdev_children - 1]; 8616 oldvd = vd->vdev_child[0]; 8617 8618 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8619 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8620 !vdev_dtl_required(oldvd)) 8621 return (oldvd); 8622 } 8623 8624 /* 8625 * Check for a completed resilver with the 'unspare' flag set. 8626 * Also potentially update faulted state. 8627 */ 8628 if (vd->vdev_ops == &vdev_spare_ops) { 8629 vdev_t *first = vd->vdev_child[0]; 8630 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8631 8632 if (last->vdev_unspare) { 8633 oldvd = first; 8634 newvd = last; 8635 } else if (first->vdev_unspare) { 8636 oldvd = last; 8637 newvd = first; 8638 } else { 8639 oldvd = NULL; 8640 } 8641 8642 if (oldvd != NULL && 8643 vdev_dtl_empty(newvd, DTL_MISSING) && 8644 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8645 !vdev_dtl_required(oldvd)) 8646 return (oldvd); 8647 8648 vdev_propagate_state(vd); 8649 8650 /* 8651 * If there are more than two spares attached to a disk, 8652 * and those spares are not required, then we want to 8653 * attempt to free them up now so that they can be used 8654 * by other pools. Once we're back down to a single 8655 * disk+spare, we stop removing them. 8656 */ 8657 if (vd->vdev_children > 2) { 8658 newvd = vd->vdev_child[1]; 8659 8660 if (newvd->vdev_isspare && last->vdev_isspare && 8661 vdev_dtl_empty(last, DTL_MISSING) && 8662 vdev_dtl_empty(last, DTL_OUTAGE) && 8663 !vdev_dtl_required(newvd)) 8664 return (newvd); 8665 } 8666 } 8667 8668 return (NULL); 8669 } 8670 8671 static void 8672 spa_vdev_resilver_done(spa_t *spa) 8673 { 8674 vdev_t *vd, *pvd, *ppvd; 8675 uint64_t guid, sguid, pguid, ppguid; 8676 8677 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8678 8679 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8680 pvd = vd->vdev_parent; 8681 ppvd = pvd->vdev_parent; 8682 guid = vd->vdev_guid; 8683 pguid = pvd->vdev_guid; 8684 ppguid = ppvd->vdev_guid; 8685 sguid = 0; 8686 /* 8687 * If we have just finished replacing a hot spared device, then 8688 * we need to detach the parent's first child (the original hot 8689 * spare) as well. 8690 */ 8691 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8692 ppvd->vdev_children == 2) { 8693 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8694 sguid = ppvd->vdev_child[1]->vdev_guid; 8695 } 8696 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8697 8698 spa_config_exit(spa, SCL_ALL, FTAG); 8699 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8700 return; 8701 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8702 return; 8703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8704 } 8705 8706 spa_config_exit(spa, SCL_ALL, FTAG); 8707 8708 /* 8709 * If a detach was not performed above replace waiters will not have 8710 * been notified. In which case we must do so now. 8711 */ 8712 spa_notify_waiters(spa); 8713 } 8714 8715 /* 8716 * Update the stored path or FRU for this vdev. 8717 */ 8718 static int 8719 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8720 boolean_t ispath) 8721 { 8722 vdev_t *vd; 8723 boolean_t sync = B_FALSE; 8724 8725 ASSERT(spa_writeable(spa)); 8726 8727 spa_vdev_state_enter(spa, SCL_ALL); 8728 8729 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8730 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8731 8732 if (!vd->vdev_ops->vdev_op_leaf) 8733 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8734 8735 if (ispath) { 8736 if (strcmp(value, vd->vdev_path) != 0) { 8737 spa_strfree(vd->vdev_path); 8738 vd->vdev_path = spa_strdup(value); 8739 sync = B_TRUE; 8740 } 8741 } else { 8742 if (vd->vdev_fru == NULL) { 8743 vd->vdev_fru = spa_strdup(value); 8744 sync = B_TRUE; 8745 } else if (strcmp(value, vd->vdev_fru) != 0) { 8746 spa_strfree(vd->vdev_fru); 8747 vd->vdev_fru = spa_strdup(value); 8748 sync = B_TRUE; 8749 } 8750 } 8751 8752 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8753 } 8754 8755 int 8756 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8757 { 8758 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8759 } 8760 8761 int 8762 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8763 { 8764 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8765 } 8766 8767 /* 8768 * ========================================================================== 8769 * SPA Scanning 8770 * ========================================================================== 8771 */ 8772 int 8773 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8774 { 8775 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8776 8777 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8778 return (SET_ERROR(EBUSY)); 8779 8780 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8781 } 8782 8783 int 8784 spa_scan_stop(spa_t *spa) 8785 { 8786 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8787 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8788 return (SET_ERROR(EBUSY)); 8789 8790 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8791 } 8792 8793 int 8794 spa_scan(spa_t *spa, pool_scan_func_t func) 8795 { 8796 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8797 8798 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8799 return (SET_ERROR(ENOTSUP)); 8800 8801 if (func == POOL_SCAN_RESILVER && 8802 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8803 return (SET_ERROR(ENOTSUP)); 8804 8805 /* 8806 * If a resilver was requested, but there is no DTL on a 8807 * writeable leaf device, we have nothing to do. 8808 */ 8809 if (func == POOL_SCAN_RESILVER && 8810 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8811 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8812 return (0); 8813 } 8814 8815 if (func == POOL_SCAN_ERRORSCRUB && 8816 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 8817 return (SET_ERROR(ENOTSUP)); 8818 8819 return (dsl_scan(spa->spa_dsl_pool, func)); 8820 } 8821 8822 /* 8823 * ========================================================================== 8824 * SPA async task processing 8825 * ========================================================================== 8826 */ 8827 8828 static void 8829 spa_async_remove(spa_t *spa, vdev_t *vd) 8830 { 8831 if (vd->vdev_remove_wanted) { 8832 vd->vdev_remove_wanted = B_FALSE; 8833 vd->vdev_delayed_close = B_FALSE; 8834 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 8835 8836 /* 8837 * We want to clear the stats, but we don't want to do a full 8838 * vdev_clear() as that will cause us to throw away 8839 * degraded/faulted state as well as attempt to reopen the 8840 * device, all of which is a waste. 8841 */ 8842 vd->vdev_stat.vs_read_errors = 0; 8843 vd->vdev_stat.vs_write_errors = 0; 8844 vd->vdev_stat.vs_checksum_errors = 0; 8845 8846 vdev_state_dirty(vd->vdev_top); 8847 8848 /* Tell userspace that the vdev is gone. */ 8849 zfs_post_remove(spa, vd); 8850 } 8851 8852 for (int c = 0; c < vd->vdev_children; c++) 8853 spa_async_remove(spa, vd->vdev_child[c]); 8854 } 8855 8856 static void 8857 spa_async_fault_vdev(spa_t *spa, vdev_t *vd) 8858 { 8859 if (vd->vdev_fault_wanted) { 8860 vd->vdev_fault_wanted = B_FALSE; 8861 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 8862 VDEV_AUX_ERR_EXCEEDED); 8863 } 8864 8865 for (int c = 0; c < vd->vdev_children; c++) 8866 spa_async_fault_vdev(spa, vd->vdev_child[c]); 8867 } 8868 8869 static void 8870 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 8871 { 8872 if (!spa->spa_autoexpand) 8873 return; 8874 8875 for (int c = 0; c < vd->vdev_children; c++) { 8876 vdev_t *cvd = vd->vdev_child[c]; 8877 spa_async_autoexpand(spa, cvd); 8878 } 8879 8880 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 8881 return; 8882 8883 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 8884 } 8885 8886 static __attribute__((noreturn)) void 8887 spa_async_thread(void *arg) 8888 { 8889 spa_t *spa = (spa_t *)arg; 8890 dsl_pool_t *dp = spa->spa_dsl_pool; 8891 int tasks; 8892 8893 ASSERT(spa->spa_sync_on); 8894 8895 mutex_enter(&spa->spa_async_lock); 8896 tasks = spa->spa_async_tasks; 8897 spa->spa_async_tasks = 0; 8898 mutex_exit(&spa->spa_async_lock); 8899 8900 /* 8901 * See if the config needs to be updated. 8902 */ 8903 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 8904 uint64_t old_space, new_space; 8905 8906 mutex_enter(&spa_namespace_lock); 8907 old_space = metaslab_class_get_space(spa_normal_class(spa)); 8908 old_space += metaslab_class_get_space(spa_special_class(spa)); 8909 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 8910 old_space += metaslab_class_get_space( 8911 spa_embedded_log_class(spa)); 8912 8913 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 8914 8915 new_space = metaslab_class_get_space(spa_normal_class(spa)); 8916 new_space += metaslab_class_get_space(spa_special_class(spa)); 8917 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 8918 new_space += metaslab_class_get_space( 8919 spa_embedded_log_class(spa)); 8920 mutex_exit(&spa_namespace_lock); 8921 8922 /* 8923 * If the pool grew as a result of the config update, 8924 * then log an internal history event. 8925 */ 8926 if (new_space != old_space) { 8927 spa_history_log_internal(spa, "vdev online", NULL, 8928 "pool '%s' size: %llu(+%llu)", 8929 spa_name(spa), (u_longlong_t)new_space, 8930 (u_longlong_t)(new_space - old_space)); 8931 } 8932 } 8933 8934 /* 8935 * See if any devices need to be marked REMOVED. 8936 */ 8937 if (tasks & SPA_ASYNC_REMOVE) { 8938 spa_vdev_state_enter(spa, SCL_NONE); 8939 spa_async_remove(spa, spa->spa_root_vdev); 8940 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 8941 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 8942 for (int i = 0; i < spa->spa_spares.sav_count; i++) 8943 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 8944 (void) spa_vdev_state_exit(spa, NULL, 0); 8945 } 8946 8947 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 8948 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8949 spa_async_autoexpand(spa, spa->spa_root_vdev); 8950 spa_config_exit(spa, SCL_CONFIG, FTAG); 8951 } 8952 8953 /* 8954 * See if any devices need to be marked faulted. 8955 */ 8956 if (tasks & SPA_ASYNC_FAULT_VDEV) { 8957 spa_vdev_state_enter(spa, SCL_NONE); 8958 spa_async_fault_vdev(spa, spa->spa_root_vdev); 8959 (void) spa_vdev_state_exit(spa, NULL, 0); 8960 } 8961 8962 /* 8963 * If any devices are done replacing, detach them. 8964 */ 8965 if (tasks & SPA_ASYNC_RESILVER_DONE || 8966 tasks & SPA_ASYNC_REBUILD_DONE || 8967 tasks & SPA_ASYNC_DETACH_SPARE) { 8968 spa_vdev_resilver_done(spa); 8969 } 8970 8971 /* 8972 * Kick off a resilver. 8973 */ 8974 if (tasks & SPA_ASYNC_RESILVER && 8975 !vdev_rebuild_active(spa->spa_root_vdev) && 8976 (!dsl_scan_resilvering(dp) || 8977 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8978 dsl_scan_restart_resilver(dp, 0); 8979 8980 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8981 mutex_enter(&spa_namespace_lock); 8982 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8983 vdev_initialize_restart(spa->spa_root_vdev); 8984 spa_config_exit(spa, SCL_CONFIG, FTAG); 8985 mutex_exit(&spa_namespace_lock); 8986 } 8987 8988 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8989 mutex_enter(&spa_namespace_lock); 8990 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8991 vdev_trim_restart(spa->spa_root_vdev); 8992 spa_config_exit(spa, SCL_CONFIG, FTAG); 8993 mutex_exit(&spa_namespace_lock); 8994 } 8995 8996 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8997 mutex_enter(&spa_namespace_lock); 8998 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8999 vdev_autotrim_restart(spa); 9000 spa_config_exit(spa, SCL_CONFIG, FTAG); 9001 mutex_exit(&spa_namespace_lock); 9002 } 9003 9004 /* 9005 * Kick off L2 cache whole device TRIM. 9006 */ 9007 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 9008 mutex_enter(&spa_namespace_lock); 9009 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9010 vdev_trim_l2arc(spa); 9011 spa_config_exit(spa, SCL_CONFIG, FTAG); 9012 mutex_exit(&spa_namespace_lock); 9013 } 9014 9015 /* 9016 * Kick off L2 cache rebuilding. 9017 */ 9018 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 9019 mutex_enter(&spa_namespace_lock); 9020 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 9021 l2arc_spa_rebuild_start(spa); 9022 spa_config_exit(spa, SCL_L2ARC, FTAG); 9023 mutex_exit(&spa_namespace_lock); 9024 } 9025 9026 /* 9027 * Let the world know that we're done. 9028 */ 9029 mutex_enter(&spa->spa_async_lock); 9030 spa->spa_async_thread = NULL; 9031 cv_broadcast(&spa->spa_async_cv); 9032 mutex_exit(&spa->spa_async_lock); 9033 thread_exit(); 9034 } 9035 9036 void 9037 spa_async_suspend(spa_t *spa) 9038 { 9039 mutex_enter(&spa->spa_async_lock); 9040 spa->spa_async_suspended++; 9041 while (spa->spa_async_thread != NULL) 9042 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 9043 mutex_exit(&spa->spa_async_lock); 9044 9045 spa_vdev_remove_suspend(spa); 9046 9047 zthr_t *condense_thread = spa->spa_condense_zthr; 9048 if (condense_thread != NULL) 9049 zthr_cancel(condense_thread); 9050 9051 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9052 if (raidz_expand_thread != NULL) 9053 zthr_cancel(raidz_expand_thread); 9054 9055 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9056 if (discard_thread != NULL) 9057 zthr_cancel(discard_thread); 9058 9059 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9060 if (ll_delete_thread != NULL) 9061 zthr_cancel(ll_delete_thread); 9062 9063 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9064 if (ll_condense_thread != NULL) 9065 zthr_cancel(ll_condense_thread); 9066 } 9067 9068 void 9069 spa_async_resume(spa_t *spa) 9070 { 9071 mutex_enter(&spa->spa_async_lock); 9072 ASSERT(spa->spa_async_suspended != 0); 9073 spa->spa_async_suspended--; 9074 mutex_exit(&spa->spa_async_lock); 9075 spa_restart_removal(spa); 9076 9077 zthr_t *condense_thread = spa->spa_condense_zthr; 9078 if (condense_thread != NULL) 9079 zthr_resume(condense_thread); 9080 9081 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9082 if (raidz_expand_thread != NULL) 9083 zthr_resume(raidz_expand_thread); 9084 9085 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9086 if (discard_thread != NULL) 9087 zthr_resume(discard_thread); 9088 9089 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9090 if (ll_delete_thread != NULL) 9091 zthr_resume(ll_delete_thread); 9092 9093 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9094 if (ll_condense_thread != NULL) 9095 zthr_resume(ll_condense_thread); 9096 } 9097 9098 static boolean_t 9099 spa_async_tasks_pending(spa_t *spa) 9100 { 9101 uint_t non_config_tasks; 9102 uint_t config_task; 9103 boolean_t config_task_suspended; 9104 9105 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 9106 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 9107 if (spa->spa_ccw_fail_time == 0) { 9108 config_task_suspended = B_FALSE; 9109 } else { 9110 config_task_suspended = 9111 (gethrtime() - spa->spa_ccw_fail_time) < 9112 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 9113 } 9114 9115 return (non_config_tasks || (config_task && !config_task_suspended)); 9116 } 9117 9118 static void 9119 spa_async_dispatch(spa_t *spa) 9120 { 9121 mutex_enter(&spa->spa_async_lock); 9122 if (spa_async_tasks_pending(spa) && 9123 !spa->spa_async_suspended && 9124 spa->spa_async_thread == NULL) 9125 spa->spa_async_thread = thread_create(NULL, 0, 9126 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 9127 mutex_exit(&spa->spa_async_lock); 9128 } 9129 9130 void 9131 spa_async_request(spa_t *spa, int task) 9132 { 9133 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 9134 mutex_enter(&spa->spa_async_lock); 9135 spa->spa_async_tasks |= task; 9136 mutex_exit(&spa->spa_async_lock); 9137 } 9138 9139 int 9140 spa_async_tasks(spa_t *spa) 9141 { 9142 return (spa->spa_async_tasks); 9143 } 9144 9145 /* 9146 * ========================================================================== 9147 * SPA syncing routines 9148 * ========================================================================== 9149 */ 9150 9151 9152 static int 9153 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9154 dmu_tx_t *tx) 9155 { 9156 bpobj_t *bpo = arg; 9157 bpobj_enqueue(bpo, bp, bp_freed, tx); 9158 return (0); 9159 } 9160 9161 int 9162 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9163 { 9164 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 9165 } 9166 9167 int 9168 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9169 { 9170 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 9171 } 9172 9173 static int 9174 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9175 { 9176 zio_t *pio = arg; 9177 9178 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 9179 pio->io_flags)); 9180 return (0); 9181 } 9182 9183 static int 9184 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9185 dmu_tx_t *tx) 9186 { 9187 ASSERT(!bp_freed); 9188 return (spa_free_sync_cb(arg, bp, tx)); 9189 } 9190 9191 /* 9192 * Note: this simple function is not inlined to make it easier to dtrace the 9193 * amount of time spent syncing frees. 9194 */ 9195 static void 9196 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 9197 { 9198 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9199 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 9200 VERIFY(zio_wait(zio) == 0); 9201 } 9202 9203 /* 9204 * Note: this simple function is not inlined to make it easier to dtrace the 9205 * amount of time spent syncing deferred frees. 9206 */ 9207 static void 9208 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 9209 { 9210 if (spa_sync_pass(spa) != 1) 9211 return; 9212 9213 /* 9214 * Note: 9215 * If the log space map feature is active, we stop deferring 9216 * frees to the next TXG and therefore running this function 9217 * would be considered a no-op as spa_deferred_bpobj should 9218 * not have any entries. 9219 * 9220 * That said we run this function anyway (instead of returning 9221 * immediately) for the edge-case scenario where we just 9222 * activated the log space map feature in this TXG but we have 9223 * deferred frees from the previous TXG. 9224 */ 9225 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9226 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 9227 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 9228 VERIFY0(zio_wait(zio)); 9229 } 9230 9231 static void 9232 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 9233 { 9234 char *packed = NULL; 9235 size_t bufsize; 9236 size_t nvsize = 0; 9237 dmu_buf_t *db; 9238 9239 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 9240 9241 /* 9242 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 9243 * information. This avoids the dmu_buf_will_dirty() path and 9244 * saves us a pre-read to get data we don't actually care about. 9245 */ 9246 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 9247 packed = vmem_alloc(bufsize, KM_SLEEP); 9248 9249 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 9250 KM_SLEEP) == 0); 9251 memset(packed + nvsize, 0, bufsize - nvsize); 9252 9253 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 9254 9255 vmem_free(packed, bufsize); 9256 9257 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 9258 dmu_buf_will_dirty(db, tx); 9259 *(uint64_t *)db->db_data = nvsize; 9260 dmu_buf_rele(db, FTAG); 9261 } 9262 9263 static void 9264 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 9265 const char *config, const char *entry) 9266 { 9267 nvlist_t *nvroot; 9268 nvlist_t **list; 9269 int i; 9270 9271 if (!sav->sav_sync) 9272 return; 9273 9274 /* 9275 * Update the MOS nvlist describing the list of available devices. 9276 * spa_validate_aux() will have already made sure this nvlist is 9277 * valid and the vdevs are labeled appropriately. 9278 */ 9279 if (sav->sav_object == 0) { 9280 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 9281 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 9282 sizeof (uint64_t), tx); 9283 VERIFY(zap_update(spa->spa_meta_objset, 9284 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 9285 &sav->sav_object, tx) == 0); 9286 } 9287 9288 nvroot = fnvlist_alloc(); 9289 if (sav->sav_count == 0) { 9290 fnvlist_add_nvlist_array(nvroot, config, 9291 (const nvlist_t * const *)NULL, 0); 9292 } else { 9293 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 9294 for (i = 0; i < sav->sav_count; i++) 9295 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 9296 B_FALSE, VDEV_CONFIG_L2CACHE); 9297 fnvlist_add_nvlist_array(nvroot, config, 9298 (const nvlist_t * const *)list, sav->sav_count); 9299 for (i = 0; i < sav->sav_count; i++) 9300 nvlist_free(list[i]); 9301 kmem_free(list, sav->sav_count * sizeof (void *)); 9302 } 9303 9304 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 9305 nvlist_free(nvroot); 9306 9307 sav->sav_sync = B_FALSE; 9308 } 9309 9310 /* 9311 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 9312 * The all-vdev ZAP must be empty. 9313 */ 9314 static void 9315 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 9316 { 9317 spa_t *spa = vd->vdev_spa; 9318 9319 if (vd->vdev_root_zap != 0 && 9320 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 9321 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9322 vd->vdev_root_zap, tx)); 9323 } 9324 if (vd->vdev_top_zap != 0) { 9325 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9326 vd->vdev_top_zap, tx)); 9327 } 9328 if (vd->vdev_leaf_zap != 0) { 9329 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9330 vd->vdev_leaf_zap, tx)); 9331 } 9332 for (uint64_t i = 0; i < vd->vdev_children; i++) { 9333 spa_avz_build(vd->vdev_child[i], avz, tx); 9334 } 9335 } 9336 9337 static void 9338 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 9339 { 9340 nvlist_t *config; 9341 9342 /* 9343 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 9344 * its config may not be dirty but we still need to build per-vdev ZAPs. 9345 * Similarly, if the pool is being assembled (e.g. after a split), we 9346 * need to rebuild the AVZ although the config may not be dirty. 9347 */ 9348 if (list_is_empty(&spa->spa_config_dirty_list) && 9349 spa->spa_avz_action == AVZ_ACTION_NONE) 9350 return; 9351 9352 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9353 9354 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 9355 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 9356 spa->spa_all_vdev_zaps != 0); 9357 9358 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 9359 /* Make and build the new AVZ */ 9360 uint64_t new_avz = zap_create(spa->spa_meta_objset, 9361 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 9362 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 9363 9364 /* Diff old AVZ with new one */ 9365 zap_cursor_t zc; 9366 zap_attribute_t za; 9367 9368 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9369 spa->spa_all_vdev_zaps); 9370 zap_cursor_retrieve(&zc, &za) == 0; 9371 zap_cursor_advance(&zc)) { 9372 uint64_t vdzap = za.za_first_integer; 9373 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 9374 vdzap) == ENOENT) { 9375 /* 9376 * ZAP is listed in old AVZ but not in new one; 9377 * destroy it 9378 */ 9379 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 9380 tx)); 9381 } 9382 } 9383 9384 zap_cursor_fini(&zc); 9385 9386 /* Destroy the old AVZ */ 9387 VERIFY0(zap_destroy(spa->spa_meta_objset, 9388 spa->spa_all_vdev_zaps, tx)); 9389 9390 /* Replace the old AVZ in the dir obj with the new one */ 9391 VERIFY0(zap_update(spa->spa_meta_objset, 9392 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9393 sizeof (new_avz), 1, &new_avz, tx)); 9394 9395 spa->spa_all_vdev_zaps = new_avz; 9396 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9397 zap_cursor_t zc; 9398 zap_attribute_t za; 9399 9400 /* Walk through the AVZ and destroy all listed ZAPs */ 9401 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9402 spa->spa_all_vdev_zaps); 9403 zap_cursor_retrieve(&zc, &za) == 0; 9404 zap_cursor_advance(&zc)) { 9405 uint64_t zap = za.za_first_integer; 9406 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9407 } 9408 9409 zap_cursor_fini(&zc); 9410 9411 /* Destroy and unlink the AVZ itself */ 9412 VERIFY0(zap_destroy(spa->spa_meta_objset, 9413 spa->spa_all_vdev_zaps, tx)); 9414 VERIFY0(zap_remove(spa->spa_meta_objset, 9415 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9416 spa->spa_all_vdev_zaps = 0; 9417 } 9418 9419 if (spa->spa_all_vdev_zaps == 0) { 9420 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9421 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9422 DMU_POOL_VDEV_ZAP_MAP, tx); 9423 } 9424 spa->spa_avz_action = AVZ_ACTION_NONE; 9425 9426 /* Create ZAPs for vdevs that don't have them. */ 9427 vdev_construct_zaps(spa->spa_root_vdev, tx); 9428 9429 config = spa_config_generate(spa, spa->spa_root_vdev, 9430 dmu_tx_get_txg(tx), B_FALSE); 9431 9432 /* 9433 * If we're upgrading the spa version then make sure that 9434 * the config object gets updated with the correct version. 9435 */ 9436 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9437 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9438 spa->spa_uberblock.ub_version); 9439 9440 spa_config_exit(spa, SCL_STATE, FTAG); 9441 9442 nvlist_free(spa->spa_config_syncing); 9443 spa->spa_config_syncing = config; 9444 9445 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9446 } 9447 9448 static void 9449 spa_sync_version(void *arg, dmu_tx_t *tx) 9450 { 9451 uint64_t *versionp = arg; 9452 uint64_t version = *versionp; 9453 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9454 9455 /* 9456 * Setting the version is special cased when first creating the pool. 9457 */ 9458 ASSERT(tx->tx_txg != TXG_INITIAL); 9459 9460 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9461 ASSERT(version >= spa_version(spa)); 9462 9463 spa->spa_uberblock.ub_version = version; 9464 vdev_config_dirty(spa->spa_root_vdev); 9465 spa_history_log_internal(spa, "set", tx, "version=%lld", 9466 (longlong_t)version); 9467 } 9468 9469 /* 9470 * Set zpool properties. 9471 */ 9472 static void 9473 spa_sync_props(void *arg, dmu_tx_t *tx) 9474 { 9475 nvlist_t *nvp = arg; 9476 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9477 objset_t *mos = spa->spa_meta_objset; 9478 nvpair_t *elem = NULL; 9479 9480 mutex_enter(&spa->spa_props_lock); 9481 9482 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9483 uint64_t intval; 9484 const char *strval, *fname; 9485 zpool_prop_t prop; 9486 const char *propname; 9487 const char *elemname = nvpair_name(elem); 9488 zprop_type_t proptype; 9489 spa_feature_t fid; 9490 9491 switch (prop = zpool_name_to_prop(elemname)) { 9492 case ZPOOL_PROP_VERSION: 9493 intval = fnvpair_value_uint64(elem); 9494 /* 9495 * The version is synced separately before other 9496 * properties and should be correct by now. 9497 */ 9498 ASSERT3U(spa_version(spa), >=, intval); 9499 break; 9500 9501 case ZPOOL_PROP_ALTROOT: 9502 /* 9503 * 'altroot' is a non-persistent property. It should 9504 * have been set temporarily at creation or import time. 9505 */ 9506 ASSERT(spa->spa_root != NULL); 9507 break; 9508 9509 case ZPOOL_PROP_READONLY: 9510 case ZPOOL_PROP_CACHEFILE: 9511 /* 9512 * 'readonly' and 'cachefile' are also non-persistent 9513 * properties. 9514 */ 9515 break; 9516 case ZPOOL_PROP_COMMENT: 9517 strval = fnvpair_value_string(elem); 9518 if (spa->spa_comment != NULL) 9519 spa_strfree(spa->spa_comment); 9520 spa->spa_comment = spa_strdup(strval); 9521 /* 9522 * We need to dirty the configuration on all the vdevs 9523 * so that their labels get updated. We also need to 9524 * update the cache file to keep it in sync with the 9525 * MOS version. It's unnecessary to do this for pool 9526 * creation since the vdev's configuration has already 9527 * been dirtied. 9528 */ 9529 if (tx->tx_txg != TXG_INITIAL) { 9530 vdev_config_dirty(spa->spa_root_vdev); 9531 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9532 } 9533 spa_history_log_internal(spa, "set", tx, 9534 "%s=%s", elemname, strval); 9535 break; 9536 case ZPOOL_PROP_COMPATIBILITY: 9537 strval = fnvpair_value_string(elem); 9538 if (spa->spa_compatibility != NULL) 9539 spa_strfree(spa->spa_compatibility); 9540 spa->spa_compatibility = spa_strdup(strval); 9541 /* 9542 * Dirty the configuration on vdevs as above. 9543 */ 9544 if (tx->tx_txg != TXG_INITIAL) { 9545 vdev_config_dirty(spa->spa_root_vdev); 9546 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9547 } 9548 9549 spa_history_log_internal(spa, "set", tx, 9550 "%s=%s", nvpair_name(elem), strval); 9551 break; 9552 9553 case ZPOOL_PROP_INVAL: 9554 if (zpool_prop_feature(elemname)) { 9555 fname = strchr(elemname, '@') + 1; 9556 VERIFY0(zfeature_lookup_name(fname, &fid)); 9557 9558 spa_feature_enable(spa, fid, tx); 9559 spa_history_log_internal(spa, "set", tx, 9560 "%s=enabled", elemname); 9561 break; 9562 } else if (!zfs_prop_user(elemname)) { 9563 ASSERT(zpool_prop_feature(elemname)); 9564 break; 9565 } 9566 zfs_fallthrough; 9567 default: 9568 /* 9569 * Set pool property values in the poolprops mos object. 9570 */ 9571 if (spa->spa_pool_props_object == 0) { 9572 spa->spa_pool_props_object = 9573 zap_create_link(mos, DMU_OT_POOL_PROPS, 9574 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9575 tx); 9576 } 9577 9578 /* normalize the property name */ 9579 if (prop == ZPOOL_PROP_INVAL) { 9580 propname = elemname; 9581 proptype = PROP_TYPE_STRING; 9582 } else { 9583 propname = zpool_prop_to_name(prop); 9584 proptype = zpool_prop_get_type(prop); 9585 } 9586 9587 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9588 ASSERT(proptype == PROP_TYPE_STRING); 9589 strval = fnvpair_value_string(elem); 9590 VERIFY0(zap_update(mos, 9591 spa->spa_pool_props_object, propname, 9592 1, strlen(strval) + 1, strval, tx)); 9593 spa_history_log_internal(spa, "set", tx, 9594 "%s=%s", elemname, strval); 9595 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9596 intval = fnvpair_value_uint64(elem); 9597 9598 if (proptype == PROP_TYPE_INDEX) { 9599 const char *unused; 9600 VERIFY0(zpool_prop_index_to_string( 9601 prop, intval, &unused)); 9602 } 9603 VERIFY0(zap_update(mos, 9604 spa->spa_pool_props_object, propname, 9605 8, 1, &intval, tx)); 9606 spa_history_log_internal(spa, "set", tx, 9607 "%s=%lld", elemname, 9608 (longlong_t)intval); 9609 9610 switch (prop) { 9611 case ZPOOL_PROP_DELEGATION: 9612 spa->spa_delegation = intval; 9613 break; 9614 case ZPOOL_PROP_BOOTFS: 9615 spa->spa_bootfs = intval; 9616 break; 9617 case ZPOOL_PROP_FAILUREMODE: 9618 spa->spa_failmode = intval; 9619 break; 9620 case ZPOOL_PROP_AUTOTRIM: 9621 spa->spa_autotrim = intval; 9622 spa_async_request(spa, 9623 SPA_ASYNC_AUTOTRIM_RESTART); 9624 break; 9625 case ZPOOL_PROP_AUTOEXPAND: 9626 spa->spa_autoexpand = intval; 9627 if (tx->tx_txg != TXG_INITIAL) 9628 spa_async_request(spa, 9629 SPA_ASYNC_AUTOEXPAND); 9630 break; 9631 case ZPOOL_PROP_MULTIHOST: 9632 spa->spa_multihost = intval; 9633 break; 9634 default: 9635 break; 9636 } 9637 } else { 9638 ASSERT(0); /* not allowed */ 9639 } 9640 } 9641 9642 } 9643 9644 mutex_exit(&spa->spa_props_lock); 9645 } 9646 9647 /* 9648 * Perform one-time upgrade on-disk changes. spa_version() does not 9649 * reflect the new version this txg, so there must be no changes this 9650 * txg to anything that the upgrade code depends on after it executes. 9651 * Therefore this must be called after dsl_pool_sync() does the sync 9652 * tasks. 9653 */ 9654 static void 9655 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9656 { 9657 if (spa_sync_pass(spa) != 1) 9658 return; 9659 9660 dsl_pool_t *dp = spa->spa_dsl_pool; 9661 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9662 9663 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9664 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9665 dsl_pool_create_origin(dp, tx); 9666 9667 /* Keeping the origin open increases spa_minref */ 9668 spa->spa_minref += 3; 9669 } 9670 9671 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9672 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9673 dsl_pool_upgrade_clones(dp, tx); 9674 } 9675 9676 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9677 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9678 dsl_pool_upgrade_dir_clones(dp, tx); 9679 9680 /* Keeping the freedir open increases spa_minref */ 9681 spa->spa_minref += 3; 9682 } 9683 9684 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9685 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9686 spa_feature_create_zap_objects(spa, tx); 9687 } 9688 9689 /* 9690 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9691 * when possibility to use lz4 compression for metadata was added 9692 * Old pools that have this feature enabled must be upgraded to have 9693 * this feature active 9694 */ 9695 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9696 boolean_t lz4_en = spa_feature_is_enabled(spa, 9697 SPA_FEATURE_LZ4_COMPRESS); 9698 boolean_t lz4_ac = spa_feature_is_active(spa, 9699 SPA_FEATURE_LZ4_COMPRESS); 9700 9701 if (lz4_en && !lz4_ac) 9702 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9703 } 9704 9705 /* 9706 * If we haven't written the salt, do so now. Note that the 9707 * feature may not be activated yet, but that's fine since 9708 * the presence of this ZAP entry is backwards compatible. 9709 */ 9710 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9711 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9712 VERIFY0(zap_add(spa->spa_meta_objset, 9713 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9714 sizeof (spa->spa_cksum_salt.zcs_bytes), 9715 spa->spa_cksum_salt.zcs_bytes, tx)); 9716 } 9717 9718 rrw_exit(&dp->dp_config_rwlock, FTAG); 9719 } 9720 9721 static void 9722 vdev_indirect_state_sync_verify(vdev_t *vd) 9723 { 9724 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9725 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9726 9727 if (vd->vdev_ops == &vdev_indirect_ops) { 9728 ASSERT(vim != NULL); 9729 ASSERT(vib != NULL); 9730 } 9731 9732 uint64_t obsolete_sm_object = 0; 9733 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9734 if (obsolete_sm_object != 0) { 9735 ASSERT(vd->vdev_obsolete_sm != NULL); 9736 ASSERT(vd->vdev_removing || 9737 vd->vdev_ops == &vdev_indirect_ops); 9738 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9739 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9740 ASSERT3U(obsolete_sm_object, ==, 9741 space_map_object(vd->vdev_obsolete_sm)); 9742 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9743 space_map_allocated(vd->vdev_obsolete_sm)); 9744 } 9745 ASSERT(vd->vdev_obsolete_segments != NULL); 9746 9747 /* 9748 * Since frees / remaps to an indirect vdev can only 9749 * happen in syncing context, the obsolete segments 9750 * tree must be empty when we start syncing. 9751 */ 9752 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 9753 } 9754 9755 /* 9756 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9757 * async write queue depth in case it changed. The max queue depth will 9758 * not change in the middle of syncing out this txg. 9759 */ 9760 static void 9761 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9762 { 9763 ASSERT(spa_writeable(spa)); 9764 9765 vdev_t *rvd = spa->spa_root_vdev; 9766 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 9767 zfs_vdev_queue_depth_pct / 100; 9768 metaslab_class_t *normal = spa_normal_class(spa); 9769 metaslab_class_t *special = spa_special_class(spa); 9770 metaslab_class_t *dedup = spa_dedup_class(spa); 9771 9772 uint64_t slots_per_allocator = 0; 9773 for (int c = 0; c < rvd->vdev_children; c++) { 9774 vdev_t *tvd = rvd->vdev_child[c]; 9775 9776 metaslab_group_t *mg = tvd->vdev_mg; 9777 if (mg == NULL || !metaslab_group_initialized(mg)) 9778 continue; 9779 9780 metaslab_class_t *mc = mg->mg_class; 9781 if (mc != normal && mc != special && mc != dedup) 9782 continue; 9783 9784 /* 9785 * It is safe to do a lock-free check here because only async 9786 * allocations look at mg_max_alloc_queue_depth, and async 9787 * allocations all happen from spa_sync(). 9788 */ 9789 for (int i = 0; i < mg->mg_allocators; i++) { 9790 ASSERT0(zfs_refcount_count( 9791 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 9792 } 9793 mg->mg_max_alloc_queue_depth = max_queue_depth; 9794 9795 for (int i = 0; i < mg->mg_allocators; i++) { 9796 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 9797 zfs_vdev_def_queue_depth; 9798 } 9799 slots_per_allocator += zfs_vdev_def_queue_depth; 9800 } 9801 9802 for (int i = 0; i < spa->spa_alloc_count; i++) { 9803 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i]. 9804 mca_alloc_slots)); 9805 ASSERT0(zfs_refcount_count(&special->mc_allocator[i]. 9806 mca_alloc_slots)); 9807 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i]. 9808 mca_alloc_slots)); 9809 normal->mc_allocator[i].mca_alloc_max_slots = 9810 slots_per_allocator; 9811 special->mc_allocator[i].mca_alloc_max_slots = 9812 slots_per_allocator; 9813 dedup->mc_allocator[i].mca_alloc_max_slots = 9814 slots_per_allocator; 9815 } 9816 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9817 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9818 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 9819 } 9820 9821 static void 9822 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9823 { 9824 ASSERT(spa_writeable(spa)); 9825 9826 vdev_t *rvd = spa->spa_root_vdev; 9827 for (int c = 0; c < rvd->vdev_children; c++) { 9828 vdev_t *vd = rvd->vdev_child[c]; 9829 vdev_indirect_state_sync_verify(vd); 9830 9831 if (vdev_indirect_should_condense(vd)) { 9832 spa_condense_indirect_start_sync(vd, tx); 9833 break; 9834 } 9835 } 9836 } 9837 9838 static void 9839 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9840 { 9841 objset_t *mos = spa->spa_meta_objset; 9842 dsl_pool_t *dp = spa->spa_dsl_pool; 9843 uint64_t txg = tx->tx_txg; 9844 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 9845 9846 do { 9847 int pass = ++spa->spa_sync_pass; 9848 9849 spa_sync_config_object(spa, tx); 9850 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 9851 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 9852 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 9853 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 9854 spa_errlog_sync(spa, txg); 9855 dsl_pool_sync(dp, txg); 9856 9857 if (pass < zfs_sync_pass_deferred_free || 9858 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 9859 /* 9860 * If the log space map feature is active we don't 9861 * care about deferred frees and the deferred bpobj 9862 * as the log space map should effectively have the 9863 * same results (i.e. appending only to one object). 9864 */ 9865 spa_sync_frees(spa, free_bpl, tx); 9866 } else { 9867 /* 9868 * We can not defer frees in pass 1, because 9869 * we sync the deferred frees later in pass 1. 9870 */ 9871 ASSERT3U(pass, >, 1); 9872 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 9873 &spa->spa_deferred_bpobj, tx); 9874 } 9875 9876 brt_sync(spa, txg); 9877 ddt_sync(spa, txg); 9878 dsl_scan_sync(dp, tx); 9879 dsl_errorscrub_sync(dp, tx); 9880 svr_sync(spa, tx); 9881 spa_sync_upgrades(spa, tx); 9882 9883 spa_flush_metaslabs(spa, tx); 9884 9885 vdev_t *vd = NULL; 9886 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 9887 != NULL) 9888 vdev_sync(vd, txg); 9889 9890 if (pass == 1) { 9891 /* 9892 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 9893 * the config. If that happens, this txg should not 9894 * be a no-op. So we must sync the config to the MOS 9895 * before checking for no-op. 9896 * 9897 * Note that when the config is dirty, it will 9898 * be written to the MOS (i.e. the MOS will be 9899 * dirtied) every time we call spa_sync_config_object() 9900 * in this txg. Therefore we can't call this after 9901 * dsl_pool_sync() every pass, because it would 9902 * prevent us from converging, since we'd dirty 9903 * the MOS every pass. 9904 * 9905 * Sync tasks can only be processed in pass 1, so 9906 * there's no need to do this in later passes. 9907 */ 9908 spa_sync_config_object(spa, tx); 9909 } 9910 9911 /* 9912 * Note: We need to check if the MOS is dirty because we could 9913 * have marked the MOS dirty without updating the uberblock 9914 * (e.g. if we have sync tasks but no dirty user data). We need 9915 * to check the uberblock's rootbp because it is updated if we 9916 * have synced out dirty data (though in this case the MOS will 9917 * most likely also be dirty due to second order effects, we 9918 * don't want to rely on that here). 9919 */ 9920 if (pass == 1 && 9921 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg && 9922 !dmu_objset_is_dirty(mos, txg)) { 9923 /* 9924 * Nothing changed on the first pass, therefore this 9925 * TXG is a no-op. Avoid syncing deferred frees, so 9926 * that we can keep this TXG as a no-op. 9927 */ 9928 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9929 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9930 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 9931 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 9932 break; 9933 } 9934 9935 spa_sync_deferred_frees(spa, tx); 9936 } while (dmu_objset_is_dirty(mos, txg)); 9937 } 9938 9939 /* 9940 * Rewrite the vdev configuration (which includes the uberblock) to 9941 * commit the transaction group. 9942 * 9943 * If there are no dirty vdevs, we sync the uberblock to a few random 9944 * top-level vdevs that are known to be visible in the config cache 9945 * (see spa_vdev_add() for a complete description). If there *are* dirty 9946 * vdevs, sync the uberblock to all vdevs. 9947 */ 9948 static void 9949 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 9950 { 9951 vdev_t *rvd = spa->spa_root_vdev; 9952 uint64_t txg = tx->tx_txg; 9953 9954 for (;;) { 9955 int error = 0; 9956 9957 /* 9958 * We hold SCL_STATE to prevent vdev open/close/etc. 9959 * while we're attempting to write the vdev labels. 9960 */ 9961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9962 9963 if (list_is_empty(&spa->spa_config_dirty_list)) { 9964 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 9965 int svdcount = 0; 9966 int children = rvd->vdev_children; 9967 int c0 = random_in_range(children); 9968 9969 for (int c = 0; c < children; c++) { 9970 vdev_t *vd = 9971 rvd->vdev_child[(c0 + c) % children]; 9972 9973 /* Stop when revisiting the first vdev */ 9974 if (c > 0 && svd[0] == vd) 9975 break; 9976 9977 if (vd->vdev_ms_array == 0 || 9978 vd->vdev_islog || 9979 !vdev_is_concrete(vd)) 9980 continue; 9981 9982 svd[svdcount++] = vd; 9983 if (svdcount == SPA_SYNC_MIN_VDEVS) 9984 break; 9985 } 9986 error = vdev_config_sync(svd, svdcount, txg); 9987 } else { 9988 error = vdev_config_sync(rvd->vdev_child, 9989 rvd->vdev_children, txg); 9990 } 9991 9992 if (error == 0) 9993 spa->spa_last_synced_guid = rvd->vdev_guid; 9994 9995 spa_config_exit(spa, SCL_STATE, FTAG); 9996 9997 if (error == 0) 9998 break; 9999 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 10000 zio_resume_wait(spa); 10001 } 10002 } 10003 10004 /* 10005 * Sync the specified transaction group. New blocks may be dirtied as 10006 * part of the process, so we iterate until it converges. 10007 */ 10008 void 10009 spa_sync(spa_t *spa, uint64_t txg) 10010 { 10011 vdev_t *vd = NULL; 10012 10013 VERIFY(spa_writeable(spa)); 10014 10015 /* 10016 * Wait for i/os issued in open context that need to complete 10017 * before this txg syncs. 10018 */ 10019 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 10020 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 10021 ZIO_FLAG_CANFAIL); 10022 10023 /* 10024 * Now that there can be no more cloning in this transaction group, 10025 * but we are still before issuing frees, we can process pending BRT 10026 * updates. 10027 */ 10028 brt_pending_apply(spa, txg); 10029 10030 /* 10031 * Lock out configuration changes. 10032 */ 10033 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 10034 10035 spa->spa_syncing_txg = txg; 10036 spa->spa_sync_pass = 0; 10037 10038 for (int i = 0; i < spa->spa_alloc_count; i++) { 10039 mutex_enter(&spa->spa_allocs[i].spaa_lock); 10040 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 10041 mutex_exit(&spa->spa_allocs[i].spaa_lock); 10042 } 10043 10044 /* 10045 * If there are any pending vdev state changes, convert them 10046 * into config changes that go out with this transaction group. 10047 */ 10048 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10049 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10050 /* Avoid holding the write lock unless actually necessary */ 10051 if (vd->vdev_aux == NULL) { 10052 vdev_state_clean(vd); 10053 vdev_config_dirty(vd); 10054 continue; 10055 } 10056 /* 10057 * We need the write lock here because, for aux vdevs, 10058 * calling vdev_config_dirty() modifies sav_config. 10059 * This is ugly and will become unnecessary when we 10060 * eliminate the aux vdev wart by integrating all vdevs 10061 * into the root vdev tree. 10062 */ 10063 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10064 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 10065 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10066 vdev_state_clean(vd); 10067 vdev_config_dirty(vd); 10068 } 10069 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10070 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10071 } 10072 spa_config_exit(spa, SCL_STATE, FTAG); 10073 10074 dsl_pool_t *dp = spa->spa_dsl_pool; 10075 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 10076 10077 spa->spa_sync_starttime = gethrtime(); 10078 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10079 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 10080 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 10081 NSEC_TO_TICK(spa->spa_deadman_synctime)); 10082 10083 /* 10084 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 10085 * set spa_deflate if we have no raid-z vdevs. 10086 */ 10087 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 10088 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 10089 vdev_t *rvd = spa->spa_root_vdev; 10090 10091 int i; 10092 for (i = 0; i < rvd->vdev_children; i++) { 10093 vd = rvd->vdev_child[i]; 10094 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 10095 break; 10096 } 10097 if (i == rvd->vdev_children) { 10098 spa->spa_deflate = TRUE; 10099 VERIFY0(zap_add(spa->spa_meta_objset, 10100 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 10101 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 10102 } 10103 } 10104 10105 spa_sync_adjust_vdev_max_queue_depth(spa); 10106 10107 spa_sync_condense_indirect(spa, tx); 10108 10109 spa_sync_iterate_to_convergence(spa, tx); 10110 10111 #ifdef ZFS_DEBUG 10112 if (!list_is_empty(&spa->spa_config_dirty_list)) { 10113 /* 10114 * Make sure that the number of ZAPs for all the vdevs matches 10115 * the number of ZAPs in the per-vdev ZAP list. This only gets 10116 * called if the config is dirty; otherwise there may be 10117 * outstanding AVZ operations that weren't completed in 10118 * spa_sync_config_object. 10119 */ 10120 uint64_t all_vdev_zap_entry_count; 10121 ASSERT0(zap_count(spa->spa_meta_objset, 10122 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 10123 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 10124 all_vdev_zap_entry_count); 10125 } 10126 #endif 10127 10128 if (spa->spa_vdev_removal != NULL) { 10129 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 10130 } 10131 10132 spa_sync_rewrite_vdev_config(spa, tx); 10133 dmu_tx_commit(tx); 10134 10135 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10136 spa->spa_deadman_tqid = 0; 10137 10138 /* 10139 * Clear the dirty config list. 10140 */ 10141 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 10142 vdev_config_clean(vd); 10143 10144 /* 10145 * Now that the new config has synced transactionally, 10146 * let it become visible to the config cache. 10147 */ 10148 if (spa->spa_config_syncing != NULL) { 10149 spa_config_set(spa, spa->spa_config_syncing); 10150 spa->spa_config_txg = txg; 10151 spa->spa_config_syncing = NULL; 10152 } 10153 10154 dsl_pool_sync_done(dp, txg); 10155 10156 for (int i = 0; i < spa->spa_alloc_count; i++) { 10157 mutex_enter(&spa->spa_allocs[i].spaa_lock); 10158 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree)); 10159 mutex_exit(&spa->spa_allocs[i].spaa_lock); 10160 } 10161 10162 /* 10163 * Update usable space statistics. 10164 */ 10165 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 10166 != NULL) 10167 vdev_sync_done(vd, txg); 10168 10169 metaslab_class_evict_old(spa->spa_normal_class, txg); 10170 metaslab_class_evict_old(spa->spa_log_class, txg); 10171 /* spa_embedded_log_class has only one metaslab per vdev. */ 10172 metaslab_class_evict_old(spa->spa_special_class, txg); 10173 metaslab_class_evict_old(spa->spa_dedup_class, txg); 10174 10175 spa_sync_close_syncing_log_sm(spa); 10176 10177 spa_update_dspace(spa); 10178 10179 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 10180 vdev_autotrim_kick(spa); 10181 10182 /* 10183 * It had better be the case that we didn't dirty anything 10184 * since vdev_config_sync(). 10185 */ 10186 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10187 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10188 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 10189 10190 while (zfs_pause_spa_sync) 10191 delay(1); 10192 10193 spa->spa_sync_pass = 0; 10194 10195 /* 10196 * Update the last synced uberblock here. We want to do this at 10197 * the end of spa_sync() so that consumers of spa_last_synced_txg() 10198 * will be guaranteed that all the processing associated with 10199 * that txg has been completed. 10200 */ 10201 spa->spa_ubsync = spa->spa_uberblock; 10202 spa_config_exit(spa, SCL_CONFIG, FTAG); 10203 10204 spa_handle_ignored_writes(spa); 10205 10206 /* 10207 * If any async tasks have been requested, kick them off. 10208 */ 10209 spa_async_dispatch(spa); 10210 } 10211 10212 /* 10213 * Sync all pools. We don't want to hold the namespace lock across these 10214 * operations, so we take a reference on the spa_t and drop the lock during the 10215 * sync. 10216 */ 10217 void 10218 spa_sync_allpools(void) 10219 { 10220 spa_t *spa = NULL; 10221 mutex_enter(&spa_namespace_lock); 10222 while ((spa = spa_next(spa)) != NULL) { 10223 if (spa_state(spa) != POOL_STATE_ACTIVE || 10224 !spa_writeable(spa) || spa_suspended(spa)) 10225 continue; 10226 spa_open_ref(spa, FTAG); 10227 mutex_exit(&spa_namespace_lock); 10228 txg_wait_synced(spa_get_dsl(spa), 0); 10229 mutex_enter(&spa_namespace_lock); 10230 spa_close(spa, FTAG); 10231 } 10232 mutex_exit(&spa_namespace_lock); 10233 } 10234 10235 taskq_t * 10236 spa_sync_tq_create(spa_t *spa, const char *name) 10237 { 10238 kthread_t **kthreads; 10239 10240 ASSERT(spa->spa_sync_tq == NULL); 10241 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 10242 10243 /* 10244 * - do not allow more allocators than cpus. 10245 * - there may be more cpus than allocators. 10246 * - do not allow more sync taskq threads than allocators or cpus. 10247 */ 10248 int nthreads = spa->spa_alloc_count; 10249 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 10250 nthreads, KM_SLEEP); 10251 10252 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 10253 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 10254 VERIFY(spa->spa_sync_tq != NULL); 10255 VERIFY(kthreads != NULL); 10256 10257 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10258 for (int i = 0; i < nthreads; i++, ti++) { 10259 ti->sti_thread = kthreads[i]; 10260 ti->sti_allocator = i; 10261 } 10262 10263 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 10264 return (spa->spa_sync_tq); 10265 } 10266 10267 void 10268 spa_sync_tq_destroy(spa_t *spa) 10269 { 10270 ASSERT(spa->spa_sync_tq != NULL); 10271 10272 taskq_wait(spa->spa_sync_tq); 10273 taskq_destroy(spa->spa_sync_tq); 10274 kmem_free(spa->spa_syncthreads, 10275 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 10276 spa->spa_sync_tq = NULL; 10277 } 10278 10279 uint_t 10280 spa_acq_allocator(spa_t *spa) 10281 { 10282 int i; 10283 10284 if (spa->spa_alloc_count == 1) 10285 return (0); 10286 10287 mutex_enter(&spa->spa_allocs_use->sau_lock); 10288 uint_t r = spa->spa_allocs_use->sau_rotor; 10289 do { 10290 if (++r == spa->spa_alloc_count) 10291 r = 0; 10292 } while (spa->spa_allocs_use->sau_inuse[r]); 10293 spa->spa_allocs_use->sau_inuse[r] = B_TRUE; 10294 spa->spa_allocs_use->sau_rotor = r; 10295 mutex_exit(&spa->spa_allocs_use->sau_lock); 10296 10297 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10298 for (i = 0; i < spa->spa_alloc_count; i++, ti++) { 10299 if (ti->sti_thread == curthread) { 10300 ti->sti_allocator = r; 10301 break; 10302 } 10303 } 10304 ASSERT3S(i, <, spa->spa_alloc_count); 10305 return (r); 10306 } 10307 10308 void 10309 spa_rel_allocator(spa_t *spa, uint_t allocator) 10310 { 10311 if (spa->spa_alloc_count > 1) 10312 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE; 10313 } 10314 10315 void 10316 spa_select_allocator(zio_t *zio) 10317 { 10318 zbookmark_phys_t *bm = &zio->io_bookmark; 10319 spa_t *spa = zio->io_spa; 10320 10321 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 10322 10323 /* 10324 * A gang block (for example) may have inherited its parent's 10325 * allocator, in which case there is nothing further to do here. 10326 */ 10327 if (ZIO_HAS_ALLOCATOR(zio)) 10328 return; 10329 10330 ASSERT(spa != NULL); 10331 ASSERT(bm != NULL); 10332 10333 /* 10334 * First try to use an allocator assigned to the syncthread, and set 10335 * the corresponding write issue taskq for the allocator. 10336 * Note, we must have an open pool to do this. 10337 */ 10338 if (spa->spa_sync_tq != NULL) { 10339 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10340 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 10341 if (ti->sti_thread == curthread) { 10342 zio->io_allocator = ti->sti_allocator; 10343 return; 10344 } 10345 } 10346 } 10347 10348 /* 10349 * We want to try to use as many allocators as possible to help improve 10350 * performance, but we also want logically adjacent IOs to be physically 10351 * adjacent to improve sequential read performance. We chunk each object 10352 * into 2^20 block regions, and then hash based on the objset, object, 10353 * level, and region to accomplish both of these goals. 10354 */ 10355 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 10356 bm->zb_blkid >> 20); 10357 10358 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 10359 } 10360 10361 /* 10362 * ========================================================================== 10363 * Miscellaneous routines 10364 * ========================================================================== 10365 */ 10366 10367 /* 10368 * Remove all pools in the system. 10369 */ 10370 void 10371 spa_evict_all(void) 10372 { 10373 spa_t *spa; 10374 10375 /* 10376 * Remove all cached state. All pools should be closed now, 10377 * so every spa in the AVL tree should be unreferenced. 10378 */ 10379 mutex_enter(&spa_namespace_lock); 10380 while ((spa = spa_next(NULL)) != NULL) { 10381 /* 10382 * Stop async tasks. The async thread may need to detach 10383 * a device that's been replaced, which requires grabbing 10384 * spa_namespace_lock, so we must drop it here. 10385 */ 10386 spa_open_ref(spa, FTAG); 10387 mutex_exit(&spa_namespace_lock); 10388 spa_async_suspend(spa); 10389 mutex_enter(&spa_namespace_lock); 10390 spa_close(spa, FTAG); 10391 10392 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 10393 spa_unload(spa); 10394 spa_deactivate(spa); 10395 } 10396 spa_remove(spa); 10397 } 10398 mutex_exit(&spa_namespace_lock); 10399 } 10400 10401 vdev_t * 10402 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 10403 { 10404 vdev_t *vd; 10405 int i; 10406 10407 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 10408 return (vd); 10409 10410 if (aux) { 10411 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 10412 vd = spa->spa_l2cache.sav_vdevs[i]; 10413 if (vd->vdev_guid == guid) 10414 return (vd); 10415 } 10416 10417 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10418 vd = spa->spa_spares.sav_vdevs[i]; 10419 if (vd->vdev_guid == guid) 10420 return (vd); 10421 } 10422 } 10423 10424 return (NULL); 10425 } 10426 10427 void 10428 spa_upgrade(spa_t *spa, uint64_t version) 10429 { 10430 ASSERT(spa_writeable(spa)); 10431 10432 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10433 10434 /* 10435 * This should only be called for a non-faulted pool, and since a 10436 * future version would result in an unopenable pool, this shouldn't be 10437 * possible. 10438 */ 10439 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10440 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10441 10442 spa->spa_uberblock.ub_version = version; 10443 vdev_config_dirty(spa->spa_root_vdev); 10444 10445 spa_config_exit(spa, SCL_ALL, FTAG); 10446 10447 txg_wait_synced(spa_get_dsl(spa), 0); 10448 } 10449 10450 static boolean_t 10451 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10452 { 10453 (void) spa; 10454 int i; 10455 uint64_t vdev_guid; 10456 10457 for (i = 0; i < sav->sav_count; i++) 10458 if (sav->sav_vdevs[i]->vdev_guid == guid) 10459 return (B_TRUE); 10460 10461 for (i = 0; i < sav->sav_npending; i++) { 10462 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10463 &vdev_guid) == 0 && vdev_guid == guid) 10464 return (B_TRUE); 10465 } 10466 10467 return (B_FALSE); 10468 } 10469 10470 boolean_t 10471 spa_has_l2cache(spa_t *spa, uint64_t guid) 10472 { 10473 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10474 } 10475 10476 boolean_t 10477 spa_has_spare(spa_t *spa, uint64_t guid) 10478 { 10479 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10480 } 10481 10482 /* 10483 * Check if a pool has an active shared spare device. 10484 * Note: reference count of an active spare is 2, as a spare and as a replace 10485 */ 10486 static boolean_t 10487 spa_has_active_shared_spare(spa_t *spa) 10488 { 10489 int i, refcnt; 10490 uint64_t pool; 10491 spa_aux_vdev_t *sav = &spa->spa_spares; 10492 10493 for (i = 0; i < sav->sav_count; i++) { 10494 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10495 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10496 refcnt > 2) 10497 return (B_TRUE); 10498 } 10499 10500 return (B_FALSE); 10501 } 10502 10503 uint64_t 10504 spa_total_metaslabs(spa_t *spa) 10505 { 10506 vdev_t *rvd = spa->spa_root_vdev; 10507 10508 uint64_t m = 0; 10509 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10510 vdev_t *vd = rvd->vdev_child[c]; 10511 if (!vdev_is_concrete(vd)) 10512 continue; 10513 m += vd->vdev_ms_count; 10514 } 10515 return (m); 10516 } 10517 10518 /* 10519 * Notify any waiting threads that some activity has switched from being in- 10520 * progress to not-in-progress so that the thread can wake up and determine 10521 * whether it is finished waiting. 10522 */ 10523 void 10524 spa_notify_waiters(spa_t *spa) 10525 { 10526 /* 10527 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10528 * happening between the waiting thread's check and cv_wait. 10529 */ 10530 mutex_enter(&spa->spa_activities_lock); 10531 cv_broadcast(&spa->spa_activities_cv); 10532 mutex_exit(&spa->spa_activities_lock); 10533 } 10534 10535 /* 10536 * Notify any waiting threads that the pool is exporting, and then block until 10537 * they are finished using the spa_t. 10538 */ 10539 void 10540 spa_wake_waiters(spa_t *spa) 10541 { 10542 mutex_enter(&spa->spa_activities_lock); 10543 spa->spa_waiters_cancel = B_TRUE; 10544 cv_broadcast(&spa->spa_activities_cv); 10545 while (spa->spa_waiters != 0) 10546 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10547 spa->spa_waiters_cancel = B_FALSE; 10548 mutex_exit(&spa->spa_activities_lock); 10549 } 10550 10551 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10552 static boolean_t 10553 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10554 { 10555 spa_t *spa = vd->vdev_spa; 10556 10557 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10558 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10559 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10560 activity == ZPOOL_WAIT_TRIM); 10561 10562 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10563 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10564 10565 mutex_exit(&spa->spa_activities_lock); 10566 mutex_enter(lock); 10567 mutex_enter(&spa->spa_activities_lock); 10568 10569 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10570 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10571 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10572 mutex_exit(lock); 10573 10574 if (in_progress) 10575 return (B_TRUE); 10576 10577 for (int i = 0; i < vd->vdev_children; i++) { 10578 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10579 activity)) 10580 return (B_TRUE); 10581 } 10582 10583 return (B_FALSE); 10584 } 10585 10586 /* 10587 * If use_guid is true, this checks whether the vdev specified by guid is 10588 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10589 * is being initialized/trimmed. The caller must hold the config lock and 10590 * spa_activities_lock. 10591 */ 10592 static int 10593 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10594 zpool_wait_activity_t activity, boolean_t *in_progress) 10595 { 10596 mutex_exit(&spa->spa_activities_lock); 10597 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10598 mutex_enter(&spa->spa_activities_lock); 10599 10600 vdev_t *vd; 10601 if (use_guid) { 10602 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10603 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10604 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10605 return (EINVAL); 10606 } 10607 } else { 10608 vd = spa->spa_root_vdev; 10609 } 10610 10611 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10612 10613 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10614 return (0); 10615 } 10616 10617 /* 10618 * Locking for waiting threads 10619 * --------------------------- 10620 * 10621 * Waiting threads need a way to check whether a given activity is in progress, 10622 * and then, if it is, wait for it to complete. Each activity will have some 10623 * in-memory representation of the relevant on-disk state which can be used to 10624 * determine whether or not the activity is in progress. The in-memory state and 10625 * the locking used to protect it will be different for each activity, and may 10626 * not be suitable for use with a cvar (e.g., some state is protected by the 10627 * config lock). To allow waiting threads to wait without any races, another 10628 * lock, spa_activities_lock, is used. 10629 * 10630 * When the state is checked, both the activity-specific lock (if there is one) 10631 * and spa_activities_lock are held. In some cases, the activity-specific lock 10632 * is acquired explicitly (e.g. the config lock). In others, the locking is 10633 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10634 * thread releases the activity-specific lock and, if the activity is in 10635 * progress, then cv_waits using spa_activities_lock. 10636 * 10637 * The waiting thread is woken when another thread, one completing some 10638 * activity, updates the state of the activity and then calls 10639 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10640 * needs to hold its activity-specific lock when updating the state, and this 10641 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10642 * 10643 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10644 * and because it is held when the waiting thread checks the state of the 10645 * activity, it can never be the case that the completing thread both updates 10646 * the activity state and cv_broadcasts in between the waiting thread's check 10647 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10648 * 10649 * In order to prevent deadlock, when the waiting thread does its check, in some 10650 * cases it will temporarily drop spa_activities_lock in order to acquire the 10651 * activity-specific lock. The order in which spa_activities_lock and the 10652 * activity specific lock are acquired in the waiting thread is determined by 10653 * the order in which they are acquired in the completing thread; if the 10654 * completing thread calls spa_notify_waiters with the activity-specific lock 10655 * held, then the waiting thread must also acquire the activity-specific lock 10656 * first. 10657 */ 10658 10659 static int 10660 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10661 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10662 { 10663 int error = 0; 10664 10665 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10666 10667 switch (activity) { 10668 case ZPOOL_WAIT_CKPT_DISCARD: 10669 *in_progress = 10670 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10671 zap_contains(spa_meta_objset(spa), 10672 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10673 ENOENT); 10674 break; 10675 case ZPOOL_WAIT_FREE: 10676 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10677 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10678 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10679 spa_livelist_delete_check(spa)); 10680 break; 10681 case ZPOOL_WAIT_INITIALIZE: 10682 case ZPOOL_WAIT_TRIM: 10683 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10684 activity, in_progress); 10685 break; 10686 case ZPOOL_WAIT_REPLACE: 10687 mutex_exit(&spa->spa_activities_lock); 10688 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10689 mutex_enter(&spa->spa_activities_lock); 10690 10691 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10692 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10693 break; 10694 case ZPOOL_WAIT_REMOVE: 10695 *in_progress = (spa->spa_removing_phys.sr_state == 10696 DSS_SCANNING); 10697 break; 10698 case ZPOOL_WAIT_RESILVER: 10699 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10700 if (*in_progress) 10701 break; 10702 zfs_fallthrough; 10703 case ZPOOL_WAIT_SCRUB: 10704 { 10705 boolean_t scanning, paused, is_scrub; 10706 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10707 10708 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10709 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10710 paused = dsl_scan_is_paused_scrub(scn); 10711 *in_progress = (scanning && !paused && 10712 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10713 break; 10714 } 10715 case ZPOOL_WAIT_RAIDZ_EXPAND: 10716 { 10717 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10718 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10719 break; 10720 } 10721 default: 10722 panic("unrecognized value for activity %d", activity); 10723 } 10724 10725 return (error); 10726 } 10727 10728 static int 10729 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10730 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10731 { 10732 /* 10733 * The tag is used to distinguish between instances of an activity. 10734 * 'initialize' and 'trim' are the only activities that we use this for. 10735 * The other activities can only have a single instance in progress in a 10736 * pool at one time, making the tag unnecessary. 10737 * 10738 * There can be multiple devices being replaced at once, but since they 10739 * all finish once resilvering finishes, we don't bother keeping track 10740 * of them individually, we just wait for them all to finish. 10741 */ 10742 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10743 activity != ZPOOL_WAIT_TRIM) 10744 return (EINVAL); 10745 10746 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10747 return (EINVAL); 10748 10749 spa_t *spa; 10750 int error = spa_open(pool, &spa, FTAG); 10751 if (error != 0) 10752 return (error); 10753 10754 /* 10755 * Increment the spa's waiter count so that we can call spa_close and 10756 * still ensure that the spa_t doesn't get freed before this thread is 10757 * finished with it when the pool is exported. We want to call spa_close 10758 * before we start waiting because otherwise the additional ref would 10759 * prevent the pool from being exported or destroyed throughout the 10760 * potentially long wait. 10761 */ 10762 mutex_enter(&spa->spa_activities_lock); 10763 spa->spa_waiters++; 10764 spa_close(spa, FTAG); 10765 10766 *waited = B_FALSE; 10767 for (;;) { 10768 boolean_t in_progress; 10769 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10770 &in_progress); 10771 10772 if (error || !in_progress || spa->spa_waiters_cancel) 10773 break; 10774 10775 *waited = B_TRUE; 10776 10777 if (cv_wait_sig(&spa->spa_activities_cv, 10778 &spa->spa_activities_lock) == 0) { 10779 error = EINTR; 10780 break; 10781 } 10782 } 10783 10784 spa->spa_waiters--; 10785 cv_signal(&spa->spa_waiters_cv); 10786 mutex_exit(&spa->spa_activities_lock); 10787 10788 return (error); 10789 } 10790 10791 /* 10792 * Wait for a particular instance of the specified activity to complete, where 10793 * the instance is identified by 'tag' 10794 */ 10795 int 10796 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10797 boolean_t *waited) 10798 { 10799 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10800 } 10801 10802 /* 10803 * Wait for all instances of the specified activity complete 10804 */ 10805 int 10806 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10807 { 10808 10809 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10810 } 10811 10812 sysevent_t * 10813 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10814 { 10815 sysevent_t *ev = NULL; 10816 #ifdef _KERNEL 10817 nvlist_t *resource; 10818 10819 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10820 if (resource) { 10821 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10822 ev->resource = resource; 10823 } 10824 #else 10825 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10826 #endif 10827 return (ev); 10828 } 10829 10830 void 10831 spa_event_post(sysevent_t *ev) 10832 { 10833 #ifdef _KERNEL 10834 if (ev) { 10835 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10836 kmem_free(ev, sizeof (*ev)); 10837 } 10838 #else 10839 (void) ev; 10840 #endif 10841 } 10842 10843 /* 10844 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10845 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10846 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10847 * in the userland libzpool, as we don't want consumers to misinterpret ztest 10848 * or zdb as real changes. 10849 */ 10850 void 10851 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10852 { 10853 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 10854 } 10855 10856 /* state manipulation functions */ 10857 EXPORT_SYMBOL(spa_open); 10858 EXPORT_SYMBOL(spa_open_rewind); 10859 EXPORT_SYMBOL(spa_get_stats); 10860 EXPORT_SYMBOL(spa_create); 10861 EXPORT_SYMBOL(spa_import); 10862 EXPORT_SYMBOL(spa_tryimport); 10863 EXPORT_SYMBOL(spa_destroy); 10864 EXPORT_SYMBOL(spa_export); 10865 EXPORT_SYMBOL(spa_reset); 10866 EXPORT_SYMBOL(spa_async_request); 10867 EXPORT_SYMBOL(spa_async_suspend); 10868 EXPORT_SYMBOL(spa_async_resume); 10869 EXPORT_SYMBOL(spa_inject_addref); 10870 EXPORT_SYMBOL(spa_inject_delref); 10871 EXPORT_SYMBOL(spa_scan_stat_init); 10872 EXPORT_SYMBOL(spa_scan_get_stats); 10873 10874 /* device manipulation */ 10875 EXPORT_SYMBOL(spa_vdev_add); 10876 EXPORT_SYMBOL(spa_vdev_attach); 10877 EXPORT_SYMBOL(spa_vdev_detach); 10878 EXPORT_SYMBOL(spa_vdev_setpath); 10879 EXPORT_SYMBOL(spa_vdev_setfru); 10880 EXPORT_SYMBOL(spa_vdev_split_mirror); 10881 10882 /* spare statech is global across all pools) */ 10883 EXPORT_SYMBOL(spa_spare_add); 10884 EXPORT_SYMBOL(spa_spare_remove); 10885 EXPORT_SYMBOL(spa_spare_exists); 10886 EXPORT_SYMBOL(spa_spare_activate); 10887 10888 /* L2ARC statech is global across all pools) */ 10889 EXPORT_SYMBOL(spa_l2cache_add); 10890 EXPORT_SYMBOL(spa_l2cache_remove); 10891 EXPORT_SYMBOL(spa_l2cache_exists); 10892 EXPORT_SYMBOL(spa_l2cache_activate); 10893 EXPORT_SYMBOL(spa_l2cache_drop); 10894 10895 /* scanning */ 10896 EXPORT_SYMBOL(spa_scan); 10897 EXPORT_SYMBOL(spa_scan_stop); 10898 10899 /* spa syncing */ 10900 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 10901 EXPORT_SYMBOL(spa_sync_allpools); 10902 10903 /* properties */ 10904 EXPORT_SYMBOL(spa_prop_set); 10905 EXPORT_SYMBOL(spa_prop_get); 10906 EXPORT_SYMBOL(spa_prop_clear_bootfs); 10907 10908 /* asynchronous event notification */ 10909 EXPORT_SYMBOL(spa_event_notify); 10910 10911 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 10912 "Percentage of CPUs to run a metaslab preload taskq"); 10913 10914 /* BEGIN CSTYLED */ 10915 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 10916 "log2 fraction of arc that can be used by inflight I/Os when " 10917 "verifying pool during import"); 10918 /* END CSTYLED */ 10919 10920 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 10921 "Set to traverse metadata on pool import"); 10922 10923 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 10924 "Set to traverse data on pool import"); 10925 10926 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 10927 "Print vdev tree to zfs_dbgmsg during pool import"); 10928 10929 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW, 10930 "Percentage of CPUs to run an IO worker thread"); 10931 10932 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW, 10933 "Number of threads per IO worker taskqueue"); 10934 10935 /* BEGIN CSTYLED */ 10936 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 10937 "Allow importing pool with up to this number of missing top-level " 10938 "vdevs (in read-only mode)"); 10939 /* END CSTYLED */ 10940 10941 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 10942 ZMOD_RW, "Set the livelist condense zthr to pause"); 10943 10944 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 10945 ZMOD_RW, "Set the livelist condense synctask to pause"); 10946 10947 /* BEGIN CSTYLED */ 10948 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 10949 INT, ZMOD_RW, 10950 "Whether livelist condensing was canceled in the synctask"); 10951 10952 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 10953 INT, ZMOD_RW, 10954 "Whether livelist condensing was canceled in the zthr function"); 10955 10956 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 10957 ZMOD_RW, 10958 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 10959 "was being condensed"); 10960 10961 #ifdef _KERNEL 10962 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read, 10963 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW, 10964 "Configure IO queues for read IO"); 10965 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write, 10966 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW, 10967 "Configure IO queues for write IO"); 10968 #endif 10969 /* END CSTYLED */ 10970 10971 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW, 10972 "Number of CPUs per write issue taskq"); 10973