xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 13d826ff947d9026f98e317e7385b22abfc0eace)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  */
38 
39 /*
40  * SPA: Storage Pool Allocator
41  *
42  * This file contains all the routines used when modifying on-disk SPA state.
43  * This includes opening, importing, destroying, exporting a pool, and syncing a
44  * pool.
45  */
46 
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_raidz.h>
67 #include <sys/vdev_draid.h>
68 #include <sys/metaslab.h>
69 #include <sys/metaslab_impl.h>
70 #include <sys/mmp.h>
71 #include <sys/uberblock_impl.h>
72 #include <sys/txg.h>
73 #include <sys/avl.h>
74 #include <sys/bpobj.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dmu_objset.h>
77 #include <sys/unique.h>
78 #include <sys/dsl_pool.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_synctask.h>
83 #include <sys/fs/zfs.h>
84 #include <sys/arc.h>
85 #include <sys/callb.h>
86 #include <sys/systeminfo.h>
87 #include <sys/zfs_ioctl.h>
88 #include <sys/dsl_scan.h>
89 #include <sys/zfeature.h>
90 #include <sys/dsl_destroy.h>
91 #include <sys/zvol.h>
92 
93 #ifdef	_KERNEL
94 #include <sys/fm/protocol.h>
95 #include <sys/fm/util.h>
96 #include <sys/callb.h>
97 #include <sys/zone.h>
98 #include <sys/vmsystm.h>
99 #endif	/* _KERNEL */
100 
101 #include "zfs_prop.h"
102 #include "zfs_comutil.h"
103 #include <cityhash.h>
104 
105 /*
106  * spa_thread() existed on Illumos as a parent thread for the various worker
107  * threads that actually run the pool, as a way to both reference the entire
108  * pool work as a single object, and to share properties like scheduling
109  * options. It has not yet been adapted to Linux or FreeBSD. This define is
110  * used to mark related parts of the code to make things easier for the reader,
111  * and to compile this code out. It can be removed when someone implements it,
112  * moves it to some Illumos-specific place, or removes it entirely.
113  */
114 #undef HAVE_SPA_THREAD
115 
116 /*
117  * The "System Duty Cycle" scheduling class is an Illumos feature to help
118  * prevent CPU-intensive kernel threads from affecting latency on interactive
119  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
120  * gated behind a define. On Illumos SDC depends on spa_thread(), but
121  * spa_thread() also has other uses, so this is a separate define.
122  */
123 #undef HAVE_SYSDC
124 
125 /*
126  * The interval, in seconds, at which failed configuration cache file writes
127  * should be retried.
128  */
129 int zfs_ccw_retry_interval = 300;
130 
131 typedef enum zti_modes {
132 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
133 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
134 	ZTI_MODE_SYNC,			/* sync thread assigned */
135 	ZTI_MODE_NULL,			/* don't create a taskq */
136 	ZTI_NMODES
137 } zti_modes_t;
138 
139 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
140 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
141 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
142 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
143 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
144 
145 #define	ZTI_N(n)	ZTI_P(n, 1)
146 #define	ZTI_ONE		ZTI_N(1)
147 
148 typedef struct zio_taskq_info {
149 	zti_modes_t zti_mode;
150 	uint_t zti_value;
151 	uint_t zti_count;
152 } zio_taskq_info_t;
153 
154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
155 	"iss", "iss_h", "int", "int_h"
156 };
157 
158 /*
159  * This table defines the taskq settings for each ZFS I/O type. When
160  * initializing a pool, we use this table to create an appropriately sized
161  * taskq. Some operations are low volume and therefore have a small, static
162  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
163  * macros. Other operations process a large amount of data; the ZTI_SCALE
164  * macro causes us to create a taskq oriented for throughput. Some operations
165  * are so high frequency and short-lived that the taskq itself can become a
166  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
167  * additional degree of parallelism specified by the number of threads per-
168  * taskq and the number of taskqs; when dispatching an event in this case, the
169  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
170  * that scales with the number of CPUs.
171  *
172  * The different taskq priorities are to handle the different contexts (issue
173  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
174  * need to be handled with minimum delay.
175  */
176 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
177 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
178 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
179 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
180 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
181 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
182 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
183 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
184 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
185 };
186 
187 static void spa_sync_version(void *arg, dmu_tx_t *tx);
188 static void spa_sync_props(void *arg, dmu_tx_t *tx);
189 static boolean_t spa_has_active_shared_spare(spa_t *spa);
190 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
191     const char **ereport);
192 static void spa_vdev_resilver_done(spa_t *spa);
193 
194 /*
195  * Percentage of all CPUs that can be used by the metaslab preload taskq.
196  */
197 static uint_t metaslab_preload_pct = 50;
198 
199 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
200 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
201 
202 #ifdef HAVE_SYSDC
203 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
204 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
205 #endif
206 
207 #ifdef HAVE_SPA_THREAD
208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
209 #endif
210 
211 static uint_t	zio_taskq_wr_iss_ncpus = 0;
212 
213 /*
214  * Report any spa_load_verify errors found, but do not fail spa_load.
215  * This is used by zdb to analyze non-idle pools.
216  */
217 boolean_t	spa_load_verify_dryrun = B_FALSE;
218 
219 /*
220  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
221  * This is used by zdb for spacemaps verification.
222  */
223 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
224 
225 /*
226  * This (illegal) pool name is used when temporarily importing a spa_t in order
227  * to get the vdev stats associated with the imported devices.
228  */
229 #define	TRYIMPORT_NAME	"$import"
230 
231 /*
232  * For debugging purposes: print out vdev tree during pool import.
233  */
234 static int		spa_load_print_vdev_tree = B_FALSE;
235 
236 /*
237  * A non-zero value for zfs_max_missing_tvds means that we allow importing
238  * pools with missing top-level vdevs. This is strictly intended for advanced
239  * pool recovery cases since missing data is almost inevitable. Pools with
240  * missing devices can only be imported read-only for safety reasons, and their
241  * fail-mode will be automatically set to "continue".
242  *
243  * With 1 missing vdev we should be able to import the pool and mount all
244  * datasets. User data that was not modified after the missing device has been
245  * added should be recoverable. This means that snapshots created prior to the
246  * addition of that device should be completely intact.
247  *
248  * With 2 missing vdevs, some datasets may fail to mount since there are
249  * dataset statistics that are stored as regular metadata. Some data might be
250  * recoverable if those vdevs were added recently.
251  *
252  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
253  * may be missing entirely. Chances of data recovery are very low. Note that
254  * there are also risks of performing an inadvertent rewind as we might be
255  * missing all the vdevs with the latest uberblocks.
256  */
257 uint64_t	zfs_max_missing_tvds = 0;
258 
259 /*
260  * The parameters below are similar to zfs_max_missing_tvds but are only
261  * intended for a preliminary open of the pool with an untrusted config which
262  * might be incomplete or out-dated.
263  *
264  * We are more tolerant for pools opened from a cachefile since we could have
265  * an out-dated cachefile where a device removal was not registered.
266  * We could have set the limit arbitrarily high but in the case where devices
267  * are really missing we would want to return the proper error codes; we chose
268  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
269  * and we get a chance to retrieve the trusted config.
270  */
271 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
272 
273 /*
274  * In the case where config was assembled by scanning device paths (/dev/dsks
275  * by default) we are less tolerant since all the existing devices should have
276  * been detected and we want spa_load to return the right error codes.
277  */
278 uint64_t	zfs_max_missing_tvds_scan = 0;
279 
280 /*
281  * Debugging aid that pauses spa_sync() towards the end.
282  */
283 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
284 
285 /*
286  * Variables to indicate the livelist condense zthr func should wait at certain
287  * points for the livelist to be removed - used to test condense/destroy races
288  */
289 static int zfs_livelist_condense_zthr_pause = 0;
290 static int zfs_livelist_condense_sync_pause = 0;
291 
292 /*
293  * Variables to track whether or not condense cancellation has been
294  * triggered in testing.
295  */
296 static int zfs_livelist_condense_sync_cancel = 0;
297 static int zfs_livelist_condense_zthr_cancel = 0;
298 
299 /*
300  * Variable to track whether or not extra ALLOC blkptrs were added to a
301  * livelist entry while it was being condensed (caused by the way we track
302  * remapped blkptrs in dbuf_remap_impl)
303  */
304 static int zfs_livelist_condense_new_alloc = 0;
305 
306 /*
307  * ==========================================================================
308  * SPA properties routines
309  * ==========================================================================
310  */
311 
312 /*
313  * Add a (source=src, propname=propval) list to an nvlist.
314  */
315 static void
316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
317     uint64_t intval, zprop_source_t src)
318 {
319 	const char *propname = zpool_prop_to_name(prop);
320 	nvlist_t *propval;
321 
322 	propval = fnvlist_alloc();
323 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
324 
325 	if (strval != NULL)
326 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
327 	else
328 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
329 
330 	fnvlist_add_nvlist(nvl, propname, propval);
331 	nvlist_free(propval);
332 }
333 
334 /*
335  * Add a user property (source=src, propname=propval) to an nvlist.
336  */
337 static void
338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
339     zprop_source_t src)
340 {
341 	nvlist_t *propval;
342 
343 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
344 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
345 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
346 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
347 	nvlist_free(propval);
348 }
349 
350 /*
351  * Get property values from the spa configuration.
352  */
353 static void
354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
355 {
356 	vdev_t *rvd = spa->spa_root_vdev;
357 	dsl_pool_t *pool = spa->spa_dsl_pool;
358 	uint64_t size, alloc, cap, version;
359 	const zprop_source_t src = ZPROP_SRC_NONE;
360 	spa_config_dirent_t *dp;
361 	metaslab_class_t *mc = spa_normal_class(spa);
362 
363 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
364 
365 	if (rvd != NULL) {
366 		alloc = metaslab_class_get_alloc(mc);
367 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
368 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
369 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
370 
371 		size = metaslab_class_get_space(mc);
372 		size += metaslab_class_get_space(spa_special_class(spa));
373 		size += metaslab_class_get_space(spa_dedup_class(spa));
374 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
375 
376 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
377 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
378 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
379 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
380 		    size - alloc, src);
381 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
382 		    spa->spa_checkpoint_info.sci_dspace, src);
383 
384 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
385 		    metaslab_class_fragmentation(mc), src);
386 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
387 		    metaslab_class_expandable_space(mc), src);
388 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
389 		    (spa_mode(spa) == SPA_MODE_READ), src);
390 
391 		cap = (size == 0) ? 0 : (alloc * 100 / size);
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
393 
394 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
395 		    ddt_get_pool_dedup_ratio(spa), src);
396 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
397 		    brt_get_used(spa), src);
398 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
399 		    brt_get_saved(spa), src);
400 		spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
401 		    brt_get_ratio(spa), src);
402 
403 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
404 		    rvd->vdev_state, src);
405 
406 		version = spa_version(spa);
407 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
408 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
409 			    version, ZPROP_SRC_DEFAULT);
410 		} else {
411 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
412 			    version, ZPROP_SRC_LOCAL);
413 		}
414 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
415 		    NULL, spa_load_guid(spa), src);
416 	}
417 
418 	if (pool != NULL) {
419 		/*
420 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
421 		 * when opening pools before this version freedir will be NULL.
422 		 */
423 		if (pool->dp_free_dir != NULL) {
424 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
425 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
426 			    src);
427 		} else {
428 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
429 			    NULL, 0, src);
430 		}
431 
432 		if (pool->dp_leak_dir != NULL) {
433 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
434 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
435 			    src);
436 		} else {
437 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
438 			    NULL, 0, src);
439 		}
440 	}
441 
442 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
443 
444 	if (spa->spa_comment != NULL) {
445 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
446 		    0, ZPROP_SRC_LOCAL);
447 	}
448 
449 	if (spa->spa_compatibility != NULL) {
450 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
451 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
452 	}
453 
454 	if (spa->spa_root != NULL)
455 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
456 		    0, ZPROP_SRC_LOCAL);
457 
458 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
459 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
460 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
461 	} else {
462 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
463 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
464 	}
465 
466 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
467 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
468 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
469 	} else {
470 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
471 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
472 	}
473 
474 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
475 		if (dp->scd_path == NULL) {
476 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
477 			    "none", 0, ZPROP_SRC_LOCAL);
478 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
479 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
480 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
481 		}
482 	}
483 }
484 
485 /*
486  * Get zpool property values.
487  */
488 int
489 spa_prop_get(spa_t *spa, nvlist_t **nvp)
490 {
491 	objset_t *mos = spa->spa_meta_objset;
492 	zap_cursor_t zc;
493 	zap_attribute_t za;
494 	dsl_pool_t *dp;
495 	int err;
496 
497 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
498 	if (err)
499 		return (err);
500 
501 	dp = spa_get_dsl(spa);
502 	dsl_pool_config_enter(dp, FTAG);
503 	mutex_enter(&spa->spa_props_lock);
504 
505 	/*
506 	 * Get properties from the spa config.
507 	 */
508 	spa_prop_get_config(spa, nvp);
509 
510 	/* If no pool property object, no more prop to get. */
511 	if (mos == NULL || spa->spa_pool_props_object == 0)
512 		goto out;
513 
514 	/*
515 	 * Get properties from the MOS pool property object.
516 	 */
517 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
518 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
519 	    zap_cursor_advance(&zc)) {
520 		uint64_t intval = 0;
521 		char *strval = NULL;
522 		zprop_source_t src = ZPROP_SRC_DEFAULT;
523 		zpool_prop_t prop;
524 
525 		if ((prop = zpool_name_to_prop(za.za_name)) ==
526 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
527 			continue;
528 
529 		switch (za.za_integer_length) {
530 		case 8:
531 			/* integer property */
532 			if (za.za_first_integer !=
533 			    zpool_prop_default_numeric(prop))
534 				src = ZPROP_SRC_LOCAL;
535 
536 			if (prop == ZPOOL_PROP_BOOTFS) {
537 				dsl_dataset_t *ds = NULL;
538 
539 				err = dsl_dataset_hold_obj(dp,
540 				    za.za_first_integer, FTAG, &ds);
541 				if (err != 0)
542 					break;
543 
544 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
545 				    KM_SLEEP);
546 				dsl_dataset_name(ds, strval);
547 				dsl_dataset_rele(ds, FTAG);
548 			} else {
549 				strval = NULL;
550 				intval = za.za_first_integer;
551 			}
552 
553 			spa_prop_add_list(*nvp, prop, strval, intval, src);
554 
555 			if (strval != NULL)
556 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
557 
558 			break;
559 
560 		case 1:
561 			/* string property */
562 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
563 			err = zap_lookup(mos, spa->spa_pool_props_object,
564 			    za.za_name, 1, za.za_num_integers, strval);
565 			if (err) {
566 				kmem_free(strval, za.za_num_integers);
567 				break;
568 			}
569 			if (prop != ZPOOL_PROP_INVAL) {
570 				spa_prop_add_list(*nvp, prop, strval, 0, src);
571 			} else {
572 				src = ZPROP_SRC_LOCAL;
573 				spa_prop_add_user(*nvp, za.za_name, strval,
574 				    src);
575 			}
576 			kmem_free(strval, za.za_num_integers);
577 			break;
578 
579 		default:
580 			break;
581 		}
582 	}
583 	zap_cursor_fini(&zc);
584 out:
585 	mutex_exit(&spa->spa_props_lock);
586 	dsl_pool_config_exit(dp, FTAG);
587 	if (err && err != ENOENT) {
588 		nvlist_free(*nvp);
589 		*nvp = NULL;
590 		return (err);
591 	}
592 
593 	return (0);
594 }
595 
596 /*
597  * Validate the given pool properties nvlist and modify the list
598  * for the property values to be set.
599  */
600 static int
601 spa_prop_validate(spa_t *spa, nvlist_t *props)
602 {
603 	nvpair_t *elem;
604 	int error = 0, reset_bootfs = 0;
605 	uint64_t objnum = 0;
606 	boolean_t has_feature = B_FALSE;
607 
608 	elem = NULL;
609 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
610 		uint64_t intval;
611 		const char *strval, *slash, *check, *fname;
612 		const char *propname = nvpair_name(elem);
613 		zpool_prop_t prop = zpool_name_to_prop(propname);
614 
615 		switch (prop) {
616 		case ZPOOL_PROP_INVAL:
617 			/*
618 			 * Sanitize the input.
619 			 */
620 			if (zfs_prop_user(propname)) {
621 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
622 					error = SET_ERROR(ENAMETOOLONG);
623 					break;
624 				}
625 
626 				if (strlen(fnvpair_value_string(elem)) >=
627 				    ZAP_MAXVALUELEN) {
628 					error = SET_ERROR(E2BIG);
629 					break;
630 				}
631 			} else if (zpool_prop_feature(propname)) {
632 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
633 					error = SET_ERROR(EINVAL);
634 					break;
635 				}
636 
637 				if (nvpair_value_uint64(elem, &intval) != 0) {
638 					error = SET_ERROR(EINVAL);
639 					break;
640 				}
641 
642 				if (intval != 0) {
643 					error = SET_ERROR(EINVAL);
644 					break;
645 				}
646 
647 				fname = strchr(propname, '@') + 1;
648 				if (zfeature_lookup_name(fname, NULL) != 0) {
649 					error = SET_ERROR(EINVAL);
650 					break;
651 				}
652 
653 				has_feature = B_TRUE;
654 			} else {
655 				error = SET_ERROR(EINVAL);
656 				break;
657 			}
658 			break;
659 
660 		case ZPOOL_PROP_VERSION:
661 			error = nvpair_value_uint64(elem, &intval);
662 			if (!error &&
663 			    (intval < spa_version(spa) ||
664 			    intval > SPA_VERSION_BEFORE_FEATURES ||
665 			    has_feature))
666 				error = SET_ERROR(EINVAL);
667 			break;
668 
669 		case ZPOOL_PROP_DELEGATION:
670 		case ZPOOL_PROP_AUTOREPLACE:
671 		case ZPOOL_PROP_LISTSNAPS:
672 		case ZPOOL_PROP_AUTOEXPAND:
673 		case ZPOOL_PROP_AUTOTRIM:
674 			error = nvpair_value_uint64(elem, &intval);
675 			if (!error && intval > 1)
676 				error = SET_ERROR(EINVAL);
677 			break;
678 
679 		case ZPOOL_PROP_MULTIHOST:
680 			error = nvpair_value_uint64(elem, &intval);
681 			if (!error && intval > 1)
682 				error = SET_ERROR(EINVAL);
683 
684 			if (!error) {
685 				uint32_t hostid = zone_get_hostid(NULL);
686 				if (hostid)
687 					spa->spa_hostid = hostid;
688 				else
689 					error = SET_ERROR(ENOTSUP);
690 			}
691 
692 			break;
693 
694 		case ZPOOL_PROP_BOOTFS:
695 			/*
696 			 * If the pool version is less than SPA_VERSION_BOOTFS,
697 			 * or the pool is still being created (version == 0),
698 			 * the bootfs property cannot be set.
699 			 */
700 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
701 				error = SET_ERROR(ENOTSUP);
702 				break;
703 			}
704 
705 			/*
706 			 * Make sure the vdev config is bootable
707 			 */
708 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
709 				error = SET_ERROR(ENOTSUP);
710 				break;
711 			}
712 
713 			reset_bootfs = 1;
714 
715 			error = nvpair_value_string(elem, &strval);
716 
717 			if (!error) {
718 				objset_t *os;
719 
720 				if (strval == NULL || strval[0] == '\0') {
721 					objnum = zpool_prop_default_numeric(
722 					    ZPOOL_PROP_BOOTFS);
723 					break;
724 				}
725 
726 				error = dmu_objset_hold(strval, FTAG, &os);
727 				if (error != 0)
728 					break;
729 
730 				/* Must be ZPL. */
731 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
732 					error = SET_ERROR(ENOTSUP);
733 				} else {
734 					objnum = dmu_objset_id(os);
735 				}
736 				dmu_objset_rele(os, FTAG);
737 			}
738 			break;
739 
740 		case ZPOOL_PROP_FAILUREMODE:
741 			error = nvpair_value_uint64(elem, &intval);
742 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
743 				error = SET_ERROR(EINVAL);
744 
745 			/*
746 			 * This is a special case which only occurs when
747 			 * the pool has completely failed. This allows
748 			 * the user to change the in-core failmode property
749 			 * without syncing it out to disk (I/Os might
750 			 * currently be blocked). We do this by returning
751 			 * EIO to the caller (spa_prop_set) to trick it
752 			 * into thinking we encountered a property validation
753 			 * error.
754 			 */
755 			if (!error && spa_suspended(spa)) {
756 				spa->spa_failmode = intval;
757 				error = SET_ERROR(EIO);
758 			}
759 			break;
760 
761 		case ZPOOL_PROP_CACHEFILE:
762 			if ((error = nvpair_value_string(elem, &strval)) != 0)
763 				break;
764 
765 			if (strval[0] == '\0')
766 				break;
767 
768 			if (strcmp(strval, "none") == 0)
769 				break;
770 
771 			if (strval[0] != '/') {
772 				error = SET_ERROR(EINVAL);
773 				break;
774 			}
775 
776 			slash = strrchr(strval, '/');
777 			ASSERT(slash != NULL);
778 
779 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
780 			    strcmp(slash, "/..") == 0)
781 				error = SET_ERROR(EINVAL);
782 			break;
783 
784 		case ZPOOL_PROP_COMMENT:
785 			if ((error = nvpair_value_string(elem, &strval)) != 0)
786 				break;
787 			for (check = strval; *check != '\0'; check++) {
788 				if (!isprint(*check)) {
789 					error = SET_ERROR(EINVAL);
790 					break;
791 				}
792 			}
793 			if (strlen(strval) > ZPROP_MAX_COMMENT)
794 				error = SET_ERROR(E2BIG);
795 			break;
796 
797 		default:
798 			break;
799 		}
800 
801 		if (error)
802 			break;
803 	}
804 
805 	(void) nvlist_remove_all(props,
806 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
807 
808 	if (!error && reset_bootfs) {
809 		error = nvlist_remove(props,
810 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
811 
812 		if (!error) {
813 			error = nvlist_add_uint64(props,
814 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
815 		}
816 	}
817 
818 	return (error);
819 }
820 
821 void
822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
823 {
824 	const char *cachefile;
825 	spa_config_dirent_t *dp;
826 
827 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
828 	    &cachefile) != 0)
829 		return;
830 
831 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
832 	    KM_SLEEP);
833 
834 	if (cachefile[0] == '\0')
835 		dp->scd_path = spa_strdup(spa_config_path);
836 	else if (strcmp(cachefile, "none") == 0)
837 		dp->scd_path = NULL;
838 	else
839 		dp->scd_path = spa_strdup(cachefile);
840 
841 	list_insert_head(&spa->spa_config_list, dp);
842 	if (need_sync)
843 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
844 }
845 
846 int
847 spa_prop_set(spa_t *spa, nvlist_t *nvp)
848 {
849 	int error;
850 	nvpair_t *elem = NULL;
851 	boolean_t need_sync = B_FALSE;
852 
853 	if ((error = spa_prop_validate(spa, nvp)) != 0)
854 		return (error);
855 
856 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
857 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
858 
859 		if (prop == ZPOOL_PROP_CACHEFILE ||
860 		    prop == ZPOOL_PROP_ALTROOT ||
861 		    prop == ZPOOL_PROP_READONLY)
862 			continue;
863 
864 		if (prop == ZPOOL_PROP_INVAL &&
865 		    zfs_prop_user(nvpair_name(elem))) {
866 			need_sync = B_TRUE;
867 			break;
868 		}
869 
870 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
871 			uint64_t ver = 0;
872 
873 			if (prop == ZPOOL_PROP_VERSION) {
874 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
875 			} else {
876 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
877 				ver = SPA_VERSION_FEATURES;
878 				need_sync = B_TRUE;
879 			}
880 
881 			/* Save time if the version is already set. */
882 			if (ver == spa_version(spa))
883 				continue;
884 
885 			/*
886 			 * In addition to the pool directory object, we might
887 			 * create the pool properties object, the features for
888 			 * read object, the features for write object, or the
889 			 * feature descriptions object.
890 			 */
891 			error = dsl_sync_task(spa->spa_name, NULL,
892 			    spa_sync_version, &ver,
893 			    6, ZFS_SPACE_CHECK_RESERVED);
894 			if (error)
895 				return (error);
896 			continue;
897 		}
898 
899 		need_sync = B_TRUE;
900 		break;
901 	}
902 
903 	if (need_sync) {
904 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
905 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
906 	}
907 
908 	return (0);
909 }
910 
911 /*
912  * If the bootfs property value is dsobj, clear it.
913  */
914 void
915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
916 {
917 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
918 		VERIFY(zap_remove(spa->spa_meta_objset,
919 		    spa->spa_pool_props_object,
920 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
921 		spa->spa_bootfs = 0;
922 	}
923 }
924 
925 static int
926 spa_change_guid_check(void *arg, dmu_tx_t *tx)
927 {
928 	uint64_t *newguid __maybe_unused = arg;
929 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
930 	vdev_t *rvd = spa->spa_root_vdev;
931 	uint64_t vdev_state;
932 
933 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
934 		int error = (spa_has_checkpoint(spa)) ?
935 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
936 		return (SET_ERROR(error));
937 	}
938 
939 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
940 	vdev_state = rvd->vdev_state;
941 	spa_config_exit(spa, SCL_STATE, FTAG);
942 
943 	if (vdev_state != VDEV_STATE_HEALTHY)
944 		return (SET_ERROR(ENXIO));
945 
946 	ASSERT3U(spa_guid(spa), !=, *newguid);
947 
948 	return (0);
949 }
950 
951 static void
952 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
953 {
954 	uint64_t *newguid = arg;
955 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
956 	uint64_t oldguid;
957 	vdev_t *rvd = spa->spa_root_vdev;
958 
959 	oldguid = spa_guid(spa);
960 
961 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
962 	rvd->vdev_guid = *newguid;
963 	rvd->vdev_guid_sum += (*newguid - oldguid);
964 	vdev_config_dirty(rvd);
965 	spa_config_exit(spa, SCL_STATE, FTAG);
966 
967 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
968 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
969 }
970 
971 /*
972  * Change the GUID for the pool.  This is done so that we can later
973  * re-import a pool built from a clone of our own vdevs.  We will modify
974  * the root vdev's guid, our own pool guid, and then mark all of our
975  * vdevs dirty.  Note that we must make sure that all our vdevs are
976  * online when we do this, or else any vdevs that weren't present
977  * would be orphaned from our pool.  We are also going to issue a
978  * sysevent to update any watchers.
979  */
980 int
981 spa_change_guid(spa_t *spa)
982 {
983 	int error;
984 	uint64_t guid;
985 
986 	mutex_enter(&spa->spa_vdev_top_lock);
987 	mutex_enter(&spa_namespace_lock);
988 	guid = spa_generate_guid(NULL);
989 
990 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
991 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
992 
993 	if (error == 0) {
994 		/*
995 		 * Clear the kobj flag from all the vdevs to allow
996 		 * vdev_cache_process_kobj_evt() to post events to all the
997 		 * vdevs since GUID is updated.
998 		 */
999 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1000 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1001 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1002 
1003 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1004 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1005 	}
1006 
1007 	mutex_exit(&spa_namespace_lock);
1008 	mutex_exit(&spa->spa_vdev_top_lock);
1009 
1010 	return (error);
1011 }
1012 
1013 /*
1014  * ==========================================================================
1015  * SPA state manipulation (open/create/destroy/import/export)
1016  * ==========================================================================
1017  */
1018 
1019 static int
1020 spa_error_entry_compare(const void *a, const void *b)
1021 {
1022 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1023 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1024 	int ret;
1025 
1026 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1027 	    sizeof (zbookmark_phys_t));
1028 
1029 	return (TREE_ISIGN(ret));
1030 }
1031 
1032 /*
1033  * Utility function which retrieves copies of the current logs and
1034  * re-initializes them in the process.
1035  */
1036 void
1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1038 {
1039 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1040 
1041 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1042 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1043 
1044 	avl_create(&spa->spa_errlist_scrub,
1045 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1046 	    offsetof(spa_error_entry_t, se_avl));
1047 	avl_create(&spa->spa_errlist_last,
1048 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1049 	    offsetof(spa_error_entry_t, se_avl));
1050 }
1051 
1052 static void
1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1054 {
1055 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1056 	enum zti_modes mode = ztip->zti_mode;
1057 	uint_t value = ztip->zti_value;
1058 	uint_t count = ztip->zti_count;
1059 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1060 	uint_t cpus, flags = TASKQ_DYNAMIC;
1061 
1062 	switch (mode) {
1063 	case ZTI_MODE_FIXED:
1064 		ASSERT3U(value, >, 0);
1065 		break;
1066 
1067 	case ZTI_MODE_SYNC:
1068 
1069 		/*
1070 		 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus',
1071 		 * not to exceed the number of spa allocators.
1072 		 */
1073 		if (zio_taskq_wr_iss_ncpus == 0) {
1074 			count = MAX(boot_ncpus / spa->spa_alloc_count, 1);
1075 		} else {
1076 			count = MAX(1,
1077 			    boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus));
1078 		}
1079 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1080 		count = MIN(count, spa->spa_alloc_count);
1081 
1082 		/*
1083 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1084 		 * single taskq may have more threads than 100% of online cpus.
1085 		 */
1086 		value = (zio_taskq_batch_pct + count / 2) / count;
1087 		value = MIN(value, 100);
1088 		flags |= TASKQ_THREADS_CPU_PCT;
1089 		break;
1090 
1091 	case ZTI_MODE_SCALE:
1092 		flags |= TASKQ_THREADS_CPU_PCT;
1093 		/*
1094 		 * We want more taskqs to reduce lock contention, but we want
1095 		 * less for better request ordering and CPU utilization.
1096 		 */
1097 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1098 		if (zio_taskq_batch_tpq > 0) {
1099 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1100 			    zio_taskq_batch_tpq);
1101 		} else {
1102 			/*
1103 			 * Prefer 6 threads per taskq, but no more taskqs
1104 			 * than threads in them on large systems. For 80%:
1105 			 *
1106 			 *                 taskq   taskq   total
1107 			 * cpus    taskqs  percent threads threads
1108 			 * ------- ------- ------- ------- -------
1109 			 * 1       1       80%     1       1
1110 			 * 2       1       80%     1       1
1111 			 * 4       1       80%     3       3
1112 			 * 8       2       40%     3       6
1113 			 * 16      3       27%     4       12
1114 			 * 32      5       16%     5       25
1115 			 * 64      7       11%     7       49
1116 			 * 128     10      8%      10      100
1117 			 * 256     14      6%      15      210
1118 			 */
1119 			count = 1 + cpus / 6;
1120 			while (count * count > cpus)
1121 				count--;
1122 		}
1123 		/* Limit each taskq within 100% to not trigger assertion. */
1124 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1125 		value = (zio_taskq_batch_pct + count / 2) / count;
1126 		break;
1127 
1128 	case ZTI_MODE_NULL:
1129 		tqs->stqs_count = 0;
1130 		tqs->stqs_taskq = NULL;
1131 		return;
1132 
1133 	default:
1134 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1135 		    "spa_taskqs_init()",
1136 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1137 		break;
1138 	}
1139 
1140 	ASSERT3U(count, >, 0);
1141 	tqs->stqs_count = count;
1142 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1143 
1144 	for (uint_t i = 0; i < count; i++) {
1145 		taskq_t *tq;
1146 		char name[32];
1147 
1148 		if (count > 1)
1149 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1150 			    zio_type_name[t], zio_taskq_types[q], i);
1151 		else
1152 			(void) snprintf(name, sizeof (name), "%s_%s",
1153 			    zio_type_name[t], zio_taskq_types[q]);
1154 
1155 #ifdef HAVE_SYSDC
1156 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1157 			(void) zio_taskq_basedc;
1158 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1159 			    spa->spa_proc, zio_taskq_basedc, flags);
1160 		} else {
1161 #endif
1162 			pri_t pri = maxclsyspri;
1163 			/*
1164 			 * The write issue taskq can be extremely CPU
1165 			 * intensive.  Run it at slightly less important
1166 			 * priority than the other taskqs.
1167 			 *
1168 			 * Under Linux and FreeBSD this means incrementing
1169 			 * the priority value as opposed to platforms like
1170 			 * illumos where it should be decremented.
1171 			 *
1172 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1173 			 * are equal then a difference between them is
1174 			 * insignificant.
1175 			 */
1176 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1177 #if defined(__linux__)
1178 				pri++;
1179 #elif defined(__FreeBSD__)
1180 				pri += 4;
1181 #else
1182 #error "unknown OS"
1183 #endif
1184 			}
1185 			tq = taskq_create_proc(name, value, pri, 50,
1186 			    INT_MAX, spa->spa_proc, flags);
1187 #ifdef HAVE_SYSDC
1188 		}
1189 #endif
1190 
1191 		tqs->stqs_taskq[i] = tq;
1192 	}
1193 }
1194 
1195 static void
1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1197 {
1198 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1199 
1200 	if (tqs->stqs_taskq == NULL) {
1201 		ASSERT3U(tqs->stqs_count, ==, 0);
1202 		return;
1203 	}
1204 
1205 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1206 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1207 		taskq_destroy(tqs->stqs_taskq[i]);
1208 	}
1209 
1210 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1211 	tqs->stqs_taskq = NULL;
1212 }
1213 
1214 #ifdef _KERNEL
1215 /*
1216  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1217  * by setting zio_taskq_read or zio_taskq_write.
1218  *
1219  * Example (the defaults for READ and WRITE)
1220  *   zio_taskq_read='fixed,1,8 null scale null'
1221  *   zio_taskq_write='sync fixed,1,5 scale fixed,1,5'
1222  *
1223  * Each sets the entire row at a time.
1224  *
1225  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1226  * of threads per taskq.
1227  *
1228  * 'null' can only be set on the high-priority queues (queue selection for
1229  * high-priority queues will fall back to the regular queue if the high-pri
1230  * is NULL.
1231  */
1232 static const char *const modes[ZTI_NMODES] = {
1233 	"fixed", "scale", "sync", "null"
1234 };
1235 
1236 /* Parse the incoming config string. Modifies cfg */
1237 static int
1238 spa_taskq_param_set(zio_type_t t, char *cfg)
1239 {
1240 	int err = 0;
1241 
1242 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1243 
1244 	char *next = cfg, *tok, *c;
1245 
1246 	/*
1247 	 * Parse out each element from the string and fill `row`. The entire
1248 	 * row has to be set at once, so any errors are flagged by just
1249 	 * breaking out of this loop early.
1250 	 */
1251 	uint_t q;
1252 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 		/* `next` is the start of the config */
1254 		if (next == NULL)
1255 			break;
1256 
1257 		/* Eat up leading space */
1258 		while (isspace(*next))
1259 			next++;
1260 		if (*next == '\0')
1261 			break;
1262 
1263 		/* Mode ends at space or end of string */
1264 		tok = next;
1265 		next = strchr(tok, ' ');
1266 		if (next != NULL) *next++ = '\0';
1267 
1268 		/* Parameters start after a comma */
1269 		c = strchr(tok, ',');
1270 		if (c != NULL) *c++ = '\0';
1271 
1272 		/* Match mode string */
1273 		uint_t mode;
1274 		for (mode = 0; mode < ZTI_NMODES; mode++)
1275 			if (strcmp(tok, modes[mode]) == 0)
1276 				break;
1277 		if (mode == ZTI_NMODES)
1278 			break;
1279 
1280 		/* Invalid canary */
1281 		row[q].zti_mode = ZTI_NMODES;
1282 
1283 		/* Per-mode setup */
1284 		switch (mode) {
1285 
1286 		/*
1287 		 * FIXED is parameterised: number of queues, and number of
1288 		 * threads per queue.
1289 		 */
1290 		case ZTI_MODE_FIXED: {
1291 			/* No parameters? */
1292 			if (c == NULL || *c == '\0')
1293 				break;
1294 
1295 			/* Find next parameter */
1296 			tok = c;
1297 			c = strchr(tok, ',');
1298 			if (c == NULL)
1299 				break;
1300 
1301 			/* Take digits and convert */
1302 			unsigned long long nq;
1303 			if (!(isdigit(*tok)))
1304 				break;
1305 			err = ddi_strtoull(tok, &tok, 10, &nq);
1306 			/* Must succeed and also end at the next param sep */
1307 			if (err != 0 || tok != c)
1308 				break;
1309 
1310 			/* Move past the comma */
1311 			tok++;
1312 			/* Need another number */
1313 			if (!(isdigit(*tok)))
1314 				break;
1315 			/* Remember start to make sure we moved */
1316 			c = tok;
1317 
1318 			/* Take digits */
1319 			unsigned long long ntpq;
1320 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1321 			/* Must succeed, and moved forward */
1322 			if (err != 0 || tok == c || *tok != '\0')
1323 				break;
1324 
1325 			/*
1326 			 * sanity; zero queues/threads make no sense, and
1327 			 * 16K is almost certainly more than anyone will ever
1328 			 * need and avoids silly numbers like UINT32_MAX
1329 			 */
1330 			if (nq == 0 || nq >= 16384 ||
1331 			    ntpq == 0 || ntpq >= 16384)
1332 				break;
1333 
1334 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1335 			row[q] = zti;
1336 			break;
1337 		}
1338 
1339 		case ZTI_MODE_SCALE: {
1340 			const zio_taskq_info_t zti = ZTI_SCALE;
1341 			row[q] = zti;
1342 			break;
1343 		}
1344 
1345 		case ZTI_MODE_SYNC: {
1346 			const zio_taskq_info_t zti = ZTI_SYNC;
1347 			row[q] = zti;
1348 			break;
1349 		}
1350 
1351 		case ZTI_MODE_NULL: {
1352 			/*
1353 			 * Can only null the high-priority queues; the general-
1354 			 * purpose ones have to exist.
1355 			 */
1356 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1357 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1358 				break;
1359 
1360 			const zio_taskq_info_t zti = ZTI_NULL;
1361 			row[q] = zti;
1362 			break;
1363 		}
1364 
1365 		default:
1366 			break;
1367 		}
1368 
1369 		/* Ensure we set a mode */
1370 		if (row[q].zti_mode == ZTI_NMODES)
1371 			break;
1372 	}
1373 
1374 	/* Didn't get a full row, fail */
1375 	if (q < ZIO_TASKQ_TYPES)
1376 		return (SET_ERROR(EINVAL));
1377 
1378 	/* Eat trailing space */
1379 	if (next != NULL)
1380 		while (isspace(*next))
1381 			next++;
1382 
1383 	/* If there's anything left over then fail */
1384 	if (next != NULL && *next != '\0')
1385 		return (SET_ERROR(EINVAL));
1386 
1387 	/* Success! Copy it into the real config */
1388 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1389 		zio_taskqs[t][q] = row[q];
1390 
1391 	return (0);
1392 }
1393 
1394 static int
1395 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1396 {
1397 	int pos = 0;
1398 
1399 	/* Build paramater string from live config */
1400 	const char *sep = "";
1401 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1402 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1403 		if (zti->zti_mode == ZTI_MODE_FIXED)
1404 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1405 			    modes[zti->zti_mode], zti->zti_count,
1406 			    zti->zti_value);
1407 		else
1408 			pos += sprintf(&buf[pos], "%s%s", sep,
1409 			    modes[zti->zti_mode]);
1410 		sep = " ";
1411 	}
1412 
1413 	if (add_newline)
1414 		buf[pos++] = '\n';
1415 	buf[pos] = '\0';
1416 
1417 	return (pos);
1418 }
1419 
1420 #ifdef __linux__
1421 static int
1422 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1423 {
1424 	char *cfg = kmem_strdup(val);
1425 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1426 	kmem_free(cfg, strlen(val)+1);
1427 	return (-err);
1428 }
1429 static int
1430 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1431 {
1432 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1433 }
1434 
1435 static int
1436 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1437 {
1438 	char *cfg = kmem_strdup(val);
1439 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1440 	kmem_free(cfg, strlen(val)+1);
1441 	return (-err);
1442 }
1443 static int
1444 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1445 {
1446 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1447 }
1448 #else
1449 /*
1450  * On FreeBSD load-time parameters can be set up before malloc() is available,
1451  * so we have to do all the parsing work on the stack.
1452  */
1453 #define	SPA_TASKQ_PARAM_MAX	(128)
1454 
1455 static int
1456 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1457 {
1458 	char buf[SPA_TASKQ_PARAM_MAX];
1459 	int err;
1460 
1461 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1462 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1463 	if (err || req->newptr == NULL)
1464 		return (err);
1465 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1466 }
1467 
1468 static int
1469 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1470 {
1471 	char buf[SPA_TASKQ_PARAM_MAX];
1472 	int err;
1473 
1474 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1475 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1476 	if (err || req->newptr == NULL)
1477 		return (err);
1478 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1479 }
1480 #endif
1481 #endif /* _KERNEL */
1482 
1483 /*
1484  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1485  * Note that a type may have multiple discrete taskqs to avoid lock contention
1486  * on the taskq itself.
1487  */
1488 static taskq_t *
1489 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1490     zio_t *zio)
1491 {
1492 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1493 	taskq_t *tq;
1494 
1495 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1496 	ASSERT3U(tqs->stqs_count, !=, 0);
1497 
1498 	if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1499 	    (zio != NULL) && (zio->io_wr_iss_tq != NULL)) {
1500 		/* dispatch to assigned write issue taskq */
1501 		tq = zio->io_wr_iss_tq;
1502 		return (tq);
1503 	}
1504 
1505 	if (tqs->stqs_count == 1) {
1506 		tq = tqs->stqs_taskq[0];
1507 	} else {
1508 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1509 	}
1510 	return (tq);
1511 }
1512 
1513 void
1514 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1515     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent,
1516     zio_t *zio)
1517 {
1518 	taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio);
1519 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1520 }
1521 
1522 /*
1523  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1524  */
1525 void
1526 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1527     task_func_t *func, void *arg, uint_t flags)
1528 {
1529 	taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL);
1530 	taskqid_t id = taskq_dispatch(tq, func, arg, flags);
1531 	if (id)
1532 		taskq_wait_id(tq, id);
1533 }
1534 
1535 static void
1536 spa_create_zio_taskqs(spa_t *spa)
1537 {
1538 	for (int t = 0; t < ZIO_TYPES; t++) {
1539 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1540 			spa_taskqs_init(spa, t, q);
1541 		}
1542 	}
1543 }
1544 
1545 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1546 static void
1547 spa_thread(void *arg)
1548 {
1549 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1550 	callb_cpr_t cprinfo;
1551 
1552 	spa_t *spa = arg;
1553 	user_t *pu = PTOU(curproc);
1554 
1555 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1556 	    spa->spa_name);
1557 
1558 	ASSERT(curproc != &p0);
1559 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1560 	    "zpool-%s", spa->spa_name);
1561 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1562 
1563 	/* bind this thread to the requested psrset */
1564 	if (zio_taskq_psrset_bind != PS_NONE) {
1565 		pool_lock();
1566 		mutex_enter(&cpu_lock);
1567 		mutex_enter(&pidlock);
1568 		mutex_enter(&curproc->p_lock);
1569 
1570 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1571 		    0, NULL, NULL) == 0)  {
1572 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1573 		} else {
1574 			cmn_err(CE_WARN,
1575 			    "Couldn't bind process for zfs pool \"%s\" to "
1576 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1577 		}
1578 
1579 		mutex_exit(&curproc->p_lock);
1580 		mutex_exit(&pidlock);
1581 		mutex_exit(&cpu_lock);
1582 		pool_unlock();
1583 	}
1584 
1585 #ifdef HAVE_SYSDC
1586 	if (zio_taskq_sysdc) {
1587 		sysdc_thread_enter(curthread, 100, 0);
1588 	}
1589 #endif
1590 
1591 	spa->spa_proc = curproc;
1592 	spa->spa_did = curthread->t_did;
1593 
1594 	spa_create_zio_taskqs(spa);
1595 
1596 	mutex_enter(&spa->spa_proc_lock);
1597 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1598 
1599 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1600 	cv_broadcast(&spa->spa_proc_cv);
1601 
1602 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1603 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1604 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1605 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1606 
1607 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1608 	spa->spa_proc_state = SPA_PROC_GONE;
1609 	spa->spa_proc = &p0;
1610 	cv_broadcast(&spa->spa_proc_cv);
1611 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1612 
1613 	mutex_enter(&curproc->p_lock);
1614 	lwp_exit();
1615 }
1616 #endif
1617 
1618 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1619 
1620 /*
1621  * Activate an uninitialized pool.
1622  */
1623 static void
1624 spa_activate(spa_t *spa, spa_mode_t mode)
1625 {
1626 	metaslab_ops_t *msp = metaslab_allocator(spa);
1627 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1628 
1629 	spa->spa_state = POOL_STATE_ACTIVE;
1630 	spa->spa_mode = mode;
1631 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1632 
1633 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1634 	spa->spa_log_class = metaslab_class_create(spa, msp);
1635 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1636 	spa->spa_special_class = metaslab_class_create(spa, msp);
1637 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1638 
1639 	/* Try to create a covering process */
1640 	mutex_enter(&spa->spa_proc_lock);
1641 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1642 	ASSERT(spa->spa_proc == &p0);
1643 	spa->spa_did = 0;
1644 
1645 #ifdef HAVE_SPA_THREAD
1646 	/* Only create a process if we're going to be around a while. */
1647 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1648 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1649 		    NULL, 0) == 0) {
1650 			spa->spa_proc_state = SPA_PROC_CREATED;
1651 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1652 				cv_wait(&spa->spa_proc_cv,
1653 				    &spa->spa_proc_lock);
1654 			}
1655 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1656 			ASSERT(spa->spa_proc != &p0);
1657 			ASSERT(spa->spa_did != 0);
1658 		} else {
1659 #ifdef _KERNEL
1660 			cmn_err(CE_WARN,
1661 			    "Couldn't create process for zfs pool \"%s\"\n",
1662 			    spa->spa_name);
1663 #endif
1664 		}
1665 	}
1666 #endif /* HAVE_SPA_THREAD */
1667 	mutex_exit(&spa->spa_proc_lock);
1668 
1669 	/* If we didn't create a process, we need to create our taskqs. */
1670 	if (spa->spa_proc == &p0) {
1671 		spa_create_zio_taskqs(spa);
1672 	}
1673 
1674 	for (size_t i = 0; i < TXG_SIZE; i++) {
1675 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1676 		    ZIO_FLAG_CANFAIL);
1677 	}
1678 
1679 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1680 	    offsetof(vdev_t, vdev_config_dirty_node));
1681 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1682 	    offsetof(objset_t, os_evicting_node));
1683 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1684 	    offsetof(vdev_t, vdev_state_dirty_node));
1685 
1686 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1687 	    offsetof(struct vdev, vdev_txg_node));
1688 
1689 	avl_create(&spa->spa_errlist_scrub,
1690 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1691 	    offsetof(spa_error_entry_t, se_avl));
1692 	avl_create(&spa->spa_errlist_last,
1693 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1694 	    offsetof(spa_error_entry_t, se_avl));
1695 	avl_create(&spa->spa_errlist_healed,
1696 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1697 	    offsetof(spa_error_entry_t, se_avl));
1698 
1699 	spa_activate_os(spa);
1700 
1701 	spa_keystore_init(&spa->spa_keystore);
1702 
1703 	/*
1704 	 * This taskq is used to perform zvol-minor-related tasks
1705 	 * asynchronously. This has several advantages, including easy
1706 	 * resolution of various deadlocks.
1707 	 *
1708 	 * The taskq must be single threaded to ensure tasks are always
1709 	 * processed in the order in which they were dispatched.
1710 	 *
1711 	 * A taskq per pool allows one to keep the pools independent.
1712 	 * This way if one pool is suspended, it will not impact another.
1713 	 *
1714 	 * The preferred location to dispatch a zvol minor task is a sync
1715 	 * task. In this context, there is easy access to the spa_t and minimal
1716 	 * error handling is required because the sync task must succeed.
1717 	 */
1718 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1719 	    1, INT_MAX, 0);
1720 
1721 	/*
1722 	 * The taskq to preload metaslabs.
1723 	 */
1724 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1725 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1726 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1727 
1728 	/*
1729 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1730 	 * pool traverse code from monopolizing the global (and limited)
1731 	 * system_taskq by inappropriately scheduling long running tasks on it.
1732 	 */
1733 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1734 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1735 
1736 	/*
1737 	 * The taskq to upgrade datasets in this pool. Currently used by
1738 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1739 	 */
1740 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1741 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1742 }
1743 
1744 /*
1745  * Opposite of spa_activate().
1746  */
1747 static void
1748 spa_deactivate(spa_t *spa)
1749 {
1750 	ASSERT(spa->spa_sync_on == B_FALSE);
1751 	ASSERT(spa->spa_dsl_pool == NULL);
1752 	ASSERT(spa->spa_root_vdev == NULL);
1753 	ASSERT(spa->spa_async_zio_root == NULL);
1754 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1755 
1756 	spa_evicting_os_wait(spa);
1757 
1758 	if (spa->spa_zvol_taskq) {
1759 		taskq_destroy(spa->spa_zvol_taskq);
1760 		spa->spa_zvol_taskq = NULL;
1761 	}
1762 
1763 	if (spa->spa_metaslab_taskq) {
1764 		taskq_destroy(spa->spa_metaslab_taskq);
1765 		spa->spa_metaslab_taskq = NULL;
1766 	}
1767 
1768 	if (spa->spa_prefetch_taskq) {
1769 		taskq_destroy(spa->spa_prefetch_taskq);
1770 		spa->spa_prefetch_taskq = NULL;
1771 	}
1772 
1773 	if (spa->spa_upgrade_taskq) {
1774 		taskq_destroy(spa->spa_upgrade_taskq);
1775 		spa->spa_upgrade_taskq = NULL;
1776 	}
1777 
1778 	txg_list_destroy(&spa->spa_vdev_txg_list);
1779 
1780 	list_destroy(&spa->spa_config_dirty_list);
1781 	list_destroy(&spa->spa_evicting_os_list);
1782 	list_destroy(&spa->spa_state_dirty_list);
1783 
1784 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1785 
1786 	for (int t = 0; t < ZIO_TYPES; t++) {
1787 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1788 			spa_taskqs_fini(spa, t, q);
1789 		}
1790 	}
1791 
1792 	for (size_t i = 0; i < TXG_SIZE; i++) {
1793 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1794 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1795 		spa->spa_txg_zio[i] = NULL;
1796 	}
1797 
1798 	metaslab_class_destroy(spa->spa_normal_class);
1799 	spa->spa_normal_class = NULL;
1800 
1801 	metaslab_class_destroy(spa->spa_log_class);
1802 	spa->spa_log_class = NULL;
1803 
1804 	metaslab_class_destroy(spa->spa_embedded_log_class);
1805 	spa->spa_embedded_log_class = NULL;
1806 
1807 	metaslab_class_destroy(spa->spa_special_class);
1808 	spa->spa_special_class = NULL;
1809 
1810 	metaslab_class_destroy(spa->spa_dedup_class);
1811 	spa->spa_dedup_class = NULL;
1812 
1813 	/*
1814 	 * If this was part of an import or the open otherwise failed, we may
1815 	 * still have errors left in the queues.  Empty them just in case.
1816 	 */
1817 	spa_errlog_drain(spa);
1818 	avl_destroy(&spa->spa_errlist_scrub);
1819 	avl_destroy(&spa->spa_errlist_last);
1820 	avl_destroy(&spa->spa_errlist_healed);
1821 
1822 	spa_keystore_fini(&spa->spa_keystore);
1823 
1824 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1825 
1826 	mutex_enter(&spa->spa_proc_lock);
1827 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1828 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1829 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1830 		cv_broadcast(&spa->spa_proc_cv);
1831 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1832 			ASSERT(spa->spa_proc != &p0);
1833 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1834 		}
1835 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1836 		spa->spa_proc_state = SPA_PROC_NONE;
1837 	}
1838 	ASSERT(spa->spa_proc == &p0);
1839 	mutex_exit(&spa->spa_proc_lock);
1840 
1841 	/*
1842 	 * We want to make sure spa_thread() has actually exited the ZFS
1843 	 * module, so that the module can't be unloaded out from underneath
1844 	 * it.
1845 	 */
1846 	if (spa->spa_did != 0) {
1847 		thread_join(spa->spa_did);
1848 		spa->spa_did = 0;
1849 	}
1850 
1851 	spa_deactivate_os(spa);
1852 
1853 }
1854 
1855 /*
1856  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1857  * will create all the necessary vdevs in the appropriate layout, with each vdev
1858  * in the CLOSED state.  This will prep the pool before open/creation/import.
1859  * All vdev validation is done by the vdev_alloc() routine.
1860  */
1861 int
1862 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1863     uint_t id, int atype)
1864 {
1865 	nvlist_t **child;
1866 	uint_t children;
1867 	int error;
1868 
1869 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1870 		return (error);
1871 
1872 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1873 		return (0);
1874 
1875 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1876 	    &child, &children);
1877 
1878 	if (error == ENOENT)
1879 		return (0);
1880 
1881 	if (error) {
1882 		vdev_free(*vdp);
1883 		*vdp = NULL;
1884 		return (SET_ERROR(EINVAL));
1885 	}
1886 
1887 	for (int c = 0; c < children; c++) {
1888 		vdev_t *vd;
1889 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1890 		    atype)) != 0) {
1891 			vdev_free(*vdp);
1892 			*vdp = NULL;
1893 			return (error);
1894 		}
1895 	}
1896 
1897 	ASSERT(*vdp != NULL);
1898 
1899 	return (0);
1900 }
1901 
1902 static boolean_t
1903 spa_should_flush_logs_on_unload(spa_t *spa)
1904 {
1905 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1906 		return (B_FALSE);
1907 
1908 	if (!spa_writeable(spa))
1909 		return (B_FALSE);
1910 
1911 	if (!spa->spa_sync_on)
1912 		return (B_FALSE);
1913 
1914 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1915 		return (B_FALSE);
1916 
1917 	if (zfs_keep_log_spacemaps_at_export)
1918 		return (B_FALSE);
1919 
1920 	return (B_TRUE);
1921 }
1922 
1923 /*
1924  * Opens a transaction that will set the flag that will instruct
1925  * spa_sync to attempt to flush all the metaslabs for that txg.
1926  */
1927 static void
1928 spa_unload_log_sm_flush_all(spa_t *spa)
1929 {
1930 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1931 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1932 
1933 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1934 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1935 
1936 	dmu_tx_commit(tx);
1937 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1938 }
1939 
1940 static void
1941 spa_unload_log_sm_metadata(spa_t *spa)
1942 {
1943 	void *cookie = NULL;
1944 	spa_log_sm_t *sls;
1945 	log_summary_entry_t *e;
1946 
1947 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1948 	    &cookie)) != NULL) {
1949 		VERIFY0(sls->sls_mscount);
1950 		kmem_free(sls, sizeof (spa_log_sm_t));
1951 	}
1952 
1953 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1954 		VERIFY0(e->lse_mscount);
1955 		kmem_free(e, sizeof (log_summary_entry_t));
1956 	}
1957 
1958 	spa->spa_unflushed_stats.sus_nblocks = 0;
1959 	spa->spa_unflushed_stats.sus_memused = 0;
1960 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1961 }
1962 
1963 static void
1964 spa_destroy_aux_threads(spa_t *spa)
1965 {
1966 	if (spa->spa_condense_zthr != NULL) {
1967 		zthr_destroy(spa->spa_condense_zthr);
1968 		spa->spa_condense_zthr = NULL;
1969 	}
1970 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1971 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1972 		spa->spa_checkpoint_discard_zthr = NULL;
1973 	}
1974 	if (spa->spa_livelist_delete_zthr != NULL) {
1975 		zthr_destroy(spa->spa_livelist_delete_zthr);
1976 		spa->spa_livelist_delete_zthr = NULL;
1977 	}
1978 	if (spa->spa_livelist_condense_zthr != NULL) {
1979 		zthr_destroy(spa->spa_livelist_condense_zthr);
1980 		spa->spa_livelist_condense_zthr = NULL;
1981 	}
1982 	if (spa->spa_raidz_expand_zthr != NULL) {
1983 		zthr_destroy(spa->spa_raidz_expand_zthr);
1984 		spa->spa_raidz_expand_zthr = NULL;
1985 	}
1986 }
1987 
1988 /*
1989  * Opposite of spa_load().
1990  */
1991 static void
1992 spa_unload(spa_t *spa)
1993 {
1994 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1995 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1996 
1997 	spa_import_progress_remove(spa_guid(spa));
1998 	spa_load_note(spa, "UNLOADING");
1999 
2000 	spa_wake_waiters(spa);
2001 
2002 	/*
2003 	 * If we have set the spa_final_txg, we have already performed the
2004 	 * tasks below in spa_export_common(). We should not redo it here since
2005 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2006 	 */
2007 	if (spa->spa_final_txg == UINT64_MAX) {
2008 		/*
2009 		 * If the log space map feature is enabled and the pool is
2010 		 * getting exported (but not destroyed), we want to spend some
2011 		 * time flushing as many metaslabs as we can in an attempt to
2012 		 * destroy log space maps and save import time.
2013 		 */
2014 		if (spa_should_flush_logs_on_unload(spa))
2015 			spa_unload_log_sm_flush_all(spa);
2016 
2017 		/*
2018 		 * Stop async tasks.
2019 		 */
2020 		spa_async_suspend(spa);
2021 
2022 		if (spa->spa_root_vdev) {
2023 			vdev_t *root_vdev = spa->spa_root_vdev;
2024 			vdev_initialize_stop_all(root_vdev,
2025 			    VDEV_INITIALIZE_ACTIVE);
2026 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2027 			vdev_autotrim_stop_all(spa);
2028 			vdev_rebuild_stop_all(spa);
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * Stop syncing.
2034 	 */
2035 	if (spa->spa_sync_on) {
2036 		txg_sync_stop(spa->spa_dsl_pool);
2037 		spa->spa_sync_on = B_FALSE;
2038 	}
2039 
2040 	/*
2041 	 * This ensures that there is no async metaslab prefetching
2042 	 * while we attempt to unload the spa.
2043 	 */
2044 	taskq_wait(spa->spa_metaslab_taskq);
2045 
2046 	if (spa->spa_mmp.mmp_thread)
2047 		mmp_thread_stop(spa);
2048 
2049 	/*
2050 	 * Wait for any outstanding async I/O to complete.
2051 	 */
2052 	if (spa->spa_async_zio_root != NULL) {
2053 		for (int i = 0; i < max_ncpus; i++)
2054 			(void) zio_wait(spa->spa_async_zio_root[i]);
2055 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2056 		spa->spa_async_zio_root = NULL;
2057 	}
2058 
2059 	if (spa->spa_vdev_removal != NULL) {
2060 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2061 		spa->spa_vdev_removal = NULL;
2062 	}
2063 
2064 	spa_destroy_aux_threads(spa);
2065 
2066 	spa_condense_fini(spa);
2067 
2068 	bpobj_close(&spa->spa_deferred_bpobj);
2069 
2070 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2071 
2072 	/*
2073 	 * Close all vdevs.
2074 	 */
2075 	if (spa->spa_root_vdev)
2076 		vdev_free(spa->spa_root_vdev);
2077 	ASSERT(spa->spa_root_vdev == NULL);
2078 
2079 	/*
2080 	 * Close the dsl pool.
2081 	 */
2082 	if (spa->spa_dsl_pool) {
2083 		dsl_pool_close(spa->spa_dsl_pool);
2084 		spa->spa_dsl_pool = NULL;
2085 		spa->spa_meta_objset = NULL;
2086 	}
2087 
2088 	ddt_unload(spa);
2089 	brt_unload(spa);
2090 	spa_unload_log_sm_metadata(spa);
2091 
2092 	/*
2093 	 * Drop and purge level 2 cache
2094 	 */
2095 	spa_l2cache_drop(spa);
2096 
2097 	if (spa->spa_spares.sav_vdevs) {
2098 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2099 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2100 		kmem_free(spa->spa_spares.sav_vdevs,
2101 		    spa->spa_spares.sav_count * sizeof (void *));
2102 		spa->spa_spares.sav_vdevs = NULL;
2103 	}
2104 	if (spa->spa_spares.sav_config) {
2105 		nvlist_free(spa->spa_spares.sav_config);
2106 		spa->spa_spares.sav_config = NULL;
2107 	}
2108 	spa->spa_spares.sav_count = 0;
2109 
2110 	if (spa->spa_l2cache.sav_vdevs) {
2111 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2112 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2113 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2114 		}
2115 		kmem_free(spa->spa_l2cache.sav_vdevs,
2116 		    spa->spa_l2cache.sav_count * sizeof (void *));
2117 		spa->spa_l2cache.sav_vdevs = NULL;
2118 	}
2119 	if (spa->spa_l2cache.sav_config) {
2120 		nvlist_free(spa->spa_l2cache.sav_config);
2121 		spa->spa_l2cache.sav_config = NULL;
2122 	}
2123 	spa->spa_l2cache.sav_count = 0;
2124 
2125 	spa->spa_async_suspended = 0;
2126 
2127 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2128 
2129 	if (spa->spa_comment != NULL) {
2130 		spa_strfree(spa->spa_comment);
2131 		spa->spa_comment = NULL;
2132 	}
2133 	if (spa->spa_compatibility != NULL) {
2134 		spa_strfree(spa->spa_compatibility);
2135 		spa->spa_compatibility = NULL;
2136 	}
2137 
2138 	spa->spa_raidz_expand = NULL;
2139 
2140 	spa_config_exit(spa, SCL_ALL, spa);
2141 }
2142 
2143 /*
2144  * Load (or re-load) the current list of vdevs describing the active spares for
2145  * this pool.  When this is called, we have some form of basic information in
2146  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2147  * then re-generate a more complete list including status information.
2148  */
2149 void
2150 spa_load_spares(spa_t *spa)
2151 {
2152 	nvlist_t **spares;
2153 	uint_t nspares;
2154 	int i;
2155 	vdev_t *vd, *tvd;
2156 
2157 #ifndef _KERNEL
2158 	/*
2159 	 * zdb opens both the current state of the pool and the
2160 	 * checkpointed state (if present), with a different spa_t.
2161 	 *
2162 	 * As spare vdevs are shared among open pools, we skip loading
2163 	 * them when we load the checkpointed state of the pool.
2164 	 */
2165 	if (!spa_writeable(spa))
2166 		return;
2167 #endif
2168 
2169 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2170 
2171 	/*
2172 	 * First, close and free any existing spare vdevs.
2173 	 */
2174 	if (spa->spa_spares.sav_vdevs) {
2175 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2176 			vd = spa->spa_spares.sav_vdevs[i];
2177 
2178 			/* Undo the call to spa_activate() below */
2179 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2180 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2181 				spa_spare_remove(tvd);
2182 			vdev_close(vd);
2183 			vdev_free(vd);
2184 		}
2185 
2186 		kmem_free(spa->spa_spares.sav_vdevs,
2187 		    spa->spa_spares.sav_count * sizeof (void *));
2188 	}
2189 
2190 	if (spa->spa_spares.sav_config == NULL)
2191 		nspares = 0;
2192 	else
2193 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2194 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2195 
2196 	spa->spa_spares.sav_count = (int)nspares;
2197 	spa->spa_spares.sav_vdevs = NULL;
2198 
2199 	if (nspares == 0)
2200 		return;
2201 
2202 	/*
2203 	 * Construct the array of vdevs, opening them to get status in the
2204 	 * process.   For each spare, there is potentially two different vdev_t
2205 	 * structures associated with it: one in the list of spares (used only
2206 	 * for basic validation purposes) and one in the active vdev
2207 	 * configuration (if it's spared in).  During this phase we open and
2208 	 * validate each vdev on the spare list.  If the vdev also exists in the
2209 	 * active configuration, then we also mark this vdev as an active spare.
2210 	 */
2211 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2212 	    KM_SLEEP);
2213 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2214 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2215 		    VDEV_ALLOC_SPARE) == 0);
2216 		ASSERT(vd != NULL);
2217 
2218 		spa->spa_spares.sav_vdevs[i] = vd;
2219 
2220 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2221 		    B_FALSE)) != NULL) {
2222 			if (!tvd->vdev_isspare)
2223 				spa_spare_add(tvd);
2224 
2225 			/*
2226 			 * We only mark the spare active if we were successfully
2227 			 * able to load the vdev.  Otherwise, importing a pool
2228 			 * with a bad active spare would result in strange
2229 			 * behavior, because multiple pool would think the spare
2230 			 * is actively in use.
2231 			 *
2232 			 * There is a vulnerability here to an equally bizarre
2233 			 * circumstance, where a dead active spare is later
2234 			 * brought back to life (onlined or otherwise).  Given
2235 			 * the rarity of this scenario, and the extra complexity
2236 			 * it adds, we ignore the possibility.
2237 			 */
2238 			if (!vdev_is_dead(tvd))
2239 				spa_spare_activate(tvd);
2240 		}
2241 
2242 		vd->vdev_top = vd;
2243 		vd->vdev_aux = &spa->spa_spares;
2244 
2245 		if (vdev_open(vd) != 0)
2246 			continue;
2247 
2248 		if (vdev_validate_aux(vd) == 0)
2249 			spa_spare_add(vd);
2250 	}
2251 
2252 	/*
2253 	 * Recompute the stashed list of spares, with status information
2254 	 * this time.
2255 	 */
2256 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2257 
2258 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2259 	    KM_SLEEP);
2260 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2261 		spares[i] = vdev_config_generate(spa,
2262 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2263 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2264 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2265 	    spa->spa_spares.sav_count);
2266 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2267 		nvlist_free(spares[i]);
2268 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2269 }
2270 
2271 /*
2272  * Load (or re-load) the current list of vdevs describing the active l2cache for
2273  * this pool.  When this is called, we have some form of basic information in
2274  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2275  * then re-generate a more complete list including status information.
2276  * Devices which are already active have their details maintained, and are
2277  * not re-opened.
2278  */
2279 void
2280 spa_load_l2cache(spa_t *spa)
2281 {
2282 	nvlist_t **l2cache = NULL;
2283 	uint_t nl2cache;
2284 	int i, j, oldnvdevs;
2285 	uint64_t guid;
2286 	vdev_t *vd, **oldvdevs, **newvdevs;
2287 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2288 
2289 #ifndef _KERNEL
2290 	/*
2291 	 * zdb opens both the current state of the pool and the
2292 	 * checkpointed state (if present), with a different spa_t.
2293 	 *
2294 	 * As L2 caches are part of the ARC which is shared among open
2295 	 * pools, we skip loading them when we load the checkpointed
2296 	 * state of the pool.
2297 	 */
2298 	if (!spa_writeable(spa))
2299 		return;
2300 #endif
2301 
2302 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2303 
2304 	oldvdevs = sav->sav_vdevs;
2305 	oldnvdevs = sav->sav_count;
2306 	sav->sav_vdevs = NULL;
2307 	sav->sav_count = 0;
2308 
2309 	if (sav->sav_config == NULL) {
2310 		nl2cache = 0;
2311 		newvdevs = NULL;
2312 		goto out;
2313 	}
2314 
2315 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2316 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2317 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2318 
2319 	/*
2320 	 * Process new nvlist of vdevs.
2321 	 */
2322 	for (i = 0; i < nl2cache; i++) {
2323 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2324 
2325 		newvdevs[i] = NULL;
2326 		for (j = 0; j < oldnvdevs; j++) {
2327 			vd = oldvdevs[j];
2328 			if (vd != NULL && guid == vd->vdev_guid) {
2329 				/*
2330 				 * Retain previous vdev for add/remove ops.
2331 				 */
2332 				newvdevs[i] = vd;
2333 				oldvdevs[j] = NULL;
2334 				break;
2335 			}
2336 		}
2337 
2338 		if (newvdevs[i] == NULL) {
2339 			/*
2340 			 * Create new vdev
2341 			 */
2342 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2343 			    VDEV_ALLOC_L2CACHE) == 0);
2344 			ASSERT(vd != NULL);
2345 			newvdevs[i] = vd;
2346 
2347 			/*
2348 			 * Commit this vdev as an l2cache device,
2349 			 * even if it fails to open.
2350 			 */
2351 			spa_l2cache_add(vd);
2352 
2353 			vd->vdev_top = vd;
2354 			vd->vdev_aux = sav;
2355 
2356 			spa_l2cache_activate(vd);
2357 
2358 			if (vdev_open(vd) != 0)
2359 				continue;
2360 
2361 			(void) vdev_validate_aux(vd);
2362 
2363 			if (!vdev_is_dead(vd))
2364 				l2arc_add_vdev(spa, vd);
2365 
2366 			/*
2367 			 * Upon cache device addition to a pool or pool
2368 			 * creation with a cache device or if the header
2369 			 * of the device is invalid we issue an async
2370 			 * TRIM command for the whole device which will
2371 			 * execute if l2arc_trim_ahead > 0.
2372 			 */
2373 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2374 		}
2375 	}
2376 
2377 	sav->sav_vdevs = newvdevs;
2378 	sav->sav_count = (int)nl2cache;
2379 
2380 	/*
2381 	 * Recompute the stashed list of l2cache devices, with status
2382 	 * information this time.
2383 	 */
2384 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2385 
2386 	if (sav->sav_count > 0)
2387 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2388 		    KM_SLEEP);
2389 	for (i = 0; i < sav->sav_count; i++)
2390 		l2cache[i] = vdev_config_generate(spa,
2391 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2392 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2393 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2394 
2395 out:
2396 	/*
2397 	 * Purge vdevs that were dropped
2398 	 */
2399 	if (oldvdevs) {
2400 		for (i = 0; i < oldnvdevs; i++) {
2401 			uint64_t pool;
2402 
2403 			vd = oldvdevs[i];
2404 			if (vd != NULL) {
2405 				ASSERT(vd->vdev_isl2cache);
2406 
2407 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2408 				    pool != 0ULL && l2arc_vdev_present(vd))
2409 					l2arc_remove_vdev(vd);
2410 				vdev_clear_stats(vd);
2411 				vdev_free(vd);
2412 			}
2413 		}
2414 
2415 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2416 	}
2417 
2418 	for (i = 0; i < sav->sav_count; i++)
2419 		nvlist_free(l2cache[i]);
2420 	if (sav->sav_count)
2421 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2422 }
2423 
2424 static int
2425 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2426 {
2427 	dmu_buf_t *db;
2428 	char *packed = NULL;
2429 	size_t nvsize = 0;
2430 	int error;
2431 	*value = NULL;
2432 
2433 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2434 	if (error)
2435 		return (error);
2436 
2437 	nvsize = *(uint64_t *)db->db_data;
2438 	dmu_buf_rele(db, FTAG);
2439 
2440 	packed = vmem_alloc(nvsize, KM_SLEEP);
2441 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2442 	    DMU_READ_PREFETCH);
2443 	if (error == 0)
2444 		error = nvlist_unpack(packed, nvsize, value, 0);
2445 	vmem_free(packed, nvsize);
2446 
2447 	return (error);
2448 }
2449 
2450 /*
2451  * Concrete top-level vdevs that are not missing and are not logs. At every
2452  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2453  */
2454 static uint64_t
2455 spa_healthy_core_tvds(spa_t *spa)
2456 {
2457 	vdev_t *rvd = spa->spa_root_vdev;
2458 	uint64_t tvds = 0;
2459 
2460 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2461 		vdev_t *vd = rvd->vdev_child[i];
2462 		if (vd->vdev_islog)
2463 			continue;
2464 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2465 			tvds++;
2466 	}
2467 
2468 	return (tvds);
2469 }
2470 
2471 /*
2472  * Checks to see if the given vdev could not be opened, in which case we post a
2473  * sysevent to notify the autoreplace code that the device has been removed.
2474  */
2475 static void
2476 spa_check_removed(vdev_t *vd)
2477 {
2478 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2479 		spa_check_removed(vd->vdev_child[c]);
2480 
2481 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2482 	    vdev_is_concrete(vd)) {
2483 		zfs_post_autoreplace(vd->vdev_spa, vd);
2484 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2485 	}
2486 }
2487 
2488 static int
2489 spa_check_for_missing_logs(spa_t *spa)
2490 {
2491 	vdev_t *rvd = spa->spa_root_vdev;
2492 
2493 	/*
2494 	 * If we're doing a normal import, then build up any additional
2495 	 * diagnostic information about missing log devices.
2496 	 * We'll pass this up to the user for further processing.
2497 	 */
2498 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2499 		nvlist_t **child, *nv;
2500 		uint64_t idx = 0;
2501 
2502 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2503 		    KM_SLEEP);
2504 		nv = fnvlist_alloc();
2505 
2506 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2507 			vdev_t *tvd = rvd->vdev_child[c];
2508 
2509 			/*
2510 			 * We consider a device as missing only if it failed
2511 			 * to open (i.e. offline or faulted is not considered
2512 			 * as missing).
2513 			 */
2514 			if (tvd->vdev_islog &&
2515 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2516 				child[idx++] = vdev_config_generate(spa, tvd,
2517 				    B_FALSE, VDEV_CONFIG_MISSING);
2518 			}
2519 		}
2520 
2521 		if (idx > 0) {
2522 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2523 			    (const nvlist_t * const *)child, idx);
2524 			fnvlist_add_nvlist(spa->spa_load_info,
2525 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2526 
2527 			for (uint64_t i = 0; i < idx; i++)
2528 				nvlist_free(child[i]);
2529 		}
2530 		nvlist_free(nv);
2531 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2532 
2533 		if (idx > 0) {
2534 			spa_load_failed(spa, "some log devices are missing");
2535 			vdev_dbgmsg_print_tree(rvd, 2);
2536 			return (SET_ERROR(ENXIO));
2537 		}
2538 	} else {
2539 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2540 			vdev_t *tvd = rvd->vdev_child[c];
2541 
2542 			if (tvd->vdev_islog &&
2543 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2544 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2545 				spa_load_note(spa, "some log devices are "
2546 				    "missing, ZIL is dropped.");
2547 				vdev_dbgmsg_print_tree(rvd, 2);
2548 				break;
2549 			}
2550 		}
2551 	}
2552 
2553 	return (0);
2554 }
2555 
2556 /*
2557  * Check for missing log devices
2558  */
2559 static boolean_t
2560 spa_check_logs(spa_t *spa)
2561 {
2562 	boolean_t rv = B_FALSE;
2563 	dsl_pool_t *dp = spa_get_dsl(spa);
2564 
2565 	switch (spa->spa_log_state) {
2566 	default:
2567 		break;
2568 	case SPA_LOG_MISSING:
2569 		/* need to recheck in case slog has been restored */
2570 	case SPA_LOG_UNKNOWN:
2571 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2572 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2573 		if (rv)
2574 			spa_set_log_state(spa, SPA_LOG_MISSING);
2575 		break;
2576 	}
2577 	return (rv);
2578 }
2579 
2580 /*
2581  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2582  */
2583 static boolean_t
2584 spa_passivate_log(spa_t *spa)
2585 {
2586 	vdev_t *rvd = spa->spa_root_vdev;
2587 	boolean_t slog_found = B_FALSE;
2588 
2589 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2590 
2591 	for (int c = 0; c < rvd->vdev_children; c++) {
2592 		vdev_t *tvd = rvd->vdev_child[c];
2593 
2594 		if (tvd->vdev_islog) {
2595 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2596 			metaslab_group_passivate(tvd->vdev_mg);
2597 			slog_found = B_TRUE;
2598 		}
2599 	}
2600 
2601 	return (slog_found);
2602 }
2603 
2604 /*
2605  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2606  */
2607 static void
2608 spa_activate_log(spa_t *spa)
2609 {
2610 	vdev_t *rvd = spa->spa_root_vdev;
2611 
2612 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2613 
2614 	for (int c = 0; c < rvd->vdev_children; c++) {
2615 		vdev_t *tvd = rvd->vdev_child[c];
2616 
2617 		if (tvd->vdev_islog) {
2618 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2619 			metaslab_group_activate(tvd->vdev_mg);
2620 		}
2621 	}
2622 }
2623 
2624 int
2625 spa_reset_logs(spa_t *spa)
2626 {
2627 	int error;
2628 
2629 	error = dmu_objset_find(spa_name(spa), zil_reset,
2630 	    NULL, DS_FIND_CHILDREN);
2631 	if (error == 0) {
2632 		/*
2633 		 * We successfully offlined the log device, sync out the
2634 		 * current txg so that the "stubby" block can be removed
2635 		 * by zil_sync().
2636 		 */
2637 		txg_wait_synced(spa->spa_dsl_pool, 0);
2638 	}
2639 	return (error);
2640 }
2641 
2642 static void
2643 spa_aux_check_removed(spa_aux_vdev_t *sav)
2644 {
2645 	for (int i = 0; i < sav->sav_count; i++)
2646 		spa_check_removed(sav->sav_vdevs[i]);
2647 }
2648 
2649 void
2650 spa_claim_notify(zio_t *zio)
2651 {
2652 	spa_t *spa = zio->io_spa;
2653 
2654 	if (zio->io_error)
2655 		return;
2656 
2657 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2658 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2659 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2660 	mutex_exit(&spa->spa_props_lock);
2661 }
2662 
2663 typedef struct spa_load_error {
2664 	boolean_t	sle_verify_data;
2665 	uint64_t	sle_meta_count;
2666 	uint64_t	sle_data_count;
2667 } spa_load_error_t;
2668 
2669 static void
2670 spa_load_verify_done(zio_t *zio)
2671 {
2672 	blkptr_t *bp = zio->io_bp;
2673 	spa_load_error_t *sle = zio->io_private;
2674 	dmu_object_type_t type = BP_GET_TYPE(bp);
2675 	int error = zio->io_error;
2676 	spa_t *spa = zio->io_spa;
2677 
2678 	abd_free(zio->io_abd);
2679 	if (error) {
2680 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2681 		    type != DMU_OT_INTENT_LOG)
2682 			atomic_inc_64(&sle->sle_meta_count);
2683 		else
2684 			atomic_inc_64(&sle->sle_data_count);
2685 	}
2686 
2687 	mutex_enter(&spa->spa_scrub_lock);
2688 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2689 	cv_broadcast(&spa->spa_scrub_io_cv);
2690 	mutex_exit(&spa->spa_scrub_lock);
2691 }
2692 
2693 /*
2694  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2695  * By default, we set it to 1/16th of the arc.
2696  */
2697 static uint_t spa_load_verify_shift = 4;
2698 static int spa_load_verify_metadata = B_TRUE;
2699 static int spa_load_verify_data = B_TRUE;
2700 
2701 static int
2702 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2703     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2704 {
2705 	zio_t *rio = arg;
2706 	spa_load_error_t *sle = rio->io_private;
2707 
2708 	(void) zilog, (void) dnp;
2709 
2710 	/*
2711 	 * Note: normally this routine will not be called if
2712 	 * spa_load_verify_metadata is not set.  However, it may be useful
2713 	 * to manually set the flag after the traversal has begun.
2714 	 */
2715 	if (!spa_load_verify_metadata)
2716 		return (0);
2717 
2718 	/*
2719 	 * Sanity check the block pointer in order to detect obvious damage
2720 	 * before using the contents in subsequent checks or in zio_read().
2721 	 * When damaged consider it to be a metadata error since we cannot
2722 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2723 	 */
2724 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2725 		atomic_inc_64(&sle->sle_meta_count);
2726 		return (0);
2727 	}
2728 
2729 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2730 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2731 		return (0);
2732 
2733 	if (!BP_IS_METADATA(bp) &&
2734 	    (!spa_load_verify_data || !sle->sle_verify_data))
2735 		return (0);
2736 
2737 	uint64_t maxinflight_bytes =
2738 	    arc_target_bytes() >> spa_load_verify_shift;
2739 	size_t size = BP_GET_PSIZE(bp);
2740 
2741 	mutex_enter(&spa->spa_scrub_lock);
2742 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2743 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2744 	spa->spa_load_verify_bytes += size;
2745 	mutex_exit(&spa->spa_scrub_lock);
2746 
2747 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2748 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2749 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2750 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2751 	return (0);
2752 }
2753 
2754 static int
2755 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2756 {
2757 	(void) dp, (void) arg;
2758 
2759 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2760 		return (SET_ERROR(ENAMETOOLONG));
2761 
2762 	return (0);
2763 }
2764 
2765 static int
2766 spa_load_verify(spa_t *spa)
2767 {
2768 	zio_t *rio;
2769 	spa_load_error_t sle = { 0 };
2770 	zpool_load_policy_t policy;
2771 	boolean_t verify_ok = B_FALSE;
2772 	int error = 0;
2773 
2774 	zpool_get_load_policy(spa->spa_config, &policy);
2775 
2776 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2777 	    policy.zlp_maxmeta == UINT64_MAX)
2778 		return (0);
2779 
2780 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2781 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2782 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2783 	    DS_FIND_CHILDREN);
2784 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2785 	if (error != 0)
2786 		return (error);
2787 
2788 	/*
2789 	 * Verify data only if we are rewinding or error limit was set.
2790 	 * Otherwise nothing except dbgmsg care about it to waste time.
2791 	 */
2792 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2793 	    (policy.zlp_maxdata < UINT64_MAX);
2794 
2795 	rio = zio_root(spa, NULL, &sle,
2796 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2797 
2798 	if (spa_load_verify_metadata) {
2799 		if (spa->spa_extreme_rewind) {
2800 			spa_load_note(spa, "performing a complete scan of the "
2801 			    "pool since extreme rewind is on. This may take "
2802 			    "a very long time.\n  (spa_load_verify_data=%u, "
2803 			    "spa_load_verify_metadata=%u)",
2804 			    spa_load_verify_data, spa_load_verify_metadata);
2805 		}
2806 
2807 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2808 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2809 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2810 	}
2811 
2812 	(void) zio_wait(rio);
2813 	ASSERT0(spa->spa_load_verify_bytes);
2814 
2815 	spa->spa_load_meta_errors = sle.sle_meta_count;
2816 	spa->spa_load_data_errors = sle.sle_data_count;
2817 
2818 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2819 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2820 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2821 		    (u_longlong_t)sle.sle_data_count);
2822 	}
2823 
2824 	if (spa_load_verify_dryrun ||
2825 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2826 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2827 		int64_t loss = 0;
2828 
2829 		verify_ok = B_TRUE;
2830 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2831 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2832 
2833 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2834 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2835 		    spa->spa_load_txg_ts);
2836 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2837 		    loss);
2838 		fnvlist_add_uint64(spa->spa_load_info,
2839 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2840 		fnvlist_add_uint64(spa->spa_load_info,
2841 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2842 	} else {
2843 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2844 	}
2845 
2846 	if (spa_load_verify_dryrun)
2847 		return (0);
2848 
2849 	if (error) {
2850 		if (error != ENXIO && error != EIO)
2851 			error = SET_ERROR(EIO);
2852 		return (error);
2853 	}
2854 
2855 	return (verify_ok ? 0 : EIO);
2856 }
2857 
2858 /*
2859  * Find a value in the pool props object.
2860  */
2861 static void
2862 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2863 {
2864 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2865 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2866 }
2867 
2868 /*
2869  * Find a value in the pool directory object.
2870  */
2871 static int
2872 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2873 {
2874 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2875 	    name, sizeof (uint64_t), 1, val);
2876 
2877 	if (error != 0 && (error != ENOENT || log_enoent)) {
2878 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2879 		    "[error=%d]", name, error);
2880 	}
2881 
2882 	return (error);
2883 }
2884 
2885 static int
2886 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2887 {
2888 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2889 	return (SET_ERROR(err));
2890 }
2891 
2892 boolean_t
2893 spa_livelist_delete_check(spa_t *spa)
2894 {
2895 	return (spa->spa_livelists_to_delete != 0);
2896 }
2897 
2898 static boolean_t
2899 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2900 {
2901 	(void) z;
2902 	spa_t *spa = arg;
2903 	return (spa_livelist_delete_check(spa));
2904 }
2905 
2906 static int
2907 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2908 {
2909 	spa_t *spa = arg;
2910 	zio_free(spa, tx->tx_txg, bp);
2911 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2912 	    -bp_get_dsize_sync(spa, bp),
2913 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2914 	return (0);
2915 }
2916 
2917 static int
2918 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2919 {
2920 	int err;
2921 	zap_cursor_t zc;
2922 	zap_attribute_t za;
2923 	zap_cursor_init(&zc, os, zap_obj);
2924 	err = zap_cursor_retrieve(&zc, &za);
2925 	zap_cursor_fini(&zc);
2926 	if (err == 0)
2927 		*llp = za.za_first_integer;
2928 	return (err);
2929 }
2930 
2931 /*
2932  * Components of livelist deletion that must be performed in syncing
2933  * context: freeing block pointers and updating the pool-wide data
2934  * structures to indicate how much work is left to do
2935  */
2936 typedef struct sublist_delete_arg {
2937 	spa_t *spa;
2938 	dsl_deadlist_t *ll;
2939 	uint64_t key;
2940 	bplist_t *to_free;
2941 } sublist_delete_arg_t;
2942 
2943 static void
2944 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2945 {
2946 	sublist_delete_arg_t *sda = arg;
2947 	spa_t *spa = sda->spa;
2948 	dsl_deadlist_t *ll = sda->ll;
2949 	uint64_t key = sda->key;
2950 	bplist_t *to_free = sda->to_free;
2951 
2952 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2953 	dsl_deadlist_remove_entry(ll, key, tx);
2954 }
2955 
2956 typedef struct livelist_delete_arg {
2957 	spa_t *spa;
2958 	uint64_t ll_obj;
2959 	uint64_t zap_obj;
2960 } livelist_delete_arg_t;
2961 
2962 static void
2963 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2964 {
2965 	livelist_delete_arg_t *lda = arg;
2966 	spa_t *spa = lda->spa;
2967 	uint64_t ll_obj = lda->ll_obj;
2968 	uint64_t zap_obj = lda->zap_obj;
2969 	objset_t *mos = spa->spa_meta_objset;
2970 	uint64_t count;
2971 
2972 	/* free the livelist and decrement the feature count */
2973 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2974 	dsl_deadlist_free(mos, ll_obj, tx);
2975 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2976 	VERIFY0(zap_count(mos, zap_obj, &count));
2977 	if (count == 0) {
2978 		/* no more livelists to delete */
2979 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2980 		    DMU_POOL_DELETED_CLONES, tx));
2981 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2982 		spa->spa_livelists_to_delete = 0;
2983 		spa_notify_waiters(spa);
2984 	}
2985 }
2986 
2987 /*
2988  * Load in the value for the livelist to be removed and open it. Then,
2989  * load its first sublist and determine which block pointers should actually
2990  * be freed. Then, call a synctask which performs the actual frees and updates
2991  * the pool-wide livelist data.
2992  */
2993 static void
2994 spa_livelist_delete_cb(void *arg, zthr_t *z)
2995 {
2996 	spa_t *spa = arg;
2997 	uint64_t ll_obj = 0, count;
2998 	objset_t *mos = spa->spa_meta_objset;
2999 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3000 	/*
3001 	 * Determine the next livelist to delete. This function should only
3002 	 * be called if there is at least one deleted clone.
3003 	 */
3004 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3005 	VERIFY0(zap_count(mos, ll_obj, &count));
3006 	if (count > 0) {
3007 		dsl_deadlist_t *ll;
3008 		dsl_deadlist_entry_t *dle;
3009 		bplist_t to_free;
3010 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3011 		dsl_deadlist_open(ll, mos, ll_obj);
3012 		dle = dsl_deadlist_first(ll);
3013 		ASSERT3P(dle, !=, NULL);
3014 		bplist_create(&to_free);
3015 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3016 		    z, NULL);
3017 		if (err == 0) {
3018 			sublist_delete_arg_t sync_arg = {
3019 			    .spa = spa,
3020 			    .ll = ll,
3021 			    .key = dle->dle_mintxg,
3022 			    .to_free = &to_free
3023 			};
3024 			zfs_dbgmsg("deleting sublist (id %llu) from"
3025 			    " livelist %llu, %lld remaining",
3026 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3027 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3028 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3029 			    sublist_delete_sync, &sync_arg, 0,
3030 			    ZFS_SPACE_CHECK_DESTROY));
3031 		} else {
3032 			VERIFY3U(err, ==, EINTR);
3033 		}
3034 		bplist_clear(&to_free);
3035 		bplist_destroy(&to_free);
3036 		dsl_deadlist_close(ll);
3037 		kmem_free(ll, sizeof (dsl_deadlist_t));
3038 	} else {
3039 		livelist_delete_arg_t sync_arg = {
3040 		    .spa = spa,
3041 		    .ll_obj = ll_obj,
3042 		    .zap_obj = zap_obj
3043 		};
3044 		zfs_dbgmsg("deletion of livelist %llu completed",
3045 		    (u_longlong_t)ll_obj);
3046 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3047 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3048 	}
3049 }
3050 
3051 static void
3052 spa_start_livelist_destroy_thread(spa_t *spa)
3053 {
3054 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3055 	spa->spa_livelist_delete_zthr =
3056 	    zthr_create("z_livelist_destroy",
3057 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3058 	    minclsyspri);
3059 }
3060 
3061 typedef struct livelist_new_arg {
3062 	bplist_t *allocs;
3063 	bplist_t *frees;
3064 } livelist_new_arg_t;
3065 
3066 static int
3067 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3068     dmu_tx_t *tx)
3069 {
3070 	ASSERT(tx == NULL);
3071 	livelist_new_arg_t *lna = arg;
3072 	if (bp_freed) {
3073 		bplist_append(lna->frees, bp);
3074 	} else {
3075 		bplist_append(lna->allocs, bp);
3076 		zfs_livelist_condense_new_alloc++;
3077 	}
3078 	return (0);
3079 }
3080 
3081 typedef struct livelist_condense_arg {
3082 	spa_t *spa;
3083 	bplist_t to_keep;
3084 	uint64_t first_size;
3085 	uint64_t next_size;
3086 } livelist_condense_arg_t;
3087 
3088 static void
3089 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3090 {
3091 	livelist_condense_arg_t *lca = arg;
3092 	spa_t *spa = lca->spa;
3093 	bplist_t new_frees;
3094 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3095 
3096 	/* Have we been cancelled? */
3097 	if (spa->spa_to_condense.cancelled) {
3098 		zfs_livelist_condense_sync_cancel++;
3099 		goto out;
3100 	}
3101 
3102 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3103 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3104 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3105 
3106 	/*
3107 	 * It's possible that the livelist was changed while the zthr was
3108 	 * running. Therefore, we need to check for new blkptrs in the two
3109 	 * entries being condensed and continue to track them in the livelist.
3110 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3111 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3112 	 * we need to sort them into two different bplists.
3113 	 */
3114 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3115 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3116 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3117 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3118 
3119 	bplist_create(&new_frees);
3120 	livelist_new_arg_t new_bps = {
3121 	    .allocs = &lca->to_keep,
3122 	    .frees = &new_frees,
3123 	};
3124 
3125 	if (cur_first_size > lca->first_size) {
3126 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3127 		    livelist_track_new_cb, &new_bps, lca->first_size));
3128 	}
3129 	if (cur_next_size > lca->next_size) {
3130 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3131 		    livelist_track_new_cb, &new_bps, lca->next_size));
3132 	}
3133 
3134 	dsl_deadlist_clear_entry(first, ll, tx);
3135 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3136 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3137 
3138 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3139 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3140 	bplist_destroy(&new_frees);
3141 
3142 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3143 	dsl_dataset_name(ds, dsname);
3144 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3145 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3146 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3147 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3148 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3149 	    (u_longlong_t)cur_next_size,
3150 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3151 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3152 out:
3153 	dmu_buf_rele(ds->ds_dbuf, spa);
3154 	spa->spa_to_condense.ds = NULL;
3155 	bplist_clear(&lca->to_keep);
3156 	bplist_destroy(&lca->to_keep);
3157 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3158 	spa->spa_to_condense.syncing = B_FALSE;
3159 }
3160 
3161 static void
3162 spa_livelist_condense_cb(void *arg, zthr_t *t)
3163 {
3164 	while (zfs_livelist_condense_zthr_pause &&
3165 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3166 		delay(1);
3167 
3168 	spa_t *spa = arg;
3169 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3170 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3171 	uint64_t first_size, next_size;
3172 
3173 	livelist_condense_arg_t *lca =
3174 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3175 	bplist_create(&lca->to_keep);
3176 
3177 	/*
3178 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3179 	 * so we have minimal work in syncing context to condense.
3180 	 *
3181 	 * We save bpobj sizes (first_size and next_size) to use later in
3182 	 * syncing context to determine if entries were added to these sublists
3183 	 * while in open context. This is possible because the clone is still
3184 	 * active and open for normal writes and we want to make sure the new,
3185 	 * unprocessed blockpointers are inserted into the livelist normally.
3186 	 *
3187 	 * Note that dsl_process_sub_livelist() both stores the size number of
3188 	 * blockpointers and iterates over them while the bpobj's lock held, so
3189 	 * the sizes returned to us are consistent which what was actually
3190 	 * processed.
3191 	 */
3192 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3193 	    &first_size);
3194 	if (err == 0)
3195 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3196 		    t, &next_size);
3197 
3198 	if (err == 0) {
3199 		while (zfs_livelist_condense_sync_pause &&
3200 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3201 			delay(1);
3202 
3203 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3204 		dmu_tx_mark_netfree(tx);
3205 		dmu_tx_hold_space(tx, 1);
3206 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3207 		if (err == 0) {
3208 			/*
3209 			 * Prevent the condense zthr restarting before
3210 			 * the synctask completes.
3211 			 */
3212 			spa->spa_to_condense.syncing = B_TRUE;
3213 			lca->spa = spa;
3214 			lca->first_size = first_size;
3215 			lca->next_size = next_size;
3216 			dsl_sync_task_nowait(spa_get_dsl(spa),
3217 			    spa_livelist_condense_sync, lca, tx);
3218 			dmu_tx_commit(tx);
3219 			return;
3220 		}
3221 	}
3222 	/*
3223 	 * Condensing can not continue: either it was externally stopped or
3224 	 * we were unable to assign to a tx because the pool has run out of
3225 	 * space. In the second case, we'll just end up trying to condense
3226 	 * again in a later txg.
3227 	 */
3228 	ASSERT(err != 0);
3229 	bplist_clear(&lca->to_keep);
3230 	bplist_destroy(&lca->to_keep);
3231 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3232 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3233 	spa->spa_to_condense.ds = NULL;
3234 	if (err == EINTR)
3235 		zfs_livelist_condense_zthr_cancel++;
3236 }
3237 
3238 /*
3239  * Check that there is something to condense but that a condense is not
3240  * already in progress and that condensing has not been cancelled.
3241  */
3242 static boolean_t
3243 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3244 {
3245 	(void) z;
3246 	spa_t *spa = arg;
3247 	if ((spa->spa_to_condense.ds != NULL) &&
3248 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3249 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3250 		return (B_TRUE);
3251 	}
3252 	return (B_FALSE);
3253 }
3254 
3255 static void
3256 spa_start_livelist_condensing_thread(spa_t *spa)
3257 {
3258 	spa->spa_to_condense.ds = NULL;
3259 	spa->spa_to_condense.first = NULL;
3260 	spa->spa_to_condense.next = NULL;
3261 	spa->spa_to_condense.syncing = B_FALSE;
3262 	spa->spa_to_condense.cancelled = B_FALSE;
3263 
3264 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3265 	spa->spa_livelist_condense_zthr =
3266 	    zthr_create("z_livelist_condense",
3267 	    spa_livelist_condense_cb_check,
3268 	    spa_livelist_condense_cb, spa, minclsyspri);
3269 }
3270 
3271 static void
3272 spa_spawn_aux_threads(spa_t *spa)
3273 {
3274 	ASSERT(spa_writeable(spa));
3275 
3276 	spa_start_raidz_expansion_thread(spa);
3277 	spa_start_indirect_condensing_thread(spa);
3278 	spa_start_livelist_destroy_thread(spa);
3279 	spa_start_livelist_condensing_thread(spa);
3280 
3281 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3282 	spa->spa_checkpoint_discard_zthr =
3283 	    zthr_create("z_checkpoint_discard",
3284 	    spa_checkpoint_discard_thread_check,
3285 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3286 }
3287 
3288 /*
3289  * Fix up config after a partly-completed split.  This is done with the
3290  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3291  * pool have that entry in their config, but only the splitting one contains
3292  * a list of all the guids of the vdevs that are being split off.
3293  *
3294  * This function determines what to do with that list: either rejoin
3295  * all the disks to the pool, or complete the splitting process.  To attempt
3296  * the rejoin, each disk that is offlined is marked online again, and
3297  * we do a reopen() call.  If the vdev label for every disk that was
3298  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3299  * then we call vdev_split() on each disk, and complete the split.
3300  *
3301  * Otherwise we leave the config alone, with all the vdevs in place in
3302  * the original pool.
3303  */
3304 static void
3305 spa_try_repair(spa_t *spa, nvlist_t *config)
3306 {
3307 	uint_t extracted;
3308 	uint64_t *glist;
3309 	uint_t i, gcount;
3310 	nvlist_t *nvl;
3311 	vdev_t **vd;
3312 	boolean_t attempt_reopen;
3313 
3314 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3315 		return;
3316 
3317 	/* check that the config is complete */
3318 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3319 	    &glist, &gcount) != 0)
3320 		return;
3321 
3322 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3323 
3324 	/* attempt to online all the vdevs & validate */
3325 	attempt_reopen = B_TRUE;
3326 	for (i = 0; i < gcount; i++) {
3327 		if (glist[i] == 0)	/* vdev is hole */
3328 			continue;
3329 
3330 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3331 		if (vd[i] == NULL) {
3332 			/*
3333 			 * Don't bother attempting to reopen the disks;
3334 			 * just do the split.
3335 			 */
3336 			attempt_reopen = B_FALSE;
3337 		} else {
3338 			/* attempt to re-online it */
3339 			vd[i]->vdev_offline = B_FALSE;
3340 		}
3341 	}
3342 
3343 	if (attempt_reopen) {
3344 		vdev_reopen(spa->spa_root_vdev);
3345 
3346 		/* check each device to see what state it's in */
3347 		for (extracted = 0, i = 0; i < gcount; i++) {
3348 			if (vd[i] != NULL &&
3349 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3350 				break;
3351 			++extracted;
3352 		}
3353 	}
3354 
3355 	/*
3356 	 * If every disk has been moved to the new pool, or if we never
3357 	 * even attempted to look at them, then we split them off for
3358 	 * good.
3359 	 */
3360 	if (!attempt_reopen || gcount == extracted) {
3361 		for (i = 0; i < gcount; i++)
3362 			if (vd[i] != NULL)
3363 				vdev_split(vd[i]);
3364 		vdev_reopen(spa->spa_root_vdev);
3365 	}
3366 
3367 	kmem_free(vd, gcount * sizeof (vdev_t *));
3368 }
3369 
3370 static int
3371 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3372 {
3373 	const char *ereport = FM_EREPORT_ZFS_POOL;
3374 	int error;
3375 
3376 	spa->spa_load_state = state;
3377 	(void) spa_import_progress_set_state(spa_guid(spa),
3378 	    spa_load_state(spa));
3379 	spa_import_progress_set_notes(spa, "spa_load()");
3380 
3381 	gethrestime(&spa->spa_loaded_ts);
3382 	error = spa_load_impl(spa, type, &ereport);
3383 
3384 	/*
3385 	 * Don't count references from objsets that are already closed
3386 	 * and are making their way through the eviction process.
3387 	 */
3388 	spa_evicting_os_wait(spa);
3389 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3390 	if (error) {
3391 		if (error != EEXIST) {
3392 			spa->spa_loaded_ts.tv_sec = 0;
3393 			spa->spa_loaded_ts.tv_nsec = 0;
3394 		}
3395 		if (error != EBADF) {
3396 			(void) zfs_ereport_post(ereport, spa,
3397 			    NULL, NULL, NULL, 0);
3398 		}
3399 	}
3400 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3401 	spa->spa_ena = 0;
3402 
3403 	(void) spa_import_progress_set_state(spa_guid(spa),
3404 	    spa_load_state(spa));
3405 
3406 	return (error);
3407 }
3408 
3409 #ifdef ZFS_DEBUG
3410 /*
3411  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3412  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3413  * spa's per-vdev ZAP list.
3414  */
3415 static uint64_t
3416 vdev_count_verify_zaps(vdev_t *vd)
3417 {
3418 	spa_t *spa = vd->vdev_spa;
3419 	uint64_t total = 0;
3420 
3421 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3422 	    vd->vdev_root_zap != 0) {
3423 		total++;
3424 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3425 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3426 	}
3427 	if (vd->vdev_top_zap != 0) {
3428 		total++;
3429 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3430 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3431 	}
3432 	if (vd->vdev_leaf_zap != 0) {
3433 		total++;
3434 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3435 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3436 	}
3437 
3438 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3439 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3440 	}
3441 
3442 	return (total);
3443 }
3444 #else
3445 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3446 #endif
3447 
3448 /*
3449  * Determine whether the activity check is required.
3450  */
3451 static boolean_t
3452 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3453     nvlist_t *config)
3454 {
3455 	uint64_t state = 0;
3456 	uint64_t hostid = 0;
3457 	uint64_t tryconfig_txg = 0;
3458 	uint64_t tryconfig_timestamp = 0;
3459 	uint16_t tryconfig_mmp_seq = 0;
3460 	nvlist_t *nvinfo;
3461 
3462 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3463 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3464 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3465 		    &tryconfig_txg);
3466 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3467 		    &tryconfig_timestamp);
3468 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3469 		    &tryconfig_mmp_seq);
3470 	}
3471 
3472 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3473 
3474 	/*
3475 	 * Disable the MMP activity check - This is used by zdb which
3476 	 * is intended to be used on potentially active pools.
3477 	 */
3478 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3479 		return (B_FALSE);
3480 
3481 	/*
3482 	 * Skip the activity check when the MMP feature is disabled.
3483 	 */
3484 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3485 		return (B_FALSE);
3486 
3487 	/*
3488 	 * If the tryconfig_ values are nonzero, they are the results of an
3489 	 * earlier tryimport.  If they all match the uberblock we just found,
3490 	 * then the pool has not changed and we return false so we do not test
3491 	 * a second time.
3492 	 */
3493 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3494 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3495 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3496 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3497 		return (B_FALSE);
3498 
3499 	/*
3500 	 * Allow the activity check to be skipped when importing the pool
3501 	 * on the same host which last imported it.  Since the hostid from
3502 	 * configuration may be stale use the one read from the label.
3503 	 */
3504 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3505 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3506 
3507 	if (hostid == spa_get_hostid(spa))
3508 		return (B_FALSE);
3509 
3510 	/*
3511 	 * Skip the activity test when the pool was cleanly exported.
3512 	 */
3513 	if (state != POOL_STATE_ACTIVE)
3514 		return (B_FALSE);
3515 
3516 	return (B_TRUE);
3517 }
3518 
3519 /*
3520  * Nanoseconds the activity check must watch for changes on-disk.
3521  */
3522 static uint64_t
3523 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3524 {
3525 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3526 	uint64_t multihost_interval = MSEC2NSEC(
3527 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3528 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3529 	    multihost_interval);
3530 
3531 	/*
3532 	 * Local tunables determine a minimum duration except for the case
3533 	 * where we know when the remote host will suspend the pool if MMP
3534 	 * writes do not land.
3535 	 *
3536 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3537 	 * these cases and times.
3538 	 */
3539 
3540 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3541 
3542 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3543 	    MMP_FAIL_INT(ub) > 0) {
3544 
3545 		/* MMP on remote host will suspend pool after failed writes */
3546 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3547 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3548 
3549 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3550 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3551 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3552 		    (u_longlong_t)MMP_FAIL_INT(ub),
3553 		    (u_longlong_t)MMP_INTERVAL(ub),
3554 		    (u_longlong_t)import_intervals);
3555 
3556 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3557 	    MMP_FAIL_INT(ub) == 0) {
3558 
3559 		/* MMP on remote host will never suspend pool */
3560 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3561 		    ub->ub_mmp_delay) * import_intervals);
3562 
3563 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3564 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3565 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3566 		    (u_longlong_t)MMP_INTERVAL(ub),
3567 		    (u_longlong_t)ub->ub_mmp_delay,
3568 		    (u_longlong_t)import_intervals);
3569 
3570 	} else if (MMP_VALID(ub)) {
3571 		/*
3572 		 * zfs-0.7 compatibility case
3573 		 */
3574 
3575 		import_delay = MAX(import_delay, (multihost_interval +
3576 		    ub->ub_mmp_delay) * import_intervals);
3577 
3578 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3579 		    "import_intervals=%llu leaves=%u",
3580 		    (u_longlong_t)import_delay,
3581 		    (u_longlong_t)ub->ub_mmp_delay,
3582 		    (u_longlong_t)import_intervals,
3583 		    vdev_count_leaves(spa));
3584 	} else {
3585 		/* Using local tunings is the only reasonable option */
3586 		zfs_dbgmsg("pool last imported on non-MMP aware "
3587 		    "host using import_delay=%llu multihost_interval=%llu "
3588 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3589 		    (u_longlong_t)multihost_interval,
3590 		    (u_longlong_t)import_intervals);
3591 	}
3592 
3593 	return (import_delay);
3594 }
3595 
3596 /*
3597  * Perform the import activity check.  If the user canceled the import or
3598  * we detected activity then fail.
3599  */
3600 static int
3601 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3602 {
3603 	uint64_t txg = ub->ub_txg;
3604 	uint64_t timestamp = ub->ub_timestamp;
3605 	uint64_t mmp_config = ub->ub_mmp_config;
3606 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3607 	uint64_t import_delay;
3608 	hrtime_t import_expire, now;
3609 	nvlist_t *mmp_label = NULL;
3610 	vdev_t *rvd = spa->spa_root_vdev;
3611 	kcondvar_t cv;
3612 	kmutex_t mtx;
3613 	int error = 0;
3614 
3615 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3616 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3617 	mutex_enter(&mtx);
3618 
3619 	/*
3620 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3621 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3622 	 * the pool is known to be active on another host.
3623 	 *
3624 	 * Otherwise, the pool might be in use on another host.  Check for
3625 	 * changes in the uberblocks on disk if necessary.
3626 	 */
3627 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3628 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3629 		    ZPOOL_CONFIG_LOAD_INFO);
3630 
3631 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3632 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3633 			vdev_uberblock_load(rvd, ub, &mmp_label);
3634 			error = SET_ERROR(EREMOTEIO);
3635 			goto out;
3636 		}
3637 	}
3638 
3639 	import_delay = spa_activity_check_duration(spa, ub);
3640 
3641 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3642 	import_delay += import_delay * random_in_range(250) / 1000;
3643 
3644 	import_expire = gethrtime() + import_delay;
3645 
3646 	spa_import_progress_set_notes(spa, "Checking MMP activity, waiting "
3647 	    "%llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3648 
3649 	int interations = 0;
3650 	while ((now = gethrtime()) < import_expire) {
3651 		if (interations++ % 30 == 0) {
3652 			spa_import_progress_set_notes(spa, "Checking MMP "
3653 			    "activity, %llu ms remaining",
3654 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3655 		}
3656 
3657 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3658 		    NSEC2SEC(import_expire - gethrtime()));
3659 
3660 		vdev_uberblock_load(rvd, ub, &mmp_label);
3661 
3662 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3663 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3664 			zfs_dbgmsg("multihost activity detected "
3665 			    "txg %llu ub_txg  %llu "
3666 			    "timestamp %llu ub_timestamp  %llu "
3667 			    "mmp_config %#llx ub_mmp_config %#llx",
3668 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3669 			    (u_longlong_t)timestamp,
3670 			    (u_longlong_t)ub->ub_timestamp,
3671 			    (u_longlong_t)mmp_config,
3672 			    (u_longlong_t)ub->ub_mmp_config);
3673 
3674 			error = SET_ERROR(EREMOTEIO);
3675 			break;
3676 		}
3677 
3678 		if (mmp_label) {
3679 			nvlist_free(mmp_label);
3680 			mmp_label = NULL;
3681 		}
3682 
3683 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3684 		if (error != -1) {
3685 			error = SET_ERROR(EINTR);
3686 			break;
3687 		}
3688 		error = 0;
3689 	}
3690 
3691 out:
3692 	mutex_exit(&mtx);
3693 	mutex_destroy(&mtx);
3694 	cv_destroy(&cv);
3695 
3696 	/*
3697 	 * If the pool is determined to be active store the status in the
3698 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3699 	 * available from configuration read from disk store them as well.
3700 	 * This allows 'zpool import' to generate a more useful message.
3701 	 *
3702 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3703 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3704 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3705 	 */
3706 	if (error == EREMOTEIO) {
3707 		const char *hostname = "<unknown>";
3708 		uint64_t hostid = 0;
3709 
3710 		if (mmp_label) {
3711 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3712 				hostname = fnvlist_lookup_string(mmp_label,
3713 				    ZPOOL_CONFIG_HOSTNAME);
3714 				fnvlist_add_string(spa->spa_load_info,
3715 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3716 			}
3717 
3718 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3719 				hostid = fnvlist_lookup_uint64(mmp_label,
3720 				    ZPOOL_CONFIG_HOSTID);
3721 				fnvlist_add_uint64(spa->spa_load_info,
3722 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3723 			}
3724 		}
3725 
3726 		fnvlist_add_uint64(spa->spa_load_info,
3727 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3728 		fnvlist_add_uint64(spa->spa_load_info,
3729 		    ZPOOL_CONFIG_MMP_TXG, 0);
3730 
3731 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3732 	}
3733 
3734 	if (mmp_label)
3735 		nvlist_free(mmp_label);
3736 
3737 	return (error);
3738 }
3739 
3740 static int
3741 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3742 {
3743 	uint64_t hostid;
3744 	const char *hostname;
3745 	uint64_t myhostid = 0;
3746 
3747 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3748 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3749 		hostname = fnvlist_lookup_string(mos_config,
3750 		    ZPOOL_CONFIG_HOSTNAME);
3751 
3752 		myhostid = zone_get_hostid(NULL);
3753 
3754 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3755 			cmn_err(CE_WARN, "pool '%s' could not be "
3756 			    "loaded as it was last accessed by "
3757 			    "another system (host: %s hostid: 0x%llx). "
3758 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3759 			    "ZFS-8000-EY",
3760 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3761 			spa_load_failed(spa, "hostid verification failed: pool "
3762 			    "last accessed by host: %s (hostid: 0x%llx)",
3763 			    hostname, (u_longlong_t)hostid);
3764 			return (SET_ERROR(EBADF));
3765 		}
3766 	}
3767 
3768 	return (0);
3769 }
3770 
3771 static int
3772 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3773 {
3774 	int error = 0;
3775 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3776 	int parse;
3777 	vdev_t *rvd;
3778 	uint64_t pool_guid;
3779 	const char *comment;
3780 	const char *compatibility;
3781 
3782 	/*
3783 	 * Versioning wasn't explicitly added to the label until later, so if
3784 	 * it's not present treat it as the initial version.
3785 	 */
3786 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3787 	    &spa->spa_ubsync.ub_version) != 0)
3788 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3789 
3790 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3791 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3792 		    ZPOOL_CONFIG_POOL_GUID);
3793 		return (SET_ERROR(EINVAL));
3794 	}
3795 
3796 	/*
3797 	 * If we are doing an import, ensure that the pool is not already
3798 	 * imported by checking if its pool guid already exists in the
3799 	 * spa namespace.
3800 	 *
3801 	 * The only case that we allow an already imported pool to be
3802 	 * imported again, is when the pool is checkpointed and we want to
3803 	 * look at its checkpointed state from userland tools like zdb.
3804 	 */
3805 #ifdef _KERNEL
3806 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3807 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3808 	    spa_guid_exists(pool_guid, 0)) {
3809 #else
3810 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3811 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3812 	    spa_guid_exists(pool_guid, 0) &&
3813 	    !spa_importing_readonly_checkpoint(spa)) {
3814 #endif
3815 		spa_load_failed(spa, "a pool with guid %llu is already open",
3816 		    (u_longlong_t)pool_guid);
3817 		return (SET_ERROR(EEXIST));
3818 	}
3819 
3820 	spa->spa_config_guid = pool_guid;
3821 
3822 	nvlist_free(spa->spa_load_info);
3823 	spa->spa_load_info = fnvlist_alloc();
3824 
3825 	ASSERT(spa->spa_comment == NULL);
3826 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3827 		spa->spa_comment = spa_strdup(comment);
3828 
3829 	ASSERT(spa->spa_compatibility == NULL);
3830 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3831 	    &compatibility) == 0)
3832 		spa->spa_compatibility = spa_strdup(compatibility);
3833 
3834 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3835 	    &spa->spa_config_txg);
3836 
3837 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3838 		spa->spa_config_splitting = fnvlist_dup(nvl);
3839 
3840 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3841 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3842 		    ZPOOL_CONFIG_VDEV_TREE);
3843 		return (SET_ERROR(EINVAL));
3844 	}
3845 
3846 	/*
3847 	 * Create "The Godfather" zio to hold all async IOs
3848 	 */
3849 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3850 	    KM_SLEEP);
3851 	for (int i = 0; i < max_ncpus; i++) {
3852 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3853 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3854 		    ZIO_FLAG_GODFATHER);
3855 	}
3856 
3857 	/*
3858 	 * Parse the configuration into a vdev tree.  We explicitly set the
3859 	 * value that will be returned by spa_version() since parsing the
3860 	 * configuration requires knowing the version number.
3861 	 */
3862 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3863 	parse = (type == SPA_IMPORT_EXISTING ?
3864 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3865 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3866 	spa_config_exit(spa, SCL_ALL, FTAG);
3867 
3868 	if (error != 0) {
3869 		spa_load_failed(spa, "unable to parse config [error=%d]",
3870 		    error);
3871 		return (error);
3872 	}
3873 
3874 	ASSERT(spa->spa_root_vdev == rvd);
3875 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3876 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3877 
3878 	if (type != SPA_IMPORT_ASSEMBLE) {
3879 		ASSERT(spa_guid(spa) == pool_guid);
3880 	}
3881 
3882 	return (0);
3883 }
3884 
3885 /*
3886  * Recursively open all vdevs in the vdev tree. This function is called twice:
3887  * first with the untrusted config, then with the trusted config.
3888  */
3889 static int
3890 spa_ld_open_vdevs(spa_t *spa)
3891 {
3892 	int error = 0;
3893 
3894 	/*
3895 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3896 	 * missing/unopenable for the root vdev to be still considered openable.
3897 	 */
3898 	if (spa->spa_trust_config) {
3899 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3900 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3901 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3902 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3903 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3904 	} else {
3905 		spa->spa_missing_tvds_allowed = 0;
3906 	}
3907 
3908 	spa->spa_missing_tvds_allowed =
3909 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3910 
3911 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3912 	error = vdev_open(spa->spa_root_vdev);
3913 	spa_config_exit(spa, SCL_ALL, FTAG);
3914 
3915 	if (spa->spa_missing_tvds != 0) {
3916 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3917 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3918 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3919 			/*
3920 			 * Although theoretically we could allow users to open
3921 			 * incomplete pools in RW mode, we'd need to add a lot
3922 			 * of extra logic (e.g. adjust pool space to account
3923 			 * for missing vdevs).
3924 			 * This limitation also prevents users from accidentally
3925 			 * opening the pool in RW mode during data recovery and
3926 			 * damaging it further.
3927 			 */
3928 			spa_load_note(spa, "pools with missing top-level "
3929 			    "vdevs can only be opened in read-only mode.");
3930 			error = SET_ERROR(ENXIO);
3931 		} else {
3932 			spa_load_note(spa, "current settings allow for maximum "
3933 			    "%lld missing top-level vdevs at this stage.",
3934 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3935 		}
3936 	}
3937 	if (error != 0) {
3938 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3939 		    error);
3940 	}
3941 	if (spa->spa_missing_tvds != 0 || error != 0)
3942 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3943 
3944 	return (error);
3945 }
3946 
3947 /*
3948  * We need to validate the vdev labels against the configuration that
3949  * we have in hand. This function is called twice: first with an untrusted
3950  * config, then with a trusted config. The validation is more strict when the
3951  * config is trusted.
3952  */
3953 static int
3954 spa_ld_validate_vdevs(spa_t *spa)
3955 {
3956 	int error = 0;
3957 	vdev_t *rvd = spa->spa_root_vdev;
3958 
3959 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3960 	error = vdev_validate(rvd);
3961 	spa_config_exit(spa, SCL_ALL, FTAG);
3962 
3963 	if (error != 0) {
3964 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3965 		return (error);
3966 	}
3967 
3968 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3969 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3970 		    "some vdevs");
3971 		vdev_dbgmsg_print_tree(rvd, 2);
3972 		return (SET_ERROR(ENXIO));
3973 	}
3974 
3975 	return (0);
3976 }
3977 
3978 static void
3979 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3980 {
3981 	spa->spa_state = POOL_STATE_ACTIVE;
3982 	spa->spa_ubsync = spa->spa_uberblock;
3983 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3984 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3985 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3986 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3987 	spa->spa_claim_max_txg = spa->spa_first_txg;
3988 	spa->spa_prev_software_version = ub->ub_software_version;
3989 }
3990 
3991 static int
3992 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3993 {
3994 	vdev_t *rvd = spa->spa_root_vdev;
3995 	nvlist_t *label;
3996 	uberblock_t *ub = &spa->spa_uberblock;
3997 	boolean_t activity_check = B_FALSE;
3998 
3999 	/*
4000 	 * If we are opening the checkpointed state of the pool by
4001 	 * rewinding to it, at this point we will have written the
4002 	 * checkpointed uberblock to the vdev labels, so searching
4003 	 * the labels will find the right uberblock.  However, if
4004 	 * we are opening the checkpointed state read-only, we have
4005 	 * not modified the labels. Therefore, we must ignore the
4006 	 * labels and continue using the spa_uberblock that was set
4007 	 * by spa_ld_checkpoint_rewind.
4008 	 *
4009 	 * Note that it would be fine to ignore the labels when
4010 	 * rewinding (opening writeable) as well. However, if we
4011 	 * crash just after writing the labels, we will end up
4012 	 * searching the labels. Doing so in the common case means
4013 	 * that this code path gets exercised normally, rather than
4014 	 * just in the edge case.
4015 	 */
4016 	if (ub->ub_checkpoint_txg != 0 &&
4017 	    spa_importing_readonly_checkpoint(spa)) {
4018 		spa_ld_select_uberblock_done(spa, ub);
4019 		return (0);
4020 	}
4021 
4022 	/*
4023 	 * Find the best uberblock.
4024 	 */
4025 	vdev_uberblock_load(rvd, ub, &label);
4026 
4027 	/*
4028 	 * If we weren't able to find a single valid uberblock, return failure.
4029 	 */
4030 	if (ub->ub_txg == 0) {
4031 		nvlist_free(label);
4032 		spa_load_failed(spa, "no valid uberblock found");
4033 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4034 	}
4035 
4036 	if (spa->spa_load_max_txg != UINT64_MAX) {
4037 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4038 		    (u_longlong_t)spa->spa_load_max_txg);
4039 	}
4040 	spa_load_note(spa, "using uberblock with txg=%llu",
4041 	    (u_longlong_t)ub->ub_txg);
4042 	if (ub->ub_raidz_reflow_info != 0) {
4043 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4044 		    "state=%u offset=%llu",
4045 		    (int)RRSS_GET_STATE(ub),
4046 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4047 	}
4048 
4049 
4050 	/*
4051 	 * For pools which have the multihost property on determine if the
4052 	 * pool is truly inactive and can be safely imported.  Prevent
4053 	 * hosts which don't have a hostid set from importing the pool.
4054 	 */
4055 	activity_check = spa_activity_check_required(spa, ub, label,
4056 	    spa->spa_config);
4057 	if (activity_check) {
4058 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4059 		    spa_get_hostid(spa) == 0) {
4060 			nvlist_free(label);
4061 			fnvlist_add_uint64(spa->spa_load_info,
4062 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4063 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4064 		}
4065 
4066 		int error = spa_activity_check(spa, ub, spa->spa_config);
4067 		if (error) {
4068 			nvlist_free(label);
4069 			return (error);
4070 		}
4071 
4072 		fnvlist_add_uint64(spa->spa_load_info,
4073 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4074 		fnvlist_add_uint64(spa->spa_load_info,
4075 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4076 		fnvlist_add_uint16(spa->spa_load_info,
4077 		    ZPOOL_CONFIG_MMP_SEQ,
4078 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4079 	}
4080 
4081 	/*
4082 	 * If the pool has an unsupported version we can't open it.
4083 	 */
4084 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4085 		nvlist_free(label);
4086 		spa_load_failed(spa, "version %llu is not supported",
4087 		    (u_longlong_t)ub->ub_version);
4088 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4089 	}
4090 
4091 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4092 		nvlist_t *features;
4093 
4094 		/*
4095 		 * If we weren't able to find what's necessary for reading the
4096 		 * MOS in the label, return failure.
4097 		 */
4098 		if (label == NULL) {
4099 			spa_load_failed(spa, "label config unavailable");
4100 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4101 			    ENXIO));
4102 		}
4103 
4104 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4105 		    &features) != 0) {
4106 			nvlist_free(label);
4107 			spa_load_failed(spa, "invalid label: '%s' missing",
4108 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4109 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4110 			    ENXIO));
4111 		}
4112 
4113 		/*
4114 		 * Update our in-core representation with the definitive values
4115 		 * from the label.
4116 		 */
4117 		nvlist_free(spa->spa_label_features);
4118 		spa->spa_label_features = fnvlist_dup(features);
4119 	}
4120 
4121 	nvlist_free(label);
4122 
4123 	/*
4124 	 * Look through entries in the label nvlist's features_for_read. If
4125 	 * there is a feature listed there which we don't understand then we
4126 	 * cannot open a pool.
4127 	 */
4128 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4129 		nvlist_t *unsup_feat;
4130 
4131 		unsup_feat = fnvlist_alloc();
4132 
4133 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4134 		    NULL); nvp != NULL;
4135 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4136 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4137 				fnvlist_add_string(unsup_feat,
4138 				    nvpair_name(nvp), "");
4139 			}
4140 		}
4141 
4142 		if (!nvlist_empty(unsup_feat)) {
4143 			fnvlist_add_nvlist(spa->spa_load_info,
4144 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4145 			nvlist_free(unsup_feat);
4146 			spa_load_failed(spa, "some features are unsupported");
4147 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4148 			    ENOTSUP));
4149 		}
4150 
4151 		nvlist_free(unsup_feat);
4152 	}
4153 
4154 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4155 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4156 		spa_try_repair(spa, spa->spa_config);
4157 		spa_config_exit(spa, SCL_ALL, FTAG);
4158 		nvlist_free(spa->spa_config_splitting);
4159 		spa->spa_config_splitting = NULL;
4160 	}
4161 
4162 	/*
4163 	 * Initialize internal SPA structures.
4164 	 */
4165 	spa_ld_select_uberblock_done(spa, ub);
4166 
4167 	return (0);
4168 }
4169 
4170 static int
4171 spa_ld_open_rootbp(spa_t *spa)
4172 {
4173 	int error = 0;
4174 	vdev_t *rvd = spa->spa_root_vdev;
4175 
4176 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4177 	if (error != 0) {
4178 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4179 		    "[error=%d]", error);
4180 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4181 	}
4182 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4183 
4184 	return (0);
4185 }
4186 
4187 static int
4188 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4189     boolean_t reloading)
4190 {
4191 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4192 	nvlist_t *nv, *mos_config, *policy;
4193 	int error = 0, copy_error;
4194 	uint64_t healthy_tvds, healthy_tvds_mos;
4195 	uint64_t mos_config_txg;
4196 
4197 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4198 	    != 0)
4199 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4200 
4201 	/*
4202 	 * If we're assembling a pool from a split, the config provided is
4203 	 * already trusted so there is nothing to do.
4204 	 */
4205 	if (type == SPA_IMPORT_ASSEMBLE)
4206 		return (0);
4207 
4208 	healthy_tvds = spa_healthy_core_tvds(spa);
4209 
4210 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4211 	    != 0) {
4212 		spa_load_failed(spa, "unable to retrieve MOS config");
4213 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4214 	}
4215 
4216 	/*
4217 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4218 	 * the verification here.
4219 	 */
4220 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4221 		error = spa_verify_host(spa, mos_config);
4222 		if (error != 0) {
4223 			nvlist_free(mos_config);
4224 			return (error);
4225 		}
4226 	}
4227 
4228 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4229 
4230 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4231 
4232 	/*
4233 	 * Build a new vdev tree from the trusted config
4234 	 */
4235 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4236 	if (error != 0) {
4237 		nvlist_free(mos_config);
4238 		spa_config_exit(spa, SCL_ALL, FTAG);
4239 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4240 		    error);
4241 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4242 	}
4243 
4244 	/*
4245 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4246 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4247 	 * paths. We update the trusted MOS config with this information.
4248 	 * We first try to copy the paths with vdev_copy_path_strict, which
4249 	 * succeeds only when both configs have exactly the same vdev tree.
4250 	 * If that fails, we fall back to a more flexible method that has a
4251 	 * best effort policy.
4252 	 */
4253 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4254 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4255 		spa_load_note(spa, "provided vdev tree:");
4256 		vdev_dbgmsg_print_tree(rvd, 2);
4257 		spa_load_note(spa, "MOS vdev tree:");
4258 		vdev_dbgmsg_print_tree(mrvd, 2);
4259 	}
4260 	if (copy_error != 0) {
4261 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4262 		    "back to vdev_copy_path_relaxed");
4263 		vdev_copy_path_relaxed(rvd, mrvd);
4264 	}
4265 
4266 	vdev_close(rvd);
4267 	vdev_free(rvd);
4268 	spa->spa_root_vdev = mrvd;
4269 	rvd = mrvd;
4270 	spa_config_exit(spa, SCL_ALL, FTAG);
4271 
4272 	/*
4273 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4274 	 * hostname may be different to the cached config in ways that should
4275 	 * prevent import.  Userspace can't discover this without a scan, but
4276 	 * we know, so we add these values to LOAD_INFO so the caller can know
4277 	 * the difference.
4278 	 *
4279 	 * Note that we have to do this before the config is regenerated,
4280 	 * because the new config will have the hostid and hostname for this
4281 	 * host, in readiness for import.
4282 	 */
4283 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4284 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4285 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4286 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4287 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4288 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4289 
4290 	/*
4291 	 * We will use spa_config if we decide to reload the spa or if spa_load
4292 	 * fails and we rewind. We must thus regenerate the config using the
4293 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4294 	 * pass settings on how to load the pool and is not stored in the MOS.
4295 	 * We copy it over to our new, trusted config.
4296 	 */
4297 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4298 	    ZPOOL_CONFIG_POOL_TXG);
4299 	nvlist_free(mos_config);
4300 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4301 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4302 	    &policy) == 0)
4303 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4304 	spa_config_set(spa, mos_config);
4305 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4306 
4307 	/*
4308 	 * Now that we got the config from the MOS, we should be more strict
4309 	 * in checking blkptrs and can make assumptions about the consistency
4310 	 * of the vdev tree. spa_trust_config must be set to true before opening
4311 	 * vdevs in order for them to be writeable.
4312 	 */
4313 	spa->spa_trust_config = B_TRUE;
4314 
4315 	/*
4316 	 * Open and validate the new vdev tree
4317 	 */
4318 	error = spa_ld_open_vdevs(spa);
4319 	if (error != 0)
4320 		return (error);
4321 
4322 	error = spa_ld_validate_vdevs(spa);
4323 	if (error != 0)
4324 		return (error);
4325 
4326 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4327 		spa_load_note(spa, "final vdev tree:");
4328 		vdev_dbgmsg_print_tree(rvd, 2);
4329 	}
4330 
4331 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4332 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4333 		/*
4334 		 * Sanity check to make sure that we are indeed loading the
4335 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4336 		 * in the config provided and they happened to be the only ones
4337 		 * to have the latest uberblock, we could involuntarily perform
4338 		 * an extreme rewind.
4339 		 */
4340 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4341 		if (healthy_tvds_mos - healthy_tvds >=
4342 		    SPA_SYNC_MIN_VDEVS) {
4343 			spa_load_note(spa, "config provided misses too many "
4344 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4345 			    (u_longlong_t)healthy_tvds,
4346 			    (u_longlong_t)healthy_tvds_mos);
4347 			spa_load_note(spa, "vdev tree:");
4348 			vdev_dbgmsg_print_tree(rvd, 2);
4349 			if (reloading) {
4350 				spa_load_failed(spa, "config was already "
4351 				    "provided from MOS. Aborting.");
4352 				return (spa_vdev_err(rvd,
4353 				    VDEV_AUX_CORRUPT_DATA, EIO));
4354 			}
4355 			spa_load_note(spa, "spa must be reloaded using MOS "
4356 			    "config");
4357 			return (SET_ERROR(EAGAIN));
4358 		}
4359 	}
4360 
4361 	error = spa_check_for_missing_logs(spa);
4362 	if (error != 0)
4363 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4364 
4365 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4366 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4367 		    "guid sum (%llu != %llu)",
4368 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4369 		    (u_longlong_t)rvd->vdev_guid_sum);
4370 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4371 		    ENXIO));
4372 	}
4373 
4374 	return (0);
4375 }
4376 
4377 static int
4378 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4379 {
4380 	int error = 0;
4381 	vdev_t *rvd = spa->spa_root_vdev;
4382 
4383 	/*
4384 	 * Everything that we read before spa_remove_init() must be stored
4385 	 * on concreted vdevs.  Therefore we do this as early as possible.
4386 	 */
4387 	error = spa_remove_init(spa);
4388 	if (error != 0) {
4389 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4390 		    error);
4391 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4392 	}
4393 
4394 	/*
4395 	 * Retrieve information needed to condense indirect vdev mappings.
4396 	 */
4397 	error = spa_condense_init(spa);
4398 	if (error != 0) {
4399 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4400 		    error);
4401 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4402 	}
4403 
4404 	return (0);
4405 }
4406 
4407 static int
4408 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4409 {
4410 	int error = 0;
4411 	vdev_t *rvd = spa->spa_root_vdev;
4412 
4413 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4414 		boolean_t missing_feat_read = B_FALSE;
4415 		nvlist_t *unsup_feat, *enabled_feat;
4416 
4417 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4418 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4419 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4420 		}
4421 
4422 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4423 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4424 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4425 		}
4426 
4427 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4428 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4429 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4430 		}
4431 
4432 		enabled_feat = fnvlist_alloc();
4433 		unsup_feat = fnvlist_alloc();
4434 
4435 		if (!spa_features_check(spa, B_FALSE,
4436 		    unsup_feat, enabled_feat))
4437 			missing_feat_read = B_TRUE;
4438 
4439 		if (spa_writeable(spa) ||
4440 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4441 			if (!spa_features_check(spa, B_TRUE,
4442 			    unsup_feat, enabled_feat)) {
4443 				*missing_feat_writep = B_TRUE;
4444 			}
4445 		}
4446 
4447 		fnvlist_add_nvlist(spa->spa_load_info,
4448 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4449 
4450 		if (!nvlist_empty(unsup_feat)) {
4451 			fnvlist_add_nvlist(spa->spa_load_info,
4452 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4453 		}
4454 
4455 		fnvlist_free(enabled_feat);
4456 		fnvlist_free(unsup_feat);
4457 
4458 		if (!missing_feat_read) {
4459 			fnvlist_add_boolean(spa->spa_load_info,
4460 			    ZPOOL_CONFIG_CAN_RDONLY);
4461 		}
4462 
4463 		/*
4464 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4465 		 * twofold: to determine whether the pool is available for
4466 		 * import in read-write mode and (if it is not) whether the
4467 		 * pool is available for import in read-only mode. If the pool
4468 		 * is available for import in read-write mode, it is displayed
4469 		 * as available in userland; if it is not available for import
4470 		 * in read-only mode, it is displayed as unavailable in
4471 		 * userland. If the pool is available for import in read-only
4472 		 * mode but not read-write mode, it is displayed as unavailable
4473 		 * in userland with a special note that the pool is actually
4474 		 * available for open in read-only mode.
4475 		 *
4476 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4477 		 * missing a feature for write, we must first determine whether
4478 		 * the pool can be opened read-only before returning to
4479 		 * userland in order to know whether to display the
4480 		 * abovementioned note.
4481 		 */
4482 		if (missing_feat_read || (*missing_feat_writep &&
4483 		    spa_writeable(spa))) {
4484 			spa_load_failed(spa, "pool uses unsupported features");
4485 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4486 			    ENOTSUP));
4487 		}
4488 
4489 		/*
4490 		 * Load refcounts for ZFS features from disk into an in-memory
4491 		 * cache during SPA initialization.
4492 		 */
4493 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4494 			uint64_t refcount;
4495 
4496 			error = feature_get_refcount_from_disk(spa,
4497 			    &spa_feature_table[i], &refcount);
4498 			if (error == 0) {
4499 				spa->spa_feat_refcount_cache[i] = refcount;
4500 			} else if (error == ENOTSUP) {
4501 				spa->spa_feat_refcount_cache[i] =
4502 				    SPA_FEATURE_DISABLED;
4503 			} else {
4504 				spa_load_failed(spa, "error getting refcount "
4505 				    "for feature %s [error=%d]",
4506 				    spa_feature_table[i].fi_guid, error);
4507 				return (spa_vdev_err(rvd,
4508 				    VDEV_AUX_CORRUPT_DATA, EIO));
4509 			}
4510 		}
4511 	}
4512 
4513 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4514 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4515 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4516 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4517 	}
4518 
4519 	/*
4520 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4521 	 * is now a dependency. If this pool has encryption enabled without
4522 	 * bookmark_v2, trigger an errata message.
4523 	 */
4524 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4525 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4526 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4527 	}
4528 
4529 	return (0);
4530 }
4531 
4532 static int
4533 spa_ld_load_special_directories(spa_t *spa)
4534 {
4535 	int error = 0;
4536 	vdev_t *rvd = spa->spa_root_vdev;
4537 
4538 	spa->spa_is_initializing = B_TRUE;
4539 	error = dsl_pool_open(spa->spa_dsl_pool);
4540 	spa->spa_is_initializing = B_FALSE;
4541 	if (error != 0) {
4542 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4543 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4544 	}
4545 
4546 	return (0);
4547 }
4548 
4549 static int
4550 spa_ld_get_props(spa_t *spa)
4551 {
4552 	int error = 0;
4553 	uint64_t obj;
4554 	vdev_t *rvd = spa->spa_root_vdev;
4555 
4556 	/* Grab the checksum salt from the MOS. */
4557 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4558 	    DMU_POOL_CHECKSUM_SALT, 1,
4559 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4560 	    spa->spa_cksum_salt.zcs_bytes);
4561 	if (error == ENOENT) {
4562 		/* Generate a new salt for subsequent use */
4563 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4564 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4565 	} else if (error != 0) {
4566 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4567 		    "MOS [error=%d]", error);
4568 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4569 	}
4570 
4571 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4572 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4573 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4574 	if (error != 0) {
4575 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4576 		    "[error=%d]", error);
4577 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4578 	}
4579 
4580 	/*
4581 	 * Load the bit that tells us to use the new accounting function
4582 	 * (raid-z deflation).  If we have an older pool, this will not
4583 	 * be present.
4584 	 */
4585 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4586 	if (error != 0 && error != ENOENT)
4587 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4588 
4589 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4590 	    &spa->spa_creation_version, B_FALSE);
4591 	if (error != 0 && error != ENOENT)
4592 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4593 
4594 	/*
4595 	 * Load the persistent error log.  If we have an older pool, this will
4596 	 * not be present.
4597 	 */
4598 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4599 	    B_FALSE);
4600 	if (error != 0 && error != ENOENT)
4601 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4602 
4603 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4604 	    &spa->spa_errlog_scrub, B_FALSE);
4605 	if (error != 0 && error != ENOENT)
4606 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4607 
4608 	/*
4609 	 * Load the livelist deletion field. If a livelist is queued for
4610 	 * deletion, indicate that in the spa
4611 	 */
4612 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4613 	    &spa->spa_livelists_to_delete, B_FALSE);
4614 	if (error != 0 && error != ENOENT)
4615 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4616 
4617 	/*
4618 	 * Load the history object.  If we have an older pool, this
4619 	 * will not be present.
4620 	 */
4621 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4622 	if (error != 0 && error != ENOENT)
4623 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4624 
4625 	/*
4626 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4627 	 * be present; in this case, defer its creation to a later time to
4628 	 * avoid dirtying the MOS this early / out of sync context. See
4629 	 * spa_sync_config_object.
4630 	 */
4631 
4632 	/* The sentinel is only available in the MOS config. */
4633 	nvlist_t *mos_config;
4634 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4635 		spa_load_failed(spa, "unable to retrieve MOS config");
4636 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4637 	}
4638 
4639 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4640 	    &spa->spa_all_vdev_zaps, B_FALSE);
4641 
4642 	if (error == ENOENT) {
4643 		VERIFY(!nvlist_exists(mos_config,
4644 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4645 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4646 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4647 	} else if (error != 0) {
4648 		nvlist_free(mos_config);
4649 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4650 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4651 		/*
4652 		 * An older version of ZFS overwrote the sentinel value, so
4653 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4654 		 * destruction to later; see spa_sync_config_object.
4655 		 */
4656 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4657 		/*
4658 		 * We're assuming that no vdevs have had their ZAPs created
4659 		 * before this. Better be sure of it.
4660 		 */
4661 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4662 	}
4663 	nvlist_free(mos_config);
4664 
4665 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4666 
4667 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4668 	    B_FALSE);
4669 	if (error && error != ENOENT)
4670 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4671 
4672 	if (error == 0) {
4673 		uint64_t autoreplace = 0;
4674 
4675 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4676 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4677 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4678 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4679 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4680 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4681 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4682 		spa->spa_autoreplace = (autoreplace != 0);
4683 	}
4684 
4685 	/*
4686 	 * If we are importing a pool with missing top-level vdevs,
4687 	 * we enforce that the pool doesn't panic or get suspended on
4688 	 * error since the likelihood of missing data is extremely high.
4689 	 */
4690 	if (spa->spa_missing_tvds > 0 &&
4691 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4692 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4693 		spa_load_note(spa, "forcing failmode to 'continue' "
4694 		    "as some top level vdevs are missing");
4695 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4696 	}
4697 
4698 	return (0);
4699 }
4700 
4701 static int
4702 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4703 {
4704 	int error = 0;
4705 	vdev_t *rvd = spa->spa_root_vdev;
4706 
4707 	/*
4708 	 * If we're assembling the pool from the split-off vdevs of
4709 	 * an existing pool, we don't want to attach the spares & cache
4710 	 * devices.
4711 	 */
4712 
4713 	/*
4714 	 * Load any hot spares for this pool.
4715 	 */
4716 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4717 	    B_FALSE);
4718 	if (error != 0 && error != ENOENT)
4719 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4720 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4721 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4722 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4723 		    &spa->spa_spares.sav_config) != 0) {
4724 			spa_load_failed(spa, "error loading spares nvlist");
4725 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4726 		}
4727 
4728 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4729 		spa_load_spares(spa);
4730 		spa_config_exit(spa, SCL_ALL, FTAG);
4731 	} else if (error == 0) {
4732 		spa->spa_spares.sav_sync = B_TRUE;
4733 	}
4734 
4735 	/*
4736 	 * Load any level 2 ARC devices for this pool.
4737 	 */
4738 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4739 	    &spa->spa_l2cache.sav_object, B_FALSE);
4740 	if (error != 0 && error != ENOENT)
4741 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4742 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4743 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4744 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4745 		    &spa->spa_l2cache.sav_config) != 0) {
4746 			spa_load_failed(spa, "error loading l2cache nvlist");
4747 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4748 		}
4749 
4750 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4751 		spa_load_l2cache(spa);
4752 		spa_config_exit(spa, SCL_ALL, FTAG);
4753 	} else if (error == 0) {
4754 		spa->spa_l2cache.sav_sync = B_TRUE;
4755 	}
4756 
4757 	return (0);
4758 }
4759 
4760 static int
4761 spa_ld_load_vdev_metadata(spa_t *spa)
4762 {
4763 	int error = 0;
4764 	vdev_t *rvd = spa->spa_root_vdev;
4765 
4766 	/*
4767 	 * If the 'multihost' property is set, then never allow a pool to
4768 	 * be imported when the system hostid is zero.  The exception to
4769 	 * this rule is zdb which is always allowed to access pools.
4770 	 */
4771 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4772 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4773 		fnvlist_add_uint64(spa->spa_load_info,
4774 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4775 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4776 	}
4777 
4778 	/*
4779 	 * If the 'autoreplace' property is set, then post a resource notifying
4780 	 * the ZFS DE that it should not issue any faults for unopenable
4781 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4782 	 * unopenable vdevs so that the normal autoreplace handler can take
4783 	 * over.
4784 	 */
4785 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4786 		spa_check_removed(spa->spa_root_vdev);
4787 		/*
4788 		 * For the import case, this is done in spa_import(), because
4789 		 * at this point we're using the spare definitions from
4790 		 * the MOS config, not necessarily from the userland config.
4791 		 */
4792 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4793 			spa_aux_check_removed(&spa->spa_spares);
4794 			spa_aux_check_removed(&spa->spa_l2cache);
4795 		}
4796 	}
4797 
4798 	/*
4799 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4800 	 */
4801 	error = vdev_load(rvd);
4802 	if (error != 0) {
4803 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4804 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4805 	}
4806 
4807 	error = spa_ld_log_spacemaps(spa);
4808 	if (error != 0) {
4809 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4810 		    error);
4811 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4812 	}
4813 
4814 	/*
4815 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4816 	 */
4817 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4818 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4819 	spa_config_exit(spa, SCL_ALL, FTAG);
4820 
4821 	return (0);
4822 }
4823 
4824 static int
4825 spa_ld_load_dedup_tables(spa_t *spa)
4826 {
4827 	int error = 0;
4828 	vdev_t *rvd = spa->spa_root_vdev;
4829 
4830 	error = ddt_load(spa);
4831 	if (error != 0) {
4832 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4833 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4834 	}
4835 
4836 	return (0);
4837 }
4838 
4839 static int
4840 spa_ld_load_brt(spa_t *spa)
4841 {
4842 	int error = 0;
4843 	vdev_t *rvd = spa->spa_root_vdev;
4844 
4845 	error = brt_load(spa);
4846 	if (error != 0) {
4847 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4848 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4849 	}
4850 
4851 	return (0);
4852 }
4853 
4854 static int
4855 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4856 {
4857 	vdev_t *rvd = spa->spa_root_vdev;
4858 
4859 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4860 		boolean_t missing = spa_check_logs(spa);
4861 		if (missing) {
4862 			if (spa->spa_missing_tvds != 0) {
4863 				spa_load_note(spa, "spa_check_logs failed "
4864 				    "so dropping the logs");
4865 			} else {
4866 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4867 				spa_load_failed(spa, "spa_check_logs failed");
4868 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4869 				    ENXIO));
4870 			}
4871 		}
4872 	}
4873 
4874 	return (0);
4875 }
4876 
4877 static int
4878 spa_ld_verify_pool_data(spa_t *spa)
4879 {
4880 	int error = 0;
4881 	vdev_t *rvd = spa->spa_root_vdev;
4882 
4883 	/*
4884 	 * We've successfully opened the pool, verify that we're ready
4885 	 * to start pushing transactions.
4886 	 */
4887 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4888 		error = spa_load_verify(spa);
4889 		if (error != 0) {
4890 			spa_load_failed(spa, "spa_load_verify failed "
4891 			    "[error=%d]", error);
4892 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4893 			    error));
4894 		}
4895 	}
4896 
4897 	return (0);
4898 }
4899 
4900 static void
4901 spa_ld_claim_log_blocks(spa_t *spa)
4902 {
4903 	dmu_tx_t *tx;
4904 	dsl_pool_t *dp = spa_get_dsl(spa);
4905 
4906 	/*
4907 	 * Claim log blocks that haven't been committed yet.
4908 	 * This must all happen in a single txg.
4909 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4910 	 * invoked from zil_claim_log_block()'s i/o done callback.
4911 	 * Price of rollback is that we abandon the log.
4912 	 */
4913 	spa->spa_claiming = B_TRUE;
4914 
4915 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4916 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4917 	    zil_claim, tx, DS_FIND_CHILDREN);
4918 	dmu_tx_commit(tx);
4919 
4920 	spa->spa_claiming = B_FALSE;
4921 
4922 	spa_set_log_state(spa, SPA_LOG_GOOD);
4923 }
4924 
4925 static void
4926 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4927     boolean_t update_config_cache)
4928 {
4929 	vdev_t *rvd = spa->spa_root_vdev;
4930 	int need_update = B_FALSE;
4931 
4932 	/*
4933 	 * If the config cache is stale, or we have uninitialized
4934 	 * metaslabs (see spa_vdev_add()), then update the config.
4935 	 *
4936 	 * If this is a verbatim import, trust the current
4937 	 * in-core spa_config and update the disk labels.
4938 	 */
4939 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4940 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4941 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4942 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4943 		need_update = B_TRUE;
4944 
4945 	for (int c = 0; c < rvd->vdev_children; c++)
4946 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4947 			need_update = B_TRUE;
4948 
4949 	/*
4950 	 * Update the config cache asynchronously in case we're the
4951 	 * root pool, in which case the config cache isn't writable yet.
4952 	 */
4953 	if (need_update)
4954 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4955 }
4956 
4957 static void
4958 spa_ld_prepare_for_reload(spa_t *spa)
4959 {
4960 	spa_mode_t mode = spa->spa_mode;
4961 	int async_suspended = spa->spa_async_suspended;
4962 
4963 	spa_unload(spa);
4964 	spa_deactivate(spa);
4965 	spa_activate(spa, mode);
4966 
4967 	/*
4968 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4969 	 * spa_unload(). We want to restore it back to the original value before
4970 	 * returning as we might be calling spa_async_resume() later.
4971 	 */
4972 	spa->spa_async_suspended = async_suspended;
4973 }
4974 
4975 static int
4976 spa_ld_read_checkpoint_txg(spa_t *spa)
4977 {
4978 	uberblock_t checkpoint;
4979 	int error = 0;
4980 
4981 	ASSERT0(spa->spa_checkpoint_txg);
4982 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
4983 	    spa->spa_load_thread == curthread);
4984 
4985 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4986 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4987 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4988 
4989 	if (error == ENOENT)
4990 		return (0);
4991 
4992 	if (error != 0)
4993 		return (error);
4994 
4995 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4996 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4997 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4998 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4999 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5000 
5001 	return (0);
5002 }
5003 
5004 static int
5005 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5006 {
5007 	int error = 0;
5008 
5009 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5010 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5011 
5012 	/*
5013 	 * Never trust the config that is provided unless we are assembling
5014 	 * a pool following a split.
5015 	 * This means don't trust blkptrs and the vdev tree in general. This
5016 	 * also effectively puts the spa in read-only mode since
5017 	 * spa_writeable() checks for spa_trust_config to be true.
5018 	 * We will later load a trusted config from the MOS.
5019 	 */
5020 	if (type != SPA_IMPORT_ASSEMBLE)
5021 		spa->spa_trust_config = B_FALSE;
5022 
5023 	/*
5024 	 * Parse the config provided to create a vdev tree.
5025 	 */
5026 	error = spa_ld_parse_config(spa, type);
5027 	if (error != 0)
5028 		return (error);
5029 
5030 	spa_import_progress_add(spa);
5031 
5032 	/*
5033 	 * Now that we have the vdev tree, try to open each vdev. This involves
5034 	 * opening the underlying physical device, retrieving its geometry and
5035 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5036 	 * based on the success of those operations. After this we'll be ready
5037 	 * to read from the vdevs.
5038 	 */
5039 	error = spa_ld_open_vdevs(spa);
5040 	if (error != 0)
5041 		return (error);
5042 
5043 	/*
5044 	 * Read the label of each vdev and make sure that the GUIDs stored
5045 	 * there match the GUIDs in the config provided.
5046 	 * If we're assembling a new pool that's been split off from an
5047 	 * existing pool, the labels haven't yet been updated so we skip
5048 	 * validation for now.
5049 	 */
5050 	if (type != SPA_IMPORT_ASSEMBLE) {
5051 		error = spa_ld_validate_vdevs(spa);
5052 		if (error != 0)
5053 			return (error);
5054 	}
5055 
5056 	/*
5057 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5058 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5059 	 * get the list of features required to read blkptrs in the MOS from
5060 	 * the vdev label with the best uberblock and verify that our version
5061 	 * of zfs supports them all.
5062 	 */
5063 	error = spa_ld_select_uberblock(spa, type);
5064 	if (error != 0)
5065 		return (error);
5066 
5067 	/*
5068 	 * Pass that uberblock to the dsl_pool layer which will open the root
5069 	 * blkptr. This blkptr points to the latest version of the MOS and will
5070 	 * allow us to read its contents.
5071 	 */
5072 	error = spa_ld_open_rootbp(spa);
5073 	if (error != 0)
5074 		return (error);
5075 
5076 	return (0);
5077 }
5078 
5079 static int
5080 spa_ld_checkpoint_rewind(spa_t *spa)
5081 {
5082 	uberblock_t checkpoint;
5083 	int error = 0;
5084 
5085 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5086 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5087 
5088 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5089 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5090 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5091 
5092 	if (error != 0) {
5093 		spa_load_failed(spa, "unable to retrieve checkpointed "
5094 		    "uberblock from the MOS config [error=%d]", error);
5095 
5096 		if (error == ENOENT)
5097 			error = ZFS_ERR_NO_CHECKPOINT;
5098 
5099 		return (error);
5100 	}
5101 
5102 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5103 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5104 
5105 	/*
5106 	 * We need to update the txg and timestamp of the checkpointed
5107 	 * uberblock to be higher than the latest one. This ensures that
5108 	 * the checkpointed uberblock is selected if we were to close and
5109 	 * reopen the pool right after we've written it in the vdev labels.
5110 	 * (also see block comment in vdev_uberblock_compare)
5111 	 */
5112 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5113 	checkpoint.ub_timestamp = gethrestime_sec();
5114 
5115 	/*
5116 	 * Set current uberblock to be the checkpointed uberblock.
5117 	 */
5118 	spa->spa_uberblock = checkpoint;
5119 
5120 	/*
5121 	 * If we are doing a normal rewind, then the pool is open for
5122 	 * writing and we sync the "updated" checkpointed uberblock to
5123 	 * disk. Once this is done, we've basically rewound the whole
5124 	 * pool and there is no way back.
5125 	 *
5126 	 * There are cases when we don't want to attempt and sync the
5127 	 * checkpointed uberblock to disk because we are opening a
5128 	 * pool as read-only. Specifically, verifying the checkpointed
5129 	 * state with zdb, and importing the checkpointed state to get
5130 	 * a "preview" of its content.
5131 	 */
5132 	if (spa_writeable(spa)) {
5133 		vdev_t *rvd = spa->spa_root_vdev;
5134 
5135 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5136 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5137 		int svdcount = 0;
5138 		int children = rvd->vdev_children;
5139 		int c0 = random_in_range(children);
5140 
5141 		for (int c = 0; c < children; c++) {
5142 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5143 
5144 			/* Stop when revisiting the first vdev */
5145 			if (c > 0 && svd[0] == vd)
5146 				break;
5147 
5148 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5149 			    !vdev_is_concrete(vd))
5150 				continue;
5151 
5152 			svd[svdcount++] = vd;
5153 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5154 				break;
5155 		}
5156 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5157 		if (error == 0)
5158 			spa->spa_last_synced_guid = rvd->vdev_guid;
5159 		spa_config_exit(spa, SCL_ALL, FTAG);
5160 
5161 		if (error != 0) {
5162 			spa_load_failed(spa, "failed to write checkpointed "
5163 			    "uberblock to the vdev labels [error=%d]", error);
5164 			return (error);
5165 		}
5166 	}
5167 
5168 	return (0);
5169 }
5170 
5171 static int
5172 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5173     boolean_t *update_config_cache)
5174 {
5175 	int error;
5176 
5177 	/*
5178 	 * Parse the config for pool, open and validate vdevs,
5179 	 * select an uberblock, and use that uberblock to open
5180 	 * the MOS.
5181 	 */
5182 	error = spa_ld_mos_init(spa, type);
5183 	if (error != 0)
5184 		return (error);
5185 
5186 	/*
5187 	 * Retrieve the trusted config stored in the MOS and use it to create
5188 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5189 	 */
5190 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5191 	if (error == EAGAIN) {
5192 		if (update_config_cache != NULL)
5193 			*update_config_cache = B_TRUE;
5194 
5195 		/*
5196 		 * Redo the loading process with the trusted config if it is
5197 		 * too different from the untrusted config.
5198 		 */
5199 		spa_ld_prepare_for_reload(spa);
5200 		spa_load_note(spa, "RELOADING");
5201 		error = spa_ld_mos_init(spa, type);
5202 		if (error != 0)
5203 			return (error);
5204 
5205 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5206 		if (error != 0)
5207 			return (error);
5208 
5209 	} else if (error != 0) {
5210 		return (error);
5211 	}
5212 
5213 	return (0);
5214 }
5215 
5216 /*
5217  * Load an existing storage pool, using the config provided. This config
5218  * describes which vdevs are part of the pool and is later validated against
5219  * partial configs present in each vdev's label and an entire copy of the
5220  * config stored in the MOS.
5221  */
5222 static int
5223 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5224 {
5225 	int error = 0;
5226 	boolean_t missing_feat_write = B_FALSE;
5227 	boolean_t checkpoint_rewind =
5228 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5229 	boolean_t update_config_cache = B_FALSE;
5230 	hrtime_t load_start = gethrtime();
5231 
5232 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5233 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5234 
5235 	spa_load_note(spa, "LOADING");
5236 
5237 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5238 	if (error != 0)
5239 		return (error);
5240 
5241 	/*
5242 	 * If we are rewinding to the checkpoint then we need to repeat
5243 	 * everything we've done so far in this function but this time
5244 	 * selecting the checkpointed uberblock and using that to open
5245 	 * the MOS.
5246 	 */
5247 	if (checkpoint_rewind) {
5248 		/*
5249 		 * If we are rewinding to the checkpoint update config cache
5250 		 * anyway.
5251 		 */
5252 		update_config_cache = B_TRUE;
5253 
5254 		/*
5255 		 * Extract the checkpointed uberblock from the current MOS
5256 		 * and use this as the pool's uberblock from now on. If the
5257 		 * pool is imported as writeable we also write the checkpoint
5258 		 * uberblock to the labels, making the rewind permanent.
5259 		 */
5260 		error = spa_ld_checkpoint_rewind(spa);
5261 		if (error != 0)
5262 			return (error);
5263 
5264 		/*
5265 		 * Redo the loading process again with the
5266 		 * checkpointed uberblock.
5267 		 */
5268 		spa_ld_prepare_for_reload(spa);
5269 		spa_load_note(spa, "LOADING checkpointed uberblock");
5270 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5271 		if (error != 0)
5272 			return (error);
5273 	}
5274 
5275 	/*
5276 	 * Drop the namespace lock for the rest of the function.
5277 	 */
5278 	spa->spa_load_thread = curthread;
5279 	mutex_exit(&spa_namespace_lock);
5280 
5281 	/*
5282 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5283 	 */
5284 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5285 	error = spa_ld_read_checkpoint_txg(spa);
5286 	if (error != 0)
5287 		goto fail;
5288 
5289 	/*
5290 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5291 	 * from the pool and their contents were re-mapped to other vdevs. Note
5292 	 * that everything that we read before this step must have been
5293 	 * rewritten on concrete vdevs after the last device removal was
5294 	 * initiated. Otherwise we could be reading from indirect vdevs before
5295 	 * we have loaded their mappings.
5296 	 */
5297 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5298 	error = spa_ld_open_indirect_vdev_metadata(spa);
5299 	if (error != 0)
5300 		goto fail;
5301 
5302 	/*
5303 	 * Retrieve the full list of active features from the MOS and check if
5304 	 * they are all supported.
5305 	 */
5306 	spa_import_progress_set_notes(spa, "Checking feature flags");
5307 	error = spa_ld_check_features(spa, &missing_feat_write);
5308 	if (error != 0)
5309 		goto fail;
5310 
5311 	/*
5312 	 * Load several special directories from the MOS needed by the dsl_pool
5313 	 * layer.
5314 	 */
5315 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5316 	error = spa_ld_load_special_directories(spa);
5317 	if (error != 0)
5318 		goto fail;
5319 
5320 	/*
5321 	 * Retrieve pool properties from the MOS.
5322 	 */
5323 	spa_import_progress_set_notes(spa, "Loading properties");
5324 	error = spa_ld_get_props(spa);
5325 	if (error != 0)
5326 		goto fail;
5327 
5328 	/*
5329 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5330 	 * and open them.
5331 	 */
5332 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5333 	error = spa_ld_open_aux_vdevs(spa, type);
5334 	if (error != 0)
5335 		goto fail;
5336 
5337 	/*
5338 	 * Load the metadata for all vdevs. Also check if unopenable devices
5339 	 * should be autoreplaced.
5340 	 */
5341 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5342 	error = spa_ld_load_vdev_metadata(spa);
5343 	if (error != 0)
5344 		goto fail;
5345 
5346 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5347 	error = spa_ld_load_dedup_tables(spa);
5348 	if (error != 0)
5349 		goto fail;
5350 
5351 	spa_import_progress_set_notes(spa, "Loading BRT");
5352 	error = spa_ld_load_brt(spa);
5353 	if (error != 0)
5354 		goto fail;
5355 
5356 	/*
5357 	 * Verify the logs now to make sure we don't have any unexpected errors
5358 	 * when we claim log blocks later.
5359 	 */
5360 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5361 	error = spa_ld_verify_logs(spa, type, ereport);
5362 	if (error != 0)
5363 		goto fail;
5364 
5365 	if (missing_feat_write) {
5366 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5367 
5368 		/*
5369 		 * At this point, we know that we can open the pool in
5370 		 * read-only mode but not read-write mode. We now have enough
5371 		 * information and can return to userland.
5372 		 */
5373 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5374 		    ENOTSUP);
5375 		goto fail;
5376 	}
5377 
5378 	/*
5379 	 * Traverse the last txgs to make sure the pool was left off in a safe
5380 	 * state. When performing an extreme rewind, we verify the whole pool,
5381 	 * which can take a very long time.
5382 	 */
5383 	spa_import_progress_set_notes(spa, "Verifying pool data");
5384 	error = spa_ld_verify_pool_data(spa);
5385 	if (error != 0)
5386 		goto fail;
5387 
5388 	/*
5389 	 * Calculate the deflated space for the pool. This must be done before
5390 	 * we write anything to the pool because we'd need to update the space
5391 	 * accounting using the deflated sizes.
5392 	 */
5393 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5394 	spa_update_dspace(spa);
5395 
5396 	/*
5397 	 * We have now retrieved all the information we needed to open the
5398 	 * pool. If we are importing the pool in read-write mode, a few
5399 	 * additional steps must be performed to finish the import.
5400 	 */
5401 	spa_import_progress_set_notes(spa, "Starting import");
5402 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5403 	    spa->spa_load_max_txg == UINT64_MAX)) {
5404 		uint64_t config_cache_txg = spa->spa_config_txg;
5405 
5406 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5407 
5408 		/*
5409 		 * Before we do any zio_write's, complete the raidz expansion
5410 		 * scratch space copying, if necessary.
5411 		 */
5412 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5413 			vdev_raidz_reflow_copy_scratch(spa);
5414 
5415 		/*
5416 		 * In case of a checkpoint rewind, log the original txg
5417 		 * of the checkpointed uberblock.
5418 		 */
5419 		if (checkpoint_rewind) {
5420 			spa_history_log_internal(spa, "checkpoint rewind",
5421 			    NULL, "rewound state to txg=%llu",
5422 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5423 		}
5424 
5425 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5426 		/*
5427 		 * Traverse the ZIL and claim all blocks.
5428 		 */
5429 		spa_ld_claim_log_blocks(spa);
5430 
5431 		/*
5432 		 * Kick-off the syncing thread.
5433 		 */
5434 		spa->spa_sync_on = B_TRUE;
5435 		txg_sync_start(spa->spa_dsl_pool);
5436 		mmp_thread_start(spa);
5437 
5438 		/*
5439 		 * Wait for all claims to sync.  We sync up to the highest
5440 		 * claimed log block birth time so that claimed log blocks
5441 		 * don't appear to be from the future.  spa_claim_max_txg
5442 		 * will have been set for us by ZIL traversal operations
5443 		 * performed above.
5444 		 */
5445 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5446 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5447 
5448 		/*
5449 		 * Check if we need to request an update of the config. On the
5450 		 * next sync, we would update the config stored in vdev labels
5451 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5452 		 */
5453 		spa_import_progress_set_notes(spa, "Updating configs");
5454 		spa_ld_check_for_config_update(spa, config_cache_txg,
5455 		    update_config_cache);
5456 
5457 		/*
5458 		 * Check if a rebuild was in progress and if so resume it.
5459 		 * Then check all DTLs to see if anything needs resilvering.
5460 		 * The resilver will be deferred if a rebuild was started.
5461 		 */
5462 		spa_import_progress_set_notes(spa, "Starting resilvers");
5463 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5464 			vdev_rebuild_restart(spa);
5465 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5466 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5467 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5468 		}
5469 
5470 		/*
5471 		 * Log the fact that we booted up (so that we can detect if
5472 		 * we rebooted in the middle of an operation).
5473 		 */
5474 		spa_history_log_version(spa, "open", NULL);
5475 
5476 		spa_import_progress_set_notes(spa,
5477 		    "Restarting device removals");
5478 		spa_restart_removal(spa);
5479 		spa_spawn_aux_threads(spa);
5480 
5481 		/*
5482 		 * Delete any inconsistent datasets.
5483 		 *
5484 		 * Note:
5485 		 * Since we may be issuing deletes for clones here,
5486 		 * we make sure to do so after we've spawned all the
5487 		 * auxiliary threads above (from which the livelist
5488 		 * deletion zthr is part of).
5489 		 */
5490 		spa_import_progress_set_notes(spa,
5491 		    "Cleaning up inconsistent objsets");
5492 		(void) dmu_objset_find(spa_name(spa),
5493 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5494 
5495 		/*
5496 		 * Clean up any stale temporary dataset userrefs.
5497 		 */
5498 		spa_import_progress_set_notes(spa,
5499 		    "Cleaning up temporary userrefs");
5500 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5501 
5502 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5503 		spa_import_progress_set_notes(spa, "Restarting initialize");
5504 		vdev_initialize_restart(spa->spa_root_vdev);
5505 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5506 		vdev_trim_restart(spa->spa_root_vdev);
5507 		vdev_autotrim_restart(spa);
5508 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5509 		spa_import_progress_set_notes(spa, "Finished importing");
5510 	}
5511 	zio_handle_import_delay(spa, gethrtime() - load_start);
5512 
5513 	spa_import_progress_remove(spa_guid(spa));
5514 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5515 
5516 	spa_load_note(spa, "LOADED");
5517 fail:
5518 	mutex_enter(&spa_namespace_lock);
5519 	spa->spa_load_thread = NULL;
5520 	cv_broadcast(&spa_namespace_cv);
5521 
5522 	return (error);
5523 
5524 }
5525 
5526 static int
5527 spa_load_retry(spa_t *spa, spa_load_state_t state)
5528 {
5529 	spa_mode_t mode = spa->spa_mode;
5530 
5531 	spa_unload(spa);
5532 	spa_deactivate(spa);
5533 
5534 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5535 
5536 	spa_activate(spa, mode);
5537 	spa_async_suspend(spa);
5538 
5539 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5540 	    (u_longlong_t)spa->spa_load_max_txg);
5541 
5542 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5543 }
5544 
5545 /*
5546  * If spa_load() fails this function will try loading prior txg's. If
5547  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5548  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5549  * function will not rewind the pool and will return the same error as
5550  * spa_load().
5551  */
5552 static int
5553 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5554     int rewind_flags)
5555 {
5556 	nvlist_t *loadinfo = NULL;
5557 	nvlist_t *config = NULL;
5558 	int load_error, rewind_error;
5559 	uint64_t safe_rewind_txg;
5560 	uint64_t min_txg;
5561 
5562 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5563 		spa->spa_load_max_txg = spa->spa_load_txg;
5564 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5565 	} else {
5566 		spa->spa_load_max_txg = max_request;
5567 		if (max_request != UINT64_MAX)
5568 			spa->spa_extreme_rewind = B_TRUE;
5569 	}
5570 
5571 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5572 	if (load_error == 0)
5573 		return (0);
5574 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5575 		/*
5576 		 * When attempting checkpoint-rewind on a pool with no
5577 		 * checkpoint, we should not attempt to load uberblocks
5578 		 * from previous txgs when spa_load fails.
5579 		 */
5580 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5581 		spa_import_progress_remove(spa_guid(spa));
5582 		return (load_error);
5583 	}
5584 
5585 	if (spa->spa_root_vdev != NULL)
5586 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5587 
5588 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5589 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5590 
5591 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5592 		nvlist_free(config);
5593 		spa_import_progress_remove(spa_guid(spa));
5594 		return (load_error);
5595 	}
5596 
5597 	if (state == SPA_LOAD_RECOVER) {
5598 		/* Price of rolling back is discarding txgs, including log */
5599 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5600 	} else {
5601 		/*
5602 		 * If we aren't rolling back save the load info from our first
5603 		 * import attempt so that we can restore it after attempting
5604 		 * to rewind.
5605 		 */
5606 		loadinfo = spa->spa_load_info;
5607 		spa->spa_load_info = fnvlist_alloc();
5608 	}
5609 
5610 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5611 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5612 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5613 	    TXG_INITIAL : safe_rewind_txg;
5614 
5615 	/*
5616 	 * Continue as long as we're finding errors, we're still within
5617 	 * the acceptable rewind range, and we're still finding uberblocks
5618 	 */
5619 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5620 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5621 		if (spa->spa_load_max_txg < safe_rewind_txg)
5622 			spa->spa_extreme_rewind = B_TRUE;
5623 		rewind_error = spa_load_retry(spa, state);
5624 	}
5625 
5626 	spa->spa_extreme_rewind = B_FALSE;
5627 	spa->spa_load_max_txg = UINT64_MAX;
5628 
5629 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5630 		spa_config_set(spa, config);
5631 	else
5632 		nvlist_free(config);
5633 
5634 	if (state == SPA_LOAD_RECOVER) {
5635 		ASSERT3P(loadinfo, ==, NULL);
5636 		spa_import_progress_remove(spa_guid(spa));
5637 		return (rewind_error);
5638 	} else {
5639 		/* Store the rewind info as part of the initial load info */
5640 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5641 		    spa->spa_load_info);
5642 
5643 		/* Restore the initial load info */
5644 		fnvlist_free(spa->spa_load_info);
5645 		spa->spa_load_info = loadinfo;
5646 
5647 		spa_import_progress_remove(spa_guid(spa));
5648 		return (load_error);
5649 	}
5650 }
5651 
5652 /*
5653  * Pool Open/Import
5654  *
5655  * The import case is identical to an open except that the configuration is sent
5656  * down from userland, instead of grabbed from the configuration cache.  For the
5657  * case of an open, the pool configuration will exist in the
5658  * POOL_STATE_UNINITIALIZED state.
5659  *
5660  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5661  * the same time open the pool, without having to keep around the spa_t in some
5662  * ambiguous state.
5663  */
5664 static int
5665 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5666     nvlist_t *nvpolicy, nvlist_t **config)
5667 {
5668 	spa_t *spa;
5669 	spa_load_state_t state = SPA_LOAD_OPEN;
5670 	int error;
5671 	int locked = B_FALSE;
5672 	int firstopen = B_FALSE;
5673 
5674 	*spapp = NULL;
5675 
5676 	/*
5677 	 * As disgusting as this is, we need to support recursive calls to this
5678 	 * function because dsl_dir_open() is called during spa_load(), and ends
5679 	 * up calling spa_open() again.  The real fix is to figure out how to
5680 	 * avoid dsl_dir_open() calling this in the first place.
5681 	 */
5682 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5683 		mutex_enter(&spa_namespace_lock);
5684 		locked = B_TRUE;
5685 	}
5686 
5687 	if ((spa = spa_lookup(pool)) == NULL) {
5688 		if (locked)
5689 			mutex_exit(&spa_namespace_lock);
5690 		return (SET_ERROR(ENOENT));
5691 	}
5692 
5693 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5694 		zpool_load_policy_t policy;
5695 
5696 		firstopen = B_TRUE;
5697 
5698 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5699 		    &policy);
5700 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5701 			state = SPA_LOAD_RECOVER;
5702 
5703 		spa_activate(spa, spa_mode_global);
5704 
5705 		if (state != SPA_LOAD_RECOVER)
5706 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5707 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5708 
5709 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5710 		error = spa_load_best(spa, state, policy.zlp_txg,
5711 		    policy.zlp_rewind);
5712 
5713 		if (error == EBADF) {
5714 			/*
5715 			 * If vdev_validate() returns failure (indicated by
5716 			 * EBADF), it indicates that one of the vdevs indicates
5717 			 * that the pool has been exported or destroyed.  If
5718 			 * this is the case, the config cache is out of sync and
5719 			 * we should remove the pool from the namespace.
5720 			 */
5721 			spa_unload(spa);
5722 			spa_deactivate(spa);
5723 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5724 			spa_remove(spa);
5725 			if (locked)
5726 				mutex_exit(&spa_namespace_lock);
5727 			return (SET_ERROR(ENOENT));
5728 		}
5729 
5730 		if (error) {
5731 			/*
5732 			 * We can't open the pool, but we still have useful
5733 			 * information: the state of each vdev after the
5734 			 * attempted vdev_open().  Return this to the user.
5735 			 */
5736 			if (config != NULL && spa->spa_config) {
5737 				*config = fnvlist_dup(spa->spa_config);
5738 				fnvlist_add_nvlist(*config,
5739 				    ZPOOL_CONFIG_LOAD_INFO,
5740 				    spa->spa_load_info);
5741 			}
5742 			spa_unload(spa);
5743 			spa_deactivate(spa);
5744 			spa->spa_last_open_failed = error;
5745 			if (locked)
5746 				mutex_exit(&spa_namespace_lock);
5747 			*spapp = NULL;
5748 			return (error);
5749 		}
5750 	}
5751 
5752 	spa_open_ref(spa, tag);
5753 
5754 	if (config != NULL)
5755 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5756 
5757 	/*
5758 	 * If we've recovered the pool, pass back any information we
5759 	 * gathered while doing the load.
5760 	 */
5761 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5762 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5763 		    spa->spa_load_info);
5764 	}
5765 
5766 	if (locked) {
5767 		spa->spa_last_open_failed = 0;
5768 		spa->spa_last_ubsync_txg = 0;
5769 		spa->spa_load_txg = 0;
5770 		mutex_exit(&spa_namespace_lock);
5771 	}
5772 
5773 	if (firstopen)
5774 		zvol_create_minors_recursive(spa_name(spa));
5775 
5776 	*spapp = spa;
5777 
5778 	return (0);
5779 }
5780 
5781 int
5782 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5783     nvlist_t *policy, nvlist_t **config)
5784 {
5785 	return (spa_open_common(name, spapp, tag, policy, config));
5786 }
5787 
5788 int
5789 spa_open(const char *name, spa_t **spapp, const void *tag)
5790 {
5791 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5792 }
5793 
5794 /*
5795  * Lookup the given spa_t, incrementing the inject count in the process,
5796  * preventing it from being exported or destroyed.
5797  */
5798 spa_t *
5799 spa_inject_addref(char *name)
5800 {
5801 	spa_t *spa;
5802 
5803 	mutex_enter(&spa_namespace_lock);
5804 	if ((spa = spa_lookup(name)) == NULL) {
5805 		mutex_exit(&spa_namespace_lock);
5806 		return (NULL);
5807 	}
5808 	spa->spa_inject_ref++;
5809 	mutex_exit(&spa_namespace_lock);
5810 
5811 	return (spa);
5812 }
5813 
5814 void
5815 spa_inject_delref(spa_t *spa)
5816 {
5817 	mutex_enter(&spa_namespace_lock);
5818 	spa->spa_inject_ref--;
5819 	mutex_exit(&spa_namespace_lock);
5820 }
5821 
5822 /*
5823  * Add spares device information to the nvlist.
5824  */
5825 static void
5826 spa_add_spares(spa_t *spa, nvlist_t *config)
5827 {
5828 	nvlist_t **spares;
5829 	uint_t i, nspares;
5830 	nvlist_t *nvroot;
5831 	uint64_t guid;
5832 	vdev_stat_t *vs;
5833 	uint_t vsc;
5834 	uint64_t pool;
5835 
5836 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5837 
5838 	if (spa->spa_spares.sav_count == 0)
5839 		return;
5840 
5841 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5842 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5843 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5844 	if (nspares != 0) {
5845 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5846 		    (const nvlist_t * const *)spares, nspares);
5847 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5848 		    &spares, &nspares));
5849 
5850 		/*
5851 		 * Go through and find any spares which have since been
5852 		 * repurposed as an active spare.  If this is the case, update
5853 		 * their status appropriately.
5854 		 */
5855 		for (i = 0; i < nspares; i++) {
5856 			guid = fnvlist_lookup_uint64(spares[i],
5857 			    ZPOOL_CONFIG_GUID);
5858 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5859 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5860 			if (spa_spare_exists(guid, &pool, NULL) &&
5861 			    pool != 0ULL) {
5862 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5863 				vs->vs_aux = VDEV_AUX_SPARED;
5864 			} else {
5865 				vs->vs_state =
5866 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5867 			}
5868 		}
5869 	}
5870 }
5871 
5872 /*
5873  * Add l2cache device information to the nvlist, including vdev stats.
5874  */
5875 static void
5876 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5877 {
5878 	nvlist_t **l2cache;
5879 	uint_t i, j, nl2cache;
5880 	nvlist_t *nvroot;
5881 	uint64_t guid;
5882 	vdev_t *vd;
5883 	vdev_stat_t *vs;
5884 	uint_t vsc;
5885 
5886 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5887 
5888 	if (spa->spa_l2cache.sav_count == 0)
5889 		return;
5890 
5891 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5892 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5893 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5894 	if (nl2cache != 0) {
5895 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5896 		    (const nvlist_t * const *)l2cache, nl2cache);
5897 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5898 		    &l2cache, &nl2cache));
5899 
5900 		/*
5901 		 * Update level 2 cache device stats.
5902 		 */
5903 
5904 		for (i = 0; i < nl2cache; i++) {
5905 			guid = fnvlist_lookup_uint64(l2cache[i],
5906 			    ZPOOL_CONFIG_GUID);
5907 
5908 			vd = NULL;
5909 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5910 				if (guid ==
5911 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5912 					vd = spa->spa_l2cache.sav_vdevs[j];
5913 					break;
5914 				}
5915 			}
5916 			ASSERT(vd != NULL);
5917 
5918 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5919 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5920 			vdev_get_stats(vd, vs);
5921 			vdev_config_generate_stats(vd, l2cache[i]);
5922 
5923 		}
5924 	}
5925 }
5926 
5927 static void
5928 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5929 {
5930 	zap_cursor_t zc;
5931 	zap_attribute_t za;
5932 
5933 	if (spa->spa_feat_for_read_obj != 0) {
5934 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5935 		    spa->spa_feat_for_read_obj);
5936 		    zap_cursor_retrieve(&zc, &za) == 0;
5937 		    zap_cursor_advance(&zc)) {
5938 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5939 			    za.za_num_integers == 1);
5940 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5941 			    za.za_first_integer));
5942 		}
5943 		zap_cursor_fini(&zc);
5944 	}
5945 
5946 	if (spa->spa_feat_for_write_obj != 0) {
5947 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5948 		    spa->spa_feat_for_write_obj);
5949 		    zap_cursor_retrieve(&zc, &za) == 0;
5950 		    zap_cursor_advance(&zc)) {
5951 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5952 			    za.za_num_integers == 1);
5953 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5954 			    za.za_first_integer));
5955 		}
5956 		zap_cursor_fini(&zc);
5957 	}
5958 }
5959 
5960 static void
5961 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5962 {
5963 	int i;
5964 
5965 	for (i = 0; i < SPA_FEATURES; i++) {
5966 		zfeature_info_t feature = spa_feature_table[i];
5967 		uint64_t refcount;
5968 
5969 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5970 			continue;
5971 
5972 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5973 	}
5974 }
5975 
5976 /*
5977  * Store a list of pool features and their reference counts in the
5978  * config.
5979  *
5980  * The first time this is called on a spa, allocate a new nvlist, fetch
5981  * the pool features and reference counts from disk, then save the list
5982  * in the spa. In subsequent calls on the same spa use the saved nvlist
5983  * and refresh its values from the cached reference counts.  This
5984  * ensures we don't block here on I/O on a suspended pool so 'zpool
5985  * clear' can resume the pool.
5986  */
5987 static void
5988 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5989 {
5990 	nvlist_t *features;
5991 
5992 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5993 
5994 	mutex_enter(&spa->spa_feat_stats_lock);
5995 	features = spa->spa_feat_stats;
5996 
5997 	if (features != NULL) {
5998 		spa_feature_stats_from_cache(spa, features);
5999 	} else {
6000 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6001 		spa->spa_feat_stats = features;
6002 		spa_feature_stats_from_disk(spa, features);
6003 	}
6004 
6005 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6006 	    features));
6007 
6008 	mutex_exit(&spa->spa_feat_stats_lock);
6009 }
6010 
6011 int
6012 spa_get_stats(const char *name, nvlist_t **config,
6013     char *altroot, size_t buflen)
6014 {
6015 	int error;
6016 	spa_t *spa;
6017 
6018 	*config = NULL;
6019 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6020 
6021 	if (spa != NULL) {
6022 		/*
6023 		 * This still leaves a window of inconsistency where the spares
6024 		 * or l2cache devices could change and the config would be
6025 		 * self-inconsistent.
6026 		 */
6027 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6028 
6029 		if (*config != NULL) {
6030 			uint64_t loadtimes[2];
6031 
6032 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6033 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6034 			fnvlist_add_uint64_array(*config,
6035 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6036 
6037 			fnvlist_add_uint64(*config,
6038 			    ZPOOL_CONFIG_ERRCOUNT,
6039 			    spa_approx_errlog_size(spa));
6040 
6041 			if (spa_suspended(spa)) {
6042 				fnvlist_add_uint64(*config,
6043 				    ZPOOL_CONFIG_SUSPENDED,
6044 				    spa->spa_failmode);
6045 				fnvlist_add_uint64(*config,
6046 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6047 				    spa->spa_suspended);
6048 			}
6049 
6050 			spa_add_spares(spa, *config);
6051 			spa_add_l2cache(spa, *config);
6052 			spa_add_feature_stats(spa, *config);
6053 		}
6054 	}
6055 
6056 	/*
6057 	 * We want to get the alternate root even for faulted pools, so we cheat
6058 	 * and call spa_lookup() directly.
6059 	 */
6060 	if (altroot) {
6061 		if (spa == NULL) {
6062 			mutex_enter(&spa_namespace_lock);
6063 			spa = spa_lookup(name);
6064 			if (spa)
6065 				spa_altroot(spa, altroot, buflen);
6066 			else
6067 				altroot[0] = '\0';
6068 			spa = NULL;
6069 			mutex_exit(&spa_namespace_lock);
6070 		} else {
6071 			spa_altroot(spa, altroot, buflen);
6072 		}
6073 	}
6074 
6075 	if (spa != NULL) {
6076 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6077 		spa_close(spa, FTAG);
6078 	}
6079 
6080 	return (error);
6081 }
6082 
6083 /*
6084  * Validate that the auxiliary device array is well formed.  We must have an
6085  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6086  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6087  * specified, as long as they are well-formed.
6088  */
6089 static int
6090 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6091     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6092     vdev_labeltype_t label)
6093 {
6094 	nvlist_t **dev;
6095 	uint_t i, ndev;
6096 	vdev_t *vd;
6097 	int error;
6098 
6099 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6100 
6101 	/*
6102 	 * It's acceptable to have no devs specified.
6103 	 */
6104 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6105 		return (0);
6106 
6107 	if (ndev == 0)
6108 		return (SET_ERROR(EINVAL));
6109 
6110 	/*
6111 	 * Make sure the pool is formatted with a version that supports this
6112 	 * device type.
6113 	 */
6114 	if (spa_version(spa) < version)
6115 		return (SET_ERROR(ENOTSUP));
6116 
6117 	/*
6118 	 * Set the pending device list so we correctly handle device in-use
6119 	 * checking.
6120 	 */
6121 	sav->sav_pending = dev;
6122 	sav->sav_npending = ndev;
6123 
6124 	for (i = 0; i < ndev; i++) {
6125 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6126 		    mode)) != 0)
6127 			goto out;
6128 
6129 		if (!vd->vdev_ops->vdev_op_leaf) {
6130 			vdev_free(vd);
6131 			error = SET_ERROR(EINVAL);
6132 			goto out;
6133 		}
6134 
6135 		vd->vdev_top = vd;
6136 
6137 		if ((error = vdev_open(vd)) == 0 &&
6138 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6139 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6140 			    vd->vdev_guid);
6141 		}
6142 
6143 		vdev_free(vd);
6144 
6145 		if (error &&
6146 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6147 			goto out;
6148 		else
6149 			error = 0;
6150 	}
6151 
6152 out:
6153 	sav->sav_pending = NULL;
6154 	sav->sav_npending = 0;
6155 	return (error);
6156 }
6157 
6158 static int
6159 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6160 {
6161 	int error;
6162 
6163 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6164 
6165 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6166 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6167 	    VDEV_LABEL_SPARE)) != 0) {
6168 		return (error);
6169 	}
6170 
6171 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6172 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6173 	    VDEV_LABEL_L2CACHE));
6174 }
6175 
6176 static void
6177 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6178     const char *config)
6179 {
6180 	int i;
6181 
6182 	if (sav->sav_config != NULL) {
6183 		nvlist_t **olddevs;
6184 		uint_t oldndevs;
6185 		nvlist_t **newdevs;
6186 
6187 		/*
6188 		 * Generate new dev list by concatenating with the
6189 		 * current dev list.
6190 		 */
6191 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6192 		    &olddevs, &oldndevs));
6193 
6194 		newdevs = kmem_alloc(sizeof (void *) *
6195 		    (ndevs + oldndevs), KM_SLEEP);
6196 		for (i = 0; i < oldndevs; i++)
6197 			newdevs[i] = fnvlist_dup(olddevs[i]);
6198 		for (i = 0; i < ndevs; i++)
6199 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6200 
6201 		fnvlist_remove(sav->sav_config, config);
6202 
6203 		fnvlist_add_nvlist_array(sav->sav_config, config,
6204 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6205 		for (i = 0; i < oldndevs + ndevs; i++)
6206 			nvlist_free(newdevs[i]);
6207 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6208 	} else {
6209 		/*
6210 		 * Generate a new dev list.
6211 		 */
6212 		sav->sav_config = fnvlist_alloc();
6213 		fnvlist_add_nvlist_array(sav->sav_config, config,
6214 		    (const nvlist_t * const *)devs, ndevs);
6215 	}
6216 }
6217 
6218 /*
6219  * Stop and drop level 2 ARC devices
6220  */
6221 void
6222 spa_l2cache_drop(spa_t *spa)
6223 {
6224 	vdev_t *vd;
6225 	int i;
6226 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6227 
6228 	for (i = 0; i < sav->sav_count; i++) {
6229 		uint64_t pool;
6230 
6231 		vd = sav->sav_vdevs[i];
6232 		ASSERT(vd != NULL);
6233 
6234 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6235 		    pool != 0ULL && l2arc_vdev_present(vd))
6236 			l2arc_remove_vdev(vd);
6237 	}
6238 }
6239 
6240 /*
6241  * Verify encryption parameters for spa creation. If we are encrypting, we must
6242  * have the encryption feature flag enabled.
6243  */
6244 static int
6245 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6246     boolean_t has_encryption)
6247 {
6248 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6249 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6250 	    !has_encryption)
6251 		return (SET_ERROR(ENOTSUP));
6252 
6253 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6254 }
6255 
6256 /*
6257  * Pool Creation
6258  */
6259 int
6260 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6261     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6262 {
6263 	spa_t *spa;
6264 	const char *altroot = NULL;
6265 	vdev_t *rvd;
6266 	dsl_pool_t *dp;
6267 	dmu_tx_t *tx;
6268 	int error = 0;
6269 	uint64_t txg = TXG_INITIAL;
6270 	nvlist_t **spares, **l2cache;
6271 	uint_t nspares, nl2cache;
6272 	uint64_t version, obj, ndraid = 0;
6273 	boolean_t has_features;
6274 	boolean_t has_encryption;
6275 	boolean_t has_allocclass;
6276 	spa_feature_t feat;
6277 	const char *feat_name;
6278 	const char *poolname;
6279 	nvlist_t *nvl;
6280 
6281 	if (props == NULL ||
6282 	    nvlist_lookup_string(props,
6283 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6284 		poolname = (char *)pool;
6285 
6286 	/*
6287 	 * If this pool already exists, return failure.
6288 	 */
6289 	mutex_enter(&spa_namespace_lock);
6290 	if (spa_lookup(poolname) != NULL) {
6291 		mutex_exit(&spa_namespace_lock);
6292 		return (SET_ERROR(EEXIST));
6293 	}
6294 
6295 	/*
6296 	 * Allocate a new spa_t structure.
6297 	 */
6298 	nvl = fnvlist_alloc();
6299 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6300 	(void) nvlist_lookup_string(props,
6301 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6302 	spa = spa_add(poolname, nvl, altroot);
6303 	fnvlist_free(nvl);
6304 	spa_activate(spa, spa_mode_global);
6305 
6306 	if (props && (error = spa_prop_validate(spa, props))) {
6307 		spa_deactivate(spa);
6308 		spa_remove(spa);
6309 		mutex_exit(&spa_namespace_lock);
6310 		return (error);
6311 	}
6312 
6313 	/*
6314 	 * Temporary pool names should never be written to disk.
6315 	 */
6316 	if (poolname != pool)
6317 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6318 
6319 	has_features = B_FALSE;
6320 	has_encryption = B_FALSE;
6321 	has_allocclass = B_FALSE;
6322 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6323 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6324 		if (zpool_prop_feature(nvpair_name(elem))) {
6325 			has_features = B_TRUE;
6326 
6327 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6328 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6329 			if (feat == SPA_FEATURE_ENCRYPTION)
6330 				has_encryption = B_TRUE;
6331 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6332 				has_allocclass = B_TRUE;
6333 		}
6334 	}
6335 
6336 	/* verify encryption params, if they were provided */
6337 	if (dcp != NULL) {
6338 		error = spa_create_check_encryption_params(dcp, has_encryption);
6339 		if (error != 0) {
6340 			spa_deactivate(spa);
6341 			spa_remove(spa);
6342 			mutex_exit(&spa_namespace_lock);
6343 			return (error);
6344 		}
6345 	}
6346 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6347 		spa_deactivate(spa);
6348 		spa_remove(spa);
6349 		mutex_exit(&spa_namespace_lock);
6350 		return (ENOTSUP);
6351 	}
6352 
6353 	if (has_features || nvlist_lookup_uint64(props,
6354 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6355 		version = SPA_VERSION;
6356 	}
6357 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6358 
6359 	spa->spa_first_txg = txg;
6360 	spa->spa_uberblock.ub_txg = txg - 1;
6361 	spa->spa_uberblock.ub_version = version;
6362 	spa->spa_ubsync = spa->spa_uberblock;
6363 	spa->spa_load_state = SPA_LOAD_CREATE;
6364 	spa->spa_removing_phys.sr_state = DSS_NONE;
6365 	spa->spa_removing_phys.sr_removing_vdev = -1;
6366 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6367 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6368 
6369 	/*
6370 	 * Create "The Godfather" zio to hold all async IOs
6371 	 */
6372 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6373 	    KM_SLEEP);
6374 	for (int i = 0; i < max_ncpus; i++) {
6375 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6376 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6377 		    ZIO_FLAG_GODFATHER);
6378 	}
6379 
6380 	/*
6381 	 * Create the root vdev.
6382 	 */
6383 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6384 
6385 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6386 
6387 	ASSERT(error != 0 || rvd != NULL);
6388 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6389 
6390 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6391 		error = SET_ERROR(EINVAL);
6392 
6393 	if (error == 0 &&
6394 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6395 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6396 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6397 		/*
6398 		 * instantiate the metaslab groups (this will dirty the vdevs)
6399 		 * we can no longer error exit past this point
6400 		 */
6401 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6402 			vdev_t *vd = rvd->vdev_child[c];
6403 
6404 			vdev_metaslab_set_size(vd);
6405 			vdev_expand(vd, txg);
6406 		}
6407 	}
6408 
6409 	spa_config_exit(spa, SCL_ALL, FTAG);
6410 
6411 	if (error != 0) {
6412 		spa_unload(spa);
6413 		spa_deactivate(spa);
6414 		spa_remove(spa);
6415 		mutex_exit(&spa_namespace_lock);
6416 		return (error);
6417 	}
6418 
6419 	/*
6420 	 * Get the list of spares, if specified.
6421 	 */
6422 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6423 	    &spares, &nspares) == 0) {
6424 		spa->spa_spares.sav_config = fnvlist_alloc();
6425 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6426 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6427 		    nspares);
6428 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6429 		spa_load_spares(spa);
6430 		spa_config_exit(spa, SCL_ALL, FTAG);
6431 		spa->spa_spares.sav_sync = B_TRUE;
6432 	}
6433 
6434 	/*
6435 	 * Get the list of level 2 cache devices, if specified.
6436 	 */
6437 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6438 	    &l2cache, &nl2cache) == 0) {
6439 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6440 		    NV_UNIQUE_NAME, KM_SLEEP));
6441 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6442 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6443 		    nl2cache);
6444 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6445 		spa_load_l2cache(spa);
6446 		spa_config_exit(spa, SCL_ALL, FTAG);
6447 		spa->spa_l2cache.sav_sync = B_TRUE;
6448 	}
6449 
6450 	spa->spa_is_initializing = B_TRUE;
6451 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6452 	spa->spa_is_initializing = B_FALSE;
6453 
6454 	/*
6455 	 * Create DDTs (dedup tables).
6456 	 */
6457 	ddt_create(spa);
6458 	/*
6459 	 * Create BRT table and BRT table object.
6460 	 */
6461 	brt_create(spa);
6462 
6463 	spa_update_dspace(spa);
6464 
6465 	tx = dmu_tx_create_assigned(dp, txg);
6466 
6467 	/*
6468 	 * Create the pool's history object.
6469 	 */
6470 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6471 		spa_history_create_obj(spa, tx);
6472 
6473 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6474 	spa_history_log_version(spa, "create", tx);
6475 
6476 	/*
6477 	 * Create the pool config object.
6478 	 */
6479 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6480 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6481 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6482 
6483 	if (zap_add(spa->spa_meta_objset,
6484 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6485 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6486 		cmn_err(CE_PANIC, "failed to add pool config");
6487 	}
6488 
6489 	if (zap_add(spa->spa_meta_objset,
6490 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6491 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6492 		cmn_err(CE_PANIC, "failed to add pool version");
6493 	}
6494 
6495 	/* Newly created pools with the right version are always deflated. */
6496 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6497 		spa->spa_deflate = TRUE;
6498 		if (zap_add(spa->spa_meta_objset,
6499 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6500 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6501 			cmn_err(CE_PANIC, "failed to add deflate");
6502 		}
6503 	}
6504 
6505 	/*
6506 	 * Create the deferred-free bpobj.  Turn off compression
6507 	 * because sync-to-convergence takes longer if the blocksize
6508 	 * keeps changing.
6509 	 */
6510 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6511 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6512 	    ZIO_COMPRESS_OFF, tx);
6513 	if (zap_add(spa->spa_meta_objset,
6514 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6515 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6516 		cmn_err(CE_PANIC, "failed to add bpobj");
6517 	}
6518 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6519 	    spa->spa_meta_objset, obj));
6520 
6521 	/*
6522 	 * Generate some random noise for salted checksums to operate on.
6523 	 */
6524 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6525 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6526 
6527 	/*
6528 	 * Set pool properties.
6529 	 */
6530 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6531 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6532 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6533 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6534 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6535 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6536 
6537 	if (props != NULL) {
6538 		spa_configfile_set(spa, props, B_FALSE);
6539 		spa_sync_props(props, tx);
6540 	}
6541 
6542 	for (int i = 0; i < ndraid; i++)
6543 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6544 
6545 	dmu_tx_commit(tx);
6546 
6547 	spa->spa_sync_on = B_TRUE;
6548 	txg_sync_start(dp);
6549 	mmp_thread_start(spa);
6550 	txg_wait_synced(dp, txg);
6551 
6552 	spa_spawn_aux_threads(spa);
6553 
6554 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6555 
6556 	/*
6557 	 * Don't count references from objsets that are already closed
6558 	 * and are making their way through the eviction process.
6559 	 */
6560 	spa_evicting_os_wait(spa);
6561 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6562 	spa->spa_load_state = SPA_LOAD_NONE;
6563 
6564 	spa_import_os(spa);
6565 
6566 	mutex_exit(&spa_namespace_lock);
6567 
6568 	return (0);
6569 }
6570 
6571 /*
6572  * Import a non-root pool into the system.
6573  */
6574 int
6575 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6576 {
6577 	spa_t *spa;
6578 	const char *altroot = NULL;
6579 	spa_load_state_t state = SPA_LOAD_IMPORT;
6580 	zpool_load_policy_t policy;
6581 	spa_mode_t mode = spa_mode_global;
6582 	uint64_t readonly = B_FALSE;
6583 	int error;
6584 	nvlist_t *nvroot;
6585 	nvlist_t **spares, **l2cache;
6586 	uint_t nspares, nl2cache;
6587 
6588 	/*
6589 	 * If a pool with this name exists, return failure.
6590 	 */
6591 	mutex_enter(&spa_namespace_lock);
6592 	if (spa_lookup(pool) != NULL) {
6593 		mutex_exit(&spa_namespace_lock);
6594 		return (SET_ERROR(EEXIST));
6595 	}
6596 
6597 	/*
6598 	 * Create and initialize the spa structure.
6599 	 */
6600 	(void) nvlist_lookup_string(props,
6601 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6602 	(void) nvlist_lookup_uint64(props,
6603 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6604 	if (readonly)
6605 		mode = SPA_MODE_READ;
6606 	spa = spa_add(pool, config, altroot);
6607 	spa->spa_import_flags = flags;
6608 
6609 	/*
6610 	 * Verbatim import - Take a pool and insert it into the namespace
6611 	 * as if it had been loaded at boot.
6612 	 */
6613 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6614 		if (props != NULL)
6615 			spa_configfile_set(spa, props, B_FALSE);
6616 
6617 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6618 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6619 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6620 		mutex_exit(&spa_namespace_lock);
6621 		return (0);
6622 	}
6623 
6624 	spa_activate(spa, mode);
6625 
6626 	/*
6627 	 * Don't start async tasks until we know everything is healthy.
6628 	 */
6629 	spa_async_suspend(spa);
6630 
6631 	zpool_get_load_policy(config, &policy);
6632 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6633 		state = SPA_LOAD_RECOVER;
6634 
6635 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6636 
6637 	if (state != SPA_LOAD_RECOVER) {
6638 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6639 		zfs_dbgmsg("spa_import: importing %s", pool);
6640 	} else {
6641 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6642 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6643 	}
6644 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6645 
6646 	/*
6647 	 * Propagate anything learned while loading the pool and pass it
6648 	 * back to caller (i.e. rewind info, missing devices, etc).
6649 	 */
6650 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6651 
6652 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6653 	/*
6654 	 * Toss any existing sparelist, as it doesn't have any validity
6655 	 * anymore, and conflicts with spa_has_spare().
6656 	 */
6657 	if (spa->spa_spares.sav_config) {
6658 		nvlist_free(spa->spa_spares.sav_config);
6659 		spa->spa_spares.sav_config = NULL;
6660 		spa_load_spares(spa);
6661 	}
6662 	if (spa->spa_l2cache.sav_config) {
6663 		nvlist_free(spa->spa_l2cache.sav_config);
6664 		spa->spa_l2cache.sav_config = NULL;
6665 		spa_load_l2cache(spa);
6666 	}
6667 
6668 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6669 	spa_config_exit(spa, SCL_ALL, FTAG);
6670 
6671 	if (props != NULL)
6672 		spa_configfile_set(spa, props, B_FALSE);
6673 
6674 	if (error != 0 || (props && spa_writeable(spa) &&
6675 	    (error = spa_prop_set(spa, props)))) {
6676 		spa_unload(spa);
6677 		spa_deactivate(spa);
6678 		spa_remove(spa);
6679 		mutex_exit(&spa_namespace_lock);
6680 		return (error);
6681 	}
6682 
6683 	spa_async_resume(spa);
6684 
6685 	/*
6686 	 * Override any spares and level 2 cache devices as specified by
6687 	 * the user, as these may have correct device names/devids, etc.
6688 	 */
6689 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6690 	    &spares, &nspares) == 0) {
6691 		if (spa->spa_spares.sav_config)
6692 			fnvlist_remove(spa->spa_spares.sav_config,
6693 			    ZPOOL_CONFIG_SPARES);
6694 		else
6695 			spa->spa_spares.sav_config = fnvlist_alloc();
6696 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6697 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6698 		    nspares);
6699 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6700 		spa_load_spares(spa);
6701 		spa_config_exit(spa, SCL_ALL, FTAG);
6702 		spa->spa_spares.sav_sync = B_TRUE;
6703 	}
6704 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6705 	    &l2cache, &nl2cache) == 0) {
6706 		if (spa->spa_l2cache.sav_config)
6707 			fnvlist_remove(spa->spa_l2cache.sav_config,
6708 			    ZPOOL_CONFIG_L2CACHE);
6709 		else
6710 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6711 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6712 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6713 		    nl2cache);
6714 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6715 		spa_load_l2cache(spa);
6716 		spa_config_exit(spa, SCL_ALL, FTAG);
6717 		spa->spa_l2cache.sav_sync = B_TRUE;
6718 	}
6719 
6720 	/*
6721 	 * Check for any removed devices.
6722 	 */
6723 	if (spa->spa_autoreplace) {
6724 		spa_aux_check_removed(&spa->spa_spares);
6725 		spa_aux_check_removed(&spa->spa_l2cache);
6726 	}
6727 
6728 	if (spa_writeable(spa)) {
6729 		/*
6730 		 * Update the config cache to include the newly-imported pool.
6731 		 */
6732 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6733 	}
6734 
6735 	/*
6736 	 * It's possible that the pool was expanded while it was exported.
6737 	 * We kick off an async task to handle this for us.
6738 	 */
6739 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6740 
6741 	spa_history_log_version(spa, "import", NULL);
6742 
6743 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6744 
6745 	mutex_exit(&spa_namespace_lock);
6746 
6747 	zvol_create_minors_recursive(pool);
6748 
6749 	spa_import_os(spa);
6750 
6751 	return (0);
6752 }
6753 
6754 nvlist_t *
6755 spa_tryimport(nvlist_t *tryconfig)
6756 {
6757 	nvlist_t *config = NULL;
6758 	const char *poolname, *cachefile;
6759 	spa_t *spa;
6760 	uint64_t state;
6761 	int error;
6762 	zpool_load_policy_t policy;
6763 
6764 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6765 		return (NULL);
6766 
6767 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6768 		return (NULL);
6769 
6770 	/*
6771 	 * Create and initialize the spa structure.
6772 	 */
6773 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6774 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6775 	    TRYIMPORT_NAME, (u_longlong_t)curthread, poolname);
6776 
6777 	mutex_enter(&spa_namespace_lock);
6778 	spa = spa_add(name, tryconfig, NULL);
6779 	spa_activate(spa, SPA_MODE_READ);
6780 	kmem_free(name, MAXPATHLEN);
6781 
6782 	/*
6783 	 * Rewind pool if a max txg was provided.
6784 	 */
6785 	zpool_get_load_policy(spa->spa_config, &policy);
6786 	if (policy.zlp_txg != UINT64_MAX) {
6787 		spa->spa_load_max_txg = policy.zlp_txg;
6788 		spa->spa_extreme_rewind = B_TRUE;
6789 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6790 		    poolname, (longlong_t)policy.zlp_txg);
6791 	} else {
6792 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6793 	}
6794 
6795 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6796 	    == 0) {
6797 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6798 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6799 	} else {
6800 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6801 	}
6802 
6803 	/*
6804 	 * spa_import() relies on a pool config fetched by spa_try_import()
6805 	 * for spare/cache devices. Import flags are not passed to
6806 	 * spa_tryimport(), which makes it return early due to a missing log
6807 	 * device and missing retrieving the cache device and spare eventually.
6808 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6809 	 * the correct configuration regardless of the missing log device.
6810 	 */
6811 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6812 
6813 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6814 
6815 	/*
6816 	 * If 'tryconfig' was at least parsable, return the current config.
6817 	 */
6818 	if (spa->spa_root_vdev != NULL) {
6819 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6820 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6821 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6822 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6823 		    spa->spa_uberblock.ub_timestamp);
6824 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6825 		    spa->spa_load_info);
6826 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6827 		    spa->spa_errata);
6828 
6829 		/*
6830 		 * If the bootfs property exists on this pool then we
6831 		 * copy it out so that external consumers can tell which
6832 		 * pools are bootable.
6833 		 */
6834 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6835 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6836 
6837 			/*
6838 			 * We have to play games with the name since the
6839 			 * pool was opened as TRYIMPORT_NAME.
6840 			 */
6841 			if (dsl_dsobj_to_dsname(spa_name(spa),
6842 			    spa->spa_bootfs, tmpname) == 0) {
6843 				char *cp;
6844 				char *dsname;
6845 
6846 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6847 
6848 				cp = strchr(tmpname, '/');
6849 				if (cp == NULL) {
6850 					(void) strlcpy(dsname, tmpname,
6851 					    MAXPATHLEN);
6852 				} else {
6853 					(void) snprintf(dsname, MAXPATHLEN,
6854 					    "%s/%s", poolname, ++cp);
6855 				}
6856 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6857 				    dsname);
6858 				kmem_free(dsname, MAXPATHLEN);
6859 			}
6860 			kmem_free(tmpname, MAXPATHLEN);
6861 		}
6862 
6863 		/*
6864 		 * Add the list of hot spares and level 2 cache devices.
6865 		 */
6866 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6867 		spa_add_spares(spa, config);
6868 		spa_add_l2cache(spa, config);
6869 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6870 	}
6871 
6872 	spa_unload(spa);
6873 	spa_deactivate(spa);
6874 	spa_remove(spa);
6875 	mutex_exit(&spa_namespace_lock);
6876 
6877 	return (config);
6878 }
6879 
6880 /*
6881  * Pool export/destroy
6882  *
6883  * The act of destroying or exporting a pool is very simple.  We make sure there
6884  * is no more pending I/O and any references to the pool are gone.  Then, we
6885  * update the pool state and sync all the labels to disk, removing the
6886  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6887  * we don't sync the labels or remove the configuration cache.
6888  */
6889 static int
6890 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6891     boolean_t force, boolean_t hardforce)
6892 {
6893 	int error;
6894 	spa_t *spa;
6895 	hrtime_t export_start = gethrtime();
6896 
6897 	if (oldconfig)
6898 		*oldconfig = NULL;
6899 
6900 	if (!(spa_mode_global & SPA_MODE_WRITE))
6901 		return (SET_ERROR(EROFS));
6902 
6903 	mutex_enter(&spa_namespace_lock);
6904 	if ((spa = spa_lookup(pool)) == NULL) {
6905 		mutex_exit(&spa_namespace_lock);
6906 		return (SET_ERROR(ENOENT));
6907 	}
6908 
6909 	if (spa->spa_is_exporting) {
6910 		/* the pool is being exported by another thread */
6911 		mutex_exit(&spa_namespace_lock);
6912 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6913 	}
6914 	spa->spa_is_exporting = B_TRUE;
6915 
6916 	/*
6917 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6918 	 * reacquire the namespace lock, and see if we can export.
6919 	 */
6920 	spa_open_ref(spa, FTAG);
6921 	mutex_exit(&spa_namespace_lock);
6922 	spa_async_suspend(spa);
6923 	if (spa->spa_zvol_taskq) {
6924 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6925 		taskq_wait(spa->spa_zvol_taskq);
6926 	}
6927 	mutex_enter(&spa_namespace_lock);
6928 	spa_close(spa, FTAG);
6929 
6930 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6931 		goto export_spa;
6932 	/*
6933 	 * The pool will be in core if it's openable, in which case we can
6934 	 * modify its state.  Objsets may be open only because they're dirty,
6935 	 * so we have to force it to sync before checking spa_refcnt.
6936 	 */
6937 	if (spa->spa_sync_on) {
6938 		txg_wait_synced(spa->spa_dsl_pool, 0);
6939 		spa_evicting_os_wait(spa);
6940 	}
6941 
6942 	/*
6943 	 * A pool cannot be exported or destroyed if there are active
6944 	 * references.  If we are resetting a pool, allow references by
6945 	 * fault injection handlers.
6946 	 */
6947 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6948 		error = SET_ERROR(EBUSY);
6949 		goto fail;
6950 	}
6951 
6952 	if (spa->spa_sync_on) {
6953 		vdev_t *rvd = spa->spa_root_vdev;
6954 		/*
6955 		 * A pool cannot be exported if it has an active shared spare.
6956 		 * This is to prevent other pools stealing the active spare
6957 		 * from an exported pool. At user's own will, such pool can
6958 		 * be forcedly exported.
6959 		 */
6960 		if (!force && new_state == POOL_STATE_EXPORTED &&
6961 		    spa_has_active_shared_spare(spa)) {
6962 			error = SET_ERROR(EXDEV);
6963 			goto fail;
6964 		}
6965 
6966 		/*
6967 		 * We're about to export or destroy this pool. Make sure
6968 		 * we stop all initialization and trim activity here before
6969 		 * we set the spa_final_txg. This will ensure that all
6970 		 * dirty data resulting from the initialization is
6971 		 * committed to disk before we unload the pool.
6972 		 */
6973 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6974 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6975 		vdev_autotrim_stop_all(spa);
6976 		vdev_rebuild_stop_all(spa);
6977 
6978 		/*
6979 		 * We want this to be reflected on every label,
6980 		 * so mark them all dirty.  spa_unload() will do the
6981 		 * final sync that pushes these changes out.
6982 		 */
6983 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6984 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6985 			spa->spa_state = new_state;
6986 			vdev_config_dirty(rvd);
6987 			spa_config_exit(spa, SCL_ALL, FTAG);
6988 		}
6989 
6990 		/*
6991 		 * If the log space map feature is enabled and the pool is
6992 		 * getting exported (but not destroyed), we want to spend some
6993 		 * time flushing as many metaslabs as we can in an attempt to
6994 		 * destroy log space maps and save import time. This has to be
6995 		 * done before we set the spa_final_txg, otherwise
6996 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6997 		 * spa_should_flush_logs_on_unload() should be called after
6998 		 * spa_state has been set to the new_state.
6999 		 */
7000 		if (spa_should_flush_logs_on_unload(spa))
7001 			spa_unload_log_sm_flush_all(spa);
7002 
7003 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7004 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7005 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7006 			    TXG_DEFER_SIZE + 1;
7007 			spa_config_exit(spa, SCL_ALL, FTAG);
7008 		}
7009 	}
7010 
7011 export_spa:
7012 	spa_export_os(spa);
7013 
7014 	if (new_state == POOL_STATE_DESTROYED)
7015 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7016 	else if (new_state == POOL_STATE_EXPORTED)
7017 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7018 
7019 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7020 		spa_unload(spa);
7021 		spa_deactivate(spa);
7022 	}
7023 
7024 	if (oldconfig && spa->spa_config)
7025 		*oldconfig = fnvlist_dup(spa->spa_config);
7026 
7027 	if (new_state != POOL_STATE_UNINITIALIZED) {
7028 		if (!hardforce)
7029 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7030 		spa_remove(spa);
7031 	} else {
7032 		/*
7033 		 * If spa_remove() is not called for this spa_t and
7034 		 * there is any possibility that it can be reused,
7035 		 * we make sure to reset the exporting flag.
7036 		 */
7037 		spa->spa_is_exporting = B_FALSE;
7038 	}
7039 
7040 	if (new_state == POOL_STATE_EXPORTED)
7041 		zio_handle_export_delay(spa, gethrtime() - export_start);
7042 
7043 	mutex_exit(&spa_namespace_lock);
7044 	return (0);
7045 
7046 fail:
7047 	spa->spa_is_exporting = B_FALSE;
7048 	spa_async_resume(spa);
7049 	mutex_exit(&spa_namespace_lock);
7050 	return (error);
7051 }
7052 
7053 /*
7054  * Destroy a storage pool.
7055  */
7056 int
7057 spa_destroy(const char *pool)
7058 {
7059 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7060 	    B_FALSE, B_FALSE));
7061 }
7062 
7063 /*
7064  * Export a storage pool.
7065  */
7066 int
7067 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7068     boolean_t hardforce)
7069 {
7070 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7071 	    force, hardforce));
7072 }
7073 
7074 /*
7075  * Similar to spa_export(), this unloads the spa_t without actually removing it
7076  * from the namespace in any way.
7077  */
7078 int
7079 spa_reset(const char *pool)
7080 {
7081 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7082 	    B_FALSE, B_FALSE));
7083 }
7084 
7085 /*
7086  * ==========================================================================
7087  * Device manipulation
7088  * ==========================================================================
7089  */
7090 
7091 /*
7092  * This is called as a synctask to increment the draid feature flag
7093  */
7094 static void
7095 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7096 {
7097 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7098 	int draid = (int)(uintptr_t)arg;
7099 
7100 	for (int c = 0; c < draid; c++)
7101 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7102 }
7103 
7104 /*
7105  * Add a device to a storage pool.
7106  */
7107 int
7108 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7109 {
7110 	uint64_t txg, ndraid = 0;
7111 	int error;
7112 	vdev_t *rvd = spa->spa_root_vdev;
7113 	vdev_t *vd, *tvd;
7114 	nvlist_t **spares, **l2cache;
7115 	uint_t nspares, nl2cache;
7116 
7117 	ASSERT(spa_writeable(spa));
7118 
7119 	txg = spa_vdev_enter(spa);
7120 
7121 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7122 	    VDEV_ALLOC_ADD)) != 0)
7123 		return (spa_vdev_exit(spa, NULL, txg, error));
7124 
7125 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7126 
7127 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7128 	    &nspares) != 0)
7129 		nspares = 0;
7130 
7131 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7132 	    &nl2cache) != 0)
7133 		nl2cache = 0;
7134 
7135 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7136 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7137 
7138 	if (vd->vdev_children != 0 &&
7139 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7140 		return (spa_vdev_exit(spa, vd, txg, error));
7141 	}
7142 
7143 	/*
7144 	 * The virtual dRAID spares must be added after vdev tree is created
7145 	 * and the vdev guids are generated.  The guid of their associated
7146 	 * dRAID is stored in the config and used when opening the spare.
7147 	 */
7148 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7149 	    rvd->vdev_children)) == 0) {
7150 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7151 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7152 			nspares = 0;
7153 	} else {
7154 		return (spa_vdev_exit(spa, vd, txg, error));
7155 	}
7156 
7157 	/*
7158 	 * We must validate the spares and l2cache devices after checking the
7159 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7160 	 */
7161 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7162 		return (spa_vdev_exit(spa, vd, txg, error));
7163 
7164 	/*
7165 	 * If we are in the middle of a device removal, we can only add
7166 	 * devices which match the existing devices in the pool.
7167 	 * If we are in the middle of a removal, or have some indirect
7168 	 * vdevs, we can not add raidz or dRAID top levels.
7169 	 */
7170 	if (spa->spa_vdev_removal != NULL ||
7171 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7172 		for (int c = 0; c < vd->vdev_children; c++) {
7173 			tvd = vd->vdev_child[c];
7174 			if (spa->spa_vdev_removal != NULL &&
7175 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7176 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7177 			}
7178 			/* Fail if top level vdev is raidz or a dRAID */
7179 			if (vdev_get_nparity(tvd) != 0)
7180 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7181 
7182 			/*
7183 			 * Need the top level mirror to be
7184 			 * a mirror of leaf vdevs only
7185 			 */
7186 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7187 				for (uint64_t cid = 0;
7188 				    cid < tvd->vdev_children; cid++) {
7189 					vdev_t *cvd = tvd->vdev_child[cid];
7190 					if (!cvd->vdev_ops->vdev_op_leaf) {
7191 						return (spa_vdev_exit(spa, vd,
7192 						    txg, EINVAL));
7193 					}
7194 				}
7195 			}
7196 		}
7197 	}
7198 
7199 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7200 		for (int c = 0; c < vd->vdev_children; c++) {
7201 			tvd = vd->vdev_child[c];
7202 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7203 				return (spa_vdev_exit(spa, vd, txg,
7204 				    ZFS_ERR_ASHIFT_MISMATCH));
7205 			}
7206 		}
7207 	}
7208 
7209 	for (int c = 0; c < vd->vdev_children; c++) {
7210 		tvd = vd->vdev_child[c];
7211 		vdev_remove_child(vd, tvd);
7212 		tvd->vdev_id = rvd->vdev_children;
7213 		vdev_add_child(rvd, tvd);
7214 		vdev_config_dirty(tvd);
7215 	}
7216 
7217 	if (nspares != 0) {
7218 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7219 		    ZPOOL_CONFIG_SPARES);
7220 		spa_load_spares(spa);
7221 		spa->spa_spares.sav_sync = B_TRUE;
7222 	}
7223 
7224 	if (nl2cache != 0) {
7225 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7226 		    ZPOOL_CONFIG_L2CACHE);
7227 		spa_load_l2cache(spa);
7228 		spa->spa_l2cache.sav_sync = B_TRUE;
7229 	}
7230 
7231 	/*
7232 	 * We can't increment a feature while holding spa_vdev so we
7233 	 * have to do it in a synctask.
7234 	 */
7235 	if (ndraid != 0) {
7236 		dmu_tx_t *tx;
7237 
7238 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7239 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7240 		    (void *)(uintptr_t)ndraid, tx);
7241 		dmu_tx_commit(tx);
7242 	}
7243 
7244 	/*
7245 	 * We have to be careful when adding new vdevs to an existing pool.
7246 	 * If other threads start allocating from these vdevs before we
7247 	 * sync the config cache, and we lose power, then upon reboot we may
7248 	 * fail to open the pool because there are DVAs that the config cache
7249 	 * can't translate.  Therefore, we first add the vdevs without
7250 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7251 	 * and then let spa_config_update() initialize the new metaslabs.
7252 	 *
7253 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7254 	 * if we lose power at any point in this sequence, the remaining
7255 	 * steps will be completed the next time we load the pool.
7256 	 */
7257 	(void) spa_vdev_exit(spa, vd, txg, 0);
7258 
7259 	mutex_enter(&spa_namespace_lock);
7260 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7261 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7262 	mutex_exit(&spa_namespace_lock);
7263 
7264 	return (0);
7265 }
7266 
7267 /*
7268  * Attach a device to a vdev specified by its guid.  The vdev type can be
7269  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7270  * single device). When the vdev is a single device, a mirror vdev will be
7271  * automatically inserted.
7272  *
7273  * If 'replacing' is specified, the new device is intended to replace the
7274  * existing device; in this case the two devices are made into their own
7275  * mirror using the 'replacing' vdev, which is functionally identical to
7276  * the mirror vdev (it actually reuses all the same ops) but has a few
7277  * extra rules: you can't attach to it after it's been created, and upon
7278  * completion of resilvering, the first disk (the one being replaced)
7279  * is automatically detached.
7280  *
7281  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7282  * should be performed instead of traditional healing reconstruction.  From
7283  * an administrators perspective these are both resilver operations.
7284  */
7285 int
7286 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7287     int rebuild)
7288 {
7289 	uint64_t txg, dtl_max_txg;
7290 	vdev_t *rvd = spa->spa_root_vdev;
7291 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7292 	vdev_ops_t *pvops;
7293 	char *oldvdpath, *newvdpath;
7294 	int newvd_isspare = B_FALSE;
7295 	int error;
7296 
7297 	ASSERT(spa_writeable(spa));
7298 
7299 	txg = spa_vdev_enter(spa);
7300 
7301 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7302 
7303 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7304 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7305 		error = (spa_has_checkpoint(spa)) ?
7306 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7307 		return (spa_vdev_exit(spa, NULL, txg, error));
7308 	}
7309 
7310 	if (rebuild) {
7311 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7312 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7313 
7314 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7315 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7316 			return (spa_vdev_exit(spa, NULL, txg,
7317 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7318 		}
7319 	} else {
7320 		if (vdev_rebuild_active(rvd))
7321 			return (spa_vdev_exit(spa, NULL, txg,
7322 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7323 	}
7324 
7325 	if (spa->spa_vdev_removal != NULL) {
7326 		return (spa_vdev_exit(spa, NULL, txg,
7327 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7328 	}
7329 
7330 	if (oldvd == NULL)
7331 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7332 
7333 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7334 
7335 	if (raidz) {
7336 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7337 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7338 
7339 		/*
7340 		 * Can't expand a raidz while prior expand is in progress.
7341 		 */
7342 		if (spa->spa_raidz_expand != NULL) {
7343 			return (spa_vdev_exit(spa, NULL, txg,
7344 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7345 		}
7346 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7347 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7348 	}
7349 
7350 	if (raidz)
7351 		pvd = oldvd;
7352 	else
7353 		pvd = oldvd->vdev_parent;
7354 
7355 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7356 	    VDEV_ALLOC_ATTACH) != 0)
7357 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7358 
7359 	if (newrootvd->vdev_children != 1)
7360 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7361 
7362 	newvd = newrootvd->vdev_child[0];
7363 
7364 	if (!newvd->vdev_ops->vdev_op_leaf)
7365 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7366 
7367 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7368 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7369 
7370 	/*
7371 	 * log, dedup and special vdevs should not be replaced by spares.
7372 	 */
7373 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7374 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7375 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7376 	}
7377 
7378 	/*
7379 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7380 	 */
7381 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7382 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7383 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7384 	}
7385 
7386 	if (rebuild) {
7387 		/*
7388 		 * For rebuilds, the top vdev must support reconstruction
7389 		 * using only space maps.  This means the only allowable
7390 		 * vdevs types are the root vdev, a mirror, or dRAID.
7391 		 */
7392 		tvd = pvd;
7393 		if (pvd->vdev_top != NULL)
7394 			tvd = pvd->vdev_top;
7395 
7396 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7397 		    tvd->vdev_ops != &vdev_root_ops &&
7398 		    tvd->vdev_ops != &vdev_draid_ops) {
7399 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7400 		}
7401 	}
7402 
7403 	if (!replacing) {
7404 		/*
7405 		 * For attach, the only allowable parent is a mirror or
7406 		 * the root vdev. A raidz vdev can be attached to, but
7407 		 * you cannot attach to a raidz child.
7408 		 */
7409 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7410 		    pvd->vdev_ops != &vdev_root_ops &&
7411 		    !raidz)
7412 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7413 
7414 		pvops = &vdev_mirror_ops;
7415 	} else {
7416 		/*
7417 		 * Active hot spares can only be replaced by inactive hot
7418 		 * spares.
7419 		 */
7420 		if (pvd->vdev_ops == &vdev_spare_ops &&
7421 		    oldvd->vdev_isspare &&
7422 		    !spa_has_spare(spa, newvd->vdev_guid))
7423 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7424 
7425 		/*
7426 		 * If the source is a hot spare, and the parent isn't already a
7427 		 * spare, then we want to create a new hot spare.  Otherwise, we
7428 		 * want to create a replacing vdev.  The user is not allowed to
7429 		 * attach to a spared vdev child unless the 'isspare' state is
7430 		 * the same (spare replaces spare, non-spare replaces
7431 		 * non-spare).
7432 		 */
7433 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7434 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7435 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7436 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7437 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7438 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7439 		}
7440 
7441 		if (newvd->vdev_isspare)
7442 			pvops = &vdev_spare_ops;
7443 		else
7444 			pvops = &vdev_replacing_ops;
7445 	}
7446 
7447 	/*
7448 	 * Make sure the new device is big enough.
7449 	 */
7450 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7451 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7452 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7453 
7454 	/*
7455 	 * The new device cannot have a higher alignment requirement
7456 	 * than the top-level vdev.
7457 	 */
7458 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7459 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7460 
7461 	/*
7462 	 * RAIDZ-expansion-specific checks.
7463 	 */
7464 	if (raidz) {
7465 		if (vdev_raidz_attach_check(newvd) != 0)
7466 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7467 
7468 		/*
7469 		 * Fail early if a child is not healthy or being replaced
7470 		 */
7471 		for (int i = 0; i < oldvd->vdev_children; i++) {
7472 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7473 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7474 				return (spa_vdev_exit(spa, newrootvd, txg,
7475 				    ENXIO));
7476 			}
7477 			/* Also fail if reserved boot area is in-use */
7478 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7479 			    != 0) {
7480 				return (spa_vdev_exit(spa, newrootvd, txg,
7481 				    EADDRINUSE));
7482 			}
7483 		}
7484 	}
7485 
7486 	if (raidz) {
7487 		/*
7488 		 * Note: oldvdpath is freed by spa_strfree(),  but
7489 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7490 		 * move it to a spa_strdup-ed string.
7491 		 */
7492 		char *tmp = kmem_asprintf("raidz%u-%u",
7493 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7494 		oldvdpath = spa_strdup(tmp);
7495 		kmem_strfree(tmp);
7496 	} else {
7497 		oldvdpath = spa_strdup(oldvd->vdev_path);
7498 	}
7499 	newvdpath = spa_strdup(newvd->vdev_path);
7500 
7501 	/*
7502 	 * If this is an in-place replacement, update oldvd's path and devid
7503 	 * to make it distinguishable from newvd, and unopenable from now on.
7504 	 */
7505 	if (strcmp(oldvdpath, newvdpath) == 0) {
7506 		spa_strfree(oldvd->vdev_path);
7507 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7508 		    KM_SLEEP);
7509 		(void) sprintf(oldvd->vdev_path, "%s/old",
7510 		    newvdpath);
7511 		if (oldvd->vdev_devid != NULL) {
7512 			spa_strfree(oldvd->vdev_devid);
7513 			oldvd->vdev_devid = NULL;
7514 		}
7515 		spa_strfree(oldvdpath);
7516 		oldvdpath = spa_strdup(oldvd->vdev_path);
7517 	}
7518 
7519 	/*
7520 	 * If the parent is not a mirror, or if we're replacing, insert the new
7521 	 * mirror/replacing/spare vdev above oldvd.
7522 	 */
7523 	if (!raidz && pvd->vdev_ops != pvops) {
7524 		pvd = vdev_add_parent(oldvd, pvops);
7525 		ASSERT(pvd->vdev_ops == pvops);
7526 		ASSERT(oldvd->vdev_parent == pvd);
7527 	}
7528 
7529 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7530 
7531 	/*
7532 	 * Extract the new device from its root and add it to pvd.
7533 	 */
7534 	vdev_remove_child(newrootvd, newvd);
7535 	newvd->vdev_id = pvd->vdev_children;
7536 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7537 	vdev_add_child(pvd, newvd);
7538 
7539 	/*
7540 	 * Reevaluate the parent vdev state.
7541 	 */
7542 	vdev_propagate_state(pvd);
7543 
7544 	tvd = newvd->vdev_top;
7545 	ASSERT(pvd->vdev_top == tvd);
7546 	ASSERT(tvd->vdev_parent == rvd);
7547 
7548 	vdev_config_dirty(tvd);
7549 
7550 	/*
7551 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7552 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7553 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7554 	 */
7555 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7556 
7557 	if (raidz) {
7558 		/*
7559 		 * Wait for the youngest allocations and frees to sync,
7560 		 * and then wait for the deferral of those frees to finish.
7561 		 */
7562 		spa_vdev_config_exit(spa, NULL,
7563 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7564 
7565 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7566 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7567 		vdev_autotrim_stop_wait(tvd);
7568 
7569 		dtl_max_txg = spa_vdev_config_enter(spa);
7570 
7571 		tvd->vdev_rz_expanding = B_TRUE;
7572 
7573 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7574 		vdev_config_dirty(tvd);
7575 
7576 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7577 		    dtl_max_txg);
7578 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7579 		    newvd, tx);
7580 		dmu_tx_commit(tx);
7581 	} else {
7582 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7583 		    dtl_max_txg - TXG_INITIAL);
7584 
7585 		if (newvd->vdev_isspare) {
7586 			spa_spare_activate(newvd);
7587 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7588 		}
7589 
7590 		newvd_isspare = newvd->vdev_isspare;
7591 
7592 		/*
7593 		 * Mark newvd's DTL dirty in this txg.
7594 		 */
7595 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7596 
7597 		/*
7598 		 * Schedule the resilver or rebuild to restart in the future.
7599 		 * We do this to ensure that dmu_sync-ed blocks have been
7600 		 * stitched into the respective datasets.
7601 		 */
7602 		if (rebuild) {
7603 			newvd->vdev_rebuild_txg = txg;
7604 
7605 			vdev_rebuild(tvd);
7606 		} else {
7607 			newvd->vdev_resilver_txg = txg;
7608 
7609 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7610 			    spa_feature_is_enabled(spa,
7611 			    SPA_FEATURE_RESILVER_DEFER)) {
7612 				vdev_defer_resilver(newvd);
7613 			} else {
7614 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7615 				    dtl_max_txg);
7616 			}
7617 		}
7618 	}
7619 
7620 	if (spa->spa_bootfs)
7621 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7622 
7623 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7624 
7625 	/*
7626 	 * Commit the config
7627 	 */
7628 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7629 
7630 	spa_history_log_internal(spa, "vdev attach", NULL,
7631 	    "%s vdev=%s %s vdev=%s",
7632 	    replacing && newvd_isspare ? "spare in" :
7633 	    replacing ? "replace" : "attach", newvdpath,
7634 	    replacing ? "for" : "to", oldvdpath);
7635 
7636 	spa_strfree(oldvdpath);
7637 	spa_strfree(newvdpath);
7638 
7639 	return (0);
7640 }
7641 
7642 /*
7643  * Detach a device from a mirror or replacing vdev.
7644  *
7645  * If 'replace_done' is specified, only detach if the parent
7646  * is a replacing or a spare vdev.
7647  */
7648 int
7649 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7650 {
7651 	uint64_t txg;
7652 	int error;
7653 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7654 	vdev_t *vd, *pvd, *cvd, *tvd;
7655 	boolean_t unspare = B_FALSE;
7656 	uint64_t unspare_guid = 0;
7657 	char *vdpath;
7658 
7659 	ASSERT(spa_writeable(spa));
7660 
7661 	txg = spa_vdev_detach_enter(spa, guid);
7662 
7663 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7664 
7665 	/*
7666 	 * Besides being called directly from the userland through the
7667 	 * ioctl interface, spa_vdev_detach() can be potentially called
7668 	 * at the end of spa_vdev_resilver_done().
7669 	 *
7670 	 * In the regular case, when we have a checkpoint this shouldn't
7671 	 * happen as we never empty the DTLs of a vdev during the scrub
7672 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7673 	 * should never get here when we have a checkpoint.
7674 	 *
7675 	 * That said, even in a case when we checkpoint the pool exactly
7676 	 * as spa_vdev_resilver_done() calls this function everything
7677 	 * should be fine as the resilver will return right away.
7678 	 */
7679 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7680 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7681 		error = (spa_has_checkpoint(spa)) ?
7682 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7683 		return (spa_vdev_exit(spa, NULL, txg, error));
7684 	}
7685 
7686 	if (vd == NULL)
7687 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7688 
7689 	if (!vd->vdev_ops->vdev_op_leaf)
7690 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7691 
7692 	pvd = vd->vdev_parent;
7693 
7694 	/*
7695 	 * If the parent/child relationship is not as expected, don't do it.
7696 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7697 	 * vdev that's replacing B with C.  The user's intent in replacing
7698 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7699 	 * the replace by detaching C, the expected behavior is to end up
7700 	 * M(A,B).  But suppose that right after deciding to detach C,
7701 	 * the replacement of B completes.  We would have M(A,C), and then
7702 	 * ask to detach C, which would leave us with just A -- not what
7703 	 * the user wanted.  To prevent this, we make sure that the
7704 	 * parent/child relationship hasn't changed -- in this example,
7705 	 * that C's parent is still the replacing vdev R.
7706 	 */
7707 	if (pvd->vdev_guid != pguid && pguid != 0)
7708 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7709 
7710 	/*
7711 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7712 	 */
7713 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7714 	    pvd->vdev_ops != &vdev_spare_ops)
7715 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7716 
7717 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7718 	    spa_version(spa) >= SPA_VERSION_SPARES);
7719 
7720 	/*
7721 	 * Only mirror, replacing, and spare vdevs support detach.
7722 	 */
7723 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7724 	    pvd->vdev_ops != &vdev_mirror_ops &&
7725 	    pvd->vdev_ops != &vdev_spare_ops)
7726 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7727 
7728 	/*
7729 	 * If this device has the only valid copy of some data,
7730 	 * we cannot safely detach it.
7731 	 */
7732 	if (vdev_dtl_required(vd))
7733 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7734 
7735 	ASSERT(pvd->vdev_children >= 2);
7736 
7737 	/*
7738 	 * If we are detaching the second disk from a replacing vdev, then
7739 	 * check to see if we changed the original vdev's path to have "/old"
7740 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7741 	 */
7742 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7743 	    vd->vdev_path != NULL) {
7744 		size_t len = strlen(vd->vdev_path);
7745 
7746 		for (int c = 0; c < pvd->vdev_children; c++) {
7747 			cvd = pvd->vdev_child[c];
7748 
7749 			if (cvd == vd || cvd->vdev_path == NULL)
7750 				continue;
7751 
7752 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7753 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7754 				spa_strfree(cvd->vdev_path);
7755 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7756 				break;
7757 			}
7758 		}
7759 	}
7760 
7761 	/*
7762 	 * If we are detaching the original disk from a normal spare, then it
7763 	 * implies that the spare should become a real disk, and be removed
7764 	 * from the active spare list for the pool.  dRAID spares on the
7765 	 * other hand are coupled to the pool and thus should never be removed
7766 	 * from the spares list.
7767 	 */
7768 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7769 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7770 
7771 		if (last_cvd->vdev_isspare &&
7772 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7773 			unspare = B_TRUE;
7774 		}
7775 	}
7776 
7777 	/*
7778 	 * Erase the disk labels so the disk can be used for other things.
7779 	 * This must be done after all other error cases are handled,
7780 	 * but before we disembowel vd (so we can still do I/O to it).
7781 	 * But if we can't do it, don't treat the error as fatal --
7782 	 * it may be that the unwritability of the disk is the reason
7783 	 * it's being detached!
7784 	 */
7785 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7786 
7787 	/*
7788 	 * Remove vd from its parent and compact the parent's children.
7789 	 */
7790 	vdev_remove_child(pvd, vd);
7791 	vdev_compact_children(pvd);
7792 
7793 	/*
7794 	 * Remember one of the remaining children so we can get tvd below.
7795 	 */
7796 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7797 
7798 	/*
7799 	 * If we need to remove the remaining child from the list of hot spares,
7800 	 * do it now, marking the vdev as no longer a spare in the process.
7801 	 * We must do this before vdev_remove_parent(), because that can
7802 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7803 	 * reason, we must remove the spare now, in the same txg as the detach;
7804 	 * otherwise someone could attach a new sibling, change the GUID, and
7805 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7806 	 */
7807 	if (unspare) {
7808 		ASSERT(cvd->vdev_isspare);
7809 		spa_spare_remove(cvd);
7810 		unspare_guid = cvd->vdev_guid;
7811 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7812 		cvd->vdev_unspare = B_TRUE;
7813 	}
7814 
7815 	/*
7816 	 * If the parent mirror/replacing vdev only has one child,
7817 	 * the parent is no longer needed.  Remove it from the tree.
7818 	 */
7819 	if (pvd->vdev_children == 1) {
7820 		if (pvd->vdev_ops == &vdev_spare_ops)
7821 			cvd->vdev_unspare = B_FALSE;
7822 		vdev_remove_parent(cvd);
7823 	}
7824 
7825 	/*
7826 	 * We don't set tvd until now because the parent we just removed
7827 	 * may have been the previous top-level vdev.
7828 	 */
7829 	tvd = cvd->vdev_top;
7830 	ASSERT(tvd->vdev_parent == rvd);
7831 
7832 	/*
7833 	 * Reevaluate the parent vdev state.
7834 	 */
7835 	vdev_propagate_state(cvd);
7836 
7837 	/*
7838 	 * If the 'autoexpand' property is set on the pool then automatically
7839 	 * try to expand the size of the pool. For example if the device we
7840 	 * just detached was smaller than the others, it may be possible to
7841 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7842 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7843 	 */
7844 	if (spa->spa_autoexpand) {
7845 		vdev_reopen(tvd);
7846 		vdev_expand(tvd, txg);
7847 	}
7848 
7849 	vdev_config_dirty(tvd);
7850 
7851 	/*
7852 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7853 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7854 	 * But first make sure we're not on any *other* txg's DTL list, to
7855 	 * prevent vd from being accessed after it's freed.
7856 	 */
7857 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7858 	for (int t = 0; t < TXG_SIZE; t++)
7859 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7860 	vd->vdev_detached = B_TRUE;
7861 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7862 
7863 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7864 	spa_notify_waiters(spa);
7865 
7866 	/* hang on to the spa before we release the lock */
7867 	spa_open_ref(spa, FTAG);
7868 
7869 	error = spa_vdev_exit(spa, vd, txg, 0);
7870 
7871 	spa_history_log_internal(spa, "detach", NULL,
7872 	    "vdev=%s", vdpath);
7873 	spa_strfree(vdpath);
7874 
7875 	/*
7876 	 * If this was the removal of the original device in a hot spare vdev,
7877 	 * then we want to go through and remove the device from the hot spare
7878 	 * list of every other pool.
7879 	 */
7880 	if (unspare) {
7881 		spa_t *altspa = NULL;
7882 
7883 		mutex_enter(&spa_namespace_lock);
7884 		while ((altspa = spa_next(altspa)) != NULL) {
7885 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7886 			    altspa == spa)
7887 				continue;
7888 
7889 			spa_open_ref(altspa, FTAG);
7890 			mutex_exit(&spa_namespace_lock);
7891 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7892 			mutex_enter(&spa_namespace_lock);
7893 			spa_close(altspa, FTAG);
7894 		}
7895 		mutex_exit(&spa_namespace_lock);
7896 
7897 		/* search the rest of the vdevs for spares to remove */
7898 		spa_vdev_resilver_done(spa);
7899 	}
7900 
7901 	/* all done with the spa; OK to release */
7902 	mutex_enter(&spa_namespace_lock);
7903 	spa_close(spa, FTAG);
7904 	mutex_exit(&spa_namespace_lock);
7905 
7906 	return (error);
7907 }
7908 
7909 static int
7910 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7911     list_t *vd_list)
7912 {
7913 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7914 
7915 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7916 
7917 	/* Look up vdev and ensure it's a leaf. */
7918 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7919 	if (vd == NULL || vd->vdev_detached) {
7920 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7921 		return (SET_ERROR(ENODEV));
7922 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7923 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7924 		return (SET_ERROR(EINVAL));
7925 	} else if (!vdev_writeable(vd)) {
7926 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7927 		return (SET_ERROR(EROFS));
7928 	}
7929 	mutex_enter(&vd->vdev_initialize_lock);
7930 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7931 
7932 	/*
7933 	 * When we activate an initialize action we check to see
7934 	 * if the vdev_initialize_thread is NULL. We do this instead
7935 	 * of using the vdev_initialize_state since there might be
7936 	 * a previous initialization process which has completed but
7937 	 * the thread is not exited.
7938 	 */
7939 	if (cmd_type == POOL_INITIALIZE_START &&
7940 	    (vd->vdev_initialize_thread != NULL ||
7941 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
7942 		mutex_exit(&vd->vdev_initialize_lock);
7943 		return (SET_ERROR(EBUSY));
7944 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7945 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7946 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7947 		mutex_exit(&vd->vdev_initialize_lock);
7948 		return (SET_ERROR(ESRCH));
7949 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7950 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7951 		mutex_exit(&vd->vdev_initialize_lock);
7952 		return (SET_ERROR(ESRCH));
7953 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7954 	    vd->vdev_initialize_thread != NULL) {
7955 		mutex_exit(&vd->vdev_initialize_lock);
7956 		return (SET_ERROR(EBUSY));
7957 	}
7958 
7959 	switch (cmd_type) {
7960 	case POOL_INITIALIZE_START:
7961 		vdev_initialize(vd);
7962 		break;
7963 	case POOL_INITIALIZE_CANCEL:
7964 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7965 		break;
7966 	case POOL_INITIALIZE_SUSPEND:
7967 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7968 		break;
7969 	case POOL_INITIALIZE_UNINIT:
7970 		vdev_uninitialize(vd);
7971 		break;
7972 	default:
7973 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7974 	}
7975 	mutex_exit(&vd->vdev_initialize_lock);
7976 
7977 	return (0);
7978 }
7979 
7980 int
7981 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7982     nvlist_t *vdev_errlist)
7983 {
7984 	int total_errors = 0;
7985 	list_t vd_list;
7986 
7987 	list_create(&vd_list, sizeof (vdev_t),
7988 	    offsetof(vdev_t, vdev_initialize_node));
7989 
7990 	/*
7991 	 * We hold the namespace lock through the whole function
7992 	 * to prevent any changes to the pool while we're starting or
7993 	 * stopping initialization. The config and state locks are held so that
7994 	 * we can properly assess the vdev state before we commit to
7995 	 * the initializing operation.
7996 	 */
7997 	mutex_enter(&spa_namespace_lock);
7998 
7999 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8000 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8001 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8002 
8003 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8004 		    &vd_list);
8005 		if (error != 0) {
8006 			char guid_as_str[MAXNAMELEN];
8007 
8008 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8009 			    "%llu", (unsigned long long)vdev_guid);
8010 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8011 			total_errors++;
8012 		}
8013 	}
8014 
8015 	/* Wait for all initialize threads to stop. */
8016 	vdev_initialize_stop_wait(spa, &vd_list);
8017 
8018 	/* Sync out the initializing state */
8019 	txg_wait_synced(spa->spa_dsl_pool, 0);
8020 	mutex_exit(&spa_namespace_lock);
8021 
8022 	list_destroy(&vd_list);
8023 
8024 	return (total_errors);
8025 }
8026 
8027 static int
8028 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8029     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8030 {
8031 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8032 
8033 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8034 
8035 	/* Look up vdev and ensure it's a leaf. */
8036 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8037 	if (vd == NULL || vd->vdev_detached) {
8038 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8039 		return (SET_ERROR(ENODEV));
8040 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8041 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8042 		return (SET_ERROR(EINVAL));
8043 	} else if (!vdev_writeable(vd)) {
8044 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8045 		return (SET_ERROR(EROFS));
8046 	} else if (!vd->vdev_has_trim) {
8047 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8048 		return (SET_ERROR(EOPNOTSUPP));
8049 	} else if (secure && !vd->vdev_has_securetrim) {
8050 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8051 		return (SET_ERROR(EOPNOTSUPP));
8052 	}
8053 	mutex_enter(&vd->vdev_trim_lock);
8054 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8055 
8056 	/*
8057 	 * When we activate a TRIM action we check to see if the
8058 	 * vdev_trim_thread is NULL. We do this instead of using the
8059 	 * vdev_trim_state since there might be a previous TRIM process
8060 	 * which has completed but the thread is not exited.
8061 	 */
8062 	if (cmd_type == POOL_TRIM_START &&
8063 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8064 	    vd->vdev_top->vdev_rz_expanding)) {
8065 		mutex_exit(&vd->vdev_trim_lock);
8066 		return (SET_ERROR(EBUSY));
8067 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8068 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8069 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8070 		mutex_exit(&vd->vdev_trim_lock);
8071 		return (SET_ERROR(ESRCH));
8072 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8073 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8074 		mutex_exit(&vd->vdev_trim_lock);
8075 		return (SET_ERROR(ESRCH));
8076 	}
8077 
8078 	switch (cmd_type) {
8079 	case POOL_TRIM_START:
8080 		vdev_trim(vd, rate, partial, secure);
8081 		break;
8082 	case POOL_TRIM_CANCEL:
8083 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8084 		break;
8085 	case POOL_TRIM_SUSPEND:
8086 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8087 		break;
8088 	default:
8089 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8090 	}
8091 	mutex_exit(&vd->vdev_trim_lock);
8092 
8093 	return (0);
8094 }
8095 
8096 /*
8097  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8098  * TRIM threads for each child vdev.  These threads pass over all of the free
8099  * space in the vdev's metaslabs and issues TRIM commands for that space.
8100  */
8101 int
8102 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8103     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8104 {
8105 	int total_errors = 0;
8106 	list_t vd_list;
8107 
8108 	list_create(&vd_list, sizeof (vdev_t),
8109 	    offsetof(vdev_t, vdev_trim_node));
8110 
8111 	/*
8112 	 * We hold the namespace lock through the whole function
8113 	 * to prevent any changes to the pool while we're starting or
8114 	 * stopping TRIM. The config and state locks are held so that
8115 	 * we can properly assess the vdev state before we commit to
8116 	 * the TRIM operation.
8117 	 */
8118 	mutex_enter(&spa_namespace_lock);
8119 
8120 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8121 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8122 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8123 
8124 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8125 		    rate, partial, secure, &vd_list);
8126 		if (error != 0) {
8127 			char guid_as_str[MAXNAMELEN];
8128 
8129 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8130 			    "%llu", (unsigned long long)vdev_guid);
8131 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8132 			total_errors++;
8133 		}
8134 	}
8135 
8136 	/* Wait for all TRIM threads to stop. */
8137 	vdev_trim_stop_wait(spa, &vd_list);
8138 
8139 	/* Sync out the TRIM state */
8140 	txg_wait_synced(spa->spa_dsl_pool, 0);
8141 	mutex_exit(&spa_namespace_lock);
8142 
8143 	list_destroy(&vd_list);
8144 
8145 	return (total_errors);
8146 }
8147 
8148 /*
8149  * Split a set of devices from their mirrors, and create a new pool from them.
8150  */
8151 int
8152 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8153     nvlist_t *props, boolean_t exp)
8154 {
8155 	int error = 0;
8156 	uint64_t txg, *glist;
8157 	spa_t *newspa;
8158 	uint_t c, children, lastlog;
8159 	nvlist_t **child, *nvl, *tmp;
8160 	dmu_tx_t *tx;
8161 	const char *altroot = NULL;
8162 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8163 	boolean_t activate_slog;
8164 
8165 	ASSERT(spa_writeable(spa));
8166 
8167 	txg = spa_vdev_enter(spa);
8168 
8169 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8170 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8171 		error = (spa_has_checkpoint(spa)) ?
8172 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8173 		return (spa_vdev_exit(spa, NULL, txg, error));
8174 	}
8175 
8176 	/* clear the log and flush everything up to now */
8177 	activate_slog = spa_passivate_log(spa);
8178 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8179 	error = spa_reset_logs(spa);
8180 	txg = spa_vdev_config_enter(spa);
8181 
8182 	if (activate_slog)
8183 		spa_activate_log(spa);
8184 
8185 	if (error != 0)
8186 		return (spa_vdev_exit(spa, NULL, txg, error));
8187 
8188 	/* check new spa name before going any further */
8189 	if (spa_lookup(newname) != NULL)
8190 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8191 
8192 	/*
8193 	 * scan through all the children to ensure they're all mirrors
8194 	 */
8195 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8196 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8197 	    &children) != 0)
8198 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8199 
8200 	/* first, check to ensure we've got the right child count */
8201 	rvd = spa->spa_root_vdev;
8202 	lastlog = 0;
8203 	for (c = 0; c < rvd->vdev_children; c++) {
8204 		vdev_t *vd = rvd->vdev_child[c];
8205 
8206 		/* don't count the holes & logs as children */
8207 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8208 		    !vdev_is_concrete(vd))) {
8209 			if (lastlog == 0)
8210 				lastlog = c;
8211 			continue;
8212 		}
8213 
8214 		lastlog = 0;
8215 	}
8216 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8217 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8218 
8219 	/* next, ensure no spare or cache devices are part of the split */
8220 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8221 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8222 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8223 
8224 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8225 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8226 
8227 	/* then, loop over each vdev and validate it */
8228 	for (c = 0; c < children; c++) {
8229 		uint64_t is_hole = 0;
8230 
8231 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8232 		    &is_hole);
8233 
8234 		if (is_hole != 0) {
8235 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8236 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8237 				continue;
8238 			} else {
8239 				error = SET_ERROR(EINVAL);
8240 				break;
8241 			}
8242 		}
8243 
8244 		/* deal with indirect vdevs */
8245 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8246 		    &vdev_indirect_ops)
8247 			continue;
8248 
8249 		/* which disk is going to be split? */
8250 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8251 		    &glist[c]) != 0) {
8252 			error = SET_ERROR(EINVAL);
8253 			break;
8254 		}
8255 
8256 		/* look it up in the spa */
8257 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8258 		if (vml[c] == NULL) {
8259 			error = SET_ERROR(ENODEV);
8260 			break;
8261 		}
8262 
8263 		/* make sure there's nothing stopping the split */
8264 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8265 		    vml[c]->vdev_islog ||
8266 		    !vdev_is_concrete(vml[c]) ||
8267 		    vml[c]->vdev_isspare ||
8268 		    vml[c]->vdev_isl2cache ||
8269 		    !vdev_writeable(vml[c]) ||
8270 		    vml[c]->vdev_children != 0 ||
8271 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8272 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8273 			error = SET_ERROR(EINVAL);
8274 			break;
8275 		}
8276 
8277 		if (vdev_dtl_required(vml[c]) ||
8278 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8279 			error = SET_ERROR(EBUSY);
8280 			break;
8281 		}
8282 
8283 		/* we need certain info from the top level */
8284 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8285 		    vml[c]->vdev_top->vdev_ms_array);
8286 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8287 		    vml[c]->vdev_top->vdev_ms_shift);
8288 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8289 		    vml[c]->vdev_top->vdev_asize);
8290 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8291 		    vml[c]->vdev_top->vdev_ashift);
8292 
8293 		/* transfer per-vdev ZAPs */
8294 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8295 		VERIFY0(nvlist_add_uint64(child[c],
8296 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8297 
8298 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8299 		VERIFY0(nvlist_add_uint64(child[c],
8300 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8301 		    vml[c]->vdev_parent->vdev_top_zap));
8302 	}
8303 
8304 	if (error != 0) {
8305 		kmem_free(vml, children * sizeof (vdev_t *));
8306 		kmem_free(glist, children * sizeof (uint64_t));
8307 		return (spa_vdev_exit(spa, NULL, txg, error));
8308 	}
8309 
8310 	/* stop writers from using the disks */
8311 	for (c = 0; c < children; c++) {
8312 		if (vml[c] != NULL)
8313 			vml[c]->vdev_offline = B_TRUE;
8314 	}
8315 	vdev_reopen(spa->spa_root_vdev);
8316 
8317 	/*
8318 	 * Temporarily record the splitting vdevs in the spa config.  This
8319 	 * will disappear once the config is regenerated.
8320 	 */
8321 	nvl = fnvlist_alloc();
8322 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8323 	kmem_free(glist, children * sizeof (uint64_t));
8324 
8325 	mutex_enter(&spa->spa_props_lock);
8326 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8327 	mutex_exit(&spa->spa_props_lock);
8328 	spa->spa_config_splitting = nvl;
8329 	vdev_config_dirty(spa->spa_root_vdev);
8330 
8331 	/* configure and create the new pool */
8332 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8333 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8334 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8335 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8336 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8337 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8338 	    spa_generate_guid(NULL));
8339 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8340 	(void) nvlist_lookup_string(props,
8341 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8342 
8343 	/* add the new pool to the namespace */
8344 	newspa = spa_add(newname, config, altroot);
8345 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8346 	newspa->spa_config_txg = spa->spa_config_txg;
8347 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8348 
8349 	/* release the spa config lock, retaining the namespace lock */
8350 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8351 
8352 	if (zio_injection_enabled)
8353 		zio_handle_panic_injection(spa, FTAG, 1);
8354 
8355 	spa_activate(newspa, spa_mode_global);
8356 	spa_async_suspend(newspa);
8357 
8358 	/*
8359 	 * Temporarily stop the initializing and TRIM activity.  We set the
8360 	 * state to ACTIVE so that we know to resume initializing or TRIM
8361 	 * once the split has completed.
8362 	 */
8363 	list_t vd_initialize_list;
8364 	list_create(&vd_initialize_list, sizeof (vdev_t),
8365 	    offsetof(vdev_t, vdev_initialize_node));
8366 
8367 	list_t vd_trim_list;
8368 	list_create(&vd_trim_list, sizeof (vdev_t),
8369 	    offsetof(vdev_t, vdev_trim_node));
8370 
8371 	for (c = 0; c < children; c++) {
8372 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8373 			mutex_enter(&vml[c]->vdev_initialize_lock);
8374 			vdev_initialize_stop(vml[c],
8375 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8376 			mutex_exit(&vml[c]->vdev_initialize_lock);
8377 
8378 			mutex_enter(&vml[c]->vdev_trim_lock);
8379 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8380 			mutex_exit(&vml[c]->vdev_trim_lock);
8381 		}
8382 	}
8383 
8384 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8385 	vdev_trim_stop_wait(spa, &vd_trim_list);
8386 
8387 	list_destroy(&vd_initialize_list);
8388 	list_destroy(&vd_trim_list);
8389 
8390 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8391 	newspa->spa_is_splitting = B_TRUE;
8392 
8393 	/* create the new pool from the disks of the original pool */
8394 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8395 	if (error)
8396 		goto out;
8397 
8398 	/* if that worked, generate a real config for the new pool */
8399 	if (newspa->spa_root_vdev != NULL) {
8400 		newspa->spa_config_splitting = fnvlist_alloc();
8401 		fnvlist_add_uint64(newspa->spa_config_splitting,
8402 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8403 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8404 		    B_TRUE));
8405 	}
8406 
8407 	/* set the props */
8408 	if (props != NULL) {
8409 		spa_configfile_set(newspa, props, B_FALSE);
8410 		error = spa_prop_set(newspa, props);
8411 		if (error)
8412 			goto out;
8413 	}
8414 
8415 	/* flush everything */
8416 	txg = spa_vdev_config_enter(newspa);
8417 	vdev_config_dirty(newspa->spa_root_vdev);
8418 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8419 
8420 	if (zio_injection_enabled)
8421 		zio_handle_panic_injection(spa, FTAG, 2);
8422 
8423 	spa_async_resume(newspa);
8424 
8425 	/* finally, update the original pool's config */
8426 	txg = spa_vdev_config_enter(spa);
8427 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8428 	error = dmu_tx_assign(tx, TXG_WAIT);
8429 	if (error != 0)
8430 		dmu_tx_abort(tx);
8431 	for (c = 0; c < children; c++) {
8432 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8433 			vdev_t *tvd = vml[c]->vdev_top;
8434 
8435 			/*
8436 			 * Need to be sure the detachable VDEV is not
8437 			 * on any *other* txg's DTL list to prevent it
8438 			 * from being accessed after it's freed.
8439 			 */
8440 			for (int t = 0; t < TXG_SIZE; t++) {
8441 				(void) txg_list_remove_this(
8442 				    &tvd->vdev_dtl_list, vml[c], t);
8443 			}
8444 
8445 			vdev_split(vml[c]);
8446 			if (error == 0)
8447 				spa_history_log_internal(spa, "detach", tx,
8448 				    "vdev=%s", vml[c]->vdev_path);
8449 
8450 			vdev_free(vml[c]);
8451 		}
8452 	}
8453 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8454 	vdev_config_dirty(spa->spa_root_vdev);
8455 	spa->spa_config_splitting = NULL;
8456 	nvlist_free(nvl);
8457 	if (error == 0)
8458 		dmu_tx_commit(tx);
8459 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8460 
8461 	if (zio_injection_enabled)
8462 		zio_handle_panic_injection(spa, FTAG, 3);
8463 
8464 	/* split is complete; log a history record */
8465 	spa_history_log_internal(newspa, "split", NULL,
8466 	    "from pool %s", spa_name(spa));
8467 
8468 	newspa->spa_is_splitting = B_FALSE;
8469 	kmem_free(vml, children * sizeof (vdev_t *));
8470 
8471 	/* if we're not going to mount the filesystems in userland, export */
8472 	if (exp)
8473 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8474 		    B_FALSE, B_FALSE);
8475 
8476 	return (error);
8477 
8478 out:
8479 	spa_unload(newspa);
8480 	spa_deactivate(newspa);
8481 	spa_remove(newspa);
8482 
8483 	txg = spa_vdev_config_enter(spa);
8484 
8485 	/* re-online all offlined disks */
8486 	for (c = 0; c < children; c++) {
8487 		if (vml[c] != NULL)
8488 			vml[c]->vdev_offline = B_FALSE;
8489 	}
8490 
8491 	/* restart initializing or trimming disks as necessary */
8492 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8493 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8494 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8495 
8496 	vdev_reopen(spa->spa_root_vdev);
8497 
8498 	nvlist_free(spa->spa_config_splitting);
8499 	spa->spa_config_splitting = NULL;
8500 	(void) spa_vdev_exit(spa, NULL, txg, error);
8501 
8502 	kmem_free(vml, children * sizeof (vdev_t *));
8503 	return (error);
8504 }
8505 
8506 /*
8507  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8508  * currently spared, so we can detach it.
8509  */
8510 static vdev_t *
8511 spa_vdev_resilver_done_hunt(vdev_t *vd)
8512 {
8513 	vdev_t *newvd, *oldvd;
8514 
8515 	for (int c = 0; c < vd->vdev_children; c++) {
8516 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8517 		if (oldvd != NULL)
8518 			return (oldvd);
8519 	}
8520 
8521 	/*
8522 	 * Check for a completed replacement.  We always consider the first
8523 	 * vdev in the list to be the oldest vdev, and the last one to be
8524 	 * the newest (see spa_vdev_attach() for how that works).  In
8525 	 * the case where the newest vdev is faulted, we will not automatically
8526 	 * remove it after a resilver completes.  This is OK as it will require
8527 	 * user intervention to determine which disk the admin wishes to keep.
8528 	 */
8529 	if (vd->vdev_ops == &vdev_replacing_ops) {
8530 		ASSERT(vd->vdev_children > 1);
8531 
8532 		newvd = vd->vdev_child[vd->vdev_children - 1];
8533 		oldvd = vd->vdev_child[0];
8534 
8535 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8536 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8537 		    !vdev_dtl_required(oldvd))
8538 			return (oldvd);
8539 	}
8540 
8541 	/*
8542 	 * Check for a completed resilver with the 'unspare' flag set.
8543 	 * Also potentially update faulted state.
8544 	 */
8545 	if (vd->vdev_ops == &vdev_spare_ops) {
8546 		vdev_t *first = vd->vdev_child[0];
8547 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8548 
8549 		if (last->vdev_unspare) {
8550 			oldvd = first;
8551 			newvd = last;
8552 		} else if (first->vdev_unspare) {
8553 			oldvd = last;
8554 			newvd = first;
8555 		} else {
8556 			oldvd = NULL;
8557 		}
8558 
8559 		if (oldvd != NULL &&
8560 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8561 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8562 		    !vdev_dtl_required(oldvd))
8563 			return (oldvd);
8564 
8565 		vdev_propagate_state(vd);
8566 
8567 		/*
8568 		 * If there are more than two spares attached to a disk,
8569 		 * and those spares are not required, then we want to
8570 		 * attempt to free them up now so that they can be used
8571 		 * by other pools.  Once we're back down to a single
8572 		 * disk+spare, we stop removing them.
8573 		 */
8574 		if (vd->vdev_children > 2) {
8575 			newvd = vd->vdev_child[1];
8576 
8577 			if (newvd->vdev_isspare && last->vdev_isspare &&
8578 			    vdev_dtl_empty(last, DTL_MISSING) &&
8579 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8580 			    !vdev_dtl_required(newvd))
8581 				return (newvd);
8582 		}
8583 	}
8584 
8585 	return (NULL);
8586 }
8587 
8588 static void
8589 spa_vdev_resilver_done(spa_t *spa)
8590 {
8591 	vdev_t *vd, *pvd, *ppvd;
8592 	uint64_t guid, sguid, pguid, ppguid;
8593 
8594 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8595 
8596 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8597 		pvd = vd->vdev_parent;
8598 		ppvd = pvd->vdev_parent;
8599 		guid = vd->vdev_guid;
8600 		pguid = pvd->vdev_guid;
8601 		ppguid = ppvd->vdev_guid;
8602 		sguid = 0;
8603 		/*
8604 		 * If we have just finished replacing a hot spared device, then
8605 		 * we need to detach the parent's first child (the original hot
8606 		 * spare) as well.
8607 		 */
8608 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8609 		    ppvd->vdev_children == 2) {
8610 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8611 			sguid = ppvd->vdev_child[1]->vdev_guid;
8612 		}
8613 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8614 
8615 		spa_config_exit(spa, SCL_ALL, FTAG);
8616 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8617 			return;
8618 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8619 			return;
8620 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8621 	}
8622 
8623 	spa_config_exit(spa, SCL_ALL, FTAG);
8624 
8625 	/*
8626 	 * If a detach was not performed above replace waiters will not have
8627 	 * been notified.  In which case we must do so now.
8628 	 */
8629 	spa_notify_waiters(spa);
8630 }
8631 
8632 /*
8633  * Update the stored path or FRU for this vdev.
8634  */
8635 static int
8636 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8637     boolean_t ispath)
8638 {
8639 	vdev_t *vd;
8640 	boolean_t sync = B_FALSE;
8641 
8642 	ASSERT(spa_writeable(spa));
8643 
8644 	spa_vdev_state_enter(spa, SCL_ALL);
8645 
8646 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8647 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8648 
8649 	if (!vd->vdev_ops->vdev_op_leaf)
8650 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8651 
8652 	if (ispath) {
8653 		if (strcmp(value, vd->vdev_path) != 0) {
8654 			spa_strfree(vd->vdev_path);
8655 			vd->vdev_path = spa_strdup(value);
8656 			sync = B_TRUE;
8657 		}
8658 	} else {
8659 		if (vd->vdev_fru == NULL) {
8660 			vd->vdev_fru = spa_strdup(value);
8661 			sync = B_TRUE;
8662 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8663 			spa_strfree(vd->vdev_fru);
8664 			vd->vdev_fru = spa_strdup(value);
8665 			sync = B_TRUE;
8666 		}
8667 	}
8668 
8669 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8670 }
8671 
8672 int
8673 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8674 {
8675 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8676 }
8677 
8678 int
8679 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8680 {
8681 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8682 }
8683 
8684 /*
8685  * ==========================================================================
8686  * SPA Scanning
8687  * ==========================================================================
8688  */
8689 int
8690 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8691 {
8692 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8693 
8694 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8695 		return (SET_ERROR(EBUSY));
8696 
8697 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8698 }
8699 
8700 int
8701 spa_scan_stop(spa_t *spa)
8702 {
8703 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8704 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8705 		return (SET_ERROR(EBUSY));
8706 
8707 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8708 }
8709 
8710 int
8711 spa_scan(spa_t *spa, pool_scan_func_t func)
8712 {
8713 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8714 
8715 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8716 		return (SET_ERROR(ENOTSUP));
8717 
8718 	if (func == POOL_SCAN_RESILVER &&
8719 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8720 		return (SET_ERROR(ENOTSUP));
8721 
8722 	/*
8723 	 * If a resilver was requested, but there is no DTL on a
8724 	 * writeable leaf device, we have nothing to do.
8725 	 */
8726 	if (func == POOL_SCAN_RESILVER &&
8727 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8728 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8729 		return (0);
8730 	}
8731 
8732 	if (func == POOL_SCAN_ERRORSCRUB &&
8733 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8734 		return (SET_ERROR(ENOTSUP));
8735 
8736 	return (dsl_scan(spa->spa_dsl_pool, func));
8737 }
8738 
8739 /*
8740  * ==========================================================================
8741  * SPA async task processing
8742  * ==========================================================================
8743  */
8744 
8745 static void
8746 spa_async_remove(spa_t *spa, vdev_t *vd)
8747 {
8748 	if (vd->vdev_remove_wanted) {
8749 		vd->vdev_remove_wanted = B_FALSE;
8750 		vd->vdev_delayed_close = B_FALSE;
8751 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8752 
8753 		/*
8754 		 * We want to clear the stats, but we don't want to do a full
8755 		 * vdev_clear() as that will cause us to throw away
8756 		 * degraded/faulted state as well as attempt to reopen the
8757 		 * device, all of which is a waste.
8758 		 */
8759 		vd->vdev_stat.vs_read_errors = 0;
8760 		vd->vdev_stat.vs_write_errors = 0;
8761 		vd->vdev_stat.vs_checksum_errors = 0;
8762 
8763 		vdev_state_dirty(vd->vdev_top);
8764 
8765 		/* Tell userspace that the vdev is gone. */
8766 		zfs_post_remove(spa, vd);
8767 	}
8768 
8769 	for (int c = 0; c < vd->vdev_children; c++)
8770 		spa_async_remove(spa, vd->vdev_child[c]);
8771 }
8772 
8773 static void
8774 spa_async_probe(spa_t *spa, vdev_t *vd)
8775 {
8776 	if (vd->vdev_probe_wanted) {
8777 		vd->vdev_probe_wanted = B_FALSE;
8778 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8779 	}
8780 
8781 	for (int c = 0; c < vd->vdev_children; c++)
8782 		spa_async_probe(spa, vd->vdev_child[c]);
8783 }
8784 
8785 static void
8786 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8787 {
8788 	if (!spa->spa_autoexpand)
8789 		return;
8790 
8791 	for (int c = 0; c < vd->vdev_children; c++) {
8792 		vdev_t *cvd = vd->vdev_child[c];
8793 		spa_async_autoexpand(spa, cvd);
8794 	}
8795 
8796 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8797 		return;
8798 
8799 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8800 }
8801 
8802 static __attribute__((noreturn)) void
8803 spa_async_thread(void *arg)
8804 {
8805 	spa_t *spa = (spa_t *)arg;
8806 	dsl_pool_t *dp = spa->spa_dsl_pool;
8807 	int tasks;
8808 
8809 	ASSERT(spa->spa_sync_on);
8810 
8811 	mutex_enter(&spa->spa_async_lock);
8812 	tasks = spa->spa_async_tasks;
8813 	spa->spa_async_tasks = 0;
8814 	mutex_exit(&spa->spa_async_lock);
8815 
8816 	/*
8817 	 * See if the config needs to be updated.
8818 	 */
8819 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8820 		uint64_t old_space, new_space;
8821 
8822 		mutex_enter(&spa_namespace_lock);
8823 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8824 		old_space += metaslab_class_get_space(spa_special_class(spa));
8825 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8826 		old_space += metaslab_class_get_space(
8827 		    spa_embedded_log_class(spa));
8828 
8829 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8830 
8831 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8832 		new_space += metaslab_class_get_space(spa_special_class(spa));
8833 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8834 		new_space += metaslab_class_get_space(
8835 		    spa_embedded_log_class(spa));
8836 		mutex_exit(&spa_namespace_lock);
8837 
8838 		/*
8839 		 * If the pool grew as a result of the config update,
8840 		 * then log an internal history event.
8841 		 */
8842 		if (new_space != old_space) {
8843 			spa_history_log_internal(spa, "vdev online", NULL,
8844 			    "pool '%s' size: %llu(+%llu)",
8845 			    spa_name(spa), (u_longlong_t)new_space,
8846 			    (u_longlong_t)(new_space - old_space));
8847 		}
8848 	}
8849 
8850 	/*
8851 	 * See if any devices need to be marked REMOVED.
8852 	 */
8853 	if (tasks & SPA_ASYNC_REMOVE) {
8854 		spa_vdev_state_enter(spa, SCL_NONE);
8855 		spa_async_remove(spa, spa->spa_root_vdev);
8856 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8857 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8858 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8859 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8860 		(void) spa_vdev_state_exit(spa, NULL, 0);
8861 	}
8862 
8863 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8864 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8865 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8866 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8867 	}
8868 
8869 	/*
8870 	 * See if any devices need to be probed.
8871 	 */
8872 	if (tasks & SPA_ASYNC_PROBE) {
8873 		spa_vdev_state_enter(spa, SCL_NONE);
8874 		spa_async_probe(spa, spa->spa_root_vdev);
8875 		(void) spa_vdev_state_exit(spa, NULL, 0);
8876 	}
8877 
8878 	/*
8879 	 * If any devices are done replacing, detach them.
8880 	 */
8881 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8882 	    tasks & SPA_ASYNC_REBUILD_DONE ||
8883 	    tasks & SPA_ASYNC_DETACH_SPARE) {
8884 		spa_vdev_resilver_done(spa);
8885 	}
8886 
8887 	/*
8888 	 * Kick off a resilver.
8889 	 */
8890 	if (tasks & SPA_ASYNC_RESILVER &&
8891 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8892 	    (!dsl_scan_resilvering(dp) ||
8893 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8894 		dsl_scan_restart_resilver(dp, 0);
8895 
8896 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8897 		mutex_enter(&spa_namespace_lock);
8898 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8899 		vdev_initialize_restart(spa->spa_root_vdev);
8900 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8901 		mutex_exit(&spa_namespace_lock);
8902 	}
8903 
8904 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8905 		mutex_enter(&spa_namespace_lock);
8906 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8907 		vdev_trim_restart(spa->spa_root_vdev);
8908 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8909 		mutex_exit(&spa_namespace_lock);
8910 	}
8911 
8912 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8913 		mutex_enter(&spa_namespace_lock);
8914 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8915 		vdev_autotrim_restart(spa);
8916 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8917 		mutex_exit(&spa_namespace_lock);
8918 	}
8919 
8920 	/*
8921 	 * Kick off L2 cache whole device TRIM.
8922 	 */
8923 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8924 		mutex_enter(&spa_namespace_lock);
8925 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8926 		vdev_trim_l2arc(spa);
8927 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8928 		mutex_exit(&spa_namespace_lock);
8929 	}
8930 
8931 	/*
8932 	 * Kick off L2 cache rebuilding.
8933 	 */
8934 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8935 		mutex_enter(&spa_namespace_lock);
8936 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8937 		l2arc_spa_rebuild_start(spa);
8938 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8939 		mutex_exit(&spa_namespace_lock);
8940 	}
8941 
8942 	/*
8943 	 * Let the world know that we're done.
8944 	 */
8945 	mutex_enter(&spa->spa_async_lock);
8946 	spa->spa_async_thread = NULL;
8947 	cv_broadcast(&spa->spa_async_cv);
8948 	mutex_exit(&spa->spa_async_lock);
8949 	thread_exit();
8950 }
8951 
8952 void
8953 spa_async_suspend(spa_t *spa)
8954 {
8955 	mutex_enter(&spa->spa_async_lock);
8956 	spa->spa_async_suspended++;
8957 	while (spa->spa_async_thread != NULL)
8958 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8959 	mutex_exit(&spa->spa_async_lock);
8960 
8961 	spa_vdev_remove_suspend(spa);
8962 
8963 	zthr_t *condense_thread = spa->spa_condense_zthr;
8964 	if (condense_thread != NULL)
8965 		zthr_cancel(condense_thread);
8966 
8967 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8968 	if (raidz_expand_thread != NULL)
8969 		zthr_cancel(raidz_expand_thread);
8970 
8971 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8972 	if (discard_thread != NULL)
8973 		zthr_cancel(discard_thread);
8974 
8975 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8976 	if (ll_delete_thread != NULL)
8977 		zthr_cancel(ll_delete_thread);
8978 
8979 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8980 	if (ll_condense_thread != NULL)
8981 		zthr_cancel(ll_condense_thread);
8982 }
8983 
8984 void
8985 spa_async_resume(spa_t *spa)
8986 {
8987 	mutex_enter(&spa->spa_async_lock);
8988 	ASSERT(spa->spa_async_suspended != 0);
8989 	spa->spa_async_suspended--;
8990 	mutex_exit(&spa->spa_async_lock);
8991 	spa_restart_removal(spa);
8992 
8993 	zthr_t *condense_thread = spa->spa_condense_zthr;
8994 	if (condense_thread != NULL)
8995 		zthr_resume(condense_thread);
8996 
8997 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8998 	if (raidz_expand_thread != NULL)
8999 		zthr_resume(raidz_expand_thread);
9000 
9001 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9002 	if (discard_thread != NULL)
9003 		zthr_resume(discard_thread);
9004 
9005 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9006 	if (ll_delete_thread != NULL)
9007 		zthr_resume(ll_delete_thread);
9008 
9009 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9010 	if (ll_condense_thread != NULL)
9011 		zthr_resume(ll_condense_thread);
9012 }
9013 
9014 static boolean_t
9015 spa_async_tasks_pending(spa_t *spa)
9016 {
9017 	uint_t non_config_tasks;
9018 	uint_t config_task;
9019 	boolean_t config_task_suspended;
9020 
9021 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9022 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9023 	if (spa->spa_ccw_fail_time == 0) {
9024 		config_task_suspended = B_FALSE;
9025 	} else {
9026 		config_task_suspended =
9027 		    (gethrtime() - spa->spa_ccw_fail_time) <
9028 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9029 	}
9030 
9031 	return (non_config_tasks || (config_task && !config_task_suspended));
9032 }
9033 
9034 static void
9035 spa_async_dispatch(spa_t *spa)
9036 {
9037 	mutex_enter(&spa->spa_async_lock);
9038 	if (spa_async_tasks_pending(spa) &&
9039 	    !spa->spa_async_suspended &&
9040 	    spa->spa_async_thread == NULL)
9041 		spa->spa_async_thread = thread_create(NULL, 0,
9042 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9043 	mutex_exit(&spa->spa_async_lock);
9044 }
9045 
9046 void
9047 spa_async_request(spa_t *spa, int task)
9048 {
9049 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9050 	mutex_enter(&spa->spa_async_lock);
9051 	spa->spa_async_tasks |= task;
9052 	mutex_exit(&spa->spa_async_lock);
9053 }
9054 
9055 int
9056 spa_async_tasks(spa_t *spa)
9057 {
9058 	return (spa->spa_async_tasks);
9059 }
9060 
9061 /*
9062  * ==========================================================================
9063  * SPA syncing routines
9064  * ==========================================================================
9065  */
9066 
9067 
9068 static int
9069 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9070     dmu_tx_t *tx)
9071 {
9072 	bpobj_t *bpo = arg;
9073 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9074 	return (0);
9075 }
9076 
9077 int
9078 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9079 {
9080 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9081 }
9082 
9083 int
9084 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9085 {
9086 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9087 }
9088 
9089 static int
9090 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9091 {
9092 	zio_t *pio = arg;
9093 
9094 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9095 	    pio->io_flags));
9096 	return (0);
9097 }
9098 
9099 static int
9100 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9101     dmu_tx_t *tx)
9102 {
9103 	ASSERT(!bp_freed);
9104 	return (spa_free_sync_cb(arg, bp, tx));
9105 }
9106 
9107 /*
9108  * Note: this simple function is not inlined to make it easier to dtrace the
9109  * amount of time spent syncing frees.
9110  */
9111 static void
9112 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9113 {
9114 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9115 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9116 	VERIFY(zio_wait(zio) == 0);
9117 }
9118 
9119 /*
9120  * Note: this simple function is not inlined to make it easier to dtrace the
9121  * amount of time spent syncing deferred frees.
9122  */
9123 static void
9124 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9125 {
9126 	if (spa_sync_pass(spa) != 1)
9127 		return;
9128 
9129 	/*
9130 	 * Note:
9131 	 * If the log space map feature is active, we stop deferring
9132 	 * frees to the next TXG and therefore running this function
9133 	 * would be considered a no-op as spa_deferred_bpobj should
9134 	 * not have any entries.
9135 	 *
9136 	 * That said we run this function anyway (instead of returning
9137 	 * immediately) for the edge-case scenario where we just
9138 	 * activated the log space map feature in this TXG but we have
9139 	 * deferred frees from the previous TXG.
9140 	 */
9141 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9142 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9143 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9144 	VERIFY0(zio_wait(zio));
9145 }
9146 
9147 static void
9148 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9149 {
9150 	char *packed = NULL;
9151 	size_t bufsize;
9152 	size_t nvsize = 0;
9153 	dmu_buf_t *db;
9154 
9155 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9156 
9157 	/*
9158 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9159 	 * information.  This avoids the dmu_buf_will_dirty() path and
9160 	 * saves us a pre-read to get data we don't actually care about.
9161 	 */
9162 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9163 	packed = vmem_alloc(bufsize, KM_SLEEP);
9164 
9165 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9166 	    KM_SLEEP) == 0);
9167 	memset(packed + nvsize, 0, bufsize - nvsize);
9168 
9169 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9170 
9171 	vmem_free(packed, bufsize);
9172 
9173 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9174 	dmu_buf_will_dirty(db, tx);
9175 	*(uint64_t *)db->db_data = nvsize;
9176 	dmu_buf_rele(db, FTAG);
9177 }
9178 
9179 static void
9180 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9181     const char *config, const char *entry)
9182 {
9183 	nvlist_t *nvroot;
9184 	nvlist_t **list;
9185 	int i;
9186 
9187 	if (!sav->sav_sync)
9188 		return;
9189 
9190 	/*
9191 	 * Update the MOS nvlist describing the list of available devices.
9192 	 * spa_validate_aux() will have already made sure this nvlist is
9193 	 * valid and the vdevs are labeled appropriately.
9194 	 */
9195 	if (sav->sav_object == 0) {
9196 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9197 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9198 		    sizeof (uint64_t), tx);
9199 		VERIFY(zap_update(spa->spa_meta_objset,
9200 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9201 		    &sav->sav_object, tx) == 0);
9202 	}
9203 
9204 	nvroot = fnvlist_alloc();
9205 	if (sav->sav_count == 0) {
9206 		fnvlist_add_nvlist_array(nvroot, config,
9207 		    (const nvlist_t * const *)NULL, 0);
9208 	} else {
9209 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9210 		for (i = 0; i < sav->sav_count; i++)
9211 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9212 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9213 		fnvlist_add_nvlist_array(nvroot, config,
9214 		    (const nvlist_t * const *)list, sav->sav_count);
9215 		for (i = 0; i < sav->sav_count; i++)
9216 			nvlist_free(list[i]);
9217 		kmem_free(list, sav->sav_count * sizeof (void *));
9218 	}
9219 
9220 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9221 	nvlist_free(nvroot);
9222 
9223 	sav->sav_sync = B_FALSE;
9224 }
9225 
9226 /*
9227  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9228  * The all-vdev ZAP must be empty.
9229  */
9230 static void
9231 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9232 {
9233 	spa_t *spa = vd->vdev_spa;
9234 
9235 	if (vd->vdev_root_zap != 0 &&
9236 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9237 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9238 		    vd->vdev_root_zap, tx));
9239 	}
9240 	if (vd->vdev_top_zap != 0) {
9241 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9242 		    vd->vdev_top_zap, tx));
9243 	}
9244 	if (vd->vdev_leaf_zap != 0) {
9245 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9246 		    vd->vdev_leaf_zap, tx));
9247 	}
9248 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9249 		spa_avz_build(vd->vdev_child[i], avz, tx);
9250 	}
9251 }
9252 
9253 static void
9254 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9255 {
9256 	nvlist_t *config;
9257 
9258 	/*
9259 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9260 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9261 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9262 	 * need to rebuild the AVZ although the config may not be dirty.
9263 	 */
9264 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9265 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9266 		return;
9267 
9268 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9269 
9270 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9271 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9272 	    spa->spa_all_vdev_zaps != 0);
9273 
9274 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9275 		/* Make and build the new AVZ */
9276 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9277 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9278 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9279 
9280 		/* Diff old AVZ with new one */
9281 		zap_cursor_t zc;
9282 		zap_attribute_t za;
9283 
9284 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9285 		    spa->spa_all_vdev_zaps);
9286 		    zap_cursor_retrieve(&zc, &za) == 0;
9287 		    zap_cursor_advance(&zc)) {
9288 			uint64_t vdzap = za.za_first_integer;
9289 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9290 			    vdzap) == ENOENT) {
9291 				/*
9292 				 * ZAP is listed in old AVZ but not in new one;
9293 				 * destroy it
9294 				 */
9295 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9296 				    tx));
9297 			}
9298 		}
9299 
9300 		zap_cursor_fini(&zc);
9301 
9302 		/* Destroy the old AVZ */
9303 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9304 		    spa->spa_all_vdev_zaps, tx));
9305 
9306 		/* Replace the old AVZ in the dir obj with the new one */
9307 		VERIFY0(zap_update(spa->spa_meta_objset,
9308 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9309 		    sizeof (new_avz), 1, &new_avz, tx));
9310 
9311 		spa->spa_all_vdev_zaps = new_avz;
9312 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9313 		zap_cursor_t zc;
9314 		zap_attribute_t za;
9315 
9316 		/* Walk through the AVZ and destroy all listed ZAPs */
9317 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9318 		    spa->spa_all_vdev_zaps);
9319 		    zap_cursor_retrieve(&zc, &za) == 0;
9320 		    zap_cursor_advance(&zc)) {
9321 			uint64_t zap = za.za_first_integer;
9322 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9323 		}
9324 
9325 		zap_cursor_fini(&zc);
9326 
9327 		/* Destroy and unlink the AVZ itself */
9328 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9329 		    spa->spa_all_vdev_zaps, tx));
9330 		VERIFY0(zap_remove(spa->spa_meta_objset,
9331 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9332 		spa->spa_all_vdev_zaps = 0;
9333 	}
9334 
9335 	if (spa->spa_all_vdev_zaps == 0) {
9336 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9337 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9338 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9339 	}
9340 	spa->spa_avz_action = AVZ_ACTION_NONE;
9341 
9342 	/* Create ZAPs for vdevs that don't have them. */
9343 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9344 
9345 	config = spa_config_generate(spa, spa->spa_root_vdev,
9346 	    dmu_tx_get_txg(tx), B_FALSE);
9347 
9348 	/*
9349 	 * If we're upgrading the spa version then make sure that
9350 	 * the config object gets updated with the correct version.
9351 	 */
9352 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9353 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9354 		    spa->spa_uberblock.ub_version);
9355 
9356 	spa_config_exit(spa, SCL_STATE, FTAG);
9357 
9358 	nvlist_free(spa->spa_config_syncing);
9359 	spa->spa_config_syncing = config;
9360 
9361 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9362 }
9363 
9364 static void
9365 spa_sync_version(void *arg, dmu_tx_t *tx)
9366 {
9367 	uint64_t *versionp = arg;
9368 	uint64_t version = *versionp;
9369 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9370 
9371 	/*
9372 	 * Setting the version is special cased when first creating the pool.
9373 	 */
9374 	ASSERT(tx->tx_txg != TXG_INITIAL);
9375 
9376 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9377 	ASSERT(version >= spa_version(spa));
9378 
9379 	spa->spa_uberblock.ub_version = version;
9380 	vdev_config_dirty(spa->spa_root_vdev);
9381 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9382 	    (longlong_t)version);
9383 }
9384 
9385 /*
9386  * Set zpool properties.
9387  */
9388 static void
9389 spa_sync_props(void *arg, dmu_tx_t *tx)
9390 {
9391 	nvlist_t *nvp = arg;
9392 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9393 	objset_t *mos = spa->spa_meta_objset;
9394 	nvpair_t *elem = NULL;
9395 
9396 	mutex_enter(&spa->spa_props_lock);
9397 
9398 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9399 		uint64_t intval;
9400 		const char *strval, *fname;
9401 		zpool_prop_t prop;
9402 		const char *propname;
9403 		const char *elemname = nvpair_name(elem);
9404 		zprop_type_t proptype;
9405 		spa_feature_t fid;
9406 
9407 		switch (prop = zpool_name_to_prop(elemname)) {
9408 		case ZPOOL_PROP_VERSION:
9409 			intval = fnvpair_value_uint64(elem);
9410 			/*
9411 			 * The version is synced separately before other
9412 			 * properties and should be correct by now.
9413 			 */
9414 			ASSERT3U(spa_version(spa), >=, intval);
9415 			break;
9416 
9417 		case ZPOOL_PROP_ALTROOT:
9418 			/*
9419 			 * 'altroot' is a non-persistent property. It should
9420 			 * have been set temporarily at creation or import time.
9421 			 */
9422 			ASSERT(spa->spa_root != NULL);
9423 			break;
9424 
9425 		case ZPOOL_PROP_READONLY:
9426 		case ZPOOL_PROP_CACHEFILE:
9427 			/*
9428 			 * 'readonly' and 'cachefile' are also non-persistent
9429 			 * properties.
9430 			 */
9431 			break;
9432 		case ZPOOL_PROP_COMMENT:
9433 			strval = fnvpair_value_string(elem);
9434 			if (spa->spa_comment != NULL)
9435 				spa_strfree(spa->spa_comment);
9436 			spa->spa_comment = spa_strdup(strval);
9437 			/*
9438 			 * We need to dirty the configuration on all the vdevs
9439 			 * so that their labels get updated.  We also need to
9440 			 * update the cache file to keep it in sync with the
9441 			 * MOS version. It's unnecessary to do this for pool
9442 			 * creation since the vdev's configuration has already
9443 			 * been dirtied.
9444 			 */
9445 			if (tx->tx_txg != TXG_INITIAL) {
9446 				vdev_config_dirty(spa->spa_root_vdev);
9447 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9448 			}
9449 			spa_history_log_internal(spa, "set", tx,
9450 			    "%s=%s", elemname, strval);
9451 			break;
9452 		case ZPOOL_PROP_COMPATIBILITY:
9453 			strval = fnvpair_value_string(elem);
9454 			if (spa->spa_compatibility != NULL)
9455 				spa_strfree(spa->spa_compatibility);
9456 			spa->spa_compatibility = spa_strdup(strval);
9457 			/*
9458 			 * Dirty the configuration on vdevs as above.
9459 			 */
9460 			if (tx->tx_txg != TXG_INITIAL) {
9461 				vdev_config_dirty(spa->spa_root_vdev);
9462 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9463 			}
9464 
9465 			spa_history_log_internal(spa, "set", tx,
9466 			    "%s=%s", nvpair_name(elem), strval);
9467 			break;
9468 
9469 		case ZPOOL_PROP_INVAL:
9470 			if (zpool_prop_feature(elemname)) {
9471 				fname = strchr(elemname, '@') + 1;
9472 				VERIFY0(zfeature_lookup_name(fname, &fid));
9473 
9474 				spa_feature_enable(spa, fid, tx);
9475 				spa_history_log_internal(spa, "set", tx,
9476 				    "%s=enabled", elemname);
9477 				break;
9478 			} else if (!zfs_prop_user(elemname)) {
9479 				ASSERT(zpool_prop_feature(elemname));
9480 				break;
9481 			}
9482 			zfs_fallthrough;
9483 		default:
9484 			/*
9485 			 * Set pool property values in the poolprops mos object.
9486 			 */
9487 			if (spa->spa_pool_props_object == 0) {
9488 				spa->spa_pool_props_object =
9489 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9490 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9491 				    tx);
9492 			}
9493 
9494 			/* normalize the property name */
9495 			if (prop == ZPOOL_PROP_INVAL) {
9496 				propname = elemname;
9497 				proptype = PROP_TYPE_STRING;
9498 			} else {
9499 				propname = zpool_prop_to_name(prop);
9500 				proptype = zpool_prop_get_type(prop);
9501 			}
9502 
9503 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9504 				ASSERT(proptype == PROP_TYPE_STRING);
9505 				strval = fnvpair_value_string(elem);
9506 				VERIFY0(zap_update(mos,
9507 				    spa->spa_pool_props_object, propname,
9508 				    1, strlen(strval) + 1, strval, tx));
9509 				spa_history_log_internal(spa, "set", tx,
9510 				    "%s=%s", elemname, strval);
9511 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9512 				intval = fnvpair_value_uint64(elem);
9513 
9514 				if (proptype == PROP_TYPE_INDEX) {
9515 					const char *unused;
9516 					VERIFY0(zpool_prop_index_to_string(
9517 					    prop, intval, &unused));
9518 				}
9519 				VERIFY0(zap_update(mos,
9520 				    spa->spa_pool_props_object, propname,
9521 				    8, 1, &intval, tx));
9522 				spa_history_log_internal(spa, "set", tx,
9523 				    "%s=%lld", elemname,
9524 				    (longlong_t)intval);
9525 
9526 				switch (prop) {
9527 				case ZPOOL_PROP_DELEGATION:
9528 					spa->spa_delegation = intval;
9529 					break;
9530 				case ZPOOL_PROP_BOOTFS:
9531 					spa->spa_bootfs = intval;
9532 					break;
9533 				case ZPOOL_PROP_FAILUREMODE:
9534 					spa->spa_failmode = intval;
9535 					break;
9536 				case ZPOOL_PROP_AUTOTRIM:
9537 					spa->spa_autotrim = intval;
9538 					spa_async_request(spa,
9539 					    SPA_ASYNC_AUTOTRIM_RESTART);
9540 					break;
9541 				case ZPOOL_PROP_AUTOEXPAND:
9542 					spa->spa_autoexpand = intval;
9543 					if (tx->tx_txg != TXG_INITIAL)
9544 						spa_async_request(spa,
9545 						    SPA_ASYNC_AUTOEXPAND);
9546 					break;
9547 				case ZPOOL_PROP_MULTIHOST:
9548 					spa->spa_multihost = intval;
9549 					break;
9550 				default:
9551 					break;
9552 				}
9553 			} else {
9554 				ASSERT(0); /* not allowed */
9555 			}
9556 		}
9557 
9558 	}
9559 
9560 	mutex_exit(&spa->spa_props_lock);
9561 }
9562 
9563 /*
9564  * Perform one-time upgrade on-disk changes.  spa_version() does not
9565  * reflect the new version this txg, so there must be no changes this
9566  * txg to anything that the upgrade code depends on after it executes.
9567  * Therefore this must be called after dsl_pool_sync() does the sync
9568  * tasks.
9569  */
9570 static void
9571 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9572 {
9573 	if (spa_sync_pass(spa) != 1)
9574 		return;
9575 
9576 	dsl_pool_t *dp = spa->spa_dsl_pool;
9577 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9578 
9579 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9580 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9581 		dsl_pool_create_origin(dp, tx);
9582 
9583 		/* Keeping the origin open increases spa_minref */
9584 		spa->spa_minref += 3;
9585 	}
9586 
9587 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9588 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9589 		dsl_pool_upgrade_clones(dp, tx);
9590 	}
9591 
9592 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9593 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9594 		dsl_pool_upgrade_dir_clones(dp, tx);
9595 
9596 		/* Keeping the freedir open increases spa_minref */
9597 		spa->spa_minref += 3;
9598 	}
9599 
9600 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9601 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9602 		spa_feature_create_zap_objects(spa, tx);
9603 	}
9604 
9605 	/*
9606 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9607 	 * when possibility to use lz4 compression for metadata was added
9608 	 * Old pools that have this feature enabled must be upgraded to have
9609 	 * this feature active
9610 	 */
9611 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9612 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9613 		    SPA_FEATURE_LZ4_COMPRESS);
9614 		boolean_t lz4_ac = spa_feature_is_active(spa,
9615 		    SPA_FEATURE_LZ4_COMPRESS);
9616 
9617 		if (lz4_en && !lz4_ac)
9618 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9619 	}
9620 
9621 	/*
9622 	 * If we haven't written the salt, do so now.  Note that the
9623 	 * feature may not be activated yet, but that's fine since
9624 	 * the presence of this ZAP entry is backwards compatible.
9625 	 */
9626 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9627 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9628 		VERIFY0(zap_add(spa->spa_meta_objset,
9629 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9630 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9631 		    spa->spa_cksum_salt.zcs_bytes, tx));
9632 	}
9633 
9634 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9635 }
9636 
9637 static void
9638 vdev_indirect_state_sync_verify(vdev_t *vd)
9639 {
9640 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9641 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9642 
9643 	if (vd->vdev_ops == &vdev_indirect_ops) {
9644 		ASSERT(vim != NULL);
9645 		ASSERT(vib != NULL);
9646 	}
9647 
9648 	uint64_t obsolete_sm_object = 0;
9649 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9650 	if (obsolete_sm_object != 0) {
9651 		ASSERT(vd->vdev_obsolete_sm != NULL);
9652 		ASSERT(vd->vdev_removing ||
9653 		    vd->vdev_ops == &vdev_indirect_ops);
9654 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9655 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9656 		ASSERT3U(obsolete_sm_object, ==,
9657 		    space_map_object(vd->vdev_obsolete_sm));
9658 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9659 		    space_map_allocated(vd->vdev_obsolete_sm));
9660 	}
9661 	ASSERT(vd->vdev_obsolete_segments != NULL);
9662 
9663 	/*
9664 	 * Since frees / remaps to an indirect vdev can only
9665 	 * happen in syncing context, the obsolete segments
9666 	 * tree must be empty when we start syncing.
9667 	 */
9668 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9669 }
9670 
9671 /*
9672  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9673  * async write queue depth in case it changed. The max queue depth will
9674  * not change in the middle of syncing out this txg.
9675  */
9676 static void
9677 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9678 {
9679 	ASSERT(spa_writeable(spa));
9680 
9681 	vdev_t *rvd = spa->spa_root_vdev;
9682 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9683 	    zfs_vdev_queue_depth_pct / 100;
9684 	metaslab_class_t *normal = spa_normal_class(spa);
9685 	metaslab_class_t *special = spa_special_class(spa);
9686 	metaslab_class_t *dedup = spa_dedup_class(spa);
9687 
9688 	uint64_t slots_per_allocator = 0;
9689 	for (int c = 0; c < rvd->vdev_children; c++) {
9690 		vdev_t *tvd = rvd->vdev_child[c];
9691 
9692 		metaslab_group_t *mg = tvd->vdev_mg;
9693 		if (mg == NULL || !metaslab_group_initialized(mg))
9694 			continue;
9695 
9696 		metaslab_class_t *mc = mg->mg_class;
9697 		if (mc != normal && mc != special && mc != dedup)
9698 			continue;
9699 
9700 		/*
9701 		 * It is safe to do a lock-free check here because only async
9702 		 * allocations look at mg_max_alloc_queue_depth, and async
9703 		 * allocations all happen from spa_sync().
9704 		 */
9705 		for (int i = 0; i < mg->mg_allocators; i++) {
9706 			ASSERT0(zfs_refcount_count(
9707 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9708 		}
9709 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9710 
9711 		for (int i = 0; i < mg->mg_allocators; i++) {
9712 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9713 			    zfs_vdev_def_queue_depth;
9714 		}
9715 		slots_per_allocator += zfs_vdev_def_queue_depth;
9716 	}
9717 
9718 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9719 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9720 		    mca_alloc_slots));
9721 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9722 		    mca_alloc_slots));
9723 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9724 		    mca_alloc_slots));
9725 		normal->mc_allocator[i].mca_alloc_max_slots =
9726 		    slots_per_allocator;
9727 		special->mc_allocator[i].mca_alloc_max_slots =
9728 		    slots_per_allocator;
9729 		dedup->mc_allocator[i].mca_alloc_max_slots =
9730 		    slots_per_allocator;
9731 	}
9732 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9733 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9734 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9735 }
9736 
9737 static void
9738 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9739 {
9740 	ASSERT(spa_writeable(spa));
9741 
9742 	vdev_t *rvd = spa->spa_root_vdev;
9743 	for (int c = 0; c < rvd->vdev_children; c++) {
9744 		vdev_t *vd = rvd->vdev_child[c];
9745 		vdev_indirect_state_sync_verify(vd);
9746 
9747 		if (vdev_indirect_should_condense(vd)) {
9748 			spa_condense_indirect_start_sync(vd, tx);
9749 			break;
9750 		}
9751 	}
9752 }
9753 
9754 static void
9755 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9756 {
9757 	objset_t *mos = spa->spa_meta_objset;
9758 	dsl_pool_t *dp = spa->spa_dsl_pool;
9759 	uint64_t txg = tx->tx_txg;
9760 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9761 
9762 	do {
9763 		int pass = ++spa->spa_sync_pass;
9764 
9765 		spa_sync_config_object(spa, tx);
9766 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9767 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9768 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9769 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9770 		spa_errlog_sync(spa, txg);
9771 		dsl_pool_sync(dp, txg);
9772 
9773 		if (pass < zfs_sync_pass_deferred_free ||
9774 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9775 			/*
9776 			 * If the log space map feature is active we don't
9777 			 * care about deferred frees and the deferred bpobj
9778 			 * as the log space map should effectively have the
9779 			 * same results (i.e. appending only to one object).
9780 			 */
9781 			spa_sync_frees(spa, free_bpl, tx);
9782 		} else {
9783 			/*
9784 			 * We can not defer frees in pass 1, because
9785 			 * we sync the deferred frees later in pass 1.
9786 			 */
9787 			ASSERT3U(pass, >, 1);
9788 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9789 			    &spa->spa_deferred_bpobj, tx);
9790 		}
9791 
9792 		brt_sync(spa, txg);
9793 		ddt_sync(spa, txg);
9794 		dsl_scan_sync(dp, tx);
9795 		dsl_errorscrub_sync(dp, tx);
9796 		svr_sync(spa, tx);
9797 		spa_sync_upgrades(spa, tx);
9798 
9799 		spa_flush_metaslabs(spa, tx);
9800 
9801 		vdev_t *vd = NULL;
9802 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9803 		    != NULL)
9804 			vdev_sync(vd, txg);
9805 
9806 		if (pass == 1) {
9807 			/*
9808 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9809 			 * the config. If that happens, this txg should not
9810 			 * be a no-op. So we must sync the config to the MOS
9811 			 * before checking for no-op.
9812 			 *
9813 			 * Note that when the config is dirty, it will
9814 			 * be written to the MOS (i.e. the MOS will be
9815 			 * dirtied) every time we call spa_sync_config_object()
9816 			 * in this txg.  Therefore we can't call this after
9817 			 * dsl_pool_sync() every pass, because it would
9818 			 * prevent us from converging, since we'd dirty
9819 			 * the MOS every pass.
9820 			 *
9821 			 * Sync tasks can only be processed in pass 1, so
9822 			 * there's no need to do this in later passes.
9823 			 */
9824 			spa_sync_config_object(spa, tx);
9825 		}
9826 
9827 		/*
9828 		 * Note: We need to check if the MOS is dirty because we could
9829 		 * have marked the MOS dirty without updating the uberblock
9830 		 * (e.g. if we have sync tasks but no dirty user data). We need
9831 		 * to check the uberblock's rootbp because it is updated if we
9832 		 * have synced out dirty data (though in this case the MOS will
9833 		 * most likely also be dirty due to second order effects, we
9834 		 * don't want to rely on that here).
9835 		 */
9836 		if (pass == 1 &&
9837 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9838 		    !dmu_objset_is_dirty(mos, txg)) {
9839 			/*
9840 			 * Nothing changed on the first pass, therefore this
9841 			 * TXG is a no-op. Avoid syncing deferred frees, so
9842 			 * that we can keep this TXG as a no-op.
9843 			 */
9844 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9845 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9846 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9847 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9848 			break;
9849 		}
9850 
9851 		spa_sync_deferred_frees(spa, tx);
9852 	} while (dmu_objset_is_dirty(mos, txg));
9853 }
9854 
9855 /*
9856  * Rewrite the vdev configuration (which includes the uberblock) to
9857  * commit the transaction group.
9858  *
9859  * If there are no dirty vdevs, we sync the uberblock to a few random
9860  * top-level vdevs that are known to be visible in the config cache
9861  * (see spa_vdev_add() for a complete description). If there *are* dirty
9862  * vdevs, sync the uberblock to all vdevs.
9863  */
9864 static void
9865 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9866 {
9867 	vdev_t *rvd = spa->spa_root_vdev;
9868 	uint64_t txg = tx->tx_txg;
9869 
9870 	for (;;) {
9871 		int error = 0;
9872 
9873 		/*
9874 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9875 		 * while we're attempting to write the vdev labels.
9876 		 */
9877 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9878 
9879 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9880 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9881 			int svdcount = 0;
9882 			int children = rvd->vdev_children;
9883 			int c0 = random_in_range(children);
9884 
9885 			for (int c = 0; c < children; c++) {
9886 				vdev_t *vd =
9887 				    rvd->vdev_child[(c0 + c) % children];
9888 
9889 				/* Stop when revisiting the first vdev */
9890 				if (c > 0 && svd[0] == vd)
9891 					break;
9892 
9893 				if (vd->vdev_ms_array == 0 ||
9894 				    vd->vdev_islog ||
9895 				    !vdev_is_concrete(vd))
9896 					continue;
9897 
9898 				svd[svdcount++] = vd;
9899 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9900 					break;
9901 			}
9902 			error = vdev_config_sync(svd, svdcount, txg);
9903 		} else {
9904 			error = vdev_config_sync(rvd->vdev_child,
9905 			    rvd->vdev_children, txg);
9906 		}
9907 
9908 		if (error == 0)
9909 			spa->spa_last_synced_guid = rvd->vdev_guid;
9910 
9911 		spa_config_exit(spa, SCL_STATE, FTAG);
9912 
9913 		if (error == 0)
9914 			break;
9915 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9916 		zio_resume_wait(spa);
9917 	}
9918 }
9919 
9920 /*
9921  * Sync the specified transaction group.  New blocks may be dirtied as
9922  * part of the process, so we iterate until it converges.
9923  */
9924 void
9925 spa_sync(spa_t *spa, uint64_t txg)
9926 {
9927 	vdev_t *vd = NULL;
9928 
9929 	VERIFY(spa_writeable(spa));
9930 
9931 	/*
9932 	 * Wait for i/os issued in open context that need to complete
9933 	 * before this txg syncs.
9934 	 */
9935 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9936 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9937 	    ZIO_FLAG_CANFAIL);
9938 
9939 	/*
9940 	 * Now that there can be no more cloning in this transaction group,
9941 	 * but we are still before issuing frees, we can process pending BRT
9942 	 * updates.
9943 	 */
9944 	brt_pending_apply(spa, txg);
9945 
9946 	/*
9947 	 * Lock out configuration changes.
9948 	 */
9949 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9950 
9951 	spa->spa_syncing_txg = txg;
9952 	spa->spa_sync_pass = 0;
9953 
9954 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9955 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9956 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9957 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9958 	}
9959 
9960 	/*
9961 	 * If there are any pending vdev state changes, convert them
9962 	 * into config changes that go out with this transaction group.
9963 	 */
9964 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9965 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9966 		/* Avoid holding the write lock unless actually necessary */
9967 		if (vd->vdev_aux == NULL) {
9968 			vdev_state_clean(vd);
9969 			vdev_config_dirty(vd);
9970 			continue;
9971 		}
9972 		/*
9973 		 * We need the write lock here because, for aux vdevs,
9974 		 * calling vdev_config_dirty() modifies sav_config.
9975 		 * This is ugly and will become unnecessary when we
9976 		 * eliminate the aux vdev wart by integrating all vdevs
9977 		 * into the root vdev tree.
9978 		 */
9979 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9980 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9981 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9982 			vdev_state_clean(vd);
9983 			vdev_config_dirty(vd);
9984 		}
9985 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9986 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9987 	}
9988 	spa_config_exit(spa, SCL_STATE, FTAG);
9989 
9990 	dsl_pool_t *dp = spa->spa_dsl_pool;
9991 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9992 
9993 	spa->spa_sync_starttime = gethrtime();
9994 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9995 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9996 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9997 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9998 
9999 	/*
10000 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10001 	 * set spa_deflate if we have no raid-z vdevs.
10002 	 */
10003 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10004 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10005 		vdev_t *rvd = spa->spa_root_vdev;
10006 
10007 		int i;
10008 		for (i = 0; i < rvd->vdev_children; i++) {
10009 			vd = rvd->vdev_child[i];
10010 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10011 				break;
10012 		}
10013 		if (i == rvd->vdev_children) {
10014 			spa->spa_deflate = TRUE;
10015 			VERIFY0(zap_add(spa->spa_meta_objset,
10016 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10017 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10018 		}
10019 	}
10020 
10021 	spa_sync_adjust_vdev_max_queue_depth(spa);
10022 
10023 	spa_sync_condense_indirect(spa, tx);
10024 
10025 	spa_sync_iterate_to_convergence(spa, tx);
10026 
10027 #ifdef ZFS_DEBUG
10028 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10029 	/*
10030 	 * Make sure that the number of ZAPs for all the vdevs matches
10031 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10032 	 * called if the config is dirty; otherwise there may be
10033 	 * outstanding AVZ operations that weren't completed in
10034 	 * spa_sync_config_object.
10035 	 */
10036 		uint64_t all_vdev_zap_entry_count;
10037 		ASSERT0(zap_count(spa->spa_meta_objset,
10038 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10039 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10040 		    all_vdev_zap_entry_count);
10041 	}
10042 #endif
10043 
10044 	if (spa->spa_vdev_removal != NULL) {
10045 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10046 	}
10047 
10048 	spa_sync_rewrite_vdev_config(spa, tx);
10049 	dmu_tx_commit(tx);
10050 
10051 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10052 	spa->spa_deadman_tqid = 0;
10053 
10054 	/*
10055 	 * Clear the dirty config list.
10056 	 */
10057 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10058 		vdev_config_clean(vd);
10059 
10060 	/*
10061 	 * Now that the new config has synced transactionally,
10062 	 * let it become visible to the config cache.
10063 	 */
10064 	if (spa->spa_config_syncing != NULL) {
10065 		spa_config_set(spa, spa->spa_config_syncing);
10066 		spa->spa_config_txg = txg;
10067 		spa->spa_config_syncing = NULL;
10068 	}
10069 
10070 	dsl_pool_sync_done(dp, txg);
10071 
10072 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10073 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10074 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10075 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10076 	}
10077 
10078 	/*
10079 	 * Update usable space statistics.
10080 	 */
10081 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10082 	    != NULL)
10083 		vdev_sync_done(vd, txg);
10084 
10085 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10086 	metaslab_class_evict_old(spa->spa_log_class, txg);
10087 
10088 	spa_sync_close_syncing_log_sm(spa);
10089 
10090 	spa_update_dspace(spa);
10091 
10092 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10093 		vdev_autotrim_kick(spa);
10094 
10095 	/*
10096 	 * It had better be the case that we didn't dirty anything
10097 	 * since vdev_config_sync().
10098 	 */
10099 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10100 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10101 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10102 
10103 	while (zfs_pause_spa_sync)
10104 		delay(1);
10105 
10106 	spa->spa_sync_pass = 0;
10107 
10108 	/*
10109 	 * Update the last synced uberblock here. We want to do this at
10110 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10111 	 * will be guaranteed that all the processing associated with
10112 	 * that txg has been completed.
10113 	 */
10114 	spa->spa_ubsync = spa->spa_uberblock;
10115 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10116 
10117 	spa_handle_ignored_writes(spa);
10118 
10119 	/*
10120 	 * If any async tasks have been requested, kick them off.
10121 	 */
10122 	spa_async_dispatch(spa);
10123 }
10124 
10125 /*
10126  * Sync all pools.  We don't want to hold the namespace lock across these
10127  * operations, so we take a reference on the spa_t and drop the lock during the
10128  * sync.
10129  */
10130 void
10131 spa_sync_allpools(void)
10132 {
10133 	spa_t *spa = NULL;
10134 	mutex_enter(&spa_namespace_lock);
10135 	while ((spa = spa_next(spa)) != NULL) {
10136 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10137 		    !spa_writeable(spa) || spa_suspended(spa))
10138 			continue;
10139 		spa_open_ref(spa, FTAG);
10140 		mutex_exit(&spa_namespace_lock);
10141 		txg_wait_synced(spa_get_dsl(spa), 0);
10142 		mutex_enter(&spa_namespace_lock);
10143 		spa_close(spa, FTAG);
10144 	}
10145 	mutex_exit(&spa_namespace_lock);
10146 }
10147 
10148 taskq_t *
10149 spa_sync_tq_create(spa_t *spa, const char *name)
10150 {
10151 	kthread_t **kthreads;
10152 
10153 	ASSERT(spa->spa_sync_tq == NULL);
10154 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10155 
10156 	/*
10157 	 * - do not allow more allocators than cpus.
10158 	 * - there may be more cpus than allocators.
10159 	 * - do not allow more sync taskq threads than allocators or cpus.
10160 	 */
10161 	int nthreads = spa->spa_alloc_count;
10162 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10163 	    nthreads, KM_SLEEP);
10164 
10165 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10166 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10167 	VERIFY(spa->spa_sync_tq != NULL);
10168 	VERIFY(kthreads != NULL);
10169 
10170 	spa_taskqs_t *tqs =
10171 	    &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE];
10172 
10173 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10174 	for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) {
10175 		ti->sti_thread = kthreads[i];
10176 		if (w == tqs->stqs_count) {
10177 			w = 0;
10178 		}
10179 		ti->sti_wr_iss_tq = tqs->stqs_taskq[w];
10180 	}
10181 
10182 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10183 	return (spa->spa_sync_tq);
10184 }
10185 
10186 void
10187 spa_sync_tq_destroy(spa_t *spa)
10188 {
10189 	ASSERT(spa->spa_sync_tq != NULL);
10190 
10191 	taskq_wait(spa->spa_sync_tq);
10192 	taskq_destroy(spa->spa_sync_tq);
10193 	kmem_free(spa->spa_syncthreads,
10194 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10195 	spa->spa_sync_tq = NULL;
10196 }
10197 
10198 void
10199 spa_select_allocator(zio_t *zio)
10200 {
10201 	zbookmark_phys_t *bm = &zio->io_bookmark;
10202 	spa_t *spa = zio->io_spa;
10203 
10204 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10205 
10206 	/*
10207 	 * A gang block (for example) may have inherited its parent's
10208 	 * allocator, in which case there is nothing further to do here.
10209 	 */
10210 	if (ZIO_HAS_ALLOCATOR(zio))
10211 		return;
10212 
10213 	ASSERT(spa != NULL);
10214 	ASSERT(bm != NULL);
10215 
10216 	/*
10217 	 * First try to use an allocator assigned to the syncthread, and set
10218 	 * the corresponding write issue taskq for the allocator.
10219 	 * Note, we must have an open pool to do this.
10220 	 */
10221 	if (spa->spa_sync_tq != NULL) {
10222 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10223 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10224 			if (ti->sti_thread == curthread) {
10225 				zio->io_allocator = i;
10226 				zio->io_wr_iss_tq = ti->sti_wr_iss_tq;
10227 				return;
10228 			}
10229 		}
10230 	}
10231 
10232 	/*
10233 	 * We want to try to use as many allocators as possible to help improve
10234 	 * performance, but we also want logically adjacent IOs to be physically
10235 	 * adjacent to improve sequential read performance. We chunk each object
10236 	 * into 2^20 block regions, and then hash based on the objset, object,
10237 	 * level, and region to accomplish both of these goals.
10238 	 */
10239 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10240 	    bm->zb_blkid >> 20);
10241 
10242 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10243 	zio->io_wr_iss_tq = NULL;
10244 }
10245 
10246 /*
10247  * ==========================================================================
10248  * Miscellaneous routines
10249  * ==========================================================================
10250  */
10251 
10252 /*
10253  * Remove all pools in the system.
10254  */
10255 void
10256 spa_evict_all(void)
10257 {
10258 	spa_t *spa;
10259 
10260 	/*
10261 	 * Remove all cached state.  All pools should be closed now,
10262 	 * so every spa in the AVL tree should be unreferenced.
10263 	 */
10264 	mutex_enter(&spa_namespace_lock);
10265 	while ((spa = spa_next(NULL)) != NULL) {
10266 		/*
10267 		 * Stop async tasks.  The async thread may need to detach
10268 		 * a device that's been replaced, which requires grabbing
10269 		 * spa_namespace_lock, so we must drop it here.
10270 		 */
10271 		spa_open_ref(spa, FTAG);
10272 		mutex_exit(&spa_namespace_lock);
10273 		spa_async_suspend(spa);
10274 		mutex_enter(&spa_namespace_lock);
10275 		spa_close(spa, FTAG);
10276 
10277 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10278 			spa_unload(spa);
10279 			spa_deactivate(spa);
10280 		}
10281 		spa_remove(spa);
10282 	}
10283 	mutex_exit(&spa_namespace_lock);
10284 }
10285 
10286 vdev_t *
10287 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10288 {
10289 	vdev_t *vd;
10290 	int i;
10291 
10292 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10293 		return (vd);
10294 
10295 	if (aux) {
10296 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10297 			vd = spa->spa_l2cache.sav_vdevs[i];
10298 			if (vd->vdev_guid == guid)
10299 				return (vd);
10300 		}
10301 
10302 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10303 			vd = spa->spa_spares.sav_vdevs[i];
10304 			if (vd->vdev_guid == guid)
10305 				return (vd);
10306 		}
10307 	}
10308 
10309 	return (NULL);
10310 }
10311 
10312 void
10313 spa_upgrade(spa_t *spa, uint64_t version)
10314 {
10315 	ASSERT(spa_writeable(spa));
10316 
10317 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10318 
10319 	/*
10320 	 * This should only be called for a non-faulted pool, and since a
10321 	 * future version would result in an unopenable pool, this shouldn't be
10322 	 * possible.
10323 	 */
10324 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10325 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10326 
10327 	spa->spa_uberblock.ub_version = version;
10328 	vdev_config_dirty(spa->spa_root_vdev);
10329 
10330 	spa_config_exit(spa, SCL_ALL, FTAG);
10331 
10332 	txg_wait_synced(spa_get_dsl(spa), 0);
10333 }
10334 
10335 static boolean_t
10336 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10337 {
10338 	(void) spa;
10339 	int i;
10340 	uint64_t vdev_guid;
10341 
10342 	for (i = 0; i < sav->sav_count; i++)
10343 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10344 			return (B_TRUE);
10345 
10346 	for (i = 0; i < sav->sav_npending; i++) {
10347 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10348 		    &vdev_guid) == 0 && vdev_guid == guid)
10349 			return (B_TRUE);
10350 	}
10351 
10352 	return (B_FALSE);
10353 }
10354 
10355 boolean_t
10356 spa_has_l2cache(spa_t *spa, uint64_t guid)
10357 {
10358 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10359 }
10360 
10361 boolean_t
10362 spa_has_spare(spa_t *spa, uint64_t guid)
10363 {
10364 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10365 }
10366 
10367 /*
10368  * Check if a pool has an active shared spare device.
10369  * Note: reference count of an active spare is 2, as a spare and as a replace
10370  */
10371 static boolean_t
10372 spa_has_active_shared_spare(spa_t *spa)
10373 {
10374 	int i, refcnt;
10375 	uint64_t pool;
10376 	spa_aux_vdev_t *sav = &spa->spa_spares;
10377 
10378 	for (i = 0; i < sav->sav_count; i++) {
10379 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10380 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10381 		    refcnt > 2)
10382 			return (B_TRUE);
10383 	}
10384 
10385 	return (B_FALSE);
10386 }
10387 
10388 uint64_t
10389 spa_total_metaslabs(spa_t *spa)
10390 {
10391 	vdev_t *rvd = spa->spa_root_vdev;
10392 
10393 	uint64_t m = 0;
10394 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10395 		vdev_t *vd = rvd->vdev_child[c];
10396 		if (!vdev_is_concrete(vd))
10397 			continue;
10398 		m += vd->vdev_ms_count;
10399 	}
10400 	return (m);
10401 }
10402 
10403 /*
10404  * Notify any waiting threads that some activity has switched from being in-
10405  * progress to not-in-progress so that the thread can wake up and determine
10406  * whether it is finished waiting.
10407  */
10408 void
10409 spa_notify_waiters(spa_t *spa)
10410 {
10411 	/*
10412 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10413 	 * happening between the waiting thread's check and cv_wait.
10414 	 */
10415 	mutex_enter(&spa->spa_activities_lock);
10416 	cv_broadcast(&spa->spa_activities_cv);
10417 	mutex_exit(&spa->spa_activities_lock);
10418 }
10419 
10420 /*
10421  * Notify any waiting threads that the pool is exporting, and then block until
10422  * they are finished using the spa_t.
10423  */
10424 void
10425 spa_wake_waiters(spa_t *spa)
10426 {
10427 	mutex_enter(&spa->spa_activities_lock);
10428 	spa->spa_waiters_cancel = B_TRUE;
10429 	cv_broadcast(&spa->spa_activities_cv);
10430 	while (spa->spa_waiters != 0)
10431 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10432 	spa->spa_waiters_cancel = B_FALSE;
10433 	mutex_exit(&spa->spa_activities_lock);
10434 }
10435 
10436 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10437 static boolean_t
10438 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10439 {
10440 	spa_t *spa = vd->vdev_spa;
10441 
10442 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10443 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10444 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10445 	    activity == ZPOOL_WAIT_TRIM);
10446 
10447 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10448 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10449 
10450 	mutex_exit(&spa->spa_activities_lock);
10451 	mutex_enter(lock);
10452 	mutex_enter(&spa->spa_activities_lock);
10453 
10454 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10455 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10456 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10457 	mutex_exit(lock);
10458 
10459 	if (in_progress)
10460 		return (B_TRUE);
10461 
10462 	for (int i = 0; i < vd->vdev_children; i++) {
10463 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10464 		    activity))
10465 			return (B_TRUE);
10466 	}
10467 
10468 	return (B_FALSE);
10469 }
10470 
10471 /*
10472  * If use_guid is true, this checks whether the vdev specified by guid is
10473  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10474  * is being initialized/trimmed. The caller must hold the config lock and
10475  * spa_activities_lock.
10476  */
10477 static int
10478 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10479     zpool_wait_activity_t activity, boolean_t *in_progress)
10480 {
10481 	mutex_exit(&spa->spa_activities_lock);
10482 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10483 	mutex_enter(&spa->spa_activities_lock);
10484 
10485 	vdev_t *vd;
10486 	if (use_guid) {
10487 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10488 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10489 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10490 			return (EINVAL);
10491 		}
10492 	} else {
10493 		vd = spa->spa_root_vdev;
10494 	}
10495 
10496 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10497 
10498 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10499 	return (0);
10500 }
10501 
10502 /*
10503  * Locking for waiting threads
10504  * ---------------------------
10505  *
10506  * Waiting threads need a way to check whether a given activity is in progress,
10507  * and then, if it is, wait for it to complete. Each activity will have some
10508  * in-memory representation of the relevant on-disk state which can be used to
10509  * determine whether or not the activity is in progress. The in-memory state and
10510  * the locking used to protect it will be different for each activity, and may
10511  * not be suitable for use with a cvar (e.g., some state is protected by the
10512  * config lock). To allow waiting threads to wait without any races, another
10513  * lock, spa_activities_lock, is used.
10514  *
10515  * When the state is checked, both the activity-specific lock (if there is one)
10516  * and spa_activities_lock are held. In some cases, the activity-specific lock
10517  * is acquired explicitly (e.g. the config lock). In others, the locking is
10518  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10519  * thread releases the activity-specific lock and, if the activity is in
10520  * progress, then cv_waits using spa_activities_lock.
10521  *
10522  * The waiting thread is woken when another thread, one completing some
10523  * activity, updates the state of the activity and then calls
10524  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10525  * needs to hold its activity-specific lock when updating the state, and this
10526  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10527  *
10528  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10529  * and because it is held when the waiting thread checks the state of the
10530  * activity, it can never be the case that the completing thread both updates
10531  * the activity state and cv_broadcasts in between the waiting thread's check
10532  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10533  *
10534  * In order to prevent deadlock, when the waiting thread does its check, in some
10535  * cases it will temporarily drop spa_activities_lock in order to acquire the
10536  * activity-specific lock. The order in which spa_activities_lock and the
10537  * activity specific lock are acquired in the waiting thread is determined by
10538  * the order in which they are acquired in the completing thread; if the
10539  * completing thread calls spa_notify_waiters with the activity-specific lock
10540  * held, then the waiting thread must also acquire the activity-specific lock
10541  * first.
10542  */
10543 
10544 static int
10545 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10546     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10547 {
10548 	int error = 0;
10549 
10550 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10551 
10552 	switch (activity) {
10553 	case ZPOOL_WAIT_CKPT_DISCARD:
10554 		*in_progress =
10555 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10556 		    zap_contains(spa_meta_objset(spa),
10557 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10558 		    ENOENT);
10559 		break;
10560 	case ZPOOL_WAIT_FREE:
10561 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10562 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10563 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10564 		    spa_livelist_delete_check(spa));
10565 		break;
10566 	case ZPOOL_WAIT_INITIALIZE:
10567 	case ZPOOL_WAIT_TRIM:
10568 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10569 		    activity, in_progress);
10570 		break;
10571 	case ZPOOL_WAIT_REPLACE:
10572 		mutex_exit(&spa->spa_activities_lock);
10573 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10574 		mutex_enter(&spa->spa_activities_lock);
10575 
10576 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10577 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10578 		break;
10579 	case ZPOOL_WAIT_REMOVE:
10580 		*in_progress = (spa->spa_removing_phys.sr_state ==
10581 		    DSS_SCANNING);
10582 		break;
10583 	case ZPOOL_WAIT_RESILVER:
10584 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10585 		if (*in_progress)
10586 			break;
10587 		zfs_fallthrough;
10588 	case ZPOOL_WAIT_SCRUB:
10589 	{
10590 		boolean_t scanning, paused, is_scrub;
10591 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10592 
10593 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10594 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10595 		paused = dsl_scan_is_paused_scrub(scn);
10596 		*in_progress = (scanning && !paused &&
10597 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10598 		break;
10599 	}
10600 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10601 	{
10602 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10603 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10604 		break;
10605 	}
10606 	default:
10607 		panic("unrecognized value for activity %d", activity);
10608 	}
10609 
10610 	return (error);
10611 }
10612 
10613 static int
10614 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10615     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10616 {
10617 	/*
10618 	 * The tag is used to distinguish between instances of an activity.
10619 	 * 'initialize' and 'trim' are the only activities that we use this for.
10620 	 * The other activities can only have a single instance in progress in a
10621 	 * pool at one time, making the tag unnecessary.
10622 	 *
10623 	 * There can be multiple devices being replaced at once, but since they
10624 	 * all finish once resilvering finishes, we don't bother keeping track
10625 	 * of them individually, we just wait for them all to finish.
10626 	 */
10627 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10628 	    activity != ZPOOL_WAIT_TRIM)
10629 		return (EINVAL);
10630 
10631 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10632 		return (EINVAL);
10633 
10634 	spa_t *spa;
10635 	int error = spa_open(pool, &spa, FTAG);
10636 	if (error != 0)
10637 		return (error);
10638 
10639 	/*
10640 	 * Increment the spa's waiter count so that we can call spa_close and
10641 	 * still ensure that the spa_t doesn't get freed before this thread is
10642 	 * finished with it when the pool is exported. We want to call spa_close
10643 	 * before we start waiting because otherwise the additional ref would
10644 	 * prevent the pool from being exported or destroyed throughout the
10645 	 * potentially long wait.
10646 	 */
10647 	mutex_enter(&spa->spa_activities_lock);
10648 	spa->spa_waiters++;
10649 	spa_close(spa, FTAG);
10650 
10651 	*waited = B_FALSE;
10652 	for (;;) {
10653 		boolean_t in_progress;
10654 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10655 		    &in_progress);
10656 
10657 		if (error || !in_progress || spa->spa_waiters_cancel)
10658 			break;
10659 
10660 		*waited = B_TRUE;
10661 
10662 		if (cv_wait_sig(&spa->spa_activities_cv,
10663 		    &spa->spa_activities_lock) == 0) {
10664 			error = EINTR;
10665 			break;
10666 		}
10667 	}
10668 
10669 	spa->spa_waiters--;
10670 	cv_signal(&spa->spa_waiters_cv);
10671 	mutex_exit(&spa->spa_activities_lock);
10672 
10673 	return (error);
10674 }
10675 
10676 /*
10677  * Wait for a particular instance of the specified activity to complete, where
10678  * the instance is identified by 'tag'
10679  */
10680 int
10681 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10682     boolean_t *waited)
10683 {
10684 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10685 }
10686 
10687 /*
10688  * Wait for all instances of the specified activity complete
10689  */
10690 int
10691 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10692 {
10693 
10694 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10695 }
10696 
10697 sysevent_t *
10698 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10699 {
10700 	sysevent_t *ev = NULL;
10701 #ifdef _KERNEL
10702 	nvlist_t *resource;
10703 
10704 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10705 	if (resource) {
10706 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10707 		ev->resource = resource;
10708 	}
10709 #else
10710 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10711 #endif
10712 	return (ev);
10713 }
10714 
10715 void
10716 spa_event_post(sysevent_t *ev)
10717 {
10718 #ifdef _KERNEL
10719 	if (ev) {
10720 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10721 		kmem_free(ev, sizeof (*ev));
10722 	}
10723 #else
10724 	(void) ev;
10725 #endif
10726 }
10727 
10728 /*
10729  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10730  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10731  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10732  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10733  * or zdb as real changes.
10734  */
10735 void
10736 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10737 {
10738 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10739 }
10740 
10741 /* state manipulation functions */
10742 EXPORT_SYMBOL(spa_open);
10743 EXPORT_SYMBOL(spa_open_rewind);
10744 EXPORT_SYMBOL(spa_get_stats);
10745 EXPORT_SYMBOL(spa_create);
10746 EXPORT_SYMBOL(spa_import);
10747 EXPORT_SYMBOL(spa_tryimport);
10748 EXPORT_SYMBOL(spa_destroy);
10749 EXPORT_SYMBOL(spa_export);
10750 EXPORT_SYMBOL(spa_reset);
10751 EXPORT_SYMBOL(spa_async_request);
10752 EXPORT_SYMBOL(spa_async_suspend);
10753 EXPORT_SYMBOL(spa_async_resume);
10754 EXPORT_SYMBOL(spa_inject_addref);
10755 EXPORT_SYMBOL(spa_inject_delref);
10756 EXPORT_SYMBOL(spa_scan_stat_init);
10757 EXPORT_SYMBOL(spa_scan_get_stats);
10758 
10759 /* device manipulation */
10760 EXPORT_SYMBOL(spa_vdev_add);
10761 EXPORT_SYMBOL(spa_vdev_attach);
10762 EXPORT_SYMBOL(spa_vdev_detach);
10763 EXPORT_SYMBOL(spa_vdev_setpath);
10764 EXPORT_SYMBOL(spa_vdev_setfru);
10765 EXPORT_SYMBOL(spa_vdev_split_mirror);
10766 
10767 /* spare statech is global across all pools) */
10768 EXPORT_SYMBOL(spa_spare_add);
10769 EXPORT_SYMBOL(spa_spare_remove);
10770 EXPORT_SYMBOL(spa_spare_exists);
10771 EXPORT_SYMBOL(spa_spare_activate);
10772 
10773 /* L2ARC statech is global across all pools) */
10774 EXPORT_SYMBOL(spa_l2cache_add);
10775 EXPORT_SYMBOL(spa_l2cache_remove);
10776 EXPORT_SYMBOL(spa_l2cache_exists);
10777 EXPORT_SYMBOL(spa_l2cache_activate);
10778 EXPORT_SYMBOL(spa_l2cache_drop);
10779 
10780 /* scanning */
10781 EXPORT_SYMBOL(spa_scan);
10782 EXPORT_SYMBOL(spa_scan_stop);
10783 
10784 /* spa syncing */
10785 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10786 EXPORT_SYMBOL(spa_sync_allpools);
10787 
10788 /* properties */
10789 EXPORT_SYMBOL(spa_prop_set);
10790 EXPORT_SYMBOL(spa_prop_get);
10791 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10792 
10793 /* asynchronous event notification */
10794 EXPORT_SYMBOL(spa_event_notify);
10795 
10796 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10797 	"Percentage of CPUs to run a metaslab preload taskq");
10798 
10799 /* BEGIN CSTYLED */
10800 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10801 	"log2 fraction of arc that can be used by inflight I/Os when "
10802 	"verifying pool during import");
10803 /* END CSTYLED */
10804 
10805 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10806 	"Set to traverse metadata on pool import");
10807 
10808 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10809 	"Set to traverse data on pool import");
10810 
10811 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10812 	"Print vdev tree to zfs_dbgmsg during pool import");
10813 
10814 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10815 	"Percentage of CPUs to run an IO worker thread");
10816 
10817 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10818 	"Number of threads per IO worker taskqueue");
10819 
10820 /* BEGIN CSTYLED */
10821 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10822 	"Allow importing pool with up to this number of missing top-level "
10823 	"vdevs (in read-only mode)");
10824 /* END CSTYLED */
10825 
10826 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10827 	ZMOD_RW, "Set the livelist condense zthr to pause");
10828 
10829 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10830 	ZMOD_RW, "Set the livelist condense synctask to pause");
10831 
10832 /* BEGIN CSTYLED */
10833 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10834 	INT, ZMOD_RW,
10835 	"Whether livelist condensing was canceled in the synctask");
10836 
10837 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10838 	INT, ZMOD_RW,
10839 	"Whether livelist condensing was canceled in the zthr function");
10840 
10841 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10842 	ZMOD_RW,
10843 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10844 	"was being condensed");
10845 
10846 #ifdef _KERNEL
10847 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
10848 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RD,
10849 	"Configure IO queues for read IO");
10850 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
10851 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RD,
10852 	"Configure IO queues for write IO");
10853 #endif
10854 /* END CSTYLED */
10855 
10856 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW,
10857 	"Number of CPUs to run write issue taskqs");
10858