xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
171 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
172 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
174 
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 static int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 unsigned long	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 static int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver = 0;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 	uint64_t *newguid __maybe_unused = arg;
847 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 	vdev_t *rvd = spa->spa_root_vdev;
849 	uint64_t vdev_state;
850 
851 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 		int error = (spa_has_checkpoint(spa)) ?
853 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 		return (SET_ERROR(error));
855 	}
856 
857 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 	vdev_state = rvd->vdev_state;
859 	spa_config_exit(spa, SCL_STATE, FTAG);
860 
861 	if (vdev_state != VDEV_STATE_HEALTHY)
862 		return (SET_ERROR(ENXIO));
863 
864 	ASSERT3U(spa_guid(spa), !=, *newguid);
865 
866 	return (0);
867 }
868 
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 	uint64_t *newguid = arg;
873 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 	uint64_t oldguid;
875 	vdev_t *rvd = spa->spa_root_vdev;
876 
877 	oldguid = spa_guid(spa);
878 
879 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 	rvd->vdev_guid = *newguid;
881 	rvd->vdev_guid_sum += (*newguid - oldguid);
882 	vdev_config_dirty(rvd);
883 	spa_config_exit(spa, SCL_STATE, FTAG);
884 
885 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888 
889 /*
890  * Change the GUID for the pool.  This is done so that we can later
891  * re-import a pool built from a clone of our own vdevs.  We will modify
892  * the root vdev's guid, our own pool guid, and then mark all of our
893  * vdevs dirty.  Note that we must make sure that all our vdevs are
894  * online when we do this, or else any vdevs that weren't present
895  * would be orphaned from our pool.  We are also going to issue a
896  * sysevent to update any watchers.
897  */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 	int error;
902 	uint64_t guid;
903 
904 	mutex_enter(&spa->spa_vdev_top_lock);
905 	mutex_enter(&spa_namespace_lock);
906 	guid = spa_generate_guid(NULL);
907 
908 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910 
911 	if (error == 0) {
912 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
913 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
914 	}
915 
916 	mutex_exit(&spa_namespace_lock);
917 	mutex_exit(&spa->spa_vdev_top_lock);
918 
919 	return (error);
920 }
921 
922 /*
923  * ==========================================================================
924  * SPA state manipulation (open/create/destroy/import/export)
925  * ==========================================================================
926  */
927 
928 static int
929 spa_error_entry_compare(const void *a, const void *b)
930 {
931 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
932 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
933 	int ret;
934 
935 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
936 	    sizeof (zbookmark_phys_t));
937 
938 	return (TREE_ISIGN(ret));
939 }
940 
941 /*
942  * Utility function which retrieves copies of the current logs and
943  * re-initializes them in the process.
944  */
945 void
946 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
947 {
948 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
949 
950 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
951 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
952 
953 	avl_create(&spa->spa_errlist_scrub,
954 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
955 	    offsetof(spa_error_entry_t, se_avl));
956 	avl_create(&spa->spa_errlist_last,
957 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
958 	    offsetof(spa_error_entry_t, se_avl));
959 }
960 
961 static void
962 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
963 {
964 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
965 	enum zti_modes mode = ztip->zti_mode;
966 	uint_t value = ztip->zti_value;
967 	uint_t count = ztip->zti_count;
968 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
969 	uint_t cpus, flags = TASKQ_DYNAMIC;
970 	boolean_t batch = B_FALSE;
971 
972 	switch (mode) {
973 	case ZTI_MODE_FIXED:
974 		ASSERT3U(value, >, 0);
975 		break;
976 
977 	case ZTI_MODE_BATCH:
978 		batch = B_TRUE;
979 		flags |= TASKQ_THREADS_CPU_PCT;
980 		value = MIN(zio_taskq_batch_pct, 100);
981 		break;
982 
983 	case ZTI_MODE_SCALE:
984 		flags |= TASKQ_THREADS_CPU_PCT;
985 		/*
986 		 * We want more taskqs to reduce lock contention, but we want
987 		 * less for better request ordering and CPU utilization.
988 		 */
989 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
990 		if (zio_taskq_batch_tpq > 0) {
991 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
992 			    zio_taskq_batch_tpq);
993 		} else {
994 			/*
995 			 * Prefer 6 threads per taskq, but no more taskqs
996 			 * than threads in them on large systems. For 80%:
997 			 *
998 			 *                 taskq   taskq   total
999 			 * cpus    taskqs  percent threads threads
1000 			 * ------- ------- ------- ------- -------
1001 			 * 1       1       80%     1       1
1002 			 * 2       1       80%     1       1
1003 			 * 4       1       80%     3       3
1004 			 * 8       2       40%     3       6
1005 			 * 16      3       27%     4       12
1006 			 * 32      5       16%     5       25
1007 			 * 64      7       11%     7       49
1008 			 * 128     10      8%      10      100
1009 			 * 256     14      6%      15      210
1010 			 */
1011 			count = 1 + cpus / 6;
1012 			while (count * count > cpus)
1013 				count--;
1014 		}
1015 		/* Limit each taskq within 100% to not trigger assertion. */
1016 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1017 		value = (zio_taskq_batch_pct + count / 2) / count;
1018 		break;
1019 
1020 	case ZTI_MODE_NULL:
1021 		tqs->stqs_count = 0;
1022 		tqs->stqs_taskq = NULL;
1023 		return;
1024 
1025 	default:
1026 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1027 		    "spa_activate()",
1028 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1029 		break;
1030 	}
1031 
1032 	ASSERT3U(count, >, 0);
1033 	tqs->stqs_count = count;
1034 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1035 
1036 	for (uint_t i = 0; i < count; i++) {
1037 		taskq_t *tq;
1038 		char name[32];
1039 
1040 		if (count > 1)
1041 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1042 			    zio_type_name[t], zio_taskq_types[q], i);
1043 		else
1044 			(void) snprintf(name, sizeof (name), "%s_%s",
1045 			    zio_type_name[t], zio_taskq_types[q]);
1046 
1047 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1048 			if (batch)
1049 				flags |= TASKQ_DC_BATCH;
1050 
1051 			(void) zio_taskq_basedc;
1052 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1053 			    spa->spa_proc, zio_taskq_basedc, flags);
1054 		} else {
1055 			pri_t pri = maxclsyspri;
1056 			/*
1057 			 * The write issue taskq can be extremely CPU
1058 			 * intensive.  Run it at slightly less important
1059 			 * priority than the other taskqs.
1060 			 *
1061 			 * Under Linux and FreeBSD this means incrementing
1062 			 * the priority value as opposed to platforms like
1063 			 * illumos where it should be decremented.
1064 			 *
1065 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1066 			 * are equal then a difference between them is
1067 			 * insignificant.
1068 			 */
1069 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1070 #if defined(__linux__)
1071 				pri++;
1072 #elif defined(__FreeBSD__)
1073 				pri += 4;
1074 #else
1075 #error "unknown OS"
1076 #endif
1077 			}
1078 			tq = taskq_create_proc(name, value, pri, 50,
1079 			    INT_MAX, spa->spa_proc, flags);
1080 		}
1081 
1082 		tqs->stqs_taskq[i] = tq;
1083 	}
1084 }
1085 
1086 static void
1087 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1088 {
1089 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1090 
1091 	if (tqs->stqs_taskq == NULL) {
1092 		ASSERT3U(tqs->stqs_count, ==, 0);
1093 		return;
1094 	}
1095 
1096 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1097 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1098 		taskq_destroy(tqs->stqs_taskq[i]);
1099 	}
1100 
1101 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1102 	tqs->stqs_taskq = NULL;
1103 }
1104 
1105 /*
1106  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1107  * Note that a type may have multiple discrete taskqs to avoid lock contention
1108  * on the taskq itself. In that case we choose which taskq at random by using
1109  * the low bits of gethrtime().
1110  */
1111 void
1112 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1113     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1114 {
1115 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1116 	taskq_t *tq;
1117 
1118 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1119 	ASSERT3U(tqs->stqs_count, !=, 0);
1120 
1121 	if (tqs->stqs_count == 1) {
1122 		tq = tqs->stqs_taskq[0];
1123 	} else {
1124 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1125 	}
1126 
1127 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1128 }
1129 
1130 /*
1131  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1132  */
1133 void
1134 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1135     task_func_t *func, void *arg, uint_t flags)
1136 {
1137 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1138 	taskq_t *tq;
1139 	taskqid_t id;
1140 
1141 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1142 	ASSERT3U(tqs->stqs_count, !=, 0);
1143 
1144 	if (tqs->stqs_count == 1) {
1145 		tq = tqs->stqs_taskq[0];
1146 	} else {
1147 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1148 	}
1149 
1150 	id = taskq_dispatch(tq, func, arg, flags);
1151 	if (id)
1152 		taskq_wait_id(tq, id);
1153 }
1154 
1155 static void
1156 spa_create_zio_taskqs(spa_t *spa)
1157 {
1158 	for (int t = 0; t < ZIO_TYPES; t++) {
1159 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1160 			spa_taskqs_init(spa, t, q);
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * Disabled until spa_thread() can be adapted for Linux.
1167  */
1168 #undef HAVE_SPA_THREAD
1169 
1170 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1171 static void
1172 spa_thread(void *arg)
1173 {
1174 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1175 	callb_cpr_t cprinfo;
1176 
1177 	spa_t *spa = arg;
1178 	user_t *pu = PTOU(curproc);
1179 
1180 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1181 	    spa->spa_name);
1182 
1183 	ASSERT(curproc != &p0);
1184 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1185 	    "zpool-%s", spa->spa_name);
1186 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1187 
1188 	/* bind this thread to the requested psrset */
1189 	if (zio_taskq_psrset_bind != PS_NONE) {
1190 		pool_lock();
1191 		mutex_enter(&cpu_lock);
1192 		mutex_enter(&pidlock);
1193 		mutex_enter(&curproc->p_lock);
1194 
1195 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1196 		    0, NULL, NULL) == 0)  {
1197 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1198 		} else {
1199 			cmn_err(CE_WARN,
1200 			    "Couldn't bind process for zfs pool \"%s\" to "
1201 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1202 		}
1203 
1204 		mutex_exit(&curproc->p_lock);
1205 		mutex_exit(&pidlock);
1206 		mutex_exit(&cpu_lock);
1207 		pool_unlock();
1208 	}
1209 
1210 	if (zio_taskq_sysdc) {
1211 		sysdc_thread_enter(curthread, 100, 0);
1212 	}
1213 
1214 	spa->spa_proc = curproc;
1215 	spa->spa_did = curthread->t_did;
1216 
1217 	spa_create_zio_taskqs(spa);
1218 
1219 	mutex_enter(&spa->spa_proc_lock);
1220 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1221 
1222 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1223 	cv_broadcast(&spa->spa_proc_cv);
1224 
1225 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1226 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1227 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1228 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1229 
1230 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1231 	spa->spa_proc_state = SPA_PROC_GONE;
1232 	spa->spa_proc = &p0;
1233 	cv_broadcast(&spa->spa_proc_cv);
1234 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1235 
1236 	mutex_enter(&curproc->p_lock);
1237 	lwp_exit();
1238 }
1239 #endif
1240 
1241 /*
1242  * Activate an uninitialized pool.
1243  */
1244 static void
1245 spa_activate(spa_t *spa, spa_mode_t mode)
1246 {
1247 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1248 
1249 	spa->spa_state = POOL_STATE_ACTIVE;
1250 	spa->spa_mode = mode;
1251 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1252 
1253 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1254 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1255 	spa->spa_embedded_log_class =
1256 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1257 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1258 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1259 
1260 	/* Try to create a covering process */
1261 	mutex_enter(&spa->spa_proc_lock);
1262 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1263 	ASSERT(spa->spa_proc == &p0);
1264 	spa->spa_did = 0;
1265 
1266 	(void) spa_create_process;
1267 #ifdef HAVE_SPA_THREAD
1268 	/* Only create a process if we're going to be around a while. */
1269 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1270 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1271 		    NULL, 0) == 0) {
1272 			spa->spa_proc_state = SPA_PROC_CREATED;
1273 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1274 				cv_wait(&spa->spa_proc_cv,
1275 				    &spa->spa_proc_lock);
1276 			}
1277 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1278 			ASSERT(spa->spa_proc != &p0);
1279 			ASSERT(spa->spa_did != 0);
1280 		} else {
1281 #ifdef _KERNEL
1282 			cmn_err(CE_WARN,
1283 			    "Couldn't create process for zfs pool \"%s\"\n",
1284 			    spa->spa_name);
1285 #endif
1286 		}
1287 	}
1288 #endif /* HAVE_SPA_THREAD */
1289 	mutex_exit(&spa->spa_proc_lock);
1290 
1291 	/* If we didn't create a process, we need to create our taskqs. */
1292 	if (spa->spa_proc == &p0) {
1293 		spa_create_zio_taskqs(spa);
1294 	}
1295 
1296 	for (size_t i = 0; i < TXG_SIZE; i++) {
1297 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1298 		    ZIO_FLAG_CANFAIL);
1299 	}
1300 
1301 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1302 	    offsetof(vdev_t, vdev_config_dirty_node));
1303 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1304 	    offsetof(objset_t, os_evicting_node));
1305 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1306 	    offsetof(vdev_t, vdev_state_dirty_node));
1307 
1308 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1309 	    offsetof(struct vdev, vdev_txg_node));
1310 
1311 	avl_create(&spa->spa_errlist_scrub,
1312 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1313 	    offsetof(spa_error_entry_t, se_avl));
1314 	avl_create(&spa->spa_errlist_last,
1315 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1316 	    offsetof(spa_error_entry_t, se_avl));
1317 
1318 	spa_keystore_init(&spa->spa_keystore);
1319 
1320 	/*
1321 	 * This taskq is used to perform zvol-minor-related tasks
1322 	 * asynchronously. This has several advantages, including easy
1323 	 * resolution of various deadlocks.
1324 	 *
1325 	 * The taskq must be single threaded to ensure tasks are always
1326 	 * processed in the order in which they were dispatched.
1327 	 *
1328 	 * A taskq per pool allows one to keep the pools independent.
1329 	 * This way if one pool is suspended, it will not impact another.
1330 	 *
1331 	 * The preferred location to dispatch a zvol minor task is a sync
1332 	 * task. In this context, there is easy access to the spa_t and minimal
1333 	 * error handling is required because the sync task must succeed.
1334 	 */
1335 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1336 	    1, INT_MAX, 0);
1337 
1338 	/*
1339 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1340 	 * pool traverse code from monopolizing the global (and limited)
1341 	 * system_taskq by inappropriately scheduling long running tasks on it.
1342 	 */
1343 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1344 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1345 
1346 	/*
1347 	 * The taskq to upgrade datasets in this pool. Currently used by
1348 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1349 	 */
1350 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1351 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1352 }
1353 
1354 /*
1355  * Opposite of spa_activate().
1356  */
1357 static void
1358 spa_deactivate(spa_t *spa)
1359 {
1360 	ASSERT(spa->spa_sync_on == B_FALSE);
1361 	ASSERT(spa->spa_dsl_pool == NULL);
1362 	ASSERT(spa->spa_root_vdev == NULL);
1363 	ASSERT(spa->spa_async_zio_root == NULL);
1364 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1365 
1366 	spa_evicting_os_wait(spa);
1367 
1368 	if (spa->spa_zvol_taskq) {
1369 		taskq_destroy(spa->spa_zvol_taskq);
1370 		spa->spa_zvol_taskq = NULL;
1371 	}
1372 
1373 	if (spa->spa_prefetch_taskq) {
1374 		taskq_destroy(spa->spa_prefetch_taskq);
1375 		spa->spa_prefetch_taskq = NULL;
1376 	}
1377 
1378 	if (spa->spa_upgrade_taskq) {
1379 		taskq_destroy(spa->spa_upgrade_taskq);
1380 		spa->spa_upgrade_taskq = NULL;
1381 	}
1382 
1383 	txg_list_destroy(&spa->spa_vdev_txg_list);
1384 
1385 	list_destroy(&spa->spa_config_dirty_list);
1386 	list_destroy(&spa->spa_evicting_os_list);
1387 	list_destroy(&spa->spa_state_dirty_list);
1388 
1389 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1390 
1391 	for (int t = 0; t < ZIO_TYPES; t++) {
1392 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1393 			spa_taskqs_fini(spa, t, q);
1394 		}
1395 	}
1396 
1397 	for (size_t i = 0; i < TXG_SIZE; i++) {
1398 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1399 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1400 		spa->spa_txg_zio[i] = NULL;
1401 	}
1402 
1403 	metaslab_class_destroy(spa->spa_normal_class);
1404 	spa->spa_normal_class = NULL;
1405 
1406 	metaslab_class_destroy(spa->spa_log_class);
1407 	spa->spa_log_class = NULL;
1408 
1409 	metaslab_class_destroy(spa->spa_embedded_log_class);
1410 	spa->spa_embedded_log_class = NULL;
1411 
1412 	metaslab_class_destroy(spa->spa_special_class);
1413 	spa->spa_special_class = NULL;
1414 
1415 	metaslab_class_destroy(spa->spa_dedup_class);
1416 	spa->spa_dedup_class = NULL;
1417 
1418 	/*
1419 	 * If this was part of an import or the open otherwise failed, we may
1420 	 * still have errors left in the queues.  Empty them just in case.
1421 	 */
1422 	spa_errlog_drain(spa);
1423 	avl_destroy(&spa->spa_errlist_scrub);
1424 	avl_destroy(&spa->spa_errlist_last);
1425 
1426 	spa_keystore_fini(&spa->spa_keystore);
1427 
1428 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1429 
1430 	mutex_enter(&spa->spa_proc_lock);
1431 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1432 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1433 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1434 		cv_broadcast(&spa->spa_proc_cv);
1435 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1436 			ASSERT(spa->spa_proc != &p0);
1437 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1438 		}
1439 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1440 		spa->spa_proc_state = SPA_PROC_NONE;
1441 	}
1442 	ASSERT(spa->spa_proc == &p0);
1443 	mutex_exit(&spa->spa_proc_lock);
1444 
1445 	/*
1446 	 * We want to make sure spa_thread() has actually exited the ZFS
1447 	 * module, so that the module can't be unloaded out from underneath
1448 	 * it.
1449 	 */
1450 	if (spa->spa_did != 0) {
1451 		thread_join(spa->spa_did);
1452 		spa->spa_did = 0;
1453 	}
1454 }
1455 
1456 /*
1457  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1458  * will create all the necessary vdevs in the appropriate layout, with each vdev
1459  * in the CLOSED state.  This will prep the pool before open/creation/import.
1460  * All vdev validation is done by the vdev_alloc() routine.
1461  */
1462 int
1463 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1464     uint_t id, int atype)
1465 {
1466 	nvlist_t **child;
1467 	uint_t children;
1468 	int error;
1469 
1470 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1471 		return (error);
1472 
1473 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1474 		return (0);
1475 
1476 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1477 	    &child, &children);
1478 
1479 	if (error == ENOENT)
1480 		return (0);
1481 
1482 	if (error) {
1483 		vdev_free(*vdp);
1484 		*vdp = NULL;
1485 		return (SET_ERROR(EINVAL));
1486 	}
1487 
1488 	for (int c = 0; c < children; c++) {
1489 		vdev_t *vd;
1490 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1491 		    atype)) != 0) {
1492 			vdev_free(*vdp);
1493 			*vdp = NULL;
1494 			return (error);
1495 		}
1496 	}
1497 
1498 	ASSERT(*vdp != NULL);
1499 
1500 	return (0);
1501 }
1502 
1503 static boolean_t
1504 spa_should_flush_logs_on_unload(spa_t *spa)
1505 {
1506 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1507 		return (B_FALSE);
1508 
1509 	if (!spa_writeable(spa))
1510 		return (B_FALSE);
1511 
1512 	if (!spa->spa_sync_on)
1513 		return (B_FALSE);
1514 
1515 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1516 		return (B_FALSE);
1517 
1518 	if (zfs_keep_log_spacemaps_at_export)
1519 		return (B_FALSE);
1520 
1521 	return (B_TRUE);
1522 }
1523 
1524 /*
1525  * Opens a transaction that will set the flag that will instruct
1526  * spa_sync to attempt to flush all the metaslabs for that txg.
1527  */
1528 static void
1529 spa_unload_log_sm_flush_all(spa_t *spa)
1530 {
1531 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1532 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1533 
1534 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1535 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1536 
1537 	dmu_tx_commit(tx);
1538 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1539 }
1540 
1541 static void
1542 spa_unload_log_sm_metadata(spa_t *spa)
1543 {
1544 	void *cookie = NULL;
1545 	spa_log_sm_t *sls;
1546 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1547 	    &cookie)) != NULL) {
1548 		VERIFY0(sls->sls_mscount);
1549 		kmem_free(sls, sizeof (spa_log_sm_t));
1550 	}
1551 
1552 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1553 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1554 		VERIFY0(e->lse_mscount);
1555 		list_remove(&spa->spa_log_summary, e);
1556 		kmem_free(e, sizeof (log_summary_entry_t));
1557 	}
1558 
1559 	spa->spa_unflushed_stats.sus_nblocks = 0;
1560 	spa->spa_unflushed_stats.sus_memused = 0;
1561 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1562 }
1563 
1564 static void
1565 spa_destroy_aux_threads(spa_t *spa)
1566 {
1567 	if (spa->spa_condense_zthr != NULL) {
1568 		zthr_destroy(spa->spa_condense_zthr);
1569 		spa->spa_condense_zthr = NULL;
1570 	}
1571 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1572 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1573 		spa->spa_checkpoint_discard_zthr = NULL;
1574 	}
1575 	if (spa->spa_livelist_delete_zthr != NULL) {
1576 		zthr_destroy(spa->spa_livelist_delete_zthr);
1577 		spa->spa_livelist_delete_zthr = NULL;
1578 	}
1579 	if (spa->spa_livelist_condense_zthr != NULL) {
1580 		zthr_destroy(spa->spa_livelist_condense_zthr);
1581 		spa->spa_livelist_condense_zthr = NULL;
1582 	}
1583 }
1584 
1585 /*
1586  * Opposite of spa_load().
1587  */
1588 static void
1589 spa_unload(spa_t *spa)
1590 {
1591 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1592 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1593 
1594 	spa_import_progress_remove(spa_guid(spa));
1595 	spa_load_note(spa, "UNLOADING");
1596 
1597 	spa_wake_waiters(spa);
1598 
1599 	/*
1600 	 * If the log space map feature is enabled and the pool is getting
1601 	 * exported (but not destroyed), we want to spend some time flushing
1602 	 * as many metaslabs as we can in an attempt to destroy log space
1603 	 * maps and save import time.
1604 	 */
1605 	if (spa_should_flush_logs_on_unload(spa))
1606 		spa_unload_log_sm_flush_all(spa);
1607 
1608 	/*
1609 	 * Stop async tasks.
1610 	 */
1611 	spa_async_suspend(spa);
1612 
1613 	if (spa->spa_root_vdev) {
1614 		vdev_t *root_vdev = spa->spa_root_vdev;
1615 		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1616 		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1617 		vdev_autotrim_stop_all(spa);
1618 		vdev_rebuild_stop_all(spa);
1619 	}
1620 
1621 	/*
1622 	 * Stop syncing.
1623 	 */
1624 	if (spa->spa_sync_on) {
1625 		txg_sync_stop(spa->spa_dsl_pool);
1626 		spa->spa_sync_on = B_FALSE;
1627 	}
1628 
1629 	/*
1630 	 * This ensures that there is no async metaslab prefetching
1631 	 * while we attempt to unload the spa.
1632 	 */
1633 	if (spa->spa_root_vdev != NULL) {
1634 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1635 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1636 			if (vc->vdev_mg != NULL)
1637 				taskq_wait(vc->vdev_mg->mg_taskq);
1638 		}
1639 	}
1640 
1641 	if (spa->spa_mmp.mmp_thread)
1642 		mmp_thread_stop(spa);
1643 
1644 	/*
1645 	 * Wait for any outstanding async I/O to complete.
1646 	 */
1647 	if (spa->spa_async_zio_root != NULL) {
1648 		for (int i = 0; i < max_ncpus; i++)
1649 			(void) zio_wait(spa->spa_async_zio_root[i]);
1650 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1651 		spa->spa_async_zio_root = NULL;
1652 	}
1653 
1654 	if (spa->spa_vdev_removal != NULL) {
1655 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1656 		spa->spa_vdev_removal = NULL;
1657 	}
1658 
1659 	spa_destroy_aux_threads(spa);
1660 
1661 	spa_condense_fini(spa);
1662 
1663 	bpobj_close(&spa->spa_deferred_bpobj);
1664 
1665 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1666 
1667 	/*
1668 	 * Close all vdevs.
1669 	 */
1670 	if (spa->spa_root_vdev)
1671 		vdev_free(spa->spa_root_vdev);
1672 	ASSERT(spa->spa_root_vdev == NULL);
1673 
1674 	/*
1675 	 * Close the dsl pool.
1676 	 */
1677 	if (spa->spa_dsl_pool) {
1678 		dsl_pool_close(spa->spa_dsl_pool);
1679 		spa->spa_dsl_pool = NULL;
1680 		spa->spa_meta_objset = NULL;
1681 	}
1682 
1683 	ddt_unload(spa);
1684 	spa_unload_log_sm_metadata(spa);
1685 
1686 	/*
1687 	 * Drop and purge level 2 cache
1688 	 */
1689 	spa_l2cache_drop(spa);
1690 
1691 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1692 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1693 	if (spa->spa_spares.sav_vdevs) {
1694 		kmem_free(spa->spa_spares.sav_vdevs,
1695 		    spa->spa_spares.sav_count * sizeof (void *));
1696 		spa->spa_spares.sav_vdevs = NULL;
1697 	}
1698 	if (spa->spa_spares.sav_config) {
1699 		nvlist_free(spa->spa_spares.sav_config);
1700 		spa->spa_spares.sav_config = NULL;
1701 	}
1702 	spa->spa_spares.sav_count = 0;
1703 
1704 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1705 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1706 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1707 	}
1708 	if (spa->spa_l2cache.sav_vdevs) {
1709 		kmem_free(spa->spa_l2cache.sav_vdevs,
1710 		    spa->spa_l2cache.sav_count * sizeof (void *));
1711 		spa->spa_l2cache.sav_vdevs = NULL;
1712 	}
1713 	if (spa->spa_l2cache.sav_config) {
1714 		nvlist_free(spa->spa_l2cache.sav_config);
1715 		spa->spa_l2cache.sav_config = NULL;
1716 	}
1717 	spa->spa_l2cache.sav_count = 0;
1718 
1719 	spa->spa_async_suspended = 0;
1720 
1721 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1722 
1723 	if (spa->spa_comment != NULL) {
1724 		spa_strfree(spa->spa_comment);
1725 		spa->spa_comment = NULL;
1726 	}
1727 	if (spa->spa_compatibility != NULL) {
1728 		spa_strfree(spa->spa_compatibility);
1729 		spa->spa_compatibility = NULL;
1730 	}
1731 
1732 	spa_config_exit(spa, SCL_ALL, spa);
1733 }
1734 
1735 /*
1736  * Load (or re-load) the current list of vdevs describing the active spares for
1737  * this pool.  When this is called, we have some form of basic information in
1738  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1739  * then re-generate a more complete list including status information.
1740  */
1741 void
1742 spa_load_spares(spa_t *spa)
1743 {
1744 	nvlist_t **spares;
1745 	uint_t nspares;
1746 	int i;
1747 	vdev_t *vd, *tvd;
1748 
1749 #ifndef _KERNEL
1750 	/*
1751 	 * zdb opens both the current state of the pool and the
1752 	 * checkpointed state (if present), with a different spa_t.
1753 	 *
1754 	 * As spare vdevs are shared among open pools, we skip loading
1755 	 * them when we load the checkpointed state of the pool.
1756 	 */
1757 	if (!spa_writeable(spa))
1758 		return;
1759 #endif
1760 
1761 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1762 
1763 	/*
1764 	 * First, close and free any existing spare vdevs.
1765 	 */
1766 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1767 		vd = spa->spa_spares.sav_vdevs[i];
1768 
1769 		/* Undo the call to spa_activate() below */
1770 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1771 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1772 			spa_spare_remove(tvd);
1773 		vdev_close(vd);
1774 		vdev_free(vd);
1775 	}
1776 
1777 	if (spa->spa_spares.sav_vdevs)
1778 		kmem_free(spa->spa_spares.sav_vdevs,
1779 		    spa->spa_spares.sav_count * sizeof (void *));
1780 
1781 	if (spa->spa_spares.sav_config == NULL)
1782 		nspares = 0;
1783 	else
1784 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1785 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1786 
1787 	spa->spa_spares.sav_count = (int)nspares;
1788 	spa->spa_spares.sav_vdevs = NULL;
1789 
1790 	if (nspares == 0)
1791 		return;
1792 
1793 	/*
1794 	 * Construct the array of vdevs, opening them to get status in the
1795 	 * process.   For each spare, there is potentially two different vdev_t
1796 	 * structures associated with it: one in the list of spares (used only
1797 	 * for basic validation purposes) and one in the active vdev
1798 	 * configuration (if it's spared in).  During this phase we open and
1799 	 * validate each vdev on the spare list.  If the vdev also exists in the
1800 	 * active configuration, then we also mark this vdev as an active spare.
1801 	 */
1802 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1803 	    KM_SLEEP);
1804 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1805 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1806 		    VDEV_ALLOC_SPARE) == 0);
1807 		ASSERT(vd != NULL);
1808 
1809 		spa->spa_spares.sav_vdevs[i] = vd;
1810 
1811 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1812 		    B_FALSE)) != NULL) {
1813 			if (!tvd->vdev_isspare)
1814 				spa_spare_add(tvd);
1815 
1816 			/*
1817 			 * We only mark the spare active if we were successfully
1818 			 * able to load the vdev.  Otherwise, importing a pool
1819 			 * with a bad active spare would result in strange
1820 			 * behavior, because multiple pool would think the spare
1821 			 * is actively in use.
1822 			 *
1823 			 * There is a vulnerability here to an equally bizarre
1824 			 * circumstance, where a dead active spare is later
1825 			 * brought back to life (onlined or otherwise).  Given
1826 			 * the rarity of this scenario, and the extra complexity
1827 			 * it adds, we ignore the possibility.
1828 			 */
1829 			if (!vdev_is_dead(tvd))
1830 				spa_spare_activate(tvd);
1831 		}
1832 
1833 		vd->vdev_top = vd;
1834 		vd->vdev_aux = &spa->spa_spares;
1835 
1836 		if (vdev_open(vd) != 0)
1837 			continue;
1838 
1839 		if (vdev_validate_aux(vd) == 0)
1840 			spa_spare_add(vd);
1841 	}
1842 
1843 	/*
1844 	 * Recompute the stashed list of spares, with status information
1845 	 * this time.
1846 	 */
1847 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1848 
1849 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1850 	    KM_SLEEP);
1851 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1852 		spares[i] = vdev_config_generate(spa,
1853 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1854 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1855 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1856 	    spa->spa_spares.sav_count);
1857 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1858 		nvlist_free(spares[i]);
1859 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1860 }
1861 
1862 /*
1863  * Load (or re-load) the current list of vdevs describing the active l2cache for
1864  * this pool.  When this is called, we have some form of basic information in
1865  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1866  * then re-generate a more complete list including status information.
1867  * Devices which are already active have their details maintained, and are
1868  * not re-opened.
1869  */
1870 void
1871 spa_load_l2cache(spa_t *spa)
1872 {
1873 	nvlist_t **l2cache = NULL;
1874 	uint_t nl2cache;
1875 	int i, j, oldnvdevs;
1876 	uint64_t guid;
1877 	vdev_t *vd, **oldvdevs, **newvdevs;
1878 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1879 
1880 #ifndef _KERNEL
1881 	/*
1882 	 * zdb opens both the current state of the pool and the
1883 	 * checkpointed state (if present), with a different spa_t.
1884 	 *
1885 	 * As L2 caches are part of the ARC which is shared among open
1886 	 * pools, we skip loading them when we load the checkpointed
1887 	 * state of the pool.
1888 	 */
1889 	if (!spa_writeable(spa))
1890 		return;
1891 #endif
1892 
1893 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1894 
1895 	oldvdevs = sav->sav_vdevs;
1896 	oldnvdevs = sav->sav_count;
1897 	sav->sav_vdevs = NULL;
1898 	sav->sav_count = 0;
1899 
1900 	if (sav->sav_config == NULL) {
1901 		nl2cache = 0;
1902 		newvdevs = NULL;
1903 		goto out;
1904 	}
1905 
1906 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1907 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1908 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1909 
1910 	/*
1911 	 * Process new nvlist of vdevs.
1912 	 */
1913 	for (i = 0; i < nl2cache; i++) {
1914 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1915 
1916 		newvdevs[i] = NULL;
1917 		for (j = 0; j < oldnvdevs; j++) {
1918 			vd = oldvdevs[j];
1919 			if (vd != NULL && guid == vd->vdev_guid) {
1920 				/*
1921 				 * Retain previous vdev for add/remove ops.
1922 				 */
1923 				newvdevs[i] = vd;
1924 				oldvdevs[j] = NULL;
1925 				break;
1926 			}
1927 		}
1928 
1929 		if (newvdevs[i] == NULL) {
1930 			/*
1931 			 * Create new vdev
1932 			 */
1933 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1934 			    VDEV_ALLOC_L2CACHE) == 0);
1935 			ASSERT(vd != NULL);
1936 			newvdevs[i] = vd;
1937 
1938 			/*
1939 			 * Commit this vdev as an l2cache device,
1940 			 * even if it fails to open.
1941 			 */
1942 			spa_l2cache_add(vd);
1943 
1944 			vd->vdev_top = vd;
1945 			vd->vdev_aux = sav;
1946 
1947 			spa_l2cache_activate(vd);
1948 
1949 			if (vdev_open(vd) != 0)
1950 				continue;
1951 
1952 			(void) vdev_validate_aux(vd);
1953 
1954 			if (!vdev_is_dead(vd))
1955 				l2arc_add_vdev(spa, vd);
1956 
1957 			/*
1958 			 * Upon cache device addition to a pool or pool
1959 			 * creation with a cache device or if the header
1960 			 * of the device is invalid we issue an async
1961 			 * TRIM command for the whole device which will
1962 			 * execute if l2arc_trim_ahead > 0.
1963 			 */
1964 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1965 		}
1966 	}
1967 
1968 	sav->sav_vdevs = newvdevs;
1969 	sav->sav_count = (int)nl2cache;
1970 
1971 	/*
1972 	 * Recompute the stashed list of l2cache devices, with status
1973 	 * information this time.
1974 	 */
1975 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
1976 
1977 	if (sav->sav_count > 0)
1978 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1979 		    KM_SLEEP);
1980 	for (i = 0; i < sav->sav_count; i++)
1981 		l2cache[i] = vdev_config_generate(spa,
1982 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1983 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1984 	    (const nvlist_t * const *)l2cache, sav->sav_count);
1985 
1986 out:
1987 	/*
1988 	 * Purge vdevs that were dropped
1989 	 */
1990 	for (i = 0; i < oldnvdevs; i++) {
1991 		uint64_t pool;
1992 
1993 		vd = oldvdevs[i];
1994 		if (vd != NULL) {
1995 			ASSERT(vd->vdev_isl2cache);
1996 
1997 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1998 			    pool != 0ULL && l2arc_vdev_present(vd))
1999 				l2arc_remove_vdev(vd);
2000 			vdev_clear_stats(vd);
2001 			vdev_free(vd);
2002 		}
2003 	}
2004 
2005 	if (oldvdevs)
2006 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2007 
2008 	for (i = 0; i < sav->sav_count; i++)
2009 		nvlist_free(l2cache[i]);
2010 	if (sav->sav_count)
2011 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2012 }
2013 
2014 static int
2015 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2016 {
2017 	dmu_buf_t *db;
2018 	char *packed = NULL;
2019 	size_t nvsize = 0;
2020 	int error;
2021 	*value = NULL;
2022 
2023 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2024 	if (error)
2025 		return (error);
2026 
2027 	nvsize = *(uint64_t *)db->db_data;
2028 	dmu_buf_rele(db, FTAG);
2029 
2030 	packed = vmem_alloc(nvsize, KM_SLEEP);
2031 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2032 	    DMU_READ_PREFETCH);
2033 	if (error == 0)
2034 		error = nvlist_unpack(packed, nvsize, value, 0);
2035 	vmem_free(packed, nvsize);
2036 
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Concrete top-level vdevs that are not missing and are not logs. At every
2042  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2043  */
2044 static uint64_t
2045 spa_healthy_core_tvds(spa_t *spa)
2046 {
2047 	vdev_t *rvd = spa->spa_root_vdev;
2048 	uint64_t tvds = 0;
2049 
2050 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2051 		vdev_t *vd = rvd->vdev_child[i];
2052 		if (vd->vdev_islog)
2053 			continue;
2054 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2055 			tvds++;
2056 	}
2057 
2058 	return (tvds);
2059 }
2060 
2061 /*
2062  * Checks to see if the given vdev could not be opened, in which case we post a
2063  * sysevent to notify the autoreplace code that the device has been removed.
2064  */
2065 static void
2066 spa_check_removed(vdev_t *vd)
2067 {
2068 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2069 		spa_check_removed(vd->vdev_child[c]);
2070 
2071 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2072 	    vdev_is_concrete(vd)) {
2073 		zfs_post_autoreplace(vd->vdev_spa, vd);
2074 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2075 	}
2076 }
2077 
2078 static int
2079 spa_check_for_missing_logs(spa_t *spa)
2080 {
2081 	vdev_t *rvd = spa->spa_root_vdev;
2082 
2083 	/*
2084 	 * If we're doing a normal import, then build up any additional
2085 	 * diagnostic information about missing log devices.
2086 	 * We'll pass this up to the user for further processing.
2087 	 */
2088 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2089 		nvlist_t **child, *nv;
2090 		uint64_t idx = 0;
2091 
2092 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2093 		    KM_SLEEP);
2094 		nv = fnvlist_alloc();
2095 
2096 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2097 			vdev_t *tvd = rvd->vdev_child[c];
2098 
2099 			/*
2100 			 * We consider a device as missing only if it failed
2101 			 * to open (i.e. offline or faulted is not considered
2102 			 * as missing).
2103 			 */
2104 			if (tvd->vdev_islog &&
2105 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2106 				child[idx++] = vdev_config_generate(spa, tvd,
2107 				    B_FALSE, VDEV_CONFIG_MISSING);
2108 			}
2109 		}
2110 
2111 		if (idx > 0) {
2112 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2113 			    (const nvlist_t * const *)child, idx);
2114 			fnvlist_add_nvlist(spa->spa_load_info,
2115 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2116 
2117 			for (uint64_t i = 0; i < idx; i++)
2118 				nvlist_free(child[i]);
2119 		}
2120 		nvlist_free(nv);
2121 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2122 
2123 		if (idx > 0) {
2124 			spa_load_failed(spa, "some log devices are missing");
2125 			vdev_dbgmsg_print_tree(rvd, 2);
2126 			return (SET_ERROR(ENXIO));
2127 		}
2128 	} else {
2129 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2130 			vdev_t *tvd = rvd->vdev_child[c];
2131 
2132 			if (tvd->vdev_islog &&
2133 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2134 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2135 				spa_load_note(spa, "some log devices are "
2136 				    "missing, ZIL is dropped.");
2137 				vdev_dbgmsg_print_tree(rvd, 2);
2138 				break;
2139 			}
2140 		}
2141 	}
2142 
2143 	return (0);
2144 }
2145 
2146 /*
2147  * Check for missing log devices
2148  */
2149 static boolean_t
2150 spa_check_logs(spa_t *spa)
2151 {
2152 	boolean_t rv = B_FALSE;
2153 	dsl_pool_t *dp = spa_get_dsl(spa);
2154 
2155 	switch (spa->spa_log_state) {
2156 	default:
2157 		break;
2158 	case SPA_LOG_MISSING:
2159 		/* need to recheck in case slog has been restored */
2160 	case SPA_LOG_UNKNOWN:
2161 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2162 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2163 		if (rv)
2164 			spa_set_log_state(spa, SPA_LOG_MISSING);
2165 		break;
2166 	}
2167 	return (rv);
2168 }
2169 
2170 /*
2171  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2172  */
2173 static boolean_t
2174 spa_passivate_log(spa_t *spa)
2175 {
2176 	vdev_t *rvd = spa->spa_root_vdev;
2177 	boolean_t slog_found = B_FALSE;
2178 
2179 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2180 
2181 	for (int c = 0; c < rvd->vdev_children; c++) {
2182 		vdev_t *tvd = rvd->vdev_child[c];
2183 
2184 		if (tvd->vdev_islog) {
2185 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2186 			metaslab_group_passivate(tvd->vdev_mg);
2187 			slog_found = B_TRUE;
2188 		}
2189 	}
2190 
2191 	return (slog_found);
2192 }
2193 
2194 /*
2195  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2196  */
2197 static void
2198 spa_activate_log(spa_t *spa)
2199 {
2200 	vdev_t *rvd = spa->spa_root_vdev;
2201 
2202 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2203 
2204 	for (int c = 0; c < rvd->vdev_children; c++) {
2205 		vdev_t *tvd = rvd->vdev_child[c];
2206 
2207 		if (tvd->vdev_islog) {
2208 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2209 			metaslab_group_activate(tvd->vdev_mg);
2210 		}
2211 	}
2212 }
2213 
2214 int
2215 spa_reset_logs(spa_t *spa)
2216 {
2217 	int error;
2218 
2219 	error = dmu_objset_find(spa_name(spa), zil_reset,
2220 	    NULL, DS_FIND_CHILDREN);
2221 	if (error == 0) {
2222 		/*
2223 		 * We successfully offlined the log device, sync out the
2224 		 * current txg so that the "stubby" block can be removed
2225 		 * by zil_sync().
2226 		 */
2227 		txg_wait_synced(spa->spa_dsl_pool, 0);
2228 	}
2229 	return (error);
2230 }
2231 
2232 static void
2233 spa_aux_check_removed(spa_aux_vdev_t *sav)
2234 {
2235 	for (int i = 0; i < sav->sav_count; i++)
2236 		spa_check_removed(sav->sav_vdevs[i]);
2237 }
2238 
2239 void
2240 spa_claim_notify(zio_t *zio)
2241 {
2242 	spa_t *spa = zio->io_spa;
2243 
2244 	if (zio->io_error)
2245 		return;
2246 
2247 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2248 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2249 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2250 	mutex_exit(&spa->spa_props_lock);
2251 }
2252 
2253 typedef struct spa_load_error {
2254 	uint64_t	sle_meta_count;
2255 	uint64_t	sle_data_count;
2256 } spa_load_error_t;
2257 
2258 static void
2259 spa_load_verify_done(zio_t *zio)
2260 {
2261 	blkptr_t *bp = zio->io_bp;
2262 	spa_load_error_t *sle = zio->io_private;
2263 	dmu_object_type_t type = BP_GET_TYPE(bp);
2264 	int error = zio->io_error;
2265 	spa_t *spa = zio->io_spa;
2266 
2267 	abd_free(zio->io_abd);
2268 	if (error) {
2269 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2270 		    type != DMU_OT_INTENT_LOG)
2271 			atomic_inc_64(&sle->sle_meta_count);
2272 		else
2273 			atomic_inc_64(&sle->sle_data_count);
2274 	}
2275 
2276 	mutex_enter(&spa->spa_scrub_lock);
2277 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2278 	cv_broadcast(&spa->spa_scrub_io_cv);
2279 	mutex_exit(&spa->spa_scrub_lock);
2280 }
2281 
2282 /*
2283  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2284  * By default, we set it to 1/16th of the arc.
2285  */
2286 static int spa_load_verify_shift = 4;
2287 static int spa_load_verify_metadata = B_TRUE;
2288 static int spa_load_verify_data = B_TRUE;
2289 
2290 static int
2291 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2292     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2293 {
2294 	(void) zilog, (void) dnp;
2295 
2296 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2297 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2298 		return (0);
2299 	/*
2300 	 * Note: normally this routine will not be called if
2301 	 * spa_load_verify_metadata is not set.  However, it may be useful
2302 	 * to manually set the flag after the traversal has begun.
2303 	 */
2304 	if (!spa_load_verify_metadata)
2305 		return (0);
2306 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2307 		return (0);
2308 
2309 	uint64_t maxinflight_bytes =
2310 	    arc_target_bytes() >> spa_load_verify_shift;
2311 	zio_t *rio = arg;
2312 	size_t size = BP_GET_PSIZE(bp);
2313 
2314 	mutex_enter(&spa->spa_scrub_lock);
2315 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2316 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2317 	spa->spa_load_verify_bytes += size;
2318 	mutex_exit(&spa->spa_scrub_lock);
2319 
2320 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2321 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2322 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2323 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2324 	return (0);
2325 }
2326 
2327 static int
2328 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2329 {
2330 	(void) dp, (void) arg;
2331 
2332 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2333 		return (SET_ERROR(ENAMETOOLONG));
2334 
2335 	return (0);
2336 }
2337 
2338 static int
2339 spa_load_verify(spa_t *spa)
2340 {
2341 	zio_t *rio;
2342 	spa_load_error_t sle = { 0 };
2343 	zpool_load_policy_t policy;
2344 	boolean_t verify_ok = B_FALSE;
2345 	int error = 0;
2346 
2347 	zpool_get_load_policy(spa->spa_config, &policy);
2348 
2349 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2350 		return (0);
2351 
2352 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2353 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2354 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2355 	    DS_FIND_CHILDREN);
2356 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2357 	if (error != 0)
2358 		return (error);
2359 
2360 	rio = zio_root(spa, NULL, &sle,
2361 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2362 
2363 	if (spa_load_verify_metadata) {
2364 		if (spa->spa_extreme_rewind) {
2365 			spa_load_note(spa, "performing a complete scan of the "
2366 			    "pool since extreme rewind is on. This may take "
2367 			    "a very long time.\n  (spa_load_verify_data=%u, "
2368 			    "spa_load_verify_metadata=%u)",
2369 			    spa_load_verify_data, spa_load_verify_metadata);
2370 		}
2371 
2372 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2373 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2374 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2375 	}
2376 
2377 	(void) zio_wait(rio);
2378 	ASSERT0(spa->spa_load_verify_bytes);
2379 
2380 	spa->spa_load_meta_errors = sle.sle_meta_count;
2381 	spa->spa_load_data_errors = sle.sle_data_count;
2382 
2383 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2384 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2385 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2386 		    (u_longlong_t)sle.sle_data_count);
2387 	}
2388 
2389 	if (spa_load_verify_dryrun ||
2390 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2391 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2392 		int64_t loss = 0;
2393 
2394 		verify_ok = B_TRUE;
2395 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2396 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2397 
2398 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2399 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2400 		    spa->spa_load_txg_ts);
2401 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2402 		    loss);
2403 		fnvlist_add_uint64(spa->spa_load_info,
2404 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2405 	} else {
2406 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2407 	}
2408 
2409 	if (spa_load_verify_dryrun)
2410 		return (0);
2411 
2412 	if (error) {
2413 		if (error != ENXIO && error != EIO)
2414 			error = SET_ERROR(EIO);
2415 		return (error);
2416 	}
2417 
2418 	return (verify_ok ? 0 : EIO);
2419 }
2420 
2421 /*
2422  * Find a value in the pool props object.
2423  */
2424 static void
2425 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2426 {
2427 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2428 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2429 }
2430 
2431 /*
2432  * Find a value in the pool directory object.
2433  */
2434 static int
2435 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2436 {
2437 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2438 	    name, sizeof (uint64_t), 1, val);
2439 
2440 	if (error != 0 && (error != ENOENT || log_enoent)) {
2441 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2442 		    "[error=%d]", name, error);
2443 	}
2444 
2445 	return (error);
2446 }
2447 
2448 static int
2449 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2450 {
2451 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2452 	return (SET_ERROR(err));
2453 }
2454 
2455 boolean_t
2456 spa_livelist_delete_check(spa_t *spa)
2457 {
2458 	return (spa->spa_livelists_to_delete != 0);
2459 }
2460 
2461 static boolean_t
2462 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2463 {
2464 	(void) z;
2465 	spa_t *spa = arg;
2466 	return (spa_livelist_delete_check(spa));
2467 }
2468 
2469 static int
2470 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2471 {
2472 	spa_t *spa = arg;
2473 	zio_free(spa, tx->tx_txg, bp);
2474 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2475 	    -bp_get_dsize_sync(spa, bp),
2476 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2477 	return (0);
2478 }
2479 
2480 static int
2481 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2482 {
2483 	int err;
2484 	zap_cursor_t zc;
2485 	zap_attribute_t za;
2486 	zap_cursor_init(&zc, os, zap_obj);
2487 	err = zap_cursor_retrieve(&zc, &za);
2488 	zap_cursor_fini(&zc);
2489 	if (err == 0)
2490 		*llp = za.za_first_integer;
2491 	return (err);
2492 }
2493 
2494 /*
2495  * Components of livelist deletion that must be performed in syncing
2496  * context: freeing block pointers and updating the pool-wide data
2497  * structures to indicate how much work is left to do
2498  */
2499 typedef struct sublist_delete_arg {
2500 	spa_t *spa;
2501 	dsl_deadlist_t *ll;
2502 	uint64_t key;
2503 	bplist_t *to_free;
2504 } sublist_delete_arg_t;
2505 
2506 static void
2507 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2508 {
2509 	sublist_delete_arg_t *sda = arg;
2510 	spa_t *spa = sda->spa;
2511 	dsl_deadlist_t *ll = sda->ll;
2512 	uint64_t key = sda->key;
2513 	bplist_t *to_free = sda->to_free;
2514 
2515 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2516 	dsl_deadlist_remove_entry(ll, key, tx);
2517 }
2518 
2519 typedef struct livelist_delete_arg {
2520 	spa_t *spa;
2521 	uint64_t ll_obj;
2522 	uint64_t zap_obj;
2523 } livelist_delete_arg_t;
2524 
2525 static void
2526 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2527 {
2528 	livelist_delete_arg_t *lda = arg;
2529 	spa_t *spa = lda->spa;
2530 	uint64_t ll_obj = lda->ll_obj;
2531 	uint64_t zap_obj = lda->zap_obj;
2532 	objset_t *mos = spa->spa_meta_objset;
2533 	uint64_t count;
2534 
2535 	/* free the livelist and decrement the feature count */
2536 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2537 	dsl_deadlist_free(mos, ll_obj, tx);
2538 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2539 	VERIFY0(zap_count(mos, zap_obj, &count));
2540 	if (count == 0) {
2541 		/* no more livelists to delete */
2542 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2543 		    DMU_POOL_DELETED_CLONES, tx));
2544 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2545 		spa->spa_livelists_to_delete = 0;
2546 		spa_notify_waiters(spa);
2547 	}
2548 }
2549 
2550 /*
2551  * Load in the value for the livelist to be removed and open it. Then,
2552  * load its first sublist and determine which block pointers should actually
2553  * be freed. Then, call a synctask which performs the actual frees and updates
2554  * the pool-wide livelist data.
2555  */
2556 static void
2557 spa_livelist_delete_cb(void *arg, zthr_t *z)
2558 {
2559 	spa_t *spa = arg;
2560 	uint64_t ll_obj = 0, count;
2561 	objset_t *mos = spa->spa_meta_objset;
2562 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2563 	/*
2564 	 * Determine the next livelist to delete. This function should only
2565 	 * be called if there is at least one deleted clone.
2566 	 */
2567 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2568 	VERIFY0(zap_count(mos, ll_obj, &count));
2569 	if (count > 0) {
2570 		dsl_deadlist_t *ll;
2571 		dsl_deadlist_entry_t *dle;
2572 		bplist_t to_free;
2573 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2574 		dsl_deadlist_open(ll, mos, ll_obj);
2575 		dle = dsl_deadlist_first(ll);
2576 		ASSERT3P(dle, !=, NULL);
2577 		bplist_create(&to_free);
2578 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2579 		    z, NULL);
2580 		if (err == 0) {
2581 			sublist_delete_arg_t sync_arg = {
2582 			    .spa = spa,
2583 			    .ll = ll,
2584 			    .key = dle->dle_mintxg,
2585 			    .to_free = &to_free
2586 			};
2587 			zfs_dbgmsg("deleting sublist (id %llu) from"
2588 			    " livelist %llu, %lld remaining",
2589 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2590 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2591 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2592 			    sublist_delete_sync, &sync_arg, 0,
2593 			    ZFS_SPACE_CHECK_DESTROY));
2594 		} else {
2595 			VERIFY3U(err, ==, EINTR);
2596 		}
2597 		bplist_clear(&to_free);
2598 		bplist_destroy(&to_free);
2599 		dsl_deadlist_close(ll);
2600 		kmem_free(ll, sizeof (dsl_deadlist_t));
2601 	} else {
2602 		livelist_delete_arg_t sync_arg = {
2603 		    .spa = spa,
2604 		    .ll_obj = ll_obj,
2605 		    .zap_obj = zap_obj
2606 		};
2607 		zfs_dbgmsg("deletion of livelist %llu completed",
2608 		    (u_longlong_t)ll_obj);
2609 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2610 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2611 	}
2612 }
2613 
2614 static void
2615 spa_start_livelist_destroy_thread(spa_t *spa)
2616 {
2617 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2618 	spa->spa_livelist_delete_zthr =
2619 	    zthr_create("z_livelist_destroy",
2620 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2621 	    minclsyspri);
2622 }
2623 
2624 typedef struct livelist_new_arg {
2625 	bplist_t *allocs;
2626 	bplist_t *frees;
2627 } livelist_new_arg_t;
2628 
2629 static int
2630 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2631     dmu_tx_t *tx)
2632 {
2633 	ASSERT(tx == NULL);
2634 	livelist_new_arg_t *lna = arg;
2635 	if (bp_freed) {
2636 		bplist_append(lna->frees, bp);
2637 	} else {
2638 		bplist_append(lna->allocs, bp);
2639 		zfs_livelist_condense_new_alloc++;
2640 	}
2641 	return (0);
2642 }
2643 
2644 typedef struct livelist_condense_arg {
2645 	spa_t *spa;
2646 	bplist_t to_keep;
2647 	uint64_t first_size;
2648 	uint64_t next_size;
2649 } livelist_condense_arg_t;
2650 
2651 static void
2652 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2653 {
2654 	livelist_condense_arg_t *lca = arg;
2655 	spa_t *spa = lca->spa;
2656 	bplist_t new_frees;
2657 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2658 
2659 	/* Have we been cancelled? */
2660 	if (spa->spa_to_condense.cancelled) {
2661 		zfs_livelist_condense_sync_cancel++;
2662 		goto out;
2663 	}
2664 
2665 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2666 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2667 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2668 
2669 	/*
2670 	 * It's possible that the livelist was changed while the zthr was
2671 	 * running. Therefore, we need to check for new blkptrs in the two
2672 	 * entries being condensed and continue to track them in the livelist.
2673 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2674 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2675 	 * we need to sort them into two different bplists.
2676 	 */
2677 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2678 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2679 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2680 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2681 
2682 	bplist_create(&new_frees);
2683 	livelist_new_arg_t new_bps = {
2684 	    .allocs = &lca->to_keep,
2685 	    .frees = &new_frees,
2686 	};
2687 
2688 	if (cur_first_size > lca->first_size) {
2689 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2690 		    livelist_track_new_cb, &new_bps, lca->first_size));
2691 	}
2692 	if (cur_next_size > lca->next_size) {
2693 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2694 		    livelist_track_new_cb, &new_bps, lca->next_size));
2695 	}
2696 
2697 	dsl_deadlist_clear_entry(first, ll, tx);
2698 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2699 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2700 
2701 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2702 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2703 	bplist_destroy(&new_frees);
2704 
2705 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2706 	dsl_dataset_name(ds, dsname);
2707 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2708 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2709 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2710 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2711 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2712 	    (u_longlong_t)cur_next_size,
2713 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2714 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2715 out:
2716 	dmu_buf_rele(ds->ds_dbuf, spa);
2717 	spa->spa_to_condense.ds = NULL;
2718 	bplist_clear(&lca->to_keep);
2719 	bplist_destroy(&lca->to_keep);
2720 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2721 	spa->spa_to_condense.syncing = B_FALSE;
2722 }
2723 
2724 static void
2725 spa_livelist_condense_cb(void *arg, zthr_t *t)
2726 {
2727 	while (zfs_livelist_condense_zthr_pause &&
2728 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2729 		delay(1);
2730 
2731 	spa_t *spa = arg;
2732 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2733 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2734 	uint64_t first_size, next_size;
2735 
2736 	livelist_condense_arg_t *lca =
2737 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2738 	bplist_create(&lca->to_keep);
2739 
2740 	/*
2741 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2742 	 * so we have minimal work in syncing context to condense.
2743 	 *
2744 	 * We save bpobj sizes (first_size and next_size) to use later in
2745 	 * syncing context to determine if entries were added to these sublists
2746 	 * while in open context. This is possible because the clone is still
2747 	 * active and open for normal writes and we want to make sure the new,
2748 	 * unprocessed blockpointers are inserted into the livelist normally.
2749 	 *
2750 	 * Note that dsl_process_sub_livelist() both stores the size number of
2751 	 * blockpointers and iterates over them while the bpobj's lock held, so
2752 	 * the sizes returned to us are consistent which what was actually
2753 	 * processed.
2754 	 */
2755 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2756 	    &first_size);
2757 	if (err == 0)
2758 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2759 		    t, &next_size);
2760 
2761 	if (err == 0) {
2762 		while (zfs_livelist_condense_sync_pause &&
2763 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2764 			delay(1);
2765 
2766 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2767 		dmu_tx_mark_netfree(tx);
2768 		dmu_tx_hold_space(tx, 1);
2769 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2770 		if (err == 0) {
2771 			/*
2772 			 * Prevent the condense zthr restarting before
2773 			 * the synctask completes.
2774 			 */
2775 			spa->spa_to_condense.syncing = B_TRUE;
2776 			lca->spa = spa;
2777 			lca->first_size = first_size;
2778 			lca->next_size = next_size;
2779 			dsl_sync_task_nowait(spa_get_dsl(spa),
2780 			    spa_livelist_condense_sync, lca, tx);
2781 			dmu_tx_commit(tx);
2782 			return;
2783 		}
2784 	}
2785 	/*
2786 	 * Condensing can not continue: either it was externally stopped or
2787 	 * we were unable to assign to a tx because the pool has run out of
2788 	 * space. In the second case, we'll just end up trying to condense
2789 	 * again in a later txg.
2790 	 */
2791 	ASSERT(err != 0);
2792 	bplist_clear(&lca->to_keep);
2793 	bplist_destroy(&lca->to_keep);
2794 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2795 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2796 	spa->spa_to_condense.ds = NULL;
2797 	if (err == EINTR)
2798 		zfs_livelist_condense_zthr_cancel++;
2799 }
2800 
2801 /*
2802  * Check that there is something to condense but that a condense is not
2803  * already in progress and that condensing has not been cancelled.
2804  */
2805 static boolean_t
2806 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2807 {
2808 	(void) z;
2809 	spa_t *spa = arg;
2810 	if ((spa->spa_to_condense.ds != NULL) &&
2811 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2812 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2813 		return (B_TRUE);
2814 	}
2815 	return (B_FALSE);
2816 }
2817 
2818 static void
2819 spa_start_livelist_condensing_thread(spa_t *spa)
2820 {
2821 	spa->spa_to_condense.ds = NULL;
2822 	spa->spa_to_condense.first = NULL;
2823 	spa->spa_to_condense.next = NULL;
2824 	spa->spa_to_condense.syncing = B_FALSE;
2825 	spa->spa_to_condense.cancelled = B_FALSE;
2826 
2827 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2828 	spa->spa_livelist_condense_zthr =
2829 	    zthr_create("z_livelist_condense",
2830 	    spa_livelist_condense_cb_check,
2831 	    spa_livelist_condense_cb, spa, minclsyspri);
2832 }
2833 
2834 static void
2835 spa_spawn_aux_threads(spa_t *spa)
2836 {
2837 	ASSERT(spa_writeable(spa));
2838 
2839 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2840 
2841 	spa_start_indirect_condensing_thread(spa);
2842 	spa_start_livelist_destroy_thread(spa);
2843 	spa_start_livelist_condensing_thread(spa);
2844 
2845 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2846 	spa->spa_checkpoint_discard_zthr =
2847 	    zthr_create("z_checkpoint_discard",
2848 	    spa_checkpoint_discard_thread_check,
2849 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2850 }
2851 
2852 /*
2853  * Fix up config after a partly-completed split.  This is done with the
2854  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2855  * pool have that entry in their config, but only the splitting one contains
2856  * a list of all the guids of the vdevs that are being split off.
2857  *
2858  * This function determines what to do with that list: either rejoin
2859  * all the disks to the pool, or complete the splitting process.  To attempt
2860  * the rejoin, each disk that is offlined is marked online again, and
2861  * we do a reopen() call.  If the vdev label for every disk that was
2862  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2863  * then we call vdev_split() on each disk, and complete the split.
2864  *
2865  * Otherwise we leave the config alone, with all the vdevs in place in
2866  * the original pool.
2867  */
2868 static void
2869 spa_try_repair(spa_t *spa, nvlist_t *config)
2870 {
2871 	uint_t extracted;
2872 	uint64_t *glist;
2873 	uint_t i, gcount;
2874 	nvlist_t *nvl;
2875 	vdev_t **vd;
2876 	boolean_t attempt_reopen;
2877 
2878 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2879 		return;
2880 
2881 	/* check that the config is complete */
2882 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2883 	    &glist, &gcount) != 0)
2884 		return;
2885 
2886 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2887 
2888 	/* attempt to online all the vdevs & validate */
2889 	attempt_reopen = B_TRUE;
2890 	for (i = 0; i < gcount; i++) {
2891 		if (glist[i] == 0)	/* vdev is hole */
2892 			continue;
2893 
2894 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2895 		if (vd[i] == NULL) {
2896 			/*
2897 			 * Don't bother attempting to reopen the disks;
2898 			 * just do the split.
2899 			 */
2900 			attempt_reopen = B_FALSE;
2901 		} else {
2902 			/* attempt to re-online it */
2903 			vd[i]->vdev_offline = B_FALSE;
2904 		}
2905 	}
2906 
2907 	if (attempt_reopen) {
2908 		vdev_reopen(spa->spa_root_vdev);
2909 
2910 		/* check each device to see what state it's in */
2911 		for (extracted = 0, i = 0; i < gcount; i++) {
2912 			if (vd[i] != NULL &&
2913 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2914 				break;
2915 			++extracted;
2916 		}
2917 	}
2918 
2919 	/*
2920 	 * If every disk has been moved to the new pool, or if we never
2921 	 * even attempted to look at them, then we split them off for
2922 	 * good.
2923 	 */
2924 	if (!attempt_reopen || gcount == extracted) {
2925 		for (i = 0; i < gcount; i++)
2926 			if (vd[i] != NULL)
2927 				vdev_split(vd[i]);
2928 		vdev_reopen(spa->spa_root_vdev);
2929 	}
2930 
2931 	kmem_free(vd, gcount * sizeof (vdev_t *));
2932 }
2933 
2934 static int
2935 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2936 {
2937 	char *ereport = FM_EREPORT_ZFS_POOL;
2938 	int error;
2939 
2940 	spa->spa_load_state = state;
2941 	(void) spa_import_progress_set_state(spa_guid(spa),
2942 	    spa_load_state(spa));
2943 
2944 	gethrestime(&spa->spa_loaded_ts);
2945 	error = spa_load_impl(spa, type, &ereport);
2946 
2947 	/*
2948 	 * Don't count references from objsets that are already closed
2949 	 * and are making their way through the eviction process.
2950 	 */
2951 	spa_evicting_os_wait(spa);
2952 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2953 	if (error) {
2954 		if (error != EEXIST) {
2955 			spa->spa_loaded_ts.tv_sec = 0;
2956 			spa->spa_loaded_ts.tv_nsec = 0;
2957 		}
2958 		if (error != EBADF) {
2959 			(void) zfs_ereport_post(ereport, spa,
2960 			    NULL, NULL, NULL, 0);
2961 		}
2962 	}
2963 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2964 	spa->spa_ena = 0;
2965 
2966 	(void) spa_import_progress_set_state(spa_guid(spa),
2967 	    spa_load_state(spa));
2968 
2969 	return (error);
2970 }
2971 
2972 #ifdef ZFS_DEBUG
2973 /*
2974  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2975  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2976  * spa's per-vdev ZAP list.
2977  */
2978 static uint64_t
2979 vdev_count_verify_zaps(vdev_t *vd)
2980 {
2981 	spa_t *spa = vd->vdev_spa;
2982 	uint64_t total = 0;
2983 
2984 	if (vd->vdev_top_zap != 0) {
2985 		total++;
2986 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2987 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2988 	}
2989 	if (vd->vdev_leaf_zap != 0) {
2990 		total++;
2991 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2992 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2993 	}
2994 
2995 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2996 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2997 	}
2998 
2999 	return (total);
3000 }
3001 #else
3002 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3003 #endif
3004 
3005 /*
3006  * Determine whether the activity check is required.
3007  */
3008 static boolean_t
3009 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3010     nvlist_t *config)
3011 {
3012 	uint64_t state = 0;
3013 	uint64_t hostid = 0;
3014 	uint64_t tryconfig_txg = 0;
3015 	uint64_t tryconfig_timestamp = 0;
3016 	uint16_t tryconfig_mmp_seq = 0;
3017 	nvlist_t *nvinfo;
3018 
3019 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3020 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3021 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3022 		    &tryconfig_txg);
3023 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3024 		    &tryconfig_timestamp);
3025 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3026 		    &tryconfig_mmp_seq);
3027 	}
3028 
3029 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3030 
3031 	/*
3032 	 * Disable the MMP activity check - This is used by zdb which
3033 	 * is intended to be used on potentially active pools.
3034 	 */
3035 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3036 		return (B_FALSE);
3037 
3038 	/*
3039 	 * Skip the activity check when the MMP feature is disabled.
3040 	 */
3041 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3042 		return (B_FALSE);
3043 
3044 	/*
3045 	 * If the tryconfig_ values are nonzero, they are the results of an
3046 	 * earlier tryimport.  If they all match the uberblock we just found,
3047 	 * then the pool has not changed and we return false so we do not test
3048 	 * a second time.
3049 	 */
3050 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3051 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3052 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3053 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3054 		return (B_FALSE);
3055 
3056 	/*
3057 	 * Allow the activity check to be skipped when importing the pool
3058 	 * on the same host which last imported it.  Since the hostid from
3059 	 * configuration may be stale use the one read from the label.
3060 	 */
3061 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3062 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3063 
3064 	if (hostid == spa_get_hostid(spa))
3065 		return (B_FALSE);
3066 
3067 	/*
3068 	 * Skip the activity test when the pool was cleanly exported.
3069 	 */
3070 	if (state != POOL_STATE_ACTIVE)
3071 		return (B_FALSE);
3072 
3073 	return (B_TRUE);
3074 }
3075 
3076 /*
3077  * Nanoseconds the activity check must watch for changes on-disk.
3078  */
3079 static uint64_t
3080 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3081 {
3082 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3083 	uint64_t multihost_interval = MSEC2NSEC(
3084 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3085 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3086 	    multihost_interval);
3087 
3088 	/*
3089 	 * Local tunables determine a minimum duration except for the case
3090 	 * where we know when the remote host will suspend the pool if MMP
3091 	 * writes do not land.
3092 	 *
3093 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3094 	 * these cases and times.
3095 	 */
3096 
3097 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3098 
3099 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3100 	    MMP_FAIL_INT(ub) > 0) {
3101 
3102 		/* MMP on remote host will suspend pool after failed writes */
3103 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3104 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3105 
3106 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3107 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3108 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3109 		    (u_longlong_t)MMP_FAIL_INT(ub),
3110 		    (u_longlong_t)MMP_INTERVAL(ub),
3111 		    (u_longlong_t)import_intervals);
3112 
3113 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3114 	    MMP_FAIL_INT(ub) == 0) {
3115 
3116 		/* MMP on remote host will never suspend pool */
3117 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3118 		    ub->ub_mmp_delay) * import_intervals);
3119 
3120 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3121 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3122 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3123 		    (u_longlong_t)MMP_INTERVAL(ub),
3124 		    (u_longlong_t)ub->ub_mmp_delay,
3125 		    (u_longlong_t)import_intervals);
3126 
3127 	} else if (MMP_VALID(ub)) {
3128 		/*
3129 		 * zfs-0.7 compatibility case
3130 		 */
3131 
3132 		import_delay = MAX(import_delay, (multihost_interval +
3133 		    ub->ub_mmp_delay) * import_intervals);
3134 
3135 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3136 		    "import_intervals=%llu leaves=%u",
3137 		    (u_longlong_t)import_delay,
3138 		    (u_longlong_t)ub->ub_mmp_delay,
3139 		    (u_longlong_t)import_intervals,
3140 		    vdev_count_leaves(spa));
3141 	} else {
3142 		/* Using local tunings is the only reasonable option */
3143 		zfs_dbgmsg("pool last imported on non-MMP aware "
3144 		    "host using import_delay=%llu multihost_interval=%llu "
3145 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3146 		    (u_longlong_t)multihost_interval,
3147 		    (u_longlong_t)import_intervals);
3148 	}
3149 
3150 	return (import_delay);
3151 }
3152 
3153 /*
3154  * Perform the import activity check.  If the user canceled the import or
3155  * we detected activity then fail.
3156  */
3157 static int
3158 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3159 {
3160 	uint64_t txg = ub->ub_txg;
3161 	uint64_t timestamp = ub->ub_timestamp;
3162 	uint64_t mmp_config = ub->ub_mmp_config;
3163 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3164 	uint64_t import_delay;
3165 	hrtime_t import_expire;
3166 	nvlist_t *mmp_label = NULL;
3167 	vdev_t *rvd = spa->spa_root_vdev;
3168 	kcondvar_t cv;
3169 	kmutex_t mtx;
3170 	int error = 0;
3171 
3172 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3173 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3174 	mutex_enter(&mtx);
3175 
3176 	/*
3177 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3178 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3179 	 * the pool is known to be active on another host.
3180 	 *
3181 	 * Otherwise, the pool might be in use on another host.  Check for
3182 	 * changes in the uberblocks on disk if necessary.
3183 	 */
3184 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3185 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3186 		    ZPOOL_CONFIG_LOAD_INFO);
3187 
3188 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3189 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3190 			vdev_uberblock_load(rvd, ub, &mmp_label);
3191 			error = SET_ERROR(EREMOTEIO);
3192 			goto out;
3193 		}
3194 	}
3195 
3196 	import_delay = spa_activity_check_duration(spa, ub);
3197 
3198 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3199 	import_delay += import_delay * random_in_range(250) / 1000;
3200 
3201 	import_expire = gethrtime() + import_delay;
3202 
3203 	while (gethrtime() < import_expire) {
3204 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3205 		    NSEC2SEC(import_expire - gethrtime()));
3206 
3207 		vdev_uberblock_load(rvd, ub, &mmp_label);
3208 
3209 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3210 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3211 			zfs_dbgmsg("multihost activity detected "
3212 			    "txg %llu ub_txg  %llu "
3213 			    "timestamp %llu ub_timestamp  %llu "
3214 			    "mmp_config %#llx ub_mmp_config %#llx",
3215 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3216 			    (u_longlong_t)timestamp,
3217 			    (u_longlong_t)ub->ub_timestamp,
3218 			    (u_longlong_t)mmp_config,
3219 			    (u_longlong_t)ub->ub_mmp_config);
3220 
3221 			error = SET_ERROR(EREMOTEIO);
3222 			break;
3223 		}
3224 
3225 		if (mmp_label) {
3226 			nvlist_free(mmp_label);
3227 			mmp_label = NULL;
3228 		}
3229 
3230 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3231 		if (error != -1) {
3232 			error = SET_ERROR(EINTR);
3233 			break;
3234 		}
3235 		error = 0;
3236 	}
3237 
3238 out:
3239 	mutex_exit(&mtx);
3240 	mutex_destroy(&mtx);
3241 	cv_destroy(&cv);
3242 
3243 	/*
3244 	 * If the pool is determined to be active store the status in the
3245 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3246 	 * available from configuration read from disk store them as well.
3247 	 * This allows 'zpool import' to generate a more useful message.
3248 	 *
3249 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3250 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3251 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3252 	 */
3253 	if (error == EREMOTEIO) {
3254 		char *hostname = "<unknown>";
3255 		uint64_t hostid = 0;
3256 
3257 		if (mmp_label) {
3258 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3259 				hostname = fnvlist_lookup_string(mmp_label,
3260 				    ZPOOL_CONFIG_HOSTNAME);
3261 				fnvlist_add_string(spa->spa_load_info,
3262 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3263 			}
3264 
3265 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3266 				hostid = fnvlist_lookup_uint64(mmp_label,
3267 				    ZPOOL_CONFIG_HOSTID);
3268 				fnvlist_add_uint64(spa->spa_load_info,
3269 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3270 			}
3271 		}
3272 
3273 		fnvlist_add_uint64(spa->spa_load_info,
3274 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3275 		fnvlist_add_uint64(spa->spa_load_info,
3276 		    ZPOOL_CONFIG_MMP_TXG, 0);
3277 
3278 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3279 	}
3280 
3281 	if (mmp_label)
3282 		nvlist_free(mmp_label);
3283 
3284 	return (error);
3285 }
3286 
3287 static int
3288 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3289 {
3290 	uint64_t hostid;
3291 	char *hostname;
3292 	uint64_t myhostid = 0;
3293 
3294 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3295 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3296 		hostname = fnvlist_lookup_string(mos_config,
3297 		    ZPOOL_CONFIG_HOSTNAME);
3298 
3299 		myhostid = zone_get_hostid(NULL);
3300 
3301 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3302 			cmn_err(CE_WARN, "pool '%s' could not be "
3303 			    "loaded as it was last accessed by "
3304 			    "another system (host: %s hostid: 0x%llx). "
3305 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3306 			    "ZFS-8000-EY",
3307 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3308 			spa_load_failed(spa, "hostid verification failed: pool "
3309 			    "last accessed by host: %s (hostid: 0x%llx)",
3310 			    hostname, (u_longlong_t)hostid);
3311 			return (SET_ERROR(EBADF));
3312 		}
3313 	}
3314 
3315 	return (0);
3316 }
3317 
3318 static int
3319 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3320 {
3321 	int error = 0;
3322 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3323 	int parse;
3324 	vdev_t *rvd;
3325 	uint64_t pool_guid;
3326 	char *comment;
3327 	char *compatibility;
3328 
3329 	/*
3330 	 * Versioning wasn't explicitly added to the label until later, so if
3331 	 * it's not present treat it as the initial version.
3332 	 */
3333 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3334 	    &spa->spa_ubsync.ub_version) != 0)
3335 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3336 
3337 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3338 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3339 		    ZPOOL_CONFIG_POOL_GUID);
3340 		return (SET_ERROR(EINVAL));
3341 	}
3342 
3343 	/*
3344 	 * If we are doing an import, ensure that the pool is not already
3345 	 * imported by checking if its pool guid already exists in the
3346 	 * spa namespace.
3347 	 *
3348 	 * The only case that we allow an already imported pool to be
3349 	 * imported again, is when the pool is checkpointed and we want to
3350 	 * look at its checkpointed state from userland tools like zdb.
3351 	 */
3352 #ifdef _KERNEL
3353 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3354 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3355 	    spa_guid_exists(pool_guid, 0)) {
3356 #else
3357 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3358 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3359 	    spa_guid_exists(pool_guid, 0) &&
3360 	    !spa_importing_readonly_checkpoint(spa)) {
3361 #endif
3362 		spa_load_failed(spa, "a pool with guid %llu is already open",
3363 		    (u_longlong_t)pool_guid);
3364 		return (SET_ERROR(EEXIST));
3365 	}
3366 
3367 	spa->spa_config_guid = pool_guid;
3368 
3369 	nvlist_free(spa->spa_load_info);
3370 	spa->spa_load_info = fnvlist_alloc();
3371 
3372 	ASSERT(spa->spa_comment == NULL);
3373 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3374 		spa->spa_comment = spa_strdup(comment);
3375 
3376 	ASSERT(spa->spa_compatibility == NULL);
3377 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3378 	    &compatibility) == 0)
3379 		spa->spa_compatibility = spa_strdup(compatibility);
3380 
3381 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3382 	    &spa->spa_config_txg);
3383 
3384 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3385 		spa->spa_config_splitting = fnvlist_dup(nvl);
3386 
3387 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3388 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3389 		    ZPOOL_CONFIG_VDEV_TREE);
3390 		return (SET_ERROR(EINVAL));
3391 	}
3392 
3393 	/*
3394 	 * Create "The Godfather" zio to hold all async IOs
3395 	 */
3396 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3397 	    KM_SLEEP);
3398 	for (int i = 0; i < max_ncpus; i++) {
3399 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3400 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3401 		    ZIO_FLAG_GODFATHER);
3402 	}
3403 
3404 	/*
3405 	 * Parse the configuration into a vdev tree.  We explicitly set the
3406 	 * value that will be returned by spa_version() since parsing the
3407 	 * configuration requires knowing the version number.
3408 	 */
3409 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3410 	parse = (type == SPA_IMPORT_EXISTING ?
3411 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3412 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3413 	spa_config_exit(spa, SCL_ALL, FTAG);
3414 
3415 	if (error != 0) {
3416 		spa_load_failed(spa, "unable to parse config [error=%d]",
3417 		    error);
3418 		return (error);
3419 	}
3420 
3421 	ASSERT(spa->spa_root_vdev == rvd);
3422 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3423 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3424 
3425 	if (type != SPA_IMPORT_ASSEMBLE) {
3426 		ASSERT(spa_guid(spa) == pool_guid);
3427 	}
3428 
3429 	return (0);
3430 }
3431 
3432 /*
3433  * Recursively open all vdevs in the vdev tree. This function is called twice:
3434  * first with the untrusted config, then with the trusted config.
3435  */
3436 static int
3437 spa_ld_open_vdevs(spa_t *spa)
3438 {
3439 	int error = 0;
3440 
3441 	/*
3442 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3443 	 * missing/unopenable for the root vdev to be still considered openable.
3444 	 */
3445 	if (spa->spa_trust_config) {
3446 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3447 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3448 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3449 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3450 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3451 	} else {
3452 		spa->spa_missing_tvds_allowed = 0;
3453 	}
3454 
3455 	spa->spa_missing_tvds_allowed =
3456 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3457 
3458 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3459 	error = vdev_open(spa->spa_root_vdev);
3460 	spa_config_exit(spa, SCL_ALL, FTAG);
3461 
3462 	if (spa->spa_missing_tvds != 0) {
3463 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3464 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3465 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3466 			/*
3467 			 * Although theoretically we could allow users to open
3468 			 * incomplete pools in RW mode, we'd need to add a lot
3469 			 * of extra logic (e.g. adjust pool space to account
3470 			 * for missing vdevs).
3471 			 * This limitation also prevents users from accidentally
3472 			 * opening the pool in RW mode during data recovery and
3473 			 * damaging it further.
3474 			 */
3475 			spa_load_note(spa, "pools with missing top-level "
3476 			    "vdevs can only be opened in read-only mode.");
3477 			error = SET_ERROR(ENXIO);
3478 		} else {
3479 			spa_load_note(spa, "current settings allow for maximum "
3480 			    "%lld missing top-level vdevs at this stage.",
3481 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3482 		}
3483 	}
3484 	if (error != 0) {
3485 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3486 		    error);
3487 	}
3488 	if (spa->spa_missing_tvds != 0 || error != 0)
3489 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3490 
3491 	return (error);
3492 }
3493 
3494 /*
3495  * We need to validate the vdev labels against the configuration that
3496  * we have in hand. This function is called twice: first with an untrusted
3497  * config, then with a trusted config. The validation is more strict when the
3498  * config is trusted.
3499  */
3500 static int
3501 spa_ld_validate_vdevs(spa_t *spa)
3502 {
3503 	int error = 0;
3504 	vdev_t *rvd = spa->spa_root_vdev;
3505 
3506 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3507 	error = vdev_validate(rvd);
3508 	spa_config_exit(spa, SCL_ALL, FTAG);
3509 
3510 	if (error != 0) {
3511 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3512 		return (error);
3513 	}
3514 
3515 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3516 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3517 		    "some vdevs");
3518 		vdev_dbgmsg_print_tree(rvd, 2);
3519 		return (SET_ERROR(ENXIO));
3520 	}
3521 
3522 	return (0);
3523 }
3524 
3525 static void
3526 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3527 {
3528 	spa->spa_state = POOL_STATE_ACTIVE;
3529 	spa->spa_ubsync = spa->spa_uberblock;
3530 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3531 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3532 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3533 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3534 	spa->spa_claim_max_txg = spa->spa_first_txg;
3535 	spa->spa_prev_software_version = ub->ub_software_version;
3536 }
3537 
3538 static int
3539 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3540 {
3541 	vdev_t *rvd = spa->spa_root_vdev;
3542 	nvlist_t *label;
3543 	uberblock_t *ub = &spa->spa_uberblock;
3544 	boolean_t activity_check = B_FALSE;
3545 
3546 	/*
3547 	 * If we are opening the checkpointed state of the pool by
3548 	 * rewinding to it, at this point we will have written the
3549 	 * checkpointed uberblock to the vdev labels, so searching
3550 	 * the labels will find the right uberblock.  However, if
3551 	 * we are opening the checkpointed state read-only, we have
3552 	 * not modified the labels. Therefore, we must ignore the
3553 	 * labels and continue using the spa_uberblock that was set
3554 	 * by spa_ld_checkpoint_rewind.
3555 	 *
3556 	 * Note that it would be fine to ignore the labels when
3557 	 * rewinding (opening writeable) as well. However, if we
3558 	 * crash just after writing the labels, we will end up
3559 	 * searching the labels. Doing so in the common case means
3560 	 * that this code path gets exercised normally, rather than
3561 	 * just in the edge case.
3562 	 */
3563 	if (ub->ub_checkpoint_txg != 0 &&
3564 	    spa_importing_readonly_checkpoint(spa)) {
3565 		spa_ld_select_uberblock_done(spa, ub);
3566 		return (0);
3567 	}
3568 
3569 	/*
3570 	 * Find the best uberblock.
3571 	 */
3572 	vdev_uberblock_load(rvd, ub, &label);
3573 
3574 	/*
3575 	 * If we weren't able to find a single valid uberblock, return failure.
3576 	 */
3577 	if (ub->ub_txg == 0) {
3578 		nvlist_free(label);
3579 		spa_load_failed(spa, "no valid uberblock found");
3580 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3581 	}
3582 
3583 	if (spa->spa_load_max_txg != UINT64_MAX) {
3584 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3585 		    (u_longlong_t)spa->spa_load_max_txg);
3586 	}
3587 	spa_load_note(spa, "using uberblock with txg=%llu",
3588 	    (u_longlong_t)ub->ub_txg);
3589 
3590 
3591 	/*
3592 	 * For pools which have the multihost property on determine if the
3593 	 * pool is truly inactive and can be safely imported.  Prevent
3594 	 * hosts which don't have a hostid set from importing the pool.
3595 	 */
3596 	activity_check = spa_activity_check_required(spa, ub, label,
3597 	    spa->spa_config);
3598 	if (activity_check) {
3599 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3600 		    spa_get_hostid(spa) == 0) {
3601 			nvlist_free(label);
3602 			fnvlist_add_uint64(spa->spa_load_info,
3603 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3604 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3605 		}
3606 
3607 		int error = spa_activity_check(spa, ub, spa->spa_config);
3608 		if (error) {
3609 			nvlist_free(label);
3610 			return (error);
3611 		}
3612 
3613 		fnvlist_add_uint64(spa->spa_load_info,
3614 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3615 		fnvlist_add_uint64(spa->spa_load_info,
3616 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3617 		fnvlist_add_uint16(spa->spa_load_info,
3618 		    ZPOOL_CONFIG_MMP_SEQ,
3619 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3620 	}
3621 
3622 	/*
3623 	 * If the pool has an unsupported version we can't open it.
3624 	 */
3625 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3626 		nvlist_free(label);
3627 		spa_load_failed(spa, "version %llu is not supported",
3628 		    (u_longlong_t)ub->ub_version);
3629 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3630 	}
3631 
3632 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3633 		nvlist_t *features;
3634 
3635 		/*
3636 		 * If we weren't able to find what's necessary for reading the
3637 		 * MOS in the label, return failure.
3638 		 */
3639 		if (label == NULL) {
3640 			spa_load_failed(spa, "label config unavailable");
3641 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3642 			    ENXIO));
3643 		}
3644 
3645 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3646 		    &features) != 0) {
3647 			nvlist_free(label);
3648 			spa_load_failed(spa, "invalid label: '%s' missing",
3649 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3650 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3651 			    ENXIO));
3652 		}
3653 
3654 		/*
3655 		 * Update our in-core representation with the definitive values
3656 		 * from the label.
3657 		 */
3658 		nvlist_free(spa->spa_label_features);
3659 		spa->spa_label_features = fnvlist_dup(features);
3660 	}
3661 
3662 	nvlist_free(label);
3663 
3664 	/*
3665 	 * Look through entries in the label nvlist's features_for_read. If
3666 	 * there is a feature listed there which we don't understand then we
3667 	 * cannot open a pool.
3668 	 */
3669 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3670 		nvlist_t *unsup_feat;
3671 
3672 		unsup_feat = fnvlist_alloc();
3673 
3674 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3675 		    NULL); nvp != NULL;
3676 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3677 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3678 				fnvlist_add_string(unsup_feat,
3679 				    nvpair_name(nvp), "");
3680 			}
3681 		}
3682 
3683 		if (!nvlist_empty(unsup_feat)) {
3684 			fnvlist_add_nvlist(spa->spa_load_info,
3685 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3686 			nvlist_free(unsup_feat);
3687 			spa_load_failed(spa, "some features are unsupported");
3688 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3689 			    ENOTSUP));
3690 		}
3691 
3692 		nvlist_free(unsup_feat);
3693 	}
3694 
3695 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3696 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697 		spa_try_repair(spa, spa->spa_config);
3698 		spa_config_exit(spa, SCL_ALL, FTAG);
3699 		nvlist_free(spa->spa_config_splitting);
3700 		spa->spa_config_splitting = NULL;
3701 	}
3702 
3703 	/*
3704 	 * Initialize internal SPA structures.
3705 	 */
3706 	spa_ld_select_uberblock_done(spa, ub);
3707 
3708 	return (0);
3709 }
3710 
3711 static int
3712 spa_ld_open_rootbp(spa_t *spa)
3713 {
3714 	int error = 0;
3715 	vdev_t *rvd = spa->spa_root_vdev;
3716 
3717 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3718 	if (error != 0) {
3719 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3720 		    "[error=%d]", error);
3721 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3722 	}
3723 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3724 
3725 	return (0);
3726 }
3727 
3728 static int
3729 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3730     boolean_t reloading)
3731 {
3732 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3733 	nvlist_t *nv, *mos_config, *policy;
3734 	int error = 0, copy_error;
3735 	uint64_t healthy_tvds, healthy_tvds_mos;
3736 	uint64_t mos_config_txg;
3737 
3738 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3739 	    != 0)
3740 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3741 
3742 	/*
3743 	 * If we're assembling a pool from a split, the config provided is
3744 	 * already trusted so there is nothing to do.
3745 	 */
3746 	if (type == SPA_IMPORT_ASSEMBLE)
3747 		return (0);
3748 
3749 	healthy_tvds = spa_healthy_core_tvds(spa);
3750 
3751 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3752 	    != 0) {
3753 		spa_load_failed(spa, "unable to retrieve MOS config");
3754 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3755 	}
3756 
3757 	/*
3758 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3759 	 * the verification here.
3760 	 */
3761 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3762 		error = spa_verify_host(spa, mos_config);
3763 		if (error != 0) {
3764 			nvlist_free(mos_config);
3765 			return (error);
3766 		}
3767 	}
3768 
3769 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3770 
3771 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3772 
3773 	/*
3774 	 * Build a new vdev tree from the trusted config
3775 	 */
3776 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3777 	if (error != 0) {
3778 		nvlist_free(mos_config);
3779 		spa_config_exit(spa, SCL_ALL, FTAG);
3780 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3781 		    error);
3782 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3783 	}
3784 
3785 	/*
3786 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3787 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3788 	 * paths. We update the trusted MOS config with this information.
3789 	 * We first try to copy the paths with vdev_copy_path_strict, which
3790 	 * succeeds only when both configs have exactly the same vdev tree.
3791 	 * If that fails, we fall back to a more flexible method that has a
3792 	 * best effort policy.
3793 	 */
3794 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3795 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3796 		spa_load_note(spa, "provided vdev tree:");
3797 		vdev_dbgmsg_print_tree(rvd, 2);
3798 		spa_load_note(spa, "MOS vdev tree:");
3799 		vdev_dbgmsg_print_tree(mrvd, 2);
3800 	}
3801 	if (copy_error != 0) {
3802 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3803 		    "back to vdev_copy_path_relaxed");
3804 		vdev_copy_path_relaxed(rvd, mrvd);
3805 	}
3806 
3807 	vdev_close(rvd);
3808 	vdev_free(rvd);
3809 	spa->spa_root_vdev = mrvd;
3810 	rvd = mrvd;
3811 	spa_config_exit(spa, SCL_ALL, FTAG);
3812 
3813 	/*
3814 	 * We will use spa_config if we decide to reload the spa or if spa_load
3815 	 * fails and we rewind. We must thus regenerate the config using the
3816 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3817 	 * pass settings on how to load the pool and is not stored in the MOS.
3818 	 * We copy it over to our new, trusted config.
3819 	 */
3820 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3821 	    ZPOOL_CONFIG_POOL_TXG);
3822 	nvlist_free(mos_config);
3823 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3824 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3825 	    &policy) == 0)
3826 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3827 	spa_config_set(spa, mos_config);
3828 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3829 
3830 	/*
3831 	 * Now that we got the config from the MOS, we should be more strict
3832 	 * in checking blkptrs and can make assumptions about the consistency
3833 	 * of the vdev tree. spa_trust_config must be set to true before opening
3834 	 * vdevs in order for them to be writeable.
3835 	 */
3836 	spa->spa_trust_config = B_TRUE;
3837 
3838 	/*
3839 	 * Open and validate the new vdev tree
3840 	 */
3841 	error = spa_ld_open_vdevs(spa);
3842 	if (error != 0)
3843 		return (error);
3844 
3845 	error = spa_ld_validate_vdevs(spa);
3846 	if (error != 0)
3847 		return (error);
3848 
3849 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3850 		spa_load_note(spa, "final vdev tree:");
3851 		vdev_dbgmsg_print_tree(rvd, 2);
3852 	}
3853 
3854 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3855 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3856 		/*
3857 		 * Sanity check to make sure that we are indeed loading the
3858 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3859 		 * in the config provided and they happened to be the only ones
3860 		 * to have the latest uberblock, we could involuntarily perform
3861 		 * an extreme rewind.
3862 		 */
3863 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3864 		if (healthy_tvds_mos - healthy_tvds >=
3865 		    SPA_SYNC_MIN_VDEVS) {
3866 			spa_load_note(spa, "config provided misses too many "
3867 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3868 			    (u_longlong_t)healthy_tvds,
3869 			    (u_longlong_t)healthy_tvds_mos);
3870 			spa_load_note(spa, "vdev tree:");
3871 			vdev_dbgmsg_print_tree(rvd, 2);
3872 			if (reloading) {
3873 				spa_load_failed(spa, "config was already "
3874 				    "provided from MOS. Aborting.");
3875 				return (spa_vdev_err(rvd,
3876 				    VDEV_AUX_CORRUPT_DATA, EIO));
3877 			}
3878 			spa_load_note(spa, "spa must be reloaded using MOS "
3879 			    "config");
3880 			return (SET_ERROR(EAGAIN));
3881 		}
3882 	}
3883 
3884 	error = spa_check_for_missing_logs(spa);
3885 	if (error != 0)
3886 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3887 
3888 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3889 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3890 		    "guid sum (%llu != %llu)",
3891 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3892 		    (u_longlong_t)rvd->vdev_guid_sum);
3893 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3894 		    ENXIO));
3895 	}
3896 
3897 	return (0);
3898 }
3899 
3900 static int
3901 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3902 {
3903 	int error = 0;
3904 	vdev_t *rvd = spa->spa_root_vdev;
3905 
3906 	/*
3907 	 * Everything that we read before spa_remove_init() must be stored
3908 	 * on concreted vdevs.  Therefore we do this as early as possible.
3909 	 */
3910 	error = spa_remove_init(spa);
3911 	if (error != 0) {
3912 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3913 		    error);
3914 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3915 	}
3916 
3917 	/*
3918 	 * Retrieve information needed to condense indirect vdev mappings.
3919 	 */
3920 	error = spa_condense_init(spa);
3921 	if (error != 0) {
3922 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3923 		    error);
3924 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3925 	}
3926 
3927 	return (0);
3928 }
3929 
3930 static int
3931 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3932 {
3933 	int error = 0;
3934 	vdev_t *rvd = spa->spa_root_vdev;
3935 
3936 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3937 		boolean_t missing_feat_read = B_FALSE;
3938 		nvlist_t *unsup_feat, *enabled_feat;
3939 
3940 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3941 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3942 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3943 		}
3944 
3945 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3946 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3947 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3948 		}
3949 
3950 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3951 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3952 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3953 		}
3954 
3955 		enabled_feat = fnvlist_alloc();
3956 		unsup_feat = fnvlist_alloc();
3957 
3958 		if (!spa_features_check(spa, B_FALSE,
3959 		    unsup_feat, enabled_feat))
3960 			missing_feat_read = B_TRUE;
3961 
3962 		if (spa_writeable(spa) ||
3963 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3964 			if (!spa_features_check(spa, B_TRUE,
3965 			    unsup_feat, enabled_feat)) {
3966 				*missing_feat_writep = B_TRUE;
3967 			}
3968 		}
3969 
3970 		fnvlist_add_nvlist(spa->spa_load_info,
3971 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3972 
3973 		if (!nvlist_empty(unsup_feat)) {
3974 			fnvlist_add_nvlist(spa->spa_load_info,
3975 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3976 		}
3977 
3978 		fnvlist_free(enabled_feat);
3979 		fnvlist_free(unsup_feat);
3980 
3981 		if (!missing_feat_read) {
3982 			fnvlist_add_boolean(spa->spa_load_info,
3983 			    ZPOOL_CONFIG_CAN_RDONLY);
3984 		}
3985 
3986 		/*
3987 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3988 		 * twofold: to determine whether the pool is available for
3989 		 * import in read-write mode and (if it is not) whether the
3990 		 * pool is available for import in read-only mode. If the pool
3991 		 * is available for import in read-write mode, it is displayed
3992 		 * as available in userland; if it is not available for import
3993 		 * in read-only mode, it is displayed as unavailable in
3994 		 * userland. If the pool is available for import in read-only
3995 		 * mode but not read-write mode, it is displayed as unavailable
3996 		 * in userland with a special note that the pool is actually
3997 		 * available for open in read-only mode.
3998 		 *
3999 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4000 		 * missing a feature for write, we must first determine whether
4001 		 * the pool can be opened read-only before returning to
4002 		 * userland in order to know whether to display the
4003 		 * abovementioned note.
4004 		 */
4005 		if (missing_feat_read || (*missing_feat_writep &&
4006 		    spa_writeable(spa))) {
4007 			spa_load_failed(spa, "pool uses unsupported features");
4008 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4009 			    ENOTSUP));
4010 		}
4011 
4012 		/*
4013 		 * Load refcounts for ZFS features from disk into an in-memory
4014 		 * cache during SPA initialization.
4015 		 */
4016 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4017 			uint64_t refcount;
4018 
4019 			error = feature_get_refcount_from_disk(spa,
4020 			    &spa_feature_table[i], &refcount);
4021 			if (error == 0) {
4022 				spa->spa_feat_refcount_cache[i] = refcount;
4023 			} else if (error == ENOTSUP) {
4024 				spa->spa_feat_refcount_cache[i] =
4025 				    SPA_FEATURE_DISABLED;
4026 			} else {
4027 				spa_load_failed(spa, "error getting refcount "
4028 				    "for feature %s [error=%d]",
4029 				    spa_feature_table[i].fi_guid, error);
4030 				return (spa_vdev_err(rvd,
4031 				    VDEV_AUX_CORRUPT_DATA, EIO));
4032 			}
4033 		}
4034 	}
4035 
4036 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4037 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4038 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4039 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4040 	}
4041 
4042 	/*
4043 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4044 	 * is now a dependency. If this pool has encryption enabled without
4045 	 * bookmark_v2, trigger an errata message.
4046 	 */
4047 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4048 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4049 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4050 	}
4051 
4052 	return (0);
4053 }
4054 
4055 static int
4056 spa_ld_load_special_directories(spa_t *spa)
4057 {
4058 	int error = 0;
4059 	vdev_t *rvd = spa->spa_root_vdev;
4060 
4061 	spa->spa_is_initializing = B_TRUE;
4062 	error = dsl_pool_open(spa->spa_dsl_pool);
4063 	spa->spa_is_initializing = B_FALSE;
4064 	if (error != 0) {
4065 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4066 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4067 	}
4068 
4069 	return (0);
4070 }
4071 
4072 static int
4073 spa_ld_get_props(spa_t *spa)
4074 {
4075 	int error = 0;
4076 	uint64_t obj;
4077 	vdev_t *rvd = spa->spa_root_vdev;
4078 
4079 	/* Grab the checksum salt from the MOS. */
4080 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4081 	    DMU_POOL_CHECKSUM_SALT, 1,
4082 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4083 	    spa->spa_cksum_salt.zcs_bytes);
4084 	if (error == ENOENT) {
4085 		/* Generate a new salt for subsequent use */
4086 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4087 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4088 	} else if (error != 0) {
4089 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4090 		    "MOS [error=%d]", error);
4091 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4092 	}
4093 
4094 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4095 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4096 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4097 	if (error != 0) {
4098 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4099 		    "[error=%d]", error);
4100 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4101 	}
4102 
4103 	/*
4104 	 * Load the bit that tells us to use the new accounting function
4105 	 * (raid-z deflation).  If we have an older pool, this will not
4106 	 * be present.
4107 	 */
4108 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4109 	if (error != 0 && error != ENOENT)
4110 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4111 
4112 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4113 	    &spa->spa_creation_version, B_FALSE);
4114 	if (error != 0 && error != ENOENT)
4115 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4116 
4117 	/*
4118 	 * Load the persistent error log.  If we have an older pool, this will
4119 	 * not be present.
4120 	 */
4121 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4122 	    B_FALSE);
4123 	if (error != 0 && error != ENOENT)
4124 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4125 
4126 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4127 	    &spa->spa_errlog_scrub, B_FALSE);
4128 	if (error != 0 && error != ENOENT)
4129 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4130 
4131 	/*
4132 	 * Load the livelist deletion field. If a livelist is queued for
4133 	 * deletion, indicate that in the spa
4134 	 */
4135 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4136 	    &spa->spa_livelists_to_delete, B_FALSE);
4137 	if (error != 0 && error != ENOENT)
4138 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4139 
4140 	/*
4141 	 * Load the history object.  If we have an older pool, this
4142 	 * will not be present.
4143 	 */
4144 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4145 	if (error != 0 && error != ENOENT)
4146 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4147 
4148 	/*
4149 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4150 	 * be present; in this case, defer its creation to a later time to
4151 	 * avoid dirtying the MOS this early / out of sync context. See
4152 	 * spa_sync_config_object.
4153 	 */
4154 
4155 	/* The sentinel is only available in the MOS config. */
4156 	nvlist_t *mos_config;
4157 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4158 		spa_load_failed(spa, "unable to retrieve MOS config");
4159 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4160 	}
4161 
4162 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4163 	    &spa->spa_all_vdev_zaps, B_FALSE);
4164 
4165 	if (error == ENOENT) {
4166 		VERIFY(!nvlist_exists(mos_config,
4167 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4168 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4169 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4170 	} else if (error != 0) {
4171 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4172 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4173 		/*
4174 		 * An older version of ZFS overwrote the sentinel value, so
4175 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4176 		 * destruction to later; see spa_sync_config_object.
4177 		 */
4178 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4179 		/*
4180 		 * We're assuming that no vdevs have had their ZAPs created
4181 		 * before this. Better be sure of it.
4182 		 */
4183 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4184 	}
4185 	nvlist_free(mos_config);
4186 
4187 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4188 
4189 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4190 	    B_FALSE);
4191 	if (error && error != ENOENT)
4192 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4193 
4194 	if (error == 0) {
4195 		uint64_t autoreplace = 0;
4196 
4197 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4198 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4199 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4200 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4201 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4202 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4203 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4204 		spa->spa_autoreplace = (autoreplace != 0);
4205 	}
4206 
4207 	/*
4208 	 * If we are importing a pool with missing top-level vdevs,
4209 	 * we enforce that the pool doesn't panic or get suspended on
4210 	 * error since the likelihood of missing data is extremely high.
4211 	 */
4212 	if (spa->spa_missing_tvds > 0 &&
4213 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4214 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4215 		spa_load_note(spa, "forcing failmode to 'continue' "
4216 		    "as some top level vdevs are missing");
4217 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4218 	}
4219 
4220 	return (0);
4221 }
4222 
4223 static int
4224 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4225 {
4226 	int error = 0;
4227 	vdev_t *rvd = spa->spa_root_vdev;
4228 
4229 	/*
4230 	 * If we're assembling the pool from the split-off vdevs of
4231 	 * an existing pool, we don't want to attach the spares & cache
4232 	 * devices.
4233 	 */
4234 
4235 	/*
4236 	 * Load any hot spares for this pool.
4237 	 */
4238 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4239 	    B_FALSE);
4240 	if (error != 0 && error != ENOENT)
4241 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4242 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4243 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4244 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4245 		    &spa->spa_spares.sav_config) != 0) {
4246 			spa_load_failed(spa, "error loading spares nvlist");
4247 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4248 		}
4249 
4250 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4251 		spa_load_spares(spa);
4252 		spa_config_exit(spa, SCL_ALL, FTAG);
4253 	} else if (error == 0) {
4254 		spa->spa_spares.sav_sync = B_TRUE;
4255 	}
4256 
4257 	/*
4258 	 * Load any level 2 ARC devices for this pool.
4259 	 */
4260 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4261 	    &spa->spa_l2cache.sav_object, B_FALSE);
4262 	if (error != 0 && error != ENOENT)
4263 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4264 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4265 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4266 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4267 		    &spa->spa_l2cache.sav_config) != 0) {
4268 			spa_load_failed(spa, "error loading l2cache nvlist");
4269 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4270 		}
4271 
4272 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4273 		spa_load_l2cache(spa);
4274 		spa_config_exit(spa, SCL_ALL, FTAG);
4275 	} else if (error == 0) {
4276 		spa->spa_l2cache.sav_sync = B_TRUE;
4277 	}
4278 
4279 	return (0);
4280 }
4281 
4282 static int
4283 spa_ld_load_vdev_metadata(spa_t *spa)
4284 {
4285 	int error = 0;
4286 	vdev_t *rvd = spa->spa_root_vdev;
4287 
4288 	/*
4289 	 * If the 'multihost' property is set, then never allow a pool to
4290 	 * be imported when the system hostid is zero.  The exception to
4291 	 * this rule is zdb which is always allowed to access pools.
4292 	 */
4293 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4294 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4295 		fnvlist_add_uint64(spa->spa_load_info,
4296 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4297 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4298 	}
4299 
4300 	/*
4301 	 * If the 'autoreplace' property is set, then post a resource notifying
4302 	 * the ZFS DE that it should not issue any faults for unopenable
4303 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4304 	 * unopenable vdevs so that the normal autoreplace handler can take
4305 	 * over.
4306 	 */
4307 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4308 		spa_check_removed(spa->spa_root_vdev);
4309 		/*
4310 		 * For the import case, this is done in spa_import(), because
4311 		 * at this point we're using the spare definitions from
4312 		 * the MOS config, not necessarily from the userland config.
4313 		 */
4314 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4315 			spa_aux_check_removed(&spa->spa_spares);
4316 			spa_aux_check_removed(&spa->spa_l2cache);
4317 		}
4318 	}
4319 
4320 	/*
4321 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4322 	 */
4323 	error = vdev_load(rvd);
4324 	if (error != 0) {
4325 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4326 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4327 	}
4328 
4329 	error = spa_ld_log_spacemaps(spa);
4330 	if (error != 0) {
4331 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4332 		    error);
4333 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4334 	}
4335 
4336 	/*
4337 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4338 	 */
4339 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4340 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4341 	spa_config_exit(spa, SCL_ALL, FTAG);
4342 
4343 	return (0);
4344 }
4345 
4346 static int
4347 spa_ld_load_dedup_tables(spa_t *spa)
4348 {
4349 	int error = 0;
4350 	vdev_t *rvd = spa->spa_root_vdev;
4351 
4352 	error = ddt_load(spa);
4353 	if (error != 0) {
4354 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4355 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4356 	}
4357 
4358 	return (0);
4359 }
4360 
4361 static int
4362 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4363 {
4364 	vdev_t *rvd = spa->spa_root_vdev;
4365 
4366 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4367 		boolean_t missing = spa_check_logs(spa);
4368 		if (missing) {
4369 			if (spa->spa_missing_tvds != 0) {
4370 				spa_load_note(spa, "spa_check_logs failed "
4371 				    "so dropping the logs");
4372 			} else {
4373 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4374 				spa_load_failed(spa, "spa_check_logs failed");
4375 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4376 				    ENXIO));
4377 			}
4378 		}
4379 	}
4380 
4381 	return (0);
4382 }
4383 
4384 static int
4385 spa_ld_verify_pool_data(spa_t *spa)
4386 {
4387 	int error = 0;
4388 	vdev_t *rvd = spa->spa_root_vdev;
4389 
4390 	/*
4391 	 * We've successfully opened the pool, verify that we're ready
4392 	 * to start pushing transactions.
4393 	 */
4394 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4395 		error = spa_load_verify(spa);
4396 		if (error != 0) {
4397 			spa_load_failed(spa, "spa_load_verify failed "
4398 			    "[error=%d]", error);
4399 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4400 			    error));
4401 		}
4402 	}
4403 
4404 	return (0);
4405 }
4406 
4407 static void
4408 spa_ld_claim_log_blocks(spa_t *spa)
4409 {
4410 	dmu_tx_t *tx;
4411 	dsl_pool_t *dp = spa_get_dsl(spa);
4412 
4413 	/*
4414 	 * Claim log blocks that haven't been committed yet.
4415 	 * This must all happen in a single txg.
4416 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4417 	 * invoked from zil_claim_log_block()'s i/o done callback.
4418 	 * Price of rollback is that we abandon the log.
4419 	 */
4420 	spa->spa_claiming = B_TRUE;
4421 
4422 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4423 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4424 	    zil_claim, tx, DS_FIND_CHILDREN);
4425 	dmu_tx_commit(tx);
4426 
4427 	spa->spa_claiming = B_FALSE;
4428 
4429 	spa_set_log_state(spa, SPA_LOG_GOOD);
4430 }
4431 
4432 static void
4433 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4434     boolean_t update_config_cache)
4435 {
4436 	vdev_t *rvd = spa->spa_root_vdev;
4437 	int need_update = B_FALSE;
4438 
4439 	/*
4440 	 * If the config cache is stale, or we have uninitialized
4441 	 * metaslabs (see spa_vdev_add()), then update the config.
4442 	 *
4443 	 * If this is a verbatim import, trust the current
4444 	 * in-core spa_config and update the disk labels.
4445 	 */
4446 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4447 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4448 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4449 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4450 		need_update = B_TRUE;
4451 
4452 	for (int c = 0; c < rvd->vdev_children; c++)
4453 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4454 			need_update = B_TRUE;
4455 
4456 	/*
4457 	 * Update the config cache asynchronously in case we're the
4458 	 * root pool, in which case the config cache isn't writable yet.
4459 	 */
4460 	if (need_update)
4461 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4462 }
4463 
4464 static void
4465 spa_ld_prepare_for_reload(spa_t *spa)
4466 {
4467 	spa_mode_t mode = spa->spa_mode;
4468 	int async_suspended = spa->spa_async_suspended;
4469 
4470 	spa_unload(spa);
4471 	spa_deactivate(spa);
4472 	spa_activate(spa, mode);
4473 
4474 	/*
4475 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4476 	 * spa_unload(). We want to restore it back to the original value before
4477 	 * returning as we might be calling spa_async_resume() later.
4478 	 */
4479 	spa->spa_async_suspended = async_suspended;
4480 }
4481 
4482 static int
4483 spa_ld_read_checkpoint_txg(spa_t *spa)
4484 {
4485 	uberblock_t checkpoint;
4486 	int error = 0;
4487 
4488 	ASSERT0(spa->spa_checkpoint_txg);
4489 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4490 
4491 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4492 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4493 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4494 
4495 	if (error == ENOENT)
4496 		return (0);
4497 
4498 	if (error != 0)
4499 		return (error);
4500 
4501 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4502 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4503 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4504 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4505 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4506 
4507 	return (0);
4508 }
4509 
4510 static int
4511 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4512 {
4513 	int error = 0;
4514 
4515 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4516 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4517 
4518 	/*
4519 	 * Never trust the config that is provided unless we are assembling
4520 	 * a pool following a split.
4521 	 * This means don't trust blkptrs and the vdev tree in general. This
4522 	 * also effectively puts the spa in read-only mode since
4523 	 * spa_writeable() checks for spa_trust_config to be true.
4524 	 * We will later load a trusted config from the MOS.
4525 	 */
4526 	if (type != SPA_IMPORT_ASSEMBLE)
4527 		spa->spa_trust_config = B_FALSE;
4528 
4529 	/*
4530 	 * Parse the config provided to create a vdev tree.
4531 	 */
4532 	error = spa_ld_parse_config(spa, type);
4533 	if (error != 0)
4534 		return (error);
4535 
4536 	spa_import_progress_add(spa);
4537 
4538 	/*
4539 	 * Now that we have the vdev tree, try to open each vdev. This involves
4540 	 * opening the underlying physical device, retrieving its geometry and
4541 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4542 	 * based on the success of those operations. After this we'll be ready
4543 	 * to read from the vdevs.
4544 	 */
4545 	error = spa_ld_open_vdevs(spa);
4546 	if (error != 0)
4547 		return (error);
4548 
4549 	/*
4550 	 * Read the label of each vdev and make sure that the GUIDs stored
4551 	 * there match the GUIDs in the config provided.
4552 	 * If we're assembling a new pool that's been split off from an
4553 	 * existing pool, the labels haven't yet been updated so we skip
4554 	 * validation for now.
4555 	 */
4556 	if (type != SPA_IMPORT_ASSEMBLE) {
4557 		error = spa_ld_validate_vdevs(spa);
4558 		if (error != 0)
4559 			return (error);
4560 	}
4561 
4562 	/*
4563 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4564 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4565 	 * get the list of features required to read blkptrs in the MOS from
4566 	 * the vdev label with the best uberblock and verify that our version
4567 	 * of zfs supports them all.
4568 	 */
4569 	error = spa_ld_select_uberblock(spa, type);
4570 	if (error != 0)
4571 		return (error);
4572 
4573 	/*
4574 	 * Pass that uberblock to the dsl_pool layer which will open the root
4575 	 * blkptr. This blkptr points to the latest version of the MOS and will
4576 	 * allow us to read its contents.
4577 	 */
4578 	error = spa_ld_open_rootbp(spa);
4579 	if (error != 0)
4580 		return (error);
4581 
4582 	return (0);
4583 }
4584 
4585 static int
4586 spa_ld_checkpoint_rewind(spa_t *spa)
4587 {
4588 	uberblock_t checkpoint;
4589 	int error = 0;
4590 
4591 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4592 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4593 
4594 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4595 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4596 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4597 
4598 	if (error != 0) {
4599 		spa_load_failed(spa, "unable to retrieve checkpointed "
4600 		    "uberblock from the MOS config [error=%d]", error);
4601 
4602 		if (error == ENOENT)
4603 			error = ZFS_ERR_NO_CHECKPOINT;
4604 
4605 		return (error);
4606 	}
4607 
4608 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4609 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4610 
4611 	/*
4612 	 * We need to update the txg and timestamp of the checkpointed
4613 	 * uberblock to be higher than the latest one. This ensures that
4614 	 * the checkpointed uberblock is selected if we were to close and
4615 	 * reopen the pool right after we've written it in the vdev labels.
4616 	 * (also see block comment in vdev_uberblock_compare)
4617 	 */
4618 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4619 	checkpoint.ub_timestamp = gethrestime_sec();
4620 
4621 	/*
4622 	 * Set current uberblock to be the checkpointed uberblock.
4623 	 */
4624 	spa->spa_uberblock = checkpoint;
4625 
4626 	/*
4627 	 * If we are doing a normal rewind, then the pool is open for
4628 	 * writing and we sync the "updated" checkpointed uberblock to
4629 	 * disk. Once this is done, we've basically rewound the whole
4630 	 * pool and there is no way back.
4631 	 *
4632 	 * There are cases when we don't want to attempt and sync the
4633 	 * checkpointed uberblock to disk because we are opening a
4634 	 * pool as read-only. Specifically, verifying the checkpointed
4635 	 * state with zdb, and importing the checkpointed state to get
4636 	 * a "preview" of its content.
4637 	 */
4638 	if (spa_writeable(spa)) {
4639 		vdev_t *rvd = spa->spa_root_vdev;
4640 
4641 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4642 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4643 		int svdcount = 0;
4644 		int children = rvd->vdev_children;
4645 		int c0 = random_in_range(children);
4646 
4647 		for (int c = 0; c < children; c++) {
4648 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4649 
4650 			/* Stop when revisiting the first vdev */
4651 			if (c > 0 && svd[0] == vd)
4652 				break;
4653 
4654 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4655 			    !vdev_is_concrete(vd))
4656 				continue;
4657 
4658 			svd[svdcount++] = vd;
4659 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4660 				break;
4661 		}
4662 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4663 		if (error == 0)
4664 			spa->spa_last_synced_guid = rvd->vdev_guid;
4665 		spa_config_exit(spa, SCL_ALL, FTAG);
4666 
4667 		if (error != 0) {
4668 			spa_load_failed(spa, "failed to write checkpointed "
4669 			    "uberblock to the vdev labels [error=%d]", error);
4670 			return (error);
4671 		}
4672 	}
4673 
4674 	return (0);
4675 }
4676 
4677 static int
4678 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4679     boolean_t *update_config_cache)
4680 {
4681 	int error;
4682 
4683 	/*
4684 	 * Parse the config for pool, open and validate vdevs,
4685 	 * select an uberblock, and use that uberblock to open
4686 	 * the MOS.
4687 	 */
4688 	error = spa_ld_mos_init(spa, type);
4689 	if (error != 0)
4690 		return (error);
4691 
4692 	/*
4693 	 * Retrieve the trusted config stored in the MOS and use it to create
4694 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4695 	 */
4696 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4697 	if (error == EAGAIN) {
4698 		if (update_config_cache != NULL)
4699 			*update_config_cache = B_TRUE;
4700 
4701 		/*
4702 		 * Redo the loading process with the trusted config if it is
4703 		 * too different from the untrusted config.
4704 		 */
4705 		spa_ld_prepare_for_reload(spa);
4706 		spa_load_note(spa, "RELOADING");
4707 		error = spa_ld_mos_init(spa, type);
4708 		if (error != 0)
4709 			return (error);
4710 
4711 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4712 		if (error != 0)
4713 			return (error);
4714 
4715 	} else if (error != 0) {
4716 		return (error);
4717 	}
4718 
4719 	return (0);
4720 }
4721 
4722 /*
4723  * Load an existing storage pool, using the config provided. This config
4724  * describes which vdevs are part of the pool and is later validated against
4725  * partial configs present in each vdev's label and an entire copy of the
4726  * config stored in the MOS.
4727  */
4728 static int
4729 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4730 {
4731 	int error = 0;
4732 	boolean_t missing_feat_write = B_FALSE;
4733 	boolean_t checkpoint_rewind =
4734 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4735 	boolean_t update_config_cache = B_FALSE;
4736 
4737 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4738 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4739 
4740 	spa_load_note(spa, "LOADING");
4741 
4742 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4743 	if (error != 0)
4744 		return (error);
4745 
4746 	/*
4747 	 * If we are rewinding to the checkpoint then we need to repeat
4748 	 * everything we've done so far in this function but this time
4749 	 * selecting the checkpointed uberblock and using that to open
4750 	 * the MOS.
4751 	 */
4752 	if (checkpoint_rewind) {
4753 		/*
4754 		 * If we are rewinding to the checkpoint update config cache
4755 		 * anyway.
4756 		 */
4757 		update_config_cache = B_TRUE;
4758 
4759 		/*
4760 		 * Extract the checkpointed uberblock from the current MOS
4761 		 * and use this as the pool's uberblock from now on. If the
4762 		 * pool is imported as writeable we also write the checkpoint
4763 		 * uberblock to the labels, making the rewind permanent.
4764 		 */
4765 		error = spa_ld_checkpoint_rewind(spa);
4766 		if (error != 0)
4767 			return (error);
4768 
4769 		/*
4770 		 * Redo the loading process again with the
4771 		 * checkpointed uberblock.
4772 		 */
4773 		spa_ld_prepare_for_reload(spa);
4774 		spa_load_note(spa, "LOADING checkpointed uberblock");
4775 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4776 		if (error != 0)
4777 			return (error);
4778 	}
4779 
4780 	/*
4781 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4782 	 */
4783 	error = spa_ld_read_checkpoint_txg(spa);
4784 	if (error != 0)
4785 		return (error);
4786 
4787 	/*
4788 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4789 	 * from the pool and their contents were re-mapped to other vdevs. Note
4790 	 * that everything that we read before this step must have been
4791 	 * rewritten on concrete vdevs after the last device removal was
4792 	 * initiated. Otherwise we could be reading from indirect vdevs before
4793 	 * we have loaded their mappings.
4794 	 */
4795 	error = spa_ld_open_indirect_vdev_metadata(spa);
4796 	if (error != 0)
4797 		return (error);
4798 
4799 	/*
4800 	 * Retrieve the full list of active features from the MOS and check if
4801 	 * they are all supported.
4802 	 */
4803 	error = spa_ld_check_features(spa, &missing_feat_write);
4804 	if (error != 0)
4805 		return (error);
4806 
4807 	/*
4808 	 * Load several special directories from the MOS needed by the dsl_pool
4809 	 * layer.
4810 	 */
4811 	error = spa_ld_load_special_directories(spa);
4812 	if (error != 0)
4813 		return (error);
4814 
4815 	/*
4816 	 * Retrieve pool properties from the MOS.
4817 	 */
4818 	error = spa_ld_get_props(spa);
4819 	if (error != 0)
4820 		return (error);
4821 
4822 	/*
4823 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4824 	 * and open them.
4825 	 */
4826 	error = spa_ld_open_aux_vdevs(spa, type);
4827 	if (error != 0)
4828 		return (error);
4829 
4830 	/*
4831 	 * Load the metadata for all vdevs. Also check if unopenable devices
4832 	 * should be autoreplaced.
4833 	 */
4834 	error = spa_ld_load_vdev_metadata(spa);
4835 	if (error != 0)
4836 		return (error);
4837 
4838 	error = spa_ld_load_dedup_tables(spa);
4839 	if (error != 0)
4840 		return (error);
4841 
4842 	/*
4843 	 * Verify the logs now to make sure we don't have any unexpected errors
4844 	 * when we claim log blocks later.
4845 	 */
4846 	error = spa_ld_verify_logs(spa, type, ereport);
4847 	if (error != 0)
4848 		return (error);
4849 
4850 	if (missing_feat_write) {
4851 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4852 
4853 		/*
4854 		 * At this point, we know that we can open the pool in
4855 		 * read-only mode but not read-write mode. We now have enough
4856 		 * information and can return to userland.
4857 		 */
4858 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4859 		    ENOTSUP));
4860 	}
4861 
4862 	/*
4863 	 * Traverse the last txgs to make sure the pool was left off in a safe
4864 	 * state. When performing an extreme rewind, we verify the whole pool,
4865 	 * which can take a very long time.
4866 	 */
4867 	error = spa_ld_verify_pool_data(spa);
4868 	if (error != 0)
4869 		return (error);
4870 
4871 	/*
4872 	 * Calculate the deflated space for the pool. This must be done before
4873 	 * we write anything to the pool because we'd need to update the space
4874 	 * accounting using the deflated sizes.
4875 	 */
4876 	spa_update_dspace(spa);
4877 
4878 	/*
4879 	 * We have now retrieved all the information we needed to open the
4880 	 * pool. If we are importing the pool in read-write mode, a few
4881 	 * additional steps must be performed to finish the import.
4882 	 */
4883 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4884 	    spa->spa_load_max_txg == UINT64_MAX)) {
4885 		uint64_t config_cache_txg = spa->spa_config_txg;
4886 
4887 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4888 
4889 		/*
4890 		 * In case of a checkpoint rewind, log the original txg
4891 		 * of the checkpointed uberblock.
4892 		 */
4893 		if (checkpoint_rewind) {
4894 			spa_history_log_internal(spa, "checkpoint rewind",
4895 			    NULL, "rewound state to txg=%llu",
4896 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4897 		}
4898 
4899 		/*
4900 		 * Traverse the ZIL and claim all blocks.
4901 		 */
4902 		spa_ld_claim_log_blocks(spa);
4903 
4904 		/*
4905 		 * Kick-off the syncing thread.
4906 		 */
4907 		spa->spa_sync_on = B_TRUE;
4908 		txg_sync_start(spa->spa_dsl_pool);
4909 		mmp_thread_start(spa);
4910 
4911 		/*
4912 		 * Wait for all claims to sync.  We sync up to the highest
4913 		 * claimed log block birth time so that claimed log blocks
4914 		 * don't appear to be from the future.  spa_claim_max_txg
4915 		 * will have been set for us by ZIL traversal operations
4916 		 * performed above.
4917 		 */
4918 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4919 
4920 		/*
4921 		 * Check if we need to request an update of the config. On the
4922 		 * next sync, we would update the config stored in vdev labels
4923 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4924 		 */
4925 		spa_ld_check_for_config_update(spa, config_cache_txg,
4926 		    update_config_cache);
4927 
4928 		/*
4929 		 * Check if a rebuild was in progress and if so resume it.
4930 		 * Then check all DTLs to see if anything needs resilvering.
4931 		 * The resilver will be deferred if a rebuild was started.
4932 		 */
4933 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4934 			vdev_rebuild_restart(spa);
4935 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4936 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4937 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4938 		}
4939 
4940 		/*
4941 		 * Log the fact that we booted up (so that we can detect if
4942 		 * we rebooted in the middle of an operation).
4943 		 */
4944 		spa_history_log_version(spa, "open", NULL);
4945 
4946 		spa_restart_removal(spa);
4947 		spa_spawn_aux_threads(spa);
4948 
4949 		/*
4950 		 * Delete any inconsistent datasets.
4951 		 *
4952 		 * Note:
4953 		 * Since we may be issuing deletes for clones here,
4954 		 * we make sure to do so after we've spawned all the
4955 		 * auxiliary threads above (from which the livelist
4956 		 * deletion zthr is part of).
4957 		 */
4958 		(void) dmu_objset_find(spa_name(spa),
4959 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4960 
4961 		/*
4962 		 * Clean up any stale temporary dataset userrefs.
4963 		 */
4964 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4965 
4966 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4967 		vdev_initialize_restart(spa->spa_root_vdev);
4968 		vdev_trim_restart(spa->spa_root_vdev);
4969 		vdev_autotrim_restart(spa);
4970 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4971 	}
4972 
4973 	spa_import_progress_remove(spa_guid(spa));
4974 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4975 
4976 	spa_load_note(spa, "LOADED");
4977 
4978 	return (0);
4979 }
4980 
4981 static int
4982 spa_load_retry(spa_t *spa, spa_load_state_t state)
4983 {
4984 	spa_mode_t mode = spa->spa_mode;
4985 
4986 	spa_unload(spa);
4987 	spa_deactivate(spa);
4988 
4989 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4990 
4991 	spa_activate(spa, mode);
4992 	spa_async_suspend(spa);
4993 
4994 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4995 	    (u_longlong_t)spa->spa_load_max_txg);
4996 
4997 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4998 }
4999 
5000 /*
5001  * If spa_load() fails this function will try loading prior txg's. If
5002  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5003  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5004  * function will not rewind the pool and will return the same error as
5005  * spa_load().
5006  */
5007 static int
5008 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5009     int rewind_flags)
5010 {
5011 	nvlist_t *loadinfo = NULL;
5012 	nvlist_t *config = NULL;
5013 	int load_error, rewind_error;
5014 	uint64_t safe_rewind_txg;
5015 	uint64_t min_txg;
5016 
5017 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5018 		spa->spa_load_max_txg = spa->spa_load_txg;
5019 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5020 	} else {
5021 		spa->spa_load_max_txg = max_request;
5022 		if (max_request != UINT64_MAX)
5023 			spa->spa_extreme_rewind = B_TRUE;
5024 	}
5025 
5026 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5027 	if (load_error == 0)
5028 		return (0);
5029 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5030 		/*
5031 		 * When attempting checkpoint-rewind on a pool with no
5032 		 * checkpoint, we should not attempt to load uberblocks
5033 		 * from previous txgs when spa_load fails.
5034 		 */
5035 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5036 		spa_import_progress_remove(spa_guid(spa));
5037 		return (load_error);
5038 	}
5039 
5040 	if (spa->spa_root_vdev != NULL)
5041 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5042 
5043 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5044 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5045 
5046 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5047 		nvlist_free(config);
5048 		spa_import_progress_remove(spa_guid(spa));
5049 		return (load_error);
5050 	}
5051 
5052 	if (state == SPA_LOAD_RECOVER) {
5053 		/* Price of rolling back is discarding txgs, including log */
5054 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5055 	} else {
5056 		/*
5057 		 * If we aren't rolling back save the load info from our first
5058 		 * import attempt so that we can restore it after attempting
5059 		 * to rewind.
5060 		 */
5061 		loadinfo = spa->spa_load_info;
5062 		spa->spa_load_info = fnvlist_alloc();
5063 	}
5064 
5065 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5066 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5067 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5068 	    TXG_INITIAL : safe_rewind_txg;
5069 
5070 	/*
5071 	 * Continue as long as we're finding errors, we're still within
5072 	 * the acceptable rewind range, and we're still finding uberblocks
5073 	 */
5074 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5075 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5076 		if (spa->spa_load_max_txg < safe_rewind_txg)
5077 			spa->spa_extreme_rewind = B_TRUE;
5078 		rewind_error = spa_load_retry(spa, state);
5079 	}
5080 
5081 	spa->spa_extreme_rewind = B_FALSE;
5082 	spa->spa_load_max_txg = UINT64_MAX;
5083 
5084 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5085 		spa_config_set(spa, config);
5086 	else
5087 		nvlist_free(config);
5088 
5089 	if (state == SPA_LOAD_RECOVER) {
5090 		ASSERT3P(loadinfo, ==, NULL);
5091 		spa_import_progress_remove(spa_guid(spa));
5092 		return (rewind_error);
5093 	} else {
5094 		/* Store the rewind info as part of the initial load info */
5095 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5096 		    spa->spa_load_info);
5097 
5098 		/* Restore the initial load info */
5099 		fnvlist_free(spa->spa_load_info);
5100 		spa->spa_load_info = loadinfo;
5101 
5102 		spa_import_progress_remove(spa_guid(spa));
5103 		return (load_error);
5104 	}
5105 }
5106 
5107 /*
5108  * Pool Open/Import
5109  *
5110  * The import case is identical to an open except that the configuration is sent
5111  * down from userland, instead of grabbed from the configuration cache.  For the
5112  * case of an open, the pool configuration will exist in the
5113  * POOL_STATE_UNINITIALIZED state.
5114  *
5115  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5116  * the same time open the pool, without having to keep around the spa_t in some
5117  * ambiguous state.
5118  */
5119 static int
5120 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5121     nvlist_t **config)
5122 {
5123 	spa_t *spa;
5124 	spa_load_state_t state = SPA_LOAD_OPEN;
5125 	int error;
5126 	int locked = B_FALSE;
5127 	int firstopen = B_FALSE;
5128 
5129 	*spapp = NULL;
5130 
5131 	/*
5132 	 * As disgusting as this is, we need to support recursive calls to this
5133 	 * function because dsl_dir_open() is called during spa_load(), and ends
5134 	 * up calling spa_open() again.  The real fix is to figure out how to
5135 	 * avoid dsl_dir_open() calling this in the first place.
5136 	 */
5137 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5138 		mutex_enter(&spa_namespace_lock);
5139 		locked = B_TRUE;
5140 	}
5141 
5142 	if ((spa = spa_lookup(pool)) == NULL) {
5143 		if (locked)
5144 			mutex_exit(&spa_namespace_lock);
5145 		return (SET_ERROR(ENOENT));
5146 	}
5147 
5148 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5149 		zpool_load_policy_t policy;
5150 
5151 		firstopen = B_TRUE;
5152 
5153 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5154 		    &policy);
5155 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5156 			state = SPA_LOAD_RECOVER;
5157 
5158 		spa_activate(spa, spa_mode_global);
5159 
5160 		if (state != SPA_LOAD_RECOVER)
5161 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5162 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5163 
5164 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5165 		error = spa_load_best(spa, state, policy.zlp_txg,
5166 		    policy.zlp_rewind);
5167 
5168 		if (error == EBADF) {
5169 			/*
5170 			 * If vdev_validate() returns failure (indicated by
5171 			 * EBADF), it indicates that one of the vdevs indicates
5172 			 * that the pool has been exported or destroyed.  If
5173 			 * this is the case, the config cache is out of sync and
5174 			 * we should remove the pool from the namespace.
5175 			 */
5176 			spa_unload(spa);
5177 			spa_deactivate(spa);
5178 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5179 			spa_remove(spa);
5180 			if (locked)
5181 				mutex_exit(&spa_namespace_lock);
5182 			return (SET_ERROR(ENOENT));
5183 		}
5184 
5185 		if (error) {
5186 			/*
5187 			 * We can't open the pool, but we still have useful
5188 			 * information: the state of each vdev after the
5189 			 * attempted vdev_open().  Return this to the user.
5190 			 */
5191 			if (config != NULL && spa->spa_config) {
5192 				*config = fnvlist_dup(spa->spa_config);
5193 				fnvlist_add_nvlist(*config,
5194 				    ZPOOL_CONFIG_LOAD_INFO,
5195 				    spa->spa_load_info);
5196 			}
5197 			spa_unload(spa);
5198 			spa_deactivate(spa);
5199 			spa->spa_last_open_failed = error;
5200 			if (locked)
5201 				mutex_exit(&spa_namespace_lock);
5202 			*spapp = NULL;
5203 			return (error);
5204 		}
5205 	}
5206 
5207 	spa_open_ref(spa, tag);
5208 
5209 	if (config != NULL)
5210 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5211 
5212 	/*
5213 	 * If we've recovered the pool, pass back any information we
5214 	 * gathered while doing the load.
5215 	 */
5216 	if (state == SPA_LOAD_RECOVER) {
5217 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5218 		    spa->spa_load_info);
5219 	}
5220 
5221 	if (locked) {
5222 		spa->spa_last_open_failed = 0;
5223 		spa->spa_last_ubsync_txg = 0;
5224 		spa->spa_load_txg = 0;
5225 		mutex_exit(&spa_namespace_lock);
5226 	}
5227 
5228 	if (firstopen)
5229 		zvol_create_minors_recursive(spa_name(spa));
5230 
5231 	*spapp = spa;
5232 
5233 	return (0);
5234 }
5235 
5236 int
5237 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5238     nvlist_t **config)
5239 {
5240 	return (spa_open_common(name, spapp, tag, policy, config));
5241 }
5242 
5243 int
5244 spa_open(const char *name, spa_t **spapp, void *tag)
5245 {
5246 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5247 }
5248 
5249 /*
5250  * Lookup the given spa_t, incrementing the inject count in the process,
5251  * preventing it from being exported or destroyed.
5252  */
5253 spa_t *
5254 spa_inject_addref(char *name)
5255 {
5256 	spa_t *spa;
5257 
5258 	mutex_enter(&spa_namespace_lock);
5259 	if ((spa = spa_lookup(name)) == NULL) {
5260 		mutex_exit(&spa_namespace_lock);
5261 		return (NULL);
5262 	}
5263 	spa->spa_inject_ref++;
5264 	mutex_exit(&spa_namespace_lock);
5265 
5266 	return (spa);
5267 }
5268 
5269 void
5270 spa_inject_delref(spa_t *spa)
5271 {
5272 	mutex_enter(&spa_namespace_lock);
5273 	spa->spa_inject_ref--;
5274 	mutex_exit(&spa_namespace_lock);
5275 }
5276 
5277 /*
5278  * Add spares device information to the nvlist.
5279  */
5280 static void
5281 spa_add_spares(spa_t *spa, nvlist_t *config)
5282 {
5283 	nvlist_t **spares;
5284 	uint_t i, nspares;
5285 	nvlist_t *nvroot;
5286 	uint64_t guid;
5287 	vdev_stat_t *vs;
5288 	uint_t vsc;
5289 	uint64_t pool;
5290 
5291 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5292 
5293 	if (spa->spa_spares.sav_count == 0)
5294 		return;
5295 
5296 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5297 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5298 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5299 	if (nspares != 0) {
5300 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5301 		    (const nvlist_t * const *)spares, nspares);
5302 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5303 		    &spares, &nspares));
5304 
5305 		/*
5306 		 * Go through and find any spares which have since been
5307 		 * repurposed as an active spare.  If this is the case, update
5308 		 * their status appropriately.
5309 		 */
5310 		for (i = 0; i < nspares; i++) {
5311 			guid = fnvlist_lookup_uint64(spares[i],
5312 			    ZPOOL_CONFIG_GUID);
5313 			if (spa_spare_exists(guid, &pool, NULL) &&
5314 			    pool != 0ULL) {
5315 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5316 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5317 				    &vsc));
5318 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5319 				vs->vs_aux = VDEV_AUX_SPARED;
5320 			}
5321 		}
5322 	}
5323 }
5324 
5325 /*
5326  * Add l2cache device information to the nvlist, including vdev stats.
5327  */
5328 static void
5329 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5330 {
5331 	nvlist_t **l2cache;
5332 	uint_t i, j, nl2cache;
5333 	nvlist_t *nvroot;
5334 	uint64_t guid;
5335 	vdev_t *vd;
5336 	vdev_stat_t *vs;
5337 	uint_t vsc;
5338 
5339 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5340 
5341 	if (spa->spa_l2cache.sav_count == 0)
5342 		return;
5343 
5344 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5345 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5346 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5347 	if (nl2cache != 0) {
5348 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5349 		    (const nvlist_t * const *)l2cache, nl2cache);
5350 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5351 		    &l2cache, &nl2cache));
5352 
5353 		/*
5354 		 * Update level 2 cache device stats.
5355 		 */
5356 
5357 		for (i = 0; i < nl2cache; i++) {
5358 			guid = fnvlist_lookup_uint64(l2cache[i],
5359 			    ZPOOL_CONFIG_GUID);
5360 
5361 			vd = NULL;
5362 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5363 				if (guid ==
5364 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5365 					vd = spa->spa_l2cache.sav_vdevs[j];
5366 					break;
5367 				}
5368 			}
5369 			ASSERT(vd != NULL);
5370 
5371 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5372 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5373 			vdev_get_stats(vd, vs);
5374 			vdev_config_generate_stats(vd, l2cache[i]);
5375 
5376 		}
5377 	}
5378 }
5379 
5380 static void
5381 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5382 {
5383 	zap_cursor_t zc;
5384 	zap_attribute_t za;
5385 
5386 	if (spa->spa_feat_for_read_obj != 0) {
5387 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5388 		    spa->spa_feat_for_read_obj);
5389 		    zap_cursor_retrieve(&zc, &za) == 0;
5390 		    zap_cursor_advance(&zc)) {
5391 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5392 			    za.za_num_integers == 1);
5393 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5394 			    za.za_first_integer));
5395 		}
5396 		zap_cursor_fini(&zc);
5397 	}
5398 
5399 	if (spa->spa_feat_for_write_obj != 0) {
5400 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5401 		    spa->spa_feat_for_write_obj);
5402 		    zap_cursor_retrieve(&zc, &za) == 0;
5403 		    zap_cursor_advance(&zc)) {
5404 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5405 			    za.za_num_integers == 1);
5406 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5407 			    za.za_first_integer));
5408 		}
5409 		zap_cursor_fini(&zc);
5410 	}
5411 }
5412 
5413 static void
5414 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5415 {
5416 	int i;
5417 
5418 	for (i = 0; i < SPA_FEATURES; i++) {
5419 		zfeature_info_t feature = spa_feature_table[i];
5420 		uint64_t refcount;
5421 
5422 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5423 			continue;
5424 
5425 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5426 	}
5427 }
5428 
5429 /*
5430  * Store a list of pool features and their reference counts in the
5431  * config.
5432  *
5433  * The first time this is called on a spa, allocate a new nvlist, fetch
5434  * the pool features and reference counts from disk, then save the list
5435  * in the spa. In subsequent calls on the same spa use the saved nvlist
5436  * and refresh its values from the cached reference counts.  This
5437  * ensures we don't block here on I/O on a suspended pool so 'zpool
5438  * clear' can resume the pool.
5439  */
5440 static void
5441 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5442 {
5443 	nvlist_t *features;
5444 
5445 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5446 
5447 	mutex_enter(&spa->spa_feat_stats_lock);
5448 	features = spa->spa_feat_stats;
5449 
5450 	if (features != NULL) {
5451 		spa_feature_stats_from_cache(spa, features);
5452 	} else {
5453 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5454 		spa->spa_feat_stats = features;
5455 		spa_feature_stats_from_disk(spa, features);
5456 	}
5457 
5458 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5459 	    features));
5460 
5461 	mutex_exit(&spa->spa_feat_stats_lock);
5462 }
5463 
5464 int
5465 spa_get_stats(const char *name, nvlist_t **config,
5466     char *altroot, size_t buflen)
5467 {
5468 	int error;
5469 	spa_t *spa;
5470 
5471 	*config = NULL;
5472 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5473 
5474 	if (spa != NULL) {
5475 		/*
5476 		 * This still leaves a window of inconsistency where the spares
5477 		 * or l2cache devices could change and the config would be
5478 		 * self-inconsistent.
5479 		 */
5480 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5481 
5482 		if (*config != NULL) {
5483 			uint64_t loadtimes[2];
5484 
5485 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5486 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5487 			fnvlist_add_uint64_array(*config,
5488 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5489 
5490 			fnvlist_add_uint64(*config,
5491 			    ZPOOL_CONFIG_ERRCOUNT,
5492 			    spa_get_errlog_size(spa));
5493 
5494 			if (spa_suspended(spa)) {
5495 				fnvlist_add_uint64(*config,
5496 				    ZPOOL_CONFIG_SUSPENDED,
5497 				    spa->spa_failmode);
5498 				fnvlist_add_uint64(*config,
5499 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5500 				    spa->spa_suspended);
5501 			}
5502 
5503 			spa_add_spares(spa, *config);
5504 			spa_add_l2cache(spa, *config);
5505 			spa_add_feature_stats(spa, *config);
5506 		}
5507 	}
5508 
5509 	/*
5510 	 * We want to get the alternate root even for faulted pools, so we cheat
5511 	 * and call spa_lookup() directly.
5512 	 */
5513 	if (altroot) {
5514 		if (spa == NULL) {
5515 			mutex_enter(&spa_namespace_lock);
5516 			spa = spa_lookup(name);
5517 			if (spa)
5518 				spa_altroot(spa, altroot, buflen);
5519 			else
5520 				altroot[0] = '\0';
5521 			spa = NULL;
5522 			mutex_exit(&spa_namespace_lock);
5523 		} else {
5524 			spa_altroot(spa, altroot, buflen);
5525 		}
5526 	}
5527 
5528 	if (spa != NULL) {
5529 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5530 		spa_close(spa, FTAG);
5531 	}
5532 
5533 	return (error);
5534 }
5535 
5536 /*
5537  * Validate that the auxiliary device array is well formed.  We must have an
5538  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5539  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5540  * specified, as long as they are well-formed.
5541  */
5542 static int
5543 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5544     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5545     vdev_labeltype_t label)
5546 {
5547 	nvlist_t **dev;
5548 	uint_t i, ndev;
5549 	vdev_t *vd;
5550 	int error;
5551 
5552 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5553 
5554 	/*
5555 	 * It's acceptable to have no devs specified.
5556 	 */
5557 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5558 		return (0);
5559 
5560 	if (ndev == 0)
5561 		return (SET_ERROR(EINVAL));
5562 
5563 	/*
5564 	 * Make sure the pool is formatted with a version that supports this
5565 	 * device type.
5566 	 */
5567 	if (spa_version(spa) < version)
5568 		return (SET_ERROR(ENOTSUP));
5569 
5570 	/*
5571 	 * Set the pending device list so we correctly handle device in-use
5572 	 * checking.
5573 	 */
5574 	sav->sav_pending = dev;
5575 	sav->sav_npending = ndev;
5576 
5577 	for (i = 0; i < ndev; i++) {
5578 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5579 		    mode)) != 0)
5580 			goto out;
5581 
5582 		if (!vd->vdev_ops->vdev_op_leaf) {
5583 			vdev_free(vd);
5584 			error = SET_ERROR(EINVAL);
5585 			goto out;
5586 		}
5587 
5588 		vd->vdev_top = vd;
5589 
5590 		if ((error = vdev_open(vd)) == 0 &&
5591 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5592 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5593 			    vd->vdev_guid);
5594 		}
5595 
5596 		vdev_free(vd);
5597 
5598 		if (error &&
5599 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5600 			goto out;
5601 		else
5602 			error = 0;
5603 	}
5604 
5605 out:
5606 	sav->sav_pending = NULL;
5607 	sav->sav_npending = 0;
5608 	return (error);
5609 }
5610 
5611 static int
5612 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5613 {
5614 	int error;
5615 
5616 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5617 
5618 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5619 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5620 	    VDEV_LABEL_SPARE)) != 0) {
5621 		return (error);
5622 	}
5623 
5624 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5625 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5626 	    VDEV_LABEL_L2CACHE));
5627 }
5628 
5629 static void
5630 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5631     const char *config)
5632 {
5633 	int i;
5634 
5635 	if (sav->sav_config != NULL) {
5636 		nvlist_t **olddevs;
5637 		uint_t oldndevs;
5638 		nvlist_t **newdevs;
5639 
5640 		/*
5641 		 * Generate new dev list by concatenating with the
5642 		 * current dev list.
5643 		 */
5644 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5645 		    &olddevs, &oldndevs));
5646 
5647 		newdevs = kmem_alloc(sizeof (void *) *
5648 		    (ndevs + oldndevs), KM_SLEEP);
5649 		for (i = 0; i < oldndevs; i++)
5650 			newdevs[i] = fnvlist_dup(olddevs[i]);
5651 		for (i = 0; i < ndevs; i++)
5652 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5653 
5654 		fnvlist_remove(sav->sav_config, config);
5655 
5656 		fnvlist_add_nvlist_array(sav->sav_config, config,
5657 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5658 		for (i = 0; i < oldndevs + ndevs; i++)
5659 			nvlist_free(newdevs[i]);
5660 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5661 	} else {
5662 		/*
5663 		 * Generate a new dev list.
5664 		 */
5665 		sav->sav_config = fnvlist_alloc();
5666 		fnvlist_add_nvlist_array(sav->sav_config, config,
5667 		    (const nvlist_t * const *)devs, ndevs);
5668 	}
5669 }
5670 
5671 /*
5672  * Stop and drop level 2 ARC devices
5673  */
5674 void
5675 spa_l2cache_drop(spa_t *spa)
5676 {
5677 	vdev_t *vd;
5678 	int i;
5679 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5680 
5681 	for (i = 0; i < sav->sav_count; i++) {
5682 		uint64_t pool;
5683 
5684 		vd = sav->sav_vdevs[i];
5685 		ASSERT(vd != NULL);
5686 
5687 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5688 		    pool != 0ULL && l2arc_vdev_present(vd))
5689 			l2arc_remove_vdev(vd);
5690 	}
5691 }
5692 
5693 /*
5694  * Verify encryption parameters for spa creation. If we are encrypting, we must
5695  * have the encryption feature flag enabled.
5696  */
5697 static int
5698 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5699     boolean_t has_encryption)
5700 {
5701 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5702 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5703 	    !has_encryption)
5704 		return (SET_ERROR(ENOTSUP));
5705 
5706 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5707 }
5708 
5709 /*
5710  * Pool Creation
5711  */
5712 int
5713 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5714     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5715 {
5716 	spa_t *spa;
5717 	char *altroot = NULL;
5718 	vdev_t *rvd;
5719 	dsl_pool_t *dp;
5720 	dmu_tx_t *tx;
5721 	int error = 0;
5722 	uint64_t txg = TXG_INITIAL;
5723 	nvlist_t **spares, **l2cache;
5724 	uint_t nspares, nl2cache;
5725 	uint64_t version, obj, ndraid = 0;
5726 	boolean_t has_features;
5727 	boolean_t has_encryption;
5728 	boolean_t has_allocclass;
5729 	spa_feature_t feat;
5730 	char *feat_name;
5731 	char *poolname;
5732 	nvlist_t *nvl;
5733 
5734 	if (props == NULL ||
5735 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5736 		poolname = (char *)pool;
5737 
5738 	/*
5739 	 * If this pool already exists, return failure.
5740 	 */
5741 	mutex_enter(&spa_namespace_lock);
5742 	if (spa_lookup(poolname) != NULL) {
5743 		mutex_exit(&spa_namespace_lock);
5744 		return (SET_ERROR(EEXIST));
5745 	}
5746 
5747 	/*
5748 	 * Allocate a new spa_t structure.
5749 	 */
5750 	nvl = fnvlist_alloc();
5751 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5752 	(void) nvlist_lookup_string(props,
5753 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5754 	spa = spa_add(poolname, nvl, altroot);
5755 	fnvlist_free(nvl);
5756 	spa_activate(spa, spa_mode_global);
5757 
5758 	if (props && (error = spa_prop_validate(spa, props))) {
5759 		spa_deactivate(spa);
5760 		spa_remove(spa);
5761 		mutex_exit(&spa_namespace_lock);
5762 		return (error);
5763 	}
5764 
5765 	/*
5766 	 * Temporary pool names should never be written to disk.
5767 	 */
5768 	if (poolname != pool)
5769 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5770 
5771 	has_features = B_FALSE;
5772 	has_encryption = B_FALSE;
5773 	has_allocclass = B_FALSE;
5774 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5775 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5776 		if (zpool_prop_feature(nvpair_name(elem))) {
5777 			has_features = B_TRUE;
5778 
5779 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5780 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5781 			if (feat == SPA_FEATURE_ENCRYPTION)
5782 				has_encryption = B_TRUE;
5783 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5784 				has_allocclass = B_TRUE;
5785 		}
5786 	}
5787 
5788 	/* verify encryption params, if they were provided */
5789 	if (dcp != NULL) {
5790 		error = spa_create_check_encryption_params(dcp, has_encryption);
5791 		if (error != 0) {
5792 			spa_deactivate(spa);
5793 			spa_remove(spa);
5794 			mutex_exit(&spa_namespace_lock);
5795 			return (error);
5796 		}
5797 	}
5798 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5799 		spa_deactivate(spa);
5800 		spa_remove(spa);
5801 		mutex_exit(&spa_namespace_lock);
5802 		return (ENOTSUP);
5803 	}
5804 
5805 	if (has_features || nvlist_lookup_uint64(props,
5806 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5807 		version = SPA_VERSION;
5808 	}
5809 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5810 
5811 	spa->spa_first_txg = txg;
5812 	spa->spa_uberblock.ub_txg = txg - 1;
5813 	spa->spa_uberblock.ub_version = version;
5814 	spa->spa_ubsync = spa->spa_uberblock;
5815 	spa->spa_load_state = SPA_LOAD_CREATE;
5816 	spa->spa_removing_phys.sr_state = DSS_NONE;
5817 	spa->spa_removing_phys.sr_removing_vdev = -1;
5818 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5819 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5820 
5821 	/*
5822 	 * Create "The Godfather" zio to hold all async IOs
5823 	 */
5824 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5825 	    KM_SLEEP);
5826 	for (int i = 0; i < max_ncpus; i++) {
5827 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5828 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5829 		    ZIO_FLAG_GODFATHER);
5830 	}
5831 
5832 	/*
5833 	 * Create the root vdev.
5834 	 */
5835 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5836 
5837 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5838 
5839 	ASSERT(error != 0 || rvd != NULL);
5840 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5841 
5842 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5843 		error = SET_ERROR(EINVAL);
5844 
5845 	if (error == 0 &&
5846 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5847 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5848 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5849 		/*
5850 		 * instantiate the metaslab groups (this will dirty the vdevs)
5851 		 * we can no longer error exit past this point
5852 		 */
5853 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5854 			vdev_t *vd = rvd->vdev_child[c];
5855 
5856 			vdev_metaslab_set_size(vd);
5857 			vdev_expand(vd, txg);
5858 		}
5859 	}
5860 
5861 	spa_config_exit(spa, SCL_ALL, FTAG);
5862 
5863 	if (error != 0) {
5864 		spa_unload(spa);
5865 		spa_deactivate(spa);
5866 		spa_remove(spa);
5867 		mutex_exit(&spa_namespace_lock);
5868 		return (error);
5869 	}
5870 
5871 	/*
5872 	 * Get the list of spares, if specified.
5873 	 */
5874 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5875 	    &spares, &nspares) == 0) {
5876 		spa->spa_spares.sav_config = fnvlist_alloc();
5877 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5878 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5879 		    nspares);
5880 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5881 		spa_load_spares(spa);
5882 		spa_config_exit(spa, SCL_ALL, FTAG);
5883 		spa->spa_spares.sav_sync = B_TRUE;
5884 	}
5885 
5886 	/*
5887 	 * Get the list of level 2 cache devices, if specified.
5888 	 */
5889 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5890 	    &l2cache, &nl2cache) == 0) {
5891 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5892 		    NV_UNIQUE_NAME, KM_SLEEP));
5893 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5894 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5895 		    nl2cache);
5896 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5897 		spa_load_l2cache(spa);
5898 		spa_config_exit(spa, SCL_ALL, FTAG);
5899 		spa->spa_l2cache.sav_sync = B_TRUE;
5900 	}
5901 
5902 	spa->spa_is_initializing = B_TRUE;
5903 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5904 	spa->spa_is_initializing = B_FALSE;
5905 
5906 	/*
5907 	 * Create DDTs (dedup tables).
5908 	 */
5909 	ddt_create(spa);
5910 
5911 	spa_update_dspace(spa);
5912 
5913 	tx = dmu_tx_create_assigned(dp, txg);
5914 
5915 	/*
5916 	 * Create the pool's history object.
5917 	 */
5918 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5919 		spa_history_create_obj(spa, tx);
5920 
5921 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5922 	spa_history_log_version(spa, "create", tx);
5923 
5924 	/*
5925 	 * Create the pool config object.
5926 	 */
5927 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5928 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5929 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5930 
5931 	if (zap_add(spa->spa_meta_objset,
5932 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5933 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5934 		cmn_err(CE_PANIC, "failed to add pool config");
5935 	}
5936 
5937 	if (zap_add(spa->spa_meta_objset,
5938 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5939 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5940 		cmn_err(CE_PANIC, "failed to add pool version");
5941 	}
5942 
5943 	/* Newly created pools with the right version are always deflated. */
5944 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5945 		spa->spa_deflate = TRUE;
5946 		if (zap_add(spa->spa_meta_objset,
5947 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5948 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5949 			cmn_err(CE_PANIC, "failed to add deflate");
5950 		}
5951 	}
5952 
5953 	/*
5954 	 * Create the deferred-free bpobj.  Turn off compression
5955 	 * because sync-to-convergence takes longer if the blocksize
5956 	 * keeps changing.
5957 	 */
5958 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5959 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5960 	    ZIO_COMPRESS_OFF, tx);
5961 	if (zap_add(spa->spa_meta_objset,
5962 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5963 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5964 		cmn_err(CE_PANIC, "failed to add bpobj");
5965 	}
5966 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5967 	    spa->spa_meta_objset, obj));
5968 
5969 	/*
5970 	 * Generate some random noise for salted checksums to operate on.
5971 	 */
5972 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5973 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5974 
5975 	/*
5976 	 * Set pool properties.
5977 	 */
5978 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5979 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5980 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5981 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5982 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5983 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5984 
5985 	if (props != NULL) {
5986 		spa_configfile_set(spa, props, B_FALSE);
5987 		spa_sync_props(props, tx);
5988 	}
5989 
5990 	for (int i = 0; i < ndraid; i++)
5991 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5992 
5993 	dmu_tx_commit(tx);
5994 
5995 	spa->spa_sync_on = B_TRUE;
5996 	txg_sync_start(dp);
5997 	mmp_thread_start(spa);
5998 	txg_wait_synced(dp, txg);
5999 
6000 	spa_spawn_aux_threads(spa);
6001 
6002 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
6003 
6004 	/*
6005 	 * Don't count references from objsets that are already closed
6006 	 * and are making their way through the eviction process.
6007 	 */
6008 	spa_evicting_os_wait(spa);
6009 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6010 	spa->spa_load_state = SPA_LOAD_NONE;
6011 
6012 	mutex_exit(&spa_namespace_lock);
6013 
6014 	return (0);
6015 }
6016 
6017 /*
6018  * Import a non-root pool into the system.
6019  */
6020 int
6021 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6022 {
6023 	spa_t *spa;
6024 	char *altroot = NULL;
6025 	spa_load_state_t state = SPA_LOAD_IMPORT;
6026 	zpool_load_policy_t policy;
6027 	spa_mode_t mode = spa_mode_global;
6028 	uint64_t readonly = B_FALSE;
6029 	int error;
6030 	nvlist_t *nvroot;
6031 	nvlist_t **spares, **l2cache;
6032 	uint_t nspares, nl2cache;
6033 
6034 	/*
6035 	 * If a pool with this name exists, return failure.
6036 	 */
6037 	mutex_enter(&spa_namespace_lock);
6038 	if (spa_lookup(pool) != NULL) {
6039 		mutex_exit(&spa_namespace_lock);
6040 		return (SET_ERROR(EEXIST));
6041 	}
6042 
6043 	/*
6044 	 * Create and initialize the spa structure.
6045 	 */
6046 	(void) nvlist_lookup_string(props,
6047 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6048 	(void) nvlist_lookup_uint64(props,
6049 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6050 	if (readonly)
6051 		mode = SPA_MODE_READ;
6052 	spa = spa_add(pool, config, altroot);
6053 	spa->spa_import_flags = flags;
6054 
6055 	/*
6056 	 * Verbatim import - Take a pool and insert it into the namespace
6057 	 * as if it had been loaded at boot.
6058 	 */
6059 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6060 		if (props != NULL)
6061 			spa_configfile_set(spa, props, B_FALSE);
6062 
6063 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6064 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6065 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6066 		mutex_exit(&spa_namespace_lock);
6067 		return (0);
6068 	}
6069 
6070 	spa_activate(spa, mode);
6071 
6072 	/*
6073 	 * Don't start async tasks until we know everything is healthy.
6074 	 */
6075 	spa_async_suspend(spa);
6076 
6077 	zpool_get_load_policy(config, &policy);
6078 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6079 		state = SPA_LOAD_RECOVER;
6080 
6081 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6082 
6083 	if (state != SPA_LOAD_RECOVER) {
6084 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6085 		zfs_dbgmsg("spa_import: importing %s", pool);
6086 	} else {
6087 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6088 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6089 	}
6090 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6091 
6092 	/*
6093 	 * Propagate anything learned while loading the pool and pass it
6094 	 * back to caller (i.e. rewind info, missing devices, etc).
6095 	 */
6096 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6097 
6098 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6099 	/*
6100 	 * Toss any existing sparelist, as it doesn't have any validity
6101 	 * anymore, and conflicts with spa_has_spare().
6102 	 */
6103 	if (spa->spa_spares.sav_config) {
6104 		nvlist_free(spa->spa_spares.sav_config);
6105 		spa->spa_spares.sav_config = NULL;
6106 		spa_load_spares(spa);
6107 	}
6108 	if (spa->spa_l2cache.sav_config) {
6109 		nvlist_free(spa->spa_l2cache.sav_config);
6110 		spa->spa_l2cache.sav_config = NULL;
6111 		spa_load_l2cache(spa);
6112 	}
6113 
6114 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6115 	spa_config_exit(spa, SCL_ALL, FTAG);
6116 
6117 	if (props != NULL)
6118 		spa_configfile_set(spa, props, B_FALSE);
6119 
6120 	if (error != 0 || (props && spa_writeable(spa) &&
6121 	    (error = spa_prop_set(spa, props)))) {
6122 		spa_unload(spa);
6123 		spa_deactivate(spa);
6124 		spa_remove(spa);
6125 		mutex_exit(&spa_namespace_lock);
6126 		return (error);
6127 	}
6128 
6129 	spa_async_resume(spa);
6130 
6131 	/*
6132 	 * Override any spares and level 2 cache devices as specified by
6133 	 * the user, as these may have correct device names/devids, etc.
6134 	 */
6135 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6136 	    &spares, &nspares) == 0) {
6137 		if (spa->spa_spares.sav_config)
6138 			fnvlist_remove(spa->spa_spares.sav_config,
6139 			    ZPOOL_CONFIG_SPARES);
6140 		else
6141 			spa->spa_spares.sav_config = fnvlist_alloc();
6142 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6143 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6144 		    nspares);
6145 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6146 		spa_load_spares(spa);
6147 		spa_config_exit(spa, SCL_ALL, FTAG);
6148 		spa->spa_spares.sav_sync = B_TRUE;
6149 	}
6150 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6151 	    &l2cache, &nl2cache) == 0) {
6152 		if (spa->spa_l2cache.sav_config)
6153 			fnvlist_remove(spa->spa_l2cache.sav_config,
6154 			    ZPOOL_CONFIG_L2CACHE);
6155 		else
6156 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6157 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6158 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6159 		    nl2cache);
6160 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6161 		spa_load_l2cache(spa);
6162 		spa_config_exit(spa, SCL_ALL, FTAG);
6163 		spa->spa_l2cache.sav_sync = B_TRUE;
6164 	}
6165 
6166 	/*
6167 	 * Check for any removed devices.
6168 	 */
6169 	if (spa->spa_autoreplace) {
6170 		spa_aux_check_removed(&spa->spa_spares);
6171 		spa_aux_check_removed(&spa->spa_l2cache);
6172 	}
6173 
6174 	if (spa_writeable(spa)) {
6175 		/*
6176 		 * Update the config cache to include the newly-imported pool.
6177 		 */
6178 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6179 	}
6180 
6181 	/*
6182 	 * It's possible that the pool was expanded while it was exported.
6183 	 * We kick off an async task to handle this for us.
6184 	 */
6185 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6186 
6187 	spa_history_log_version(spa, "import", NULL);
6188 
6189 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6190 
6191 	mutex_exit(&spa_namespace_lock);
6192 
6193 	zvol_create_minors_recursive(pool);
6194 
6195 	return (0);
6196 }
6197 
6198 nvlist_t *
6199 spa_tryimport(nvlist_t *tryconfig)
6200 {
6201 	nvlist_t *config = NULL;
6202 	char *poolname, *cachefile;
6203 	spa_t *spa;
6204 	uint64_t state;
6205 	int error;
6206 	zpool_load_policy_t policy;
6207 
6208 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6209 		return (NULL);
6210 
6211 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6212 		return (NULL);
6213 
6214 	/*
6215 	 * Create and initialize the spa structure.
6216 	 */
6217 	mutex_enter(&spa_namespace_lock);
6218 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6219 	spa_activate(spa, SPA_MODE_READ);
6220 
6221 	/*
6222 	 * Rewind pool if a max txg was provided.
6223 	 */
6224 	zpool_get_load_policy(spa->spa_config, &policy);
6225 	if (policy.zlp_txg != UINT64_MAX) {
6226 		spa->spa_load_max_txg = policy.zlp_txg;
6227 		spa->spa_extreme_rewind = B_TRUE;
6228 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6229 		    poolname, (longlong_t)policy.zlp_txg);
6230 	} else {
6231 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6232 	}
6233 
6234 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6235 	    == 0) {
6236 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6237 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6238 	} else {
6239 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6240 	}
6241 
6242 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6243 
6244 	/*
6245 	 * If 'tryconfig' was at least parsable, return the current config.
6246 	 */
6247 	if (spa->spa_root_vdev != NULL) {
6248 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6249 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6250 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6251 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6252 		    spa->spa_uberblock.ub_timestamp);
6253 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6254 		    spa->spa_load_info);
6255 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6256 		    spa->spa_errata);
6257 
6258 		/*
6259 		 * If the bootfs property exists on this pool then we
6260 		 * copy it out so that external consumers can tell which
6261 		 * pools are bootable.
6262 		 */
6263 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6264 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6265 
6266 			/*
6267 			 * We have to play games with the name since the
6268 			 * pool was opened as TRYIMPORT_NAME.
6269 			 */
6270 			if (dsl_dsobj_to_dsname(spa_name(spa),
6271 			    spa->spa_bootfs, tmpname) == 0) {
6272 				char *cp;
6273 				char *dsname;
6274 
6275 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6276 
6277 				cp = strchr(tmpname, '/');
6278 				if (cp == NULL) {
6279 					(void) strlcpy(dsname, tmpname,
6280 					    MAXPATHLEN);
6281 				} else {
6282 					(void) snprintf(dsname, MAXPATHLEN,
6283 					    "%s/%s", poolname, ++cp);
6284 				}
6285 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6286 				    dsname);
6287 				kmem_free(dsname, MAXPATHLEN);
6288 			}
6289 			kmem_free(tmpname, MAXPATHLEN);
6290 		}
6291 
6292 		/*
6293 		 * Add the list of hot spares and level 2 cache devices.
6294 		 */
6295 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6296 		spa_add_spares(spa, config);
6297 		spa_add_l2cache(spa, config);
6298 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6299 	}
6300 
6301 	spa_unload(spa);
6302 	spa_deactivate(spa);
6303 	spa_remove(spa);
6304 	mutex_exit(&spa_namespace_lock);
6305 
6306 	return (config);
6307 }
6308 
6309 /*
6310  * Pool export/destroy
6311  *
6312  * The act of destroying or exporting a pool is very simple.  We make sure there
6313  * is no more pending I/O and any references to the pool are gone.  Then, we
6314  * update the pool state and sync all the labels to disk, removing the
6315  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6316  * we don't sync the labels or remove the configuration cache.
6317  */
6318 static int
6319 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6320     boolean_t force, boolean_t hardforce)
6321 {
6322 	int error;
6323 	spa_t *spa;
6324 
6325 	if (oldconfig)
6326 		*oldconfig = NULL;
6327 
6328 	if (!(spa_mode_global & SPA_MODE_WRITE))
6329 		return (SET_ERROR(EROFS));
6330 
6331 	mutex_enter(&spa_namespace_lock);
6332 	if ((spa = spa_lookup(pool)) == NULL) {
6333 		mutex_exit(&spa_namespace_lock);
6334 		return (SET_ERROR(ENOENT));
6335 	}
6336 
6337 	if (spa->spa_is_exporting) {
6338 		/* the pool is being exported by another thread */
6339 		mutex_exit(&spa_namespace_lock);
6340 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6341 	}
6342 	spa->spa_is_exporting = B_TRUE;
6343 
6344 	/*
6345 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6346 	 * reacquire the namespace lock, and see if we can export.
6347 	 */
6348 	spa_open_ref(spa, FTAG);
6349 	mutex_exit(&spa_namespace_lock);
6350 	spa_async_suspend(spa);
6351 	if (spa->spa_zvol_taskq) {
6352 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6353 		taskq_wait(spa->spa_zvol_taskq);
6354 	}
6355 	mutex_enter(&spa_namespace_lock);
6356 	spa_close(spa, FTAG);
6357 
6358 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6359 		goto export_spa;
6360 	/*
6361 	 * The pool will be in core if it's openable, in which case we can
6362 	 * modify its state.  Objsets may be open only because they're dirty,
6363 	 * so we have to force it to sync before checking spa_refcnt.
6364 	 */
6365 	if (spa->spa_sync_on) {
6366 		txg_wait_synced(spa->spa_dsl_pool, 0);
6367 		spa_evicting_os_wait(spa);
6368 	}
6369 
6370 	/*
6371 	 * A pool cannot be exported or destroyed if there are active
6372 	 * references.  If we are resetting a pool, allow references by
6373 	 * fault injection handlers.
6374 	 */
6375 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6376 		error = SET_ERROR(EBUSY);
6377 		goto fail;
6378 	}
6379 
6380 	if (spa->spa_sync_on) {
6381 		/*
6382 		 * A pool cannot be exported if it has an active shared spare.
6383 		 * This is to prevent other pools stealing the active spare
6384 		 * from an exported pool. At user's own will, such pool can
6385 		 * be forcedly exported.
6386 		 */
6387 		if (!force && new_state == POOL_STATE_EXPORTED &&
6388 		    spa_has_active_shared_spare(spa)) {
6389 			error = SET_ERROR(EXDEV);
6390 			goto fail;
6391 		}
6392 
6393 		/*
6394 		 * We're about to export or destroy this pool. Make sure
6395 		 * we stop all initialization and trim activity here before
6396 		 * we set the spa_final_txg. This will ensure that all
6397 		 * dirty data resulting from the initialization is
6398 		 * committed to disk before we unload the pool.
6399 		 */
6400 		if (spa->spa_root_vdev != NULL) {
6401 			vdev_t *rvd = spa->spa_root_vdev;
6402 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6403 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6404 			vdev_autotrim_stop_all(spa);
6405 			vdev_rebuild_stop_all(spa);
6406 		}
6407 
6408 		/*
6409 		 * We want this to be reflected on every label,
6410 		 * so mark them all dirty.  spa_unload() will do the
6411 		 * final sync that pushes these changes out.
6412 		 */
6413 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6414 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6415 			spa->spa_state = new_state;
6416 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6417 			    TXG_DEFER_SIZE + 1;
6418 			vdev_config_dirty(spa->spa_root_vdev);
6419 			spa_config_exit(spa, SCL_ALL, FTAG);
6420 		}
6421 	}
6422 
6423 export_spa:
6424 	if (new_state == POOL_STATE_DESTROYED)
6425 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6426 	else if (new_state == POOL_STATE_EXPORTED)
6427 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6428 
6429 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6430 		spa_unload(spa);
6431 		spa_deactivate(spa);
6432 	}
6433 
6434 	if (oldconfig && spa->spa_config)
6435 		*oldconfig = fnvlist_dup(spa->spa_config);
6436 
6437 	if (new_state != POOL_STATE_UNINITIALIZED) {
6438 		if (!hardforce)
6439 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6440 		spa_remove(spa);
6441 	} else {
6442 		/*
6443 		 * If spa_remove() is not called for this spa_t and
6444 		 * there is any possibility that it can be reused,
6445 		 * we make sure to reset the exporting flag.
6446 		 */
6447 		spa->spa_is_exporting = B_FALSE;
6448 	}
6449 
6450 	mutex_exit(&spa_namespace_lock);
6451 	return (0);
6452 
6453 fail:
6454 	spa->spa_is_exporting = B_FALSE;
6455 	spa_async_resume(spa);
6456 	mutex_exit(&spa_namespace_lock);
6457 	return (error);
6458 }
6459 
6460 /*
6461  * Destroy a storage pool.
6462  */
6463 int
6464 spa_destroy(const char *pool)
6465 {
6466 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6467 	    B_FALSE, B_FALSE));
6468 }
6469 
6470 /*
6471  * Export a storage pool.
6472  */
6473 int
6474 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6475     boolean_t hardforce)
6476 {
6477 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6478 	    force, hardforce));
6479 }
6480 
6481 /*
6482  * Similar to spa_export(), this unloads the spa_t without actually removing it
6483  * from the namespace in any way.
6484  */
6485 int
6486 spa_reset(const char *pool)
6487 {
6488 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6489 	    B_FALSE, B_FALSE));
6490 }
6491 
6492 /*
6493  * ==========================================================================
6494  * Device manipulation
6495  * ==========================================================================
6496  */
6497 
6498 /*
6499  * This is called as a synctask to increment the draid feature flag
6500  */
6501 static void
6502 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6503 {
6504 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6505 	int draid = (int)(uintptr_t)arg;
6506 
6507 	for (int c = 0; c < draid; c++)
6508 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6509 }
6510 
6511 /*
6512  * Add a device to a storage pool.
6513  */
6514 int
6515 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6516 {
6517 	uint64_t txg, ndraid = 0;
6518 	int error;
6519 	vdev_t *rvd = spa->spa_root_vdev;
6520 	vdev_t *vd, *tvd;
6521 	nvlist_t **spares, **l2cache;
6522 	uint_t nspares, nl2cache;
6523 
6524 	ASSERT(spa_writeable(spa));
6525 
6526 	txg = spa_vdev_enter(spa);
6527 
6528 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6529 	    VDEV_ALLOC_ADD)) != 0)
6530 		return (spa_vdev_exit(spa, NULL, txg, error));
6531 
6532 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6533 
6534 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6535 	    &nspares) != 0)
6536 		nspares = 0;
6537 
6538 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6539 	    &nl2cache) != 0)
6540 		nl2cache = 0;
6541 
6542 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6543 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6544 
6545 	if (vd->vdev_children != 0 &&
6546 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6547 		return (spa_vdev_exit(spa, vd, txg, error));
6548 	}
6549 
6550 	/*
6551 	 * The virtual dRAID spares must be added after vdev tree is created
6552 	 * and the vdev guids are generated.  The guid of their associated
6553 	 * dRAID is stored in the config and used when opening the spare.
6554 	 */
6555 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6556 	    rvd->vdev_children)) == 0) {
6557 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6558 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6559 			nspares = 0;
6560 	} else {
6561 		return (spa_vdev_exit(spa, vd, txg, error));
6562 	}
6563 
6564 	/*
6565 	 * We must validate the spares and l2cache devices after checking the
6566 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6567 	 */
6568 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6569 		return (spa_vdev_exit(spa, vd, txg, error));
6570 
6571 	/*
6572 	 * If we are in the middle of a device removal, we can only add
6573 	 * devices which match the existing devices in the pool.
6574 	 * If we are in the middle of a removal, or have some indirect
6575 	 * vdevs, we can not add raidz or dRAID top levels.
6576 	 */
6577 	if (spa->spa_vdev_removal != NULL ||
6578 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6579 		for (int c = 0; c < vd->vdev_children; c++) {
6580 			tvd = vd->vdev_child[c];
6581 			if (spa->spa_vdev_removal != NULL &&
6582 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6583 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6584 			}
6585 			/* Fail if top level vdev is raidz or a dRAID */
6586 			if (vdev_get_nparity(tvd) != 0)
6587 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6588 
6589 			/*
6590 			 * Need the top level mirror to be
6591 			 * a mirror of leaf vdevs only
6592 			 */
6593 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6594 				for (uint64_t cid = 0;
6595 				    cid < tvd->vdev_children; cid++) {
6596 					vdev_t *cvd = tvd->vdev_child[cid];
6597 					if (!cvd->vdev_ops->vdev_op_leaf) {
6598 						return (spa_vdev_exit(spa, vd,
6599 						    txg, EINVAL));
6600 					}
6601 				}
6602 			}
6603 		}
6604 	}
6605 
6606 	for (int c = 0; c < vd->vdev_children; c++) {
6607 		tvd = vd->vdev_child[c];
6608 		vdev_remove_child(vd, tvd);
6609 		tvd->vdev_id = rvd->vdev_children;
6610 		vdev_add_child(rvd, tvd);
6611 		vdev_config_dirty(tvd);
6612 	}
6613 
6614 	if (nspares != 0) {
6615 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6616 		    ZPOOL_CONFIG_SPARES);
6617 		spa_load_spares(spa);
6618 		spa->spa_spares.sav_sync = B_TRUE;
6619 	}
6620 
6621 	if (nl2cache != 0) {
6622 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6623 		    ZPOOL_CONFIG_L2CACHE);
6624 		spa_load_l2cache(spa);
6625 		spa->spa_l2cache.sav_sync = B_TRUE;
6626 	}
6627 
6628 	/*
6629 	 * We can't increment a feature while holding spa_vdev so we
6630 	 * have to do it in a synctask.
6631 	 */
6632 	if (ndraid != 0) {
6633 		dmu_tx_t *tx;
6634 
6635 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6636 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6637 		    (void *)(uintptr_t)ndraid, tx);
6638 		dmu_tx_commit(tx);
6639 	}
6640 
6641 	/*
6642 	 * We have to be careful when adding new vdevs to an existing pool.
6643 	 * If other threads start allocating from these vdevs before we
6644 	 * sync the config cache, and we lose power, then upon reboot we may
6645 	 * fail to open the pool because there are DVAs that the config cache
6646 	 * can't translate.  Therefore, we first add the vdevs without
6647 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6648 	 * and then let spa_config_update() initialize the new metaslabs.
6649 	 *
6650 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6651 	 * if we lose power at any point in this sequence, the remaining
6652 	 * steps will be completed the next time we load the pool.
6653 	 */
6654 	(void) spa_vdev_exit(spa, vd, txg, 0);
6655 
6656 	mutex_enter(&spa_namespace_lock);
6657 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6658 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6659 	mutex_exit(&spa_namespace_lock);
6660 
6661 	return (0);
6662 }
6663 
6664 /*
6665  * Attach a device to a mirror.  The arguments are the path to any device
6666  * in the mirror, and the nvroot for the new device.  If the path specifies
6667  * a device that is not mirrored, we automatically insert the mirror vdev.
6668  *
6669  * If 'replacing' is specified, the new device is intended to replace the
6670  * existing device; in this case the two devices are made into their own
6671  * mirror using the 'replacing' vdev, which is functionally identical to
6672  * the mirror vdev (it actually reuses all the same ops) but has a few
6673  * extra rules: you can't attach to it after it's been created, and upon
6674  * completion of resilvering, the first disk (the one being replaced)
6675  * is automatically detached.
6676  *
6677  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6678  * should be performed instead of traditional healing reconstruction.  From
6679  * an administrators perspective these are both resilver operations.
6680  */
6681 int
6682 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6683     int rebuild)
6684 {
6685 	uint64_t txg, dtl_max_txg;
6686 	vdev_t *rvd = spa->spa_root_vdev;
6687 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6688 	vdev_ops_t *pvops;
6689 	char *oldvdpath, *newvdpath;
6690 	int newvd_isspare;
6691 	int error;
6692 
6693 	ASSERT(spa_writeable(spa));
6694 
6695 	txg = spa_vdev_enter(spa);
6696 
6697 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6698 
6699 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6700 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6701 		error = (spa_has_checkpoint(spa)) ?
6702 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6703 		return (spa_vdev_exit(spa, NULL, txg, error));
6704 	}
6705 
6706 	if (rebuild) {
6707 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6708 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6709 
6710 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6711 			return (spa_vdev_exit(spa, NULL, txg,
6712 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6713 	} else {
6714 		if (vdev_rebuild_active(rvd))
6715 			return (spa_vdev_exit(spa, NULL, txg,
6716 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6717 	}
6718 
6719 	if (spa->spa_vdev_removal != NULL)
6720 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6721 
6722 	if (oldvd == NULL)
6723 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6724 
6725 	if (!oldvd->vdev_ops->vdev_op_leaf)
6726 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6727 
6728 	pvd = oldvd->vdev_parent;
6729 
6730 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6731 	    VDEV_ALLOC_ATTACH)) != 0)
6732 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6733 
6734 	if (newrootvd->vdev_children != 1)
6735 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6736 
6737 	newvd = newrootvd->vdev_child[0];
6738 
6739 	if (!newvd->vdev_ops->vdev_op_leaf)
6740 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6741 
6742 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6743 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6744 
6745 	/*
6746 	 * Spares can't replace logs
6747 	 */
6748 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6749 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6750 
6751 	/*
6752 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6753 	 */
6754 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6755 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6756 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6757 	}
6758 
6759 	if (rebuild) {
6760 		/*
6761 		 * For rebuilds, the top vdev must support reconstruction
6762 		 * using only space maps.  This means the only allowable
6763 		 * vdevs types are the root vdev, a mirror, or dRAID.
6764 		 */
6765 		tvd = pvd;
6766 		if (pvd->vdev_top != NULL)
6767 			tvd = pvd->vdev_top;
6768 
6769 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6770 		    tvd->vdev_ops != &vdev_root_ops &&
6771 		    tvd->vdev_ops != &vdev_draid_ops) {
6772 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6773 		}
6774 	}
6775 
6776 	if (!replacing) {
6777 		/*
6778 		 * For attach, the only allowable parent is a mirror or the root
6779 		 * vdev.
6780 		 */
6781 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6782 		    pvd->vdev_ops != &vdev_root_ops)
6783 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6784 
6785 		pvops = &vdev_mirror_ops;
6786 	} else {
6787 		/*
6788 		 * Active hot spares can only be replaced by inactive hot
6789 		 * spares.
6790 		 */
6791 		if (pvd->vdev_ops == &vdev_spare_ops &&
6792 		    oldvd->vdev_isspare &&
6793 		    !spa_has_spare(spa, newvd->vdev_guid))
6794 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6795 
6796 		/*
6797 		 * If the source is a hot spare, and the parent isn't already a
6798 		 * spare, then we want to create a new hot spare.  Otherwise, we
6799 		 * want to create a replacing vdev.  The user is not allowed to
6800 		 * attach to a spared vdev child unless the 'isspare' state is
6801 		 * the same (spare replaces spare, non-spare replaces
6802 		 * non-spare).
6803 		 */
6804 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6805 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6806 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6807 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6808 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6809 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6810 		}
6811 
6812 		if (newvd->vdev_isspare)
6813 			pvops = &vdev_spare_ops;
6814 		else
6815 			pvops = &vdev_replacing_ops;
6816 	}
6817 
6818 	/*
6819 	 * Make sure the new device is big enough.
6820 	 */
6821 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6822 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6823 
6824 	/*
6825 	 * The new device cannot have a higher alignment requirement
6826 	 * than the top-level vdev.
6827 	 */
6828 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6829 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6830 
6831 	/*
6832 	 * If this is an in-place replacement, update oldvd's path and devid
6833 	 * to make it distinguishable from newvd, and unopenable from now on.
6834 	 */
6835 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6836 		spa_strfree(oldvd->vdev_path);
6837 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6838 		    KM_SLEEP);
6839 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6840 		    "%s/%s", newvd->vdev_path, "old");
6841 		if (oldvd->vdev_devid != NULL) {
6842 			spa_strfree(oldvd->vdev_devid);
6843 			oldvd->vdev_devid = NULL;
6844 		}
6845 	}
6846 
6847 	/*
6848 	 * If the parent is not a mirror, or if we're replacing, insert the new
6849 	 * mirror/replacing/spare vdev above oldvd.
6850 	 */
6851 	if (pvd->vdev_ops != pvops)
6852 		pvd = vdev_add_parent(oldvd, pvops);
6853 
6854 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6855 	ASSERT(pvd->vdev_ops == pvops);
6856 	ASSERT(oldvd->vdev_parent == pvd);
6857 
6858 	/*
6859 	 * Extract the new device from its root and add it to pvd.
6860 	 */
6861 	vdev_remove_child(newrootvd, newvd);
6862 	newvd->vdev_id = pvd->vdev_children;
6863 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6864 	vdev_add_child(pvd, newvd);
6865 
6866 	/*
6867 	 * Reevaluate the parent vdev state.
6868 	 */
6869 	vdev_propagate_state(pvd);
6870 
6871 	tvd = newvd->vdev_top;
6872 	ASSERT(pvd->vdev_top == tvd);
6873 	ASSERT(tvd->vdev_parent == rvd);
6874 
6875 	vdev_config_dirty(tvd);
6876 
6877 	/*
6878 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6879 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6880 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6881 	 */
6882 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6883 
6884 	vdev_dtl_dirty(newvd, DTL_MISSING,
6885 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6886 
6887 	if (newvd->vdev_isspare) {
6888 		spa_spare_activate(newvd);
6889 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6890 	}
6891 
6892 	oldvdpath = spa_strdup(oldvd->vdev_path);
6893 	newvdpath = spa_strdup(newvd->vdev_path);
6894 	newvd_isspare = newvd->vdev_isspare;
6895 
6896 	/*
6897 	 * Mark newvd's DTL dirty in this txg.
6898 	 */
6899 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6900 
6901 	/*
6902 	 * Schedule the resilver or rebuild to restart in the future. We do
6903 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6904 	 * respective datasets.
6905 	 */
6906 	if (rebuild) {
6907 		newvd->vdev_rebuild_txg = txg;
6908 
6909 		vdev_rebuild(tvd);
6910 	} else {
6911 		newvd->vdev_resilver_txg = txg;
6912 
6913 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6914 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6915 			vdev_defer_resilver(newvd);
6916 		} else {
6917 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6918 			    dtl_max_txg);
6919 		}
6920 	}
6921 
6922 	if (spa->spa_bootfs)
6923 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6924 
6925 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6926 
6927 	/*
6928 	 * Commit the config
6929 	 */
6930 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6931 
6932 	spa_history_log_internal(spa, "vdev attach", NULL,
6933 	    "%s vdev=%s %s vdev=%s",
6934 	    replacing && newvd_isspare ? "spare in" :
6935 	    replacing ? "replace" : "attach", newvdpath,
6936 	    replacing ? "for" : "to", oldvdpath);
6937 
6938 	spa_strfree(oldvdpath);
6939 	spa_strfree(newvdpath);
6940 
6941 	return (0);
6942 }
6943 
6944 /*
6945  * Detach a device from a mirror or replacing vdev.
6946  *
6947  * If 'replace_done' is specified, only detach if the parent
6948  * is a replacing vdev.
6949  */
6950 int
6951 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6952 {
6953 	uint64_t txg;
6954 	int error;
6955 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6956 	vdev_t *vd, *pvd, *cvd, *tvd;
6957 	boolean_t unspare = B_FALSE;
6958 	uint64_t unspare_guid = 0;
6959 	char *vdpath;
6960 
6961 	ASSERT(spa_writeable(spa));
6962 
6963 	txg = spa_vdev_detach_enter(spa, guid);
6964 
6965 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6966 
6967 	/*
6968 	 * Besides being called directly from the userland through the
6969 	 * ioctl interface, spa_vdev_detach() can be potentially called
6970 	 * at the end of spa_vdev_resilver_done().
6971 	 *
6972 	 * In the regular case, when we have a checkpoint this shouldn't
6973 	 * happen as we never empty the DTLs of a vdev during the scrub
6974 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6975 	 * should never get here when we have a checkpoint.
6976 	 *
6977 	 * That said, even in a case when we checkpoint the pool exactly
6978 	 * as spa_vdev_resilver_done() calls this function everything
6979 	 * should be fine as the resilver will return right away.
6980 	 */
6981 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6982 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6983 		error = (spa_has_checkpoint(spa)) ?
6984 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6985 		return (spa_vdev_exit(spa, NULL, txg, error));
6986 	}
6987 
6988 	if (vd == NULL)
6989 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6990 
6991 	if (!vd->vdev_ops->vdev_op_leaf)
6992 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6993 
6994 	pvd = vd->vdev_parent;
6995 
6996 	/*
6997 	 * If the parent/child relationship is not as expected, don't do it.
6998 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6999 	 * vdev that's replacing B with C.  The user's intent in replacing
7000 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7001 	 * the replace by detaching C, the expected behavior is to end up
7002 	 * M(A,B).  But suppose that right after deciding to detach C,
7003 	 * the replacement of B completes.  We would have M(A,C), and then
7004 	 * ask to detach C, which would leave us with just A -- not what
7005 	 * the user wanted.  To prevent this, we make sure that the
7006 	 * parent/child relationship hasn't changed -- in this example,
7007 	 * that C's parent is still the replacing vdev R.
7008 	 */
7009 	if (pvd->vdev_guid != pguid && pguid != 0)
7010 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7011 
7012 	/*
7013 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7014 	 */
7015 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7016 	    pvd->vdev_ops != &vdev_spare_ops)
7017 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7018 
7019 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7020 	    spa_version(spa) >= SPA_VERSION_SPARES);
7021 
7022 	/*
7023 	 * Only mirror, replacing, and spare vdevs support detach.
7024 	 */
7025 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7026 	    pvd->vdev_ops != &vdev_mirror_ops &&
7027 	    pvd->vdev_ops != &vdev_spare_ops)
7028 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7029 
7030 	/*
7031 	 * If this device has the only valid copy of some data,
7032 	 * we cannot safely detach it.
7033 	 */
7034 	if (vdev_dtl_required(vd))
7035 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7036 
7037 	ASSERT(pvd->vdev_children >= 2);
7038 
7039 	/*
7040 	 * If we are detaching the second disk from a replacing vdev, then
7041 	 * check to see if we changed the original vdev's path to have "/old"
7042 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7043 	 */
7044 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7045 	    vd->vdev_path != NULL) {
7046 		size_t len = strlen(vd->vdev_path);
7047 
7048 		for (int c = 0; c < pvd->vdev_children; c++) {
7049 			cvd = pvd->vdev_child[c];
7050 
7051 			if (cvd == vd || cvd->vdev_path == NULL)
7052 				continue;
7053 
7054 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7055 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7056 				spa_strfree(cvd->vdev_path);
7057 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7058 				break;
7059 			}
7060 		}
7061 	}
7062 
7063 	/*
7064 	 * If we are detaching the original disk from a normal spare, then it
7065 	 * implies that the spare should become a real disk, and be removed
7066 	 * from the active spare list for the pool.  dRAID spares on the
7067 	 * other hand are coupled to the pool and thus should never be removed
7068 	 * from the spares list.
7069 	 */
7070 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7071 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7072 
7073 		if (last_cvd->vdev_isspare &&
7074 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7075 			unspare = B_TRUE;
7076 		}
7077 	}
7078 
7079 	/*
7080 	 * Erase the disk labels so the disk can be used for other things.
7081 	 * This must be done after all other error cases are handled,
7082 	 * but before we disembowel vd (so we can still do I/O to it).
7083 	 * But if we can't do it, don't treat the error as fatal --
7084 	 * it may be that the unwritability of the disk is the reason
7085 	 * it's being detached!
7086 	 */
7087 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7088 
7089 	/*
7090 	 * Remove vd from its parent and compact the parent's children.
7091 	 */
7092 	vdev_remove_child(pvd, vd);
7093 	vdev_compact_children(pvd);
7094 
7095 	/*
7096 	 * Remember one of the remaining children so we can get tvd below.
7097 	 */
7098 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7099 
7100 	/*
7101 	 * If we need to remove the remaining child from the list of hot spares,
7102 	 * do it now, marking the vdev as no longer a spare in the process.
7103 	 * We must do this before vdev_remove_parent(), because that can
7104 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7105 	 * reason, we must remove the spare now, in the same txg as the detach;
7106 	 * otherwise someone could attach a new sibling, change the GUID, and
7107 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7108 	 */
7109 	if (unspare) {
7110 		ASSERT(cvd->vdev_isspare);
7111 		spa_spare_remove(cvd);
7112 		unspare_guid = cvd->vdev_guid;
7113 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7114 		cvd->vdev_unspare = B_TRUE;
7115 	}
7116 
7117 	/*
7118 	 * If the parent mirror/replacing vdev only has one child,
7119 	 * the parent is no longer needed.  Remove it from the tree.
7120 	 */
7121 	if (pvd->vdev_children == 1) {
7122 		if (pvd->vdev_ops == &vdev_spare_ops)
7123 			cvd->vdev_unspare = B_FALSE;
7124 		vdev_remove_parent(cvd);
7125 	}
7126 
7127 	/*
7128 	 * We don't set tvd until now because the parent we just removed
7129 	 * may have been the previous top-level vdev.
7130 	 */
7131 	tvd = cvd->vdev_top;
7132 	ASSERT(tvd->vdev_parent == rvd);
7133 
7134 	/*
7135 	 * Reevaluate the parent vdev state.
7136 	 */
7137 	vdev_propagate_state(cvd);
7138 
7139 	/*
7140 	 * If the 'autoexpand' property is set on the pool then automatically
7141 	 * try to expand the size of the pool. For example if the device we
7142 	 * just detached was smaller than the others, it may be possible to
7143 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7144 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7145 	 */
7146 	if (spa->spa_autoexpand) {
7147 		vdev_reopen(tvd);
7148 		vdev_expand(tvd, txg);
7149 	}
7150 
7151 	vdev_config_dirty(tvd);
7152 
7153 	/*
7154 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7155 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7156 	 * But first make sure we're not on any *other* txg's DTL list, to
7157 	 * prevent vd from being accessed after it's freed.
7158 	 */
7159 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7160 	for (int t = 0; t < TXG_SIZE; t++)
7161 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7162 	vd->vdev_detached = B_TRUE;
7163 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7164 
7165 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7166 	spa_notify_waiters(spa);
7167 
7168 	/* hang on to the spa before we release the lock */
7169 	spa_open_ref(spa, FTAG);
7170 
7171 	error = spa_vdev_exit(spa, vd, txg, 0);
7172 
7173 	spa_history_log_internal(spa, "detach", NULL,
7174 	    "vdev=%s", vdpath);
7175 	spa_strfree(vdpath);
7176 
7177 	/*
7178 	 * If this was the removal of the original device in a hot spare vdev,
7179 	 * then we want to go through and remove the device from the hot spare
7180 	 * list of every other pool.
7181 	 */
7182 	if (unspare) {
7183 		spa_t *altspa = NULL;
7184 
7185 		mutex_enter(&spa_namespace_lock);
7186 		while ((altspa = spa_next(altspa)) != NULL) {
7187 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7188 			    altspa == spa)
7189 				continue;
7190 
7191 			spa_open_ref(altspa, FTAG);
7192 			mutex_exit(&spa_namespace_lock);
7193 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7194 			mutex_enter(&spa_namespace_lock);
7195 			spa_close(altspa, FTAG);
7196 		}
7197 		mutex_exit(&spa_namespace_lock);
7198 
7199 		/* search the rest of the vdevs for spares to remove */
7200 		spa_vdev_resilver_done(spa);
7201 	}
7202 
7203 	/* all done with the spa; OK to release */
7204 	mutex_enter(&spa_namespace_lock);
7205 	spa_close(spa, FTAG);
7206 	mutex_exit(&spa_namespace_lock);
7207 
7208 	return (error);
7209 }
7210 
7211 static int
7212 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7213     list_t *vd_list)
7214 {
7215 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7216 
7217 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7218 
7219 	/* Look up vdev and ensure it's a leaf. */
7220 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7221 	if (vd == NULL || vd->vdev_detached) {
7222 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7223 		return (SET_ERROR(ENODEV));
7224 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7225 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7226 		return (SET_ERROR(EINVAL));
7227 	} else if (!vdev_writeable(vd)) {
7228 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7229 		return (SET_ERROR(EROFS));
7230 	}
7231 	mutex_enter(&vd->vdev_initialize_lock);
7232 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7233 
7234 	/*
7235 	 * When we activate an initialize action we check to see
7236 	 * if the vdev_initialize_thread is NULL. We do this instead
7237 	 * of using the vdev_initialize_state since there might be
7238 	 * a previous initialization process which has completed but
7239 	 * the thread is not exited.
7240 	 */
7241 	if (cmd_type == POOL_INITIALIZE_START &&
7242 	    (vd->vdev_initialize_thread != NULL ||
7243 	    vd->vdev_top->vdev_removing)) {
7244 		mutex_exit(&vd->vdev_initialize_lock);
7245 		return (SET_ERROR(EBUSY));
7246 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7247 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7248 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7249 		mutex_exit(&vd->vdev_initialize_lock);
7250 		return (SET_ERROR(ESRCH));
7251 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7252 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7253 		mutex_exit(&vd->vdev_initialize_lock);
7254 		return (SET_ERROR(ESRCH));
7255 	}
7256 
7257 	switch (cmd_type) {
7258 	case POOL_INITIALIZE_START:
7259 		vdev_initialize(vd);
7260 		break;
7261 	case POOL_INITIALIZE_CANCEL:
7262 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7263 		break;
7264 	case POOL_INITIALIZE_SUSPEND:
7265 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7266 		break;
7267 	default:
7268 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7269 	}
7270 	mutex_exit(&vd->vdev_initialize_lock);
7271 
7272 	return (0);
7273 }
7274 
7275 int
7276 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7277     nvlist_t *vdev_errlist)
7278 {
7279 	int total_errors = 0;
7280 	list_t vd_list;
7281 
7282 	list_create(&vd_list, sizeof (vdev_t),
7283 	    offsetof(vdev_t, vdev_initialize_node));
7284 
7285 	/*
7286 	 * We hold the namespace lock through the whole function
7287 	 * to prevent any changes to the pool while we're starting or
7288 	 * stopping initialization. The config and state locks are held so that
7289 	 * we can properly assess the vdev state before we commit to
7290 	 * the initializing operation.
7291 	 */
7292 	mutex_enter(&spa_namespace_lock);
7293 
7294 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7295 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7296 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7297 
7298 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7299 		    &vd_list);
7300 		if (error != 0) {
7301 			char guid_as_str[MAXNAMELEN];
7302 
7303 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7304 			    "%llu", (unsigned long long)vdev_guid);
7305 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7306 			total_errors++;
7307 		}
7308 	}
7309 
7310 	/* Wait for all initialize threads to stop. */
7311 	vdev_initialize_stop_wait(spa, &vd_list);
7312 
7313 	/* Sync out the initializing state */
7314 	txg_wait_synced(spa->spa_dsl_pool, 0);
7315 	mutex_exit(&spa_namespace_lock);
7316 
7317 	list_destroy(&vd_list);
7318 
7319 	return (total_errors);
7320 }
7321 
7322 static int
7323 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7324     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7325 {
7326 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7327 
7328 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7329 
7330 	/* Look up vdev and ensure it's a leaf. */
7331 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7332 	if (vd == NULL || vd->vdev_detached) {
7333 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7334 		return (SET_ERROR(ENODEV));
7335 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7336 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7337 		return (SET_ERROR(EINVAL));
7338 	} else if (!vdev_writeable(vd)) {
7339 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7340 		return (SET_ERROR(EROFS));
7341 	} else if (!vd->vdev_has_trim) {
7342 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7343 		return (SET_ERROR(EOPNOTSUPP));
7344 	} else if (secure && !vd->vdev_has_securetrim) {
7345 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7346 		return (SET_ERROR(EOPNOTSUPP));
7347 	}
7348 	mutex_enter(&vd->vdev_trim_lock);
7349 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7350 
7351 	/*
7352 	 * When we activate a TRIM action we check to see if the
7353 	 * vdev_trim_thread is NULL. We do this instead of using the
7354 	 * vdev_trim_state since there might be a previous TRIM process
7355 	 * which has completed but the thread is not exited.
7356 	 */
7357 	if (cmd_type == POOL_TRIM_START &&
7358 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7359 		mutex_exit(&vd->vdev_trim_lock);
7360 		return (SET_ERROR(EBUSY));
7361 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7362 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7363 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7364 		mutex_exit(&vd->vdev_trim_lock);
7365 		return (SET_ERROR(ESRCH));
7366 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7367 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7368 		mutex_exit(&vd->vdev_trim_lock);
7369 		return (SET_ERROR(ESRCH));
7370 	}
7371 
7372 	switch (cmd_type) {
7373 	case POOL_TRIM_START:
7374 		vdev_trim(vd, rate, partial, secure);
7375 		break;
7376 	case POOL_TRIM_CANCEL:
7377 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7378 		break;
7379 	case POOL_TRIM_SUSPEND:
7380 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7381 		break;
7382 	default:
7383 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7384 	}
7385 	mutex_exit(&vd->vdev_trim_lock);
7386 
7387 	return (0);
7388 }
7389 
7390 /*
7391  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7392  * TRIM threads for each child vdev.  These threads pass over all of the free
7393  * space in the vdev's metaslabs and issues TRIM commands for that space.
7394  */
7395 int
7396 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7397     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7398 {
7399 	int total_errors = 0;
7400 	list_t vd_list;
7401 
7402 	list_create(&vd_list, sizeof (vdev_t),
7403 	    offsetof(vdev_t, vdev_trim_node));
7404 
7405 	/*
7406 	 * We hold the namespace lock through the whole function
7407 	 * to prevent any changes to the pool while we're starting or
7408 	 * stopping TRIM. The config and state locks are held so that
7409 	 * we can properly assess the vdev state before we commit to
7410 	 * the TRIM operation.
7411 	 */
7412 	mutex_enter(&spa_namespace_lock);
7413 
7414 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7415 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7416 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7417 
7418 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7419 		    rate, partial, secure, &vd_list);
7420 		if (error != 0) {
7421 			char guid_as_str[MAXNAMELEN];
7422 
7423 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7424 			    "%llu", (unsigned long long)vdev_guid);
7425 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7426 			total_errors++;
7427 		}
7428 	}
7429 
7430 	/* Wait for all TRIM threads to stop. */
7431 	vdev_trim_stop_wait(spa, &vd_list);
7432 
7433 	/* Sync out the TRIM state */
7434 	txg_wait_synced(spa->spa_dsl_pool, 0);
7435 	mutex_exit(&spa_namespace_lock);
7436 
7437 	list_destroy(&vd_list);
7438 
7439 	return (total_errors);
7440 }
7441 
7442 /*
7443  * Split a set of devices from their mirrors, and create a new pool from them.
7444  */
7445 int
7446 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7447     nvlist_t *props, boolean_t exp)
7448 {
7449 	int error = 0;
7450 	uint64_t txg, *glist;
7451 	spa_t *newspa;
7452 	uint_t c, children, lastlog;
7453 	nvlist_t **child, *nvl, *tmp;
7454 	dmu_tx_t *tx;
7455 	char *altroot = NULL;
7456 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7457 	boolean_t activate_slog;
7458 
7459 	ASSERT(spa_writeable(spa));
7460 
7461 	txg = spa_vdev_enter(spa);
7462 
7463 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7464 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7465 		error = (spa_has_checkpoint(spa)) ?
7466 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7467 		return (spa_vdev_exit(spa, NULL, txg, error));
7468 	}
7469 
7470 	/* clear the log and flush everything up to now */
7471 	activate_slog = spa_passivate_log(spa);
7472 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7473 	error = spa_reset_logs(spa);
7474 	txg = spa_vdev_config_enter(spa);
7475 
7476 	if (activate_slog)
7477 		spa_activate_log(spa);
7478 
7479 	if (error != 0)
7480 		return (spa_vdev_exit(spa, NULL, txg, error));
7481 
7482 	/* check new spa name before going any further */
7483 	if (spa_lookup(newname) != NULL)
7484 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7485 
7486 	/*
7487 	 * scan through all the children to ensure they're all mirrors
7488 	 */
7489 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7490 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7491 	    &children) != 0)
7492 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7493 
7494 	/* first, check to ensure we've got the right child count */
7495 	rvd = spa->spa_root_vdev;
7496 	lastlog = 0;
7497 	for (c = 0; c < rvd->vdev_children; c++) {
7498 		vdev_t *vd = rvd->vdev_child[c];
7499 
7500 		/* don't count the holes & logs as children */
7501 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7502 		    !vdev_is_concrete(vd))) {
7503 			if (lastlog == 0)
7504 				lastlog = c;
7505 			continue;
7506 		}
7507 
7508 		lastlog = 0;
7509 	}
7510 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7511 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7512 
7513 	/* next, ensure no spare or cache devices are part of the split */
7514 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7515 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7516 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7517 
7518 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7519 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7520 
7521 	/* then, loop over each vdev and validate it */
7522 	for (c = 0; c < children; c++) {
7523 		uint64_t is_hole = 0;
7524 
7525 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7526 		    &is_hole);
7527 
7528 		if (is_hole != 0) {
7529 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7530 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7531 				continue;
7532 			} else {
7533 				error = SET_ERROR(EINVAL);
7534 				break;
7535 			}
7536 		}
7537 
7538 		/* deal with indirect vdevs */
7539 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7540 		    &vdev_indirect_ops)
7541 			continue;
7542 
7543 		/* which disk is going to be split? */
7544 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7545 		    &glist[c]) != 0) {
7546 			error = SET_ERROR(EINVAL);
7547 			break;
7548 		}
7549 
7550 		/* look it up in the spa */
7551 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7552 		if (vml[c] == NULL) {
7553 			error = SET_ERROR(ENODEV);
7554 			break;
7555 		}
7556 
7557 		/* make sure there's nothing stopping the split */
7558 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7559 		    vml[c]->vdev_islog ||
7560 		    !vdev_is_concrete(vml[c]) ||
7561 		    vml[c]->vdev_isspare ||
7562 		    vml[c]->vdev_isl2cache ||
7563 		    !vdev_writeable(vml[c]) ||
7564 		    vml[c]->vdev_children != 0 ||
7565 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7566 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7567 			error = SET_ERROR(EINVAL);
7568 			break;
7569 		}
7570 
7571 		if (vdev_dtl_required(vml[c]) ||
7572 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7573 			error = SET_ERROR(EBUSY);
7574 			break;
7575 		}
7576 
7577 		/* we need certain info from the top level */
7578 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7579 		    vml[c]->vdev_top->vdev_ms_array);
7580 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7581 		    vml[c]->vdev_top->vdev_ms_shift);
7582 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7583 		    vml[c]->vdev_top->vdev_asize);
7584 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7585 		    vml[c]->vdev_top->vdev_ashift);
7586 
7587 		/* transfer per-vdev ZAPs */
7588 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7589 		VERIFY0(nvlist_add_uint64(child[c],
7590 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7591 
7592 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7593 		VERIFY0(nvlist_add_uint64(child[c],
7594 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7595 		    vml[c]->vdev_parent->vdev_top_zap));
7596 	}
7597 
7598 	if (error != 0) {
7599 		kmem_free(vml, children * sizeof (vdev_t *));
7600 		kmem_free(glist, children * sizeof (uint64_t));
7601 		return (spa_vdev_exit(spa, NULL, txg, error));
7602 	}
7603 
7604 	/* stop writers from using the disks */
7605 	for (c = 0; c < children; c++) {
7606 		if (vml[c] != NULL)
7607 			vml[c]->vdev_offline = B_TRUE;
7608 	}
7609 	vdev_reopen(spa->spa_root_vdev);
7610 
7611 	/*
7612 	 * Temporarily record the splitting vdevs in the spa config.  This
7613 	 * will disappear once the config is regenerated.
7614 	 */
7615 	nvl = fnvlist_alloc();
7616 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7617 	kmem_free(glist, children * sizeof (uint64_t));
7618 
7619 	mutex_enter(&spa->spa_props_lock);
7620 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7621 	mutex_exit(&spa->spa_props_lock);
7622 	spa->spa_config_splitting = nvl;
7623 	vdev_config_dirty(spa->spa_root_vdev);
7624 
7625 	/* configure and create the new pool */
7626 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7627 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7628 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7629 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7630 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7631 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7632 	    spa_generate_guid(NULL));
7633 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7634 	(void) nvlist_lookup_string(props,
7635 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7636 
7637 	/* add the new pool to the namespace */
7638 	newspa = spa_add(newname, config, altroot);
7639 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7640 	newspa->spa_config_txg = spa->spa_config_txg;
7641 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7642 
7643 	/* release the spa config lock, retaining the namespace lock */
7644 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7645 
7646 	if (zio_injection_enabled)
7647 		zio_handle_panic_injection(spa, FTAG, 1);
7648 
7649 	spa_activate(newspa, spa_mode_global);
7650 	spa_async_suspend(newspa);
7651 
7652 	/*
7653 	 * Temporarily stop the initializing and TRIM activity.  We set the
7654 	 * state to ACTIVE so that we know to resume initializing or TRIM
7655 	 * once the split has completed.
7656 	 */
7657 	list_t vd_initialize_list;
7658 	list_create(&vd_initialize_list, sizeof (vdev_t),
7659 	    offsetof(vdev_t, vdev_initialize_node));
7660 
7661 	list_t vd_trim_list;
7662 	list_create(&vd_trim_list, sizeof (vdev_t),
7663 	    offsetof(vdev_t, vdev_trim_node));
7664 
7665 	for (c = 0; c < children; c++) {
7666 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7667 			mutex_enter(&vml[c]->vdev_initialize_lock);
7668 			vdev_initialize_stop(vml[c],
7669 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7670 			mutex_exit(&vml[c]->vdev_initialize_lock);
7671 
7672 			mutex_enter(&vml[c]->vdev_trim_lock);
7673 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7674 			mutex_exit(&vml[c]->vdev_trim_lock);
7675 		}
7676 	}
7677 
7678 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7679 	vdev_trim_stop_wait(spa, &vd_trim_list);
7680 
7681 	list_destroy(&vd_initialize_list);
7682 	list_destroy(&vd_trim_list);
7683 
7684 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7685 	newspa->spa_is_splitting = B_TRUE;
7686 
7687 	/* create the new pool from the disks of the original pool */
7688 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7689 	if (error)
7690 		goto out;
7691 
7692 	/* if that worked, generate a real config for the new pool */
7693 	if (newspa->spa_root_vdev != NULL) {
7694 		newspa->spa_config_splitting = fnvlist_alloc();
7695 		fnvlist_add_uint64(newspa->spa_config_splitting,
7696 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7697 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7698 		    B_TRUE));
7699 	}
7700 
7701 	/* set the props */
7702 	if (props != NULL) {
7703 		spa_configfile_set(newspa, props, B_FALSE);
7704 		error = spa_prop_set(newspa, props);
7705 		if (error)
7706 			goto out;
7707 	}
7708 
7709 	/* flush everything */
7710 	txg = spa_vdev_config_enter(newspa);
7711 	vdev_config_dirty(newspa->spa_root_vdev);
7712 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7713 
7714 	if (zio_injection_enabled)
7715 		zio_handle_panic_injection(spa, FTAG, 2);
7716 
7717 	spa_async_resume(newspa);
7718 
7719 	/* finally, update the original pool's config */
7720 	txg = spa_vdev_config_enter(spa);
7721 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7722 	error = dmu_tx_assign(tx, TXG_WAIT);
7723 	if (error != 0)
7724 		dmu_tx_abort(tx);
7725 	for (c = 0; c < children; c++) {
7726 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7727 			vdev_t *tvd = vml[c]->vdev_top;
7728 
7729 			/*
7730 			 * Need to be sure the detachable VDEV is not
7731 			 * on any *other* txg's DTL list to prevent it
7732 			 * from being accessed after it's freed.
7733 			 */
7734 			for (int t = 0; t < TXG_SIZE; t++) {
7735 				(void) txg_list_remove_this(
7736 				    &tvd->vdev_dtl_list, vml[c], t);
7737 			}
7738 
7739 			vdev_split(vml[c]);
7740 			if (error == 0)
7741 				spa_history_log_internal(spa, "detach", tx,
7742 				    "vdev=%s", vml[c]->vdev_path);
7743 
7744 			vdev_free(vml[c]);
7745 		}
7746 	}
7747 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7748 	vdev_config_dirty(spa->spa_root_vdev);
7749 	spa->spa_config_splitting = NULL;
7750 	nvlist_free(nvl);
7751 	if (error == 0)
7752 		dmu_tx_commit(tx);
7753 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7754 
7755 	if (zio_injection_enabled)
7756 		zio_handle_panic_injection(spa, FTAG, 3);
7757 
7758 	/* split is complete; log a history record */
7759 	spa_history_log_internal(newspa, "split", NULL,
7760 	    "from pool %s", spa_name(spa));
7761 
7762 	newspa->spa_is_splitting = B_FALSE;
7763 	kmem_free(vml, children * sizeof (vdev_t *));
7764 
7765 	/* if we're not going to mount the filesystems in userland, export */
7766 	if (exp)
7767 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7768 		    B_FALSE, B_FALSE);
7769 
7770 	return (error);
7771 
7772 out:
7773 	spa_unload(newspa);
7774 	spa_deactivate(newspa);
7775 	spa_remove(newspa);
7776 
7777 	txg = spa_vdev_config_enter(spa);
7778 
7779 	/* re-online all offlined disks */
7780 	for (c = 0; c < children; c++) {
7781 		if (vml[c] != NULL)
7782 			vml[c]->vdev_offline = B_FALSE;
7783 	}
7784 
7785 	/* restart initializing or trimming disks as necessary */
7786 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7787 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7788 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7789 
7790 	vdev_reopen(spa->spa_root_vdev);
7791 
7792 	nvlist_free(spa->spa_config_splitting);
7793 	spa->spa_config_splitting = NULL;
7794 	(void) spa_vdev_exit(spa, NULL, txg, error);
7795 
7796 	kmem_free(vml, children * sizeof (vdev_t *));
7797 	return (error);
7798 }
7799 
7800 /*
7801  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7802  * currently spared, so we can detach it.
7803  */
7804 static vdev_t *
7805 spa_vdev_resilver_done_hunt(vdev_t *vd)
7806 {
7807 	vdev_t *newvd, *oldvd;
7808 
7809 	for (int c = 0; c < vd->vdev_children; c++) {
7810 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7811 		if (oldvd != NULL)
7812 			return (oldvd);
7813 	}
7814 
7815 	/*
7816 	 * Check for a completed replacement.  We always consider the first
7817 	 * vdev in the list to be the oldest vdev, and the last one to be
7818 	 * the newest (see spa_vdev_attach() for how that works).  In
7819 	 * the case where the newest vdev is faulted, we will not automatically
7820 	 * remove it after a resilver completes.  This is OK as it will require
7821 	 * user intervention to determine which disk the admin wishes to keep.
7822 	 */
7823 	if (vd->vdev_ops == &vdev_replacing_ops) {
7824 		ASSERT(vd->vdev_children > 1);
7825 
7826 		newvd = vd->vdev_child[vd->vdev_children - 1];
7827 		oldvd = vd->vdev_child[0];
7828 
7829 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7830 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7831 		    !vdev_dtl_required(oldvd))
7832 			return (oldvd);
7833 	}
7834 
7835 	/*
7836 	 * Check for a completed resilver with the 'unspare' flag set.
7837 	 * Also potentially update faulted state.
7838 	 */
7839 	if (vd->vdev_ops == &vdev_spare_ops) {
7840 		vdev_t *first = vd->vdev_child[0];
7841 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7842 
7843 		if (last->vdev_unspare) {
7844 			oldvd = first;
7845 			newvd = last;
7846 		} else if (first->vdev_unspare) {
7847 			oldvd = last;
7848 			newvd = first;
7849 		} else {
7850 			oldvd = NULL;
7851 		}
7852 
7853 		if (oldvd != NULL &&
7854 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7855 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7856 		    !vdev_dtl_required(oldvd))
7857 			return (oldvd);
7858 
7859 		vdev_propagate_state(vd);
7860 
7861 		/*
7862 		 * If there are more than two spares attached to a disk,
7863 		 * and those spares are not required, then we want to
7864 		 * attempt to free them up now so that they can be used
7865 		 * by other pools.  Once we're back down to a single
7866 		 * disk+spare, we stop removing them.
7867 		 */
7868 		if (vd->vdev_children > 2) {
7869 			newvd = vd->vdev_child[1];
7870 
7871 			if (newvd->vdev_isspare && last->vdev_isspare &&
7872 			    vdev_dtl_empty(last, DTL_MISSING) &&
7873 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7874 			    !vdev_dtl_required(newvd))
7875 				return (newvd);
7876 		}
7877 	}
7878 
7879 	return (NULL);
7880 }
7881 
7882 static void
7883 spa_vdev_resilver_done(spa_t *spa)
7884 {
7885 	vdev_t *vd, *pvd, *ppvd;
7886 	uint64_t guid, sguid, pguid, ppguid;
7887 
7888 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7889 
7890 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7891 		pvd = vd->vdev_parent;
7892 		ppvd = pvd->vdev_parent;
7893 		guid = vd->vdev_guid;
7894 		pguid = pvd->vdev_guid;
7895 		ppguid = ppvd->vdev_guid;
7896 		sguid = 0;
7897 		/*
7898 		 * If we have just finished replacing a hot spared device, then
7899 		 * we need to detach the parent's first child (the original hot
7900 		 * spare) as well.
7901 		 */
7902 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7903 		    ppvd->vdev_children == 2) {
7904 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7905 			sguid = ppvd->vdev_child[1]->vdev_guid;
7906 		}
7907 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7908 
7909 		spa_config_exit(spa, SCL_ALL, FTAG);
7910 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7911 			return;
7912 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7913 			return;
7914 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7915 	}
7916 
7917 	spa_config_exit(spa, SCL_ALL, FTAG);
7918 
7919 	/*
7920 	 * If a detach was not performed above replace waiters will not have
7921 	 * been notified.  In which case we must do so now.
7922 	 */
7923 	spa_notify_waiters(spa);
7924 }
7925 
7926 /*
7927  * Update the stored path or FRU for this vdev.
7928  */
7929 static int
7930 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7931     boolean_t ispath)
7932 {
7933 	vdev_t *vd;
7934 	boolean_t sync = B_FALSE;
7935 
7936 	ASSERT(spa_writeable(spa));
7937 
7938 	spa_vdev_state_enter(spa, SCL_ALL);
7939 
7940 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7941 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7942 
7943 	if (!vd->vdev_ops->vdev_op_leaf)
7944 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7945 
7946 	if (ispath) {
7947 		if (strcmp(value, vd->vdev_path) != 0) {
7948 			spa_strfree(vd->vdev_path);
7949 			vd->vdev_path = spa_strdup(value);
7950 			sync = B_TRUE;
7951 		}
7952 	} else {
7953 		if (vd->vdev_fru == NULL) {
7954 			vd->vdev_fru = spa_strdup(value);
7955 			sync = B_TRUE;
7956 		} else if (strcmp(value, vd->vdev_fru) != 0) {
7957 			spa_strfree(vd->vdev_fru);
7958 			vd->vdev_fru = spa_strdup(value);
7959 			sync = B_TRUE;
7960 		}
7961 	}
7962 
7963 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7964 }
7965 
7966 int
7967 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7968 {
7969 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7970 }
7971 
7972 int
7973 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7974 {
7975 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7976 }
7977 
7978 /*
7979  * ==========================================================================
7980  * SPA Scanning
7981  * ==========================================================================
7982  */
7983 int
7984 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7985 {
7986 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7987 
7988 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7989 		return (SET_ERROR(EBUSY));
7990 
7991 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7992 }
7993 
7994 int
7995 spa_scan_stop(spa_t *spa)
7996 {
7997 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7998 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7999 		return (SET_ERROR(EBUSY));
8000 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8001 }
8002 
8003 int
8004 spa_scan(spa_t *spa, pool_scan_func_t func)
8005 {
8006 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8007 
8008 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8009 		return (SET_ERROR(ENOTSUP));
8010 
8011 	if (func == POOL_SCAN_RESILVER &&
8012 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8013 		return (SET_ERROR(ENOTSUP));
8014 
8015 	/*
8016 	 * If a resilver was requested, but there is no DTL on a
8017 	 * writeable leaf device, we have nothing to do.
8018 	 */
8019 	if (func == POOL_SCAN_RESILVER &&
8020 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8021 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8022 		return (0);
8023 	}
8024 
8025 	return (dsl_scan(spa->spa_dsl_pool, func));
8026 }
8027 
8028 /*
8029  * ==========================================================================
8030  * SPA async task processing
8031  * ==========================================================================
8032  */
8033 
8034 static void
8035 spa_async_remove(spa_t *spa, vdev_t *vd)
8036 {
8037 	if (vd->vdev_remove_wanted) {
8038 		vd->vdev_remove_wanted = B_FALSE;
8039 		vd->vdev_delayed_close = B_FALSE;
8040 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8041 
8042 		/*
8043 		 * We want to clear the stats, but we don't want to do a full
8044 		 * vdev_clear() as that will cause us to throw away
8045 		 * degraded/faulted state as well as attempt to reopen the
8046 		 * device, all of which is a waste.
8047 		 */
8048 		vd->vdev_stat.vs_read_errors = 0;
8049 		vd->vdev_stat.vs_write_errors = 0;
8050 		vd->vdev_stat.vs_checksum_errors = 0;
8051 
8052 		vdev_state_dirty(vd->vdev_top);
8053 
8054 		/* Tell userspace that the vdev is gone. */
8055 		zfs_post_remove(spa, vd);
8056 	}
8057 
8058 	for (int c = 0; c < vd->vdev_children; c++)
8059 		spa_async_remove(spa, vd->vdev_child[c]);
8060 }
8061 
8062 static void
8063 spa_async_probe(spa_t *spa, vdev_t *vd)
8064 {
8065 	if (vd->vdev_probe_wanted) {
8066 		vd->vdev_probe_wanted = B_FALSE;
8067 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8068 	}
8069 
8070 	for (int c = 0; c < vd->vdev_children; c++)
8071 		spa_async_probe(spa, vd->vdev_child[c]);
8072 }
8073 
8074 static void
8075 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8076 {
8077 	if (!spa->spa_autoexpand)
8078 		return;
8079 
8080 	for (int c = 0; c < vd->vdev_children; c++) {
8081 		vdev_t *cvd = vd->vdev_child[c];
8082 		spa_async_autoexpand(spa, cvd);
8083 	}
8084 
8085 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8086 		return;
8087 
8088 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8089 }
8090 
8091 static void
8092 spa_async_thread(void *arg)
8093 {
8094 	spa_t *spa = (spa_t *)arg;
8095 	dsl_pool_t *dp = spa->spa_dsl_pool;
8096 	int tasks;
8097 
8098 	ASSERT(spa->spa_sync_on);
8099 
8100 	mutex_enter(&spa->spa_async_lock);
8101 	tasks = spa->spa_async_tasks;
8102 	spa->spa_async_tasks = 0;
8103 	mutex_exit(&spa->spa_async_lock);
8104 
8105 	/*
8106 	 * See if the config needs to be updated.
8107 	 */
8108 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8109 		uint64_t old_space, new_space;
8110 
8111 		mutex_enter(&spa_namespace_lock);
8112 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8113 		old_space += metaslab_class_get_space(spa_special_class(spa));
8114 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8115 		old_space += metaslab_class_get_space(
8116 		    spa_embedded_log_class(spa));
8117 
8118 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8119 
8120 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8121 		new_space += metaslab_class_get_space(spa_special_class(spa));
8122 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8123 		new_space += metaslab_class_get_space(
8124 		    spa_embedded_log_class(spa));
8125 		mutex_exit(&spa_namespace_lock);
8126 
8127 		/*
8128 		 * If the pool grew as a result of the config update,
8129 		 * then log an internal history event.
8130 		 */
8131 		if (new_space != old_space) {
8132 			spa_history_log_internal(spa, "vdev online", NULL,
8133 			    "pool '%s' size: %llu(+%llu)",
8134 			    spa_name(spa), (u_longlong_t)new_space,
8135 			    (u_longlong_t)(new_space - old_space));
8136 		}
8137 	}
8138 
8139 	/*
8140 	 * See if any devices need to be marked REMOVED.
8141 	 */
8142 	if (tasks & SPA_ASYNC_REMOVE) {
8143 		spa_vdev_state_enter(spa, SCL_NONE);
8144 		spa_async_remove(spa, spa->spa_root_vdev);
8145 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8146 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8147 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8148 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8149 		(void) spa_vdev_state_exit(spa, NULL, 0);
8150 	}
8151 
8152 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8153 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8154 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8155 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8156 	}
8157 
8158 	/*
8159 	 * See if any devices need to be probed.
8160 	 */
8161 	if (tasks & SPA_ASYNC_PROBE) {
8162 		spa_vdev_state_enter(spa, SCL_NONE);
8163 		spa_async_probe(spa, spa->spa_root_vdev);
8164 		(void) spa_vdev_state_exit(spa, NULL, 0);
8165 	}
8166 
8167 	/*
8168 	 * If any devices are done replacing, detach them.
8169 	 */
8170 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8171 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8172 		spa_vdev_resilver_done(spa);
8173 	}
8174 
8175 	/*
8176 	 * Kick off a resilver.
8177 	 */
8178 	if (tasks & SPA_ASYNC_RESILVER &&
8179 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8180 	    (!dsl_scan_resilvering(dp) ||
8181 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8182 		dsl_scan_restart_resilver(dp, 0);
8183 
8184 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8185 		mutex_enter(&spa_namespace_lock);
8186 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8187 		vdev_initialize_restart(spa->spa_root_vdev);
8188 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8189 		mutex_exit(&spa_namespace_lock);
8190 	}
8191 
8192 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8193 		mutex_enter(&spa_namespace_lock);
8194 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8195 		vdev_trim_restart(spa->spa_root_vdev);
8196 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8197 		mutex_exit(&spa_namespace_lock);
8198 	}
8199 
8200 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8201 		mutex_enter(&spa_namespace_lock);
8202 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8203 		vdev_autotrim_restart(spa);
8204 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8205 		mutex_exit(&spa_namespace_lock);
8206 	}
8207 
8208 	/*
8209 	 * Kick off L2 cache whole device TRIM.
8210 	 */
8211 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8212 		mutex_enter(&spa_namespace_lock);
8213 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8214 		vdev_trim_l2arc(spa);
8215 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8216 		mutex_exit(&spa_namespace_lock);
8217 	}
8218 
8219 	/*
8220 	 * Kick off L2 cache rebuilding.
8221 	 */
8222 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8223 		mutex_enter(&spa_namespace_lock);
8224 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8225 		l2arc_spa_rebuild_start(spa);
8226 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8227 		mutex_exit(&spa_namespace_lock);
8228 	}
8229 
8230 	/*
8231 	 * Let the world know that we're done.
8232 	 */
8233 	mutex_enter(&spa->spa_async_lock);
8234 	spa->spa_async_thread = NULL;
8235 	cv_broadcast(&spa->spa_async_cv);
8236 	mutex_exit(&spa->spa_async_lock);
8237 	thread_exit();
8238 }
8239 
8240 void
8241 spa_async_suspend(spa_t *spa)
8242 {
8243 	mutex_enter(&spa->spa_async_lock);
8244 	spa->spa_async_suspended++;
8245 	while (spa->spa_async_thread != NULL)
8246 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8247 	mutex_exit(&spa->spa_async_lock);
8248 
8249 	spa_vdev_remove_suspend(spa);
8250 
8251 	zthr_t *condense_thread = spa->spa_condense_zthr;
8252 	if (condense_thread != NULL)
8253 		zthr_cancel(condense_thread);
8254 
8255 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8256 	if (discard_thread != NULL)
8257 		zthr_cancel(discard_thread);
8258 
8259 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8260 	if (ll_delete_thread != NULL)
8261 		zthr_cancel(ll_delete_thread);
8262 
8263 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8264 	if (ll_condense_thread != NULL)
8265 		zthr_cancel(ll_condense_thread);
8266 }
8267 
8268 void
8269 spa_async_resume(spa_t *spa)
8270 {
8271 	mutex_enter(&spa->spa_async_lock);
8272 	ASSERT(spa->spa_async_suspended != 0);
8273 	spa->spa_async_suspended--;
8274 	mutex_exit(&spa->spa_async_lock);
8275 	spa_restart_removal(spa);
8276 
8277 	zthr_t *condense_thread = spa->spa_condense_zthr;
8278 	if (condense_thread != NULL)
8279 		zthr_resume(condense_thread);
8280 
8281 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8282 	if (discard_thread != NULL)
8283 		zthr_resume(discard_thread);
8284 
8285 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8286 	if (ll_delete_thread != NULL)
8287 		zthr_resume(ll_delete_thread);
8288 
8289 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8290 	if (ll_condense_thread != NULL)
8291 		zthr_resume(ll_condense_thread);
8292 }
8293 
8294 static boolean_t
8295 spa_async_tasks_pending(spa_t *spa)
8296 {
8297 	uint_t non_config_tasks;
8298 	uint_t config_task;
8299 	boolean_t config_task_suspended;
8300 
8301 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8302 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8303 	if (spa->spa_ccw_fail_time == 0) {
8304 		config_task_suspended = B_FALSE;
8305 	} else {
8306 		config_task_suspended =
8307 		    (gethrtime() - spa->spa_ccw_fail_time) <
8308 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8309 	}
8310 
8311 	return (non_config_tasks || (config_task && !config_task_suspended));
8312 }
8313 
8314 static void
8315 spa_async_dispatch(spa_t *spa)
8316 {
8317 	mutex_enter(&spa->spa_async_lock);
8318 	if (spa_async_tasks_pending(spa) &&
8319 	    !spa->spa_async_suspended &&
8320 	    spa->spa_async_thread == NULL)
8321 		spa->spa_async_thread = thread_create(NULL, 0,
8322 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8323 	mutex_exit(&spa->spa_async_lock);
8324 }
8325 
8326 void
8327 spa_async_request(spa_t *spa, int task)
8328 {
8329 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8330 	mutex_enter(&spa->spa_async_lock);
8331 	spa->spa_async_tasks |= task;
8332 	mutex_exit(&spa->spa_async_lock);
8333 }
8334 
8335 int
8336 spa_async_tasks(spa_t *spa)
8337 {
8338 	return (spa->spa_async_tasks);
8339 }
8340 
8341 /*
8342  * ==========================================================================
8343  * SPA syncing routines
8344  * ==========================================================================
8345  */
8346 
8347 
8348 static int
8349 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8350     dmu_tx_t *tx)
8351 {
8352 	bpobj_t *bpo = arg;
8353 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8354 	return (0);
8355 }
8356 
8357 int
8358 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8359 {
8360 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8361 }
8362 
8363 int
8364 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8365 {
8366 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8367 }
8368 
8369 static int
8370 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8371 {
8372 	zio_t *pio = arg;
8373 
8374 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8375 	    pio->io_flags));
8376 	return (0);
8377 }
8378 
8379 static int
8380 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8381     dmu_tx_t *tx)
8382 {
8383 	ASSERT(!bp_freed);
8384 	return (spa_free_sync_cb(arg, bp, tx));
8385 }
8386 
8387 /*
8388  * Note: this simple function is not inlined to make it easier to dtrace the
8389  * amount of time spent syncing frees.
8390  */
8391 static void
8392 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8393 {
8394 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8395 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8396 	VERIFY(zio_wait(zio) == 0);
8397 }
8398 
8399 /*
8400  * Note: this simple function is not inlined to make it easier to dtrace the
8401  * amount of time spent syncing deferred frees.
8402  */
8403 static void
8404 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8405 {
8406 	if (spa_sync_pass(spa) != 1)
8407 		return;
8408 
8409 	/*
8410 	 * Note:
8411 	 * If the log space map feature is active, we stop deferring
8412 	 * frees to the next TXG and therefore running this function
8413 	 * would be considered a no-op as spa_deferred_bpobj should
8414 	 * not have any entries.
8415 	 *
8416 	 * That said we run this function anyway (instead of returning
8417 	 * immediately) for the edge-case scenario where we just
8418 	 * activated the log space map feature in this TXG but we have
8419 	 * deferred frees from the previous TXG.
8420 	 */
8421 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8422 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8423 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8424 	VERIFY0(zio_wait(zio));
8425 }
8426 
8427 static void
8428 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8429 {
8430 	char *packed = NULL;
8431 	size_t bufsize;
8432 	size_t nvsize = 0;
8433 	dmu_buf_t *db;
8434 
8435 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8436 
8437 	/*
8438 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8439 	 * information.  This avoids the dmu_buf_will_dirty() path and
8440 	 * saves us a pre-read to get data we don't actually care about.
8441 	 */
8442 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8443 	packed = vmem_alloc(bufsize, KM_SLEEP);
8444 
8445 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8446 	    KM_SLEEP) == 0);
8447 	bzero(packed + nvsize, bufsize - nvsize);
8448 
8449 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8450 
8451 	vmem_free(packed, bufsize);
8452 
8453 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8454 	dmu_buf_will_dirty(db, tx);
8455 	*(uint64_t *)db->db_data = nvsize;
8456 	dmu_buf_rele(db, FTAG);
8457 }
8458 
8459 static void
8460 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8461     const char *config, const char *entry)
8462 {
8463 	nvlist_t *nvroot;
8464 	nvlist_t **list;
8465 	int i;
8466 
8467 	if (!sav->sav_sync)
8468 		return;
8469 
8470 	/*
8471 	 * Update the MOS nvlist describing the list of available devices.
8472 	 * spa_validate_aux() will have already made sure this nvlist is
8473 	 * valid and the vdevs are labeled appropriately.
8474 	 */
8475 	if (sav->sav_object == 0) {
8476 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8477 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8478 		    sizeof (uint64_t), tx);
8479 		VERIFY(zap_update(spa->spa_meta_objset,
8480 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8481 		    &sav->sav_object, tx) == 0);
8482 	}
8483 
8484 	nvroot = fnvlist_alloc();
8485 	if (sav->sav_count == 0) {
8486 		fnvlist_add_nvlist_array(nvroot, config,
8487 		    (const nvlist_t * const *)NULL, 0);
8488 	} else {
8489 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8490 		for (i = 0; i < sav->sav_count; i++)
8491 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8492 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8493 		fnvlist_add_nvlist_array(nvroot, config,
8494 		    (const nvlist_t * const *)list, sav->sav_count);
8495 		for (i = 0; i < sav->sav_count; i++)
8496 			nvlist_free(list[i]);
8497 		kmem_free(list, sav->sav_count * sizeof (void *));
8498 	}
8499 
8500 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8501 	nvlist_free(nvroot);
8502 
8503 	sav->sav_sync = B_FALSE;
8504 }
8505 
8506 /*
8507  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8508  * The all-vdev ZAP must be empty.
8509  */
8510 static void
8511 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8512 {
8513 	spa_t *spa = vd->vdev_spa;
8514 
8515 	if (vd->vdev_top_zap != 0) {
8516 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8517 		    vd->vdev_top_zap, tx));
8518 	}
8519 	if (vd->vdev_leaf_zap != 0) {
8520 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8521 		    vd->vdev_leaf_zap, tx));
8522 	}
8523 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8524 		spa_avz_build(vd->vdev_child[i], avz, tx);
8525 	}
8526 }
8527 
8528 static void
8529 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8530 {
8531 	nvlist_t *config;
8532 
8533 	/*
8534 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8535 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8536 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8537 	 * need to rebuild the AVZ although the config may not be dirty.
8538 	 */
8539 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8540 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8541 		return;
8542 
8543 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8544 
8545 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8546 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8547 	    spa->spa_all_vdev_zaps != 0);
8548 
8549 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8550 		/* Make and build the new AVZ */
8551 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8552 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8553 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8554 
8555 		/* Diff old AVZ with new one */
8556 		zap_cursor_t zc;
8557 		zap_attribute_t za;
8558 
8559 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8560 		    spa->spa_all_vdev_zaps);
8561 		    zap_cursor_retrieve(&zc, &za) == 0;
8562 		    zap_cursor_advance(&zc)) {
8563 			uint64_t vdzap = za.za_first_integer;
8564 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8565 			    vdzap) == ENOENT) {
8566 				/*
8567 				 * ZAP is listed in old AVZ but not in new one;
8568 				 * destroy it
8569 				 */
8570 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8571 				    tx));
8572 			}
8573 		}
8574 
8575 		zap_cursor_fini(&zc);
8576 
8577 		/* Destroy the old AVZ */
8578 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8579 		    spa->spa_all_vdev_zaps, tx));
8580 
8581 		/* Replace the old AVZ in the dir obj with the new one */
8582 		VERIFY0(zap_update(spa->spa_meta_objset,
8583 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8584 		    sizeof (new_avz), 1, &new_avz, tx));
8585 
8586 		spa->spa_all_vdev_zaps = new_avz;
8587 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8588 		zap_cursor_t zc;
8589 		zap_attribute_t za;
8590 
8591 		/* Walk through the AVZ and destroy all listed ZAPs */
8592 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8593 		    spa->spa_all_vdev_zaps);
8594 		    zap_cursor_retrieve(&zc, &za) == 0;
8595 		    zap_cursor_advance(&zc)) {
8596 			uint64_t zap = za.za_first_integer;
8597 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8598 		}
8599 
8600 		zap_cursor_fini(&zc);
8601 
8602 		/* Destroy and unlink the AVZ itself */
8603 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8604 		    spa->spa_all_vdev_zaps, tx));
8605 		VERIFY0(zap_remove(spa->spa_meta_objset,
8606 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8607 		spa->spa_all_vdev_zaps = 0;
8608 	}
8609 
8610 	if (spa->spa_all_vdev_zaps == 0) {
8611 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8612 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8613 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8614 	}
8615 	spa->spa_avz_action = AVZ_ACTION_NONE;
8616 
8617 	/* Create ZAPs for vdevs that don't have them. */
8618 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8619 
8620 	config = spa_config_generate(spa, spa->spa_root_vdev,
8621 	    dmu_tx_get_txg(tx), B_FALSE);
8622 
8623 	/*
8624 	 * If we're upgrading the spa version then make sure that
8625 	 * the config object gets updated with the correct version.
8626 	 */
8627 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8628 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8629 		    spa->spa_uberblock.ub_version);
8630 
8631 	spa_config_exit(spa, SCL_STATE, FTAG);
8632 
8633 	nvlist_free(spa->spa_config_syncing);
8634 	spa->spa_config_syncing = config;
8635 
8636 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8637 }
8638 
8639 static void
8640 spa_sync_version(void *arg, dmu_tx_t *tx)
8641 {
8642 	uint64_t *versionp = arg;
8643 	uint64_t version = *versionp;
8644 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8645 
8646 	/*
8647 	 * Setting the version is special cased when first creating the pool.
8648 	 */
8649 	ASSERT(tx->tx_txg != TXG_INITIAL);
8650 
8651 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8652 	ASSERT(version >= spa_version(spa));
8653 
8654 	spa->spa_uberblock.ub_version = version;
8655 	vdev_config_dirty(spa->spa_root_vdev);
8656 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8657 	    (longlong_t)version);
8658 }
8659 
8660 /*
8661  * Set zpool properties.
8662  */
8663 static void
8664 spa_sync_props(void *arg, dmu_tx_t *tx)
8665 {
8666 	nvlist_t *nvp = arg;
8667 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8668 	objset_t *mos = spa->spa_meta_objset;
8669 	nvpair_t *elem = NULL;
8670 
8671 	mutex_enter(&spa->spa_props_lock);
8672 
8673 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8674 		uint64_t intval;
8675 		char *strval, *fname;
8676 		zpool_prop_t prop;
8677 		const char *propname;
8678 		zprop_type_t proptype;
8679 		spa_feature_t fid;
8680 
8681 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8682 		case ZPOOL_PROP_INVAL:
8683 			/*
8684 			 * We checked this earlier in spa_prop_validate().
8685 			 */
8686 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8687 
8688 			fname = strchr(nvpair_name(elem), '@') + 1;
8689 			VERIFY0(zfeature_lookup_name(fname, &fid));
8690 
8691 			spa_feature_enable(spa, fid, tx);
8692 			spa_history_log_internal(spa, "set", tx,
8693 			    "%s=enabled", nvpair_name(elem));
8694 			break;
8695 
8696 		case ZPOOL_PROP_VERSION:
8697 			intval = fnvpair_value_uint64(elem);
8698 			/*
8699 			 * The version is synced separately before other
8700 			 * properties and should be correct by now.
8701 			 */
8702 			ASSERT3U(spa_version(spa), >=, intval);
8703 			break;
8704 
8705 		case ZPOOL_PROP_ALTROOT:
8706 			/*
8707 			 * 'altroot' is a non-persistent property. It should
8708 			 * have been set temporarily at creation or import time.
8709 			 */
8710 			ASSERT(spa->spa_root != NULL);
8711 			break;
8712 
8713 		case ZPOOL_PROP_READONLY:
8714 		case ZPOOL_PROP_CACHEFILE:
8715 			/*
8716 			 * 'readonly' and 'cachefile' are also non-persistent
8717 			 * properties.
8718 			 */
8719 			break;
8720 		case ZPOOL_PROP_COMMENT:
8721 			strval = fnvpair_value_string(elem);
8722 			if (spa->spa_comment != NULL)
8723 				spa_strfree(spa->spa_comment);
8724 			spa->spa_comment = spa_strdup(strval);
8725 			/*
8726 			 * We need to dirty the configuration on all the vdevs
8727 			 * so that their labels get updated.  We also need to
8728 			 * update the cache file to keep it in sync with the
8729 			 * MOS version. It's unnecessary to do this for pool
8730 			 * creation since the vdev's configuration has already
8731 			 * been dirtied.
8732 			 */
8733 			if (tx->tx_txg != TXG_INITIAL) {
8734 				vdev_config_dirty(spa->spa_root_vdev);
8735 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8736 			}
8737 			spa_history_log_internal(spa, "set", tx,
8738 			    "%s=%s", nvpair_name(elem), strval);
8739 			break;
8740 		case ZPOOL_PROP_COMPATIBILITY:
8741 			strval = fnvpair_value_string(elem);
8742 			if (spa->spa_compatibility != NULL)
8743 				spa_strfree(spa->spa_compatibility);
8744 			spa->spa_compatibility = spa_strdup(strval);
8745 			/*
8746 			 * Dirty the configuration on vdevs as above.
8747 			 */
8748 			if (tx->tx_txg != TXG_INITIAL) {
8749 				vdev_config_dirty(spa->spa_root_vdev);
8750 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8751 			}
8752 
8753 			spa_history_log_internal(spa, "set", tx,
8754 			    "%s=%s", nvpair_name(elem), strval);
8755 			break;
8756 
8757 		default:
8758 			/*
8759 			 * Set pool property values in the poolprops mos object.
8760 			 */
8761 			if (spa->spa_pool_props_object == 0) {
8762 				spa->spa_pool_props_object =
8763 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8764 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8765 				    tx);
8766 			}
8767 
8768 			/* normalize the property name */
8769 			propname = zpool_prop_to_name(prop);
8770 			proptype = zpool_prop_get_type(prop);
8771 
8772 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8773 				ASSERT(proptype == PROP_TYPE_STRING);
8774 				strval = fnvpair_value_string(elem);
8775 				VERIFY0(zap_update(mos,
8776 				    spa->spa_pool_props_object, propname,
8777 				    1, strlen(strval) + 1, strval, tx));
8778 				spa_history_log_internal(spa, "set", tx,
8779 				    "%s=%s", nvpair_name(elem), strval);
8780 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8781 				intval = fnvpair_value_uint64(elem);
8782 
8783 				if (proptype == PROP_TYPE_INDEX) {
8784 					const char *unused;
8785 					VERIFY0(zpool_prop_index_to_string(
8786 					    prop, intval, &unused));
8787 				}
8788 				VERIFY0(zap_update(mos,
8789 				    spa->spa_pool_props_object, propname,
8790 				    8, 1, &intval, tx));
8791 				spa_history_log_internal(spa, "set", tx,
8792 				    "%s=%lld", nvpair_name(elem),
8793 				    (longlong_t)intval);
8794 			} else {
8795 				ASSERT(0); /* not allowed */
8796 			}
8797 
8798 			switch (prop) {
8799 			case ZPOOL_PROP_DELEGATION:
8800 				spa->spa_delegation = intval;
8801 				break;
8802 			case ZPOOL_PROP_BOOTFS:
8803 				spa->spa_bootfs = intval;
8804 				break;
8805 			case ZPOOL_PROP_FAILUREMODE:
8806 				spa->spa_failmode = intval;
8807 				break;
8808 			case ZPOOL_PROP_AUTOTRIM:
8809 				spa->spa_autotrim = intval;
8810 				spa_async_request(spa,
8811 				    SPA_ASYNC_AUTOTRIM_RESTART);
8812 				break;
8813 			case ZPOOL_PROP_AUTOEXPAND:
8814 				spa->spa_autoexpand = intval;
8815 				if (tx->tx_txg != TXG_INITIAL)
8816 					spa_async_request(spa,
8817 					    SPA_ASYNC_AUTOEXPAND);
8818 				break;
8819 			case ZPOOL_PROP_MULTIHOST:
8820 				spa->spa_multihost = intval;
8821 				break;
8822 			default:
8823 				break;
8824 			}
8825 		}
8826 
8827 	}
8828 
8829 	mutex_exit(&spa->spa_props_lock);
8830 }
8831 
8832 /*
8833  * Perform one-time upgrade on-disk changes.  spa_version() does not
8834  * reflect the new version this txg, so there must be no changes this
8835  * txg to anything that the upgrade code depends on after it executes.
8836  * Therefore this must be called after dsl_pool_sync() does the sync
8837  * tasks.
8838  */
8839 static void
8840 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8841 {
8842 	if (spa_sync_pass(spa) != 1)
8843 		return;
8844 
8845 	dsl_pool_t *dp = spa->spa_dsl_pool;
8846 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8847 
8848 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8849 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8850 		dsl_pool_create_origin(dp, tx);
8851 
8852 		/* Keeping the origin open increases spa_minref */
8853 		spa->spa_minref += 3;
8854 	}
8855 
8856 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8857 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8858 		dsl_pool_upgrade_clones(dp, tx);
8859 	}
8860 
8861 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8862 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8863 		dsl_pool_upgrade_dir_clones(dp, tx);
8864 
8865 		/* Keeping the freedir open increases spa_minref */
8866 		spa->spa_minref += 3;
8867 	}
8868 
8869 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8870 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8871 		spa_feature_create_zap_objects(spa, tx);
8872 	}
8873 
8874 	/*
8875 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8876 	 * when possibility to use lz4 compression for metadata was added
8877 	 * Old pools that have this feature enabled must be upgraded to have
8878 	 * this feature active
8879 	 */
8880 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8881 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8882 		    SPA_FEATURE_LZ4_COMPRESS);
8883 		boolean_t lz4_ac = spa_feature_is_active(spa,
8884 		    SPA_FEATURE_LZ4_COMPRESS);
8885 
8886 		if (lz4_en && !lz4_ac)
8887 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8888 	}
8889 
8890 	/*
8891 	 * If we haven't written the salt, do so now.  Note that the
8892 	 * feature may not be activated yet, but that's fine since
8893 	 * the presence of this ZAP entry is backwards compatible.
8894 	 */
8895 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8896 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8897 		VERIFY0(zap_add(spa->spa_meta_objset,
8898 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8899 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8900 		    spa->spa_cksum_salt.zcs_bytes, tx));
8901 	}
8902 
8903 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8904 }
8905 
8906 static void
8907 vdev_indirect_state_sync_verify(vdev_t *vd)
8908 {
8909 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8910 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8911 
8912 	if (vd->vdev_ops == &vdev_indirect_ops) {
8913 		ASSERT(vim != NULL);
8914 		ASSERT(vib != NULL);
8915 	}
8916 
8917 	uint64_t obsolete_sm_object = 0;
8918 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8919 	if (obsolete_sm_object != 0) {
8920 		ASSERT(vd->vdev_obsolete_sm != NULL);
8921 		ASSERT(vd->vdev_removing ||
8922 		    vd->vdev_ops == &vdev_indirect_ops);
8923 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8924 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8925 		ASSERT3U(obsolete_sm_object, ==,
8926 		    space_map_object(vd->vdev_obsolete_sm));
8927 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8928 		    space_map_allocated(vd->vdev_obsolete_sm));
8929 	}
8930 	ASSERT(vd->vdev_obsolete_segments != NULL);
8931 
8932 	/*
8933 	 * Since frees / remaps to an indirect vdev can only
8934 	 * happen in syncing context, the obsolete segments
8935 	 * tree must be empty when we start syncing.
8936 	 */
8937 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8938 }
8939 
8940 /*
8941  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8942  * async write queue depth in case it changed. The max queue depth will
8943  * not change in the middle of syncing out this txg.
8944  */
8945 static void
8946 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8947 {
8948 	ASSERT(spa_writeable(spa));
8949 
8950 	vdev_t *rvd = spa->spa_root_vdev;
8951 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8952 	    zfs_vdev_queue_depth_pct / 100;
8953 	metaslab_class_t *normal = spa_normal_class(spa);
8954 	metaslab_class_t *special = spa_special_class(spa);
8955 	metaslab_class_t *dedup = spa_dedup_class(spa);
8956 
8957 	uint64_t slots_per_allocator = 0;
8958 	for (int c = 0; c < rvd->vdev_children; c++) {
8959 		vdev_t *tvd = rvd->vdev_child[c];
8960 
8961 		metaslab_group_t *mg = tvd->vdev_mg;
8962 		if (mg == NULL || !metaslab_group_initialized(mg))
8963 			continue;
8964 
8965 		metaslab_class_t *mc = mg->mg_class;
8966 		if (mc != normal && mc != special && mc != dedup)
8967 			continue;
8968 
8969 		/*
8970 		 * It is safe to do a lock-free check here because only async
8971 		 * allocations look at mg_max_alloc_queue_depth, and async
8972 		 * allocations all happen from spa_sync().
8973 		 */
8974 		for (int i = 0; i < mg->mg_allocators; i++) {
8975 			ASSERT0(zfs_refcount_count(
8976 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8977 		}
8978 		mg->mg_max_alloc_queue_depth = max_queue_depth;
8979 
8980 		for (int i = 0; i < mg->mg_allocators; i++) {
8981 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8982 			    zfs_vdev_def_queue_depth;
8983 		}
8984 		slots_per_allocator += zfs_vdev_def_queue_depth;
8985 	}
8986 
8987 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8988 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8989 		    mca_alloc_slots));
8990 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8991 		    mca_alloc_slots));
8992 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8993 		    mca_alloc_slots));
8994 		normal->mc_allocator[i].mca_alloc_max_slots =
8995 		    slots_per_allocator;
8996 		special->mc_allocator[i].mca_alloc_max_slots =
8997 		    slots_per_allocator;
8998 		dedup->mc_allocator[i].mca_alloc_max_slots =
8999 		    slots_per_allocator;
9000 	}
9001 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9002 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9003 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9004 }
9005 
9006 static void
9007 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9008 {
9009 	ASSERT(spa_writeable(spa));
9010 
9011 	vdev_t *rvd = spa->spa_root_vdev;
9012 	for (int c = 0; c < rvd->vdev_children; c++) {
9013 		vdev_t *vd = rvd->vdev_child[c];
9014 		vdev_indirect_state_sync_verify(vd);
9015 
9016 		if (vdev_indirect_should_condense(vd)) {
9017 			spa_condense_indirect_start_sync(vd, tx);
9018 			break;
9019 		}
9020 	}
9021 }
9022 
9023 static void
9024 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9025 {
9026 	objset_t *mos = spa->spa_meta_objset;
9027 	dsl_pool_t *dp = spa->spa_dsl_pool;
9028 	uint64_t txg = tx->tx_txg;
9029 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9030 
9031 	do {
9032 		int pass = ++spa->spa_sync_pass;
9033 
9034 		spa_sync_config_object(spa, tx);
9035 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9036 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9037 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9038 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9039 		spa_errlog_sync(spa, txg);
9040 		dsl_pool_sync(dp, txg);
9041 
9042 		if (pass < zfs_sync_pass_deferred_free ||
9043 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9044 			/*
9045 			 * If the log space map feature is active we don't
9046 			 * care about deferred frees and the deferred bpobj
9047 			 * as the log space map should effectively have the
9048 			 * same results (i.e. appending only to one object).
9049 			 */
9050 			spa_sync_frees(spa, free_bpl, tx);
9051 		} else {
9052 			/*
9053 			 * We can not defer frees in pass 1, because
9054 			 * we sync the deferred frees later in pass 1.
9055 			 */
9056 			ASSERT3U(pass, >, 1);
9057 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9058 			    &spa->spa_deferred_bpobj, tx);
9059 		}
9060 
9061 		ddt_sync(spa, txg);
9062 		dsl_scan_sync(dp, tx);
9063 		svr_sync(spa, tx);
9064 		spa_sync_upgrades(spa, tx);
9065 
9066 		spa_flush_metaslabs(spa, tx);
9067 
9068 		vdev_t *vd = NULL;
9069 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9070 		    != NULL)
9071 			vdev_sync(vd, txg);
9072 
9073 		/*
9074 		 * Note: We need to check if the MOS is dirty because we could
9075 		 * have marked the MOS dirty without updating the uberblock
9076 		 * (e.g. if we have sync tasks but no dirty user data). We need
9077 		 * to check the uberblock's rootbp because it is updated if we
9078 		 * have synced out dirty data (though in this case the MOS will
9079 		 * most likely also be dirty due to second order effects, we
9080 		 * don't want to rely on that here).
9081 		 */
9082 		if (pass == 1 &&
9083 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9084 		    !dmu_objset_is_dirty(mos, txg)) {
9085 			/*
9086 			 * Nothing changed on the first pass, therefore this
9087 			 * TXG is a no-op. Avoid syncing deferred frees, so
9088 			 * that we can keep this TXG as a no-op.
9089 			 */
9090 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9091 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9092 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9093 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9094 			break;
9095 		}
9096 
9097 		spa_sync_deferred_frees(spa, tx);
9098 	} while (dmu_objset_is_dirty(mos, txg));
9099 }
9100 
9101 /*
9102  * Rewrite the vdev configuration (which includes the uberblock) to
9103  * commit the transaction group.
9104  *
9105  * If there are no dirty vdevs, we sync the uberblock to a few random
9106  * top-level vdevs that are known to be visible in the config cache
9107  * (see spa_vdev_add() for a complete description). If there *are* dirty
9108  * vdevs, sync the uberblock to all vdevs.
9109  */
9110 static void
9111 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9112 {
9113 	vdev_t *rvd = spa->spa_root_vdev;
9114 	uint64_t txg = tx->tx_txg;
9115 
9116 	for (;;) {
9117 		int error = 0;
9118 
9119 		/*
9120 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9121 		 * while we're attempting to write the vdev labels.
9122 		 */
9123 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9124 
9125 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9126 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9127 			int svdcount = 0;
9128 			int children = rvd->vdev_children;
9129 			int c0 = random_in_range(children);
9130 
9131 			for (int c = 0; c < children; c++) {
9132 				vdev_t *vd =
9133 				    rvd->vdev_child[(c0 + c) % children];
9134 
9135 				/* Stop when revisiting the first vdev */
9136 				if (c > 0 && svd[0] == vd)
9137 					break;
9138 
9139 				if (vd->vdev_ms_array == 0 ||
9140 				    vd->vdev_islog ||
9141 				    !vdev_is_concrete(vd))
9142 					continue;
9143 
9144 				svd[svdcount++] = vd;
9145 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9146 					break;
9147 			}
9148 			error = vdev_config_sync(svd, svdcount, txg);
9149 		} else {
9150 			error = vdev_config_sync(rvd->vdev_child,
9151 			    rvd->vdev_children, txg);
9152 		}
9153 
9154 		if (error == 0)
9155 			spa->spa_last_synced_guid = rvd->vdev_guid;
9156 
9157 		spa_config_exit(spa, SCL_STATE, FTAG);
9158 
9159 		if (error == 0)
9160 			break;
9161 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9162 		zio_resume_wait(spa);
9163 	}
9164 }
9165 
9166 /*
9167  * Sync the specified transaction group.  New blocks may be dirtied as
9168  * part of the process, so we iterate until it converges.
9169  */
9170 void
9171 spa_sync(spa_t *spa, uint64_t txg)
9172 {
9173 	vdev_t *vd = NULL;
9174 
9175 	VERIFY(spa_writeable(spa));
9176 
9177 	/*
9178 	 * Wait for i/os issued in open context that need to complete
9179 	 * before this txg syncs.
9180 	 */
9181 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9182 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9183 	    ZIO_FLAG_CANFAIL);
9184 
9185 	/*
9186 	 * Lock out configuration changes.
9187 	 */
9188 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9189 
9190 	spa->spa_syncing_txg = txg;
9191 	spa->spa_sync_pass = 0;
9192 
9193 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9194 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9195 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9196 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9197 	}
9198 
9199 	/*
9200 	 * If there are any pending vdev state changes, convert them
9201 	 * into config changes that go out with this transaction group.
9202 	 */
9203 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9204 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9205 		/*
9206 		 * We need the write lock here because, for aux vdevs,
9207 		 * calling vdev_config_dirty() modifies sav_config.
9208 		 * This is ugly and will become unnecessary when we
9209 		 * eliminate the aux vdev wart by integrating all vdevs
9210 		 * into the root vdev tree.
9211 		 */
9212 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9213 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9214 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9215 			vdev_state_clean(vd);
9216 			vdev_config_dirty(vd);
9217 		}
9218 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9219 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9220 	}
9221 	spa_config_exit(spa, SCL_STATE, FTAG);
9222 
9223 	dsl_pool_t *dp = spa->spa_dsl_pool;
9224 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9225 
9226 	spa->spa_sync_starttime = gethrtime();
9227 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9228 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9229 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9230 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9231 
9232 	/*
9233 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9234 	 * set spa_deflate if we have no raid-z vdevs.
9235 	 */
9236 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9237 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9238 		vdev_t *rvd = spa->spa_root_vdev;
9239 
9240 		int i;
9241 		for (i = 0; i < rvd->vdev_children; i++) {
9242 			vd = rvd->vdev_child[i];
9243 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9244 				break;
9245 		}
9246 		if (i == rvd->vdev_children) {
9247 			spa->spa_deflate = TRUE;
9248 			VERIFY0(zap_add(spa->spa_meta_objset,
9249 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9250 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9251 		}
9252 	}
9253 
9254 	spa_sync_adjust_vdev_max_queue_depth(spa);
9255 
9256 	spa_sync_condense_indirect(spa, tx);
9257 
9258 	spa_sync_iterate_to_convergence(spa, tx);
9259 
9260 #ifdef ZFS_DEBUG
9261 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9262 	/*
9263 	 * Make sure that the number of ZAPs for all the vdevs matches
9264 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9265 	 * called if the config is dirty; otherwise there may be
9266 	 * outstanding AVZ operations that weren't completed in
9267 	 * spa_sync_config_object.
9268 	 */
9269 		uint64_t all_vdev_zap_entry_count;
9270 		ASSERT0(zap_count(spa->spa_meta_objset,
9271 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9272 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9273 		    all_vdev_zap_entry_count);
9274 	}
9275 #endif
9276 
9277 	if (spa->spa_vdev_removal != NULL) {
9278 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9279 	}
9280 
9281 	spa_sync_rewrite_vdev_config(spa, tx);
9282 	dmu_tx_commit(tx);
9283 
9284 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9285 	spa->spa_deadman_tqid = 0;
9286 
9287 	/*
9288 	 * Clear the dirty config list.
9289 	 */
9290 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9291 		vdev_config_clean(vd);
9292 
9293 	/*
9294 	 * Now that the new config has synced transactionally,
9295 	 * let it become visible to the config cache.
9296 	 */
9297 	if (spa->spa_config_syncing != NULL) {
9298 		spa_config_set(spa, spa->spa_config_syncing);
9299 		spa->spa_config_txg = txg;
9300 		spa->spa_config_syncing = NULL;
9301 	}
9302 
9303 	dsl_pool_sync_done(dp, txg);
9304 
9305 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9306 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9307 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9308 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9309 	}
9310 
9311 	/*
9312 	 * Update usable space statistics.
9313 	 */
9314 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9315 	    != NULL)
9316 		vdev_sync_done(vd, txg);
9317 
9318 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9319 	metaslab_class_evict_old(spa->spa_log_class, txg);
9320 
9321 	spa_sync_close_syncing_log_sm(spa);
9322 
9323 	spa_update_dspace(spa);
9324 
9325 	/*
9326 	 * It had better be the case that we didn't dirty anything
9327 	 * since vdev_config_sync().
9328 	 */
9329 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9330 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9331 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9332 
9333 	while (zfs_pause_spa_sync)
9334 		delay(1);
9335 
9336 	spa->spa_sync_pass = 0;
9337 
9338 	/*
9339 	 * Update the last synced uberblock here. We want to do this at
9340 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9341 	 * will be guaranteed that all the processing associated with
9342 	 * that txg has been completed.
9343 	 */
9344 	spa->spa_ubsync = spa->spa_uberblock;
9345 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9346 
9347 	spa_handle_ignored_writes(spa);
9348 
9349 	/*
9350 	 * If any async tasks have been requested, kick them off.
9351 	 */
9352 	spa_async_dispatch(spa);
9353 }
9354 
9355 /*
9356  * Sync all pools.  We don't want to hold the namespace lock across these
9357  * operations, so we take a reference on the spa_t and drop the lock during the
9358  * sync.
9359  */
9360 void
9361 spa_sync_allpools(void)
9362 {
9363 	spa_t *spa = NULL;
9364 	mutex_enter(&spa_namespace_lock);
9365 	while ((spa = spa_next(spa)) != NULL) {
9366 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9367 		    !spa_writeable(spa) || spa_suspended(spa))
9368 			continue;
9369 		spa_open_ref(spa, FTAG);
9370 		mutex_exit(&spa_namespace_lock);
9371 		txg_wait_synced(spa_get_dsl(spa), 0);
9372 		mutex_enter(&spa_namespace_lock);
9373 		spa_close(spa, FTAG);
9374 	}
9375 	mutex_exit(&spa_namespace_lock);
9376 }
9377 
9378 /*
9379  * ==========================================================================
9380  * Miscellaneous routines
9381  * ==========================================================================
9382  */
9383 
9384 /*
9385  * Remove all pools in the system.
9386  */
9387 void
9388 spa_evict_all(void)
9389 {
9390 	spa_t *spa;
9391 
9392 	/*
9393 	 * Remove all cached state.  All pools should be closed now,
9394 	 * so every spa in the AVL tree should be unreferenced.
9395 	 */
9396 	mutex_enter(&spa_namespace_lock);
9397 	while ((spa = spa_next(NULL)) != NULL) {
9398 		/*
9399 		 * Stop async tasks.  The async thread may need to detach
9400 		 * a device that's been replaced, which requires grabbing
9401 		 * spa_namespace_lock, so we must drop it here.
9402 		 */
9403 		spa_open_ref(spa, FTAG);
9404 		mutex_exit(&spa_namespace_lock);
9405 		spa_async_suspend(spa);
9406 		mutex_enter(&spa_namespace_lock);
9407 		spa_close(spa, FTAG);
9408 
9409 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9410 			spa_unload(spa);
9411 			spa_deactivate(spa);
9412 		}
9413 		spa_remove(spa);
9414 	}
9415 	mutex_exit(&spa_namespace_lock);
9416 }
9417 
9418 vdev_t *
9419 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9420 {
9421 	vdev_t *vd;
9422 	int i;
9423 
9424 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9425 		return (vd);
9426 
9427 	if (aux) {
9428 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9429 			vd = spa->spa_l2cache.sav_vdevs[i];
9430 			if (vd->vdev_guid == guid)
9431 				return (vd);
9432 		}
9433 
9434 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9435 			vd = spa->spa_spares.sav_vdevs[i];
9436 			if (vd->vdev_guid == guid)
9437 				return (vd);
9438 		}
9439 	}
9440 
9441 	return (NULL);
9442 }
9443 
9444 void
9445 spa_upgrade(spa_t *spa, uint64_t version)
9446 {
9447 	ASSERT(spa_writeable(spa));
9448 
9449 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9450 
9451 	/*
9452 	 * This should only be called for a non-faulted pool, and since a
9453 	 * future version would result in an unopenable pool, this shouldn't be
9454 	 * possible.
9455 	 */
9456 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9457 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9458 
9459 	spa->spa_uberblock.ub_version = version;
9460 	vdev_config_dirty(spa->spa_root_vdev);
9461 
9462 	spa_config_exit(spa, SCL_ALL, FTAG);
9463 
9464 	txg_wait_synced(spa_get_dsl(spa), 0);
9465 }
9466 
9467 static boolean_t
9468 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9469 {
9470 	(void) spa;
9471 	int i;
9472 	uint64_t vdev_guid;
9473 
9474 	for (i = 0; i < sav->sav_count; i++)
9475 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9476 			return (B_TRUE);
9477 
9478 	for (i = 0; i < sav->sav_npending; i++) {
9479 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9480 		    &vdev_guid) == 0 && vdev_guid == guid)
9481 			return (B_TRUE);
9482 	}
9483 
9484 	return (B_FALSE);
9485 }
9486 
9487 boolean_t
9488 spa_has_l2cache(spa_t *spa, uint64_t guid)
9489 {
9490 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9491 }
9492 
9493 boolean_t
9494 spa_has_spare(spa_t *spa, uint64_t guid)
9495 {
9496 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9497 }
9498 
9499 /*
9500  * Check if a pool has an active shared spare device.
9501  * Note: reference count of an active spare is 2, as a spare and as a replace
9502  */
9503 static boolean_t
9504 spa_has_active_shared_spare(spa_t *spa)
9505 {
9506 	int i, refcnt;
9507 	uint64_t pool;
9508 	spa_aux_vdev_t *sav = &spa->spa_spares;
9509 
9510 	for (i = 0; i < sav->sav_count; i++) {
9511 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9512 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9513 		    refcnt > 2)
9514 			return (B_TRUE);
9515 	}
9516 
9517 	return (B_FALSE);
9518 }
9519 
9520 uint64_t
9521 spa_total_metaslabs(spa_t *spa)
9522 {
9523 	vdev_t *rvd = spa->spa_root_vdev;
9524 
9525 	uint64_t m = 0;
9526 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9527 		vdev_t *vd = rvd->vdev_child[c];
9528 		if (!vdev_is_concrete(vd))
9529 			continue;
9530 		m += vd->vdev_ms_count;
9531 	}
9532 	return (m);
9533 }
9534 
9535 /*
9536  * Notify any waiting threads that some activity has switched from being in-
9537  * progress to not-in-progress so that the thread can wake up and determine
9538  * whether it is finished waiting.
9539  */
9540 void
9541 spa_notify_waiters(spa_t *spa)
9542 {
9543 	/*
9544 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9545 	 * happening between the waiting thread's check and cv_wait.
9546 	 */
9547 	mutex_enter(&spa->spa_activities_lock);
9548 	cv_broadcast(&spa->spa_activities_cv);
9549 	mutex_exit(&spa->spa_activities_lock);
9550 }
9551 
9552 /*
9553  * Notify any waiting threads that the pool is exporting, and then block until
9554  * they are finished using the spa_t.
9555  */
9556 void
9557 spa_wake_waiters(spa_t *spa)
9558 {
9559 	mutex_enter(&spa->spa_activities_lock);
9560 	spa->spa_waiters_cancel = B_TRUE;
9561 	cv_broadcast(&spa->spa_activities_cv);
9562 	while (spa->spa_waiters != 0)
9563 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9564 	spa->spa_waiters_cancel = B_FALSE;
9565 	mutex_exit(&spa->spa_activities_lock);
9566 }
9567 
9568 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9569 static boolean_t
9570 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9571 {
9572 	spa_t *spa = vd->vdev_spa;
9573 
9574 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9575 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9576 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9577 	    activity == ZPOOL_WAIT_TRIM);
9578 
9579 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9580 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9581 
9582 	mutex_exit(&spa->spa_activities_lock);
9583 	mutex_enter(lock);
9584 	mutex_enter(&spa->spa_activities_lock);
9585 
9586 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9587 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9588 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9589 	mutex_exit(lock);
9590 
9591 	if (in_progress)
9592 		return (B_TRUE);
9593 
9594 	for (int i = 0; i < vd->vdev_children; i++) {
9595 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9596 		    activity))
9597 			return (B_TRUE);
9598 	}
9599 
9600 	return (B_FALSE);
9601 }
9602 
9603 /*
9604  * If use_guid is true, this checks whether the vdev specified by guid is
9605  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9606  * is being initialized/trimmed. The caller must hold the config lock and
9607  * spa_activities_lock.
9608  */
9609 static int
9610 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9611     zpool_wait_activity_t activity, boolean_t *in_progress)
9612 {
9613 	mutex_exit(&spa->spa_activities_lock);
9614 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9615 	mutex_enter(&spa->spa_activities_lock);
9616 
9617 	vdev_t *vd;
9618 	if (use_guid) {
9619 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9620 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9621 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9622 			return (EINVAL);
9623 		}
9624 	} else {
9625 		vd = spa->spa_root_vdev;
9626 	}
9627 
9628 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9629 
9630 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9631 	return (0);
9632 }
9633 
9634 /*
9635  * Locking for waiting threads
9636  * ---------------------------
9637  *
9638  * Waiting threads need a way to check whether a given activity is in progress,
9639  * and then, if it is, wait for it to complete. Each activity will have some
9640  * in-memory representation of the relevant on-disk state which can be used to
9641  * determine whether or not the activity is in progress. The in-memory state and
9642  * the locking used to protect it will be different for each activity, and may
9643  * not be suitable for use with a cvar (e.g., some state is protected by the
9644  * config lock). To allow waiting threads to wait without any races, another
9645  * lock, spa_activities_lock, is used.
9646  *
9647  * When the state is checked, both the activity-specific lock (if there is one)
9648  * and spa_activities_lock are held. In some cases, the activity-specific lock
9649  * is acquired explicitly (e.g. the config lock). In others, the locking is
9650  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9651  * thread releases the activity-specific lock and, if the activity is in
9652  * progress, then cv_waits using spa_activities_lock.
9653  *
9654  * The waiting thread is woken when another thread, one completing some
9655  * activity, updates the state of the activity and then calls
9656  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9657  * needs to hold its activity-specific lock when updating the state, and this
9658  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9659  *
9660  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9661  * and because it is held when the waiting thread checks the state of the
9662  * activity, it can never be the case that the completing thread both updates
9663  * the activity state and cv_broadcasts in between the waiting thread's check
9664  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9665  *
9666  * In order to prevent deadlock, when the waiting thread does its check, in some
9667  * cases it will temporarily drop spa_activities_lock in order to acquire the
9668  * activity-specific lock. The order in which spa_activities_lock and the
9669  * activity specific lock are acquired in the waiting thread is determined by
9670  * the order in which they are acquired in the completing thread; if the
9671  * completing thread calls spa_notify_waiters with the activity-specific lock
9672  * held, then the waiting thread must also acquire the activity-specific lock
9673  * first.
9674  */
9675 
9676 static int
9677 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9678     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9679 {
9680 	int error = 0;
9681 
9682 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9683 
9684 	switch (activity) {
9685 	case ZPOOL_WAIT_CKPT_DISCARD:
9686 		*in_progress =
9687 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9688 		    zap_contains(spa_meta_objset(spa),
9689 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9690 		    ENOENT);
9691 		break;
9692 	case ZPOOL_WAIT_FREE:
9693 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9694 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9695 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9696 		    spa_livelist_delete_check(spa));
9697 		break;
9698 	case ZPOOL_WAIT_INITIALIZE:
9699 	case ZPOOL_WAIT_TRIM:
9700 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9701 		    activity, in_progress);
9702 		break;
9703 	case ZPOOL_WAIT_REPLACE:
9704 		mutex_exit(&spa->spa_activities_lock);
9705 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9706 		mutex_enter(&spa->spa_activities_lock);
9707 
9708 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9709 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9710 		break;
9711 	case ZPOOL_WAIT_REMOVE:
9712 		*in_progress = (spa->spa_removing_phys.sr_state ==
9713 		    DSS_SCANNING);
9714 		break;
9715 	case ZPOOL_WAIT_RESILVER:
9716 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9717 			break;
9718 		fallthrough;
9719 	case ZPOOL_WAIT_SCRUB:
9720 	{
9721 		boolean_t scanning, paused, is_scrub;
9722 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9723 
9724 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9725 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9726 		paused = dsl_scan_is_paused_scrub(scn);
9727 		*in_progress = (scanning && !paused &&
9728 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9729 		break;
9730 	}
9731 	default:
9732 		panic("unrecognized value for activity %d", activity);
9733 	}
9734 
9735 	return (error);
9736 }
9737 
9738 static int
9739 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9740     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9741 {
9742 	/*
9743 	 * The tag is used to distinguish between instances of an activity.
9744 	 * 'initialize' and 'trim' are the only activities that we use this for.
9745 	 * The other activities can only have a single instance in progress in a
9746 	 * pool at one time, making the tag unnecessary.
9747 	 *
9748 	 * There can be multiple devices being replaced at once, but since they
9749 	 * all finish once resilvering finishes, we don't bother keeping track
9750 	 * of them individually, we just wait for them all to finish.
9751 	 */
9752 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9753 	    activity != ZPOOL_WAIT_TRIM)
9754 		return (EINVAL);
9755 
9756 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9757 		return (EINVAL);
9758 
9759 	spa_t *spa;
9760 	int error = spa_open(pool, &spa, FTAG);
9761 	if (error != 0)
9762 		return (error);
9763 
9764 	/*
9765 	 * Increment the spa's waiter count so that we can call spa_close and
9766 	 * still ensure that the spa_t doesn't get freed before this thread is
9767 	 * finished with it when the pool is exported. We want to call spa_close
9768 	 * before we start waiting because otherwise the additional ref would
9769 	 * prevent the pool from being exported or destroyed throughout the
9770 	 * potentially long wait.
9771 	 */
9772 	mutex_enter(&spa->spa_activities_lock);
9773 	spa->spa_waiters++;
9774 	spa_close(spa, FTAG);
9775 
9776 	*waited = B_FALSE;
9777 	for (;;) {
9778 		boolean_t in_progress;
9779 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9780 		    &in_progress);
9781 
9782 		if (error || !in_progress || spa->spa_waiters_cancel)
9783 			break;
9784 
9785 		*waited = B_TRUE;
9786 
9787 		if (cv_wait_sig(&spa->spa_activities_cv,
9788 		    &spa->spa_activities_lock) == 0) {
9789 			error = EINTR;
9790 			break;
9791 		}
9792 	}
9793 
9794 	spa->spa_waiters--;
9795 	cv_signal(&spa->spa_waiters_cv);
9796 	mutex_exit(&spa->spa_activities_lock);
9797 
9798 	return (error);
9799 }
9800 
9801 /*
9802  * Wait for a particular instance of the specified activity to complete, where
9803  * the instance is identified by 'tag'
9804  */
9805 int
9806 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9807     boolean_t *waited)
9808 {
9809 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9810 }
9811 
9812 /*
9813  * Wait for all instances of the specified activity complete
9814  */
9815 int
9816 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9817 {
9818 
9819 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9820 }
9821 
9822 sysevent_t *
9823 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9824 {
9825 	sysevent_t *ev = NULL;
9826 #ifdef _KERNEL
9827 	nvlist_t *resource;
9828 
9829 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9830 	if (resource) {
9831 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9832 		ev->resource = resource;
9833 	}
9834 #else
9835 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9836 #endif
9837 	return (ev);
9838 }
9839 
9840 void
9841 spa_event_post(sysevent_t *ev)
9842 {
9843 #ifdef _KERNEL
9844 	if (ev) {
9845 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9846 		kmem_free(ev, sizeof (*ev));
9847 	}
9848 #else
9849 	(void) ev;
9850 #endif
9851 }
9852 
9853 /*
9854  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9855  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9856  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9857  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9858  * or zdb as real changes.
9859  */
9860 void
9861 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9862 {
9863 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9864 }
9865 
9866 /* state manipulation functions */
9867 EXPORT_SYMBOL(spa_open);
9868 EXPORT_SYMBOL(spa_open_rewind);
9869 EXPORT_SYMBOL(spa_get_stats);
9870 EXPORT_SYMBOL(spa_create);
9871 EXPORT_SYMBOL(spa_import);
9872 EXPORT_SYMBOL(spa_tryimport);
9873 EXPORT_SYMBOL(spa_destroy);
9874 EXPORT_SYMBOL(spa_export);
9875 EXPORT_SYMBOL(spa_reset);
9876 EXPORT_SYMBOL(spa_async_request);
9877 EXPORT_SYMBOL(spa_async_suspend);
9878 EXPORT_SYMBOL(spa_async_resume);
9879 EXPORT_SYMBOL(spa_inject_addref);
9880 EXPORT_SYMBOL(spa_inject_delref);
9881 EXPORT_SYMBOL(spa_scan_stat_init);
9882 EXPORT_SYMBOL(spa_scan_get_stats);
9883 
9884 /* device manipulation */
9885 EXPORT_SYMBOL(spa_vdev_add);
9886 EXPORT_SYMBOL(spa_vdev_attach);
9887 EXPORT_SYMBOL(spa_vdev_detach);
9888 EXPORT_SYMBOL(spa_vdev_setpath);
9889 EXPORT_SYMBOL(spa_vdev_setfru);
9890 EXPORT_SYMBOL(spa_vdev_split_mirror);
9891 
9892 /* spare statech is global across all pools) */
9893 EXPORT_SYMBOL(spa_spare_add);
9894 EXPORT_SYMBOL(spa_spare_remove);
9895 EXPORT_SYMBOL(spa_spare_exists);
9896 EXPORT_SYMBOL(spa_spare_activate);
9897 
9898 /* L2ARC statech is global across all pools) */
9899 EXPORT_SYMBOL(spa_l2cache_add);
9900 EXPORT_SYMBOL(spa_l2cache_remove);
9901 EXPORT_SYMBOL(spa_l2cache_exists);
9902 EXPORT_SYMBOL(spa_l2cache_activate);
9903 EXPORT_SYMBOL(spa_l2cache_drop);
9904 
9905 /* scanning */
9906 EXPORT_SYMBOL(spa_scan);
9907 EXPORT_SYMBOL(spa_scan_stop);
9908 
9909 /* spa syncing */
9910 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9911 EXPORT_SYMBOL(spa_sync_allpools);
9912 
9913 /* properties */
9914 EXPORT_SYMBOL(spa_prop_set);
9915 EXPORT_SYMBOL(spa_prop_get);
9916 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9917 
9918 /* asynchronous event notification */
9919 EXPORT_SYMBOL(spa_event_notify);
9920 
9921 /* BEGIN CSTYLED */
9922 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9923 	"log2 fraction of arc that can be used by inflight I/Os when "
9924 	"verifying pool during import");
9925 
9926 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9927 	"Set to traverse metadata on pool import");
9928 
9929 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9930 	"Set to traverse data on pool import");
9931 
9932 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9933 	"Print vdev tree to zfs_dbgmsg during pool import");
9934 
9935 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9936 	"Percentage of CPUs to run an IO worker thread");
9937 
9938 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9939 	"Number of threads per IO worker taskqueue");
9940 
9941 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9942 	"Allow importing pool with up to this number of missing top-level "
9943 	"vdevs (in read-only mode)");
9944 
9945 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9946 	"Set the livelist condense zthr to pause");
9947 
9948 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9949 	"Set the livelist condense synctask to pause");
9950 
9951 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9952 	"Whether livelist condensing was canceled in the synctask");
9953 
9954 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9955 	"Whether livelist condensing was canceled in the zthr function");
9956 
9957 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9958 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9959 	"was being condensed");
9960 /* END CSTYLED */
9961