1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 26 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright 2013 Saso Kiselkov. All rights reserved. 29 * Copyright (c) 2014 Integros [integros.com] 30 * Copyright 2016 Toomas Soome <tsoome@me.com> 31 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 32 * Copyright 2018 Joyent, Inc. 33 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 34 * Copyright 2017 Joyent, Inc. 35 * Copyright (c) 2017, Intel Corporation. 36 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 37 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 38 * Copyright (c) 2023, 2024, Klara Inc. 39 */ 40 41 /* 42 * SPA: Storage Pool Allocator 43 * 44 * This file contains all the routines used when modifying on-disk SPA state. 45 * This includes opening, importing, destroying, exporting a pool, and syncing a 46 * pool. 47 */ 48 49 #include <sys/zfs_context.h> 50 #include <sys/fm/fs/zfs.h> 51 #include <sys/spa_impl.h> 52 #include <sys/zio.h> 53 #include <sys/zio_checksum.h> 54 #include <sys/dmu.h> 55 #include <sys/dmu_tx.h> 56 #include <sys/zap.h> 57 #include <sys/zil.h> 58 #include <sys/brt.h> 59 #include <sys/ddt.h> 60 #include <sys/vdev_impl.h> 61 #include <sys/vdev_removal.h> 62 #include <sys/vdev_indirect_mapping.h> 63 #include <sys/vdev_indirect_births.h> 64 #include <sys/vdev_initialize.h> 65 #include <sys/vdev_rebuild.h> 66 #include <sys/vdev_trim.h> 67 #include <sys/vdev_disk.h> 68 #include <sys/vdev_raidz.h> 69 #include <sys/vdev_draid.h> 70 #include <sys/metaslab.h> 71 #include <sys/metaslab_impl.h> 72 #include <sys/mmp.h> 73 #include <sys/uberblock_impl.h> 74 #include <sys/txg.h> 75 #include <sys/avl.h> 76 #include <sys/bpobj.h> 77 #include <sys/dmu_traverse.h> 78 #include <sys/dmu_objset.h> 79 #include <sys/unique.h> 80 #include <sys/dsl_pool.h> 81 #include <sys/dsl_dataset.h> 82 #include <sys/dsl_dir.h> 83 #include <sys/dsl_prop.h> 84 #include <sys/dsl_synctask.h> 85 #include <sys/fs/zfs.h> 86 #include <sys/arc.h> 87 #include <sys/callb.h> 88 #include <sys/systeminfo.h> 89 #include <sys/zfs_ioctl.h> 90 #include <sys/dsl_scan.h> 91 #include <sys/zfeature.h> 92 #include <sys/dsl_destroy.h> 93 #include <sys/zvol.h> 94 95 #ifdef _KERNEL 96 #include <sys/fm/protocol.h> 97 #include <sys/fm/util.h> 98 #include <sys/callb.h> 99 #include <sys/zone.h> 100 #include <sys/vmsystm.h> 101 #endif /* _KERNEL */ 102 103 #include "zfs_prop.h" 104 #include "zfs_comutil.h" 105 #include <cityhash.h> 106 107 /* 108 * spa_thread() existed on Illumos as a parent thread for the various worker 109 * threads that actually run the pool, as a way to both reference the entire 110 * pool work as a single object, and to share properties like scheduling 111 * options. It has not yet been adapted to Linux or FreeBSD. This define is 112 * used to mark related parts of the code to make things easier for the reader, 113 * and to compile this code out. It can be removed when someone implements it, 114 * moves it to some Illumos-specific place, or removes it entirely. 115 */ 116 #undef HAVE_SPA_THREAD 117 118 /* 119 * The "System Duty Cycle" scheduling class is an Illumos feature to help 120 * prevent CPU-intensive kernel threads from affecting latency on interactive 121 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 122 * gated behind a define. On Illumos SDC depends on spa_thread(), but 123 * spa_thread() also has other uses, so this is a separate define. 124 */ 125 #undef HAVE_SYSDC 126 127 /* 128 * The interval, in seconds, at which failed configuration cache file writes 129 * should be retried. 130 */ 131 int zfs_ccw_retry_interval = 300; 132 133 typedef enum zti_modes { 134 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 135 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 136 ZTI_MODE_SYNC, /* sync thread assigned */ 137 ZTI_MODE_NULL, /* don't create a taskq */ 138 ZTI_NMODES 139 } zti_modes_t; 140 141 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 142 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 143 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 144 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 145 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 146 147 #define ZTI_N(n) ZTI_P(n, 1) 148 #define ZTI_ONE ZTI_N(1) 149 150 typedef struct zio_taskq_info { 151 zti_modes_t zti_mode; 152 uint_t zti_value; 153 uint_t zti_count; 154 } zio_taskq_info_t; 155 156 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 157 "iss", "iss_h", "int", "int_h" 158 }; 159 160 /* 161 * This table defines the taskq settings for each ZFS I/O type. When 162 * initializing a pool, we use this table to create an appropriately sized 163 * taskq. Some operations are low volume and therefore have a small, static 164 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 165 * macros. Other operations process a large amount of data; the ZTI_SCALE 166 * macro causes us to create a taskq oriented for throughput. Some operations 167 * are so high frequency and short-lived that the taskq itself can become a 168 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 169 * additional degree of parallelism specified by the number of threads per- 170 * taskq and the number of taskqs; when dispatching an event in this case, the 171 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 172 * that scales with the number of CPUs. 173 * 174 * The different taskq priorities are to handle the different contexts (issue 175 * and interrupt) and then to reserve threads for high priority I/Os that 176 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT 177 * implementation, so separate high priority threads are used there. 178 */ 179 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 180 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 181 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 182 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 183 #ifdef illumos 184 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 185 #else 186 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */ 187 #endif 188 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 190 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */ 191 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 192 }; 193 194 static void spa_sync_version(void *arg, dmu_tx_t *tx); 195 static void spa_sync_props(void *arg, dmu_tx_t *tx); 196 static boolean_t spa_has_active_shared_spare(spa_t *spa); 197 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 198 const char **ereport); 199 static void spa_vdev_resilver_done(spa_t *spa); 200 201 /* 202 * Percentage of all CPUs that can be used by the metaslab preload taskq. 203 */ 204 static uint_t metaslab_preload_pct = 50; 205 206 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 207 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 208 209 #ifdef HAVE_SYSDC 210 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 211 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 212 #endif 213 214 #ifdef HAVE_SPA_THREAD 215 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 216 #endif 217 218 static uint_t zio_taskq_write_tpq = 16; 219 220 /* 221 * Report any spa_load_verify errors found, but do not fail spa_load. 222 * This is used by zdb to analyze non-idle pools. 223 */ 224 boolean_t spa_load_verify_dryrun = B_FALSE; 225 226 /* 227 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 228 * This is used by zdb for spacemaps verification. 229 */ 230 boolean_t spa_mode_readable_spacemaps = B_FALSE; 231 232 /* 233 * This (illegal) pool name is used when temporarily importing a spa_t in order 234 * to get the vdev stats associated with the imported devices. 235 */ 236 #define TRYIMPORT_NAME "$import" 237 238 /* 239 * For debugging purposes: print out vdev tree during pool import. 240 */ 241 static int spa_load_print_vdev_tree = B_FALSE; 242 243 /* 244 * A non-zero value for zfs_max_missing_tvds means that we allow importing 245 * pools with missing top-level vdevs. This is strictly intended for advanced 246 * pool recovery cases since missing data is almost inevitable. Pools with 247 * missing devices can only be imported read-only for safety reasons, and their 248 * fail-mode will be automatically set to "continue". 249 * 250 * With 1 missing vdev we should be able to import the pool and mount all 251 * datasets. User data that was not modified after the missing device has been 252 * added should be recoverable. This means that snapshots created prior to the 253 * addition of that device should be completely intact. 254 * 255 * With 2 missing vdevs, some datasets may fail to mount since there are 256 * dataset statistics that are stored as regular metadata. Some data might be 257 * recoverable if those vdevs were added recently. 258 * 259 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 260 * may be missing entirely. Chances of data recovery are very low. Note that 261 * there are also risks of performing an inadvertent rewind as we might be 262 * missing all the vdevs with the latest uberblocks. 263 */ 264 uint64_t zfs_max_missing_tvds = 0; 265 266 /* 267 * The parameters below are similar to zfs_max_missing_tvds but are only 268 * intended for a preliminary open of the pool with an untrusted config which 269 * might be incomplete or out-dated. 270 * 271 * We are more tolerant for pools opened from a cachefile since we could have 272 * an out-dated cachefile where a device removal was not registered. 273 * We could have set the limit arbitrarily high but in the case where devices 274 * are really missing we would want to return the proper error codes; we chose 275 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 276 * and we get a chance to retrieve the trusted config. 277 */ 278 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 279 280 /* 281 * In the case where config was assembled by scanning device paths (/dev/dsks 282 * by default) we are less tolerant since all the existing devices should have 283 * been detected and we want spa_load to return the right error codes. 284 */ 285 uint64_t zfs_max_missing_tvds_scan = 0; 286 287 /* 288 * Debugging aid that pauses spa_sync() towards the end. 289 */ 290 static const boolean_t zfs_pause_spa_sync = B_FALSE; 291 292 /* 293 * Variables to indicate the livelist condense zthr func should wait at certain 294 * points for the livelist to be removed - used to test condense/destroy races 295 */ 296 static int zfs_livelist_condense_zthr_pause = 0; 297 static int zfs_livelist_condense_sync_pause = 0; 298 299 /* 300 * Variables to track whether or not condense cancellation has been 301 * triggered in testing. 302 */ 303 static int zfs_livelist_condense_sync_cancel = 0; 304 static int zfs_livelist_condense_zthr_cancel = 0; 305 306 /* 307 * Variable to track whether or not extra ALLOC blkptrs were added to a 308 * livelist entry while it was being condensed (caused by the way we track 309 * remapped blkptrs in dbuf_remap_impl) 310 */ 311 static int zfs_livelist_condense_new_alloc = 0; 312 313 /* 314 * ========================================================================== 315 * SPA properties routines 316 * ========================================================================== 317 */ 318 319 /* 320 * Add a (source=src, propname=propval) list to an nvlist. 321 */ 322 static void 323 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 324 uint64_t intval, zprop_source_t src) 325 { 326 const char *propname = zpool_prop_to_name(prop); 327 nvlist_t *propval; 328 329 propval = fnvlist_alloc(); 330 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 331 332 if (strval != NULL) 333 fnvlist_add_string(propval, ZPROP_VALUE, strval); 334 else 335 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 336 337 fnvlist_add_nvlist(nvl, propname, propval); 338 nvlist_free(propval); 339 } 340 341 static int 342 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl) 343 { 344 zpool_prop_t prop = zpool_name_to_prop(propname); 345 zprop_source_t src = ZPROP_SRC_NONE; 346 uint64_t intval; 347 int err; 348 349 /* 350 * NB: Not all properties lookups via this API require 351 * the spa props lock, so they must explicitly grab it here. 352 */ 353 switch (prop) { 354 case ZPOOL_PROP_DEDUPCACHED: 355 err = ddt_get_pool_dedup_cached(spa, &intval); 356 if (err != 0) 357 return (SET_ERROR(err)); 358 break; 359 default: 360 return (SET_ERROR(EINVAL)); 361 } 362 363 spa_prop_add_list(outnvl, prop, NULL, intval, src); 364 365 return (0); 366 } 367 368 int 369 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props, 370 nvlist_t *outnvl) 371 { 372 int err = 0; 373 374 if (props == NULL) 375 return (0); 376 377 for (unsigned int i = 0; i < n_props && err == 0; i++) { 378 err = spa_prop_add(spa, props[i], outnvl); 379 } 380 381 return (err); 382 } 383 384 /* 385 * Add a user property (source=src, propname=propval) to an nvlist. 386 */ 387 static void 388 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 389 zprop_source_t src) 390 { 391 nvlist_t *propval; 392 393 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 394 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 395 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 396 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 397 nvlist_free(propval); 398 } 399 400 /* 401 * Get property values from the spa configuration. 402 */ 403 static void 404 spa_prop_get_config(spa_t *spa, nvlist_t *nv) 405 { 406 vdev_t *rvd = spa->spa_root_vdev; 407 dsl_pool_t *pool = spa->spa_dsl_pool; 408 uint64_t size, alloc, cap, version; 409 const zprop_source_t src = ZPROP_SRC_NONE; 410 spa_config_dirent_t *dp; 411 metaslab_class_t *mc = spa_normal_class(spa); 412 413 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 414 415 if (rvd != NULL) { 416 alloc = metaslab_class_get_alloc(mc); 417 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 418 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 419 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 420 421 size = metaslab_class_get_space(mc); 422 size += metaslab_class_get_space(spa_special_class(spa)); 423 size += metaslab_class_get_space(spa_dedup_class(spa)); 424 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 425 426 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 427 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src); 428 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 429 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL, 430 size - alloc, src); 431 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL, 432 spa->spa_checkpoint_info.sci_dspace, src); 433 434 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL, 435 metaslab_class_fragmentation(mc), src); 436 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL, 437 metaslab_class_expandable_space(mc), src); 438 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL, 439 (spa_mode(spa) == SPA_MODE_READ), src); 440 441 cap = (size == 0) ? 0 : (alloc * 100 / size); 442 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src); 443 444 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL, 445 ddt_get_pool_dedup_ratio(spa), src); 446 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL, 447 brt_get_used(spa), src); 448 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL, 449 brt_get_saved(spa), src); 450 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL, 451 brt_get_ratio(spa), src); 452 453 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL, 454 ddt_get_ddt_dsize(spa), src); 455 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL, 456 rvd->vdev_state, src); 457 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL, 458 spa_get_last_scrubbed_txg(spa), src); 459 460 version = spa_version(spa); 461 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 462 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 463 version, ZPROP_SRC_DEFAULT); 464 } else { 465 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 466 version, ZPROP_SRC_LOCAL); 467 } 468 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID, 469 NULL, spa_load_guid(spa), src); 470 } 471 472 if (pool != NULL) { 473 /* 474 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 475 * when opening pools before this version freedir will be NULL. 476 */ 477 if (pool->dp_free_dir != NULL) { 478 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL, 479 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 480 src); 481 } else { 482 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, 483 NULL, 0, src); 484 } 485 486 if (pool->dp_leak_dir != NULL) { 487 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL, 488 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 489 src); 490 } else { 491 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, 492 NULL, 0, src); 493 } 494 } 495 496 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 497 498 if (spa->spa_comment != NULL) { 499 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment, 500 0, ZPROP_SRC_LOCAL); 501 } 502 503 if (spa->spa_compatibility != NULL) { 504 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY, 505 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 506 } 507 508 if (spa->spa_root != NULL) 509 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root, 510 0, ZPROP_SRC_LOCAL); 511 512 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 513 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 514 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 515 } else { 516 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 517 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 518 } 519 520 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 521 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 522 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 523 } else { 524 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 525 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 526 } 527 528 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 529 if (dp->scd_path == NULL) { 530 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 531 "none", 0, ZPROP_SRC_LOCAL); 532 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 533 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 534 dp->scd_path, 0, ZPROP_SRC_LOCAL); 535 } 536 } 537 } 538 539 /* 540 * Get zpool property values. 541 */ 542 int 543 spa_prop_get(spa_t *spa, nvlist_t *nv) 544 { 545 objset_t *mos = spa->spa_meta_objset; 546 zap_cursor_t zc; 547 zap_attribute_t *za; 548 dsl_pool_t *dp; 549 int err = 0; 550 551 dp = spa_get_dsl(spa); 552 dsl_pool_config_enter(dp, FTAG); 553 za = zap_attribute_alloc(); 554 mutex_enter(&spa->spa_props_lock); 555 556 /* 557 * Get properties from the spa config. 558 */ 559 spa_prop_get_config(spa, nv); 560 561 /* If no pool property object, no more prop to get. */ 562 if (mos == NULL || spa->spa_pool_props_object == 0) 563 goto out; 564 565 /* 566 * Get properties from the MOS pool property object. 567 */ 568 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 569 (err = zap_cursor_retrieve(&zc, za)) == 0; 570 zap_cursor_advance(&zc)) { 571 uint64_t intval = 0; 572 char *strval = NULL; 573 zprop_source_t src = ZPROP_SRC_DEFAULT; 574 zpool_prop_t prop; 575 576 if ((prop = zpool_name_to_prop(za->za_name)) == 577 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name)) 578 continue; 579 580 switch (za->za_integer_length) { 581 case 8: 582 /* integer property */ 583 if (za->za_first_integer != 584 zpool_prop_default_numeric(prop)) 585 src = ZPROP_SRC_LOCAL; 586 587 if (prop == ZPOOL_PROP_BOOTFS) { 588 dsl_dataset_t *ds = NULL; 589 590 err = dsl_dataset_hold_obj(dp, 591 za->za_first_integer, FTAG, &ds); 592 if (err != 0) 593 break; 594 595 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 596 KM_SLEEP); 597 dsl_dataset_name(ds, strval); 598 dsl_dataset_rele(ds, FTAG); 599 } else { 600 strval = NULL; 601 intval = za->za_first_integer; 602 } 603 604 spa_prop_add_list(nv, prop, strval, intval, src); 605 606 if (strval != NULL) 607 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 608 609 break; 610 611 case 1: 612 /* string property */ 613 strval = kmem_alloc(za->za_num_integers, KM_SLEEP); 614 err = zap_lookup(mos, spa->spa_pool_props_object, 615 za->za_name, 1, za->za_num_integers, strval); 616 if (err) { 617 kmem_free(strval, za->za_num_integers); 618 break; 619 } 620 if (prop != ZPOOL_PROP_INVAL) { 621 spa_prop_add_list(nv, prop, strval, 0, src); 622 } else { 623 src = ZPROP_SRC_LOCAL; 624 spa_prop_add_user(nv, za->za_name, strval, 625 src); 626 } 627 kmem_free(strval, za->za_num_integers); 628 break; 629 630 default: 631 break; 632 } 633 } 634 zap_cursor_fini(&zc); 635 out: 636 mutex_exit(&spa->spa_props_lock); 637 dsl_pool_config_exit(dp, FTAG); 638 zap_attribute_free(za); 639 640 if (err && err != ENOENT) 641 return (err); 642 643 return (0); 644 } 645 646 /* 647 * Validate the given pool properties nvlist and modify the list 648 * for the property values to be set. 649 */ 650 static int 651 spa_prop_validate(spa_t *spa, nvlist_t *props) 652 { 653 nvpair_t *elem; 654 int error = 0, reset_bootfs = 0; 655 uint64_t objnum = 0; 656 boolean_t has_feature = B_FALSE; 657 658 elem = NULL; 659 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 660 uint64_t intval; 661 const char *strval, *slash, *check, *fname; 662 const char *propname = nvpair_name(elem); 663 zpool_prop_t prop = zpool_name_to_prop(propname); 664 665 switch (prop) { 666 case ZPOOL_PROP_INVAL: 667 /* 668 * Sanitize the input. 669 */ 670 if (zfs_prop_user(propname)) { 671 if (strlen(propname) >= ZAP_MAXNAMELEN) { 672 error = SET_ERROR(ENAMETOOLONG); 673 break; 674 } 675 676 if (strlen(fnvpair_value_string(elem)) >= 677 ZAP_MAXVALUELEN) { 678 error = SET_ERROR(E2BIG); 679 break; 680 } 681 } else if (zpool_prop_feature(propname)) { 682 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 683 error = SET_ERROR(EINVAL); 684 break; 685 } 686 687 if (nvpair_value_uint64(elem, &intval) != 0) { 688 error = SET_ERROR(EINVAL); 689 break; 690 } 691 692 if (intval != 0) { 693 error = SET_ERROR(EINVAL); 694 break; 695 } 696 697 fname = strchr(propname, '@') + 1; 698 if (zfeature_lookup_name(fname, NULL) != 0) { 699 error = SET_ERROR(EINVAL); 700 break; 701 } 702 703 has_feature = B_TRUE; 704 } else { 705 error = SET_ERROR(EINVAL); 706 break; 707 } 708 break; 709 710 case ZPOOL_PROP_VERSION: 711 error = nvpair_value_uint64(elem, &intval); 712 if (!error && 713 (intval < spa_version(spa) || 714 intval > SPA_VERSION_BEFORE_FEATURES || 715 has_feature)) 716 error = SET_ERROR(EINVAL); 717 break; 718 719 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 720 error = nvpair_value_uint64(elem, &intval); 721 break; 722 723 case ZPOOL_PROP_DELEGATION: 724 case ZPOOL_PROP_AUTOREPLACE: 725 case ZPOOL_PROP_LISTSNAPS: 726 case ZPOOL_PROP_AUTOEXPAND: 727 case ZPOOL_PROP_AUTOTRIM: 728 error = nvpair_value_uint64(elem, &intval); 729 if (!error && intval > 1) 730 error = SET_ERROR(EINVAL); 731 break; 732 733 case ZPOOL_PROP_MULTIHOST: 734 error = nvpair_value_uint64(elem, &intval); 735 if (!error && intval > 1) 736 error = SET_ERROR(EINVAL); 737 738 if (!error) { 739 uint32_t hostid = zone_get_hostid(NULL); 740 if (hostid) 741 spa->spa_hostid = hostid; 742 else 743 error = SET_ERROR(ENOTSUP); 744 } 745 746 break; 747 748 case ZPOOL_PROP_BOOTFS: 749 /* 750 * If the pool version is less than SPA_VERSION_BOOTFS, 751 * or the pool is still being created (version == 0), 752 * the bootfs property cannot be set. 753 */ 754 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 755 error = SET_ERROR(ENOTSUP); 756 break; 757 } 758 759 /* 760 * Make sure the vdev config is bootable 761 */ 762 if (!vdev_is_bootable(spa->spa_root_vdev)) { 763 error = SET_ERROR(ENOTSUP); 764 break; 765 } 766 767 reset_bootfs = 1; 768 769 error = nvpair_value_string(elem, &strval); 770 771 if (!error) { 772 objset_t *os; 773 774 if (strval == NULL || strval[0] == '\0') { 775 objnum = zpool_prop_default_numeric( 776 ZPOOL_PROP_BOOTFS); 777 break; 778 } 779 780 error = dmu_objset_hold(strval, FTAG, &os); 781 if (error != 0) 782 break; 783 784 /* Must be ZPL. */ 785 if (dmu_objset_type(os) != DMU_OST_ZFS) { 786 error = SET_ERROR(ENOTSUP); 787 } else { 788 objnum = dmu_objset_id(os); 789 } 790 dmu_objset_rele(os, FTAG); 791 } 792 break; 793 794 case ZPOOL_PROP_FAILUREMODE: 795 error = nvpair_value_uint64(elem, &intval); 796 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 797 error = SET_ERROR(EINVAL); 798 799 /* 800 * This is a special case which only occurs when 801 * the pool has completely failed. This allows 802 * the user to change the in-core failmode property 803 * without syncing it out to disk (I/Os might 804 * currently be blocked). We do this by returning 805 * EIO to the caller (spa_prop_set) to trick it 806 * into thinking we encountered a property validation 807 * error. 808 */ 809 if (!error && spa_suspended(spa)) { 810 spa->spa_failmode = intval; 811 error = SET_ERROR(EIO); 812 } 813 break; 814 815 case ZPOOL_PROP_CACHEFILE: 816 if ((error = nvpair_value_string(elem, &strval)) != 0) 817 break; 818 819 if (strval[0] == '\0') 820 break; 821 822 if (strcmp(strval, "none") == 0) 823 break; 824 825 if (strval[0] != '/') { 826 error = SET_ERROR(EINVAL); 827 break; 828 } 829 830 slash = strrchr(strval, '/'); 831 ASSERT(slash != NULL); 832 833 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 834 strcmp(slash, "/..") == 0) 835 error = SET_ERROR(EINVAL); 836 break; 837 838 case ZPOOL_PROP_COMMENT: 839 if ((error = nvpair_value_string(elem, &strval)) != 0) 840 break; 841 for (check = strval; *check != '\0'; check++) { 842 if (!isprint(*check)) { 843 error = SET_ERROR(EINVAL); 844 break; 845 } 846 } 847 if (strlen(strval) > ZPROP_MAX_COMMENT) 848 error = SET_ERROR(E2BIG); 849 break; 850 851 default: 852 break; 853 } 854 855 if (error) 856 break; 857 } 858 859 (void) nvlist_remove_all(props, 860 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 861 862 if (!error && reset_bootfs) { 863 error = nvlist_remove(props, 864 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 865 866 if (!error) { 867 error = nvlist_add_uint64(props, 868 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 869 } 870 } 871 872 return (error); 873 } 874 875 void 876 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 877 { 878 const char *cachefile; 879 spa_config_dirent_t *dp; 880 881 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 882 &cachefile) != 0) 883 return; 884 885 dp = kmem_alloc(sizeof (spa_config_dirent_t), 886 KM_SLEEP); 887 888 if (cachefile[0] == '\0') 889 dp->scd_path = spa_strdup(spa_config_path); 890 else if (strcmp(cachefile, "none") == 0) 891 dp->scd_path = NULL; 892 else 893 dp->scd_path = spa_strdup(cachefile); 894 895 list_insert_head(&spa->spa_config_list, dp); 896 if (need_sync) 897 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 898 } 899 900 int 901 spa_prop_set(spa_t *spa, nvlist_t *nvp) 902 { 903 int error; 904 nvpair_t *elem = NULL; 905 boolean_t need_sync = B_FALSE; 906 907 if ((error = spa_prop_validate(spa, nvp)) != 0) 908 return (error); 909 910 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 911 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 912 913 if (prop == ZPOOL_PROP_CACHEFILE || 914 prop == ZPOOL_PROP_ALTROOT || 915 prop == ZPOOL_PROP_READONLY) 916 continue; 917 918 if (prop == ZPOOL_PROP_INVAL && 919 zfs_prop_user(nvpair_name(elem))) { 920 need_sync = B_TRUE; 921 break; 922 } 923 924 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 925 uint64_t ver = 0; 926 927 if (prop == ZPOOL_PROP_VERSION) { 928 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 929 } else { 930 ASSERT(zpool_prop_feature(nvpair_name(elem))); 931 ver = SPA_VERSION_FEATURES; 932 need_sync = B_TRUE; 933 } 934 935 /* Save time if the version is already set. */ 936 if (ver == spa_version(spa)) 937 continue; 938 939 /* 940 * In addition to the pool directory object, we might 941 * create the pool properties object, the features for 942 * read object, the features for write object, or the 943 * feature descriptions object. 944 */ 945 error = dsl_sync_task(spa->spa_name, NULL, 946 spa_sync_version, &ver, 947 6, ZFS_SPACE_CHECK_RESERVED); 948 if (error) 949 return (error); 950 continue; 951 } 952 953 need_sync = B_TRUE; 954 break; 955 } 956 957 if (need_sync) { 958 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 959 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 960 } 961 962 return (0); 963 } 964 965 /* 966 * If the bootfs property value is dsobj, clear it. 967 */ 968 void 969 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 970 { 971 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 972 VERIFY(zap_remove(spa->spa_meta_objset, 973 spa->spa_pool_props_object, 974 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 975 spa->spa_bootfs = 0; 976 } 977 } 978 979 static int 980 spa_change_guid_check(void *arg, dmu_tx_t *tx) 981 { 982 uint64_t *newguid __maybe_unused = arg; 983 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 984 vdev_t *rvd = spa->spa_root_vdev; 985 uint64_t vdev_state; 986 987 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 988 int error = (spa_has_checkpoint(spa)) ? 989 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 990 return (SET_ERROR(error)); 991 } 992 993 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 994 vdev_state = rvd->vdev_state; 995 spa_config_exit(spa, SCL_STATE, FTAG); 996 997 if (vdev_state != VDEV_STATE_HEALTHY) 998 return (SET_ERROR(ENXIO)); 999 1000 ASSERT3U(spa_guid(spa), !=, *newguid); 1001 1002 return (0); 1003 } 1004 1005 static void 1006 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 1007 { 1008 uint64_t *newguid = arg; 1009 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1010 uint64_t oldguid; 1011 vdev_t *rvd = spa->spa_root_vdev; 1012 1013 oldguid = spa_guid(spa); 1014 1015 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1016 rvd->vdev_guid = *newguid; 1017 rvd->vdev_guid_sum += (*newguid - oldguid); 1018 vdev_config_dirty(rvd); 1019 spa_config_exit(spa, SCL_STATE, FTAG); 1020 1021 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 1022 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 1023 } 1024 1025 /* 1026 * Change the GUID for the pool. This is done so that we can later 1027 * re-import a pool built from a clone of our own vdevs. We will modify 1028 * the root vdev's guid, our own pool guid, and then mark all of our 1029 * vdevs dirty. Note that we must make sure that all our vdevs are 1030 * online when we do this, or else any vdevs that weren't present 1031 * would be orphaned from our pool. We are also going to issue a 1032 * sysevent to update any watchers. 1033 * 1034 * The GUID of the pool will be changed to the value pointed to by guidp. 1035 * The GUID may not be set to the reserverd value of 0. 1036 * The new GUID will be generated if guidp is NULL. 1037 */ 1038 int 1039 spa_change_guid(spa_t *spa, const uint64_t *guidp) 1040 { 1041 uint64_t guid; 1042 int error; 1043 1044 mutex_enter(&spa->spa_vdev_top_lock); 1045 mutex_enter(&spa_namespace_lock); 1046 1047 if (guidp != NULL) { 1048 guid = *guidp; 1049 if (guid == 0) { 1050 error = SET_ERROR(EINVAL); 1051 goto out; 1052 } 1053 1054 if (spa_guid_exists(guid, 0)) { 1055 error = SET_ERROR(EEXIST); 1056 goto out; 1057 } 1058 } else { 1059 guid = spa_generate_guid(NULL); 1060 } 1061 1062 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 1063 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 1064 1065 if (error == 0) { 1066 /* 1067 * Clear the kobj flag from all the vdevs to allow 1068 * vdev_cache_process_kobj_evt() to post events to all the 1069 * vdevs since GUID is updated. 1070 */ 1071 vdev_clear_kobj_evt(spa->spa_root_vdev); 1072 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1073 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1074 1075 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1076 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1077 } 1078 1079 out: 1080 mutex_exit(&spa_namespace_lock); 1081 mutex_exit(&spa->spa_vdev_top_lock); 1082 1083 return (error); 1084 } 1085 1086 /* 1087 * ========================================================================== 1088 * SPA state manipulation (open/create/destroy/import/export) 1089 * ========================================================================== 1090 */ 1091 1092 static int 1093 spa_error_entry_compare(const void *a, const void *b) 1094 { 1095 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1096 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1097 int ret; 1098 1099 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1100 sizeof (zbookmark_phys_t)); 1101 1102 return (TREE_ISIGN(ret)); 1103 } 1104 1105 /* 1106 * Utility function which retrieves copies of the current logs and 1107 * re-initializes them in the process. 1108 */ 1109 void 1110 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1111 { 1112 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1113 1114 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1115 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1116 1117 avl_create(&spa->spa_errlist_scrub, 1118 spa_error_entry_compare, sizeof (spa_error_entry_t), 1119 offsetof(spa_error_entry_t, se_avl)); 1120 avl_create(&spa->spa_errlist_last, 1121 spa_error_entry_compare, sizeof (spa_error_entry_t), 1122 offsetof(spa_error_entry_t, se_avl)); 1123 } 1124 1125 static void 1126 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1127 { 1128 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1129 enum zti_modes mode = ztip->zti_mode; 1130 uint_t value = ztip->zti_value; 1131 uint_t count = ztip->zti_count; 1132 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1133 uint_t cpus, flags = TASKQ_DYNAMIC; 1134 1135 switch (mode) { 1136 case ZTI_MODE_FIXED: 1137 ASSERT3U(value, >, 0); 1138 break; 1139 1140 case ZTI_MODE_SYNC: 1141 1142 /* 1143 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs, 1144 * not to exceed the number of spa allocators, and align to it. 1145 */ 1146 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1147 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq)); 1148 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1149 count = MIN(count, spa->spa_alloc_count); 1150 while (spa->spa_alloc_count % count != 0 && 1151 spa->spa_alloc_count < count * 2) 1152 count--; 1153 1154 /* 1155 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1156 * single taskq may have more threads than 100% of online cpus. 1157 */ 1158 value = (zio_taskq_batch_pct + count / 2) / count; 1159 value = MIN(value, 100); 1160 flags |= TASKQ_THREADS_CPU_PCT; 1161 break; 1162 1163 case ZTI_MODE_SCALE: 1164 flags |= TASKQ_THREADS_CPU_PCT; 1165 /* 1166 * We want more taskqs to reduce lock contention, but we want 1167 * less for better request ordering and CPU utilization. 1168 */ 1169 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1170 if (zio_taskq_batch_tpq > 0) { 1171 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1172 zio_taskq_batch_tpq); 1173 } else { 1174 /* 1175 * Prefer 6 threads per taskq, but no more taskqs 1176 * than threads in them on large systems. For 80%: 1177 * 1178 * taskq taskq total 1179 * cpus taskqs percent threads threads 1180 * ------- ------- ------- ------- ------- 1181 * 1 1 80% 1 1 1182 * 2 1 80% 1 1 1183 * 4 1 80% 3 3 1184 * 8 2 40% 3 6 1185 * 16 3 27% 4 12 1186 * 32 5 16% 5 25 1187 * 64 7 11% 7 49 1188 * 128 10 8% 10 100 1189 * 256 14 6% 15 210 1190 */ 1191 count = 1 + cpus / 6; 1192 while (count * count > cpus) 1193 count--; 1194 } 1195 /* Limit each taskq within 100% to not trigger assertion. */ 1196 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1197 value = (zio_taskq_batch_pct + count / 2) / count; 1198 break; 1199 1200 case ZTI_MODE_NULL: 1201 tqs->stqs_count = 0; 1202 tqs->stqs_taskq = NULL; 1203 return; 1204 1205 default: 1206 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1207 "spa_taskqs_init()", 1208 zio_type_name[t], zio_taskq_types[q], mode, value); 1209 break; 1210 } 1211 1212 ASSERT3U(count, >, 0); 1213 tqs->stqs_count = count; 1214 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1215 1216 for (uint_t i = 0; i < count; i++) { 1217 taskq_t *tq; 1218 char name[32]; 1219 1220 if (count > 1) 1221 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1222 zio_type_name[t], zio_taskq_types[q], i); 1223 else 1224 (void) snprintf(name, sizeof (name), "%s_%s", 1225 zio_type_name[t], zio_taskq_types[q]); 1226 1227 #ifdef HAVE_SYSDC 1228 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1229 (void) zio_taskq_basedc; 1230 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1231 spa->spa_proc, zio_taskq_basedc, flags); 1232 } else { 1233 #endif 1234 pri_t pri = maxclsyspri; 1235 /* 1236 * The write issue taskq can be extremely CPU 1237 * intensive. Run it at slightly less important 1238 * priority than the other taskqs. 1239 * 1240 * Under Linux and FreeBSD this means incrementing 1241 * the priority value as opposed to platforms like 1242 * illumos where it should be decremented. 1243 * 1244 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1245 * are equal then a difference between them is 1246 * insignificant. 1247 */ 1248 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1249 #if defined(__linux__) 1250 pri++; 1251 #elif defined(__FreeBSD__) 1252 pri += 4; 1253 #else 1254 #error "unknown OS" 1255 #endif 1256 } 1257 tq = taskq_create_proc(name, value, pri, 50, 1258 INT_MAX, spa->spa_proc, flags); 1259 #ifdef HAVE_SYSDC 1260 } 1261 #endif 1262 1263 tqs->stqs_taskq[i] = tq; 1264 } 1265 } 1266 1267 static void 1268 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1269 { 1270 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1271 1272 if (tqs->stqs_taskq == NULL) { 1273 ASSERT3U(tqs->stqs_count, ==, 0); 1274 return; 1275 } 1276 1277 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1278 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1279 taskq_destroy(tqs->stqs_taskq[i]); 1280 } 1281 1282 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1283 tqs->stqs_taskq = NULL; 1284 } 1285 1286 #ifdef _KERNEL 1287 /* 1288 * The READ and WRITE rows of zio_taskqs are configurable at module load time 1289 * by setting zio_taskq_read or zio_taskq_write. 1290 * 1291 * Example (the defaults for READ and WRITE) 1292 * zio_taskq_read='fixed,1,8 null scale null' 1293 * zio_taskq_write='sync null scale null' 1294 * 1295 * Each sets the entire row at a time. 1296 * 1297 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number 1298 * of threads per taskq. 1299 * 1300 * 'null' can only be set on the high-priority queues (queue selection for 1301 * high-priority queues will fall back to the regular queue if the high-pri 1302 * is NULL. 1303 */ 1304 static const char *const modes[ZTI_NMODES] = { 1305 "fixed", "scale", "sync", "null" 1306 }; 1307 1308 /* Parse the incoming config string. Modifies cfg */ 1309 static int 1310 spa_taskq_param_set(zio_type_t t, char *cfg) 1311 { 1312 int err = 0; 1313 1314 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}}; 1315 1316 char *next = cfg, *tok, *c; 1317 1318 /* 1319 * Parse out each element from the string and fill `row`. The entire 1320 * row has to be set at once, so any errors are flagged by just 1321 * breaking out of this loop early. 1322 */ 1323 uint_t q; 1324 for (q = 0; q < ZIO_TASKQ_TYPES; q++) { 1325 /* `next` is the start of the config */ 1326 if (next == NULL) 1327 break; 1328 1329 /* Eat up leading space */ 1330 while (isspace(*next)) 1331 next++; 1332 if (*next == '\0') 1333 break; 1334 1335 /* Mode ends at space or end of string */ 1336 tok = next; 1337 next = strchr(tok, ' '); 1338 if (next != NULL) *next++ = '\0'; 1339 1340 /* Parameters start after a comma */ 1341 c = strchr(tok, ','); 1342 if (c != NULL) *c++ = '\0'; 1343 1344 /* Match mode string */ 1345 uint_t mode; 1346 for (mode = 0; mode < ZTI_NMODES; mode++) 1347 if (strcmp(tok, modes[mode]) == 0) 1348 break; 1349 if (mode == ZTI_NMODES) 1350 break; 1351 1352 /* Invalid canary */ 1353 row[q].zti_mode = ZTI_NMODES; 1354 1355 /* Per-mode setup */ 1356 switch (mode) { 1357 1358 /* 1359 * FIXED is parameterised: number of queues, and number of 1360 * threads per queue. 1361 */ 1362 case ZTI_MODE_FIXED: { 1363 /* No parameters? */ 1364 if (c == NULL || *c == '\0') 1365 break; 1366 1367 /* Find next parameter */ 1368 tok = c; 1369 c = strchr(tok, ','); 1370 if (c == NULL) 1371 break; 1372 1373 /* Take digits and convert */ 1374 unsigned long long nq; 1375 if (!(isdigit(*tok))) 1376 break; 1377 err = ddi_strtoull(tok, &tok, 10, &nq); 1378 /* Must succeed and also end at the next param sep */ 1379 if (err != 0 || tok != c) 1380 break; 1381 1382 /* Move past the comma */ 1383 tok++; 1384 /* Need another number */ 1385 if (!(isdigit(*tok))) 1386 break; 1387 /* Remember start to make sure we moved */ 1388 c = tok; 1389 1390 /* Take digits */ 1391 unsigned long long ntpq; 1392 err = ddi_strtoull(tok, &tok, 10, &ntpq); 1393 /* Must succeed, and moved forward */ 1394 if (err != 0 || tok == c || *tok != '\0') 1395 break; 1396 1397 /* 1398 * sanity; zero queues/threads make no sense, and 1399 * 16K is almost certainly more than anyone will ever 1400 * need and avoids silly numbers like UINT32_MAX 1401 */ 1402 if (nq == 0 || nq >= 16384 || 1403 ntpq == 0 || ntpq >= 16384) 1404 break; 1405 1406 const zio_taskq_info_t zti = ZTI_P(ntpq, nq); 1407 row[q] = zti; 1408 break; 1409 } 1410 1411 case ZTI_MODE_SCALE: { 1412 const zio_taskq_info_t zti = ZTI_SCALE; 1413 row[q] = zti; 1414 break; 1415 } 1416 1417 case ZTI_MODE_SYNC: { 1418 const zio_taskq_info_t zti = ZTI_SYNC; 1419 row[q] = zti; 1420 break; 1421 } 1422 1423 case ZTI_MODE_NULL: { 1424 /* 1425 * Can only null the high-priority queues; the general- 1426 * purpose ones have to exist. 1427 */ 1428 if (q != ZIO_TASKQ_ISSUE_HIGH && 1429 q != ZIO_TASKQ_INTERRUPT_HIGH) 1430 break; 1431 1432 const zio_taskq_info_t zti = ZTI_NULL; 1433 row[q] = zti; 1434 break; 1435 } 1436 1437 default: 1438 break; 1439 } 1440 1441 /* Ensure we set a mode */ 1442 if (row[q].zti_mode == ZTI_NMODES) 1443 break; 1444 } 1445 1446 /* Didn't get a full row, fail */ 1447 if (q < ZIO_TASKQ_TYPES) 1448 return (SET_ERROR(EINVAL)); 1449 1450 /* Eat trailing space */ 1451 if (next != NULL) 1452 while (isspace(*next)) 1453 next++; 1454 1455 /* If there's anything left over then fail */ 1456 if (next != NULL && *next != '\0') 1457 return (SET_ERROR(EINVAL)); 1458 1459 /* Success! Copy it into the real config */ 1460 for (q = 0; q < ZIO_TASKQ_TYPES; q++) 1461 zio_taskqs[t][q] = row[q]; 1462 1463 return (0); 1464 } 1465 1466 static int 1467 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline) 1468 { 1469 int pos = 0; 1470 1471 /* Build paramater string from live config */ 1472 const char *sep = ""; 1473 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) { 1474 const zio_taskq_info_t *zti = &zio_taskqs[t][q]; 1475 if (zti->zti_mode == ZTI_MODE_FIXED) 1476 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep, 1477 modes[zti->zti_mode], zti->zti_count, 1478 zti->zti_value); 1479 else 1480 pos += sprintf(&buf[pos], "%s%s", sep, 1481 modes[zti->zti_mode]); 1482 sep = " "; 1483 } 1484 1485 if (add_newline) 1486 buf[pos++] = '\n'; 1487 buf[pos] = '\0'; 1488 1489 return (pos); 1490 } 1491 1492 #ifdef __linux__ 1493 static int 1494 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp) 1495 { 1496 char *cfg = kmem_strdup(val); 1497 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg); 1498 kmem_free(cfg, strlen(val)+1); 1499 return (-err); 1500 } 1501 static int 1502 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp) 1503 { 1504 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE)); 1505 } 1506 1507 static int 1508 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp) 1509 { 1510 char *cfg = kmem_strdup(val); 1511 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg); 1512 kmem_free(cfg, strlen(val)+1); 1513 return (-err); 1514 } 1515 static int 1516 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp) 1517 { 1518 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE)); 1519 } 1520 #else 1521 /* 1522 * On FreeBSD load-time parameters can be set up before malloc() is available, 1523 * so we have to do all the parsing work on the stack. 1524 */ 1525 #define SPA_TASKQ_PARAM_MAX (128) 1526 1527 static int 1528 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS) 1529 { 1530 char buf[SPA_TASKQ_PARAM_MAX]; 1531 int err; 1532 1533 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE); 1534 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1535 if (err || req->newptr == NULL) 1536 return (err); 1537 return (spa_taskq_param_set(ZIO_TYPE_READ, buf)); 1538 } 1539 1540 static int 1541 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS) 1542 { 1543 char buf[SPA_TASKQ_PARAM_MAX]; 1544 int err; 1545 1546 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE); 1547 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1548 if (err || req->newptr == NULL) 1549 return (err); 1550 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf)); 1551 } 1552 #endif 1553 #endif /* _KERNEL */ 1554 1555 /* 1556 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1557 * Note that a type may have multiple discrete taskqs to avoid lock contention 1558 * on the taskq itself. 1559 */ 1560 void 1561 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1562 task_func_t *func, zio_t *zio, boolean_t cutinline) 1563 { 1564 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1565 taskq_t *tq; 1566 1567 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1568 ASSERT3U(tqs->stqs_count, !=, 0); 1569 1570 /* 1571 * NB: We are assuming that the zio can only be dispatched 1572 * to a single taskq at a time. It would be a grievous error 1573 * to dispatch the zio to another taskq at the same time. 1574 */ 1575 ASSERT(zio); 1576 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1577 1578 if (tqs->stqs_count == 1) { 1579 tq = tqs->stqs_taskq[0]; 1580 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1581 ZIO_HAS_ALLOCATOR(zio)) { 1582 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count]; 1583 } else { 1584 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1585 } 1586 1587 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0, 1588 &zio->io_tqent); 1589 } 1590 1591 static void 1592 spa_create_zio_taskqs(spa_t *spa) 1593 { 1594 for (int t = 0; t < ZIO_TYPES; t++) { 1595 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1596 spa_taskqs_init(spa, t, q); 1597 } 1598 } 1599 } 1600 1601 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1602 static void 1603 spa_thread(void *arg) 1604 { 1605 psetid_t zio_taskq_psrset_bind = PS_NONE; 1606 callb_cpr_t cprinfo; 1607 1608 spa_t *spa = arg; 1609 user_t *pu = PTOU(curproc); 1610 1611 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1612 spa->spa_name); 1613 1614 ASSERT(curproc != &p0); 1615 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1616 "zpool-%s", spa->spa_name); 1617 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1618 1619 /* bind this thread to the requested psrset */ 1620 if (zio_taskq_psrset_bind != PS_NONE) { 1621 pool_lock(); 1622 mutex_enter(&cpu_lock); 1623 mutex_enter(&pidlock); 1624 mutex_enter(&curproc->p_lock); 1625 1626 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1627 0, NULL, NULL) == 0) { 1628 curthread->t_bind_pset = zio_taskq_psrset_bind; 1629 } else { 1630 cmn_err(CE_WARN, 1631 "Couldn't bind process for zfs pool \"%s\" to " 1632 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1633 } 1634 1635 mutex_exit(&curproc->p_lock); 1636 mutex_exit(&pidlock); 1637 mutex_exit(&cpu_lock); 1638 pool_unlock(); 1639 } 1640 1641 #ifdef HAVE_SYSDC 1642 if (zio_taskq_sysdc) { 1643 sysdc_thread_enter(curthread, 100, 0); 1644 } 1645 #endif 1646 1647 spa->spa_proc = curproc; 1648 spa->spa_did = curthread->t_did; 1649 1650 spa_create_zio_taskqs(spa); 1651 1652 mutex_enter(&spa->spa_proc_lock); 1653 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1654 1655 spa->spa_proc_state = SPA_PROC_ACTIVE; 1656 cv_broadcast(&spa->spa_proc_cv); 1657 1658 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1659 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1660 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1661 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1662 1663 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1664 spa->spa_proc_state = SPA_PROC_GONE; 1665 spa->spa_proc = &p0; 1666 cv_broadcast(&spa->spa_proc_cv); 1667 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1668 1669 mutex_enter(&curproc->p_lock); 1670 lwp_exit(); 1671 } 1672 #endif 1673 1674 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1675 1676 /* 1677 * Activate an uninitialized pool. 1678 */ 1679 static void 1680 spa_activate(spa_t *spa, spa_mode_t mode) 1681 { 1682 metaslab_ops_t *msp = metaslab_allocator(spa); 1683 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1684 1685 spa->spa_state = POOL_STATE_ACTIVE; 1686 spa->spa_mode = mode; 1687 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1688 1689 spa->spa_normal_class = metaslab_class_create(spa, msp, B_FALSE); 1690 spa->spa_log_class = metaslab_class_create(spa, msp, B_TRUE); 1691 spa->spa_embedded_log_class = metaslab_class_create(spa, msp, B_TRUE); 1692 spa->spa_special_class = metaslab_class_create(spa, msp, B_FALSE); 1693 spa->spa_dedup_class = metaslab_class_create(spa, msp, B_FALSE); 1694 1695 /* Try to create a covering process */ 1696 mutex_enter(&spa->spa_proc_lock); 1697 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1698 ASSERT(spa->spa_proc == &p0); 1699 spa->spa_did = 0; 1700 1701 #ifdef HAVE_SPA_THREAD 1702 /* Only create a process if we're going to be around a while. */ 1703 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1704 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1705 NULL, 0) == 0) { 1706 spa->spa_proc_state = SPA_PROC_CREATED; 1707 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1708 cv_wait(&spa->spa_proc_cv, 1709 &spa->spa_proc_lock); 1710 } 1711 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1712 ASSERT(spa->spa_proc != &p0); 1713 ASSERT(spa->spa_did != 0); 1714 } else { 1715 #ifdef _KERNEL 1716 cmn_err(CE_WARN, 1717 "Couldn't create process for zfs pool \"%s\"\n", 1718 spa->spa_name); 1719 #endif 1720 } 1721 } 1722 #endif /* HAVE_SPA_THREAD */ 1723 mutex_exit(&spa->spa_proc_lock); 1724 1725 /* If we didn't create a process, we need to create our taskqs. */ 1726 if (spa->spa_proc == &p0) { 1727 spa_create_zio_taskqs(spa); 1728 } 1729 1730 for (size_t i = 0; i < TXG_SIZE; i++) { 1731 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1732 ZIO_FLAG_CANFAIL); 1733 } 1734 1735 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1736 offsetof(vdev_t, vdev_config_dirty_node)); 1737 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1738 offsetof(objset_t, os_evicting_node)); 1739 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1740 offsetof(vdev_t, vdev_state_dirty_node)); 1741 1742 txg_list_create(&spa->spa_vdev_txg_list, spa, 1743 offsetof(struct vdev, vdev_txg_node)); 1744 1745 avl_create(&spa->spa_errlist_scrub, 1746 spa_error_entry_compare, sizeof (spa_error_entry_t), 1747 offsetof(spa_error_entry_t, se_avl)); 1748 avl_create(&spa->spa_errlist_last, 1749 spa_error_entry_compare, sizeof (spa_error_entry_t), 1750 offsetof(spa_error_entry_t, se_avl)); 1751 avl_create(&spa->spa_errlist_healed, 1752 spa_error_entry_compare, sizeof (spa_error_entry_t), 1753 offsetof(spa_error_entry_t, se_avl)); 1754 1755 spa_activate_os(spa); 1756 1757 spa_keystore_init(&spa->spa_keystore); 1758 1759 /* 1760 * This taskq is used to perform zvol-minor-related tasks 1761 * asynchronously. This has several advantages, including easy 1762 * resolution of various deadlocks. 1763 * 1764 * The taskq must be single threaded to ensure tasks are always 1765 * processed in the order in which they were dispatched. 1766 * 1767 * A taskq per pool allows one to keep the pools independent. 1768 * This way if one pool is suspended, it will not impact another. 1769 * 1770 * The preferred location to dispatch a zvol minor task is a sync 1771 * task. In this context, there is easy access to the spa_t and minimal 1772 * error handling is required because the sync task must succeed. 1773 */ 1774 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1775 1, INT_MAX, 0); 1776 1777 /* 1778 * The taskq to preload metaslabs. 1779 */ 1780 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1781 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1782 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1783 1784 /* 1785 * Taskq dedicated to prefetcher threads: this is used to prevent the 1786 * pool traverse code from monopolizing the global (and limited) 1787 * system_taskq by inappropriately scheduling long running tasks on it. 1788 */ 1789 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1790 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1791 1792 /* 1793 * The taskq to upgrade datasets in this pool. Currently used by 1794 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1795 */ 1796 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1797 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1798 } 1799 1800 /* 1801 * Opposite of spa_activate(). 1802 */ 1803 static void 1804 spa_deactivate(spa_t *spa) 1805 { 1806 ASSERT(spa->spa_sync_on == B_FALSE); 1807 ASSERT(spa->spa_dsl_pool == NULL); 1808 ASSERT(spa->spa_root_vdev == NULL); 1809 ASSERT(spa->spa_async_zio_root == NULL); 1810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1811 1812 spa_evicting_os_wait(spa); 1813 1814 if (spa->spa_zvol_taskq) { 1815 taskq_destroy(spa->spa_zvol_taskq); 1816 spa->spa_zvol_taskq = NULL; 1817 } 1818 1819 if (spa->spa_metaslab_taskq) { 1820 taskq_destroy(spa->spa_metaslab_taskq); 1821 spa->spa_metaslab_taskq = NULL; 1822 } 1823 1824 if (spa->spa_prefetch_taskq) { 1825 taskq_destroy(spa->spa_prefetch_taskq); 1826 spa->spa_prefetch_taskq = NULL; 1827 } 1828 1829 if (spa->spa_upgrade_taskq) { 1830 taskq_destroy(spa->spa_upgrade_taskq); 1831 spa->spa_upgrade_taskq = NULL; 1832 } 1833 1834 txg_list_destroy(&spa->spa_vdev_txg_list); 1835 1836 list_destroy(&spa->spa_config_dirty_list); 1837 list_destroy(&spa->spa_evicting_os_list); 1838 list_destroy(&spa->spa_state_dirty_list); 1839 1840 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1841 1842 for (int t = 0; t < ZIO_TYPES; t++) { 1843 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1844 spa_taskqs_fini(spa, t, q); 1845 } 1846 } 1847 1848 for (size_t i = 0; i < TXG_SIZE; i++) { 1849 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1850 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1851 spa->spa_txg_zio[i] = NULL; 1852 } 1853 1854 metaslab_class_destroy(spa->spa_normal_class); 1855 spa->spa_normal_class = NULL; 1856 1857 metaslab_class_destroy(spa->spa_log_class); 1858 spa->spa_log_class = NULL; 1859 1860 metaslab_class_destroy(spa->spa_embedded_log_class); 1861 spa->spa_embedded_log_class = NULL; 1862 1863 metaslab_class_destroy(spa->spa_special_class); 1864 spa->spa_special_class = NULL; 1865 1866 metaslab_class_destroy(spa->spa_dedup_class); 1867 spa->spa_dedup_class = NULL; 1868 1869 /* 1870 * If this was part of an import or the open otherwise failed, we may 1871 * still have errors left in the queues. Empty them just in case. 1872 */ 1873 spa_errlog_drain(spa); 1874 avl_destroy(&spa->spa_errlist_scrub); 1875 avl_destroy(&spa->spa_errlist_last); 1876 avl_destroy(&spa->spa_errlist_healed); 1877 1878 spa_keystore_fini(&spa->spa_keystore); 1879 1880 spa->spa_state = POOL_STATE_UNINITIALIZED; 1881 1882 mutex_enter(&spa->spa_proc_lock); 1883 if (spa->spa_proc_state != SPA_PROC_NONE) { 1884 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1885 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1886 cv_broadcast(&spa->spa_proc_cv); 1887 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1888 ASSERT(spa->spa_proc != &p0); 1889 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1890 } 1891 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1892 spa->spa_proc_state = SPA_PROC_NONE; 1893 } 1894 ASSERT(spa->spa_proc == &p0); 1895 mutex_exit(&spa->spa_proc_lock); 1896 1897 /* 1898 * We want to make sure spa_thread() has actually exited the ZFS 1899 * module, so that the module can't be unloaded out from underneath 1900 * it. 1901 */ 1902 if (spa->spa_did != 0) { 1903 thread_join(spa->spa_did); 1904 spa->spa_did = 0; 1905 } 1906 1907 spa_deactivate_os(spa); 1908 1909 } 1910 1911 /* 1912 * Verify a pool configuration, and construct the vdev tree appropriately. This 1913 * will create all the necessary vdevs in the appropriate layout, with each vdev 1914 * in the CLOSED state. This will prep the pool before open/creation/import. 1915 * All vdev validation is done by the vdev_alloc() routine. 1916 */ 1917 int 1918 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1919 uint_t id, int atype) 1920 { 1921 nvlist_t **child; 1922 uint_t children; 1923 int error; 1924 1925 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1926 return (error); 1927 1928 if ((*vdp)->vdev_ops->vdev_op_leaf) 1929 return (0); 1930 1931 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1932 &child, &children); 1933 1934 if (error == ENOENT) 1935 return (0); 1936 1937 if (error) { 1938 vdev_free(*vdp); 1939 *vdp = NULL; 1940 return (SET_ERROR(EINVAL)); 1941 } 1942 1943 for (int c = 0; c < children; c++) { 1944 vdev_t *vd; 1945 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1946 atype)) != 0) { 1947 vdev_free(*vdp); 1948 *vdp = NULL; 1949 return (error); 1950 } 1951 } 1952 1953 ASSERT(*vdp != NULL); 1954 1955 return (0); 1956 } 1957 1958 static boolean_t 1959 spa_should_flush_logs_on_unload(spa_t *spa) 1960 { 1961 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1962 return (B_FALSE); 1963 1964 if (!spa_writeable(spa)) 1965 return (B_FALSE); 1966 1967 if (!spa->spa_sync_on) 1968 return (B_FALSE); 1969 1970 if (spa_state(spa) != POOL_STATE_EXPORTED) 1971 return (B_FALSE); 1972 1973 if (zfs_keep_log_spacemaps_at_export) 1974 return (B_FALSE); 1975 1976 return (B_TRUE); 1977 } 1978 1979 /* 1980 * Opens a transaction that will set the flag that will instruct 1981 * spa_sync to attempt to flush all the metaslabs for that txg. 1982 */ 1983 static void 1984 spa_unload_log_sm_flush_all(spa_t *spa) 1985 { 1986 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1987 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 1988 1989 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1990 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1991 1992 dmu_tx_commit(tx); 1993 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1994 } 1995 1996 static void 1997 spa_unload_log_sm_metadata(spa_t *spa) 1998 { 1999 void *cookie = NULL; 2000 spa_log_sm_t *sls; 2001 log_summary_entry_t *e; 2002 2003 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 2004 &cookie)) != NULL) { 2005 VERIFY0(sls->sls_mscount); 2006 kmem_free(sls, sizeof (spa_log_sm_t)); 2007 } 2008 2009 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 2010 VERIFY0(e->lse_mscount); 2011 kmem_free(e, sizeof (log_summary_entry_t)); 2012 } 2013 2014 spa->spa_unflushed_stats.sus_nblocks = 0; 2015 spa->spa_unflushed_stats.sus_memused = 0; 2016 spa->spa_unflushed_stats.sus_blocklimit = 0; 2017 } 2018 2019 static void 2020 spa_destroy_aux_threads(spa_t *spa) 2021 { 2022 if (spa->spa_condense_zthr != NULL) { 2023 zthr_destroy(spa->spa_condense_zthr); 2024 spa->spa_condense_zthr = NULL; 2025 } 2026 if (spa->spa_checkpoint_discard_zthr != NULL) { 2027 zthr_destroy(spa->spa_checkpoint_discard_zthr); 2028 spa->spa_checkpoint_discard_zthr = NULL; 2029 } 2030 if (spa->spa_livelist_delete_zthr != NULL) { 2031 zthr_destroy(spa->spa_livelist_delete_zthr); 2032 spa->spa_livelist_delete_zthr = NULL; 2033 } 2034 if (spa->spa_livelist_condense_zthr != NULL) { 2035 zthr_destroy(spa->spa_livelist_condense_zthr); 2036 spa->spa_livelist_condense_zthr = NULL; 2037 } 2038 if (spa->spa_raidz_expand_zthr != NULL) { 2039 zthr_destroy(spa->spa_raidz_expand_zthr); 2040 spa->spa_raidz_expand_zthr = NULL; 2041 } 2042 } 2043 2044 /* 2045 * Opposite of spa_load(). 2046 */ 2047 static void 2048 spa_unload(spa_t *spa) 2049 { 2050 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 2051 spa->spa_export_thread == curthread); 2052 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 2053 2054 spa_import_progress_remove(spa_guid(spa)); 2055 spa_load_note(spa, "UNLOADING"); 2056 2057 spa_wake_waiters(spa); 2058 2059 /* 2060 * If we have set the spa_final_txg, we have already performed the 2061 * tasks below in spa_export_common(). We should not redo it here since 2062 * we delay the final TXGs beyond what spa_final_txg is set at. 2063 */ 2064 if (spa->spa_final_txg == UINT64_MAX) { 2065 /* 2066 * If the log space map feature is enabled and the pool is 2067 * getting exported (but not destroyed), we want to spend some 2068 * time flushing as many metaslabs as we can in an attempt to 2069 * destroy log space maps and save import time. 2070 */ 2071 if (spa_should_flush_logs_on_unload(spa)) 2072 spa_unload_log_sm_flush_all(spa); 2073 2074 /* 2075 * Stop async tasks. 2076 */ 2077 spa_async_suspend(spa); 2078 2079 if (spa->spa_root_vdev) { 2080 vdev_t *root_vdev = spa->spa_root_vdev; 2081 vdev_initialize_stop_all(root_vdev, 2082 VDEV_INITIALIZE_ACTIVE); 2083 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 2084 vdev_autotrim_stop_all(spa); 2085 vdev_rebuild_stop_all(spa); 2086 l2arc_spa_rebuild_stop(spa); 2087 } 2088 } 2089 2090 /* 2091 * Stop syncing. 2092 */ 2093 if (spa->spa_sync_on) { 2094 txg_sync_stop(spa->spa_dsl_pool); 2095 spa->spa_sync_on = B_FALSE; 2096 } 2097 2098 /* 2099 * This ensures that there is no async metaslab prefetching 2100 * while we attempt to unload the spa. 2101 */ 2102 taskq_wait(spa->spa_metaslab_taskq); 2103 2104 if (spa->spa_mmp.mmp_thread) 2105 mmp_thread_stop(spa); 2106 2107 /* 2108 * Wait for any outstanding async I/O to complete. 2109 */ 2110 if (spa->spa_async_zio_root != NULL) { 2111 for (int i = 0; i < max_ncpus; i++) 2112 (void) zio_wait(spa->spa_async_zio_root[i]); 2113 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 2114 spa->spa_async_zio_root = NULL; 2115 } 2116 2117 if (spa->spa_vdev_removal != NULL) { 2118 spa_vdev_removal_destroy(spa->spa_vdev_removal); 2119 spa->spa_vdev_removal = NULL; 2120 } 2121 2122 spa_destroy_aux_threads(spa); 2123 2124 spa_condense_fini(spa); 2125 2126 bpobj_close(&spa->spa_deferred_bpobj); 2127 2128 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 2129 2130 /* 2131 * Close all vdevs. 2132 */ 2133 if (spa->spa_root_vdev) 2134 vdev_free(spa->spa_root_vdev); 2135 ASSERT(spa->spa_root_vdev == NULL); 2136 2137 /* 2138 * Close the dsl pool. 2139 */ 2140 if (spa->spa_dsl_pool) { 2141 dsl_pool_close(spa->spa_dsl_pool); 2142 spa->spa_dsl_pool = NULL; 2143 spa->spa_meta_objset = NULL; 2144 } 2145 2146 ddt_unload(spa); 2147 brt_unload(spa); 2148 spa_unload_log_sm_metadata(spa); 2149 2150 /* 2151 * Drop and purge level 2 cache 2152 */ 2153 spa_l2cache_drop(spa); 2154 2155 if (spa->spa_spares.sav_vdevs) { 2156 for (int i = 0; i < spa->spa_spares.sav_count; i++) 2157 vdev_free(spa->spa_spares.sav_vdevs[i]); 2158 kmem_free(spa->spa_spares.sav_vdevs, 2159 spa->spa_spares.sav_count * sizeof (void *)); 2160 spa->spa_spares.sav_vdevs = NULL; 2161 } 2162 if (spa->spa_spares.sav_config) { 2163 nvlist_free(spa->spa_spares.sav_config); 2164 spa->spa_spares.sav_config = NULL; 2165 } 2166 spa->spa_spares.sav_count = 0; 2167 2168 if (spa->spa_l2cache.sav_vdevs) { 2169 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 2170 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 2171 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 2172 } 2173 kmem_free(spa->spa_l2cache.sav_vdevs, 2174 spa->spa_l2cache.sav_count * sizeof (void *)); 2175 spa->spa_l2cache.sav_vdevs = NULL; 2176 } 2177 if (spa->spa_l2cache.sav_config) { 2178 nvlist_free(spa->spa_l2cache.sav_config); 2179 spa->spa_l2cache.sav_config = NULL; 2180 } 2181 spa->spa_l2cache.sav_count = 0; 2182 2183 spa->spa_async_suspended = 0; 2184 2185 spa->spa_indirect_vdevs_loaded = B_FALSE; 2186 2187 if (spa->spa_comment != NULL) { 2188 spa_strfree(spa->spa_comment); 2189 spa->spa_comment = NULL; 2190 } 2191 if (spa->spa_compatibility != NULL) { 2192 spa_strfree(spa->spa_compatibility); 2193 spa->spa_compatibility = NULL; 2194 } 2195 2196 spa->spa_raidz_expand = NULL; 2197 spa->spa_checkpoint_txg = 0; 2198 2199 spa_config_exit(spa, SCL_ALL, spa); 2200 } 2201 2202 /* 2203 * Load (or re-load) the current list of vdevs describing the active spares for 2204 * this pool. When this is called, we have some form of basic information in 2205 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 2206 * then re-generate a more complete list including status information. 2207 */ 2208 void 2209 spa_load_spares(spa_t *spa) 2210 { 2211 nvlist_t **spares; 2212 uint_t nspares; 2213 int i; 2214 vdev_t *vd, *tvd; 2215 2216 #ifndef _KERNEL 2217 /* 2218 * zdb opens both the current state of the pool and the 2219 * checkpointed state (if present), with a different spa_t. 2220 * 2221 * As spare vdevs are shared among open pools, we skip loading 2222 * them when we load the checkpointed state of the pool. 2223 */ 2224 if (!spa_writeable(spa)) 2225 return; 2226 #endif 2227 2228 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2229 2230 /* 2231 * First, close and free any existing spare vdevs. 2232 */ 2233 if (spa->spa_spares.sav_vdevs) { 2234 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2235 vd = spa->spa_spares.sav_vdevs[i]; 2236 2237 /* Undo the call to spa_activate() below */ 2238 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2239 B_FALSE)) != NULL && tvd->vdev_isspare) 2240 spa_spare_remove(tvd); 2241 vdev_close(vd); 2242 vdev_free(vd); 2243 } 2244 2245 kmem_free(spa->spa_spares.sav_vdevs, 2246 spa->spa_spares.sav_count * sizeof (void *)); 2247 } 2248 2249 if (spa->spa_spares.sav_config == NULL) 2250 nspares = 0; 2251 else 2252 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2253 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 2254 2255 spa->spa_spares.sav_count = (int)nspares; 2256 spa->spa_spares.sav_vdevs = NULL; 2257 2258 if (nspares == 0) 2259 return; 2260 2261 /* 2262 * Construct the array of vdevs, opening them to get status in the 2263 * process. For each spare, there is potentially two different vdev_t 2264 * structures associated with it: one in the list of spares (used only 2265 * for basic validation purposes) and one in the active vdev 2266 * configuration (if it's spared in). During this phase we open and 2267 * validate each vdev on the spare list. If the vdev also exists in the 2268 * active configuration, then we also mark this vdev as an active spare. 2269 */ 2270 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 2271 KM_SLEEP); 2272 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2273 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 2274 VDEV_ALLOC_SPARE) == 0); 2275 ASSERT(vd != NULL); 2276 2277 spa->spa_spares.sav_vdevs[i] = vd; 2278 2279 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2280 B_FALSE)) != NULL) { 2281 if (!tvd->vdev_isspare) 2282 spa_spare_add(tvd); 2283 2284 /* 2285 * We only mark the spare active if we were successfully 2286 * able to load the vdev. Otherwise, importing a pool 2287 * with a bad active spare would result in strange 2288 * behavior, because multiple pool would think the spare 2289 * is actively in use. 2290 * 2291 * There is a vulnerability here to an equally bizarre 2292 * circumstance, where a dead active spare is later 2293 * brought back to life (onlined or otherwise). Given 2294 * the rarity of this scenario, and the extra complexity 2295 * it adds, we ignore the possibility. 2296 */ 2297 if (!vdev_is_dead(tvd)) 2298 spa_spare_activate(tvd); 2299 } 2300 2301 vd->vdev_top = vd; 2302 vd->vdev_aux = &spa->spa_spares; 2303 2304 if (vdev_open(vd) != 0) 2305 continue; 2306 2307 if (vdev_validate_aux(vd) == 0) 2308 spa_spare_add(vd); 2309 } 2310 2311 /* 2312 * Recompute the stashed list of spares, with status information 2313 * this time. 2314 */ 2315 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 2316 2317 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 2318 KM_SLEEP); 2319 for (i = 0; i < spa->spa_spares.sav_count; i++) 2320 spares[i] = vdev_config_generate(spa, 2321 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 2322 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 2323 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 2324 spa->spa_spares.sav_count); 2325 for (i = 0; i < spa->spa_spares.sav_count; i++) 2326 nvlist_free(spares[i]); 2327 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2328 } 2329 2330 /* 2331 * Load (or re-load) the current list of vdevs describing the active l2cache for 2332 * this pool. When this is called, we have some form of basic information in 2333 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2334 * then re-generate a more complete list including status information. 2335 * Devices which are already active have their details maintained, and are 2336 * not re-opened. 2337 */ 2338 void 2339 spa_load_l2cache(spa_t *spa) 2340 { 2341 nvlist_t **l2cache = NULL; 2342 uint_t nl2cache; 2343 int i, j, oldnvdevs; 2344 uint64_t guid; 2345 vdev_t *vd, **oldvdevs, **newvdevs; 2346 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2347 2348 #ifndef _KERNEL 2349 /* 2350 * zdb opens both the current state of the pool and the 2351 * checkpointed state (if present), with a different spa_t. 2352 * 2353 * As L2 caches are part of the ARC which is shared among open 2354 * pools, we skip loading them when we load the checkpointed 2355 * state of the pool. 2356 */ 2357 if (!spa_writeable(spa)) 2358 return; 2359 #endif 2360 2361 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2362 2363 oldvdevs = sav->sav_vdevs; 2364 oldnvdevs = sav->sav_count; 2365 sav->sav_vdevs = NULL; 2366 sav->sav_count = 0; 2367 2368 if (sav->sav_config == NULL) { 2369 nl2cache = 0; 2370 newvdevs = NULL; 2371 goto out; 2372 } 2373 2374 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2375 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2376 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2377 2378 /* 2379 * Process new nvlist of vdevs. 2380 */ 2381 for (i = 0; i < nl2cache; i++) { 2382 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2383 2384 newvdevs[i] = NULL; 2385 for (j = 0; j < oldnvdevs; j++) { 2386 vd = oldvdevs[j]; 2387 if (vd != NULL && guid == vd->vdev_guid) { 2388 /* 2389 * Retain previous vdev for add/remove ops. 2390 */ 2391 newvdevs[i] = vd; 2392 oldvdevs[j] = NULL; 2393 break; 2394 } 2395 } 2396 2397 if (newvdevs[i] == NULL) { 2398 /* 2399 * Create new vdev 2400 */ 2401 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2402 VDEV_ALLOC_L2CACHE) == 0); 2403 ASSERT(vd != NULL); 2404 newvdevs[i] = vd; 2405 2406 /* 2407 * Commit this vdev as an l2cache device, 2408 * even if it fails to open. 2409 */ 2410 spa_l2cache_add(vd); 2411 2412 vd->vdev_top = vd; 2413 vd->vdev_aux = sav; 2414 2415 spa_l2cache_activate(vd); 2416 2417 if (vdev_open(vd) != 0) 2418 continue; 2419 2420 (void) vdev_validate_aux(vd); 2421 2422 if (!vdev_is_dead(vd)) 2423 l2arc_add_vdev(spa, vd); 2424 2425 /* 2426 * Upon cache device addition to a pool or pool 2427 * creation with a cache device or if the header 2428 * of the device is invalid we issue an async 2429 * TRIM command for the whole device which will 2430 * execute if l2arc_trim_ahead > 0. 2431 */ 2432 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2433 } 2434 } 2435 2436 sav->sav_vdevs = newvdevs; 2437 sav->sav_count = (int)nl2cache; 2438 2439 /* 2440 * Recompute the stashed list of l2cache devices, with status 2441 * information this time. 2442 */ 2443 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2444 2445 if (sav->sav_count > 0) 2446 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2447 KM_SLEEP); 2448 for (i = 0; i < sav->sav_count; i++) 2449 l2cache[i] = vdev_config_generate(spa, 2450 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2451 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2452 (const nvlist_t * const *)l2cache, sav->sav_count); 2453 2454 out: 2455 /* 2456 * Purge vdevs that were dropped 2457 */ 2458 if (oldvdevs) { 2459 for (i = 0; i < oldnvdevs; i++) { 2460 uint64_t pool; 2461 2462 vd = oldvdevs[i]; 2463 if (vd != NULL) { 2464 ASSERT(vd->vdev_isl2cache); 2465 2466 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2467 pool != 0ULL && l2arc_vdev_present(vd)) 2468 l2arc_remove_vdev(vd); 2469 vdev_clear_stats(vd); 2470 vdev_free(vd); 2471 } 2472 } 2473 2474 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2475 } 2476 2477 for (i = 0; i < sav->sav_count; i++) 2478 nvlist_free(l2cache[i]); 2479 if (sav->sav_count) 2480 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2481 } 2482 2483 static int 2484 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2485 { 2486 dmu_buf_t *db; 2487 char *packed = NULL; 2488 size_t nvsize = 0; 2489 int error; 2490 *value = NULL; 2491 2492 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2493 if (error) 2494 return (error); 2495 2496 nvsize = *(uint64_t *)db->db_data; 2497 dmu_buf_rele(db, FTAG); 2498 2499 packed = vmem_alloc(nvsize, KM_SLEEP); 2500 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2501 DMU_READ_PREFETCH); 2502 if (error == 0) 2503 error = nvlist_unpack(packed, nvsize, value, 0); 2504 vmem_free(packed, nvsize); 2505 2506 return (error); 2507 } 2508 2509 /* 2510 * Concrete top-level vdevs that are not missing and are not logs. At every 2511 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2512 */ 2513 static uint64_t 2514 spa_healthy_core_tvds(spa_t *spa) 2515 { 2516 vdev_t *rvd = spa->spa_root_vdev; 2517 uint64_t tvds = 0; 2518 2519 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2520 vdev_t *vd = rvd->vdev_child[i]; 2521 if (vd->vdev_islog) 2522 continue; 2523 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2524 tvds++; 2525 } 2526 2527 return (tvds); 2528 } 2529 2530 /* 2531 * Checks to see if the given vdev could not be opened, in which case we post a 2532 * sysevent to notify the autoreplace code that the device has been removed. 2533 */ 2534 static void 2535 spa_check_removed(vdev_t *vd) 2536 { 2537 for (uint64_t c = 0; c < vd->vdev_children; c++) 2538 spa_check_removed(vd->vdev_child[c]); 2539 2540 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2541 vdev_is_concrete(vd)) { 2542 zfs_post_autoreplace(vd->vdev_spa, vd); 2543 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2544 } 2545 } 2546 2547 static int 2548 spa_check_for_missing_logs(spa_t *spa) 2549 { 2550 vdev_t *rvd = spa->spa_root_vdev; 2551 2552 /* 2553 * If we're doing a normal import, then build up any additional 2554 * diagnostic information about missing log devices. 2555 * We'll pass this up to the user for further processing. 2556 */ 2557 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2558 nvlist_t **child, *nv; 2559 uint64_t idx = 0; 2560 2561 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2562 KM_SLEEP); 2563 nv = fnvlist_alloc(); 2564 2565 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2566 vdev_t *tvd = rvd->vdev_child[c]; 2567 2568 /* 2569 * We consider a device as missing only if it failed 2570 * to open (i.e. offline or faulted is not considered 2571 * as missing). 2572 */ 2573 if (tvd->vdev_islog && 2574 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2575 child[idx++] = vdev_config_generate(spa, tvd, 2576 B_FALSE, VDEV_CONFIG_MISSING); 2577 } 2578 } 2579 2580 if (idx > 0) { 2581 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2582 (const nvlist_t * const *)child, idx); 2583 fnvlist_add_nvlist(spa->spa_load_info, 2584 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2585 2586 for (uint64_t i = 0; i < idx; i++) 2587 nvlist_free(child[i]); 2588 } 2589 nvlist_free(nv); 2590 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2591 2592 if (idx > 0) { 2593 spa_load_failed(spa, "some log devices are missing"); 2594 vdev_dbgmsg_print_tree(rvd, 2); 2595 return (SET_ERROR(ENXIO)); 2596 } 2597 } else { 2598 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2599 vdev_t *tvd = rvd->vdev_child[c]; 2600 2601 if (tvd->vdev_islog && 2602 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2603 spa_set_log_state(spa, SPA_LOG_CLEAR); 2604 spa_load_note(spa, "some log devices are " 2605 "missing, ZIL is dropped."); 2606 vdev_dbgmsg_print_tree(rvd, 2); 2607 break; 2608 } 2609 } 2610 } 2611 2612 return (0); 2613 } 2614 2615 /* 2616 * Check for missing log devices 2617 */ 2618 static boolean_t 2619 spa_check_logs(spa_t *spa) 2620 { 2621 boolean_t rv = B_FALSE; 2622 dsl_pool_t *dp = spa_get_dsl(spa); 2623 2624 switch (spa->spa_log_state) { 2625 default: 2626 break; 2627 case SPA_LOG_MISSING: 2628 /* need to recheck in case slog has been restored */ 2629 case SPA_LOG_UNKNOWN: 2630 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2631 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2632 if (rv) 2633 spa_set_log_state(spa, SPA_LOG_MISSING); 2634 break; 2635 } 2636 return (rv); 2637 } 2638 2639 /* 2640 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2641 */ 2642 static boolean_t 2643 spa_passivate_log(spa_t *spa) 2644 { 2645 vdev_t *rvd = spa->spa_root_vdev; 2646 boolean_t slog_found = B_FALSE; 2647 2648 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2649 2650 for (int c = 0; c < rvd->vdev_children; c++) { 2651 vdev_t *tvd = rvd->vdev_child[c]; 2652 2653 if (tvd->vdev_islog) { 2654 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2655 metaslab_group_passivate(tvd->vdev_mg); 2656 slog_found = B_TRUE; 2657 } 2658 } 2659 2660 return (slog_found); 2661 } 2662 2663 /* 2664 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2665 */ 2666 static void 2667 spa_activate_log(spa_t *spa) 2668 { 2669 vdev_t *rvd = spa->spa_root_vdev; 2670 2671 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2672 2673 for (int c = 0; c < rvd->vdev_children; c++) { 2674 vdev_t *tvd = rvd->vdev_child[c]; 2675 2676 if (tvd->vdev_islog) { 2677 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2678 metaslab_group_activate(tvd->vdev_mg); 2679 } 2680 } 2681 } 2682 2683 int 2684 spa_reset_logs(spa_t *spa) 2685 { 2686 int error; 2687 2688 error = dmu_objset_find(spa_name(spa), zil_reset, 2689 NULL, DS_FIND_CHILDREN); 2690 if (error == 0) { 2691 /* 2692 * We successfully offlined the log device, sync out the 2693 * current txg so that the "stubby" block can be removed 2694 * by zil_sync(). 2695 */ 2696 txg_wait_synced(spa->spa_dsl_pool, 0); 2697 } 2698 return (error); 2699 } 2700 2701 static void 2702 spa_aux_check_removed(spa_aux_vdev_t *sav) 2703 { 2704 for (int i = 0; i < sav->sav_count; i++) 2705 spa_check_removed(sav->sav_vdevs[i]); 2706 } 2707 2708 void 2709 spa_claim_notify(zio_t *zio) 2710 { 2711 spa_t *spa = zio->io_spa; 2712 2713 if (zio->io_error) 2714 return; 2715 2716 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2717 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp)) 2718 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp); 2719 mutex_exit(&spa->spa_props_lock); 2720 } 2721 2722 typedef struct spa_load_error { 2723 boolean_t sle_verify_data; 2724 uint64_t sle_meta_count; 2725 uint64_t sle_data_count; 2726 } spa_load_error_t; 2727 2728 static void 2729 spa_load_verify_done(zio_t *zio) 2730 { 2731 blkptr_t *bp = zio->io_bp; 2732 spa_load_error_t *sle = zio->io_private; 2733 dmu_object_type_t type = BP_GET_TYPE(bp); 2734 int error = zio->io_error; 2735 spa_t *spa = zio->io_spa; 2736 2737 abd_free(zio->io_abd); 2738 if (error) { 2739 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2740 type != DMU_OT_INTENT_LOG) 2741 atomic_inc_64(&sle->sle_meta_count); 2742 else 2743 atomic_inc_64(&sle->sle_data_count); 2744 } 2745 2746 mutex_enter(&spa->spa_scrub_lock); 2747 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2748 cv_broadcast(&spa->spa_scrub_io_cv); 2749 mutex_exit(&spa->spa_scrub_lock); 2750 } 2751 2752 /* 2753 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2754 * By default, we set it to 1/16th of the arc. 2755 */ 2756 static uint_t spa_load_verify_shift = 4; 2757 static int spa_load_verify_metadata = B_TRUE; 2758 static int spa_load_verify_data = B_TRUE; 2759 2760 static int 2761 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2762 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2763 { 2764 zio_t *rio = arg; 2765 spa_load_error_t *sle = rio->io_private; 2766 2767 (void) zilog, (void) dnp; 2768 2769 /* 2770 * Note: normally this routine will not be called if 2771 * spa_load_verify_metadata is not set. However, it may be useful 2772 * to manually set the flag after the traversal has begun. 2773 */ 2774 if (!spa_load_verify_metadata) 2775 return (0); 2776 2777 /* 2778 * Sanity check the block pointer in order to detect obvious damage 2779 * before using the contents in subsequent checks or in zio_read(). 2780 * When damaged consider it to be a metadata error since we cannot 2781 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2782 */ 2783 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2784 atomic_inc_64(&sle->sle_meta_count); 2785 return (0); 2786 } 2787 2788 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2789 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2790 return (0); 2791 2792 if (!BP_IS_METADATA(bp) && 2793 (!spa_load_verify_data || !sle->sle_verify_data)) 2794 return (0); 2795 2796 uint64_t maxinflight_bytes = 2797 arc_target_bytes() >> spa_load_verify_shift; 2798 size_t size = BP_GET_PSIZE(bp); 2799 2800 mutex_enter(&spa->spa_scrub_lock); 2801 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2802 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2803 spa->spa_load_verify_bytes += size; 2804 mutex_exit(&spa->spa_scrub_lock); 2805 2806 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2807 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2808 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2809 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2810 return (0); 2811 } 2812 2813 static int 2814 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2815 { 2816 (void) dp, (void) arg; 2817 2818 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2819 return (SET_ERROR(ENAMETOOLONG)); 2820 2821 return (0); 2822 } 2823 2824 static int 2825 spa_load_verify(spa_t *spa) 2826 { 2827 zio_t *rio; 2828 spa_load_error_t sle = { 0 }; 2829 zpool_load_policy_t policy; 2830 boolean_t verify_ok = B_FALSE; 2831 int error = 0; 2832 2833 zpool_get_load_policy(spa->spa_config, &policy); 2834 2835 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2836 policy.zlp_maxmeta == UINT64_MAX) 2837 return (0); 2838 2839 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2840 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2841 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2842 DS_FIND_CHILDREN); 2843 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2844 if (error != 0) 2845 return (error); 2846 2847 /* 2848 * Verify data only if we are rewinding or error limit was set. 2849 * Otherwise nothing except dbgmsg care about it to waste time. 2850 */ 2851 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2852 (policy.zlp_maxdata < UINT64_MAX); 2853 2854 rio = zio_root(spa, NULL, &sle, 2855 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2856 2857 if (spa_load_verify_metadata) { 2858 if (spa->spa_extreme_rewind) { 2859 spa_load_note(spa, "performing a complete scan of the " 2860 "pool since extreme rewind is on. This may take " 2861 "a very long time.\n (spa_load_verify_data=%u, " 2862 "spa_load_verify_metadata=%u)", 2863 spa_load_verify_data, spa_load_verify_metadata); 2864 } 2865 2866 error = traverse_pool(spa, spa->spa_verify_min_txg, 2867 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2868 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2869 } 2870 2871 (void) zio_wait(rio); 2872 ASSERT0(spa->spa_load_verify_bytes); 2873 2874 spa->spa_load_meta_errors = sle.sle_meta_count; 2875 spa->spa_load_data_errors = sle.sle_data_count; 2876 2877 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2878 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2879 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2880 (u_longlong_t)sle.sle_data_count); 2881 } 2882 2883 if (spa_load_verify_dryrun || 2884 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2885 sle.sle_data_count <= policy.zlp_maxdata)) { 2886 int64_t loss = 0; 2887 2888 verify_ok = B_TRUE; 2889 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2890 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2891 2892 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2893 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2894 spa->spa_load_txg_ts); 2895 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2896 loss); 2897 fnvlist_add_uint64(spa->spa_load_info, 2898 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2899 fnvlist_add_uint64(spa->spa_load_info, 2900 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2901 } else { 2902 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2903 } 2904 2905 if (spa_load_verify_dryrun) 2906 return (0); 2907 2908 if (error) { 2909 if (error != ENXIO && error != EIO) 2910 error = SET_ERROR(EIO); 2911 return (error); 2912 } 2913 2914 return (verify_ok ? 0 : EIO); 2915 } 2916 2917 /* 2918 * Find a value in the pool props object. 2919 */ 2920 static void 2921 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2922 { 2923 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2924 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2925 } 2926 2927 /* 2928 * Find a value in the pool directory object. 2929 */ 2930 static int 2931 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2932 { 2933 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2934 name, sizeof (uint64_t), 1, val); 2935 2936 if (error != 0 && (error != ENOENT || log_enoent)) { 2937 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2938 "[error=%d]", name, error); 2939 } 2940 2941 return (error); 2942 } 2943 2944 static int 2945 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2946 { 2947 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2948 return (SET_ERROR(err)); 2949 } 2950 2951 boolean_t 2952 spa_livelist_delete_check(spa_t *spa) 2953 { 2954 return (spa->spa_livelists_to_delete != 0); 2955 } 2956 2957 static boolean_t 2958 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2959 { 2960 (void) z; 2961 spa_t *spa = arg; 2962 return (spa_livelist_delete_check(spa)); 2963 } 2964 2965 static int 2966 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2967 { 2968 spa_t *spa = arg; 2969 zio_free(spa, tx->tx_txg, bp); 2970 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2971 -bp_get_dsize_sync(spa, bp), 2972 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2973 return (0); 2974 } 2975 2976 static int 2977 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2978 { 2979 int err; 2980 zap_cursor_t zc; 2981 zap_attribute_t *za = zap_attribute_alloc(); 2982 zap_cursor_init(&zc, os, zap_obj); 2983 err = zap_cursor_retrieve(&zc, za); 2984 zap_cursor_fini(&zc); 2985 if (err == 0) 2986 *llp = za->za_first_integer; 2987 zap_attribute_free(za); 2988 return (err); 2989 } 2990 2991 /* 2992 * Components of livelist deletion that must be performed in syncing 2993 * context: freeing block pointers and updating the pool-wide data 2994 * structures to indicate how much work is left to do 2995 */ 2996 typedef struct sublist_delete_arg { 2997 spa_t *spa; 2998 dsl_deadlist_t *ll; 2999 uint64_t key; 3000 bplist_t *to_free; 3001 } sublist_delete_arg_t; 3002 3003 static void 3004 sublist_delete_sync(void *arg, dmu_tx_t *tx) 3005 { 3006 sublist_delete_arg_t *sda = arg; 3007 spa_t *spa = sda->spa; 3008 dsl_deadlist_t *ll = sda->ll; 3009 uint64_t key = sda->key; 3010 bplist_t *to_free = sda->to_free; 3011 3012 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 3013 dsl_deadlist_remove_entry(ll, key, tx); 3014 } 3015 3016 typedef struct livelist_delete_arg { 3017 spa_t *spa; 3018 uint64_t ll_obj; 3019 uint64_t zap_obj; 3020 } livelist_delete_arg_t; 3021 3022 static void 3023 livelist_delete_sync(void *arg, dmu_tx_t *tx) 3024 { 3025 livelist_delete_arg_t *lda = arg; 3026 spa_t *spa = lda->spa; 3027 uint64_t ll_obj = lda->ll_obj; 3028 uint64_t zap_obj = lda->zap_obj; 3029 objset_t *mos = spa->spa_meta_objset; 3030 uint64_t count; 3031 3032 /* free the livelist and decrement the feature count */ 3033 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 3034 dsl_deadlist_free(mos, ll_obj, tx); 3035 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 3036 VERIFY0(zap_count(mos, zap_obj, &count)); 3037 if (count == 0) { 3038 /* no more livelists to delete */ 3039 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 3040 DMU_POOL_DELETED_CLONES, tx)); 3041 VERIFY0(zap_destroy(mos, zap_obj, tx)); 3042 spa->spa_livelists_to_delete = 0; 3043 spa_notify_waiters(spa); 3044 } 3045 } 3046 3047 /* 3048 * Load in the value for the livelist to be removed and open it. Then, 3049 * load its first sublist and determine which block pointers should actually 3050 * be freed. Then, call a synctask which performs the actual frees and updates 3051 * the pool-wide livelist data. 3052 */ 3053 static void 3054 spa_livelist_delete_cb(void *arg, zthr_t *z) 3055 { 3056 spa_t *spa = arg; 3057 uint64_t ll_obj = 0, count; 3058 objset_t *mos = spa->spa_meta_objset; 3059 uint64_t zap_obj = spa->spa_livelists_to_delete; 3060 /* 3061 * Determine the next livelist to delete. This function should only 3062 * be called if there is at least one deleted clone. 3063 */ 3064 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 3065 VERIFY0(zap_count(mos, ll_obj, &count)); 3066 if (count > 0) { 3067 dsl_deadlist_t *ll; 3068 dsl_deadlist_entry_t *dle; 3069 bplist_t to_free; 3070 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 3071 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj)); 3072 dle = dsl_deadlist_first(ll); 3073 ASSERT3P(dle, !=, NULL); 3074 bplist_create(&to_free); 3075 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 3076 z, NULL); 3077 if (err == 0) { 3078 sublist_delete_arg_t sync_arg = { 3079 .spa = spa, 3080 .ll = ll, 3081 .key = dle->dle_mintxg, 3082 .to_free = &to_free 3083 }; 3084 zfs_dbgmsg("deleting sublist (id %llu) from" 3085 " livelist %llu, %lld remaining", 3086 (u_longlong_t)dle->dle_bpobj.bpo_object, 3087 (u_longlong_t)ll_obj, (longlong_t)count - 1); 3088 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 3089 sublist_delete_sync, &sync_arg, 0, 3090 ZFS_SPACE_CHECK_DESTROY)); 3091 } else { 3092 VERIFY3U(err, ==, EINTR); 3093 } 3094 bplist_clear(&to_free); 3095 bplist_destroy(&to_free); 3096 dsl_deadlist_close(ll); 3097 kmem_free(ll, sizeof (dsl_deadlist_t)); 3098 } else { 3099 livelist_delete_arg_t sync_arg = { 3100 .spa = spa, 3101 .ll_obj = ll_obj, 3102 .zap_obj = zap_obj 3103 }; 3104 zfs_dbgmsg("deletion of livelist %llu completed", 3105 (u_longlong_t)ll_obj); 3106 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 3107 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 3108 } 3109 } 3110 3111 static void 3112 spa_start_livelist_destroy_thread(spa_t *spa) 3113 { 3114 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 3115 spa->spa_livelist_delete_zthr = 3116 zthr_create("z_livelist_destroy", 3117 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 3118 minclsyspri); 3119 } 3120 3121 typedef struct livelist_new_arg { 3122 bplist_t *allocs; 3123 bplist_t *frees; 3124 } livelist_new_arg_t; 3125 3126 static int 3127 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3128 dmu_tx_t *tx) 3129 { 3130 ASSERT(tx == NULL); 3131 livelist_new_arg_t *lna = arg; 3132 if (bp_freed) { 3133 bplist_append(lna->frees, bp); 3134 } else { 3135 bplist_append(lna->allocs, bp); 3136 zfs_livelist_condense_new_alloc++; 3137 } 3138 return (0); 3139 } 3140 3141 typedef struct livelist_condense_arg { 3142 spa_t *spa; 3143 bplist_t to_keep; 3144 uint64_t first_size; 3145 uint64_t next_size; 3146 } livelist_condense_arg_t; 3147 3148 static void 3149 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 3150 { 3151 livelist_condense_arg_t *lca = arg; 3152 spa_t *spa = lca->spa; 3153 bplist_t new_frees; 3154 dsl_dataset_t *ds = spa->spa_to_condense.ds; 3155 3156 /* Have we been cancelled? */ 3157 if (spa->spa_to_condense.cancelled) { 3158 zfs_livelist_condense_sync_cancel++; 3159 goto out; 3160 } 3161 3162 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3163 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3164 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 3165 3166 /* 3167 * It's possible that the livelist was changed while the zthr was 3168 * running. Therefore, we need to check for new blkptrs in the two 3169 * entries being condensed and continue to track them in the livelist. 3170 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 3171 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 3172 * we need to sort them into two different bplists. 3173 */ 3174 uint64_t first_obj = first->dle_bpobj.bpo_object; 3175 uint64_t next_obj = next->dle_bpobj.bpo_object; 3176 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3177 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3178 3179 bplist_create(&new_frees); 3180 livelist_new_arg_t new_bps = { 3181 .allocs = &lca->to_keep, 3182 .frees = &new_frees, 3183 }; 3184 3185 if (cur_first_size > lca->first_size) { 3186 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 3187 livelist_track_new_cb, &new_bps, lca->first_size)); 3188 } 3189 if (cur_next_size > lca->next_size) { 3190 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 3191 livelist_track_new_cb, &new_bps, lca->next_size)); 3192 } 3193 3194 dsl_deadlist_clear_entry(first, ll, tx); 3195 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 3196 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 3197 3198 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 3199 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 3200 bplist_destroy(&new_frees); 3201 3202 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 3203 dsl_dataset_name(ds, dsname); 3204 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 3205 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 3206 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 3207 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 3208 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 3209 (u_longlong_t)cur_next_size, 3210 (u_longlong_t)first->dle_bpobj.bpo_object, 3211 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 3212 out: 3213 dmu_buf_rele(ds->ds_dbuf, spa); 3214 spa->spa_to_condense.ds = NULL; 3215 bplist_clear(&lca->to_keep); 3216 bplist_destroy(&lca->to_keep); 3217 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3218 spa->spa_to_condense.syncing = B_FALSE; 3219 } 3220 3221 static void 3222 spa_livelist_condense_cb(void *arg, zthr_t *t) 3223 { 3224 while (zfs_livelist_condense_zthr_pause && 3225 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3226 delay(1); 3227 3228 spa_t *spa = arg; 3229 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3230 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3231 uint64_t first_size, next_size; 3232 3233 livelist_condense_arg_t *lca = 3234 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 3235 bplist_create(&lca->to_keep); 3236 3237 /* 3238 * Process the livelists (matching FREEs and ALLOCs) in open context 3239 * so we have minimal work in syncing context to condense. 3240 * 3241 * We save bpobj sizes (first_size and next_size) to use later in 3242 * syncing context to determine if entries were added to these sublists 3243 * while in open context. This is possible because the clone is still 3244 * active and open for normal writes and we want to make sure the new, 3245 * unprocessed blockpointers are inserted into the livelist normally. 3246 * 3247 * Note that dsl_process_sub_livelist() both stores the size number of 3248 * blockpointers and iterates over them while the bpobj's lock held, so 3249 * the sizes returned to us are consistent which what was actually 3250 * processed. 3251 */ 3252 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 3253 &first_size); 3254 if (err == 0) 3255 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 3256 t, &next_size); 3257 3258 if (err == 0) { 3259 while (zfs_livelist_condense_sync_pause && 3260 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3261 delay(1); 3262 3263 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 3264 dmu_tx_mark_netfree(tx); 3265 dmu_tx_hold_space(tx, 1); 3266 err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE); 3267 if (err == 0) { 3268 /* 3269 * Prevent the condense zthr restarting before 3270 * the synctask completes. 3271 */ 3272 spa->spa_to_condense.syncing = B_TRUE; 3273 lca->spa = spa; 3274 lca->first_size = first_size; 3275 lca->next_size = next_size; 3276 dsl_sync_task_nowait(spa_get_dsl(spa), 3277 spa_livelist_condense_sync, lca, tx); 3278 dmu_tx_commit(tx); 3279 return; 3280 } 3281 } 3282 /* 3283 * Condensing can not continue: either it was externally stopped or 3284 * we were unable to assign to a tx because the pool has run out of 3285 * space. In the second case, we'll just end up trying to condense 3286 * again in a later txg. 3287 */ 3288 ASSERT(err != 0); 3289 bplist_clear(&lca->to_keep); 3290 bplist_destroy(&lca->to_keep); 3291 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3292 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 3293 spa->spa_to_condense.ds = NULL; 3294 if (err == EINTR) 3295 zfs_livelist_condense_zthr_cancel++; 3296 } 3297 3298 /* 3299 * Check that there is something to condense but that a condense is not 3300 * already in progress and that condensing has not been cancelled. 3301 */ 3302 static boolean_t 3303 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 3304 { 3305 (void) z; 3306 spa_t *spa = arg; 3307 if ((spa->spa_to_condense.ds != NULL) && 3308 (spa->spa_to_condense.syncing == B_FALSE) && 3309 (spa->spa_to_condense.cancelled == B_FALSE)) { 3310 return (B_TRUE); 3311 } 3312 return (B_FALSE); 3313 } 3314 3315 static void 3316 spa_start_livelist_condensing_thread(spa_t *spa) 3317 { 3318 spa->spa_to_condense.ds = NULL; 3319 spa->spa_to_condense.first = NULL; 3320 spa->spa_to_condense.next = NULL; 3321 spa->spa_to_condense.syncing = B_FALSE; 3322 spa->spa_to_condense.cancelled = B_FALSE; 3323 3324 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 3325 spa->spa_livelist_condense_zthr = 3326 zthr_create("z_livelist_condense", 3327 spa_livelist_condense_cb_check, 3328 spa_livelist_condense_cb, spa, minclsyspri); 3329 } 3330 3331 static void 3332 spa_spawn_aux_threads(spa_t *spa) 3333 { 3334 ASSERT(spa_writeable(spa)); 3335 3336 spa_start_raidz_expansion_thread(spa); 3337 spa_start_indirect_condensing_thread(spa); 3338 spa_start_livelist_destroy_thread(spa); 3339 spa_start_livelist_condensing_thread(spa); 3340 3341 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3342 spa->spa_checkpoint_discard_zthr = 3343 zthr_create("z_checkpoint_discard", 3344 spa_checkpoint_discard_thread_check, 3345 spa_checkpoint_discard_thread, spa, minclsyspri); 3346 } 3347 3348 /* 3349 * Fix up config after a partly-completed split. This is done with the 3350 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3351 * pool have that entry in their config, but only the splitting one contains 3352 * a list of all the guids of the vdevs that are being split off. 3353 * 3354 * This function determines what to do with that list: either rejoin 3355 * all the disks to the pool, or complete the splitting process. To attempt 3356 * the rejoin, each disk that is offlined is marked online again, and 3357 * we do a reopen() call. If the vdev label for every disk that was 3358 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3359 * then we call vdev_split() on each disk, and complete the split. 3360 * 3361 * Otherwise we leave the config alone, with all the vdevs in place in 3362 * the original pool. 3363 */ 3364 static void 3365 spa_try_repair(spa_t *spa, nvlist_t *config) 3366 { 3367 uint_t extracted; 3368 uint64_t *glist; 3369 uint_t i, gcount; 3370 nvlist_t *nvl; 3371 vdev_t **vd; 3372 boolean_t attempt_reopen; 3373 3374 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3375 return; 3376 3377 /* check that the config is complete */ 3378 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3379 &glist, &gcount) != 0) 3380 return; 3381 3382 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3383 3384 /* attempt to online all the vdevs & validate */ 3385 attempt_reopen = B_TRUE; 3386 for (i = 0; i < gcount; i++) { 3387 if (glist[i] == 0) /* vdev is hole */ 3388 continue; 3389 3390 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3391 if (vd[i] == NULL) { 3392 /* 3393 * Don't bother attempting to reopen the disks; 3394 * just do the split. 3395 */ 3396 attempt_reopen = B_FALSE; 3397 } else { 3398 /* attempt to re-online it */ 3399 vd[i]->vdev_offline = B_FALSE; 3400 } 3401 } 3402 3403 if (attempt_reopen) { 3404 vdev_reopen(spa->spa_root_vdev); 3405 3406 /* check each device to see what state it's in */ 3407 for (extracted = 0, i = 0; i < gcount; i++) { 3408 if (vd[i] != NULL && 3409 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3410 break; 3411 ++extracted; 3412 } 3413 } 3414 3415 /* 3416 * If every disk has been moved to the new pool, or if we never 3417 * even attempted to look at them, then we split them off for 3418 * good. 3419 */ 3420 if (!attempt_reopen || gcount == extracted) { 3421 for (i = 0; i < gcount; i++) 3422 if (vd[i] != NULL) 3423 vdev_split(vd[i]); 3424 vdev_reopen(spa->spa_root_vdev); 3425 } 3426 3427 kmem_free(vd, gcount * sizeof (vdev_t *)); 3428 } 3429 3430 static int 3431 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3432 { 3433 const char *ereport = FM_EREPORT_ZFS_POOL; 3434 int error; 3435 3436 spa->spa_load_state = state; 3437 (void) spa_import_progress_set_state(spa_guid(spa), 3438 spa_load_state(spa)); 3439 spa_import_progress_set_notes(spa, "spa_load()"); 3440 3441 gethrestime(&spa->spa_loaded_ts); 3442 error = spa_load_impl(spa, type, &ereport); 3443 3444 /* 3445 * Don't count references from objsets that are already closed 3446 * and are making their way through the eviction process. 3447 */ 3448 spa_evicting_os_wait(spa); 3449 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3450 if (error) { 3451 if (error != EEXIST) { 3452 spa->spa_loaded_ts.tv_sec = 0; 3453 spa->spa_loaded_ts.tv_nsec = 0; 3454 } 3455 if (error != EBADF) { 3456 (void) zfs_ereport_post(ereport, spa, 3457 NULL, NULL, NULL, 0); 3458 } 3459 } 3460 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3461 spa->spa_ena = 0; 3462 3463 (void) spa_import_progress_set_state(spa_guid(spa), 3464 spa_load_state(spa)); 3465 3466 return (error); 3467 } 3468 3469 #ifdef ZFS_DEBUG 3470 /* 3471 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3472 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3473 * spa's per-vdev ZAP list. 3474 */ 3475 static uint64_t 3476 vdev_count_verify_zaps(vdev_t *vd) 3477 { 3478 spa_t *spa = vd->vdev_spa; 3479 uint64_t total = 0; 3480 3481 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3482 vd->vdev_root_zap != 0) { 3483 total++; 3484 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3485 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3486 } 3487 if (vd->vdev_top_zap != 0) { 3488 total++; 3489 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3490 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3491 } 3492 if (vd->vdev_leaf_zap != 0) { 3493 total++; 3494 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3495 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3496 } 3497 3498 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3499 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3500 } 3501 3502 return (total); 3503 } 3504 #else 3505 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3506 #endif 3507 3508 /* 3509 * Determine whether the activity check is required. 3510 */ 3511 static boolean_t 3512 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3513 nvlist_t *config) 3514 { 3515 uint64_t state = 0; 3516 uint64_t hostid = 0; 3517 uint64_t tryconfig_txg = 0; 3518 uint64_t tryconfig_timestamp = 0; 3519 uint16_t tryconfig_mmp_seq = 0; 3520 nvlist_t *nvinfo; 3521 3522 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3523 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3524 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3525 &tryconfig_txg); 3526 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3527 &tryconfig_timestamp); 3528 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3529 &tryconfig_mmp_seq); 3530 } 3531 3532 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3533 3534 /* 3535 * Disable the MMP activity check - This is used by zdb which 3536 * is intended to be used on potentially active pools. 3537 */ 3538 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3539 return (B_FALSE); 3540 3541 /* 3542 * Skip the activity check when the MMP feature is disabled. 3543 */ 3544 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3545 return (B_FALSE); 3546 3547 /* 3548 * If the tryconfig_ values are nonzero, they are the results of an 3549 * earlier tryimport. If they all match the uberblock we just found, 3550 * then the pool has not changed and we return false so we do not test 3551 * a second time. 3552 */ 3553 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3554 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3555 tryconfig_mmp_seq && tryconfig_mmp_seq == 3556 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3557 return (B_FALSE); 3558 3559 /* 3560 * Allow the activity check to be skipped when importing the pool 3561 * on the same host which last imported it. Since the hostid from 3562 * configuration may be stale use the one read from the label. 3563 */ 3564 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3565 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3566 3567 if (hostid == spa_get_hostid(spa)) 3568 return (B_FALSE); 3569 3570 /* 3571 * Skip the activity test when the pool was cleanly exported. 3572 */ 3573 if (state != POOL_STATE_ACTIVE) 3574 return (B_FALSE); 3575 3576 return (B_TRUE); 3577 } 3578 3579 /* 3580 * Nanoseconds the activity check must watch for changes on-disk. 3581 */ 3582 static uint64_t 3583 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3584 { 3585 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3586 uint64_t multihost_interval = MSEC2NSEC( 3587 MMP_INTERVAL_OK(zfs_multihost_interval)); 3588 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3589 multihost_interval); 3590 3591 /* 3592 * Local tunables determine a minimum duration except for the case 3593 * where we know when the remote host will suspend the pool if MMP 3594 * writes do not land. 3595 * 3596 * See Big Theory comment at the top of mmp.c for the reasoning behind 3597 * these cases and times. 3598 */ 3599 3600 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3601 3602 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3603 MMP_FAIL_INT(ub) > 0) { 3604 3605 /* MMP on remote host will suspend pool after failed writes */ 3606 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3607 MMP_IMPORT_SAFETY_FACTOR / 100; 3608 3609 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3610 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3611 "import_intervals=%llu", (u_longlong_t)import_delay, 3612 (u_longlong_t)MMP_FAIL_INT(ub), 3613 (u_longlong_t)MMP_INTERVAL(ub), 3614 (u_longlong_t)import_intervals); 3615 3616 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3617 MMP_FAIL_INT(ub) == 0) { 3618 3619 /* MMP on remote host will never suspend pool */ 3620 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3621 ub->ub_mmp_delay) * import_intervals); 3622 3623 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3624 "mmp_interval=%llu ub_mmp_delay=%llu " 3625 "import_intervals=%llu", (u_longlong_t)import_delay, 3626 (u_longlong_t)MMP_INTERVAL(ub), 3627 (u_longlong_t)ub->ub_mmp_delay, 3628 (u_longlong_t)import_intervals); 3629 3630 } else if (MMP_VALID(ub)) { 3631 /* 3632 * zfs-0.7 compatibility case 3633 */ 3634 3635 import_delay = MAX(import_delay, (multihost_interval + 3636 ub->ub_mmp_delay) * import_intervals); 3637 3638 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3639 "import_intervals=%llu leaves=%u", 3640 (u_longlong_t)import_delay, 3641 (u_longlong_t)ub->ub_mmp_delay, 3642 (u_longlong_t)import_intervals, 3643 vdev_count_leaves(spa)); 3644 } else { 3645 /* Using local tunings is the only reasonable option */ 3646 zfs_dbgmsg("pool last imported on non-MMP aware " 3647 "host using import_delay=%llu multihost_interval=%llu " 3648 "import_intervals=%llu", (u_longlong_t)import_delay, 3649 (u_longlong_t)multihost_interval, 3650 (u_longlong_t)import_intervals); 3651 } 3652 3653 return (import_delay); 3654 } 3655 3656 /* 3657 * Remote host activity check. 3658 * 3659 * error results: 3660 * 0 - no activity detected 3661 * EREMOTEIO - remote activity detected 3662 * EINTR - user canceled the operation 3663 */ 3664 static int 3665 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config, 3666 boolean_t importing) 3667 { 3668 uint64_t txg = ub->ub_txg; 3669 uint64_t timestamp = ub->ub_timestamp; 3670 uint64_t mmp_config = ub->ub_mmp_config; 3671 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3672 uint64_t import_delay; 3673 hrtime_t import_expire, now; 3674 nvlist_t *mmp_label = NULL; 3675 vdev_t *rvd = spa->spa_root_vdev; 3676 kcondvar_t cv; 3677 kmutex_t mtx; 3678 int error = 0; 3679 3680 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3681 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3682 mutex_enter(&mtx); 3683 3684 /* 3685 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3686 * during the earlier tryimport. If the txg recorded there is 0 then 3687 * the pool is known to be active on another host. 3688 * 3689 * Otherwise, the pool might be in use on another host. Check for 3690 * changes in the uberblocks on disk if necessary. 3691 */ 3692 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3693 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3694 ZPOOL_CONFIG_LOAD_INFO); 3695 3696 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3697 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3698 vdev_uberblock_load(rvd, ub, &mmp_label); 3699 error = SET_ERROR(EREMOTEIO); 3700 goto out; 3701 } 3702 } 3703 3704 import_delay = spa_activity_check_duration(spa, ub); 3705 3706 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3707 import_delay += import_delay * random_in_range(250) / 1000; 3708 3709 import_expire = gethrtime() + import_delay; 3710 3711 if (importing) { 3712 spa_import_progress_set_notes(spa, "Checking MMP activity, " 3713 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3714 } 3715 3716 int iterations = 0; 3717 while ((now = gethrtime()) < import_expire) { 3718 if (importing && iterations++ % 30 == 0) { 3719 spa_import_progress_set_notes(spa, "Checking MMP " 3720 "activity, %llu ms remaining", 3721 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3722 } 3723 3724 if (importing) { 3725 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3726 NSEC2SEC(import_expire - gethrtime())); 3727 } 3728 3729 vdev_uberblock_load(rvd, ub, &mmp_label); 3730 3731 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3732 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3733 zfs_dbgmsg("multihost activity detected " 3734 "txg %llu ub_txg %llu " 3735 "timestamp %llu ub_timestamp %llu " 3736 "mmp_config %#llx ub_mmp_config %#llx", 3737 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3738 (u_longlong_t)timestamp, 3739 (u_longlong_t)ub->ub_timestamp, 3740 (u_longlong_t)mmp_config, 3741 (u_longlong_t)ub->ub_mmp_config); 3742 3743 error = SET_ERROR(EREMOTEIO); 3744 break; 3745 } 3746 3747 if (mmp_label) { 3748 nvlist_free(mmp_label); 3749 mmp_label = NULL; 3750 } 3751 3752 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3753 if (error != -1) { 3754 error = SET_ERROR(EINTR); 3755 break; 3756 } 3757 error = 0; 3758 } 3759 3760 out: 3761 mutex_exit(&mtx); 3762 mutex_destroy(&mtx); 3763 cv_destroy(&cv); 3764 3765 /* 3766 * If the pool is determined to be active store the status in the 3767 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3768 * available from configuration read from disk store them as well. 3769 * This allows 'zpool import' to generate a more useful message. 3770 * 3771 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3772 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3773 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3774 */ 3775 if (error == EREMOTEIO) { 3776 const char *hostname = "<unknown>"; 3777 uint64_t hostid = 0; 3778 3779 if (mmp_label) { 3780 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3781 hostname = fnvlist_lookup_string(mmp_label, 3782 ZPOOL_CONFIG_HOSTNAME); 3783 fnvlist_add_string(spa->spa_load_info, 3784 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3785 } 3786 3787 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3788 hostid = fnvlist_lookup_uint64(mmp_label, 3789 ZPOOL_CONFIG_HOSTID); 3790 fnvlist_add_uint64(spa->spa_load_info, 3791 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3792 } 3793 } 3794 3795 fnvlist_add_uint64(spa->spa_load_info, 3796 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3797 fnvlist_add_uint64(spa->spa_load_info, 3798 ZPOOL_CONFIG_MMP_TXG, 0); 3799 3800 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3801 } 3802 3803 if (mmp_label) 3804 nvlist_free(mmp_label); 3805 3806 return (error); 3807 } 3808 3809 /* 3810 * Called from zfs_ioc_clear for a pool that was suspended 3811 * after failing mmp write checks. 3812 */ 3813 boolean_t 3814 spa_mmp_remote_host_activity(spa_t *spa) 3815 { 3816 ASSERT(spa_multihost(spa) && spa_suspended(spa)); 3817 3818 nvlist_t *best_label; 3819 uberblock_t best_ub; 3820 3821 /* 3822 * Locate the best uberblock on disk 3823 */ 3824 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label); 3825 if (best_label) { 3826 /* 3827 * confirm that the best hostid matches our hostid 3828 */ 3829 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) && 3830 spa_get_hostid(spa) != 3831 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) { 3832 nvlist_free(best_label); 3833 return (B_TRUE); 3834 } 3835 nvlist_free(best_label); 3836 } else { 3837 return (B_TRUE); 3838 } 3839 3840 if (!MMP_VALID(&best_ub) || 3841 !MMP_FAIL_INT_VALID(&best_ub) || 3842 MMP_FAIL_INT(&best_ub) == 0) { 3843 return (B_TRUE); 3844 } 3845 3846 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg || 3847 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) { 3848 zfs_dbgmsg("txg mismatch detected during pool clear " 3849 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu", 3850 (u_longlong_t)spa->spa_uberblock.ub_txg, 3851 (u_longlong_t)best_ub.ub_txg, 3852 (u_longlong_t)spa->spa_uberblock.ub_timestamp, 3853 (u_longlong_t)best_ub.ub_timestamp); 3854 return (B_TRUE); 3855 } 3856 3857 /* 3858 * Perform an activity check looking for any remote writer 3859 */ 3860 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config, 3861 B_FALSE) != 0); 3862 } 3863 3864 static int 3865 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3866 { 3867 uint64_t hostid; 3868 const char *hostname; 3869 uint64_t myhostid = 0; 3870 3871 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3872 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3873 hostname = fnvlist_lookup_string(mos_config, 3874 ZPOOL_CONFIG_HOSTNAME); 3875 3876 myhostid = zone_get_hostid(NULL); 3877 3878 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3879 cmn_err(CE_WARN, "pool '%s' could not be " 3880 "loaded as it was last accessed by " 3881 "another system (host: %s hostid: 0x%llx). " 3882 "See: https://openzfs.github.io/openzfs-docs/msg/" 3883 "ZFS-8000-EY", 3884 spa_name(spa), hostname, (u_longlong_t)hostid); 3885 spa_load_failed(spa, "hostid verification failed: pool " 3886 "last accessed by host: %s (hostid: 0x%llx)", 3887 hostname, (u_longlong_t)hostid); 3888 return (SET_ERROR(EBADF)); 3889 } 3890 } 3891 3892 return (0); 3893 } 3894 3895 static int 3896 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3897 { 3898 int error = 0; 3899 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3900 int parse; 3901 vdev_t *rvd; 3902 uint64_t pool_guid; 3903 const char *comment; 3904 const char *compatibility; 3905 3906 /* 3907 * Versioning wasn't explicitly added to the label until later, so if 3908 * it's not present treat it as the initial version. 3909 */ 3910 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3911 &spa->spa_ubsync.ub_version) != 0) 3912 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3913 3914 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3915 spa_load_failed(spa, "invalid config provided: '%s' missing", 3916 ZPOOL_CONFIG_POOL_GUID); 3917 return (SET_ERROR(EINVAL)); 3918 } 3919 3920 /* 3921 * If we are doing an import, ensure that the pool is not already 3922 * imported by checking if its pool guid already exists in the 3923 * spa namespace. 3924 * 3925 * The only case that we allow an already imported pool to be 3926 * imported again, is when the pool is checkpointed and we want to 3927 * look at its checkpointed state from userland tools like zdb. 3928 */ 3929 #ifdef _KERNEL 3930 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3931 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3932 spa_guid_exists(pool_guid, 0)) { 3933 #else 3934 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3935 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3936 spa_guid_exists(pool_guid, 0) && 3937 !spa_importing_readonly_checkpoint(spa)) { 3938 #endif 3939 spa_load_failed(spa, "a pool with guid %llu is already open", 3940 (u_longlong_t)pool_guid); 3941 return (SET_ERROR(EEXIST)); 3942 } 3943 3944 spa->spa_config_guid = pool_guid; 3945 3946 nvlist_free(spa->spa_load_info); 3947 spa->spa_load_info = fnvlist_alloc(); 3948 3949 ASSERT(spa->spa_comment == NULL); 3950 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3951 spa->spa_comment = spa_strdup(comment); 3952 3953 ASSERT(spa->spa_compatibility == NULL); 3954 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3955 &compatibility) == 0) 3956 spa->spa_compatibility = spa_strdup(compatibility); 3957 3958 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3959 &spa->spa_config_txg); 3960 3961 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3962 spa->spa_config_splitting = fnvlist_dup(nvl); 3963 3964 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3965 spa_load_failed(spa, "invalid config provided: '%s' missing", 3966 ZPOOL_CONFIG_VDEV_TREE); 3967 return (SET_ERROR(EINVAL)); 3968 } 3969 3970 /* 3971 * Create "The Godfather" zio to hold all async IOs 3972 */ 3973 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3974 KM_SLEEP); 3975 for (int i = 0; i < max_ncpus; i++) { 3976 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3977 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3978 ZIO_FLAG_GODFATHER); 3979 } 3980 3981 /* 3982 * Parse the configuration into a vdev tree. We explicitly set the 3983 * value that will be returned by spa_version() since parsing the 3984 * configuration requires knowing the version number. 3985 */ 3986 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3987 parse = (type == SPA_IMPORT_EXISTING ? 3988 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3989 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3990 spa_config_exit(spa, SCL_ALL, FTAG); 3991 3992 if (error != 0) { 3993 spa_load_failed(spa, "unable to parse config [error=%d]", 3994 error); 3995 return (error); 3996 } 3997 3998 ASSERT(spa->spa_root_vdev == rvd); 3999 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 4000 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 4001 4002 if (type != SPA_IMPORT_ASSEMBLE) { 4003 ASSERT(spa_guid(spa) == pool_guid); 4004 } 4005 4006 return (0); 4007 } 4008 4009 /* 4010 * Recursively open all vdevs in the vdev tree. This function is called twice: 4011 * first with the untrusted config, then with the trusted config. 4012 */ 4013 static int 4014 spa_ld_open_vdevs(spa_t *spa) 4015 { 4016 int error = 0; 4017 4018 /* 4019 * spa_missing_tvds_allowed defines how many top-level vdevs can be 4020 * missing/unopenable for the root vdev to be still considered openable. 4021 */ 4022 if (spa->spa_trust_config) { 4023 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 4024 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 4025 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 4026 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 4027 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 4028 } else { 4029 spa->spa_missing_tvds_allowed = 0; 4030 } 4031 4032 spa->spa_missing_tvds_allowed = 4033 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 4034 4035 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4036 error = vdev_open(spa->spa_root_vdev); 4037 spa_config_exit(spa, SCL_ALL, FTAG); 4038 4039 if (spa->spa_missing_tvds != 0) { 4040 spa_load_note(spa, "vdev tree has %lld missing top-level " 4041 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 4042 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 4043 /* 4044 * Although theoretically we could allow users to open 4045 * incomplete pools in RW mode, we'd need to add a lot 4046 * of extra logic (e.g. adjust pool space to account 4047 * for missing vdevs). 4048 * This limitation also prevents users from accidentally 4049 * opening the pool in RW mode during data recovery and 4050 * damaging it further. 4051 */ 4052 spa_load_note(spa, "pools with missing top-level " 4053 "vdevs can only be opened in read-only mode."); 4054 error = SET_ERROR(ENXIO); 4055 } else { 4056 spa_load_note(spa, "current settings allow for maximum " 4057 "%lld missing top-level vdevs at this stage.", 4058 (u_longlong_t)spa->spa_missing_tvds_allowed); 4059 } 4060 } 4061 if (error != 0) { 4062 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 4063 error); 4064 } 4065 if (spa->spa_missing_tvds != 0 || error != 0) 4066 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 4067 4068 return (error); 4069 } 4070 4071 /* 4072 * We need to validate the vdev labels against the configuration that 4073 * we have in hand. This function is called twice: first with an untrusted 4074 * config, then with a trusted config. The validation is more strict when the 4075 * config is trusted. 4076 */ 4077 static int 4078 spa_ld_validate_vdevs(spa_t *spa) 4079 { 4080 int error = 0; 4081 vdev_t *rvd = spa->spa_root_vdev; 4082 4083 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4084 error = vdev_validate(rvd); 4085 spa_config_exit(spa, SCL_ALL, FTAG); 4086 4087 if (error != 0) { 4088 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 4089 return (error); 4090 } 4091 4092 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 4093 spa_load_failed(spa, "cannot open vdev tree after invalidating " 4094 "some vdevs"); 4095 vdev_dbgmsg_print_tree(rvd, 2); 4096 return (SET_ERROR(ENXIO)); 4097 } 4098 4099 return (0); 4100 } 4101 4102 static void 4103 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 4104 { 4105 spa->spa_state = POOL_STATE_ACTIVE; 4106 spa->spa_ubsync = spa->spa_uberblock; 4107 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 4108 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 4109 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 4110 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 4111 spa->spa_claim_max_txg = spa->spa_first_txg; 4112 spa->spa_prev_software_version = ub->ub_software_version; 4113 } 4114 4115 static int 4116 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 4117 { 4118 vdev_t *rvd = spa->spa_root_vdev; 4119 nvlist_t *label; 4120 uberblock_t *ub = &spa->spa_uberblock; 4121 boolean_t activity_check = B_FALSE; 4122 4123 /* 4124 * If we are opening the checkpointed state of the pool by 4125 * rewinding to it, at this point we will have written the 4126 * checkpointed uberblock to the vdev labels, so searching 4127 * the labels will find the right uberblock. However, if 4128 * we are opening the checkpointed state read-only, we have 4129 * not modified the labels. Therefore, we must ignore the 4130 * labels and continue using the spa_uberblock that was set 4131 * by spa_ld_checkpoint_rewind. 4132 * 4133 * Note that it would be fine to ignore the labels when 4134 * rewinding (opening writeable) as well. However, if we 4135 * crash just after writing the labels, we will end up 4136 * searching the labels. Doing so in the common case means 4137 * that this code path gets exercised normally, rather than 4138 * just in the edge case. 4139 */ 4140 if (ub->ub_checkpoint_txg != 0 && 4141 spa_importing_readonly_checkpoint(spa)) { 4142 spa_ld_select_uberblock_done(spa, ub); 4143 return (0); 4144 } 4145 4146 /* 4147 * Find the best uberblock. 4148 */ 4149 vdev_uberblock_load(rvd, ub, &label); 4150 4151 /* 4152 * If we weren't able to find a single valid uberblock, return failure. 4153 */ 4154 if (ub->ub_txg == 0) { 4155 nvlist_free(label); 4156 spa_load_failed(spa, "no valid uberblock found"); 4157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 4158 } 4159 4160 if (spa->spa_load_max_txg != UINT64_MAX) { 4161 (void) spa_import_progress_set_max_txg(spa_guid(spa), 4162 (u_longlong_t)spa->spa_load_max_txg); 4163 } 4164 spa_load_note(spa, "using uberblock with txg=%llu", 4165 (u_longlong_t)ub->ub_txg); 4166 if (ub->ub_raidz_reflow_info != 0) { 4167 spa_load_note(spa, "uberblock raidz_reflow_info: " 4168 "state=%u offset=%llu", 4169 (int)RRSS_GET_STATE(ub), 4170 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4171 } 4172 4173 4174 /* 4175 * For pools which have the multihost property on determine if the 4176 * pool is truly inactive and can be safely imported. Prevent 4177 * hosts which don't have a hostid set from importing the pool. 4178 */ 4179 activity_check = spa_activity_check_required(spa, ub, label, 4180 spa->spa_config); 4181 if (activity_check) { 4182 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 4183 spa_get_hostid(spa) == 0) { 4184 nvlist_free(label); 4185 fnvlist_add_uint64(spa->spa_load_info, 4186 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4187 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4188 } 4189 4190 int error = 4191 spa_activity_check(spa, ub, spa->spa_config, B_TRUE); 4192 if (error) { 4193 nvlist_free(label); 4194 return (error); 4195 } 4196 4197 fnvlist_add_uint64(spa->spa_load_info, 4198 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 4199 fnvlist_add_uint64(spa->spa_load_info, 4200 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 4201 fnvlist_add_uint16(spa->spa_load_info, 4202 ZPOOL_CONFIG_MMP_SEQ, 4203 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 4204 } 4205 4206 /* 4207 * If the pool has an unsupported version we can't open it. 4208 */ 4209 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 4210 nvlist_free(label); 4211 spa_load_failed(spa, "version %llu is not supported", 4212 (u_longlong_t)ub->ub_version); 4213 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 4214 } 4215 4216 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4217 nvlist_t *features; 4218 4219 /* 4220 * If we weren't able to find what's necessary for reading the 4221 * MOS in the label, return failure. 4222 */ 4223 if (label == NULL) { 4224 spa_load_failed(spa, "label config unavailable"); 4225 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4226 ENXIO)); 4227 } 4228 4229 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 4230 &features) != 0) { 4231 nvlist_free(label); 4232 spa_load_failed(spa, "invalid label: '%s' missing", 4233 ZPOOL_CONFIG_FEATURES_FOR_READ); 4234 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4235 ENXIO)); 4236 } 4237 4238 /* 4239 * Update our in-core representation with the definitive values 4240 * from the label. 4241 */ 4242 nvlist_free(spa->spa_label_features); 4243 spa->spa_label_features = fnvlist_dup(features); 4244 } 4245 4246 nvlist_free(label); 4247 4248 /* 4249 * Look through entries in the label nvlist's features_for_read. If 4250 * there is a feature listed there which we don't understand then we 4251 * cannot open a pool. 4252 */ 4253 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4254 nvlist_t *unsup_feat; 4255 4256 unsup_feat = fnvlist_alloc(); 4257 4258 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 4259 NULL); nvp != NULL; 4260 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 4261 if (!zfeature_is_supported(nvpair_name(nvp))) { 4262 fnvlist_add_string(unsup_feat, 4263 nvpair_name(nvp), ""); 4264 } 4265 } 4266 4267 if (!nvlist_empty(unsup_feat)) { 4268 fnvlist_add_nvlist(spa->spa_load_info, 4269 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4270 nvlist_free(unsup_feat); 4271 spa_load_failed(spa, "some features are unsupported"); 4272 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4273 ENOTSUP)); 4274 } 4275 4276 nvlist_free(unsup_feat); 4277 } 4278 4279 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 4280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4281 spa_try_repair(spa, spa->spa_config); 4282 spa_config_exit(spa, SCL_ALL, FTAG); 4283 nvlist_free(spa->spa_config_splitting); 4284 spa->spa_config_splitting = NULL; 4285 } 4286 4287 /* 4288 * Initialize internal SPA structures. 4289 */ 4290 spa_ld_select_uberblock_done(spa, ub); 4291 4292 return (0); 4293 } 4294 4295 static int 4296 spa_ld_open_rootbp(spa_t *spa) 4297 { 4298 int error = 0; 4299 vdev_t *rvd = spa->spa_root_vdev; 4300 4301 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 4302 if (error != 0) { 4303 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 4304 "[error=%d]", error); 4305 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4306 } 4307 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 4308 4309 return (0); 4310 } 4311 4312 static int 4313 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 4314 boolean_t reloading) 4315 { 4316 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 4317 nvlist_t *nv, *mos_config, *policy; 4318 int error = 0, copy_error; 4319 uint64_t healthy_tvds, healthy_tvds_mos; 4320 uint64_t mos_config_txg; 4321 4322 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 4323 != 0) 4324 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4325 4326 /* 4327 * If we're assembling a pool from a split, the config provided is 4328 * already trusted so there is nothing to do. 4329 */ 4330 if (type == SPA_IMPORT_ASSEMBLE) 4331 return (0); 4332 4333 healthy_tvds = spa_healthy_core_tvds(spa); 4334 4335 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 4336 != 0) { 4337 spa_load_failed(spa, "unable to retrieve MOS config"); 4338 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4339 } 4340 4341 /* 4342 * If we are doing an open, pool owner wasn't verified yet, thus do 4343 * the verification here. 4344 */ 4345 if (spa->spa_load_state == SPA_LOAD_OPEN) { 4346 error = spa_verify_host(spa, mos_config); 4347 if (error != 0) { 4348 nvlist_free(mos_config); 4349 return (error); 4350 } 4351 } 4352 4353 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 4354 4355 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4356 4357 /* 4358 * Build a new vdev tree from the trusted config 4359 */ 4360 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 4361 if (error != 0) { 4362 nvlist_free(mos_config); 4363 spa_config_exit(spa, SCL_ALL, FTAG); 4364 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 4365 error); 4366 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4367 } 4368 4369 /* 4370 * Vdev paths in the MOS may be obsolete. If the untrusted config was 4371 * obtained by scanning /dev/dsk, then it will have the right vdev 4372 * paths. We update the trusted MOS config with this information. 4373 * We first try to copy the paths with vdev_copy_path_strict, which 4374 * succeeds only when both configs have exactly the same vdev tree. 4375 * If that fails, we fall back to a more flexible method that has a 4376 * best effort policy. 4377 */ 4378 copy_error = vdev_copy_path_strict(rvd, mrvd); 4379 if (copy_error != 0 || spa_load_print_vdev_tree) { 4380 spa_load_note(spa, "provided vdev tree:"); 4381 vdev_dbgmsg_print_tree(rvd, 2); 4382 spa_load_note(spa, "MOS vdev tree:"); 4383 vdev_dbgmsg_print_tree(mrvd, 2); 4384 } 4385 if (copy_error != 0) { 4386 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 4387 "back to vdev_copy_path_relaxed"); 4388 vdev_copy_path_relaxed(rvd, mrvd); 4389 } 4390 4391 vdev_close(rvd); 4392 vdev_free(rvd); 4393 spa->spa_root_vdev = mrvd; 4394 rvd = mrvd; 4395 spa_config_exit(spa, SCL_ALL, FTAG); 4396 4397 /* 4398 * If 'zpool import' used a cached config, then the on-disk hostid and 4399 * hostname may be different to the cached config in ways that should 4400 * prevent import. Userspace can't discover this without a scan, but 4401 * we know, so we add these values to LOAD_INFO so the caller can know 4402 * the difference. 4403 * 4404 * Note that we have to do this before the config is regenerated, 4405 * because the new config will have the hostid and hostname for this 4406 * host, in readiness for import. 4407 */ 4408 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4409 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4410 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4411 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4412 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4413 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4414 4415 /* 4416 * We will use spa_config if we decide to reload the spa or if spa_load 4417 * fails and we rewind. We must thus regenerate the config using the 4418 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4419 * pass settings on how to load the pool and is not stored in the MOS. 4420 * We copy it over to our new, trusted config. 4421 */ 4422 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4423 ZPOOL_CONFIG_POOL_TXG); 4424 nvlist_free(mos_config); 4425 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4426 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4427 &policy) == 0) 4428 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4429 spa_config_set(spa, mos_config); 4430 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4431 4432 /* 4433 * Now that we got the config from the MOS, we should be more strict 4434 * in checking blkptrs and can make assumptions about the consistency 4435 * of the vdev tree. spa_trust_config must be set to true before opening 4436 * vdevs in order for them to be writeable. 4437 */ 4438 spa->spa_trust_config = B_TRUE; 4439 4440 /* 4441 * Open and validate the new vdev tree 4442 */ 4443 error = spa_ld_open_vdevs(spa); 4444 if (error != 0) 4445 return (error); 4446 4447 error = spa_ld_validate_vdevs(spa); 4448 if (error != 0) 4449 return (error); 4450 4451 if (copy_error != 0 || spa_load_print_vdev_tree) { 4452 spa_load_note(spa, "final vdev tree:"); 4453 vdev_dbgmsg_print_tree(rvd, 2); 4454 } 4455 4456 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4457 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4458 /* 4459 * Sanity check to make sure that we are indeed loading the 4460 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4461 * in the config provided and they happened to be the only ones 4462 * to have the latest uberblock, we could involuntarily perform 4463 * an extreme rewind. 4464 */ 4465 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4466 if (healthy_tvds_mos - healthy_tvds >= 4467 SPA_SYNC_MIN_VDEVS) { 4468 spa_load_note(spa, "config provided misses too many " 4469 "top-level vdevs compared to MOS (%lld vs %lld). ", 4470 (u_longlong_t)healthy_tvds, 4471 (u_longlong_t)healthy_tvds_mos); 4472 spa_load_note(spa, "vdev tree:"); 4473 vdev_dbgmsg_print_tree(rvd, 2); 4474 if (reloading) { 4475 spa_load_failed(spa, "config was already " 4476 "provided from MOS. Aborting."); 4477 return (spa_vdev_err(rvd, 4478 VDEV_AUX_CORRUPT_DATA, EIO)); 4479 } 4480 spa_load_note(spa, "spa must be reloaded using MOS " 4481 "config"); 4482 return (SET_ERROR(EAGAIN)); 4483 } 4484 } 4485 4486 error = spa_check_for_missing_logs(spa); 4487 if (error != 0) 4488 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4489 4490 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4491 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4492 "guid sum (%llu != %llu)", 4493 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4494 (u_longlong_t)rvd->vdev_guid_sum); 4495 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4496 ENXIO)); 4497 } 4498 4499 return (0); 4500 } 4501 4502 static int 4503 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4504 { 4505 int error = 0; 4506 vdev_t *rvd = spa->spa_root_vdev; 4507 4508 /* 4509 * Everything that we read before spa_remove_init() must be stored 4510 * on concreted vdevs. Therefore we do this as early as possible. 4511 */ 4512 error = spa_remove_init(spa); 4513 if (error != 0) { 4514 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4515 error); 4516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4517 } 4518 4519 /* 4520 * Retrieve information needed to condense indirect vdev mappings. 4521 */ 4522 error = spa_condense_init(spa); 4523 if (error != 0) { 4524 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4525 error); 4526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4527 } 4528 4529 return (0); 4530 } 4531 4532 static int 4533 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4534 { 4535 int error = 0; 4536 vdev_t *rvd = spa->spa_root_vdev; 4537 4538 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4539 boolean_t missing_feat_read = B_FALSE; 4540 nvlist_t *unsup_feat, *enabled_feat; 4541 4542 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4543 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4545 } 4546 4547 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4548 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4549 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4550 } 4551 4552 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4553 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4554 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4555 } 4556 4557 enabled_feat = fnvlist_alloc(); 4558 unsup_feat = fnvlist_alloc(); 4559 4560 if (!spa_features_check(spa, B_FALSE, 4561 unsup_feat, enabled_feat)) 4562 missing_feat_read = B_TRUE; 4563 4564 if (spa_writeable(spa) || 4565 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4566 if (!spa_features_check(spa, B_TRUE, 4567 unsup_feat, enabled_feat)) { 4568 *missing_feat_writep = B_TRUE; 4569 } 4570 } 4571 4572 fnvlist_add_nvlist(spa->spa_load_info, 4573 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4574 4575 if (!nvlist_empty(unsup_feat)) { 4576 fnvlist_add_nvlist(spa->spa_load_info, 4577 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4578 } 4579 4580 fnvlist_free(enabled_feat); 4581 fnvlist_free(unsup_feat); 4582 4583 if (!missing_feat_read) { 4584 fnvlist_add_boolean(spa->spa_load_info, 4585 ZPOOL_CONFIG_CAN_RDONLY); 4586 } 4587 4588 /* 4589 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4590 * twofold: to determine whether the pool is available for 4591 * import in read-write mode and (if it is not) whether the 4592 * pool is available for import in read-only mode. If the pool 4593 * is available for import in read-write mode, it is displayed 4594 * as available in userland; if it is not available for import 4595 * in read-only mode, it is displayed as unavailable in 4596 * userland. If the pool is available for import in read-only 4597 * mode but not read-write mode, it is displayed as unavailable 4598 * in userland with a special note that the pool is actually 4599 * available for open in read-only mode. 4600 * 4601 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4602 * missing a feature for write, we must first determine whether 4603 * the pool can be opened read-only before returning to 4604 * userland in order to know whether to display the 4605 * abovementioned note. 4606 */ 4607 if (missing_feat_read || (*missing_feat_writep && 4608 spa_writeable(spa))) { 4609 spa_load_failed(spa, "pool uses unsupported features"); 4610 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4611 ENOTSUP)); 4612 } 4613 4614 /* 4615 * Load refcounts for ZFS features from disk into an in-memory 4616 * cache during SPA initialization. 4617 */ 4618 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4619 uint64_t refcount; 4620 4621 error = feature_get_refcount_from_disk(spa, 4622 &spa_feature_table[i], &refcount); 4623 if (error == 0) { 4624 spa->spa_feat_refcount_cache[i] = refcount; 4625 } else if (error == ENOTSUP) { 4626 spa->spa_feat_refcount_cache[i] = 4627 SPA_FEATURE_DISABLED; 4628 } else { 4629 spa_load_failed(spa, "error getting refcount " 4630 "for feature %s [error=%d]", 4631 spa_feature_table[i].fi_guid, error); 4632 return (spa_vdev_err(rvd, 4633 VDEV_AUX_CORRUPT_DATA, EIO)); 4634 } 4635 } 4636 } 4637 4638 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4639 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4640 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4641 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4642 } 4643 4644 /* 4645 * Encryption was added before bookmark_v2, even though bookmark_v2 4646 * is now a dependency. If this pool has encryption enabled without 4647 * bookmark_v2, trigger an errata message. 4648 */ 4649 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4650 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4651 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4652 } 4653 4654 return (0); 4655 } 4656 4657 static int 4658 spa_ld_load_special_directories(spa_t *spa) 4659 { 4660 int error = 0; 4661 vdev_t *rvd = spa->spa_root_vdev; 4662 4663 spa->spa_is_initializing = B_TRUE; 4664 error = dsl_pool_open(spa->spa_dsl_pool); 4665 spa->spa_is_initializing = B_FALSE; 4666 if (error != 0) { 4667 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4668 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4669 } 4670 4671 return (0); 4672 } 4673 4674 static int 4675 spa_ld_get_props(spa_t *spa) 4676 { 4677 int error = 0; 4678 uint64_t obj; 4679 vdev_t *rvd = spa->spa_root_vdev; 4680 4681 /* Grab the checksum salt from the MOS. */ 4682 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4683 DMU_POOL_CHECKSUM_SALT, 1, 4684 sizeof (spa->spa_cksum_salt.zcs_bytes), 4685 spa->spa_cksum_salt.zcs_bytes); 4686 if (error == ENOENT) { 4687 /* Generate a new salt for subsequent use */ 4688 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4689 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4690 } else if (error != 0) { 4691 spa_load_failed(spa, "unable to retrieve checksum salt from " 4692 "MOS [error=%d]", error); 4693 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4694 } 4695 4696 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4697 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4698 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4699 if (error != 0) { 4700 spa_load_failed(spa, "error opening deferred-frees bpobj " 4701 "[error=%d]", error); 4702 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4703 } 4704 4705 /* 4706 * Load the bit that tells us to use the new accounting function 4707 * (raid-z deflation). If we have an older pool, this will not 4708 * be present. 4709 */ 4710 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4711 if (error != 0 && error != ENOENT) 4712 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4713 4714 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4715 &spa->spa_creation_version, B_FALSE); 4716 if (error != 0 && error != ENOENT) 4717 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4718 4719 /* 4720 * Load the persistent error log. If we have an older pool, this will 4721 * not be present. 4722 */ 4723 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4724 B_FALSE); 4725 if (error != 0 && error != ENOENT) 4726 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4727 4728 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4729 &spa->spa_errlog_scrub, B_FALSE); 4730 if (error != 0 && error != ENOENT) 4731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4732 4733 /* Load the last scrubbed txg. */ 4734 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG, 4735 &spa->spa_scrubbed_last_txg, B_FALSE); 4736 if (error != 0 && error != ENOENT) 4737 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4738 4739 /* 4740 * Load the livelist deletion field. If a livelist is queued for 4741 * deletion, indicate that in the spa 4742 */ 4743 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4744 &spa->spa_livelists_to_delete, B_FALSE); 4745 if (error != 0 && error != ENOENT) 4746 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4747 4748 /* 4749 * Load the history object. If we have an older pool, this 4750 * will not be present. 4751 */ 4752 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4753 if (error != 0 && error != ENOENT) 4754 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4755 4756 /* 4757 * Load the per-vdev ZAP map. If we have an older pool, this will not 4758 * be present; in this case, defer its creation to a later time to 4759 * avoid dirtying the MOS this early / out of sync context. See 4760 * spa_sync_config_object. 4761 */ 4762 4763 /* The sentinel is only available in the MOS config. */ 4764 nvlist_t *mos_config; 4765 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4766 spa_load_failed(spa, "unable to retrieve MOS config"); 4767 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4768 } 4769 4770 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4771 &spa->spa_all_vdev_zaps, B_FALSE); 4772 4773 if (error == ENOENT) { 4774 VERIFY(!nvlist_exists(mos_config, 4775 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4776 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4777 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4778 } else if (error != 0) { 4779 nvlist_free(mos_config); 4780 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4781 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4782 /* 4783 * An older version of ZFS overwrote the sentinel value, so 4784 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4785 * destruction to later; see spa_sync_config_object. 4786 */ 4787 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4788 /* 4789 * We're assuming that no vdevs have had their ZAPs created 4790 * before this. Better be sure of it. 4791 */ 4792 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4793 } 4794 nvlist_free(mos_config); 4795 4796 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4797 4798 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4799 B_FALSE); 4800 if (error && error != ENOENT) 4801 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4802 4803 if (error == 0) { 4804 uint64_t autoreplace = 0; 4805 4806 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4807 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4808 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4809 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4810 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4811 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA, 4812 &spa->spa_dedup_table_quota); 4813 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4814 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4815 spa->spa_autoreplace = (autoreplace != 0); 4816 } 4817 4818 /* 4819 * If we are importing a pool with missing top-level vdevs, 4820 * we enforce that the pool doesn't panic or get suspended on 4821 * error since the likelihood of missing data is extremely high. 4822 */ 4823 if (spa->spa_missing_tvds > 0 && 4824 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4825 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4826 spa_load_note(spa, "forcing failmode to 'continue' " 4827 "as some top level vdevs are missing"); 4828 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4829 } 4830 4831 return (0); 4832 } 4833 4834 static int 4835 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4836 { 4837 int error = 0; 4838 vdev_t *rvd = spa->spa_root_vdev; 4839 4840 /* 4841 * If we're assembling the pool from the split-off vdevs of 4842 * an existing pool, we don't want to attach the spares & cache 4843 * devices. 4844 */ 4845 4846 /* 4847 * Load any hot spares for this pool. 4848 */ 4849 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4850 B_FALSE); 4851 if (error != 0 && error != ENOENT) 4852 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4853 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4854 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4855 if (load_nvlist(spa, spa->spa_spares.sav_object, 4856 &spa->spa_spares.sav_config) != 0) { 4857 spa_load_failed(spa, "error loading spares nvlist"); 4858 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4859 } 4860 4861 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4862 spa_load_spares(spa); 4863 spa_config_exit(spa, SCL_ALL, FTAG); 4864 } else if (error == 0) { 4865 spa->spa_spares.sav_sync = B_TRUE; 4866 } 4867 4868 /* 4869 * Load any level 2 ARC devices for this pool. 4870 */ 4871 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4872 &spa->spa_l2cache.sav_object, B_FALSE); 4873 if (error != 0 && error != ENOENT) 4874 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4875 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4876 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4877 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4878 &spa->spa_l2cache.sav_config) != 0) { 4879 spa_load_failed(spa, "error loading l2cache nvlist"); 4880 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4881 } 4882 4883 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4884 spa_load_l2cache(spa); 4885 spa_config_exit(spa, SCL_ALL, FTAG); 4886 } else if (error == 0) { 4887 spa->spa_l2cache.sav_sync = B_TRUE; 4888 } 4889 4890 return (0); 4891 } 4892 4893 static int 4894 spa_ld_load_vdev_metadata(spa_t *spa) 4895 { 4896 int error = 0; 4897 vdev_t *rvd = spa->spa_root_vdev; 4898 4899 /* 4900 * If the 'multihost' property is set, then never allow a pool to 4901 * be imported when the system hostid is zero. The exception to 4902 * this rule is zdb which is always allowed to access pools. 4903 */ 4904 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4905 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4906 fnvlist_add_uint64(spa->spa_load_info, 4907 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4908 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4909 } 4910 4911 /* 4912 * If the 'autoreplace' property is set, then post a resource notifying 4913 * the ZFS DE that it should not issue any faults for unopenable 4914 * devices. We also iterate over the vdevs, and post a sysevent for any 4915 * unopenable vdevs so that the normal autoreplace handler can take 4916 * over. 4917 */ 4918 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4919 spa_check_removed(spa->spa_root_vdev); 4920 /* 4921 * For the import case, this is done in spa_import(), because 4922 * at this point we're using the spare definitions from 4923 * the MOS config, not necessarily from the userland config. 4924 */ 4925 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4926 spa_aux_check_removed(&spa->spa_spares); 4927 spa_aux_check_removed(&spa->spa_l2cache); 4928 } 4929 } 4930 4931 /* 4932 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4933 */ 4934 error = vdev_load(rvd); 4935 if (error != 0) { 4936 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4937 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4938 } 4939 4940 error = spa_ld_log_spacemaps(spa); 4941 if (error != 0) { 4942 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4943 error); 4944 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4945 } 4946 4947 /* 4948 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4949 */ 4950 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4951 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4952 spa_config_exit(spa, SCL_ALL, FTAG); 4953 4954 return (0); 4955 } 4956 4957 static int 4958 spa_ld_load_dedup_tables(spa_t *spa) 4959 { 4960 int error = 0; 4961 vdev_t *rvd = spa->spa_root_vdev; 4962 4963 error = ddt_load(spa); 4964 if (error != 0) { 4965 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4966 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4967 } 4968 4969 return (0); 4970 } 4971 4972 static int 4973 spa_ld_load_brt(spa_t *spa) 4974 { 4975 int error = 0; 4976 vdev_t *rvd = spa->spa_root_vdev; 4977 4978 error = brt_load(spa); 4979 if (error != 0) { 4980 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4981 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4982 } 4983 4984 return (0); 4985 } 4986 4987 static int 4988 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4989 { 4990 vdev_t *rvd = spa->spa_root_vdev; 4991 4992 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4993 boolean_t missing = spa_check_logs(spa); 4994 if (missing) { 4995 if (spa->spa_missing_tvds != 0) { 4996 spa_load_note(spa, "spa_check_logs failed " 4997 "so dropping the logs"); 4998 } else { 4999 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 5000 spa_load_failed(spa, "spa_check_logs failed"); 5001 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 5002 ENXIO)); 5003 } 5004 } 5005 } 5006 5007 return (0); 5008 } 5009 5010 static int 5011 spa_ld_verify_pool_data(spa_t *spa) 5012 { 5013 int error = 0; 5014 vdev_t *rvd = spa->spa_root_vdev; 5015 5016 /* 5017 * We've successfully opened the pool, verify that we're ready 5018 * to start pushing transactions. 5019 */ 5020 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 5021 error = spa_load_verify(spa); 5022 if (error != 0) { 5023 spa_load_failed(spa, "spa_load_verify failed " 5024 "[error=%d]", error); 5025 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 5026 error)); 5027 } 5028 } 5029 5030 return (0); 5031 } 5032 5033 static void 5034 spa_ld_claim_log_blocks(spa_t *spa) 5035 { 5036 dmu_tx_t *tx; 5037 dsl_pool_t *dp = spa_get_dsl(spa); 5038 5039 /* 5040 * Claim log blocks that haven't been committed yet. 5041 * This must all happen in a single txg. 5042 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 5043 * invoked from zil_claim_log_block()'s i/o done callback. 5044 * Price of rollback is that we abandon the log. 5045 */ 5046 spa->spa_claiming = B_TRUE; 5047 5048 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 5049 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 5050 zil_claim, tx, DS_FIND_CHILDREN); 5051 dmu_tx_commit(tx); 5052 5053 spa->spa_claiming = B_FALSE; 5054 5055 spa_set_log_state(spa, SPA_LOG_GOOD); 5056 } 5057 5058 static void 5059 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 5060 boolean_t update_config_cache) 5061 { 5062 vdev_t *rvd = spa->spa_root_vdev; 5063 int need_update = B_FALSE; 5064 5065 /* 5066 * If the config cache is stale, or we have uninitialized 5067 * metaslabs (see spa_vdev_add()), then update the config. 5068 * 5069 * If this is a verbatim import, trust the current 5070 * in-core spa_config and update the disk labels. 5071 */ 5072 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 5073 spa->spa_load_state == SPA_LOAD_IMPORT || 5074 spa->spa_load_state == SPA_LOAD_RECOVER || 5075 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 5076 need_update = B_TRUE; 5077 5078 for (int c = 0; c < rvd->vdev_children; c++) 5079 if (rvd->vdev_child[c]->vdev_ms_array == 0) 5080 need_update = B_TRUE; 5081 5082 /* 5083 * Update the config cache asynchronously in case we're the 5084 * root pool, in which case the config cache isn't writable yet. 5085 */ 5086 if (need_update) 5087 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 5088 } 5089 5090 static void 5091 spa_ld_prepare_for_reload(spa_t *spa) 5092 { 5093 spa_mode_t mode = spa->spa_mode; 5094 int async_suspended = spa->spa_async_suspended; 5095 5096 spa_unload(spa); 5097 spa_deactivate(spa); 5098 spa_activate(spa, mode); 5099 5100 /* 5101 * We save the value of spa_async_suspended as it gets reset to 0 by 5102 * spa_unload(). We want to restore it back to the original value before 5103 * returning as we might be calling spa_async_resume() later. 5104 */ 5105 spa->spa_async_suspended = async_suspended; 5106 } 5107 5108 static int 5109 spa_ld_read_checkpoint_txg(spa_t *spa) 5110 { 5111 uberblock_t checkpoint; 5112 int error = 0; 5113 5114 ASSERT0(spa->spa_checkpoint_txg); 5115 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 5116 spa->spa_load_thread == curthread); 5117 5118 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5119 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5120 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5121 5122 if (error == ENOENT) 5123 return (0); 5124 5125 if (error != 0) 5126 return (error); 5127 5128 ASSERT3U(checkpoint.ub_txg, !=, 0); 5129 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 5130 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 5131 spa->spa_checkpoint_txg = checkpoint.ub_txg; 5132 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 5133 5134 return (0); 5135 } 5136 5137 static int 5138 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 5139 { 5140 int error = 0; 5141 5142 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5143 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5144 5145 /* 5146 * Never trust the config that is provided unless we are assembling 5147 * a pool following a split. 5148 * This means don't trust blkptrs and the vdev tree in general. This 5149 * also effectively puts the spa in read-only mode since 5150 * spa_writeable() checks for spa_trust_config to be true. 5151 * We will later load a trusted config from the MOS. 5152 */ 5153 if (type != SPA_IMPORT_ASSEMBLE) 5154 spa->spa_trust_config = B_FALSE; 5155 5156 /* 5157 * Parse the config provided to create a vdev tree. 5158 */ 5159 error = spa_ld_parse_config(spa, type); 5160 if (error != 0) 5161 return (error); 5162 5163 spa_import_progress_add(spa); 5164 5165 /* 5166 * Now that we have the vdev tree, try to open each vdev. This involves 5167 * opening the underlying physical device, retrieving its geometry and 5168 * probing the vdev with a dummy I/O. The state of each vdev will be set 5169 * based on the success of those operations. After this we'll be ready 5170 * to read from the vdevs. 5171 */ 5172 error = spa_ld_open_vdevs(spa); 5173 if (error != 0) 5174 return (error); 5175 5176 /* 5177 * Read the label of each vdev and make sure that the GUIDs stored 5178 * there match the GUIDs in the config provided. 5179 * If we're assembling a new pool that's been split off from an 5180 * existing pool, the labels haven't yet been updated so we skip 5181 * validation for now. 5182 */ 5183 if (type != SPA_IMPORT_ASSEMBLE) { 5184 error = spa_ld_validate_vdevs(spa); 5185 if (error != 0) 5186 return (error); 5187 } 5188 5189 /* 5190 * Read all vdev labels to find the best uberblock (i.e. latest, 5191 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 5192 * get the list of features required to read blkptrs in the MOS from 5193 * the vdev label with the best uberblock and verify that our version 5194 * of zfs supports them all. 5195 */ 5196 error = spa_ld_select_uberblock(spa, type); 5197 if (error != 0) 5198 return (error); 5199 5200 /* 5201 * Pass that uberblock to the dsl_pool layer which will open the root 5202 * blkptr. This blkptr points to the latest version of the MOS and will 5203 * allow us to read its contents. 5204 */ 5205 error = spa_ld_open_rootbp(spa); 5206 if (error != 0) 5207 return (error); 5208 5209 return (0); 5210 } 5211 5212 static int 5213 spa_ld_checkpoint_rewind(spa_t *spa) 5214 { 5215 uberblock_t checkpoint; 5216 int error = 0; 5217 5218 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5219 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5220 5221 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5222 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5223 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5224 5225 if (error != 0) { 5226 spa_load_failed(spa, "unable to retrieve checkpointed " 5227 "uberblock from the MOS config [error=%d]", error); 5228 5229 if (error == ENOENT) 5230 error = ZFS_ERR_NO_CHECKPOINT; 5231 5232 return (error); 5233 } 5234 5235 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 5236 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 5237 5238 /* 5239 * We need to update the txg and timestamp of the checkpointed 5240 * uberblock to be higher than the latest one. This ensures that 5241 * the checkpointed uberblock is selected if we were to close and 5242 * reopen the pool right after we've written it in the vdev labels. 5243 * (also see block comment in vdev_uberblock_compare) 5244 */ 5245 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 5246 checkpoint.ub_timestamp = gethrestime_sec(); 5247 5248 /* 5249 * Set current uberblock to be the checkpointed uberblock. 5250 */ 5251 spa->spa_uberblock = checkpoint; 5252 5253 /* 5254 * If we are doing a normal rewind, then the pool is open for 5255 * writing and we sync the "updated" checkpointed uberblock to 5256 * disk. Once this is done, we've basically rewound the whole 5257 * pool and there is no way back. 5258 * 5259 * There are cases when we don't want to attempt and sync the 5260 * checkpointed uberblock to disk because we are opening a 5261 * pool as read-only. Specifically, verifying the checkpointed 5262 * state with zdb, and importing the checkpointed state to get 5263 * a "preview" of its content. 5264 */ 5265 if (spa_writeable(spa)) { 5266 vdev_t *rvd = spa->spa_root_vdev; 5267 5268 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5269 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 5270 int svdcount = 0; 5271 int children = rvd->vdev_children; 5272 int c0 = random_in_range(children); 5273 5274 for (int c = 0; c < children; c++) { 5275 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 5276 5277 /* Stop when revisiting the first vdev */ 5278 if (c > 0 && svd[0] == vd) 5279 break; 5280 5281 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 5282 !vdev_is_concrete(vd)) 5283 continue; 5284 5285 svd[svdcount++] = vd; 5286 if (svdcount == SPA_SYNC_MIN_VDEVS) 5287 break; 5288 } 5289 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 5290 if (error == 0) 5291 spa->spa_last_synced_guid = rvd->vdev_guid; 5292 spa_config_exit(spa, SCL_ALL, FTAG); 5293 5294 if (error != 0) { 5295 spa_load_failed(spa, "failed to write checkpointed " 5296 "uberblock to the vdev labels [error=%d]", error); 5297 return (error); 5298 } 5299 } 5300 5301 return (0); 5302 } 5303 5304 static int 5305 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 5306 boolean_t *update_config_cache) 5307 { 5308 int error; 5309 5310 /* 5311 * Parse the config for pool, open and validate vdevs, 5312 * select an uberblock, and use that uberblock to open 5313 * the MOS. 5314 */ 5315 error = spa_ld_mos_init(spa, type); 5316 if (error != 0) 5317 return (error); 5318 5319 /* 5320 * Retrieve the trusted config stored in the MOS and use it to create 5321 * a new, exact version of the vdev tree, then reopen all vdevs. 5322 */ 5323 error = spa_ld_trusted_config(spa, type, B_FALSE); 5324 if (error == EAGAIN) { 5325 if (update_config_cache != NULL) 5326 *update_config_cache = B_TRUE; 5327 5328 /* 5329 * Redo the loading process with the trusted config if it is 5330 * too different from the untrusted config. 5331 */ 5332 spa_ld_prepare_for_reload(spa); 5333 spa_load_note(spa, "RELOADING"); 5334 error = spa_ld_mos_init(spa, type); 5335 if (error != 0) 5336 return (error); 5337 5338 error = spa_ld_trusted_config(spa, type, B_TRUE); 5339 if (error != 0) 5340 return (error); 5341 5342 } else if (error != 0) { 5343 return (error); 5344 } 5345 5346 return (0); 5347 } 5348 5349 /* 5350 * Load an existing storage pool, using the config provided. This config 5351 * describes which vdevs are part of the pool and is later validated against 5352 * partial configs present in each vdev's label and an entire copy of the 5353 * config stored in the MOS. 5354 */ 5355 static int 5356 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 5357 { 5358 int error = 0; 5359 boolean_t missing_feat_write = B_FALSE; 5360 boolean_t checkpoint_rewind = 5361 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5362 boolean_t update_config_cache = B_FALSE; 5363 hrtime_t load_start = gethrtime(); 5364 5365 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5366 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5367 5368 spa_load_note(spa, "LOADING"); 5369 5370 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 5371 if (error != 0) 5372 return (error); 5373 5374 /* 5375 * If we are rewinding to the checkpoint then we need to repeat 5376 * everything we've done so far in this function but this time 5377 * selecting the checkpointed uberblock and using that to open 5378 * the MOS. 5379 */ 5380 if (checkpoint_rewind) { 5381 /* 5382 * If we are rewinding to the checkpoint update config cache 5383 * anyway. 5384 */ 5385 update_config_cache = B_TRUE; 5386 5387 /* 5388 * Extract the checkpointed uberblock from the current MOS 5389 * and use this as the pool's uberblock from now on. If the 5390 * pool is imported as writeable we also write the checkpoint 5391 * uberblock to the labels, making the rewind permanent. 5392 */ 5393 error = spa_ld_checkpoint_rewind(spa); 5394 if (error != 0) 5395 return (error); 5396 5397 /* 5398 * Redo the loading process again with the 5399 * checkpointed uberblock. 5400 */ 5401 spa_ld_prepare_for_reload(spa); 5402 spa_load_note(spa, "LOADING checkpointed uberblock"); 5403 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5404 if (error != 0) 5405 return (error); 5406 } 5407 5408 /* 5409 * Drop the namespace lock for the rest of the function. 5410 */ 5411 spa->spa_load_thread = curthread; 5412 mutex_exit(&spa_namespace_lock); 5413 5414 /* 5415 * Retrieve the checkpoint txg if the pool has a checkpoint. 5416 */ 5417 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5418 error = spa_ld_read_checkpoint_txg(spa); 5419 if (error != 0) 5420 goto fail; 5421 5422 /* 5423 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5424 * from the pool and their contents were re-mapped to other vdevs. Note 5425 * that everything that we read before this step must have been 5426 * rewritten on concrete vdevs after the last device removal was 5427 * initiated. Otherwise we could be reading from indirect vdevs before 5428 * we have loaded their mappings. 5429 */ 5430 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5431 error = spa_ld_open_indirect_vdev_metadata(spa); 5432 if (error != 0) 5433 goto fail; 5434 5435 /* 5436 * Retrieve the full list of active features from the MOS and check if 5437 * they are all supported. 5438 */ 5439 spa_import_progress_set_notes(spa, "Checking feature flags"); 5440 error = spa_ld_check_features(spa, &missing_feat_write); 5441 if (error != 0) 5442 goto fail; 5443 5444 /* 5445 * Load several special directories from the MOS needed by the dsl_pool 5446 * layer. 5447 */ 5448 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5449 error = spa_ld_load_special_directories(spa); 5450 if (error != 0) 5451 goto fail; 5452 5453 /* 5454 * Retrieve pool properties from the MOS. 5455 */ 5456 spa_import_progress_set_notes(spa, "Loading properties"); 5457 error = spa_ld_get_props(spa); 5458 if (error != 0) 5459 goto fail; 5460 5461 /* 5462 * Retrieve the list of auxiliary devices - cache devices and spares - 5463 * and open them. 5464 */ 5465 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5466 error = spa_ld_open_aux_vdevs(spa, type); 5467 if (error != 0) 5468 goto fail; 5469 5470 /* 5471 * Load the metadata for all vdevs. Also check if unopenable devices 5472 * should be autoreplaced. 5473 */ 5474 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5475 error = spa_ld_load_vdev_metadata(spa); 5476 if (error != 0) 5477 goto fail; 5478 5479 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5480 error = spa_ld_load_dedup_tables(spa); 5481 if (error != 0) 5482 goto fail; 5483 5484 spa_import_progress_set_notes(spa, "Loading BRT"); 5485 error = spa_ld_load_brt(spa); 5486 if (error != 0) 5487 goto fail; 5488 5489 /* 5490 * Verify the logs now to make sure we don't have any unexpected errors 5491 * when we claim log blocks later. 5492 */ 5493 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5494 error = spa_ld_verify_logs(spa, type, ereport); 5495 if (error != 0) 5496 goto fail; 5497 5498 if (missing_feat_write) { 5499 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5500 5501 /* 5502 * At this point, we know that we can open the pool in 5503 * read-only mode but not read-write mode. We now have enough 5504 * information and can return to userland. 5505 */ 5506 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5507 ENOTSUP); 5508 goto fail; 5509 } 5510 5511 /* 5512 * Traverse the last txgs to make sure the pool was left off in a safe 5513 * state. When performing an extreme rewind, we verify the whole pool, 5514 * which can take a very long time. 5515 */ 5516 spa_import_progress_set_notes(spa, "Verifying pool data"); 5517 error = spa_ld_verify_pool_data(spa); 5518 if (error != 0) 5519 goto fail; 5520 5521 /* 5522 * Calculate the deflated space for the pool. This must be done before 5523 * we write anything to the pool because we'd need to update the space 5524 * accounting using the deflated sizes. 5525 */ 5526 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5527 spa_update_dspace(spa); 5528 5529 /* 5530 * We have now retrieved all the information we needed to open the 5531 * pool. If we are importing the pool in read-write mode, a few 5532 * additional steps must be performed to finish the import. 5533 */ 5534 spa_import_progress_set_notes(spa, "Starting import"); 5535 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5536 spa->spa_load_max_txg == UINT64_MAX)) { 5537 uint64_t config_cache_txg = spa->spa_config_txg; 5538 5539 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5540 5541 /* 5542 * Before we do any zio_write's, complete the raidz expansion 5543 * scratch space copying, if necessary. 5544 */ 5545 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5546 vdev_raidz_reflow_copy_scratch(spa); 5547 5548 /* 5549 * In case of a checkpoint rewind, log the original txg 5550 * of the checkpointed uberblock. 5551 */ 5552 if (checkpoint_rewind) { 5553 spa_history_log_internal(spa, "checkpoint rewind", 5554 NULL, "rewound state to txg=%llu", 5555 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5556 } 5557 5558 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5559 /* 5560 * Traverse the ZIL and claim all blocks. 5561 */ 5562 spa_ld_claim_log_blocks(spa); 5563 5564 /* 5565 * Kick-off the syncing thread. 5566 */ 5567 spa->spa_sync_on = B_TRUE; 5568 txg_sync_start(spa->spa_dsl_pool); 5569 mmp_thread_start(spa); 5570 5571 /* 5572 * Wait for all claims to sync. We sync up to the highest 5573 * claimed log block birth time so that claimed log blocks 5574 * don't appear to be from the future. spa_claim_max_txg 5575 * will have been set for us by ZIL traversal operations 5576 * performed above. 5577 */ 5578 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5579 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5580 5581 /* 5582 * Check if we need to request an update of the config. On the 5583 * next sync, we would update the config stored in vdev labels 5584 * and the cachefile (by default /etc/zfs/zpool.cache). 5585 */ 5586 spa_import_progress_set_notes(spa, "Updating configs"); 5587 spa_ld_check_for_config_update(spa, config_cache_txg, 5588 update_config_cache); 5589 5590 /* 5591 * Check if a rebuild was in progress and if so resume it. 5592 * Then check all DTLs to see if anything needs resilvering. 5593 * The resilver will be deferred if a rebuild was started. 5594 */ 5595 spa_import_progress_set_notes(spa, "Starting resilvers"); 5596 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5597 vdev_rebuild_restart(spa); 5598 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5599 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5600 spa_async_request(spa, SPA_ASYNC_RESILVER); 5601 } 5602 5603 /* 5604 * Log the fact that we booted up (so that we can detect if 5605 * we rebooted in the middle of an operation). 5606 */ 5607 spa_history_log_version(spa, "open", NULL); 5608 5609 spa_import_progress_set_notes(spa, 5610 "Restarting device removals"); 5611 spa_restart_removal(spa); 5612 spa_spawn_aux_threads(spa); 5613 5614 /* 5615 * Delete any inconsistent datasets. 5616 * 5617 * Note: 5618 * Since we may be issuing deletes for clones here, 5619 * we make sure to do so after we've spawned all the 5620 * auxiliary threads above (from which the livelist 5621 * deletion zthr is part of). 5622 */ 5623 spa_import_progress_set_notes(spa, 5624 "Cleaning up inconsistent objsets"); 5625 (void) dmu_objset_find(spa_name(spa), 5626 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5627 5628 /* 5629 * Clean up any stale temporary dataset userrefs. 5630 */ 5631 spa_import_progress_set_notes(spa, 5632 "Cleaning up temporary userrefs"); 5633 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5634 5635 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5636 spa_import_progress_set_notes(spa, "Restarting initialize"); 5637 vdev_initialize_restart(spa->spa_root_vdev); 5638 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5639 vdev_trim_restart(spa->spa_root_vdev); 5640 vdev_autotrim_restart(spa); 5641 spa_config_exit(spa, SCL_CONFIG, FTAG); 5642 spa_import_progress_set_notes(spa, "Finished importing"); 5643 } 5644 zio_handle_import_delay(spa, gethrtime() - load_start); 5645 5646 spa_import_progress_remove(spa_guid(spa)); 5647 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5648 5649 spa_load_note(spa, "LOADED"); 5650 fail: 5651 mutex_enter(&spa_namespace_lock); 5652 spa->spa_load_thread = NULL; 5653 cv_broadcast(&spa_namespace_cv); 5654 5655 return (error); 5656 5657 } 5658 5659 static int 5660 spa_load_retry(spa_t *spa, spa_load_state_t state) 5661 { 5662 spa_mode_t mode = spa->spa_mode; 5663 5664 spa_unload(spa); 5665 spa_deactivate(spa); 5666 5667 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5668 5669 spa_activate(spa, mode); 5670 spa_async_suspend(spa); 5671 5672 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5673 (u_longlong_t)spa->spa_load_max_txg); 5674 5675 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5676 } 5677 5678 /* 5679 * If spa_load() fails this function will try loading prior txg's. If 5680 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5681 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5682 * function will not rewind the pool and will return the same error as 5683 * spa_load(). 5684 */ 5685 static int 5686 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5687 int rewind_flags) 5688 { 5689 nvlist_t *loadinfo = NULL; 5690 nvlist_t *config = NULL; 5691 int load_error, rewind_error; 5692 uint64_t safe_rewind_txg; 5693 uint64_t min_txg; 5694 5695 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5696 spa->spa_load_max_txg = spa->spa_load_txg; 5697 spa_set_log_state(spa, SPA_LOG_CLEAR); 5698 } else { 5699 spa->spa_load_max_txg = max_request; 5700 if (max_request != UINT64_MAX) 5701 spa->spa_extreme_rewind = B_TRUE; 5702 } 5703 5704 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5705 if (load_error == 0) 5706 return (0); 5707 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5708 /* 5709 * When attempting checkpoint-rewind on a pool with no 5710 * checkpoint, we should not attempt to load uberblocks 5711 * from previous txgs when spa_load fails. 5712 */ 5713 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5714 spa_import_progress_remove(spa_guid(spa)); 5715 return (load_error); 5716 } 5717 5718 if (spa->spa_root_vdev != NULL) 5719 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5720 5721 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5722 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5723 5724 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5725 nvlist_free(config); 5726 spa_import_progress_remove(spa_guid(spa)); 5727 return (load_error); 5728 } 5729 5730 if (state == SPA_LOAD_RECOVER) { 5731 /* Price of rolling back is discarding txgs, including log */ 5732 spa_set_log_state(spa, SPA_LOG_CLEAR); 5733 } else { 5734 /* 5735 * If we aren't rolling back save the load info from our first 5736 * import attempt so that we can restore it after attempting 5737 * to rewind. 5738 */ 5739 loadinfo = spa->spa_load_info; 5740 spa->spa_load_info = fnvlist_alloc(); 5741 } 5742 5743 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5744 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5745 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5746 TXG_INITIAL : safe_rewind_txg; 5747 5748 /* 5749 * Continue as long as we're finding errors, we're still within 5750 * the acceptable rewind range, and we're still finding uberblocks 5751 */ 5752 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5753 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5754 if (spa->spa_load_max_txg < safe_rewind_txg) 5755 spa->spa_extreme_rewind = B_TRUE; 5756 rewind_error = spa_load_retry(spa, state); 5757 } 5758 5759 spa->spa_extreme_rewind = B_FALSE; 5760 spa->spa_load_max_txg = UINT64_MAX; 5761 5762 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5763 spa_config_set(spa, config); 5764 else 5765 nvlist_free(config); 5766 5767 if (state == SPA_LOAD_RECOVER) { 5768 ASSERT3P(loadinfo, ==, NULL); 5769 spa_import_progress_remove(spa_guid(spa)); 5770 return (rewind_error); 5771 } else { 5772 /* Store the rewind info as part of the initial load info */ 5773 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5774 spa->spa_load_info); 5775 5776 /* Restore the initial load info */ 5777 fnvlist_free(spa->spa_load_info); 5778 spa->spa_load_info = loadinfo; 5779 5780 spa_import_progress_remove(spa_guid(spa)); 5781 return (load_error); 5782 } 5783 } 5784 5785 /* 5786 * Pool Open/Import 5787 * 5788 * The import case is identical to an open except that the configuration is sent 5789 * down from userland, instead of grabbed from the configuration cache. For the 5790 * case of an open, the pool configuration will exist in the 5791 * POOL_STATE_UNINITIALIZED state. 5792 * 5793 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5794 * the same time open the pool, without having to keep around the spa_t in some 5795 * ambiguous state. 5796 */ 5797 static int 5798 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5799 nvlist_t *nvpolicy, nvlist_t **config) 5800 { 5801 spa_t *spa; 5802 spa_load_state_t state = SPA_LOAD_OPEN; 5803 int error; 5804 int locked = B_FALSE; 5805 int firstopen = B_FALSE; 5806 5807 *spapp = NULL; 5808 5809 /* 5810 * As disgusting as this is, we need to support recursive calls to this 5811 * function because dsl_dir_open() is called during spa_load(), and ends 5812 * up calling spa_open() again. The real fix is to figure out how to 5813 * avoid dsl_dir_open() calling this in the first place. 5814 */ 5815 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5816 mutex_enter(&spa_namespace_lock); 5817 locked = B_TRUE; 5818 } 5819 5820 if ((spa = spa_lookup(pool)) == NULL) { 5821 if (locked) 5822 mutex_exit(&spa_namespace_lock); 5823 return (SET_ERROR(ENOENT)); 5824 } 5825 5826 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5827 zpool_load_policy_t policy; 5828 5829 firstopen = B_TRUE; 5830 5831 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5832 &policy); 5833 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5834 state = SPA_LOAD_RECOVER; 5835 5836 spa_activate(spa, spa_mode_global); 5837 5838 if (state != SPA_LOAD_RECOVER) 5839 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5840 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5841 5842 zfs_dbgmsg("spa_open_common: opening %s", pool); 5843 error = spa_load_best(spa, state, policy.zlp_txg, 5844 policy.zlp_rewind); 5845 5846 if (error == EBADF) { 5847 /* 5848 * If vdev_validate() returns failure (indicated by 5849 * EBADF), it indicates that one of the vdevs indicates 5850 * that the pool has been exported or destroyed. If 5851 * this is the case, the config cache is out of sync and 5852 * we should remove the pool from the namespace. 5853 */ 5854 spa_unload(spa); 5855 spa_deactivate(spa); 5856 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5857 spa_remove(spa); 5858 if (locked) 5859 mutex_exit(&spa_namespace_lock); 5860 return (SET_ERROR(ENOENT)); 5861 } 5862 5863 if (error) { 5864 /* 5865 * We can't open the pool, but we still have useful 5866 * information: the state of each vdev after the 5867 * attempted vdev_open(). Return this to the user. 5868 */ 5869 if (config != NULL && spa->spa_config) { 5870 *config = fnvlist_dup(spa->spa_config); 5871 fnvlist_add_nvlist(*config, 5872 ZPOOL_CONFIG_LOAD_INFO, 5873 spa->spa_load_info); 5874 } 5875 spa_unload(spa); 5876 spa_deactivate(spa); 5877 spa->spa_last_open_failed = error; 5878 if (locked) 5879 mutex_exit(&spa_namespace_lock); 5880 *spapp = NULL; 5881 return (error); 5882 } 5883 } 5884 5885 spa_open_ref(spa, tag); 5886 5887 if (config != NULL) 5888 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5889 5890 /* 5891 * If we've recovered the pool, pass back any information we 5892 * gathered while doing the load. 5893 */ 5894 if (state == SPA_LOAD_RECOVER && config != NULL) { 5895 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5896 spa->spa_load_info); 5897 } 5898 5899 if (locked) { 5900 spa->spa_last_open_failed = 0; 5901 spa->spa_last_ubsync_txg = 0; 5902 spa->spa_load_txg = 0; 5903 mutex_exit(&spa_namespace_lock); 5904 } 5905 5906 if (firstopen) 5907 zvol_create_minors_recursive(spa_name(spa)); 5908 5909 *spapp = spa; 5910 5911 return (0); 5912 } 5913 5914 int 5915 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5916 nvlist_t *policy, nvlist_t **config) 5917 { 5918 return (spa_open_common(name, spapp, tag, policy, config)); 5919 } 5920 5921 int 5922 spa_open(const char *name, spa_t **spapp, const void *tag) 5923 { 5924 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5925 } 5926 5927 /* 5928 * Lookup the given spa_t, incrementing the inject count in the process, 5929 * preventing it from being exported or destroyed. 5930 */ 5931 spa_t * 5932 spa_inject_addref(char *name) 5933 { 5934 spa_t *spa; 5935 5936 mutex_enter(&spa_namespace_lock); 5937 if ((spa = spa_lookup(name)) == NULL) { 5938 mutex_exit(&spa_namespace_lock); 5939 return (NULL); 5940 } 5941 spa->spa_inject_ref++; 5942 mutex_exit(&spa_namespace_lock); 5943 5944 return (spa); 5945 } 5946 5947 void 5948 spa_inject_delref(spa_t *spa) 5949 { 5950 mutex_enter(&spa_namespace_lock); 5951 spa->spa_inject_ref--; 5952 mutex_exit(&spa_namespace_lock); 5953 } 5954 5955 /* 5956 * Add spares device information to the nvlist. 5957 */ 5958 static void 5959 spa_add_spares(spa_t *spa, nvlist_t *config) 5960 { 5961 nvlist_t **spares; 5962 uint_t i, nspares; 5963 nvlist_t *nvroot; 5964 uint64_t guid; 5965 vdev_stat_t *vs; 5966 uint_t vsc; 5967 uint64_t pool; 5968 5969 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5970 5971 if (spa->spa_spares.sav_count == 0) 5972 return; 5973 5974 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5975 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5976 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5977 if (nspares != 0) { 5978 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5979 (const nvlist_t * const *)spares, nspares); 5980 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5981 &spares, &nspares)); 5982 5983 /* 5984 * Go through and find any spares which have since been 5985 * repurposed as an active spare. If this is the case, update 5986 * their status appropriately. 5987 */ 5988 for (i = 0; i < nspares; i++) { 5989 guid = fnvlist_lookup_uint64(spares[i], 5990 ZPOOL_CONFIG_GUID); 5991 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5992 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5993 if (spa_spare_exists(guid, &pool, NULL) && 5994 pool != 0ULL) { 5995 vs->vs_state = VDEV_STATE_CANT_OPEN; 5996 vs->vs_aux = VDEV_AUX_SPARED; 5997 } else { 5998 vs->vs_state = 5999 spa->spa_spares.sav_vdevs[i]->vdev_state; 6000 } 6001 } 6002 } 6003 } 6004 6005 /* 6006 * Add l2cache device information to the nvlist, including vdev stats. 6007 */ 6008 static void 6009 spa_add_l2cache(spa_t *spa, nvlist_t *config) 6010 { 6011 nvlist_t **l2cache; 6012 uint_t i, j, nl2cache; 6013 nvlist_t *nvroot; 6014 uint64_t guid; 6015 vdev_t *vd; 6016 vdev_stat_t *vs; 6017 uint_t vsc; 6018 6019 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6020 6021 if (spa->spa_l2cache.sav_count == 0) 6022 return; 6023 6024 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6025 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 6026 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 6027 if (nl2cache != 0) { 6028 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6029 (const nvlist_t * const *)l2cache, nl2cache); 6030 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6031 &l2cache, &nl2cache)); 6032 6033 /* 6034 * Update level 2 cache device stats. 6035 */ 6036 6037 for (i = 0; i < nl2cache; i++) { 6038 guid = fnvlist_lookup_uint64(l2cache[i], 6039 ZPOOL_CONFIG_GUID); 6040 6041 vd = NULL; 6042 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 6043 if (guid == 6044 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 6045 vd = spa->spa_l2cache.sav_vdevs[j]; 6046 break; 6047 } 6048 } 6049 ASSERT(vd != NULL); 6050 6051 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 6052 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 6053 vdev_get_stats(vd, vs); 6054 vdev_config_generate_stats(vd, l2cache[i]); 6055 6056 } 6057 } 6058 } 6059 6060 static void 6061 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 6062 { 6063 zap_cursor_t zc; 6064 zap_attribute_t *za = zap_attribute_alloc(); 6065 6066 if (spa->spa_feat_for_read_obj != 0) { 6067 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6068 spa->spa_feat_for_read_obj); 6069 zap_cursor_retrieve(&zc, za) == 0; 6070 zap_cursor_advance(&zc)) { 6071 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6072 za->za_num_integers == 1); 6073 VERIFY0(nvlist_add_uint64(features, za->za_name, 6074 za->za_first_integer)); 6075 } 6076 zap_cursor_fini(&zc); 6077 } 6078 6079 if (spa->spa_feat_for_write_obj != 0) { 6080 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6081 spa->spa_feat_for_write_obj); 6082 zap_cursor_retrieve(&zc, za) == 0; 6083 zap_cursor_advance(&zc)) { 6084 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6085 za->za_num_integers == 1); 6086 VERIFY0(nvlist_add_uint64(features, za->za_name, 6087 za->za_first_integer)); 6088 } 6089 zap_cursor_fini(&zc); 6090 } 6091 zap_attribute_free(za); 6092 } 6093 6094 static void 6095 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 6096 { 6097 int i; 6098 6099 for (i = 0; i < SPA_FEATURES; i++) { 6100 zfeature_info_t feature = spa_feature_table[i]; 6101 uint64_t refcount; 6102 6103 if (feature_get_refcount(spa, &feature, &refcount) != 0) 6104 continue; 6105 6106 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 6107 } 6108 } 6109 6110 /* 6111 * Store a list of pool features and their reference counts in the 6112 * config. 6113 * 6114 * The first time this is called on a spa, allocate a new nvlist, fetch 6115 * the pool features and reference counts from disk, then save the list 6116 * in the spa. In subsequent calls on the same spa use the saved nvlist 6117 * and refresh its values from the cached reference counts. This 6118 * ensures we don't block here on I/O on a suspended pool so 'zpool 6119 * clear' can resume the pool. 6120 */ 6121 static void 6122 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 6123 { 6124 nvlist_t *features; 6125 6126 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6127 6128 mutex_enter(&spa->spa_feat_stats_lock); 6129 features = spa->spa_feat_stats; 6130 6131 if (features != NULL) { 6132 spa_feature_stats_from_cache(spa, features); 6133 } else { 6134 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 6135 spa->spa_feat_stats = features; 6136 spa_feature_stats_from_disk(spa, features); 6137 } 6138 6139 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 6140 features)); 6141 6142 mutex_exit(&spa->spa_feat_stats_lock); 6143 } 6144 6145 int 6146 spa_get_stats(const char *name, nvlist_t **config, 6147 char *altroot, size_t buflen) 6148 { 6149 int error; 6150 spa_t *spa; 6151 6152 *config = NULL; 6153 error = spa_open_common(name, &spa, FTAG, NULL, config); 6154 6155 if (spa != NULL) { 6156 /* 6157 * This still leaves a window of inconsistency where the spares 6158 * or l2cache devices could change and the config would be 6159 * self-inconsistent. 6160 */ 6161 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6162 6163 if (*config != NULL) { 6164 uint64_t loadtimes[2]; 6165 6166 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 6167 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 6168 fnvlist_add_uint64_array(*config, 6169 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 6170 6171 fnvlist_add_uint64(*config, 6172 ZPOOL_CONFIG_ERRCOUNT, 6173 spa_approx_errlog_size(spa)); 6174 6175 if (spa_suspended(spa)) { 6176 fnvlist_add_uint64(*config, 6177 ZPOOL_CONFIG_SUSPENDED, 6178 spa->spa_failmode); 6179 fnvlist_add_uint64(*config, 6180 ZPOOL_CONFIG_SUSPENDED_REASON, 6181 spa->spa_suspended); 6182 } 6183 6184 spa_add_spares(spa, *config); 6185 spa_add_l2cache(spa, *config); 6186 spa_add_feature_stats(spa, *config); 6187 } 6188 } 6189 6190 /* 6191 * We want to get the alternate root even for faulted pools, so we cheat 6192 * and call spa_lookup() directly. 6193 */ 6194 if (altroot) { 6195 if (spa == NULL) { 6196 mutex_enter(&spa_namespace_lock); 6197 spa = spa_lookup(name); 6198 if (spa) 6199 spa_altroot(spa, altroot, buflen); 6200 else 6201 altroot[0] = '\0'; 6202 spa = NULL; 6203 mutex_exit(&spa_namespace_lock); 6204 } else { 6205 spa_altroot(spa, altroot, buflen); 6206 } 6207 } 6208 6209 if (spa != NULL) { 6210 spa_config_exit(spa, SCL_CONFIG, FTAG); 6211 spa_close(spa, FTAG); 6212 } 6213 6214 return (error); 6215 } 6216 6217 /* 6218 * Validate that the auxiliary device array is well formed. We must have an 6219 * array of nvlists, each which describes a valid leaf vdev. If this is an 6220 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 6221 * specified, as long as they are well-formed. 6222 */ 6223 static int 6224 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 6225 spa_aux_vdev_t *sav, const char *config, uint64_t version, 6226 vdev_labeltype_t label) 6227 { 6228 nvlist_t **dev; 6229 uint_t i, ndev; 6230 vdev_t *vd; 6231 int error; 6232 6233 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6234 6235 /* 6236 * It's acceptable to have no devs specified. 6237 */ 6238 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 6239 return (0); 6240 6241 if (ndev == 0) 6242 return (SET_ERROR(EINVAL)); 6243 6244 /* 6245 * Make sure the pool is formatted with a version that supports this 6246 * device type. 6247 */ 6248 if (spa_version(spa) < version) 6249 return (SET_ERROR(ENOTSUP)); 6250 6251 /* 6252 * Set the pending device list so we correctly handle device in-use 6253 * checking. 6254 */ 6255 sav->sav_pending = dev; 6256 sav->sav_npending = ndev; 6257 6258 for (i = 0; i < ndev; i++) { 6259 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 6260 mode)) != 0) 6261 goto out; 6262 6263 if (!vd->vdev_ops->vdev_op_leaf) { 6264 vdev_free(vd); 6265 error = SET_ERROR(EINVAL); 6266 goto out; 6267 } 6268 6269 vd->vdev_top = vd; 6270 6271 if ((error = vdev_open(vd)) == 0 && 6272 (error = vdev_label_init(vd, crtxg, label)) == 0) { 6273 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 6274 vd->vdev_guid); 6275 } 6276 6277 vdev_free(vd); 6278 6279 if (error && 6280 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 6281 goto out; 6282 else 6283 error = 0; 6284 } 6285 6286 out: 6287 sav->sav_pending = NULL; 6288 sav->sav_npending = 0; 6289 return (error); 6290 } 6291 6292 static int 6293 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 6294 { 6295 int error; 6296 6297 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6298 6299 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6300 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 6301 VDEV_LABEL_SPARE)) != 0) { 6302 return (error); 6303 } 6304 6305 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6306 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 6307 VDEV_LABEL_L2CACHE)); 6308 } 6309 6310 static void 6311 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 6312 const char *config) 6313 { 6314 int i; 6315 6316 if (sav->sav_config != NULL) { 6317 nvlist_t **olddevs; 6318 uint_t oldndevs; 6319 nvlist_t **newdevs; 6320 6321 /* 6322 * Generate new dev list by concatenating with the 6323 * current dev list. 6324 */ 6325 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 6326 &olddevs, &oldndevs)); 6327 6328 newdevs = kmem_alloc(sizeof (void *) * 6329 (ndevs + oldndevs), KM_SLEEP); 6330 for (i = 0; i < oldndevs; i++) 6331 newdevs[i] = fnvlist_dup(olddevs[i]); 6332 for (i = 0; i < ndevs; i++) 6333 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 6334 6335 fnvlist_remove(sav->sav_config, config); 6336 6337 fnvlist_add_nvlist_array(sav->sav_config, config, 6338 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 6339 for (i = 0; i < oldndevs + ndevs; i++) 6340 nvlist_free(newdevs[i]); 6341 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 6342 } else { 6343 /* 6344 * Generate a new dev list. 6345 */ 6346 sav->sav_config = fnvlist_alloc(); 6347 fnvlist_add_nvlist_array(sav->sav_config, config, 6348 (const nvlist_t * const *)devs, ndevs); 6349 } 6350 } 6351 6352 /* 6353 * Stop and drop level 2 ARC devices 6354 */ 6355 void 6356 spa_l2cache_drop(spa_t *spa) 6357 { 6358 vdev_t *vd; 6359 int i; 6360 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6361 6362 for (i = 0; i < sav->sav_count; i++) { 6363 uint64_t pool; 6364 6365 vd = sav->sav_vdevs[i]; 6366 ASSERT(vd != NULL); 6367 6368 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 6369 pool != 0ULL && l2arc_vdev_present(vd)) 6370 l2arc_remove_vdev(vd); 6371 } 6372 } 6373 6374 /* 6375 * Verify encryption parameters for spa creation. If we are encrypting, we must 6376 * have the encryption feature flag enabled. 6377 */ 6378 static int 6379 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 6380 boolean_t has_encryption) 6381 { 6382 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 6383 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 6384 !has_encryption) 6385 return (SET_ERROR(ENOTSUP)); 6386 6387 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 6388 } 6389 6390 /* 6391 * Pool Creation 6392 */ 6393 int 6394 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 6395 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 6396 { 6397 spa_t *spa; 6398 const char *altroot = NULL; 6399 vdev_t *rvd; 6400 dsl_pool_t *dp; 6401 dmu_tx_t *tx; 6402 int error = 0; 6403 uint64_t txg = TXG_INITIAL; 6404 nvlist_t **spares, **l2cache; 6405 uint_t nspares, nl2cache; 6406 uint64_t version, obj, ndraid = 0; 6407 boolean_t has_features; 6408 boolean_t has_encryption; 6409 boolean_t has_allocclass; 6410 spa_feature_t feat; 6411 const char *feat_name; 6412 const char *poolname; 6413 nvlist_t *nvl; 6414 6415 if (props == NULL || 6416 nvlist_lookup_string(props, 6417 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 6418 poolname = (char *)pool; 6419 6420 /* 6421 * If this pool already exists, return failure. 6422 */ 6423 mutex_enter(&spa_namespace_lock); 6424 if (spa_lookup(poolname) != NULL) { 6425 mutex_exit(&spa_namespace_lock); 6426 return (SET_ERROR(EEXIST)); 6427 } 6428 6429 /* 6430 * Allocate a new spa_t structure. 6431 */ 6432 nvl = fnvlist_alloc(); 6433 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6434 (void) nvlist_lookup_string(props, 6435 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6436 spa = spa_add(poolname, nvl, altroot); 6437 fnvlist_free(nvl); 6438 spa_activate(spa, spa_mode_global); 6439 6440 if (props && (error = spa_prop_validate(spa, props))) { 6441 spa_deactivate(spa); 6442 spa_remove(spa); 6443 mutex_exit(&spa_namespace_lock); 6444 return (error); 6445 } 6446 6447 /* 6448 * Temporary pool names should never be written to disk. 6449 */ 6450 if (poolname != pool) 6451 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6452 6453 has_features = B_FALSE; 6454 has_encryption = B_FALSE; 6455 has_allocclass = B_FALSE; 6456 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6457 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6458 if (zpool_prop_feature(nvpair_name(elem))) { 6459 has_features = B_TRUE; 6460 6461 feat_name = strchr(nvpair_name(elem), '@') + 1; 6462 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6463 if (feat == SPA_FEATURE_ENCRYPTION) 6464 has_encryption = B_TRUE; 6465 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6466 has_allocclass = B_TRUE; 6467 } 6468 } 6469 6470 /* verify encryption params, if they were provided */ 6471 if (dcp != NULL) { 6472 error = spa_create_check_encryption_params(dcp, has_encryption); 6473 if (error != 0) { 6474 spa_deactivate(spa); 6475 spa_remove(spa); 6476 mutex_exit(&spa_namespace_lock); 6477 return (error); 6478 } 6479 } 6480 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6481 spa_deactivate(spa); 6482 spa_remove(spa); 6483 mutex_exit(&spa_namespace_lock); 6484 return (ENOTSUP); 6485 } 6486 6487 if (has_features || nvlist_lookup_uint64(props, 6488 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6489 version = SPA_VERSION; 6490 } 6491 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6492 6493 spa->spa_first_txg = txg; 6494 spa->spa_uberblock.ub_txg = txg - 1; 6495 spa->spa_uberblock.ub_version = version; 6496 spa->spa_ubsync = spa->spa_uberblock; 6497 spa->spa_load_state = SPA_LOAD_CREATE; 6498 spa->spa_removing_phys.sr_state = DSS_NONE; 6499 spa->spa_removing_phys.sr_removing_vdev = -1; 6500 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6501 spa->spa_indirect_vdevs_loaded = B_TRUE; 6502 6503 /* 6504 * Create "The Godfather" zio to hold all async IOs 6505 */ 6506 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6507 KM_SLEEP); 6508 for (int i = 0; i < max_ncpus; i++) { 6509 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6510 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6511 ZIO_FLAG_GODFATHER); 6512 } 6513 6514 /* 6515 * Create the root vdev. 6516 */ 6517 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6518 6519 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6520 6521 ASSERT(error != 0 || rvd != NULL); 6522 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6523 6524 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6525 error = SET_ERROR(EINVAL); 6526 6527 if (error == 0 && 6528 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6529 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6530 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6531 /* 6532 * instantiate the metaslab groups (this will dirty the vdevs) 6533 * we can no longer error exit past this point 6534 */ 6535 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6536 vdev_t *vd = rvd->vdev_child[c]; 6537 6538 vdev_metaslab_set_size(vd); 6539 vdev_expand(vd, txg); 6540 } 6541 } 6542 6543 spa_config_exit(spa, SCL_ALL, FTAG); 6544 6545 if (error != 0) { 6546 spa_unload(spa); 6547 spa_deactivate(spa); 6548 spa_remove(spa); 6549 mutex_exit(&spa_namespace_lock); 6550 return (error); 6551 } 6552 6553 /* 6554 * Get the list of spares, if specified. 6555 */ 6556 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6557 &spares, &nspares) == 0) { 6558 spa->spa_spares.sav_config = fnvlist_alloc(); 6559 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6560 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6561 nspares); 6562 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6563 spa_load_spares(spa); 6564 spa_config_exit(spa, SCL_ALL, FTAG); 6565 spa->spa_spares.sav_sync = B_TRUE; 6566 } 6567 6568 /* 6569 * Get the list of level 2 cache devices, if specified. 6570 */ 6571 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6572 &l2cache, &nl2cache) == 0) { 6573 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6574 NV_UNIQUE_NAME, KM_SLEEP)); 6575 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6576 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6577 nl2cache); 6578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6579 spa_load_l2cache(spa); 6580 spa_config_exit(spa, SCL_ALL, FTAG); 6581 spa->spa_l2cache.sav_sync = B_TRUE; 6582 } 6583 6584 spa->spa_is_initializing = B_TRUE; 6585 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6586 spa->spa_is_initializing = B_FALSE; 6587 6588 /* 6589 * Create DDTs (dedup tables). 6590 */ 6591 ddt_create(spa); 6592 /* 6593 * Create BRT table and BRT table object. 6594 */ 6595 brt_create(spa); 6596 6597 spa_update_dspace(spa); 6598 6599 tx = dmu_tx_create_assigned(dp, txg); 6600 6601 /* 6602 * Create the pool's history object. 6603 */ 6604 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6605 spa_history_create_obj(spa, tx); 6606 6607 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6608 spa_history_log_version(spa, "create", tx); 6609 6610 /* 6611 * Create the pool config object. 6612 */ 6613 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6614 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6615 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6616 6617 if (zap_add(spa->spa_meta_objset, 6618 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6619 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6620 cmn_err(CE_PANIC, "failed to add pool config"); 6621 } 6622 6623 if (zap_add(spa->spa_meta_objset, 6624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6625 sizeof (uint64_t), 1, &version, tx) != 0) { 6626 cmn_err(CE_PANIC, "failed to add pool version"); 6627 } 6628 6629 /* Newly created pools with the right version are always deflated. */ 6630 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6631 spa->spa_deflate = TRUE; 6632 if (zap_add(spa->spa_meta_objset, 6633 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6634 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6635 cmn_err(CE_PANIC, "failed to add deflate"); 6636 } 6637 } 6638 6639 /* 6640 * Create the deferred-free bpobj. Turn off compression 6641 * because sync-to-convergence takes longer if the blocksize 6642 * keeps changing. 6643 */ 6644 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6645 dmu_object_set_compress(spa->spa_meta_objset, obj, 6646 ZIO_COMPRESS_OFF, tx); 6647 if (zap_add(spa->spa_meta_objset, 6648 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6649 sizeof (uint64_t), 1, &obj, tx) != 0) { 6650 cmn_err(CE_PANIC, "failed to add bpobj"); 6651 } 6652 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6653 spa->spa_meta_objset, obj)); 6654 6655 /* 6656 * Generate some random noise for salted checksums to operate on. 6657 */ 6658 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6659 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6660 6661 /* 6662 * Set pool properties. 6663 */ 6664 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6665 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6666 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6667 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6668 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6669 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6670 spa->spa_dedup_table_quota = 6671 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA); 6672 6673 if (props != NULL) { 6674 spa_configfile_set(spa, props, B_FALSE); 6675 spa_sync_props(props, tx); 6676 } 6677 6678 for (int i = 0; i < ndraid; i++) 6679 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6680 6681 dmu_tx_commit(tx); 6682 6683 spa->spa_sync_on = B_TRUE; 6684 txg_sync_start(dp); 6685 mmp_thread_start(spa); 6686 txg_wait_synced(dp, txg); 6687 6688 spa_spawn_aux_threads(spa); 6689 6690 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6691 6692 /* 6693 * Don't count references from objsets that are already closed 6694 * and are making their way through the eviction process. 6695 */ 6696 spa_evicting_os_wait(spa); 6697 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6698 spa->spa_load_state = SPA_LOAD_NONE; 6699 6700 spa_import_os(spa); 6701 6702 mutex_exit(&spa_namespace_lock); 6703 6704 return (0); 6705 } 6706 6707 /* 6708 * Import a non-root pool into the system. 6709 */ 6710 int 6711 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6712 { 6713 spa_t *spa; 6714 const char *altroot = NULL; 6715 spa_load_state_t state = SPA_LOAD_IMPORT; 6716 zpool_load_policy_t policy; 6717 spa_mode_t mode = spa_mode_global; 6718 uint64_t readonly = B_FALSE; 6719 int error; 6720 nvlist_t *nvroot; 6721 nvlist_t **spares, **l2cache; 6722 uint_t nspares, nl2cache; 6723 6724 /* 6725 * If a pool with this name exists, return failure. 6726 */ 6727 mutex_enter(&spa_namespace_lock); 6728 if (spa_lookup(pool) != NULL) { 6729 mutex_exit(&spa_namespace_lock); 6730 return (SET_ERROR(EEXIST)); 6731 } 6732 6733 /* 6734 * Create and initialize the spa structure. 6735 */ 6736 (void) nvlist_lookup_string(props, 6737 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6738 (void) nvlist_lookup_uint64(props, 6739 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6740 if (readonly) 6741 mode = SPA_MODE_READ; 6742 spa = spa_add(pool, config, altroot); 6743 spa->spa_import_flags = flags; 6744 6745 /* 6746 * Verbatim import - Take a pool and insert it into the namespace 6747 * as if it had been loaded at boot. 6748 */ 6749 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6750 if (props != NULL) 6751 spa_configfile_set(spa, props, B_FALSE); 6752 6753 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6754 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6755 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6756 mutex_exit(&spa_namespace_lock); 6757 return (0); 6758 } 6759 6760 spa_activate(spa, mode); 6761 6762 /* 6763 * Don't start async tasks until we know everything is healthy. 6764 */ 6765 spa_async_suspend(spa); 6766 6767 zpool_get_load_policy(config, &policy); 6768 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6769 state = SPA_LOAD_RECOVER; 6770 6771 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6772 6773 if (state != SPA_LOAD_RECOVER) { 6774 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6775 zfs_dbgmsg("spa_import: importing %s", pool); 6776 } else { 6777 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6778 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6779 } 6780 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6781 6782 /* 6783 * Propagate anything learned while loading the pool and pass it 6784 * back to caller (i.e. rewind info, missing devices, etc). 6785 */ 6786 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6787 6788 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6789 /* 6790 * Toss any existing sparelist, as it doesn't have any validity 6791 * anymore, and conflicts with spa_has_spare(). 6792 */ 6793 if (spa->spa_spares.sav_config) { 6794 nvlist_free(spa->spa_spares.sav_config); 6795 spa->spa_spares.sav_config = NULL; 6796 spa_load_spares(spa); 6797 } 6798 if (spa->spa_l2cache.sav_config) { 6799 nvlist_free(spa->spa_l2cache.sav_config); 6800 spa->spa_l2cache.sav_config = NULL; 6801 spa_load_l2cache(spa); 6802 } 6803 6804 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6805 spa_config_exit(spa, SCL_ALL, FTAG); 6806 6807 if (props != NULL) 6808 spa_configfile_set(spa, props, B_FALSE); 6809 6810 if (error != 0 || (props && spa_writeable(spa) && 6811 (error = spa_prop_set(spa, props)))) { 6812 spa_unload(spa); 6813 spa_deactivate(spa); 6814 spa_remove(spa); 6815 mutex_exit(&spa_namespace_lock); 6816 return (error); 6817 } 6818 6819 spa_async_resume(spa); 6820 6821 /* 6822 * Override any spares and level 2 cache devices as specified by 6823 * the user, as these may have correct device names/devids, etc. 6824 */ 6825 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6826 &spares, &nspares) == 0) { 6827 if (spa->spa_spares.sav_config) 6828 fnvlist_remove(spa->spa_spares.sav_config, 6829 ZPOOL_CONFIG_SPARES); 6830 else 6831 spa->spa_spares.sav_config = fnvlist_alloc(); 6832 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6833 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6834 nspares); 6835 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6836 spa_load_spares(spa); 6837 spa_config_exit(spa, SCL_ALL, FTAG); 6838 spa->spa_spares.sav_sync = B_TRUE; 6839 spa->spa_spares.sav_label_sync = B_TRUE; 6840 } 6841 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6842 &l2cache, &nl2cache) == 0) { 6843 if (spa->spa_l2cache.sav_config) 6844 fnvlist_remove(spa->spa_l2cache.sav_config, 6845 ZPOOL_CONFIG_L2CACHE); 6846 else 6847 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6848 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6849 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6850 nl2cache); 6851 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6852 spa_load_l2cache(spa); 6853 spa_config_exit(spa, SCL_ALL, FTAG); 6854 spa->spa_l2cache.sav_sync = B_TRUE; 6855 spa->spa_l2cache.sav_label_sync = B_TRUE; 6856 } 6857 6858 /* 6859 * Check for any removed devices. 6860 */ 6861 if (spa->spa_autoreplace) { 6862 spa_aux_check_removed(&spa->spa_spares); 6863 spa_aux_check_removed(&spa->spa_l2cache); 6864 } 6865 6866 if (spa_writeable(spa)) { 6867 /* 6868 * Update the config cache to include the newly-imported pool. 6869 */ 6870 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6871 } 6872 6873 /* 6874 * It's possible that the pool was expanded while it was exported. 6875 * We kick off an async task to handle this for us. 6876 */ 6877 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6878 6879 spa_history_log_version(spa, "import", NULL); 6880 6881 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6882 6883 mutex_exit(&spa_namespace_lock); 6884 6885 zvol_create_minors_recursive(pool); 6886 6887 spa_import_os(spa); 6888 6889 return (0); 6890 } 6891 6892 nvlist_t * 6893 spa_tryimport(nvlist_t *tryconfig) 6894 { 6895 nvlist_t *config = NULL; 6896 const char *poolname, *cachefile; 6897 spa_t *spa; 6898 uint64_t state; 6899 int error; 6900 zpool_load_policy_t policy; 6901 6902 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6903 return (NULL); 6904 6905 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6906 return (NULL); 6907 6908 /* 6909 * Create and initialize the spa structure. 6910 */ 6911 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6912 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s", 6913 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname); 6914 6915 mutex_enter(&spa_namespace_lock); 6916 spa = spa_add(name, tryconfig, NULL); 6917 spa_activate(spa, SPA_MODE_READ); 6918 kmem_free(name, MAXPATHLEN); 6919 6920 /* 6921 * Rewind pool if a max txg was provided. 6922 */ 6923 zpool_get_load_policy(spa->spa_config, &policy); 6924 if (policy.zlp_txg != UINT64_MAX) { 6925 spa->spa_load_max_txg = policy.zlp_txg; 6926 spa->spa_extreme_rewind = B_TRUE; 6927 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6928 poolname, (longlong_t)policy.zlp_txg); 6929 } else { 6930 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6931 } 6932 6933 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6934 == 0) { 6935 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6936 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6937 } else { 6938 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6939 } 6940 6941 /* 6942 * spa_import() relies on a pool config fetched by spa_try_import() 6943 * for spare/cache devices. Import flags are not passed to 6944 * spa_tryimport(), which makes it return early due to a missing log 6945 * device and missing retrieving the cache device and spare eventually. 6946 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6947 * the correct configuration regardless of the missing log device. 6948 */ 6949 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6950 6951 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6952 6953 /* 6954 * If 'tryconfig' was at least parsable, return the current config. 6955 */ 6956 if (spa->spa_root_vdev != NULL) { 6957 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6958 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6959 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6960 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6961 spa->spa_uberblock.ub_timestamp); 6962 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6963 spa->spa_load_info); 6964 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6965 spa->spa_errata); 6966 6967 /* 6968 * If the bootfs property exists on this pool then we 6969 * copy it out so that external consumers can tell which 6970 * pools are bootable. 6971 */ 6972 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6973 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6974 6975 /* 6976 * We have to play games with the name since the 6977 * pool was opened as TRYIMPORT_NAME. 6978 */ 6979 if (dsl_dsobj_to_dsname(spa_name(spa), 6980 spa->spa_bootfs, tmpname) == 0) { 6981 char *cp; 6982 char *dsname; 6983 6984 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6985 6986 cp = strchr(tmpname, '/'); 6987 if (cp == NULL) { 6988 (void) strlcpy(dsname, tmpname, 6989 MAXPATHLEN); 6990 } else { 6991 (void) snprintf(dsname, MAXPATHLEN, 6992 "%s/%s", poolname, ++cp); 6993 } 6994 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 6995 dsname); 6996 kmem_free(dsname, MAXPATHLEN); 6997 } 6998 kmem_free(tmpname, MAXPATHLEN); 6999 } 7000 7001 /* 7002 * Add the list of hot spares and level 2 cache devices. 7003 */ 7004 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7005 spa_add_spares(spa, config); 7006 spa_add_l2cache(spa, config); 7007 spa_config_exit(spa, SCL_CONFIG, FTAG); 7008 } 7009 7010 spa_unload(spa); 7011 spa_deactivate(spa); 7012 spa_remove(spa); 7013 mutex_exit(&spa_namespace_lock); 7014 7015 return (config); 7016 } 7017 7018 /* 7019 * Pool export/destroy 7020 * 7021 * The act of destroying or exporting a pool is very simple. We make sure there 7022 * is no more pending I/O and any references to the pool are gone. Then, we 7023 * update the pool state and sync all the labels to disk, removing the 7024 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 7025 * we don't sync the labels or remove the configuration cache. 7026 */ 7027 static int 7028 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 7029 boolean_t force, boolean_t hardforce) 7030 { 7031 int error = 0; 7032 spa_t *spa; 7033 hrtime_t export_start = gethrtime(); 7034 7035 if (oldconfig) 7036 *oldconfig = NULL; 7037 7038 if (!(spa_mode_global & SPA_MODE_WRITE)) 7039 return (SET_ERROR(EROFS)); 7040 7041 mutex_enter(&spa_namespace_lock); 7042 if ((spa = spa_lookup(pool)) == NULL) { 7043 mutex_exit(&spa_namespace_lock); 7044 return (SET_ERROR(ENOENT)); 7045 } 7046 7047 if (spa->spa_is_exporting) { 7048 /* the pool is being exported by another thread */ 7049 mutex_exit(&spa_namespace_lock); 7050 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 7051 } 7052 spa->spa_is_exporting = B_TRUE; 7053 7054 /* 7055 * Put a hold on the pool, drop the namespace lock, stop async tasks 7056 * and see if we can export. 7057 */ 7058 spa_open_ref(spa, FTAG); 7059 mutex_exit(&spa_namespace_lock); 7060 spa_async_suspend(spa); 7061 if (spa->spa_zvol_taskq) { 7062 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 7063 taskq_wait(spa->spa_zvol_taskq); 7064 } 7065 mutex_enter(&spa_namespace_lock); 7066 spa->spa_export_thread = curthread; 7067 spa_close(spa, FTAG); 7068 7069 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 7070 mutex_exit(&spa_namespace_lock); 7071 goto export_spa; 7072 } 7073 7074 /* 7075 * The pool will be in core if it's openable, in which case we can 7076 * modify its state. Objsets may be open only because they're dirty, 7077 * so we have to force it to sync before checking spa_refcnt. 7078 */ 7079 if (spa->spa_sync_on) { 7080 txg_wait_synced(spa->spa_dsl_pool, 0); 7081 spa_evicting_os_wait(spa); 7082 } 7083 7084 /* 7085 * A pool cannot be exported or destroyed if there are active 7086 * references. If we are resetting a pool, allow references by 7087 * fault injection handlers. 7088 */ 7089 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 7090 error = SET_ERROR(EBUSY); 7091 goto fail; 7092 } 7093 7094 mutex_exit(&spa_namespace_lock); 7095 /* 7096 * At this point we no longer hold the spa_namespace_lock and 7097 * there were no references on the spa. Future spa_lookups will 7098 * notice the spa->spa_export_thread and wait until we signal 7099 * that we are finshed. 7100 */ 7101 7102 if (spa->spa_sync_on) { 7103 vdev_t *rvd = spa->spa_root_vdev; 7104 /* 7105 * A pool cannot be exported if it has an active shared spare. 7106 * This is to prevent other pools stealing the active spare 7107 * from an exported pool. At user's own will, such pool can 7108 * be forcedly exported. 7109 */ 7110 if (!force && new_state == POOL_STATE_EXPORTED && 7111 spa_has_active_shared_spare(spa)) { 7112 error = SET_ERROR(EXDEV); 7113 mutex_enter(&spa_namespace_lock); 7114 goto fail; 7115 } 7116 7117 /* 7118 * We're about to export or destroy this pool. Make sure 7119 * we stop all initialization and trim activity here before 7120 * we set the spa_final_txg. This will ensure that all 7121 * dirty data resulting from the initialization is 7122 * committed to disk before we unload the pool. 7123 */ 7124 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 7125 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 7126 vdev_autotrim_stop_all(spa); 7127 vdev_rebuild_stop_all(spa); 7128 l2arc_spa_rebuild_stop(spa); 7129 7130 /* 7131 * We want this to be reflected on every label, 7132 * so mark them all dirty. spa_unload() will do the 7133 * final sync that pushes these changes out. 7134 */ 7135 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7136 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7137 spa->spa_state = new_state; 7138 vdev_config_dirty(rvd); 7139 spa_config_exit(spa, SCL_ALL, FTAG); 7140 } 7141 7142 /* 7143 * If the log space map feature is enabled and the pool is 7144 * getting exported (but not destroyed), we want to spend some 7145 * time flushing as many metaslabs as we can in an attempt to 7146 * destroy log space maps and save import time. This has to be 7147 * done before we set the spa_final_txg, otherwise 7148 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 7149 * spa_should_flush_logs_on_unload() should be called after 7150 * spa_state has been set to the new_state. 7151 */ 7152 if (spa_should_flush_logs_on_unload(spa)) 7153 spa_unload_log_sm_flush_all(spa); 7154 7155 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7156 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7157 spa->spa_final_txg = spa_last_synced_txg(spa) + 7158 TXG_DEFER_SIZE + 1; 7159 spa_config_exit(spa, SCL_ALL, FTAG); 7160 } 7161 } 7162 7163 export_spa: 7164 spa_export_os(spa); 7165 7166 if (new_state == POOL_STATE_DESTROYED) 7167 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 7168 else if (new_state == POOL_STATE_EXPORTED) 7169 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 7170 7171 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7172 spa_unload(spa); 7173 spa_deactivate(spa); 7174 } 7175 7176 if (oldconfig && spa->spa_config) 7177 *oldconfig = fnvlist_dup(spa->spa_config); 7178 7179 if (new_state == POOL_STATE_EXPORTED) 7180 zio_handle_export_delay(spa, gethrtime() - export_start); 7181 7182 /* 7183 * Take the namespace lock for the actual spa_t removal 7184 */ 7185 mutex_enter(&spa_namespace_lock); 7186 if (new_state != POOL_STATE_UNINITIALIZED) { 7187 if (!hardforce) 7188 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 7189 spa_remove(spa); 7190 } else { 7191 /* 7192 * If spa_remove() is not called for this spa_t and 7193 * there is any possibility that it can be reused, 7194 * we make sure to reset the exporting flag. 7195 */ 7196 spa->spa_is_exporting = B_FALSE; 7197 spa->spa_export_thread = NULL; 7198 } 7199 7200 /* 7201 * Wake up any waiters in spa_lookup() 7202 */ 7203 cv_broadcast(&spa_namespace_cv); 7204 mutex_exit(&spa_namespace_lock); 7205 return (0); 7206 7207 fail: 7208 spa->spa_is_exporting = B_FALSE; 7209 spa->spa_export_thread = NULL; 7210 7211 spa_async_resume(spa); 7212 /* 7213 * Wake up any waiters in spa_lookup() 7214 */ 7215 cv_broadcast(&spa_namespace_cv); 7216 mutex_exit(&spa_namespace_lock); 7217 return (error); 7218 } 7219 7220 /* 7221 * Destroy a storage pool. 7222 */ 7223 int 7224 spa_destroy(const char *pool) 7225 { 7226 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 7227 B_FALSE, B_FALSE)); 7228 } 7229 7230 /* 7231 * Export a storage pool. 7232 */ 7233 int 7234 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 7235 boolean_t hardforce) 7236 { 7237 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 7238 force, hardforce)); 7239 } 7240 7241 /* 7242 * Similar to spa_export(), this unloads the spa_t without actually removing it 7243 * from the namespace in any way. 7244 */ 7245 int 7246 spa_reset(const char *pool) 7247 { 7248 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 7249 B_FALSE, B_FALSE)); 7250 } 7251 7252 /* 7253 * ========================================================================== 7254 * Device manipulation 7255 * ========================================================================== 7256 */ 7257 7258 /* 7259 * This is called as a synctask to increment the draid feature flag 7260 */ 7261 static void 7262 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 7263 { 7264 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7265 int draid = (int)(uintptr_t)arg; 7266 7267 for (int c = 0; c < draid; c++) 7268 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 7269 } 7270 7271 /* 7272 * Add a device to a storage pool. 7273 */ 7274 int 7275 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift) 7276 { 7277 uint64_t txg, ndraid = 0; 7278 int error; 7279 vdev_t *rvd = spa->spa_root_vdev; 7280 vdev_t *vd, *tvd; 7281 nvlist_t **spares, **l2cache; 7282 uint_t nspares, nl2cache; 7283 7284 ASSERT(spa_writeable(spa)); 7285 7286 txg = spa_vdev_enter(spa); 7287 7288 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 7289 VDEV_ALLOC_ADD)) != 0) 7290 return (spa_vdev_exit(spa, NULL, txg, error)); 7291 7292 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 7293 7294 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 7295 &nspares) != 0) 7296 nspares = 0; 7297 7298 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 7299 &nl2cache) != 0) 7300 nl2cache = 0; 7301 7302 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 7303 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7304 7305 if (vd->vdev_children != 0 && 7306 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 7307 return (spa_vdev_exit(spa, vd, txg, error)); 7308 } 7309 7310 /* 7311 * The virtual dRAID spares must be added after vdev tree is created 7312 * and the vdev guids are generated. The guid of their associated 7313 * dRAID is stored in the config and used when opening the spare. 7314 */ 7315 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 7316 rvd->vdev_children)) == 0) { 7317 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 7318 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 7319 nspares = 0; 7320 } else { 7321 return (spa_vdev_exit(spa, vd, txg, error)); 7322 } 7323 7324 /* 7325 * We must validate the spares and l2cache devices after checking the 7326 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 7327 */ 7328 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 7329 return (spa_vdev_exit(spa, vd, txg, error)); 7330 7331 /* 7332 * If we are in the middle of a device removal, we can only add 7333 * devices which match the existing devices in the pool. 7334 * If we are in the middle of a removal, or have some indirect 7335 * vdevs, we can not add raidz or dRAID top levels. 7336 */ 7337 if (spa->spa_vdev_removal != NULL || 7338 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7339 for (int c = 0; c < vd->vdev_children; c++) { 7340 tvd = vd->vdev_child[c]; 7341 if (spa->spa_vdev_removal != NULL && 7342 tvd->vdev_ashift != spa->spa_max_ashift) { 7343 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7344 } 7345 /* Fail if top level vdev is raidz or a dRAID */ 7346 if (vdev_get_nparity(tvd) != 0) 7347 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7348 7349 /* 7350 * Need the top level mirror to be 7351 * a mirror of leaf vdevs only 7352 */ 7353 if (tvd->vdev_ops == &vdev_mirror_ops) { 7354 for (uint64_t cid = 0; 7355 cid < tvd->vdev_children; cid++) { 7356 vdev_t *cvd = tvd->vdev_child[cid]; 7357 if (!cvd->vdev_ops->vdev_op_leaf) { 7358 return (spa_vdev_exit(spa, vd, 7359 txg, EINVAL)); 7360 } 7361 } 7362 } 7363 } 7364 } 7365 7366 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) { 7367 for (int c = 0; c < vd->vdev_children; c++) { 7368 tvd = vd->vdev_child[c]; 7369 if (tvd->vdev_ashift != spa->spa_max_ashift) { 7370 return (spa_vdev_exit(spa, vd, txg, 7371 ZFS_ERR_ASHIFT_MISMATCH)); 7372 } 7373 } 7374 } 7375 7376 for (int c = 0; c < vd->vdev_children; c++) { 7377 tvd = vd->vdev_child[c]; 7378 vdev_remove_child(vd, tvd); 7379 tvd->vdev_id = rvd->vdev_children; 7380 vdev_add_child(rvd, tvd); 7381 vdev_config_dirty(tvd); 7382 } 7383 7384 if (nspares != 0) { 7385 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 7386 ZPOOL_CONFIG_SPARES); 7387 spa_load_spares(spa); 7388 spa->spa_spares.sav_sync = B_TRUE; 7389 } 7390 7391 if (nl2cache != 0) { 7392 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 7393 ZPOOL_CONFIG_L2CACHE); 7394 spa_load_l2cache(spa); 7395 spa->spa_l2cache.sav_sync = B_TRUE; 7396 } 7397 7398 /* 7399 * We can't increment a feature while holding spa_vdev so we 7400 * have to do it in a synctask. 7401 */ 7402 if (ndraid != 0) { 7403 dmu_tx_t *tx; 7404 7405 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 7406 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 7407 (void *)(uintptr_t)ndraid, tx); 7408 dmu_tx_commit(tx); 7409 } 7410 7411 /* 7412 * We have to be careful when adding new vdevs to an existing pool. 7413 * If other threads start allocating from these vdevs before we 7414 * sync the config cache, and we lose power, then upon reboot we may 7415 * fail to open the pool because there are DVAs that the config cache 7416 * can't translate. Therefore, we first add the vdevs without 7417 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 7418 * and then let spa_config_update() initialize the new metaslabs. 7419 * 7420 * spa_load() checks for added-but-not-initialized vdevs, so that 7421 * if we lose power at any point in this sequence, the remaining 7422 * steps will be completed the next time we load the pool. 7423 */ 7424 (void) spa_vdev_exit(spa, vd, txg, 0); 7425 7426 mutex_enter(&spa_namespace_lock); 7427 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7428 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 7429 mutex_exit(&spa_namespace_lock); 7430 7431 return (0); 7432 } 7433 7434 /* 7435 * Given a vdev to be replaced and its parent, check for a possible 7436 * "double spare" condition if a vdev is to be replaced by a spare. When this 7437 * happens, you can get two spares assigned to one failed vdev. 7438 * 7439 * To trigger a double spare condition: 7440 * 7441 * 1. disk1 fails 7442 * 2. 1st spare is kicked in for disk1 and it resilvers 7443 * 3. Someone replaces disk1 with a new blank disk 7444 * 4. New blank disk starts resilvering 7445 * 5. While resilvering, new blank disk has IO errors and faults 7446 * 6. 2nd spare is kicked in for new blank disk 7447 * 7. At this point two spares are kicked in for the original disk1. 7448 * 7449 * It looks like this: 7450 * 7451 * NAME STATE READ WRITE CKSUM 7452 * tank2 DEGRADED 0 0 0 7453 * draid2:6d:10c:2s-0 DEGRADED 0 0 0 7454 * scsi-0QEMU_QEMU_HARDDISK_d1 ONLINE 0 0 0 7455 * scsi-0QEMU_QEMU_HARDDISK_d2 ONLINE 0 0 0 7456 * scsi-0QEMU_QEMU_HARDDISK_d3 ONLINE 0 0 0 7457 * scsi-0QEMU_QEMU_HARDDISK_d4 ONLINE 0 0 0 7458 * scsi-0QEMU_QEMU_HARDDISK_d5 ONLINE 0 0 0 7459 * scsi-0QEMU_QEMU_HARDDISK_d6 ONLINE 0 0 0 7460 * scsi-0QEMU_QEMU_HARDDISK_d7 ONLINE 0 0 0 7461 * scsi-0QEMU_QEMU_HARDDISK_d8 ONLINE 0 0 0 7462 * scsi-0QEMU_QEMU_HARDDISK_d9 ONLINE 0 0 0 7463 * spare-9 DEGRADED 0 0 0 7464 * replacing-0 DEGRADED 0 93 0 7465 * scsi-0QEMU_QEMU_HARDDISK_d10-part1/old UNAVAIL 0 0 0 7466 * spare-1 DEGRADED 0 0 0 7467 * scsi-0QEMU_QEMU_HARDDISK_d10 REMOVED 0 0 0 7468 * draid2-0-0 ONLINE 0 0 0 7469 * draid2-0-1 ONLINE 0 0 0 7470 * spares 7471 * draid2-0-0 INUSE currently in use 7472 * draid2-0-1 INUSE currently in use 7473 * 7474 * ARGS: 7475 * 7476 * newvd: New spare disk 7477 * pvd: Parent vdev_t the spare should attach to 7478 * 7479 * This function returns B_TRUE if adding the new vdev would create a double 7480 * spare condition, B_FALSE otherwise. 7481 */ 7482 static boolean_t 7483 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd) 7484 { 7485 vdev_t *ppvd; 7486 7487 ppvd = pvd->vdev_parent; 7488 if (ppvd == NULL) 7489 return (B_FALSE); 7490 7491 /* 7492 * To determine if this configuration would cause a double spare, we 7493 * look at the vdev_op of the parent vdev, and of the parent's parent 7494 * vdev. We also look at vdev_isspare on the new disk. A double spare 7495 * condition looks like this: 7496 * 7497 * 1. parent of parent's op is a spare or draid spare 7498 * 2. parent's op is replacing 7499 * 3. new disk is a spare 7500 */ 7501 if ((ppvd->vdev_ops == &vdev_spare_ops) || 7502 (ppvd->vdev_ops == &vdev_draid_spare_ops)) 7503 if (pvd->vdev_ops == &vdev_replacing_ops) 7504 if (newvd->vdev_isspare) 7505 return (B_TRUE); 7506 7507 return (B_FALSE); 7508 } 7509 7510 /* 7511 * Attach a device to a vdev specified by its guid. The vdev type can be 7512 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 7513 * single device). When the vdev is a single device, a mirror vdev will be 7514 * automatically inserted. 7515 * 7516 * If 'replacing' is specified, the new device is intended to replace the 7517 * existing device; in this case the two devices are made into their own 7518 * mirror using the 'replacing' vdev, which is functionally identical to 7519 * the mirror vdev (it actually reuses all the same ops) but has a few 7520 * extra rules: you can't attach to it after it's been created, and upon 7521 * completion of resilvering, the first disk (the one being replaced) 7522 * is automatically detached. 7523 * 7524 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 7525 * should be performed instead of traditional healing reconstruction. From 7526 * an administrators perspective these are both resilver operations. 7527 */ 7528 int 7529 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 7530 int rebuild) 7531 { 7532 uint64_t txg, dtl_max_txg; 7533 vdev_t *rvd = spa->spa_root_vdev; 7534 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 7535 vdev_ops_t *pvops; 7536 char *oldvdpath, *newvdpath; 7537 int newvd_isspare = B_FALSE; 7538 int error; 7539 7540 ASSERT(spa_writeable(spa)); 7541 7542 txg = spa_vdev_enter(spa); 7543 7544 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7545 7546 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7547 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7548 error = (spa_has_checkpoint(spa)) ? 7549 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7550 return (spa_vdev_exit(spa, NULL, txg, error)); 7551 } 7552 7553 if (rebuild) { 7554 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7555 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7556 7557 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7558 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7559 return (spa_vdev_exit(spa, NULL, txg, 7560 ZFS_ERR_RESILVER_IN_PROGRESS)); 7561 } 7562 } else { 7563 if (vdev_rebuild_active(rvd)) 7564 return (spa_vdev_exit(spa, NULL, txg, 7565 ZFS_ERR_REBUILD_IN_PROGRESS)); 7566 } 7567 7568 if (spa->spa_vdev_removal != NULL) { 7569 return (spa_vdev_exit(spa, NULL, txg, 7570 ZFS_ERR_DEVRM_IN_PROGRESS)); 7571 } 7572 7573 if (oldvd == NULL) 7574 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7575 7576 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7577 7578 if (raidz) { 7579 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7580 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7581 7582 /* 7583 * Can't expand a raidz while prior expand is in progress. 7584 */ 7585 if (spa->spa_raidz_expand != NULL) { 7586 return (spa_vdev_exit(spa, NULL, txg, 7587 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7588 } 7589 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7590 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7591 } 7592 7593 if (raidz) 7594 pvd = oldvd; 7595 else 7596 pvd = oldvd->vdev_parent; 7597 7598 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7599 VDEV_ALLOC_ATTACH) != 0) 7600 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7601 7602 if (newrootvd->vdev_children != 1) 7603 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7604 7605 newvd = newrootvd->vdev_child[0]; 7606 7607 if (!newvd->vdev_ops->vdev_op_leaf) 7608 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7609 7610 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7611 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7612 7613 /* 7614 * log, dedup and special vdevs should not be replaced by spares. 7615 */ 7616 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7617 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7618 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7619 } 7620 7621 /* 7622 * A dRAID spare can only replace a child of its parent dRAID vdev. 7623 */ 7624 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7625 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7626 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7627 } 7628 7629 if (rebuild) { 7630 /* 7631 * For rebuilds, the top vdev must support reconstruction 7632 * using only space maps. This means the only allowable 7633 * vdevs types are the root vdev, a mirror, or dRAID. 7634 */ 7635 tvd = pvd; 7636 if (pvd->vdev_top != NULL) 7637 tvd = pvd->vdev_top; 7638 7639 if (tvd->vdev_ops != &vdev_mirror_ops && 7640 tvd->vdev_ops != &vdev_root_ops && 7641 tvd->vdev_ops != &vdev_draid_ops) { 7642 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7643 } 7644 } 7645 7646 if (!replacing) { 7647 /* 7648 * For attach, the only allowable parent is a mirror or 7649 * the root vdev. A raidz vdev can be attached to, but 7650 * you cannot attach to a raidz child. 7651 */ 7652 if (pvd->vdev_ops != &vdev_mirror_ops && 7653 pvd->vdev_ops != &vdev_root_ops && 7654 !raidz) 7655 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7656 7657 pvops = &vdev_mirror_ops; 7658 } else { 7659 /* 7660 * Active hot spares can only be replaced by inactive hot 7661 * spares. 7662 */ 7663 if (pvd->vdev_ops == &vdev_spare_ops && 7664 oldvd->vdev_isspare && 7665 !spa_has_spare(spa, newvd->vdev_guid)) 7666 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7667 7668 /* 7669 * If the source is a hot spare, and the parent isn't already a 7670 * spare, then we want to create a new hot spare. Otherwise, we 7671 * want to create a replacing vdev. The user is not allowed to 7672 * attach to a spared vdev child unless the 'isspare' state is 7673 * the same (spare replaces spare, non-spare replaces 7674 * non-spare). 7675 */ 7676 if (pvd->vdev_ops == &vdev_replacing_ops && 7677 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7678 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7679 } else if (pvd->vdev_ops == &vdev_spare_ops && 7680 newvd->vdev_isspare != oldvd->vdev_isspare) { 7681 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7682 } 7683 7684 if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) { 7685 vdev_dbgmsg(newvd, 7686 "disk would create double spares, ignore."); 7687 return (spa_vdev_exit(spa, newrootvd, txg, EEXIST)); 7688 } 7689 7690 if (newvd->vdev_isspare) 7691 pvops = &vdev_spare_ops; 7692 else 7693 pvops = &vdev_replacing_ops; 7694 } 7695 7696 /* 7697 * Make sure the new device is big enough. 7698 */ 7699 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7700 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7701 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7702 7703 /* 7704 * The new device cannot have a higher alignment requirement 7705 * than the top-level vdev. 7706 */ 7707 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) { 7708 return (spa_vdev_exit(spa, newrootvd, txg, 7709 ZFS_ERR_ASHIFT_MISMATCH)); 7710 } 7711 7712 /* 7713 * RAIDZ-expansion-specific checks. 7714 */ 7715 if (raidz) { 7716 if (vdev_raidz_attach_check(newvd) != 0) 7717 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7718 7719 /* 7720 * Fail early if a child is not healthy or being replaced 7721 */ 7722 for (int i = 0; i < oldvd->vdev_children; i++) { 7723 if (vdev_is_dead(oldvd->vdev_child[i]) || 7724 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7725 return (spa_vdev_exit(spa, newrootvd, txg, 7726 ENXIO)); 7727 } 7728 /* Also fail if reserved boot area is in-use */ 7729 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7730 != 0) { 7731 return (spa_vdev_exit(spa, newrootvd, txg, 7732 EADDRINUSE)); 7733 } 7734 } 7735 } 7736 7737 if (raidz) { 7738 /* 7739 * Note: oldvdpath is freed by spa_strfree(), but 7740 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7741 * move it to a spa_strdup-ed string. 7742 */ 7743 char *tmp = kmem_asprintf("raidz%u-%u", 7744 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7745 oldvdpath = spa_strdup(tmp); 7746 kmem_strfree(tmp); 7747 } else { 7748 oldvdpath = spa_strdup(oldvd->vdev_path); 7749 } 7750 newvdpath = spa_strdup(newvd->vdev_path); 7751 7752 /* 7753 * If this is an in-place replacement, update oldvd's path and devid 7754 * to make it distinguishable from newvd, and unopenable from now on. 7755 */ 7756 if (strcmp(oldvdpath, newvdpath) == 0) { 7757 spa_strfree(oldvd->vdev_path); 7758 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7759 KM_SLEEP); 7760 (void) sprintf(oldvd->vdev_path, "%s/old", 7761 newvdpath); 7762 if (oldvd->vdev_devid != NULL) { 7763 spa_strfree(oldvd->vdev_devid); 7764 oldvd->vdev_devid = NULL; 7765 } 7766 spa_strfree(oldvdpath); 7767 oldvdpath = spa_strdup(oldvd->vdev_path); 7768 } 7769 7770 /* 7771 * If the parent is not a mirror, or if we're replacing, insert the new 7772 * mirror/replacing/spare vdev above oldvd. 7773 */ 7774 if (!raidz && pvd->vdev_ops != pvops) { 7775 pvd = vdev_add_parent(oldvd, pvops); 7776 ASSERT(pvd->vdev_ops == pvops); 7777 ASSERT(oldvd->vdev_parent == pvd); 7778 } 7779 7780 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7781 7782 /* 7783 * Extract the new device from its root and add it to pvd. 7784 */ 7785 vdev_remove_child(newrootvd, newvd); 7786 newvd->vdev_id = pvd->vdev_children; 7787 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7788 vdev_add_child(pvd, newvd); 7789 7790 /* 7791 * Reevaluate the parent vdev state. 7792 */ 7793 vdev_propagate_state(pvd); 7794 7795 tvd = newvd->vdev_top; 7796 ASSERT(pvd->vdev_top == tvd); 7797 ASSERT(tvd->vdev_parent == rvd); 7798 7799 vdev_config_dirty(tvd); 7800 7801 /* 7802 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7803 * for any dmu_sync-ed blocks. It will propagate upward when 7804 * spa_vdev_exit() calls vdev_dtl_reassess(). 7805 */ 7806 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7807 7808 if (raidz) { 7809 /* 7810 * Wait for the youngest allocations and frees to sync, 7811 * and then wait for the deferral of those frees to finish. 7812 */ 7813 spa_vdev_config_exit(spa, NULL, 7814 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7815 7816 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7817 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7818 vdev_autotrim_stop_wait(tvd); 7819 7820 dtl_max_txg = spa_vdev_config_enter(spa); 7821 7822 tvd->vdev_rz_expanding = B_TRUE; 7823 7824 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7825 vdev_config_dirty(tvd); 7826 7827 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7828 dtl_max_txg); 7829 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7830 newvd, tx); 7831 dmu_tx_commit(tx); 7832 } else { 7833 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7834 dtl_max_txg - TXG_INITIAL); 7835 7836 if (newvd->vdev_isspare) { 7837 spa_spare_activate(newvd); 7838 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7839 } 7840 7841 newvd_isspare = newvd->vdev_isspare; 7842 7843 /* 7844 * Mark newvd's DTL dirty in this txg. 7845 */ 7846 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7847 7848 /* 7849 * Schedule the resilver or rebuild to restart in the future. 7850 * We do this to ensure that dmu_sync-ed blocks have been 7851 * stitched into the respective datasets. 7852 */ 7853 if (rebuild) { 7854 newvd->vdev_rebuild_txg = txg; 7855 7856 vdev_rebuild(tvd); 7857 } else { 7858 newvd->vdev_resilver_txg = txg; 7859 7860 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7861 spa_feature_is_enabled(spa, 7862 SPA_FEATURE_RESILVER_DEFER)) { 7863 vdev_defer_resilver(newvd); 7864 } else { 7865 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7866 dtl_max_txg); 7867 } 7868 } 7869 } 7870 7871 if (spa->spa_bootfs) 7872 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7873 7874 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7875 7876 /* 7877 * Commit the config 7878 */ 7879 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7880 7881 spa_history_log_internal(spa, "vdev attach", NULL, 7882 "%s vdev=%s %s vdev=%s", 7883 replacing && newvd_isspare ? "spare in" : 7884 replacing ? "replace" : "attach", newvdpath, 7885 replacing ? "for" : "to", oldvdpath); 7886 7887 spa_strfree(oldvdpath); 7888 spa_strfree(newvdpath); 7889 7890 return (0); 7891 } 7892 7893 /* 7894 * Detach a device from a mirror or replacing vdev. 7895 * 7896 * If 'replace_done' is specified, only detach if the parent 7897 * is a replacing or a spare vdev. 7898 */ 7899 int 7900 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7901 { 7902 uint64_t txg; 7903 int error; 7904 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7905 vdev_t *vd, *pvd, *cvd, *tvd; 7906 boolean_t unspare = B_FALSE; 7907 uint64_t unspare_guid = 0; 7908 char *vdpath; 7909 7910 ASSERT(spa_writeable(spa)); 7911 7912 txg = spa_vdev_detach_enter(spa, guid); 7913 7914 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7915 7916 /* 7917 * Besides being called directly from the userland through the 7918 * ioctl interface, spa_vdev_detach() can be potentially called 7919 * at the end of spa_vdev_resilver_done(). 7920 * 7921 * In the regular case, when we have a checkpoint this shouldn't 7922 * happen as we never empty the DTLs of a vdev during the scrub 7923 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7924 * should never get here when we have a checkpoint. 7925 * 7926 * That said, even in a case when we checkpoint the pool exactly 7927 * as spa_vdev_resilver_done() calls this function everything 7928 * should be fine as the resilver will return right away. 7929 */ 7930 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7931 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7932 error = (spa_has_checkpoint(spa)) ? 7933 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7934 return (spa_vdev_exit(spa, NULL, txg, error)); 7935 } 7936 7937 if (vd == NULL) 7938 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7939 7940 if (!vd->vdev_ops->vdev_op_leaf) 7941 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7942 7943 pvd = vd->vdev_parent; 7944 7945 /* 7946 * If the parent/child relationship is not as expected, don't do it. 7947 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7948 * vdev that's replacing B with C. The user's intent in replacing 7949 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7950 * the replace by detaching C, the expected behavior is to end up 7951 * M(A,B). But suppose that right after deciding to detach C, 7952 * the replacement of B completes. We would have M(A,C), and then 7953 * ask to detach C, which would leave us with just A -- not what 7954 * the user wanted. To prevent this, we make sure that the 7955 * parent/child relationship hasn't changed -- in this example, 7956 * that C's parent is still the replacing vdev R. 7957 */ 7958 if (pvd->vdev_guid != pguid && pguid != 0) 7959 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7960 7961 /* 7962 * Only 'replacing' or 'spare' vdevs can be replaced. 7963 */ 7964 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7965 pvd->vdev_ops != &vdev_spare_ops) 7966 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7967 7968 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7969 spa_version(spa) >= SPA_VERSION_SPARES); 7970 7971 /* 7972 * Only mirror, replacing, and spare vdevs support detach. 7973 */ 7974 if (pvd->vdev_ops != &vdev_replacing_ops && 7975 pvd->vdev_ops != &vdev_mirror_ops && 7976 pvd->vdev_ops != &vdev_spare_ops) 7977 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7978 7979 /* 7980 * If this device has the only valid copy of some data, 7981 * we cannot safely detach it. 7982 */ 7983 if (vdev_dtl_required(vd)) 7984 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7985 7986 ASSERT(pvd->vdev_children >= 2); 7987 7988 /* 7989 * If we are detaching the second disk from a replacing vdev, then 7990 * check to see if we changed the original vdev's path to have "/old" 7991 * at the end in spa_vdev_attach(). If so, undo that change now. 7992 */ 7993 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 7994 vd->vdev_path != NULL) { 7995 size_t len = strlen(vd->vdev_path); 7996 7997 for (int c = 0; c < pvd->vdev_children; c++) { 7998 cvd = pvd->vdev_child[c]; 7999 8000 if (cvd == vd || cvd->vdev_path == NULL) 8001 continue; 8002 8003 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 8004 strcmp(cvd->vdev_path + len, "/old") == 0) { 8005 spa_strfree(cvd->vdev_path); 8006 cvd->vdev_path = spa_strdup(vd->vdev_path); 8007 break; 8008 } 8009 } 8010 } 8011 8012 /* 8013 * If we are detaching the original disk from a normal spare, then it 8014 * implies that the spare should become a real disk, and be removed 8015 * from the active spare list for the pool. dRAID spares on the 8016 * other hand are coupled to the pool and thus should never be removed 8017 * from the spares list. 8018 */ 8019 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 8020 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 8021 8022 if (last_cvd->vdev_isspare && 8023 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 8024 unspare = B_TRUE; 8025 } 8026 } 8027 8028 /* 8029 * Erase the disk labels so the disk can be used for other things. 8030 * This must be done after all other error cases are handled, 8031 * but before we disembowel vd (so we can still do I/O to it). 8032 * But if we can't do it, don't treat the error as fatal -- 8033 * it may be that the unwritability of the disk is the reason 8034 * it's being detached! 8035 */ 8036 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 8037 8038 /* 8039 * Remove vd from its parent and compact the parent's children. 8040 */ 8041 vdev_remove_child(pvd, vd); 8042 vdev_compact_children(pvd); 8043 8044 /* 8045 * Remember one of the remaining children so we can get tvd below. 8046 */ 8047 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 8048 8049 /* 8050 * If we need to remove the remaining child from the list of hot spares, 8051 * do it now, marking the vdev as no longer a spare in the process. 8052 * We must do this before vdev_remove_parent(), because that can 8053 * change the GUID if it creates a new toplevel GUID. For a similar 8054 * reason, we must remove the spare now, in the same txg as the detach; 8055 * otherwise someone could attach a new sibling, change the GUID, and 8056 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 8057 */ 8058 if (unspare) { 8059 ASSERT(cvd->vdev_isspare); 8060 spa_spare_remove(cvd); 8061 unspare_guid = cvd->vdev_guid; 8062 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 8063 cvd->vdev_unspare = B_TRUE; 8064 } 8065 8066 /* 8067 * If the parent mirror/replacing vdev only has one child, 8068 * the parent is no longer needed. Remove it from the tree. 8069 */ 8070 if (pvd->vdev_children == 1) { 8071 if (pvd->vdev_ops == &vdev_spare_ops) 8072 cvd->vdev_unspare = B_FALSE; 8073 vdev_remove_parent(cvd); 8074 } 8075 8076 /* 8077 * We don't set tvd until now because the parent we just removed 8078 * may have been the previous top-level vdev. 8079 */ 8080 tvd = cvd->vdev_top; 8081 ASSERT(tvd->vdev_parent == rvd); 8082 8083 /* 8084 * Reevaluate the parent vdev state. 8085 */ 8086 vdev_propagate_state(cvd); 8087 8088 /* 8089 * If the 'autoexpand' property is set on the pool then automatically 8090 * try to expand the size of the pool. For example if the device we 8091 * just detached was smaller than the others, it may be possible to 8092 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 8093 * first so that we can obtain the updated sizes of the leaf vdevs. 8094 */ 8095 if (spa->spa_autoexpand) { 8096 vdev_reopen(tvd); 8097 vdev_expand(tvd, txg); 8098 } 8099 8100 vdev_config_dirty(tvd); 8101 8102 /* 8103 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 8104 * vd->vdev_detached is set and free vd's DTL object in syncing context. 8105 * But first make sure we're not on any *other* txg's DTL list, to 8106 * prevent vd from being accessed after it's freed. 8107 */ 8108 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 8109 for (int t = 0; t < TXG_SIZE; t++) 8110 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 8111 vd->vdev_detached = B_TRUE; 8112 vdev_dirty(tvd, VDD_DTL, vd, txg); 8113 8114 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 8115 spa_notify_waiters(spa); 8116 8117 /* hang on to the spa before we release the lock */ 8118 spa_open_ref(spa, FTAG); 8119 8120 error = spa_vdev_exit(spa, vd, txg, 0); 8121 8122 spa_history_log_internal(spa, "detach", NULL, 8123 "vdev=%s", vdpath); 8124 spa_strfree(vdpath); 8125 8126 /* 8127 * If this was the removal of the original device in a hot spare vdev, 8128 * then we want to go through and remove the device from the hot spare 8129 * list of every other pool. 8130 */ 8131 if (unspare) { 8132 spa_t *altspa = NULL; 8133 8134 mutex_enter(&spa_namespace_lock); 8135 while ((altspa = spa_next(altspa)) != NULL) { 8136 if (altspa->spa_state != POOL_STATE_ACTIVE || 8137 altspa == spa) 8138 continue; 8139 8140 spa_open_ref(altspa, FTAG); 8141 mutex_exit(&spa_namespace_lock); 8142 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 8143 mutex_enter(&spa_namespace_lock); 8144 spa_close(altspa, FTAG); 8145 } 8146 mutex_exit(&spa_namespace_lock); 8147 8148 /* search the rest of the vdevs for spares to remove */ 8149 spa_vdev_resilver_done(spa); 8150 } 8151 8152 /* all done with the spa; OK to release */ 8153 mutex_enter(&spa_namespace_lock); 8154 spa_close(spa, FTAG); 8155 mutex_exit(&spa_namespace_lock); 8156 8157 return (error); 8158 } 8159 8160 static int 8161 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8162 list_t *vd_list) 8163 { 8164 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8165 8166 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8167 8168 /* Look up vdev and ensure it's a leaf. */ 8169 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8170 if (vd == NULL || vd->vdev_detached) { 8171 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8172 return (SET_ERROR(ENODEV)); 8173 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8174 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8175 return (SET_ERROR(EINVAL)); 8176 } else if (!vdev_writeable(vd)) { 8177 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8178 return (SET_ERROR(EROFS)); 8179 } 8180 mutex_enter(&vd->vdev_initialize_lock); 8181 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8182 8183 /* 8184 * When we activate an initialize action we check to see 8185 * if the vdev_initialize_thread is NULL. We do this instead 8186 * of using the vdev_initialize_state since there might be 8187 * a previous initialization process which has completed but 8188 * the thread is not exited. 8189 */ 8190 if (cmd_type == POOL_INITIALIZE_START && 8191 (vd->vdev_initialize_thread != NULL || 8192 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 8193 mutex_exit(&vd->vdev_initialize_lock); 8194 return (SET_ERROR(EBUSY)); 8195 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 8196 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 8197 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 8198 mutex_exit(&vd->vdev_initialize_lock); 8199 return (SET_ERROR(ESRCH)); 8200 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 8201 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 8202 mutex_exit(&vd->vdev_initialize_lock); 8203 return (SET_ERROR(ESRCH)); 8204 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 8205 vd->vdev_initialize_thread != NULL) { 8206 mutex_exit(&vd->vdev_initialize_lock); 8207 return (SET_ERROR(EBUSY)); 8208 } 8209 8210 switch (cmd_type) { 8211 case POOL_INITIALIZE_START: 8212 vdev_initialize(vd); 8213 break; 8214 case POOL_INITIALIZE_CANCEL: 8215 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 8216 break; 8217 case POOL_INITIALIZE_SUSPEND: 8218 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 8219 break; 8220 case POOL_INITIALIZE_UNINIT: 8221 vdev_uninitialize(vd); 8222 break; 8223 default: 8224 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8225 } 8226 mutex_exit(&vd->vdev_initialize_lock); 8227 8228 return (0); 8229 } 8230 8231 int 8232 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 8233 nvlist_t *vdev_errlist) 8234 { 8235 int total_errors = 0; 8236 list_t vd_list; 8237 8238 list_create(&vd_list, sizeof (vdev_t), 8239 offsetof(vdev_t, vdev_initialize_node)); 8240 8241 /* 8242 * We hold the namespace lock through the whole function 8243 * to prevent any changes to the pool while we're starting or 8244 * stopping initialization. The config and state locks are held so that 8245 * we can properly assess the vdev state before we commit to 8246 * the initializing operation. 8247 */ 8248 mutex_enter(&spa_namespace_lock); 8249 8250 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8251 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8252 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8253 8254 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 8255 &vd_list); 8256 if (error != 0) { 8257 char guid_as_str[MAXNAMELEN]; 8258 8259 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8260 "%llu", (unsigned long long)vdev_guid); 8261 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8262 total_errors++; 8263 } 8264 } 8265 8266 /* Wait for all initialize threads to stop. */ 8267 vdev_initialize_stop_wait(spa, &vd_list); 8268 8269 /* Sync out the initializing state */ 8270 txg_wait_synced(spa->spa_dsl_pool, 0); 8271 mutex_exit(&spa_namespace_lock); 8272 8273 list_destroy(&vd_list); 8274 8275 return (total_errors); 8276 } 8277 8278 static int 8279 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8280 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 8281 { 8282 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8283 8284 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8285 8286 /* Look up vdev and ensure it's a leaf. */ 8287 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8288 if (vd == NULL || vd->vdev_detached) { 8289 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8290 return (SET_ERROR(ENODEV)); 8291 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8292 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8293 return (SET_ERROR(EINVAL)); 8294 } else if (!vdev_writeable(vd)) { 8295 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8296 return (SET_ERROR(EROFS)); 8297 } else if (!vd->vdev_has_trim) { 8298 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8299 return (SET_ERROR(EOPNOTSUPP)); 8300 } else if (secure && !vd->vdev_has_securetrim) { 8301 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8302 return (SET_ERROR(EOPNOTSUPP)); 8303 } 8304 mutex_enter(&vd->vdev_trim_lock); 8305 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8306 8307 /* 8308 * When we activate a TRIM action we check to see if the 8309 * vdev_trim_thread is NULL. We do this instead of using the 8310 * vdev_trim_state since there might be a previous TRIM process 8311 * which has completed but the thread is not exited. 8312 */ 8313 if (cmd_type == POOL_TRIM_START && 8314 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 8315 vd->vdev_top->vdev_rz_expanding)) { 8316 mutex_exit(&vd->vdev_trim_lock); 8317 return (SET_ERROR(EBUSY)); 8318 } else if (cmd_type == POOL_TRIM_CANCEL && 8319 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 8320 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 8321 mutex_exit(&vd->vdev_trim_lock); 8322 return (SET_ERROR(ESRCH)); 8323 } else if (cmd_type == POOL_TRIM_SUSPEND && 8324 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 8325 mutex_exit(&vd->vdev_trim_lock); 8326 return (SET_ERROR(ESRCH)); 8327 } 8328 8329 switch (cmd_type) { 8330 case POOL_TRIM_START: 8331 vdev_trim(vd, rate, partial, secure); 8332 break; 8333 case POOL_TRIM_CANCEL: 8334 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 8335 break; 8336 case POOL_TRIM_SUSPEND: 8337 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 8338 break; 8339 default: 8340 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8341 } 8342 mutex_exit(&vd->vdev_trim_lock); 8343 8344 return (0); 8345 } 8346 8347 /* 8348 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 8349 * TRIM threads for each child vdev. These threads pass over all of the free 8350 * space in the vdev's metaslabs and issues TRIM commands for that space. 8351 */ 8352 int 8353 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 8354 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 8355 { 8356 int total_errors = 0; 8357 list_t vd_list; 8358 8359 list_create(&vd_list, sizeof (vdev_t), 8360 offsetof(vdev_t, vdev_trim_node)); 8361 8362 /* 8363 * We hold the namespace lock through the whole function 8364 * to prevent any changes to the pool while we're starting or 8365 * stopping TRIM. The config and state locks are held so that 8366 * we can properly assess the vdev state before we commit to 8367 * the TRIM operation. 8368 */ 8369 mutex_enter(&spa_namespace_lock); 8370 8371 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8372 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8373 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8374 8375 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 8376 rate, partial, secure, &vd_list); 8377 if (error != 0) { 8378 char guid_as_str[MAXNAMELEN]; 8379 8380 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8381 "%llu", (unsigned long long)vdev_guid); 8382 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8383 total_errors++; 8384 } 8385 } 8386 8387 /* Wait for all TRIM threads to stop. */ 8388 vdev_trim_stop_wait(spa, &vd_list); 8389 8390 /* Sync out the TRIM state */ 8391 txg_wait_synced(spa->spa_dsl_pool, 0); 8392 mutex_exit(&spa_namespace_lock); 8393 8394 list_destroy(&vd_list); 8395 8396 return (total_errors); 8397 } 8398 8399 /* 8400 * Split a set of devices from their mirrors, and create a new pool from them. 8401 */ 8402 int 8403 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 8404 nvlist_t *props, boolean_t exp) 8405 { 8406 int error = 0; 8407 uint64_t txg, *glist; 8408 spa_t *newspa; 8409 uint_t c, children, lastlog; 8410 nvlist_t **child, *nvl, *tmp; 8411 dmu_tx_t *tx; 8412 const char *altroot = NULL; 8413 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 8414 boolean_t activate_slog; 8415 8416 ASSERT(spa_writeable(spa)); 8417 8418 txg = spa_vdev_enter(spa); 8419 8420 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8421 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 8422 error = (spa_has_checkpoint(spa)) ? 8423 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 8424 return (spa_vdev_exit(spa, NULL, txg, error)); 8425 } 8426 8427 /* clear the log and flush everything up to now */ 8428 activate_slog = spa_passivate_log(spa); 8429 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8430 error = spa_reset_logs(spa); 8431 txg = spa_vdev_config_enter(spa); 8432 8433 if (activate_slog) 8434 spa_activate_log(spa); 8435 8436 if (error != 0) 8437 return (spa_vdev_exit(spa, NULL, txg, error)); 8438 8439 /* check new spa name before going any further */ 8440 if (spa_lookup(newname) != NULL) 8441 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 8442 8443 /* 8444 * scan through all the children to ensure they're all mirrors 8445 */ 8446 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 8447 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 8448 &children) != 0) 8449 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8450 8451 /* first, check to ensure we've got the right child count */ 8452 rvd = spa->spa_root_vdev; 8453 lastlog = 0; 8454 for (c = 0; c < rvd->vdev_children; c++) { 8455 vdev_t *vd = rvd->vdev_child[c]; 8456 8457 /* don't count the holes & logs as children */ 8458 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 8459 !vdev_is_concrete(vd))) { 8460 if (lastlog == 0) 8461 lastlog = c; 8462 continue; 8463 } 8464 8465 lastlog = 0; 8466 } 8467 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 8468 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8469 8470 /* next, ensure no spare or cache devices are part of the split */ 8471 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 8472 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 8473 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8474 8475 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 8476 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 8477 8478 /* then, loop over each vdev and validate it */ 8479 for (c = 0; c < children; c++) { 8480 uint64_t is_hole = 0; 8481 8482 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 8483 &is_hole); 8484 8485 if (is_hole != 0) { 8486 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 8487 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 8488 continue; 8489 } else { 8490 error = SET_ERROR(EINVAL); 8491 break; 8492 } 8493 } 8494 8495 /* deal with indirect vdevs */ 8496 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 8497 &vdev_indirect_ops) 8498 continue; 8499 8500 /* which disk is going to be split? */ 8501 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 8502 &glist[c]) != 0) { 8503 error = SET_ERROR(EINVAL); 8504 break; 8505 } 8506 8507 /* look it up in the spa */ 8508 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 8509 if (vml[c] == NULL) { 8510 error = SET_ERROR(ENODEV); 8511 break; 8512 } 8513 8514 /* make sure there's nothing stopping the split */ 8515 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 8516 vml[c]->vdev_islog || 8517 !vdev_is_concrete(vml[c]) || 8518 vml[c]->vdev_isspare || 8519 vml[c]->vdev_isl2cache || 8520 !vdev_writeable(vml[c]) || 8521 vml[c]->vdev_children != 0 || 8522 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 8523 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 8524 error = SET_ERROR(EINVAL); 8525 break; 8526 } 8527 8528 if (vdev_dtl_required(vml[c]) || 8529 vdev_resilver_needed(vml[c], NULL, NULL)) { 8530 error = SET_ERROR(EBUSY); 8531 break; 8532 } 8533 8534 /* we need certain info from the top level */ 8535 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 8536 vml[c]->vdev_top->vdev_ms_array); 8537 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 8538 vml[c]->vdev_top->vdev_ms_shift); 8539 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 8540 vml[c]->vdev_top->vdev_asize); 8541 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 8542 vml[c]->vdev_top->vdev_ashift); 8543 8544 /* transfer per-vdev ZAPs */ 8545 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 8546 VERIFY0(nvlist_add_uint64(child[c], 8547 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 8548 8549 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 8550 VERIFY0(nvlist_add_uint64(child[c], 8551 ZPOOL_CONFIG_VDEV_TOP_ZAP, 8552 vml[c]->vdev_parent->vdev_top_zap)); 8553 } 8554 8555 if (error != 0) { 8556 kmem_free(vml, children * sizeof (vdev_t *)); 8557 kmem_free(glist, children * sizeof (uint64_t)); 8558 return (spa_vdev_exit(spa, NULL, txg, error)); 8559 } 8560 8561 /* stop writers from using the disks */ 8562 for (c = 0; c < children; c++) { 8563 if (vml[c] != NULL) 8564 vml[c]->vdev_offline = B_TRUE; 8565 } 8566 vdev_reopen(spa->spa_root_vdev); 8567 8568 /* 8569 * Temporarily record the splitting vdevs in the spa config. This 8570 * will disappear once the config is regenerated. 8571 */ 8572 nvl = fnvlist_alloc(); 8573 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8574 kmem_free(glist, children * sizeof (uint64_t)); 8575 8576 mutex_enter(&spa->spa_props_lock); 8577 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8578 mutex_exit(&spa->spa_props_lock); 8579 spa->spa_config_splitting = nvl; 8580 vdev_config_dirty(spa->spa_root_vdev); 8581 8582 /* configure and create the new pool */ 8583 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8584 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8585 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8586 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8587 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8588 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8589 spa_generate_guid(NULL)); 8590 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8591 (void) nvlist_lookup_string(props, 8592 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8593 8594 /* add the new pool to the namespace */ 8595 newspa = spa_add(newname, config, altroot); 8596 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8597 newspa->spa_config_txg = spa->spa_config_txg; 8598 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8599 8600 /* release the spa config lock, retaining the namespace lock */ 8601 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8602 8603 if (zio_injection_enabled) 8604 zio_handle_panic_injection(spa, FTAG, 1); 8605 8606 spa_activate(newspa, spa_mode_global); 8607 spa_async_suspend(newspa); 8608 8609 /* 8610 * Temporarily stop the initializing and TRIM activity. We set the 8611 * state to ACTIVE so that we know to resume initializing or TRIM 8612 * once the split has completed. 8613 */ 8614 list_t vd_initialize_list; 8615 list_create(&vd_initialize_list, sizeof (vdev_t), 8616 offsetof(vdev_t, vdev_initialize_node)); 8617 8618 list_t vd_trim_list; 8619 list_create(&vd_trim_list, sizeof (vdev_t), 8620 offsetof(vdev_t, vdev_trim_node)); 8621 8622 for (c = 0; c < children; c++) { 8623 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8624 mutex_enter(&vml[c]->vdev_initialize_lock); 8625 vdev_initialize_stop(vml[c], 8626 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8627 mutex_exit(&vml[c]->vdev_initialize_lock); 8628 8629 mutex_enter(&vml[c]->vdev_trim_lock); 8630 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8631 mutex_exit(&vml[c]->vdev_trim_lock); 8632 } 8633 } 8634 8635 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8636 vdev_trim_stop_wait(spa, &vd_trim_list); 8637 8638 list_destroy(&vd_initialize_list); 8639 list_destroy(&vd_trim_list); 8640 8641 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8642 newspa->spa_is_splitting = B_TRUE; 8643 8644 /* create the new pool from the disks of the original pool */ 8645 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8646 if (error) 8647 goto out; 8648 8649 /* if that worked, generate a real config for the new pool */ 8650 if (newspa->spa_root_vdev != NULL) { 8651 newspa->spa_config_splitting = fnvlist_alloc(); 8652 fnvlist_add_uint64(newspa->spa_config_splitting, 8653 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8654 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8655 B_TRUE)); 8656 } 8657 8658 /* set the props */ 8659 if (props != NULL) { 8660 spa_configfile_set(newspa, props, B_FALSE); 8661 error = spa_prop_set(newspa, props); 8662 if (error) 8663 goto out; 8664 } 8665 8666 /* flush everything */ 8667 txg = spa_vdev_config_enter(newspa); 8668 vdev_config_dirty(newspa->spa_root_vdev); 8669 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8670 8671 if (zio_injection_enabled) 8672 zio_handle_panic_injection(spa, FTAG, 2); 8673 8674 spa_async_resume(newspa); 8675 8676 /* finally, update the original pool's config */ 8677 txg = spa_vdev_config_enter(spa); 8678 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8679 error = dmu_tx_assign(tx, DMU_TX_WAIT); 8680 if (error != 0) 8681 dmu_tx_abort(tx); 8682 for (c = 0; c < children; c++) { 8683 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8684 vdev_t *tvd = vml[c]->vdev_top; 8685 8686 /* 8687 * Need to be sure the detachable VDEV is not 8688 * on any *other* txg's DTL list to prevent it 8689 * from being accessed after it's freed. 8690 */ 8691 for (int t = 0; t < TXG_SIZE; t++) { 8692 (void) txg_list_remove_this( 8693 &tvd->vdev_dtl_list, vml[c], t); 8694 } 8695 8696 vdev_split(vml[c]); 8697 if (error == 0) 8698 spa_history_log_internal(spa, "detach", tx, 8699 "vdev=%s", vml[c]->vdev_path); 8700 8701 vdev_free(vml[c]); 8702 } 8703 } 8704 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8705 vdev_config_dirty(spa->spa_root_vdev); 8706 spa->spa_config_splitting = NULL; 8707 nvlist_free(nvl); 8708 if (error == 0) 8709 dmu_tx_commit(tx); 8710 (void) spa_vdev_exit(spa, NULL, txg, 0); 8711 8712 if (zio_injection_enabled) 8713 zio_handle_panic_injection(spa, FTAG, 3); 8714 8715 /* split is complete; log a history record */ 8716 spa_history_log_internal(newspa, "split", NULL, 8717 "from pool %s", spa_name(spa)); 8718 8719 newspa->spa_is_splitting = B_FALSE; 8720 kmem_free(vml, children * sizeof (vdev_t *)); 8721 8722 /* if we're not going to mount the filesystems in userland, export */ 8723 if (exp) 8724 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8725 B_FALSE, B_FALSE); 8726 8727 return (error); 8728 8729 out: 8730 spa_unload(newspa); 8731 spa_deactivate(newspa); 8732 spa_remove(newspa); 8733 8734 txg = spa_vdev_config_enter(spa); 8735 8736 /* re-online all offlined disks */ 8737 for (c = 0; c < children; c++) { 8738 if (vml[c] != NULL) 8739 vml[c]->vdev_offline = B_FALSE; 8740 } 8741 8742 /* restart initializing or trimming disks as necessary */ 8743 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8744 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8745 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8746 8747 vdev_reopen(spa->spa_root_vdev); 8748 8749 nvlist_free(spa->spa_config_splitting); 8750 spa->spa_config_splitting = NULL; 8751 (void) spa_vdev_exit(spa, NULL, txg, error); 8752 8753 kmem_free(vml, children * sizeof (vdev_t *)); 8754 return (error); 8755 } 8756 8757 /* 8758 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8759 * currently spared, so we can detach it. 8760 */ 8761 static vdev_t * 8762 spa_vdev_resilver_done_hunt(vdev_t *vd) 8763 { 8764 vdev_t *newvd, *oldvd; 8765 8766 for (int c = 0; c < vd->vdev_children; c++) { 8767 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8768 if (oldvd != NULL) 8769 return (oldvd); 8770 } 8771 8772 /* 8773 * Check for a completed replacement. We always consider the first 8774 * vdev in the list to be the oldest vdev, and the last one to be 8775 * the newest (see spa_vdev_attach() for how that works). In 8776 * the case where the newest vdev is faulted, we will not automatically 8777 * remove it after a resilver completes. This is OK as it will require 8778 * user intervention to determine which disk the admin wishes to keep. 8779 */ 8780 if (vd->vdev_ops == &vdev_replacing_ops) { 8781 ASSERT(vd->vdev_children > 1); 8782 8783 newvd = vd->vdev_child[vd->vdev_children - 1]; 8784 oldvd = vd->vdev_child[0]; 8785 8786 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8787 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8788 !vdev_dtl_required(oldvd)) 8789 return (oldvd); 8790 } 8791 8792 /* 8793 * Check for a completed resilver with the 'unspare' flag set. 8794 * Also potentially update faulted state. 8795 */ 8796 if (vd->vdev_ops == &vdev_spare_ops) { 8797 vdev_t *first = vd->vdev_child[0]; 8798 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8799 8800 if (last->vdev_unspare) { 8801 oldvd = first; 8802 newvd = last; 8803 } else if (first->vdev_unspare) { 8804 oldvd = last; 8805 newvd = first; 8806 } else { 8807 oldvd = NULL; 8808 } 8809 8810 if (oldvd != NULL && 8811 vdev_dtl_empty(newvd, DTL_MISSING) && 8812 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8813 !vdev_dtl_required(oldvd)) 8814 return (oldvd); 8815 8816 vdev_propagate_state(vd); 8817 8818 /* 8819 * If there are more than two spares attached to a disk, 8820 * and those spares are not required, then we want to 8821 * attempt to free them up now so that they can be used 8822 * by other pools. Once we're back down to a single 8823 * disk+spare, we stop removing them. 8824 */ 8825 if (vd->vdev_children > 2) { 8826 newvd = vd->vdev_child[1]; 8827 8828 if (newvd->vdev_isspare && last->vdev_isspare && 8829 vdev_dtl_empty(last, DTL_MISSING) && 8830 vdev_dtl_empty(last, DTL_OUTAGE) && 8831 !vdev_dtl_required(newvd)) 8832 return (newvd); 8833 } 8834 } 8835 8836 return (NULL); 8837 } 8838 8839 static void 8840 spa_vdev_resilver_done(spa_t *spa) 8841 { 8842 vdev_t *vd, *pvd, *ppvd; 8843 uint64_t guid, sguid, pguid, ppguid; 8844 8845 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8846 8847 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8848 pvd = vd->vdev_parent; 8849 ppvd = pvd->vdev_parent; 8850 guid = vd->vdev_guid; 8851 pguid = pvd->vdev_guid; 8852 ppguid = ppvd->vdev_guid; 8853 sguid = 0; 8854 /* 8855 * If we have just finished replacing a hot spared device, then 8856 * we need to detach the parent's first child (the original hot 8857 * spare) as well. 8858 */ 8859 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8860 ppvd->vdev_children == 2) { 8861 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8862 sguid = ppvd->vdev_child[1]->vdev_guid; 8863 } 8864 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8865 8866 spa_config_exit(spa, SCL_ALL, FTAG); 8867 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8868 return; 8869 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8870 return; 8871 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8872 } 8873 8874 spa_config_exit(spa, SCL_ALL, FTAG); 8875 8876 /* 8877 * If a detach was not performed above replace waiters will not have 8878 * been notified. In which case we must do so now. 8879 */ 8880 spa_notify_waiters(spa); 8881 } 8882 8883 /* 8884 * Update the stored path or FRU for this vdev. 8885 */ 8886 static int 8887 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8888 boolean_t ispath) 8889 { 8890 vdev_t *vd; 8891 boolean_t sync = B_FALSE; 8892 8893 ASSERT(spa_writeable(spa)); 8894 8895 spa_vdev_state_enter(spa, SCL_ALL); 8896 8897 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8898 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8899 8900 if (!vd->vdev_ops->vdev_op_leaf) 8901 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8902 8903 if (ispath) { 8904 if (strcmp(value, vd->vdev_path) != 0) { 8905 spa_strfree(vd->vdev_path); 8906 vd->vdev_path = spa_strdup(value); 8907 sync = B_TRUE; 8908 } 8909 } else { 8910 if (vd->vdev_fru == NULL) { 8911 vd->vdev_fru = spa_strdup(value); 8912 sync = B_TRUE; 8913 } else if (strcmp(value, vd->vdev_fru) != 0) { 8914 spa_strfree(vd->vdev_fru); 8915 vd->vdev_fru = spa_strdup(value); 8916 sync = B_TRUE; 8917 } 8918 } 8919 8920 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8921 } 8922 8923 int 8924 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8925 { 8926 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8927 } 8928 8929 int 8930 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8931 { 8932 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8933 } 8934 8935 /* 8936 * ========================================================================== 8937 * SPA Scanning 8938 * ========================================================================== 8939 */ 8940 int 8941 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8942 { 8943 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8944 8945 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8946 return (SET_ERROR(EBUSY)); 8947 8948 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8949 } 8950 8951 int 8952 spa_scan_stop(spa_t *spa) 8953 { 8954 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8955 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8956 return (SET_ERROR(EBUSY)); 8957 8958 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8959 } 8960 8961 int 8962 spa_scan(spa_t *spa, pool_scan_func_t func) 8963 { 8964 return (spa_scan_range(spa, func, 0, 0)); 8965 } 8966 8967 int 8968 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart, 8969 uint64_t txgend) 8970 { 8971 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8972 8973 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8974 return (SET_ERROR(ENOTSUP)); 8975 8976 if (func == POOL_SCAN_RESILVER && 8977 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8978 return (SET_ERROR(ENOTSUP)); 8979 8980 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) 8981 return (SET_ERROR(ENOTSUP)); 8982 8983 /* 8984 * If a resilver was requested, but there is no DTL on a 8985 * writeable leaf device, we have nothing to do. 8986 */ 8987 if (func == POOL_SCAN_RESILVER && 8988 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8989 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8990 return (0); 8991 } 8992 8993 if (func == POOL_SCAN_ERRORSCRUB && 8994 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 8995 return (SET_ERROR(ENOTSUP)); 8996 8997 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend)); 8998 } 8999 9000 /* 9001 * ========================================================================== 9002 * SPA async task processing 9003 * ========================================================================== 9004 */ 9005 9006 static void 9007 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel) 9008 { 9009 if (vd->vdev_remove_wanted) { 9010 vd->vdev_remove_wanted = B_FALSE; 9011 vd->vdev_delayed_close = B_FALSE; 9012 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 9013 9014 /* 9015 * We want to clear the stats, but we don't want to do a full 9016 * vdev_clear() as that will cause us to throw away 9017 * degraded/faulted state as well as attempt to reopen the 9018 * device, all of which is a waste. 9019 */ 9020 vd->vdev_stat.vs_read_errors = 0; 9021 vd->vdev_stat.vs_write_errors = 0; 9022 vd->vdev_stat.vs_checksum_errors = 0; 9023 9024 vdev_state_dirty(vd->vdev_top); 9025 9026 /* Tell userspace that the vdev is gone. */ 9027 zfs_post_remove(spa, vd, by_kernel); 9028 } 9029 9030 for (int c = 0; c < vd->vdev_children; c++) 9031 spa_async_remove(spa, vd->vdev_child[c], by_kernel); 9032 } 9033 9034 static void 9035 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend) 9036 { 9037 if (vd->vdev_fault_wanted) { 9038 vdev_state_t newstate = VDEV_STATE_FAULTED; 9039 vd->vdev_fault_wanted = B_FALSE; 9040 9041 /* 9042 * If this device has the only valid copy of the data, then 9043 * back off and simply mark the vdev as degraded instead. 9044 */ 9045 if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL && 9046 vdev_dtl_required(vd)) { 9047 newstate = VDEV_STATE_DEGRADED; 9048 /* A required disk is missing so suspend the pool */ 9049 *suspend = B_TRUE; 9050 } 9051 vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED); 9052 } 9053 for (int c = 0; c < vd->vdev_children; c++) 9054 spa_async_fault_vdev(vd->vdev_child[c], suspend); 9055 } 9056 9057 static void 9058 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 9059 { 9060 if (!spa->spa_autoexpand) 9061 return; 9062 9063 for (int c = 0; c < vd->vdev_children; c++) { 9064 vdev_t *cvd = vd->vdev_child[c]; 9065 spa_async_autoexpand(spa, cvd); 9066 } 9067 9068 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 9069 return; 9070 9071 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 9072 } 9073 9074 static __attribute__((noreturn)) void 9075 spa_async_thread(void *arg) 9076 { 9077 spa_t *spa = (spa_t *)arg; 9078 dsl_pool_t *dp = spa->spa_dsl_pool; 9079 int tasks; 9080 9081 ASSERT(spa->spa_sync_on); 9082 9083 mutex_enter(&spa->spa_async_lock); 9084 tasks = spa->spa_async_tasks; 9085 spa->spa_async_tasks = 0; 9086 mutex_exit(&spa->spa_async_lock); 9087 9088 /* 9089 * See if the config needs to be updated. 9090 */ 9091 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 9092 uint64_t old_space, new_space; 9093 9094 mutex_enter(&spa_namespace_lock); 9095 old_space = metaslab_class_get_space(spa_normal_class(spa)); 9096 old_space += metaslab_class_get_space(spa_special_class(spa)); 9097 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 9098 old_space += metaslab_class_get_space( 9099 spa_embedded_log_class(spa)); 9100 9101 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 9102 9103 new_space = metaslab_class_get_space(spa_normal_class(spa)); 9104 new_space += metaslab_class_get_space(spa_special_class(spa)); 9105 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 9106 new_space += metaslab_class_get_space( 9107 spa_embedded_log_class(spa)); 9108 mutex_exit(&spa_namespace_lock); 9109 9110 /* 9111 * If the pool grew as a result of the config update, 9112 * then log an internal history event. 9113 */ 9114 if (new_space != old_space) { 9115 spa_history_log_internal(spa, "vdev online", NULL, 9116 "pool '%s' size: %llu(+%llu)", 9117 spa_name(spa), (u_longlong_t)new_space, 9118 (u_longlong_t)(new_space - old_space)); 9119 } 9120 } 9121 9122 /* 9123 * See if any devices need to be marked REMOVED. 9124 */ 9125 if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) { 9126 boolean_t by_kernel = B_TRUE; 9127 if (tasks & SPA_ASYNC_REMOVE_BY_USER) 9128 by_kernel = B_FALSE; 9129 spa_vdev_state_enter(spa, SCL_NONE); 9130 spa_async_remove(spa, spa->spa_root_vdev, by_kernel); 9131 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 9132 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i], 9133 by_kernel); 9134 for (int i = 0; i < spa->spa_spares.sav_count; i++) 9135 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i], 9136 by_kernel); 9137 (void) spa_vdev_state_exit(spa, NULL, 0); 9138 } 9139 9140 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 9141 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9142 spa_async_autoexpand(spa, spa->spa_root_vdev); 9143 spa_config_exit(spa, SCL_CONFIG, FTAG); 9144 } 9145 9146 /* 9147 * See if any devices need to be marked faulted. 9148 */ 9149 if (tasks & SPA_ASYNC_FAULT_VDEV) { 9150 spa_vdev_state_enter(spa, SCL_NONE); 9151 boolean_t suspend = B_FALSE; 9152 spa_async_fault_vdev(spa->spa_root_vdev, &suspend); 9153 (void) spa_vdev_state_exit(spa, NULL, 0); 9154 if (suspend) 9155 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9156 } 9157 9158 /* 9159 * If any devices are done replacing, detach them. 9160 */ 9161 if (tasks & SPA_ASYNC_RESILVER_DONE || 9162 tasks & SPA_ASYNC_REBUILD_DONE || 9163 tasks & SPA_ASYNC_DETACH_SPARE) { 9164 spa_vdev_resilver_done(spa); 9165 } 9166 9167 /* 9168 * Kick off a resilver. 9169 */ 9170 if (tasks & SPA_ASYNC_RESILVER && 9171 !vdev_rebuild_active(spa->spa_root_vdev) && 9172 (!dsl_scan_resilvering(dp) || 9173 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 9174 dsl_scan_restart_resilver(dp, 0); 9175 9176 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 9177 mutex_enter(&spa_namespace_lock); 9178 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9179 vdev_initialize_restart(spa->spa_root_vdev); 9180 spa_config_exit(spa, SCL_CONFIG, FTAG); 9181 mutex_exit(&spa_namespace_lock); 9182 } 9183 9184 if (tasks & SPA_ASYNC_TRIM_RESTART) { 9185 mutex_enter(&spa_namespace_lock); 9186 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9187 vdev_trim_restart(spa->spa_root_vdev); 9188 spa_config_exit(spa, SCL_CONFIG, FTAG); 9189 mutex_exit(&spa_namespace_lock); 9190 } 9191 9192 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 9193 mutex_enter(&spa_namespace_lock); 9194 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9195 vdev_autotrim_restart(spa); 9196 spa_config_exit(spa, SCL_CONFIG, FTAG); 9197 mutex_exit(&spa_namespace_lock); 9198 } 9199 9200 /* 9201 * Kick off L2 cache whole device TRIM. 9202 */ 9203 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 9204 mutex_enter(&spa_namespace_lock); 9205 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9206 vdev_trim_l2arc(spa); 9207 spa_config_exit(spa, SCL_CONFIG, FTAG); 9208 mutex_exit(&spa_namespace_lock); 9209 } 9210 9211 /* 9212 * Kick off L2 cache rebuilding. 9213 */ 9214 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 9215 mutex_enter(&spa_namespace_lock); 9216 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 9217 l2arc_spa_rebuild_start(spa); 9218 spa_config_exit(spa, SCL_L2ARC, FTAG); 9219 mutex_exit(&spa_namespace_lock); 9220 } 9221 9222 /* 9223 * Let the world know that we're done. 9224 */ 9225 mutex_enter(&spa->spa_async_lock); 9226 spa->spa_async_thread = NULL; 9227 cv_broadcast(&spa->spa_async_cv); 9228 mutex_exit(&spa->spa_async_lock); 9229 thread_exit(); 9230 } 9231 9232 void 9233 spa_async_suspend(spa_t *spa) 9234 { 9235 mutex_enter(&spa->spa_async_lock); 9236 spa->spa_async_suspended++; 9237 while (spa->spa_async_thread != NULL) 9238 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 9239 mutex_exit(&spa->spa_async_lock); 9240 9241 spa_vdev_remove_suspend(spa); 9242 9243 zthr_t *condense_thread = spa->spa_condense_zthr; 9244 if (condense_thread != NULL) 9245 zthr_cancel(condense_thread); 9246 9247 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9248 if (raidz_expand_thread != NULL) 9249 zthr_cancel(raidz_expand_thread); 9250 9251 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9252 if (discard_thread != NULL) 9253 zthr_cancel(discard_thread); 9254 9255 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9256 if (ll_delete_thread != NULL) 9257 zthr_cancel(ll_delete_thread); 9258 9259 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9260 if (ll_condense_thread != NULL) 9261 zthr_cancel(ll_condense_thread); 9262 } 9263 9264 void 9265 spa_async_resume(spa_t *spa) 9266 { 9267 mutex_enter(&spa->spa_async_lock); 9268 ASSERT(spa->spa_async_suspended != 0); 9269 spa->spa_async_suspended--; 9270 mutex_exit(&spa->spa_async_lock); 9271 spa_restart_removal(spa); 9272 9273 zthr_t *condense_thread = spa->spa_condense_zthr; 9274 if (condense_thread != NULL) 9275 zthr_resume(condense_thread); 9276 9277 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9278 if (raidz_expand_thread != NULL) 9279 zthr_resume(raidz_expand_thread); 9280 9281 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9282 if (discard_thread != NULL) 9283 zthr_resume(discard_thread); 9284 9285 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9286 if (ll_delete_thread != NULL) 9287 zthr_resume(ll_delete_thread); 9288 9289 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9290 if (ll_condense_thread != NULL) 9291 zthr_resume(ll_condense_thread); 9292 } 9293 9294 static boolean_t 9295 spa_async_tasks_pending(spa_t *spa) 9296 { 9297 uint_t non_config_tasks; 9298 uint_t config_task; 9299 boolean_t config_task_suspended; 9300 9301 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 9302 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 9303 if (spa->spa_ccw_fail_time == 0) { 9304 config_task_suspended = B_FALSE; 9305 } else { 9306 config_task_suspended = 9307 (gethrtime() - spa->spa_ccw_fail_time) < 9308 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 9309 } 9310 9311 return (non_config_tasks || (config_task && !config_task_suspended)); 9312 } 9313 9314 static void 9315 spa_async_dispatch(spa_t *spa) 9316 { 9317 mutex_enter(&spa->spa_async_lock); 9318 if (spa_async_tasks_pending(spa) && 9319 !spa->spa_async_suspended && 9320 spa->spa_async_thread == NULL) 9321 spa->spa_async_thread = thread_create(NULL, 0, 9322 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 9323 mutex_exit(&spa->spa_async_lock); 9324 } 9325 9326 void 9327 spa_async_request(spa_t *spa, int task) 9328 { 9329 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 9330 mutex_enter(&spa->spa_async_lock); 9331 spa->spa_async_tasks |= task; 9332 mutex_exit(&spa->spa_async_lock); 9333 } 9334 9335 int 9336 spa_async_tasks(spa_t *spa) 9337 { 9338 return (spa->spa_async_tasks); 9339 } 9340 9341 /* 9342 * ========================================================================== 9343 * SPA syncing routines 9344 * ========================================================================== 9345 */ 9346 9347 9348 static int 9349 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9350 dmu_tx_t *tx) 9351 { 9352 bpobj_t *bpo = arg; 9353 bpobj_enqueue(bpo, bp, bp_freed, tx); 9354 return (0); 9355 } 9356 9357 int 9358 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9359 { 9360 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 9361 } 9362 9363 int 9364 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9365 { 9366 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 9367 } 9368 9369 static int 9370 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9371 { 9372 zio_t *pio = arg; 9373 9374 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 9375 pio->io_flags)); 9376 return (0); 9377 } 9378 9379 static int 9380 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9381 dmu_tx_t *tx) 9382 { 9383 ASSERT(!bp_freed); 9384 return (spa_free_sync_cb(arg, bp, tx)); 9385 } 9386 9387 /* 9388 * Note: this simple function is not inlined to make it easier to dtrace the 9389 * amount of time spent syncing frees. 9390 */ 9391 static void 9392 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 9393 { 9394 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9395 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 9396 VERIFY(zio_wait(zio) == 0); 9397 } 9398 9399 /* 9400 * Note: this simple function is not inlined to make it easier to dtrace the 9401 * amount of time spent syncing deferred frees. 9402 */ 9403 static void 9404 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 9405 { 9406 if (spa_sync_pass(spa) != 1) 9407 return; 9408 9409 /* 9410 * Note: 9411 * If the log space map feature is active, we stop deferring 9412 * frees to the next TXG and therefore running this function 9413 * would be considered a no-op as spa_deferred_bpobj should 9414 * not have any entries. 9415 * 9416 * That said we run this function anyway (instead of returning 9417 * immediately) for the edge-case scenario where we just 9418 * activated the log space map feature in this TXG but we have 9419 * deferred frees from the previous TXG. 9420 */ 9421 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9422 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 9423 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 9424 VERIFY0(zio_wait(zio)); 9425 } 9426 9427 static void 9428 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 9429 { 9430 char *packed = NULL; 9431 size_t bufsize; 9432 size_t nvsize = 0; 9433 dmu_buf_t *db; 9434 9435 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 9436 9437 /* 9438 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 9439 * information. This avoids the dmu_buf_will_dirty() path and 9440 * saves us a pre-read to get data we don't actually care about. 9441 */ 9442 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 9443 packed = vmem_alloc(bufsize, KM_SLEEP); 9444 9445 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 9446 KM_SLEEP) == 0); 9447 memset(packed + nvsize, 0, bufsize - nvsize); 9448 9449 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 9450 9451 vmem_free(packed, bufsize); 9452 9453 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 9454 dmu_buf_will_dirty(db, tx); 9455 *(uint64_t *)db->db_data = nvsize; 9456 dmu_buf_rele(db, FTAG); 9457 } 9458 9459 static void 9460 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 9461 const char *config, const char *entry) 9462 { 9463 nvlist_t *nvroot; 9464 nvlist_t **list; 9465 int i; 9466 9467 if (!sav->sav_sync) 9468 return; 9469 9470 /* 9471 * Update the MOS nvlist describing the list of available devices. 9472 * spa_validate_aux() will have already made sure this nvlist is 9473 * valid and the vdevs are labeled appropriately. 9474 */ 9475 if (sav->sav_object == 0) { 9476 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 9477 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 9478 sizeof (uint64_t), tx); 9479 VERIFY(zap_update(spa->spa_meta_objset, 9480 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 9481 &sav->sav_object, tx) == 0); 9482 } 9483 9484 nvroot = fnvlist_alloc(); 9485 if (sav->sav_count == 0) { 9486 fnvlist_add_nvlist_array(nvroot, config, 9487 (const nvlist_t * const *)NULL, 0); 9488 } else { 9489 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 9490 for (i = 0; i < sav->sav_count; i++) 9491 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 9492 B_FALSE, VDEV_CONFIG_L2CACHE); 9493 fnvlist_add_nvlist_array(nvroot, config, 9494 (const nvlist_t * const *)list, sav->sav_count); 9495 for (i = 0; i < sav->sav_count; i++) 9496 nvlist_free(list[i]); 9497 kmem_free(list, sav->sav_count * sizeof (void *)); 9498 } 9499 9500 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 9501 nvlist_free(nvroot); 9502 9503 sav->sav_sync = B_FALSE; 9504 } 9505 9506 /* 9507 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 9508 * The all-vdev ZAP must be empty. 9509 */ 9510 static void 9511 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 9512 { 9513 spa_t *spa = vd->vdev_spa; 9514 9515 if (vd->vdev_root_zap != 0 && 9516 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 9517 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9518 vd->vdev_root_zap, tx)); 9519 } 9520 if (vd->vdev_top_zap != 0) { 9521 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9522 vd->vdev_top_zap, tx)); 9523 } 9524 if (vd->vdev_leaf_zap != 0) { 9525 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9526 vd->vdev_leaf_zap, tx)); 9527 } 9528 for (uint64_t i = 0; i < vd->vdev_children; i++) { 9529 spa_avz_build(vd->vdev_child[i], avz, tx); 9530 } 9531 } 9532 9533 static void 9534 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 9535 { 9536 nvlist_t *config; 9537 9538 /* 9539 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 9540 * its config may not be dirty but we still need to build per-vdev ZAPs. 9541 * Similarly, if the pool is being assembled (e.g. after a split), we 9542 * need to rebuild the AVZ although the config may not be dirty. 9543 */ 9544 if (list_is_empty(&spa->spa_config_dirty_list) && 9545 spa->spa_avz_action == AVZ_ACTION_NONE) 9546 return; 9547 9548 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9549 9550 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 9551 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 9552 spa->spa_all_vdev_zaps != 0); 9553 9554 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 9555 /* Make and build the new AVZ */ 9556 uint64_t new_avz = zap_create(spa->spa_meta_objset, 9557 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 9558 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 9559 9560 /* Diff old AVZ with new one */ 9561 zap_cursor_t zc; 9562 zap_attribute_t *za = zap_attribute_alloc(); 9563 9564 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9565 spa->spa_all_vdev_zaps); 9566 zap_cursor_retrieve(&zc, za) == 0; 9567 zap_cursor_advance(&zc)) { 9568 uint64_t vdzap = za->za_first_integer; 9569 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 9570 vdzap) == ENOENT) { 9571 /* 9572 * ZAP is listed in old AVZ but not in new one; 9573 * destroy it 9574 */ 9575 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 9576 tx)); 9577 } 9578 } 9579 9580 zap_cursor_fini(&zc); 9581 zap_attribute_free(za); 9582 9583 /* Destroy the old AVZ */ 9584 VERIFY0(zap_destroy(spa->spa_meta_objset, 9585 spa->spa_all_vdev_zaps, tx)); 9586 9587 /* Replace the old AVZ in the dir obj with the new one */ 9588 VERIFY0(zap_update(spa->spa_meta_objset, 9589 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9590 sizeof (new_avz), 1, &new_avz, tx)); 9591 9592 spa->spa_all_vdev_zaps = new_avz; 9593 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9594 zap_cursor_t zc; 9595 zap_attribute_t *za = zap_attribute_alloc(); 9596 9597 /* Walk through the AVZ and destroy all listed ZAPs */ 9598 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9599 spa->spa_all_vdev_zaps); 9600 zap_cursor_retrieve(&zc, za) == 0; 9601 zap_cursor_advance(&zc)) { 9602 uint64_t zap = za->za_first_integer; 9603 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9604 } 9605 9606 zap_cursor_fini(&zc); 9607 zap_attribute_free(za); 9608 9609 /* Destroy and unlink the AVZ itself */ 9610 VERIFY0(zap_destroy(spa->spa_meta_objset, 9611 spa->spa_all_vdev_zaps, tx)); 9612 VERIFY0(zap_remove(spa->spa_meta_objset, 9613 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9614 spa->spa_all_vdev_zaps = 0; 9615 } 9616 9617 if (spa->spa_all_vdev_zaps == 0) { 9618 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9619 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9620 DMU_POOL_VDEV_ZAP_MAP, tx); 9621 } 9622 spa->spa_avz_action = AVZ_ACTION_NONE; 9623 9624 /* Create ZAPs for vdevs that don't have them. */ 9625 vdev_construct_zaps(spa->spa_root_vdev, tx); 9626 9627 config = spa_config_generate(spa, spa->spa_root_vdev, 9628 dmu_tx_get_txg(tx), B_FALSE); 9629 9630 /* 9631 * If we're upgrading the spa version then make sure that 9632 * the config object gets updated with the correct version. 9633 */ 9634 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9635 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9636 spa->spa_uberblock.ub_version); 9637 9638 spa_config_exit(spa, SCL_STATE, FTAG); 9639 9640 nvlist_free(spa->spa_config_syncing); 9641 spa->spa_config_syncing = config; 9642 9643 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9644 } 9645 9646 static void 9647 spa_sync_version(void *arg, dmu_tx_t *tx) 9648 { 9649 uint64_t *versionp = arg; 9650 uint64_t version = *versionp; 9651 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9652 9653 /* 9654 * Setting the version is special cased when first creating the pool. 9655 */ 9656 ASSERT(tx->tx_txg != TXG_INITIAL); 9657 9658 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9659 ASSERT(version >= spa_version(spa)); 9660 9661 spa->spa_uberblock.ub_version = version; 9662 vdev_config_dirty(spa->spa_root_vdev); 9663 spa_history_log_internal(spa, "set", tx, "version=%lld", 9664 (longlong_t)version); 9665 } 9666 9667 /* 9668 * Set zpool properties. 9669 */ 9670 static void 9671 spa_sync_props(void *arg, dmu_tx_t *tx) 9672 { 9673 nvlist_t *nvp = arg; 9674 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9675 objset_t *mos = spa->spa_meta_objset; 9676 nvpair_t *elem = NULL; 9677 9678 mutex_enter(&spa->spa_props_lock); 9679 9680 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9681 uint64_t intval; 9682 const char *strval, *fname; 9683 zpool_prop_t prop; 9684 const char *propname; 9685 const char *elemname = nvpair_name(elem); 9686 zprop_type_t proptype; 9687 spa_feature_t fid; 9688 9689 switch (prop = zpool_name_to_prop(elemname)) { 9690 case ZPOOL_PROP_VERSION: 9691 intval = fnvpair_value_uint64(elem); 9692 /* 9693 * The version is synced separately before other 9694 * properties and should be correct by now. 9695 */ 9696 ASSERT3U(spa_version(spa), >=, intval); 9697 break; 9698 9699 case ZPOOL_PROP_ALTROOT: 9700 /* 9701 * 'altroot' is a non-persistent property. It should 9702 * have been set temporarily at creation or import time. 9703 */ 9704 ASSERT(spa->spa_root != NULL); 9705 break; 9706 9707 case ZPOOL_PROP_READONLY: 9708 case ZPOOL_PROP_CACHEFILE: 9709 /* 9710 * 'readonly' and 'cachefile' are also non-persistent 9711 * properties. 9712 */ 9713 break; 9714 case ZPOOL_PROP_COMMENT: 9715 strval = fnvpair_value_string(elem); 9716 if (spa->spa_comment != NULL) 9717 spa_strfree(spa->spa_comment); 9718 spa->spa_comment = spa_strdup(strval); 9719 /* 9720 * We need to dirty the configuration on all the vdevs 9721 * so that their labels get updated. We also need to 9722 * update the cache file to keep it in sync with the 9723 * MOS version. It's unnecessary to do this for pool 9724 * creation since the vdev's configuration has already 9725 * been dirtied. 9726 */ 9727 if (tx->tx_txg != TXG_INITIAL) { 9728 vdev_config_dirty(spa->spa_root_vdev); 9729 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9730 } 9731 spa_history_log_internal(spa, "set", tx, 9732 "%s=%s", elemname, strval); 9733 break; 9734 case ZPOOL_PROP_COMPATIBILITY: 9735 strval = fnvpair_value_string(elem); 9736 if (spa->spa_compatibility != NULL) 9737 spa_strfree(spa->spa_compatibility); 9738 spa->spa_compatibility = spa_strdup(strval); 9739 /* 9740 * Dirty the configuration on vdevs as above. 9741 */ 9742 if (tx->tx_txg != TXG_INITIAL) { 9743 vdev_config_dirty(spa->spa_root_vdev); 9744 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9745 } 9746 9747 spa_history_log_internal(spa, "set", tx, 9748 "%s=%s", nvpair_name(elem), strval); 9749 break; 9750 9751 case ZPOOL_PROP_INVAL: 9752 if (zpool_prop_feature(elemname)) { 9753 fname = strchr(elemname, '@') + 1; 9754 VERIFY0(zfeature_lookup_name(fname, &fid)); 9755 9756 spa_feature_enable(spa, fid, tx); 9757 spa_history_log_internal(spa, "set", tx, 9758 "%s=enabled", elemname); 9759 break; 9760 } else if (!zfs_prop_user(elemname)) { 9761 ASSERT(zpool_prop_feature(elemname)); 9762 break; 9763 } 9764 zfs_fallthrough; 9765 default: 9766 /* 9767 * Set pool property values in the poolprops mos object. 9768 */ 9769 if (spa->spa_pool_props_object == 0) { 9770 spa->spa_pool_props_object = 9771 zap_create_link(mos, DMU_OT_POOL_PROPS, 9772 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9773 tx); 9774 } 9775 9776 /* normalize the property name */ 9777 if (prop == ZPOOL_PROP_INVAL) { 9778 propname = elemname; 9779 proptype = PROP_TYPE_STRING; 9780 } else { 9781 propname = zpool_prop_to_name(prop); 9782 proptype = zpool_prop_get_type(prop); 9783 } 9784 9785 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9786 ASSERT(proptype == PROP_TYPE_STRING); 9787 strval = fnvpair_value_string(elem); 9788 if (strlen(strval) == 0) { 9789 /* remove the property if value == "" */ 9790 (void) zap_remove(mos, 9791 spa->spa_pool_props_object, 9792 propname, tx); 9793 } else { 9794 VERIFY0(zap_update(mos, 9795 spa->spa_pool_props_object, 9796 propname, 1, strlen(strval) + 1, 9797 strval, tx)); 9798 } 9799 spa_history_log_internal(spa, "set", tx, 9800 "%s=%s", elemname, strval); 9801 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9802 intval = fnvpair_value_uint64(elem); 9803 9804 if (proptype == PROP_TYPE_INDEX) { 9805 const char *unused; 9806 VERIFY0(zpool_prop_index_to_string( 9807 prop, intval, &unused)); 9808 } 9809 VERIFY0(zap_update(mos, 9810 spa->spa_pool_props_object, propname, 9811 8, 1, &intval, tx)); 9812 spa_history_log_internal(spa, "set", tx, 9813 "%s=%lld", elemname, 9814 (longlong_t)intval); 9815 9816 switch (prop) { 9817 case ZPOOL_PROP_DELEGATION: 9818 spa->spa_delegation = intval; 9819 break; 9820 case ZPOOL_PROP_BOOTFS: 9821 spa->spa_bootfs = intval; 9822 break; 9823 case ZPOOL_PROP_FAILUREMODE: 9824 spa->spa_failmode = intval; 9825 break; 9826 case ZPOOL_PROP_AUTOTRIM: 9827 spa->spa_autotrim = intval; 9828 spa_async_request(spa, 9829 SPA_ASYNC_AUTOTRIM_RESTART); 9830 break; 9831 case ZPOOL_PROP_AUTOEXPAND: 9832 spa->spa_autoexpand = intval; 9833 if (tx->tx_txg != TXG_INITIAL) 9834 spa_async_request(spa, 9835 SPA_ASYNC_AUTOEXPAND); 9836 break; 9837 case ZPOOL_PROP_MULTIHOST: 9838 spa->spa_multihost = intval; 9839 break; 9840 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 9841 spa->spa_dedup_table_quota = intval; 9842 break; 9843 default: 9844 break; 9845 } 9846 } else { 9847 ASSERT(0); /* not allowed */ 9848 } 9849 } 9850 9851 } 9852 9853 mutex_exit(&spa->spa_props_lock); 9854 } 9855 9856 /* 9857 * Perform one-time upgrade on-disk changes. spa_version() does not 9858 * reflect the new version this txg, so there must be no changes this 9859 * txg to anything that the upgrade code depends on after it executes. 9860 * Therefore this must be called after dsl_pool_sync() does the sync 9861 * tasks. 9862 */ 9863 static void 9864 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9865 { 9866 if (spa_sync_pass(spa) != 1) 9867 return; 9868 9869 dsl_pool_t *dp = spa->spa_dsl_pool; 9870 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9871 9872 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9873 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9874 dsl_pool_create_origin(dp, tx); 9875 9876 /* Keeping the origin open increases spa_minref */ 9877 spa->spa_minref += 3; 9878 } 9879 9880 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9881 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9882 dsl_pool_upgrade_clones(dp, tx); 9883 } 9884 9885 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9886 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9887 dsl_pool_upgrade_dir_clones(dp, tx); 9888 9889 /* Keeping the freedir open increases spa_minref */ 9890 spa->spa_minref += 3; 9891 } 9892 9893 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9894 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9895 spa_feature_create_zap_objects(spa, tx); 9896 } 9897 9898 /* 9899 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9900 * when possibility to use lz4 compression for metadata was added 9901 * Old pools that have this feature enabled must be upgraded to have 9902 * this feature active 9903 */ 9904 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9905 boolean_t lz4_en = spa_feature_is_enabled(spa, 9906 SPA_FEATURE_LZ4_COMPRESS); 9907 boolean_t lz4_ac = spa_feature_is_active(spa, 9908 SPA_FEATURE_LZ4_COMPRESS); 9909 9910 if (lz4_en && !lz4_ac) 9911 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9912 } 9913 9914 /* 9915 * If we haven't written the salt, do so now. Note that the 9916 * feature may not be activated yet, but that's fine since 9917 * the presence of this ZAP entry is backwards compatible. 9918 */ 9919 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9920 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9921 VERIFY0(zap_add(spa->spa_meta_objset, 9922 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9923 sizeof (spa->spa_cksum_salt.zcs_bytes), 9924 spa->spa_cksum_salt.zcs_bytes, tx)); 9925 } 9926 9927 rrw_exit(&dp->dp_config_rwlock, FTAG); 9928 } 9929 9930 static void 9931 vdev_indirect_state_sync_verify(vdev_t *vd) 9932 { 9933 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9934 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9935 9936 if (vd->vdev_ops == &vdev_indirect_ops) { 9937 ASSERT(vim != NULL); 9938 ASSERT(vib != NULL); 9939 } 9940 9941 uint64_t obsolete_sm_object = 0; 9942 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9943 if (obsolete_sm_object != 0) { 9944 ASSERT(vd->vdev_obsolete_sm != NULL); 9945 ASSERT(vd->vdev_removing || 9946 vd->vdev_ops == &vdev_indirect_ops); 9947 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9948 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9949 ASSERT3U(obsolete_sm_object, ==, 9950 space_map_object(vd->vdev_obsolete_sm)); 9951 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9952 space_map_allocated(vd->vdev_obsolete_sm)); 9953 } 9954 ASSERT(vd->vdev_obsolete_segments != NULL); 9955 9956 /* 9957 * Since frees / remaps to an indirect vdev can only 9958 * happen in syncing context, the obsolete segments 9959 * tree must be empty when we start syncing. 9960 */ 9961 ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments)); 9962 } 9963 9964 /* 9965 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9966 * async write queue depth in case it changed. The max queue depth will 9967 * not change in the middle of syncing out this txg. 9968 */ 9969 static void 9970 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9971 { 9972 ASSERT(spa_writeable(spa)); 9973 9974 metaslab_class_balance(spa_normal_class(spa), B_TRUE); 9975 metaslab_class_balance(spa_special_class(spa), B_TRUE); 9976 metaslab_class_balance(spa_dedup_class(spa), B_TRUE); 9977 } 9978 9979 static void 9980 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9981 { 9982 ASSERT(spa_writeable(spa)); 9983 9984 vdev_t *rvd = spa->spa_root_vdev; 9985 for (int c = 0; c < rvd->vdev_children; c++) { 9986 vdev_t *vd = rvd->vdev_child[c]; 9987 vdev_indirect_state_sync_verify(vd); 9988 9989 if (vdev_indirect_should_condense(vd)) { 9990 spa_condense_indirect_start_sync(vd, tx); 9991 break; 9992 } 9993 } 9994 } 9995 9996 static void 9997 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 9998 { 9999 objset_t *mos = spa->spa_meta_objset; 10000 dsl_pool_t *dp = spa->spa_dsl_pool; 10001 uint64_t txg = tx->tx_txg; 10002 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 10003 10004 do { 10005 int pass = ++spa->spa_sync_pass; 10006 10007 spa_sync_config_object(spa, tx); 10008 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 10009 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 10010 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 10011 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 10012 spa_errlog_sync(spa, txg); 10013 dsl_pool_sync(dp, txg); 10014 10015 if (pass < zfs_sync_pass_deferred_free || 10016 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 10017 /* 10018 * If the log space map feature is active we don't 10019 * care about deferred frees and the deferred bpobj 10020 * as the log space map should effectively have the 10021 * same results (i.e. appending only to one object). 10022 */ 10023 spa_sync_frees(spa, free_bpl, tx); 10024 } else { 10025 /* 10026 * We can not defer frees in pass 1, because 10027 * we sync the deferred frees later in pass 1. 10028 */ 10029 ASSERT3U(pass, >, 1); 10030 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 10031 &spa->spa_deferred_bpobj, tx); 10032 } 10033 10034 brt_sync(spa, txg); 10035 ddt_sync(spa, txg); 10036 dsl_scan_sync(dp, tx); 10037 dsl_errorscrub_sync(dp, tx); 10038 svr_sync(spa, tx); 10039 spa_sync_upgrades(spa, tx); 10040 10041 spa_flush_metaslabs(spa, tx); 10042 10043 vdev_t *vd = NULL; 10044 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 10045 != NULL) 10046 vdev_sync(vd, txg); 10047 10048 if (pass == 1) { 10049 /* 10050 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 10051 * the config. If that happens, this txg should not 10052 * be a no-op. So we must sync the config to the MOS 10053 * before checking for no-op. 10054 * 10055 * Note that when the config is dirty, it will 10056 * be written to the MOS (i.e. the MOS will be 10057 * dirtied) every time we call spa_sync_config_object() 10058 * in this txg. Therefore we can't call this after 10059 * dsl_pool_sync() every pass, because it would 10060 * prevent us from converging, since we'd dirty 10061 * the MOS every pass. 10062 * 10063 * Sync tasks can only be processed in pass 1, so 10064 * there's no need to do this in later passes. 10065 */ 10066 spa_sync_config_object(spa, tx); 10067 } 10068 10069 /* 10070 * Note: We need to check if the MOS is dirty because we could 10071 * have marked the MOS dirty without updating the uberblock 10072 * (e.g. if we have sync tasks but no dirty user data). We need 10073 * to check the uberblock's rootbp because it is updated if we 10074 * have synced out dirty data (though in this case the MOS will 10075 * most likely also be dirty due to second order effects, we 10076 * don't want to rely on that here). 10077 */ 10078 if (pass == 1 && 10079 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg && 10080 !dmu_objset_is_dirty(mos, txg)) { 10081 /* 10082 * Nothing changed on the first pass, therefore this 10083 * TXG is a no-op. Avoid syncing deferred frees, so 10084 * that we can keep this TXG as a no-op. 10085 */ 10086 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10087 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10088 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 10089 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 10090 break; 10091 } 10092 10093 spa_sync_deferred_frees(spa, tx); 10094 } while (dmu_objset_is_dirty(mos, txg)); 10095 } 10096 10097 /* 10098 * Rewrite the vdev configuration (which includes the uberblock) to 10099 * commit the transaction group. 10100 * 10101 * If there are no dirty vdevs, we sync the uberblock to a few random 10102 * top-level vdevs that are known to be visible in the config cache 10103 * (see spa_vdev_add() for a complete description). If there *are* dirty 10104 * vdevs, sync the uberblock to all vdevs. 10105 */ 10106 static void 10107 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 10108 { 10109 vdev_t *rvd = spa->spa_root_vdev; 10110 uint64_t txg = tx->tx_txg; 10111 10112 for (;;) { 10113 int error = 0; 10114 10115 /* 10116 * We hold SCL_STATE to prevent vdev open/close/etc. 10117 * while we're attempting to write the vdev labels. 10118 */ 10119 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10120 10121 if (list_is_empty(&spa->spa_config_dirty_list)) { 10122 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 10123 int svdcount = 0; 10124 int children = rvd->vdev_children; 10125 int c0 = random_in_range(children); 10126 10127 for (int c = 0; c < children; c++) { 10128 vdev_t *vd = 10129 rvd->vdev_child[(c0 + c) % children]; 10130 10131 /* Stop when revisiting the first vdev */ 10132 if (c > 0 && svd[0] == vd) 10133 break; 10134 10135 if (vd->vdev_ms_array == 0 || 10136 vd->vdev_islog || 10137 !vdev_is_concrete(vd)) 10138 continue; 10139 10140 svd[svdcount++] = vd; 10141 if (svdcount == SPA_SYNC_MIN_VDEVS) 10142 break; 10143 } 10144 error = vdev_config_sync(svd, svdcount, txg); 10145 } else { 10146 error = vdev_config_sync(rvd->vdev_child, 10147 rvd->vdev_children, txg); 10148 } 10149 10150 if (error == 0) 10151 spa->spa_last_synced_guid = rvd->vdev_guid; 10152 10153 spa_config_exit(spa, SCL_STATE, FTAG); 10154 10155 if (error == 0) 10156 break; 10157 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 10158 zio_resume_wait(spa); 10159 } 10160 } 10161 10162 /* 10163 * Sync the specified transaction group. New blocks may be dirtied as 10164 * part of the process, so we iterate until it converges. 10165 */ 10166 void 10167 spa_sync(spa_t *spa, uint64_t txg) 10168 { 10169 vdev_t *vd = NULL; 10170 10171 VERIFY(spa_writeable(spa)); 10172 10173 /* 10174 * Wait for i/os issued in open context that need to complete 10175 * before this txg syncs. 10176 */ 10177 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 10178 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 10179 ZIO_FLAG_CANFAIL); 10180 10181 /* 10182 * Now that there can be no more cloning in this transaction group, 10183 * but we are still before issuing frees, we can process pending BRT 10184 * updates. 10185 */ 10186 brt_pending_apply(spa, txg); 10187 10188 /* 10189 * Lock out configuration changes. 10190 */ 10191 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 10192 10193 spa->spa_syncing_txg = txg; 10194 spa->spa_sync_pass = 0; 10195 10196 /* 10197 * If there are any pending vdev state changes, convert them 10198 * into config changes that go out with this transaction group. 10199 */ 10200 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10201 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10202 /* Avoid holding the write lock unless actually necessary */ 10203 if (vd->vdev_aux == NULL) { 10204 vdev_state_clean(vd); 10205 vdev_config_dirty(vd); 10206 continue; 10207 } 10208 /* 10209 * We need the write lock here because, for aux vdevs, 10210 * calling vdev_config_dirty() modifies sav_config. 10211 * This is ugly and will become unnecessary when we 10212 * eliminate the aux vdev wart by integrating all vdevs 10213 * into the root vdev tree. 10214 */ 10215 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10216 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 10217 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10218 vdev_state_clean(vd); 10219 vdev_config_dirty(vd); 10220 } 10221 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10222 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10223 } 10224 spa_config_exit(spa, SCL_STATE, FTAG); 10225 10226 dsl_pool_t *dp = spa->spa_dsl_pool; 10227 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 10228 10229 spa->spa_sync_starttime = gethrtime(); 10230 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10231 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 10232 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 10233 NSEC_TO_TICK(spa->spa_deadman_synctime)); 10234 10235 /* 10236 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 10237 * set spa_deflate if we have no raid-z vdevs. 10238 */ 10239 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 10240 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 10241 vdev_t *rvd = spa->spa_root_vdev; 10242 10243 int i; 10244 for (i = 0; i < rvd->vdev_children; i++) { 10245 vd = rvd->vdev_child[i]; 10246 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 10247 break; 10248 } 10249 if (i == rvd->vdev_children) { 10250 spa->spa_deflate = TRUE; 10251 VERIFY0(zap_add(spa->spa_meta_objset, 10252 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 10253 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 10254 } 10255 } 10256 10257 spa_sync_adjust_vdev_max_queue_depth(spa); 10258 10259 spa_sync_condense_indirect(spa, tx); 10260 10261 spa_sync_iterate_to_convergence(spa, tx); 10262 10263 #ifdef ZFS_DEBUG 10264 if (!list_is_empty(&spa->spa_config_dirty_list)) { 10265 /* 10266 * Make sure that the number of ZAPs for all the vdevs matches 10267 * the number of ZAPs in the per-vdev ZAP list. This only gets 10268 * called if the config is dirty; otherwise there may be 10269 * outstanding AVZ operations that weren't completed in 10270 * spa_sync_config_object. 10271 */ 10272 uint64_t all_vdev_zap_entry_count; 10273 ASSERT0(zap_count(spa->spa_meta_objset, 10274 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 10275 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 10276 all_vdev_zap_entry_count); 10277 } 10278 #endif 10279 10280 if (spa->spa_vdev_removal != NULL) { 10281 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 10282 } 10283 10284 spa_sync_rewrite_vdev_config(spa, tx); 10285 dmu_tx_commit(tx); 10286 10287 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10288 spa->spa_deadman_tqid = 0; 10289 10290 /* 10291 * Clear the dirty config list. 10292 */ 10293 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 10294 vdev_config_clean(vd); 10295 10296 /* 10297 * Now that the new config has synced transactionally, 10298 * let it become visible to the config cache. 10299 */ 10300 if (spa->spa_config_syncing != NULL) { 10301 spa_config_set(spa, spa->spa_config_syncing); 10302 spa->spa_config_txg = txg; 10303 spa->spa_config_syncing = NULL; 10304 } 10305 10306 dsl_pool_sync_done(dp, txg); 10307 10308 /* 10309 * Update usable space statistics. 10310 */ 10311 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 10312 != NULL) 10313 vdev_sync_done(vd, txg); 10314 10315 metaslab_class_evict_old(spa->spa_normal_class, txg); 10316 metaslab_class_evict_old(spa->spa_log_class, txg); 10317 /* spa_embedded_log_class has only one metaslab per vdev. */ 10318 metaslab_class_evict_old(spa->spa_special_class, txg); 10319 metaslab_class_evict_old(spa->spa_dedup_class, txg); 10320 10321 spa_sync_close_syncing_log_sm(spa); 10322 10323 spa_update_dspace(spa); 10324 10325 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 10326 vdev_autotrim_kick(spa); 10327 10328 /* 10329 * It had better be the case that we didn't dirty anything 10330 * since vdev_config_sync(). 10331 */ 10332 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10333 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10334 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 10335 10336 while (zfs_pause_spa_sync) 10337 delay(1); 10338 10339 spa->spa_sync_pass = 0; 10340 10341 /* 10342 * Update the last synced uberblock here. We want to do this at 10343 * the end of spa_sync() so that consumers of spa_last_synced_txg() 10344 * will be guaranteed that all the processing associated with 10345 * that txg has been completed. 10346 */ 10347 spa->spa_ubsync = spa->spa_uberblock; 10348 spa_config_exit(spa, SCL_CONFIG, FTAG); 10349 10350 spa_handle_ignored_writes(spa); 10351 10352 /* 10353 * If any async tasks have been requested, kick them off. 10354 */ 10355 spa_async_dispatch(spa); 10356 } 10357 10358 /* 10359 * Sync all pools. We don't want to hold the namespace lock across these 10360 * operations, so we take a reference on the spa_t and drop the lock during the 10361 * sync. 10362 */ 10363 void 10364 spa_sync_allpools(void) 10365 { 10366 spa_t *spa = NULL; 10367 mutex_enter(&spa_namespace_lock); 10368 while ((spa = spa_next(spa)) != NULL) { 10369 if (spa_state(spa) != POOL_STATE_ACTIVE || 10370 !spa_writeable(spa) || spa_suspended(spa)) 10371 continue; 10372 spa_open_ref(spa, FTAG); 10373 mutex_exit(&spa_namespace_lock); 10374 txg_wait_synced(spa_get_dsl(spa), 0); 10375 mutex_enter(&spa_namespace_lock); 10376 spa_close(spa, FTAG); 10377 } 10378 mutex_exit(&spa_namespace_lock); 10379 } 10380 10381 taskq_t * 10382 spa_sync_tq_create(spa_t *spa, const char *name) 10383 { 10384 kthread_t **kthreads; 10385 10386 ASSERT(spa->spa_sync_tq == NULL); 10387 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 10388 10389 /* 10390 * - do not allow more allocators than cpus. 10391 * - there may be more cpus than allocators. 10392 * - do not allow more sync taskq threads than allocators or cpus. 10393 */ 10394 int nthreads = spa->spa_alloc_count; 10395 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 10396 nthreads, KM_SLEEP); 10397 10398 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 10399 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 10400 VERIFY(spa->spa_sync_tq != NULL); 10401 VERIFY(kthreads != NULL); 10402 10403 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10404 for (int i = 0; i < nthreads; i++, ti++) { 10405 ti->sti_thread = kthreads[i]; 10406 ti->sti_allocator = i; 10407 } 10408 10409 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 10410 return (spa->spa_sync_tq); 10411 } 10412 10413 void 10414 spa_sync_tq_destroy(spa_t *spa) 10415 { 10416 ASSERT(spa->spa_sync_tq != NULL); 10417 10418 taskq_wait(spa->spa_sync_tq); 10419 taskq_destroy(spa->spa_sync_tq); 10420 kmem_free(spa->spa_syncthreads, 10421 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 10422 spa->spa_sync_tq = NULL; 10423 } 10424 10425 uint_t 10426 spa_acq_allocator(spa_t *spa) 10427 { 10428 int i; 10429 10430 if (spa->spa_alloc_count == 1) 10431 return (0); 10432 10433 mutex_enter(&spa->spa_allocs_use->sau_lock); 10434 uint_t r = spa->spa_allocs_use->sau_rotor; 10435 do { 10436 if (++r == spa->spa_alloc_count) 10437 r = 0; 10438 } while (spa->spa_allocs_use->sau_inuse[r]); 10439 spa->spa_allocs_use->sau_inuse[r] = B_TRUE; 10440 spa->spa_allocs_use->sau_rotor = r; 10441 mutex_exit(&spa->spa_allocs_use->sau_lock); 10442 10443 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10444 for (i = 0; i < spa->spa_alloc_count; i++, ti++) { 10445 if (ti->sti_thread == curthread) { 10446 ti->sti_allocator = r; 10447 break; 10448 } 10449 } 10450 ASSERT3S(i, <, spa->spa_alloc_count); 10451 return (r); 10452 } 10453 10454 void 10455 spa_rel_allocator(spa_t *spa, uint_t allocator) 10456 { 10457 if (spa->spa_alloc_count > 1) 10458 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE; 10459 } 10460 10461 void 10462 spa_select_allocator(zio_t *zio) 10463 { 10464 zbookmark_phys_t *bm = &zio->io_bookmark; 10465 spa_t *spa = zio->io_spa; 10466 10467 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 10468 10469 /* 10470 * A gang block (for example) may have inherited its parent's 10471 * allocator, in which case there is nothing further to do here. 10472 */ 10473 if (ZIO_HAS_ALLOCATOR(zio)) 10474 return; 10475 10476 ASSERT(spa != NULL); 10477 ASSERT(bm != NULL); 10478 10479 /* 10480 * First try to use an allocator assigned to the syncthread, and set 10481 * the corresponding write issue taskq for the allocator. 10482 * Note, we must have an open pool to do this. 10483 */ 10484 if (spa->spa_sync_tq != NULL) { 10485 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10486 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 10487 if (ti->sti_thread == curthread) { 10488 zio->io_allocator = ti->sti_allocator; 10489 return; 10490 } 10491 } 10492 } 10493 10494 /* 10495 * We want to try to use as many allocators as possible to help improve 10496 * performance, but we also want logically adjacent IOs to be physically 10497 * adjacent to improve sequential read performance. We chunk each object 10498 * into 2^20 block regions, and then hash based on the objset, object, 10499 * level, and region to accomplish both of these goals. 10500 */ 10501 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 10502 bm->zb_blkid >> 20); 10503 10504 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 10505 } 10506 10507 /* 10508 * ========================================================================== 10509 * Miscellaneous routines 10510 * ========================================================================== 10511 */ 10512 10513 /* 10514 * Remove all pools in the system. 10515 */ 10516 void 10517 spa_evict_all(void) 10518 { 10519 spa_t *spa; 10520 10521 /* 10522 * Remove all cached state. All pools should be closed now, 10523 * so every spa in the AVL tree should be unreferenced. 10524 */ 10525 mutex_enter(&spa_namespace_lock); 10526 while ((spa = spa_next(NULL)) != NULL) { 10527 /* 10528 * Stop async tasks. The async thread may need to detach 10529 * a device that's been replaced, which requires grabbing 10530 * spa_namespace_lock, so we must drop it here. 10531 */ 10532 spa_open_ref(spa, FTAG); 10533 mutex_exit(&spa_namespace_lock); 10534 spa_async_suspend(spa); 10535 mutex_enter(&spa_namespace_lock); 10536 spa_close(spa, FTAG); 10537 10538 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 10539 spa_unload(spa); 10540 spa_deactivate(spa); 10541 } 10542 spa_remove(spa); 10543 } 10544 mutex_exit(&spa_namespace_lock); 10545 } 10546 10547 vdev_t * 10548 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 10549 { 10550 vdev_t *vd; 10551 int i; 10552 10553 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 10554 return (vd); 10555 10556 if (aux) { 10557 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 10558 vd = spa->spa_l2cache.sav_vdevs[i]; 10559 if (vd->vdev_guid == guid) 10560 return (vd); 10561 } 10562 10563 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10564 vd = spa->spa_spares.sav_vdevs[i]; 10565 if (vd->vdev_guid == guid) 10566 return (vd); 10567 } 10568 } 10569 10570 return (NULL); 10571 } 10572 10573 void 10574 spa_upgrade(spa_t *spa, uint64_t version) 10575 { 10576 ASSERT(spa_writeable(spa)); 10577 10578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10579 10580 /* 10581 * This should only be called for a non-faulted pool, and since a 10582 * future version would result in an unopenable pool, this shouldn't be 10583 * possible. 10584 */ 10585 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10586 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10587 10588 spa->spa_uberblock.ub_version = version; 10589 vdev_config_dirty(spa->spa_root_vdev); 10590 10591 spa_config_exit(spa, SCL_ALL, FTAG); 10592 10593 txg_wait_synced(spa_get_dsl(spa), 0); 10594 } 10595 10596 static boolean_t 10597 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10598 { 10599 (void) spa; 10600 int i; 10601 uint64_t vdev_guid; 10602 10603 for (i = 0; i < sav->sav_count; i++) 10604 if (sav->sav_vdevs[i]->vdev_guid == guid) 10605 return (B_TRUE); 10606 10607 for (i = 0; i < sav->sav_npending; i++) { 10608 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10609 &vdev_guid) == 0 && vdev_guid == guid) 10610 return (B_TRUE); 10611 } 10612 10613 return (B_FALSE); 10614 } 10615 10616 boolean_t 10617 spa_has_l2cache(spa_t *spa, uint64_t guid) 10618 { 10619 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10620 } 10621 10622 boolean_t 10623 spa_has_spare(spa_t *spa, uint64_t guid) 10624 { 10625 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10626 } 10627 10628 /* 10629 * Check if a pool has an active shared spare device. 10630 * Note: reference count of an active spare is 2, as a spare and as a replace 10631 */ 10632 static boolean_t 10633 spa_has_active_shared_spare(spa_t *spa) 10634 { 10635 int i, refcnt; 10636 uint64_t pool; 10637 spa_aux_vdev_t *sav = &spa->spa_spares; 10638 10639 for (i = 0; i < sav->sav_count; i++) { 10640 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10641 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10642 refcnt > 2) 10643 return (B_TRUE); 10644 } 10645 10646 return (B_FALSE); 10647 } 10648 10649 uint64_t 10650 spa_total_metaslabs(spa_t *spa) 10651 { 10652 vdev_t *rvd = spa->spa_root_vdev; 10653 10654 uint64_t m = 0; 10655 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10656 vdev_t *vd = rvd->vdev_child[c]; 10657 if (!vdev_is_concrete(vd)) 10658 continue; 10659 m += vd->vdev_ms_count; 10660 } 10661 return (m); 10662 } 10663 10664 /* 10665 * Notify any waiting threads that some activity has switched from being in- 10666 * progress to not-in-progress so that the thread can wake up and determine 10667 * whether it is finished waiting. 10668 */ 10669 void 10670 spa_notify_waiters(spa_t *spa) 10671 { 10672 /* 10673 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10674 * happening between the waiting thread's check and cv_wait. 10675 */ 10676 mutex_enter(&spa->spa_activities_lock); 10677 cv_broadcast(&spa->spa_activities_cv); 10678 mutex_exit(&spa->spa_activities_lock); 10679 } 10680 10681 /* 10682 * Notify any waiting threads that the pool is exporting, and then block until 10683 * they are finished using the spa_t. 10684 */ 10685 void 10686 spa_wake_waiters(spa_t *spa) 10687 { 10688 mutex_enter(&spa->spa_activities_lock); 10689 spa->spa_waiters_cancel = B_TRUE; 10690 cv_broadcast(&spa->spa_activities_cv); 10691 while (spa->spa_waiters != 0) 10692 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10693 spa->spa_waiters_cancel = B_FALSE; 10694 mutex_exit(&spa->spa_activities_lock); 10695 } 10696 10697 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10698 static boolean_t 10699 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10700 { 10701 spa_t *spa = vd->vdev_spa; 10702 10703 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10704 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10705 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10706 activity == ZPOOL_WAIT_TRIM); 10707 10708 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10709 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10710 10711 mutex_exit(&spa->spa_activities_lock); 10712 mutex_enter(lock); 10713 mutex_enter(&spa->spa_activities_lock); 10714 10715 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10716 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10717 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10718 mutex_exit(lock); 10719 10720 if (in_progress) 10721 return (B_TRUE); 10722 10723 for (int i = 0; i < vd->vdev_children; i++) { 10724 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10725 activity)) 10726 return (B_TRUE); 10727 } 10728 10729 return (B_FALSE); 10730 } 10731 10732 /* 10733 * If use_guid is true, this checks whether the vdev specified by guid is 10734 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10735 * is being initialized/trimmed. The caller must hold the config lock and 10736 * spa_activities_lock. 10737 */ 10738 static int 10739 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10740 zpool_wait_activity_t activity, boolean_t *in_progress) 10741 { 10742 mutex_exit(&spa->spa_activities_lock); 10743 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10744 mutex_enter(&spa->spa_activities_lock); 10745 10746 vdev_t *vd; 10747 if (use_guid) { 10748 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10749 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10750 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10751 return (EINVAL); 10752 } 10753 } else { 10754 vd = spa->spa_root_vdev; 10755 } 10756 10757 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10758 10759 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10760 return (0); 10761 } 10762 10763 /* 10764 * Locking for waiting threads 10765 * --------------------------- 10766 * 10767 * Waiting threads need a way to check whether a given activity is in progress, 10768 * and then, if it is, wait for it to complete. Each activity will have some 10769 * in-memory representation of the relevant on-disk state which can be used to 10770 * determine whether or not the activity is in progress. The in-memory state and 10771 * the locking used to protect it will be different for each activity, and may 10772 * not be suitable for use with a cvar (e.g., some state is protected by the 10773 * config lock). To allow waiting threads to wait without any races, another 10774 * lock, spa_activities_lock, is used. 10775 * 10776 * When the state is checked, both the activity-specific lock (if there is one) 10777 * and spa_activities_lock are held. In some cases, the activity-specific lock 10778 * is acquired explicitly (e.g. the config lock). In others, the locking is 10779 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10780 * thread releases the activity-specific lock and, if the activity is in 10781 * progress, then cv_waits using spa_activities_lock. 10782 * 10783 * The waiting thread is woken when another thread, one completing some 10784 * activity, updates the state of the activity and then calls 10785 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10786 * needs to hold its activity-specific lock when updating the state, and this 10787 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10788 * 10789 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10790 * and because it is held when the waiting thread checks the state of the 10791 * activity, it can never be the case that the completing thread both updates 10792 * the activity state and cv_broadcasts in between the waiting thread's check 10793 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10794 * 10795 * In order to prevent deadlock, when the waiting thread does its check, in some 10796 * cases it will temporarily drop spa_activities_lock in order to acquire the 10797 * activity-specific lock. The order in which spa_activities_lock and the 10798 * activity specific lock are acquired in the waiting thread is determined by 10799 * the order in which they are acquired in the completing thread; if the 10800 * completing thread calls spa_notify_waiters with the activity-specific lock 10801 * held, then the waiting thread must also acquire the activity-specific lock 10802 * first. 10803 */ 10804 10805 static int 10806 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10807 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10808 { 10809 int error = 0; 10810 10811 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10812 10813 switch (activity) { 10814 case ZPOOL_WAIT_CKPT_DISCARD: 10815 *in_progress = 10816 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10817 zap_contains(spa_meta_objset(spa), 10818 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10819 ENOENT); 10820 break; 10821 case ZPOOL_WAIT_FREE: 10822 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10823 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10824 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10825 spa_livelist_delete_check(spa)); 10826 break; 10827 case ZPOOL_WAIT_INITIALIZE: 10828 case ZPOOL_WAIT_TRIM: 10829 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10830 activity, in_progress); 10831 break; 10832 case ZPOOL_WAIT_REPLACE: 10833 mutex_exit(&spa->spa_activities_lock); 10834 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10835 mutex_enter(&spa->spa_activities_lock); 10836 10837 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10838 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10839 break; 10840 case ZPOOL_WAIT_REMOVE: 10841 *in_progress = (spa->spa_removing_phys.sr_state == 10842 DSS_SCANNING); 10843 break; 10844 case ZPOOL_WAIT_RESILVER: 10845 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10846 if (*in_progress) 10847 break; 10848 zfs_fallthrough; 10849 case ZPOOL_WAIT_SCRUB: 10850 { 10851 boolean_t scanning, paused, is_scrub; 10852 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10853 10854 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10855 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10856 paused = dsl_scan_is_paused_scrub(scn); 10857 *in_progress = (scanning && !paused && 10858 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10859 break; 10860 } 10861 case ZPOOL_WAIT_RAIDZ_EXPAND: 10862 { 10863 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10864 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10865 break; 10866 } 10867 default: 10868 panic("unrecognized value for activity %d", activity); 10869 } 10870 10871 return (error); 10872 } 10873 10874 static int 10875 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10876 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10877 { 10878 /* 10879 * The tag is used to distinguish between instances of an activity. 10880 * 'initialize' and 'trim' are the only activities that we use this for. 10881 * The other activities can only have a single instance in progress in a 10882 * pool at one time, making the tag unnecessary. 10883 * 10884 * There can be multiple devices being replaced at once, but since they 10885 * all finish once resilvering finishes, we don't bother keeping track 10886 * of them individually, we just wait for them all to finish. 10887 */ 10888 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10889 activity != ZPOOL_WAIT_TRIM) 10890 return (EINVAL); 10891 10892 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10893 return (EINVAL); 10894 10895 spa_t *spa; 10896 int error = spa_open(pool, &spa, FTAG); 10897 if (error != 0) 10898 return (error); 10899 10900 /* 10901 * Increment the spa's waiter count so that we can call spa_close and 10902 * still ensure that the spa_t doesn't get freed before this thread is 10903 * finished with it when the pool is exported. We want to call spa_close 10904 * before we start waiting because otherwise the additional ref would 10905 * prevent the pool from being exported or destroyed throughout the 10906 * potentially long wait. 10907 */ 10908 mutex_enter(&spa->spa_activities_lock); 10909 spa->spa_waiters++; 10910 spa_close(spa, FTAG); 10911 10912 *waited = B_FALSE; 10913 for (;;) { 10914 boolean_t in_progress; 10915 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10916 &in_progress); 10917 10918 if (error || !in_progress || spa->spa_waiters_cancel) 10919 break; 10920 10921 *waited = B_TRUE; 10922 10923 if (cv_wait_sig(&spa->spa_activities_cv, 10924 &spa->spa_activities_lock) == 0) { 10925 error = EINTR; 10926 break; 10927 } 10928 } 10929 10930 spa->spa_waiters--; 10931 cv_signal(&spa->spa_waiters_cv); 10932 mutex_exit(&spa->spa_activities_lock); 10933 10934 return (error); 10935 } 10936 10937 /* 10938 * Wait for a particular instance of the specified activity to complete, where 10939 * the instance is identified by 'tag' 10940 */ 10941 int 10942 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10943 boolean_t *waited) 10944 { 10945 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10946 } 10947 10948 /* 10949 * Wait for all instances of the specified activity complete 10950 */ 10951 int 10952 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10953 { 10954 10955 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10956 } 10957 10958 sysevent_t * 10959 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10960 { 10961 sysevent_t *ev = NULL; 10962 #ifdef _KERNEL 10963 nvlist_t *resource; 10964 10965 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10966 if (resource) { 10967 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10968 ev->resource = resource; 10969 } 10970 #else 10971 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10972 #endif 10973 return (ev); 10974 } 10975 10976 void 10977 spa_event_post(sysevent_t *ev) 10978 { 10979 #ifdef _KERNEL 10980 if (ev) { 10981 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10982 kmem_free(ev, sizeof (*ev)); 10983 } 10984 #else 10985 (void) ev; 10986 #endif 10987 } 10988 10989 /* 10990 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10991 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10992 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10993 * in the userland libzpool, as we don't want consumers to misinterpret ztest 10994 * or zdb as real changes. 10995 */ 10996 void 10997 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10998 { 10999 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 11000 } 11001 11002 /* state manipulation functions */ 11003 EXPORT_SYMBOL(spa_open); 11004 EXPORT_SYMBOL(spa_open_rewind); 11005 EXPORT_SYMBOL(spa_get_stats); 11006 EXPORT_SYMBOL(spa_create); 11007 EXPORT_SYMBOL(spa_import); 11008 EXPORT_SYMBOL(spa_tryimport); 11009 EXPORT_SYMBOL(spa_destroy); 11010 EXPORT_SYMBOL(spa_export); 11011 EXPORT_SYMBOL(spa_reset); 11012 EXPORT_SYMBOL(spa_async_request); 11013 EXPORT_SYMBOL(spa_async_suspend); 11014 EXPORT_SYMBOL(spa_async_resume); 11015 EXPORT_SYMBOL(spa_inject_addref); 11016 EXPORT_SYMBOL(spa_inject_delref); 11017 EXPORT_SYMBOL(spa_scan_stat_init); 11018 EXPORT_SYMBOL(spa_scan_get_stats); 11019 11020 /* device manipulation */ 11021 EXPORT_SYMBOL(spa_vdev_add); 11022 EXPORT_SYMBOL(spa_vdev_attach); 11023 EXPORT_SYMBOL(spa_vdev_detach); 11024 EXPORT_SYMBOL(spa_vdev_setpath); 11025 EXPORT_SYMBOL(spa_vdev_setfru); 11026 EXPORT_SYMBOL(spa_vdev_split_mirror); 11027 11028 /* spare statech is global across all pools) */ 11029 EXPORT_SYMBOL(spa_spare_add); 11030 EXPORT_SYMBOL(spa_spare_remove); 11031 EXPORT_SYMBOL(spa_spare_exists); 11032 EXPORT_SYMBOL(spa_spare_activate); 11033 11034 /* L2ARC statech is global across all pools) */ 11035 EXPORT_SYMBOL(spa_l2cache_add); 11036 EXPORT_SYMBOL(spa_l2cache_remove); 11037 EXPORT_SYMBOL(spa_l2cache_exists); 11038 EXPORT_SYMBOL(spa_l2cache_activate); 11039 EXPORT_SYMBOL(spa_l2cache_drop); 11040 11041 /* scanning */ 11042 EXPORT_SYMBOL(spa_scan); 11043 EXPORT_SYMBOL(spa_scan_range); 11044 EXPORT_SYMBOL(spa_scan_stop); 11045 11046 /* spa syncing */ 11047 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 11048 EXPORT_SYMBOL(spa_sync_allpools); 11049 11050 /* properties */ 11051 EXPORT_SYMBOL(spa_prop_set); 11052 EXPORT_SYMBOL(spa_prop_get); 11053 EXPORT_SYMBOL(spa_prop_clear_bootfs); 11054 11055 /* asynchronous event notification */ 11056 EXPORT_SYMBOL(spa_event_notify); 11057 11058 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 11059 "Percentage of CPUs to run a metaslab preload taskq"); 11060 11061 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 11062 "log2 fraction of arc that can be used by inflight I/Os when " 11063 "verifying pool during import"); 11064 11065 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 11066 "Set to traverse metadata on pool import"); 11067 11068 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 11069 "Set to traverse data on pool import"); 11070 11071 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 11072 "Print vdev tree to zfs_dbgmsg during pool import"); 11073 11074 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW, 11075 "Percentage of CPUs to run an IO worker thread"); 11076 11077 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW, 11078 "Number of threads per IO worker taskqueue"); 11079 11080 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 11081 "Allow importing pool with up to this number of missing top-level " 11082 "vdevs (in read-only mode)"); 11083 11084 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 11085 ZMOD_RW, "Set the livelist condense zthr to pause"); 11086 11087 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 11088 ZMOD_RW, "Set the livelist condense synctask to pause"); 11089 11090 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 11091 INT, ZMOD_RW, 11092 "Whether livelist condensing was canceled in the synctask"); 11093 11094 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 11095 INT, ZMOD_RW, 11096 "Whether livelist condensing was canceled in the zthr function"); 11097 11098 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 11099 ZMOD_RW, 11100 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 11101 "was being condensed"); 11102 11103 #ifdef _KERNEL 11104 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read, 11105 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW, 11106 "Configure IO queues for read IO"); 11107 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write, 11108 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW, 11109 "Configure IO queues for write IO"); 11110 #endif 11111 11112 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW, 11113 "Number of CPUs per write issue taskq"); 11114