xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  */
37 
38 /*
39  * SPA: Storage Pool Allocator
40  *
41  * This file contains all the routines used when modifying on-disk SPA state.
42  * This includes opening, importing, destroying, exporting a pool, and syncing a
43  * pool.
44  */
45 
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
90 
91 #ifdef	_KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif	/* _KERNEL */
98 
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
101 
102 /*
103  * The interval, in seconds, at which failed configuration cache file writes
104  * should be retried.
105  */
106 int zfs_ccw_retry_interval = 300;
107 
108 typedef enum zti_modes {
109 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112 	ZTI_MODE_NULL,			/* don't create a taskq */
113 	ZTI_NMODES
114 } zti_modes_t;
115 
116 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121 
122 #define	ZTI_N(n)	ZTI_P(n, 1)
123 #define	ZTI_ONE		ZTI_N(1)
124 
125 typedef struct zio_taskq_info {
126 	zti_modes_t zti_mode;
127 	uint_t zti_value;
128 	uint_t zti_count;
129 } zio_taskq_info_t;
130 
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 	"iss", "iss_h", "int", "int_h"
133 };
134 
135 /*
136  * This table defines the taskq settings for each ZFS I/O type. When
137  * initializing a pool, we use this table to create an appropriately sized
138  * taskq. Some operations are low volume and therefore have a small, static
139  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140  * macros. Other operations process a large amount of data; the ZTI_BATCH
141  * macro causes us to create a taskq oriented for throughput. Some operations
142  * are so high frequency and short-lived that the taskq itself can become a
143  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144  * additional degree of parallelism specified by the number of threads per-
145  * taskq and the number of taskqs; when dispatching an event in this case, the
146  * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147  * but with number of taskqs also scaling with number of CPUs.
148  *
149  * The different taskq priorities are to handle the different contexts (issue
150  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151  * need to be handled with minimum delay.
152  */
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162 };
163 
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
169 
170 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
171 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
172 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
174 
175 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
176 
177 /*
178  * Report any spa_load_verify errors found, but do not fail spa_load.
179  * This is used by zdb to analyze non-idle pools.
180  */
181 boolean_t	spa_load_verify_dryrun = B_FALSE;
182 
183 /*
184  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
185  * This is used by zdb for spacemaps verification.
186  */
187 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
188 
189 /*
190  * This (illegal) pool name is used when temporarily importing a spa_t in order
191  * to get the vdev stats associated with the imported devices.
192  */
193 #define	TRYIMPORT_NAME	"$import"
194 
195 /*
196  * For debugging purposes: print out vdev tree during pool import.
197  */
198 static int		spa_load_print_vdev_tree = B_FALSE;
199 
200 /*
201  * A non-zero value for zfs_max_missing_tvds means that we allow importing
202  * pools with missing top-level vdevs. This is strictly intended for advanced
203  * pool recovery cases since missing data is almost inevitable. Pools with
204  * missing devices can only be imported read-only for safety reasons, and their
205  * fail-mode will be automatically set to "continue".
206  *
207  * With 1 missing vdev we should be able to import the pool and mount all
208  * datasets. User data that was not modified after the missing device has been
209  * added should be recoverable. This means that snapshots created prior to the
210  * addition of that device should be completely intact.
211  *
212  * With 2 missing vdevs, some datasets may fail to mount since there are
213  * dataset statistics that are stored as regular metadata. Some data might be
214  * recoverable if those vdevs were added recently.
215  *
216  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
217  * may be missing entirely. Chances of data recovery are very low. Note that
218  * there are also risks of performing an inadvertent rewind as we might be
219  * missing all the vdevs with the latest uberblocks.
220  */
221 unsigned long	zfs_max_missing_tvds = 0;
222 
223 /*
224  * The parameters below are similar to zfs_max_missing_tvds but are only
225  * intended for a preliminary open of the pool with an untrusted config which
226  * might be incomplete or out-dated.
227  *
228  * We are more tolerant for pools opened from a cachefile since we could have
229  * an out-dated cachefile where a device removal was not registered.
230  * We could have set the limit arbitrarily high but in the case where devices
231  * are really missing we would want to return the proper error codes; we chose
232  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
233  * and we get a chance to retrieve the trusted config.
234  */
235 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
236 
237 /*
238  * In the case where config was assembled by scanning device paths (/dev/dsks
239  * by default) we are less tolerant since all the existing devices should have
240  * been detected and we want spa_load to return the right error codes.
241  */
242 uint64_t	zfs_max_missing_tvds_scan = 0;
243 
244 /*
245  * Debugging aid that pauses spa_sync() towards the end.
246  */
247 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
248 
249 /*
250  * Variables to indicate the livelist condense zthr func should wait at certain
251  * points for the livelist to be removed - used to test condense/destroy races
252  */
253 static int zfs_livelist_condense_zthr_pause = 0;
254 static int zfs_livelist_condense_sync_pause = 0;
255 
256 /*
257  * Variables to track whether or not condense cancellation has been
258  * triggered in testing.
259  */
260 static int zfs_livelist_condense_sync_cancel = 0;
261 static int zfs_livelist_condense_zthr_cancel = 0;
262 
263 /*
264  * Variable to track whether or not extra ALLOC blkptrs were added to a
265  * livelist entry while it was being condensed (caused by the way we track
266  * remapped blkptrs in dbuf_remap_impl)
267  */
268 static int zfs_livelist_condense_new_alloc = 0;
269 
270 /*
271  * ==========================================================================
272  * SPA properties routines
273  * ==========================================================================
274  */
275 
276 /*
277  * Add a (source=src, propname=propval) list to an nvlist.
278  */
279 static void
280 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
281     uint64_t intval, zprop_source_t src)
282 {
283 	const char *propname = zpool_prop_to_name(prop);
284 	nvlist_t *propval;
285 
286 	propval = fnvlist_alloc();
287 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
288 
289 	if (strval != NULL)
290 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
291 	else
292 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
293 
294 	fnvlist_add_nvlist(nvl, propname, propval);
295 	nvlist_free(propval);
296 }
297 
298 /*
299  * Get property values from the spa configuration.
300  */
301 static void
302 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
303 {
304 	vdev_t *rvd = spa->spa_root_vdev;
305 	dsl_pool_t *pool = spa->spa_dsl_pool;
306 	uint64_t size, alloc, cap, version;
307 	const zprop_source_t src = ZPROP_SRC_NONE;
308 	spa_config_dirent_t *dp;
309 	metaslab_class_t *mc = spa_normal_class(spa);
310 
311 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
312 
313 	if (rvd != NULL) {
314 		alloc = metaslab_class_get_alloc(mc);
315 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
316 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
317 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
318 
319 		size = metaslab_class_get_space(mc);
320 		size += metaslab_class_get_space(spa_special_class(spa));
321 		size += metaslab_class_get_space(spa_dedup_class(spa));
322 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
323 
324 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
325 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
326 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
327 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
328 		    size - alloc, src);
329 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
330 		    spa->spa_checkpoint_info.sci_dspace, src);
331 
332 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
333 		    metaslab_class_fragmentation(mc), src);
334 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
335 		    metaslab_class_expandable_space(mc), src);
336 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
337 		    (spa_mode(spa) == SPA_MODE_READ), src);
338 
339 		cap = (size == 0) ? 0 : (alloc * 100 / size);
340 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
341 
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
343 		    ddt_get_pool_dedup_ratio(spa), src);
344 
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
346 		    rvd->vdev_state, src);
347 
348 		version = spa_version(spa);
349 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
350 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
351 			    version, ZPROP_SRC_DEFAULT);
352 		} else {
353 			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
354 			    version, ZPROP_SRC_LOCAL);
355 		}
356 		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
357 		    NULL, spa_load_guid(spa), src);
358 	}
359 
360 	if (pool != NULL) {
361 		/*
362 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
363 		 * when opening pools before this version freedir will be NULL.
364 		 */
365 		if (pool->dp_free_dir != NULL) {
366 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
367 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
368 			    src);
369 		} else {
370 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
371 			    NULL, 0, src);
372 		}
373 
374 		if (pool->dp_leak_dir != NULL) {
375 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
376 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
377 			    src);
378 		} else {
379 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
380 			    NULL, 0, src);
381 		}
382 	}
383 
384 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
385 
386 	if (spa->spa_comment != NULL) {
387 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
388 		    0, ZPROP_SRC_LOCAL);
389 	}
390 
391 	if (spa->spa_compatibility != NULL) {
392 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
393 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
394 	}
395 
396 	if (spa->spa_root != NULL)
397 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
398 		    0, ZPROP_SRC_LOCAL);
399 
400 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
401 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
402 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
403 	} else {
404 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
405 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
406 	}
407 
408 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
409 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
410 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
411 	} else {
412 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
413 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
414 	}
415 
416 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
417 		if (dp->scd_path == NULL) {
418 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
419 			    "none", 0, ZPROP_SRC_LOCAL);
420 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
421 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
422 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
423 		}
424 	}
425 }
426 
427 /*
428  * Get zpool property values.
429  */
430 int
431 spa_prop_get(spa_t *spa, nvlist_t **nvp)
432 {
433 	objset_t *mos = spa->spa_meta_objset;
434 	zap_cursor_t zc;
435 	zap_attribute_t za;
436 	dsl_pool_t *dp;
437 	int err;
438 
439 	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
440 	if (err)
441 		return (err);
442 
443 	dp = spa_get_dsl(spa);
444 	dsl_pool_config_enter(dp, FTAG);
445 	mutex_enter(&spa->spa_props_lock);
446 
447 	/*
448 	 * Get properties from the spa config.
449 	 */
450 	spa_prop_get_config(spa, nvp);
451 
452 	/* If no pool property object, no more prop to get. */
453 	if (mos == NULL || spa->spa_pool_props_object == 0)
454 		goto out;
455 
456 	/*
457 	 * Get properties from the MOS pool property object.
458 	 */
459 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
460 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
461 	    zap_cursor_advance(&zc)) {
462 		uint64_t intval = 0;
463 		char *strval = NULL;
464 		zprop_source_t src = ZPROP_SRC_DEFAULT;
465 		zpool_prop_t prop;
466 
467 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
468 			continue;
469 
470 		switch (za.za_integer_length) {
471 		case 8:
472 			/* integer property */
473 			if (za.za_first_integer !=
474 			    zpool_prop_default_numeric(prop))
475 				src = ZPROP_SRC_LOCAL;
476 
477 			if (prop == ZPOOL_PROP_BOOTFS) {
478 				dsl_dataset_t *ds = NULL;
479 
480 				err = dsl_dataset_hold_obj(dp,
481 				    za.za_first_integer, FTAG, &ds);
482 				if (err != 0)
483 					break;
484 
485 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
486 				    KM_SLEEP);
487 				dsl_dataset_name(ds, strval);
488 				dsl_dataset_rele(ds, FTAG);
489 			} else {
490 				strval = NULL;
491 				intval = za.za_first_integer;
492 			}
493 
494 			spa_prop_add_list(*nvp, prop, strval, intval, src);
495 
496 			if (strval != NULL)
497 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
498 
499 			break;
500 
501 		case 1:
502 			/* string property */
503 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
504 			err = zap_lookup(mos, spa->spa_pool_props_object,
505 			    za.za_name, 1, za.za_num_integers, strval);
506 			if (err) {
507 				kmem_free(strval, za.za_num_integers);
508 				break;
509 			}
510 			spa_prop_add_list(*nvp, prop, strval, 0, src);
511 			kmem_free(strval, za.za_num_integers);
512 			break;
513 
514 		default:
515 			break;
516 		}
517 	}
518 	zap_cursor_fini(&zc);
519 out:
520 	mutex_exit(&spa->spa_props_lock);
521 	dsl_pool_config_exit(dp, FTAG);
522 	if (err && err != ENOENT) {
523 		nvlist_free(*nvp);
524 		*nvp = NULL;
525 		return (err);
526 	}
527 
528 	return (0);
529 }
530 
531 /*
532  * Validate the given pool properties nvlist and modify the list
533  * for the property values to be set.
534  */
535 static int
536 spa_prop_validate(spa_t *spa, nvlist_t *props)
537 {
538 	nvpair_t *elem;
539 	int error = 0, reset_bootfs = 0;
540 	uint64_t objnum = 0;
541 	boolean_t has_feature = B_FALSE;
542 
543 	elem = NULL;
544 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
545 		uint64_t intval;
546 		char *strval, *slash, *check, *fname;
547 		const char *propname = nvpair_name(elem);
548 		zpool_prop_t prop = zpool_name_to_prop(propname);
549 
550 		switch (prop) {
551 		case ZPOOL_PROP_INVAL:
552 			if (!zpool_prop_feature(propname)) {
553 				error = SET_ERROR(EINVAL);
554 				break;
555 			}
556 
557 			/*
558 			 * Sanitize the input.
559 			 */
560 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
561 				error = SET_ERROR(EINVAL);
562 				break;
563 			}
564 
565 			if (nvpair_value_uint64(elem, &intval) != 0) {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			if (intval != 0) {
571 				error = SET_ERROR(EINVAL);
572 				break;
573 			}
574 
575 			fname = strchr(propname, '@') + 1;
576 			if (zfeature_lookup_name(fname, NULL) != 0) {
577 				error = SET_ERROR(EINVAL);
578 				break;
579 			}
580 
581 			has_feature = B_TRUE;
582 			break;
583 
584 		case ZPOOL_PROP_VERSION:
585 			error = nvpair_value_uint64(elem, &intval);
586 			if (!error &&
587 			    (intval < spa_version(spa) ||
588 			    intval > SPA_VERSION_BEFORE_FEATURES ||
589 			    has_feature))
590 				error = SET_ERROR(EINVAL);
591 			break;
592 
593 		case ZPOOL_PROP_DELEGATION:
594 		case ZPOOL_PROP_AUTOREPLACE:
595 		case ZPOOL_PROP_LISTSNAPS:
596 		case ZPOOL_PROP_AUTOEXPAND:
597 		case ZPOOL_PROP_AUTOTRIM:
598 			error = nvpair_value_uint64(elem, &intval);
599 			if (!error && intval > 1)
600 				error = SET_ERROR(EINVAL);
601 			break;
602 
603 		case ZPOOL_PROP_MULTIHOST:
604 			error = nvpair_value_uint64(elem, &intval);
605 			if (!error && intval > 1)
606 				error = SET_ERROR(EINVAL);
607 
608 			if (!error) {
609 				uint32_t hostid = zone_get_hostid(NULL);
610 				if (hostid)
611 					spa->spa_hostid = hostid;
612 				else
613 					error = SET_ERROR(ENOTSUP);
614 			}
615 
616 			break;
617 
618 		case ZPOOL_PROP_BOOTFS:
619 			/*
620 			 * If the pool version is less than SPA_VERSION_BOOTFS,
621 			 * or the pool is still being created (version == 0),
622 			 * the bootfs property cannot be set.
623 			 */
624 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
625 				error = SET_ERROR(ENOTSUP);
626 				break;
627 			}
628 
629 			/*
630 			 * Make sure the vdev config is bootable
631 			 */
632 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
633 				error = SET_ERROR(ENOTSUP);
634 				break;
635 			}
636 
637 			reset_bootfs = 1;
638 
639 			error = nvpair_value_string(elem, &strval);
640 
641 			if (!error) {
642 				objset_t *os;
643 
644 				if (strval == NULL || strval[0] == '\0') {
645 					objnum = zpool_prop_default_numeric(
646 					    ZPOOL_PROP_BOOTFS);
647 					break;
648 				}
649 
650 				error = dmu_objset_hold(strval, FTAG, &os);
651 				if (error != 0)
652 					break;
653 
654 				/* Must be ZPL. */
655 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
656 					error = SET_ERROR(ENOTSUP);
657 				} else {
658 					objnum = dmu_objset_id(os);
659 				}
660 				dmu_objset_rele(os, FTAG);
661 			}
662 			break;
663 
664 		case ZPOOL_PROP_FAILUREMODE:
665 			error = nvpair_value_uint64(elem, &intval);
666 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
667 				error = SET_ERROR(EINVAL);
668 
669 			/*
670 			 * This is a special case which only occurs when
671 			 * the pool has completely failed. This allows
672 			 * the user to change the in-core failmode property
673 			 * without syncing it out to disk (I/Os might
674 			 * currently be blocked). We do this by returning
675 			 * EIO to the caller (spa_prop_set) to trick it
676 			 * into thinking we encountered a property validation
677 			 * error.
678 			 */
679 			if (!error && spa_suspended(spa)) {
680 				spa->spa_failmode = intval;
681 				error = SET_ERROR(EIO);
682 			}
683 			break;
684 
685 		case ZPOOL_PROP_CACHEFILE:
686 			if ((error = nvpair_value_string(elem, &strval)) != 0)
687 				break;
688 
689 			if (strval[0] == '\0')
690 				break;
691 
692 			if (strcmp(strval, "none") == 0)
693 				break;
694 
695 			if (strval[0] != '/') {
696 				error = SET_ERROR(EINVAL);
697 				break;
698 			}
699 
700 			slash = strrchr(strval, '/');
701 			ASSERT(slash != NULL);
702 
703 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
704 			    strcmp(slash, "/..") == 0)
705 				error = SET_ERROR(EINVAL);
706 			break;
707 
708 		case ZPOOL_PROP_COMMENT:
709 			if ((error = nvpair_value_string(elem, &strval)) != 0)
710 				break;
711 			for (check = strval; *check != '\0'; check++) {
712 				if (!isprint(*check)) {
713 					error = SET_ERROR(EINVAL);
714 					break;
715 				}
716 			}
717 			if (strlen(strval) > ZPROP_MAX_COMMENT)
718 				error = SET_ERROR(E2BIG);
719 			break;
720 
721 		default:
722 			break;
723 		}
724 
725 		if (error)
726 			break;
727 	}
728 
729 	(void) nvlist_remove_all(props,
730 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
731 
732 	if (!error && reset_bootfs) {
733 		error = nvlist_remove(props,
734 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
735 
736 		if (!error) {
737 			error = nvlist_add_uint64(props,
738 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
739 		}
740 	}
741 
742 	return (error);
743 }
744 
745 void
746 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
747 {
748 	char *cachefile;
749 	spa_config_dirent_t *dp;
750 
751 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
752 	    &cachefile) != 0)
753 		return;
754 
755 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
756 	    KM_SLEEP);
757 
758 	if (cachefile[0] == '\0')
759 		dp->scd_path = spa_strdup(spa_config_path);
760 	else if (strcmp(cachefile, "none") == 0)
761 		dp->scd_path = NULL;
762 	else
763 		dp->scd_path = spa_strdup(cachefile);
764 
765 	list_insert_head(&spa->spa_config_list, dp);
766 	if (need_sync)
767 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
768 }
769 
770 int
771 spa_prop_set(spa_t *spa, nvlist_t *nvp)
772 {
773 	int error;
774 	nvpair_t *elem = NULL;
775 	boolean_t need_sync = B_FALSE;
776 
777 	if ((error = spa_prop_validate(spa, nvp)) != 0)
778 		return (error);
779 
780 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
781 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
782 
783 		if (prop == ZPOOL_PROP_CACHEFILE ||
784 		    prop == ZPOOL_PROP_ALTROOT ||
785 		    prop == ZPOOL_PROP_READONLY)
786 			continue;
787 
788 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
789 			uint64_t ver = 0;
790 
791 			if (prop == ZPOOL_PROP_VERSION) {
792 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
793 			} else {
794 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
795 				ver = SPA_VERSION_FEATURES;
796 				need_sync = B_TRUE;
797 			}
798 
799 			/* Save time if the version is already set. */
800 			if (ver == spa_version(spa))
801 				continue;
802 
803 			/*
804 			 * In addition to the pool directory object, we might
805 			 * create the pool properties object, the features for
806 			 * read object, the features for write object, or the
807 			 * feature descriptions object.
808 			 */
809 			error = dsl_sync_task(spa->spa_name, NULL,
810 			    spa_sync_version, &ver,
811 			    6, ZFS_SPACE_CHECK_RESERVED);
812 			if (error)
813 				return (error);
814 			continue;
815 		}
816 
817 		need_sync = B_TRUE;
818 		break;
819 	}
820 
821 	if (need_sync) {
822 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
823 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * If the bootfs property value is dsobj, clear it.
831  */
832 void
833 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
834 {
835 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
836 		VERIFY(zap_remove(spa->spa_meta_objset,
837 		    spa->spa_pool_props_object,
838 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
839 		spa->spa_bootfs = 0;
840 	}
841 }
842 
843 static int
844 spa_change_guid_check(void *arg, dmu_tx_t *tx)
845 {
846 	uint64_t *newguid __maybe_unused = arg;
847 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848 	vdev_t *rvd = spa->spa_root_vdev;
849 	uint64_t vdev_state;
850 
851 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
852 		int error = (spa_has_checkpoint(spa)) ?
853 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
854 		return (SET_ERROR(error));
855 	}
856 
857 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
858 	vdev_state = rvd->vdev_state;
859 	spa_config_exit(spa, SCL_STATE, FTAG);
860 
861 	if (vdev_state != VDEV_STATE_HEALTHY)
862 		return (SET_ERROR(ENXIO));
863 
864 	ASSERT3U(spa_guid(spa), !=, *newguid);
865 
866 	return (0);
867 }
868 
869 static void
870 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
871 {
872 	uint64_t *newguid = arg;
873 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
874 	uint64_t oldguid;
875 	vdev_t *rvd = spa->spa_root_vdev;
876 
877 	oldguid = spa_guid(spa);
878 
879 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
880 	rvd->vdev_guid = *newguid;
881 	rvd->vdev_guid_sum += (*newguid - oldguid);
882 	vdev_config_dirty(rvd);
883 	spa_config_exit(spa, SCL_STATE, FTAG);
884 
885 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
886 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
887 }
888 
889 /*
890  * Change the GUID for the pool.  This is done so that we can later
891  * re-import a pool built from a clone of our own vdevs.  We will modify
892  * the root vdev's guid, our own pool guid, and then mark all of our
893  * vdevs dirty.  Note that we must make sure that all our vdevs are
894  * online when we do this, or else any vdevs that weren't present
895  * would be orphaned from our pool.  We are also going to issue a
896  * sysevent to update any watchers.
897  */
898 int
899 spa_change_guid(spa_t *spa)
900 {
901 	int error;
902 	uint64_t guid;
903 
904 	mutex_enter(&spa->spa_vdev_top_lock);
905 	mutex_enter(&spa_namespace_lock);
906 	guid = spa_generate_guid(NULL);
907 
908 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
909 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
910 
911 	if (error == 0) {
912 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
913 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
914 	}
915 
916 	mutex_exit(&spa_namespace_lock);
917 	mutex_exit(&spa->spa_vdev_top_lock);
918 
919 	return (error);
920 }
921 
922 /*
923  * ==========================================================================
924  * SPA state manipulation (open/create/destroy/import/export)
925  * ==========================================================================
926  */
927 
928 static int
929 spa_error_entry_compare(const void *a, const void *b)
930 {
931 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
932 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
933 	int ret;
934 
935 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
936 	    sizeof (zbookmark_phys_t));
937 
938 	return (TREE_ISIGN(ret));
939 }
940 
941 /*
942  * Utility function which retrieves copies of the current logs and
943  * re-initializes them in the process.
944  */
945 void
946 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
947 {
948 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
949 
950 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
951 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
952 
953 	avl_create(&spa->spa_errlist_scrub,
954 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
955 	    offsetof(spa_error_entry_t, se_avl));
956 	avl_create(&spa->spa_errlist_last,
957 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
958 	    offsetof(spa_error_entry_t, se_avl));
959 }
960 
961 static void
962 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
963 {
964 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
965 	enum zti_modes mode = ztip->zti_mode;
966 	uint_t value = ztip->zti_value;
967 	uint_t count = ztip->zti_count;
968 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
969 	uint_t cpus, flags = TASKQ_DYNAMIC;
970 	boolean_t batch = B_FALSE;
971 
972 	switch (mode) {
973 	case ZTI_MODE_FIXED:
974 		ASSERT3U(value, >, 0);
975 		break;
976 
977 	case ZTI_MODE_BATCH:
978 		batch = B_TRUE;
979 		flags |= TASKQ_THREADS_CPU_PCT;
980 		value = MIN(zio_taskq_batch_pct, 100);
981 		break;
982 
983 	case ZTI_MODE_SCALE:
984 		flags |= TASKQ_THREADS_CPU_PCT;
985 		/*
986 		 * We want more taskqs to reduce lock contention, but we want
987 		 * less for better request ordering and CPU utilization.
988 		 */
989 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
990 		if (zio_taskq_batch_tpq > 0) {
991 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
992 			    zio_taskq_batch_tpq);
993 		} else {
994 			/*
995 			 * Prefer 6 threads per taskq, but no more taskqs
996 			 * than threads in them on large systems. For 80%:
997 			 *
998 			 *                 taskq   taskq   total
999 			 * cpus    taskqs  percent threads threads
1000 			 * ------- ------- ------- ------- -------
1001 			 * 1       1       80%     1       1
1002 			 * 2       1       80%     1       1
1003 			 * 4       1       80%     3       3
1004 			 * 8       2       40%     3       6
1005 			 * 16      3       27%     4       12
1006 			 * 32      5       16%     5       25
1007 			 * 64      7       11%     7       49
1008 			 * 128     10      8%      10      100
1009 			 * 256     14      6%      15      210
1010 			 */
1011 			count = 1 + cpus / 6;
1012 			while (count * count > cpus)
1013 				count--;
1014 		}
1015 		/* Limit each taskq within 100% to not trigger assertion. */
1016 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1017 		value = (zio_taskq_batch_pct + count / 2) / count;
1018 		break;
1019 
1020 	case ZTI_MODE_NULL:
1021 		tqs->stqs_count = 0;
1022 		tqs->stqs_taskq = NULL;
1023 		return;
1024 
1025 	default:
1026 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1027 		    "spa_activate()",
1028 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1029 		break;
1030 	}
1031 
1032 	ASSERT3U(count, >, 0);
1033 	tqs->stqs_count = count;
1034 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1035 
1036 	for (uint_t i = 0; i < count; i++) {
1037 		taskq_t *tq;
1038 		char name[32];
1039 
1040 		if (count > 1)
1041 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1042 			    zio_type_name[t], zio_taskq_types[q], i);
1043 		else
1044 			(void) snprintf(name, sizeof (name), "%s_%s",
1045 			    zio_type_name[t], zio_taskq_types[q]);
1046 
1047 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1048 			if (batch)
1049 				flags |= TASKQ_DC_BATCH;
1050 
1051 			(void) zio_taskq_basedc;
1052 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1053 			    spa->spa_proc, zio_taskq_basedc, flags);
1054 		} else {
1055 			pri_t pri = maxclsyspri;
1056 			/*
1057 			 * The write issue taskq can be extremely CPU
1058 			 * intensive.  Run it at slightly less important
1059 			 * priority than the other taskqs.
1060 			 *
1061 			 * Under Linux and FreeBSD this means incrementing
1062 			 * the priority value as opposed to platforms like
1063 			 * illumos where it should be decremented.
1064 			 *
1065 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1066 			 * are equal then a difference between them is
1067 			 * insignificant.
1068 			 */
1069 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1070 #if defined(__linux__)
1071 				pri++;
1072 #elif defined(__FreeBSD__)
1073 				pri += 4;
1074 #else
1075 #error "unknown OS"
1076 #endif
1077 			}
1078 			tq = taskq_create_proc(name, value, pri, 50,
1079 			    INT_MAX, spa->spa_proc, flags);
1080 		}
1081 
1082 		tqs->stqs_taskq[i] = tq;
1083 	}
1084 }
1085 
1086 static void
1087 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1088 {
1089 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1090 
1091 	if (tqs->stqs_taskq == NULL) {
1092 		ASSERT3U(tqs->stqs_count, ==, 0);
1093 		return;
1094 	}
1095 
1096 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1097 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1098 		taskq_destroy(tqs->stqs_taskq[i]);
1099 	}
1100 
1101 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1102 	tqs->stqs_taskq = NULL;
1103 }
1104 
1105 /*
1106  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1107  * Note that a type may have multiple discrete taskqs to avoid lock contention
1108  * on the taskq itself. In that case we choose which taskq at random by using
1109  * the low bits of gethrtime().
1110  */
1111 void
1112 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1113     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1114 {
1115 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1116 	taskq_t *tq;
1117 
1118 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1119 	ASSERT3U(tqs->stqs_count, !=, 0);
1120 
1121 	if (tqs->stqs_count == 1) {
1122 		tq = tqs->stqs_taskq[0];
1123 	} else {
1124 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1125 	}
1126 
1127 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1128 }
1129 
1130 /*
1131  * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1132  */
1133 void
1134 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1135     task_func_t *func, void *arg, uint_t flags)
1136 {
1137 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1138 	taskq_t *tq;
1139 	taskqid_t id;
1140 
1141 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1142 	ASSERT3U(tqs->stqs_count, !=, 0);
1143 
1144 	if (tqs->stqs_count == 1) {
1145 		tq = tqs->stqs_taskq[0];
1146 	} else {
1147 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1148 	}
1149 
1150 	id = taskq_dispatch(tq, func, arg, flags);
1151 	if (id)
1152 		taskq_wait_id(tq, id);
1153 }
1154 
1155 static void
1156 spa_create_zio_taskqs(spa_t *spa)
1157 {
1158 	for (int t = 0; t < ZIO_TYPES; t++) {
1159 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1160 			spa_taskqs_init(spa, t, q);
1161 		}
1162 	}
1163 }
1164 
1165 /*
1166  * Disabled until spa_thread() can be adapted for Linux.
1167  */
1168 #undef HAVE_SPA_THREAD
1169 
1170 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1171 static void
1172 spa_thread(void *arg)
1173 {
1174 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1175 	callb_cpr_t cprinfo;
1176 
1177 	spa_t *spa = arg;
1178 	user_t *pu = PTOU(curproc);
1179 
1180 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1181 	    spa->spa_name);
1182 
1183 	ASSERT(curproc != &p0);
1184 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1185 	    "zpool-%s", spa->spa_name);
1186 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1187 
1188 	/* bind this thread to the requested psrset */
1189 	if (zio_taskq_psrset_bind != PS_NONE) {
1190 		pool_lock();
1191 		mutex_enter(&cpu_lock);
1192 		mutex_enter(&pidlock);
1193 		mutex_enter(&curproc->p_lock);
1194 
1195 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1196 		    0, NULL, NULL) == 0)  {
1197 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1198 		} else {
1199 			cmn_err(CE_WARN,
1200 			    "Couldn't bind process for zfs pool \"%s\" to "
1201 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1202 		}
1203 
1204 		mutex_exit(&curproc->p_lock);
1205 		mutex_exit(&pidlock);
1206 		mutex_exit(&cpu_lock);
1207 		pool_unlock();
1208 	}
1209 
1210 	if (zio_taskq_sysdc) {
1211 		sysdc_thread_enter(curthread, 100, 0);
1212 	}
1213 
1214 	spa->spa_proc = curproc;
1215 	spa->spa_did = curthread->t_did;
1216 
1217 	spa_create_zio_taskqs(spa);
1218 
1219 	mutex_enter(&spa->spa_proc_lock);
1220 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1221 
1222 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1223 	cv_broadcast(&spa->spa_proc_cv);
1224 
1225 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1226 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1227 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1228 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1229 
1230 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1231 	spa->spa_proc_state = SPA_PROC_GONE;
1232 	spa->spa_proc = &p0;
1233 	cv_broadcast(&spa->spa_proc_cv);
1234 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1235 
1236 	mutex_enter(&curproc->p_lock);
1237 	lwp_exit();
1238 }
1239 #endif
1240 
1241 /*
1242  * Activate an uninitialized pool.
1243  */
1244 static void
1245 spa_activate(spa_t *spa, spa_mode_t mode)
1246 {
1247 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1248 
1249 	spa->spa_state = POOL_STATE_ACTIVE;
1250 	spa->spa_mode = mode;
1251 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1252 
1253 	spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1254 	spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1255 	spa->spa_embedded_log_class =
1256 	    metaslab_class_create(spa, &zfs_metaslab_ops);
1257 	spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1258 	spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1259 
1260 	/* Try to create a covering process */
1261 	mutex_enter(&spa->spa_proc_lock);
1262 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1263 	ASSERT(spa->spa_proc == &p0);
1264 	spa->spa_did = 0;
1265 
1266 	(void) spa_create_process;
1267 #ifdef HAVE_SPA_THREAD
1268 	/* Only create a process if we're going to be around a while. */
1269 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1270 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1271 		    NULL, 0) == 0) {
1272 			spa->spa_proc_state = SPA_PROC_CREATED;
1273 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1274 				cv_wait(&spa->spa_proc_cv,
1275 				    &spa->spa_proc_lock);
1276 			}
1277 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1278 			ASSERT(spa->spa_proc != &p0);
1279 			ASSERT(spa->spa_did != 0);
1280 		} else {
1281 #ifdef _KERNEL
1282 			cmn_err(CE_WARN,
1283 			    "Couldn't create process for zfs pool \"%s\"\n",
1284 			    spa->spa_name);
1285 #endif
1286 		}
1287 	}
1288 #endif /* HAVE_SPA_THREAD */
1289 	mutex_exit(&spa->spa_proc_lock);
1290 
1291 	/* If we didn't create a process, we need to create our taskqs. */
1292 	if (spa->spa_proc == &p0) {
1293 		spa_create_zio_taskqs(spa);
1294 	}
1295 
1296 	for (size_t i = 0; i < TXG_SIZE; i++) {
1297 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1298 		    ZIO_FLAG_CANFAIL);
1299 	}
1300 
1301 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1302 	    offsetof(vdev_t, vdev_config_dirty_node));
1303 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1304 	    offsetof(objset_t, os_evicting_node));
1305 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1306 	    offsetof(vdev_t, vdev_state_dirty_node));
1307 
1308 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1309 	    offsetof(struct vdev, vdev_txg_node));
1310 
1311 	avl_create(&spa->spa_errlist_scrub,
1312 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1313 	    offsetof(spa_error_entry_t, se_avl));
1314 	avl_create(&spa->spa_errlist_last,
1315 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1316 	    offsetof(spa_error_entry_t, se_avl));
1317 
1318 	spa_activate_os(spa);
1319 
1320 	spa_keystore_init(&spa->spa_keystore);
1321 
1322 	/*
1323 	 * This taskq is used to perform zvol-minor-related tasks
1324 	 * asynchronously. This has several advantages, including easy
1325 	 * resolution of various deadlocks.
1326 	 *
1327 	 * The taskq must be single threaded to ensure tasks are always
1328 	 * processed in the order in which they were dispatched.
1329 	 *
1330 	 * A taskq per pool allows one to keep the pools independent.
1331 	 * This way if one pool is suspended, it will not impact another.
1332 	 *
1333 	 * The preferred location to dispatch a zvol minor task is a sync
1334 	 * task. In this context, there is easy access to the spa_t and minimal
1335 	 * error handling is required because the sync task must succeed.
1336 	 */
1337 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1338 	    1, INT_MAX, 0);
1339 
1340 	/*
1341 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1342 	 * pool traverse code from monopolizing the global (and limited)
1343 	 * system_taskq by inappropriately scheduling long running tasks on it.
1344 	 */
1345 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1346 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1347 
1348 	/*
1349 	 * The taskq to upgrade datasets in this pool. Currently used by
1350 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1351 	 */
1352 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1353 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1354 }
1355 
1356 /*
1357  * Opposite of spa_activate().
1358  */
1359 static void
1360 spa_deactivate(spa_t *spa)
1361 {
1362 	ASSERT(spa->spa_sync_on == B_FALSE);
1363 	ASSERT(spa->spa_dsl_pool == NULL);
1364 	ASSERT(spa->spa_root_vdev == NULL);
1365 	ASSERT(spa->spa_async_zio_root == NULL);
1366 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1367 
1368 	spa_evicting_os_wait(spa);
1369 
1370 	if (spa->spa_zvol_taskq) {
1371 		taskq_destroy(spa->spa_zvol_taskq);
1372 		spa->spa_zvol_taskq = NULL;
1373 	}
1374 
1375 	if (spa->spa_prefetch_taskq) {
1376 		taskq_destroy(spa->spa_prefetch_taskq);
1377 		spa->spa_prefetch_taskq = NULL;
1378 	}
1379 
1380 	if (spa->spa_upgrade_taskq) {
1381 		taskq_destroy(spa->spa_upgrade_taskq);
1382 		spa->spa_upgrade_taskq = NULL;
1383 	}
1384 
1385 	txg_list_destroy(&spa->spa_vdev_txg_list);
1386 
1387 	list_destroy(&spa->spa_config_dirty_list);
1388 	list_destroy(&spa->spa_evicting_os_list);
1389 	list_destroy(&spa->spa_state_dirty_list);
1390 
1391 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1392 
1393 	for (int t = 0; t < ZIO_TYPES; t++) {
1394 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1395 			spa_taskqs_fini(spa, t, q);
1396 		}
1397 	}
1398 
1399 	for (size_t i = 0; i < TXG_SIZE; i++) {
1400 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1401 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1402 		spa->spa_txg_zio[i] = NULL;
1403 	}
1404 
1405 	metaslab_class_destroy(spa->spa_normal_class);
1406 	spa->spa_normal_class = NULL;
1407 
1408 	metaslab_class_destroy(spa->spa_log_class);
1409 	spa->spa_log_class = NULL;
1410 
1411 	metaslab_class_destroy(spa->spa_embedded_log_class);
1412 	spa->spa_embedded_log_class = NULL;
1413 
1414 	metaslab_class_destroy(spa->spa_special_class);
1415 	spa->spa_special_class = NULL;
1416 
1417 	metaslab_class_destroy(spa->spa_dedup_class);
1418 	spa->spa_dedup_class = NULL;
1419 
1420 	/*
1421 	 * If this was part of an import or the open otherwise failed, we may
1422 	 * still have errors left in the queues.  Empty them just in case.
1423 	 */
1424 	spa_errlog_drain(spa);
1425 	avl_destroy(&spa->spa_errlist_scrub);
1426 	avl_destroy(&spa->spa_errlist_last);
1427 
1428 	spa_keystore_fini(&spa->spa_keystore);
1429 
1430 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1431 
1432 	mutex_enter(&spa->spa_proc_lock);
1433 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1434 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1435 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1436 		cv_broadcast(&spa->spa_proc_cv);
1437 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1438 			ASSERT(spa->spa_proc != &p0);
1439 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1440 		}
1441 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1442 		spa->spa_proc_state = SPA_PROC_NONE;
1443 	}
1444 	ASSERT(spa->spa_proc == &p0);
1445 	mutex_exit(&spa->spa_proc_lock);
1446 
1447 	/*
1448 	 * We want to make sure spa_thread() has actually exited the ZFS
1449 	 * module, so that the module can't be unloaded out from underneath
1450 	 * it.
1451 	 */
1452 	if (spa->spa_did != 0) {
1453 		thread_join(spa->spa_did);
1454 		spa->spa_did = 0;
1455 	}
1456 
1457 	spa_deactivate_os(spa);
1458 
1459 }
1460 
1461 /*
1462  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1463  * will create all the necessary vdevs in the appropriate layout, with each vdev
1464  * in the CLOSED state.  This will prep the pool before open/creation/import.
1465  * All vdev validation is done by the vdev_alloc() routine.
1466  */
1467 int
1468 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1469     uint_t id, int atype)
1470 {
1471 	nvlist_t **child;
1472 	uint_t children;
1473 	int error;
1474 
1475 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1476 		return (error);
1477 
1478 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1479 		return (0);
1480 
1481 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1482 	    &child, &children);
1483 
1484 	if (error == ENOENT)
1485 		return (0);
1486 
1487 	if (error) {
1488 		vdev_free(*vdp);
1489 		*vdp = NULL;
1490 		return (SET_ERROR(EINVAL));
1491 	}
1492 
1493 	for (int c = 0; c < children; c++) {
1494 		vdev_t *vd;
1495 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1496 		    atype)) != 0) {
1497 			vdev_free(*vdp);
1498 			*vdp = NULL;
1499 			return (error);
1500 		}
1501 	}
1502 
1503 	ASSERT(*vdp != NULL);
1504 
1505 	return (0);
1506 }
1507 
1508 static boolean_t
1509 spa_should_flush_logs_on_unload(spa_t *spa)
1510 {
1511 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1512 		return (B_FALSE);
1513 
1514 	if (!spa_writeable(spa))
1515 		return (B_FALSE);
1516 
1517 	if (!spa->spa_sync_on)
1518 		return (B_FALSE);
1519 
1520 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1521 		return (B_FALSE);
1522 
1523 	if (zfs_keep_log_spacemaps_at_export)
1524 		return (B_FALSE);
1525 
1526 	return (B_TRUE);
1527 }
1528 
1529 /*
1530  * Opens a transaction that will set the flag that will instruct
1531  * spa_sync to attempt to flush all the metaslabs for that txg.
1532  */
1533 static void
1534 spa_unload_log_sm_flush_all(spa_t *spa)
1535 {
1536 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1537 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1538 
1539 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1540 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1541 
1542 	dmu_tx_commit(tx);
1543 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1544 }
1545 
1546 static void
1547 spa_unload_log_sm_metadata(spa_t *spa)
1548 {
1549 	void *cookie = NULL;
1550 	spa_log_sm_t *sls;
1551 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1552 	    &cookie)) != NULL) {
1553 		VERIFY0(sls->sls_mscount);
1554 		kmem_free(sls, sizeof (spa_log_sm_t));
1555 	}
1556 
1557 	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1558 	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1559 		VERIFY0(e->lse_mscount);
1560 		list_remove(&spa->spa_log_summary, e);
1561 		kmem_free(e, sizeof (log_summary_entry_t));
1562 	}
1563 
1564 	spa->spa_unflushed_stats.sus_nblocks = 0;
1565 	spa->spa_unflushed_stats.sus_memused = 0;
1566 	spa->spa_unflushed_stats.sus_blocklimit = 0;
1567 }
1568 
1569 static void
1570 spa_destroy_aux_threads(spa_t *spa)
1571 {
1572 	if (spa->spa_condense_zthr != NULL) {
1573 		zthr_destroy(spa->spa_condense_zthr);
1574 		spa->spa_condense_zthr = NULL;
1575 	}
1576 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1577 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1578 		spa->spa_checkpoint_discard_zthr = NULL;
1579 	}
1580 	if (spa->spa_livelist_delete_zthr != NULL) {
1581 		zthr_destroy(spa->spa_livelist_delete_zthr);
1582 		spa->spa_livelist_delete_zthr = NULL;
1583 	}
1584 	if (spa->spa_livelist_condense_zthr != NULL) {
1585 		zthr_destroy(spa->spa_livelist_condense_zthr);
1586 		spa->spa_livelist_condense_zthr = NULL;
1587 	}
1588 }
1589 
1590 /*
1591  * Opposite of spa_load().
1592  */
1593 static void
1594 spa_unload(spa_t *spa)
1595 {
1596 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1597 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1598 
1599 	spa_import_progress_remove(spa_guid(spa));
1600 	spa_load_note(spa, "UNLOADING");
1601 
1602 	spa_wake_waiters(spa);
1603 
1604 	/*
1605 	 * If we have set the spa_final_txg, we have already performed the
1606 	 * tasks below in spa_export_common(). We should not redo it here since
1607 	 * we delay the final TXGs beyond what spa_final_txg is set at.
1608 	 */
1609 	if (spa->spa_final_txg == UINT64_MAX) {
1610 		/*
1611 		 * If the log space map feature is enabled and the pool is
1612 		 * getting exported (but not destroyed), we want to spend some
1613 		 * time flushing as many metaslabs as we can in an attempt to
1614 		 * destroy log space maps and save import time.
1615 		 */
1616 		if (spa_should_flush_logs_on_unload(spa))
1617 			spa_unload_log_sm_flush_all(spa);
1618 
1619 		/*
1620 		 * Stop async tasks.
1621 		 */
1622 		spa_async_suspend(spa);
1623 
1624 		if (spa->spa_root_vdev) {
1625 			vdev_t *root_vdev = spa->spa_root_vdev;
1626 			vdev_initialize_stop_all(root_vdev,
1627 			    VDEV_INITIALIZE_ACTIVE);
1628 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1629 			vdev_autotrim_stop_all(spa);
1630 			vdev_rebuild_stop_all(spa);
1631 		}
1632 	}
1633 
1634 	/*
1635 	 * Stop syncing.
1636 	 */
1637 	if (spa->spa_sync_on) {
1638 		txg_sync_stop(spa->spa_dsl_pool);
1639 		spa->spa_sync_on = B_FALSE;
1640 	}
1641 
1642 	/*
1643 	 * This ensures that there is no async metaslab prefetching
1644 	 * while we attempt to unload the spa.
1645 	 */
1646 	if (spa->spa_root_vdev != NULL) {
1647 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1648 			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1649 			if (vc->vdev_mg != NULL)
1650 				taskq_wait(vc->vdev_mg->mg_taskq);
1651 		}
1652 	}
1653 
1654 	if (spa->spa_mmp.mmp_thread)
1655 		mmp_thread_stop(spa);
1656 
1657 	/*
1658 	 * Wait for any outstanding async I/O to complete.
1659 	 */
1660 	if (spa->spa_async_zio_root != NULL) {
1661 		for (int i = 0; i < max_ncpus; i++)
1662 			(void) zio_wait(spa->spa_async_zio_root[i]);
1663 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1664 		spa->spa_async_zio_root = NULL;
1665 	}
1666 
1667 	if (spa->spa_vdev_removal != NULL) {
1668 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1669 		spa->spa_vdev_removal = NULL;
1670 	}
1671 
1672 	spa_destroy_aux_threads(spa);
1673 
1674 	spa_condense_fini(spa);
1675 
1676 	bpobj_close(&spa->spa_deferred_bpobj);
1677 
1678 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1679 
1680 	/*
1681 	 * Close all vdevs.
1682 	 */
1683 	if (spa->spa_root_vdev)
1684 		vdev_free(spa->spa_root_vdev);
1685 	ASSERT(spa->spa_root_vdev == NULL);
1686 
1687 	/*
1688 	 * Close the dsl pool.
1689 	 */
1690 	if (spa->spa_dsl_pool) {
1691 		dsl_pool_close(spa->spa_dsl_pool);
1692 		spa->spa_dsl_pool = NULL;
1693 		spa->spa_meta_objset = NULL;
1694 	}
1695 
1696 	ddt_unload(spa);
1697 	spa_unload_log_sm_metadata(spa);
1698 
1699 	/*
1700 	 * Drop and purge level 2 cache
1701 	 */
1702 	spa_l2cache_drop(spa);
1703 
1704 	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1705 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1706 	if (spa->spa_spares.sav_vdevs) {
1707 		kmem_free(spa->spa_spares.sav_vdevs,
1708 		    spa->spa_spares.sav_count * sizeof (void *));
1709 		spa->spa_spares.sav_vdevs = NULL;
1710 	}
1711 	if (spa->spa_spares.sav_config) {
1712 		nvlist_free(spa->spa_spares.sav_config);
1713 		spa->spa_spares.sav_config = NULL;
1714 	}
1715 	spa->spa_spares.sav_count = 0;
1716 
1717 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1718 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1719 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1720 	}
1721 	if (spa->spa_l2cache.sav_vdevs) {
1722 		kmem_free(spa->spa_l2cache.sav_vdevs,
1723 		    spa->spa_l2cache.sav_count * sizeof (void *));
1724 		spa->spa_l2cache.sav_vdevs = NULL;
1725 	}
1726 	if (spa->spa_l2cache.sav_config) {
1727 		nvlist_free(spa->spa_l2cache.sav_config);
1728 		spa->spa_l2cache.sav_config = NULL;
1729 	}
1730 	spa->spa_l2cache.sav_count = 0;
1731 
1732 	spa->spa_async_suspended = 0;
1733 
1734 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1735 
1736 	if (spa->spa_comment != NULL) {
1737 		spa_strfree(spa->spa_comment);
1738 		spa->spa_comment = NULL;
1739 	}
1740 	if (spa->spa_compatibility != NULL) {
1741 		spa_strfree(spa->spa_compatibility);
1742 		spa->spa_compatibility = NULL;
1743 	}
1744 
1745 	spa_config_exit(spa, SCL_ALL, spa);
1746 }
1747 
1748 /*
1749  * Load (or re-load) the current list of vdevs describing the active spares for
1750  * this pool.  When this is called, we have some form of basic information in
1751  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1752  * then re-generate a more complete list including status information.
1753  */
1754 void
1755 spa_load_spares(spa_t *spa)
1756 {
1757 	nvlist_t **spares;
1758 	uint_t nspares;
1759 	int i;
1760 	vdev_t *vd, *tvd;
1761 
1762 #ifndef _KERNEL
1763 	/*
1764 	 * zdb opens both the current state of the pool and the
1765 	 * checkpointed state (if present), with a different spa_t.
1766 	 *
1767 	 * As spare vdevs are shared among open pools, we skip loading
1768 	 * them when we load the checkpointed state of the pool.
1769 	 */
1770 	if (!spa_writeable(spa))
1771 		return;
1772 #endif
1773 
1774 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1775 
1776 	/*
1777 	 * First, close and free any existing spare vdevs.
1778 	 */
1779 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1780 		vd = spa->spa_spares.sav_vdevs[i];
1781 
1782 		/* Undo the call to spa_activate() below */
1783 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1784 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1785 			spa_spare_remove(tvd);
1786 		vdev_close(vd);
1787 		vdev_free(vd);
1788 	}
1789 
1790 	if (spa->spa_spares.sav_vdevs)
1791 		kmem_free(spa->spa_spares.sav_vdevs,
1792 		    spa->spa_spares.sav_count * sizeof (void *));
1793 
1794 	if (spa->spa_spares.sav_config == NULL)
1795 		nspares = 0;
1796 	else
1797 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1798 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
1799 
1800 	spa->spa_spares.sav_count = (int)nspares;
1801 	spa->spa_spares.sav_vdevs = NULL;
1802 
1803 	if (nspares == 0)
1804 		return;
1805 
1806 	/*
1807 	 * Construct the array of vdevs, opening them to get status in the
1808 	 * process.   For each spare, there is potentially two different vdev_t
1809 	 * structures associated with it: one in the list of spares (used only
1810 	 * for basic validation purposes) and one in the active vdev
1811 	 * configuration (if it's spared in).  During this phase we open and
1812 	 * validate each vdev on the spare list.  If the vdev also exists in the
1813 	 * active configuration, then we also mark this vdev as an active spare.
1814 	 */
1815 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1816 	    KM_SLEEP);
1817 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1818 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1819 		    VDEV_ALLOC_SPARE) == 0);
1820 		ASSERT(vd != NULL);
1821 
1822 		spa->spa_spares.sav_vdevs[i] = vd;
1823 
1824 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1825 		    B_FALSE)) != NULL) {
1826 			if (!tvd->vdev_isspare)
1827 				spa_spare_add(tvd);
1828 
1829 			/*
1830 			 * We only mark the spare active if we were successfully
1831 			 * able to load the vdev.  Otherwise, importing a pool
1832 			 * with a bad active spare would result in strange
1833 			 * behavior, because multiple pool would think the spare
1834 			 * is actively in use.
1835 			 *
1836 			 * There is a vulnerability here to an equally bizarre
1837 			 * circumstance, where a dead active spare is later
1838 			 * brought back to life (onlined or otherwise).  Given
1839 			 * the rarity of this scenario, and the extra complexity
1840 			 * it adds, we ignore the possibility.
1841 			 */
1842 			if (!vdev_is_dead(tvd))
1843 				spa_spare_activate(tvd);
1844 		}
1845 
1846 		vd->vdev_top = vd;
1847 		vd->vdev_aux = &spa->spa_spares;
1848 
1849 		if (vdev_open(vd) != 0)
1850 			continue;
1851 
1852 		if (vdev_validate_aux(vd) == 0)
1853 			spa_spare_add(vd);
1854 	}
1855 
1856 	/*
1857 	 * Recompute the stashed list of spares, with status information
1858 	 * this time.
1859 	 */
1860 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1861 
1862 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1863 	    KM_SLEEP);
1864 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1865 		spares[i] = vdev_config_generate(spa,
1866 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1867 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1868 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1869 	    spa->spa_spares.sav_count);
1870 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1871 		nvlist_free(spares[i]);
1872 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1873 }
1874 
1875 /*
1876  * Load (or re-load) the current list of vdevs describing the active l2cache for
1877  * this pool.  When this is called, we have some form of basic information in
1878  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1879  * then re-generate a more complete list including status information.
1880  * Devices which are already active have their details maintained, and are
1881  * not re-opened.
1882  */
1883 void
1884 spa_load_l2cache(spa_t *spa)
1885 {
1886 	nvlist_t **l2cache = NULL;
1887 	uint_t nl2cache;
1888 	int i, j, oldnvdevs;
1889 	uint64_t guid;
1890 	vdev_t *vd, **oldvdevs, **newvdevs;
1891 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1892 
1893 #ifndef _KERNEL
1894 	/*
1895 	 * zdb opens both the current state of the pool and the
1896 	 * checkpointed state (if present), with a different spa_t.
1897 	 *
1898 	 * As L2 caches are part of the ARC which is shared among open
1899 	 * pools, we skip loading them when we load the checkpointed
1900 	 * state of the pool.
1901 	 */
1902 	if (!spa_writeable(spa))
1903 		return;
1904 #endif
1905 
1906 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1907 
1908 	oldvdevs = sav->sav_vdevs;
1909 	oldnvdevs = sav->sav_count;
1910 	sav->sav_vdevs = NULL;
1911 	sav->sav_count = 0;
1912 
1913 	if (sav->sav_config == NULL) {
1914 		nl2cache = 0;
1915 		newvdevs = NULL;
1916 		goto out;
1917 	}
1918 
1919 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1920 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1921 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1922 
1923 	/*
1924 	 * Process new nvlist of vdevs.
1925 	 */
1926 	for (i = 0; i < nl2cache; i++) {
1927 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1928 
1929 		newvdevs[i] = NULL;
1930 		for (j = 0; j < oldnvdevs; j++) {
1931 			vd = oldvdevs[j];
1932 			if (vd != NULL && guid == vd->vdev_guid) {
1933 				/*
1934 				 * Retain previous vdev for add/remove ops.
1935 				 */
1936 				newvdevs[i] = vd;
1937 				oldvdevs[j] = NULL;
1938 				break;
1939 			}
1940 		}
1941 
1942 		if (newvdevs[i] == NULL) {
1943 			/*
1944 			 * Create new vdev
1945 			 */
1946 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1947 			    VDEV_ALLOC_L2CACHE) == 0);
1948 			ASSERT(vd != NULL);
1949 			newvdevs[i] = vd;
1950 
1951 			/*
1952 			 * Commit this vdev as an l2cache device,
1953 			 * even if it fails to open.
1954 			 */
1955 			spa_l2cache_add(vd);
1956 
1957 			vd->vdev_top = vd;
1958 			vd->vdev_aux = sav;
1959 
1960 			spa_l2cache_activate(vd);
1961 
1962 			if (vdev_open(vd) != 0)
1963 				continue;
1964 
1965 			(void) vdev_validate_aux(vd);
1966 
1967 			if (!vdev_is_dead(vd))
1968 				l2arc_add_vdev(spa, vd);
1969 
1970 			/*
1971 			 * Upon cache device addition to a pool or pool
1972 			 * creation with a cache device or if the header
1973 			 * of the device is invalid we issue an async
1974 			 * TRIM command for the whole device which will
1975 			 * execute if l2arc_trim_ahead > 0.
1976 			 */
1977 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1978 		}
1979 	}
1980 
1981 	sav->sav_vdevs = newvdevs;
1982 	sav->sav_count = (int)nl2cache;
1983 
1984 	/*
1985 	 * Recompute the stashed list of l2cache devices, with status
1986 	 * information this time.
1987 	 */
1988 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
1989 
1990 	if (sav->sav_count > 0)
1991 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1992 		    KM_SLEEP);
1993 	for (i = 0; i < sav->sav_count; i++)
1994 		l2cache[i] = vdev_config_generate(spa,
1995 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1996 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1997 	    (const nvlist_t * const *)l2cache, sav->sav_count);
1998 
1999 out:
2000 	/*
2001 	 * Purge vdevs that were dropped
2002 	 */
2003 	for (i = 0; i < oldnvdevs; i++) {
2004 		uint64_t pool;
2005 
2006 		vd = oldvdevs[i];
2007 		if (vd != NULL) {
2008 			ASSERT(vd->vdev_isl2cache);
2009 
2010 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2011 			    pool != 0ULL && l2arc_vdev_present(vd))
2012 				l2arc_remove_vdev(vd);
2013 			vdev_clear_stats(vd);
2014 			vdev_free(vd);
2015 		}
2016 	}
2017 
2018 	if (oldvdevs)
2019 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2020 
2021 	for (i = 0; i < sav->sav_count; i++)
2022 		nvlist_free(l2cache[i]);
2023 	if (sav->sav_count)
2024 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2025 }
2026 
2027 static int
2028 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2029 {
2030 	dmu_buf_t *db;
2031 	char *packed = NULL;
2032 	size_t nvsize = 0;
2033 	int error;
2034 	*value = NULL;
2035 
2036 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2037 	if (error)
2038 		return (error);
2039 
2040 	nvsize = *(uint64_t *)db->db_data;
2041 	dmu_buf_rele(db, FTAG);
2042 
2043 	packed = vmem_alloc(nvsize, KM_SLEEP);
2044 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2045 	    DMU_READ_PREFETCH);
2046 	if (error == 0)
2047 		error = nvlist_unpack(packed, nvsize, value, 0);
2048 	vmem_free(packed, nvsize);
2049 
2050 	return (error);
2051 }
2052 
2053 /*
2054  * Concrete top-level vdevs that are not missing and are not logs. At every
2055  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2056  */
2057 static uint64_t
2058 spa_healthy_core_tvds(spa_t *spa)
2059 {
2060 	vdev_t *rvd = spa->spa_root_vdev;
2061 	uint64_t tvds = 0;
2062 
2063 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2064 		vdev_t *vd = rvd->vdev_child[i];
2065 		if (vd->vdev_islog)
2066 			continue;
2067 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2068 			tvds++;
2069 	}
2070 
2071 	return (tvds);
2072 }
2073 
2074 /*
2075  * Checks to see if the given vdev could not be opened, in which case we post a
2076  * sysevent to notify the autoreplace code that the device has been removed.
2077  */
2078 static void
2079 spa_check_removed(vdev_t *vd)
2080 {
2081 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2082 		spa_check_removed(vd->vdev_child[c]);
2083 
2084 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2085 	    vdev_is_concrete(vd)) {
2086 		zfs_post_autoreplace(vd->vdev_spa, vd);
2087 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2088 	}
2089 }
2090 
2091 static int
2092 spa_check_for_missing_logs(spa_t *spa)
2093 {
2094 	vdev_t *rvd = spa->spa_root_vdev;
2095 
2096 	/*
2097 	 * If we're doing a normal import, then build up any additional
2098 	 * diagnostic information about missing log devices.
2099 	 * We'll pass this up to the user for further processing.
2100 	 */
2101 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2102 		nvlist_t **child, *nv;
2103 		uint64_t idx = 0;
2104 
2105 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2106 		    KM_SLEEP);
2107 		nv = fnvlist_alloc();
2108 
2109 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2110 			vdev_t *tvd = rvd->vdev_child[c];
2111 
2112 			/*
2113 			 * We consider a device as missing only if it failed
2114 			 * to open (i.e. offline or faulted is not considered
2115 			 * as missing).
2116 			 */
2117 			if (tvd->vdev_islog &&
2118 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2119 				child[idx++] = vdev_config_generate(spa, tvd,
2120 				    B_FALSE, VDEV_CONFIG_MISSING);
2121 			}
2122 		}
2123 
2124 		if (idx > 0) {
2125 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2126 			    (const nvlist_t * const *)child, idx);
2127 			fnvlist_add_nvlist(spa->spa_load_info,
2128 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2129 
2130 			for (uint64_t i = 0; i < idx; i++)
2131 				nvlist_free(child[i]);
2132 		}
2133 		nvlist_free(nv);
2134 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2135 
2136 		if (idx > 0) {
2137 			spa_load_failed(spa, "some log devices are missing");
2138 			vdev_dbgmsg_print_tree(rvd, 2);
2139 			return (SET_ERROR(ENXIO));
2140 		}
2141 	} else {
2142 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2143 			vdev_t *tvd = rvd->vdev_child[c];
2144 
2145 			if (tvd->vdev_islog &&
2146 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2147 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2148 				spa_load_note(spa, "some log devices are "
2149 				    "missing, ZIL is dropped.");
2150 				vdev_dbgmsg_print_tree(rvd, 2);
2151 				break;
2152 			}
2153 		}
2154 	}
2155 
2156 	return (0);
2157 }
2158 
2159 /*
2160  * Check for missing log devices
2161  */
2162 static boolean_t
2163 spa_check_logs(spa_t *spa)
2164 {
2165 	boolean_t rv = B_FALSE;
2166 	dsl_pool_t *dp = spa_get_dsl(spa);
2167 
2168 	switch (spa->spa_log_state) {
2169 	default:
2170 		break;
2171 	case SPA_LOG_MISSING:
2172 		/* need to recheck in case slog has been restored */
2173 	case SPA_LOG_UNKNOWN:
2174 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2175 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2176 		if (rv)
2177 			spa_set_log_state(spa, SPA_LOG_MISSING);
2178 		break;
2179 	}
2180 	return (rv);
2181 }
2182 
2183 /*
2184  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2185  */
2186 static boolean_t
2187 spa_passivate_log(spa_t *spa)
2188 {
2189 	vdev_t *rvd = spa->spa_root_vdev;
2190 	boolean_t slog_found = B_FALSE;
2191 
2192 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2193 
2194 	for (int c = 0; c < rvd->vdev_children; c++) {
2195 		vdev_t *tvd = rvd->vdev_child[c];
2196 
2197 		if (tvd->vdev_islog) {
2198 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2199 			metaslab_group_passivate(tvd->vdev_mg);
2200 			slog_found = B_TRUE;
2201 		}
2202 	}
2203 
2204 	return (slog_found);
2205 }
2206 
2207 /*
2208  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2209  */
2210 static void
2211 spa_activate_log(spa_t *spa)
2212 {
2213 	vdev_t *rvd = spa->spa_root_vdev;
2214 
2215 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2216 
2217 	for (int c = 0; c < rvd->vdev_children; c++) {
2218 		vdev_t *tvd = rvd->vdev_child[c];
2219 
2220 		if (tvd->vdev_islog) {
2221 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2222 			metaslab_group_activate(tvd->vdev_mg);
2223 		}
2224 	}
2225 }
2226 
2227 int
2228 spa_reset_logs(spa_t *spa)
2229 {
2230 	int error;
2231 
2232 	error = dmu_objset_find(spa_name(spa), zil_reset,
2233 	    NULL, DS_FIND_CHILDREN);
2234 	if (error == 0) {
2235 		/*
2236 		 * We successfully offlined the log device, sync out the
2237 		 * current txg so that the "stubby" block can be removed
2238 		 * by zil_sync().
2239 		 */
2240 		txg_wait_synced(spa->spa_dsl_pool, 0);
2241 	}
2242 	return (error);
2243 }
2244 
2245 static void
2246 spa_aux_check_removed(spa_aux_vdev_t *sav)
2247 {
2248 	for (int i = 0; i < sav->sav_count; i++)
2249 		spa_check_removed(sav->sav_vdevs[i]);
2250 }
2251 
2252 void
2253 spa_claim_notify(zio_t *zio)
2254 {
2255 	spa_t *spa = zio->io_spa;
2256 
2257 	if (zio->io_error)
2258 		return;
2259 
2260 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2261 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2262 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2263 	mutex_exit(&spa->spa_props_lock);
2264 }
2265 
2266 typedef struct spa_load_error {
2267 	boolean_t	sle_verify_data;
2268 	uint64_t	sle_meta_count;
2269 	uint64_t	sle_data_count;
2270 } spa_load_error_t;
2271 
2272 static void
2273 spa_load_verify_done(zio_t *zio)
2274 {
2275 	blkptr_t *bp = zio->io_bp;
2276 	spa_load_error_t *sle = zio->io_private;
2277 	dmu_object_type_t type = BP_GET_TYPE(bp);
2278 	int error = zio->io_error;
2279 	spa_t *spa = zio->io_spa;
2280 
2281 	abd_free(zio->io_abd);
2282 	if (error) {
2283 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2284 		    type != DMU_OT_INTENT_LOG)
2285 			atomic_inc_64(&sle->sle_meta_count);
2286 		else
2287 			atomic_inc_64(&sle->sle_data_count);
2288 	}
2289 
2290 	mutex_enter(&spa->spa_scrub_lock);
2291 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2292 	cv_broadcast(&spa->spa_scrub_io_cv);
2293 	mutex_exit(&spa->spa_scrub_lock);
2294 }
2295 
2296 /*
2297  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2298  * By default, we set it to 1/16th of the arc.
2299  */
2300 static int spa_load_verify_shift = 4;
2301 static int spa_load_verify_metadata = B_TRUE;
2302 static int spa_load_verify_data = B_TRUE;
2303 
2304 static int
2305 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2306     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2307 {
2308 	zio_t *rio = arg;
2309 	spa_load_error_t *sle = rio->io_private;
2310 
2311 	(void) zilog, (void) dnp;
2312 
2313 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2314 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2315 		return (0);
2316 	/*
2317 	 * Note: normally this routine will not be called if
2318 	 * spa_load_verify_metadata is not set.  However, it may be useful
2319 	 * to manually set the flag after the traversal has begun.
2320 	 */
2321 	if (!spa_load_verify_metadata)
2322 		return (0);
2323 	if (!BP_IS_METADATA(bp) &&
2324 	    (!spa_load_verify_data || !sle->sle_verify_data))
2325 		return (0);
2326 
2327 	uint64_t maxinflight_bytes =
2328 	    arc_target_bytes() >> spa_load_verify_shift;
2329 	size_t size = BP_GET_PSIZE(bp);
2330 
2331 	mutex_enter(&spa->spa_scrub_lock);
2332 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2333 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2334 	spa->spa_load_verify_bytes += size;
2335 	mutex_exit(&spa->spa_scrub_lock);
2336 
2337 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2338 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2339 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2340 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2341 	return (0);
2342 }
2343 
2344 static int
2345 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2346 {
2347 	(void) dp, (void) arg;
2348 
2349 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2350 		return (SET_ERROR(ENAMETOOLONG));
2351 
2352 	return (0);
2353 }
2354 
2355 static int
2356 spa_load_verify(spa_t *spa)
2357 {
2358 	zio_t *rio;
2359 	spa_load_error_t sle = { 0 };
2360 	zpool_load_policy_t policy;
2361 	boolean_t verify_ok = B_FALSE;
2362 	int error = 0;
2363 
2364 	zpool_get_load_policy(spa->spa_config, &policy);
2365 
2366 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2367 	    policy.zlp_maxmeta == UINT64_MAX)
2368 		return (0);
2369 
2370 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2371 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2372 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2373 	    DS_FIND_CHILDREN);
2374 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2375 	if (error != 0)
2376 		return (error);
2377 
2378 	/*
2379 	 * Verify data only if we are rewinding or error limit was set.
2380 	 * Otherwise nothing except dbgmsg care about it to waste time.
2381 	 */
2382 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2383 	    (policy.zlp_maxdata < UINT64_MAX);
2384 
2385 	rio = zio_root(spa, NULL, &sle,
2386 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2387 
2388 	if (spa_load_verify_metadata) {
2389 		if (spa->spa_extreme_rewind) {
2390 			spa_load_note(spa, "performing a complete scan of the "
2391 			    "pool since extreme rewind is on. This may take "
2392 			    "a very long time.\n  (spa_load_verify_data=%u, "
2393 			    "spa_load_verify_metadata=%u)",
2394 			    spa_load_verify_data, spa_load_verify_metadata);
2395 		}
2396 
2397 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2398 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2399 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2400 	}
2401 
2402 	(void) zio_wait(rio);
2403 	ASSERT0(spa->spa_load_verify_bytes);
2404 
2405 	spa->spa_load_meta_errors = sle.sle_meta_count;
2406 	spa->spa_load_data_errors = sle.sle_data_count;
2407 
2408 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2409 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2410 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2411 		    (u_longlong_t)sle.sle_data_count);
2412 	}
2413 
2414 	if (spa_load_verify_dryrun ||
2415 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2416 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2417 		int64_t loss = 0;
2418 
2419 		verify_ok = B_TRUE;
2420 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2421 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2422 
2423 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2424 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2425 		    spa->spa_load_txg_ts);
2426 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2427 		    loss);
2428 		fnvlist_add_uint64(spa->spa_load_info,
2429 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2430 		fnvlist_add_uint64(spa->spa_load_info,
2431 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2432 	} else {
2433 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2434 	}
2435 
2436 	if (spa_load_verify_dryrun)
2437 		return (0);
2438 
2439 	if (error) {
2440 		if (error != ENXIO && error != EIO)
2441 			error = SET_ERROR(EIO);
2442 		return (error);
2443 	}
2444 
2445 	return (verify_ok ? 0 : EIO);
2446 }
2447 
2448 /*
2449  * Find a value in the pool props object.
2450  */
2451 static void
2452 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2453 {
2454 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2455 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2456 }
2457 
2458 /*
2459  * Find a value in the pool directory object.
2460  */
2461 static int
2462 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2463 {
2464 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2465 	    name, sizeof (uint64_t), 1, val);
2466 
2467 	if (error != 0 && (error != ENOENT || log_enoent)) {
2468 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2469 		    "[error=%d]", name, error);
2470 	}
2471 
2472 	return (error);
2473 }
2474 
2475 static int
2476 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2477 {
2478 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2479 	return (SET_ERROR(err));
2480 }
2481 
2482 boolean_t
2483 spa_livelist_delete_check(spa_t *spa)
2484 {
2485 	return (spa->spa_livelists_to_delete != 0);
2486 }
2487 
2488 static boolean_t
2489 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2490 {
2491 	(void) z;
2492 	spa_t *spa = arg;
2493 	return (spa_livelist_delete_check(spa));
2494 }
2495 
2496 static int
2497 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2498 {
2499 	spa_t *spa = arg;
2500 	zio_free(spa, tx->tx_txg, bp);
2501 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2502 	    -bp_get_dsize_sync(spa, bp),
2503 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2504 	return (0);
2505 }
2506 
2507 static int
2508 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2509 {
2510 	int err;
2511 	zap_cursor_t zc;
2512 	zap_attribute_t za;
2513 	zap_cursor_init(&zc, os, zap_obj);
2514 	err = zap_cursor_retrieve(&zc, &za);
2515 	zap_cursor_fini(&zc);
2516 	if (err == 0)
2517 		*llp = za.za_first_integer;
2518 	return (err);
2519 }
2520 
2521 /*
2522  * Components of livelist deletion that must be performed in syncing
2523  * context: freeing block pointers and updating the pool-wide data
2524  * structures to indicate how much work is left to do
2525  */
2526 typedef struct sublist_delete_arg {
2527 	spa_t *spa;
2528 	dsl_deadlist_t *ll;
2529 	uint64_t key;
2530 	bplist_t *to_free;
2531 } sublist_delete_arg_t;
2532 
2533 static void
2534 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2535 {
2536 	sublist_delete_arg_t *sda = arg;
2537 	spa_t *spa = sda->spa;
2538 	dsl_deadlist_t *ll = sda->ll;
2539 	uint64_t key = sda->key;
2540 	bplist_t *to_free = sda->to_free;
2541 
2542 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2543 	dsl_deadlist_remove_entry(ll, key, tx);
2544 }
2545 
2546 typedef struct livelist_delete_arg {
2547 	spa_t *spa;
2548 	uint64_t ll_obj;
2549 	uint64_t zap_obj;
2550 } livelist_delete_arg_t;
2551 
2552 static void
2553 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2554 {
2555 	livelist_delete_arg_t *lda = arg;
2556 	spa_t *spa = lda->spa;
2557 	uint64_t ll_obj = lda->ll_obj;
2558 	uint64_t zap_obj = lda->zap_obj;
2559 	objset_t *mos = spa->spa_meta_objset;
2560 	uint64_t count;
2561 
2562 	/* free the livelist and decrement the feature count */
2563 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2564 	dsl_deadlist_free(mos, ll_obj, tx);
2565 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2566 	VERIFY0(zap_count(mos, zap_obj, &count));
2567 	if (count == 0) {
2568 		/* no more livelists to delete */
2569 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2570 		    DMU_POOL_DELETED_CLONES, tx));
2571 		VERIFY0(zap_destroy(mos, zap_obj, tx));
2572 		spa->spa_livelists_to_delete = 0;
2573 		spa_notify_waiters(spa);
2574 	}
2575 }
2576 
2577 /*
2578  * Load in the value for the livelist to be removed and open it. Then,
2579  * load its first sublist and determine which block pointers should actually
2580  * be freed. Then, call a synctask which performs the actual frees and updates
2581  * the pool-wide livelist data.
2582  */
2583 static void
2584 spa_livelist_delete_cb(void *arg, zthr_t *z)
2585 {
2586 	spa_t *spa = arg;
2587 	uint64_t ll_obj = 0, count;
2588 	objset_t *mos = spa->spa_meta_objset;
2589 	uint64_t zap_obj = spa->spa_livelists_to_delete;
2590 	/*
2591 	 * Determine the next livelist to delete. This function should only
2592 	 * be called if there is at least one deleted clone.
2593 	 */
2594 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2595 	VERIFY0(zap_count(mos, ll_obj, &count));
2596 	if (count > 0) {
2597 		dsl_deadlist_t *ll;
2598 		dsl_deadlist_entry_t *dle;
2599 		bplist_t to_free;
2600 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2601 		dsl_deadlist_open(ll, mos, ll_obj);
2602 		dle = dsl_deadlist_first(ll);
2603 		ASSERT3P(dle, !=, NULL);
2604 		bplist_create(&to_free);
2605 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2606 		    z, NULL);
2607 		if (err == 0) {
2608 			sublist_delete_arg_t sync_arg = {
2609 			    .spa = spa,
2610 			    .ll = ll,
2611 			    .key = dle->dle_mintxg,
2612 			    .to_free = &to_free
2613 			};
2614 			zfs_dbgmsg("deleting sublist (id %llu) from"
2615 			    " livelist %llu, %lld remaining",
2616 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
2617 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
2618 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2619 			    sublist_delete_sync, &sync_arg, 0,
2620 			    ZFS_SPACE_CHECK_DESTROY));
2621 		} else {
2622 			VERIFY3U(err, ==, EINTR);
2623 		}
2624 		bplist_clear(&to_free);
2625 		bplist_destroy(&to_free);
2626 		dsl_deadlist_close(ll);
2627 		kmem_free(ll, sizeof (dsl_deadlist_t));
2628 	} else {
2629 		livelist_delete_arg_t sync_arg = {
2630 		    .spa = spa,
2631 		    .ll_obj = ll_obj,
2632 		    .zap_obj = zap_obj
2633 		};
2634 		zfs_dbgmsg("deletion of livelist %llu completed",
2635 		    (u_longlong_t)ll_obj);
2636 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2637 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2638 	}
2639 }
2640 
2641 static void
2642 spa_start_livelist_destroy_thread(spa_t *spa)
2643 {
2644 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2645 	spa->spa_livelist_delete_zthr =
2646 	    zthr_create("z_livelist_destroy",
2647 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2648 	    minclsyspri);
2649 }
2650 
2651 typedef struct livelist_new_arg {
2652 	bplist_t *allocs;
2653 	bplist_t *frees;
2654 } livelist_new_arg_t;
2655 
2656 static int
2657 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2658     dmu_tx_t *tx)
2659 {
2660 	ASSERT(tx == NULL);
2661 	livelist_new_arg_t *lna = arg;
2662 	if (bp_freed) {
2663 		bplist_append(lna->frees, bp);
2664 	} else {
2665 		bplist_append(lna->allocs, bp);
2666 		zfs_livelist_condense_new_alloc++;
2667 	}
2668 	return (0);
2669 }
2670 
2671 typedef struct livelist_condense_arg {
2672 	spa_t *spa;
2673 	bplist_t to_keep;
2674 	uint64_t first_size;
2675 	uint64_t next_size;
2676 } livelist_condense_arg_t;
2677 
2678 static void
2679 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2680 {
2681 	livelist_condense_arg_t *lca = arg;
2682 	spa_t *spa = lca->spa;
2683 	bplist_t new_frees;
2684 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2685 
2686 	/* Have we been cancelled? */
2687 	if (spa->spa_to_condense.cancelled) {
2688 		zfs_livelist_condense_sync_cancel++;
2689 		goto out;
2690 	}
2691 
2692 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2693 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2694 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2695 
2696 	/*
2697 	 * It's possible that the livelist was changed while the zthr was
2698 	 * running. Therefore, we need to check for new blkptrs in the two
2699 	 * entries being condensed and continue to track them in the livelist.
2700 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2701 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2702 	 * we need to sort them into two different bplists.
2703 	 */
2704 	uint64_t first_obj = first->dle_bpobj.bpo_object;
2705 	uint64_t next_obj = next->dle_bpobj.bpo_object;
2706 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2707 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2708 
2709 	bplist_create(&new_frees);
2710 	livelist_new_arg_t new_bps = {
2711 	    .allocs = &lca->to_keep,
2712 	    .frees = &new_frees,
2713 	};
2714 
2715 	if (cur_first_size > lca->first_size) {
2716 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2717 		    livelist_track_new_cb, &new_bps, lca->first_size));
2718 	}
2719 	if (cur_next_size > lca->next_size) {
2720 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2721 		    livelist_track_new_cb, &new_bps, lca->next_size));
2722 	}
2723 
2724 	dsl_deadlist_clear_entry(first, ll, tx);
2725 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2726 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2727 
2728 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2729 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2730 	bplist_destroy(&new_frees);
2731 
2732 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2733 	dsl_dataset_name(ds, dsname);
2734 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2735 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2736 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2737 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2738 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2739 	    (u_longlong_t)cur_next_size,
2740 	    (u_longlong_t)first->dle_bpobj.bpo_object,
2741 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2742 out:
2743 	dmu_buf_rele(ds->ds_dbuf, spa);
2744 	spa->spa_to_condense.ds = NULL;
2745 	bplist_clear(&lca->to_keep);
2746 	bplist_destroy(&lca->to_keep);
2747 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2748 	spa->spa_to_condense.syncing = B_FALSE;
2749 }
2750 
2751 static void
2752 spa_livelist_condense_cb(void *arg, zthr_t *t)
2753 {
2754 	while (zfs_livelist_condense_zthr_pause &&
2755 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2756 		delay(1);
2757 
2758 	spa_t *spa = arg;
2759 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2760 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2761 	uint64_t first_size, next_size;
2762 
2763 	livelist_condense_arg_t *lca =
2764 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2765 	bplist_create(&lca->to_keep);
2766 
2767 	/*
2768 	 * Process the livelists (matching FREEs and ALLOCs) in open context
2769 	 * so we have minimal work in syncing context to condense.
2770 	 *
2771 	 * We save bpobj sizes (first_size and next_size) to use later in
2772 	 * syncing context to determine if entries were added to these sublists
2773 	 * while in open context. This is possible because the clone is still
2774 	 * active and open for normal writes and we want to make sure the new,
2775 	 * unprocessed blockpointers are inserted into the livelist normally.
2776 	 *
2777 	 * Note that dsl_process_sub_livelist() both stores the size number of
2778 	 * blockpointers and iterates over them while the bpobj's lock held, so
2779 	 * the sizes returned to us are consistent which what was actually
2780 	 * processed.
2781 	 */
2782 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2783 	    &first_size);
2784 	if (err == 0)
2785 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2786 		    t, &next_size);
2787 
2788 	if (err == 0) {
2789 		while (zfs_livelist_condense_sync_pause &&
2790 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2791 			delay(1);
2792 
2793 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2794 		dmu_tx_mark_netfree(tx);
2795 		dmu_tx_hold_space(tx, 1);
2796 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2797 		if (err == 0) {
2798 			/*
2799 			 * Prevent the condense zthr restarting before
2800 			 * the synctask completes.
2801 			 */
2802 			spa->spa_to_condense.syncing = B_TRUE;
2803 			lca->spa = spa;
2804 			lca->first_size = first_size;
2805 			lca->next_size = next_size;
2806 			dsl_sync_task_nowait(spa_get_dsl(spa),
2807 			    spa_livelist_condense_sync, lca, tx);
2808 			dmu_tx_commit(tx);
2809 			return;
2810 		}
2811 	}
2812 	/*
2813 	 * Condensing can not continue: either it was externally stopped or
2814 	 * we were unable to assign to a tx because the pool has run out of
2815 	 * space. In the second case, we'll just end up trying to condense
2816 	 * again in a later txg.
2817 	 */
2818 	ASSERT(err != 0);
2819 	bplist_clear(&lca->to_keep);
2820 	bplist_destroy(&lca->to_keep);
2821 	kmem_free(lca, sizeof (livelist_condense_arg_t));
2822 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2823 	spa->spa_to_condense.ds = NULL;
2824 	if (err == EINTR)
2825 		zfs_livelist_condense_zthr_cancel++;
2826 }
2827 
2828 /*
2829  * Check that there is something to condense but that a condense is not
2830  * already in progress and that condensing has not been cancelled.
2831  */
2832 static boolean_t
2833 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2834 {
2835 	(void) z;
2836 	spa_t *spa = arg;
2837 	if ((spa->spa_to_condense.ds != NULL) &&
2838 	    (spa->spa_to_condense.syncing == B_FALSE) &&
2839 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2840 		return (B_TRUE);
2841 	}
2842 	return (B_FALSE);
2843 }
2844 
2845 static void
2846 spa_start_livelist_condensing_thread(spa_t *spa)
2847 {
2848 	spa->spa_to_condense.ds = NULL;
2849 	spa->spa_to_condense.first = NULL;
2850 	spa->spa_to_condense.next = NULL;
2851 	spa->spa_to_condense.syncing = B_FALSE;
2852 	spa->spa_to_condense.cancelled = B_FALSE;
2853 
2854 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2855 	spa->spa_livelist_condense_zthr =
2856 	    zthr_create("z_livelist_condense",
2857 	    spa_livelist_condense_cb_check,
2858 	    spa_livelist_condense_cb, spa, minclsyspri);
2859 }
2860 
2861 static void
2862 spa_spawn_aux_threads(spa_t *spa)
2863 {
2864 	ASSERT(spa_writeable(spa));
2865 
2866 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2867 
2868 	spa_start_indirect_condensing_thread(spa);
2869 	spa_start_livelist_destroy_thread(spa);
2870 	spa_start_livelist_condensing_thread(spa);
2871 
2872 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2873 	spa->spa_checkpoint_discard_zthr =
2874 	    zthr_create("z_checkpoint_discard",
2875 	    spa_checkpoint_discard_thread_check,
2876 	    spa_checkpoint_discard_thread, spa, minclsyspri);
2877 }
2878 
2879 /*
2880  * Fix up config after a partly-completed split.  This is done with the
2881  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2882  * pool have that entry in their config, but only the splitting one contains
2883  * a list of all the guids of the vdevs that are being split off.
2884  *
2885  * This function determines what to do with that list: either rejoin
2886  * all the disks to the pool, or complete the splitting process.  To attempt
2887  * the rejoin, each disk that is offlined is marked online again, and
2888  * we do a reopen() call.  If the vdev label for every disk that was
2889  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2890  * then we call vdev_split() on each disk, and complete the split.
2891  *
2892  * Otherwise we leave the config alone, with all the vdevs in place in
2893  * the original pool.
2894  */
2895 static void
2896 spa_try_repair(spa_t *spa, nvlist_t *config)
2897 {
2898 	uint_t extracted;
2899 	uint64_t *glist;
2900 	uint_t i, gcount;
2901 	nvlist_t *nvl;
2902 	vdev_t **vd;
2903 	boolean_t attempt_reopen;
2904 
2905 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2906 		return;
2907 
2908 	/* check that the config is complete */
2909 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2910 	    &glist, &gcount) != 0)
2911 		return;
2912 
2913 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2914 
2915 	/* attempt to online all the vdevs & validate */
2916 	attempt_reopen = B_TRUE;
2917 	for (i = 0; i < gcount; i++) {
2918 		if (glist[i] == 0)	/* vdev is hole */
2919 			continue;
2920 
2921 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2922 		if (vd[i] == NULL) {
2923 			/*
2924 			 * Don't bother attempting to reopen the disks;
2925 			 * just do the split.
2926 			 */
2927 			attempt_reopen = B_FALSE;
2928 		} else {
2929 			/* attempt to re-online it */
2930 			vd[i]->vdev_offline = B_FALSE;
2931 		}
2932 	}
2933 
2934 	if (attempt_reopen) {
2935 		vdev_reopen(spa->spa_root_vdev);
2936 
2937 		/* check each device to see what state it's in */
2938 		for (extracted = 0, i = 0; i < gcount; i++) {
2939 			if (vd[i] != NULL &&
2940 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2941 				break;
2942 			++extracted;
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * If every disk has been moved to the new pool, or if we never
2948 	 * even attempted to look at them, then we split them off for
2949 	 * good.
2950 	 */
2951 	if (!attempt_reopen || gcount == extracted) {
2952 		for (i = 0; i < gcount; i++)
2953 			if (vd[i] != NULL)
2954 				vdev_split(vd[i]);
2955 		vdev_reopen(spa->spa_root_vdev);
2956 	}
2957 
2958 	kmem_free(vd, gcount * sizeof (vdev_t *));
2959 }
2960 
2961 static int
2962 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2963 {
2964 	char *ereport = FM_EREPORT_ZFS_POOL;
2965 	int error;
2966 
2967 	spa->spa_load_state = state;
2968 	(void) spa_import_progress_set_state(spa_guid(spa),
2969 	    spa_load_state(spa));
2970 
2971 	gethrestime(&spa->spa_loaded_ts);
2972 	error = spa_load_impl(spa, type, &ereport);
2973 
2974 	/*
2975 	 * Don't count references from objsets that are already closed
2976 	 * and are making their way through the eviction process.
2977 	 */
2978 	spa_evicting_os_wait(spa);
2979 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2980 	if (error) {
2981 		if (error != EEXIST) {
2982 			spa->spa_loaded_ts.tv_sec = 0;
2983 			spa->spa_loaded_ts.tv_nsec = 0;
2984 		}
2985 		if (error != EBADF) {
2986 			(void) zfs_ereport_post(ereport, spa,
2987 			    NULL, NULL, NULL, 0);
2988 		}
2989 	}
2990 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2991 	spa->spa_ena = 0;
2992 
2993 	(void) spa_import_progress_set_state(spa_guid(spa),
2994 	    spa_load_state(spa));
2995 
2996 	return (error);
2997 }
2998 
2999 #ifdef ZFS_DEBUG
3000 /*
3001  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3002  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3003  * spa's per-vdev ZAP list.
3004  */
3005 static uint64_t
3006 vdev_count_verify_zaps(vdev_t *vd)
3007 {
3008 	spa_t *spa = vd->vdev_spa;
3009 	uint64_t total = 0;
3010 
3011 	if (vd->vdev_top_zap != 0) {
3012 		total++;
3013 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3014 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3015 	}
3016 	if (vd->vdev_leaf_zap != 0) {
3017 		total++;
3018 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3019 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3020 	}
3021 
3022 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3023 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3024 	}
3025 
3026 	return (total);
3027 }
3028 #else
3029 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3030 #endif
3031 
3032 /*
3033  * Determine whether the activity check is required.
3034  */
3035 static boolean_t
3036 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3037     nvlist_t *config)
3038 {
3039 	uint64_t state = 0;
3040 	uint64_t hostid = 0;
3041 	uint64_t tryconfig_txg = 0;
3042 	uint64_t tryconfig_timestamp = 0;
3043 	uint16_t tryconfig_mmp_seq = 0;
3044 	nvlist_t *nvinfo;
3045 
3046 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3047 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3048 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3049 		    &tryconfig_txg);
3050 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3051 		    &tryconfig_timestamp);
3052 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3053 		    &tryconfig_mmp_seq);
3054 	}
3055 
3056 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3057 
3058 	/*
3059 	 * Disable the MMP activity check - This is used by zdb which
3060 	 * is intended to be used on potentially active pools.
3061 	 */
3062 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3063 		return (B_FALSE);
3064 
3065 	/*
3066 	 * Skip the activity check when the MMP feature is disabled.
3067 	 */
3068 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3069 		return (B_FALSE);
3070 
3071 	/*
3072 	 * If the tryconfig_ values are nonzero, they are the results of an
3073 	 * earlier tryimport.  If they all match the uberblock we just found,
3074 	 * then the pool has not changed and we return false so we do not test
3075 	 * a second time.
3076 	 */
3077 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3078 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3079 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3080 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3081 		return (B_FALSE);
3082 
3083 	/*
3084 	 * Allow the activity check to be skipped when importing the pool
3085 	 * on the same host which last imported it.  Since the hostid from
3086 	 * configuration may be stale use the one read from the label.
3087 	 */
3088 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3089 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3090 
3091 	if (hostid == spa_get_hostid(spa))
3092 		return (B_FALSE);
3093 
3094 	/*
3095 	 * Skip the activity test when the pool was cleanly exported.
3096 	 */
3097 	if (state != POOL_STATE_ACTIVE)
3098 		return (B_FALSE);
3099 
3100 	return (B_TRUE);
3101 }
3102 
3103 /*
3104  * Nanoseconds the activity check must watch for changes on-disk.
3105  */
3106 static uint64_t
3107 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3108 {
3109 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3110 	uint64_t multihost_interval = MSEC2NSEC(
3111 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3112 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3113 	    multihost_interval);
3114 
3115 	/*
3116 	 * Local tunables determine a minimum duration except for the case
3117 	 * where we know when the remote host will suspend the pool if MMP
3118 	 * writes do not land.
3119 	 *
3120 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3121 	 * these cases and times.
3122 	 */
3123 
3124 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3125 
3126 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3127 	    MMP_FAIL_INT(ub) > 0) {
3128 
3129 		/* MMP on remote host will suspend pool after failed writes */
3130 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3131 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3132 
3133 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3134 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3135 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3136 		    (u_longlong_t)MMP_FAIL_INT(ub),
3137 		    (u_longlong_t)MMP_INTERVAL(ub),
3138 		    (u_longlong_t)import_intervals);
3139 
3140 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3141 	    MMP_FAIL_INT(ub) == 0) {
3142 
3143 		/* MMP on remote host will never suspend pool */
3144 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3145 		    ub->ub_mmp_delay) * import_intervals);
3146 
3147 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3148 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3149 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3150 		    (u_longlong_t)MMP_INTERVAL(ub),
3151 		    (u_longlong_t)ub->ub_mmp_delay,
3152 		    (u_longlong_t)import_intervals);
3153 
3154 	} else if (MMP_VALID(ub)) {
3155 		/*
3156 		 * zfs-0.7 compatibility case
3157 		 */
3158 
3159 		import_delay = MAX(import_delay, (multihost_interval +
3160 		    ub->ub_mmp_delay) * import_intervals);
3161 
3162 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3163 		    "import_intervals=%llu leaves=%u",
3164 		    (u_longlong_t)import_delay,
3165 		    (u_longlong_t)ub->ub_mmp_delay,
3166 		    (u_longlong_t)import_intervals,
3167 		    vdev_count_leaves(spa));
3168 	} else {
3169 		/* Using local tunings is the only reasonable option */
3170 		zfs_dbgmsg("pool last imported on non-MMP aware "
3171 		    "host using import_delay=%llu multihost_interval=%llu "
3172 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3173 		    (u_longlong_t)multihost_interval,
3174 		    (u_longlong_t)import_intervals);
3175 	}
3176 
3177 	return (import_delay);
3178 }
3179 
3180 /*
3181  * Perform the import activity check.  If the user canceled the import or
3182  * we detected activity then fail.
3183  */
3184 static int
3185 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3186 {
3187 	uint64_t txg = ub->ub_txg;
3188 	uint64_t timestamp = ub->ub_timestamp;
3189 	uint64_t mmp_config = ub->ub_mmp_config;
3190 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3191 	uint64_t import_delay;
3192 	hrtime_t import_expire;
3193 	nvlist_t *mmp_label = NULL;
3194 	vdev_t *rvd = spa->spa_root_vdev;
3195 	kcondvar_t cv;
3196 	kmutex_t mtx;
3197 	int error = 0;
3198 
3199 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3200 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3201 	mutex_enter(&mtx);
3202 
3203 	/*
3204 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3205 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3206 	 * the pool is known to be active on another host.
3207 	 *
3208 	 * Otherwise, the pool might be in use on another host.  Check for
3209 	 * changes in the uberblocks on disk if necessary.
3210 	 */
3211 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3212 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3213 		    ZPOOL_CONFIG_LOAD_INFO);
3214 
3215 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3216 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3217 			vdev_uberblock_load(rvd, ub, &mmp_label);
3218 			error = SET_ERROR(EREMOTEIO);
3219 			goto out;
3220 		}
3221 	}
3222 
3223 	import_delay = spa_activity_check_duration(spa, ub);
3224 
3225 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3226 	import_delay += import_delay * random_in_range(250) / 1000;
3227 
3228 	import_expire = gethrtime() + import_delay;
3229 
3230 	while (gethrtime() < import_expire) {
3231 		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3232 		    NSEC2SEC(import_expire - gethrtime()));
3233 
3234 		vdev_uberblock_load(rvd, ub, &mmp_label);
3235 
3236 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3237 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3238 			zfs_dbgmsg("multihost activity detected "
3239 			    "txg %llu ub_txg  %llu "
3240 			    "timestamp %llu ub_timestamp  %llu "
3241 			    "mmp_config %#llx ub_mmp_config %#llx",
3242 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3243 			    (u_longlong_t)timestamp,
3244 			    (u_longlong_t)ub->ub_timestamp,
3245 			    (u_longlong_t)mmp_config,
3246 			    (u_longlong_t)ub->ub_mmp_config);
3247 
3248 			error = SET_ERROR(EREMOTEIO);
3249 			break;
3250 		}
3251 
3252 		if (mmp_label) {
3253 			nvlist_free(mmp_label);
3254 			mmp_label = NULL;
3255 		}
3256 
3257 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3258 		if (error != -1) {
3259 			error = SET_ERROR(EINTR);
3260 			break;
3261 		}
3262 		error = 0;
3263 	}
3264 
3265 out:
3266 	mutex_exit(&mtx);
3267 	mutex_destroy(&mtx);
3268 	cv_destroy(&cv);
3269 
3270 	/*
3271 	 * If the pool is determined to be active store the status in the
3272 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3273 	 * available from configuration read from disk store them as well.
3274 	 * This allows 'zpool import' to generate a more useful message.
3275 	 *
3276 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3277 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3278 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3279 	 */
3280 	if (error == EREMOTEIO) {
3281 		char *hostname = "<unknown>";
3282 		uint64_t hostid = 0;
3283 
3284 		if (mmp_label) {
3285 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3286 				hostname = fnvlist_lookup_string(mmp_label,
3287 				    ZPOOL_CONFIG_HOSTNAME);
3288 				fnvlist_add_string(spa->spa_load_info,
3289 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3290 			}
3291 
3292 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3293 				hostid = fnvlist_lookup_uint64(mmp_label,
3294 				    ZPOOL_CONFIG_HOSTID);
3295 				fnvlist_add_uint64(spa->spa_load_info,
3296 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3297 			}
3298 		}
3299 
3300 		fnvlist_add_uint64(spa->spa_load_info,
3301 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3302 		fnvlist_add_uint64(spa->spa_load_info,
3303 		    ZPOOL_CONFIG_MMP_TXG, 0);
3304 
3305 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3306 	}
3307 
3308 	if (mmp_label)
3309 		nvlist_free(mmp_label);
3310 
3311 	return (error);
3312 }
3313 
3314 static int
3315 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3316 {
3317 	uint64_t hostid;
3318 	char *hostname;
3319 	uint64_t myhostid = 0;
3320 
3321 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3322 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3323 		hostname = fnvlist_lookup_string(mos_config,
3324 		    ZPOOL_CONFIG_HOSTNAME);
3325 
3326 		myhostid = zone_get_hostid(NULL);
3327 
3328 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3329 			cmn_err(CE_WARN, "pool '%s' could not be "
3330 			    "loaded as it was last accessed by "
3331 			    "another system (host: %s hostid: 0x%llx). "
3332 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3333 			    "ZFS-8000-EY",
3334 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3335 			spa_load_failed(spa, "hostid verification failed: pool "
3336 			    "last accessed by host: %s (hostid: 0x%llx)",
3337 			    hostname, (u_longlong_t)hostid);
3338 			return (SET_ERROR(EBADF));
3339 		}
3340 	}
3341 
3342 	return (0);
3343 }
3344 
3345 static int
3346 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3347 {
3348 	int error = 0;
3349 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3350 	int parse;
3351 	vdev_t *rvd;
3352 	uint64_t pool_guid;
3353 	char *comment;
3354 	char *compatibility;
3355 
3356 	/*
3357 	 * Versioning wasn't explicitly added to the label until later, so if
3358 	 * it's not present treat it as the initial version.
3359 	 */
3360 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3361 	    &spa->spa_ubsync.ub_version) != 0)
3362 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3363 
3364 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3365 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3366 		    ZPOOL_CONFIG_POOL_GUID);
3367 		return (SET_ERROR(EINVAL));
3368 	}
3369 
3370 	/*
3371 	 * If we are doing an import, ensure that the pool is not already
3372 	 * imported by checking if its pool guid already exists in the
3373 	 * spa namespace.
3374 	 *
3375 	 * The only case that we allow an already imported pool to be
3376 	 * imported again, is when the pool is checkpointed and we want to
3377 	 * look at its checkpointed state from userland tools like zdb.
3378 	 */
3379 #ifdef _KERNEL
3380 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3381 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3382 	    spa_guid_exists(pool_guid, 0)) {
3383 #else
3384 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3385 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3386 	    spa_guid_exists(pool_guid, 0) &&
3387 	    !spa_importing_readonly_checkpoint(spa)) {
3388 #endif
3389 		spa_load_failed(spa, "a pool with guid %llu is already open",
3390 		    (u_longlong_t)pool_guid);
3391 		return (SET_ERROR(EEXIST));
3392 	}
3393 
3394 	spa->spa_config_guid = pool_guid;
3395 
3396 	nvlist_free(spa->spa_load_info);
3397 	spa->spa_load_info = fnvlist_alloc();
3398 
3399 	ASSERT(spa->spa_comment == NULL);
3400 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3401 		spa->spa_comment = spa_strdup(comment);
3402 
3403 	ASSERT(spa->spa_compatibility == NULL);
3404 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3405 	    &compatibility) == 0)
3406 		spa->spa_compatibility = spa_strdup(compatibility);
3407 
3408 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3409 	    &spa->spa_config_txg);
3410 
3411 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3412 		spa->spa_config_splitting = fnvlist_dup(nvl);
3413 
3414 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3415 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3416 		    ZPOOL_CONFIG_VDEV_TREE);
3417 		return (SET_ERROR(EINVAL));
3418 	}
3419 
3420 	/*
3421 	 * Create "The Godfather" zio to hold all async IOs
3422 	 */
3423 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3424 	    KM_SLEEP);
3425 	for (int i = 0; i < max_ncpus; i++) {
3426 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3427 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3428 		    ZIO_FLAG_GODFATHER);
3429 	}
3430 
3431 	/*
3432 	 * Parse the configuration into a vdev tree.  We explicitly set the
3433 	 * value that will be returned by spa_version() since parsing the
3434 	 * configuration requires knowing the version number.
3435 	 */
3436 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3437 	parse = (type == SPA_IMPORT_EXISTING ?
3438 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3439 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3440 	spa_config_exit(spa, SCL_ALL, FTAG);
3441 
3442 	if (error != 0) {
3443 		spa_load_failed(spa, "unable to parse config [error=%d]",
3444 		    error);
3445 		return (error);
3446 	}
3447 
3448 	ASSERT(spa->spa_root_vdev == rvd);
3449 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3450 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3451 
3452 	if (type != SPA_IMPORT_ASSEMBLE) {
3453 		ASSERT(spa_guid(spa) == pool_guid);
3454 	}
3455 
3456 	return (0);
3457 }
3458 
3459 /*
3460  * Recursively open all vdevs in the vdev tree. This function is called twice:
3461  * first with the untrusted config, then with the trusted config.
3462  */
3463 static int
3464 spa_ld_open_vdevs(spa_t *spa)
3465 {
3466 	int error = 0;
3467 
3468 	/*
3469 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3470 	 * missing/unopenable for the root vdev to be still considered openable.
3471 	 */
3472 	if (spa->spa_trust_config) {
3473 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3474 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3475 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3476 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3477 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3478 	} else {
3479 		spa->spa_missing_tvds_allowed = 0;
3480 	}
3481 
3482 	spa->spa_missing_tvds_allowed =
3483 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3484 
3485 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3486 	error = vdev_open(spa->spa_root_vdev);
3487 	spa_config_exit(spa, SCL_ALL, FTAG);
3488 
3489 	if (spa->spa_missing_tvds != 0) {
3490 		spa_load_note(spa, "vdev tree has %lld missing top-level "
3491 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3492 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3493 			/*
3494 			 * Although theoretically we could allow users to open
3495 			 * incomplete pools in RW mode, we'd need to add a lot
3496 			 * of extra logic (e.g. adjust pool space to account
3497 			 * for missing vdevs).
3498 			 * This limitation also prevents users from accidentally
3499 			 * opening the pool in RW mode during data recovery and
3500 			 * damaging it further.
3501 			 */
3502 			spa_load_note(spa, "pools with missing top-level "
3503 			    "vdevs can only be opened in read-only mode.");
3504 			error = SET_ERROR(ENXIO);
3505 		} else {
3506 			spa_load_note(spa, "current settings allow for maximum "
3507 			    "%lld missing top-level vdevs at this stage.",
3508 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3509 		}
3510 	}
3511 	if (error != 0) {
3512 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3513 		    error);
3514 	}
3515 	if (spa->spa_missing_tvds != 0 || error != 0)
3516 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3517 
3518 	return (error);
3519 }
3520 
3521 /*
3522  * We need to validate the vdev labels against the configuration that
3523  * we have in hand. This function is called twice: first with an untrusted
3524  * config, then with a trusted config. The validation is more strict when the
3525  * config is trusted.
3526  */
3527 static int
3528 spa_ld_validate_vdevs(spa_t *spa)
3529 {
3530 	int error = 0;
3531 	vdev_t *rvd = spa->spa_root_vdev;
3532 
3533 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3534 	error = vdev_validate(rvd);
3535 	spa_config_exit(spa, SCL_ALL, FTAG);
3536 
3537 	if (error != 0) {
3538 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3539 		return (error);
3540 	}
3541 
3542 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3543 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3544 		    "some vdevs");
3545 		vdev_dbgmsg_print_tree(rvd, 2);
3546 		return (SET_ERROR(ENXIO));
3547 	}
3548 
3549 	return (0);
3550 }
3551 
3552 static void
3553 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3554 {
3555 	spa->spa_state = POOL_STATE_ACTIVE;
3556 	spa->spa_ubsync = spa->spa_uberblock;
3557 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3558 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3559 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3560 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3561 	spa->spa_claim_max_txg = spa->spa_first_txg;
3562 	spa->spa_prev_software_version = ub->ub_software_version;
3563 }
3564 
3565 static int
3566 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3567 {
3568 	vdev_t *rvd = spa->spa_root_vdev;
3569 	nvlist_t *label;
3570 	uberblock_t *ub = &spa->spa_uberblock;
3571 	boolean_t activity_check = B_FALSE;
3572 
3573 	/*
3574 	 * If we are opening the checkpointed state of the pool by
3575 	 * rewinding to it, at this point we will have written the
3576 	 * checkpointed uberblock to the vdev labels, so searching
3577 	 * the labels will find the right uberblock.  However, if
3578 	 * we are opening the checkpointed state read-only, we have
3579 	 * not modified the labels. Therefore, we must ignore the
3580 	 * labels and continue using the spa_uberblock that was set
3581 	 * by spa_ld_checkpoint_rewind.
3582 	 *
3583 	 * Note that it would be fine to ignore the labels when
3584 	 * rewinding (opening writeable) as well. However, if we
3585 	 * crash just after writing the labels, we will end up
3586 	 * searching the labels. Doing so in the common case means
3587 	 * that this code path gets exercised normally, rather than
3588 	 * just in the edge case.
3589 	 */
3590 	if (ub->ub_checkpoint_txg != 0 &&
3591 	    spa_importing_readonly_checkpoint(spa)) {
3592 		spa_ld_select_uberblock_done(spa, ub);
3593 		return (0);
3594 	}
3595 
3596 	/*
3597 	 * Find the best uberblock.
3598 	 */
3599 	vdev_uberblock_load(rvd, ub, &label);
3600 
3601 	/*
3602 	 * If we weren't able to find a single valid uberblock, return failure.
3603 	 */
3604 	if (ub->ub_txg == 0) {
3605 		nvlist_free(label);
3606 		spa_load_failed(spa, "no valid uberblock found");
3607 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3608 	}
3609 
3610 	if (spa->spa_load_max_txg != UINT64_MAX) {
3611 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3612 		    (u_longlong_t)spa->spa_load_max_txg);
3613 	}
3614 	spa_load_note(spa, "using uberblock with txg=%llu",
3615 	    (u_longlong_t)ub->ub_txg);
3616 
3617 
3618 	/*
3619 	 * For pools which have the multihost property on determine if the
3620 	 * pool is truly inactive and can be safely imported.  Prevent
3621 	 * hosts which don't have a hostid set from importing the pool.
3622 	 */
3623 	activity_check = spa_activity_check_required(spa, ub, label,
3624 	    spa->spa_config);
3625 	if (activity_check) {
3626 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3627 		    spa_get_hostid(spa) == 0) {
3628 			nvlist_free(label);
3629 			fnvlist_add_uint64(spa->spa_load_info,
3630 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3631 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3632 		}
3633 
3634 		int error = spa_activity_check(spa, ub, spa->spa_config);
3635 		if (error) {
3636 			nvlist_free(label);
3637 			return (error);
3638 		}
3639 
3640 		fnvlist_add_uint64(spa->spa_load_info,
3641 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3642 		fnvlist_add_uint64(spa->spa_load_info,
3643 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3644 		fnvlist_add_uint16(spa->spa_load_info,
3645 		    ZPOOL_CONFIG_MMP_SEQ,
3646 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3647 	}
3648 
3649 	/*
3650 	 * If the pool has an unsupported version we can't open it.
3651 	 */
3652 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3653 		nvlist_free(label);
3654 		spa_load_failed(spa, "version %llu is not supported",
3655 		    (u_longlong_t)ub->ub_version);
3656 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3657 	}
3658 
3659 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3660 		nvlist_t *features;
3661 
3662 		/*
3663 		 * If we weren't able to find what's necessary for reading the
3664 		 * MOS in the label, return failure.
3665 		 */
3666 		if (label == NULL) {
3667 			spa_load_failed(spa, "label config unavailable");
3668 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3669 			    ENXIO));
3670 		}
3671 
3672 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3673 		    &features) != 0) {
3674 			nvlist_free(label);
3675 			spa_load_failed(spa, "invalid label: '%s' missing",
3676 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3677 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3678 			    ENXIO));
3679 		}
3680 
3681 		/*
3682 		 * Update our in-core representation with the definitive values
3683 		 * from the label.
3684 		 */
3685 		nvlist_free(spa->spa_label_features);
3686 		spa->spa_label_features = fnvlist_dup(features);
3687 	}
3688 
3689 	nvlist_free(label);
3690 
3691 	/*
3692 	 * Look through entries in the label nvlist's features_for_read. If
3693 	 * there is a feature listed there which we don't understand then we
3694 	 * cannot open a pool.
3695 	 */
3696 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3697 		nvlist_t *unsup_feat;
3698 
3699 		unsup_feat = fnvlist_alloc();
3700 
3701 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3702 		    NULL); nvp != NULL;
3703 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3704 			if (!zfeature_is_supported(nvpair_name(nvp))) {
3705 				fnvlist_add_string(unsup_feat,
3706 				    nvpair_name(nvp), "");
3707 			}
3708 		}
3709 
3710 		if (!nvlist_empty(unsup_feat)) {
3711 			fnvlist_add_nvlist(spa->spa_load_info,
3712 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3713 			nvlist_free(unsup_feat);
3714 			spa_load_failed(spa, "some features are unsupported");
3715 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3716 			    ENOTSUP));
3717 		}
3718 
3719 		nvlist_free(unsup_feat);
3720 	}
3721 
3722 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3723 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3724 		spa_try_repair(spa, spa->spa_config);
3725 		spa_config_exit(spa, SCL_ALL, FTAG);
3726 		nvlist_free(spa->spa_config_splitting);
3727 		spa->spa_config_splitting = NULL;
3728 	}
3729 
3730 	/*
3731 	 * Initialize internal SPA structures.
3732 	 */
3733 	spa_ld_select_uberblock_done(spa, ub);
3734 
3735 	return (0);
3736 }
3737 
3738 static int
3739 spa_ld_open_rootbp(spa_t *spa)
3740 {
3741 	int error = 0;
3742 	vdev_t *rvd = spa->spa_root_vdev;
3743 
3744 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3745 	if (error != 0) {
3746 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3747 		    "[error=%d]", error);
3748 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3749 	}
3750 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3751 
3752 	return (0);
3753 }
3754 
3755 static int
3756 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3757     boolean_t reloading)
3758 {
3759 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3760 	nvlist_t *nv, *mos_config, *policy;
3761 	int error = 0, copy_error;
3762 	uint64_t healthy_tvds, healthy_tvds_mos;
3763 	uint64_t mos_config_txg;
3764 
3765 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3766 	    != 0)
3767 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3768 
3769 	/*
3770 	 * If we're assembling a pool from a split, the config provided is
3771 	 * already trusted so there is nothing to do.
3772 	 */
3773 	if (type == SPA_IMPORT_ASSEMBLE)
3774 		return (0);
3775 
3776 	healthy_tvds = spa_healthy_core_tvds(spa);
3777 
3778 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3779 	    != 0) {
3780 		spa_load_failed(spa, "unable to retrieve MOS config");
3781 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3782 	}
3783 
3784 	/*
3785 	 * If we are doing an open, pool owner wasn't verified yet, thus do
3786 	 * the verification here.
3787 	 */
3788 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3789 		error = spa_verify_host(spa, mos_config);
3790 		if (error != 0) {
3791 			nvlist_free(mos_config);
3792 			return (error);
3793 		}
3794 	}
3795 
3796 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3797 
3798 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3799 
3800 	/*
3801 	 * Build a new vdev tree from the trusted config
3802 	 */
3803 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3804 	if (error != 0) {
3805 		nvlist_free(mos_config);
3806 		spa_config_exit(spa, SCL_ALL, FTAG);
3807 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3808 		    error);
3809 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3810 	}
3811 
3812 	/*
3813 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3814 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3815 	 * paths. We update the trusted MOS config with this information.
3816 	 * We first try to copy the paths with vdev_copy_path_strict, which
3817 	 * succeeds only when both configs have exactly the same vdev tree.
3818 	 * If that fails, we fall back to a more flexible method that has a
3819 	 * best effort policy.
3820 	 */
3821 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3822 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3823 		spa_load_note(spa, "provided vdev tree:");
3824 		vdev_dbgmsg_print_tree(rvd, 2);
3825 		spa_load_note(spa, "MOS vdev tree:");
3826 		vdev_dbgmsg_print_tree(mrvd, 2);
3827 	}
3828 	if (copy_error != 0) {
3829 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3830 		    "back to vdev_copy_path_relaxed");
3831 		vdev_copy_path_relaxed(rvd, mrvd);
3832 	}
3833 
3834 	vdev_close(rvd);
3835 	vdev_free(rvd);
3836 	spa->spa_root_vdev = mrvd;
3837 	rvd = mrvd;
3838 	spa_config_exit(spa, SCL_ALL, FTAG);
3839 
3840 	/*
3841 	 * We will use spa_config if we decide to reload the spa or if spa_load
3842 	 * fails and we rewind. We must thus regenerate the config using the
3843 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3844 	 * pass settings on how to load the pool and is not stored in the MOS.
3845 	 * We copy it over to our new, trusted config.
3846 	 */
3847 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3848 	    ZPOOL_CONFIG_POOL_TXG);
3849 	nvlist_free(mos_config);
3850 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3851 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3852 	    &policy) == 0)
3853 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3854 	spa_config_set(spa, mos_config);
3855 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3856 
3857 	/*
3858 	 * Now that we got the config from the MOS, we should be more strict
3859 	 * in checking blkptrs and can make assumptions about the consistency
3860 	 * of the vdev tree. spa_trust_config must be set to true before opening
3861 	 * vdevs in order for them to be writeable.
3862 	 */
3863 	spa->spa_trust_config = B_TRUE;
3864 
3865 	/*
3866 	 * Open and validate the new vdev tree
3867 	 */
3868 	error = spa_ld_open_vdevs(spa);
3869 	if (error != 0)
3870 		return (error);
3871 
3872 	error = spa_ld_validate_vdevs(spa);
3873 	if (error != 0)
3874 		return (error);
3875 
3876 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3877 		spa_load_note(spa, "final vdev tree:");
3878 		vdev_dbgmsg_print_tree(rvd, 2);
3879 	}
3880 
3881 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3882 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3883 		/*
3884 		 * Sanity check to make sure that we are indeed loading the
3885 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3886 		 * in the config provided and they happened to be the only ones
3887 		 * to have the latest uberblock, we could involuntarily perform
3888 		 * an extreme rewind.
3889 		 */
3890 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3891 		if (healthy_tvds_mos - healthy_tvds >=
3892 		    SPA_SYNC_MIN_VDEVS) {
3893 			spa_load_note(spa, "config provided misses too many "
3894 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3895 			    (u_longlong_t)healthy_tvds,
3896 			    (u_longlong_t)healthy_tvds_mos);
3897 			spa_load_note(spa, "vdev tree:");
3898 			vdev_dbgmsg_print_tree(rvd, 2);
3899 			if (reloading) {
3900 				spa_load_failed(spa, "config was already "
3901 				    "provided from MOS. Aborting.");
3902 				return (spa_vdev_err(rvd,
3903 				    VDEV_AUX_CORRUPT_DATA, EIO));
3904 			}
3905 			spa_load_note(spa, "spa must be reloaded using MOS "
3906 			    "config");
3907 			return (SET_ERROR(EAGAIN));
3908 		}
3909 	}
3910 
3911 	error = spa_check_for_missing_logs(spa);
3912 	if (error != 0)
3913 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3914 
3915 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3916 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3917 		    "guid sum (%llu != %llu)",
3918 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3919 		    (u_longlong_t)rvd->vdev_guid_sum);
3920 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3921 		    ENXIO));
3922 	}
3923 
3924 	return (0);
3925 }
3926 
3927 static int
3928 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3929 {
3930 	int error = 0;
3931 	vdev_t *rvd = spa->spa_root_vdev;
3932 
3933 	/*
3934 	 * Everything that we read before spa_remove_init() must be stored
3935 	 * on concreted vdevs.  Therefore we do this as early as possible.
3936 	 */
3937 	error = spa_remove_init(spa);
3938 	if (error != 0) {
3939 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3940 		    error);
3941 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3942 	}
3943 
3944 	/*
3945 	 * Retrieve information needed to condense indirect vdev mappings.
3946 	 */
3947 	error = spa_condense_init(spa);
3948 	if (error != 0) {
3949 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3950 		    error);
3951 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3952 	}
3953 
3954 	return (0);
3955 }
3956 
3957 static int
3958 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3959 {
3960 	int error = 0;
3961 	vdev_t *rvd = spa->spa_root_vdev;
3962 
3963 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3964 		boolean_t missing_feat_read = B_FALSE;
3965 		nvlist_t *unsup_feat, *enabled_feat;
3966 
3967 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3968 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3969 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3970 		}
3971 
3972 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3973 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3974 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3975 		}
3976 
3977 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3978 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3979 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3980 		}
3981 
3982 		enabled_feat = fnvlist_alloc();
3983 		unsup_feat = fnvlist_alloc();
3984 
3985 		if (!spa_features_check(spa, B_FALSE,
3986 		    unsup_feat, enabled_feat))
3987 			missing_feat_read = B_TRUE;
3988 
3989 		if (spa_writeable(spa) ||
3990 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3991 			if (!spa_features_check(spa, B_TRUE,
3992 			    unsup_feat, enabled_feat)) {
3993 				*missing_feat_writep = B_TRUE;
3994 			}
3995 		}
3996 
3997 		fnvlist_add_nvlist(spa->spa_load_info,
3998 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3999 
4000 		if (!nvlist_empty(unsup_feat)) {
4001 			fnvlist_add_nvlist(spa->spa_load_info,
4002 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4003 		}
4004 
4005 		fnvlist_free(enabled_feat);
4006 		fnvlist_free(unsup_feat);
4007 
4008 		if (!missing_feat_read) {
4009 			fnvlist_add_boolean(spa->spa_load_info,
4010 			    ZPOOL_CONFIG_CAN_RDONLY);
4011 		}
4012 
4013 		/*
4014 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4015 		 * twofold: to determine whether the pool is available for
4016 		 * import in read-write mode and (if it is not) whether the
4017 		 * pool is available for import in read-only mode. If the pool
4018 		 * is available for import in read-write mode, it is displayed
4019 		 * as available in userland; if it is not available for import
4020 		 * in read-only mode, it is displayed as unavailable in
4021 		 * userland. If the pool is available for import in read-only
4022 		 * mode but not read-write mode, it is displayed as unavailable
4023 		 * in userland with a special note that the pool is actually
4024 		 * available for open in read-only mode.
4025 		 *
4026 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4027 		 * missing a feature for write, we must first determine whether
4028 		 * the pool can be opened read-only before returning to
4029 		 * userland in order to know whether to display the
4030 		 * abovementioned note.
4031 		 */
4032 		if (missing_feat_read || (*missing_feat_writep &&
4033 		    spa_writeable(spa))) {
4034 			spa_load_failed(spa, "pool uses unsupported features");
4035 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4036 			    ENOTSUP));
4037 		}
4038 
4039 		/*
4040 		 * Load refcounts for ZFS features from disk into an in-memory
4041 		 * cache during SPA initialization.
4042 		 */
4043 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4044 			uint64_t refcount;
4045 
4046 			error = feature_get_refcount_from_disk(spa,
4047 			    &spa_feature_table[i], &refcount);
4048 			if (error == 0) {
4049 				spa->spa_feat_refcount_cache[i] = refcount;
4050 			} else if (error == ENOTSUP) {
4051 				spa->spa_feat_refcount_cache[i] =
4052 				    SPA_FEATURE_DISABLED;
4053 			} else {
4054 				spa_load_failed(spa, "error getting refcount "
4055 				    "for feature %s [error=%d]",
4056 				    spa_feature_table[i].fi_guid, error);
4057 				return (spa_vdev_err(rvd,
4058 				    VDEV_AUX_CORRUPT_DATA, EIO));
4059 			}
4060 		}
4061 	}
4062 
4063 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4064 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4065 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4066 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4067 	}
4068 
4069 	/*
4070 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4071 	 * is now a dependency. If this pool has encryption enabled without
4072 	 * bookmark_v2, trigger an errata message.
4073 	 */
4074 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4075 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4076 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4077 	}
4078 
4079 	return (0);
4080 }
4081 
4082 static int
4083 spa_ld_load_special_directories(spa_t *spa)
4084 {
4085 	int error = 0;
4086 	vdev_t *rvd = spa->spa_root_vdev;
4087 
4088 	spa->spa_is_initializing = B_TRUE;
4089 	error = dsl_pool_open(spa->spa_dsl_pool);
4090 	spa->spa_is_initializing = B_FALSE;
4091 	if (error != 0) {
4092 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4093 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4094 	}
4095 
4096 	return (0);
4097 }
4098 
4099 static int
4100 spa_ld_get_props(spa_t *spa)
4101 {
4102 	int error = 0;
4103 	uint64_t obj;
4104 	vdev_t *rvd = spa->spa_root_vdev;
4105 
4106 	/* Grab the checksum salt from the MOS. */
4107 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4108 	    DMU_POOL_CHECKSUM_SALT, 1,
4109 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4110 	    spa->spa_cksum_salt.zcs_bytes);
4111 	if (error == ENOENT) {
4112 		/* Generate a new salt for subsequent use */
4113 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4114 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4115 	} else if (error != 0) {
4116 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4117 		    "MOS [error=%d]", error);
4118 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4119 	}
4120 
4121 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4122 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4123 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4124 	if (error != 0) {
4125 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4126 		    "[error=%d]", error);
4127 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4128 	}
4129 
4130 	/*
4131 	 * Load the bit that tells us to use the new accounting function
4132 	 * (raid-z deflation).  If we have an older pool, this will not
4133 	 * be present.
4134 	 */
4135 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4136 	if (error != 0 && error != ENOENT)
4137 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4138 
4139 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4140 	    &spa->spa_creation_version, B_FALSE);
4141 	if (error != 0 && error != ENOENT)
4142 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4143 
4144 	/*
4145 	 * Load the persistent error log.  If we have an older pool, this will
4146 	 * not be present.
4147 	 */
4148 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4149 	    B_FALSE);
4150 	if (error != 0 && error != ENOENT)
4151 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4152 
4153 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4154 	    &spa->spa_errlog_scrub, B_FALSE);
4155 	if (error != 0 && error != ENOENT)
4156 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4157 
4158 	/*
4159 	 * Load the livelist deletion field. If a livelist is queued for
4160 	 * deletion, indicate that in the spa
4161 	 */
4162 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4163 	    &spa->spa_livelists_to_delete, B_FALSE);
4164 	if (error != 0 && error != ENOENT)
4165 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4166 
4167 	/*
4168 	 * Load the history object.  If we have an older pool, this
4169 	 * will not be present.
4170 	 */
4171 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4172 	if (error != 0 && error != ENOENT)
4173 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4174 
4175 	/*
4176 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4177 	 * be present; in this case, defer its creation to a later time to
4178 	 * avoid dirtying the MOS this early / out of sync context. See
4179 	 * spa_sync_config_object.
4180 	 */
4181 
4182 	/* The sentinel is only available in the MOS config. */
4183 	nvlist_t *mos_config;
4184 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4185 		spa_load_failed(spa, "unable to retrieve MOS config");
4186 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4187 	}
4188 
4189 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4190 	    &spa->spa_all_vdev_zaps, B_FALSE);
4191 
4192 	if (error == ENOENT) {
4193 		VERIFY(!nvlist_exists(mos_config,
4194 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4195 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4196 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4197 	} else if (error != 0) {
4198 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4199 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4200 		/*
4201 		 * An older version of ZFS overwrote the sentinel value, so
4202 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4203 		 * destruction to later; see spa_sync_config_object.
4204 		 */
4205 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4206 		/*
4207 		 * We're assuming that no vdevs have had their ZAPs created
4208 		 * before this. Better be sure of it.
4209 		 */
4210 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4211 	}
4212 	nvlist_free(mos_config);
4213 
4214 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4215 
4216 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4217 	    B_FALSE);
4218 	if (error && error != ENOENT)
4219 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4220 
4221 	if (error == 0) {
4222 		uint64_t autoreplace = 0;
4223 
4224 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4225 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4226 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4227 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4228 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4229 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4230 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4231 		spa->spa_autoreplace = (autoreplace != 0);
4232 	}
4233 
4234 	/*
4235 	 * If we are importing a pool with missing top-level vdevs,
4236 	 * we enforce that the pool doesn't panic or get suspended on
4237 	 * error since the likelihood of missing data is extremely high.
4238 	 */
4239 	if (spa->spa_missing_tvds > 0 &&
4240 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4241 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4242 		spa_load_note(spa, "forcing failmode to 'continue' "
4243 		    "as some top level vdevs are missing");
4244 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4245 	}
4246 
4247 	return (0);
4248 }
4249 
4250 static int
4251 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4252 {
4253 	int error = 0;
4254 	vdev_t *rvd = spa->spa_root_vdev;
4255 
4256 	/*
4257 	 * If we're assembling the pool from the split-off vdevs of
4258 	 * an existing pool, we don't want to attach the spares & cache
4259 	 * devices.
4260 	 */
4261 
4262 	/*
4263 	 * Load any hot spares for this pool.
4264 	 */
4265 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4266 	    B_FALSE);
4267 	if (error != 0 && error != ENOENT)
4268 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4269 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4270 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4271 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4272 		    &spa->spa_spares.sav_config) != 0) {
4273 			spa_load_failed(spa, "error loading spares nvlist");
4274 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4275 		}
4276 
4277 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4278 		spa_load_spares(spa);
4279 		spa_config_exit(spa, SCL_ALL, FTAG);
4280 	} else if (error == 0) {
4281 		spa->spa_spares.sav_sync = B_TRUE;
4282 	}
4283 
4284 	/*
4285 	 * Load any level 2 ARC devices for this pool.
4286 	 */
4287 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4288 	    &spa->spa_l2cache.sav_object, B_FALSE);
4289 	if (error != 0 && error != ENOENT)
4290 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4291 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4292 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4293 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4294 		    &spa->spa_l2cache.sav_config) != 0) {
4295 			spa_load_failed(spa, "error loading l2cache nvlist");
4296 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4297 		}
4298 
4299 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4300 		spa_load_l2cache(spa);
4301 		spa_config_exit(spa, SCL_ALL, FTAG);
4302 	} else if (error == 0) {
4303 		spa->spa_l2cache.sav_sync = B_TRUE;
4304 	}
4305 
4306 	return (0);
4307 }
4308 
4309 static int
4310 spa_ld_load_vdev_metadata(spa_t *spa)
4311 {
4312 	int error = 0;
4313 	vdev_t *rvd = spa->spa_root_vdev;
4314 
4315 	/*
4316 	 * If the 'multihost' property is set, then never allow a pool to
4317 	 * be imported when the system hostid is zero.  The exception to
4318 	 * this rule is zdb which is always allowed to access pools.
4319 	 */
4320 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4321 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4322 		fnvlist_add_uint64(spa->spa_load_info,
4323 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4324 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4325 	}
4326 
4327 	/*
4328 	 * If the 'autoreplace' property is set, then post a resource notifying
4329 	 * the ZFS DE that it should not issue any faults for unopenable
4330 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4331 	 * unopenable vdevs so that the normal autoreplace handler can take
4332 	 * over.
4333 	 */
4334 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4335 		spa_check_removed(spa->spa_root_vdev);
4336 		/*
4337 		 * For the import case, this is done in spa_import(), because
4338 		 * at this point we're using the spare definitions from
4339 		 * the MOS config, not necessarily from the userland config.
4340 		 */
4341 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4342 			spa_aux_check_removed(&spa->spa_spares);
4343 			spa_aux_check_removed(&spa->spa_l2cache);
4344 		}
4345 	}
4346 
4347 	/*
4348 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4349 	 */
4350 	error = vdev_load(rvd);
4351 	if (error != 0) {
4352 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4353 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4354 	}
4355 
4356 	error = spa_ld_log_spacemaps(spa);
4357 	if (error != 0) {
4358 		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4359 		    error);
4360 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4361 	}
4362 
4363 	/*
4364 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4365 	 */
4366 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4367 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4368 	spa_config_exit(spa, SCL_ALL, FTAG);
4369 
4370 	return (0);
4371 }
4372 
4373 static int
4374 spa_ld_load_dedup_tables(spa_t *spa)
4375 {
4376 	int error = 0;
4377 	vdev_t *rvd = spa->spa_root_vdev;
4378 
4379 	error = ddt_load(spa);
4380 	if (error != 0) {
4381 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4382 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4383 	}
4384 
4385 	return (0);
4386 }
4387 
4388 static int
4389 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4390 {
4391 	vdev_t *rvd = spa->spa_root_vdev;
4392 
4393 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4394 		boolean_t missing = spa_check_logs(spa);
4395 		if (missing) {
4396 			if (spa->spa_missing_tvds != 0) {
4397 				spa_load_note(spa, "spa_check_logs failed "
4398 				    "so dropping the logs");
4399 			} else {
4400 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4401 				spa_load_failed(spa, "spa_check_logs failed");
4402 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4403 				    ENXIO));
4404 			}
4405 		}
4406 	}
4407 
4408 	return (0);
4409 }
4410 
4411 static int
4412 spa_ld_verify_pool_data(spa_t *spa)
4413 {
4414 	int error = 0;
4415 	vdev_t *rvd = spa->spa_root_vdev;
4416 
4417 	/*
4418 	 * We've successfully opened the pool, verify that we're ready
4419 	 * to start pushing transactions.
4420 	 */
4421 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4422 		error = spa_load_verify(spa);
4423 		if (error != 0) {
4424 			spa_load_failed(spa, "spa_load_verify failed "
4425 			    "[error=%d]", error);
4426 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4427 			    error));
4428 		}
4429 	}
4430 
4431 	return (0);
4432 }
4433 
4434 static void
4435 spa_ld_claim_log_blocks(spa_t *spa)
4436 {
4437 	dmu_tx_t *tx;
4438 	dsl_pool_t *dp = spa_get_dsl(spa);
4439 
4440 	/*
4441 	 * Claim log blocks that haven't been committed yet.
4442 	 * This must all happen in a single txg.
4443 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4444 	 * invoked from zil_claim_log_block()'s i/o done callback.
4445 	 * Price of rollback is that we abandon the log.
4446 	 */
4447 	spa->spa_claiming = B_TRUE;
4448 
4449 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4450 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4451 	    zil_claim, tx, DS_FIND_CHILDREN);
4452 	dmu_tx_commit(tx);
4453 
4454 	spa->spa_claiming = B_FALSE;
4455 
4456 	spa_set_log_state(spa, SPA_LOG_GOOD);
4457 }
4458 
4459 static void
4460 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4461     boolean_t update_config_cache)
4462 {
4463 	vdev_t *rvd = spa->spa_root_vdev;
4464 	int need_update = B_FALSE;
4465 
4466 	/*
4467 	 * If the config cache is stale, or we have uninitialized
4468 	 * metaslabs (see spa_vdev_add()), then update the config.
4469 	 *
4470 	 * If this is a verbatim import, trust the current
4471 	 * in-core spa_config and update the disk labels.
4472 	 */
4473 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4474 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4475 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4476 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4477 		need_update = B_TRUE;
4478 
4479 	for (int c = 0; c < rvd->vdev_children; c++)
4480 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4481 			need_update = B_TRUE;
4482 
4483 	/*
4484 	 * Update the config cache asynchronously in case we're the
4485 	 * root pool, in which case the config cache isn't writable yet.
4486 	 */
4487 	if (need_update)
4488 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4489 }
4490 
4491 static void
4492 spa_ld_prepare_for_reload(spa_t *spa)
4493 {
4494 	spa_mode_t mode = spa->spa_mode;
4495 	int async_suspended = spa->spa_async_suspended;
4496 
4497 	spa_unload(spa);
4498 	spa_deactivate(spa);
4499 	spa_activate(spa, mode);
4500 
4501 	/*
4502 	 * We save the value of spa_async_suspended as it gets reset to 0 by
4503 	 * spa_unload(). We want to restore it back to the original value before
4504 	 * returning as we might be calling spa_async_resume() later.
4505 	 */
4506 	spa->spa_async_suspended = async_suspended;
4507 }
4508 
4509 static int
4510 spa_ld_read_checkpoint_txg(spa_t *spa)
4511 {
4512 	uberblock_t checkpoint;
4513 	int error = 0;
4514 
4515 	ASSERT0(spa->spa_checkpoint_txg);
4516 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4517 
4518 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4519 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4520 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4521 
4522 	if (error == ENOENT)
4523 		return (0);
4524 
4525 	if (error != 0)
4526 		return (error);
4527 
4528 	ASSERT3U(checkpoint.ub_txg, !=, 0);
4529 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4530 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4531 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4532 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4533 
4534 	return (0);
4535 }
4536 
4537 static int
4538 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4539 {
4540 	int error = 0;
4541 
4542 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4543 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4544 
4545 	/*
4546 	 * Never trust the config that is provided unless we are assembling
4547 	 * a pool following a split.
4548 	 * This means don't trust blkptrs and the vdev tree in general. This
4549 	 * also effectively puts the spa in read-only mode since
4550 	 * spa_writeable() checks for spa_trust_config to be true.
4551 	 * We will later load a trusted config from the MOS.
4552 	 */
4553 	if (type != SPA_IMPORT_ASSEMBLE)
4554 		spa->spa_trust_config = B_FALSE;
4555 
4556 	/*
4557 	 * Parse the config provided to create a vdev tree.
4558 	 */
4559 	error = spa_ld_parse_config(spa, type);
4560 	if (error != 0)
4561 		return (error);
4562 
4563 	spa_import_progress_add(spa);
4564 
4565 	/*
4566 	 * Now that we have the vdev tree, try to open each vdev. This involves
4567 	 * opening the underlying physical device, retrieving its geometry and
4568 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4569 	 * based on the success of those operations. After this we'll be ready
4570 	 * to read from the vdevs.
4571 	 */
4572 	error = spa_ld_open_vdevs(spa);
4573 	if (error != 0)
4574 		return (error);
4575 
4576 	/*
4577 	 * Read the label of each vdev and make sure that the GUIDs stored
4578 	 * there match the GUIDs in the config provided.
4579 	 * If we're assembling a new pool that's been split off from an
4580 	 * existing pool, the labels haven't yet been updated so we skip
4581 	 * validation for now.
4582 	 */
4583 	if (type != SPA_IMPORT_ASSEMBLE) {
4584 		error = spa_ld_validate_vdevs(spa);
4585 		if (error != 0)
4586 			return (error);
4587 	}
4588 
4589 	/*
4590 	 * Read all vdev labels to find the best uberblock (i.e. latest,
4591 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4592 	 * get the list of features required to read blkptrs in the MOS from
4593 	 * the vdev label with the best uberblock and verify that our version
4594 	 * of zfs supports them all.
4595 	 */
4596 	error = spa_ld_select_uberblock(spa, type);
4597 	if (error != 0)
4598 		return (error);
4599 
4600 	/*
4601 	 * Pass that uberblock to the dsl_pool layer which will open the root
4602 	 * blkptr. This blkptr points to the latest version of the MOS and will
4603 	 * allow us to read its contents.
4604 	 */
4605 	error = spa_ld_open_rootbp(spa);
4606 	if (error != 0)
4607 		return (error);
4608 
4609 	return (0);
4610 }
4611 
4612 static int
4613 spa_ld_checkpoint_rewind(spa_t *spa)
4614 {
4615 	uberblock_t checkpoint;
4616 	int error = 0;
4617 
4618 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4619 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4620 
4621 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4622 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4623 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4624 
4625 	if (error != 0) {
4626 		spa_load_failed(spa, "unable to retrieve checkpointed "
4627 		    "uberblock from the MOS config [error=%d]", error);
4628 
4629 		if (error == ENOENT)
4630 			error = ZFS_ERR_NO_CHECKPOINT;
4631 
4632 		return (error);
4633 	}
4634 
4635 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4636 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4637 
4638 	/*
4639 	 * We need to update the txg and timestamp of the checkpointed
4640 	 * uberblock to be higher than the latest one. This ensures that
4641 	 * the checkpointed uberblock is selected if we were to close and
4642 	 * reopen the pool right after we've written it in the vdev labels.
4643 	 * (also see block comment in vdev_uberblock_compare)
4644 	 */
4645 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4646 	checkpoint.ub_timestamp = gethrestime_sec();
4647 
4648 	/*
4649 	 * Set current uberblock to be the checkpointed uberblock.
4650 	 */
4651 	spa->spa_uberblock = checkpoint;
4652 
4653 	/*
4654 	 * If we are doing a normal rewind, then the pool is open for
4655 	 * writing and we sync the "updated" checkpointed uberblock to
4656 	 * disk. Once this is done, we've basically rewound the whole
4657 	 * pool and there is no way back.
4658 	 *
4659 	 * There are cases when we don't want to attempt and sync the
4660 	 * checkpointed uberblock to disk because we are opening a
4661 	 * pool as read-only. Specifically, verifying the checkpointed
4662 	 * state with zdb, and importing the checkpointed state to get
4663 	 * a "preview" of its content.
4664 	 */
4665 	if (spa_writeable(spa)) {
4666 		vdev_t *rvd = spa->spa_root_vdev;
4667 
4668 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4669 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4670 		int svdcount = 0;
4671 		int children = rvd->vdev_children;
4672 		int c0 = random_in_range(children);
4673 
4674 		for (int c = 0; c < children; c++) {
4675 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4676 
4677 			/* Stop when revisiting the first vdev */
4678 			if (c > 0 && svd[0] == vd)
4679 				break;
4680 
4681 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4682 			    !vdev_is_concrete(vd))
4683 				continue;
4684 
4685 			svd[svdcount++] = vd;
4686 			if (svdcount == SPA_SYNC_MIN_VDEVS)
4687 				break;
4688 		}
4689 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4690 		if (error == 0)
4691 			spa->spa_last_synced_guid = rvd->vdev_guid;
4692 		spa_config_exit(spa, SCL_ALL, FTAG);
4693 
4694 		if (error != 0) {
4695 			spa_load_failed(spa, "failed to write checkpointed "
4696 			    "uberblock to the vdev labels [error=%d]", error);
4697 			return (error);
4698 		}
4699 	}
4700 
4701 	return (0);
4702 }
4703 
4704 static int
4705 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4706     boolean_t *update_config_cache)
4707 {
4708 	int error;
4709 
4710 	/*
4711 	 * Parse the config for pool, open and validate vdevs,
4712 	 * select an uberblock, and use that uberblock to open
4713 	 * the MOS.
4714 	 */
4715 	error = spa_ld_mos_init(spa, type);
4716 	if (error != 0)
4717 		return (error);
4718 
4719 	/*
4720 	 * Retrieve the trusted config stored in the MOS and use it to create
4721 	 * a new, exact version of the vdev tree, then reopen all vdevs.
4722 	 */
4723 	error = spa_ld_trusted_config(spa, type, B_FALSE);
4724 	if (error == EAGAIN) {
4725 		if (update_config_cache != NULL)
4726 			*update_config_cache = B_TRUE;
4727 
4728 		/*
4729 		 * Redo the loading process with the trusted config if it is
4730 		 * too different from the untrusted config.
4731 		 */
4732 		spa_ld_prepare_for_reload(spa);
4733 		spa_load_note(spa, "RELOADING");
4734 		error = spa_ld_mos_init(spa, type);
4735 		if (error != 0)
4736 			return (error);
4737 
4738 		error = spa_ld_trusted_config(spa, type, B_TRUE);
4739 		if (error != 0)
4740 			return (error);
4741 
4742 	} else if (error != 0) {
4743 		return (error);
4744 	}
4745 
4746 	return (0);
4747 }
4748 
4749 /*
4750  * Load an existing storage pool, using the config provided. This config
4751  * describes which vdevs are part of the pool and is later validated against
4752  * partial configs present in each vdev's label and an entire copy of the
4753  * config stored in the MOS.
4754  */
4755 static int
4756 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4757 {
4758 	int error = 0;
4759 	boolean_t missing_feat_write = B_FALSE;
4760 	boolean_t checkpoint_rewind =
4761 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4762 	boolean_t update_config_cache = B_FALSE;
4763 
4764 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4765 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4766 
4767 	spa_load_note(spa, "LOADING");
4768 
4769 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4770 	if (error != 0)
4771 		return (error);
4772 
4773 	/*
4774 	 * If we are rewinding to the checkpoint then we need to repeat
4775 	 * everything we've done so far in this function but this time
4776 	 * selecting the checkpointed uberblock and using that to open
4777 	 * the MOS.
4778 	 */
4779 	if (checkpoint_rewind) {
4780 		/*
4781 		 * If we are rewinding to the checkpoint update config cache
4782 		 * anyway.
4783 		 */
4784 		update_config_cache = B_TRUE;
4785 
4786 		/*
4787 		 * Extract the checkpointed uberblock from the current MOS
4788 		 * and use this as the pool's uberblock from now on. If the
4789 		 * pool is imported as writeable we also write the checkpoint
4790 		 * uberblock to the labels, making the rewind permanent.
4791 		 */
4792 		error = spa_ld_checkpoint_rewind(spa);
4793 		if (error != 0)
4794 			return (error);
4795 
4796 		/*
4797 		 * Redo the loading process again with the
4798 		 * checkpointed uberblock.
4799 		 */
4800 		spa_ld_prepare_for_reload(spa);
4801 		spa_load_note(spa, "LOADING checkpointed uberblock");
4802 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4803 		if (error != 0)
4804 			return (error);
4805 	}
4806 
4807 	/*
4808 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4809 	 */
4810 	error = spa_ld_read_checkpoint_txg(spa);
4811 	if (error != 0)
4812 		return (error);
4813 
4814 	/*
4815 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4816 	 * from the pool and their contents were re-mapped to other vdevs. Note
4817 	 * that everything that we read before this step must have been
4818 	 * rewritten on concrete vdevs after the last device removal was
4819 	 * initiated. Otherwise we could be reading from indirect vdevs before
4820 	 * we have loaded their mappings.
4821 	 */
4822 	error = spa_ld_open_indirect_vdev_metadata(spa);
4823 	if (error != 0)
4824 		return (error);
4825 
4826 	/*
4827 	 * Retrieve the full list of active features from the MOS and check if
4828 	 * they are all supported.
4829 	 */
4830 	error = spa_ld_check_features(spa, &missing_feat_write);
4831 	if (error != 0)
4832 		return (error);
4833 
4834 	/*
4835 	 * Load several special directories from the MOS needed by the dsl_pool
4836 	 * layer.
4837 	 */
4838 	error = spa_ld_load_special_directories(spa);
4839 	if (error != 0)
4840 		return (error);
4841 
4842 	/*
4843 	 * Retrieve pool properties from the MOS.
4844 	 */
4845 	error = spa_ld_get_props(spa);
4846 	if (error != 0)
4847 		return (error);
4848 
4849 	/*
4850 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4851 	 * and open them.
4852 	 */
4853 	error = spa_ld_open_aux_vdevs(spa, type);
4854 	if (error != 0)
4855 		return (error);
4856 
4857 	/*
4858 	 * Load the metadata for all vdevs. Also check if unopenable devices
4859 	 * should be autoreplaced.
4860 	 */
4861 	error = spa_ld_load_vdev_metadata(spa);
4862 	if (error != 0)
4863 		return (error);
4864 
4865 	error = spa_ld_load_dedup_tables(spa);
4866 	if (error != 0)
4867 		return (error);
4868 
4869 	/*
4870 	 * Verify the logs now to make sure we don't have any unexpected errors
4871 	 * when we claim log blocks later.
4872 	 */
4873 	error = spa_ld_verify_logs(spa, type, ereport);
4874 	if (error != 0)
4875 		return (error);
4876 
4877 	if (missing_feat_write) {
4878 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4879 
4880 		/*
4881 		 * At this point, we know that we can open the pool in
4882 		 * read-only mode but not read-write mode. We now have enough
4883 		 * information and can return to userland.
4884 		 */
4885 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4886 		    ENOTSUP));
4887 	}
4888 
4889 	/*
4890 	 * Traverse the last txgs to make sure the pool was left off in a safe
4891 	 * state. When performing an extreme rewind, we verify the whole pool,
4892 	 * which can take a very long time.
4893 	 */
4894 	error = spa_ld_verify_pool_data(spa);
4895 	if (error != 0)
4896 		return (error);
4897 
4898 	/*
4899 	 * Calculate the deflated space for the pool. This must be done before
4900 	 * we write anything to the pool because we'd need to update the space
4901 	 * accounting using the deflated sizes.
4902 	 */
4903 	spa_update_dspace(spa);
4904 
4905 	/*
4906 	 * We have now retrieved all the information we needed to open the
4907 	 * pool. If we are importing the pool in read-write mode, a few
4908 	 * additional steps must be performed to finish the import.
4909 	 */
4910 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4911 	    spa->spa_load_max_txg == UINT64_MAX)) {
4912 		uint64_t config_cache_txg = spa->spa_config_txg;
4913 
4914 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4915 
4916 		/*
4917 		 * In case of a checkpoint rewind, log the original txg
4918 		 * of the checkpointed uberblock.
4919 		 */
4920 		if (checkpoint_rewind) {
4921 			spa_history_log_internal(spa, "checkpoint rewind",
4922 			    NULL, "rewound state to txg=%llu",
4923 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4924 		}
4925 
4926 		/*
4927 		 * Traverse the ZIL and claim all blocks.
4928 		 */
4929 		spa_ld_claim_log_blocks(spa);
4930 
4931 		/*
4932 		 * Kick-off the syncing thread.
4933 		 */
4934 		spa->spa_sync_on = B_TRUE;
4935 		txg_sync_start(spa->spa_dsl_pool);
4936 		mmp_thread_start(spa);
4937 
4938 		/*
4939 		 * Wait for all claims to sync.  We sync up to the highest
4940 		 * claimed log block birth time so that claimed log blocks
4941 		 * don't appear to be from the future.  spa_claim_max_txg
4942 		 * will have been set for us by ZIL traversal operations
4943 		 * performed above.
4944 		 */
4945 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4946 
4947 		/*
4948 		 * Check if we need to request an update of the config. On the
4949 		 * next sync, we would update the config stored in vdev labels
4950 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4951 		 */
4952 		spa_ld_check_for_config_update(spa, config_cache_txg,
4953 		    update_config_cache);
4954 
4955 		/*
4956 		 * Check if a rebuild was in progress and if so resume it.
4957 		 * Then check all DTLs to see if anything needs resilvering.
4958 		 * The resilver will be deferred if a rebuild was started.
4959 		 */
4960 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4961 			vdev_rebuild_restart(spa);
4962 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4963 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4964 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4965 		}
4966 
4967 		/*
4968 		 * Log the fact that we booted up (so that we can detect if
4969 		 * we rebooted in the middle of an operation).
4970 		 */
4971 		spa_history_log_version(spa, "open", NULL);
4972 
4973 		spa_restart_removal(spa);
4974 		spa_spawn_aux_threads(spa);
4975 
4976 		/*
4977 		 * Delete any inconsistent datasets.
4978 		 *
4979 		 * Note:
4980 		 * Since we may be issuing deletes for clones here,
4981 		 * we make sure to do so after we've spawned all the
4982 		 * auxiliary threads above (from which the livelist
4983 		 * deletion zthr is part of).
4984 		 */
4985 		(void) dmu_objset_find(spa_name(spa),
4986 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4987 
4988 		/*
4989 		 * Clean up any stale temporary dataset userrefs.
4990 		 */
4991 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4992 
4993 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4994 		vdev_initialize_restart(spa->spa_root_vdev);
4995 		vdev_trim_restart(spa->spa_root_vdev);
4996 		vdev_autotrim_restart(spa);
4997 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4998 	}
4999 
5000 	spa_import_progress_remove(spa_guid(spa));
5001 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5002 
5003 	spa_load_note(spa, "LOADED");
5004 
5005 	return (0);
5006 }
5007 
5008 static int
5009 spa_load_retry(spa_t *spa, spa_load_state_t state)
5010 {
5011 	spa_mode_t mode = spa->spa_mode;
5012 
5013 	spa_unload(spa);
5014 	spa_deactivate(spa);
5015 
5016 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5017 
5018 	spa_activate(spa, mode);
5019 	spa_async_suspend(spa);
5020 
5021 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5022 	    (u_longlong_t)spa->spa_load_max_txg);
5023 
5024 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5025 }
5026 
5027 /*
5028  * If spa_load() fails this function will try loading prior txg's. If
5029  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5030  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5031  * function will not rewind the pool and will return the same error as
5032  * spa_load().
5033  */
5034 static int
5035 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5036     int rewind_flags)
5037 {
5038 	nvlist_t *loadinfo = NULL;
5039 	nvlist_t *config = NULL;
5040 	int load_error, rewind_error;
5041 	uint64_t safe_rewind_txg;
5042 	uint64_t min_txg;
5043 
5044 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5045 		spa->spa_load_max_txg = spa->spa_load_txg;
5046 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5047 	} else {
5048 		spa->spa_load_max_txg = max_request;
5049 		if (max_request != UINT64_MAX)
5050 			spa->spa_extreme_rewind = B_TRUE;
5051 	}
5052 
5053 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5054 	if (load_error == 0)
5055 		return (0);
5056 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5057 		/*
5058 		 * When attempting checkpoint-rewind on a pool with no
5059 		 * checkpoint, we should not attempt to load uberblocks
5060 		 * from previous txgs when spa_load fails.
5061 		 */
5062 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5063 		spa_import_progress_remove(spa_guid(spa));
5064 		return (load_error);
5065 	}
5066 
5067 	if (spa->spa_root_vdev != NULL)
5068 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5069 
5070 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5071 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5072 
5073 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5074 		nvlist_free(config);
5075 		spa_import_progress_remove(spa_guid(spa));
5076 		return (load_error);
5077 	}
5078 
5079 	if (state == SPA_LOAD_RECOVER) {
5080 		/* Price of rolling back is discarding txgs, including log */
5081 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5082 	} else {
5083 		/*
5084 		 * If we aren't rolling back save the load info from our first
5085 		 * import attempt so that we can restore it after attempting
5086 		 * to rewind.
5087 		 */
5088 		loadinfo = spa->spa_load_info;
5089 		spa->spa_load_info = fnvlist_alloc();
5090 	}
5091 
5092 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5093 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5094 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5095 	    TXG_INITIAL : safe_rewind_txg;
5096 
5097 	/*
5098 	 * Continue as long as we're finding errors, we're still within
5099 	 * the acceptable rewind range, and we're still finding uberblocks
5100 	 */
5101 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5102 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5103 		if (spa->spa_load_max_txg < safe_rewind_txg)
5104 			spa->spa_extreme_rewind = B_TRUE;
5105 		rewind_error = spa_load_retry(spa, state);
5106 	}
5107 
5108 	spa->spa_extreme_rewind = B_FALSE;
5109 	spa->spa_load_max_txg = UINT64_MAX;
5110 
5111 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5112 		spa_config_set(spa, config);
5113 	else
5114 		nvlist_free(config);
5115 
5116 	if (state == SPA_LOAD_RECOVER) {
5117 		ASSERT3P(loadinfo, ==, NULL);
5118 		spa_import_progress_remove(spa_guid(spa));
5119 		return (rewind_error);
5120 	} else {
5121 		/* Store the rewind info as part of the initial load info */
5122 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5123 		    spa->spa_load_info);
5124 
5125 		/* Restore the initial load info */
5126 		fnvlist_free(spa->spa_load_info);
5127 		spa->spa_load_info = loadinfo;
5128 
5129 		spa_import_progress_remove(spa_guid(spa));
5130 		return (load_error);
5131 	}
5132 }
5133 
5134 /*
5135  * Pool Open/Import
5136  *
5137  * The import case is identical to an open except that the configuration is sent
5138  * down from userland, instead of grabbed from the configuration cache.  For the
5139  * case of an open, the pool configuration will exist in the
5140  * POOL_STATE_UNINITIALIZED state.
5141  *
5142  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5143  * the same time open the pool, without having to keep around the spa_t in some
5144  * ambiguous state.
5145  */
5146 static int
5147 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5148     nvlist_t **config)
5149 {
5150 	spa_t *spa;
5151 	spa_load_state_t state = SPA_LOAD_OPEN;
5152 	int error;
5153 	int locked = B_FALSE;
5154 	int firstopen = B_FALSE;
5155 
5156 	*spapp = NULL;
5157 
5158 	/*
5159 	 * As disgusting as this is, we need to support recursive calls to this
5160 	 * function because dsl_dir_open() is called during spa_load(), and ends
5161 	 * up calling spa_open() again.  The real fix is to figure out how to
5162 	 * avoid dsl_dir_open() calling this in the first place.
5163 	 */
5164 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5165 		mutex_enter(&spa_namespace_lock);
5166 		locked = B_TRUE;
5167 	}
5168 
5169 	if ((spa = spa_lookup(pool)) == NULL) {
5170 		if (locked)
5171 			mutex_exit(&spa_namespace_lock);
5172 		return (SET_ERROR(ENOENT));
5173 	}
5174 
5175 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5176 		zpool_load_policy_t policy;
5177 
5178 		firstopen = B_TRUE;
5179 
5180 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5181 		    &policy);
5182 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5183 			state = SPA_LOAD_RECOVER;
5184 
5185 		spa_activate(spa, spa_mode_global);
5186 
5187 		if (state != SPA_LOAD_RECOVER)
5188 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5189 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5190 
5191 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5192 		error = spa_load_best(spa, state, policy.zlp_txg,
5193 		    policy.zlp_rewind);
5194 
5195 		if (error == EBADF) {
5196 			/*
5197 			 * If vdev_validate() returns failure (indicated by
5198 			 * EBADF), it indicates that one of the vdevs indicates
5199 			 * that the pool has been exported or destroyed.  If
5200 			 * this is the case, the config cache is out of sync and
5201 			 * we should remove the pool from the namespace.
5202 			 */
5203 			spa_unload(spa);
5204 			spa_deactivate(spa);
5205 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5206 			spa_remove(spa);
5207 			if (locked)
5208 				mutex_exit(&spa_namespace_lock);
5209 			return (SET_ERROR(ENOENT));
5210 		}
5211 
5212 		if (error) {
5213 			/*
5214 			 * We can't open the pool, but we still have useful
5215 			 * information: the state of each vdev after the
5216 			 * attempted vdev_open().  Return this to the user.
5217 			 */
5218 			if (config != NULL && spa->spa_config) {
5219 				*config = fnvlist_dup(spa->spa_config);
5220 				fnvlist_add_nvlist(*config,
5221 				    ZPOOL_CONFIG_LOAD_INFO,
5222 				    spa->spa_load_info);
5223 			}
5224 			spa_unload(spa);
5225 			spa_deactivate(spa);
5226 			spa->spa_last_open_failed = error;
5227 			if (locked)
5228 				mutex_exit(&spa_namespace_lock);
5229 			*spapp = NULL;
5230 			return (error);
5231 		}
5232 	}
5233 
5234 	spa_open_ref(spa, tag);
5235 
5236 	if (config != NULL)
5237 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5238 
5239 	/*
5240 	 * If we've recovered the pool, pass back any information we
5241 	 * gathered while doing the load.
5242 	 */
5243 	if (state == SPA_LOAD_RECOVER) {
5244 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5245 		    spa->spa_load_info);
5246 	}
5247 
5248 	if (locked) {
5249 		spa->spa_last_open_failed = 0;
5250 		spa->spa_last_ubsync_txg = 0;
5251 		spa->spa_load_txg = 0;
5252 		mutex_exit(&spa_namespace_lock);
5253 	}
5254 
5255 	if (firstopen)
5256 		zvol_create_minors_recursive(spa_name(spa));
5257 
5258 	*spapp = spa;
5259 
5260 	return (0);
5261 }
5262 
5263 int
5264 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5265     nvlist_t **config)
5266 {
5267 	return (spa_open_common(name, spapp, tag, policy, config));
5268 }
5269 
5270 int
5271 spa_open(const char *name, spa_t **spapp, void *tag)
5272 {
5273 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5274 }
5275 
5276 /*
5277  * Lookup the given spa_t, incrementing the inject count in the process,
5278  * preventing it from being exported or destroyed.
5279  */
5280 spa_t *
5281 spa_inject_addref(char *name)
5282 {
5283 	spa_t *spa;
5284 
5285 	mutex_enter(&spa_namespace_lock);
5286 	if ((spa = spa_lookup(name)) == NULL) {
5287 		mutex_exit(&spa_namespace_lock);
5288 		return (NULL);
5289 	}
5290 	spa->spa_inject_ref++;
5291 	mutex_exit(&spa_namespace_lock);
5292 
5293 	return (spa);
5294 }
5295 
5296 void
5297 spa_inject_delref(spa_t *spa)
5298 {
5299 	mutex_enter(&spa_namespace_lock);
5300 	spa->spa_inject_ref--;
5301 	mutex_exit(&spa_namespace_lock);
5302 }
5303 
5304 /*
5305  * Add spares device information to the nvlist.
5306  */
5307 static void
5308 spa_add_spares(spa_t *spa, nvlist_t *config)
5309 {
5310 	nvlist_t **spares;
5311 	uint_t i, nspares;
5312 	nvlist_t *nvroot;
5313 	uint64_t guid;
5314 	vdev_stat_t *vs;
5315 	uint_t vsc;
5316 	uint64_t pool;
5317 
5318 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5319 
5320 	if (spa->spa_spares.sav_count == 0)
5321 		return;
5322 
5323 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5324 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5325 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5326 	if (nspares != 0) {
5327 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5328 		    (const nvlist_t * const *)spares, nspares);
5329 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5330 		    &spares, &nspares));
5331 
5332 		/*
5333 		 * Go through and find any spares which have since been
5334 		 * repurposed as an active spare.  If this is the case, update
5335 		 * their status appropriately.
5336 		 */
5337 		for (i = 0; i < nspares; i++) {
5338 			guid = fnvlist_lookup_uint64(spares[i],
5339 			    ZPOOL_CONFIG_GUID);
5340 			if (spa_spare_exists(guid, &pool, NULL) &&
5341 			    pool != 0ULL) {
5342 				VERIFY0(nvlist_lookup_uint64_array(spares[i],
5343 				    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs,
5344 				    &vsc));
5345 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5346 				vs->vs_aux = VDEV_AUX_SPARED;
5347 			}
5348 		}
5349 	}
5350 }
5351 
5352 /*
5353  * Add l2cache device information to the nvlist, including vdev stats.
5354  */
5355 static void
5356 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5357 {
5358 	nvlist_t **l2cache;
5359 	uint_t i, j, nl2cache;
5360 	nvlist_t *nvroot;
5361 	uint64_t guid;
5362 	vdev_t *vd;
5363 	vdev_stat_t *vs;
5364 	uint_t vsc;
5365 
5366 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5367 
5368 	if (spa->spa_l2cache.sav_count == 0)
5369 		return;
5370 
5371 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5372 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5373 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5374 	if (nl2cache != 0) {
5375 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5376 		    (const nvlist_t * const *)l2cache, nl2cache);
5377 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5378 		    &l2cache, &nl2cache));
5379 
5380 		/*
5381 		 * Update level 2 cache device stats.
5382 		 */
5383 
5384 		for (i = 0; i < nl2cache; i++) {
5385 			guid = fnvlist_lookup_uint64(l2cache[i],
5386 			    ZPOOL_CONFIG_GUID);
5387 
5388 			vd = NULL;
5389 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5390 				if (guid ==
5391 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5392 					vd = spa->spa_l2cache.sav_vdevs[j];
5393 					break;
5394 				}
5395 			}
5396 			ASSERT(vd != NULL);
5397 
5398 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5399 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5400 			vdev_get_stats(vd, vs);
5401 			vdev_config_generate_stats(vd, l2cache[i]);
5402 
5403 		}
5404 	}
5405 }
5406 
5407 static void
5408 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5409 {
5410 	zap_cursor_t zc;
5411 	zap_attribute_t za;
5412 
5413 	if (spa->spa_feat_for_read_obj != 0) {
5414 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5415 		    spa->spa_feat_for_read_obj);
5416 		    zap_cursor_retrieve(&zc, &za) == 0;
5417 		    zap_cursor_advance(&zc)) {
5418 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5419 			    za.za_num_integers == 1);
5420 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5421 			    za.za_first_integer));
5422 		}
5423 		zap_cursor_fini(&zc);
5424 	}
5425 
5426 	if (spa->spa_feat_for_write_obj != 0) {
5427 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5428 		    spa->spa_feat_for_write_obj);
5429 		    zap_cursor_retrieve(&zc, &za) == 0;
5430 		    zap_cursor_advance(&zc)) {
5431 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5432 			    za.za_num_integers == 1);
5433 			VERIFY0(nvlist_add_uint64(features, za.za_name,
5434 			    za.za_first_integer));
5435 		}
5436 		zap_cursor_fini(&zc);
5437 	}
5438 }
5439 
5440 static void
5441 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5442 {
5443 	int i;
5444 
5445 	for (i = 0; i < SPA_FEATURES; i++) {
5446 		zfeature_info_t feature = spa_feature_table[i];
5447 		uint64_t refcount;
5448 
5449 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5450 			continue;
5451 
5452 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5453 	}
5454 }
5455 
5456 /*
5457  * Store a list of pool features and their reference counts in the
5458  * config.
5459  *
5460  * The first time this is called on a spa, allocate a new nvlist, fetch
5461  * the pool features and reference counts from disk, then save the list
5462  * in the spa. In subsequent calls on the same spa use the saved nvlist
5463  * and refresh its values from the cached reference counts.  This
5464  * ensures we don't block here on I/O on a suspended pool so 'zpool
5465  * clear' can resume the pool.
5466  */
5467 static void
5468 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5469 {
5470 	nvlist_t *features;
5471 
5472 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5473 
5474 	mutex_enter(&spa->spa_feat_stats_lock);
5475 	features = spa->spa_feat_stats;
5476 
5477 	if (features != NULL) {
5478 		spa_feature_stats_from_cache(spa, features);
5479 	} else {
5480 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5481 		spa->spa_feat_stats = features;
5482 		spa_feature_stats_from_disk(spa, features);
5483 	}
5484 
5485 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5486 	    features));
5487 
5488 	mutex_exit(&spa->spa_feat_stats_lock);
5489 }
5490 
5491 int
5492 spa_get_stats(const char *name, nvlist_t **config,
5493     char *altroot, size_t buflen)
5494 {
5495 	int error;
5496 	spa_t *spa;
5497 
5498 	*config = NULL;
5499 	error = spa_open_common(name, &spa, FTAG, NULL, config);
5500 
5501 	if (spa != NULL) {
5502 		/*
5503 		 * This still leaves a window of inconsistency where the spares
5504 		 * or l2cache devices could change and the config would be
5505 		 * self-inconsistent.
5506 		 */
5507 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5508 
5509 		if (*config != NULL) {
5510 			uint64_t loadtimes[2];
5511 
5512 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5513 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5514 			fnvlist_add_uint64_array(*config,
5515 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5516 
5517 			fnvlist_add_uint64(*config,
5518 			    ZPOOL_CONFIG_ERRCOUNT,
5519 			    spa_get_errlog_size(spa));
5520 
5521 			if (spa_suspended(spa)) {
5522 				fnvlist_add_uint64(*config,
5523 				    ZPOOL_CONFIG_SUSPENDED,
5524 				    spa->spa_failmode);
5525 				fnvlist_add_uint64(*config,
5526 				    ZPOOL_CONFIG_SUSPENDED_REASON,
5527 				    spa->spa_suspended);
5528 			}
5529 
5530 			spa_add_spares(spa, *config);
5531 			spa_add_l2cache(spa, *config);
5532 			spa_add_feature_stats(spa, *config);
5533 		}
5534 	}
5535 
5536 	/*
5537 	 * We want to get the alternate root even for faulted pools, so we cheat
5538 	 * and call spa_lookup() directly.
5539 	 */
5540 	if (altroot) {
5541 		if (spa == NULL) {
5542 			mutex_enter(&spa_namespace_lock);
5543 			spa = spa_lookup(name);
5544 			if (spa)
5545 				spa_altroot(spa, altroot, buflen);
5546 			else
5547 				altroot[0] = '\0';
5548 			spa = NULL;
5549 			mutex_exit(&spa_namespace_lock);
5550 		} else {
5551 			spa_altroot(spa, altroot, buflen);
5552 		}
5553 	}
5554 
5555 	if (spa != NULL) {
5556 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5557 		spa_close(spa, FTAG);
5558 	}
5559 
5560 	return (error);
5561 }
5562 
5563 /*
5564  * Validate that the auxiliary device array is well formed.  We must have an
5565  * array of nvlists, each which describes a valid leaf vdev.  If this is an
5566  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5567  * specified, as long as they are well-formed.
5568  */
5569 static int
5570 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5571     spa_aux_vdev_t *sav, const char *config, uint64_t version,
5572     vdev_labeltype_t label)
5573 {
5574 	nvlist_t **dev;
5575 	uint_t i, ndev;
5576 	vdev_t *vd;
5577 	int error;
5578 
5579 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5580 
5581 	/*
5582 	 * It's acceptable to have no devs specified.
5583 	 */
5584 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5585 		return (0);
5586 
5587 	if (ndev == 0)
5588 		return (SET_ERROR(EINVAL));
5589 
5590 	/*
5591 	 * Make sure the pool is formatted with a version that supports this
5592 	 * device type.
5593 	 */
5594 	if (spa_version(spa) < version)
5595 		return (SET_ERROR(ENOTSUP));
5596 
5597 	/*
5598 	 * Set the pending device list so we correctly handle device in-use
5599 	 * checking.
5600 	 */
5601 	sav->sav_pending = dev;
5602 	sav->sav_npending = ndev;
5603 
5604 	for (i = 0; i < ndev; i++) {
5605 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5606 		    mode)) != 0)
5607 			goto out;
5608 
5609 		if (!vd->vdev_ops->vdev_op_leaf) {
5610 			vdev_free(vd);
5611 			error = SET_ERROR(EINVAL);
5612 			goto out;
5613 		}
5614 
5615 		vd->vdev_top = vd;
5616 
5617 		if ((error = vdev_open(vd)) == 0 &&
5618 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5619 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5620 			    vd->vdev_guid);
5621 		}
5622 
5623 		vdev_free(vd);
5624 
5625 		if (error &&
5626 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5627 			goto out;
5628 		else
5629 			error = 0;
5630 	}
5631 
5632 out:
5633 	sav->sav_pending = NULL;
5634 	sav->sav_npending = 0;
5635 	return (error);
5636 }
5637 
5638 static int
5639 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5640 {
5641 	int error;
5642 
5643 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5644 
5645 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5646 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5647 	    VDEV_LABEL_SPARE)) != 0) {
5648 		return (error);
5649 	}
5650 
5651 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5652 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5653 	    VDEV_LABEL_L2CACHE));
5654 }
5655 
5656 static void
5657 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5658     const char *config)
5659 {
5660 	int i;
5661 
5662 	if (sav->sav_config != NULL) {
5663 		nvlist_t **olddevs;
5664 		uint_t oldndevs;
5665 		nvlist_t **newdevs;
5666 
5667 		/*
5668 		 * Generate new dev list by concatenating with the
5669 		 * current dev list.
5670 		 */
5671 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5672 		    &olddevs, &oldndevs));
5673 
5674 		newdevs = kmem_alloc(sizeof (void *) *
5675 		    (ndevs + oldndevs), KM_SLEEP);
5676 		for (i = 0; i < oldndevs; i++)
5677 			newdevs[i] = fnvlist_dup(olddevs[i]);
5678 		for (i = 0; i < ndevs; i++)
5679 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5680 
5681 		fnvlist_remove(sav->sav_config, config);
5682 
5683 		fnvlist_add_nvlist_array(sav->sav_config, config,
5684 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5685 		for (i = 0; i < oldndevs + ndevs; i++)
5686 			nvlist_free(newdevs[i]);
5687 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5688 	} else {
5689 		/*
5690 		 * Generate a new dev list.
5691 		 */
5692 		sav->sav_config = fnvlist_alloc();
5693 		fnvlist_add_nvlist_array(sav->sav_config, config,
5694 		    (const nvlist_t * const *)devs, ndevs);
5695 	}
5696 }
5697 
5698 /*
5699  * Stop and drop level 2 ARC devices
5700  */
5701 void
5702 spa_l2cache_drop(spa_t *spa)
5703 {
5704 	vdev_t *vd;
5705 	int i;
5706 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5707 
5708 	for (i = 0; i < sav->sav_count; i++) {
5709 		uint64_t pool;
5710 
5711 		vd = sav->sav_vdevs[i];
5712 		ASSERT(vd != NULL);
5713 
5714 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5715 		    pool != 0ULL && l2arc_vdev_present(vd))
5716 			l2arc_remove_vdev(vd);
5717 	}
5718 }
5719 
5720 /*
5721  * Verify encryption parameters for spa creation. If we are encrypting, we must
5722  * have the encryption feature flag enabled.
5723  */
5724 static int
5725 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5726     boolean_t has_encryption)
5727 {
5728 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5729 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5730 	    !has_encryption)
5731 		return (SET_ERROR(ENOTSUP));
5732 
5733 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5734 }
5735 
5736 /*
5737  * Pool Creation
5738  */
5739 int
5740 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5741     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5742 {
5743 	spa_t *spa;
5744 	char *altroot = NULL;
5745 	vdev_t *rvd;
5746 	dsl_pool_t *dp;
5747 	dmu_tx_t *tx;
5748 	int error = 0;
5749 	uint64_t txg = TXG_INITIAL;
5750 	nvlist_t **spares, **l2cache;
5751 	uint_t nspares, nl2cache;
5752 	uint64_t version, obj, ndraid = 0;
5753 	boolean_t has_features;
5754 	boolean_t has_encryption;
5755 	boolean_t has_allocclass;
5756 	spa_feature_t feat;
5757 	char *feat_name;
5758 	char *poolname;
5759 	nvlist_t *nvl;
5760 
5761 	if (props == NULL ||
5762 	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5763 		poolname = (char *)pool;
5764 
5765 	/*
5766 	 * If this pool already exists, return failure.
5767 	 */
5768 	mutex_enter(&spa_namespace_lock);
5769 	if (spa_lookup(poolname) != NULL) {
5770 		mutex_exit(&spa_namespace_lock);
5771 		return (SET_ERROR(EEXIST));
5772 	}
5773 
5774 	/*
5775 	 * Allocate a new spa_t structure.
5776 	 */
5777 	nvl = fnvlist_alloc();
5778 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5779 	(void) nvlist_lookup_string(props,
5780 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5781 	spa = spa_add(poolname, nvl, altroot);
5782 	fnvlist_free(nvl);
5783 	spa_activate(spa, spa_mode_global);
5784 
5785 	if (props && (error = spa_prop_validate(spa, props))) {
5786 		spa_deactivate(spa);
5787 		spa_remove(spa);
5788 		mutex_exit(&spa_namespace_lock);
5789 		return (error);
5790 	}
5791 
5792 	/*
5793 	 * Temporary pool names should never be written to disk.
5794 	 */
5795 	if (poolname != pool)
5796 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5797 
5798 	has_features = B_FALSE;
5799 	has_encryption = B_FALSE;
5800 	has_allocclass = B_FALSE;
5801 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5802 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5803 		if (zpool_prop_feature(nvpair_name(elem))) {
5804 			has_features = B_TRUE;
5805 
5806 			feat_name = strchr(nvpair_name(elem), '@') + 1;
5807 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5808 			if (feat == SPA_FEATURE_ENCRYPTION)
5809 				has_encryption = B_TRUE;
5810 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5811 				has_allocclass = B_TRUE;
5812 		}
5813 	}
5814 
5815 	/* verify encryption params, if they were provided */
5816 	if (dcp != NULL) {
5817 		error = spa_create_check_encryption_params(dcp, has_encryption);
5818 		if (error != 0) {
5819 			spa_deactivate(spa);
5820 			spa_remove(spa);
5821 			mutex_exit(&spa_namespace_lock);
5822 			return (error);
5823 		}
5824 	}
5825 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5826 		spa_deactivate(spa);
5827 		spa_remove(spa);
5828 		mutex_exit(&spa_namespace_lock);
5829 		return (ENOTSUP);
5830 	}
5831 
5832 	if (has_features || nvlist_lookup_uint64(props,
5833 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5834 		version = SPA_VERSION;
5835 	}
5836 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5837 
5838 	spa->spa_first_txg = txg;
5839 	spa->spa_uberblock.ub_txg = txg - 1;
5840 	spa->spa_uberblock.ub_version = version;
5841 	spa->spa_ubsync = spa->spa_uberblock;
5842 	spa->spa_load_state = SPA_LOAD_CREATE;
5843 	spa->spa_removing_phys.sr_state = DSS_NONE;
5844 	spa->spa_removing_phys.sr_removing_vdev = -1;
5845 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5846 	spa->spa_indirect_vdevs_loaded = B_TRUE;
5847 
5848 	/*
5849 	 * Create "The Godfather" zio to hold all async IOs
5850 	 */
5851 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5852 	    KM_SLEEP);
5853 	for (int i = 0; i < max_ncpus; i++) {
5854 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5855 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5856 		    ZIO_FLAG_GODFATHER);
5857 	}
5858 
5859 	/*
5860 	 * Create the root vdev.
5861 	 */
5862 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5863 
5864 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5865 
5866 	ASSERT(error != 0 || rvd != NULL);
5867 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5868 
5869 	if (error == 0 && !zfs_allocatable_devs(nvroot))
5870 		error = SET_ERROR(EINVAL);
5871 
5872 	if (error == 0 &&
5873 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5874 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5875 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5876 		/*
5877 		 * instantiate the metaslab groups (this will dirty the vdevs)
5878 		 * we can no longer error exit past this point
5879 		 */
5880 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5881 			vdev_t *vd = rvd->vdev_child[c];
5882 
5883 			vdev_metaslab_set_size(vd);
5884 			vdev_expand(vd, txg);
5885 		}
5886 	}
5887 
5888 	spa_config_exit(spa, SCL_ALL, FTAG);
5889 
5890 	if (error != 0) {
5891 		spa_unload(spa);
5892 		spa_deactivate(spa);
5893 		spa_remove(spa);
5894 		mutex_exit(&spa_namespace_lock);
5895 		return (error);
5896 	}
5897 
5898 	/*
5899 	 * Get the list of spares, if specified.
5900 	 */
5901 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5902 	    &spares, &nspares) == 0) {
5903 		spa->spa_spares.sav_config = fnvlist_alloc();
5904 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
5905 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
5906 		    nspares);
5907 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5908 		spa_load_spares(spa);
5909 		spa_config_exit(spa, SCL_ALL, FTAG);
5910 		spa->spa_spares.sav_sync = B_TRUE;
5911 	}
5912 
5913 	/*
5914 	 * Get the list of level 2 cache devices, if specified.
5915 	 */
5916 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5917 	    &l2cache, &nl2cache) == 0) {
5918 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
5919 		    NV_UNIQUE_NAME, KM_SLEEP));
5920 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5921 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
5922 		    nl2cache);
5923 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5924 		spa_load_l2cache(spa);
5925 		spa_config_exit(spa, SCL_ALL, FTAG);
5926 		spa->spa_l2cache.sav_sync = B_TRUE;
5927 	}
5928 
5929 	spa->spa_is_initializing = B_TRUE;
5930 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5931 	spa->spa_is_initializing = B_FALSE;
5932 
5933 	/*
5934 	 * Create DDTs (dedup tables).
5935 	 */
5936 	ddt_create(spa);
5937 
5938 	spa_update_dspace(spa);
5939 
5940 	tx = dmu_tx_create_assigned(dp, txg);
5941 
5942 	/*
5943 	 * Create the pool's history object.
5944 	 */
5945 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5946 		spa_history_create_obj(spa, tx);
5947 
5948 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5949 	spa_history_log_version(spa, "create", tx);
5950 
5951 	/*
5952 	 * Create the pool config object.
5953 	 */
5954 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5955 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5956 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5957 
5958 	if (zap_add(spa->spa_meta_objset,
5959 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5960 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5961 		cmn_err(CE_PANIC, "failed to add pool config");
5962 	}
5963 
5964 	if (zap_add(spa->spa_meta_objset,
5965 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5966 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5967 		cmn_err(CE_PANIC, "failed to add pool version");
5968 	}
5969 
5970 	/* Newly created pools with the right version are always deflated. */
5971 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5972 		spa->spa_deflate = TRUE;
5973 		if (zap_add(spa->spa_meta_objset,
5974 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5975 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5976 			cmn_err(CE_PANIC, "failed to add deflate");
5977 		}
5978 	}
5979 
5980 	/*
5981 	 * Create the deferred-free bpobj.  Turn off compression
5982 	 * because sync-to-convergence takes longer if the blocksize
5983 	 * keeps changing.
5984 	 */
5985 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5986 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5987 	    ZIO_COMPRESS_OFF, tx);
5988 	if (zap_add(spa->spa_meta_objset,
5989 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5990 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5991 		cmn_err(CE_PANIC, "failed to add bpobj");
5992 	}
5993 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5994 	    spa->spa_meta_objset, obj));
5995 
5996 	/*
5997 	 * Generate some random noise for salted checksums to operate on.
5998 	 */
5999 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6000 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6001 
6002 	/*
6003 	 * Set pool properties.
6004 	 */
6005 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6006 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6007 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6008 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6009 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6010 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6011 
6012 	if (props != NULL) {
6013 		spa_configfile_set(spa, props, B_FALSE);
6014 		spa_sync_props(props, tx);
6015 	}
6016 
6017 	for (int i = 0; i < ndraid; i++)
6018 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6019 
6020 	dmu_tx_commit(tx);
6021 
6022 	spa->spa_sync_on = B_TRUE;
6023 	txg_sync_start(dp);
6024 	mmp_thread_start(spa);
6025 	txg_wait_synced(dp, txg);
6026 
6027 	spa_spawn_aux_threads(spa);
6028 
6029 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
6030 
6031 	/*
6032 	 * Don't count references from objsets that are already closed
6033 	 * and are making their way through the eviction process.
6034 	 */
6035 	spa_evicting_os_wait(spa);
6036 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6037 	spa->spa_load_state = SPA_LOAD_NONE;
6038 
6039 	spa_import_os(spa);
6040 
6041 	mutex_exit(&spa_namespace_lock);
6042 
6043 	return (0);
6044 }
6045 
6046 /*
6047  * Import a non-root pool into the system.
6048  */
6049 int
6050 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6051 {
6052 	spa_t *spa;
6053 	char *altroot = NULL;
6054 	spa_load_state_t state = SPA_LOAD_IMPORT;
6055 	zpool_load_policy_t policy;
6056 	spa_mode_t mode = spa_mode_global;
6057 	uint64_t readonly = B_FALSE;
6058 	int error;
6059 	nvlist_t *nvroot;
6060 	nvlist_t **spares, **l2cache;
6061 	uint_t nspares, nl2cache;
6062 
6063 	/*
6064 	 * If a pool with this name exists, return failure.
6065 	 */
6066 	mutex_enter(&spa_namespace_lock);
6067 	if (spa_lookup(pool) != NULL) {
6068 		mutex_exit(&spa_namespace_lock);
6069 		return (SET_ERROR(EEXIST));
6070 	}
6071 
6072 	/*
6073 	 * Create and initialize the spa structure.
6074 	 */
6075 	(void) nvlist_lookup_string(props,
6076 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6077 	(void) nvlist_lookup_uint64(props,
6078 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6079 	if (readonly)
6080 		mode = SPA_MODE_READ;
6081 	spa = spa_add(pool, config, altroot);
6082 	spa->spa_import_flags = flags;
6083 
6084 	/*
6085 	 * Verbatim import - Take a pool and insert it into the namespace
6086 	 * as if it had been loaded at boot.
6087 	 */
6088 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6089 		if (props != NULL)
6090 			spa_configfile_set(spa, props, B_FALSE);
6091 
6092 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6093 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6094 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6095 		mutex_exit(&spa_namespace_lock);
6096 		return (0);
6097 	}
6098 
6099 	spa_activate(spa, mode);
6100 
6101 	/*
6102 	 * Don't start async tasks until we know everything is healthy.
6103 	 */
6104 	spa_async_suspend(spa);
6105 
6106 	zpool_get_load_policy(config, &policy);
6107 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6108 		state = SPA_LOAD_RECOVER;
6109 
6110 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6111 
6112 	if (state != SPA_LOAD_RECOVER) {
6113 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6114 		zfs_dbgmsg("spa_import: importing %s", pool);
6115 	} else {
6116 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6117 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6118 	}
6119 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6120 
6121 	/*
6122 	 * Propagate anything learned while loading the pool and pass it
6123 	 * back to caller (i.e. rewind info, missing devices, etc).
6124 	 */
6125 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6126 
6127 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6128 	/*
6129 	 * Toss any existing sparelist, as it doesn't have any validity
6130 	 * anymore, and conflicts with spa_has_spare().
6131 	 */
6132 	if (spa->spa_spares.sav_config) {
6133 		nvlist_free(spa->spa_spares.sav_config);
6134 		spa->spa_spares.sav_config = NULL;
6135 		spa_load_spares(spa);
6136 	}
6137 	if (spa->spa_l2cache.sav_config) {
6138 		nvlist_free(spa->spa_l2cache.sav_config);
6139 		spa->spa_l2cache.sav_config = NULL;
6140 		spa_load_l2cache(spa);
6141 	}
6142 
6143 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6144 	spa_config_exit(spa, SCL_ALL, FTAG);
6145 
6146 	if (props != NULL)
6147 		spa_configfile_set(spa, props, B_FALSE);
6148 
6149 	if (error != 0 || (props && spa_writeable(spa) &&
6150 	    (error = spa_prop_set(spa, props)))) {
6151 		spa_unload(spa);
6152 		spa_deactivate(spa);
6153 		spa_remove(spa);
6154 		mutex_exit(&spa_namespace_lock);
6155 		return (error);
6156 	}
6157 
6158 	spa_async_resume(spa);
6159 
6160 	/*
6161 	 * Override any spares and level 2 cache devices as specified by
6162 	 * the user, as these may have correct device names/devids, etc.
6163 	 */
6164 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6165 	    &spares, &nspares) == 0) {
6166 		if (spa->spa_spares.sav_config)
6167 			fnvlist_remove(spa->spa_spares.sav_config,
6168 			    ZPOOL_CONFIG_SPARES);
6169 		else
6170 			spa->spa_spares.sav_config = fnvlist_alloc();
6171 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6172 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6173 		    nspares);
6174 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6175 		spa_load_spares(spa);
6176 		spa_config_exit(spa, SCL_ALL, FTAG);
6177 		spa->spa_spares.sav_sync = B_TRUE;
6178 	}
6179 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6180 	    &l2cache, &nl2cache) == 0) {
6181 		if (spa->spa_l2cache.sav_config)
6182 			fnvlist_remove(spa->spa_l2cache.sav_config,
6183 			    ZPOOL_CONFIG_L2CACHE);
6184 		else
6185 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6186 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6187 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6188 		    nl2cache);
6189 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6190 		spa_load_l2cache(spa);
6191 		spa_config_exit(spa, SCL_ALL, FTAG);
6192 		spa->spa_l2cache.sav_sync = B_TRUE;
6193 	}
6194 
6195 	/*
6196 	 * Check for any removed devices.
6197 	 */
6198 	if (spa->spa_autoreplace) {
6199 		spa_aux_check_removed(&spa->spa_spares);
6200 		spa_aux_check_removed(&spa->spa_l2cache);
6201 	}
6202 
6203 	if (spa_writeable(spa)) {
6204 		/*
6205 		 * Update the config cache to include the newly-imported pool.
6206 		 */
6207 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6208 	}
6209 
6210 	/*
6211 	 * It's possible that the pool was expanded while it was exported.
6212 	 * We kick off an async task to handle this for us.
6213 	 */
6214 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6215 
6216 	spa_history_log_version(spa, "import", NULL);
6217 
6218 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6219 
6220 	mutex_exit(&spa_namespace_lock);
6221 
6222 	zvol_create_minors_recursive(pool);
6223 
6224 	spa_import_os(spa);
6225 
6226 	return (0);
6227 }
6228 
6229 nvlist_t *
6230 spa_tryimport(nvlist_t *tryconfig)
6231 {
6232 	nvlist_t *config = NULL;
6233 	char *poolname, *cachefile;
6234 	spa_t *spa;
6235 	uint64_t state;
6236 	int error;
6237 	zpool_load_policy_t policy;
6238 
6239 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6240 		return (NULL);
6241 
6242 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6243 		return (NULL);
6244 
6245 	/*
6246 	 * Create and initialize the spa structure.
6247 	 */
6248 	mutex_enter(&spa_namespace_lock);
6249 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6250 	spa_activate(spa, SPA_MODE_READ);
6251 
6252 	/*
6253 	 * Rewind pool if a max txg was provided.
6254 	 */
6255 	zpool_get_load_policy(spa->spa_config, &policy);
6256 	if (policy.zlp_txg != UINT64_MAX) {
6257 		spa->spa_load_max_txg = policy.zlp_txg;
6258 		spa->spa_extreme_rewind = B_TRUE;
6259 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6260 		    poolname, (longlong_t)policy.zlp_txg);
6261 	} else {
6262 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6263 	}
6264 
6265 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6266 	    == 0) {
6267 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6268 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6269 	} else {
6270 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6271 	}
6272 
6273 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6274 
6275 	/*
6276 	 * If 'tryconfig' was at least parsable, return the current config.
6277 	 */
6278 	if (spa->spa_root_vdev != NULL) {
6279 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6280 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6281 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6282 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6283 		    spa->spa_uberblock.ub_timestamp);
6284 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6285 		    spa->spa_load_info);
6286 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6287 		    spa->spa_errata);
6288 
6289 		/*
6290 		 * If the bootfs property exists on this pool then we
6291 		 * copy it out so that external consumers can tell which
6292 		 * pools are bootable.
6293 		 */
6294 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6295 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6296 
6297 			/*
6298 			 * We have to play games with the name since the
6299 			 * pool was opened as TRYIMPORT_NAME.
6300 			 */
6301 			if (dsl_dsobj_to_dsname(spa_name(spa),
6302 			    spa->spa_bootfs, tmpname) == 0) {
6303 				char *cp;
6304 				char *dsname;
6305 
6306 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6307 
6308 				cp = strchr(tmpname, '/');
6309 				if (cp == NULL) {
6310 					(void) strlcpy(dsname, tmpname,
6311 					    MAXPATHLEN);
6312 				} else {
6313 					(void) snprintf(dsname, MAXPATHLEN,
6314 					    "%s/%s", poolname, ++cp);
6315 				}
6316 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6317 				    dsname);
6318 				kmem_free(dsname, MAXPATHLEN);
6319 			}
6320 			kmem_free(tmpname, MAXPATHLEN);
6321 		}
6322 
6323 		/*
6324 		 * Add the list of hot spares and level 2 cache devices.
6325 		 */
6326 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6327 		spa_add_spares(spa, config);
6328 		spa_add_l2cache(spa, config);
6329 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6330 	}
6331 
6332 	spa_unload(spa);
6333 	spa_deactivate(spa);
6334 	spa_remove(spa);
6335 	mutex_exit(&spa_namespace_lock);
6336 
6337 	return (config);
6338 }
6339 
6340 /*
6341  * Pool export/destroy
6342  *
6343  * The act of destroying or exporting a pool is very simple.  We make sure there
6344  * is no more pending I/O and any references to the pool are gone.  Then, we
6345  * update the pool state and sync all the labels to disk, removing the
6346  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6347  * we don't sync the labels or remove the configuration cache.
6348  */
6349 static int
6350 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6351     boolean_t force, boolean_t hardforce)
6352 {
6353 	int error;
6354 	spa_t *spa;
6355 
6356 	if (oldconfig)
6357 		*oldconfig = NULL;
6358 
6359 	if (!(spa_mode_global & SPA_MODE_WRITE))
6360 		return (SET_ERROR(EROFS));
6361 
6362 	mutex_enter(&spa_namespace_lock);
6363 	if ((spa = spa_lookup(pool)) == NULL) {
6364 		mutex_exit(&spa_namespace_lock);
6365 		return (SET_ERROR(ENOENT));
6366 	}
6367 
6368 	if (spa->spa_is_exporting) {
6369 		/* the pool is being exported by another thread */
6370 		mutex_exit(&spa_namespace_lock);
6371 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6372 	}
6373 	spa->spa_is_exporting = B_TRUE;
6374 
6375 	/*
6376 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6377 	 * reacquire the namespace lock, and see if we can export.
6378 	 */
6379 	spa_open_ref(spa, FTAG);
6380 	mutex_exit(&spa_namespace_lock);
6381 	spa_async_suspend(spa);
6382 	if (spa->spa_zvol_taskq) {
6383 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6384 		taskq_wait(spa->spa_zvol_taskq);
6385 	}
6386 	mutex_enter(&spa_namespace_lock);
6387 	spa_close(spa, FTAG);
6388 
6389 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6390 		goto export_spa;
6391 	/*
6392 	 * The pool will be in core if it's openable, in which case we can
6393 	 * modify its state.  Objsets may be open only because they're dirty,
6394 	 * so we have to force it to sync before checking spa_refcnt.
6395 	 */
6396 	if (spa->spa_sync_on) {
6397 		txg_wait_synced(spa->spa_dsl_pool, 0);
6398 		spa_evicting_os_wait(spa);
6399 	}
6400 
6401 	/*
6402 	 * A pool cannot be exported or destroyed if there are active
6403 	 * references.  If we are resetting a pool, allow references by
6404 	 * fault injection handlers.
6405 	 */
6406 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6407 		error = SET_ERROR(EBUSY);
6408 		goto fail;
6409 	}
6410 
6411 	if (spa->spa_sync_on) {
6412 		/*
6413 		 * A pool cannot be exported if it has an active shared spare.
6414 		 * This is to prevent other pools stealing the active spare
6415 		 * from an exported pool. At user's own will, such pool can
6416 		 * be forcedly exported.
6417 		 */
6418 		if (!force && new_state == POOL_STATE_EXPORTED &&
6419 		    spa_has_active_shared_spare(spa)) {
6420 			error = SET_ERROR(EXDEV);
6421 			goto fail;
6422 		}
6423 
6424 		/*
6425 		 * We're about to export or destroy this pool. Make sure
6426 		 * we stop all initialization and trim activity here before
6427 		 * we set the spa_final_txg. This will ensure that all
6428 		 * dirty data resulting from the initialization is
6429 		 * committed to disk before we unload the pool.
6430 		 */
6431 		if (spa->spa_root_vdev != NULL) {
6432 			vdev_t *rvd = spa->spa_root_vdev;
6433 			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6434 			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6435 			vdev_autotrim_stop_all(spa);
6436 			vdev_rebuild_stop_all(spa);
6437 		}
6438 
6439 		/*
6440 		 * We want this to be reflected on every label,
6441 		 * so mark them all dirty.  spa_unload() will do the
6442 		 * final sync that pushes these changes out.
6443 		 */
6444 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6445 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6446 			spa->spa_state = new_state;
6447 			vdev_config_dirty(spa->spa_root_vdev);
6448 			spa_config_exit(spa, SCL_ALL, FTAG);
6449 		}
6450 
6451 		/*
6452 		 * If the log space map feature is enabled and the pool is
6453 		 * getting exported (but not destroyed), we want to spend some
6454 		 * time flushing as many metaslabs as we can in an attempt to
6455 		 * destroy log space maps and save import time. This has to be
6456 		 * done before we set the spa_final_txg, otherwise
6457 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6458 		 * spa_should_flush_logs_on_unload() should be called after
6459 		 * spa_state has been set to the new_state.
6460 		 */
6461 		if (spa_should_flush_logs_on_unload(spa))
6462 			spa_unload_log_sm_flush_all(spa);
6463 
6464 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6465 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6466 			spa->spa_final_txg = spa_last_synced_txg(spa) +
6467 			    TXG_DEFER_SIZE + 1;
6468 			spa_config_exit(spa, SCL_ALL, FTAG);
6469 		}
6470 	}
6471 
6472 export_spa:
6473 	spa_export_os(spa);
6474 
6475 	if (new_state == POOL_STATE_DESTROYED)
6476 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6477 	else if (new_state == POOL_STATE_EXPORTED)
6478 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6479 
6480 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6481 		spa_unload(spa);
6482 		spa_deactivate(spa);
6483 	}
6484 
6485 	if (oldconfig && spa->spa_config)
6486 		*oldconfig = fnvlist_dup(spa->spa_config);
6487 
6488 	if (new_state != POOL_STATE_UNINITIALIZED) {
6489 		if (!hardforce)
6490 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6491 		spa_remove(spa);
6492 	} else {
6493 		/*
6494 		 * If spa_remove() is not called for this spa_t and
6495 		 * there is any possibility that it can be reused,
6496 		 * we make sure to reset the exporting flag.
6497 		 */
6498 		spa->spa_is_exporting = B_FALSE;
6499 	}
6500 
6501 	mutex_exit(&spa_namespace_lock);
6502 	return (0);
6503 
6504 fail:
6505 	spa->spa_is_exporting = B_FALSE;
6506 	spa_async_resume(spa);
6507 	mutex_exit(&spa_namespace_lock);
6508 	return (error);
6509 }
6510 
6511 /*
6512  * Destroy a storage pool.
6513  */
6514 int
6515 spa_destroy(const char *pool)
6516 {
6517 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6518 	    B_FALSE, B_FALSE));
6519 }
6520 
6521 /*
6522  * Export a storage pool.
6523  */
6524 int
6525 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6526     boolean_t hardforce)
6527 {
6528 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6529 	    force, hardforce));
6530 }
6531 
6532 /*
6533  * Similar to spa_export(), this unloads the spa_t without actually removing it
6534  * from the namespace in any way.
6535  */
6536 int
6537 spa_reset(const char *pool)
6538 {
6539 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6540 	    B_FALSE, B_FALSE));
6541 }
6542 
6543 /*
6544  * ==========================================================================
6545  * Device manipulation
6546  * ==========================================================================
6547  */
6548 
6549 /*
6550  * This is called as a synctask to increment the draid feature flag
6551  */
6552 static void
6553 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6554 {
6555 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6556 	int draid = (int)(uintptr_t)arg;
6557 
6558 	for (int c = 0; c < draid; c++)
6559 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6560 }
6561 
6562 /*
6563  * Add a device to a storage pool.
6564  */
6565 int
6566 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6567 {
6568 	uint64_t txg, ndraid = 0;
6569 	int error;
6570 	vdev_t *rvd = spa->spa_root_vdev;
6571 	vdev_t *vd, *tvd;
6572 	nvlist_t **spares, **l2cache;
6573 	uint_t nspares, nl2cache;
6574 
6575 	ASSERT(spa_writeable(spa));
6576 
6577 	txg = spa_vdev_enter(spa);
6578 
6579 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6580 	    VDEV_ALLOC_ADD)) != 0)
6581 		return (spa_vdev_exit(spa, NULL, txg, error));
6582 
6583 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6584 
6585 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6586 	    &nspares) != 0)
6587 		nspares = 0;
6588 
6589 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6590 	    &nl2cache) != 0)
6591 		nl2cache = 0;
6592 
6593 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6594 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6595 
6596 	if (vd->vdev_children != 0 &&
6597 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6598 		return (spa_vdev_exit(spa, vd, txg, error));
6599 	}
6600 
6601 	/*
6602 	 * The virtual dRAID spares must be added after vdev tree is created
6603 	 * and the vdev guids are generated.  The guid of their associated
6604 	 * dRAID is stored in the config and used when opening the spare.
6605 	 */
6606 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6607 	    rvd->vdev_children)) == 0) {
6608 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6609 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6610 			nspares = 0;
6611 	} else {
6612 		return (spa_vdev_exit(spa, vd, txg, error));
6613 	}
6614 
6615 	/*
6616 	 * We must validate the spares and l2cache devices after checking the
6617 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6618 	 */
6619 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6620 		return (spa_vdev_exit(spa, vd, txg, error));
6621 
6622 	/*
6623 	 * If we are in the middle of a device removal, we can only add
6624 	 * devices which match the existing devices in the pool.
6625 	 * If we are in the middle of a removal, or have some indirect
6626 	 * vdevs, we can not add raidz or dRAID top levels.
6627 	 */
6628 	if (spa->spa_vdev_removal != NULL ||
6629 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6630 		for (int c = 0; c < vd->vdev_children; c++) {
6631 			tvd = vd->vdev_child[c];
6632 			if (spa->spa_vdev_removal != NULL &&
6633 			    tvd->vdev_ashift != spa->spa_max_ashift) {
6634 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6635 			}
6636 			/* Fail if top level vdev is raidz or a dRAID */
6637 			if (vdev_get_nparity(tvd) != 0)
6638 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6639 
6640 			/*
6641 			 * Need the top level mirror to be
6642 			 * a mirror of leaf vdevs only
6643 			 */
6644 			if (tvd->vdev_ops == &vdev_mirror_ops) {
6645 				for (uint64_t cid = 0;
6646 				    cid < tvd->vdev_children; cid++) {
6647 					vdev_t *cvd = tvd->vdev_child[cid];
6648 					if (!cvd->vdev_ops->vdev_op_leaf) {
6649 						return (spa_vdev_exit(spa, vd,
6650 						    txg, EINVAL));
6651 					}
6652 				}
6653 			}
6654 		}
6655 	}
6656 
6657 	for (int c = 0; c < vd->vdev_children; c++) {
6658 		tvd = vd->vdev_child[c];
6659 		vdev_remove_child(vd, tvd);
6660 		tvd->vdev_id = rvd->vdev_children;
6661 		vdev_add_child(rvd, tvd);
6662 		vdev_config_dirty(tvd);
6663 	}
6664 
6665 	if (nspares != 0) {
6666 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6667 		    ZPOOL_CONFIG_SPARES);
6668 		spa_load_spares(spa);
6669 		spa->spa_spares.sav_sync = B_TRUE;
6670 	}
6671 
6672 	if (nl2cache != 0) {
6673 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6674 		    ZPOOL_CONFIG_L2CACHE);
6675 		spa_load_l2cache(spa);
6676 		spa->spa_l2cache.sav_sync = B_TRUE;
6677 	}
6678 
6679 	/*
6680 	 * We can't increment a feature while holding spa_vdev so we
6681 	 * have to do it in a synctask.
6682 	 */
6683 	if (ndraid != 0) {
6684 		dmu_tx_t *tx;
6685 
6686 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6687 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6688 		    (void *)(uintptr_t)ndraid, tx);
6689 		dmu_tx_commit(tx);
6690 	}
6691 
6692 	/*
6693 	 * We have to be careful when adding new vdevs to an existing pool.
6694 	 * If other threads start allocating from these vdevs before we
6695 	 * sync the config cache, and we lose power, then upon reboot we may
6696 	 * fail to open the pool because there are DVAs that the config cache
6697 	 * can't translate.  Therefore, we first add the vdevs without
6698 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6699 	 * and then let spa_config_update() initialize the new metaslabs.
6700 	 *
6701 	 * spa_load() checks for added-but-not-initialized vdevs, so that
6702 	 * if we lose power at any point in this sequence, the remaining
6703 	 * steps will be completed the next time we load the pool.
6704 	 */
6705 	(void) spa_vdev_exit(spa, vd, txg, 0);
6706 
6707 	mutex_enter(&spa_namespace_lock);
6708 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6709 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6710 	mutex_exit(&spa_namespace_lock);
6711 
6712 	return (0);
6713 }
6714 
6715 /*
6716  * Attach a device to a mirror.  The arguments are the path to any device
6717  * in the mirror, and the nvroot for the new device.  If the path specifies
6718  * a device that is not mirrored, we automatically insert the mirror vdev.
6719  *
6720  * If 'replacing' is specified, the new device is intended to replace the
6721  * existing device; in this case the two devices are made into their own
6722  * mirror using the 'replacing' vdev, which is functionally identical to
6723  * the mirror vdev (it actually reuses all the same ops) but has a few
6724  * extra rules: you can't attach to it after it's been created, and upon
6725  * completion of resilvering, the first disk (the one being replaced)
6726  * is automatically detached.
6727  *
6728  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6729  * should be performed instead of traditional healing reconstruction.  From
6730  * an administrators perspective these are both resilver operations.
6731  */
6732 int
6733 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6734     int rebuild)
6735 {
6736 	uint64_t txg, dtl_max_txg;
6737 	vdev_t *rvd = spa->spa_root_vdev;
6738 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6739 	vdev_ops_t *pvops;
6740 	char *oldvdpath, *newvdpath;
6741 	int newvd_isspare;
6742 	int error;
6743 
6744 	ASSERT(spa_writeable(spa));
6745 
6746 	txg = spa_vdev_enter(spa);
6747 
6748 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6749 
6750 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6751 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6752 		error = (spa_has_checkpoint(spa)) ?
6753 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6754 		return (spa_vdev_exit(spa, NULL, txg, error));
6755 	}
6756 
6757 	if (rebuild) {
6758 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6759 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6760 
6761 		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6762 			return (spa_vdev_exit(spa, NULL, txg,
6763 			    ZFS_ERR_RESILVER_IN_PROGRESS));
6764 	} else {
6765 		if (vdev_rebuild_active(rvd))
6766 			return (spa_vdev_exit(spa, NULL, txg,
6767 			    ZFS_ERR_REBUILD_IN_PROGRESS));
6768 	}
6769 
6770 	if (spa->spa_vdev_removal != NULL)
6771 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6772 
6773 	if (oldvd == NULL)
6774 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6775 
6776 	if (!oldvd->vdev_ops->vdev_op_leaf)
6777 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6778 
6779 	pvd = oldvd->vdev_parent;
6780 
6781 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6782 	    VDEV_ALLOC_ATTACH)) != 0)
6783 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6784 
6785 	if (newrootvd->vdev_children != 1)
6786 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6787 
6788 	newvd = newrootvd->vdev_child[0];
6789 
6790 	if (!newvd->vdev_ops->vdev_op_leaf)
6791 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6792 
6793 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6794 		return (spa_vdev_exit(spa, newrootvd, txg, error));
6795 
6796 	/*
6797 	 * Spares can't replace logs
6798 	 */
6799 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6800 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6801 
6802 	/*
6803 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6804 	 */
6805 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6806 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6807 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6808 	}
6809 
6810 	if (rebuild) {
6811 		/*
6812 		 * For rebuilds, the top vdev must support reconstruction
6813 		 * using only space maps.  This means the only allowable
6814 		 * vdevs types are the root vdev, a mirror, or dRAID.
6815 		 */
6816 		tvd = pvd;
6817 		if (pvd->vdev_top != NULL)
6818 			tvd = pvd->vdev_top;
6819 
6820 		if (tvd->vdev_ops != &vdev_mirror_ops &&
6821 		    tvd->vdev_ops != &vdev_root_ops &&
6822 		    tvd->vdev_ops != &vdev_draid_ops) {
6823 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6824 		}
6825 	}
6826 
6827 	if (!replacing) {
6828 		/*
6829 		 * For attach, the only allowable parent is a mirror or the root
6830 		 * vdev.
6831 		 */
6832 		if (pvd->vdev_ops != &vdev_mirror_ops &&
6833 		    pvd->vdev_ops != &vdev_root_ops)
6834 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6835 
6836 		pvops = &vdev_mirror_ops;
6837 	} else {
6838 		/*
6839 		 * Active hot spares can only be replaced by inactive hot
6840 		 * spares.
6841 		 */
6842 		if (pvd->vdev_ops == &vdev_spare_ops &&
6843 		    oldvd->vdev_isspare &&
6844 		    !spa_has_spare(spa, newvd->vdev_guid))
6845 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6846 
6847 		/*
6848 		 * If the source is a hot spare, and the parent isn't already a
6849 		 * spare, then we want to create a new hot spare.  Otherwise, we
6850 		 * want to create a replacing vdev.  The user is not allowed to
6851 		 * attach to a spared vdev child unless the 'isspare' state is
6852 		 * the same (spare replaces spare, non-spare replaces
6853 		 * non-spare).
6854 		 */
6855 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6856 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6857 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6858 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6859 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6860 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6861 		}
6862 
6863 		if (newvd->vdev_isspare)
6864 			pvops = &vdev_spare_ops;
6865 		else
6866 			pvops = &vdev_replacing_ops;
6867 	}
6868 
6869 	/*
6870 	 * Make sure the new device is big enough.
6871 	 */
6872 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6873 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6874 
6875 	/*
6876 	 * The new device cannot have a higher alignment requirement
6877 	 * than the top-level vdev.
6878 	 */
6879 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6880 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6881 
6882 	/*
6883 	 * If this is an in-place replacement, update oldvd's path and devid
6884 	 * to make it distinguishable from newvd, and unopenable from now on.
6885 	 */
6886 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6887 		spa_strfree(oldvd->vdev_path);
6888 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6889 		    KM_SLEEP);
6890 		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6891 		    "%s/%s", newvd->vdev_path, "old");
6892 		if (oldvd->vdev_devid != NULL) {
6893 			spa_strfree(oldvd->vdev_devid);
6894 			oldvd->vdev_devid = NULL;
6895 		}
6896 	}
6897 
6898 	/*
6899 	 * If the parent is not a mirror, or if we're replacing, insert the new
6900 	 * mirror/replacing/spare vdev above oldvd.
6901 	 */
6902 	if (pvd->vdev_ops != pvops)
6903 		pvd = vdev_add_parent(oldvd, pvops);
6904 
6905 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6906 	ASSERT(pvd->vdev_ops == pvops);
6907 	ASSERT(oldvd->vdev_parent == pvd);
6908 
6909 	/*
6910 	 * Extract the new device from its root and add it to pvd.
6911 	 */
6912 	vdev_remove_child(newrootvd, newvd);
6913 	newvd->vdev_id = pvd->vdev_children;
6914 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6915 	vdev_add_child(pvd, newvd);
6916 
6917 	/*
6918 	 * Reevaluate the parent vdev state.
6919 	 */
6920 	vdev_propagate_state(pvd);
6921 
6922 	tvd = newvd->vdev_top;
6923 	ASSERT(pvd->vdev_top == tvd);
6924 	ASSERT(tvd->vdev_parent == rvd);
6925 
6926 	vdev_config_dirty(tvd);
6927 
6928 	/*
6929 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6930 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6931 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6932 	 */
6933 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6934 
6935 	vdev_dtl_dirty(newvd, DTL_MISSING,
6936 	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6937 
6938 	if (newvd->vdev_isspare) {
6939 		spa_spare_activate(newvd);
6940 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6941 	}
6942 
6943 	oldvdpath = spa_strdup(oldvd->vdev_path);
6944 	newvdpath = spa_strdup(newvd->vdev_path);
6945 	newvd_isspare = newvd->vdev_isspare;
6946 
6947 	/*
6948 	 * Mark newvd's DTL dirty in this txg.
6949 	 */
6950 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6951 
6952 	/*
6953 	 * Schedule the resilver or rebuild to restart in the future. We do
6954 	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6955 	 * respective datasets.
6956 	 */
6957 	if (rebuild) {
6958 		newvd->vdev_rebuild_txg = txg;
6959 
6960 		vdev_rebuild(tvd);
6961 	} else {
6962 		newvd->vdev_resilver_txg = txg;
6963 
6964 		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6965 		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6966 			vdev_defer_resilver(newvd);
6967 		} else {
6968 			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6969 			    dtl_max_txg);
6970 		}
6971 	}
6972 
6973 	if (spa->spa_bootfs)
6974 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6975 
6976 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6977 
6978 	/*
6979 	 * Commit the config
6980 	 */
6981 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6982 
6983 	spa_history_log_internal(spa, "vdev attach", NULL,
6984 	    "%s vdev=%s %s vdev=%s",
6985 	    replacing && newvd_isspare ? "spare in" :
6986 	    replacing ? "replace" : "attach", newvdpath,
6987 	    replacing ? "for" : "to", oldvdpath);
6988 
6989 	spa_strfree(oldvdpath);
6990 	spa_strfree(newvdpath);
6991 
6992 	return (0);
6993 }
6994 
6995 /*
6996  * Detach a device from a mirror or replacing vdev.
6997  *
6998  * If 'replace_done' is specified, only detach if the parent
6999  * is a replacing vdev.
7000  */
7001 int
7002 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7003 {
7004 	uint64_t txg;
7005 	int error;
7006 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7007 	vdev_t *vd, *pvd, *cvd, *tvd;
7008 	boolean_t unspare = B_FALSE;
7009 	uint64_t unspare_guid = 0;
7010 	char *vdpath;
7011 
7012 	ASSERT(spa_writeable(spa));
7013 
7014 	txg = spa_vdev_detach_enter(spa, guid);
7015 
7016 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7017 
7018 	/*
7019 	 * Besides being called directly from the userland through the
7020 	 * ioctl interface, spa_vdev_detach() can be potentially called
7021 	 * at the end of spa_vdev_resilver_done().
7022 	 *
7023 	 * In the regular case, when we have a checkpoint this shouldn't
7024 	 * happen as we never empty the DTLs of a vdev during the scrub
7025 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7026 	 * should never get here when we have a checkpoint.
7027 	 *
7028 	 * That said, even in a case when we checkpoint the pool exactly
7029 	 * as spa_vdev_resilver_done() calls this function everything
7030 	 * should be fine as the resilver will return right away.
7031 	 */
7032 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7033 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7034 		error = (spa_has_checkpoint(spa)) ?
7035 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7036 		return (spa_vdev_exit(spa, NULL, txg, error));
7037 	}
7038 
7039 	if (vd == NULL)
7040 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7041 
7042 	if (!vd->vdev_ops->vdev_op_leaf)
7043 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7044 
7045 	pvd = vd->vdev_parent;
7046 
7047 	/*
7048 	 * If the parent/child relationship is not as expected, don't do it.
7049 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7050 	 * vdev that's replacing B with C.  The user's intent in replacing
7051 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7052 	 * the replace by detaching C, the expected behavior is to end up
7053 	 * M(A,B).  But suppose that right after deciding to detach C,
7054 	 * the replacement of B completes.  We would have M(A,C), and then
7055 	 * ask to detach C, which would leave us with just A -- not what
7056 	 * the user wanted.  To prevent this, we make sure that the
7057 	 * parent/child relationship hasn't changed -- in this example,
7058 	 * that C's parent is still the replacing vdev R.
7059 	 */
7060 	if (pvd->vdev_guid != pguid && pguid != 0)
7061 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7062 
7063 	/*
7064 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7065 	 */
7066 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7067 	    pvd->vdev_ops != &vdev_spare_ops)
7068 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7069 
7070 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7071 	    spa_version(spa) >= SPA_VERSION_SPARES);
7072 
7073 	/*
7074 	 * Only mirror, replacing, and spare vdevs support detach.
7075 	 */
7076 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7077 	    pvd->vdev_ops != &vdev_mirror_ops &&
7078 	    pvd->vdev_ops != &vdev_spare_ops)
7079 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7080 
7081 	/*
7082 	 * If this device has the only valid copy of some data,
7083 	 * we cannot safely detach it.
7084 	 */
7085 	if (vdev_dtl_required(vd))
7086 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7087 
7088 	ASSERT(pvd->vdev_children >= 2);
7089 
7090 	/*
7091 	 * If we are detaching the second disk from a replacing vdev, then
7092 	 * check to see if we changed the original vdev's path to have "/old"
7093 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7094 	 */
7095 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7096 	    vd->vdev_path != NULL) {
7097 		size_t len = strlen(vd->vdev_path);
7098 
7099 		for (int c = 0; c < pvd->vdev_children; c++) {
7100 			cvd = pvd->vdev_child[c];
7101 
7102 			if (cvd == vd || cvd->vdev_path == NULL)
7103 				continue;
7104 
7105 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7106 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7107 				spa_strfree(cvd->vdev_path);
7108 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7109 				break;
7110 			}
7111 		}
7112 	}
7113 
7114 	/*
7115 	 * If we are detaching the original disk from a normal spare, then it
7116 	 * implies that the spare should become a real disk, and be removed
7117 	 * from the active spare list for the pool.  dRAID spares on the
7118 	 * other hand are coupled to the pool and thus should never be removed
7119 	 * from the spares list.
7120 	 */
7121 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7122 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7123 
7124 		if (last_cvd->vdev_isspare &&
7125 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7126 			unspare = B_TRUE;
7127 		}
7128 	}
7129 
7130 	/*
7131 	 * Erase the disk labels so the disk can be used for other things.
7132 	 * This must be done after all other error cases are handled,
7133 	 * but before we disembowel vd (so we can still do I/O to it).
7134 	 * But if we can't do it, don't treat the error as fatal --
7135 	 * it may be that the unwritability of the disk is the reason
7136 	 * it's being detached!
7137 	 */
7138 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7139 
7140 	/*
7141 	 * Remove vd from its parent and compact the parent's children.
7142 	 */
7143 	vdev_remove_child(pvd, vd);
7144 	vdev_compact_children(pvd);
7145 
7146 	/*
7147 	 * Remember one of the remaining children so we can get tvd below.
7148 	 */
7149 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7150 
7151 	/*
7152 	 * If we need to remove the remaining child from the list of hot spares,
7153 	 * do it now, marking the vdev as no longer a spare in the process.
7154 	 * We must do this before vdev_remove_parent(), because that can
7155 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7156 	 * reason, we must remove the spare now, in the same txg as the detach;
7157 	 * otherwise someone could attach a new sibling, change the GUID, and
7158 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7159 	 */
7160 	if (unspare) {
7161 		ASSERT(cvd->vdev_isspare);
7162 		spa_spare_remove(cvd);
7163 		unspare_guid = cvd->vdev_guid;
7164 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7165 		cvd->vdev_unspare = B_TRUE;
7166 	}
7167 
7168 	/*
7169 	 * If the parent mirror/replacing vdev only has one child,
7170 	 * the parent is no longer needed.  Remove it from the tree.
7171 	 */
7172 	if (pvd->vdev_children == 1) {
7173 		if (pvd->vdev_ops == &vdev_spare_ops)
7174 			cvd->vdev_unspare = B_FALSE;
7175 		vdev_remove_parent(cvd);
7176 	}
7177 
7178 	/*
7179 	 * We don't set tvd until now because the parent we just removed
7180 	 * may have been the previous top-level vdev.
7181 	 */
7182 	tvd = cvd->vdev_top;
7183 	ASSERT(tvd->vdev_parent == rvd);
7184 
7185 	/*
7186 	 * Reevaluate the parent vdev state.
7187 	 */
7188 	vdev_propagate_state(cvd);
7189 
7190 	/*
7191 	 * If the 'autoexpand' property is set on the pool then automatically
7192 	 * try to expand the size of the pool. For example if the device we
7193 	 * just detached was smaller than the others, it may be possible to
7194 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7195 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7196 	 */
7197 	if (spa->spa_autoexpand) {
7198 		vdev_reopen(tvd);
7199 		vdev_expand(tvd, txg);
7200 	}
7201 
7202 	vdev_config_dirty(tvd);
7203 
7204 	/*
7205 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7206 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7207 	 * But first make sure we're not on any *other* txg's DTL list, to
7208 	 * prevent vd from being accessed after it's freed.
7209 	 */
7210 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7211 	for (int t = 0; t < TXG_SIZE; t++)
7212 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7213 	vd->vdev_detached = B_TRUE;
7214 	vdev_dirty(tvd, VDD_DTL, vd, txg);
7215 
7216 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7217 	spa_notify_waiters(spa);
7218 
7219 	/* hang on to the spa before we release the lock */
7220 	spa_open_ref(spa, FTAG);
7221 
7222 	error = spa_vdev_exit(spa, vd, txg, 0);
7223 
7224 	spa_history_log_internal(spa, "detach", NULL,
7225 	    "vdev=%s", vdpath);
7226 	spa_strfree(vdpath);
7227 
7228 	/*
7229 	 * If this was the removal of the original device in a hot spare vdev,
7230 	 * then we want to go through and remove the device from the hot spare
7231 	 * list of every other pool.
7232 	 */
7233 	if (unspare) {
7234 		spa_t *altspa = NULL;
7235 
7236 		mutex_enter(&spa_namespace_lock);
7237 		while ((altspa = spa_next(altspa)) != NULL) {
7238 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7239 			    altspa == spa)
7240 				continue;
7241 
7242 			spa_open_ref(altspa, FTAG);
7243 			mutex_exit(&spa_namespace_lock);
7244 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7245 			mutex_enter(&spa_namespace_lock);
7246 			spa_close(altspa, FTAG);
7247 		}
7248 		mutex_exit(&spa_namespace_lock);
7249 
7250 		/* search the rest of the vdevs for spares to remove */
7251 		spa_vdev_resilver_done(spa);
7252 	}
7253 
7254 	/* all done with the spa; OK to release */
7255 	mutex_enter(&spa_namespace_lock);
7256 	spa_close(spa, FTAG);
7257 	mutex_exit(&spa_namespace_lock);
7258 
7259 	return (error);
7260 }
7261 
7262 static int
7263 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7264     list_t *vd_list)
7265 {
7266 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7267 
7268 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7269 
7270 	/* Look up vdev and ensure it's a leaf. */
7271 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7272 	if (vd == NULL || vd->vdev_detached) {
7273 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7274 		return (SET_ERROR(ENODEV));
7275 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7276 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7277 		return (SET_ERROR(EINVAL));
7278 	} else if (!vdev_writeable(vd)) {
7279 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7280 		return (SET_ERROR(EROFS));
7281 	}
7282 	mutex_enter(&vd->vdev_initialize_lock);
7283 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7284 
7285 	/*
7286 	 * When we activate an initialize action we check to see
7287 	 * if the vdev_initialize_thread is NULL. We do this instead
7288 	 * of using the vdev_initialize_state since there might be
7289 	 * a previous initialization process which has completed but
7290 	 * the thread is not exited.
7291 	 */
7292 	if (cmd_type == POOL_INITIALIZE_START &&
7293 	    (vd->vdev_initialize_thread != NULL ||
7294 	    vd->vdev_top->vdev_removing)) {
7295 		mutex_exit(&vd->vdev_initialize_lock);
7296 		return (SET_ERROR(EBUSY));
7297 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7298 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7299 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7300 		mutex_exit(&vd->vdev_initialize_lock);
7301 		return (SET_ERROR(ESRCH));
7302 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7303 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7304 		mutex_exit(&vd->vdev_initialize_lock);
7305 		return (SET_ERROR(ESRCH));
7306 	}
7307 
7308 	switch (cmd_type) {
7309 	case POOL_INITIALIZE_START:
7310 		vdev_initialize(vd);
7311 		break;
7312 	case POOL_INITIALIZE_CANCEL:
7313 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7314 		break;
7315 	case POOL_INITIALIZE_SUSPEND:
7316 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7317 		break;
7318 	default:
7319 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7320 	}
7321 	mutex_exit(&vd->vdev_initialize_lock);
7322 
7323 	return (0);
7324 }
7325 
7326 int
7327 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7328     nvlist_t *vdev_errlist)
7329 {
7330 	int total_errors = 0;
7331 	list_t vd_list;
7332 
7333 	list_create(&vd_list, sizeof (vdev_t),
7334 	    offsetof(vdev_t, vdev_initialize_node));
7335 
7336 	/*
7337 	 * We hold the namespace lock through the whole function
7338 	 * to prevent any changes to the pool while we're starting or
7339 	 * stopping initialization. The config and state locks are held so that
7340 	 * we can properly assess the vdev state before we commit to
7341 	 * the initializing operation.
7342 	 */
7343 	mutex_enter(&spa_namespace_lock);
7344 
7345 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7346 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7347 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7348 
7349 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7350 		    &vd_list);
7351 		if (error != 0) {
7352 			char guid_as_str[MAXNAMELEN];
7353 
7354 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7355 			    "%llu", (unsigned long long)vdev_guid);
7356 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7357 			total_errors++;
7358 		}
7359 	}
7360 
7361 	/* Wait for all initialize threads to stop. */
7362 	vdev_initialize_stop_wait(spa, &vd_list);
7363 
7364 	/* Sync out the initializing state */
7365 	txg_wait_synced(spa->spa_dsl_pool, 0);
7366 	mutex_exit(&spa_namespace_lock);
7367 
7368 	list_destroy(&vd_list);
7369 
7370 	return (total_errors);
7371 }
7372 
7373 static int
7374 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7375     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7376 {
7377 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7378 
7379 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7380 
7381 	/* Look up vdev and ensure it's a leaf. */
7382 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7383 	if (vd == NULL || vd->vdev_detached) {
7384 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7385 		return (SET_ERROR(ENODEV));
7386 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7387 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7388 		return (SET_ERROR(EINVAL));
7389 	} else if (!vdev_writeable(vd)) {
7390 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7391 		return (SET_ERROR(EROFS));
7392 	} else if (!vd->vdev_has_trim) {
7393 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7394 		return (SET_ERROR(EOPNOTSUPP));
7395 	} else if (secure && !vd->vdev_has_securetrim) {
7396 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7397 		return (SET_ERROR(EOPNOTSUPP));
7398 	}
7399 	mutex_enter(&vd->vdev_trim_lock);
7400 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7401 
7402 	/*
7403 	 * When we activate a TRIM action we check to see if the
7404 	 * vdev_trim_thread is NULL. We do this instead of using the
7405 	 * vdev_trim_state since there might be a previous TRIM process
7406 	 * which has completed but the thread is not exited.
7407 	 */
7408 	if (cmd_type == POOL_TRIM_START &&
7409 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7410 		mutex_exit(&vd->vdev_trim_lock);
7411 		return (SET_ERROR(EBUSY));
7412 	} else if (cmd_type == POOL_TRIM_CANCEL &&
7413 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7414 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7415 		mutex_exit(&vd->vdev_trim_lock);
7416 		return (SET_ERROR(ESRCH));
7417 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7418 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7419 		mutex_exit(&vd->vdev_trim_lock);
7420 		return (SET_ERROR(ESRCH));
7421 	}
7422 
7423 	switch (cmd_type) {
7424 	case POOL_TRIM_START:
7425 		vdev_trim(vd, rate, partial, secure);
7426 		break;
7427 	case POOL_TRIM_CANCEL:
7428 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7429 		break;
7430 	case POOL_TRIM_SUSPEND:
7431 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7432 		break;
7433 	default:
7434 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7435 	}
7436 	mutex_exit(&vd->vdev_trim_lock);
7437 
7438 	return (0);
7439 }
7440 
7441 /*
7442  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7443  * TRIM threads for each child vdev.  These threads pass over all of the free
7444  * space in the vdev's metaslabs and issues TRIM commands for that space.
7445  */
7446 int
7447 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7448     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7449 {
7450 	int total_errors = 0;
7451 	list_t vd_list;
7452 
7453 	list_create(&vd_list, sizeof (vdev_t),
7454 	    offsetof(vdev_t, vdev_trim_node));
7455 
7456 	/*
7457 	 * We hold the namespace lock through the whole function
7458 	 * to prevent any changes to the pool while we're starting or
7459 	 * stopping TRIM. The config and state locks are held so that
7460 	 * we can properly assess the vdev state before we commit to
7461 	 * the TRIM operation.
7462 	 */
7463 	mutex_enter(&spa_namespace_lock);
7464 
7465 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7466 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7467 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7468 
7469 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7470 		    rate, partial, secure, &vd_list);
7471 		if (error != 0) {
7472 			char guid_as_str[MAXNAMELEN];
7473 
7474 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7475 			    "%llu", (unsigned long long)vdev_guid);
7476 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7477 			total_errors++;
7478 		}
7479 	}
7480 
7481 	/* Wait for all TRIM threads to stop. */
7482 	vdev_trim_stop_wait(spa, &vd_list);
7483 
7484 	/* Sync out the TRIM state */
7485 	txg_wait_synced(spa->spa_dsl_pool, 0);
7486 	mutex_exit(&spa_namespace_lock);
7487 
7488 	list_destroy(&vd_list);
7489 
7490 	return (total_errors);
7491 }
7492 
7493 /*
7494  * Split a set of devices from their mirrors, and create a new pool from them.
7495  */
7496 int
7497 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7498     nvlist_t *props, boolean_t exp)
7499 {
7500 	int error = 0;
7501 	uint64_t txg, *glist;
7502 	spa_t *newspa;
7503 	uint_t c, children, lastlog;
7504 	nvlist_t **child, *nvl, *tmp;
7505 	dmu_tx_t *tx;
7506 	char *altroot = NULL;
7507 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7508 	boolean_t activate_slog;
7509 
7510 	ASSERT(spa_writeable(spa));
7511 
7512 	txg = spa_vdev_enter(spa);
7513 
7514 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7515 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7516 		error = (spa_has_checkpoint(spa)) ?
7517 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7518 		return (spa_vdev_exit(spa, NULL, txg, error));
7519 	}
7520 
7521 	/* clear the log and flush everything up to now */
7522 	activate_slog = spa_passivate_log(spa);
7523 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7524 	error = spa_reset_logs(spa);
7525 	txg = spa_vdev_config_enter(spa);
7526 
7527 	if (activate_slog)
7528 		spa_activate_log(spa);
7529 
7530 	if (error != 0)
7531 		return (spa_vdev_exit(spa, NULL, txg, error));
7532 
7533 	/* check new spa name before going any further */
7534 	if (spa_lookup(newname) != NULL)
7535 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7536 
7537 	/*
7538 	 * scan through all the children to ensure they're all mirrors
7539 	 */
7540 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7541 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7542 	    &children) != 0)
7543 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7544 
7545 	/* first, check to ensure we've got the right child count */
7546 	rvd = spa->spa_root_vdev;
7547 	lastlog = 0;
7548 	for (c = 0; c < rvd->vdev_children; c++) {
7549 		vdev_t *vd = rvd->vdev_child[c];
7550 
7551 		/* don't count the holes & logs as children */
7552 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7553 		    !vdev_is_concrete(vd))) {
7554 			if (lastlog == 0)
7555 				lastlog = c;
7556 			continue;
7557 		}
7558 
7559 		lastlog = 0;
7560 	}
7561 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7562 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7563 
7564 	/* next, ensure no spare or cache devices are part of the split */
7565 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7566 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7567 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7568 
7569 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7570 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7571 
7572 	/* then, loop over each vdev and validate it */
7573 	for (c = 0; c < children; c++) {
7574 		uint64_t is_hole = 0;
7575 
7576 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7577 		    &is_hole);
7578 
7579 		if (is_hole != 0) {
7580 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7581 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7582 				continue;
7583 			} else {
7584 				error = SET_ERROR(EINVAL);
7585 				break;
7586 			}
7587 		}
7588 
7589 		/* deal with indirect vdevs */
7590 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7591 		    &vdev_indirect_ops)
7592 			continue;
7593 
7594 		/* which disk is going to be split? */
7595 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7596 		    &glist[c]) != 0) {
7597 			error = SET_ERROR(EINVAL);
7598 			break;
7599 		}
7600 
7601 		/* look it up in the spa */
7602 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7603 		if (vml[c] == NULL) {
7604 			error = SET_ERROR(ENODEV);
7605 			break;
7606 		}
7607 
7608 		/* make sure there's nothing stopping the split */
7609 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7610 		    vml[c]->vdev_islog ||
7611 		    !vdev_is_concrete(vml[c]) ||
7612 		    vml[c]->vdev_isspare ||
7613 		    vml[c]->vdev_isl2cache ||
7614 		    !vdev_writeable(vml[c]) ||
7615 		    vml[c]->vdev_children != 0 ||
7616 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7617 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7618 			error = SET_ERROR(EINVAL);
7619 			break;
7620 		}
7621 
7622 		if (vdev_dtl_required(vml[c]) ||
7623 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7624 			error = SET_ERROR(EBUSY);
7625 			break;
7626 		}
7627 
7628 		/* we need certain info from the top level */
7629 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7630 		    vml[c]->vdev_top->vdev_ms_array);
7631 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7632 		    vml[c]->vdev_top->vdev_ms_shift);
7633 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7634 		    vml[c]->vdev_top->vdev_asize);
7635 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7636 		    vml[c]->vdev_top->vdev_ashift);
7637 
7638 		/* transfer per-vdev ZAPs */
7639 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7640 		VERIFY0(nvlist_add_uint64(child[c],
7641 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7642 
7643 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7644 		VERIFY0(nvlist_add_uint64(child[c],
7645 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7646 		    vml[c]->vdev_parent->vdev_top_zap));
7647 	}
7648 
7649 	if (error != 0) {
7650 		kmem_free(vml, children * sizeof (vdev_t *));
7651 		kmem_free(glist, children * sizeof (uint64_t));
7652 		return (spa_vdev_exit(spa, NULL, txg, error));
7653 	}
7654 
7655 	/* stop writers from using the disks */
7656 	for (c = 0; c < children; c++) {
7657 		if (vml[c] != NULL)
7658 			vml[c]->vdev_offline = B_TRUE;
7659 	}
7660 	vdev_reopen(spa->spa_root_vdev);
7661 
7662 	/*
7663 	 * Temporarily record the splitting vdevs in the spa config.  This
7664 	 * will disappear once the config is regenerated.
7665 	 */
7666 	nvl = fnvlist_alloc();
7667 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7668 	kmem_free(glist, children * sizeof (uint64_t));
7669 
7670 	mutex_enter(&spa->spa_props_lock);
7671 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7672 	mutex_exit(&spa->spa_props_lock);
7673 	spa->spa_config_splitting = nvl;
7674 	vdev_config_dirty(spa->spa_root_vdev);
7675 
7676 	/* configure and create the new pool */
7677 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7678 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7679 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7680 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7681 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7682 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7683 	    spa_generate_guid(NULL));
7684 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7685 	(void) nvlist_lookup_string(props,
7686 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7687 
7688 	/* add the new pool to the namespace */
7689 	newspa = spa_add(newname, config, altroot);
7690 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7691 	newspa->spa_config_txg = spa->spa_config_txg;
7692 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7693 
7694 	/* release the spa config lock, retaining the namespace lock */
7695 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7696 
7697 	if (zio_injection_enabled)
7698 		zio_handle_panic_injection(spa, FTAG, 1);
7699 
7700 	spa_activate(newspa, spa_mode_global);
7701 	spa_async_suspend(newspa);
7702 
7703 	/*
7704 	 * Temporarily stop the initializing and TRIM activity.  We set the
7705 	 * state to ACTIVE so that we know to resume initializing or TRIM
7706 	 * once the split has completed.
7707 	 */
7708 	list_t vd_initialize_list;
7709 	list_create(&vd_initialize_list, sizeof (vdev_t),
7710 	    offsetof(vdev_t, vdev_initialize_node));
7711 
7712 	list_t vd_trim_list;
7713 	list_create(&vd_trim_list, sizeof (vdev_t),
7714 	    offsetof(vdev_t, vdev_trim_node));
7715 
7716 	for (c = 0; c < children; c++) {
7717 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7718 			mutex_enter(&vml[c]->vdev_initialize_lock);
7719 			vdev_initialize_stop(vml[c],
7720 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7721 			mutex_exit(&vml[c]->vdev_initialize_lock);
7722 
7723 			mutex_enter(&vml[c]->vdev_trim_lock);
7724 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7725 			mutex_exit(&vml[c]->vdev_trim_lock);
7726 		}
7727 	}
7728 
7729 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7730 	vdev_trim_stop_wait(spa, &vd_trim_list);
7731 
7732 	list_destroy(&vd_initialize_list);
7733 	list_destroy(&vd_trim_list);
7734 
7735 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7736 	newspa->spa_is_splitting = B_TRUE;
7737 
7738 	/* create the new pool from the disks of the original pool */
7739 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7740 	if (error)
7741 		goto out;
7742 
7743 	/* if that worked, generate a real config for the new pool */
7744 	if (newspa->spa_root_vdev != NULL) {
7745 		newspa->spa_config_splitting = fnvlist_alloc();
7746 		fnvlist_add_uint64(newspa->spa_config_splitting,
7747 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7748 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7749 		    B_TRUE));
7750 	}
7751 
7752 	/* set the props */
7753 	if (props != NULL) {
7754 		spa_configfile_set(newspa, props, B_FALSE);
7755 		error = spa_prop_set(newspa, props);
7756 		if (error)
7757 			goto out;
7758 	}
7759 
7760 	/* flush everything */
7761 	txg = spa_vdev_config_enter(newspa);
7762 	vdev_config_dirty(newspa->spa_root_vdev);
7763 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7764 
7765 	if (zio_injection_enabled)
7766 		zio_handle_panic_injection(spa, FTAG, 2);
7767 
7768 	spa_async_resume(newspa);
7769 
7770 	/* finally, update the original pool's config */
7771 	txg = spa_vdev_config_enter(spa);
7772 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7773 	error = dmu_tx_assign(tx, TXG_WAIT);
7774 	if (error != 0)
7775 		dmu_tx_abort(tx);
7776 	for (c = 0; c < children; c++) {
7777 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7778 			vdev_t *tvd = vml[c]->vdev_top;
7779 
7780 			/*
7781 			 * Need to be sure the detachable VDEV is not
7782 			 * on any *other* txg's DTL list to prevent it
7783 			 * from being accessed after it's freed.
7784 			 */
7785 			for (int t = 0; t < TXG_SIZE; t++) {
7786 				(void) txg_list_remove_this(
7787 				    &tvd->vdev_dtl_list, vml[c], t);
7788 			}
7789 
7790 			vdev_split(vml[c]);
7791 			if (error == 0)
7792 				spa_history_log_internal(spa, "detach", tx,
7793 				    "vdev=%s", vml[c]->vdev_path);
7794 
7795 			vdev_free(vml[c]);
7796 		}
7797 	}
7798 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7799 	vdev_config_dirty(spa->spa_root_vdev);
7800 	spa->spa_config_splitting = NULL;
7801 	nvlist_free(nvl);
7802 	if (error == 0)
7803 		dmu_tx_commit(tx);
7804 	(void) spa_vdev_exit(spa, NULL, txg, 0);
7805 
7806 	if (zio_injection_enabled)
7807 		zio_handle_panic_injection(spa, FTAG, 3);
7808 
7809 	/* split is complete; log a history record */
7810 	spa_history_log_internal(newspa, "split", NULL,
7811 	    "from pool %s", spa_name(spa));
7812 
7813 	newspa->spa_is_splitting = B_FALSE;
7814 	kmem_free(vml, children * sizeof (vdev_t *));
7815 
7816 	/* if we're not going to mount the filesystems in userland, export */
7817 	if (exp)
7818 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7819 		    B_FALSE, B_FALSE);
7820 
7821 	return (error);
7822 
7823 out:
7824 	spa_unload(newspa);
7825 	spa_deactivate(newspa);
7826 	spa_remove(newspa);
7827 
7828 	txg = spa_vdev_config_enter(spa);
7829 
7830 	/* re-online all offlined disks */
7831 	for (c = 0; c < children; c++) {
7832 		if (vml[c] != NULL)
7833 			vml[c]->vdev_offline = B_FALSE;
7834 	}
7835 
7836 	/* restart initializing or trimming disks as necessary */
7837 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7838 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7839 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7840 
7841 	vdev_reopen(spa->spa_root_vdev);
7842 
7843 	nvlist_free(spa->spa_config_splitting);
7844 	spa->spa_config_splitting = NULL;
7845 	(void) spa_vdev_exit(spa, NULL, txg, error);
7846 
7847 	kmem_free(vml, children * sizeof (vdev_t *));
7848 	return (error);
7849 }
7850 
7851 /*
7852  * Find any device that's done replacing, or a vdev marked 'unspare' that's
7853  * currently spared, so we can detach it.
7854  */
7855 static vdev_t *
7856 spa_vdev_resilver_done_hunt(vdev_t *vd)
7857 {
7858 	vdev_t *newvd, *oldvd;
7859 
7860 	for (int c = 0; c < vd->vdev_children; c++) {
7861 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7862 		if (oldvd != NULL)
7863 			return (oldvd);
7864 	}
7865 
7866 	/*
7867 	 * Check for a completed replacement.  We always consider the first
7868 	 * vdev in the list to be the oldest vdev, and the last one to be
7869 	 * the newest (see spa_vdev_attach() for how that works).  In
7870 	 * the case where the newest vdev is faulted, we will not automatically
7871 	 * remove it after a resilver completes.  This is OK as it will require
7872 	 * user intervention to determine which disk the admin wishes to keep.
7873 	 */
7874 	if (vd->vdev_ops == &vdev_replacing_ops) {
7875 		ASSERT(vd->vdev_children > 1);
7876 
7877 		newvd = vd->vdev_child[vd->vdev_children - 1];
7878 		oldvd = vd->vdev_child[0];
7879 
7880 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7881 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7882 		    !vdev_dtl_required(oldvd))
7883 			return (oldvd);
7884 	}
7885 
7886 	/*
7887 	 * Check for a completed resilver with the 'unspare' flag set.
7888 	 * Also potentially update faulted state.
7889 	 */
7890 	if (vd->vdev_ops == &vdev_spare_ops) {
7891 		vdev_t *first = vd->vdev_child[0];
7892 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7893 
7894 		if (last->vdev_unspare) {
7895 			oldvd = first;
7896 			newvd = last;
7897 		} else if (first->vdev_unspare) {
7898 			oldvd = last;
7899 			newvd = first;
7900 		} else {
7901 			oldvd = NULL;
7902 		}
7903 
7904 		if (oldvd != NULL &&
7905 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7906 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7907 		    !vdev_dtl_required(oldvd))
7908 			return (oldvd);
7909 
7910 		vdev_propagate_state(vd);
7911 
7912 		/*
7913 		 * If there are more than two spares attached to a disk,
7914 		 * and those spares are not required, then we want to
7915 		 * attempt to free them up now so that they can be used
7916 		 * by other pools.  Once we're back down to a single
7917 		 * disk+spare, we stop removing them.
7918 		 */
7919 		if (vd->vdev_children > 2) {
7920 			newvd = vd->vdev_child[1];
7921 
7922 			if (newvd->vdev_isspare && last->vdev_isspare &&
7923 			    vdev_dtl_empty(last, DTL_MISSING) &&
7924 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7925 			    !vdev_dtl_required(newvd))
7926 				return (newvd);
7927 		}
7928 	}
7929 
7930 	return (NULL);
7931 }
7932 
7933 static void
7934 spa_vdev_resilver_done(spa_t *spa)
7935 {
7936 	vdev_t *vd, *pvd, *ppvd;
7937 	uint64_t guid, sguid, pguid, ppguid;
7938 
7939 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7940 
7941 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7942 		pvd = vd->vdev_parent;
7943 		ppvd = pvd->vdev_parent;
7944 		guid = vd->vdev_guid;
7945 		pguid = pvd->vdev_guid;
7946 		ppguid = ppvd->vdev_guid;
7947 		sguid = 0;
7948 		/*
7949 		 * If we have just finished replacing a hot spared device, then
7950 		 * we need to detach the parent's first child (the original hot
7951 		 * spare) as well.
7952 		 */
7953 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7954 		    ppvd->vdev_children == 2) {
7955 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7956 			sguid = ppvd->vdev_child[1]->vdev_guid;
7957 		}
7958 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7959 
7960 		spa_config_exit(spa, SCL_ALL, FTAG);
7961 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7962 			return;
7963 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7964 			return;
7965 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7966 	}
7967 
7968 	spa_config_exit(spa, SCL_ALL, FTAG);
7969 
7970 	/*
7971 	 * If a detach was not performed above replace waiters will not have
7972 	 * been notified.  In which case we must do so now.
7973 	 */
7974 	spa_notify_waiters(spa);
7975 }
7976 
7977 /*
7978  * Update the stored path or FRU for this vdev.
7979  */
7980 static int
7981 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7982     boolean_t ispath)
7983 {
7984 	vdev_t *vd;
7985 	boolean_t sync = B_FALSE;
7986 
7987 	ASSERT(spa_writeable(spa));
7988 
7989 	spa_vdev_state_enter(spa, SCL_ALL);
7990 
7991 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7992 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7993 
7994 	if (!vd->vdev_ops->vdev_op_leaf)
7995 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7996 
7997 	if (ispath) {
7998 		if (strcmp(value, vd->vdev_path) != 0) {
7999 			spa_strfree(vd->vdev_path);
8000 			vd->vdev_path = spa_strdup(value);
8001 			sync = B_TRUE;
8002 		}
8003 	} else {
8004 		if (vd->vdev_fru == NULL) {
8005 			vd->vdev_fru = spa_strdup(value);
8006 			sync = B_TRUE;
8007 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8008 			spa_strfree(vd->vdev_fru);
8009 			vd->vdev_fru = spa_strdup(value);
8010 			sync = B_TRUE;
8011 		}
8012 	}
8013 
8014 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8015 }
8016 
8017 int
8018 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8019 {
8020 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8021 }
8022 
8023 int
8024 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8025 {
8026 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8027 }
8028 
8029 /*
8030  * ==========================================================================
8031  * SPA Scanning
8032  * ==========================================================================
8033  */
8034 int
8035 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8036 {
8037 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8038 
8039 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8040 		return (SET_ERROR(EBUSY));
8041 
8042 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8043 }
8044 
8045 int
8046 spa_scan_stop(spa_t *spa)
8047 {
8048 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8049 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8050 		return (SET_ERROR(EBUSY));
8051 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8052 }
8053 
8054 int
8055 spa_scan(spa_t *spa, pool_scan_func_t func)
8056 {
8057 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8058 
8059 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8060 		return (SET_ERROR(ENOTSUP));
8061 
8062 	if (func == POOL_SCAN_RESILVER &&
8063 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8064 		return (SET_ERROR(ENOTSUP));
8065 
8066 	/*
8067 	 * If a resilver was requested, but there is no DTL on a
8068 	 * writeable leaf device, we have nothing to do.
8069 	 */
8070 	if (func == POOL_SCAN_RESILVER &&
8071 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8072 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8073 		return (0);
8074 	}
8075 
8076 	return (dsl_scan(spa->spa_dsl_pool, func));
8077 }
8078 
8079 /*
8080  * ==========================================================================
8081  * SPA async task processing
8082  * ==========================================================================
8083  */
8084 
8085 static void
8086 spa_async_remove(spa_t *spa, vdev_t *vd)
8087 {
8088 	if (vd->vdev_remove_wanted) {
8089 		vd->vdev_remove_wanted = B_FALSE;
8090 		vd->vdev_delayed_close = B_FALSE;
8091 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8092 
8093 		/*
8094 		 * We want to clear the stats, but we don't want to do a full
8095 		 * vdev_clear() as that will cause us to throw away
8096 		 * degraded/faulted state as well as attempt to reopen the
8097 		 * device, all of which is a waste.
8098 		 */
8099 		vd->vdev_stat.vs_read_errors = 0;
8100 		vd->vdev_stat.vs_write_errors = 0;
8101 		vd->vdev_stat.vs_checksum_errors = 0;
8102 
8103 		vdev_state_dirty(vd->vdev_top);
8104 
8105 		/* Tell userspace that the vdev is gone. */
8106 		zfs_post_remove(spa, vd);
8107 	}
8108 
8109 	for (int c = 0; c < vd->vdev_children; c++)
8110 		spa_async_remove(spa, vd->vdev_child[c]);
8111 }
8112 
8113 static void
8114 spa_async_probe(spa_t *spa, vdev_t *vd)
8115 {
8116 	if (vd->vdev_probe_wanted) {
8117 		vd->vdev_probe_wanted = B_FALSE;
8118 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8119 	}
8120 
8121 	for (int c = 0; c < vd->vdev_children; c++)
8122 		spa_async_probe(spa, vd->vdev_child[c]);
8123 }
8124 
8125 static void
8126 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8127 {
8128 	if (!spa->spa_autoexpand)
8129 		return;
8130 
8131 	for (int c = 0; c < vd->vdev_children; c++) {
8132 		vdev_t *cvd = vd->vdev_child[c];
8133 		spa_async_autoexpand(spa, cvd);
8134 	}
8135 
8136 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8137 		return;
8138 
8139 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8140 }
8141 
8142 static __attribute__((noreturn)) void
8143 spa_async_thread(void *arg)
8144 {
8145 	spa_t *spa = (spa_t *)arg;
8146 	dsl_pool_t *dp = spa->spa_dsl_pool;
8147 	int tasks;
8148 
8149 	ASSERT(spa->spa_sync_on);
8150 
8151 	mutex_enter(&spa->spa_async_lock);
8152 	tasks = spa->spa_async_tasks;
8153 	spa->spa_async_tasks = 0;
8154 	mutex_exit(&spa->spa_async_lock);
8155 
8156 	/*
8157 	 * See if the config needs to be updated.
8158 	 */
8159 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8160 		uint64_t old_space, new_space;
8161 
8162 		mutex_enter(&spa_namespace_lock);
8163 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8164 		old_space += metaslab_class_get_space(spa_special_class(spa));
8165 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8166 		old_space += metaslab_class_get_space(
8167 		    spa_embedded_log_class(spa));
8168 
8169 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8170 
8171 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8172 		new_space += metaslab_class_get_space(spa_special_class(spa));
8173 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8174 		new_space += metaslab_class_get_space(
8175 		    spa_embedded_log_class(spa));
8176 		mutex_exit(&spa_namespace_lock);
8177 
8178 		/*
8179 		 * If the pool grew as a result of the config update,
8180 		 * then log an internal history event.
8181 		 */
8182 		if (new_space != old_space) {
8183 			spa_history_log_internal(spa, "vdev online", NULL,
8184 			    "pool '%s' size: %llu(+%llu)",
8185 			    spa_name(spa), (u_longlong_t)new_space,
8186 			    (u_longlong_t)(new_space - old_space));
8187 		}
8188 	}
8189 
8190 	/*
8191 	 * See if any devices need to be marked REMOVED.
8192 	 */
8193 	if (tasks & SPA_ASYNC_REMOVE) {
8194 		spa_vdev_state_enter(spa, SCL_NONE);
8195 		spa_async_remove(spa, spa->spa_root_vdev);
8196 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8197 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8198 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8199 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8200 		(void) spa_vdev_state_exit(spa, NULL, 0);
8201 	}
8202 
8203 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8204 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8205 		spa_async_autoexpand(spa, spa->spa_root_vdev);
8206 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8207 	}
8208 
8209 	/*
8210 	 * See if any devices need to be probed.
8211 	 */
8212 	if (tasks & SPA_ASYNC_PROBE) {
8213 		spa_vdev_state_enter(spa, SCL_NONE);
8214 		spa_async_probe(spa, spa->spa_root_vdev);
8215 		(void) spa_vdev_state_exit(spa, NULL, 0);
8216 	}
8217 
8218 	/*
8219 	 * If any devices are done replacing, detach them.
8220 	 */
8221 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8222 	    tasks & SPA_ASYNC_REBUILD_DONE) {
8223 		spa_vdev_resilver_done(spa);
8224 	}
8225 
8226 	/*
8227 	 * Kick off a resilver.
8228 	 */
8229 	if (tasks & SPA_ASYNC_RESILVER &&
8230 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8231 	    (!dsl_scan_resilvering(dp) ||
8232 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8233 		dsl_scan_restart_resilver(dp, 0);
8234 
8235 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8236 		mutex_enter(&spa_namespace_lock);
8237 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8238 		vdev_initialize_restart(spa->spa_root_vdev);
8239 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8240 		mutex_exit(&spa_namespace_lock);
8241 	}
8242 
8243 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8244 		mutex_enter(&spa_namespace_lock);
8245 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8246 		vdev_trim_restart(spa->spa_root_vdev);
8247 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8248 		mutex_exit(&spa_namespace_lock);
8249 	}
8250 
8251 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8252 		mutex_enter(&spa_namespace_lock);
8253 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8254 		vdev_autotrim_restart(spa);
8255 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8256 		mutex_exit(&spa_namespace_lock);
8257 	}
8258 
8259 	/*
8260 	 * Kick off L2 cache whole device TRIM.
8261 	 */
8262 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8263 		mutex_enter(&spa_namespace_lock);
8264 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8265 		vdev_trim_l2arc(spa);
8266 		spa_config_exit(spa, SCL_CONFIG, FTAG);
8267 		mutex_exit(&spa_namespace_lock);
8268 	}
8269 
8270 	/*
8271 	 * Kick off L2 cache rebuilding.
8272 	 */
8273 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8274 		mutex_enter(&spa_namespace_lock);
8275 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8276 		l2arc_spa_rebuild_start(spa);
8277 		spa_config_exit(spa, SCL_L2ARC, FTAG);
8278 		mutex_exit(&spa_namespace_lock);
8279 	}
8280 
8281 	/*
8282 	 * Let the world know that we're done.
8283 	 */
8284 	mutex_enter(&spa->spa_async_lock);
8285 	spa->spa_async_thread = NULL;
8286 	cv_broadcast(&spa->spa_async_cv);
8287 	mutex_exit(&spa->spa_async_lock);
8288 	thread_exit();
8289 }
8290 
8291 void
8292 spa_async_suspend(spa_t *spa)
8293 {
8294 	mutex_enter(&spa->spa_async_lock);
8295 	spa->spa_async_suspended++;
8296 	while (spa->spa_async_thread != NULL)
8297 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8298 	mutex_exit(&spa->spa_async_lock);
8299 
8300 	spa_vdev_remove_suspend(spa);
8301 
8302 	zthr_t *condense_thread = spa->spa_condense_zthr;
8303 	if (condense_thread != NULL)
8304 		zthr_cancel(condense_thread);
8305 
8306 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8307 	if (discard_thread != NULL)
8308 		zthr_cancel(discard_thread);
8309 
8310 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8311 	if (ll_delete_thread != NULL)
8312 		zthr_cancel(ll_delete_thread);
8313 
8314 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8315 	if (ll_condense_thread != NULL)
8316 		zthr_cancel(ll_condense_thread);
8317 }
8318 
8319 void
8320 spa_async_resume(spa_t *spa)
8321 {
8322 	mutex_enter(&spa->spa_async_lock);
8323 	ASSERT(spa->spa_async_suspended != 0);
8324 	spa->spa_async_suspended--;
8325 	mutex_exit(&spa->spa_async_lock);
8326 	spa_restart_removal(spa);
8327 
8328 	zthr_t *condense_thread = spa->spa_condense_zthr;
8329 	if (condense_thread != NULL)
8330 		zthr_resume(condense_thread);
8331 
8332 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8333 	if (discard_thread != NULL)
8334 		zthr_resume(discard_thread);
8335 
8336 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8337 	if (ll_delete_thread != NULL)
8338 		zthr_resume(ll_delete_thread);
8339 
8340 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8341 	if (ll_condense_thread != NULL)
8342 		zthr_resume(ll_condense_thread);
8343 }
8344 
8345 static boolean_t
8346 spa_async_tasks_pending(spa_t *spa)
8347 {
8348 	uint_t non_config_tasks;
8349 	uint_t config_task;
8350 	boolean_t config_task_suspended;
8351 
8352 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8353 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8354 	if (spa->spa_ccw_fail_time == 0) {
8355 		config_task_suspended = B_FALSE;
8356 	} else {
8357 		config_task_suspended =
8358 		    (gethrtime() - spa->spa_ccw_fail_time) <
8359 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8360 	}
8361 
8362 	return (non_config_tasks || (config_task && !config_task_suspended));
8363 }
8364 
8365 static void
8366 spa_async_dispatch(spa_t *spa)
8367 {
8368 	mutex_enter(&spa->spa_async_lock);
8369 	if (spa_async_tasks_pending(spa) &&
8370 	    !spa->spa_async_suspended &&
8371 	    spa->spa_async_thread == NULL)
8372 		spa->spa_async_thread = thread_create(NULL, 0,
8373 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8374 	mutex_exit(&spa->spa_async_lock);
8375 }
8376 
8377 void
8378 spa_async_request(spa_t *spa, int task)
8379 {
8380 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8381 	mutex_enter(&spa->spa_async_lock);
8382 	spa->spa_async_tasks |= task;
8383 	mutex_exit(&spa->spa_async_lock);
8384 }
8385 
8386 int
8387 spa_async_tasks(spa_t *spa)
8388 {
8389 	return (spa->spa_async_tasks);
8390 }
8391 
8392 /*
8393  * ==========================================================================
8394  * SPA syncing routines
8395  * ==========================================================================
8396  */
8397 
8398 
8399 static int
8400 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8401     dmu_tx_t *tx)
8402 {
8403 	bpobj_t *bpo = arg;
8404 	bpobj_enqueue(bpo, bp, bp_freed, tx);
8405 	return (0);
8406 }
8407 
8408 int
8409 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8410 {
8411 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8412 }
8413 
8414 int
8415 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8416 {
8417 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8418 }
8419 
8420 static int
8421 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8422 {
8423 	zio_t *pio = arg;
8424 
8425 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8426 	    pio->io_flags));
8427 	return (0);
8428 }
8429 
8430 static int
8431 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8432     dmu_tx_t *tx)
8433 {
8434 	ASSERT(!bp_freed);
8435 	return (spa_free_sync_cb(arg, bp, tx));
8436 }
8437 
8438 /*
8439  * Note: this simple function is not inlined to make it easier to dtrace the
8440  * amount of time spent syncing frees.
8441  */
8442 static void
8443 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8444 {
8445 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8446 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8447 	VERIFY(zio_wait(zio) == 0);
8448 }
8449 
8450 /*
8451  * Note: this simple function is not inlined to make it easier to dtrace the
8452  * amount of time spent syncing deferred frees.
8453  */
8454 static void
8455 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8456 {
8457 	if (spa_sync_pass(spa) != 1)
8458 		return;
8459 
8460 	/*
8461 	 * Note:
8462 	 * If the log space map feature is active, we stop deferring
8463 	 * frees to the next TXG and therefore running this function
8464 	 * would be considered a no-op as spa_deferred_bpobj should
8465 	 * not have any entries.
8466 	 *
8467 	 * That said we run this function anyway (instead of returning
8468 	 * immediately) for the edge-case scenario where we just
8469 	 * activated the log space map feature in this TXG but we have
8470 	 * deferred frees from the previous TXG.
8471 	 */
8472 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8473 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8474 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8475 	VERIFY0(zio_wait(zio));
8476 }
8477 
8478 static void
8479 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8480 {
8481 	char *packed = NULL;
8482 	size_t bufsize;
8483 	size_t nvsize = 0;
8484 	dmu_buf_t *db;
8485 
8486 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8487 
8488 	/*
8489 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8490 	 * information.  This avoids the dmu_buf_will_dirty() path and
8491 	 * saves us a pre-read to get data we don't actually care about.
8492 	 */
8493 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8494 	packed = vmem_alloc(bufsize, KM_SLEEP);
8495 
8496 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8497 	    KM_SLEEP) == 0);
8498 	memset(packed + nvsize, 0, bufsize - nvsize);
8499 
8500 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8501 
8502 	vmem_free(packed, bufsize);
8503 
8504 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8505 	dmu_buf_will_dirty(db, tx);
8506 	*(uint64_t *)db->db_data = nvsize;
8507 	dmu_buf_rele(db, FTAG);
8508 }
8509 
8510 static void
8511 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8512     const char *config, const char *entry)
8513 {
8514 	nvlist_t *nvroot;
8515 	nvlist_t **list;
8516 	int i;
8517 
8518 	if (!sav->sav_sync)
8519 		return;
8520 
8521 	/*
8522 	 * Update the MOS nvlist describing the list of available devices.
8523 	 * spa_validate_aux() will have already made sure this nvlist is
8524 	 * valid and the vdevs are labeled appropriately.
8525 	 */
8526 	if (sav->sav_object == 0) {
8527 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8528 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8529 		    sizeof (uint64_t), tx);
8530 		VERIFY(zap_update(spa->spa_meta_objset,
8531 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8532 		    &sav->sav_object, tx) == 0);
8533 	}
8534 
8535 	nvroot = fnvlist_alloc();
8536 	if (sav->sav_count == 0) {
8537 		fnvlist_add_nvlist_array(nvroot, config,
8538 		    (const nvlist_t * const *)NULL, 0);
8539 	} else {
8540 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8541 		for (i = 0; i < sav->sav_count; i++)
8542 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8543 			    B_FALSE, VDEV_CONFIG_L2CACHE);
8544 		fnvlist_add_nvlist_array(nvroot, config,
8545 		    (const nvlist_t * const *)list, sav->sav_count);
8546 		for (i = 0; i < sav->sav_count; i++)
8547 			nvlist_free(list[i]);
8548 		kmem_free(list, sav->sav_count * sizeof (void *));
8549 	}
8550 
8551 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8552 	nvlist_free(nvroot);
8553 
8554 	sav->sav_sync = B_FALSE;
8555 }
8556 
8557 /*
8558  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8559  * The all-vdev ZAP must be empty.
8560  */
8561 static void
8562 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8563 {
8564 	spa_t *spa = vd->vdev_spa;
8565 
8566 	if (vd->vdev_top_zap != 0) {
8567 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8568 		    vd->vdev_top_zap, tx));
8569 	}
8570 	if (vd->vdev_leaf_zap != 0) {
8571 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8572 		    vd->vdev_leaf_zap, tx));
8573 	}
8574 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8575 		spa_avz_build(vd->vdev_child[i], avz, tx);
8576 	}
8577 }
8578 
8579 static void
8580 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8581 {
8582 	nvlist_t *config;
8583 
8584 	/*
8585 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8586 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8587 	 * Similarly, if the pool is being assembled (e.g. after a split), we
8588 	 * need to rebuild the AVZ although the config may not be dirty.
8589 	 */
8590 	if (list_is_empty(&spa->spa_config_dirty_list) &&
8591 	    spa->spa_avz_action == AVZ_ACTION_NONE)
8592 		return;
8593 
8594 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8595 
8596 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8597 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8598 	    spa->spa_all_vdev_zaps != 0);
8599 
8600 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8601 		/* Make and build the new AVZ */
8602 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8603 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8604 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8605 
8606 		/* Diff old AVZ with new one */
8607 		zap_cursor_t zc;
8608 		zap_attribute_t za;
8609 
8610 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8611 		    spa->spa_all_vdev_zaps);
8612 		    zap_cursor_retrieve(&zc, &za) == 0;
8613 		    zap_cursor_advance(&zc)) {
8614 			uint64_t vdzap = za.za_first_integer;
8615 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8616 			    vdzap) == ENOENT) {
8617 				/*
8618 				 * ZAP is listed in old AVZ but not in new one;
8619 				 * destroy it
8620 				 */
8621 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8622 				    tx));
8623 			}
8624 		}
8625 
8626 		zap_cursor_fini(&zc);
8627 
8628 		/* Destroy the old AVZ */
8629 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8630 		    spa->spa_all_vdev_zaps, tx));
8631 
8632 		/* Replace the old AVZ in the dir obj with the new one */
8633 		VERIFY0(zap_update(spa->spa_meta_objset,
8634 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8635 		    sizeof (new_avz), 1, &new_avz, tx));
8636 
8637 		spa->spa_all_vdev_zaps = new_avz;
8638 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8639 		zap_cursor_t zc;
8640 		zap_attribute_t za;
8641 
8642 		/* Walk through the AVZ and destroy all listed ZAPs */
8643 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8644 		    spa->spa_all_vdev_zaps);
8645 		    zap_cursor_retrieve(&zc, &za) == 0;
8646 		    zap_cursor_advance(&zc)) {
8647 			uint64_t zap = za.za_first_integer;
8648 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8649 		}
8650 
8651 		zap_cursor_fini(&zc);
8652 
8653 		/* Destroy and unlink the AVZ itself */
8654 		VERIFY0(zap_destroy(spa->spa_meta_objset,
8655 		    spa->spa_all_vdev_zaps, tx));
8656 		VERIFY0(zap_remove(spa->spa_meta_objset,
8657 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8658 		spa->spa_all_vdev_zaps = 0;
8659 	}
8660 
8661 	if (spa->spa_all_vdev_zaps == 0) {
8662 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8663 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8664 		    DMU_POOL_VDEV_ZAP_MAP, tx);
8665 	}
8666 	spa->spa_avz_action = AVZ_ACTION_NONE;
8667 
8668 	/* Create ZAPs for vdevs that don't have them. */
8669 	vdev_construct_zaps(spa->spa_root_vdev, tx);
8670 
8671 	config = spa_config_generate(spa, spa->spa_root_vdev,
8672 	    dmu_tx_get_txg(tx), B_FALSE);
8673 
8674 	/*
8675 	 * If we're upgrading the spa version then make sure that
8676 	 * the config object gets updated with the correct version.
8677 	 */
8678 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8679 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8680 		    spa->spa_uberblock.ub_version);
8681 
8682 	spa_config_exit(spa, SCL_STATE, FTAG);
8683 
8684 	nvlist_free(spa->spa_config_syncing);
8685 	spa->spa_config_syncing = config;
8686 
8687 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8688 }
8689 
8690 static void
8691 spa_sync_version(void *arg, dmu_tx_t *tx)
8692 {
8693 	uint64_t *versionp = arg;
8694 	uint64_t version = *versionp;
8695 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8696 
8697 	/*
8698 	 * Setting the version is special cased when first creating the pool.
8699 	 */
8700 	ASSERT(tx->tx_txg != TXG_INITIAL);
8701 
8702 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8703 	ASSERT(version >= spa_version(spa));
8704 
8705 	spa->spa_uberblock.ub_version = version;
8706 	vdev_config_dirty(spa->spa_root_vdev);
8707 	spa_history_log_internal(spa, "set", tx, "version=%lld",
8708 	    (longlong_t)version);
8709 }
8710 
8711 /*
8712  * Set zpool properties.
8713  */
8714 static void
8715 spa_sync_props(void *arg, dmu_tx_t *tx)
8716 {
8717 	nvlist_t *nvp = arg;
8718 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8719 	objset_t *mos = spa->spa_meta_objset;
8720 	nvpair_t *elem = NULL;
8721 
8722 	mutex_enter(&spa->spa_props_lock);
8723 
8724 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8725 		uint64_t intval;
8726 		char *strval, *fname;
8727 		zpool_prop_t prop;
8728 		const char *propname;
8729 		zprop_type_t proptype;
8730 		spa_feature_t fid;
8731 
8732 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8733 		case ZPOOL_PROP_INVAL:
8734 			/*
8735 			 * We checked this earlier in spa_prop_validate().
8736 			 */
8737 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8738 
8739 			fname = strchr(nvpair_name(elem), '@') + 1;
8740 			VERIFY0(zfeature_lookup_name(fname, &fid));
8741 
8742 			spa_feature_enable(spa, fid, tx);
8743 			spa_history_log_internal(spa, "set", tx,
8744 			    "%s=enabled", nvpair_name(elem));
8745 			break;
8746 
8747 		case ZPOOL_PROP_VERSION:
8748 			intval = fnvpair_value_uint64(elem);
8749 			/*
8750 			 * The version is synced separately before other
8751 			 * properties and should be correct by now.
8752 			 */
8753 			ASSERT3U(spa_version(spa), >=, intval);
8754 			break;
8755 
8756 		case ZPOOL_PROP_ALTROOT:
8757 			/*
8758 			 * 'altroot' is a non-persistent property. It should
8759 			 * have been set temporarily at creation or import time.
8760 			 */
8761 			ASSERT(spa->spa_root != NULL);
8762 			break;
8763 
8764 		case ZPOOL_PROP_READONLY:
8765 		case ZPOOL_PROP_CACHEFILE:
8766 			/*
8767 			 * 'readonly' and 'cachefile' are also non-persistent
8768 			 * properties.
8769 			 */
8770 			break;
8771 		case ZPOOL_PROP_COMMENT:
8772 			strval = fnvpair_value_string(elem);
8773 			if (spa->spa_comment != NULL)
8774 				spa_strfree(spa->spa_comment);
8775 			spa->spa_comment = spa_strdup(strval);
8776 			/*
8777 			 * We need to dirty the configuration on all the vdevs
8778 			 * so that their labels get updated.  We also need to
8779 			 * update the cache file to keep it in sync with the
8780 			 * MOS version. It's unnecessary to do this for pool
8781 			 * creation since the vdev's configuration has already
8782 			 * been dirtied.
8783 			 */
8784 			if (tx->tx_txg != TXG_INITIAL) {
8785 				vdev_config_dirty(spa->spa_root_vdev);
8786 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8787 			}
8788 			spa_history_log_internal(spa, "set", tx,
8789 			    "%s=%s", nvpair_name(elem), strval);
8790 			break;
8791 		case ZPOOL_PROP_COMPATIBILITY:
8792 			strval = fnvpair_value_string(elem);
8793 			if (spa->spa_compatibility != NULL)
8794 				spa_strfree(spa->spa_compatibility);
8795 			spa->spa_compatibility = spa_strdup(strval);
8796 			/*
8797 			 * Dirty the configuration on vdevs as above.
8798 			 */
8799 			if (tx->tx_txg != TXG_INITIAL) {
8800 				vdev_config_dirty(spa->spa_root_vdev);
8801 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8802 			}
8803 
8804 			spa_history_log_internal(spa, "set", tx,
8805 			    "%s=%s", nvpair_name(elem), strval);
8806 			break;
8807 
8808 		default:
8809 			/*
8810 			 * Set pool property values in the poolprops mos object.
8811 			 */
8812 			if (spa->spa_pool_props_object == 0) {
8813 				spa->spa_pool_props_object =
8814 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8815 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8816 				    tx);
8817 			}
8818 
8819 			/* normalize the property name */
8820 			propname = zpool_prop_to_name(prop);
8821 			proptype = zpool_prop_get_type(prop);
8822 
8823 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8824 				ASSERT(proptype == PROP_TYPE_STRING);
8825 				strval = fnvpair_value_string(elem);
8826 				VERIFY0(zap_update(mos,
8827 				    spa->spa_pool_props_object, propname,
8828 				    1, strlen(strval) + 1, strval, tx));
8829 				spa_history_log_internal(spa, "set", tx,
8830 				    "%s=%s", nvpair_name(elem), strval);
8831 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8832 				intval = fnvpair_value_uint64(elem);
8833 
8834 				if (proptype == PROP_TYPE_INDEX) {
8835 					const char *unused;
8836 					VERIFY0(zpool_prop_index_to_string(
8837 					    prop, intval, &unused));
8838 				}
8839 				VERIFY0(zap_update(mos,
8840 				    spa->spa_pool_props_object, propname,
8841 				    8, 1, &intval, tx));
8842 				spa_history_log_internal(spa, "set", tx,
8843 				    "%s=%lld", nvpair_name(elem),
8844 				    (longlong_t)intval);
8845 			} else {
8846 				ASSERT(0); /* not allowed */
8847 			}
8848 
8849 			switch (prop) {
8850 			case ZPOOL_PROP_DELEGATION:
8851 				spa->spa_delegation = intval;
8852 				break;
8853 			case ZPOOL_PROP_BOOTFS:
8854 				spa->spa_bootfs = intval;
8855 				break;
8856 			case ZPOOL_PROP_FAILUREMODE:
8857 				spa->spa_failmode = intval;
8858 				break;
8859 			case ZPOOL_PROP_AUTOTRIM:
8860 				spa->spa_autotrim = intval;
8861 				spa_async_request(spa,
8862 				    SPA_ASYNC_AUTOTRIM_RESTART);
8863 				break;
8864 			case ZPOOL_PROP_AUTOEXPAND:
8865 				spa->spa_autoexpand = intval;
8866 				if (tx->tx_txg != TXG_INITIAL)
8867 					spa_async_request(spa,
8868 					    SPA_ASYNC_AUTOEXPAND);
8869 				break;
8870 			case ZPOOL_PROP_MULTIHOST:
8871 				spa->spa_multihost = intval;
8872 				break;
8873 			default:
8874 				break;
8875 			}
8876 		}
8877 
8878 	}
8879 
8880 	mutex_exit(&spa->spa_props_lock);
8881 }
8882 
8883 /*
8884  * Perform one-time upgrade on-disk changes.  spa_version() does not
8885  * reflect the new version this txg, so there must be no changes this
8886  * txg to anything that the upgrade code depends on after it executes.
8887  * Therefore this must be called after dsl_pool_sync() does the sync
8888  * tasks.
8889  */
8890 static void
8891 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8892 {
8893 	if (spa_sync_pass(spa) != 1)
8894 		return;
8895 
8896 	dsl_pool_t *dp = spa->spa_dsl_pool;
8897 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8898 
8899 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8900 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8901 		dsl_pool_create_origin(dp, tx);
8902 
8903 		/* Keeping the origin open increases spa_minref */
8904 		spa->spa_minref += 3;
8905 	}
8906 
8907 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8908 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8909 		dsl_pool_upgrade_clones(dp, tx);
8910 	}
8911 
8912 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8913 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8914 		dsl_pool_upgrade_dir_clones(dp, tx);
8915 
8916 		/* Keeping the freedir open increases spa_minref */
8917 		spa->spa_minref += 3;
8918 	}
8919 
8920 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8921 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8922 		spa_feature_create_zap_objects(spa, tx);
8923 	}
8924 
8925 	/*
8926 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8927 	 * when possibility to use lz4 compression for metadata was added
8928 	 * Old pools that have this feature enabled must be upgraded to have
8929 	 * this feature active
8930 	 */
8931 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8932 		boolean_t lz4_en = spa_feature_is_enabled(spa,
8933 		    SPA_FEATURE_LZ4_COMPRESS);
8934 		boolean_t lz4_ac = spa_feature_is_active(spa,
8935 		    SPA_FEATURE_LZ4_COMPRESS);
8936 
8937 		if (lz4_en && !lz4_ac)
8938 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8939 	}
8940 
8941 	/*
8942 	 * If we haven't written the salt, do so now.  Note that the
8943 	 * feature may not be activated yet, but that's fine since
8944 	 * the presence of this ZAP entry is backwards compatible.
8945 	 */
8946 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8947 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8948 		VERIFY0(zap_add(spa->spa_meta_objset,
8949 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8950 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8951 		    spa->spa_cksum_salt.zcs_bytes, tx));
8952 	}
8953 
8954 	rrw_exit(&dp->dp_config_rwlock, FTAG);
8955 }
8956 
8957 static void
8958 vdev_indirect_state_sync_verify(vdev_t *vd)
8959 {
8960 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8961 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8962 
8963 	if (vd->vdev_ops == &vdev_indirect_ops) {
8964 		ASSERT(vim != NULL);
8965 		ASSERT(vib != NULL);
8966 	}
8967 
8968 	uint64_t obsolete_sm_object = 0;
8969 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8970 	if (obsolete_sm_object != 0) {
8971 		ASSERT(vd->vdev_obsolete_sm != NULL);
8972 		ASSERT(vd->vdev_removing ||
8973 		    vd->vdev_ops == &vdev_indirect_ops);
8974 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8975 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8976 		ASSERT3U(obsolete_sm_object, ==,
8977 		    space_map_object(vd->vdev_obsolete_sm));
8978 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8979 		    space_map_allocated(vd->vdev_obsolete_sm));
8980 	}
8981 	ASSERT(vd->vdev_obsolete_segments != NULL);
8982 
8983 	/*
8984 	 * Since frees / remaps to an indirect vdev can only
8985 	 * happen in syncing context, the obsolete segments
8986 	 * tree must be empty when we start syncing.
8987 	 */
8988 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8989 }
8990 
8991 /*
8992  * Set the top-level vdev's max queue depth. Evaluate each top-level's
8993  * async write queue depth in case it changed. The max queue depth will
8994  * not change in the middle of syncing out this txg.
8995  */
8996 static void
8997 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8998 {
8999 	ASSERT(spa_writeable(spa));
9000 
9001 	vdev_t *rvd = spa->spa_root_vdev;
9002 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9003 	    zfs_vdev_queue_depth_pct / 100;
9004 	metaslab_class_t *normal = spa_normal_class(spa);
9005 	metaslab_class_t *special = spa_special_class(spa);
9006 	metaslab_class_t *dedup = spa_dedup_class(spa);
9007 
9008 	uint64_t slots_per_allocator = 0;
9009 	for (int c = 0; c < rvd->vdev_children; c++) {
9010 		vdev_t *tvd = rvd->vdev_child[c];
9011 
9012 		metaslab_group_t *mg = tvd->vdev_mg;
9013 		if (mg == NULL || !metaslab_group_initialized(mg))
9014 			continue;
9015 
9016 		metaslab_class_t *mc = mg->mg_class;
9017 		if (mc != normal && mc != special && mc != dedup)
9018 			continue;
9019 
9020 		/*
9021 		 * It is safe to do a lock-free check here because only async
9022 		 * allocations look at mg_max_alloc_queue_depth, and async
9023 		 * allocations all happen from spa_sync().
9024 		 */
9025 		for (int i = 0; i < mg->mg_allocators; i++) {
9026 			ASSERT0(zfs_refcount_count(
9027 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9028 		}
9029 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9030 
9031 		for (int i = 0; i < mg->mg_allocators; i++) {
9032 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9033 			    zfs_vdev_def_queue_depth;
9034 		}
9035 		slots_per_allocator += zfs_vdev_def_queue_depth;
9036 	}
9037 
9038 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9039 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9040 		    mca_alloc_slots));
9041 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9042 		    mca_alloc_slots));
9043 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9044 		    mca_alloc_slots));
9045 		normal->mc_allocator[i].mca_alloc_max_slots =
9046 		    slots_per_allocator;
9047 		special->mc_allocator[i].mca_alloc_max_slots =
9048 		    slots_per_allocator;
9049 		dedup->mc_allocator[i].mca_alloc_max_slots =
9050 		    slots_per_allocator;
9051 	}
9052 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9053 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9054 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9055 }
9056 
9057 static void
9058 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9059 {
9060 	ASSERT(spa_writeable(spa));
9061 
9062 	vdev_t *rvd = spa->spa_root_vdev;
9063 	for (int c = 0; c < rvd->vdev_children; c++) {
9064 		vdev_t *vd = rvd->vdev_child[c];
9065 		vdev_indirect_state_sync_verify(vd);
9066 
9067 		if (vdev_indirect_should_condense(vd)) {
9068 			spa_condense_indirect_start_sync(vd, tx);
9069 			break;
9070 		}
9071 	}
9072 }
9073 
9074 static void
9075 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9076 {
9077 	objset_t *mos = spa->spa_meta_objset;
9078 	dsl_pool_t *dp = spa->spa_dsl_pool;
9079 	uint64_t txg = tx->tx_txg;
9080 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9081 
9082 	do {
9083 		int pass = ++spa->spa_sync_pass;
9084 
9085 		spa_sync_config_object(spa, tx);
9086 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9087 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9088 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9089 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9090 		spa_errlog_sync(spa, txg);
9091 		dsl_pool_sync(dp, txg);
9092 
9093 		if (pass < zfs_sync_pass_deferred_free ||
9094 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9095 			/*
9096 			 * If the log space map feature is active we don't
9097 			 * care about deferred frees and the deferred bpobj
9098 			 * as the log space map should effectively have the
9099 			 * same results (i.e. appending only to one object).
9100 			 */
9101 			spa_sync_frees(spa, free_bpl, tx);
9102 		} else {
9103 			/*
9104 			 * We can not defer frees in pass 1, because
9105 			 * we sync the deferred frees later in pass 1.
9106 			 */
9107 			ASSERT3U(pass, >, 1);
9108 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9109 			    &spa->spa_deferred_bpobj, tx);
9110 		}
9111 
9112 		ddt_sync(spa, txg);
9113 		dsl_scan_sync(dp, tx);
9114 		svr_sync(spa, tx);
9115 		spa_sync_upgrades(spa, tx);
9116 
9117 		spa_flush_metaslabs(spa, tx);
9118 
9119 		vdev_t *vd = NULL;
9120 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9121 		    != NULL)
9122 			vdev_sync(vd, txg);
9123 
9124 		/*
9125 		 * Note: We need to check if the MOS is dirty because we could
9126 		 * have marked the MOS dirty without updating the uberblock
9127 		 * (e.g. if we have sync tasks but no dirty user data). We need
9128 		 * to check the uberblock's rootbp because it is updated if we
9129 		 * have synced out dirty data (though in this case the MOS will
9130 		 * most likely also be dirty due to second order effects, we
9131 		 * don't want to rely on that here).
9132 		 */
9133 		if (pass == 1 &&
9134 		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9135 		    !dmu_objset_is_dirty(mos, txg)) {
9136 			/*
9137 			 * Nothing changed on the first pass, therefore this
9138 			 * TXG is a no-op. Avoid syncing deferred frees, so
9139 			 * that we can keep this TXG as a no-op.
9140 			 */
9141 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9142 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9143 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9144 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9145 			break;
9146 		}
9147 
9148 		spa_sync_deferred_frees(spa, tx);
9149 	} while (dmu_objset_is_dirty(mos, txg));
9150 }
9151 
9152 /*
9153  * Rewrite the vdev configuration (which includes the uberblock) to
9154  * commit the transaction group.
9155  *
9156  * If there are no dirty vdevs, we sync the uberblock to a few random
9157  * top-level vdevs that are known to be visible in the config cache
9158  * (see spa_vdev_add() for a complete description). If there *are* dirty
9159  * vdevs, sync the uberblock to all vdevs.
9160  */
9161 static void
9162 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9163 {
9164 	vdev_t *rvd = spa->spa_root_vdev;
9165 	uint64_t txg = tx->tx_txg;
9166 
9167 	for (;;) {
9168 		int error = 0;
9169 
9170 		/*
9171 		 * We hold SCL_STATE to prevent vdev open/close/etc.
9172 		 * while we're attempting to write the vdev labels.
9173 		 */
9174 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9175 
9176 		if (list_is_empty(&spa->spa_config_dirty_list)) {
9177 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9178 			int svdcount = 0;
9179 			int children = rvd->vdev_children;
9180 			int c0 = random_in_range(children);
9181 
9182 			for (int c = 0; c < children; c++) {
9183 				vdev_t *vd =
9184 				    rvd->vdev_child[(c0 + c) % children];
9185 
9186 				/* Stop when revisiting the first vdev */
9187 				if (c > 0 && svd[0] == vd)
9188 					break;
9189 
9190 				if (vd->vdev_ms_array == 0 ||
9191 				    vd->vdev_islog ||
9192 				    !vdev_is_concrete(vd))
9193 					continue;
9194 
9195 				svd[svdcount++] = vd;
9196 				if (svdcount == SPA_SYNC_MIN_VDEVS)
9197 					break;
9198 			}
9199 			error = vdev_config_sync(svd, svdcount, txg);
9200 		} else {
9201 			error = vdev_config_sync(rvd->vdev_child,
9202 			    rvd->vdev_children, txg);
9203 		}
9204 
9205 		if (error == 0)
9206 			spa->spa_last_synced_guid = rvd->vdev_guid;
9207 
9208 		spa_config_exit(spa, SCL_STATE, FTAG);
9209 
9210 		if (error == 0)
9211 			break;
9212 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9213 		zio_resume_wait(spa);
9214 	}
9215 }
9216 
9217 /*
9218  * Sync the specified transaction group.  New blocks may be dirtied as
9219  * part of the process, so we iterate until it converges.
9220  */
9221 void
9222 spa_sync(spa_t *spa, uint64_t txg)
9223 {
9224 	vdev_t *vd = NULL;
9225 
9226 	VERIFY(spa_writeable(spa));
9227 
9228 	/*
9229 	 * Wait for i/os issued in open context that need to complete
9230 	 * before this txg syncs.
9231 	 */
9232 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9233 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9234 	    ZIO_FLAG_CANFAIL);
9235 
9236 	/*
9237 	 * Lock out configuration changes.
9238 	 */
9239 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9240 
9241 	spa->spa_syncing_txg = txg;
9242 	spa->spa_sync_pass = 0;
9243 
9244 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9245 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9246 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9247 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9248 	}
9249 
9250 	/*
9251 	 * If there are any pending vdev state changes, convert them
9252 	 * into config changes that go out with this transaction group.
9253 	 */
9254 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9255 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9256 		/*
9257 		 * We need the write lock here because, for aux vdevs,
9258 		 * calling vdev_config_dirty() modifies sav_config.
9259 		 * This is ugly and will become unnecessary when we
9260 		 * eliminate the aux vdev wart by integrating all vdevs
9261 		 * into the root vdev tree.
9262 		 */
9263 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9264 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9265 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9266 			vdev_state_clean(vd);
9267 			vdev_config_dirty(vd);
9268 		}
9269 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9270 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9271 	}
9272 	spa_config_exit(spa, SCL_STATE, FTAG);
9273 
9274 	dsl_pool_t *dp = spa->spa_dsl_pool;
9275 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9276 
9277 	spa->spa_sync_starttime = gethrtime();
9278 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9279 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9280 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9281 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9282 
9283 	/*
9284 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9285 	 * set spa_deflate if we have no raid-z vdevs.
9286 	 */
9287 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9288 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9289 		vdev_t *rvd = spa->spa_root_vdev;
9290 
9291 		int i;
9292 		for (i = 0; i < rvd->vdev_children; i++) {
9293 			vd = rvd->vdev_child[i];
9294 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9295 				break;
9296 		}
9297 		if (i == rvd->vdev_children) {
9298 			spa->spa_deflate = TRUE;
9299 			VERIFY0(zap_add(spa->spa_meta_objset,
9300 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9301 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9302 		}
9303 	}
9304 
9305 	spa_sync_adjust_vdev_max_queue_depth(spa);
9306 
9307 	spa_sync_condense_indirect(spa, tx);
9308 
9309 	spa_sync_iterate_to_convergence(spa, tx);
9310 
9311 #ifdef ZFS_DEBUG
9312 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9313 	/*
9314 	 * Make sure that the number of ZAPs for all the vdevs matches
9315 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9316 	 * called if the config is dirty; otherwise there may be
9317 	 * outstanding AVZ operations that weren't completed in
9318 	 * spa_sync_config_object.
9319 	 */
9320 		uint64_t all_vdev_zap_entry_count;
9321 		ASSERT0(zap_count(spa->spa_meta_objset,
9322 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9323 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9324 		    all_vdev_zap_entry_count);
9325 	}
9326 #endif
9327 
9328 	if (spa->spa_vdev_removal != NULL) {
9329 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9330 	}
9331 
9332 	spa_sync_rewrite_vdev_config(spa, tx);
9333 	dmu_tx_commit(tx);
9334 
9335 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9336 	spa->spa_deadman_tqid = 0;
9337 
9338 	/*
9339 	 * Clear the dirty config list.
9340 	 */
9341 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9342 		vdev_config_clean(vd);
9343 
9344 	/*
9345 	 * Now that the new config has synced transactionally,
9346 	 * let it become visible to the config cache.
9347 	 */
9348 	if (spa->spa_config_syncing != NULL) {
9349 		spa_config_set(spa, spa->spa_config_syncing);
9350 		spa->spa_config_txg = txg;
9351 		spa->spa_config_syncing = NULL;
9352 	}
9353 
9354 	dsl_pool_sync_done(dp, txg);
9355 
9356 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9357 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
9358 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9359 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
9360 	}
9361 
9362 	/*
9363 	 * Update usable space statistics.
9364 	 */
9365 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9366 	    != NULL)
9367 		vdev_sync_done(vd, txg);
9368 
9369 	metaslab_class_evict_old(spa->spa_normal_class, txg);
9370 	metaslab_class_evict_old(spa->spa_log_class, txg);
9371 
9372 	spa_sync_close_syncing_log_sm(spa);
9373 
9374 	spa_update_dspace(spa);
9375 
9376 	/*
9377 	 * It had better be the case that we didn't dirty anything
9378 	 * since vdev_config_sync().
9379 	 */
9380 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9381 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9382 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9383 
9384 	while (zfs_pause_spa_sync)
9385 		delay(1);
9386 
9387 	spa->spa_sync_pass = 0;
9388 
9389 	/*
9390 	 * Update the last synced uberblock here. We want to do this at
9391 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9392 	 * will be guaranteed that all the processing associated with
9393 	 * that txg has been completed.
9394 	 */
9395 	spa->spa_ubsync = spa->spa_uberblock;
9396 	spa_config_exit(spa, SCL_CONFIG, FTAG);
9397 
9398 	spa_handle_ignored_writes(spa);
9399 
9400 	/*
9401 	 * If any async tasks have been requested, kick them off.
9402 	 */
9403 	spa_async_dispatch(spa);
9404 }
9405 
9406 /*
9407  * Sync all pools.  We don't want to hold the namespace lock across these
9408  * operations, so we take a reference on the spa_t and drop the lock during the
9409  * sync.
9410  */
9411 void
9412 spa_sync_allpools(void)
9413 {
9414 	spa_t *spa = NULL;
9415 	mutex_enter(&spa_namespace_lock);
9416 	while ((spa = spa_next(spa)) != NULL) {
9417 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9418 		    !spa_writeable(spa) || spa_suspended(spa))
9419 			continue;
9420 		spa_open_ref(spa, FTAG);
9421 		mutex_exit(&spa_namespace_lock);
9422 		txg_wait_synced(spa_get_dsl(spa), 0);
9423 		mutex_enter(&spa_namespace_lock);
9424 		spa_close(spa, FTAG);
9425 	}
9426 	mutex_exit(&spa_namespace_lock);
9427 }
9428 
9429 /*
9430  * ==========================================================================
9431  * Miscellaneous routines
9432  * ==========================================================================
9433  */
9434 
9435 /*
9436  * Remove all pools in the system.
9437  */
9438 void
9439 spa_evict_all(void)
9440 {
9441 	spa_t *spa;
9442 
9443 	/*
9444 	 * Remove all cached state.  All pools should be closed now,
9445 	 * so every spa in the AVL tree should be unreferenced.
9446 	 */
9447 	mutex_enter(&spa_namespace_lock);
9448 	while ((spa = spa_next(NULL)) != NULL) {
9449 		/*
9450 		 * Stop async tasks.  The async thread may need to detach
9451 		 * a device that's been replaced, which requires grabbing
9452 		 * spa_namespace_lock, so we must drop it here.
9453 		 */
9454 		spa_open_ref(spa, FTAG);
9455 		mutex_exit(&spa_namespace_lock);
9456 		spa_async_suspend(spa);
9457 		mutex_enter(&spa_namespace_lock);
9458 		spa_close(spa, FTAG);
9459 
9460 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9461 			spa_unload(spa);
9462 			spa_deactivate(spa);
9463 		}
9464 		spa_remove(spa);
9465 	}
9466 	mutex_exit(&spa_namespace_lock);
9467 }
9468 
9469 vdev_t *
9470 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9471 {
9472 	vdev_t *vd;
9473 	int i;
9474 
9475 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9476 		return (vd);
9477 
9478 	if (aux) {
9479 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9480 			vd = spa->spa_l2cache.sav_vdevs[i];
9481 			if (vd->vdev_guid == guid)
9482 				return (vd);
9483 		}
9484 
9485 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9486 			vd = spa->spa_spares.sav_vdevs[i];
9487 			if (vd->vdev_guid == guid)
9488 				return (vd);
9489 		}
9490 	}
9491 
9492 	return (NULL);
9493 }
9494 
9495 void
9496 spa_upgrade(spa_t *spa, uint64_t version)
9497 {
9498 	ASSERT(spa_writeable(spa));
9499 
9500 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9501 
9502 	/*
9503 	 * This should only be called for a non-faulted pool, and since a
9504 	 * future version would result in an unopenable pool, this shouldn't be
9505 	 * possible.
9506 	 */
9507 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9508 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9509 
9510 	spa->spa_uberblock.ub_version = version;
9511 	vdev_config_dirty(spa->spa_root_vdev);
9512 
9513 	spa_config_exit(spa, SCL_ALL, FTAG);
9514 
9515 	txg_wait_synced(spa_get_dsl(spa), 0);
9516 }
9517 
9518 static boolean_t
9519 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9520 {
9521 	(void) spa;
9522 	int i;
9523 	uint64_t vdev_guid;
9524 
9525 	for (i = 0; i < sav->sav_count; i++)
9526 		if (sav->sav_vdevs[i]->vdev_guid == guid)
9527 			return (B_TRUE);
9528 
9529 	for (i = 0; i < sav->sav_npending; i++) {
9530 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9531 		    &vdev_guid) == 0 && vdev_guid == guid)
9532 			return (B_TRUE);
9533 	}
9534 
9535 	return (B_FALSE);
9536 }
9537 
9538 boolean_t
9539 spa_has_l2cache(spa_t *spa, uint64_t guid)
9540 {
9541 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9542 }
9543 
9544 boolean_t
9545 spa_has_spare(spa_t *spa, uint64_t guid)
9546 {
9547 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9548 }
9549 
9550 /*
9551  * Check if a pool has an active shared spare device.
9552  * Note: reference count of an active spare is 2, as a spare and as a replace
9553  */
9554 static boolean_t
9555 spa_has_active_shared_spare(spa_t *spa)
9556 {
9557 	int i, refcnt;
9558 	uint64_t pool;
9559 	spa_aux_vdev_t *sav = &spa->spa_spares;
9560 
9561 	for (i = 0; i < sav->sav_count; i++) {
9562 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9563 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9564 		    refcnt > 2)
9565 			return (B_TRUE);
9566 	}
9567 
9568 	return (B_FALSE);
9569 }
9570 
9571 uint64_t
9572 spa_total_metaslabs(spa_t *spa)
9573 {
9574 	vdev_t *rvd = spa->spa_root_vdev;
9575 
9576 	uint64_t m = 0;
9577 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9578 		vdev_t *vd = rvd->vdev_child[c];
9579 		if (!vdev_is_concrete(vd))
9580 			continue;
9581 		m += vd->vdev_ms_count;
9582 	}
9583 	return (m);
9584 }
9585 
9586 /*
9587  * Notify any waiting threads that some activity has switched from being in-
9588  * progress to not-in-progress so that the thread can wake up and determine
9589  * whether it is finished waiting.
9590  */
9591 void
9592 spa_notify_waiters(spa_t *spa)
9593 {
9594 	/*
9595 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9596 	 * happening between the waiting thread's check and cv_wait.
9597 	 */
9598 	mutex_enter(&spa->spa_activities_lock);
9599 	cv_broadcast(&spa->spa_activities_cv);
9600 	mutex_exit(&spa->spa_activities_lock);
9601 }
9602 
9603 /*
9604  * Notify any waiting threads that the pool is exporting, and then block until
9605  * they are finished using the spa_t.
9606  */
9607 void
9608 spa_wake_waiters(spa_t *spa)
9609 {
9610 	mutex_enter(&spa->spa_activities_lock);
9611 	spa->spa_waiters_cancel = B_TRUE;
9612 	cv_broadcast(&spa->spa_activities_cv);
9613 	while (spa->spa_waiters != 0)
9614 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9615 	spa->spa_waiters_cancel = B_FALSE;
9616 	mutex_exit(&spa->spa_activities_lock);
9617 }
9618 
9619 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9620 static boolean_t
9621 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9622 {
9623 	spa_t *spa = vd->vdev_spa;
9624 
9625 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9626 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9627 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9628 	    activity == ZPOOL_WAIT_TRIM);
9629 
9630 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9631 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9632 
9633 	mutex_exit(&spa->spa_activities_lock);
9634 	mutex_enter(lock);
9635 	mutex_enter(&spa->spa_activities_lock);
9636 
9637 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9638 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9639 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9640 	mutex_exit(lock);
9641 
9642 	if (in_progress)
9643 		return (B_TRUE);
9644 
9645 	for (int i = 0; i < vd->vdev_children; i++) {
9646 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9647 		    activity))
9648 			return (B_TRUE);
9649 	}
9650 
9651 	return (B_FALSE);
9652 }
9653 
9654 /*
9655  * If use_guid is true, this checks whether the vdev specified by guid is
9656  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9657  * is being initialized/trimmed. The caller must hold the config lock and
9658  * spa_activities_lock.
9659  */
9660 static int
9661 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9662     zpool_wait_activity_t activity, boolean_t *in_progress)
9663 {
9664 	mutex_exit(&spa->spa_activities_lock);
9665 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9666 	mutex_enter(&spa->spa_activities_lock);
9667 
9668 	vdev_t *vd;
9669 	if (use_guid) {
9670 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9671 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9672 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9673 			return (EINVAL);
9674 		}
9675 	} else {
9676 		vd = spa->spa_root_vdev;
9677 	}
9678 
9679 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9680 
9681 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9682 	return (0);
9683 }
9684 
9685 /*
9686  * Locking for waiting threads
9687  * ---------------------------
9688  *
9689  * Waiting threads need a way to check whether a given activity is in progress,
9690  * and then, if it is, wait for it to complete. Each activity will have some
9691  * in-memory representation of the relevant on-disk state which can be used to
9692  * determine whether or not the activity is in progress. The in-memory state and
9693  * the locking used to protect it will be different for each activity, and may
9694  * not be suitable for use with a cvar (e.g., some state is protected by the
9695  * config lock). To allow waiting threads to wait without any races, another
9696  * lock, spa_activities_lock, is used.
9697  *
9698  * When the state is checked, both the activity-specific lock (if there is one)
9699  * and spa_activities_lock are held. In some cases, the activity-specific lock
9700  * is acquired explicitly (e.g. the config lock). In others, the locking is
9701  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9702  * thread releases the activity-specific lock and, if the activity is in
9703  * progress, then cv_waits using spa_activities_lock.
9704  *
9705  * The waiting thread is woken when another thread, one completing some
9706  * activity, updates the state of the activity and then calls
9707  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9708  * needs to hold its activity-specific lock when updating the state, and this
9709  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9710  *
9711  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9712  * and because it is held when the waiting thread checks the state of the
9713  * activity, it can never be the case that the completing thread both updates
9714  * the activity state and cv_broadcasts in between the waiting thread's check
9715  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9716  *
9717  * In order to prevent deadlock, when the waiting thread does its check, in some
9718  * cases it will temporarily drop spa_activities_lock in order to acquire the
9719  * activity-specific lock. The order in which spa_activities_lock and the
9720  * activity specific lock are acquired in the waiting thread is determined by
9721  * the order in which they are acquired in the completing thread; if the
9722  * completing thread calls spa_notify_waiters with the activity-specific lock
9723  * held, then the waiting thread must also acquire the activity-specific lock
9724  * first.
9725  */
9726 
9727 static int
9728 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9729     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9730 {
9731 	int error = 0;
9732 
9733 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9734 
9735 	switch (activity) {
9736 	case ZPOOL_WAIT_CKPT_DISCARD:
9737 		*in_progress =
9738 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9739 		    zap_contains(spa_meta_objset(spa),
9740 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9741 		    ENOENT);
9742 		break;
9743 	case ZPOOL_WAIT_FREE:
9744 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9745 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9746 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9747 		    spa_livelist_delete_check(spa));
9748 		break;
9749 	case ZPOOL_WAIT_INITIALIZE:
9750 	case ZPOOL_WAIT_TRIM:
9751 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9752 		    activity, in_progress);
9753 		break;
9754 	case ZPOOL_WAIT_REPLACE:
9755 		mutex_exit(&spa->spa_activities_lock);
9756 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9757 		mutex_enter(&spa->spa_activities_lock);
9758 
9759 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9760 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9761 		break;
9762 	case ZPOOL_WAIT_REMOVE:
9763 		*in_progress = (spa->spa_removing_phys.sr_state ==
9764 		    DSS_SCANNING);
9765 		break;
9766 	case ZPOOL_WAIT_RESILVER:
9767 		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9768 			break;
9769 		zfs_fallthrough;
9770 	case ZPOOL_WAIT_SCRUB:
9771 	{
9772 		boolean_t scanning, paused, is_scrub;
9773 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9774 
9775 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9776 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9777 		paused = dsl_scan_is_paused_scrub(scn);
9778 		*in_progress = (scanning && !paused &&
9779 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9780 		break;
9781 	}
9782 	default:
9783 		panic("unrecognized value for activity %d", activity);
9784 	}
9785 
9786 	return (error);
9787 }
9788 
9789 static int
9790 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9791     boolean_t use_tag, uint64_t tag, boolean_t *waited)
9792 {
9793 	/*
9794 	 * The tag is used to distinguish between instances of an activity.
9795 	 * 'initialize' and 'trim' are the only activities that we use this for.
9796 	 * The other activities can only have a single instance in progress in a
9797 	 * pool at one time, making the tag unnecessary.
9798 	 *
9799 	 * There can be multiple devices being replaced at once, but since they
9800 	 * all finish once resilvering finishes, we don't bother keeping track
9801 	 * of them individually, we just wait for them all to finish.
9802 	 */
9803 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9804 	    activity != ZPOOL_WAIT_TRIM)
9805 		return (EINVAL);
9806 
9807 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9808 		return (EINVAL);
9809 
9810 	spa_t *spa;
9811 	int error = spa_open(pool, &spa, FTAG);
9812 	if (error != 0)
9813 		return (error);
9814 
9815 	/*
9816 	 * Increment the spa's waiter count so that we can call spa_close and
9817 	 * still ensure that the spa_t doesn't get freed before this thread is
9818 	 * finished with it when the pool is exported. We want to call spa_close
9819 	 * before we start waiting because otherwise the additional ref would
9820 	 * prevent the pool from being exported or destroyed throughout the
9821 	 * potentially long wait.
9822 	 */
9823 	mutex_enter(&spa->spa_activities_lock);
9824 	spa->spa_waiters++;
9825 	spa_close(spa, FTAG);
9826 
9827 	*waited = B_FALSE;
9828 	for (;;) {
9829 		boolean_t in_progress;
9830 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9831 		    &in_progress);
9832 
9833 		if (error || !in_progress || spa->spa_waiters_cancel)
9834 			break;
9835 
9836 		*waited = B_TRUE;
9837 
9838 		if (cv_wait_sig(&spa->spa_activities_cv,
9839 		    &spa->spa_activities_lock) == 0) {
9840 			error = EINTR;
9841 			break;
9842 		}
9843 	}
9844 
9845 	spa->spa_waiters--;
9846 	cv_signal(&spa->spa_waiters_cv);
9847 	mutex_exit(&spa->spa_activities_lock);
9848 
9849 	return (error);
9850 }
9851 
9852 /*
9853  * Wait for a particular instance of the specified activity to complete, where
9854  * the instance is identified by 'tag'
9855  */
9856 int
9857 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9858     boolean_t *waited)
9859 {
9860 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9861 }
9862 
9863 /*
9864  * Wait for all instances of the specified activity complete
9865  */
9866 int
9867 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9868 {
9869 
9870 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9871 }
9872 
9873 sysevent_t *
9874 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9875 {
9876 	sysevent_t *ev = NULL;
9877 #ifdef _KERNEL
9878 	nvlist_t *resource;
9879 
9880 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9881 	if (resource) {
9882 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9883 		ev->resource = resource;
9884 	}
9885 #else
9886 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
9887 #endif
9888 	return (ev);
9889 }
9890 
9891 void
9892 spa_event_post(sysevent_t *ev)
9893 {
9894 #ifdef _KERNEL
9895 	if (ev) {
9896 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9897 		kmem_free(ev, sizeof (*ev));
9898 	}
9899 #else
9900 	(void) ev;
9901 #endif
9902 }
9903 
9904 /*
9905  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9906  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9907  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9908  * in the userland libzpool, as we don't want consumers to misinterpret ztest
9909  * or zdb as real changes.
9910  */
9911 void
9912 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9913 {
9914 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9915 }
9916 
9917 /* state manipulation functions */
9918 EXPORT_SYMBOL(spa_open);
9919 EXPORT_SYMBOL(spa_open_rewind);
9920 EXPORT_SYMBOL(spa_get_stats);
9921 EXPORT_SYMBOL(spa_create);
9922 EXPORT_SYMBOL(spa_import);
9923 EXPORT_SYMBOL(spa_tryimport);
9924 EXPORT_SYMBOL(spa_destroy);
9925 EXPORT_SYMBOL(spa_export);
9926 EXPORT_SYMBOL(spa_reset);
9927 EXPORT_SYMBOL(spa_async_request);
9928 EXPORT_SYMBOL(spa_async_suspend);
9929 EXPORT_SYMBOL(spa_async_resume);
9930 EXPORT_SYMBOL(spa_inject_addref);
9931 EXPORT_SYMBOL(spa_inject_delref);
9932 EXPORT_SYMBOL(spa_scan_stat_init);
9933 EXPORT_SYMBOL(spa_scan_get_stats);
9934 
9935 /* device manipulation */
9936 EXPORT_SYMBOL(spa_vdev_add);
9937 EXPORT_SYMBOL(spa_vdev_attach);
9938 EXPORT_SYMBOL(spa_vdev_detach);
9939 EXPORT_SYMBOL(spa_vdev_setpath);
9940 EXPORT_SYMBOL(spa_vdev_setfru);
9941 EXPORT_SYMBOL(spa_vdev_split_mirror);
9942 
9943 /* spare statech is global across all pools) */
9944 EXPORT_SYMBOL(spa_spare_add);
9945 EXPORT_SYMBOL(spa_spare_remove);
9946 EXPORT_SYMBOL(spa_spare_exists);
9947 EXPORT_SYMBOL(spa_spare_activate);
9948 
9949 /* L2ARC statech is global across all pools) */
9950 EXPORT_SYMBOL(spa_l2cache_add);
9951 EXPORT_SYMBOL(spa_l2cache_remove);
9952 EXPORT_SYMBOL(spa_l2cache_exists);
9953 EXPORT_SYMBOL(spa_l2cache_activate);
9954 EXPORT_SYMBOL(spa_l2cache_drop);
9955 
9956 /* scanning */
9957 EXPORT_SYMBOL(spa_scan);
9958 EXPORT_SYMBOL(spa_scan_stop);
9959 
9960 /* spa syncing */
9961 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9962 EXPORT_SYMBOL(spa_sync_allpools);
9963 
9964 /* properties */
9965 EXPORT_SYMBOL(spa_prop_set);
9966 EXPORT_SYMBOL(spa_prop_get);
9967 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9968 
9969 /* asynchronous event notification */
9970 EXPORT_SYMBOL(spa_event_notify);
9971 
9972 /* BEGIN CSTYLED */
9973 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9974 	"log2 fraction of arc that can be used by inflight I/Os when "
9975 	"verifying pool during import");
9976 /* END CSTYLED */
9977 
9978 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9979 	"Set to traverse metadata on pool import");
9980 
9981 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9982 	"Set to traverse data on pool import");
9983 
9984 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9985 	"Print vdev tree to zfs_dbgmsg during pool import");
9986 
9987 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9988 	"Percentage of CPUs to run an IO worker thread");
9989 
9990 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9991 	"Number of threads per IO worker taskqueue");
9992 
9993 /* BEGIN CSTYLED */
9994 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9995 	"Allow importing pool with up to this number of missing top-level "
9996 	"vdevs (in read-only mode)");
9997 /* END CSTYLED */
9998 
9999 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10000 	ZMOD_RW, "Set the livelist condense zthr to pause");
10001 
10002 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10003 	ZMOD_RW, "Set the livelist condense synctask to pause");
10004 
10005 /* BEGIN CSTYLED */
10006 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10007 	INT, ZMOD_RW,
10008 	"Whether livelist condensing was canceled in the synctask");
10009 
10010 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10011 	INT, ZMOD_RW,
10012 	"Whether livelist condensing was canceled in the zthr function");
10013 
10014 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10015 	ZMOD_RW,
10016 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
10017 	"was being condensed");
10018 /* END CSTYLED */
10019