xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_NULL,			/* don't create a taskq */
112 	ZTI_NMODES
113 } zti_modes_t;
114 
115 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
116 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
117 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
118 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
119 
120 #define	ZTI_N(n)	ZTI_P(n, 1)
121 #define	ZTI_ONE		ZTI_N(1)
122 
123 typedef struct zio_taskq_info {
124 	zti_modes_t zti_mode;
125 	uint_t zti_value;
126 	uint_t zti_count;
127 } zio_taskq_info_t;
128 
129 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
130 	"iss", "iss_h", "int", "int_h"
131 };
132 
133 /*
134  * This table defines the taskq settings for each ZFS I/O type. When
135  * initializing a pool, we use this table to create an appropriately sized
136  * taskq. Some operations are low volume and therefore have a small, static
137  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
138  * macros. Other operations process a large amount of data; the ZTI_BATCH
139  * macro causes us to create a taskq oriented for throughput. Some operations
140  * are so high frequency and short-lived that the taskq itself can become a
141  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
142  * additional degree of parallelism specified by the number of threads per-
143  * taskq and the number of taskqs; when dispatching an event in this case, the
144  * particular taskq is chosen at random.
145  *
146  * The different taskq priorities are to handle the different contexts (issue
147  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
148  * need to be handled with minimum delay.
149  */
150 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
151 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
152 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
153 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
154 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_P(12, 8),	ZTI_N(5) }, /* WRITE */
155 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
156 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
157 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
158 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
159 };
160 
161 static void spa_sync_version(void *arg, dmu_tx_t *tx);
162 static void spa_sync_props(void *arg, dmu_tx_t *tx);
163 static boolean_t spa_has_active_shared_spare(spa_t *spa);
164 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
165 static void spa_vdev_resilver_done(spa_t *spa);
166 
167 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
168 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
169 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
170 
171 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
172 
173 /*
174  * Report any spa_load_verify errors found, but do not fail spa_load.
175  * This is used by zdb to analyze non-idle pools.
176  */
177 boolean_t	spa_load_verify_dryrun = B_FALSE;
178 
179 /*
180  * This (illegal) pool name is used when temporarily importing a spa_t in order
181  * to get the vdev stats associated with the imported devices.
182  */
183 #define	TRYIMPORT_NAME	"$import"
184 
185 /*
186  * For debugging purposes: print out vdev tree during pool import.
187  */
188 int		spa_load_print_vdev_tree = B_FALSE;
189 
190 /*
191  * A non-zero value for zfs_max_missing_tvds means that we allow importing
192  * pools with missing top-level vdevs. This is strictly intended for advanced
193  * pool recovery cases since missing data is almost inevitable. Pools with
194  * missing devices can only be imported read-only for safety reasons, and their
195  * fail-mode will be automatically set to "continue".
196  *
197  * With 1 missing vdev we should be able to import the pool and mount all
198  * datasets. User data that was not modified after the missing device has been
199  * added should be recoverable. This means that snapshots created prior to the
200  * addition of that device should be completely intact.
201  *
202  * With 2 missing vdevs, some datasets may fail to mount since there are
203  * dataset statistics that are stored as regular metadata. Some data might be
204  * recoverable if those vdevs were added recently.
205  *
206  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
207  * may be missing entirely. Chances of data recovery are very low. Note that
208  * there are also risks of performing an inadvertent rewind as we might be
209  * missing all the vdevs with the latest uberblocks.
210  */
211 unsigned long	zfs_max_missing_tvds = 0;
212 
213 /*
214  * The parameters below are similar to zfs_max_missing_tvds but are only
215  * intended for a preliminary open of the pool with an untrusted config which
216  * might be incomplete or out-dated.
217  *
218  * We are more tolerant for pools opened from a cachefile since we could have
219  * an out-dated cachefile where a device removal was not registered.
220  * We could have set the limit arbitrarily high but in the case where devices
221  * are really missing we would want to return the proper error codes; we chose
222  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
223  * and we get a chance to retrieve the trusted config.
224  */
225 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
226 
227 /*
228  * In the case where config was assembled by scanning device paths (/dev/dsks
229  * by default) we are less tolerant since all the existing devices should have
230  * been detected and we want spa_load to return the right error codes.
231  */
232 uint64_t	zfs_max_missing_tvds_scan = 0;
233 
234 /*
235  * Debugging aid that pauses spa_sync() towards the end.
236  */
237 boolean_t	zfs_pause_spa_sync = B_FALSE;
238 
239 /*
240  * Variables to indicate the livelist condense zthr func should wait at certain
241  * points for the livelist to be removed - used to test condense/destroy races
242  */
243 int zfs_livelist_condense_zthr_pause = 0;
244 int zfs_livelist_condense_sync_pause = 0;
245 
246 /*
247  * Variables to track whether or not condense cancellation has been
248  * triggered in testing.
249  */
250 int zfs_livelist_condense_sync_cancel = 0;
251 int zfs_livelist_condense_zthr_cancel = 0;
252 
253 /*
254  * Variable to track whether or not extra ALLOC blkptrs were added to a
255  * livelist entry while it was being condensed (caused by the way we track
256  * remapped blkptrs in dbuf_remap_impl)
257  */
258 int zfs_livelist_condense_new_alloc = 0;
259 
260 /*
261  * ==========================================================================
262  * SPA properties routines
263  * ==========================================================================
264  */
265 
266 /*
267  * Add a (source=src, propname=propval) list to an nvlist.
268  */
269 static void
270 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
271     uint64_t intval, zprop_source_t src)
272 {
273 	const char *propname = zpool_prop_to_name(prop);
274 	nvlist_t *propval;
275 
276 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
277 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
278 
279 	if (strval != NULL)
280 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
281 	else
282 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
283 
284 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
285 	nvlist_free(propval);
286 }
287 
288 /*
289  * Get property values from the spa configuration.
290  */
291 static void
292 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
293 {
294 	vdev_t *rvd = spa->spa_root_vdev;
295 	dsl_pool_t *pool = spa->spa_dsl_pool;
296 	uint64_t size, alloc, cap, version;
297 	const zprop_source_t src = ZPROP_SRC_NONE;
298 	spa_config_dirent_t *dp;
299 	metaslab_class_t *mc = spa_normal_class(spa);
300 
301 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
302 
303 	if (rvd != NULL) {
304 		alloc = metaslab_class_get_alloc(mc);
305 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
306 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
307 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
308 
309 		size = metaslab_class_get_space(mc);
310 		size += metaslab_class_get_space(spa_special_class(spa));
311 		size += metaslab_class_get_space(spa_dedup_class(spa));
312 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
313 
314 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
315 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
316 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
317 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
318 		    size - alloc, src);
319 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
320 		    spa->spa_checkpoint_info.sci_dspace, src);
321 
322 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
323 		    metaslab_class_fragmentation(mc), src);
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
325 		    metaslab_class_expandable_space(mc), src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
327 		    (spa_mode(spa) == SPA_MODE_READ), src);
328 
329 		cap = (size == 0) ? 0 : (alloc * 100 / size);
330 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
333 		    ddt_get_pool_dedup_ratio(spa), src);
334 
335 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
336 		    rvd->vdev_state, src);
337 
338 		version = spa_version(spa);
339 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
340 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
341 			    version, ZPROP_SRC_DEFAULT);
342 		} else {
343 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
344 			    version, ZPROP_SRC_LOCAL);
345 		}
346 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
347 		    NULL, spa_load_guid(spa), src);
348 	}
349 
350 	if (pool != NULL) {
351 		/*
352 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
353 		 * when opening pools before this version freedir will be NULL.
354 		 */
355 		if (pool->dp_free_dir != NULL) {
356 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
357 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
358 			    src);
359 		} else {
360 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
361 			    NULL, 0, src);
362 		}
363 
364 		if (pool->dp_leak_dir != NULL) {
365 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
366 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
367 			    src);
368 		} else {
369 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
370 			    NULL, 0, src);
371 		}
372 	}
373 
374 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
375 
376 	if (spa->spa_comment != NULL) {
377 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
378 		    0, ZPROP_SRC_LOCAL);
379 	}
380 
381 	if (spa->spa_compatibility != NULL) {
382 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
383 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
384 	}
385 
386 	if (spa->spa_root != NULL)
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
388 		    0, ZPROP_SRC_LOCAL);
389 
390 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
391 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
392 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
393 	} else {
394 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
395 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
396 	}
397 
398 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
399 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
400 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
401 	} else {
402 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
403 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
404 	}
405 
406 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
407 		if (dp->scd_path == NULL) {
408 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
409 			    "none", 0, ZPROP_SRC_LOCAL);
410 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
411 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
412 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
413 		}
414 	}
415 }
416 
417 /*
418  * Get zpool property values.
419  */
420 int
421 spa_prop_get(spa_t *spa, nvlist_t **nvp)
422 {
423 	objset_t *mos = spa->spa_meta_objset;
424 	zap_cursor_t zc;
425 	zap_attribute_t za;
426 	dsl_pool_t *dp;
427 	int err;
428 
429 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
430 	if (err)
431 		return (err);
432 
433 	dp = spa_get_dsl(spa);
434 	dsl_pool_config_enter(dp, FTAG);
435 	mutex_enter(&spa->spa_props_lock);
436 
437 	/*
438 	 * Get properties from the spa config.
439 	 */
440 	spa_prop_get_config(spa, nvp);
441 
442 	/* If no pool property object, no more prop to get. */
443 	if (mos == NULL || spa->spa_pool_props_object == 0)
444 		goto out;
445 
446 	/*
447 	 * Get properties from the MOS pool property object.
448 	 */
449 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
450 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
451 	    zap_cursor_advance(&zc)) {
452 		uint64_t intval = 0;
453 		char *strval = NULL;
454 		zprop_source_t src = ZPROP_SRC_DEFAULT;
455 		zpool_prop_t prop;
456 
457 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
458 			continue;
459 
460 		switch (za.za_integer_length) {
461 		case 8:
462 			/* integer property */
463 			if (za.za_first_integer !=
464 			    zpool_prop_default_numeric(prop))
465 				src = ZPROP_SRC_LOCAL;
466 
467 			if (prop == ZPOOL_PROP_BOOTFS) {
468 				dsl_dataset_t *ds = NULL;
469 
470 				err = dsl_dataset_hold_obj(dp,
471 				    za.za_first_integer, FTAG, &ds);
472 				if (err != 0)
473 					break;
474 
475 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
476 				    KM_SLEEP);
477 				dsl_dataset_name(ds, strval);
478 				dsl_dataset_rele(ds, FTAG);
479 			} else {
480 				strval = NULL;
481 				intval = za.za_first_integer;
482 			}
483 
484 			spa_prop_add_list(*nvp, prop, strval, intval, src);
485 
486 			if (strval != NULL)
487 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
488 
489 			break;
490 
491 		case 1:
492 			/* string property */
493 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
494 			err = zap_lookup(mos, spa->spa_pool_props_object,
495 			    za.za_name, 1, za.za_num_integers, strval);
496 			if (err) {
497 				kmem_free(strval, za.za_num_integers);
498 				break;
499 			}
500 			spa_prop_add_list(*nvp, prop, strval, 0, src);
501 			kmem_free(strval, za.za_num_integers);
502 			break;
503 
504 		default:
505 			break;
506 		}
507 	}
508 	zap_cursor_fini(&zc);
509 out:
510 	mutex_exit(&spa->spa_props_lock);
511 	dsl_pool_config_exit(dp, FTAG);
512 	if (err && err != ENOENT) {
513 		nvlist_free(*nvp);
514 		*nvp = NULL;
515 		return (err);
516 	}
517 
518 	return (0);
519 }
520 
521 /*
522  * Validate the given pool properties nvlist and modify the list
523  * for the property values to be set.
524  */
525 static int
526 spa_prop_validate(spa_t *spa, nvlist_t *props)
527 {
528 	nvpair_t *elem;
529 	int error = 0, reset_bootfs = 0;
530 	uint64_t objnum = 0;
531 	boolean_t has_feature = B_FALSE;
532 
533 	elem = NULL;
534 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
535 		uint64_t intval;
536 		char *strval, *slash, *check, *fname;
537 		const char *propname = nvpair_name(elem);
538 		zpool_prop_t prop = zpool_name_to_prop(propname);
539 
540 		switch (prop) {
541 		case ZPOOL_PROP_INVAL:
542 			if (!zpool_prop_feature(propname)) {
543 				error = SET_ERROR(EINVAL);
544 				break;
545 			}
546 
547 			/*
548 			 * Sanitize the input.
549 			 */
550 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
551 				error = SET_ERROR(EINVAL);
552 				break;
553 			}
554 
555 			if (nvpair_value_uint64(elem, &intval) != 0) {
556 				error = SET_ERROR(EINVAL);
557 				break;
558 			}
559 
560 			if (intval != 0) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			fname = strchr(propname, '@') + 1;
566 			if (zfeature_lookup_name(fname, NULL) != 0) {
567 				error = SET_ERROR(EINVAL);
568 				break;
569 			}
570 
571 			has_feature = B_TRUE;
572 			break;
573 
574 		case ZPOOL_PROP_VERSION:
575 			error = nvpair_value_uint64(elem, &intval);
576 			if (!error &&
577 			    (intval < spa_version(spa) ||
578 			    intval > SPA_VERSION_BEFORE_FEATURES ||
579 			    has_feature))
580 				error = SET_ERROR(EINVAL);
581 			break;
582 
583 		case ZPOOL_PROP_DELEGATION:
584 		case ZPOOL_PROP_AUTOREPLACE:
585 		case ZPOOL_PROP_LISTSNAPS:
586 		case ZPOOL_PROP_AUTOEXPAND:
587 		case ZPOOL_PROP_AUTOTRIM:
588 			error = nvpair_value_uint64(elem, &intval);
589 			if (!error && intval > 1)
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_MULTIHOST:
594 			error = nvpair_value_uint64(elem, &intval);
595 			if (!error && intval > 1)
596 				error = SET_ERROR(EINVAL);
597 
598 			if (!error) {
599 				uint32_t hostid = zone_get_hostid(NULL);
600 				if (hostid)
601 					spa->spa_hostid = hostid;
602 				else
603 					error = SET_ERROR(ENOTSUP);
604 			}
605 
606 			break;
607 
608 		case ZPOOL_PROP_BOOTFS:
609 			/*
610 			 * If the pool version is less than SPA_VERSION_BOOTFS,
611 			 * or the pool is still being created (version == 0),
612 			 * the bootfs property cannot be set.
613 			 */
614 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
615 				error = SET_ERROR(ENOTSUP);
616 				break;
617 			}
618 
619 			/*
620 			 * Make sure the vdev config is bootable
621 			 */
622 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
623 				error = SET_ERROR(ENOTSUP);
624 				break;
625 			}
626 
627 			reset_bootfs = 1;
628 
629 			error = nvpair_value_string(elem, &strval);
630 
631 			if (!error) {
632 				objset_t *os;
633 
634 				if (strval == NULL || strval[0] == '\0') {
635 					objnum = zpool_prop_default_numeric(
636 					    ZPOOL_PROP_BOOTFS);
637 					break;
638 				}
639 
640 				error = dmu_objset_hold(strval, FTAG, &os);
641 				if (error != 0)
642 					break;
643 
644 				/* Must be ZPL. */
645 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
646 					error = SET_ERROR(ENOTSUP);
647 				} else {
648 					objnum = dmu_objset_id(os);
649 				}
650 				dmu_objset_rele(os, FTAG);
651 			}
652 			break;
653 
654 		case ZPOOL_PROP_FAILUREMODE:
655 			error = nvpair_value_uint64(elem, &intval);
656 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
657 				error = SET_ERROR(EINVAL);
658 
659 			/*
660 			 * This is a special case which only occurs when
661 			 * the pool has completely failed. This allows
662 			 * the user to change the in-core failmode property
663 			 * without syncing it out to disk (I/Os might
664 			 * currently be blocked). We do this by returning
665 			 * EIO to the caller (spa_prop_set) to trick it
666 			 * into thinking we encountered a property validation
667 			 * error.
668 			 */
669 			if (!error && spa_suspended(spa)) {
670 				spa->spa_failmode = intval;
671 				error = SET_ERROR(EIO);
672 			}
673 			break;
674 
675 		case ZPOOL_PROP_CACHEFILE:
676 			if ((error = nvpair_value_string(elem, &strval)) != 0)
677 				break;
678 
679 			if (strval[0] == '\0')
680 				break;
681 
682 			if (strcmp(strval, "none") == 0)
683 				break;
684 
685 			if (strval[0] != '/') {
686 				error = SET_ERROR(EINVAL);
687 				break;
688 			}
689 
690 			slash = strrchr(strval, '/');
691 			ASSERT(slash != NULL);
692 
693 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
694 			    strcmp(slash, "/..") == 0)
695 				error = SET_ERROR(EINVAL);
696 			break;
697 
698 		case ZPOOL_PROP_COMMENT:
699 			if ((error = nvpair_value_string(elem, &strval)) != 0)
700 				break;
701 			for (check = strval; *check != '\0'; check++) {
702 				if (!isprint(*check)) {
703 					error = SET_ERROR(EINVAL);
704 					break;
705 				}
706 			}
707 			if (strlen(strval) > ZPROP_MAX_COMMENT)
708 				error = SET_ERROR(E2BIG);
709 			break;
710 
711 		default:
712 			break;
713 		}
714 
715 		if (error)
716 			break;
717 	}
718 
719 	(void) nvlist_remove_all(props,
720 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
721 
722 	if (!error && reset_bootfs) {
723 		error = nvlist_remove(props,
724 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
725 
726 		if (!error) {
727 			error = nvlist_add_uint64(props,
728 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
729 		}
730 	}
731 
732 	return (error);
733 }
734 
735 void
736 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
737 {
738 	char *cachefile;
739 	spa_config_dirent_t *dp;
740 
741 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
742 	    &cachefile) != 0)
743 		return;
744 
745 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
746 	    KM_SLEEP);
747 
748 	if (cachefile[0] == '\0')
749 		dp->scd_path = spa_strdup(spa_config_path);
750 	else if (strcmp(cachefile, "none") == 0)
751 		dp->scd_path = NULL;
752 	else
753 		dp->scd_path = spa_strdup(cachefile);
754 
755 	list_insert_head(&spa->spa_config_list, dp);
756 	if (need_sync)
757 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
758 }
759 
760 int
761 spa_prop_set(spa_t *spa, nvlist_t *nvp)
762 {
763 	int error;
764 	nvpair_t *elem = NULL;
765 	boolean_t need_sync = B_FALSE;
766 
767 	if ((error = spa_prop_validate(spa, nvp)) != 0)
768 		return (error);
769 
770 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
771 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
772 
773 		if (prop == ZPOOL_PROP_CACHEFILE ||
774 		    prop == ZPOOL_PROP_ALTROOT ||
775 		    prop == ZPOOL_PROP_READONLY)
776 			continue;
777 
778 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
779 			uint64_t ver;
780 
781 			if (prop == ZPOOL_PROP_VERSION) {
782 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
783 			} else {
784 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
785 				ver = SPA_VERSION_FEATURES;
786 				need_sync = B_TRUE;
787 			}
788 
789 			/* Save time if the version is already set. */
790 			if (ver == spa_version(spa))
791 				continue;
792 
793 			/*
794 			 * In addition to the pool directory object, we might
795 			 * create the pool properties object, the features for
796 			 * read object, the features for write object, or the
797 			 * feature descriptions object.
798 			 */
799 			error = dsl_sync_task(spa->spa_name, NULL,
800 			    spa_sync_version, &ver,
801 			    6, ZFS_SPACE_CHECK_RESERVED);
802 			if (error)
803 				return (error);
804 			continue;
805 		}
806 
807 		need_sync = B_TRUE;
808 		break;
809 	}
810 
811 	if (need_sync) {
812 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
813 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
814 	}
815 
816 	return (0);
817 }
818 
819 /*
820  * If the bootfs property value is dsobj, clear it.
821  */
822 void
823 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
824 {
825 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
826 		VERIFY(zap_remove(spa->spa_meta_objset,
827 		    spa->spa_pool_props_object,
828 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
829 		spa->spa_bootfs = 0;
830 	}
831 }
832 
833 /*ARGSUSED*/
834 static int
835 spa_change_guid_check(void *arg, dmu_tx_t *tx)
836 {
837 	uint64_t *newguid __maybe_unused = arg;
838 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
839 	vdev_t *rvd = spa->spa_root_vdev;
840 	uint64_t vdev_state;
841 
842 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
843 		int error = (spa_has_checkpoint(spa)) ?
844 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
845 		return (SET_ERROR(error));
846 	}
847 
848 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
849 	vdev_state = rvd->vdev_state;
850 	spa_config_exit(spa, SCL_STATE, FTAG);
851 
852 	if (vdev_state != VDEV_STATE_HEALTHY)
853 		return (SET_ERROR(ENXIO));
854 
855 	ASSERT3U(spa_guid(spa), !=, *newguid);
856 
857 	return (0);
858 }
859 
860 static void
861 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
862 {
863 	uint64_t *newguid = arg;
864 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
865 	uint64_t oldguid;
866 	vdev_t *rvd = spa->spa_root_vdev;
867 
868 	oldguid = spa_guid(spa);
869 
870 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
871 	rvd->vdev_guid = *newguid;
872 	rvd->vdev_guid_sum += (*newguid - oldguid);
873 	vdev_config_dirty(rvd);
874 	spa_config_exit(spa, SCL_STATE, FTAG);
875 
876 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
877 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
878 }
879 
880 /*
881  * Change the GUID for the pool.  This is done so that we can later
882  * re-import a pool built from a clone of our own vdevs.  We will modify
883  * the root vdev's guid, our own pool guid, and then mark all of our
884  * vdevs dirty.  Note that we must make sure that all our vdevs are
885  * online when we do this, or else any vdevs that weren't present
886  * would be orphaned from our pool.  We are also going to issue a
887  * sysevent to update any watchers.
888  */
889 int
890 spa_change_guid(spa_t *spa)
891 {
892 	int error;
893 	uint64_t guid;
894 
895 	mutex_enter(&spa->spa_vdev_top_lock);
896 	mutex_enter(&spa_namespace_lock);
897 	guid = spa_generate_guid(NULL);
898 
899 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
900 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
901 
902 	if (error == 0) {
903 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
904 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
905 	}
906 
907 	mutex_exit(&spa_namespace_lock);
908 	mutex_exit(&spa->spa_vdev_top_lock);
909 
910 	return (error);
911 }
912 
913 /*
914  * ==========================================================================
915  * SPA state manipulation (open/create/destroy/import/export)
916  * ==========================================================================
917  */
918 
919 static int
920 spa_error_entry_compare(const void *a, const void *b)
921 {
922 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
923 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
924 	int ret;
925 
926 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
927 	    sizeof (zbookmark_phys_t));
928 
929 	return (TREE_ISIGN(ret));
930 }
931 
932 /*
933  * Utility function which retrieves copies of the current logs and
934  * re-initializes them in the process.
935  */
936 void
937 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
938 {
939 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
940 
941 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
942 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
943 
944 	avl_create(&spa->spa_errlist_scrub,
945 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
946 	    offsetof(spa_error_entry_t, se_avl));
947 	avl_create(&spa->spa_errlist_last,
948 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
949 	    offsetof(spa_error_entry_t, se_avl));
950 }
951 
952 static void
953 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
954 {
955 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
956 	enum zti_modes mode = ztip->zti_mode;
957 	uint_t value = ztip->zti_value;
958 	uint_t count = ztip->zti_count;
959 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
960 	uint_t flags = 0;
961 	boolean_t batch = B_FALSE;
962 
963 	if (mode == ZTI_MODE_NULL) {
964 		tqs->stqs_count = 0;
965 		tqs->stqs_taskq = NULL;
966 		return;
967 	}
968 
969 	ASSERT3U(count, >, 0);
970 
971 	tqs->stqs_count = count;
972 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
973 
974 	switch (mode) {
975 	case ZTI_MODE_FIXED:
976 		ASSERT3U(value, >=, 1);
977 		value = MAX(value, 1);
978 		flags |= TASKQ_DYNAMIC;
979 		break;
980 
981 	case ZTI_MODE_BATCH:
982 		batch = B_TRUE;
983 		flags |= TASKQ_THREADS_CPU_PCT;
984 		value = MIN(zio_taskq_batch_pct, 100);
985 		break;
986 
987 	default:
988 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
989 		    "spa_activate()",
990 		    zio_type_name[t], zio_taskq_types[q], mode, value);
991 		break;
992 	}
993 
994 	for (uint_t i = 0; i < count; i++) {
995 		taskq_t *tq;
996 		char name[32];
997 
998 		(void) snprintf(name, sizeof (name), "%s_%s",
999 		    zio_type_name[t], zio_taskq_types[q]);
1000 
1001 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1002 			if (batch)
1003 				flags |= TASKQ_DC_BATCH;
1004 
1005 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1006 			    spa->spa_proc, zio_taskq_basedc, flags);
1007 		} else {
1008 			pri_t pri = maxclsyspri;
1009 			/*
1010 			 * The write issue taskq can be extremely CPU
1011 			 * intensive.  Run it at slightly less important
1012 			 * priority than the other taskqs.
1013 			 *
1014 			 * Under Linux and FreeBSD this means incrementing
1015 			 * the priority value as opposed to platforms like
1016 			 * illumos where it should be decremented.
1017 			 *
1018 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1019 			 * are equal then a difference between them is
1020 			 * insignificant.
1021 			 */
1022 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1023 #if defined(__linux__)
1024 				pri++;
1025 #elif defined(__FreeBSD__)
1026 				pri += 4;
1027 #else
1028 #error "unknown OS"
1029 #endif
1030 			}
1031 			tq = taskq_create_proc(name, value, pri, 50,
1032 			    INT_MAX, spa->spa_proc, flags);
1033 		}
1034 
1035 		tqs->stqs_taskq[i] = tq;
1036 	}
1037 }
1038 
1039 static void
1040 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1041 {
1042 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1043 
1044 	if (tqs->stqs_taskq == NULL) {
1045 		ASSERT3U(tqs->stqs_count, ==, 0);
1046 		return;
1047 	}
1048 
1049 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1050 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1051 		taskq_destroy(tqs->stqs_taskq[i]);
1052 	}
1053 
1054 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1055 	tqs->stqs_taskq = NULL;
1056 }
1057 
1058 /*
1059  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1060  * Note that a type may have multiple discrete taskqs to avoid lock contention
1061  * on the taskq itself. In that case we choose which taskq at random by using
1062  * the low bits of gethrtime().
1063  */
1064 void
1065 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1066     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1067 {
1068 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1069 	taskq_t *tq;
1070 
1071 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1072 	ASSERT3U(tqs->stqs_count, !=, 0);
1073 
1074 	if (tqs->stqs_count == 1) {
1075 		tq = tqs->stqs_taskq[0];
1076 	} else {
1077 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1078 	}
1079 
1080 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1081 }
1082 
1083 /*
1084  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1085  */
1086 void
1087 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1088     task_func_t *func, void *arg, uint_t flags)
1089 {
1090 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1091 	taskq_t *tq;
1092 	taskqid_t id;
1093 
1094 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1095 	ASSERT3U(tqs->stqs_count, !=, 0);
1096 
1097 	if (tqs->stqs_count == 1) {
1098 		tq = tqs->stqs_taskq[0];
1099 	} else {
1100 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1101 	}
1102 
1103 	id = taskq_dispatch(tq, func, arg, flags);
1104 	if (id)
1105 		taskq_wait_id(tq, id);
1106 }
1107 
1108 static void
1109 spa_create_zio_taskqs(spa_t *spa)
1110 {
1111 	for (int t = 0; t < ZIO_TYPES; t++) {
1112 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1113 			spa_taskqs_init(spa, t, q);
1114 		}
1115 	}
1116 }
1117 
1118 /*
1119  * Disabled until spa_thread() can be adapted for Linux.
1120  */
1121 #undef HAVE_SPA_THREAD
1122 
1123 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1124 static void
1125 spa_thread(void *arg)
1126 {
1127 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1128 	callb_cpr_t cprinfo;
1129 
1130 	spa_t *spa = arg;
1131 	user_t *pu = PTOU(curproc);
1132 
1133 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1134 	    spa->spa_name);
1135 
1136 	ASSERT(curproc != &p0);
1137 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1138 	    "zpool-%s", spa->spa_name);
1139 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1140 
1141 	/* bind this thread to the requested psrset */
1142 	if (zio_taskq_psrset_bind != PS_NONE) {
1143 		pool_lock();
1144 		mutex_enter(&cpu_lock);
1145 		mutex_enter(&pidlock);
1146 		mutex_enter(&curproc->p_lock);
1147 
1148 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1149 		    0, NULL, NULL) == 0)  {
1150 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1151 		} else {
1152 			cmn_err(CE_WARN,
1153 			    "Couldn't bind process for zfs pool \"%s\" to "
1154 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1155 		}
1156 
1157 		mutex_exit(&curproc->p_lock);
1158 		mutex_exit(&pidlock);
1159 		mutex_exit(&cpu_lock);
1160 		pool_unlock();
1161 	}
1162 
1163 	if (zio_taskq_sysdc) {
1164 		sysdc_thread_enter(curthread, 100, 0);
1165 	}
1166 
1167 	spa->spa_proc = curproc;
1168 	spa->spa_did = curthread->t_did;
1169 
1170 	spa_create_zio_taskqs(spa);
1171 
1172 	mutex_enter(&spa->spa_proc_lock);
1173 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1174 
1175 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1176 	cv_broadcast(&spa->spa_proc_cv);
1177 
1178 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1179 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1180 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1181 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1182 
1183 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1184 	spa->spa_proc_state = SPA_PROC_GONE;
1185 	spa->spa_proc = &p0;
1186 	cv_broadcast(&spa->spa_proc_cv);
1187 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1188 
1189 	mutex_enter(&curproc->p_lock);
1190 	lwp_exit();
1191 }
1192 #endif
1193 
1194 /*
1195  * Activate an uninitialized pool.
1196  */
1197 static void
1198 spa_activate(spa_t *spa, spa_mode_t mode)
1199 {
1200 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1201 
1202 	spa->spa_state = POOL_STATE_ACTIVE;
1203 	spa->spa_mode = mode;
1204 
1205 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1206 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1207 	spa->spa_embedded_log_class =
1208 	    metaslab_class_create(spa, zfs_metaslab_ops);
1209 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1210 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1211 
1212 	/* Try to create a covering process */
1213 	mutex_enter(&spa->spa_proc_lock);
1214 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1215 	ASSERT(spa->spa_proc == &p0);
1216 	spa->spa_did = 0;
1217 
1218 #ifdef HAVE_SPA_THREAD
1219 	/* Only create a process if we're going to be around a while. */
1220 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1221 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1222 		    NULL, 0) == 0) {
1223 			spa->spa_proc_state = SPA_PROC_CREATED;
1224 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1225 				cv_wait(&spa->spa_proc_cv,
1226 				    &spa->spa_proc_lock);
1227 			}
1228 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1229 			ASSERT(spa->spa_proc != &p0);
1230 			ASSERT(spa->spa_did != 0);
1231 		} else {
1232 #ifdef _KERNEL
1233 			cmn_err(CE_WARN,
1234 			    "Couldn't create process for zfs pool \"%s\"\n",
1235 			    spa->spa_name);
1236 #endif
1237 		}
1238 	}
1239 #endif /* HAVE_SPA_THREAD */
1240 	mutex_exit(&spa->spa_proc_lock);
1241 
1242 	/* If we didn't create a process, we need to create our taskqs. */
1243 	if (spa->spa_proc == &p0) {
1244 		spa_create_zio_taskqs(spa);
1245 	}
1246 
1247 	for (size_t i = 0; i < TXG_SIZE; i++) {
1248 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1249 		    ZIO_FLAG_CANFAIL);
1250 	}
1251 
1252 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1253 	    offsetof(vdev_t, vdev_config_dirty_node));
1254 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1255 	    offsetof(objset_t, os_evicting_node));
1256 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1257 	    offsetof(vdev_t, vdev_state_dirty_node));
1258 
1259 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1260 	    offsetof(struct vdev, vdev_txg_node));
1261 
1262 	avl_create(&spa->spa_errlist_scrub,
1263 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1264 	    offsetof(spa_error_entry_t, se_avl));
1265 	avl_create(&spa->spa_errlist_last,
1266 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1267 	    offsetof(spa_error_entry_t, se_avl));
1268 
1269 	spa_keystore_init(&spa->spa_keystore);
1270 
1271 	/*
1272 	 * This taskq is used to perform zvol-minor-related tasks
1273 	 * asynchronously. This has several advantages, including easy
1274 	 * resolution of various deadlocks.
1275 	 *
1276 	 * The taskq must be single threaded to ensure tasks are always
1277 	 * processed in the order in which they were dispatched.
1278 	 *
1279 	 * A taskq per pool allows one to keep the pools independent.
1280 	 * This way if one pool is suspended, it will not impact another.
1281 	 *
1282 	 * The preferred location to dispatch a zvol minor task is a sync
1283 	 * task. In this context, there is easy access to the spa_t and minimal
1284 	 * error handling is required because the sync task must succeed.
1285 	 */
1286 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1287 	    1, INT_MAX, 0);
1288 
1289 	/*
1290 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1291 	 * pool traverse code from monopolizing the global (and limited)
1292 	 * system_taskq by inappropriately scheduling long running tasks on it.
1293 	 */
1294 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1295 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1296 
1297 	/*
1298 	 * The taskq to upgrade datasets in this pool. Currently used by
1299 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1300 	 */
1301 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1302 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1303 }
1304 
1305 /*
1306  * Opposite of spa_activate().
1307  */
1308 static void
1309 spa_deactivate(spa_t *spa)
1310 {
1311 	ASSERT(spa->spa_sync_on == B_FALSE);
1312 	ASSERT(spa->spa_dsl_pool == NULL);
1313 	ASSERT(spa->spa_root_vdev == NULL);
1314 	ASSERT(spa->spa_async_zio_root == NULL);
1315 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1316 
1317 	spa_evicting_os_wait(spa);
1318 
1319 	if (spa->spa_zvol_taskq) {
1320 		taskq_destroy(spa->spa_zvol_taskq);
1321 		spa->spa_zvol_taskq = NULL;
1322 	}
1323 
1324 	if (spa->spa_prefetch_taskq) {
1325 		taskq_destroy(spa->spa_prefetch_taskq);
1326 		spa->spa_prefetch_taskq = NULL;
1327 	}
1328 
1329 	if (spa->spa_upgrade_taskq) {
1330 		taskq_destroy(spa->spa_upgrade_taskq);
1331 		spa->spa_upgrade_taskq = NULL;
1332 	}
1333 
1334 	txg_list_destroy(&spa->spa_vdev_txg_list);
1335 
1336 	list_destroy(&spa->spa_config_dirty_list);
1337 	list_destroy(&spa->spa_evicting_os_list);
1338 	list_destroy(&spa->spa_state_dirty_list);
1339 
1340 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1341 
1342 	for (int t = 0; t < ZIO_TYPES; t++) {
1343 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1344 			spa_taskqs_fini(spa, t, q);
1345 		}
1346 	}
1347 
1348 	for (size_t i = 0; i < TXG_SIZE; i++) {
1349 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1350 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1351 		spa->spa_txg_zio[i] = NULL;
1352 	}
1353 
1354 	metaslab_class_destroy(spa->spa_normal_class);
1355 	spa->spa_normal_class = NULL;
1356 
1357 	metaslab_class_destroy(spa->spa_log_class);
1358 	spa->spa_log_class = NULL;
1359 
1360 	metaslab_class_destroy(spa->spa_embedded_log_class);
1361 	spa->spa_embedded_log_class = NULL;
1362 
1363 	metaslab_class_destroy(spa->spa_special_class);
1364 	spa->spa_special_class = NULL;
1365 
1366 	metaslab_class_destroy(spa->spa_dedup_class);
1367 	spa->spa_dedup_class = NULL;
1368 
1369 	/*
1370 	 * If this was part of an import or the open otherwise failed, we may
1371 	 * still have errors left in the queues.  Empty them just in case.
1372 	 */
1373 	spa_errlog_drain(spa);
1374 	avl_destroy(&spa->spa_errlist_scrub);
1375 	avl_destroy(&spa->spa_errlist_last);
1376 
1377 	spa_keystore_fini(&spa->spa_keystore);
1378 
1379 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1380 
1381 	mutex_enter(&spa->spa_proc_lock);
1382 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1383 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1384 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1385 		cv_broadcast(&spa->spa_proc_cv);
1386 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1387 			ASSERT(spa->spa_proc != &p0);
1388 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1389 		}
1390 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1391 		spa->spa_proc_state = SPA_PROC_NONE;
1392 	}
1393 	ASSERT(spa->spa_proc == &p0);
1394 	mutex_exit(&spa->spa_proc_lock);
1395 
1396 	/*
1397 	 * We want to make sure spa_thread() has actually exited the ZFS
1398 	 * module, so that the module can't be unloaded out from underneath
1399 	 * it.
1400 	 */
1401 	if (spa->spa_did != 0) {
1402 		thread_join(spa->spa_did);
1403 		spa->spa_did = 0;
1404 	}
1405 }
1406 
1407 /*
1408  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1409  * will create all the necessary vdevs in the appropriate layout, with each vdev
1410  * in the CLOSED state.  This will prep the pool before open/creation/import.
1411  * All vdev validation is done by the vdev_alloc() routine.
1412  */
1413 int
1414 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1415     uint_t id, int atype)
1416 {
1417 	nvlist_t **child;
1418 	uint_t children;
1419 	int error;
1420 
1421 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1422 		return (error);
1423 
1424 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1425 		return (0);
1426 
1427 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1428 	    &child, &children);
1429 
1430 	if (error == ENOENT)
1431 		return (0);
1432 
1433 	if (error) {
1434 		vdev_free(*vdp);
1435 		*vdp = NULL;
1436 		return (SET_ERROR(EINVAL));
1437 	}
1438 
1439 	for (int c = 0; c < children; c++) {
1440 		vdev_t *vd;
1441 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1442 		    atype)) != 0) {
1443 			vdev_free(*vdp);
1444 			*vdp = NULL;
1445 			return (error);
1446 		}
1447 	}
1448 
1449 	ASSERT(*vdp != NULL);
1450 
1451 	return (0);
1452 }
1453 
1454 static boolean_t
1455 spa_should_flush_logs_on_unload(spa_t *spa)
1456 {
1457 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1458 		return (B_FALSE);
1459 
1460 	if (!spa_writeable(spa))
1461 		return (B_FALSE);
1462 
1463 	if (!spa->spa_sync_on)
1464 		return (B_FALSE);
1465 
1466 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1467 		return (B_FALSE);
1468 
1469 	if (zfs_keep_log_spacemaps_at_export)
1470 		return (B_FALSE);
1471 
1472 	return (B_TRUE);
1473 }
1474 
1475 /*
1476  * Opens a transaction that will set the flag that will instruct
1477  * spa_sync to attempt to flush all the metaslabs for that txg.
1478  */
1479 static void
1480 spa_unload_log_sm_flush_all(spa_t *spa)
1481 {
1482 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1483 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1484 
1485 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1486 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1487 
1488 	dmu_tx_commit(tx);
1489 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1490 }
1491 
1492 static void
1493 spa_unload_log_sm_metadata(spa_t *spa)
1494 {
1495 	void *cookie = NULL;
1496 	spa_log_sm_t *sls;
1497 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1498 	    &cookie)) != NULL) {
1499 		VERIFY0(sls->sls_mscount);
1500 		kmem_free(sls, sizeof (spa_log_sm_t));
1501 	}
1502 
1503 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1504 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1505 		VERIFY0(e->lse_mscount);
1506 		list_remove(&spa->spa_log_summary, e);
1507 		kmem_free(e, sizeof (log_summary_entry_t));
1508 	}
1509 
1510 	spa->spa_unflushed_stats.sus_nblocks = 0;
1511 	spa->spa_unflushed_stats.sus_memused = 0;
1512 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1513 }
1514 
1515 static void
1516 spa_destroy_aux_threads(spa_t *spa)
1517 {
1518 	if (spa->spa_condense_zthr != NULL) {
1519 		zthr_destroy(spa->spa_condense_zthr);
1520 		spa->spa_condense_zthr = NULL;
1521 	}
1522 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1523 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1524 		spa->spa_checkpoint_discard_zthr = NULL;
1525 	}
1526 	if (spa->spa_livelist_delete_zthr != NULL) {
1527 		zthr_destroy(spa->spa_livelist_delete_zthr);
1528 		spa->spa_livelist_delete_zthr = NULL;
1529 	}
1530 	if (spa->spa_livelist_condense_zthr != NULL) {
1531 		zthr_destroy(spa->spa_livelist_condense_zthr);
1532 		spa->spa_livelist_condense_zthr = NULL;
1533 	}
1534 }
1535 
1536 /*
1537  * Opposite of spa_load().
1538  */
1539 static void
1540 spa_unload(spa_t *spa)
1541 {
1542 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1543 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1544 
1545 	spa_import_progress_remove(spa_guid(spa));
1546 	spa_load_note(spa, "UNLOADING");
1547 
1548 	spa_wake_waiters(spa);
1549 
1550 	/*
1551 	 * If the log space map feature is enabled and the pool is getting
1552 	 * exported (but not destroyed), we want to spend some time flushing
1553 	 * as many metaslabs as we can in an attempt to destroy log space
1554 	 * maps and save import time.
1555 	 */
1556 	if (spa_should_flush_logs_on_unload(spa))
1557 		spa_unload_log_sm_flush_all(spa);
1558 
1559 	/*
1560 	 * Stop async tasks.
1561 	 */
1562 	spa_async_suspend(spa);
1563 
1564 	if (spa->spa_root_vdev) {
1565 		vdev_t *root_vdev = spa->spa_root_vdev;
1566 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1567 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1568 		vdev_autotrim_stop_all(spa);
1569 		vdev_rebuild_stop_all(spa);
1570 	}
1571 
1572 	/*
1573 	 * Stop syncing.
1574 	 */
1575 	if (spa->spa_sync_on) {
1576 		txg_sync_stop(spa->spa_dsl_pool);
1577 		spa->spa_sync_on = B_FALSE;
1578 	}
1579 
1580 	/*
1581 	 * This ensures that there is no async metaslab prefetching
1582 	 * while we attempt to unload the spa.
1583 	 */
1584 	if (spa->spa_root_vdev != NULL) {
1585 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1586 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1587 			if (vc->vdev_mg != NULL)
1588 				taskq_wait(vc->vdev_mg->mg_taskq);
1589 		}
1590 	}
1591 
1592 	if (spa->spa_mmp.mmp_thread)
1593 		mmp_thread_stop(spa);
1594 
1595 	/*
1596 	 * Wait for any outstanding async I/O to complete.
1597 	 */
1598 	if (spa->spa_async_zio_root != NULL) {
1599 		for (int i = 0; i < max_ncpus; i++)
1600 			(void) zio_wait(spa->spa_async_zio_root[i]);
1601 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1602 		spa->spa_async_zio_root = NULL;
1603 	}
1604 
1605 	if (spa->spa_vdev_removal != NULL) {
1606 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1607 		spa->spa_vdev_removal = NULL;
1608 	}
1609 
1610 	spa_destroy_aux_threads(spa);
1611 
1612 	spa_condense_fini(spa);
1613 
1614 	bpobj_close(&spa->spa_deferred_bpobj);
1615 
1616 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1617 
1618 	/*
1619 	 * Close all vdevs.
1620 	 */
1621 	if (spa->spa_root_vdev)
1622 		vdev_free(spa->spa_root_vdev);
1623 	ASSERT(spa->spa_root_vdev == NULL);
1624 
1625 	/*
1626 	 * Close the dsl pool.
1627 	 */
1628 	if (spa->spa_dsl_pool) {
1629 		dsl_pool_close(spa->spa_dsl_pool);
1630 		spa->spa_dsl_pool = NULL;
1631 		spa->spa_meta_objset = NULL;
1632 	}
1633 
1634 	ddt_unload(spa);
1635 	spa_unload_log_sm_metadata(spa);
1636 
1637 	/*
1638 	 * Drop and purge level 2 cache
1639 	 */
1640 	spa_l2cache_drop(spa);
1641 
1642 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1643 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1644 	if (spa->spa_spares.sav_vdevs) {
1645 		kmem_free(spa->spa_spares.sav_vdevs,
1646 		    spa->spa_spares.sav_count * sizeof (void *));
1647 		spa->spa_spares.sav_vdevs = NULL;
1648 	}
1649 	if (spa->spa_spares.sav_config) {
1650 		nvlist_free(spa->spa_spares.sav_config);
1651 		spa->spa_spares.sav_config = NULL;
1652 	}
1653 	spa->spa_spares.sav_count = 0;
1654 
1655 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1656 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1657 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1658 	}
1659 	if (spa->spa_l2cache.sav_vdevs) {
1660 		kmem_free(spa->spa_l2cache.sav_vdevs,
1661 		    spa->spa_l2cache.sav_count * sizeof (void *));
1662 		spa->spa_l2cache.sav_vdevs = NULL;
1663 	}
1664 	if (spa->spa_l2cache.sav_config) {
1665 		nvlist_free(spa->spa_l2cache.sav_config);
1666 		spa->spa_l2cache.sav_config = NULL;
1667 	}
1668 	spa->spa_l2cache.sav_count = 0;
1669 
1670 	spa->spa_async_suspended = 0;
1671 
1672 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1673 
1674 	if (spa->spa_comment != NULL) {
1675 		spa_strfree(spa->spa_comment);
1676 		spa->spa_comment = NULL;
1677 	}
1678 	if (spa->spa_compatibility != NULL) {
1679 		spa_strfree(spa->spa_compatibility);
1680 		spa->spa_compatibility = NULL;
1681 	}
1682 
1683 	spa_config_exit(spa, SCL_ALL, spa);
1684 }
1685 
1686 /*
1687  * Load (or re-load) the current list of vdevs describing the active spares for
1688  * this pool.  When this is called, we have some form of basic information in
1689  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1690  * then re-generate a more complete list including status information.
1691  */
1692 void
1693 spa_load_spares(spa_t *spa)
1694 {
1695 	nvlist_t **spares;
1696 	uint_t nspares;
1697 	int i;
1698 	vdev_t *vd, *tvd;
1699 
1700 #ifndef _KERNEL
1701 	/*
1702 	 * zdb opens both the current state of the pool and the
1703 	 * checkpointed state (if present), with a different spa_t.
1704 	 *
1705 	 * As spare vdevs are shared among open pools, we skip loading
1706 	 * them when we load the checkpointed state of the pool.
1707 	 */
1708 	if (!spa_writeable(spa))
1709 		return;
1710 #endif
1711 
1712 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1713 
1714 	/*
1715 	 * First, close and free any existing spare vdevs.
1716 	 */
1717 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1718 		vd = spa->spa_spares.sav_vdevs[i];
1719 
1720 		/* Undo the call to spa_activate() below */
1721 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1722 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1723 			spa_spare_remove(tvd);
1724 		vdev_close(vd);
1725 		vdev_free(vd);
1726 	}
1727 
1728 	if (spa->spa_spares.sav_vdevs)
1729 		kmem_free(spa->spa_spares.sav_vdevs,
1730 		    spa->spa_spares.sav_count * sizeof (void *));
1731 
1732 	if (spa->spa_spares.sav_config == NULL)
1733 		nspares = 0;
1734 	else
1735 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1736 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1737 
1738 	spa->spa_spares.sav_count = (int)nspares;
1739 	spa->spa_spares.sav_vdevs = NULL;
1740 
1741 	if (nspares == 0)
1742 		return;
1743 
1744 	/*
1745 	 * Construct the array of vdevs, opening them to get status in the
1746 	 * process.   For each spare, there is potentially two different vdev_t
1747 	 * structures associated with it: one in the list of spares (used only
1748 	 * for basic validation purposes) and one in the active vdev
1749 	 * configuration (if it's spared in).  During this phase we open and
1750 	 * validate each vdev on the spare list.  If the vdev also exists in the
1751 	 * active configuration, then we also mark this vdev as an active spare.
1752 	 */
1753 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1754 	    KM_SLEEP);
1755 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1756 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1757 		    VDEV_ALLOC_SPARE) == 0);
1758 		ASSERT(vd != NULL);
1759 
1760 		spa->spa_spares.sav_vdevs[i] = vd;
1761 
1762 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1763 		    B_FALSE)) != NULL) {
1764 			if (!tvd->vdev_isspare)
1765 				spa_spare_add(tvd);
1766 
1767 			/*
1768 			 * We only mark the spare active if we were successfully
1769 			 * able to load the vdev.  Otherwise, importing a pool
1770 			 * with a bad active spare would result in strange
1771 			 * behavior, because multiple pool would think the spare
1772 			 * is actively in use.
1773 			 *
1774 			 * There is a vulnerability here to an equally bizarre
1775 			 * circumstance, where a dead active spare is later
1776 			 * brought back to life (onlined or otherwise).  Given
1777 			 * the rarity of this scenario, and the extra complexity
1778 			 * it adds, we ignore the possibility.
1779 			 */
1780 			if (!vdev_is_dead(tvd))
1781 				spa_spare_activate(tvd);
1782 		}
1783 
1784 		vd->vdev_top = vd;
1785 		vd->vdev_aux = &spa->spa_spares;
1786 
1787 		if (vdev_open(vd) != 0)
1788 			continue;
1789 
1790 		if (vdev_validate_aux(vd) == 0)
1791 			spa_spare_add(vd);
1792 	}
1793 
1794 	/*
1795 	 * Recompute the stashed list of spares, with status information
1796 	 * this time.
1797 	 */
1798 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1799 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1800 
1801 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1802 	    KM_SLEEP);
1803 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1804 		spares[i] = vdev_config_generate(spa,
1805 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1806 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1807 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1808 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1809 		nvlist_free(spares[i]);
1810 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1811 }
1812 
1813 /*
1814  * Load (or re-load) the current list of vdevs describing the active l2cache for
1815  * this pool.  When this is called, we have some form of basic information in
1816  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1817  * then re-generate a more complete list including status information.
1818  * Devices which are already active have their details maintained, and are
1819  * not re-opened.
1820  */
1821 void
1822 spa_load_l2cache(spa_t *spa)
1823 {
1824 	nvlist_t **l2cache = NULL;
1825 	uint_t nl2cache;
1826 	int i, j, oldnvdevs;
1827 	uint64_t guid;
1828 	vdev_t *vd, **oldvdevs, **newvdevs;
1829 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1830 
1831 #ifndef _KERNEL
1832 	/*
1833 	 * zdb opens both the current state of the pool and the
1834 	 * checkpointed state (if present), with a different spa_t.
1835 	 *
1836 	 * As L2 caches are part of the ARC which is shared among open
1837 	 * pools, we skip loading them when we load the checkpointed
1838 	 * state of the pool.
1839 	 */
1840 	if (!spa_writeable(spa))
1841 		return;
1842 #endif
1843 
1844 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1845 
1846 	oldvdevs = sav->sav_vdevs;
1847 	oldnvdevs = sav->sav_count;
1848 	sav->sav_vdevs = NULL;
1849 	sav->sav_count = 0;
1850 
1851 	if (sav->sav_config == NULL) {
1852 		nl2cache = 0;
1853 		newvdevs = NULL;
1854 		goto out;
1855 	}
1856 
1857 	VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1858 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1859 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1860 
1861 	/*
1862 	 * Process new nvlist of vdevs.
1863 	 */
1864 	for (i = 0; i < nl2cache; i++) {
1865 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1866 		    &guid) == 0);
1867 
1868 		newvdevs[i] = NULL;
1869 		for (j = 0; j < oldnvdevs; j++) {
1870 			vd = oldvdevs[j];
1871 			if (vd != NULL && guid == vd->vdev_guid) {
1872 				/*
1873 				 * Retain previous vdev for add/remove ops.
1874 				 */
1875 				newvdevs[i] = vd;
1876 				oldvdevs[j] = NULL;
1877 				break;
1878 			}
1879 		}
1880 
1881 		if (newvdevs[i] == NULL) {
1882 			/*
1883 			 * Create new vdev
1884 			 */
1885 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1886 			    VDEV_ALLOC_L2CACHE) == 0);
1887 			ASSERT(vd != NULL);
1888 			newvdevs[i] = vd;
1889 
1890 			/*
1891 			 * Commit this vdev as an l2cache device,
1892 			 * even if it fails to open.
1893 			 */
1894 			spa_l2cache_add(vd);
1895 
1896 			vd->vdev_top = vd;
1897 			vd->vdev_aux = sav;
1898 
1899 			spa_l2cache_activate(vd);
1900 
1901 			if (vdev_open(vd) != 0)
1902 				continue;
1903 
1904 			(void) vdev_validate_aux(vd);
1905 
1906 			if (!vdev_is_dead(vd))
1907 				l2arc_add_vdev(spa, vd);
1908 
1909 			/*
1910 			 * Upon cache device addition to a pool or pool
1911 			 * creation with a cache device or if the header
1912 			 * of the device is invalid we issue an async
1913 			 * TRIM command for the whole device which will
1914 			 * execute if l2arc_trim_ahead > 0.
1915 			 */
1916 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1917 		}
1918 	}
1919 
1920 	sav->sav_vdevs = newvdevs;
1921 	sav->sav_count = (int)nl2cache;
1922 
1923 	/*
1924 	 * Recompute the stashed list of l2cache devices, with status
1925 	 * information this time.
1926 	 */
1927 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1928 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1929 
1930 	if (sav->sav_count > 0)
1931 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1932 		    KM_SLEEP);
1933 	for (i = 0; i < sav->sav_count; i++)
1934 		l2cache[i] = vdev_config_generate(spa,
1935 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1936 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1937 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1938 
1939 out:
1940 	/*
1941 	 * Purge vdevs that were dropped
1942 	 */
1943 	for (i = 0; i < oldnvdevs; i++) {
1944 		uint64_t pool;
1945 
1946 		vd = oldvdevs[i];
1947 		if (vd != NULL) {
1948 			ASSERT(vd->vdev_isl2cache);
1949 
1950 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1951 			    pool != 0ULL && l2arc_vdev_present(vd))
1952 				l2arc_remove_vdev(vd);
1953 			vdev_clear_stats(vd);
1954 			vdev_free(vd);
1955 		}
1956 	}
1957 
1958 	if (oldvdevs)
1959 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1960 
1961 	for (i = 0; i < sav->sav_count; i++)
1962 		nvlist_free(l2cache[i]);
1963 	if (sav->sav_count)
1964 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1965 }
1966 
1967 static int
1968 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1969 {
1970 	dmu_buf_t *db;
1971 	char *packed = NULL;
1972 	size_t nvsize = 0;
1973 	int error;
1974 	*value = NULL;
1975 
1976 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1977 	if (error)
1978 		return (error);
1979 
1980 	nvsize = *(uint64_t *)db->db_data;
1981 	dmu_buf_rele(db, FTAG);
1982 
1983 	packed = vmem_alloc(nvsize, KM_SLEEP);
1984 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1985 	    DMU_READ_PREFETCH);
1986 	if (error == 0)
1987 		error = nvlist_unpack(packed, nvsize, value, 0);
1988 	vmem_free(packed, nvsize);
1989 
1990 	return (error);
1991 }
1992 
1993 /*
1994  * Concrete top-level vdevs that are not missing and are not logs. At every
1995  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1996  */
1997 static uint64_t
1998 spa_healthy_core_tvds(spa_t *spa)
1999 {
2000 	vdev_t *rvd = spa->spa_root_vdev;
2001 	uint64_t tvds = 0;
2002 
2003 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2004 		vdev_t *vd = rvd->vdev_child[i];
2005 		if (vd->vdev_islog)
2006 			continue;
2007 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2008 			tvds++;
2009 	}
2010 
2011 	return (tvds);
2012 }
2013 
2014 /*
2015  * Checks to see if the given vdev could not be opened, in which case we post a
2016  * sysevent to notify the autoreplace code that the device has been removed.
2017  */
2018 static void
2019 spa_check_removed(vdev_t *vd)
2020 {
2021 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2022 		spa_check_removed(vd->vdev_child[c]);
2023 
2024 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2025 	    vdev_is_concrete(vd)) {
2026 		zfs_post_autoreplace(vd->vdev_spa, vd);
2027 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2028 	}
2029 }
2030 
2031 static int
2032 spa_check_for_missing_logs(spa_t *spa)
2033 {
2034 	vdev_t *rvd = spa->spa_root_vdev;
2035 
2036 	/*
2037 	 * If we're doing a normal import, then build up any additional
2038 	 * diagnostic information about missing log devices.
2039 	 * We'll pass this up to the user for further processing.
2040 	 */
2041 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2042 		nvlist_t **child, *nv;
2043 		uint64_t idx = 0;
2044 
2045 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2046 		    KM_SLEEP);
2047 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2048 
2049 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2050 			vdev_t *tvd = rvd->vdev_child[c];
2051 
2052 			/*
2053 			 * We consider a device as missing only if it failed
2054 			 * to open (i.e. offline or faulted is not considered
2055 			 * as missing).
2056 			 */
2057 			if (tvd->vdev_islog &&
2058 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2059 				child[idx++] = vdev_config_generate(spa, tvd,
2060 				    B_FALSE, VDEV_CONFIG_MISSING);
2061 			}
2062 		}
2063 
2064 		if (idx > 0) {
2065 			fnvlist_add_nvlist_array(nv,
2066 			    ZPOOL_CONFIG_CHILDREN, child, idx);
2067 			fnvlist_add_nvlist(spa->spa_load_info,
2068 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2069 
2070 			for (uint64_t i = 0; i < idx; i++)
2071 				nvlist_free(child[i]);
2072 		}
2073 		nvlist_free(nv);
2074 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2075 
2076 		if (idx > 0) {
2077 			spa_load_failed(spa, "some log devices are missing");
2078 			vdev_dbgmsg_print_tree(rvd, 2);
2079 			return (SET_ERROR(ENXIO));
2080 		}
2081 	} else {
2082 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2083 			vdev_t *tvd = rvd->vdev_child[c];
2084 
2085 			if (tvd->vdev_islog &&
2086 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2087 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2088 				spa_load_note(spa, "some log devices are "
2089 				    "missing, ZIL is dropped.");
2090 				vdev_dbgmsg_print_tree(rvd, 2);
2091 				break;
2092 			}
2093 		}
2094 	}
2095 
2096 	return (0);
2097 }
2098 
2099 /*
2100  * Check for missing log devices
2101  */
2102 static boolean_t
2103 spa_check_logs(spa_t *spa)
2104 {
2105 	boolean_t rv = B_FALSE;
2106 	dsl_pool_t *dp = spa_get_dsl(spa);
2107 
2108 	switch (spa->spa_log_state) {
2109 	default:
2110 		break;
2111 	case SPA_LOG_MISSING:
2112 		/* need to recheck in case slog has been restored */
2113 	case SPA_LOG_UNKNOWN:
2114 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2115 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2116 		if (rv)
2117 			spa_set_log_state(spa, SPA_LOG_MISSING);
2118 		break;
2119 	}
2120 	return (rv);
2121 }
2122 
2123 /*
2124  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2125  */
2126 static boolean_t
2127 spa_passivate_log(spa_t *spa)
2128 {
2129 	vdev_t *rvd = spa->spa_root_vdev;
2130 	boolean_t slog_found = B_FALSE;
2131 
2132 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2133 
2134 	for (int c = 0; c < rvd->vdev_children; c++) {
2135 		vdev_t *tvd = rvd->vdev_child[c];
2136 
2137 		if (tvd->vdev_islog) {
2138 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2139 			metaslab_group_passivate(tvd->vdev_mg);
2140 			slog_found = B_TRUE;
2141 		}
2142 	}
2143 
2144 	return (slog_found);
2145 }
2146 
2147 /*
2148  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2149  */
2150 static void
2151 spa_activate_log(spa_t *spa)
2152 {
2153 	vdev_t *rvd = spa->spa_root_vdev;
2154 
2155 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2156 
2157 	for (int c = 0; c < rvd->vdev_children; c++) {
2158 		vdev_t *tvd = rvd->vdev_child[c];
2159 
2160 		if (tvd->vdev_islog) {
2161 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2162 			metaslab_group_activate(tvd->vdev_mg);
2163 		}
2164 	}
2165 }
2166 
2167 int
2168 spa_reset_logs(spa_t *spa)
2169 {
2170 	int error;
2171 
2172 	error = dmu_objset_find(spa_name(spa), zil_reset,
2173 	    NULL, DS_FIND_CHILDREN);
2174 	if (error == 0) {
2175 		/*
2176 		 * We successfully offlined the log device, sync out the
2177 		 * current txg so that the "stubby" block can be removed
2178 		 * by zil_sync().
2179 		 */
2180 		txg_wait_synced(spa->spa_dsl_pool, 0);
2181 	}
2182 	return (error);
2183 }
2184 
2185 static void
2186 spa_aux_check_removed(spa_aux_vdev_t *sav)
2187 {
2188 	for (int i = 0; i < sav->sav_count; i++)
2189 		spa_check_removed(sav->sav_vdevs[i]);
2190 }
2191 
2192 void
2193 spa_claim_notify(zio_t *zio)
2194 {
2195 	spa_t *spa = zio->io_spa;
2196 
2197 	if (zio->io_error)
2198 		return;
2199 
2200 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2201 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2202 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2203 	mutex_exit(&spa->spa_props_lock);
2204 }
2205 
2206 typedef struct spa_load_error {
2207 	uint64_t	sle_meta_count;
2208 	uint64_t	sle_data_count;
2209 } spa_load_error_t;
2210 
2211 static void
2212 spa_load_verify_done(zio_t *zio)
2213 {
2214 	blkptr_t *bp = zio->io_bp;
2215 	spa_load_error_t *sle = zio->io_private;
2216 	dmu_object_type_t type = BP_GET_TYPE(bp);
2217 	int error = zio->io_error;
2218 	spa_t *spa = zio->io_spa;
2219 
2220 	abd_free(zio->io_abd);
2221 	if (error) {
2222 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2223 		    type != DMU_OT_INTENT_LOG)
2224 			atomic_inc_64(&sle->sle_meta_count);
2225 		else
2226 			atomic_inc_64(&sle->sle_data_count);
2227 	}
2228 
2229 	mutex_enter(&spa->spa_scrub_lock);
2230 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2231 	cv_broadcast(&spa->spa_scrub_io_cv);
2232 	mutex_exit(&spa->spa_scrub_lock);
2233 }
2234 
2235 /*
2236  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2237  * By default, we set it to 1/16th of the arc.
2238  */
2239 int spa_load_verify_shift = 4;
2240 int spa_load_verify_metadata = B_TRUE;
2241 int spa_load_verify_data = B_TRUE;
2242 
2243 /*ARGSUSED*/
2244 static int
2245 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2246     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2247 {
2248 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2249 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2250 		return (0);
2251 	/*
2252 	 * Note: normally this routine will not be called if
2253 	 * spa_load_verify_metadata is not set.  However, it may be useful
2254 	 * to manually set the flag after the traversal has begun.
2255 	 */
2256 	if (!spa_load_verify_metadata)
2257 		return (0);
2258 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2259 		return (0);
2260 
2261 	uint64_t maxinflight_bytes =
2262 	    arc_target_bytes() >> spa_load_verify_shift;
2263 	zio_t *rio = arg;
2264 	size_t size = BP_GET_PSIZE(bp);
2265 
2266 	mutex_enter(&spa->spa_scrub_lock);
2267 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2268 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2269 	spa->spa_load_verify_bytes += size;
2270 	mutex_exit(&spa->spa_scrub_lock);
2271 
2272 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2273 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2274 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2275 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2276 	return (0);
2277 }
2278 
2279 /* ARGSUSED */
2280 static int
2281 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2282 {
2283 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2284 		return (SET_ERROR(ENAMETOOLONG));
2285 
2286 	return (0);
2287 }
2288 
2289 static int
2290 spa_load_verify(spa_t *spa)
2291 {
2292 	zio_t *rio;
2293 	spa_load_error_t sle = { 0 };
2294 	zpool_load_policy_t policy;
2295 	boolean_t verify_ok = B_FALSE;
2296 	int error = 0;
2297 
2298 	zpool_get_load_policy(spa->spa_config, &policy);
2299 
2300 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2301 		return (0);
2302 
2303 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2304 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2305 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2306 	    DS_FIND_CHILDREN);
2307 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2308 	if (error != 0)
2309 		return (error);
2310 
2311 	rio = zio_root(spa, NULL, &sle,
2312 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2313 
2314 	if (spa_load_verify_metadata) {
2315 		if (spa->spa_extreme_rewind) {
2316 			spa_load_note(spa, "performing a complete scan of the "
2317 			    "pool since extreme rewind is on. This may take "
2318 			    "a very long time.\n  (spa_load_verify_data=%u, "
2319 			    "spa_load_verify_metadata=%u)",
2320 			    spa_load_verify_data, spa_load_verify_metadata);
2321 		}
2322 
2323 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2324 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2325 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2326 	}
2327 
2328 	(void) zio_wait(rio);
2329 	ASSERT0(spa->spa_load_verify_bytes);
2330 
2331 	spa->spa_load_meta_errors = sle.sle_meta_count;
2332 	spa->spa_load_data_errors = sle.sle_data_count;
2333 
2334 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2335 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2336 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2337 		    (u_longlong_t)sle.sle_data_count);
2338 	}
2339 
2340 	if (spa_load_verify_dryrun ||
2341 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2342 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2343 		int64_t loss = 0;
2344 
2345 		verify_ok = B_TRUE;
2346 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2347 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2348 
2349 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2350 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2351 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2352 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2353 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2354 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2355 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2356 	} else {
2357 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2358 	}
2359 
2360 	if (spa_load_verify_dryrun)
2361 		return (0);
2362 
2363 	if (error) {
2364 		if (error != ENXIO && error != EIO)
2365 			error = SET_ERROR(EIO);
2366 		return (error);
2367 	}
2368 
2369 	return (verify_ok ? 0 : EIO);
2370 }
2371 
2372 /*
2373  * Find a value in the pool props object.
2374  */
2375 static void
2376 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2377 {
2378 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2379 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2380 }
2381 
2382 /*
2383  * Find a value in the pool directory object.
2384  */
2385 static int
2386 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2387 {
2388 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2389 	    name, sizeof (uint64_t), 1, val);
2390 
2391 	if (error != 0 && (error != ENOENT || log_enoent)) {
2392 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2393 		    "[error=%d]", name, error);
2394 	}
2395 
2396 	return (error);
2397 }
2398 
2399 static int
2400 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2401 {
2402 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2403 	return (SET_ERROR(err));
2404 }
2405 
2406 boolean_t
2407 spa_livelist_delete_check(spa_t *spa)
2408 {
2409 	return (spa->spa_livelists_to_delete != 0);
2410 }
2411 
2412 /* ARGSUSED */
2413 static boolean_t
2414 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2415 {
2416 	spa_t *spa = arg;
2417 	return (spa_livelist_delete_check(spa));
2418 }
2419 
2420 static int
2421 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2422 {
2423 	spa_t *spa = arg;
2424 	zio_free(spa, tx->tx_txg, bp);
2425 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2426 	    -bp_get_dsize_sync(spa, bp),
2427 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2428 	return (0);
2429 }
2430 
2431 static int
2432 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2433 {
2434 	int err;
2435 	zap_cursor_t zc;
2436 	zap_attribute_t za;
2437 	zap_cursor_init(&zc, os, zap_obj);
2438 	err = zap_cursor_retrieve(&zc, &za);
2439 	zap_cursor_fini(&zc);
2440 	if (err == 0)
2441 		*llp = za.za_first_integer;
2442 	return (err);
2443 }
2444 
2445 /*
2446  * Components of livelist deletion that must be performed in syncing
2447  * context: freeing block pointers and updating the pool-wide data
2448  * structures to indicate how much work is left to do
2449  */
2450 typedef struct sublist_delete_arg {
2451 	spa_t *spa;
2452 	dsl_deadlist_t *ll;
2453 	uint64_t key;
2454 	bplist_t *to_free;
2455 } sublist_delete_arg_t;
2456 
2457 static void
2458 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2459 {
2460 	sublist_delete_arg_t *sda = arg;
2461 	spa_t *spa = sda->spa;
2462 	dsl_deadlist_t *ll = sda->ll;
2463 	uint64_t key = sda->key;
2464 	bplist_t *to_free = sda->to_free;
2465 
2466 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2467 	dsl_deadlist_remove_entry(ll, key, tx);
2468 }
2469 
2470 typedef struct livelist_delete_arg {
2471 	spa_t *spa;
2472 	uint64_t ll_obj;
2473 	uint64_t zap_obj;
2474 } livelist_delete_arg_t;
2475 
2476 static void
2477 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2478 {
2479 	livelist_delete_arg_t *lda = arg;
2480 	spa_t *spa = lda->spa;
2481 	uint64_t ll_obj = lda->ll_obj;
2482 	uint64_t zap_obj = lda->zap_obj;
2483 	objset_t *mos = spa->spa_meta_objset;
2484 	uint64_t count;
2485 
2486 	/* free the livelist and decrement the feature count */
2487 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2488 	dsl_deadlist_free(mos, ll_obj, tx);
2489 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2490 	VERIFY0(zap_count(mos, zap_obj, &count));
2491 	if (count == 0) {
2492 		/* no more livelists to delete */
2493 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2494 		    DMU_POOL_DELETED_CLONES, tx));
2495 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2496 		spa->spa_livelists_to_delete = 0;
2497 		spa_notify_waiters(spa);
2498 	}
2499 }
2500 
2501 /*
2502  * Load in the value for the livelist to be removed and open it. Then,
2503  * load its first sublist and determine which block pointers should actually
2504  * be freed. Then, call a synctask which performs the actual frees and updates
2505  * the pool-wide livelist data.
2506  */
2507 /* ARGSUSED */
2508 static void
2509 spa_livelist_delete_cb(void *arg, zthr_t *z)
2510 {
2511 	spa_t *spa = arg;
2512 	uint64_t ll_obj = 0, count;
2513 	objset_t *mos = spa->spa_meta_objset;
2514 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2515 	/*
2516 	 * Determine the next livelist to delete. This function should only
2517 	 * be called if there is at least one deleted clone.
2518 	 */
2519 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2520 	VERIFY0(zap_count(mos, ll_obj, &count));
2521 	if (count > 0) {
2522 		dsl_deadlist_t *ll;
2523 		dsl_deadlist_entry_t *dle;
2524 		bplist_t to_free;
2525 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2526 		dsl_deadlist_open(ll, mos, ll_obj);
2527 		dle = dsl_deadlist_first(ll);
2528 		ASSERT3P(dle, !=, NULL);
2529 		bplist_create(&to_free);
2530 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2531 		    z, NULL);
2532 		if (err == 0) {
2533 			sublist_delete_arg_t sync_arg = {
2534 			    .spa = spa,
2535 			    .ll = ll,
2536 			    .key = dle->dle_mintxg,
2537 			    .to_free = &to_free
2538 			};
2539 			zfs_dbgmsg("deleting sublist (id %llu) from"
2540 			    " livelist %llu, %d remaining",
2541 			    dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2542 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2543 			    sublist_delete_sync, &sync_arg, 0,
2544 			    ZFS_SPACE_CHECK_DESTROY));
2545 		} else {
2546 			VERIFY3U(err, ==, EINTR);
2547 		}
2548 		bplist_clear(&to_free);
2549 		bplist_destroy(&to_free);
2550 		dsl_deadlist_close(ll);
2551 		kmem_free(ll, sizeof (dsl_deadlist_t));
2552 	} else {
2553 		livelist_delete_arg_t sync_arg = {
2554 		    .spa = spa,
2555 		    .ll_obj = ll_obj,
2556 		    .zap_obj = zap_obj
2557 		};
2558 		zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2559 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2560 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2561 	}
2562 }
2563 
2564 static void
2565 spa_start_livelist_destroy_thread(spa_t *spa)
2566 {
2567 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2568 	spa->spa_livelist_delete_zthr =
2569 	    zthr_create("z_livelist_destroy",
2570 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2571 }
2572 
2573 typedef struct livelist_new_arg {
2574 	bplist_t *allocs;
2575 	bplist_t *frees;
2576 } livelist_new_arg_t;
2577 
2578 static int
2579 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2580     dmu_tx_t *tx)
2581 {
2582 	ASSERT(tx == NULL);
2583 	livelist_new_arg_t *lna = arg;
2584 	if (bp_freed) {
2585 		bplist_append(lna->frees, bp);
2586 	} else {
2587 		bplist_append(lna->allocs, bp);
2588 		zfs_livelist_condense_new_alloc++;
2589 	}
2590 	return (0);
2591 }
2592 
2593 typedef struct livelist_condense_arg {
2594 	spa_t *spa;
2595 	bplist_t to_keep;
2596 	uint64_t first_size;
2597 	uint64_t next_size;
2598 } livelist_condense_arg_t;
2599 
2600 static void
2601 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2602 {
2603 	livelist_condense_arg_t *lca = arg;
2604 	spa_t *spa = lca->spa;
2605 	bplist_t new_frees;
2606 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2607 
2608 	/* Have we been cancelled? */
2609 	if (spa->spa_to_condense.cancelled) {
2610 		zfs_livelist_condense_sync_cancel++;
2611 		goto out;
2612 	}
2613 
2614 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2615 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2616 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2617 
2618 	/*
2619 	 * It's possible that the livelist was changed while the zthr was
2620 	 * running. Therefore, we need to check for new blkptrs in the two
2621 	 * entries being condensed and continue to track them in the livelist.
2622 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2623 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2624 	 * we need to sort them into two different bplists.
2625 	 */
2626 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2627 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2628 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2629 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2630 
2631 	bplist_create(&new_frees);
2632 	livelist_new_arg_t new_bps = {
2633 	    .allocs = &lca->to_keep,
2634 	    .frees = &new_frees,
2635 	};
2636 
2637 	if (cur_first_size > lca->first_size) {
2638 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2639 		    livelist_track_new_cb, &new_bps, lca->first_size));
2640 	}
2641 	if (cur_next_size > lca->next_size) {
2642 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2643 		    livelist_track_new_cb, &new_bps, lca->next_size));
2644 	}
2645 
2646 	dsl_deadlist_clear_entry(first, ll, tx);
2647 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2648 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2649 
2650 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2651 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2652 	bplist_destroy(&new_frees);
2653 
2654 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2655 	dsl_dataset_name(ds, dsname);
2656 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2657 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2658 	    "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2659 	    cur_first_size, next_obj, cur_next_size,
2660 	    first->dle_bpobj.bpo_object,
2661 	    first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2662 out:
2663 	dmu_buf_rele(ds->ds_dbuf, spa);
2664 	spa->spa_to_condense.ds = NULL;
2665 	bplist_clear(&lca->to_keep);
2666 	bplist_destroy(&lca->to_keep);
2667 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2668 	spa->spa_to_condense.syncing = B_FALSE;
2669 }
2670 
2671 static void
2672 spa_livelist_condense_cb(void *arg, zthr_t *t)
2673 {
2674 	while (zfs_livelist_condense_zthr_pause &&
2675 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2676 		delay(1);
2677 
2678 	spa_t *spa = arg;
2679 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2680 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2681 	uint64_t first_size, next_size;
2682 
2683 	livelist_condense_arg_t *lca =
2684 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2685 	bplist_create(&lca->to_keep);
2686 
2687 	/*
2688 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2689 	 * so we have minimal work in syncing context to condense.
2690 	 *
2691 	 * We save bpobj sizes (first_size and next_size) to use later in
2692 	 * syncing context to determine if entries were added to these sublists
2693 	 * while in open context. This is possible because the clone is still
2694 	 * active and open for normal writes and we want to make sure the new,
2695 	 * unprocessed blockpointers are inserted into the livelist normally.
2696 	 *
2697 	 * Note that dsl_process_sub_livelist() both stores the size number of
2698 	 * blockpointers and iterates over them while the bpobj's lock held, so
2699 	 * the sizes returned to us are consistent which what was actually
2700 	 * processed.
2701 	 */
2702 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2703 	    &first_size);
2704 	if (err == 0)
2705 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2706 		    t, &next_size);
2707 
2708 	if (err == 0) {
2709 		while (zfs_livelist_condense_sync_pause &&
2710 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2711 			delay(1);
2712 
2713 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2714 		dmu_tx_mark_netfree(tx);
2715 		dmu_tx_hold_space(tx, 1);
2716 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2717 		if (err == 0) {
2718 			/*
2719 			 * Prevent the condense zthr restarting before
2720 			 * the synctask completes.
2721 			 */
2722 			spa->spa_to_condense.syncing = B_TRUE;
2723 			lca->spa = spa;
2724 			lca->first_size = first_size;
2725 			lca->next_size = next_size;
2726 			dsl_sync_task_nowait(spa_get_dsl(spa),
2727 			    spa_livelist_condense_sync, lca, tx);
2728 			dmu_tx_commit(tx);
2729 			return;
2730 		}
2731 	}
2732 	/*
2733 	 * Condensing can not continue: either it was externally stopped or
2734 	 * we were unable to assign to a tx because the pool has run out of
2735 	 * space. In the second case, we'll just end up trying to condense
2736 	 * again in a later txg.
2737 	 */
2738 	ASSERT(err != 0);
2739 	bplist_clear(&lca->to_keep);
2740 	bplist_destroy(&lca->to_keep);
2741 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2742 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2743 	spa->spa_to_condense.ds = NULL;
2744 	if (err == EINTR)
2745 		zfs_livelist_condense_zthr_cancel++;
2746 }
2747 
2748 /* ARGSUSED */
2749 /*
2750  * Check that there is something to condense but that a condense is not
2751  * already in progress and that condensing has not been cancelled.
2752  */
2753 static boolean_t
2754 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2755 {
2756 	spa_t *spa = arg;
2757 	if ((spa->spa_to_condense.ds != NULL) &&
2758 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2759 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2760 		return (B_TRUE);
2761 	}
2762 	return (B_FALSE);
2763 }
2764 
2765 static void
2766 spa_start_livelist_condensing_thread(spa_t *spa)
2767 {
2768 	spa->spa_to_condense.ds = NULL;
2769 	spa->spa_to_condense.first = NULL;
2770 	spa->spa_to_condense.next = NULL;
2771 	spa->spa_to_condense.syncing = B_FALSE;
2772 	spa->spa_to_condense.cancelled = B_FALSE;
2773 
2774 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2775 	spa->spa_livelist_condense_zthr =
2776 	    zthr_create("z_livelist_condense",
2777 	    spa_livelist_condense_cb_check,
2778 	    spa_livelist_condense_cb, spa);
2779 }
2780 
2781 static void
2782 spa_spawn_aux_threads(spa_t *spa)
2783 {
2784 	ASSERT(spa_writeable(spa));
2785 
2786 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2787 
2788 	spa_start_indirect_condensing_thread(spa);
2789 	spa_start_livelist_destroy_thread(spa);
2790 	spa_start_livelist_condensing_thread(spa);
2791 
2792 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2793 	spa->spa_checkpoint_discard_zthr =
2794 	    zthr_create("z_checkpoint_discard",
2795 	    spa_checkpoint_discard_thread_check,
2796 	    spa_checkpoint_discard_thread, spa);
2797 }
2798 
2799 /*
2800  * Fix up config after a partly-completed split.  This is done with the
2801  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2802  * pool have that entry in their config, but only the splitting one contains
2803  * a list of all the guids of the vdevs that are being split off.
2804  *
2805  * This function determines what to do with that list: either rejoin
2806  * all the disks to the pool, or complete the splitting process.  To attempt
2807  * the rejoin, each disk that is offlined is marked online again, and
2808  * we do a reopen() call.  If the vdev label for every disk that was
2809  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2810  * then we call vdev_split() on each disk, and complete the split.
2811  *
2812  * Otherwise we leave the config alone, with all the vdevs in place in
2813  * the original pool.
2814  */
2815 static void
2816 spa_try_repair(spa_t *spa, nvlist_t *config)
2817 {
2818 	uint_t extracted;
2819 	uint64_t *glist;
2820 	uint_t i, gcount;
2821 	nvlist_t *nvl;
2822 	vdev_t **vd;
2823 	boolean_t attempt_reopen;
2824 
2825 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2826 		return;
2827 
2828 	/* check that the config is complete */
2829 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2830 	    &glist, &gcount) != 0)
2831 		return;
2832 
2833 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2834 
2835 	/* attempt to online all the vdevs & validate */
2836 	attempt_reopen = B_TRUE;
2837 	for (i = 0; i < gcount; i++) {
2838 		if (glist[i] == 0)	/* vdev is hole */
2839 			continue;
2840 
2841 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2842 		if (vd[i] == NULL) {
2843 			/*
2844 			 * Don't bother attempting to reopen the disks;
2845 			 * just do the split.
2846 			 */
2847 			attempt_reopen = B_FALSE;
2848 		} else {
2849 			/* attempt to re-online it */
2850 			vd[i]->vdev_offline = B_FALSE;
2851 		}
2852 	}
2853 
2854 	if (attempt_reopen) {
2855 		vdev_reopen(spa->spa_root_vdev);
2856 
2857 		/* check each device to see what state it's in */
2858 		for (extracted = 0, i = 0; i < gcount; i++) {
2859 			if (vd[i] != NULL &&
2860 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2861 				break;
2862 			++extracted;
2863 		}
2864 	}
2865 
2866 	/*
2867 	 * If every disk has been moved to the new pool, or if we never
2868 	 * even attempted to look at them, then we split them off for
2869 	 * good.
2870 	 */
2871 	if (!attempt_reopen || gcount == extracted) {
2872 		for (i = 0; i < gcount; i++)
2873 			if (vd[i] != NULL)
2874 				vdev_split(vd[i]);
2875 		vdev_reopen(spa->spa_root_vdev);
2876 	}
2877 
2878 	kmem_free(vd, gcount * sizeof (vdev_t *));
2879 }
2880 
2881 static int
2882 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2883 {
2884 	char *ereport = FM_EREPORT_ZFS_POOL;
2885 	int error;
2886 
2887 	spa->spa_load_state = state;
2888 	(void) spa_import_progress_set_state(spa_guid(spa),
2889 	    spa_load_state(spa));
2890 
2891 	gethrestime(&spa->spa_loaded_ts);
2892 	error = spa_load_impl(spa, type, &ereport);
2893 
2894 	/*
2895 	 * Don't count references from objsets that are already closed
2896 	 * and are making their way through the eviction process.
2897 	 */
2898 	spa_evicting_os_wait(spa);
2899 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2900 	if (error) {
2901 		if (error != EEXIST) {
2902 			spa->spa_loaded_ts.tv_sec = 0;
2903 			spa->spa_loaded_ts.tv_nsec = 0;
2904 		}
2905 		if (error != EBADF) {
2906 			(void) zfs_ereport_post(ereport, spa,
2907 			    NULL, NULL, NULL, 0);
2908 		}
2909 	}
2910 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2911 	spa->spa_ena = 0;
2912 
2913 	(void) spa_import_progress_set_state(spa_guid(spa),
2914 	    spa_load_state(spa));
2915 
2916 	return (error);
2917 }
2918 
2919 #ifdef ZFS_DEBUG
2920 /*
2921  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2922  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2923  * spa's per-vdev ZAP list.
2924  */
2925 static uint64_t
2926 vdev_count_verify_zaps(vdev_t *vd)
2927 {
2928 	spa_t *spa = vd->vdev_spa;
2929 	uint64_t total = 0;
2930 
2931 	if (vd->vdev_top_zap != 0) {
2932 		total++;
2933 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2934 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2935 	}
2936 	if (vd->vdev_leaf_zap != 0) {
2937 		total++;
2938 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2939 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2940 	}
2941 
2942 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2943 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2944 	}
2945 
2946 	return (total);
2947 }
2948 #endif
2949 
2950 /*
2951  * Determine whether the activity check is required.
2952  */
2953 static boolean_t
2954 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2955     nvlist_t *config)
2956 {
2957 	uint64_t state = 0;
2958 	uint64_t hostid = 0;
2959 	uint64_t tryconfig_txg = 0;
2960 	uint64_t tryconfig_timestamp = 0;
2961 	uint16_t tryconfig_mmp_seq = 0;
2962 	nvlist_t *nvinfo;
2963 
2964 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2965 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2966 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2967 		    &tryconfig_txg);
2968 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2969 		    &tryconfig_timestamp);
2970 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2971 		    &tryconfig_mmp_seq);
2972 	}
2973 
2974 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2975 
2976 	/*
2977 	 * Disable the MMP activity check - This is used by zdb which
2978 	 * is intended to be used on potentially active pools.
2979 	 */
2980 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2981 		return (B_FALSE);
2982 
2983 	/*
2984 	 * Skip the activity check when the MMP feature is disabled.
2985 	 */
2986 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2987 		return (B_FALSE);
2988 
2989 	/*
2990 	 * If the tryconfig_ values are nonzero, they are the results of an
2991 	 * earlier tryimport.  If they all match the uberblock we just found,
2992 	 * then the pool has not changed and we return false so we do not test
2993 	 * a second time.
2994 	 */
2995 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2996 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2997 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
2998 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2999 		return (B_FALSE);
3000 
3001 	/*
3002 	 * Allow the activity check to be skipped when importing the pool
3003 	 * on the same host which last imported it.  Since the hostid from
3004 	 * configuration may be stale use the one read from the label.
3005 	 */
3006 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3007 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3008 
3009 	if (hostid == spa_get_hostid(spa))
3010 		return (B_FALSE);
3011 
3012 	/*
3013 	 * Skip the activity test when the pool was cleanly exported.
3014 	 */
3015 	if (state != POOL_STATE_ACTIVE)
3016 		return (B_FALSE);
3017 
3018 	return (B_TRUE);
3019 }
3020 
3021 /*
3022  * Nanoseconds the activity check must watch for changes on-disk.
3023  */
3024 static uint64_t
3025 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3026 {
3027 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3028 	uint64_t multihost_interval = MSEC2NSEC(
3029 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3030 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3031 	    multihost_interval);
3032 
3033 	/*
3034 	 * Local tunables determine a minimum duration except for the case
3035 	 * where we know when the remote host will suspend the pool if MMP
3036 	 * writes do not land.
3037 	 *
3038 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3039 	 * these cases and times.
3040 	 */
3041 
3042 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3043 
3044 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3045 	    MMP_FAIL_INT(ub) > 0) {
3046 
3047 		/* MMP on remote host will suspend pool after failed writes */
3048 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3049 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3050 
3051 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3052 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3053 		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3054 		    MMP_INTERVAL(ub), import_intervals);
3055 
3056 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3057 	    MMP_FAIL_INT(ub) == 0) {
3058 
3059 		/* MMP on remote host will never suspend pool */
3060 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3061 		    ub->ub_mmp_delay) * import_intervals);
3062 
3063 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3064 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3065 		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3066 		    ub->ub_mmp_delay, import_intervals);
3067 
3068 	} else if (MMP_VALID(ub)) {
3069 		/*
3070 		 * zfs-0.7 compatibility case
3071 		 */
3072 
3073 		import_delay = MAX(import_delay, (multihost_interval +
3074 		    ub->ub_mmp_delay) * import_intervals);
3075 
3076 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3077 		    "import_intervals=%u leaves=%u", import_delay,
3078 		    ub->ub_mmp_delay, import_intervals,
3079 		    vdev_count_leaves(spa));
3080 	} else {
3081 		/* Using local tunings is the only reasonable option */
3082 		zfs_dbgmsg("pool last imported on non-MMP aware "
3083 		    "host using import_delay=%llu multihost_interval=%llu "
3084 		    "import_intervals=%u", import_delay, multihost_interval,
3085 		    import_intervals);
3086 	}
3087 
3088 	return (import_delay);
3089 }
3090 
3091 /*
3092  * Perform the import activity check.  If the user canceled the import or
3093  * we detected activity then fail.
3094  */
3095 static int
3096 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3097 {
3098 	uint64_t txg = ub->ub_txg;
3099 	uint64_t timestamp = ub->ub_timestamp;
3100 	uint64_t mmp_config = ub->ub_mmp_config;
3101 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3102 	uint64_t import_delay;
3103 	hrtime_t import_expire;
3104 	nvlist_t *mmp_label = NULL;
3105 	vdev_t *rvd = spa->spa_root_vdev;
3106 	kcondvar_t cv;
3107 	kmutex_t mtx;
3108 	int error = 0;
3109 
3110 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3111 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3112 	mutex_enter(&mtx);
3113 
3114 	/*
3115 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3116 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3117 	 * the pool is known to be active on another host.
3118 	 *
3119 	 * Otherwise, the pool might be in use on another host.  Check for
3120 	 * changes in the uberblocks on disk if necessary.
3121 	 */
3122 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3123 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3124 		    ZPOOL_CONFIG_LOAD_INFO);
3125 
3126 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3127 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3128 			vdev_uberblock_load(rvd, ub, &mmp_label);
3129 			error = SET_ERROR(EREMOTEIO);
3130 			goto out;
3131 		}
3132 	}
3133 
3134 	import_delay = spa_activity_check_duration(spa, ub);
3135 
3136 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3137 	import_delay += import_delay * spa_get_random(250) / 1000;
3138 
3139 	import_expire = gethrtime() + import_delay;
3140 
3141 	while (gethrtime() < import_expire) {
3142 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3143 		    NSEC2SEC(import_expire - gethrtime()));
3144 
3145 		vdev_uberblock_load(rvd, ub, &mmp_label);
3146 
3147 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3148 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3149 			zfs_dbgmsg("multihost activity detected "
3150 			    "txg %llu ub_txg  %llu "
3151 			    "timestamp %llu ub_timestamp  %llu "
3152 			    "mmp_config %#llx ub_mmp_config %#llx",
3153 			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3154 			    mmp_config, ub->ub_mmp_config);
3155 
3156 			error = SET_ERROR(EREMOTEIO);
3157 			break;
3158 		}
3159 
3160 		if (mmp_label) {
3161 			nvlist_free(mmp_label);
3162 			mmp_label = NULL;
3163 		}
3164 
3165 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3166 		if (error != -1) {
3167 			error = SET_ERROR(EINTR);
3168 			break;
3169 		}
3170 		error = 0;
3171 	}
3172 
3173 out:
3174 	mutex_exit(&mtx);
3175 	mutex_destroy(&mtx);
3176 	cv_destroy(&cv);
3177 
3178 	/*
3179 	 * If the pool is determined to be active store the status in the
3180 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3181 	 * available from configuration read from disk store them as well.
3182 	 * This allows 'zpool import' to generate a more useful message.
3183 	 *
3184 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3185 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3186 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3187 	 */
3188 	if (error == EREMOTEIO) {
3189 		char *hostname = "<unknown>";
3190 		uint64_t hostid = 0;
3191 
3192 		if (mmp_label) {
3193 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3194 				hostname = fnvlist_lookup_string(mmp_label,
3195 				    ZPOOL_CONFIG_HOSTNAME);
3196 				fnvlist_add_string(spa->spa_load_info,
3197 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3198 			}
3199 
3200 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3201 				hostid = fnvlist_lookup_uint64(mmp_label,
3202 				    ZPOOL_CONFIG_HOSTID);
3203 				fnvlist_add_uint64(spa->spa_load_info,
3204 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3205 			}
3206 		}
3207 
3208 		fnvlist_add_uint64(spa->spa_load_info,
3209 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3210 		fnvlist_add_uint64(spa->spa_load_info,
3211 		    ZPOOL_CONFIG_MMP_TXG, 0);
3212 
3213 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3214 	}
3215 
3216 	if (mmp_label)
3217 		nvlist_free(mmp_label);
3218 
3219 	return (error);
3220 }
3221 
3222 static int
3223 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3224 {
3225 	uint64_t hostid;
3226 	char *hostname;
3227 	uint64_t myhostid = 0;
3228 
3229 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3230 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3231 		hostname = fnvlist_lookup_string(mos_config,
3232 		    ZPOOL_CONFIG_HOSTNAME);
3233 
3234 		myhostid = zone_get_hostid(NULL);
3235 
3236 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3237 			cmn_err(CE_WARN, "pool '%s' could not be "
3238 			    "loaded as it was last accessed by "
3239 			    "another system (host: %s hostid: 0x%llx). "
3240 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3241 			    "ZFS-8000-EY",
3242 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3243 			spa_load_failed(spa, "hostid verification failed: pool "
3244 			    "last accessed by host: %s (hostid: 0x%llx)",
3245 			    hostname, (u_longlong_t)hostid);
3246 			return (SET_ERROR(EBADF));
3247 		}
3248 	}
3249 
3250 	return (0);
3251 }
3252 
3253 static int
3254 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3255 {
3256 	int error = 0;
3257 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3258 	int parse;
3259 	vdev_t *rvd;
3260 	uint64_t pool_guid;
3261 	char *comment;
3262 	char *compatibility;
3263 
3264 	/*
3265 	 * Versioning wasn't explicitly added to the label until later, so if
3266 	 * it's not present treat it as the initial version.
3267 	 */
3268 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3269 	    &spa->spa_ubsync.ub_version) != 0)
3270 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3271 
3272 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3273 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3274 		    ZPOOL_CONFIG_POOL_GUID);
3275 		return (SET_ERROR(EINVAL));
3276 	}
3277 
3278 	/*
3279 	 * If we are doing an import, ensure that the pool is not already
3280 	 * imported by checking if its pool guid already exists in the
3281 	 * spa namespace.
3282 	 *
3283 	 * The only case that we allow an already imported pool to be
3284 	 * imported again, is when the pool is checkpointed and we want to
3285 	 * look at its checkpointed state from userland tools like zdb.
3286 	 */
3287 #ifdef _KERNEL
3288 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3289 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3290 	    spa_guid_exists(pool_guid, 0)) {
3291 #else
3292 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3293 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3294 	    spa_guid_exists(pool_guid, 0) &&
3295 	    !spa_importing_readonly_checkpoint(spa)) {
3296 #endif
3297 		spa_load_failed(spa, "a pool with guid %llu is already open",
3298 		    (u_longlong_t)pool_guid);
3299 		return (SET_ERROR(EEXIST));
3300 	}
3301 
3302 	spa->spa_config_guid = pool_guid;
3303 
3304 	nvlist_free(spa->spa_load_info);
3305 	spa->spa_load_info = fnvlist_alloc();
3306 
3307 	ASSERT(spa->spa_comment == NULL);
3308 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3309 		spa->spa_comment = spa_strdup(comment);
3310 
3311 	ASSERT(spa->spa_compatibility == NULL);
3312 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3313 	    &compatibility) == 0)
3314 		spa->spa_compatibility = spa_strdup(compatibility);
3315 
3316 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3317 	    &spa->spa_config_txg);
3318 
3319 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3320 		spa->spa_config_splitting = fnvlist_dup(nvl);
3321 
3322 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3323 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3324 		    ZPOOL_CONFIG_VDEV_TREE);
3325 		return (SET_ERROR(EINVAL));
3326 	}
3327 
3328 	/*
3329 	 * Create "The Godfather" zio to hold all async IOs
3330 	 */
3331 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3332 	    KM_SLEEP);
3333 	for (int i = 0; i < max_ncpus; i++) {
3334 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3335 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3336 		    ZIO_FLAG_GODFATHER);
3337 	}
3338 
3339 	/*
3340 	 * Parse the configuration into a vdev tree.  We explicitly set the
3341 	 * value that will be returned by spa_version() since parsing the
3342 	 * configuration requires knowing the version number.
3343 	 */
3344 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3345 	parse = (type == SPA_IMPORT_EXISTING ?
3346 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3347 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3348 	spa_config_exit(spa, SCL_ALL, FTAG);
3349 
3350 	if (error != 0) {
3351 		spa_load_failed(spa, "unable to parse config [error=%d]",
3352 		    error);
3353 		return (error);
3354 	}
3355 
3356 	ASSERT(spa->spa_root_vdev == rvd);
3357 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3358 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3359 
3360 	if (type != SPA_IMPORT_ASSEMBLE) {
3361 		ASSERT(spa_guid(spa) == pool_guid);
3362 	}
3363 
3364 	return (0);
3365 }
3366 
3367 /*
3368  * Recursively open all vdevs in the vdev tree. This function is called twice:
3369  * first with the untrusted config, then with the trusted config.
3370  */
3371 static int
3372 spa_ld_open_vdevs(spa_t *spa)
3373 {
3374 	int error = 0;
3375 
3376 	/*
3377 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3378 	 * missing/unopenable for the root vdev to be still considered openable.
3379 	 */
3380 	if (spa->spa_trust_config) {
3381 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3382 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3383 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3384 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3385 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3386 	} else {
3387 		spa->spa_missing_tvds_allowed = 0;
3388 	}
3389 
3390 	spa->spa_missing_tvds_allowed =
3391 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3392 
3393 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3394 	error = vdev_open(spa->spa_root_vdev);
3395 	spa_config_exit(spa, SCL_ALL, FTAG);
3396 
3397 	if (spa->spa_missing_tvds != 0) {
3398 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3399 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3400 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3401 			/*
3402 			 * Although theoretically we could allow users to open
3403 			 * incomplete pools in RW mode, we'd need to add a lot
3404 			 * of extra logic (e.g. adjust pool space to account
3405 			 * for missing vdevs).
3406 			 * This limitation also prevents users from accidentally
3407 			 * opening the pool in RW mode during data recovery and
3408 			 * damaging it further.
3409 			 */
3410 			spa_load_note(spa, "pools with missing top-level "
3411 			    "vdevs can only be opened in read-only mode.");
3412 			error = SET_ERROR(ENXIO);
3413 		} else {
3414 			spa_load_note(spa, "current settings allow for maximum "
3415 			    "%lld missing top-level vdevs at this stage.",
3416 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3417 		}
3418 	}
3419 	if (error != 0) {
3420 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3421 		    error);
3422 	}
3423 	if (spa->spa_missing_tvds != 0 || error != 0)
3424 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3425 
3426 	return (error);
3427 }
3428 
3429 /*
3430  * We need to validate the vdev labels against the configuration that
3431  * we have in hand. This function is called twice: first with an untrusted
3432  * config, then with a trusted config. The validation is more strict when the
3433  * config is trusted.
3434  */
3435 static int
3436 spa_ld_validate_vdevs(spa_t *spa)
3437 {
3438 	int error = 0;
3439 	vdev_t *rvd = spa->spa_root_vdev;
3440 
3441 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3442 	error = vdev_validate(rvd);
3443 	spa_config_exit(spa, SCL_ALL, FTAG);
3444 
3445 	if (error != 0) {
3446 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3447 		return (error);
3448 	}
3449 
3450 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3451 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3452 		    "some vdevs");
3453 		vdev_dbgmsg_print_tree(rvd, 2);
3454 		return (SET_ERROR(ENXIO));
3455 	}
3456 
3457 	return (0);
3458 }
3459 
3460 static void
3461 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3462 {
3463 	spa->spa_state = POOL_STATE_ACTIVE;
3464 	spa->spa_ubsync = spa->spa_uberblock;
3465 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3466 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3467 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3468 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3469 	spa->spa_claim_max_txg = spa->spa_first_txg;
3470 	spa->spa_prev_software_version = ub->ub_software_version;
3471 }
3472 
3473 static int
3474 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3475 {
3476 	vdev_t *rvd = spa->spa_root_vdev;
3477 	nvlist_t *label;
3478 	uberblock_t *ub = &spa->spa_uberblock;
3479 	boolean_t activity_check = B_FALSE;
3480 
3481 	/*
3482 	 * If we are opening the checkpointed state of the pool by
3483 	 * rewinding to it, at this point we will have written the
3484 	 * checkpointed uberblock to the vdev labels, so searching
3485 	 * the labels will find the right uberblock.  However, if
3486 	 * we are opening the checkpointed state read-only, we have
3487 	 * not modified the labels. Therefore, we must ignore the
3488 	 * labels and continue using the spa_uberblock that was set
3489 	 * by spa_ld_checkpoint_rewind.
3490 	 *
3491 	 * Note that it would be fine to ignore the labels when
3492 	 * rewinding (opening writeable) as well. However, if we
3493 	 * crash just after writing the labels, we will end up
3494 	 * searching the labels. Doing so in the common case means
3495 	 * that this code path gets exercised normally, rather than
3496 	 * just in the edge case.
3497 	 */
3498 	if (ub->ub_checkpoint_txg != 0 &&
3499 	    spa_importing_readonly_checkpoint(spa)) {
3500 		spa_ld_select_uberblock_done(spa, ub);
3501 		return (0);
3502 	}
3503 
3504 	/*
3505 	 * Find the best uberblock.
3506 	 */
3507 	vdev_uberblock_load(rvd, ub, &label);
3508 
3509 	/*
3510 	 * If we weren't able to find a single valid uberblock, return failure.
3511 	 */
3512 	if (ub->ub_txg == 0) {
3513 		nvlist_free(label);
3514 		spa_load_failed(spa, "no valid uberblock found");
3515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3516 	}
3517 
3518 	if (spa->spa_load_max_txg != UINT64_MAX) {
3519 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3520 		    (u_longlong_t)spa->spa_load_max_txg);
3521 	}
3522 	spa_load_note(spa, "using uberblock with txg=%llu",
3523 	    (u_longlong_t)ub->ub_txg);
3524 
3525 
3526 	/*
3527 	 * For pools which have the multihost property on determine if the
3528 	 * pool is truly inactive and can be safely imported.  Prevent
3529 	 * hosts which don't have a hostid set from importing the pool.
3530 	 */
3531 	activity_check = spa_activity_check_required(spa, ub, label,
3532 	    spa->spa_config);
3533 	if (activity_check) {
3534 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3535 		    spa_get_hostid(spa) == 0) {
3536 			nvlist_free(label);
3537 			fnvlist_add_uint64(spa->spa_load_info,
3538 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3539 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3540 		}
3541 
3542 		int error = spa_activity_check(spa, ub, spa->spa_config);
3543 		if (error) {
3544 			nvlist_free(label);
3545 			return (error);
3546 		}
3547 
3548 		fnvlist_add_uint64(spa->spa_load_info,
3549 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3550 		fnvlist_add_uint64(spa->spa_load_info,
3551 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3552 		fnvlist_add_uint16(spa->spa_load_info,
3553 		    ZPOOL_CONFIG_MMP_SEQ,
3554 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3555 	}
3556 
3557 	/*
3558 	 * If the pool has an unsupported version we can't open it.
3559 	 */
3560 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3561 		nvlist_free(label);
3562 		spa_load_failed(spa, "version %llu is not supported",
3563 		    (u_longlong_t)ub->ub_version);
3564 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3565 	}
3566 
3567 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3568 		nvlist_t *features;
3569 
3570 		/*
3571 		 * If we weren't able to find what's necessary for reading the
3572 		 * MOS in the label, return failure.
3573 		 */
3574 		if (label == NULL) {
3575 			spa_load_failed(spa, "label config unavailable");
3576 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3577 			    ENXIO));
3578 		}
3579 
3580 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3581 		    &features) != 0) {
3582 			nvlist_free(label);
3583 			spa_load_failed(spa, "invalid label: '%s' missing",
3584 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3585 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3586 			    ENXIO));
3587 		}
3588 
3589 		/*
3590 		 * Update our in-core representation with the definitive values
3591 		 * from the label.
3592 		 */
3593 		nvlist_free(spa->spa_label_features);
3594 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3595 	}
3596 
3597 	nvlist_free(label);
3598 
3599 	/*
3600 	 * Look through entries in the label nvlist's features_for_read. If
3601 	 * there is a feature listed there which we don't understand then we
3602 	 * cannot open a pool.
3603 	 */
3604 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3605 		nvlist_t *unsup_feat;
3606 
3607 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3608 		    0);
3609 
3610 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3611 		    NULL); nvp != NULL;
3612 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3613 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3614 				VERIFY(nvlist_add_string(unsup_feat,
3615 				    nvpair_name(nvp), "") == 0);
3616 			}
3617 		}
3618 
3619 		if (!nvlist_empty(unsup_feat)) {
3620 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3621 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3622 			nvlist_free(unsup_feat);
3623 			spa_load_failed(spa, "some features are unsupported");
3624 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3625 			    ENOTSUP));
3626 		}
3627 
3628 		nvlist_free(unsup_feat);
3629 	}
3630 
3631 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3632 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3633 		spa_try_repair(spa, spa->spa_config);
3634 		spa_config_exit(spa, SCL_ALL, FTAG);
3635 		nvlist_free(spa->spa_config_splitting);
3636 		spa->spa_config_splitting = NULL;
3637 	}
3638 
3639 	/*
3640 	 * Initialize internal SPA structures.
3641 	 */
3642 	spa_ld_select_uberblock_done(spa, ub);
3643 
3644 	return (0);
3645 }
3646 
3647 static int
3648 spa_ld_open_rootbp(spa_t *spa)
3649 {
3650 	int error = 0;
3651 	vdev_t *rvd = spa->spa_root_vdev;
3652 
3653 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3654 	if (error != 0) {
3655 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3656 		    "[error=%d]", error);
3657 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3658 	}
3659 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3660 
3661 	return (0);
3662 }
3663 
3664 static int
3665 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3666     boolean_t reloading)
3667 {
3668 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3669 	nvlist_t *nv, *mos_config, *policy;
3670 	int error = 0, copy_error;
3671 	uint64_t healthy_tvds, healthy_tvds_mos;
3672 	uint64_t mos_config_txg;
3673 
3674 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3675 	    != 0)
3676 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3677 
3678 	/*
3679 	 * If we're assembling a pool from a split, the config provided is
3680 	 * already trusted so there is nothing to do.
3681 	 */
3682 	if (type == SPA_IMPORT_ASSEMBLE)
3683 		return (0);
3684 
3685 	healthy_tvds = spa_healthy_core_tvds(spa);
3686 
3687 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3688 	    != 0) {
3689 		spa_load_failed(spa, "unable to retrieve MOS config");
3690 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3691 	}
3692 
3693 	/*
3694 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3695 	 * the verification here.
3696 	 */
3697 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3698 		error = spa_verify_host(spa, mos_config);
3699 		if (error != 0) {
3700 			nvlist_free(mos_config);
3701 			return (error);
3702 		}
3703 	}
3704 
3705 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3706 
3707 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3708 
3709 	/*
3710 	 * Build a new vdev tree from the trusted config
3711 	 */
3712 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3713 	if (error != 0) {
3714 		nvlist_free(mos_config);
3715 		spa_config_exit(spa, SCL_ALL, FTAG);
3716 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3717 		    error);
3718 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3719 	}
3720 
3721 	/*
3722 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3723 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3724 	 * paths. We update the trusted MOS config with this information.
3725 	 * We first try to copy the paths with vdev_copy_path_strict, which
3726 	 * succeeds only when both configs have exactly the same vdev tree.
3727 	 * If that fails, we fall back to a more flexible method that has a
3728 	 * best effort policy.
3729 	 */
3730 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3731 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3732 		spa_load_note(spa, "provided vdev tree:");
3733 		vdev_dbgmsg_print_tree(rvd, 2);
3734 		spa_load_note(spa, "MOS vdev tree:");
3735 		vdev_dbgmsg_print_tree(mrvd, 2);
3736 	}
3737 	if (copy_error != 0) {
3738 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3739 		    "back to vdev_copy_path_relaxed");
3740 		vdev_copy_path_relaxed(rvd, mrvd);
3741 	}
3742 
3743 	vdev_close(rvd);
3744 	vdev_free(rvd);
3745 	spa->spa_root_vdev = mrvd;
3746 	rvd = mrvd;
3747 	spa_config_exit(spa, SCL_ALL, FTAG);
3748 
3749 	/*
3750 	 * We will use spa_config if we decide to reload the spa or if spa_load
3751 	 * fails and we rewind. We must thus regenerate the config using the
3752 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3753 	 * pass settings on how to load the pool and is not stored in the MOS.
3754 	 * We copy it over to our new, trusted config.
3755 	 */
3756 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3757 	    ZPOOL_CONFIG_POOL_TXG);
3758 	nvlist_free(mos_config);
3759 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3760 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3761 	    &policy) == 0)
3762 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3763 	spa_config_set(spa, mos_config);
3764 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3765 
3766 	/*
3767 	 * Now that we got the config from the MOS, we should be more strict
3768 	 * in checking blkptrs and can make assumptions about the consistency
3769 	 * of the vdev tree. spa_trust_config must be set to true before opening
3770 	 * vdevs in order for them to be writeable.
3771 	 */
3772 	spa->spa_trust_config = B_TRUE;
3773 
3774 	/*
3775 	 * Open and validate the new vdev tree
3776 	 */
3777 	error = spa_ld_open_vdevs(spa);
3778 	if (error != 0)
3779 		return (error);
3780 
3781 	error = spa_ld_validate_vdevs(spa);
3782 	if (error != 0)
3783 		return (error);
3784 
3785 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3786 		spa_load_note(spa, "final vdev tree:");
3787 		vdev_dbgmsg_print_tree(rvd, 2);
3788 	}
3789 
3790 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3791 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3792 		/*
3793 		 * Sanity check to make sure that we are indeed loading the
3794 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3795 		 * in the config provided and they happened to be the only ones
3796 		 * to have the latest uberblock, we could involuntarily perform
3797 		 * an extreme rewind.
3798 		 */
3799 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3800 		if (healthy_tvds_mos - healthy_tvds >=
3801 		    SPA_SYNC_MIN_VDEVS) {
3802 			spa_load_note(spa, "config provided misses too many "
3803 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3804 			    (u_longlong_t)healthy_tvds,
3805 			    (u_longlong_t)healthy_tvds_mos);
3806 			spa_load_note(spa, "vdev tree:");
3807 			vdev_dbgmsg_print_tree(rvd, 2);
3808 			if (reloading) {
3809 				spa_load_failed(spa, "config was already "
3810 				    "provided from MOS. Aborting.");
3811 				return (spa_vdev_err(rvd,
3812 				    VDEV_AUX_CORRUPT_DATA, EIO));
3813 			}
3814 			spa_load_note(spa, "spa must be reloaded using MOS "
3815 			    "config");
3816 			return (SET_ERROR(EAGAIN));
3817 		}
3818 	}
3819 
3820 	error = spa_check_for_missing_logs(spa);
3821 	if (error != 0)
3822 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3823 
3824 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3825 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3826 		    "guid sum (%llu != %llu)",
3827 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3828 		    (u_longlong_t)rvd->vdev_guid_sum);
3829 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3830 		    ENXIO));
3831 	}
3832 
3833 	return (0);
3834 }
3835 
3836 static int
3837 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3838 {
3839 	int error = 0;
3840 	vdev_t *rvd = spa->spa_root_vdev;
3841 
3842 	/*
3843 	 * Everything that we read before spa_remove_init() must be stored
3844 	 * on concreted vdevs.  Therefore we do this as early as possible.
3845 	 */
3846 	error = spa_remove_init(spa);
3847 	if (error != 0) {
3848 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3849 		    error);
3850 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3851 	}
3852 
3853 	/*
3854 	 * Retrieve information needed to condense indirect vdev mappings.
3855 	 */
3856 	error = spa_condense_init(spa);
3857 	if (error != 0) {
3858 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3859 		    error);
3860 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3861 	}
3862 
3863 	return (0);
3864 }
3865 
3866 static int
3867 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3868 {
3869 	int error = 0;
3870 	vdev_t *rvd = spa->spa_root_vdev;
3871 
3872 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3873 		boolean_t missing_feat_read = B_FALSE;
3874 		nvlist_t *unsup_feat, *enabled_feat;
3875 
3876 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3877 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3878 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3879 		}
3880 
3881 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3882 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3883 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3884 		}
3885 
3886 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3887 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3888 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3889 		}
3890 
3891 		enabled_feat = fnvlist_alloc();
3892 		unsup_feat = fnvlist_alloc();
3893 
3894 		if (!spa_features_check(spa, B_FALSE,
3895 		    unsup_feat, enabled_feat))
3896 			missing_feat_read = B_TRUE;
3897 
3898 		if (spa_writeable(spa) ||
3899 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3900 			if (!spa_features_check(spa, B_TRUE,
3901 			    unsup_feat, enabled_feat)) {
3902 				*missing_feat_writep = B_TRUE;
3903 			}
3904 		}
3905 
3906 		fnvlist_add_nvlist(spa->spa_load_info,
3907 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3908 
3909 		if (!nvlist_empty(unsup_feat)) {
3910 			fnvlist_add_nvlist(spa->spa_load_info,
3911 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3912 		}
3913 
3914 		fnvlist_free(enabled_feat);
3915 		fnvlist_free(unsup_feat);
3916 
3917 		if (!missing_feat_read) {
3918 			fnvlist_add_boolean(spa->spa_load_info,
3919 			    ZPOOL_CONFIG_CAN_RDONLY);
3920 		}
3921 
3922 		/*
3923 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3924 		 * twofold: to determine whether the pool is available for
3925 		 * import in read-write mode and (if it is not) whether the
3926 		 * pool is available for import in read-only mode. If the pool
3927 		 * is available for import in read-write mode, it is displayed
3928 		 * as available in userland; if it is not available for import
3929 		 * in read-only mode, it is displayed as unavailable in
3930 		 * userland. If the pool is available for import in read-only
3931 		 * mode but not read-write mode, it is displayed as unavailable
3932 		 * in userland with a special note that the pool is actually
3933 		 * available for open in read-only mode.
3934 		 *
3935 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3936 		 * missing a feature for write, we must first determine whether
3937 		 * the pool can be opened read-only before returning to
3938 		 * userland in order to know whether to display the
3939 		 * abovementioned note.
3940 		 */
3941 		if (missing_feat_read || (*missing_feat_writep &&
3942 		    spa_writeable(spa))) {
3943 			spa_load_failed(spa, "pool uses unsupported features");
3944 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3945 			    ENOTSUP));
3946 		}
3947 
3948 		/*
3949 		 * Load refcounts for ZFS features from disk into an in-memory
3950 		 * cache during SPA initialization.
3951 		 */
3952 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3953 			uint64_t refcount;
3954 
3955 			error = feature_get_refcount_from_disk(spa,
3956 			    &spa_feature_table[i], &refcount);
3957 			if (error == 0) {
3958 				spa->spa_feat_refcount_cache[i] = refcount;
3959 			} else if (error == ENOTSUP) {
3960 				spa->spa_feat_refcount_cache[i] =
3961 				    SPA_FEATURE_DISABLED;
3962 			} else {
3963 				spa_load_failed(spa, "error getting refcount "
3964 				    "for feature %s [error=%d]",
3965 				    spa_feature_table[i].fi_guid, error);
3966 				return (spa_vdev_err(rvd,
3967 				    VDEV_AUX_CORRUPT_DATA, EIO));
3968 			}
3969 		}
3970 	}
3971 
3972 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3973 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3974 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3975 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3976 	}
3977 
3978 	/*
3979 	 * Encryption was added before bookmark_v2, even though bookmark_v2
3980 	 * is now a dependency. If this pool has encryption enabled without
3981 	 * bookmark_v2, trigger an errata message.
3982 	 */
3983 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
3984 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
3985 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
3986 	}
3987 
3988 	return (0);
3989 }
3990 
3991 static int
3992 spa_ld_load_special_directories(spa_t *spa)
3993 {
3994 	int error = 0;
3995 	vdev_t *rvd = spa->spa_root_vdev;
3996 
3997 	spa->spa_is_initializing = B_TRUE;
3998 	error = dsl_pool_open(spa->spa_dsl_pool);
3999 	spa->spa_is_initializing = B_FALSE;
4000 	if (error != 0) {
4001 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4002 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4003 	}
4004 
4005 	return (0);
4006 }
4007 
4008 static int
4009 spa_ld_get_props(spa_t *spa)
4010 {
4011 	int error = 0;
4012 	uint64_t obj;
4013 	vdev_t *rvd = spa->spa_root_vdev;
4014 
4015 	/* Grab the checksum salt from the MOS. */
4016 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4017 	    DMU_POOL_CHECKSUM_SALT, 1,
4018 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4019 	    spa->spa_cksum_salt.zcs_bytes);
4020 	if (error == ENOENT) {
4021 		/* Generate a new salt for subsequent use */
4022 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4023 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4024 	} else if (error != 0) {
4025 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4026 		    "MOS [error=%d]", error);
4027 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4028 	}
4029 
4030 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4031 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4032 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4033 	if (error != 0) {
4034 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4035 		    "[error=%d]", error);
4036 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4037 	}
4038 
4039 	/*
4040 	 * Load the bit that tells us to use the new accounting function
4041 	 * (raid-z deflation).  If we have an older pool, this will not
4042 	 * be present.
4043 	 */
4044 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4045 	if (error != 0 && error != ENOENT)
4046 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4047 
4048 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4049 	    &spa->spa_creation_version, B_FALSE);
4050 	if (error != 0 && error != ENOENT)
4051 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4052 
4053 	/*
4054 	 * Load the persistent error log.  If we have an older pool, this will
4055 	 * not be present.
4056 	 */
4057 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4058 	    B_FALSE);
4059 	if (error != 0 && error != ENOENT)
4060 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4061 
4062 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4063 	    &spa->spa_errlog_scrub, B_FALSE);
4064 	if (error != 0 && error != ENOENT)
4065 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4066 
4067 	/*
4068 	 * Load the livelist deletion field. If a livelist is queued for
4069 	 * deletion, indicate that in the spa
4070 	 */
4071 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4072 	    &spa->spa_livelists_to_delete, B_FALSE);
4073 	if (error != 0 && error != ENOENT)
4074 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4075 
4076 	/*
4077 	 * Load the history object.  If we have an older pool, this
4078 	 * will not be present.
4079 	 */
4080 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4081 	if (error != 0 && error != ENOENT)
4082 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4083 
4084 	/*
4085 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4086 	 * be present; in this case, defer its creation to a later time to
4087 	 * avoid dirtying the MOS this early / out of sync context. See
4088 	 * spa_sync_config_object.
4089 	 */
4090 
4091 	/* The sentinel is only available in the MOS config. */
4092 	nvlist_t *mos_config;
4093 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4094 		spa_load_failed(spa, "unable to retrieve MOS config");
4095 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4096 	}
4097 
4098 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4099 	    &spa->spa_all_vdev_zaps, B_FALSE);
4100 
4101 	if (error == ENOENT) {
4102 		VERIFY(!nvlist_exists(mos_config,
4103 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4104 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4105 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4106 	} else if (error != 0) {
4107 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4108 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4109 		/*
4110 		 * An older version of ZFS overwrote the sentinel value, so
4111 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4112 		 * destruction to later; see spa_sync_config_object.
4113 		 */
4114 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4115 		/*
4116 		 * We're assuming that no vdevs have had their ZAPs created
4117 		 * before this. Better be sure of it.
4118 		 */
4119 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4120 	}
4121 	nvlist_free(mos_config);
4122 
4123 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4124 
4125 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4126 	    B_FALSE);
4127 	if (error && error != ENOENT)
4128 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4129 
4130 	if (error == 0) {
4131 		uint64_t autoreplace;
4132 
4133 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4134 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4135 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4136 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4137 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4138 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4139 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4140 		spa->spa_autoreplace = (autoreplace != 0);
4141 	}
4142 
4143 	/*
4144 	 * If we are importing a pool with missing top-level vdevs,
4145 	 * we enforce that the pool doesn't panic or get suspended on
4146 	 * error since the likelihood of missing data is extremely high.
4147 	 */
4148 	if (spa->spa_missing_tvds > 0 &&
4149 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4150 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4151 		spa_load_note(spa, "forcing failmode to 'continue' "
4152 		    "as some top level vdevs are missing");
4153 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4154 	}
4155 
4156 	return (0);
4157 }
4158 
4159 static int
4160 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4161 {
4162 	int error = 0;
4163 	vdev_t *rvd = spa->spa_root_vdev;
4164 
4165 	/*
4166 	 * If we're assembling the pool from the split-off vdevs of
4167 	 * an existing pool, we don't want to attach the spares & cache
4168 	 * devices.
4169 	 */
4170 
4171 	/*
4172 	 * Load any hot spares for this pool.
4173 	 */
4174 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4175 	    B_FALSE);
4176 	if (error != 0 && error != ENOENT)
4177 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4178 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4179 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4180 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4181 		    &spa->spa_spares.sav_config) != 0) {
4182 			spa_load_failed(spa, "error loading spares nvlist");
4183 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4184 		}
4185 
4186 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4187 		spa_load_spares(spa);
4188 		spa_config_exit(spa, SCL_ALL, FTAG);
4189 	} else if (error == 0) {
4190 		spa->spa_spares.sav_sync = B_TRUE;
4191 	}
4192 
4193 	/*
4194 	 * Load any level 2 ARC devices for this pool.
4195 	 */
4196 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4197 	    &spa->spa_l2cache.sav_object, B_FALSE);
4198 	if (error != 0 && error != ENOENT)
4199 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4200 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4201 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4202 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4203 		    &spa->spa_l2cache.sav_config) != 0) {
4204 			spa_load_failed(spa, "error loading l2cache nvlist");
4205 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4206 		}
4207 
4208 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4209 		spa_load_l2cache(spa);
4210 		spa_config_exit(spa, SCL_ALL, FTAG);
4211 	} else if (error == 0) {
4212 		spa->spa_l2cache.sav_sync = B_TRUE;
4213 	}
4214 
4215 	return (0);
4216 }
4217 
4218 static int
4219 spa_ld_load_vdev_metadata(spa_t *spa)
4220 {
4221 	int error = 0;
4222 	vdev_t *rvd = spa->spa_root_vdev;
4223 
4224 	/*
4225 	 * If the 'multihost' property is set, then never allow a pool to
4226 	 * be imported when the system hostid is zero.  The exception to
4227 	 * this rule is zdb which is always allowed to access pools.
4228 	 */
4229 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4230 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4231 		fnvlist_add_uint64(spa->spa_load_info,
4232 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4233 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4234 	}
4235 
4236 	/*
4237 	 * If the 'autoreplace' property is set, then post a resource notifying
4238 	 * the ZFS DE that it should not issue any faults for unopenable
4239 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4240 	 * unopenable vdevs so that the normal autoreplace handler can take
4241 	 * over.
4242 	 */
4243 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4244 		spa_check_removed(spa->spa_root_vdev);
4245 		/*
4246 		 * For the import case, this is done in spa_import(), because
4247 		 * at this point we're using the spare definitions from
4248 		 * the MOS config, not necessarily from the userland config.
4249 		 */
4250 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4251 			spa_aux_check_removed(&spa->spa_spares);
4252 			spa_aux_check_removed(&spa->spa_l2cache);
4253 		}
4254 	}
4255 
4256 	/*
4257 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4258 	 */
4259 	error = vdev_load(rvd);
4260 	if (error != 0) {
4261 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4262 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4263 	}
4264 
4265 	error = spa_ld_log_spacemaps(spa);
4266 	if (error != 0) {
4267 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4268 		    error);
4269 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4270 	}
4271 
4272 	/*
4273 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4274 	 */
4275 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4276 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4277 	spa_config_exit(spa, SCL_ALL, FTAG);
4278 
4279 	return (0);
4280 }
4281 
4282 static int
4283 spa_ld_load_dedup_tables(spa_t *spa)
4284 {
4285 	int error = 0;
4286 	vdev_t *rvd = spa->spa_root_vdev;
4287 
4288 	error = ddt_load(spa);
4289 	if (error != 0) {
4290 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4291 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4292 	}
4293 
4294 	return (0);
4295 }
4296 
4297 static int
4298 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4299 {
4300 	vdev_t *rvd = spa->spa_root_vdev;
4301 
4302 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4303 		boolean_t missing = spa_check_logs(spa);
4304 		if (missing) {
4305 			if (spa->spa_missing_tvds != 0) {
4306 				spa_load_note(spa, "spa_check_logs failed "
4307 				    "so dropping the logs");
4308 			} else {
4309 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4310 				spa_load_failed(spa, "spa_check_logs failed");
4311 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4312 				    ENXIO));
4313 			}
4314 		}
4315 	}
4316 
4317 	return (0);
4318 }
4319 
4320 static int
4321 spa_ld_verify_pool_data(spa_t *spa)
4322 {
4323 	int error = 0;
4324 	vdev_t *rvd = spa->spa_root_vdev;
4325 
4326 	/*
4327 	 * We've successfully opened the pool, verify that we're ready
4328 	 * to start pushing transactions.
4329 	 */
4330 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4331 		error = spa_load_verify(spa);
4332 		if (error != 0) {
4333 			spa_load_failed(spa, "spa_load_verify failed "
4334 			    "[error=%d]", error);
4335 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4336 			    error));
4337 		}
4338 	}
4339 
4340 	return (0);
4341 }
4342 
4343 static void
4344 spa_ld_claim_log_blocks(spa_t *spa)
4345 {
4346 	dmu_tx_t *tx;
4347 	dsl_pool_t *dp = spa_get_dsl(spa);
4348 
4349 	/*
4350 	 * Claim log blocks that haven't been committed yet.
4351 	 * This must all happen in a single txg.
4352 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4353 	 * invoked from zil_claim_log_block()'s i/o done callback.
4354 	 * Price of rollback is that we abandon the log.
4355 	 */
4356 	spa->spa_claiming = B_TRUE;
4357 
4358 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4359 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4360 	    zil_claim, tx, DS_FIND_CHILDREN);
4361 	dmu_tx_commit(tx);
4362 
4363 	spa->spa_claiming = B_FALSE;
4364 
4365 	spa_set_log_state(spa, SPA_LOG_GOOD);
4366 }
4367 
4368 static void
4369 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4370     boolean_t update_config_cache)
4371 {
4372 	vdev_t *rvd = spa->spa_root_vdev;
4373 	int need_update = B_FALSE;
4374 
4375 	/*
4376 	 * If the config cache is stale, or we have uninitialized
4377 	 * metaslabs (see spa_vdev_add()), then update the config.
4378 	 *
4379 	 * If this is a verbatim import, trust the current
4380 	 * in-core spa_config and update the disk labels.
4381 	 */
4382 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4383 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4384 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4385 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4386 		need_update = B_TRUE;
4387 
4388 	for (int c = 0; c < rvd->vdev_children; c++)
4389 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4390 			need_update = B_TRUE;
4391 
4392 	/*
4393 	 * Update the config cache asynchronously in case we're the
4394 	 * root pool, in which case the config cache isn't writable yet.
4395 	 */
4396 	if (need_update)
4397 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4398 }
4399 
4400 static void
4401 spa_ld_prepare_for_reload(spa_t *spa)
4402 {
4403 	spa_mode_t mode = spa->spa_mode;
4404 	int async_suspended = spa->spa_async_suspended;
4405 
4406 	spa_unload(spa);
4407 	spa_deactivate(spa);
4408 	spa_activate(spa, mode);
4409 
4410 	/*
4411 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4412 	 * spa_unload(). We want to restore it back to the original value before
4413 	 * returning as we might be calling spa_async_resume() later.
4414 	 */
4415 	spa->spa_async_suspended = async_suspended;
4416 }
4417 
4418 static int
4419 spa_ld_read_checkpoint_txg(spa_t *spa)
4420 {
4421 	uberblock_t checkpoint;
4422 	int error = 0;
4423 
4424 	ASSERT0(spa->spa_checkpoint_txg);
4425 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4426 
4427 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4428 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4429 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4430 
4431 	if (error == ENOENT)
4432 		return (0);
4433 
4434 	if (error != 0)
4435 		return (error);
4436 
4437 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4438 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4439 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4440 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4441 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4442 
4443 	return (0);
4444 }
4445 
4446 static int
4447 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4448 {
4449 	int error = 0;
4450 
4451 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4452 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4453 
4454 	/*
4455 	 * Never trust the config that is provided unless we are assembling
4456 	 * a pool following a split.
4457 	 * This means don't trust blkptrs and the vdev tree in general. This
4458 	 * also effectively puts the spa in read-only mode since
4459 	 * spa_writeable() checks for spa_trust_config to be true.
4460 	 * We will later load a trusted config from the MOS.
4461 	 */
4462 	if (type != SPA_IMPORT_ASSEMBLE)
4463 		spa->spa_trust_config = B_FALSE;
4464 
4465 	/*
4466 	 * Parse the config provided to create a vdev tree.
4467 	 */
4468 	error = spa_ld_parse_config(spa, type);
4469 	if (error != 0)
4470 		return (error);
4471 
4472 	spa_import_progress_add(spa);
4473 
4474 	/*
4475 	 * Now that we have the vdev tree, try to open each vdev. This involves
4476 	 * opening the underlying physical device, retrieving its geometry and
4477 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4478 	 * based on the success of those operations. After this we'll be ready
4479 	 * to read from the vdevs.
4480 	 */
4481 	error = spa_ld_open_vdevs(spa);
4482 	if (error != 0)
4483 		return (error);
4484 
4485 	/*
4486 	 * Read the label of each vdev and make sure that the GUIDs stored
4487 	 * there match the GUIDs in the config provided.
4488 	 * If we're assembling a new pool that's been split off from an
4489 	 * existing pool, the labels haven't yet been updated so we skip
4490 	 * validation for now.
4491 	 */
4492 	if (type != SPA_IMPORT_ASSEMBLE) {
4493 		error = spa_ld_validate_vdevs(spa);
4494 		if (error != 0)
4495 			return (error);
4496 	}
4497 
4498 	/*
4499 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4500 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4501 	 * get the list of features required to read blkptrs in the MOS from
4502 	 * the vdev label with the best uberblock and verify that our version
4503 	 * of zfs supports them all.
4504 	 */
4505 	error = spa_ld_select_uberblock(spa, type);
4506 	if (error != 0)
4507 		return (error);
4508 
4509 	/*
4510 	 * Pass that uberblock to the dsl_pool layer which will open the root
4511 	 * blkptr. This blkptr points to the latest version of the MOS and will
4512 	 * allow us to read its contents.
4513 	 */
4514 	error = spa_ld_open_rootbp(spa);
4515 	if (error != 0)
4516 		return (error);
4517 
4518 	return (0);
4519 }
4520 
4521 static int
4522 spa_ld_checkpoint_rewind(spa_t *spa)
4523 {
4524 	uberblock_t checkpoint;
4525 	int error = 0;
4526 
4527 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4528 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4529 
4530 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4531 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4532 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4533 
4534 	if (error != 0) {
4535 		spa_load_failed(spa, "unable to retrieve checkpointed "
4536 		    "uberblock from the MOS config [error=%d]", error);
4537 
4538 		if (error == ENOENT)
4539 			error = ZFS_ERR_NO_CHECKPOINT;
4540 
4541 		return (error);
4542 	}
4543 
4544 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4545 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4546 
4547 	/*
4548 	 * We need to update the txg and timestamp of the checkpointed
4549 	 * uberblock to be higher than the latest one. This ensures that
4550 	 * the checkpointed uberblock is selected if we were to close and
4551 	 * reopen the pool right after we've written it in the vdev labels.
4552 	 * (also see block comment in vdev_uberblock_compare)
4553 	 */
4554 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4555 	checkpoint.ub_timestamp = gethrestime_sec();
4556 
4557 	/*
4558 	 * Set current uberblock to be the checkpointed uberblock.
4559 	 */
4560 	spa->spa_uberblock = checkpoint;
4561 
4562 	/*
4563 	 * If we are doing a normal rewind, then the pool is open for
4564 	 * writing and we sync the "updated" checkpointed uberblock to
4565 	 * disk. Once this is done, we've basically rewound the whole
4566 	 * pool and there is no way back.
4567 	 *
4568 	 * There are cases when we don't want to attempt and sync the
4569 	 * checkpointed uberblock to disk because we are opening a
4570 	 * pool as read-only. Specifically, verifying the checkpointed
4571 	 * state with zdb, and importing the checkpointed state to get
4572 	 * a "preview" of its content.
4573 	 */
4574 	if (spa_writeable(spa)) {
4575 		vdev_t *rvd = spa->spa_root_vdev;
4576 
4577 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4578 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4579 		int svdcount = 0;
4580 		int children = rvd->vdev_children;
4581 		int c0 = spa_get_random(children);
4582 
4583 		for (int c = 0; c < children; c++) {
4584 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4585 
4586 			/* Stop when revisiting the first vdev */
4587 			if (c > 0 && svd[0] == vd)
4588 				break;
4589 
4590 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4591 			    !vdev_is_concrete(vd))
4592 				continue;
4593 
4594 			svd[svdcount++] = vd;
4595 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4596 				break;
4597 		}
4598 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4599 		if (error == 0)
4600 			spa->spa_last_synced_guid = rvd->vdev_guid;
4601 		spa_config_exit(spa, SCL_ALL, FTAG);
4602 
4603 		if (error != 0) {
4604 			spa_load_failed(spa, "failed to write checkpointed "
4605 			    "uberblock to the vdev labels [error=%d]", error);
4606 			return (error);
4607 		}
4608 	}
4609 
4610 	return (0);
4611 }
4612 
4613 static int
4614 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4615     boolean_t *update_config_cache)
4616 {
4617 	int error;
4618 
4619 	/*
4620 	 * Parse the config for pool, open and validate vdevs,
4621 	 * select an uberblock, and use that uberblock to open
4622 	 * the MOS.
4623 	 */
4624 	error = spa_ld_mos_init(spa, type);
4625 	if (error != 0)
4626 		return (error);
4627 
4628 	/*
4629 	 * Retrieve the trusted config stored in the MOS and use it to create
4630 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4631 	 */
4632 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4633 	if (error == EAGAIN) {
4634 		if (update_config_cache != NULL)
4635 			*update_config_cache = B_TRUE;
4636 
4637 		/*
4638 		 * Redo the loading process with the trusted config if it is
4639 		 * too different from the untrusted config.
4640 		 */
4641 		spa_ld_prepare_for_reload(spa);
4642 		spa_load_note(spa, "RELOADING");
4643 		error = spa_ld_mos_init(spa, type);
4644 		if (error != 0)
4645 			return (error);
4646 
4647 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4648 		if (error != 0)
4649 			return (error);
4650 
4651 	} else if (error != 0) {
4652 		return (error);
4653 	}
4654 
4655 	return (0);
4656 }
4657 
4658 /*
4659  * Load an existing storage pool, using the config provided. This config
4660  * describes which vdevs are part of the pool and is later validated against
4661  * partial configs present in each vdev's label and an entire copy of the
4662  * config stored in the MOS.
4663  */
4664 static int
4665 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4666 {
4667 	int error = 0;
4668 	boolean_t missing_feat_write = B_FALSE;
4669 	boolean_t checkpoint_rewind =
4670 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4671 	boolean_t update_config_cache = B_FALSE;
4672 
4673 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4674 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4675 
4676 	spa_load_note(spa, "LOADING");
4677 
4678 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4679 	if (error != 0)
4680 		return (error);
4681 
4682 	/*
4683 	 * If we are rewinding to the checkpoint then we need to repeat
4684 	 * everything we've done so far in this function but this time
4685 	 * selecting the checkpointed uberblock and using that to open
4686 	 * the MOS.
4687 	 */
4688 	if (checkpoint_rewind) {
4689 		/*
4690 		 * If we are rewinding to the checkpoint update config cache
4691 		 * anyway.
4692 		 */
4693 		update_config_cache = B_TRUE;
4694 
4695 		/*
4696 		 * Extract the checkpointed uberblock from the current MOS
4697 		 * and use this as the pool's uberblock from now on. If the
4698 		 * pool is imported as writeable we also write the checkpoint
4699 		 * uberblock to the labels, making the rewind permanent.
4700 		 */
4701 		error = spa_ld_checkpoint_rewind(spa);
4702 		if (error != 0)
4703 			return (error);
4704 
4705 		/*
4706 		 * Redo the loading process again with the
4707 		 * checkpointed uberblock.
4708 		 */
4709 		spa_ld_prepare_for_reload(spa);
4710 		spa_load_note(spa, "LOADING checkpointed uberblock");
4711 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4712 		if (error != 0)
4713 			return (error);
4714 	}
4715 
4716 	/*
4717 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4718 	 */
4719 	error = spa_ld_read_checkpoint_txg(spa);
4720 	if (error != 0)
4721 		return (error);
4722 
4723 	/*
4724 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4725 	 * from the pool and their contents were re-mapped to other vdevs. Note
4726 	 * that everything that we read before this step must have been
4727 	 * rewritten on concrete vdevs after the last device removal was
4728 	 * initiated. Otherwise we could be reading from indirect vdevs before
4729 	 * we have loaded their mappings.
4730 	 */
4731 	error = spa_ld_open_indirect_vdev_metadata(spa);
4732 	if (error != 0)
4733 		return (error);
4734 
4735 	/*
4736 	 * Retrieve the full list of active features from the MOS and check if
4737 	 * they are all supported.
4738 	 */
4739 	error = spa_ld_check_features(spa, &missing_feat_write);
4740 	if (error != 0)
4741 		return (error);
4742 
4743 	/*
4744 	 * Load several special directories from the MOS needed by the dsl_pool
4745 	 * layer.
4746 	 */
4747 	error = spa_ld_load_special_directories(spa);
4748 	if (error != 0)
4749 		return (error);
4750 
4751 	/*
4752 	 * Retrieve pool properties from the MOS.
4753 	 */
4754 	error = spa_ld_get_props(spa);
4755 	if (error != 0)
4756 		return (error);
4757 
4758 	/*
4759 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4760 	 * and open them.
4761 	 */
4762 	error = spa_ld_open_aux_vdevs(spa, type);
4763 	if (error != 0)
4764 		return (error);
4765 
4766 	/*
4767 	 * Load the metadata for all vdevs. Also check if unopenable devices
4768 	 * should be autoreplaced.
4769 	 */
4770 	error = spa_ld_load_vdev_metadata(spa);
4771 	if (error != 0)
4772 		return (error);
4773 
4774 	error = spa_ld_load_dedup_tables(spa);
4775 	if (error != 0)
4776 		return (error);
4777 
4778 	/*
4779 	 * Verify the logs now to make sure we don't have any unexpected errors
4780 	 * when we claim log blocks later.
4781 	 */
4782 	error = spa_ld_verify_logs(spa, type, ereport);
4783 	if (error != 0)
4784 		return (error);
4785 
4786 	if (missing_feat_write) {
4787 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4788 
4789 		/*
4790 		 * At this point, we know that we can open the pool in
4791 		 * read-only mode but not read-write mode. We now have enough
4792 		 * information and can return to userland.
4793 		 */
4794 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4795 		    ENOTSUP));
4796 	}
4797 
4798 	/*
4799 	 * Traverse the last txgs to make sure the pool was left off in a safe
4800 	 * state. When performing an extreme rewind, we verify the whole pool,
4801 	 * which can take a very long time.
4802 	 */
4803 	error = spa_ld_verify_pool_data(spa);
4804 	if (error != 0)
4805 		return (error);
4806 
4807 	/*
4808 	 * Calculate the deflated space for the pool. This must be done before
4809 	 * we write anything to the pool because we'd need to update the space
4810 	 * accounting using the deflated sizes.
4811 	 */
4812 	spa_update_dspace(spa);
4813 
4814 	/*
4815 	 * We have now retrieved all the information we needed to open the
4816 	 * pool. If we are importing the pool in read-write mode, a few
4817 	 * additional steps must be performed to finish the import.
4818 	 */
4819 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4820 	    spa->spa_load_max_txg == UINT64_MAX)) {
4821 		uint64_t config_cache_txg = spa->spa_config_txg;
4822 
4823 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4824 
4825 		/*
4826 		 * In case of a checkpoint rewind, log the original txg
4827 		 * of the checkpointed uberblock.
4828 		 */
4829 		if (checkpoint_rewind) {
4830 			spa_history_log_internal(spa, "checkpoint rewind",
4831 			    NULL, "rewound state to txg=%llu",
4832 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4833 		}
4834 
4835 		/*
4836 		 * Traverse the ZIL and claim all blocks.
4837 		 */
4838 		spa_ld_claim_log_blocks(spa);
4839 
4840 		/*
4841 		 * Kick-off the syncing thread.
4842 		 */
4843 		spa->spa_sync_on = B_TRUE;
4844 		txg_sync_start(spa->spa_dsl_pool);
4845 		mmp_thread_start(spa);
4846 
4847 		/*
4848 		 * Wait for all claims to sync.  We sync up to the highest
4849 		 * claimed log block birth time so that claimed log blocks
4850 		 * don't appear to be from the future.  spa_claim_max_txg
4851 		 * will have been set for us by ZIL traversal operations
4852 		 * performed above.
4853 		 */
4854 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4855 
4856 		/*
4857 		 * Check if we need to request an update of the config. On the
4858 		 * next sync, we would update the config stored in vdev labels
4859 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4860 		 */
4861 		spa_ld_check_for_config_update(spa, config_cache_txg,
4862 		    update_config_cache);
4863 
4864 		/*
4865 		 * Check if a rebuild was in progress and if so resume it.
4866 		 * Then check all DTLs to see if anything needs resilvering.
4867 		 * The resilver will be deferred if a rebuild was started.
4868 		 */
4869 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4870 			vdev_rebuild_restart(spa);
4871 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4872 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4873 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4874 		}
4875 
4876 		/*
4877 		 * Log the fact that we booted up (so that we can detect if
4878 		 * we rebooted in the middle of an operation).
4879 		 */
4880 		spa_history_log_version(spa, "open", NULL);
4881 
4882 		spa_restart_removal(spa);
4883 		spa_spawn_aux_threads(spa);
4884 
4885 		/*
4886 		 * Delete any inconsistent datasets.
4887 		 *
4888 		 * Note:
4889 		 * Since we may be issuing deletes for clones here,
4890 		 * we make sure to do so after we've spawned all the
4891 		 * auxiliary threads above (from which the livelist
4892 		 * deletion zthr is part of).
4893 		 */
4894 		(void) dmu_objset_find(spa_name(spa),
4895 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4896 
4897 		/*
4898 		 * Clean up any stale temporary dataset userrefs.
4899 		 */
4900 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4901 
4902 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4903 		vdev_initialize_restart(spa->spa_root_vdev);
4904 		vdev_trim_restart(spa->spa_root_vdev);
4905 		vdev_autotrim_restart(spa);
4906 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4907 	}
4908 
4909 	spa_import_progress_remove(spa_guid(spa));
4910 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4911 
4912 	spa_load_note(spa, "LOADED");
4913 
4914 	return (0);
4915 }
4916 
4917 static int
4918 spa_load_retry(spa_t *spa, spa_load_state_t state)
4919 {
4920 	spa_mode_t mode = spa->spa_mode;
4921 
4922 	spa_unload(spa);
4923 	spa_deactivate(spa);
4924 
4925 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4926 
4927 	spa_activate(spa, mode);
4928 	spa_async_suspend(spa);
4929 
4930 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4931 	    (u_longlong_t)spa->spa_load_max_txg);
4932 
4933 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4934 }
4935 
4936 /*
4937  * If spa_load() fails this function will try loading prior txg's. If
4938  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4939  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4940  * function will not rewind the pool and will return the same error as
4941  * spa_load().
4942  */
4943 static int
4944 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4945     int rewind_flags)
4946 {
4947 	nvlist_t *loadinfo = NULL;
4948 	nvlist_t *config = NULL;
4949 	int load_error, rewind_error;
4950 	uint64_t safe_rewind_txg;
4951 	uint64_t min_txg;
4952 
4953 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4954 		spa->spa_load_max_txg = spa->spa_load_txg;
4955 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4956 	} else {
4957 		spa->spa_load_max_txg = max_request;
4958 		if (max_request != UINT64_MAX)
4959 			spa->spa_extreme_rewind = B_TRUE;
4960 	}
4961 
4962 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4963 	if (load_error == 0)
4964 		return (0);
4965 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4966 		/*
4967 		 * When attempting checkpoint-rewind on a pool with no
4968 		 * checkpoint, we should not attempt to load uberblocks
4969 		 * from previous txgs when spa_load fails.
4970 		 */
4971 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4972 		spa_import_progress_remove(spa_guid(spa));
4973 		return (load_error);
4974 	}
4975 
4976 	if (spa->spa_root_vdev != NULL)
4977 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4978 
4979 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4980 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4981 
4982 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4983 		nvlist_free(config);
4984 		spa_import_progress_remove(spa_guid(spa));
4985 		return (load_error);
4986 	}
4987 
4988 	if (state == SPA_LOAD_RECOVER) {
4989 		/* Price of rolling back is discarding txgs, including log */
4990 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4991 	} else {
4992 		/*
4993 		 * If we aren't rolling back save the load info from our first
4994 		 * import attempt so that we can restore it after attempting
4995 		 * to rewind.
4996 		 */
4997 		loadinfo = spa->spa_load_info;
4998 		spa->spa_load_info = fnvlist_alloc();
4999 	}
5000 
5001 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5002 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5003 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5004 	    TXG_INITIAL : safe_rewind_txg;
5005 
5006 	/*
5007 	 * Continue as long as we're finding errors, we're still within
5008 	 * the acceptable rewind range, and we're still finding uberblocks
5009 	 */
5010 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5011 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5012 		if (spa->spa_load_max_txg < safe_rewind_txg)
5013 			spa->spa_extreme_rewind = B_TRUE;
5014 		rewind_error = spa_load_retry(spa, state);
5015 	}
5016 
5017 	spa->spa_extreme_rewind = B_FALSE;
5018 	spa->spa_load_max_txg = UINT64_MAX;
5019 
5020 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5021 		spa_config_set(spa, config);
5022 	else
5023 		nvlist_free(config);
5024 
5025 	if (state == SPA_LOAD_RECOVER) {
5026 		ASSERT3P(loadinfo, ==, NULL);
5027 		spa_import_progress_remove(spa_guid(spa));
5028 		return (rewind_error);
5029 	} else {
5030 		/* Store the rewind info as part of the initial load info */
5031 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5032 		    spa->spa_load_info);
5033 
5034 		/* Restore the initial load info */
5035 		fnvlist_free(spa->spa_load_info);
5036 		spa->spa_load_info = loadinfo;
5037 
5038 		spa_import_progress_remove(spa_guid(spa));
5039 		return (load_error);
5040 	}
5041 }
5042 
5043 /*
5044  * Pool Open/Import
5045  *
5046  * The import case is identical to an open except that the configuration is sent
5047  * down from userland, instead of grabbed from the configuration cache.  For the
5048  * case of an open, the pool configuration will exist in the
5049  * POOL_STATE_UNINITIALIZED state.
5050  *
5051  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5052  * the same time open the pool, without having to keep around the spa_t in some
5053  * ambiguous state.
5054  */
5055 static int
5056 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5057     nvlist_t **config)
5058 {
5059 	spa_t *spa;
5060 	spa_load_state_t state = SPA_LOAD_OPEN;
5061 	int error;
5062 	int locked = B_FALSE;
5063 	int firstopen = B_FALSE;
5064 
5065 	*spapp = NULL;
5066 
5067 	/*
5068 	 * As disgusting as this is, we need to support recursive calls to this
5069 	 * function because dsl_dir_open() is called during spa_load(), and ends
5070 	 * up calling spa_open() again.  The real fix is to figure out how to
5071 	 * avoid dsl_dir_open() calling this in the first place.
5072 	 */
5073 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5074 		mutex_enter(&spa_namespace_lock);
5075 		locked = B_TRUE;
5076 	}
5077 
5078 	if ((spa = spa_lookup(pool)) == NULL) {
5079 		if (locked)
5080 			mutex_exit(&spa_namespace_lock);
5081 		return (SET_ERROR(ENOENT));
5082 	}
5083 
5084 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5085 		zpool_load_policy_t policy;
5086 
5087 		firstopen = B_TRUE;
5088 
5089 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5090 		    &policy);
5091 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5092 			state = SPA_LOAD_RECOVER;
5093 
5094 		spa_activate(spa, spa_mode_global);
5095 
5096 		if (state != SPA_LOAD_RECOVER)
5097 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5098 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5099 
5100 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5101 		error = spa_load_best(spa, state, policy.zlp_txg,
5102 		    policy.zlp_rewind);
5103 
5104 		if (error == EBADF) {
5105 			/*
5106 			 * If vdev_validate() returns failure (indicated by
5107 			 * EBADF), it indicates that one of the vdevs indicates
5108 			 * that the pool has been exported or destroyed.  If
5109 			 * this is the case, the config cache is out of sync and
5110 			 * we should remove the pool from the namespace.
5111 			 */
5112 			spa_unload(spa);
5113 			spa_deactivate(spa);
5114 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5115 			spa_remove(spa);
5116 			if (locked)
5117 				mutex_exit(&spa_namespace_lock);
5118 			return (SET_ERROR(ENOENT));
5119 		}
5120 
5121 		if (error) {
5122 			/*
5123 			 * We can't open the pool, but we still have useful
5124 			 * information: the state of each vdev after the
5125 			 * attempted vdev_open().  Return this to the user.
5126 			 */
5127 			if (config != NULL && spa->spa_config) {
5128 				VERIFY(nvlist_dup(spa->spa_config, config,
5129 				    KM_SLEEP) == 0);
5130 				VERIFY(nvlist_add_nvlist(*config,
5131 				    ZPOOL_CONFIG_LOAD_INFO,
5132 				    spa->spa_load_info) == 0);
5133 			}
5134 			spa_unload(spa);
5135 			spa_deactivate(spa);
5136 			spa->spa_last_open_failed = error;
5137 			if (locked)
5138 				mutex_exit(&spa_namespace_lock);
5139 			*spapp = NULL;
5140 			return (error);
5141 		}
5142 	}
5143 
5144 	spa_open_ref(spa, tag);
5145 
5146 	if (config != NULL)
5147 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5148 
5149 	/*
5150 	 * If we've recovered the pool, pass back any information we
5151 	 * gathered while doing the load.
5152 	 */
5153 	if (state == SPA_LOAD_RECOVER) {
5154 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5155 		    spa->spa_load_info) == 0);
5156 	}
5157 
5158 	if (locked) {
5159 		spa->spa_last_open_failed = 0;
5160 		spa->spa_last_ubsync_txg = 0;
5161 		spa->spa_load_txg = 0;
5162 		mutex_exit(&spa_namespace_lock);
5163 	}
5164 
5165 	if (firstopen)
5166 		zvol_create_minors_recursive(spa_name(spa));
5167 
5168 	*spapp = spa;
5169 
5170 	return (0);
5171 }
5172 
5173 int
5174 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5175     nvlist_t **config)
5176 {
5177 	return (spa_open_common(name, spapp, tag, policy, config));
5178 }
5179 
5180 int
5181 spa_open(const char *name, spa_t **spapp, void *tag)
5182 {
5183 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5184 }
5185 
5186 /*
5187  * Lookup the given spa_t, incrementing the inject count in the process,
5188  * preventing it from being exported or destroyed.
5189  */
5190 spa_t *
5191 spa_inject_addref(char *name)
5192 {
5193 	spa_t *spa;
5194 
5195 	mutex_enter(&spa_namespace_lock);
5196 	if ((spa = spa_lookup(name)) == NULL) {
5197 		mutex_exit(&spa_namespace_lock);
5198 		return (NULL);
5199 	}
5200 	spa->spa_inject_ref++;
5201 	mutex_exit(&spa_namespace_lock);
5202 
5203 	return (spa);
5204 }
5205 
5206 void
5207 spa_inject_delref(spa_t *spa)
5208 {
5209 	mutex_enter(&spa_namespace_lock);
5210 	spa->spa_inject_ref--;
5211 	mutex_exit(&spa_namespace_lock);
5212 }
5213 
5214 /*
5215  * Add spares device information to the nvlist.
5216  */
5217 static void
5218 spa_add_spares(spa_t *spa, nvlist_t *config)
5219 {
5220 	nvlist_t **spares;
5221 	uint_t i, nspares;
5222 	nvlist_t *nvroot;
5223 	uint64_t guid;
5224 	vdev_stat_t *vs;
5225 	uint_t vsc;
5226 	uint64_t pool;
5227 
5228 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5229 
5230 	if (spa->spa_spares.sav_count == 0)
5231 		return;
5232 
5233 	VERIFY(nvlist_lookup_nvlist(config,
5234 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5235 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5236 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5237 	if (nspares != 0) {
5238 		VERIFY(nvlist_add_nvlist_array(nvroot,
5239 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5240 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5241 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5242 
5243 		/*
5244 		 * Go through and find any spares which have since been
5245 		 * repurposed as an active spare.  If this is the case, update
5246 		 * their status appropriately.
5247 		 */
5248 		for (i = 0; i < nspares; i++) {
5249 			VERIFY(nvlist_lookup_uint64(spares[i],
5250 			    ZPOOL_CONFIG_GUID, &guid) == 0);
5251 			if (spa_spare_exists(guid, &pool, NULL) &&
5252 			    pool != 0ULL) {
5253 				VERIFY(nvlist_lookup_uint64_array(
5254 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
5255 				    (uint64_t **)&vs, &vsc) == 0);
5256 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5257 				vs->vs_aux = VDEV_AUX_SPARED;
5258 			}
5259 		}
5260 	}
5261 }
5262 
5263 /*
5264  * Add l2cache device information to the nvlist, including vdev stats.
5265  */
5266 static void
5267 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5268 {
5269 	nvlist_t **l2cache;
5270 	uint_t i, j, nl2cache;
5271 	nvlist_t *nvroot;
5272 	uint64_t guid;
5273 	vdev_t *vd;
5274 	vdev_stat_t *vs;
5275 	uint_t vsc;
5276 
5277 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5278 
5279 	if (spa->spa_l2cache.sav_count == 0)
5280 		return;
5281 
5282 	VERIFY(nvlist_lookup_nvlist(config,
5283 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5284 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5285 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5286 	if (nl2cache != 0) {
5287 		VERIFY(nvlist_add_nvlist_array(nvroot,
5288 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5289 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5290 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5291 
5292 		/*
5293 		 * Update level 2 cache device stats.
5294 		 */
5295 
5296 		for (i = 0; i < nl2cache; i++) {
5297 			VERIFY(nvlist_lookup_uint64(l2cache[i],
5298 			    ZPOOL_CONFIG_GUID, &guid) == 0);
5299 
5300 			vd = NULL;
5301 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5302 				if (guid ==
5303 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5304 					vd = spa->spa_l2cache.sav_vdevs[j];
5305 					break;
5306 				}
5307 			}
5308 			ASSERT(vd != NULL);
5309 
5310 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5311 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5312 			    == 0);
5313 			vdev_get_stats(vd, vs);
5314 			vdev_config_generate_stats(vd, l2cache[i]);
5315 
5316 		}
5317 	}
5318 }
5319 
5320 static void
5321 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5322 {
5323 	zap_cursor_t zc;
5324 	zap_attribute_t za;
5325 
5326 	if (spa->spa_feat_for_read_obj != 0) {
5327 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5328 		    spa->spa_feat_for_read_obj);
5329 		    zap_cursor_retrieve(&zc, &za) == 0;
5330 		    zap_cursor_advance(&zc)) {
5331 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5332 			    za.za_num_integers == 1);
5333 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5334 			    za.za_first_integer));
5335 		}
5336 		zap_cursor_fini(&zc);
5337 	}
5338 
5339 	if (spa->spa_feat_for_write_obj != 0) {
5340 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5341 		    spa->spa_feat_for_write_obj);
5342 		    zap_cursor_retrieve(&zc, &za) == 0;
5343 		    zap_cursor_advance(&zc)) {
5344 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5345 			    za.za_num_integers == 1);
5346 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5347 			    za.za_first_integer));
5348 		}
5349 		zap_cursor_fini(&zc);
5350 	}
5351 }
5352 
5353 static void
5354 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5355 {
5356 	int i;
5357 
5358 	for (i = 0; i < SPA_FEATURES; i++) {
5359 		zfeature_info_t feature = spa_feature_table[i];
5360 		uint64_t refcount;
5361 
5362 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5363 			continue;
5364 
5365 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5366 	}
5367 }
5368 
5369 /*
5370  * Store a list of pool features and their reference counts in the
5371  * config.
5372  *
5373  * The first time this is called on a spa, allocate a new nvlist, fetch
5374  * the pool features and reference counts from disk, then save the list
5375  * in the spa. In subsequent calls on the same spa use the saved nvlist
5376  * and refresh its values from the cached reference counts.  This
5377  * ensures we don't block here on I/O on a suspended pool so 'zpool
5378  * clear' can resume the pool.
5379  */
5380 static void
5381 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5382 {
5383 	nvlist_t *features;
5384 
5385 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5386 
5387 	mutex_enter(&spa->spa_feat_stats_lock);
5388 	features = spa->spa_feat_stats;
5389 
5390 	if (features != NULL) {
5391 		spa_feature_stats_from_cache(spa, features);
5392 	} else {
5393 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5394 		spa->spa_feat_stats = features;
5395 		spa_feature_stats_from_disk(spa, features);
5396 	}
5397 
5398 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5399 	    features));
5400 
5401 	mutex_exit(&spa->spa_feat_stats_lock);
5402 }
5403 
5404 int
5405 spa_get_stats(const char *name, nvlist_t **config,
5406     char *altroot, size_t buflen)
5407 {
5408 	int error;
5409 	spa_t *spa;
5410 
5411 	*config = NULL;
5412 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5413 
5414 	if (spa != NULL) {
5415 		/*
5416 		 * This still leaves a window of inconsistency where the spares
5417 		 * or l2cache devices could change and the config would be
5418 		 * self-inconsistent.
5419 		 */
5420 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5421 
5422 		if (*config != NULL) {
5423 			uint64_t loadtimes[2];
5424 
5425 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5426 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5427 			VERIFY(nvlist_add_uint64_array(*config,
5428 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5429 
5430 			VERIFY(nvlist_add_uint64(*config,
5431 			    ZPOOL_CONFIG_ERRCOUNT,
5432 			    spa_get_errlog_size(spa)) == 0);
5433 
5434 			if (spa_suspended(spa)) {
5435 				VERIFY(nvlist_add_uint64(*config,
5436 				    ZPOOL_CONFIG_SUSPENDED,
5437 				    spa->spa_failmode) == 0);
5438 				VERIFY(nvlist_add_uint64(*config,
5439 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5440 				    spa->spa_suspended) == 0);
5441 			}
5442 
5443 			spa_add_spares(spa, *config);
5444 			spa_add_l2cache(spa, *config);
5445 			spa_add_feature_stats(spa, *config);
5446 		}
5447 	}
5448 
5449 	/*
5450 	 * We want to get the alternate root even for faulted pools, so we cheat
5451 	 * and call spa_lookup() directly.
5452 	 */
5453 	if (altroot) {
5454 		if (spa == NULL) {
5455 			mutex_enter(&spa_namespace_lock);
5456 			spa = spa_lookup(name);
5457 			if (spa)
5458 				spa_altroot(spa, altroot, buflen);
5459 			else
5460 				altroot[0] = '\0';
5461 			spa = NULL;
5462 			mutex_exit(&spa_namespace_lock);
5463 		} else {
5464 			spa_altroot(spa, altroot, buflen);
5465 		}
5466 	}
5467 
5468 	if (spa != NULL) {
5469 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5470 		spa_close(spa, FTAG);
5471 	}
5472 
5473 	return (error);
5474 }
5475 
5476 /*
5477  * Validate that the auxiliary device array is well formed.  We must have an
5478  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5479  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5480  * specified, as long as they are well-formed.
5481  */
5482 static int
5483 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5484     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5485     vdev_labeltype_t label)
5486 {
5487 	nvlist_t **dev;
5488 	uint_t i, ndev;
5489 	vdev_t *vd;
5490 	int error;
5491 
5492 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5493 
5494 	/*
5495 	 * It's acceptable to have no devs specified.
5496 	 */
5497 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5498 		return (0);
5499 
5500 	if (ndev == 0)
5501 		return (SET_ERROR(EINVAL));
5502 
5503 	/*
5504 	 * Make sure the pool is formatted with a version that supports this
5505 	 * device type.
5506 	 */
5507 	if (spa_version(spa) < version)
5508 		return (SET_ERROR(ENOTSUP));
5509 
5510 	/*
5511 	 * Set the pending device list so we correctly handle device in-use
5512 	 * checking.
5513 	 */
5514 	sav->sav_pending = dev;
5515 	sav->sav_npending = ndev;
5516 
5517 	for (i = 0; i < ndev; i++) {
5518 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5519 		    mode)) != 0)
5520 			goto out;
5521 
5522 		if (!vd->vdev_ops->vdev_op_leaf) {
5523 			vdev_free(vd);
5524 			error = SET_ERROR(EINVAL);
5525 			goto out;
5526 		}
5527 
5528 		vd->vdev_top = vd;
5529 
5530 		if ((error = vdev_open(vd)) == 0 &&
5531 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5532 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5533 			    vd->vdev_guid) == 0);
5534 		}
5535 
5536 		vdev_free(vd);
5537 
5538 		if (error &&
5539 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5540 			goto out;
5541 		else
5542 			error = 0;
5543 	}
5544 
5545 out:
5546 	sav->sav_pending = NULL;
5547 	sav->sav_npending = 0;
5548 	return (error);
5549 }
5550 
5551 static int
5552 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5553 {
5554 	int error;
5555 
5556 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5557 
5558 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5559 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5560 	    VDEV_LABEL_SPARE)) != 0) {
5561 		return (error);
5562 	}
5563 
5564 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5565 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5566 	    VDEV_LABEL_L2CACHE));
5567 }
5568 
5569 static void
5570 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5571     const char *config)
5572 {
5573 	int i;
5574 
5575 	if (sav->sav_config != NULL) {
5576 		nvlist_t **olddevs;
5577 		uint_t oldndevs;
5578 		nvlist_t **newdevs;
5579 
5580 		/*
5581 		 * Generate new dev list by concatenating with the
5582 		 * current dev list.
5583 		 */
5584 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5585 		    &olddevs, &oldndevs) == 0);
5586 
5587 		newdevs = kmem_alloc(sizeof (void *) *
5588 		    (ndevs + oldndevs), KM_SLEEP);
5589 		for (i = 0; i < oldndevs; i++)
5590 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5591 			    KM_SLEEP) == 0);
5592 		for (i = 0; i < ndevs; i++)
5593 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5594 			    KM_SLEEP) == 0);
5595 
5596 		VERIFY(nvlist_remove(sav->sav_config, config,
5597 		    DATA_TYPE_NVLIST_ARRAY) == 0);
5598 
5599 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5600 		    config, newdevs, ndevs + oldndevs) == 0);
5601 		for (i = 0; i < oldndevs + ndevs; i++)
5602 			nvlist_free(newdevs[i]);
5603 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5604 	} else {
5605 		/*
5606 		 * Generate a new dev list.
5607 		 */
5608 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5609 		    KM_SLEEP) == 0);
5610 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5611 		    devs, ndevs) == 0);
5612 	}
5613 }
5614 
5615 /*
5616  * Stop and drop level 2 ARC devices
5617  */
5618 void
5619 spa_l2cache_drop(spa_t *spa)
5620 {
5621 	vdev_t *vd;
5622 	int i;
5623 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5624 
5625 	for (i = 0; i < sav->sav_count; i++) {
5626 		uint64_t pool;
5627 
5628 		vd = sav->sav_vdevs[i];
5629 		ASSERT(vd != NULL);
5630 
5631 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5632 		    pool != 0ULL && l2arc_vdev_present(vd))
5633 			l2arc_remove_vdev(vd);
5634 	}
5635 }
5636 
5637 /*
5638  * Verify encryption parameters for spa creation. If we are encrypting, we must
5639  * have the encryption feature flag enabled.
5640  */
5641 static int
5642 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5643     boolean_t has_encryption)
5644 {
5645 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5646 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5647 	    !has_encryption)
5648 		return (SET_ERROR(ENOTSUP));
5649 
5650 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5651 }
5652 
5653 /*
5654  * Pool Creation
5655  */
5656 int
5657 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5658     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5659 {
5660 	spa_t *spa;
5661 	char *altroot = NULL;
5662 	vdev_t *rvd;
5663 	dsl_pool_t *dp;
5664 	dmu_tx_t *tx;
5665 	int error = 0;
5666 	uint64_t txg = TXG_INITIAL;
5667 	nvlist_t **spares, **l2cache;
5668 	uint_t nspares, nl2cache;
5669 	uint64_t version, obj, ndraid = 0;
5670 	boolean_t has_features;
5671 	boolean_t has_encryption;
5672 	boolean_t has_allocclass;
5673 	spa_feature_t feat;
5674 	char *feat_name;
5675 	char *poolname;
5676 	nvlist_t *nvl;
5677 
5678 	if (props == NULL ||
5679 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5680 		poolname = (char *)pool;
5681 
5682 	/*
5683 	 * If this pool already exists, return failure.
5684 	 */
5685 	mutex_enter(&spa_namespace_lock);
5686 	if (spa_lookup(poolname) != NULL) {
5687 		mutex_exit(&spa_namespace_lock);
5688 		return (SET_ERROR(EEXIST));
5689 	}
5690 
5691 	/*
5692 	 * Allocate a new spa_t structure.
5693 	 */
5694 	nvl = fnvlist_alloc();
5695 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5696 	(void) nvlist_lookup_string(props,
5697 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5698 	spa = spa_add(poolname, nvl, altroot);
5699 	fnvlist_free(nvl);
5700 	spa_activate(spa, spa_mode_global);
5701 
5702 	if (props && (error = spa_prop_validate(spa, props))) {
5703 		spa_deactivate(spa);
5704 		spa_remove(spa);
5705 		mutex_exit(&spa_namespace_lock);
5706 		return (error);
5707 	}
5708 
5709 	/*
5710 	 * Temporary pool names should never be written to disk.
5711 	 */
5712 	if (poolname != pool)
5713 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5714 
5715 	has_features = B_FALSE;
5716 	has_encryption = B_FALSE;
5717 	has_allocclass = B_FALSE;
5718 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5719 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5720 		if (zpool_prop_feature(nvpair_name(elem))) {
5721 			has_features = B_TRUE;
5722 
5723 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5724 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5725 			if (feat == SPA_FEATURE_ENCRYPTION)
5726 				has_encryption = B_TRUE;
5727 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5728 				has_allocclass = B_TRUE;
5729 		}
5730 	}
5731 
5732 	/* verify encryption params, if they were provided */
5733 	if (dcp != NULL) {
5734 		error = spa_create_check_encryption_params(dcp, has_encryption);
5735 		if (error != 0) {
5736 			spa_deactivate(spa);
5737 			spa_remove(spa);
5738 			mutex_exit(&spa_namespace_lock);
5739 			return (error);
5740 		}
5741 	}
5742 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5743 		spa_deactivate(spa);
5744 		spa_remove(spa);
5745 		mutex_exit(&spa_namespace_lock);
5746 		return (ENOTSUP);
5747 	}
5748 
5749 	if (has_features || nvlist_lookup_uint64(props,
5750 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5751 		version = SPA_VERSION;
5752 	}
5753 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5754 
5755 	spa->spa_first_txg = txg;
5756 	spa->spa_uberblock.ub_txg = txg - 1;
5757 	spa->spa_uberblock.ub_version = version;
5758 	spa->spa_ubsync = spa->spa_uberblock;
5759 	spa->spa_load_state = SPA_LOAD_CREATE;
5760 	spa->spa_removing_phys.sr_state = DSS_NONE;
5761 	spa->spa_removing_phys.sr_removing_vdev = -1;
5762 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5763 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5764 
5765 	/*
5766 	 * Create "The Godfather" zio to hold all async IOs
5767 	 */
5768 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5769 	    KM_SLEEP);
5770 	for (int i = 0; i < max_ncpus; i++) {
5771 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5772 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5773 		    ZIO_FLAG_GODFATHER);
5774 	}
5775 
5776 	/*
5777 	 * Create the root vdev.
5778 	 */
5779 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5780 
5781 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5782 
5783 	ASSERT(error != 0 || rvd != NULL);
5784 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5785 
5786 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5787 		error = SET_ERROR(EINVAL);
5788 
5789 	if (error == 0 &&
5790 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5791 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5792 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5793 		/*
5794 		 * instantiate the metaslab groups (this will dirty the vdevs)
5795 		 * we can no longer error exit past this point
5796 		 */
5797 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5798 			vdev_t *vd = rvd->vdev_child[c];
5799 
5800 			vdev_metaslab_set_size(vd);
5801 			vdev_expand(vd, txg);
5802 		}
5803 	}
5804 
5805 	spa_config_exit(spa, SCL_ALL, FTAG);
5806 
5807 	if (error != 0) {
5808 		spa_unload(spa);
5809 		spa_deactivate(spa);
5810 		spa_remove(spa);
5811 		mutex_exit(&spa_namespace_lock);
5812 		return (error);
5813 	}
5814 
5815 	/*
5816 	 * Get the list of spares, if specified.
5817 	 */
5818 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5819 	    &spares, &nspares) == 0) {
5820 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5821 		    KM_SLEEP) == 0);
5822 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5823 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5824 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5825 		spa_load_spares(spa);
5826 		spa_config_exit(spa, SCL_ALL, FTAG);
5827 		spa->spa_spares.sav_sync = B_TRUE;
5828 	}
5829 
5830 	/*
5831 	 * Get the list of level 2 cache devices, if specified.
5832 	 */
5833 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5834 	    &l2cache, &nl2cache) == 0) {
5835 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5836 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5837 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5838 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5839 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5840 		spa_load_l2cache(spa);
5841 		spa_config_exit(spa, SCL_ALL, FTAG);
5842 		spa->spa_l2cache.sav_sync = B_TRUE;
5843 	}
5844 
5845 	spa->spa_is_initializing = B_TRUE;
5846 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5847 	spa->spa_is_initializing = B_FALSE;
5848 
5849 	/*
5850 	 * Create DDTs (dedup tables).
5851 	 */
5852 	ddt_create(spa);
5853 
5854 	spa_update_dspace(spa);
5855 
5856 	tx = dmu_tx_create_assigned(dp, txg);
5857 
5858 	/*
5859 	 * Create the pool's history object.
5860 	 */
5861 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5862 		spa_history_create_obj(spa, tx);
5863 
5864 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5865 	spa_history_log_version(spa, "create", tx);
5866 
5867 	/*
5868 	 * Create the pool config object.
5869 	 */
5870 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5871 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5872 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5873 
5874 	if (zap_add(spa->spa_meta_objset,
5875 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5876 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5877 		cmn_err(CE_PANIC, "failed to add pool config");
5878 	}
5879 
5880 	if (zap_add(spa->spa_meta_objset,
5881 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5882 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5883 		cmn_err(CE_PANIC, "failed to add pool version");
5884 	}
5885 
5886 	/* Newly created pools with the right version are always deflated. */
5887 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5888 		spa->spa_deflate = TRUE;
5889 		if (zap_add(spa->spa_meta_objset,
5890 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5891 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5892 			cmn_err(CE_PANIC, "failed to add deflate");
5893 		}
5894 	}
5895 
5896 	/*
5897 	 * Create the deferred-free bpobj.  Turn off compression
5898 	 * because sync-to-convergence takes longer if the blocksize
5899 	 * keeps changing.
5900 	 */
5901 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5902 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5903 	    ZIO_COMPRESS_OFF, tx);
5904 	if (zap_add(spa->spa_meta_objset,
5905 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5906 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5907 		cmn_err(CE_PANIC, "failed to add bpobj");
5908 	}
5909 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5910 	    spa->spa_meta_objset, obj));
5911 
5912 	/*
5913 	 * Generate some random noise for salted checksums to operate on.
5914 	 */
5915 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5916 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5917 
5918 	/*
5919 	 * Set pool properties.
5920 	 */
5921 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5922 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5923 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5924 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5925 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5926 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5927 
5928 	if (props != NULL) {
5929 		spa_configfile_set(spa, props, B_FALSE);
5930 		spa_sync_props(props, tx);
5931 	}
5932 
5933 	for (int i = 0; i < ndraid; i++)
5934 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5935 
5936 	dmu_tx_commit(tx);
5937 
5938 	spa->spa_sync_on = B_TRUE;
5939 	txg_sync_start(dp);
5940 	mmp_thread_start(spa);
5941 	txg_wait_synced(dp, txg);
5942 
5943 	spa_spawn_aux_threads(spa);
5944 
5945 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5946 
5947 	/*
5948 	 * Don't count references from objsets that are already closed
5949 	 * and are making their way through the eviction process.
5950 	 */
5951 	spa_evicting_os_wait(spa);
5952 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5953 	spa->spa_load_state = SPA_LOAD_NONE;
5954 
5955 	mutex_exit(&spa_namespace_lock);
5956 
5957 	return (0);
5958 }
5959 
5960 /*
5961  * Import a non-root pool into the system.
5962  */
5963 int
5964 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5965 {
5966 	spa_t *spa;
5967 	char *altroot = NULL;
5968 	spa_load_state_t state = SPA_LOAD_IMPORT;
5969 	zpool_load_policy_t policy;
5970 	spa_mode_t mode = spa_mode_global;
5971 	uint64_t readonly = B_FALSE;
5972 	int error;
5973 	nvlist_t *nvroot;
5974 	nvlist_t **spares, **l2cache;
5975 	uint_t nspares, nl2cache;
5976 
5977 	/*
5978 	 * If a pool with this name exists, return failure.
5979 	 */
5980 	mutex_enter(&spa_namespace_lock);
5981 	if (spa_lookup(pool) != NULL) {
5982 		mutex_exit(&spa_namespace_lock);
5983 		return (SET_ERROR(EEXIST));
5984 	}
5985 
5986 	/*
5987 	 * Create and initialize the spa structure.
5988 	 */
5989 	(void) nvlist_lookup_string(props,
5990 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5991 	(void) nvlist_lookup_uint64(props,
5992 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5993 	if (readonly)
5994 		mode = SPA_MODE_READ;
5995 	spa = spa_add(pool, config, altroot);
5996 	spa->spa_import_flags = flags;
5997 
5998 	/*
5999 	 * Verbatim import - Take a pool and insert it into the namespace
6000 	 * as if it had been loaded at boot.
6001 	 */
6002 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6003 		if (props != NULL)
6004 			spa_configfile_set(spa, props, B_FALSE);
6005 
6006 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6007 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6008 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6009 		mutex_exit(&spa_namespace_lock);
6010 		return (0);
6011 	}
6012 
6013 	spa_activate(spa, mode);
6014 
6015 	/*
6016 	 * Don't start async tasks until we know everything is healthy.
6017 	 */
6018 	spa_async_suspend(spa);
6019 
6020 	zpool_get_load_policy(config, &policy);
6021 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6022 		state = SPA_LOAD_RECOVER;
6023 
6024 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6025 
6026 	if (state != SPA_LOAD_RECOVER) {
6027 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6028 		zfs_dbgmsg("spa_import: importing %s", pool);
6029 	} else {
6030 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6031 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6032 	}
6033 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6034 
6035 	/*
6036 	 * Propagate anything learned while loading the pool and pass it
6037 	 * back to caller (i.e. rewind info, missing devices, etc).
6038 	 */
6039 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6040 	    spa->spa_load_info) == 0);
6041 
6042 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6043 	/*
6044 	 * Toss any existing sparelist, as it doesn't have any validity
6045 	 * anymore, and conflicts with spa_has_spare().
6046 	 */
6047 	if (spa->spa_spares.sav_config) {
6048 		nvlist_free(spa->spa_spares.sav_config);
6049 		spa->spa_spares.sav_config = NULL;
6050 		spa_load_spares(spa);
6051 	}
6052 	if (spa->spa_l2cache.sav_config) {
6053 		nvlist_free(spa->spa_l2cache.sav_config);
6054 		spa->spa_l2cache.sav_config = NULL;
6055 		spa_load_l2cache(spa);
6056 	}
6057 
6058 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6059 	    &nvroot) == 0);
6060 	spa_config_exit(spa, SCL_ALL, FTAG);
6061 
6062 	if (props != NULL)
6063 		spa_configfile_set(spa, props, B_FALSE);
6064 
6065 	if (error != 0 || (props && spa_writeable(spa) &&
6066 	    (error = spa_prop_set(spa, props)))) {
6067 		spa_unload(spa);
6068 		spa_deactivate(spa);
6069 		spa_remove(spa);
6070 		mutex_exit(&spa_namespace_lock);
6071 		return (error);
6072 	}
6073 
6074 	spa_async_resume(spa);
6075 
6076 	/*
6077 	 * Override any spares and level 2 cache devices as specified by
6078 	 * the user, as these may have correct device names/devids, etc.
6079 	 */
6080 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6081 	    &spares, &nspares) == 0) {
6082 		if (spa->spa_spares.sav_config)
6083 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6084 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6085 		else
6086 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6087 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6088 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6089 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6090 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6091 		spa_load_spares(spa);
6092 		spa_config_exit(spa, SCL_ALL, FTAG);
6093 		spa->spa_spares.sav_sync = B_TRUE;
6094 	}
6095 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6096 	    &l2cache, &nl2cache) == 0) {
6097 		if (spa->spa_l2cache.sav_config)
6098 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6099 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6100 		else
6101 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6102 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6103 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6104 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6105 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6106 		spa_load_l2cache(spa);
6107 		spa_config_exit(spa, SCL_ALL, FTAG);
6108 		spa->spa_l2cache.sav_sync = B_TRUE;
6109 	}
6110 
6111 	/*
6112 	 * Check for any removed devices.
6113 	 */
6114 	if (spa->spa_autoreplace) {
6115 		spa_aux_check_removed(&spa->spa_spares);
6116 		spa_aux_check_removed(&spa->spa_l2cache);
6117 	}
6118 
6119 	if (spa_writeable(spa)) {
6120 		/*
6121 		 * Update the config cache to include the newly-imported pool.
6122 		 */
6123 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6124 	}
6125 
6126 	/*
6127 	 * It's possible that the pool was expanded while it was exported.
6128 	 * We kick off an async task to handle this for us.
6129 	 */
6130 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6131 
6132 	spa_history_log_version(spa, "import", NULL);
6133 
6134 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6135 
6136 	mutex_exit(&spa_namespace_lock);
6137 
6138 	zvol_create_minors_recursive(pool);
6139 
6140 	return (0);
6141 }
6142 
6143 nvlist_t *
6144 spa_tryimport(nvlist_t *tryconfig)
6145 {
6146 	nvlist_t *config = NULL;
6147 	char *poolname, *cachefile;
6148 	spa_t *spa;
6149 	uint64_t state;
6150 	int error;
6151 	zpool_load_policy_t policy;
6152 
6153 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6154 		return (NULL);
6155 
6156 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6157 		return (NULL);
6158 
6159 	/*
6160 	 * Create and initialize the spa structure.
6161 	 */
6162 	mutex_enter(&spa_namespace_lock);
6163 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6164 	spa_activate(spa, SPA_MODE_READ);
6165 
6166 	/*
6167 	 * Rewind pool if a max txg was provided.
6168 	 */
6169 	zpool_get_load_policy(spa->spa_config, &policy);
6170 	if (policy.zlp_txg != UINT64_MAX) {
6171 		spa->spa_load_max_txg = policy.zlp_txg;
6172 		spa->spa_extreme_rewind = B_TRUE;
6173 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6174 		    poolname, (longlong_t)policy.zlp_txg);
6175 	} else {
6176 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6177 	}
6178 
6179 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6180 	    == 0) {
6181 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6182 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6183 	} else {
6184 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6185 	}
6186 
6187 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6188 
6189 	/*
6190 	 * If 'tryconfig' was at least parsable, return the current config.
6191 	 */
6192 	if (spa->spa_root_vdev != NULL) {
6193 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6194 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6195 		    poolname) == 0);
6196 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6197 		    state) == 0);
6198 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6199 		    spa->spa_uberblock.ub_timestamp) == 0);
6200 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6201 		    spa->spa_load_info) == 0);
6202 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6203 		    spa->spa_errata) == 0);
6204 
6205 		/*
6206 		 * If the bootfs property exists on this pool then we
6207 		 * copy it out so that external consumers can tell which
6208 		 * pools are bootable.
6209 		 */
6210 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6211 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6212 
6213 			/*
6214 			 * We have to play games with the name since the
6215 			 * pool was opened as TRYIMPORT_NAME.
6216 			 */
6217 			if (dsl_dsobj_to_dsname(spa_name(spa),
6218 			    spa->spa_bootfs, tmpname) == 0) {
6219 				char *cp;
6220 				char *dsname;
6221 
6222 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6223 
6224 				cp = strchr(tmpname, '/');
6225 				if (cp == NULL) {
6226 					(void) strlcpy(dsname, tmpname,
6227 					    MAXPATHLEN);
6228 				} else {
6229 					(void) snprintf(dsname, MAXPATHLEN,
6230 					    "%s/%s", poolname, ++cp);
6231 				}
6232 				VERIFY(nvlist_add_string(config,
6233 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6234 				kmem_free(dsname, MAXPATHLEN);
6235 			}
6236 			kmem_free(tmpname, MAXPATHLEN);
6237 		}
6238 
6239 		/*
6240 		 * Add the list of hot spares and level 2 cache devices.
6241 		 */
6242 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6243 		spa_add_spares(spa, config);
6244 		spa_add_l2cache(spa, config);
6245 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6246 	}
6247 
6248 	spa_unload(spa);
6249 	spa_deactivate(spa);
6250 	spa_remove(spa);
6251 	mutex_exit(&spa_namespace_lock);
6252 
6253 	return (config);
6254 }
6255 
6256 /*
6257  * Pool export/destroy
6258  *
6259  * The act of destroying or exporting a pool is very simple.  We make sure there
6260  * is no more pending I/O and any references to the pool are gone.  Then, we
6261  * update the pool state and sync all the labels to disk, removing the
6262  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6263  * we don't sync the labels or remove the configuration cache.
6264  */
6265 static int
6266 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6267     boolean_t force, boolean_t hardforce)
6268 {
6269 	int error;
6270 	spa_t *spa;
6271 
6272 	if (oldconfig)
6273 		*oldconfig = NULL;
6274 
6275 	if (!(spa_mode_global & SPA_MODE_WRITE))
6276 		return (SET_ERROR(EROFS));
6277 
6278 	mutex_enter(&spa_namespace_lock);
6279 	if ((spa = spa_lookup(pool)) == NULL) {
6280 		mutex_exit(&spa_namespace_lock);
6281 		return (SET_ERROR(ENOENT));
6282 	}
6283 
6284 	if (spa->spa_is_exporting) {
6285 		/* the pool is being exported by another thread */
6286 		mutex_exit(&spa_namespace_lock);
6287 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6288 	}
6289 	spa->spa_is_exporting = B_TRUE;
6290 
6291 	/*
6292 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6293 	 * reacquire the namespace lock, and see if we can export.
6294 	 */
6295 	spa_open_ref(spa, FTAG);
6296 	mutex_exit(&spa_namespace_lock);
6297 	spa_async_suspend(spa);
6298 	if (spa->spa_zvol_taskq) {
6299 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6300 		taskq_wait(spa->spa_zvol_taskq);
6301 	}
6302 	mutex_enter(&spa_namespace_lock);
6303 	spa_close(spa, FTAG);
6304 
6305 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6306 		goto export_spa;
6307 	/*
6308 	 * The pool will be in core if it's openable, in which case we can
6309 	 * modify its state.  Objsets may be open only because they're dirty,
6310 	 * so we have to force it to sync before checking spa_refcnt.
6311 	 */
6312 	if (spa->spa_sync_on) {
6313 		txg_wait_synced(spa->spa_dsl_pool, 0);
6314 		spa_evicting_os_wait(spa);
6315 	}
6316 
6317 	/*
6318 	 * A pool cannot be exported or destroyed if there are active
6319 	 * references.  If we are resetting a pool, allow references by
6320 	 * fault injection handlers.
6321 	 */
6322 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6323 		error = SET_ERROR(EBUSY);
6324 		goto fail;
6325 	}
6326 
6327 	if (spa->spa_sync_on) {
6328 		/*
6329 		 * A pool cannot be exported if it has an active shared spare.
6330 		 * This is to prevent other pools stealing the active spare
6331 		 * from an exported pool. At user's own will, such pool can
6332 		 * be forcedly exported.
6333 		 */
6334 		if (!force && new_state == POOL_STATE_EXPORTED &&
6335 		    spa_has_active_shared_spare(spa)) {
6336 			error = SET_ERROR(EXDEV);
6337 			goto fail;
6338 		}
6339 
6340 		/*
6341 		 * We're about to export or destroy this pool. Make sure
6342 		 * we stop all initialization and trim activity here before
6343 		 * we set the spa_final_txg. This will ensure that all
6344 		 * dirty data resulting from the initialization is
6345 		 * committed to disk before we unload the pool.
6346 		 */
6347 		if (spa->spa_root_vdev != NULL) {
6348 			vdev_t *rvd = spa->spa_root_vdev;
6349 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6350 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6351 			vdev_autotrim_stop_all(spa);
6352 			vdev_rebuild_stop_all(spa);
6353 		}
6354 
6355 		/*
6356 		 * We want this to be reflected on every label,
6357 		 * so mark them all dirty.  spa_unload() will do the
6358 		 * final sync that pushes these changes out.
6359 		 */
6360 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6361 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6362 			spa->spa_state = new_state;
6363 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6364 			    TXG_DEFER_SIZE + 1;
6365 			vdev_config_dirty(spa->spa_root_vdev);
6366 			spa_config_exit(spa, SCL_ALL, FTAG);
6367 		}
6368 	}
6369 
6370 export_spa:
6371 	if (new_state == POOL_STATE_DESTROYED)
6372 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6373 	else if (new_state == POOL_STATE_EXPORTED)
6374 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6375 
6376 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6377 		spa_unload(spa);
6378 		spa_deactivate(spa);
6379 	}
6380 
6381 	if (oldconfig && spa->spa_config)
6382 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6383 
6384 	if (new_state != POOL_STATE_UNINITIALIZED) {
6385 		if (!hardforce)
6386 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6387 		spa_remove(spa);
6388 	} else {
6389 		/*
6390 		 * If spa_remove() is not called for this spa_t and
6391 		 * there is any possibility that it can be reused,
6392 		 * we make sure to reset the exporting flag.
6393 		 */
6394 		spa->spa_is_exporting = B_FALSE;
6395 	}
6396 
6397 	mutex_exit(&spa_namespace_lock);
6398 	return (0);
6399 
6400 fail:
6401 	spa->spa_is_exporting = B_FALSE;
6402 	spa_async_resume(spa);
6403 	mutex_exit(&spa_namespace_lock);
6404 	return (error);
6405 }
6406 
6407 /*
6408  * Destroy a storage pool.
6409  */
6410 int
6411 spa_destroy(const char *pool)
6412 {
6413 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6414 	    B_FALSE, B_FALSE));
6415 }
6416 
6417 /*
6418  * Export a storage pool.
6419  */
6420 int
6421 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6422     boolean_t hardforce)
6423 {
6424 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6425 	    force, hardforce));
6426 }
6427 
6428 /*
6429  * Similar to spa_export(), this unloads the spa_t without actually removing it
6430  * from the namespace in any way.
6431  */
6432 int
6433 spa_reset(const char *pool)
6434 {
6435 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6436 	    B_FALSE, B_FALSE));
6437 }
6438 
6439 /*
6440  * ==========================================================================
6441  * Device manipulation
6442  * ==========================================================================
6443  */
6444 
6445 /*
6446  * This is called as a synctask to increment the draid feature flag
6447  */
6448 static void
6449 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6450 {
6451 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6452 	int draid = (int)(uintptr_t)arg;
6453 
6454 	for (int c = 0; c < draid; c++)
6455 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6456 }
6457 
6458 /*
6459  * Add a device to a storage pool.
6460  */
6461 int
6462 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6463 {
6464 	uint64_t txg, ndraid = 0;
6465 	int error;
6466 	vdev_t *rvd = spa->spa_root_vdev;
6467 	vdev_t *vd, *tvd;
6468 	nvlist_t **spares, **l2cache;
6469 	uint_t nspares, nl2cache;
6470 
6471 	ASSERT(spa_writeable(spa));
6472 
6473 	txg = spa_vdev_enter(spa);
6474 
6475 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6476 	    VDEV_ALLOC_ADD)) != 0)
6477 		return (spa_vdev_exit(spa, NULL, txg, error));
6478 
6479 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6480 
6481 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6482 	    &nspares) != 0)
6483 		nspares = 0;
6484 
6485 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6486 	    &nl2cache) != 0)
6487 		nl2cache = 0;
6488 
6489 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6490 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6491 
6492 	if (vd->vdev_children != 0 &&
6493 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6494 		return (spa_vdev_exit(spa, vd, txg, error));
6495 	}
6496 
6497 	/*
6498 	 * The virtual dRAID spares must be added after vdev tree is created
6499 	 * and the vdev guids are generated.  The guid of their assoicated
6500 	 * dRAID is stored in the config and used when opening the spare.
6501 	 */
6502 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6503 	    rvd->vdev_children)) == 0) {
6504 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6505 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6506 			nspares = 0;
6507 	} else {
6508 		return (spa_vdev_exit(spa, vd, txg, error));
6509 	}
6510 
6511 	/*
6512 	 * We must validate the spares and l2cache devices after checking the
6513 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6514 	 */
6515 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6516 		return (spa_vdev_exit(spa, vd, txg, error));
6517 
6518 	/*
6519 	 * If we are in the middle of a device removal, we can only add
6520 	 * devices which match the existing devices in the pool.
6521 	 * If we are in the middle of a removal, or have some indirect
6522 	 * vdevs, we can not add raidz or dRAID top levels.
6523 	 */
6524 	if (spa->spa_vdev_removal != NULL ||
6525 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6526 		for (int c = 0; c < vd->vdev_children; c++) {
6527 			tvd = vd->vdev_child[c];
6528 			if (spa->spa_vdev_removal != NULL &&
6529 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6530 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6531 			}
6532 			/* Fail if top level vdev is raidz or a dRAID */
6533 			if (vdev_get_nparity(tvd) != 0)
6534 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6535 
6536 			/*
6537 			 * Need the top level mirror to be
6538 			 * a mirror of leaf vdevs only
6539 			 */
6540 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6541 				for (uint64_t cid = 0;
6542 				    cid < tvd->vdev_children; cid++) {
6543 					vdev_t *cvd = tvd->vdev_child[cid];
6544 					if (!cvd->vdev_ops->vdev_op_leaf) {
6545 						return (spa_vdev_exit(spa, vd,
6546 						    txg, EINVAL));
6547 					}
6548 				}
6549 			}
6550 		}
6551 	}
6552 
6553 	for (int c = 0; c < vd->vdev_children; c++) {
6554 		tvd = vd->vdev_child[c];
6555 		vdev_remove_child(vd, tvd);
6556 		tvd->vdev_id = rvd->vdev_children;
6557 		vdev_add_child(rvd, tvd);
6558 		vdev_config_dirty(tvd);
6559 	}
6560 
6561 	if (nspares != 0) {
6562 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6563 		    ZPOOL_CONFIG_SPARES);
6564 		spa_load_spares(spa);
6565 		spa->spa_spares.sav_sync = B_TRUE;
6566 	}
6567 
6568 	if (nl2cache != 0) {
6569 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6570 		    ZPOOL_CONFIG_L2CACHE);
6571 		spa_load_l2cache(spa);
6572 		spa->spa_l2cache.sav_sync = B_TRUE;
6573 	}
6574 
6575 	/*
6576 	 * We can't increment a feature while holding spa_vdev so we
6577 	 * have to do it in a synctask.
6578 	 */
6579 	if (ndraid != 0) {
6580 		dmu_tx_t *tx;
6581 
6582 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6583 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6584 		    (void *)(uintptr_t)ndraid, tx);
6585 		dmu_tx_commit(tx);
6586 	}
6587 
6588 	/*
6589 	 * We have to be careful when adding new vdevs to an existing pool.
6590 	 * If other threads start allocating from these vdevs before we
6591 	 * sync the config cache, and we lose power, then upon reboot we may
6592 	 * fail to open the pool because there are DVAs that the config cache
6593 	 * can't translate.  Therefore, we first add the vdevs without
6594 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6595 	 * and then let spa_config_update() initialize the new metaslabs.
6596 	 *
6597 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6598 	 * if we lose power at any point in this sequence, the remaining
6599 	 * steps will be completed the next time we load the pool.
6600 	 */
6601 	(void) spa_vdev_exit(spa, vd, txg, 0);
6602 
6603 	mutex_enter(&spa_namespace_lock);
6604 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6605 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6606 	mutex_exit(&spa_namespace_lock);
6607 
6608 	return (0);
6609 }
6610 
6611 /*
6612  * Attach a device to a mirror.  The arguments are the path to any device
6613  * in the mirror, and the nvroot for the new device.  If the path specifies
6614  * a device that is not mirrored, we automatically insert the mirror vdev.
6615  *
6616  * If 'replacing' is specified, the new device is intended to replace the
6617  * existing device; in this case the two devices are made into their own
6618  * mirror using the 'replacing' vdev, which is functionally identical to
6619  * the mirror vdev (it actually reuses all the same ops) but has a few
6620  * extra rules: you can't attach to it after it's been created, and upon
6621  * completion of resilvering, the first disk (the one being replaced)
6622  * is automatically detached.
6623  *
6624  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6625  * should be performed instead of traditional healing reconstruction.  From
6626  * an administrators perspective these are both resilver operations.
6627  */
6628 int
6629 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6630     int rebuild)
6631 {
6632 	uint64_t txg, dtl_max_txg;
6633 	vdev_t *rvd = spa->spa_root_vdev;
6634 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6635 	vdev_ops_t *pvops;
6636 	char *oldvdpath, *newvdpath;
6637 	int newvd_isspare;
6638 	int error;
6639 
6640 	ASSERT(spa_writeable(spa));
6641 
6642 	txg = spa_vdev_enter(spa);
6643 
6644 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6645 
6646 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6647 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6648 		error = (spa_has_checkpoint(spa)) ?
6649 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6650 		return (spa_vdev_exit(spa, NULL, txg, error));
6651 	}
6652 
6653 	if (rebuild) {
6654 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6655 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6656 
6657 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6658 			return (spa_vdev_exit(spa, NULL, txg,
6659 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6660 	} else {
6661 		if (vdev_rebuild_active(rvd))
6662 			return (spa_vdev_exit(spa, NULL, txg,
6663 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6664 	}
6665 
6666 	if (spa->spa_vdev_removal != NULL)
6667 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6668 
6669 	if (oldvd == NULL)
6670 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6671 
6672 	if (!oldvd->vdev_ops->vdev_op_leaf)
6673 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6674 
6675 	pvd = oldvd->vdev_parent;
6676 
6677 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6678 	    VDEV_ALLOC_ATTACH)) != 0)
6679 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6680 
6681 	if (newrootvd->vdev_children != 1)
6682 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6683 
6684 	newvd = newrootvd->vdev_child[0];
6685 
6686 	if (!newvd->vdev_ops->vdev_op_leaf)
6687 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6688 
6689 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6690 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6691 
6692 	/*
6693 	 * Spares can't replace logs
6694 	 */
6695 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6696 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6697 
6698 	/*
6699 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6700 	 */
6701 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6702 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6703 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6704 	}
6705 
6706 	if (rebuild) {
6707 		/*
6708 		 * For rebuilds, the top vdev must support reconstruction
6709 		 * using only space maps.  This means the only allowable
6710 		 * vdevs types are the root vdev, a mirror, or dRAID.
6711 		 */
6712 		tvd = pvd;
6713 		if (pvd->vdev_top != NULL)
6714 			tvd = pvd->vdev_top;
6715 
6716 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6717 		    tvd->vdev_ops != &vdev_root_ops &&
6718 		    tvd->vdev_ops != &vdev_draid_ops) {
6719 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6720 		}
6721 	}
6722 
6723 	if (!replacing) {
6724 		/*
6725 		 * For attach, the only allowable parent is a mirror or the root
6726 		 * vdev.
6727 		 */
6728 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6729 		    pvd->vdev_ops != &vdev_root_ops)
6730 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6731 
6732 		pvops = &vdev_mirror_ops;
6733 	} else {
6734 		/*
6735 		 * Active hot spares can only be replaced by inactive hot
6736 		 * spares.
6737 		 */
6738 		if (pvd->vdev_ops == &vdev_spare_ops &&
6739 		    oldvd->vdev_isspare &&
6740 		    !spa_has_spare(spa, newvd->vdev_guid))
6741 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6742 
6743 		/*
6744 		 * If the source is a hot spare, and the parent isn't already a
6745 		 * spare, then we want to create a new hot spare.  Otherwise, we
6746 		 * want to create a replacing vdev.  The user is not allowed to
6747 		 * attach to a spared vdev child unless the 'isspare' state is
6748 		 * the same (spare replaces spare, non-spare replaces
6749 		 * non-spare).
6750 		 */
6751 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6752 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6753 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6754 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6755 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6756 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6757 		}
6758 
6759 		if (newvd->vdev_isspare)
6760 			pvops = &vdev_spare_ops;
6761 		else
6762 			pvops = &vdev_replacing_ops;
6763 	}
6764 
6765 	/*
6766 	 * Make sure the new device is big enough.
6767 	 */
6768 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6769 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6770 
6771 	/*
6772 	 * The new device cannot have a higher alignment requirement
6773 	 * than the top-level vdev.
6774 	 */
6775 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6776 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6777 
6778 	/*
6779 	 * If this is an in-place replacement, update oldvd's path and devid
6780 	 * to make it distinguishable from newvd, and unopenable from now on.
6781 	 */
6782 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6783 		spa_strfree(oldvd->vdev_path);
6784 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6785 		    KM_SLEEP);
6786 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6787 		    "%s/%s", newvd->vdev_path, "old");
6788 		if (oldvd->vdev_devid != NULL) {
6789 			spa_strfree(oldvd->vdev_devid);
6790 			oldvd->vdev_devid = NULL;
6791 		}
6792 	}
6793 
6794 	/*
6795 	 * If the parent is not a mirror, or if we're replacing, insert the new
6796 	 * mirror/replacing/spare vdev above oldvd.
6797 	 */
6798 	if (pvd->vdev_ops != pvops)
6799 		pvd = vdev_add_parent(oldvd, pvops);
6800 
6801 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6802 	ASSERT(pvd->vdev_ops == pvops);
6803 	ASSERT(oldvd->vdev_parent == pvd);
6804 
6805 	/*
6806 	 * Extract the new device from its root and add it to pvd.
6807 	 */
6808 	vdev_remove_child(newrootvd, newvd);
6809 	newvd->vdev_id = pvd->vdev_children;
6810 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6811 	vdev_add_child(pvd, newvd);
6812 
6813 	/*
6814 	 * Reevaluate the parent vdev state.
6815 	 */
6816 	vdev_propagate_state(pvd);
6817 
6818 	tvd = newvd->vdev_top;
6819 	ASSERT(pvd->vdev_top == tvd);
6820 	ASSERT(tvd->vdev_parent == rvd);
6821 
6822 	vdev_config_dirty(tvd);
6823 
6824 	/*
6825 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6826 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6827 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6828 	 */
6829 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6830 
6831 	vdev_dtl_dirty(newvd, DTL_MISSING,
6832 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6833 
6834 	if (newvd->vdev_isspare) {
6835 		spa_spare_activate(newvd);
6836 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6837 	}
6838 
6839 	oldvdpath = spa_strdup(oldvd->vdev_path);
6840 	newvdpath = spa_strdup(newvd->vdev_path);
6841 	newvd_isspare = newvd->vdev_isspare;
6842 
6843 	/*
6844 	 * Mark newvd's DTL dirty in this txg.
6845 	 */
6846 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6847 
6848 	/*
6849 	 * Schedule the resilver or rebuild to restart in the future. We do
6850 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6851 	 * respective datasets.
6852 	 */
6853 	if (rebuild) {
6854 		newvd->vdev_rebuild_txg = txg;
6855 
6856 		vdev_rebuild(tvd);
6857 	} else {
6858 		newvd->vdev_resilver_txg = txg;
6859 
6860 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6861 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6862 			vdev_defer_resilver(newvd);
6863 		} else {
6864 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6865 			    dtl_max_txg);
6866 		}
6867 	}
6868 
6869 	if (spa->spa_bootfs)
6870 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6871 
6872 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6873 
6874 	/*
6875 	 * Commit the config
6876 	 */
6877 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6878 
6879 	spa_history_log_internal(spa, "vdev attach", NULL,
6880 	    "%s vdev=%s %s vdev=%s",
6881 	    replacing && newvd_isspare ? "spare in" :
6882 	    replacing ? "replace" : "attach", newvdpath,
6883 	    replacing ? "for" : "to", oldvdpath);
6884 
6885 	spa_strfree(oldvdpath);
6886 	spa_strfree(newvdpath);
6887 
6888 	return (0);
6889 }
6890 
6891 /*
6892  * Detach a device from a mirror or replacing vdev.
6893  *
6894  * If 'replace_done' is specified, only detach if the parent
6895  * is a replacing vdev.
6896  */
6897 int
6898 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6899 {
6900 	uint64_t txg;
6901 	int error;
6902 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6903 	vdev_t *vd, *pvd, *cvd, *tvd;
6904 	boolean_t unspare = B_FALSE;
6905 	uint64_t unspare_guid = 0;
6906 	char *vdpath;
6907 
6908 	ASSERT(spa_writeable(spa));
6909 
6910 	txg = spa_vdev_detach_enter(spa, guid);
6911 
6912 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6913 
6914 	/*
6915 	 * Besides being called directly from the userland through the
6916 	 * ioctl interface, spa_vdev_detach() can be potentially called
6917 	 * at the end of spa_vdev_resilver_done().
6918 	 *
6919 	 * In the regular case, when we have a checkpoint this shouldn't
6920 	 * happen as we never empty the DTLs of a vdev during the scrub
6921 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6922 	 * should never get here when we have a checkpoint.
6923 	 *
6924 	 * That said, even in a case when we checkpoint the pool exactly
6925 	 * as spa_vdev_resilver_done() calls this function everything
6926 	 * should be fine as the resilver will return right away.
6927 	 */
6928 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6929 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6930 		error = (spa_has_checkpoint(spa)) ?
6931 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6932 		return (spa_vdev_exit(spa, NULL, txg, error));
6933 	}
6934 
6935 	if (vd == NULL)
6936 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6937 
6938 	if (!vd->vdev_ops->vdev_op_leaf)
6939 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6940 
6941 	pvd = vd->vdev_parent;
6942 
6943 	/*
6944 	 * If the parent/child relationship is not as expected, don't do it.
6945 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6946 	 * vdev that's replacing B with C.  The user's intent in replacing
6947 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6948 	 * the replace by detaching C, the expected behavior is to end up
6949 	 * M(A,B).  But suppose that right after deciding to detach C,
6950 	 * the replacement of B completes.  We would have M(A,C), and then
6951 	 * ask to detach C, which would leave us with just A -- not what
6952 	 * the user wanted.  To prevent this, we make sure that the
6953 	 * parent/child relationship hasn't changed -- in this example,
6954 	 * that C's parent is still the replacing vdev R.
6955 	 */
6956 	if (pvd->vdev_guid != pguid && pguid != 0)
6957 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6958 
6959 	/*
6960 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6961 	 */
6962 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6963 	    pvd->vdev_ops != &vdev_spare_ops)
6964 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6965 
6966 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6967 	    spa_version(spa) >= SPA_VERSION_SPARES);
6968 
6969 	/*
6970 	 * Only mirror, replacing, and spare vdevs support detach.
6971 	 */
6972 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6973 	    pvd->vdev_ops != &vdev_mirror_ops &&
6974 	    pvd->vdev_ops != &vdev_spare_ops)
6975 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6976 
6977 	/*
6978 	 * If this device has the only valid copy of some data,
6979 	 * we cannot safely detach it.
6980 	 */
6981 	if (vdev_dtl_required(vd))
6982 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6983 
6984 	ASSERT(pvd->vdev_children >= 2);
6985 
6986 	/*
6987 	 * If we are detaching the second disk from a replacing vdev, then
6988 	 * check to see if we changed the original vdev's path to have "/old"
6989 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6990 	 */
6991 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6992 	    vd->vdev_path != NULL) {
6993 		size_t len = strlen(vd->vdev_path);
6994 
6995 		for (int c = 0; c < pvd->vdev_children; c++) {
6996 			cvd = pvd->vdev_child[c];
6997 
6998 			if (cvd == vd || cvd->vdev_path == NULL)
6999 				continue;
7000 
7001 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7002 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7003 				spa_strfree(cvd->vdev_path);
7004 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7005 				break;
7006 			}
7007 		}
7008 	}
7009 
7010 	/*
7011 	 * If we are detaching the original disk from a normal spare, then it
7012 	 * implies that the spare should become a real disk, and be removed
7013 	 * from the active spare list for the pool.  dRAID spares on the
7014 	 * other hand are coupled to the pool and thus should never be removed
7015 	 * from the spares list.
7016 	 */
7017 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7018 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7019 
7020 		if (last_cvd->vdev_isspare &&
7021 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7022 			unspare = B_TRUE;
7023 		}
7024 	}
7025 
7026 	/*
7027 	 * Erase the disk labels so the disk can be used for other things.
7028 	 * This must be done after all other error cases are handled,
7029 	 * but before we disembowel vd (so we can still do I/O to it).
7030 	 * But if we can't do it, don't treat the error as fatal --
7031 	 * it may be that the unwritability of the disk is the reason
7032 	 * it's being detached!
7033 	 */
7034 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7035 
7036 	/*
7037 	 * Remove vd from its parent and compact the parent's children.
7038 	 */
7039 	vdev_remove_child(pvd, vd);
7040 	vdev_compact_children(pvd);
7041 
7042 	/*
7043 	 * Remember one of the remaining children so we can get tvd below.
7044 	 */
7045 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7046 
7047 	/*
7048 	 * If we need to remove the remaining child from the list of hot spares,
7049 	 * do it now, marking the vdev as no longer a spare in the process.
7050 	 * We must do this before vdev_remove_parent(), because that can
7051 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7052 	 * reason, we must remove the spare now, in the same txg as the detach;
7053 	 * otherwise someone could attach a new sibling, change the GUID, and
7054 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7055 	 */
7056 	if (unspare) {
7057 		ASSERT(cvd->vdev_isspare);
7058 		spa_spare_remove(cvd);
7059 		unspare_guid = cvd->vdev_guid;
7060 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7061 		cvd->vdev_unspare = B_TRUE;
7062 	}
7063 
7064 	/*
7065 	 * If the parent mirror/replacing vdev only has one child,
7066 	 * the parent is no longer needed.  Remove it from the tree.
7067 	 */
7068 	if (pvd->vdev_children == 1) {
7069 		if (pvd->vdev_ops == &vdev_spare_ops)
7070 			cvd->vdev_unspare = B_FALSE;
7071 		vdev_remove_parent(cvd);
7072 	}
7073 
7074 	/*
7075 	 * We don't set tvd until now because the parent we just removed
7076 	 * may have been the previous top-level vdev.
7077 	 */
7078 	tvd = cvd->vdev_top;
7079 	ASSERT(tvd->vdev_parent == rvd);
7080 
7081 	/*
7082 	 * Reevaluate the parent vdev state.
7083 	 */
7084 	vdev_propagate_state(cvd);
7085 
7086 	/*
7087 	 * If the 'autoexpand' property is set on the pool then automatically
7088 	 * try to expand the size of the pool. For example if the device we
7089 	 * just detached was smaller than the others, it may be possible to
7090 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7091 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7092 	 */
7093 	if (spa->spa_autoexpand) {
7094 		vdev_reopen(tvd);
7095 		vdev_expand(tvd, txg);
7096 	}
7097 
7098 	vdev_config_dirty(tvd);
7099 
7100 	/*
7101 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7102 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7103 	 * But first make sure we're not on any *other* txg's DTL list, to
7104 	 * prevent vd from being accessed after it's freed.
7105 	 */
7106 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7107 	for (int t = 0; t < TXG_SIZE; t++)
7108 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7109 	vd->vdev_detached = B_TRUE;
7110 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7111 
7112 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7113 	spa_notify_waiters(spa);
7114 
7115 	/* hang on to the spa before we release the lock */
7116 	spa_open_ref(spa, FTAG);
7117 
7118 	error = spa_vdev_exit(spa, vd, txg, 0);
7119 
7120 	spa_history_log_internal(spa, "detach", NULL,
7121 	    "vdev=%s", vdpath);
7122 	spa_strfree(vdpath);
7123 
7124 	/*
7125 	 * If this was the removal of the original device in a hot spare vdev,
7126 	 * then we want to go through and remove the device from the hot spare
7127 	 * list of every other pool.
7128 	 */
7129 	if (unspare) {
7130 		spa_t *altspa = NULL;
7131 
7132 		mutex_enter(&spa_namespace_lock);
7133 		while ((altspa = spa_next(altspa)) != NULL) {
7134 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7135 			    altspa == spa)
7136 				continue;
7137 
7138 			spa_open_ref(altspa, FTAG);
7139 			mutex_exit(&spa_namespace_lock);
7140 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7141 			mutex_enter(&spa_namespace_lock);
7142 			spa_close(altspa, FTAG);
7143 		}
7144 		mutex_exit(&spa_namespace_lock);
7145 
7146 		/* search the rest of the vdevs for spares to remove */
7147 		spa_vdev_resilver_done(spa);
7148 	}
7149 
7150 	/* all done with the spa; OK to release */
7151 	mutex_enter(&spa_namespace_lock);
7152 	spa_close(spa, FTAG);
7153 	mutex_exit(&spa_namespace_lock);
7154 
7155 	return (error);
7156 }
7157 
7158 static int
7159 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7160     list_t *vd_list)
7161 {
7162 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7163 
7164 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7165 
7166 	/* Look up vdev and ensure it's a leaf. */
7167 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7168 	if (vd == NULL || vd->vdev_detached) {
7169 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7170 		return (SET_ERROR(ENODEV));
7171 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7172 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7173 		return (SET_ERROR(EINVAL));
7174 	} else if (!vdev_writeable(vd)) {
7175 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7176 		return (SET_ERROR(EROFS));
7177 	}
7178 	mutex_enter(&vd->vdev_initialize_lock);
7179 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7180 
7181 	/*
7182 	 * When we activate an initialize action we check to see
7183 	 * if the vdev_initialize_thread is NULL. We do this instead
7184 	 * of using the vdev_initialize_state since there might be
7185 	 * a previous initialization process which has completed but
7186 	 * the thread is not exited.
7187 	 */
7188 	if (cmd_type == POOL_INITIALIZE_START &&
7189 	    (vd->vdev_initialize_thread != NULL ||
7190 	    vd->vdev_top->vdev_removing)) {
7191 		mutex_exit(&vd->vdev_initialize_lock);
7192 		return (SET_ERROR(EBUSY));
7193 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7194 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7195 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7196 		mutex_exit(&vd->vdev_initialize_lock);
7197 		return (SET_ERROR(ESRCH));
7198 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7199 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7200 		mutex_exit(&vd->vdev_initialize_lock);
7201 		return (SET_ERROR(ESRCH));
7202 	}
7203 
7204 	switch (cmd_type) {
7205 	case POOL_INITIALIZE_START:
7206 		vdev_initialize(vd);
7207 		break;
7208 	case POOL_INITIALIZE_CANCEL:
7209 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7210 		break;
7211 	case POOL_INITIALIZE_SUSPEND:
7212 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7213 		break;
7214 	default:
7215 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7216 	}
7217 	mutex_exit(&vd->vdev_initialize_lock);
7218 
7219 	return (0);
7220 }
7221 
7222 int
7223 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7224     nvlist_t *vdev_errlist)
7225 {
7226 	int total_errors = 0;
7227 	list_t vd_list;
7228 
7229 	list_create(&vd_list, sizeof (vdev_t),
7230 	    offsetof(vdev_t, vdev_initialize_node));
7231 
7232 	/*
7233 	 * We hold the namespace lock through the whole function
7234 	 * to prevent any changes to the pool while we're starting or
7235 	 * stopping initialization. The config and state locks are held so that
7236 	 * we can properly assess the vdev state before we commit to
7237 	 * the initializing operation.
7238 	 */
7239 	mutex_enter(&spa_namespace_lock);
7240 
7241 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7242 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7243 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7244 
7245 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7246 		    &vd_list);
7247 		if (error != 0) {
7248 			char guid_as_str[MAXNAMELEN];
7249 
7250 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7251 			    "%llu", (unsigned long long)vdev_guid);
7252 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7253 			total_errors++;
7254 		}
7255 	}
7256 
7257 	/* Wait for all initialize threads to stop. */
7258 	vdev_initialize_stop_wait(spa, &vd_list);
7259 
7260 	/* Sync out the initializing state */
7261 	txg_wait_synced(spa->spa_dsl_pool, 0);
7262 	mutex_exit(&spa_namespace_lock);
7263 
7264 	list_destroy(&vd_list);
7265 
7266 	return (total_errors);
7267 }
7268 
7269 static int
7270 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7271     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7272 {
7273 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7274 
7275 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7276 
7277 	/* Look up vdev and ensure it's a leaf. */
7278 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7279 	if (vd == NULL || vd->vdev_detached) {
7280 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7281 		return (SET_ERROR(ENODEV));
7282 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7283 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7284 		return (SET_ERROR(EINVAL));
7285 	} else if (!vdev_writeable(vd)) {
7286 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7287 		return (SET_ERROR(EROFS));
7288 	} else if (!vd->vdev_has_trim) {
7289 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7290 		return (SET_ERROR(EOPNOTSUPP));
7291 	} else if (secure && !vd->vdev_has_securetrim) {
7292 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7293 		return (SET_ERROR(EOPNOTSUPP));
7294 	}
7295 	mutex_enter(&vd->vdev_trim_lock);
7296 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7297 
7298 	/*
7299 	 * When we activate a TRIM action we check to see if the
7300 	 * vdev_trim_thread is NULL. We do this instead of using the
7301 	 * vdev_trim_state since there might be a previous TRIM process
7302 	 * which has completed but the thread is not exited.
7303 	 */
7304 	if (cmd_type == POOL_TRIM_START &&
7305 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7306 		mutex_exit(&vd->vdev_trim_lock);
7307 		return (SET_ERROR(EBUSY));
7308 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7309 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7310 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7311 		mutex_exit(&vd->vdev_trim_lock);
7312 		return (SET_ERROR(ESRCH));
7313 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7314 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7315 		mutex_exit(&vd->vdev_trim_lock);
7316 		return (SET_ERROR(ESRCH));
7317 	}
7318 
7319 	switch (cmd_type) {
7320 	case POOL_TRIM_START:
7321 		vdev_trim(vd, rate, partial, secure);
7322 		break;
7323 	case POOL_TRIM_CANCEL:
7324 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7325 		break;
7326 	case POOL_TRIM_SUSPEND:
7327 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7328 		break;
7329 	default:
7330 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7331 	}
7332 	mutex_exit(&vd->vdev_trim_lock);
7333 
7334 	return (0);
7335 }
7336 
7337 /*
7338  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7339  * TRIM threads for each child vdev.  These threads pass over all of the free
7340  * space in the vdev's metaslabs and issues TRIM commands for that space.
7341  */
7342 int
7343 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7344     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7345 {
7346 	int total_errors = 0;
7347 	list_t vd_list;
7348 
7349 	list_create(&vd_list, sizeof (vdev_t),
7350 	    offsetof(vdev_t, vdev_trim_node));
7351 
7352 	/*
7353 	 * We hold the namespace lock through the whole function
7354 	 * to prevent any changes to the pool while we're starting or
7355 	 * stopping TRIM. The config and state locks are held so that
7356 	 * we can properly assess the vdev state before we commit to
7357 	 * the TRIM operation.
7358 	 */
7359 	mutex_enter(&spa_namespace_lock);
7360 
7361 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7362 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7363 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7364 
7365 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7366 		    rate, partial, secure, &vd_list);
7367 		if (error != 0) {
7368 			char guid_as_str[MAXNAMELEN];
7369 
7370 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7371 			    "%llu", (unsigned long long)vdev_guid);
7372 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7373 			total_errors++;
7374 		}
7375 	}
7376 
7377 	/* Wait for all TRIM threads to stop. */
7378 	vdev_trim_stop_wait(spa, &vd_list);
7379 
7380 	/* Sync out the TRIM state */
7381 	txg_wait_synced(spa->spa_dsl_pool, 0);
7382 	mutex_exit(&spa_namespace_lock);
7383 
7384 	list_destroy(&vd_list);
7385 
7386 	return (total_errors);
7387 }
7388 
7389 /*
7390  * Split a set of devices from their mirrors, and create a new pool from them.
7391  */
7392 int
7393 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7394     nvlist_t *props, boolean_t exp)
7395 {
7396 	int error = 0;
7397 	uint64_t txg, *glist;
7398 	spa_t *newspa;
7399 	uint_t c, children, lastlog;
7400 	nvlist_t **child, *nvl, *tmp;
7401 	dmu_tx_t *tx;
7402 	char *altroot = NULL;
7403 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7404 	boolean_t activate_slog;
7405 
7406 	ASSERT(spa_writeable(spa));
7407 
7408 	txg = spa_vdev_enter(spa);
7409 
7410 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7411 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7412 		error = (spa_has_checkpoint(spa)) ?
7413 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7414 		return (spa_vdev_exit(spa, NULL, txg, error));
7415 	}
7416 
7417 	/* clear the log and flush everything up to now */
7418 	activate_slog = spa_passivate_log(spa);
7419 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7420 	error = spa_reset_logs(spa);
7421 	txg = spa_vdev_config_enter(spa);
7422 
7423 	if (activate_slog)
7424 		spa_activate_log(spa);
7425 
7426 	if (error != 0)
7427 		return (spa_vdev_exit(spa, NULL, txg, error));
7428 
7429 	/* check new spa name before going any further */
7430 	if (spa_lookup(newname) != NULL)
7431 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7432 
7433 	/*
7434 	 * scan through all the children to ensure they're all mirrors
7435 	 */
7436 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7437 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7438 	    &children) != 0)
7439 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7440 
7441 	/* first, check to ensure we've got the right child count */
7442 	rvd = spa->spa_root_vdev;
7443 	lastlog = 0;
7444 	for (c = 0; c < rvd->vdev_children; c++) {
7445 		vdev_t *vd = rvd->vdev_child[c];
7446 
7447 		/* don't count the holes & logs as children */
7448 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7449 		    !vdev_is_concrete(vd))) {
7450 			if (lastlog == 0)
7451 				lastlog = c;
7452 			continue;
7453 		}
7454 
7455 		lastlog = 0;
7456 	}
7457 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7458 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7459 
7460 	/* next, ensure no spare or cache devices are part of the split */
7461 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7462 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7463 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7464 
7465 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7466 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7467 
7468 	/* then, loop over each vdev and validate it */
7469 	for (c = 0; c < children; c++) {
7470 		uint64_t is_hole = 0;
7471 
7472 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7473 		    &is_hole);
7474 
7475 		if (is_hole != 0) {
7476 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7477 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7478 				continue;
7479 			} else {
7480 				error = SET_ERROR(EINVAL);
7481 				break;
7482 			}
7483 		}
7484 
7485 		/* deal with indirect vdevs */
7486 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7487 		    &vdev_indirect_ops)
7488 			continue;
7489 
7490 		/* which disk is going to be split? */
7491 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7492 		    &glist[c]) != 0) {
7493 			error = SET_ERROR(EINVAL);
7494 			break;
7495 		}
7496 
7497 		/* look it up in the spa */
7498 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7499 		if (vml[c] == NULL) {
7500 			error = SET_ERROR(ENODEV);
7501 			break;
7502 		}
7503 
7504 		/* make sure there's nothing stopping the split */
7505 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7506 		    vml[c]->vdev_islog ||
7507 		    !vdev_is_concrete(vml[c]) ||
7508 		    vml[c]->vdev_isspare ||
7509 		    vml[c]->vdev_isl2cache ||
7510 		    !vdev_writeable(vml[c]) ||
7511 		    vml[c]->vdev_children != 0 ||
7512 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7513 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7514 			error = SET_ERROR(EINVAL);
7515 			break;
7516 		}
7517 
7518 		if (vdev_dtl_required(vml[c]) ||
7519 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7520 			error = SET_ERROR(EBUSY);
7521 			break;
7522 		}
7523 
7524 		/* we need certain info from the top level */
7525 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7526 		    vml[c]->vdev_top->vdev_ms_array) == 0);
7527 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7528 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7529 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7530 		    vml[c]->vdev_top->vdev_asize) == 0);
7531 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7532 		    vml[c]->vdev_top->vdev_ashift) == 0);
7533 
7534 		/* transfer per-vdev ZAPs */
7535 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7536 		VERIFY0(nvlist_add_uint64(child[c],
7537 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7538 
7539 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7540 		VERIFY0(nvlist_add_uint64(child[c],
7541 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7542 		    vml[c]->vdev_parent->vdev_top_zap));
7543 	}
7544 
7545 	if (error != 0) {
7546 		kmem_free(vml, children * sizeof (vdev_t *));
7547 		kmem_free(glist, children * sizeof (uint64_t));
7548 		return (spa_vdev_exit(spa, NULL, txg, error));
7549 	}
7550 
7551 	/* stop writers from using the disks */
7552 	for (c = 0; c < children; c++) {
7553 		if (vml[c] != NULL)
7554 			vml[c]->vdev_offline = B_TRUE;
7555 	}
7556 	vdev_reopen(spa->spa_root_vdev);
7557 
7558 	/*
7559 	 * Temporarily record the splitting vdevs in the spa config.  This
7560 	 * will disappear once the config is regenerated.
7561 	 */
7562 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7563 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7564 	    glist, children) == 0);
7565 	kmem_free(glist, children * sizeof (uint64_t));
7566 
7567 	mutex_enter(&spa->spa_props_lock);
7568 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7569 	    nvl) == 0);
7570 	mutex_exit(&spa->spa_props_lock);
7571 	spa->spa_config_splitting = nvl;
7572 	vdev_config_dirty(spa->spa_root_vdev);
7573 
7574 	/* configure and create the new pool */
7575 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7576 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7577 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7578 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7579 	    spa_version(spa)) == 0);
7580 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7581 	    spa->spa_config_txg) == 0);
7582 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7583 	    spa_generate_guid(NULL)) == 0);
7584 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7585 	(void) nvlist_lookup_string(props,
7586 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7587 
7588 	/* add the new pool to the namespace */
7589 	newspa = spa_add(newname, config, altroot);
7590 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7591 	newspa->spa_config_txg = spa->spa_config_txg;
7592 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7593 
7594 	/* release the spa config lock, retaining the namespace lock */
7595 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7596 
7597 	if (zio_injection_enabled)
7598 		zio_handle_panic_injection(spa, FTAG, 1);
7599 
7600 	spa_activate(newspa, spa_mode_global);
7601 	spa_async_suspend(newspa);
7602 
7603 	/*
7604 	 * Temporarily stop the initializing and TRIM activity.  We set the
7605 	 * state to ACTIVE so that we know to resume initializing or TRIM
7606 	 * once the split has completed.
7607 	 */
7608 	list_t vd_initialize_list;
7609 	list_create(&vd_initialize_list, sizeof (vdev_t),
7610 	    offsetof(vdev_t, vdev_initialize_node));
7611 
7612 	list_t vd_trim_list;
7613 	list_create(&vd_trim_list, sizeof (vdev_t),
7614 	    offsetof(vdev_t, vdev_trim_node));
7615 
7616 	for (c = 0; c < children; c++) {
7617 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7618 			mutex_enter(&vml[c]->vdev_initialize_lock);
7619 			vdev_initialize_stop(vml[c],
7620 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7621 			mutex_exit(&vml[c]->vdev_initialize_lock);
7622 
7623 			mutex_enter(&vml[c]->vdev_trim_lock);
7624 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7625 			mutex_exit(&vml[c]->vdev_trim_lock);
7626 		}
7627 	}
7628 
7629 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7630 	vdev_trim_stop_wait(spa, &vd_trim_list);
7631 
7632 	list_destroy(&vd_initialize_list);
7633 	list_destroy(&vd_trim_list);
7634 
7635 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7636 	newspa->spa_is_splitting = B_TRUE;
7637 
7638 	/* create the new pool from the disks of the original pool */
7639 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7640 	if (error)
7641 		goto out;
7642 
7643 	/* if that worked, generate a real config for the new pool */
7644 	if (newspa->spa_root_vdev != NULL) {
7645 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7646 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7647 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7648 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7649 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7650 		    B_TRUE));
7651 	}
7652 
7653 	/* set the props */
7654 	if (props != NULL) {
7655 		spa_configfile_set(newspa, props, B_FALSE);
7656 		error = spa_prop_set(newspa, props);
7657 		if (error)
7658 			goto out;
7659 	}
7660 
7661 	/* flush everything */
7662 	txg = spa_vdev_config_enter(newspa);
7663 	vdev_config_dirty(newspa->spa_root_vdev);
7664 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7665 
7666 	if (zio_injection_enabled)
7667 		zio_handle_panic_injection(spa, FTAG, 2);
7668 
7669 	spa_async_resume(newspa);
7670 
7671 	/* finally, update the original pool's config */
7672 	txg = spa_vdev_config_enter(spa);
7673 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7674 	error = dmu_tx_assign(tx, TXG_WAIT);
7675 	if (error != 0)
7676 		dmu_tx_abort(tx);
7677 	for (c = 0; c < children; c++) {
7678 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7679 			vdev_t *tvd = vml[c]->vdev_top;
7680 
7681 			/*
7682 			 * Need to be sure the detachable VDEV is not
7683 			 * on any *other* txg's DTL list to prevent it
7684 			 * from being accessed after it's freed.
7685 			 */
7686 			for (int t = 0; t < TXG_SIZE; t++) {
7687 				(void) txg_list_remove_this(
7688 				    &tvd->vdev_dtl_list, vml[c], t);
7689 			}
7690 
7691 			vdev_split(vml[c]);
7692 			if (error == 0)
7693 				spa_history_log_internal(spa, "detach", tx,
7694 				    "vdev=%s", vml[c]->vdev_path);
7695 
7696 			vdev_free(vml[c]);
7697 		}
7698 	}
7699 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7700 	vdev_config_dirty(spa->spa_root_vdev);
7701 	spa->spa_config_splitting = NULL;
7702 	nvlist_free(nvl);
7703 	if (error == 0)
7704 		dmu_tx_commit(tx);
7705 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7706 
7707 	if (zio_injection_enabled)
7708 		zio_handle_panic_injection(spa, FTAG, 3);
7709 
7710 	/* split is complete; log a history record */
7711 	spa_history_log_internal(newspa, "split", NULL,
7712 	    "from pool %s", spa_name(spa));
7713 
7714 	newspa->spa_is_splitting = B_FALSE;
7715 	kmem_free(vml, children * sizeof (vdev_t *));
7716 
7717 	/* if we're not going to mount the filesystems in userland, export */
7718 	if (exp)
7719 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7720 		    B_FALSE, B_FALSE);
7721 
7722 	return (error);
7723 
7724 out:
7725 	spa_unload(newspa);
7726 	spa_deactivate(newspa);
7727 	spa_remove(newspa);
7728 
7729 	txg = spa_vdev_config_enter(spa);
7730 
7731 	/* re-online all offlined disks */
7732 	for (c = 0; c < children; c++) {
7733 		if (vml[c] != NULL)
7734 			vml[c]->vdev_offline = B_FALSE;
7735 	}
7736 
7737 	/* restart initializing or trimming disks as necessary */
7738 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7739 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7740 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7741 
7742 	vdev_reopen(spa->spa_root_vdev);
7743 
7744 	nvlist_free(spa->spa_config_splitting);
7745 	spa->spa_config_splitting = NULL;
7746 	(void) spa_vdev_exit(spa, NULL, txg, error);
7747 
7748 	kmem_free(vml, children * sizeof (vdev_t *));
7749 	return (error);
7750 }
7751 
7752 /*
7753  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7754  * currently spared, so we can detach it.
7755  */
7756 static vdev_t *
7757 spa_vdev_resilver_done_hunt(vdev_t *vd)
7758 {
7759 	vdev_t *newvd, *oldvd;
7760 
7761 	for (int c = 0; c < vd->vdev_children; c++) {
7762 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7763 		if (oldvd != NULL)
7764 			return (oldvd);
7765 	}
7766 
7767 	/*
7768 	 * Check for a completed replacement.  We always consider the first
7769 	 * vdev in the list to be the oldest vdev, and the last one to be
7770 	 * the newest (see spa_vdev_attach() for how that works).  In
7771 	 * the case where the newest vdev is faulted, we will not automatically
7772 	 * remove it after a resilver completes.  This is OK as it will require
7773 	 * user intervention to determine which disk the admin wishes to keep.
7774 	 */
7775 	if (vd->vdev_ops == &vdev_replacing_ops) {
7776 		ASSERT(vd->vdev_children > 1);
7777 
7778 		newvd = vd->vdev_child[vd->vdev_children - 1];
7779 		oldvd = vd->vdev_child[0];
7780 
7781 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7782 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7783 		    !vdev_dtl_required(oldvd))
7784 			return (oldvd);
7785 	}
7786 
7787 	/*
7788 	 * Check for a completed resilver with the 'unspare' flag set.
7789 	 * Also potentially update faulted state.
7790 	 */
7791 	if (vd->vdev_ops == &vdev_spare_ops) {
7792 		vdev_t *first = vd->vdev_child[0];
7793 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7794 
7795 		if (last->vdev_unspare) {
7796 			oldvd = first;
7797 			newvd = last;
7798 		} else if (first->vdev_unspare) {
7799 			oldvd = last;
7800 			newvd = first;
7801 		} else {
7802 			oldvd = NULL;
7803 		}
7804 
7805 		if (oldvd != NULL &&
7806 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7807 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7808 		    !vdev_dtl_required(oldvd))
7809 			return (oldvd);
7810 
7811 		vdev_propagate_state(vd);
7812 
7813 		/*
7814 		 * If there are more than two spares attached to a disk,
7815 		 * and those spares are not required, then we want to
7816 		 * attempt to free them up now so that they can be used
7817 		 * by other pools.  Once we're back down to a single
7818 		 * disk+spare, we stop removing them.
7819 		 */
7820 		if (vd->vdev_children > 2) {
7821 			newvd = vd->vdev_child[1];
7822 
7823 			if (newvd->vdev_isspare && last->vdev_isspare &&
7824 			    vdev_dtl_empty(last, DTL_MISSING) &&
7825 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7826 			    !vdev_dtl_required(newvd))
7827 				return (newvd);
7828 		}
7829 	}
7830 
7831 	return (NULL);
7832 }
7833 
7834 static void
7835 spa_vdev_resilver_done(spa_t *spa)
7836 {
7837 	vdev_t *vd, *pvd, *ppvd;
7838 	uint64_t guid, sguid, pguid, ppguid;
7839 
7840 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7841 
7842 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7843 		pvd = vd->vdev_parent;
7844 		ppvd = pvd->vdev_parent;
7845 		guid = vd->vdev_guid;
7846 		pguid = pvd->vdev_guid;
7847 		ppguid = ppvd->vdev_guid;
7848 		sguid = 0;
7849 		/*
7850 		 * If we have just finished replacing a hot spared device, then
7851 		 * we need to detach the parent's first child (the original hot
7852 		 * spare) as well.
7853 		 */
7854 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7855 		    ppvd->vdev_children == 2) {
7856 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7857 			sguid = ppvd->vdev_child[1]->vdev_guid;
7858 		}
7859 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7860 
7861 		spa_config_exit(spa, SCL_ALL, FTAG);
7862 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7863 			return;
7864 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7865 			return;
7866 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7867 	}
7868 
7869 	spa_config_exit(spa, SCL_ALL, FTAG);
7870 
7871 	/*
7872 	 * If a detach was not performed above replace waiters will not have
7873 	 * been notified.  In which case we must do so now.
7874 	 */
7875 	spa_notify_waiters(spa);
7876 }
7877 
7878 /*
7879  * Update the stored path or FRU for this vdev.
7880  */
7881 static int
7882 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7883     boolean_t ispath)
7884 {
7885 	vdev_t *vd;
7886 	boolean_t sync = B_FALSE;
7887 
7888 	ASSERT(spa_writeable(spa));
7889 
7890 	spa_vdev_state_enter(spa, SCL_ALL);
7891 
7892 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7893 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7894 
7895 	if (!vd->vdev_ops->vdev_op_leaf)
7896 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7897 
7898 	if (ispath) {
7899 		if (strcmp(value, vd->vdev_path) != 0) {
7900 			spa_strfree(vd->vdev_path);
7901 			vd->vdev_path = spa_strdup(value);
7902 			sync = B_TRUE;
7903 		}
7904 	} else {
7905 		if (vd->vdev_fru == NULL) {
7906 			vd->vdev_fru = spa_strdup(value);
7907 			sync = B_TRUE;
7908 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7909 			spa_strfree(vd->vdev_fru);
7910 			vd->vdev_fru = spa_strdup(value);
7911 			sync = B_TRUE;
7912 		}
7913 	}
7914 
7915 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7916 }
7917 
7918 int
7919 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7920 {
7921 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7922 }
7923 
7924 int
7925 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7926 {
7927 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7928 }
7929 
7930 /*
7931  * ==========================================================================
7932  * SPA Scanning
7933  * ==========================================================================
7934  */
7935 int
7936 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7937 {
7938 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7939 
7940 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7941 		return (SET_ERROR(EBUSY));
7942 
7943 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7944 }
7945 
7946 int
7947 spa_scan_stop(spa_t *spa)
7948 {
7949 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7950 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7951 		return (SET_ERROR(EBUSY));
7952 	return (dsl_scan_cancel(spa->spa_dsl_pool));
7953 }
7954 
7955 int
7956 spa_scan(spa_t *spa, pool_scan_func_t func)
7957 {
7958 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7959 
7960 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7961 		return (SET_ERROR(ENOTSUP));
7962 
7963 	if (func == POOL_SCAN_RESILVER &&
7964 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
7965 		return (SET_ERROR(ENOTSUP));
7966 
7967 	/*
7968 	 * If a resilver was requested, but there is no DTL on a
7969 	 * writeable leaf device, we have nothing to do.
7970 	 */
7971 	if (func == POOL_SCAN_RESILVER &&
7972 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7973 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7974 		return (0);
7975 	}
7976 
7977 	return (dsl_scan(spa->spa_dsl_pool, func));
7978 }
7979 
7980 /*
7981  * ==========================================================================
7982  * SPA async task processing
7983  * ==========================================================================
7984  */
7985 
7986 static void
7987 spa_async_remove(spa_t *spa, vdev_t *vd)
7988 {
7989 	if (vd->vdev_remove_wanted) {
7990 		vd->vdev_remove_wanted = B_FALSE;
7991 		vd->vdev_delayed_close = B_FALSE;
7992 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7993 
7994 		/*
7995 		 * We want to clear the stats, but we don't want to do a full
7996 		 * vdev_clear() as that will cause us to throw away
7997 		 * degraded/faulted state as well as attempt to reopen the
7998 		 * device, all of which is a waste.
7999 		 */
8000 		vd->vdev_stat.vs_read_errors = 0;
8001 		vd->vdev_stat.vs_write_errors = 0;
8002 		vd->vdev_stat.vs_checksum_errors = 0;
8003 
8004 		vdev_state_dirty(vd->vdev_top);
8005 
8006 		/* Tell userspace that the vdev is gone. */
8007 		zfs_post_remove(spa, vd);
8008 	}
8009 
8010 	for (int c = 0; c < vd->vdev_children; c++)
8011 		spa_async_remove(spa, vd->vdev_child[c]);
8012 }
8013 
8014 static void
8015 spa_async_probe(spa_t *spa, vdev_t *vd)
8016 {
8017 	if (vd->vdev_probe_wanted) {
8018 		vd->vdev_probe_wanted = B_FALSE;
8019 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8020 	}
8021 
8022 	for (int c = 0; c < vd->vdev_children; c++)
8023 		spa_async_probe(spa, vd->vdev_child[c]);
8024 }
8025 
8026 static void
8027 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8028 {
8029 	if (!spa->spa_autoexpand)
8030 		return;
8031 
8032 	for (int c = 0; c < vd->vdev_children; c++) {
8033 		vdev_t *cvd = vd->vdev_child[c];
8034 		spa_async_autoexpand(spa, cvd);
8035 	}
8036 
8037 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8038 		return;
8039 
8040 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8041 }
8042 
8043 static void
8044 spa_async_thread(void *arg)
8045 {
8046 	spa_t *spa = (spa_t *)arg;
8047 	dsl_pool_t *dp = spa->spa_dsl_pool;
8048 	int tasks;
8049 
8050 	ASSERT(spa->spa_sync_on);
8051 
8052 	mutex_enter(&spa->spa_async_lock);
8053 	tasks = spa->spa_async_tasks;
8054 	spa->spa_async_tasks = 0;
8055 	mutex_exit(&spa->spa_async_lock);
8056 
8057 	/*
8058 	 * See if the config needs to be updated.
8059 	 */
8060 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8061 		uint64_t old_space, new_space;
8062 
8063 		mutex_enter(&spa_namespace_lock);
8064 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8065 		old_space += metaslab_class_get_space(spa_special_class(spa));
8066 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8067 		old_space += metaslab_class_get_space(
8068 		    spa_embedded_log_class(spa));
8069 
8070 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8071 
8072 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8073 		new_space += metaslab_class_get_space(spa_special_class(spa));
8074 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8075 		new_space += metaslab_class_get_space(
8076 		    spa_embedded_log_class(spa));
8077 		mutex_exit(&spa_namespace_lock);
8078 
8079 		/*
8080 		 * If the pool grew as a result of the config update,
8081 		 * then log an internal history event.
8082 		 */
8083 		if (new_space != old_space) {
8084 			spa_history_log_internal(spa, "vdev online", NULL,
8085 			    "pool '%s' size: %llu(+%llu)",
8086 			    spa_name(spa), (u_longlong_t)new_space,
8087 			    (u_longlong_t)(new_space - old_space));
8088 		}
8089 	}
8090 
8091 	/*
8092 	 * See if any devices need to be marked REMOVED.
8093 	 */
8094 	if (tasks & SPA_ASYNC_REMOVE) {
8095 		spa_vdev_state_enter(spa, SCL_NONE);
8096 		spa_async_remove(spa, spa->spa_root_vdev);
8097 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8098 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8099 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8100 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8101 		(void) spa_vdev_state_exit(spa, NULL, 0);
8102 	}
8103 
8104 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8105 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8106 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8107 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8108 	}
8109 
8110 	/*
8111 	 * See if any devices need to be probed.
8112 	 */
8113 	if (tasks & SPA_ASYNC_PROBE) {
8114 		spa_vdev_state_enter(spa, SCL_NONE);
8115 		spa_async_probe(spa, spa->spa_root_vdev);
8116 		(void) spa_vdev_state_exit(spa, NULL, 0);
8117 	}
8118 
8119 	/*
8120 	 * If any devices are done replacing, detach them.
8121 	 */
8122 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8123 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8124 		spa_vdev_resilver_done(spa);
8125 	}
8126 
8127 	/*
8128 	 * Kick off a resilver.
8129 	 */
8130 	if (tasks & SPA_ASYNC_RESILVER &&
8131 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8132 	    (!dsl_scan_resilvering(dp) ||
8133 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8134 		dsl_scan_restart_resilver(dp, 0);
8135 
8136 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8137 		mutex_enter(&spa_namespace_lock);
8138 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8139 		vdev_initialize_restart(spa->spa_root_vdev);
8140 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8141 		mutex_exit(&spa_namespace_lock);
8142 	}
8143 
8144 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8145 		mutex_enter(&spa_namespace_lock);
8146 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8147 		vdev_trim_restart(spa->spa_root_vdev);
8148 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8149 		mutex_exit(&spa_namespace_lock);
8150 	}
8151 
8152 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8153 		mutex_enter(&spa_namespace_lock);
8154 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8155 		vdev_autotrim_restart(spa);
8156 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8157 		mutex_exit(&spa_namespace_lock);
8158 	}
8159 
8160 	/*
8161 	 * Kick off L2 cache whole device TRIM.
8162 	 */
8163 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8164 		mutex_enter(&spa_namespace_lock);
8165 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8166 		vdev_trim_l2arc(spa);
8167 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8168 		mutex_exit(&spa_namespace_lock);
8169 	}
8170 
8171 	/*
8172 	 * Kick off L2 cache rebuilding.
8173 	 */
8174 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8175 		mutex_enter(&spa_namespace_lock);
8176 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8177 		l2arc_spa_rebuild_start(spa);
8178 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8179 		mutex_exit(&spa_namespace_lock);
8180 	}
8181 
8182 	/*
8183 	 * Let the world know that we're done.
8184 	 */
8185 	mutex_enter(&spa->spa_async_lock);
8186 	spa->spa_async_thread = NULL;
8187 	cv_broadcast(&spa->spa_async_cv);
8188 	mutex_exit(&spa->spa_async_lock);
8189 	thread_exit();
8190 }
8191 
8192 void
8193 spa_async_suspend(spa_t *spa)
8194 {
8195 	mutex_enter(&spa->spa_async_lock);
8196 	spa->spa_async_suspended++;
8197 	while (spa->spa_async_thread != NULL)
8198 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8199 	mutex_exit(&spa->spa_async_lock);
8200 
8201 	spa_vdev_remove_suspend(spa);
8202 
8203 	zthr_t *condense_thread = spa->spa_condense_zthr;
8204 	if (condense_thread != NULL)
8205 		zthr_cancel(condense_thread);
8206 
8207 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8208 	if (discard_thread != NULL)
8209 		zthr_cancel(discard_thread);
8210 
8211 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8212 	if (ll_delete_thread != NULL)
8213 		zthr_cancel(ll_delete_thread);
8214 
8215 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8216 	if (ll_condense_thread != NULL)
8217 		zthr_cancel(ll_condense_thread);
8218 }
8219 
8220 void
8221 spa_async_resume(spa_t *spa)
8222 {
8223 	mutex_enter(&spa->spa_async_lock);
8224 	ASSERT(spa->spa_async_suspended != 0);
8225 	spa->spa_async_suspended--;
8226 	mutex_exit(&spa->spa_async_lock);
8227 	spa_restart_removal(spa);
8228 
8229 	zthr_t *condense_thread = spa->spa_condense_zthr;
8230 	if (condense_thread != NULL)
8231 		zthr_resume(condense_thread);
8232 
8233 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8234 	if (discard_thread != NULL)
8235 		zthr_resume(discard_thread);
8236 
8237 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8238 	if (ll_delete_thread != NULL)
8239 		zthr_resume(ll_delete_thread);
8240 
8241 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8242 	if (ll_condense_thread != NULL)
8243 		zthr_resume(ll_condense_thread);
8244 }
8245 
8246 static boolean_t
8247 spa_async_tasks_pending(spa_t *spa)
8248 {
8249 	uint_t non_config_tasks;
8250 	uint_t config_task;
8251 	boolean_t config_task_suspended;
8252 
8253 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8254 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8255 	if (spa->spa_ccw_fail_time == 0) {
8256 		config_task_suspended = B_FALSE;
8257 	} else {
8258 		config_task_suspended =
8259 		    (gethrtime() - spa->spa_ccw_fail_time) <
8260 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8261 	}
8262 
8263 	return (non_config_tasks || (config_task && !config_task_suspended));
8264 }
8265 
8266 static void
8267 spa_async_dispatch(spa_t *spa)
8268 {
8269 	mutex_enter(&spa->spa_async_lock);
8270 	if (spa_async_tasks_pending(spa) &&
8271 	    !spa->spa_async_suspended &&
8272 	    spa->spa_async_thread == NULL)
8273 		spa->spa_async_thread = thread_create(NULL, 0,
8274 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8275 	mutex_exit(&spa->spa_async_lock);
8276 }
8277 
8278 void
8279 spa_async_request(spa_t *spa, int task)
8280 {
8281 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8282 	mutex_enter(&spa->spa_async_lock);
8283 	spa->spa_async_tasks |= task;
8284 	mutex_exit(&spa->spa_async_lock);
8285 }
8286 
8287 int
8288 spa_async_tasks(spa_t *spa)
8289 {
8290 	return (spa->spa_async_tasks);
8291 }
8292 
8293 /*
8294  * ==========================================================================
8295  * SPA syncing routines
8296  * ==========================================================================
8297  */
8298 
8299 
8300 static int
8301 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8302     dmu_tx_t *tx)
8303 {
8304 	bpobj_t *bpo = arg;
8305 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8306 	return (0);
8307 }
8308 
8309 int
8310 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8311 {
8312 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8313 }
8314 
8315 int
8316 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8317 {
8318 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8319 }
8320 
8321 static int
8322 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8323 {
8324 	zio_t *pio = arg;
8325 
8326 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8327 	    pio->io_flags));
8328 	return (0);
8329 }
8330 
8331 static int
8332 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8333     dmu_tx_t *tx)
8334 {
8335 	ASSERT(!bp_freed);
8336 	return (spa_free_sync_cb(arg, bp, tx));
8337 }
8338 
8339 /*
8340  * Note: this simple function is not inlined to make it easier to dtrace the
8341  * amount of time spent syncing frees.
8342  */
8343 static void
8344 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8345 {
8346 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8347 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8348 	VERIFY(zio_wait(zio) == 0);
8349 }
8350 
8351 /*
8352  * Note: this simple function is not inlined to make it easier to dtrace the
8353  * amount of time spent syncing deferred frees.
8354  */
8355 static void
8356 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8357 {
8358 	if (spa_sync_pass(spa) != 1)
8359 		return;
8360 
8361 	/*
8362 	 * Note:
8363 	 * If the log space map feature is active, we stop deferring
8364 	 * frees to the next TXG and therefore running this function
8365 	 * would be considered a no-op as spa_deferred_bpobj should
8366 	 * not have any entries.
8367 	 *
8368 	 * That said we run this function anyway (instead of returning
8369 	 * immediately) for the edge-case scenario where we just
8370 	 * activated the log space map feature in this TXG but we have
8371 	 * deferred frees from the previous TXG.
8372 	 */
8373 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8374 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8375 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8376 	VERIFY0(zio_wait(zio));
8377 }
8378 
8379 static void
8380 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8381 {
8382 	char *packed = NULL;
8383 	size_t bufsize;
8384 	size_t nvsize = 0;
8385 	dmu_buf_t *db;
8386 
8387 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8388 
8389 	/*
8390 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8391 	 * information.  This avoids the dmu_buf_will_dirty() path and
8392 	 * saves us a pre-read to get data we don't actually care about.
8393 	 */
8394 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8395 	packed = vmem_alloc(bufsize, KM_SLEEP);
8396 
8397 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8398 	    KM_SLEEP) == 0);
8399 	bzero(packed + nvsize, bufsize - nvsize);
8400 
8401 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8402 
8403 	vmem_free(packed, bufsize);
8404 
8405 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8406 	dmu_buf_will_dirty(db, tx);
8407 	*(uint64_t *)db->db_data = nvsize;
8408 	dmu_buf_rele(db, FTAG);
8409 }
8410 
8411 static void
8412 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8413     const char *config, const char *entry)
8414 {
8415 	nvlist_t *nvroot;
8416 	nvlist_t **list;
8417 	int i;
8418 
8419 	if (!sav->sav_sync)
8420 		return;
8421 
8422 	/*
8423 	 * Update the MOS nvlist describing the list of available devices.
8424 	 * spa_validate_aux() will have already made sure this nvlist is
8425 	 * valid and the vdevs are labeled appropriately.
8426 	 */
8427 	if (sav->sav_object == 0) {
8428 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8429 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8430 		    sizeof (uint64_t), tx);
8431 		VERIFY(zap_update(spa->spa_meta_objset,
8432 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8433 		    &sav->sav_object, tx) == 0);
8434 	}
8435 
8436 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8437 	if (sav->sav_count == 0) {
8438 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8439 	} else {
8440 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8441 		for (i = 0; i < sav->sav_count; i++)
8442 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8443 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8444 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8445 		    sav->sav_count) == 0);
8446 		for (i = 0; i < sav->sav_count; i++)
8447 			nvlist_free(list[i]);
8448 		kmem_free(list, sav->sav_count * sizeof (void *));
8449 	}
8450 
8451 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8452 	nvlist_free(nvroot);
8453 
8454 	sav->sav_sync = B_FALSE;
8455 }
8456 
8457 /*
8458  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8459  * The all-vdev ZAP must be empty.
8460  */
8461 static void
8462 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8463 {
8464 	spa_t *spa = vd->vdev_spa;
8465 
8466 	if (vd->vdev_top_zap != 0) {
8467 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8468 		    vd->vdev_top_zap, tx));
8469 	}
8470 	if (vd->vdev_leaf_zap != 0) {
8471 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8472 		    vd->vdev_leaf_zap, tx));
8473 	}
8474 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8475 		spa_avz_build(vd->vdev_child[i], avz, tx);
8476 	}
8477 }
8478 
8479 static void
8480 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8481 {
8482 	nvlist_t *config;
8483 
8484 	/*
8485 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8486 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8487 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8488 	 * need to rebuild the AVZ although the config may not be dirty.
8489 	 */
8490 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8491 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8492 		return;
8493 
8494 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8495 
8496 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8497 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8498 	    spa->spa_all_vdev_zaps != 0);
8499 
8500 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8501 		/* Make and build the new AVZ */
8502 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8503 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8504 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8505 
8506 		/* Diff old AVZ with new one */
8507 		zap_cursor_t zc;
8508 		zap_attribute_t za;
8509 
8510 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8511 		    spa->spa_all_vdev_zaps);
8512 		    zap_cursor_retrieve(&zc, &za) == 0;
8513 		    zap_cursor_advance(&zc)) {
8514 			uint64_t vdzap = za.za_first_integer;
8515 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8516 			    vdzap) == ENOENT) {
8517 				/*
8518 				 * ZAP is listed in old AVZ but not in new one;
8519 				 * destroy it
8520 				 */
8521 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8522 				    tx));
8523 			}
8524 		}
8525 
8526 		zap_cursor_fini(&zc);
8527 
8528 		/* Destroy the old AVZ */
8529 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8530 		    spa->spa_all_vdev_zaps, tx));
8531 
8532 		/* Replace the old AVZ in the dir obj with the new one */
8533 		VERIFY0(zap_update(spa->spa_meta_objset,
8534 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8535 		    sizeof (new_avz), 1, &new_avz, tx));
8536 
8537 		spa->spa_all_vdev_zaps = new_avz;
8538 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8539 		zap_cursor_t zc;
8540 		zap_attribute_t za;
8541 
8542 		/* Walk through the AVZ and destroy all listed ZAPs */
8543 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8544 		    spa->spa_all_vdev_zaps);
8545 		    zap_cursor_retrieve(&zc, &za) == 0;
8546 		    zap_cursor_advance(&zc)) {
8547 			uint64_t zap = za.za_first_integer;
8548 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8549 		}
8550 
8551 		zap_cursor_fini(&zc);
8552 
8553 		/* Destroy and unlink the AVZ itself */
8554 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8555 		    spa->spa_all_vdev_zaps, tx));
8556 		VERIFY0(zap_remove(spa->spa_meta_objset,
8557 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8558 		spa->spa_all_vdev_zaps = 0;
8559 	}
8560 
8561 	if (spa->spa_all_vdev_zaps == 0) {
8562 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8563 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8564 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8565 	}
8566 	spa->spa_avz_action = AVZ_ACTION_NONE;
8567 
8568 	/* Create ZAPs for vdevs that don't have them. */
8569 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8570 
8571 	config = spa_config_generate(spa, spa->spa_root_vdev,
8572 	    dmu_tx_get_txg(tx), B_FALSE);
8573 
8574 	/*
8575 	 * If we're upgrading the spa version then make sure that
8576 	 * the config object gets updated with the correct version.
8577 	 */
8578 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8579 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8580 		    spa->spa_uberblock.ub_version);
8581 
8582 	spa_config_exit(spa, SCL_STATE, FTAG);
8583 
8584 	nvlist_free(spa->spa_config_syncing);
8585 	spa->spa_config_syncing = config;
8586 
8587 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8588 }
8589 
8590 static void
8591 spa_sync_version(void *arg, dmu_tx_t *tx)
8592 {
8593 	uint64_t *versionp = arg;
8594 	uint64_t version = *versionp;
8595 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8596 
8597 	/*
8598 	 * Setting the version is special cased when first creating the pool.
8599 	 */
8600 	ASSERT(tx->tx_txg != TXG_INITIAL);
8601 
8602 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8603 	ASSERT(version >= spa_version(spa));
8604 
8605 	spa->spa_uberblock.ub_version = version;
8606 	vdev_config_dirty(spa->spa_root_vdev);
8607 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8608 	    (longlong_t)version);
8609 }
8610 
8611 /*
8612  * Set zpool properties.
8613  */
8614 static void
8615 spa_sync_props(void *arg, dmu_tx_t *tx)
8616 {
8617 	nvlist_t *nvp = arg;
8618 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8619 	objset_t *mos = spa->spa_meta_objset;
8620 	nvpair_t *elem = NULL;
8621 
8622 	mutex_enter(&spa->spa_props_lock);
8623 
8624 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8625 		uint64_t intval;
8626 		char *strval, *fname;
8627 		zpool_prop_t prop;
8628 		const char *propname;
8629 		zprop_type_t proptype;
8630 		spa_feature_t fid;
8631 
8632 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8633 		case ZPOOL_PROP_INVAL:
8634 			/*
8635 			 * We checked this earlier in spa_prop_validate().
8636 			 */
8637 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8638 
8639 			fname = strchr(nvpair_name(elem), '@') + 1;
8640 			VERIFY0(zfeature_lookup_name(fname, &fid));
8641 
8642 			spa_feature_enable(spa, fid, tx);
8643 			spa_history_log_internal(spa, "set", tx,
8644 			    "%s=enabled", nvpair_name(elem));
8645 			break;
8646 
8647 		case ZPOOL_PROP_VERSION:
8648 			intval = fnvpair_value_uint64(elem);
8649 			/*
8650 			 * The version is synced separately before other
8651 			 * properties and should be correct by now.
8652 			 */
8653 			ASSERT3U(spa_version(spa), >=, intval);
8654 			break;
8655 
8656 		case ZPOOL_PROP_ALTROOT:
8657 			/*
8658 			 * 'altroot' is a non-persistent property. It should
8659 			 * have been set temporarily at creation or import time.
8660 			 */
8661 			ASSERT(spa->spa_root != NULL);
8662 			break;
8663 
8664 		case ZPOOL_PROP_READONLY:
8665 		case ZPOOL_PROP_CACHEFILE:
8666 			/*
8667 			 * 'readonly' and 'cachefile' are also non-persistent
8668 			 * properties.
8669 			 */
8670 			break;
8671 		case ZPOOL_PROP_COMMENT:
8672 			strval = fnvpair_value_string(elem);
8673 			if (spa->spa_comment != NULL)
8674 				spa_strfree(spa->spa_comment);
8675 			spa->spa_comment = spa_strdup(strval);
8676 			/*
8677 			 * We need to dirty the configuration on all the vdevs
8678 			 * so that their labels get updated.  It's unnecessary
8679 			 * to do this for pool creation since the vdev's
8680 			 * configuration has already been dirtied.
8681 			 */
8682 			if (tx->tx_txg != TXG_INITIAL)
8683 				vdev_config_dirty(spa->spa_root_vdev);
8684 			spa_history_log_internal(spa, "set", tx,
8685 			    "%s=%s", nvpair_name(elem), strval);
8686 			break;
8687 		case ZPOOL_PROP_COMPATIBILITY:
8688 			strval = fnvpair_value_string(elem);
8689 			if (spa->spa_compatibility != NULL)
8690 				spa_strfree(spa->spa_compatibility);
8691 			spa->spa_compatibility = spa_strdup(strval);
8692 			/*
8693 			 * Dirty the configuration on vdevs as above.
8694 			 */
8695 			if (tx->tx_txg != TXG_INITIAL)
8696 				vdev_config_dirty(spa->spa_root_vdev);
8697 			spa_history_log_internal(spa, "set", tx,
8698 			    "%s=%s", nvpair_name(elem), strval);
8699 			break;
8700 
8701 		default:
8702 			/*
8703 			 * Set pool property values in the poolprops mos object.
8704 			 */
8705 			if (spa->spa_pool_props_object == 0) {
8706 				spa->spa_pool_props_object =
8707 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8708 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8709 				    tx);
8710 			}
8711 
8712 			/* normalize the property name */
8713 			propname = zpool_prop_to_name(prop);
8714 			proptype = zpool_prop_get_type(prop);
8715 
8716 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8717 				ASSERT(proptype == PROP_TYPE_STRING);
8718 				strval = fnvpair_value_string(elem);
8719 				VERIFY0(zap_update(mos,
8720 				    spa->spa_pool_props_object, propname,
8721 				    1, strlen(strval) + 1, strval, tx));
8722 				spa_history_log_internal(spa, "set", tx,
8723 				    "%s=%s", nvpair_name(elem), strval);
8724 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8725 				intval = fnvpair_value_uint64(elem);
8726 
8727 				if (proptype == PROP_TYPE_INDEX) {
8728 					const char *unused;
8729 					VERIFY0(zpool_prop_index_to_string(
8730 					    prop, intval, &unused));
8731 				}
8732 				VERIFY0(zap_update(mos,
8733 				    spa->spa_pool_props_object, propname,
8734 				    8, 1, &intval, tx));
8735 				spa_history_log_internal(spa, "set", tx,
8736 				    "%s=%lld", nvpair_name(elem),
8737 				    (longlong_t)intval);
8738 			} else {
8739 				ASSERT(0); /* not allowed */
8740 			}
8741 
8742 			switch (prop) {
8743 			case ZPOOL_PROP_DELEGATION:
8744 				spa->spa_delegation = intval;
8745 				break;
8746 			case ZPOOL_PROP_BOOTFS:
8747 				spa->spa_bootfs = intval;
8748 				break;
8749 			case ZPOOL_PROP_FAILUREMODE:
8750 				spa->spa_failmode = intval;
8751 				break;
8752 			case ZPOOL_PROP_AUTOTRIM:
8753 				spa->spa_autotrim = intval;
8754 				spa_async_request(spa,
8755 				    SPA_ASYNC_AUTOTRIM_RESTART);
8756 				break;
8757 			case ZPOOL_PROP_AUTOEXPAND:
8758 				spa->spa_autoexpand = intval;
8759 				if (tx->tx_txg != TXG_INITIAL)
8760 					spa_async_request(spa,
8761 					    SPA_ASYNC_AUTOEXPAND);
8762 				break;
8763 			case ZPOOL_PROP_MULTIHOST:
8764 				spa->spa_multihost = intval;
8765 				break;
8766 			default:
8767 				break;
8768 			}
8769 		}
8770 
8771 	}
8772 
8773 	mutex_exit(&spa->spa_props_lock);
8774 }
8775 
8776 /*
8777  * Perform one-time upgrade on-disk changes.  spa_version() does not
8778  * reflect the new version this txg, so there must be no changes this
8779  * txg to anything that the upgrade code depends on after it executes.
8780  * Therefore this must be called after dsl_pool_sync() does the sync
8781  * tasks.
8782  */
8783 static void
8784 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8785 {
8786 	if (spa_sync_pass(spa) != 1)
8787 		return;
8788 
8789 	dsl_pool_t *dp = spa->spa_dsl_pool;
8790 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8791 
8792 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8793 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8794 		dsl_pool_create_origin(dp, tx);
8795 
8796 		/* Keeping the origin open increases spa_minref */
8797 		spa->spa_minref += 3;
8798 	}
8799 
8800 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8801 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8802 		dsl_pool_upgrade_clones(dp, tx);
8803 	}
8804 
8805 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8806 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8807 		dsl_pool_upgrade_dir_clones(dp, tx);
8808 
8809 		/* Keeping the freedir open increases spa_minref */
8810 		spa->spa_minref += 3;
8811 	}
8812 
8813 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8814 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8815 		spa_feature_create_zap_objects(spa, tx);
8816 	}
8817 
8818 	/*
8819 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8820 	 * when possibility to use lz4 compression for metadata was added
8821 	 * Old pools that have this feature enabled must be upgraded to have
8822 	 * this feature active
8823 	 */
8824 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8825 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8826 		    SPA_FEATURE_LZ4_COMPRESS);
8827 		boolean_t lz4_ac = spa_feature_is_active(spa,
8828 		    SPA_FEATURE_LZ4_COMPRESS);
8829 
8830 		if (lz4_en && !lz4_ac)
8831 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8832 	}
8833 
8834 	/*
8835 	 * If we haven't written the salt, do so now.  Note that the
8836 	 * feature may not be activated yet, but that's fine since
8837 	 * the presence of this ZAP entry is backwards compatible.
8838 	 */
8839 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8840 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8841 		VERIFY0(zap_add(spa->spa_meta_objset,
8842 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8843 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8844 		    spa->spa_cksum_salt.zcs_bytes, tx));
8845 	}
8846 
8847 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8848 }
8849 
8850 static void
8851 vdev_indirect_state_sync_verify(vdev_t *vd)
8852 {
8853 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8854 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8855 
8856 	if (vd->vdev_ops == &vdev_indirect_ops) {
8857 		ASSERT(vim != NULL);
8858 		ASSERT(vib != NULL);
8859 	}
8860 
8861 	uint64_t obsolete_sm_object = 0;
8862 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8863 	if (obsolete_sm_object != 0) {
8864 		ASSERT(vd->vdev_obsolete_sm != NULL);
8865 		ASSERT(vd->vdev_removing ||
8866 		    vd->vdev_ops == &vdev_indirect_ops);
8867 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8868 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8869 		ASSERT3U(obsolete_sm_object, ==,
8870 		    space_map_object(vd->vdev_obsolete_sm));
8871 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8872 		    space_map_allocated(vd->vdev_obsolete_sm));
8873 	}
8874 	ASSERT(vd->vdev_obsolete_segments != NULL);
8875 
8876 	/*
8877 	 * Since frees / remaps to an indirect vdev can only
8878 	 * happen in syncing context, the obsolete segments
8879 	 * tree must be empty when we start syncing.
8880 	 */
8881 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8882 }
8883 
8884 /*
8885  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8886  * async write queue depth in case it changed. The max queue depth will
8887  * not change in the middle of syncing out this txg.
8888  */
8889 static void
8890 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8891 {
8892 	ASSERT(spa_writeable(spa));
8893 
8894 	vdev_t *rvd = spa->spa_root_vdev;
8895 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8896 	    zfs_vdev_queue_depth_pct / 100;
8897 	metaslab_class_t *normal = spa_normal_class(spa);
8898 	metaslab_class_t *special = spa_special_class(spa);
8899 	metaslab_class_t *dedup = spa_dedup_class(spa);
8900 
8901 	uint64_t slots_per_allocator = 0;
8902 	for (int c = 0; c < rvd->vdev_children; c++) {
8903 		vdev_t *tvd = rvd->vdev_child[c];
8904 
8905 		metaslab_group_t *mg = tvd->vdev_mg;
8906 		if (mg == NULL || !metaslab_group_initialized(mg))
8907 			continue;
8908 
8909 		metaslab_class_t *mc = mg->mg_class;
8910 		if (mc != normal && mc != special && mc != dedup)
8911 			continue;
8912 
8913 		/*
8914 		 * It is safe to do a lock-free check here because only async
8915 		 * allocations look at mg_max_alloc_queue_depth, and async
8916 		 * allocations all happen from spa_sync().
8917 		 */
8918 		for (int i = 0; i < mg->mg_allocators; i++) {
8919 			ASSERT0(zfs_refcount_count(
8920 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8921 		}
8922 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8923 
8924 		for (int i = 0; i < mg->mg_allocators; i++) {
8925 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8926 			    zfs_vdev_def_queue_depth;
8927 		}
8928 		slots_per_allocator += zfs_vdev_def_queue_depth;
8929 	}
8930 
8931 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8932 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8933 		    mca_alloc_slots));
8934 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8935 		    mca_alloc_slots));
8936 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8937 		    mca_alloc_slots));
8938 		normal->mc_allocator[i].mca_alloc_max_slots =
8939 		    slots_per_allocator;
8940 		special->mc_allocator[i].mca_alloc_max_slots =
8941 		    slots_per_allocator;
8942 		dedup->mc_allocator[i].mca_alloc_max_slots =
8943 		    slots_per_allocator;
8944 	}
8945 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8946 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8947 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8948 }
8949 
8950 static void
8951 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8952 {
8953 	ASSERT(spa_writeable(spa));
8954 
8955 	vdev_t *rvd = spa->spa_root_vdev;
8956 	for (int c = 0; c < rvd->vdev_children; c++) {
8957 		vdev_t *vd = rvd->vdev_child[c];
8958 		vdev_indirect_state_sync_verify(vd);
8959 
8960 		if (vdev_indirect_should_condense(vd)) {
8961 			spa_condense_indirect_start_sync(vd, tx);
8962 			break;
8963 		}
8964 	}
8965 }
8966 
8967 static void
8968 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
8969 {
8970 	objset_t *mos = spa->spa_meta_objset;
8971 	dsl_pool_t *dp = spa->spa_dsl_pool;
8972 	uint64_t txg = tx->tx_txg;
8973 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
8974 
8975 	do {
8976 		int pass = ++spa->spa_sync_pass;
8977 
8978 		spa_sync_config_object(spa, tx);
8979 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8980 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8981 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8982 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8983 		spa_errlog_sync(spa, txg);
8984 		dsl_pool_sync(dp, txg);
8985 
8986 		if (pass < zfs_sync_pass_deferred_free ||
8987 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
8988 			/*
8989 			 * If the log space map feature is active we don't
8990 			 * care about deferred frees and the deferred bpobj
8991 			 * as the log space map should effectively have the
8992 			 * same results (i.e. appending only to one object).
8993 			 */
8994 			spa_sync_frees(spa, free_bpl, tx);
8995 		} else {
8996 			/*
8997 			 * We can not defer frees in pass 1, because
8998 			 * we sync the deferred frees later in pass 1.
8999 			 */
9000 			ASSERT3U(pass, >, 1);
9001 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9002 			    &spa->spa_deferred_bpobj, tx);
9003 		}
9004 
9005 		ddt_sync(spa, txg);
9006 		dsl_scan_sync(dp, tx);
9007 		svr_sync(spa, tx);
9008 		spa_sync_upgrades(spa, tx);
9009 
9010 		spa_flush_metaslabs(spa, tx);
9011 
9012 		vdev_t *vd = NULL;
9013 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9014 		    != NULL)
9015 			vdev_sync(vd, txg);
9016 
9017 		/*
9018 		 * Note: We need to check if the MOS is dirty because we could
9019 		 * have marked the MOS dirty without updating the uberblock
9020 		 * (e.g. if we have sync tasks but no dirty user data). We need
9021 		 * to check the uberblock's rootbp because it is updated if we
9022 		 * have synced out dirty data (though in this case the MOS will
9023 		 * most likely also be dirty due to second order effects, we
9024 		 * don't want to rely on that here).
9025 		 */
9026 		if (pass == 1 &&
9027 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9028 		    !dmu_objset_is_dirty(mos, txg)) {
9029 			/*
9030 			 * Nothing changed on the first pass, therefore this
9031 			 * TXG is a no-op. Avoid syncing deferred frees, so
9032 			 * that we can keep this TXG as a no-op.
9033 			 */
9034 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9035 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9036 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9037 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9038 			break;
9039 		}
9040 
9041 		spa_sync_deferred_frees(spa, tx);
9042 	} while (dmu_objset_is_dirty(mos, txg));
9043 }
9044 
9045 /*
9046  * Rewrite the vdev configuration (which includes the uberblock) to
9047  * commit the transaction group.
9048  *
9049  * If there are no dirty vdevs, we sync the uberblock to a few random
9050  * top-level vdevs that are known to be visible in the config cache
9051  * (see spa_vdev_add() for a complete description). If there *are* dirty
9052  * vdevs, sync the uberblock to all vdevs.
9053  */
9054 static void
9055 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9056 {
9057 	vdev_t *rvd = spa->spa_root_vdev;
9058 	uint64_t txg = tx->tx_txg;
9059 
9060 	for (;;) {
9061 		int error = 0;
9062 
9063 		/*
9064 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9065 		 * while we're attempting to write the vdev labels.
9066 		 */
9067 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9068 
9069 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9070 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9071 			int svdcount = 0;
9072 			int children = rvd->vdev_children;
9073 			int c0 = spa_get_random(children);
9074 
9075 			for (int c = 0; c < children; c++) {
9076 				vdev_t *vd =
9077 				    rvd->vdev_child[(c0 + c) % children];
9078 
9079 				/* Stop when revisiting the first vdev */
9080 				if (c > 0 && svd[0] == vd)
9081 					break;
9082 
9083 				if (vd->vdev_ms_array == 0 ||
9084 				    vd->vdev_islog ||
9085 				    !vdev_is_concrete(vd))
9086 					continue;
9087 
9088 				svd[svdcount++] = vd;
9089 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9090 					break;
9091 			}
9092 			error = vdev_config_sync(svd, svdcount, txg);
9093 		} else {
9094 			error = vdev_config_sync(rvd->vdev_child,
9095 			    rvd->vdev_children, txg);
9096 		}
9097 
9098 		if (error == 0)
9099 			spa->spa_last_synced_guid = rvd->vdev_guid;
9100 
9101 		spa_config_exit(spa, SCL_STATE, FTAG);
9102 
9103 		if (error == 0)
9104 			break;
9105 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9106 		zio_resume_wait(spa);
9107 	}
9108 }
9109 
9110 /*
9111  * Sync the specified transaction group.  New blocks may be dirtied as
9112  * part of the process, so we iterate until it converges.
9113  */
9114 void
9115 spa_sync(spa_t *spa, uint64_t txg)
9116 {
9117 	vdev_t *vd = NULL;
9118 
9119 	VERIFY(spa_writeable(spa));
9120 
9121 	/*
9122 	 * Wait for i/os issued in open context that need to complete
9123 	 * before this txg syncs.
9124 	 */
9125 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9126 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9127 	    ZIO_FLAG_CANFAIL);
9128 
9129 	/*
9130 	 * Lock out configuration changes.
9131 	 */
9132 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9133 
9134 	spa->spa_syncing_txg = txg;
9135 	spa->spa_sync_pass = 0;
9136 
9137 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9138 		mutex_enter(&spa->spa_alloc_locks[i]);
9139 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9140 		mutex_exit(&spa->spa_alloc_locks[i]);
9141 	}
9142 
9143 	/*
9144 	 * If there are any pending vdev state changes, convert them
9145 	 * into config changes that go out with this transaction group.
9146 	 */
9147 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9148 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9149 		/*
9150 		 * We need the write lock here because, for aux vdevs,
9151 		 * calling vdev_config_dirty() modifies sav_config.
9152 		 * This is ugly and will become unnecessary when we
9153 		 * eliminate the aux vdev wart by integrating all vdevs
9154 		 * into the root vdev tree.
9155 		 */
9156 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9157 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9158 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9159 			vdev_state_clean(vd);
9160 			vdev_config_dirty(vd);
9161 		}
9162 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9163 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9164 	}
9165 	spa_config_exit(spa, SCL_STATE, FTAG);
9166 
9167 	dsl_pool_t *dp = spa->spa_dsl_pool;
9168 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9169 
9170 	spa->spa_sync_starttime = gethrtime();
9171 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9172 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9173 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9174 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9175 
9176 	/*
9177 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9178 	 * set spa_deflate if we have no raid-z vdevs.
9179 	 */
9180 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9181 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9182 		vdev_t *rvd = spa->spa_root_vdev;
9183 
9184 		int i;
9185 		for (i = 0; i < rvd->vdev_children; i++) {
9186 			vd = rvd->vdev_child[i];
9187 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9188 				break;
9189 		}
9190 		if (i == rvd->vdev_children) {
9191 			spa->spa_deflate = TRUE;
9192 			VERIFY0(zap_add(spa->spa_meta_objset,
9193 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9194 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9195 		}
9196 	}
9197 
9198 	spa_sync_adjust_vdev_max_queue_depth(spa);
9199 
9200 	spa_sync_condense_indirect(spa, tx);
9201 
9202 	spa_sync_iterate_to_convergence(spa, tx);
9203 
9204 #ifdef ZFS_DEBUG
9205 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9206 	/*
9207 	 * Make sure that the number of ZAPs for all the vdevs matches
9208 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9209 	 * called if the config is dirty; otherwise there may be
9210 	 * outstanding AVZ operations that weren't completed in
9211 	 * spa_sync_config_object.
9212 	 */
9213 		uint64_t all_vdev_zap_entry_count;
9214 		ASSERT0(zap_count(spa->spa_meta_objset,
9215 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9216 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9217 		    all_vdev_zap_entry_count);
9218 	}
9219 #endif
9220 
9221 	if (spa->spa_vdev_removal != NULL) {
9222 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9223 	}
9224 
9225 	spa_sync_rewrite_vdev_config(spa, tx);
9226 	dmu_tx_commit(tx);
9227 
9228 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9229 	spa->spa_deadman_tqid = 0;
9230 
9231 	/*
9232 	 * Clear the dirty config list.
9233 	 */
9234 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9235 		vdev_config_clean(vd);
9236 
9237 	/*
9238 	 * Now that the new config has synced transactionally,
9239 	 * let it become visible to the config cache.
9240 	 */
9241 	if (spa->spa_config_syncing != NULL) {
9242 		spa_config_set(spa, spa->spa_config_syncing);
9243 		spa->spa_config_txg = txg;
9244 		spa->spa_config_syncing = NULL;
9245 	}
9246 
9247 	dsl_pool_sync_done(dp, txg);
9248 
9249 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9250 		mutex_enter(&spa->spa_alloc_locks[i]);
9251 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9252 		mutex_exit(&spa->spa_alloc_locks[i]);
9253 	}
9254 
9255 	/*
9256 	 * Update usable space statistics.
9257 	 */
9258 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9259 	    != NULL)
9260 		vdev_sync_done(vd, txg);
9261 
9262 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9263 	metaslab_class_evict_old(spa->spa_log_class, txg);
9264 
9265 	spa_sync_close_syncing_log_sm(spa);
9266 
9267 	spa_update_dspace(spa);
9268 
9269 	/*
9270 	 * It had better be the case that we didn't dirty anything
9271 	 * since vdev_config_sync().
9272 	 */
9273 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9274 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9275 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9276 
9277 	while (zfs_pause_spa_sync)
9278 		delay(1);
9279 
9280 	spa->spa_sync_pass = 0;
9281 
9282 	/*
9283 	 * Update the last synced uberblock here. We want to do this at
9284 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9285 	 * will be guaranteed that all the processing associated with
9286 	 * that txg has been completed.
9287 	 */
9288 	spa->spa_ubsync = spa->spa_uberblock;
9289 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9290 
9291 	spa_handle_ignored_writes(spa);
9292 
9293 	/*
9294 	 * If any async tasks have been requested, kick them off.
9295 	 */
9296 	spa_async_dispatch(spa);
9297 }
9298 
9299 /*
9300  * Sync all pools.  We don't want to hold the namespace lock across these
9301  * operations, so we take a reference on the spa_t and drop the lock during the
9302  * sync.
9303  */
9304 void
9305 spa_sync_allpools(void)
9306 {
9307 	spa_t *spa = NULL;
9308 	mutex_enter(&spa_namespace_lock);
9309 	while ((spa = spa_next(spa)) != NULL) {
9310 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9311 		    !spa_writeable(spa) || spa_suspended(spa))
9312 			continue;
9313 		spa_open_ref(spa, FTAG);
9314 		mutex_exit(&spa_namespace_lock);
9315 		txg_wait_synced(spa_get_dsl(spa), 0);
9316 		mutex_enter(&spa_namespace_lock);
9317 		spa_close(spa, FTAG);
9318 	}
9319 	mutex_exit(&spa_namespace_lock);
9320 }
9321 
9322 /*
9323  * ==========================================================================
9324  * Miscellaneous routines
9325  * ==========================================================================
9326  */
9327 
9328 /*
9329  * Remove all pools in the system.
9330  */
9331 void
9332 spa_evict_all(void)
9333 {
9334 	spa_t *spa;
9335 
9336 	/*
9337 	 * Remove all cached state.  All pools should be closed now,
9338 	 * so every spa in the AVL tree should be unreferenced.
9339 	 */
9340 	mutex_enter(&spa_namespace_lock);
9341 	while ((spa = spa_next(NULL)) != NULL) {
9342 		/*
9343 		 * Stop async tasks.  The async thread may need to detach
9344 		 * a device that's been replaced, which requires grabbing
9345 		 * spa_namespace_lock, so we must drop it here.
9346 		 */
9347 		spa_open_ref(spa, FTAG);
9348 		mutex_exit(&spa_namespace_lock);
9349 		spa_async_suspend(spa);
9350 		mutex_enter(&spa_namespace_lock);
9351 		spa_close(spa, FTAG);
9352 
9353 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9354 			spa_unload(spa);
9355 			spa_deactivate(spa);
9356 		}
9357 		spa_remove(spa);
9358 	}
9359 	mutex_exit(&spa_namespace_lock);
9360 }
9361 
9362 vdev_t *
9363 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9364 {
9365 	vdev_t *vd;
9366 	int i;
9367 
9368 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9369 		return (vd);
9370 
9371 	if (aux) {
9372 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9373 			vd = spa->spa_l2cache.sav_vdevs[i];
9374 			if (vd->vdev_guid == guid)
9375 				return (vd);
9376 		}
9377 
9378 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9379 			vd = spa->spa_spares.sav_vdevs[i];
9380 			if (vd->vdev_guid == guid)
9381 				return (vd);
9382 		}
9383 	}
9384 
9385 	return (NULL);
9386 }
9387 
9388 void
9389 spa_upgrade(spa_t *spa, uint64_t version)
9390 {
9391 	ASSERT(spa_writeable(spa));
9392 
9393 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9394 
9395 	/*
9396 	 * This should only be called for a non-faulted pool, and since a
9397 	 * future version would result in an unopenable pool, this shouldn't be
9398 	 * possible.
9399 	 */
9400 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9401 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9402 
9403 	spa->spa_uberblock.ub_version = version;
9404 	vdev_config_dirty(spa->spa_root_vdev);
9405 
9406 	spa_config_exit(spa, SCL_ALL, FTAG);
9407 
9408 	txg_wait_synced(spa_get_dsl(spa), 0);
9409 }
9410 
9411 boolean_t
9412 spa_has_spare(spa_t *spa, uint64_t guid)
9413 {
9414 	int i;
9415 	uint64_t spareguid;
9416 	spa_aux_vdev_t *sav = &spa->spa_spares;
9417 
9418 	for (i = 0; i < sav->sav_count; i++)
9419 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9420 			return (B_TRUE);
9421 
9422 	for (i = 0; i < sav->sav_npending; i++) {
9423 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9424 		    &spareguid) == 0 && spareguid == guid)
9425 			return (B_TRUE);
9426 	}
9427 
9428 	return (B_FALSE);
9429 }
9430 
9431 /*
9432  * Check if a pool has an active shared spare device.
9433  * Note: reference count of an active spare is 2, as a spare and as a replace
9434  */
9435 static boolean_t
9436 spa_has_active_shared_spare(spa_t *spa)
9437 {
9438 	int i, refcnt;
9439 	uint64_t pool;
9440 	spa_aux_vdev_t *sav = &spa->spa_spares;
9441 
9442 	for (i = 0; i < sav->sav_count; i++) {
9443 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9444 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9445 		    refcnt > 2)
9446 			return (B_TRUE);
9447 	}
9448 
9449 	return (B_FALSE);
9450 }
9451 
9452 uint64_t
9453 spa_total_metaslabs(spa_t *spa)
9454 {
9455 	vdev_t *rvd = spa->spa_root_vdev;
9456 
9457 	uint64_t m = 0;
9458 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9459 		vdev_t *vd = rvd->vdev_child[c];
9460 		if (!vdev_is_concrete(vd))
9461 			continue;
9462 		m += vd->vdev_ms_count;
9463 	}
9464 	return (m);
9465 }
9466 
9467 /*
9468  * Notify any waiting threads that some activity has switched from being in-
9469  * progress to not-in-progress so that the thread can wake up and determine
9470  * whether it is finished waiting.
9471  */
9472 void
9473 spa_notify_waiters(spa_t *spa)
9474 {
9475 	/*
9476 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9477 	 * happening between the waiting thread's check and cv_wait.
9478 	 */
9479 	mutex_enter(&spa->spa_activities_lock);
9480 	cv_broadcast(&spa->spa_activities_cv);
9481 	mutex_exit(&spa->spa_activities_lock);
9482 }
9483 
9484 /*
9485  * Notify any waiting threads that the pool is exporting, and then block until
9486  * they are finished using the spa_t.
9487  */
9488 void
9489 spa_wake_waiters(spa_t *spa)
9490 {
9491 	mutex_enter(&spa->spa_activities_lock);
9492 	spa->spa_waiters_cancel = B_TRUE;
9493 	cv_broadcast(&spa->spa_activities_cv);
9494 	while (spa->spa_waiters != 0)
9495 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9496 	spa->spa_waiters_cancel = B_FALSE;
9497 	mutex_exit(&spa->spa_activities_lock);
9498 }
9499 
9500 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9501 static boolean_t
9502 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9503 {
9504 	spa_t *spa = vd->vdev_spa;
9505 
9506 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9507 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9508 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9509 	    activity == ZPOOL_WAIT_TRIM);
9510 
9511 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9512 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9513 
9514 	mutex_exit(&spa->spa_activities_lock);
9515 	mutex_enter(lock);
9516 	mutex_enter(&spa->spa_activities_lock);
9517 
9518 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9519 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9520 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9521 	mutex_exit(lock);
9522 
9523 	if (in_progress)
9524 		return (B_TRUE);
9525 
9526 	for (int i = 0; i < vd->vdev_children; i++) {
9527 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9528 		    activity))
9529 			return (B_TRUE);
9530 	}
9531 
9532 	return (B_FALSE);
9533 }
9534 
9535 /*
9536  * If use_guid is true, this checks whether the vdev specified by guid is
9537  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9538  * is being initialized/trimmed. The caller must hold the config lock and
9539  * spa_activities_lock.
9540  */
9541 static int
9542 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9543     zpool_wait_activity_t activity, boolean_t *in_progress)
9544 {
9545 	mutex_exit(&spa->spa_activities_lock);
9546 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9547 	mutex_enter(&spa->spa_activities_lock);
9548 
9549 	vdev_t *vd;
9550 	if (use_guid) {
9551 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9552 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9553 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9554 			return (EINVAL);
9555 		}
9556 	} else {
9557 		vd = spa->spa_root_vdev;
9558 	}
9559 
9560 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9561 
9562 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9563 	return (0);
9564 }
9565 
9566 /*
9567  * Locking for waiting threads
9568  * ---------------------------
9569  *
9570  * Waiting threads need a way to check whether a given activity is in progress,
9571  * and then, if it is, wait for it to complete. Each activity will have some
9572  * in-memory representation of the relevant on-disk state which can be used to
9573  * determine whether or not the activity is in progress. The in-memory state and
9574  * the locking used to protect it will be different for each activity, and may
9575  * not be suitable for use with a cvar (e.g., some state is protected by the
9576  * config lock). To allow waiting threads to wait without any races, another
9577  * lock, spa_activities_lock, is used.
9578  *
9579  * When the state is checked, both the activity-specific lock (if there is one)
9580  * and spa_activities_lock are held. In some cases, the activity-specific lock
9581  * is acquired explicitly (e.g. the config lock). In others, the locking is
9582  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9583  * thread releases the activity-specific lock and, if the activity is in
9584  * progress, then cv_waits using spa_activities_lock.
9585  *
9586  * The waiting thread is woken when another thread, one completing some
9587  * activity, updates the state of the activity and then calls
9588  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9589  * needs to hold its activity-specific lock when updating the state, and this
9590  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9591  *
9592  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9593  * and because it is held when the waiting thread checks the state of the
9594  * activity, it can never be the case that the completing thread both updates
9595  * the activity state and cv_broadcasts in between the waiting thread's check
9596  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9597  *
9598  * In order to prevent deadlock, when the waiting thread does its check, in some
9599  * cases it will temporarily drop spa_activities_lock in order to acquire the
9600  * activity-specific lock. The order in which spa_activities_lock and the
9601  * activity specific lock are acquired in the waiting thread is determined by
9602  * the order in which they are acquired in the completing thread; if the
9603  * completing thread calls spa_notify_waiters with the activity-specific lock
9604  * held, then the waiting thread must also acquire the activity-specific lock
9605  * first.
9606  */
9607 
9608 static int
9609 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9610     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9611 {
9612 	int error = 0;
9613 
9614 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9615 
9616 	switch (activity) {
9617 	case ZPOOL_WAIT_CKPT_DISCARD:
9618 		*in_progress =
9619 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9620 		    zap_contains(spa_meta_objset(spa),
9621 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9622 		    ENOENT);
9623 		break;
9624 	case ZPOOL_WAIT_FREE:
9625 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9626 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9627 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9628 		    spa_livelist_delete_check(spa));
9629 		break;
9630 	case ZPOOL_WAIT_INITIALIZE:
9631 	case ZPOOL_WAIT_TRIM:
9632 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9633 		    activity, in_progress);
9634 		break;
9635 	case ZPOOL_WAIT_REPLACE:
9636 		mutex_exit(&spa->spa_activities_lock);
9637 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9638 		mutex_enter(&spa->spa_activities_lock);
9639 
9640 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9641 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9642 		break;
9643 	case ZPOOL_WAIT_REMOVE:
9644 		*in_progress = (spa->spa_removing_phys.sr_state ==
9645 		    DSS_SCANNING);
9646 		break;
9647 	case ZPOOL_WAIT_RESILVER:
9648 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9649 			break;
9650 		/* fall through */
9651 	case ZPOOL_WAIT_SCRUB:
9652 	{
9653 		boolean_t scanning, paused, is_scrub;
9654 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9655 
9656 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9657 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9658 		paused = dsl_scan_is_paused_scrub(scn);
9659 		*in_progress = (scanning && !paused &&
9660 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9661 		break;
9662 	}
9663 	default:
9664 		panic("unrecognized value for activity %d", activity);
9665 	}
9666 
9667 	return (error);
9668 }
9669 
9670 static int
9671 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9672     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9673 {
9674 	/*
9675 	 * The tag is used to distinguish between instances of an activity.
9676 	 * 'initialize' and 'trim' are the only activities that we use this for.
9677 	 * The other activities can only have a single instance in progress in a
9678 	 * pool at one time, making the tag unnecessary.
9679 	 *
9680 	 * There can be multiple devices being replaced at once, but since they
9681 	 * all finish once resilvering finishes, we don't bother keeping track
9682 	 * of them individually, we just wait for them all to finish.
9683 	 */
9684 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9685 	    activity != ZPOOL_WAIT_TRIM)
9686 		return (EINVAL);
9687 
9688 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9689 		return (EINVAL);
9690 
9691 	spa_t *spa;
9692 	int error = spa_open(pool, &spa, FTAG);
9693 	if (error != 0)
9694 		return (error);
9695 
9696 	/*
9697 	 * Increment the spa's waiter count so that we can call spa_close and
9698 	 * still ensure that the spa_t doesn't get freed before this thread is
9699 	 * finished with it when the pool is exported. We want to call spa_close
9700 	 * before we start waiting because otherwise the additional ref would
9701 	 * prevent the pool from being exported or destroyed throughout the
9702 	 * potentially long wait.
9703 	 */
9704 	mutex_enter(&spa->spa_activities_lock);
9705 	spa->spa_waiters++;
9706 	spa_close(spa, FTAG);
9707 
9708 	*waited = B_FALSE;
9709 	for (;;) {
9710 		boolean_t in_progress;
9711 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9712 		    &in_progress);
9713 
9714 		if (error || !in_progress || spa->spa_waiters_cancel)
9715 			break;
9716 
9717 		*waited = B_TRUE;
9718 
9719 		if (cv_wait_sig(&spa->spa_activities_cv,
9720 		    &spa->spa_activities_lock) == 0) {
9721 			error = EINTR;
9722 			break;
9723 		}
9724 	}
9725 
9726 	spa->spa_waiters--;
9727 	cv_signal(&spa->spa_waiters_cv);
9728 	mutex_exit(&spa->spa_activities_lock);
9729 
9730 	return (error);
9731 }
9732 
9733 /*
9734  * Wait for a particular instance of the specified activity to complete, where
9735  * the instance is identified by 'tag'
9736  */
9737 int
9738 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9739     boolean_t *waited)
9740 {
9741 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9742 }
9743 
9744 /*
9745  * Wait for all instances of the specified activity complete
9746  */
9747 int
9748 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9749 {
9750 
9751 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9752 }
9753 
9754 sysevent_t *
9755 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9756 {
9757 	sysevent_t *ev = NULL;
9758 #ifdef _KERNEL
9759 	nvlist_t *resource;
9760 
9761 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9762 	if (resource) {
9763 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9764 		ev->resource = resource;
9765 	}
9766 #endif
9767 	return (ev);
9768 }
9769 
9770 void
9771 spa_event_post(sysevent_t *ev)
9772 {
9773 #ifdef _KERNEL
9774 	if (ev) {
9775 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9776 		kmem_free(ev, sizeof (*ev));
9777 	}
9778 #endif
9779 }
9780 
9781 /*
9782  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9783  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9784  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9785  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9786  * or zdb as real changes.
9787  */
9788 void
9789 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9790 {
9791 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9792 }
9793 
9794 /* state manipulation functions */
9795 EXPORT_SYMBOL(spa_open);
9796 EXPORT_SYMBOL(spa_open_rewind);
9797 EXPORT_SYMBOL(spa_get_stats);
9798 EXPORT_SYMBOL(spa_create);
9799 EXPORT_SYMBOL(spa_import);
9800 EXPORT_SYMBOL(spa_tryimport);
9801 EXPORT_SYMBOL(spa_destroy);
9802 EXPORT_SYMBOL(spa_export);
9803 EXPORT_SYMBOL(spa_reset);
9804 EXPORT_SYMBOL(spa_async_request);
9805 EXPORT_SYMBOL(spa_async_suspend);
9806 EXPORT_SYMBOL(spa_async_resume);
9807 EXPORT_SYMBOL(spa_inject_addref);
9808 EXPORT_SYMBOL(spa_inject_delref);
9809 EXPORT_SYMBOL(spa_scan_stat_init);
9810 EXPORT_SYMBOL(spa_scan_get_stats);
9811 
9812 /* device manipulation */
9813 EXPORT_SYMBOL(spa_vdev_add);
9814 EXPORT_SYMBOL(spa_vdev_attach);
9815 EXPORT_SYMBOL(spa_vdev_detach);
9816 EXPORT_SYMBOL(spa_vdev_setpath);
9817 EXPORT_SYMBOL(spa_vdev_setfru);
9818 EXPORT_SYMBOL(spa_vdev_split_mirror);
9819 
9820 /* spare statech is global across all pools) */
9821 EXPORT_SYMBOL(spa_spare_add);
9822 EXPORT_SYMBOL(spa_spare_remove);
9823 EXPORT_SYMBOL(spa_spare_exists);
9824 EXPORT_SYMBOL(spa_spare_activate);
9825 
9826 /* L2ARC statech is global across all pools) */
9827 EXPORT_SYMBOL(spa_l2cache_add);
9828 EXPORT_SYMBOL(spa_l2cache_remove);
9829 EXPORT_SYMBOL(spa_l2cache_exists);
9830 EXPORT_SYMBOL(spa_l2cache_activate);
9831 EXPORT_SYMBOL(spa_l2cache_drop);
9832 
9833 /* scanning */
9834 EXPORT_SYMBOL(spa_scan);
9835 EXPORT_SYMBOL(spa_scan_stop);
9836 
9837 /* spa syncing */
9838 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9839 EXPORT_SYMBOL(spa_sync_allpools);
9840 
9841 /* properties */
9842 EXPORT_SYMBOL(spa_prop_set);
9843 EXPORT_SYMBOL(spa_prop_get);
9844 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9845 
9846 /* asynchronous event notification */
9847 EXPORT_SYMBOL(spa_event_notify);
9848 
9849 /* BEGIN CSTYLED */
9850 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9851 	"log2(fraction of arc that can be used by inflight I/Os when "
9852 	"verifying pool during import");
9853 
9854 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9855 	"Set to traverse metadata on pool import");
9856 
9857 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9858 	"Set to traverse data on pool import");
9859 
9860 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9861 	"Print vdev tree to zfs_dbgmsg during pool import");
9862 
9863 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9864 	"Percentage of CPUs to run an IO worker thread");
9865 
9866 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9867 	"Allow importing pool with up to this number of missing top-level "
9868 	"vdevs (in read-only mode)");
9869 
9870 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9871 	"Set the livelist condense zthr to pause");
9872 
9873 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9874 	"Set the livelist condense synctask to pause");
9875 
9876 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9877 	"Whether livelist condensing was canceled in the synctask");
9878 
9879 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9880 	"Whether livelist condensing was canceled in the zthr function");
9881 
9882 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9883 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9884 	"was being condensed");
9885 /* END CSTYLED */
9886