xref: /freebsd/sys/contrib/openzfs/module/zfs/spa.c (revision 044f94adff55f13130f03c0c170fa879c8febb5b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25  * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31  * Copyright 2018 Joyent, Inc.
32  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33  * Copyright 2017 Joyent, Inc.
34  * Copyright (c) 2017, Intel Corporation.
35  * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36  * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37  * Copyright (c) 2023, 2024, Klara Inc.
38  */
39 
40 /*
41  * SPA: Storage Pool Allocator
42  *
43  * This file contains all the routines used when modifying on-disk SPA state.
44  * This includes opening, importing, destroying, exporting a pool, and syncing a
45  * pool.
46  */
47 
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
93 
94 #ifdef	_KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif	/* _KERNEL */
101 
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
105 
106 /*
107  * spa_thread() existed on Illumos as a parent thread for the various worker
108  * threads that actually run the pool, as a way to both reference the entire
109  * pool work as a single object, and to share properties like scheduling
110  * options. It has not yet been adapted to Linux or FreeBSD. This define is
111  * used to mark related parts of the code to make things easier for the reader,
112  * and to compile this code out. It can be removed when someone implements it,
113  * moves it to some Illumos-specific place, or removes it entirely.
114  */
115 #undef HAVE_SPA_THREAD
116 
117 /*
118  * The "System Duty Cycle" scheduling class is an Illumos feature to help
119  * prevent CPU-intensive kernel threads from affecting latency on interactive
120  * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121  * gated behind a define. On Illumos SDC depends on spa_thread(), but
122  * spa_thread() also has other uses, so this is a separate define.
123  */
124 #undef HAVE_SYSDC
125 
126 /*
127  * The interval, in seconds, at which failed configuration cache file writes
128  * should be retried.
129  */
130 int zfs_ccw_retry_interval = 300;
131 
132 typedef enum zti_modes {
133 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
134 	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
135 	ZTI_MODE_SYNC,			/* sync thread assigned */
136 	ZTI_MODE_NULL,			/* don't create a taskq */
137 	ZTI_NMODES
138 } zti_modes_t;
139 
140 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
141 #define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
143 #define	ZTI_SYNC	{ ZTI_MODE_SYNC, 0, 1 }
144 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
145 
146 #define	ZTI_N(n)	ZTI_P(n, 1)
147 #define	ZTI_ONE		ZTI_N(1)
148 
149 typedef struct zio_taskq_info {
150 	zti_modes_t zti_mode;
151 	uint_t zti_value;
152 	uint_t zti_count;
153 } zio_taskq_info_t;
154 
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 	"iss", "iss_h", "int", "int_h"
157 };
158 
159 /*
160  * This table defines the taskq settings for each ZFS I/O type. When
161  * initializing a pool, we use this table to create an appropriately sized
162  * taskq. Some operations are low volume and therefore have a small, static
163  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164  * macros. Other operations process a large amount of data; the ZTI_SCALE
165  * macro causes us to create a taskq oriented for throughput. Some operations
166  * are so high frequency and short-lived that the taskq itself can become a
167  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168  * additional degree of parallelism specified by the number of threads per-
169  * taskq and the number of taskqs; when dispatching an event in this case, the
170  * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171  * that scales with the number of CPUs.
172  *
173  * The different taskq priorities are to handle the different contexts (issue
174  * and interrupt) and then to reserve threads for high priority I/Os that
175  * need to be handled with minimum delay.  Illumos taskq has unfair TQ_FRONT
176  * implementation, so separate high priority threads are used there.
177  */
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
180 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
181 	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
182 #ifdef illumos
183 	{ ZTI_SYNC,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
184 #else
185 	{ ZTI_SYNC,	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* WRITE */
186 #endif
187 	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
188 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
189 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FLUSH */
190 	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
191 };
192 
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197     const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
199 
200 /*
201  * Percentage of all CPUs that can be used by the metaslab preload taskq.
202  */
203 static uint_t metaslab_preload_pct = 50;
204 
205 static uint_t	zio_taskq_batch_pct = 80;	  /* 1 thread per cpu in pset */
206 static uint_t	zio_taskq_batch_tpq;		  /* threads per taskq */
207 
208 #ifdef HAVE_SYSDC
209 static const boolean_t	zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t	zio_taskq_basedc = 80;	  /* base duty cycle */
211 #endif
212 
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
216 
217 static uint_t	zio_taskq_write_tpq = 16;
218 
219 /*
220  * Report any spa_load_verify errors found, but do not fail spa_load.
221  * This is used by zdb to analyze non-idle pools.
222  */
223 boolean_t	spa_load_verify_dryrun = B_FALSE;
224 
225 /*
226  * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227  * This is used by zdb for spacemaps verification.
228  */
229 boolean_t	spa_mode_readable_spacemaps = B_FALSE;
230 
231 /*
232  * This (illegal) pool name is used when temporarily importing a spa_t in order
233  * to get the vdev stats associated with the imported devices.
234  */
235 #define	TRYIMPORT_NAME	"$import"
236 
237 /*
238  * For debugging purposes: print out vdev tree during pool import.
239  */
240 static int		spa_load_print_vdev_tree = B_FALSE;
241 
242 /*
243  * A non-zero value for zfs_max_missing_tvds means that we allow importing
244  * pools with missing top-level vdevs. This is strictly intended for advanced
245  * pool recovery cases since missing data is almost inevitable. Pools with
246  * missing devices can only be imported read-only for safety reasons, and their
247  * fail-mode will be automatically set to "continue".
248  *
249  * With 1 missing vdev we should be able to import the pool and mount all
250  * datasets. User data that was not modified after the missing device has been
251  * added should be recoverable. This means that snapshots created prior to the
252  * addition of that device should be completely intact.
253  *
254  * With 2 missing vdevs, some datasets may fail to mount since there are
255  * dataset statistics that are stored as regular metadata. Some data might be
256  * recoverable if those vdevs were added recently.
257  *
258  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259  * may be missing entirely. Chances of data recovery are very low. Note that
260  * there are also risks of performing an inadvertent rewind as we might be
261  * missing all the vdevs with the latest uberblocks.
262  */
263 uint64_t	zfs_max_missing_tvds = 0;
264 
265 /*
266  * The parameters below are similar to zfs_max_missing_tvds but are only
267  * intended for a preliminary open of the pool with an untrusted config which
268  * might be incomplete or out-dated.
269  *
270  * We are more tolerant for pools opened from a cachefile since we could have
271  * an out-dated cachefile where a device removal was not registered.
272  * We could have set the limit arbitrarily high but in the case where devices
273  * are really missing we would want to return the proper error codes; we chose
274  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275  * and we get a chance to retrieve the trusted config.
276  */
277 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278 
279 /*
280  * In the case where config was assembled by scanning device paths (/dev/dsks
281  * by default) we are less tolerant since all the existing devices should have
282  * been detected and we want spa_load to return the right error codes.
283  */
284 uint64_t	zfs_max_missing_tvds_scan = 0;
285 
286 /*
287  * Debugging aid that pauses spa_sync() towards the end.
288  */
289 static const boolean_t	zfs_pause_spa_sync = B_FALSE;
290 
291 /*
292  * Variables to indicate the livelist condense zthr func should wait at certain
293  * points for the livelist to be removed - used to test condense/destroy races
294  */
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
297 
298 /*
299  * Variables to track whether or not condense cancellation has been
300  * triggered in testing.
301  */
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
304 
305 /*
306  * Variable to track whether or not extra ALLOC blkptrs were added to a
307  * livelist entry while it was being condensed (caused by the way we track
308  * remapped blkptrs in dbuf_remap_impl)
309  */
310 static int zfs_livelist_condense_new_alloc = 0;
311 
312 /*
313  * ==========================================================================
314  * SPA properties routines
315  * ==========================================================================
316  */
317 
318 /*
319  * Add a (source=src, propname=propval) list to an nvlist.
320  */
321 static void
322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323     uint64_t intval, zprop_source_t src)
324 {
325 	const char *propname = zpool_prop_to_name(prop);
326 	nvlist_t *propval;
327 
328 	propval = fnvlist_alloc();
329 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330 
331 	if (strval != NULL)
332 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 	else
334 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335 
336 	fnvlist_add_nvlist(nvl, propname, propval);
337 	nvlist_free(propval);
338 }
339 
340 static int
341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
342 {
343 	zpool_prop_t prop = zpool_name_to_prop(propname);
344 	zprop_source_t src = ZPROP_SRC_NONE;
345 	uint64_t intval;
346 	int err;
347 
348 	/*
349 	 * NB: Not all properties lookups via this API require
350 	 * the spa props lock, so they must explicitly grab it here.
351 	 */
352 	switch (prop) {
353 	case ZPOOL_PROP_DEDUPCACHED:
354 		err = ddt_get_pool_dedup_cached(spa, &intval);
355 		if (err != 0)
356 			return (SET_ERROR(err));
357 		break;
358 	default:
359 		return (SET_ERROR(EINVAL));
360 	}
361 
362 	spa_prop_add_list(outnvl, prop, NULL, intval, src);
363 
364 	return (0);
365 }
366 
367 int
368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369     nvlist_t *outnvl)
370 {
371 	int err = 0;
372 
373 	if (props == NULL)
374 		return (0);
375 
376 	for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 		err = spa_prop_add(spa, props[i], outnvl);
378 	}
379 
380 	return (err);
381 }
382 
383 /*
384  * Add a user property (source=src, propname=propval) to an nvlist.
385  */
386 static void
387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388     zprop_source_t src)
389 {
390 	nvlist_t *propval;
391 
392 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 	VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 	nvlist_free(propval);
397 }
398 
399 /*
400  * Get property values from the spa configuration.
401  */
402 static void
403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
404 {
405 	vdev_t *rvd = spa->spa_root_vdev;
406 	dsl_pool_t *pool = spa->spa_dsl_pool;
407 	uint64_t size, alloc, cap, version;
408 	const zprop_source_t src = ZPROP_SRC_NONE;
409 	spa_config_dirent_t *dp;
410 	metaslab_class_t *mc = spa_normal_class(spa);
411 
412 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
413 
414 	if (rvd != NULL) {
415 		alloc = metaslab_class_get_alloc(mc);
416 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
419 
420 		size = metaslab_class_get_space(mc);
421 		size += metaslab_class_get_space(spa_special_class(spa));
422 		size += metaslab_class_get_space(spa_dedup_class(spa));
423 		size += metaslab_class_get_space(spa_embedded_log_class(spa));
424 
425 		spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 		spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 		spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 		spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 		    size - alloc, src);
430 		spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 		    spa->spa_checkpoint_info.sci_dspace, src);
432 
433 		spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 		    metaslab_class_fragmentation(mc), src);
435 		spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 		    metaslab_class_expandable_space(mc), src);
437 		spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 		    (spa_mode(spa) == SPA_MODE_READ), src);
439 
440 		cap = (size == 0) ? 0 : (alloc * 100 / size);
441 		spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
442 
443 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 		    ddt_get_pool_dedup_ratio(spa), src);
445 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 		    brt_get_used(spa), src);
447 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 		    brt_get_saved(spa), src);
449 		spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 		    brt_get_ratio(spa), src);
451 
452 		spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 		    ddt_get_ddt_dsize(spa), src);
454 
455 		spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
456 		    rvd->vdev_state, src);
457 
458 		version = spa_version(spa);
459 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
460 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
461 			    version, ZPROP_SRC_DEFAULT);
462 		} else {
463 			spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
464 			    version, ZPROP_SRC_LOCAL);
465 		}
466 		spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
467 		    NULL, spa_load_guid(spa), src);
468 	}
469 
470 	if (pool != NULL) {
471 		/*
472 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
473 		 * when opening pools before this version freedir will be NULL.
474 		 */
475 		if (pool->dp_free_dir != NULL) {
476 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
477 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
478 			    src);
479 		} else {
480 			spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
481 			    NULL, 0, src);
482 		}
483 
484 		if (pool->dp_leak_dir != NULL) {
485 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
486 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
487 			    src);
488 		} else {
489 			spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
490 			    NULL, 0, src);
491 		}
492 	}
493 
494 	spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
495 
496 	if (spa->spa_comment != NULL) {
497 		spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
498 		    0, ZPROP_SRC_LOCAL);
499 	}
500 
501 	if (spa->spa_compatibility != NULL) {
502 		spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
503 		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
504 	}
505 
506 	if (spa->spa_root != NULL)
507 		spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
508 		    0, ZPROP_SRC_LOCAL);
509 
510 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
511 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
512 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
513 	} else {
514 		spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
515 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
516 	}
517 
518 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
519 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
520 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
521 	} else {
522 		spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
523 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
524 	}
525 
526 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
527 		if (dp->scd_path == NULL) {
528 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
529 			    "none", 0, ZPROP_SRC_LOCAL);
530 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
531 			spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
532 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
533 		}
534 	}
535 }
536 
537 /*
538  * Get zpool property values.
539  */
540 int
541 spa_prop_get(spa_t *spa, nvlist_t *nv)
542 {
543 	objset_t *mos = spa->spa_meta_objset;
544 	zap_cursor_t zc;
545 	zap_attribute_t za;
546 	dsl_pool_t *dp;
547 	int err = 0;
548 
549 	dp = spa_get_dsl(spa);
550 	dsl_pool_config_enter(dp, FTAG);
551 	mutex_enter(&spa->spa_props_lock);
552 
553 	/*
554 	 * Get properties from the spa config.
555 	 */
556 	spa_prop_get_config(spa, nv);
557 
558 	/* If no pool property object, no more prop to get. */
559 	if (mos == NULL || spa->spa_pool_props_object == 0)
560 		goto out;
561 
562 	/*
563 	 * Get properties from the MOS pool property object.
564 	 */
565 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
566 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
567 	    zap_cursor_advance(&zc)) {
568 		uint64_t intval = 0;
569 		char *strval = NULL;
570 		zprop_source_t src = ZPROP_SRC_DEFAULT;
571 		zpool_prop_t prop;
572 
573 		if ((prop = zpool_name_to_prop(za.za_name)) ==
574 		    ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
575 			continue;
576 
577 		switch (za.za_integer_length) {
578 		case 8:
579 			/* integer property */
580 			if (za.za_first_integer !=
581 			    zpool_prop_default_numeric(prop))
582 				src = ZPROP_SRC_LOCAL;
583 
584 			if (prop == ZPOOL_PROP_BOOTFS) {
585 				dsl_dataset_t *ds = NULL;
586 
587 				err = dsl_dataset_hold_obj(dp,
588 				    za.za_first_integer, FTAG, &ds);
589 				if (err != 0)
590 					break;
591 
592 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
593 				    KM_SLEEP);
594 				dsl_dataset_name(ds, strval);
595 				dsl_dataset_rele(ds, FTAG);
596 			} else {
597 				strval = NULL;
598 				intval = za.za_first_integer;
599 			}
600 
601 			spa_prop_add_list(nv, prop, strval, intval, src);
602 
603 			if (strval != NULL)
604 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
605 
606 			break;
607 
608 		case 1:
609 			/* string property */
610 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
611 			err = zap_lookup(mos, spa->spa_pool_props_object,
612 			    za.za_name, 1, za.za_num_integers, strval);
613 			if (err) {
614 				kmem_free(strval, za.za_num_integers);
615 				break;
616 			}
617 			if (prop != ZPOOL_PROP_INVAL) {
618 				spa_prop_add_list(nv, prop, strval, 0, src);
619 			} else {
620 				src = ZPROP_SRC_LOCAL;
621 				spa_prop_add_user(nv, za.za_name, strval,
622 				    src);
623 			}
624 			kmem_free(strval, za.za_num_integers);
625 			break;
626 
627 		default:
628 			break;
629 		}
630 	}
631 	zap_cursor_fini(&zc);
632 out:
633 	mutex_exit(&spa->spa_props_lock);
634 	dsl_pool_config_exit(dp, FTAG);
635 
636 	if (err && err != ENOENT)
637 		return (err);
638 
639 	return (0);
640 }
641 
642 /*
643  * Validate the given pool properties nvlist and modify the list
644  * for the property values to be set.
645  */
646 static int
647 spa_prop_validate(spa_t *spa, nvlist_t *props)
648 {
649 	nvpair_t *elem;
650 	int error = 0, reset_bootfs = 0;
651 	uint64_t objnum = 0;
652 	boolean_t has_feature = B_FALSE;
653 
654 	elem = NULL;
655 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
656 		uint64_t intval;
657 		const char *strval, *slash, *check, *fname;
658 		const char *propname = nvpair_name(elem);
659 		zpool_prop_t prop = zpool_name_to_prop(propname);
660 
661 		switch (prop) {
662 		case ZPOOL_PROP_INVAL:
663 			/*
664 			 * Sanitize the input.
665 			 */
666 			if (zfs_prop_user(propname)) {
667 				if (strlen(propname) >= ZAP_MAXNAMELEN) {
668 					error = SET_ERROR(ENAMETOOLONG);
669 					break;
670 				}
671 
672 				if (strlen(fnvpair_value_string(elem)) >=
673 				    ZAP_MAXVALUELEN) {
674 					error = SET_ERROR(E2BIG);
675 					break;
676 				}
677 			} else if (zpool_prop_feature(propname)) {
678 				if (nvpair_type(elem) != DATA_TYPE_UINT64) {
679 					error = SET_ERROR(EINVAL);
680 					break;
681 				}
682 
683 				if (nvpair_value_uint64(elem, &intval) != 0) {
684 					error = SET_ERROR(EINVAL);
685 					break;
686 				}
687 
688 				if (intval != 0) {
689 					error = SET_ERROR(EINVAL);
690 					break;
691 				}
692 
693 				fname = strchr(propname, '@') + 1;
694 				if (zfeature_lookup_name(fname, NULL) != 0) {
695 					error = SET_ERROR(EINVAL);
696 					break;
697 				}
698 
699 				has_feature = B_TRUE;
700 			} else {
701 				error = SET_ERROR(EINVAL);
702 				break;
703 			}
704 			break;
705 
706 		case ZPOOL_PROP_VERSION:
707 			error = nvpair_value_uint64(elem, &intval);
708 			if (!error &&
709 			    (intval < spa_version(spa) ||
710 			    intval > SPA_VERSION_BEFORE_FEATURES ||
711 			    has_feature))
712 				error = SET_ERROR(EINVAL);
713 			break;
714 
715 		case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
716 			error = nvpair_value_uint64(elem, &intval);
717 			break;
718 
719 		case ZPOOL_PROP_DELEGATION:
720 		case ZPOOL_PROP_AUTOREPLACE:
721 		case ZPOOL_PROP_LISTSNAPS:
722 		case ZPOOL_PROP_AUTOEXPAND:
723 		case ZPOOL_PROP_AUTOTRIM:
724 			error = nvpair_value_uint64(elem, &intval);
725 			if (!error && intval > 1)
726 				error = SET_ERROR(EINVAL);
727 			break;
728 
729 		case ZPOOL_PROP_MULTIHOST:
730 			error = nvpair_value_uint64(elem, &intval);
731 			if (!error && intval > 1)
732 				error = SET_ERROR(EINVAL);
733 
734 			if (!error) {
735 				uint32_t hostid = zone_get_hostid(NULL);
736 				if (hostid)
737 					spa->spa_hostid = hostid;
738 				else
739 					error = SET_ERROR(ENOTSUP);
740 			}
741 
742 			break;
743 
744 		case ZPOOL_PROP_BOOTFS:
745 			/*
746 			 * If the pool version is less than SPA_VERSION_BOOTFS,
747 			 * or the pool is still being created (version == 0),
748 			 * the bootfs property cannot be set.
749 			 */
750 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
751 				error = SET_ERROR(ENOTSUP);
752 				break;
753 			}
754 
755 			/*
756 			 * Make sure the vdev config is bootable
757 			 */
758 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
759 				error = SET_ERROR(ENOTSUP);
760 				break;
761 			}
762 
763 			reset_bootfs = 1;
764 
765 			error = nvpair_value_string(elem, &strval);
766 
767 			if (!error) {
768 				objset_t *os;
769 
770 				if (strval == NULL || strval[0] == '\0') {
771 					objnum = zpool_prop_default_numeric(
772 					    ZPOOL_PROP_BOOTFS);
773 					break;
774 				}
775 
776 				error = dmu_objset_hold(strval, FTAG, &os);
777 				if (error != 0)
778 					break;
779 
780 				/* Must be ZPL. */
781 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
782 					error = SET_ERROR(ENOTSUP);
783 				} else {
784 					objnum = dmu_objset_id(os);
785 				}
786 				dmu_objset_rele(os, FTAG);
787 			}
788 			break;
789 
790 		case ZPOOL_PROP_FAILUREMODE:
791 			error = nvpair_value_uint64(elem, &intval);
792 			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
793 				error = SET_ERROR(EINVAL);
794 
795 			/*
796 			 * This is a special case which only occurs when
797 			 * the pool has completely failed. This allows
798 			 * the user to change the in-core failmode property
799 			 * without syncing it out to disk (I/Os might
800 			 * currently be blocked). We do this by returning
801 			 * EIO to the caller (spa_prop_set) to trick it
802 			 * into thinking we encountered a property validation
803 			 * error.
804 			 */
805 			if (!error && spa_suspended(spa)) {
806 				spa->spa_failmode = intval;
807 				error = SET_ERROR(EIO);
808 			}
809 			break;
810 
811 		case ZPOOL_PROP_CACHEFILE:
812 			if ((error = nvpair_value_string(elem, &strval)) != 0)
813 				break;
814 
815 			if (strval[0] == '\0')
816 				break;
817 
818 			if (strcmp(strval, "none") == 0)
819 				break;
820 
821 			if (strval[0] != '/') {
822 				error = SET_ERROR(EINVAL);
823 				break;
824 			}
825 
826 			slash = strrchr(strval, '/');
827 			ASSERT(slash != NULL);
828 
829 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
830 			    strcmp(slash, "/..") == 0)
831 				error = SET_ERROR(EINVAL);
832 			break;
833 
834 		case ZPOOL_PROP_COMMENT:
835 			if ((error = nvpair_value_string(elem, &strval)) != 0)
836 				break;
837 			for (check = strval; *check != '\0'; check++) {
838 				if (!isprint(*check)) {
839 					error = SET_ERROR(EINVAL);
840 					break;
841 				}
842 			}
843 			if (strlen(strval) > ZPROP_MAX_COMMENT)
844 				error = SET_ERROR(E2BIG);
845 			break;
846 
847 		default:
848 			break;
849 		}
850 
851 		if (error)
852 			break;
853 	}
854 
855 	(void) nvlist_remove_all(props,
856 	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
857 
858 	if (!error && reset_bootfs) {
859 		error = nvlist_remove(props,
860 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
861 
862 		if (!error) {
863 			error = nvlist_add_uint64(props,
864 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
865 		}
866 	}
867 
868 	return (error);
869 }
870 
871 void
872 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
873 {
874 	const char *cachefile;
875 	spa_config_dirent_t *dp;
876 
877 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
878 	    &cachefile) != 0)
879 		return;
880 
881 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
882 	    KM_SLEEP);
883 
884 	if (cachefile[0] == '\0')
885 		dp->scd_path = spa_strdup(spa_config_path);
886 	else if (strcmp(cachefile, "none") == 0)
887 		dp->scd_path = NULL;
888 	else
889 		dp->scd_path = spa_strdup(cachefile);
890 
891 	list_insert_head(&spa->spa_config_list, dp);
892 	if (need_sync)
893 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
894 }
895 
896 int
897 spa_prop_set(spa_t *spa, nvlist_t *nvp)
898 {
899 	int error;
900 	nvpair_t *elem = NULL;
901 	boolean_t need_sync = B_FALSE;
902 
903 	if ((error = spa_prop_validate(spa, nvp)) != 0)
904 		return (error);
905 
906 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
907 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
908 
909 		if (prop == ZPOOL_PROP_CACHEFILE ||
910 		    prop == ZPOOL_PROP_ALTROOT ||
911 		    prop == ZPOOL_PROP_READONLY)
912 			continue;
913 
914 		if (prop == ZPOOL_PROP_INVAL &&
915 		    zfs_prop_user(nvpair_name(elem))) {
916 			need_sync = B_TRUE;
917 			break;
918 		}
919 
920 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
921 			uint64_t ver = 0;
922 
923 			if (prop == ZPOOL_PROP_VERSION) {
924 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
925 			} else {
926 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
927 				ver = SPA_VERSION_FEATURES;
928 				need_sync = B_TRUE;
929 			}
930 
931 			/* Save time if the version is already set. */
932 			if (ver == spa_version(spa))
933 				continue;
934 
935 			/*
936 			 * In addition to the pool directory object, we might
937 			 * create the pool properties object, the features for
938 			 * read object, the features for write object, or the
939 			 * feature descriptions object.
940 			 */
941 			error = dsl_sync_task(spa->spa_name, NULL,
942 			    spa_sync_version, &ver,
943 			    6, ZFS_SPACE_CHECK_RESERVED);
944 			if (error)
945 				return (error);
946 			continue;
947 		}
948 
949 		need_sync = B_TRUE;
950 		break;
951 	}
952 
953 	if (need_sync) {
954 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
955 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
956 	}
957 
958 	return (0);
959 }
960 
961 /*
962  * If the bootfs property value is dsobj, clear it.
963  */
964 void
965 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
966 {
967 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
968 		VERIFY(zap_remove(spa->spa_meta_objset,
969 		    spa->spa_pool_props_object,
970 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
971 		spa->spa_bootfs = 0;
972 	}
973 }
974 
975 static int
976 spa_change_guid_check(void *arg, dmu_tx_t *tx)
977 {
978 	uint64_t *newguid __maybe_unused = arg;
979 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
980 	vdev_t *rvd = spa->spa_root_vdev;
981 	uint64_t vdev_state;
982 
983 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
984 		int error = (spa_has_checkpoint(spa)) ?
985 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
986 		return (SET_ERROR(error));
987 	}
988 
989 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
990 	vdev_state = rvd->vdev_state;
991 	spa_config_exit(spa, SCL_STATE, FTAG);
992 
993 	if (vdev_state != VDEV_STATE_HEALTHY)
994 		return (SET_ERROR(ENXIO));
995 
996 	ASSERT3U(spa_guid(spa), !=, *newguid);
997 
998 	return (0);
999 }
1000 
1001 static void
1002 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1003 {
1004 	uint64_t *newguid = arg;
1005 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1006 	uint64_t oldguid;
1007 	vdev_t *rvd = spa->spa_root_vdev;
1008 
1009 	oldguid = spa_guid(spa);
1010 
1011 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1012 	rvd->vdev_guid = *newguid;
1013 	rvd->vdev_guid_sum += (*newguid - oldguid);
1014 	vdev_config_dirty(rvd);
1015 	spa_config_exit(spa, SCL_STATE, FTAG);
1016 
1017 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1018 	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1019 }
1020 
1021 /*
1022  * Change the GUID for the pool.  This is done so that we can later
1023  * re-import a pool built from a clone of our own vdevs.  We will modify
1024  * the root vdev's guid, our own pool guid, and then mark all of our
1025  * vdevs dirty.  Note that we must make sure that all our vdevs are
1026  * online when we do this, or else any vdevs that weren't present
1027  * would be orphaned from our pool.  We are also going to issue a
1028  * sysevent to update any watchers.
1029  *
1030  * The GUID of the pool will be changed to the value pointed to by guidp.
1031  * The GUID may not be set to the reserverd value of 0.
1032  * The new GUID will be generated if guidp is NULL.
1033  */
1034 int
1035 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1036 {
1037 	uint64_t guid;
1038 	int error;
1039 
1040 	mutex_enter(&spa->spa_vdev_top_lock);
1041 	mutex_enter(&spa_namespace_lock);
1042 
1043 	if (guidp != NULL) {
1044 		guid = *guidp;
1045 		if (guid == 0) {
1046 			error = SET_ERROR(EINVAL);
1047 			goto out;
1048 		}
1049 
1050 		if (spa_guid_exists(guid, 0)) {
1051 			error = SET_ERROR(EEXIST);
1052 			goto out;
1053 		}
1054 	} else {
1055 		guid = spa_generate_guid(NULL);
1056 	}
1057 
1058 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1059 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1060 
1061 	if (error == 0) {
1062 		/*
1063 		 * Clear the kobj flag from all the vdevs to allow
1064 		 * vdev_cache_process_kobj_evt() to post events to all the
1065 		 * vdevs since GUID is updated.
1066 		 */
1067 		vdev_clear_kobj_evt(spa->spa_root_vdev);
1068 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1069 			vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1070 
1071 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1072 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1073 	}
1074 
1075 out:
1076 	mutex_exit(&spa_namespace_lock);
1077 	mutex_exit(&spa->spa_vdev_top_lock);
1078 
1079 	return (error);
1080 }
1081 
1082 /*
1083  * ==========================================================================
1084  * SPA state manipulation (open/create/destroy/import/export)
1085  * ==========================================================================
1086  */
1087 
1088 static int
1089 spa_error_entry_compare(const void *a, const void *b)
1090 {
1091 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1092 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1093 	int ret;
1094 
1095 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1096 	    sizeof (zbookmark_phys_t));
1097 
1098 	return (TREE_ISIGN(ret));
1099 }
1100 
1101 /*
1102  * Utility function which retrieves copies of the current logs and
1103  * re-initializes them in the process.
1104  */
1105 void
1106 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1107 {
1108 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1109 
1110 	memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1111 	memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1112 
1113 	avl_create(&spa->spa_errlist_scrub,
1114 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1115 	    offsetof(spa_error_entry_t, se_avl));
1116 	avl_create(&spa->spa_errlist_last,
1117 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1118 	    offsetof(spa_error_entry_t, se_avl));
1119 }
1120 
1121 static void
1122 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1123 {
1124 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1125 	enum zti_modes mode = ztip->zti_mode;
1126 	uint_t value = ztip->zti_value;
1127 	uint_t count = ztip->zti_count;
1128 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1129 	uint_t cpus, flags = TASKQ_DYNAMIC;
1130 
1131 	switch (mode) {
1132 	case ZTI_MODE_FIXED:
1133 		ASSERT3U(value, >, 0);
1134 		break;
1135 
1136 	case ZTI_MODE_SYNC:
1137 
1138 		/*
1139 		 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1140 		 * not to exceed the number of spa allocators, and align to it.
1141 		 */
1142 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1143 		count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1144 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1145 		count = MIN(count, spa->spa_alloc_count);
1146 		while (spa->spa_alloc_count % count != 0 &&
1147 		    spa->spa_alloc_count < count * 2)
1148 			count--;
1149 
1150 		/*
1151 		 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1152 		 * single taskq may have more threads than 100% of online cpus.
1153 		 */
1154 		value = (zio_taskq_batch_pct + count / 2) / count;
1155 		value = MIN(value, 100);
1156 		flags |= TASKQ_THREADS_CPU_PCT;
1157 		break;
1158 
1159 	case ZTI_MODE_SCALE:
1160 		flags |= TASKQ_THREADS_CPU_PCT;
1161 		/*
1162 		 * We want more taskqs to reduce lock contention, but we want
1163 		 * less for better request ordering and CPU utilization.
1164 		 */
1165 		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1166 		if (zio_taskq_batch_tpq > 0) {
1167 			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1168 			    zio_taskq_batch_tpq);
1169 		} else {
1170 			/*
1171 			 * Prefer 6 threads per taskq, but no more taskqs
1172 			 * than threads in them on large systems. For 80%:
1173 			 *
1174 			 *                 taskq   taskq   total
1175 			 * cpus    taskqs  percent threads threads
1176 			 * ------- ------- ------- ------- -------
1177 			 * 1       1       80%     1       1
1178 			 * 2       1       80%     1       1
1179 			 * 4       1       80%     3       3
1180 			 * 8       2       40%     3       6
1181 			 * 16      3       27%     4       12
1182 			 * 32      5       16%     5       25
1183 			 * 64      7       11%     7       49
1184 			 * 128     10      8%      10      100
1185 			 * 256     14      6%      15      210
1186 			 */
1187 			count = 1 + cpus / 6;
1188 			while (count * count > cpus)
1189 				count--;
1190 		}
1191 		/* Limit each taskq within 100% to not trigger assertion. */
1192 		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1193 		value = (zio_taskq_batch_pct + count / 2) / count;
1194 		break;
1195 
1196 	case ZTI_MODE_NULL:
1197 		tqs->stqs_count = 0;
1198 		tqs->stqs_taskq = NULL;
1199 		return;
1200 
1201 	default:
1202 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1203 		    "spa_taskqs_init()",
1204 		    zio_type_name[t], zio_taskq_types[q], mode, value);
1205 		break;
1206 	}
1207 
1208 	ASSERT3U(count, >, 0);
1209 	tqs->stqs_count = count;
1210 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1211 
1212 	for (uint_t i = 0; i < count; i++) {
1213 		taskq_t *tq;
1214 		char name[32];
1215 
1216 		if (count > 1)
1217 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1218 			    zio_type_name[t], zio_taskq_types[q], i);
1219 		else
1220 			(void) snprintf(name, sizeof (name), "%s_%s",
1221 			    zio_type_name[t], zio_taskq_types[q]);
1222 
1223 #ifdef HAVE_SYSDC
1224 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1225 			(void) zio_taskq_basedc;
1226 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1227 			    spa->spa_proc, zio_taskq_basedc, flags);
1228 		} else {
1229 #endif
1230 			pri_t pri = maxclsyspri;
1231 			/*
1232 			 * The write issue taskq can be extremely CPU
1233 			 * intensive.  Run it at slightly less important
1234 			 * priority than the other taskqs.
1235 			 *
1236 			 * Under Linux and FreeBSD this means incrementing
1237 			 * the priority value as opposed to platforms like
1238 			 * illumos where it should be decremented.
1239 			 *
1240 			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1241 			 * are equal then a difference between them is
1242 			 * insignificant.
1243 			 */
1244 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1245 #if defined(__linux__)
1246 				pri++;
1247 #elif defined(__FreeBSD__)
1248 				pri += 4;
1249 #else
1250 #error "unknown OS"
1251 #endif
1252 			}
1253 			tq = taskq_create_proc(name, value, pri, 50,
1254 			    INT_MAX, spa->spa_proc, flags);
1255 #ifdef HAVE_SYSDC
1256 		}
1257 #endif
1258 
1259 		tqs->stqs_taskq[i] = tq;
1260 	}
1261 }
1262 
1263 static void
1264 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1265 {
1266 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1267 
1268 	if (tqs->stqs_taskq == NULL) {
1269 		ASSERT3U(tqs->stqs_count, ==, 0);
1270 		return;
1271 	}
1272 
1273 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1274 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1275 		taskq_destroy(tqs->stqs_taskq[i]);
1276 	}
1277 
1278 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1279 	tqs->stqs_taskq = NULL;
1280 }
1281 
1282 #ifdef _KERNEL
1283 /*
1284  * The READ and WRITE rows of zio_taskqs are configurable at module load time
1285  * by setting zio_taskq_read or zio_taskq_write.
1286  *
1287  * Example (the defaults for READ and WRITE)
1288  *   zio_taskq_read='fixed,1,8 null scale null'
1289  *   zio_taskq_write='sync null scale null'
1290  *
1291  * Each sets the entire row at a time.
1292  *
1293  * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1294  * of threads per taskq.
1295  *
1296  * 'null' can only be set on the high-priority queues (queue selection for
1297  * high-priority queues will fall back to the regular queue if the high-pri
1298  * is NULL.
1299  */
1300 static const char *const modes[ZTI_NMODES] = {
1301 	"fixed", "scale", "sync", "null"
1302 };
1303 
1304 /* Parse the incoming config string. Modifies cfg */
1305 static int
1306 spa_taskq_param_set(zio_type_t t, char *cfg)
1307 {
1308 	int err = 0;
1309 
1310 	zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1311 
1312 	char *next = cfg, *tok, *c;
1313 
1314 	/*
1315 	 * Parse out each element from the string and fill `row`. The entire
1316 	 * row has to be set at once, so any errors are flagged by just
1317 	 * breaking out of this loop early.
1318 	 */
1319 	uint_t q;
1320 	for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1321 		/* `next` is the start of the config */
1322 		if (next == NULL)
1323 			break;
1324 
1325 		/* Eat up leading space */
1326 		while (isspace(*next))
1327 			next++;
1328 		if (*next == '\0')
1329 			break;
1330 
1331 		/* Mode ends at space or end of string */
1332 		tok = next;
1333 		next = strchr(tok, ' ');
1334 		if (next != NULL) *next++ = '\0';
1335 
1336 		/* Parameters start after a comma */
1337 		c = strchr(tok, ',');
1338 		if (c != NULL) *c++ = '\0';
1339 
1340 		/* Match mode string */
1341 		uint_t mode;
1342 		for (mode = 0; mode < ZTI_NMODES; mode++)
1343 			if (strcmp(tok, modes[mode]) == 0)
1344 				break;
1345 		if (mode == ZTI_NMODES)
1346 			break;
1347 
1348 		/* Invalid canary */
1349 		row[q].zti_mode = ZTI_NMODES;
1350 
1351 		/* Per-mode setup */
1352 		switch (mode) {
1353 
1354 		/*
1355 		 * FIXED is parameterised: number of queues, and number of
1356 		 * threads per queue.
1357 		 */
1358 		case ZTI_MODE_FIXED: {
1359 			/* No parameters? */
1360 			if (c == NULL || *c == '\0')
1361 				break;
1362 
1363 			/* Find next parameter */
1364 			tok = c;
1365 			c = strchr(tok, ',');
1366 			if (c == NULL)
1367 				break;
1368 
1369 			/* Take digits and convert */
1370 			unsigned long long nq;
1371 			if (!(isdigit(*tok)))
1372 				break;
1373 			err = ddi_strtoull(tok, &tok, 10, &nq);
1374 			/* Must succeed and also end at the next param sep */
1375 			if (err != 0 || tok != c)
1376 				break;
1377 
1378 			/* Move past the comma */
1379 			tok++;
1380 			/* Need another number */
1381 			if (!(isdigit(*tok)))
1382 				break;
1383 			/* Remember start to make sure we moved */
1384 			c = tok;
1385 
1386 			/* Take digits */
1387 			unsigned long long ntpq;
1388 			err = ddi_strtoull(tok, &tok, 10, &ntpq);
1389 			/* Must succeed, and moved forward */
1390 			if (err != 0 || tok == c || *tok != '\0')
1391 				break;
1392 
1393 			/*
1394 			 * sanity; zero queues/threads make no sense, and
1395 			 * 16K is almost certainly more than anyone will ever
1396 			 * need and avoids silly numbers like UINT32_MAX
1397 			 */
1398 			if (nq == 0 || nq >= 16384 ||
1399 			    ntpq == 0 || ntpq >= 16384)
1400 				break;
1401 
1402 			const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1403 			row[q] = zti;
1404 			break;
1405 		}
1406 
1407 		case ZTI_MODE_SCALE: {
1408 			const zio_taskq_info_t zti = ZTI_SCALE;
1409 			row[q] = zti;
1410 			break;
1411 		}
1412 
1413 		case ZTI_MODE_SYNC: {
1414 			const zio_taskq_info_t zti = ZTI_SYNC;
1415 			row[q] = zti;
1416 			break;
1417 		}
1418 
1419 		case ZTI_MODE_NULL: {
1420 			/*
1421 			 * Can only null the high-priority queues; the general-
1422 			 * purpose ones have to exist.
1423 			 */
1424 			if (q != ZIO_TASKQ_ISSUE_HIGH &&
1425 			    q != ZIO_TASKQ_INTERRUPT_HIGH)
1426 				break;
1427 
1428 			const zio_taskq_info_t zti = ZTI_NULL;
1429 			row[q] = zti;
1430 			break;
1431 		}
1432 
1433 		default:
1434 			break;
1435 		}
1436 
1437 		/* Ensure we set a mode */
1438 		if (row[q].zti_mode == ZTI_NMODES)
1439 			break;
1440 	}
1441 
1442 	/* Didn't get a full row, fail */
1443 	if (q < ZIO_TASKQ_TYPES)
1444 		return (SET_ERROR(EINVAL));
1445 
1446 	/* Eat trailing space */
1447 	if (next != NULL)
1448 		while (isspace(*next))
1449 			next++;
1450 
1451 	/* If there's anything left over then fail */
1452 	if (next != NULL && *next != '\0')
1453 		return (SET_ERROR(EINVAL));
1454 
1455 	/* Success! Copy it into the real config */
1456 	for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1457 		zio_taskqs[t][q] = row[q];
1458 
1459 	return (0);
1460 }
1461 
1462 static int
1463 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1464 {
1465 	int pos = 0;
1466 
1467 	/* Build paramater string from live config */
1468 	const char *sep = "";
1469 	for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1470 		const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1471 		if (zti->zti_mode == ZTI_MODE_FIXED)
1472 			pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1473 			    modes[zti->zti_mode], zti->zti_count,
1474 			    zti->zti_value);
1475 		else
1476 			pos += sprintf(&buf[pos], "%s%s", sep,
1477 			    modes[zti->zti_mode]);
1478 		sep = " ";
1479 	}
1480 
1481 	if (add_newline)
1482 		buf[pos++] = '\n';
1483 	buf[pos] = '\0';
1484 
1485 	return (pos);
1486 }
1487 
1488 #ifdef __linux__
1489 static int
1490 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1491 {
1492 	char *cfg = kmem_strdup(val);
1493 	int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1494 	kmem_free(cfg, strlen(val)+1);
1495 	return (-err);
1496 }
1497 static int
1498 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1499 {
1500 	return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1501 }
1502 
1503 static int
1504 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1505 {
1506 	char *cfg = kmem_strdup(val);
1507 	int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1508 	kmem_free(cfg, strlen(val)+1);
1509 	return (-err);
1510 }
1511 static int
1512 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1513 {
1514 	return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1515 }
1516 #else
1517 /*
1518  * On FreeBSD load-time parameters can be set up before malloc() is available,
1519  * so we have to do all the parsing work on the stack.
1520  */
1521 #define	SPA_TASKQ_PARAM_MAX	(128)
1522 
1523 static int
1524 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1525 {
1526 	char buf[SPA_TASKQ_PARAM_MAX];
1527 	int err;
1528 
1529 	(void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1530 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1531 	if (err || req->newptr == NULL)
1532 		return (err);
1533 	return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1534 }
1535 
1536 static int
1537 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1538 {
1539 	char buf[SPA_TASKQ_PARAM_MAX];
1540 	int err;
1541 
1542 	(void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1543 	err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1544 	if (err || req->newptr == NULL)
1545 		return (err);
1546 	return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1547 }
1548 #endif
1549 #endif /* _KERNEL */
1550 
1551 /*
1552  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1553  * Note that a type may have multiple discrete taskqs to avoid lock contention
1554  * on the taskq itself.
1555  */
1556 void
1557 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1558     task_func_t *func, zio_t *zio, boolean_t cutinline)
1559 {
1560 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1561 	taskq_t *tq;
1562 
1563 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1564 	ASSERT3U(tqs->stqs_count, !=, 0);
1565 
1566 	/*
1567 	 * NB: We are assuming that the zio can only be dispatched
1568 	 * to a single taskq at a time.  It would be a grievous error
1569 	 * to dispatch the zio to another taskq at the same time.
1570 	 */
1571 	ASSERT(zio);
1572 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1573 
1574 	if (tqs->stqs_count == 1) {
1575 		tq = tqs->stqs_taskq[0];
1576 	} else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1577 	    ZIO_HAS_ALLOCATOR(zio)) {
1578 		tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1579 	} else {
1580 		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1581 	}
1582 
1583 	taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1584 	    &zio->io_tqent);
1585 }
1586 
1587 static void
1588 spa_create_zio_taskqs(spa_t *spa)
1589 {
1590 	for (int t = 0; t < ZIO_TYPES; t++) {
1591 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1592 			spa_taskqs_init(spa, t, q);
1593 		}
1594 	}
1595 }
1596 
1597 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1598 static void
1599 spa_thread(void *arg)
1600 {
1601 	psetid_t zio_taskq_psrset_bind = PS_NONE;
1602 	callb_cpr_t cprinfo;
1603 
1604 	spa_t *spa = arg;
1605 	user_t *pu = PTOU(curproc);
1606 
1607 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1608 	    spa->spa_name);
1609 
1610 	ASSERT(curproc != &p0);
1611 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1612 	    "zpool-%s", spa->spa_name);
1613 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1614 
1615 	/* bind this thread to the requested psrset */
1616 	if (zio_taskq_psrset_bind != PS_NONE) {
1617 		pool_lock();
1618 		mutex_enter(&cpu_lock);
1619 		mutex_enter(&pidlock);
1620 		mutex_enter(&curproc->p_lock);
1621 
1622 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1623 		    0, NULL, NULL) == 0)  {
1624 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1625 		} else {
1626 			cmn_err(CE_WARN,
1627 			    "Couldn't bind process for zfs pool \"%s\" to "
1628 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1629 		}
1630 
1631 		mutex_exit(&curproc->p_lock);
1632 		mutex_exit(&pidlock);
1633 		mutex_exit(&cpu_lock);
1634 		pool_unlock();
1635 	}
1636 
1637 #ifdef HAVE_SYSDC
1638 	if (zio_taskq_sysdc) {
1639 		sysdc_thread_enter(curthread, 100, 0);
1640 	}
1641 #endif
1642 
1643 	spa->spa_proc = curproc;
1644 	spa->spa_did = curthread->t_did;
1645 
1646 	spa_create_zio_taskqs(spa);
1647 
1648 	mutex_enter(&spa->spa_proc_lock);
1649 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1650 
1651 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1652 	cv_broadcast(&spa->spa_proc_cv);
1653 
1654 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1655 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1656 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1657 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1658 
1659 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1660 	spa->spa_proc_state = SPA_PROC_GONE;
1661 	spa->spa_proc = &p0;
1662 	cv_broadcast(&spa->spa_proc_cv);
1663 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1664 
1665 	mutex_enter(&curproc->p_lock);
1666 	lwp_exit();
1667 }
1668 #endif
1669 
1670 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1671 
1672 /*
1673  * Activate an uninitialized pool.
1674  */
1675 static void
1676 spa_activate(spa_t *spa, spa_mode_t mode)
1677 {
1678 	metaslab_ops_t *msp = metaslab_allocator(spa);
1679 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1680 
1681 	spa->spa_state = POOL_STATE_ACTIVE;
1682 	spa->spa_mode = mode;
1683 	spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1684 
1685 	spa->spa_normal_class = metaslab_class_create(spa, msp);
1686 	spa->spa_log_class = metaslab_class_create(spa, msp);
1687 	spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1688 	spa->spa_special_class = metaslab_class_create(spa, msp);
1689 	spa->spa_dedup_class = metaslab_class_create(spa, msp);
1690 
1691 	/* Try to create a covering process */
1692 	mutex_enter(&spa->spa_proc_lock);
1693 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1694 	ASSERT(spa->spa_proc == &p0);
1695 	spa->spa_did = 0;
1696 
1697 #ifdef HAVE_SPA_THREAD
1698 	/* Only create a process if we're going to be around a while. */
1699 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1700 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1701 		    NULL, 0) == 0) {
1702 			spa->spa_proc_state = SPA_PROC_CREATED;
1703 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1704 				cv_wait(&spa->spa_proc_cv,
1705 				    &spa->spa_proc_lock);
1706 			}
1707 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1708 			ASSERT(spa->spa_proc != &p0);
1709 			ASSERT(spa->spa_did != 0);
1710 		} else {
1711 #ifdef _KERNEL
1712 			cmn_err(CE_WARN,
1713 			    "Couldn't create process for zfs pool \"%s\"\n",
1714 			    spa->spa_name);
1715 #endif
1716 		}
1717 	}
1718 #endif /* HAVE_SPA_THREAD */
1719 	mutex_exit(&spa->spa_proc_lock);
1720 
1721 	/* If we didn't create a process, we need to create our taskqs. */
1722 	if (spa->spa_proc == &p0) {
1723 		spa_create_zio_taskqs(spa);
1724 	}
1725 
1726 	for (size_t i = 0; i < TXG_SIZE; i++) {
1727 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1728 		    ZIO_FLAG_CANFAIL);
1729 	}
1730 
1731 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1732 	    offsetof(vdev_t, vdev_config_dirty_node));
1733 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1734 	    offsetof(objset_t, os_evicting_node));
1735 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1736 	    offsetof(vdev_t, vdev_state_dirty_node));
1737 
1738 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1739 	    offsetof(struct vdev, vdev_txg_node));
1740 
1741 	avl_create(&spa->spa_errlist_scrub,
1742 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1743 	    offsetof(spa_error_entry_t, se_avl));
1744 	avl_create(&spa->spa_errlist_last,
1745 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1746 	    offsetof(spa_error_entry_t, se_avl));
1747 	avl_create(&spa->spa_errlist_healed,
1748 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1749 	    offsetof(spa_error_entry_t, se_avl));
1750 
1751 	spa_activate_os(spa);
1752 
1753 	spa_keystore_init(&spa->spa_keystore);
1754 
1755 	/*
1756 	 * This taskq is used to perform zvol-minor-related tasks
1757 	 * asynchronously. This has several advantages, including easy
1758 	 * resolution of various deadlocks.
1759 	 *
1760 	 * The taskq must be single threaded to ensure tasks are always
1761 	 * processed in the order in which they were dispatched.
1762 	 *
1763 	 * A taskq per pool allows one to keep the pools independent.
1764 	 * This way if one pool is suspended, it will not impact another.
1765 	 *
1766 	 * The preferred location to dispatch a zvol minor task is a sync
1767 	 * task. In this context, there is easy access to the spa_t and minimal
1768 	 * error handling is required because the sync task must succeed.
1769 	 */
1770 	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1771 	    1, INT_MAX, 0);
1772 
1773 	/*
1774 	 * The taskq to preload metaslabs.
1775 	 */
1776 	spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1777 	    metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1778 	    TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1779 
1780 	/*
1781 	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1782 	 * pool traverse code from monopolizing the global (and limited)
1783 	 * system_taskq by inappropriately scheduling long running tasks on it.
1784 	 */
1785 	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1786 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1787 
1788 	/*
1789 	 * The taskq to upgrade datasets in this pool. Currently used by
1790 	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1791 	 */
1792 	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1793 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1794 }
1795 
1796 /*
1797  * Opposite of spa_activate().
1798  */
1799 static void
1800 spa_deactivate(spa_t *spa)
1801 {
1802 	ASSERT(spa->spa_sync_on == B_FALSE);
1803 	ASSERT(spa->spa_dsl_pool == NULL);
1804 	ASSERT(spa->spa_root_vdev == NULL);
1805 	ASSERT(spa->spa_async_zio_root == NULL);
1806 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1807 
1808 	spa_evicting_os_wait(spa);
1809 
1810 	if (spa->spa_zvol_taskq) {
1811 		taskq_destroy(spa->spa_zvol_taskq);
1812 		spa->spa_zvol_taskq = NULL;
1813 	}
1814 
1815 	if (spa->spa_metaslab_taskq) {
1816 		taskq_destroy(spa->spa_metaslab_taskq);
1817 		spa->spa_metaslab_taskq = NULL;
1818 	}
1819 
1820 	if (spa->spa_prefetch_taskq) {
1821 		taskq_destroy(spa->spa_prefetch_taskq);
1822 		spa->spa_prefetch_taskq = NULL;
1823 	}
1824 
1825 	if (spa->spa_upgrade_taskq) {
1826 		taskq_destroy(spa->spa_upgrade_taskq);
1827 		spa->spa_upgrade_taskq = NULL;
1828 	}
1829 
1830 	txg_list_destroy(&spa->spa_vdev_txg_list);
1831 
1832 	list_destroy(&spa->spa_config_dirty_list);
1833 	list_destroy(&spa->spa_evicting_os_list);
1834 	list_destroy(&spa->spa_state_dirty_list);
1835 
1836 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1837 
1838 	for (int t = 0; t < ZIO_TYPES; t++) {
1839 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1840 			spa_taskqs_fini(spa, t, q);
1841 		}
1842 	}
1843 
1844 	for (size_t i = 0; i < TXG_SIZE; i++) {
1845 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1846 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1847 		spa->spa_txg_zio[i] = NULL;
1848 	}
1849 
1850 	metaslab_class_destroy(spa->spa_normal_class);
1851 	spa->spa_normal_class = NULL;
1852 
1853 	metaslab_class_destroy(spa->spa_log_class);
1854 	spa->spa_log_class = NULL;
1855 
1856 	metaslab_class_destroy(spa->spa_embedded_log_class);
1857 	spa->spa_embedded_log_class = NULL;
1858 
1859 	metaslab_class_destroy(spa->spa_special_class);
1860 	spa->spa_special_class = NULL;
1861 
1862 	metaslab_class_destroy(spa->spa_dedup_class);
1863 	spa->spa_dedup_class = NULL;
1864 
1865 	/*
1866 	 * If this was part of an import or the open otherwise failed, we may
1867 	 * still have errors left in the queues.  Empty them just in case.
1868 	 */
1869 	spa_errlog_drain(spa);
1870 	avl_destroy(&spa->spa_errlist_scrub);
1871 	avl_destroy(&spa->spa_errlist_last);
1872 	avl_destroy(&spa->spa_errlist_healed);
1873 
1874 	spa_keystore_fini(&spa->spa_keystore);
1875 
1876 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1877 
1878 	mutex_enter(&spa->spa_proc_lock);
1879 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1880 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1881 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1882 		cv_broadcast(&spa->spa_proc_cv);
1883 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1884 			ASSERT(spa->spa_proc != &p0);
1885 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1886 		}
1887 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1888 		spa->spa_proc_state = SPA_PROC_NONE;
1889 	}
1890 	ASSERT(spa->spa_proc == &p0);
1891 	mutex_exit(&spa->spa_proc_lock);
1892 
1893 	/*
1894 	 * We want to make sure spa_thread() has actually exited the ZFS
1895 	 * module, so that the module can't be unloaded out from underneath
1896 	 * it.
1897 	 */
1898 	if (spa->spa_did != 0) {
1899 		thread_join(spa->spa_did);
1900 		spa->spa_did = 0;
1901 	}
1902 
1903 	spa_deactivate_os(spa);
1904 
1905 }
1906 
1907 /*
1908  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1909  * will create all the necessary vdevs in the appropriate layout, with each vdev
1910  * in the CLOSED state.  This will prep the pool before open/creation/import.
1911  * All vdev validation is done by the vdev_alloc() routine.
1912  */
1913 int
1914 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1915     uint_t id, int atype)
1916 {
1917 	nvlist_t **child;
1918 	uint_t children;
1919 	int error;
1920 
1921 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1922 		return (error);
1923 
1924 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1925 		return (0);
1926 
1927 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1928 	    &child, &children);
1929 
1930 	if (error == ENOENT)
1931 		return (0);
1932 
1933 	if (error) {
1934 		vdev_free(*vdp);
1935 		*vdp = NULL;
1936 		return (SET_ERROR(EINVAL));
1937 	}
1938 
1939 	for (int c = 0; c < children; c++) {
1940 		vdev_t *vd;
1941 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1942 		    atype)) != 0) {
1943 			vdev_free(*vdp);
1944 			*vdp = NULL;
1945 			return (error);
1946 		}
1947 	}
1948 
1949 	ASSERT(*vdp != NULL);
1950 
1951 	return (0);
1952 }
1953 
1954 static boolean_t
1955 spa_should_flush_logs_on_unload(spa_t *spa)
1956 {
1957 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1958 		return (B_FALSE);
1959 
1960 	if (!spa_writeable(spa))
1961 		return (B_FALSE);
1962 
1963 	if (!spa->spa_sync_on)
1964 		return (B_FALSE);
1965 
1966 	if (spa_state(spa) != POOL_STATE_EXPORTED)
1967 		return (B_FALSE);
1968 
1969 	if (zfs_keep_log_spacemaps_at_export)
1970 		return (B_FALSE);
1971 
1972 	return (B_TRUE);
1973 }
1974 
1975 /*
1976  * Opens a transaction that will set the flag that will instruct
1977  * spa_sync to attempt to flush all the metaslabs for that txg.
1978  */
1979 static void
1980 spa_unload_log_sm_flush_all(spa_t *spa)
1981 {
1982 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1983 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1984 
1985 	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1986 	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1987 
1988 	dmu_tx_commit(tx);
1989 	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1990 }
1991 
1992 static void
1993 spa_unload_log_sm_metadata(spa_t *spa)
1994 {
1995 	void *cookie = NULL;
1996 	spa_log_sm_t *sls;
1997 	log_summary_entry_t *e;
1998 
1999 	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2000 	    &cookie)) != NULL) {
2001 		VERIFY0(sls->sls_mscount);
2002 		kmem_free(sls, sizeof (spa_log_sm_t));
2003 	}
2004 
2005 	while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2006 		VERIFY0(e->lse_mscount);
2007 		kmem_free(e, sizeof (log_summary_entry_t));
2008 	}
2009 
2010 	spa->spa_unflushed_stats.sus_nblocks = 0;
2011 	spa->spa_unflushed_stats.sus_memused = 0;
2012 	spa->spa_unflushed_stats.sus_blocklimit = 0;
2013 }
2014 
2015 static void
2016 spa_destroy_aux_threads(spa_t *spa)
2017 {
2018 	if (spa->spa_condense_zthr != NULL) {
2019 		zthr_destroy(spa->spa_condense_zthr);
2020 		spa->spa_condense_zthr = NULL;
2021 	}
2022 	if (spa->spa_checkpoint_discard_zthr != NULL) {
2023 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
2024 		spa->spa_checkpoint_discard_zthr = NULL;
2025 	}
2026 	if (spa->spa_livelist_delete_zthr != NULL) {
2027 		zthr_destroy(spa->spa_livelist_delete_zthr);
2028 		spa->spa_livelist_delete_zthr = NULL;
2029 	}
2030 	if (spa->spa_livelist_condense_zthr != NULL) {
2031 		zthr_destroy(spa->spa_livelist_condense_zthr);
2032 		spa->spa_livelist_condense_zthr = NULL;
2033 	}
2034 	if (spa->spa_raidz_expand_zthr != NULL) {
2035 		zthr_destroy(spa->spa_raidz_expand_zthr);
2036 		spa->spa_raidz_expand_zthr = NULL;
2037 	}
2038 }
2039 
2040 /*
2041  * Opposite of spa_load().
2042  */
2043 static void
2044 spa_unload(spa_t *spa)
2045 {
2046 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2047 	    spa->spa_export_thread == curthread);
2048 	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2049 
2050 	spa_import_progress_remove(spa_guid(spa));
2051 	spa_load_note(spa, "UNLOADING");
2052 
2053 	spa_wake_waiters(spa);
2054 
2055 	/*
2056 	 * If we have set the spa_final_txg, we have already performed the
2057 	 * tasks below in spa_export_common(). We should not redo it here since
2058 	 * we delay the final TXGs beyond what spa_final_txg is set at.
2059 	 */
2060 	if (spa->spa_final_txg == UINT64_MAX) {
2061 		/*
2062 		 * If the log space map feature is enabled and the pool is
2063 		 * getting exported (but not destroyed), we want to spend some
2064 		 * time flushing as many metaslabs as we can in an attempt to
2065 		 * destroy log space maps and save import time.
2066 		 */
2067 		if (spa_should_flush_logs_on_unload(spa))
2068 			spa_unload_log_sm_flush_all(spa);
2069 
2070 		/*
2071 		 * Stop async tasks.
2072 		 */
2073 		spa_async_suspend(spa);
2074 
2075 		if (spa->spa_root_vdev) {
2076 			vdev_t *root_vdev = spa->spa_root_vdev;
2077 			vdev_initialize_stop_all(root_vdev,
2078 			    VDEV_INITIALIZE_ACTIVE);
2079 			vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2080 			vdev_autotrim_stop_all(spa);
2081 			vdev_rebuild_stop_all(spa);
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * Stop syncing.
2087 	 */
2088 	if (spa->spa_sync_on) {
2089 		txg_sync_stop(spa->spa_dsl_pool);
2090 		spa->spa_sync_on = B_FALSE;
2091 	}
2092 
2093 	/*
2094 	 * This ensures that there is no async metaslab prefetching
2095 	 * while we attempt to unload the spa.
2096 	 */
2097 	taskq_wait(spa->spa_metaslab_taskq);
2098 
2099 	if (spa->spa_mmp.mmp_thread)
2100 		mmp_thread_stop(spa);
2101 
2102 	/*
2103 	 * Wait for any outstanding async I/O to complete.
2104 	 */
2105 	if (spa->spa_async_zio_root != NULL) {
2106 		for (int i = 0; i < max_ncpus; i++)
2107 			(void) zio_wait(spa->spa_async_zio_root[i]);
2108 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2109 		spa->spa_async_zio_root = NULL;
2110 	}
2111 
2112 	if (spa->spa_vdev_removal != NULL) {
2113 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
2114 		spa->spa_vdev_removal = NULL;
2115 	}
2116 
2117 	spa_destroy_aux_threads(spa);
2118 
2119 	spa_condense_fini(spa);
2120 
2121 	bpobj_close(&spa->spa_deferred_bpobj);
2122 
2123 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2124 
2125 	/*
2126 	 * Close all vdevs.
2127 	 */
2128 	if (spa->spa_root_vdev)
2129 		vdev_free(spa->spa_root_vdev);
2130 	ASSERT(spa->spa_root_vdev == NULL);
2131 
2132 	/*
2133 	 * Close the dsl pool.
2134 	 */
2135 	if (spa->spa_dsl_pool) {
2136 		dsl_pool_close(spa->spa_dsl_pool);
2137 		spa->spa_dsl_pool = NULL;
2138 		spa->spa_meta_objset = NULL;
2139 	}
2140 
2141 	ddt_unload(spa);
2142 	brt_unload(spa);
2143 	spa_unload_log_sm_metadata(spa);
2144 
2145 	/*
2146 	 * Drop and purge level 2 cache
2147 	 */
2148 	spa_l2cache_drop(spa);
2149 
2150 	if (spa->spa_spares.sav_vdevs) {
2151 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
2152 			vdev_free(spa->spa_spares.sav_vdevs[i]);
2153 		kmem_free(spa->spa_spares.sav_vdevs,
2154 		    spa->spa_spares.sav_count * sizeof (void *));
2155 		spa->spa_spares.sav_vdevs = NULL;
2156 	}
2157 	if (spa->spa_spares.sav_config) {
2158 		nvlist_free(spa->spa_spares.sav_config);
2159 		spa->spa_spares.sav_config = NULL;
2160 	}
2161 	spa->spa_spares.sav_count = 0;
2162 
2163 	if (spa->spa_l2cache.sav_vdevs) {
2164 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2165 			vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2166 			vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2167 		}
2168 		kmem_free(spa->spa_l2cache.sav_vdevs,
2169 		    spa->spa_l2cache.sav_count * sizeof (void *));
2170 		spa->spa_l2cache.sav_vdevs = NULL;
2171 	}
2172 	if (spa->spa_l2cache.sav_config) {
2173 		nvlist_free(spa->spa_l2cache.sav_config);
2174 		spa->spa_l2cache.sav_config = NULL;
2175 	}
2176 	spa->spa_l2cache.sav_count = 0;
2177 
2178 	spa->spa_async_suspended = 0;
2179 
2180 	spa->spa_indirect_vdevs_loaded = B_FALSE;
2181 
2182 	if (spa->spa_comment != NULL) {
2183 		spa_strfree(spa->spa_comment);
2184 		spa->spa_comment = NULL;
2185 	}
2186 	if (spa->spa_compatibility != NULL) {
2187 		spa_strfree(spa->spa_compatibility);
2188 		spa->spa_compatibility = NULL;
2189 	}
2190 
2191 	spa->spa_raidz_expand = NULL;
2192 
2193 	spa_config_exit(spa, SCL_ALL, spa);
2194 }
2195 
2196 /*
2197  * Load (or re-load) the current list of vdevs describing the active spares for
2198  * this pool.  When this is called, we have some form of basic information in
2199  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
2200  * then re-generate a more complete list including status information.
2201  */
2202 void
2203 spa_load_spares(spa_t *spa)
2204 {
2205 	nvlist_t **spares;
2206 	uint_t nspares;
2207 	int i;
2208 	vdev_t *vd, *tvd;
2209 
2210 #ifndef _KERNEL
2211 	/*
2212 	 * zdb opens both the current state of the pool and the
2213 	 * checkpointed state (if present), with a different spa_t.
2214 	 *
2215 	 * As spare vdevs are shared among open pools, we skip loading
2216 	 * them when we load the checkpointed state of the pool.
2217 	 */
2218 	if (!spa_writeable(spa))
2219 		return;
2220 #endif
2221 
2222 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2223 
2224 	/*
2225 	 * First, close and free any existing spare vdevs.
2226 	 */
2227 	if (spa->spa_spares.sav_vdevs) {
2228 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
2229 			vd = spa->spa_spares.sav_vdevs[i];
2230 
2231 			/* Undo the call to spa_activate() below */
2232 			if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2233 			    B_FALSE)) != NULL && tvd->vdev_isspare)
2234 				spa_spare_remove(tvd);
2235 			vdev_close(vd);
2236 			vdev_free(vd);
2237 		}
2238 
2239 		kmem_free(spa->spa_spares.sav_vdevs,
2240 		    spa->spa_spares.sav_count * sizeof (void *));
2241 	}
2242 
2243 	if (spa->spa_spares.sav_config == NULL)
2244 		nspares = 0;
2245 	else
2246 		VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2247 		    ZPOOL_CONFIG_SPARES, &spares, &nspares));
2248 
2249 	spa->spa_spares.sav_count = (int)nspares;
2250 	spa->spa_spares.sav_vdevs = NULL;
2251 
2252 	if (nspares == 0)
2253 		return;
2254 
2255 	/*
2256 	 * Construct the array of vdevs, opening them to get status in the
2257 	 * process.   For each spare, there is potentially two different vdev_t
2258 	 * structures associated with it: one in the list of spares (used only
2259 	 * for basic validation purposes) and one in the active vdev
2260 	 * configuration (if it's spared in).  During this phase we open and
2261 	 * validate each vdev on the spare list.  If the vdev also exists in the
2262 	 * active configuration, then we also mark this vdev as an active spare.
2263 	 */
2264 	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2265 	    KM_SLEEP);
2266 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
2267 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2268 		    VDEV_ALLOC_SPARE) == 0);
2269 		ASSERT(vd != NULL);
2270 
2271 		spa->spa_spares.sav_vdevs[i] = vd;
2272 
2273 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2274 		    B_FALSE)) != NULL) {
2275 			if (!tvd->vdev_isspare)
2276 				spa_spare_add(tvd);
2277 
2278 			/*
2279 			 * We only mark the spare active if we were successfully
2280 			 * able to load the vdev.  Otherwise, importing a pool
2281 			 * with a bad active spare would result in strange
2282 			 * behavior, because multiple pool would think the spare
2283 			 * is actively in use.
2284 			 *
2285 			 * There is a vulnerability here to an equally bizarre
2286 			 * circumstance, where a dead active spare is later
2287 			 * brought back to life (onlined or otherwise).  Given
2288 			 * the rarity of this scenario, and the extra complexity
2289 			 * it adds, we ignore the possibility.
2290 			 */
2291 			if (!vdev_is_dead(tvd))
2292 				spa_spare_activate(tvd);
2293 		}
2294 
2295 		vd->vdev_top = vd;
2296 		vd->vdev_aux = &spa->spa_spares;
2297 
2298 		if (vdev_open(vd) != 0)
2299 			continue;
2300 
2301 		if (vdev_validate_aux(vd) == 0)
2302 			spa_spare_add(vd);
2303 	}
2304 
2305 	/*
2306 	 * Recompute the stashed list of spares, with status information
2307 	 * this time.
2308 	 */
2309 	fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2310 
2311 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2312 	    KM_SLEEP);
2313 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2314 		spares[i] = vdev_config_generate(spa,
2315 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2316 	fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2317 	    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2318 	    spa->spa_spares.sav_count);
2319 	for (i = 0; i < spa->spa_spares.sav_count; i++)
2320 		nvlist_free(spares[i]);
2321 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2322 }
2323 
2324 /*
2325  * Load (or re-load) the current list of vdevs describing the active l2cache for
2326  * this pool.  When this is called, we have some form of basic information in
2327  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
2328  * then re-generate a more complete list including status information.
2329  * Devices which are already active have their details maintained, and are
2330  * not re-opened.
2331  */
2332 void
2333 spa_load_l2cache(spa_t *spa)
2334 {
2335 	nvlist_t **l2cache = NULL;
2336 	uint_t nl2cache;
2337 	int i, j, oldnvdevs;
2338 	uint64_t guid;
2339 	vdev_t *vd, **oldvdevs, **newvdevs;
2340 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2341 
2342 #ifndef _KERNEL
2343 	/*
2344 	 * zdb opens both the current state of the pool and the
2345 	 * checkpointed state (if present), with a different spa_t.
2346 	 *
2347 	 * As L2 caches are part of the ARC which is shared among open
2348 	 * pools, we skip loading them when we load the checkpointed
2349 	 * state of the pool.
2350 	 */
2351 	if (!spa_writeable(spa))
2352 		return;
2353 #endif
2354 
2355 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2356 
2357 	oldvdevs = sav->sav_vdevs;
2358 	oldnvdevs = sav->sav_count;
2359 	sav->sav_vdevs = NULL;
2360 	sav->sav_count = 0;
2361 
2362 	if (sav->sav_config == NULL) {
2363 		nl2cache = 0;
2364 		newvdevs = NULL;
2365 		goto out;
2366 	}
2367 
2368 	VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2369 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2370 	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2371 
2372 	/*
2373 	 * Process new nvlist of vdevs.
2374 	 */
2375 	for (i = 0; i < nl2cache; i++) {
2376 		guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2377 
2378 		newvdevs[i] = NULL;
2379 		for (j = 0; j < oldnvdevs; j++) {
2380 			vd = oldvdevs[j];
2381 			if (vd != NULL && guid == vd->vdev_guid) {
2382 				/*
2383 				 * Retain previous vdev for add/remove ops.
2384 				 */
2385 				newvdevs[i] = vd;
2386 				oldvdevs[j] = NULL;
2387 				break;
2388 			}
2389 		}
2390 
2391 		if (newvdevs[i] == NULL) {
2392 			/*
2393 			 * Create new vdev
2394 			 */
2395 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2396 			    VDEV_ALLOC_L2CACHE) == 0);
2397 			ASSERT(vd != NULL);
2398 			newvdevs[i] = vd;
2399 
2400 			/*
2401 			 * Commit this vdev as an l2cache device,
2402 			 * even if it fails to open.
2403 			 */
2404 			spa_l2cache_add(vd);
2405 
2406 			vd->vdev_top = vd;
2407 			vd->vdev_aux = sav;
2408 
2409 			spa_l2cache_activate(vd);
2410 
2411 			if (vdev_open(vd) != 0)
2412 				continue;
2413 
2414 			(void) vdev_validate_aux(vd);
2415 
2416 			if (!vdev_is_dead(vd))
2417 				l2arc_add_vdev(spa, vd);
2418 
2419 			/*
2420 			 * Upon cache device addition to a pool or pool
2421 			 * creation with a cache device or if the header
2422 			 * of the device is invalid we issue an async
2423 			 * TRIM command for the whole device which will
2424 			 * execute if l2arc_trim_ahead > 0.
2425 			 */
2426 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2427 		}
2428 	}
2429 
2430 	sav->sav_vdevs = newvdevs;
2431 	sav->sav_count = (int)nl2cache;
2432 
2433 	/*
2434 	 * Recompute the stashed list of l2cache devices, with status
2435 	 * information this time.
2436 	 */
2437 	fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2438 
2439 	if (sav->sav_count > 0)
2440 		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2441 		    KM_SLEEP);
2442 	for (i = 0; i < sav->sav_count; i++)
2443 		l2cache[i] = vdev_config_generate(spa,
2444 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2445 	fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2446 	    (const nvlist_t * const *)l2cache, sav->sav_count);
2447 
2448 out:
2449 	/*
2450 	 * Purge vdevs that were dropped
2451 	 */
2452 	if (oldvdevs) {
2453 		for (i = 0; i < oldnvdevs; i++) {
2454 			uint64_t pool;
2455 
2456 			vd = oldvdevs[i];
2457 			if (vd != NULL) {
2458 				ASSERT(vd->vdev_isl2cache);
2459 
2460 				if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2461 				    pool != 0ULL && l2arc_vdev_present(vd))
2462 					l2arc_remove_vdev(vd);
2463 				vdev_clear_stats(vd);
2464 				vdev_free(vd);
2465 			}
2466 		}
2467 
2468 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2469 	}
2470 
2471 	for (i = 0; i < sav->sav_count; i++)
2472 		nvlist_free(l2cache[i]);
2473 	if (sav->sav_count)
2474 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2475 }
2476 
2477 static int
2478 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2479 {
2480 	dmu_buf_t *db;
2481 	char *packed = NULL;
2482 	size_t nvsize = 0;
2483 	int error;
2484 	*value = NULL;
2485 
2486 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2487 	if (error)
2488 		return (error);
2489 
2490 	nvsize = *(uint64_t *)db->db_data;
2491 	dmu_buf_rele(db, FTAG);
2492 
2493 	packed = vmem_alloc(nvsize, KM_SLEEP);
2494 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2495 	    DMU_READ_PREFETCH);
2496 	if (error == 0)
2497 		error = nvlist_unpack(packed, nvsize, value, 0);
2498 	vmem_free(packed, nvsize);
2499 
2500 	return (error);
2501 }
2502 
2503 /*
2504  * Concrete top-level vdevs that are not missing and are not logs. At every
2505  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2506  */
2507 static uint64_t
2508 spa_healthy_core_tvds(spa_t *spa)
2509 {
2510 	vdev_t *rvd = spa->spa_root_vdev;
2511 	uint64_t tvds = 0;
2512 
2513 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2514 		vdev_t *vd = rvd->vdev_child[i];
2515 		if (vd->vdev_islog)
2516 			continue;
2517 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2518 			tvds++;
2519 	}
2520 
2521 	return (tvds);
2522 }
2523 
2524 /*
2525  * Checks to see if the given vdev could not be opened, in which case we post a
2526  * sysevent to notify the autoreplace code that the device has been removed.
2527  */
2528 static void
2529 spa_check_removed(vdev_t *vd)
2530 {
2531 	for (uint64_t c = 0; c < vd->vdev_children; c++)
2532 		spa_check_removed(vd->vdev_child[c]);
2533 
2534 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2535 	    vdev_is_concrete(vd)) {
2536 		zfs_post_autoreplace(vd->vdev_spa, vd);
2537 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2538 	}
2539 }
2540 
2541 static int
2542 spa_check_for_missing_logs(spa_t *spa)
2543 {
2544 	vdev_t *rvd = spa->spa_root_vdev;
2545 
2546 	/*
2547 	 * If we're doing a normal import, then build up any additional
2548 	 * diagnostic information about missing log devices.
2549 	 * We'll pass this up to the user for further processing.
2550 	 */
2551 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2552 		nvlist_t **child, *nv;
2553 		uint64_t idx = 0;
2554 
2555 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2556 		    KM_SLEEP);
2557 		nv = fnvlist_alloc();
2558 
2559 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2560 			vdev_t *tvd = rvd->vdev_child[c];
2561 
2562 			/*
2563 			 * We consider a device as missing only if it failed
2564 			 * to open (i.e. offline or faulted is not considered
2565 			 * as missing).
2566 			 */
2567 			if (tvd->vdev_islog &&
2568 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2569 				child[idx++] = vdev_config_generate(spa, tvd,
2570 				    B_FALSE, VDEV_CONFIG_MISSING);
2571 			}
2572 		}
2573 
2574 		if (idx > 0) {
2575 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2576 			    (const nvlist_t * const *)child, idx);
2577 			fnvlist_add_nvlist(spa->spa_load_info,
2578 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2579 
2580 			for (uint64_t i = 0; i < idx; i++)
2581 				nvlist_free(child[i]);
2582 		}
2583 		nvlist_free(nv);
2584 		kmem_free(child, rvd->vdev_children * sizeof (char **));
2585 
2586 		if (idx > 0) {
2587 			spa_load_failed(spa, "some log devices are missing");
2588 			vdev_dbgmsg_print_tree(rvd, 2);
2589 			return (SET_ERROR(ENXIO));
2590 		}
2591 	} else {
2592 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2593 			vdev_t *tvd = rvd->vdev_child[c];
2594 
2595 			if (tvd->vdev_islog &&
2596 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2597 				spa_set_log_state(spa, SPA_LOG_CLEAR);
2598 				spa_load_note(spa, "some log devices are "
2599 				    "missing, ZIL is dropped.");
2600 				vdev_dbgmsg_print_tree(rvd, 2);
2601 				break;
2602 			}
2603 		}
2604 	}
2605 
2606 	return (0);
2607 }
2608 
2609 /*
2610  * Check for missing log devices
2611  */
2612 static boolean_t
2613 spa_check_logs(spa_t *spa)
2614 {
2615 	boolean_t rv = B_FALSE;
2616 	dsl_pool_t *dp = spa_get_dsl(spa);
2617 
2618 	switch (spa->spa_log_state) {
2619 	default:
2620 		break;
2621 	case SPA_LOG_MISSING:
2622 		/* need to recheck in case slog has been restored */
2623 	case SPA_LOG_UNKNOWN:
2624 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2625 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2626 		if (rv)
2627 			spa_set_log_state(spa, SPA_LOG_MISSING);
2628 		break;
2629 	}
2630 	return (rv);
2631 }
2632 
2633 /*
2634  * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2635  */
2636 static boolean_t
2637 spa_passivate_log(spa_t *spa)
2638 {
2639 	vdev_t *rvd = spa->spa_root_vdev;
2640 	boolean_t slog_found = B_FALSE;
2641 
2642 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2643 
2644 	for (int c = 0; c < rvd->vdev_children; c++) {
2645 		vdev_t *tvd = rvd->vdev_child[c];
2646 
2647 		if (tvd->vdev_islog) {
2648 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2649 			metaslab_group_passivate(tvd->vdev_mg);
2650 			slog_found = B_TRUE;
2651 		}
2652 	}
2653 
2654 	return (slog_found);
2655 }
2656 
2657 /*
2658  * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2659  */
2660 static void
2661 spa_activate_log(spa_t *spa)
2662 {
2663 	vdev_t *rvd = spa->spa_root_vdev;
2664 
2665 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2666 
2667 	for (int c = 0; c < rvd->vdev_children; c++) {
2668 		vdev_t *tvd = rvd->vdev_child[c];
2669 
2670 		if (tvd->vdev_islog) {
2671 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2672 			metaslab_group_activate(tvd->vdev_mg);
2673 		}
2674 	}
2675 }
2676 
2677 int
2678 spa_reset_logs(spa_t *spa)
2679 {
2680 	int error;
2681 
2682 	error = dmu_objset_find(spa_name(spa), zil_reset,
2683 	    NULL, DS_FIND_CHILDREN);
2684 	if (error == 0) {
2685 		/*
2686 		 * We successfully offlined the log device, sync out the
2687 		 * current txg so that the "stubby" block can be removed
2688 		 * by zil_sync().
2689 		 */
2690 		txg_wait_synced(spa->spa_dsl_pool, 0);
2691 	}
2692 	return (error);
2693 }
2694 
2695 static void
2696 spa_aux_check_removed(spa_aux_vdev_t *sav)
2697 {
2698 	for (int i = 0; i < sav->sav_count; i++)
2699 		spa_check_removed(sav->sav_vdevs[i]);
2700 }
2701 
2702 void
2703 spa_claim_notify(zio_t *zio)
2704 {
2705 	spa_t *spa = zio->io_spa;
2706 
2707 	if (zio->io_error)
2708 		return;
2709 
2710 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2711 	if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2712 		spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2713 	mutex_exit(&spa->spa_props_lock);
2714 }
2715 
2716 typedef struct spa_load_error {
2717 	boolean_t	sle_verify_data;
2718 	uint64_t	sle_meta_count;
2719 	uint64_t	sle_data_count;
2720 } spa_load_error_t;
2721 
2722 static void
2723 spa_load_verify_done(zio_t *zio)
2724 {
2725 	blkptr_t *bp = zio->io_bp;
2726 	spa_load_error_t *sle = zio->io_private;
2727 	dmu_object_type_t type = BP_GET_TYPE(bp);
2728 	int error = zio->io_error;
2729 	spa_t *spa = zio->io_spa;
2730 
2731 	abd_free(zio->io_abd);
2732 	if (error) {
2733 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2734 		    type != DMU_OT_INTENT_LOG)
2735 			atomic_inc_64(&sle->sle_meta_count);
2736 		else
2737 			atomic_inc_64(&sle->sle_data_count);
2738 	}
2739 
2740 	mutex_enter(&spa->spa_scrub_lock);
2741 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2742 	cv_broadcast(&spa->spa_scrub_io_cv);
2743 	mutex_exit(&spa->spa_scrub_lock);
2744 }
2745 
2746 /*
2747  * Maximum number of inflight bytes is the log2 fraction of the arc size.
2748  * By default, we set it to 1/16th of the arc.
2749  */
2750 static uint_t spa_load_verify_shift = 4;
2751 static int spa_load_verify_metadata = B_TRUE;
2752 static int spa_load_verify_data = B_TRUE;
2753 
2754 static int
2755 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2756     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2757 {
2758 	zio_t *rio = arg;
2759 	spa_load_error_t *sle = rio->io_private;
2760 
2761 	(void) zilog, (void) dnp;
2762 
2763 	/*
2764 	 * Note: normally this routine will not be called if
2765 	 * spa_load_verify_metadata is not set.  However, it may be useful
2766 	 * to manually set the flag after the traversal has begun.
2767 	 */
2768 	if (!spa_load_verify_metadata)
2769 		return (0);
2770 
2771 	/*
2772 	 * Sanity check the block pointer in order to detect obvious damage
2773 	 * before using the contents in subsequent checks or in zio_read().
2774 	 * When damaged consider it to be a metadata error since we cannot
2775 	 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2776 	 */
2777 	if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2778 		atomic_inc_64(&sle->sle_meta_count);
2779 		return (0);
2780 	}
2781 
2782 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2783 	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2784 		return (0);
2785 
2786 	if (!BP_IS_METADATA(bp) &&
2787 	    (!spa_load_verify_data || !sle->sle_verify_data))
2788 		return (0);
2789 
2790 	uint64_t maxinflight_bytes =
2791 	    arc_target_bytes() >> spa_load_verify_shift;
2792 	size_t size = BP_GET_PSIZE(bp);
2793 
2794 	mutex_enter(&spa->spa_scrub_lock);
2795 	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2796 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2797 	spa->spa_load_verify_bytes += size;
2798 	mutex_exit(&spa->spa_scrub_lock);
2799 
2800 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2801 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2802 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2803 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2804 	return (0);
2805 }
2806 
2807 static int
2808 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2809 {
2810 	(void) dp, (void) arg;
2811 
2812 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2813 		return (SET_ERROR(ENAMETOOLONG));
2814 
2815 	return (0);
2816 }
2817 
2818 static int
2819 spa_load_verify(spa_t *spa)
2820 {
2821 	zio_t *rio;
2822 	spa_load_error_t sle = { 0 };
2823 	zpool_load_policy_t policy;
2824 	boolean_t verify_ok = B_FALSE;
2825 	int error = 0;
2826 
2827 	zpool_get_load_policy(spa->spa_config, &policy);
2828 
2829 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2830 	    policy.zlp_maxmeta == UINT64_MAX)
2831 		return (0);
2832 
2833 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2834 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2835 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2836 	    DS_FIND_CHILDREN);
2837 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2838 	if (error != 0)
2839 		return (error);
2840 
2841 	/*
2842 	 * Verify data only if we are rewinding or error limit was set.
2843 	 * Otherwise nothing except dbgmsg care about it to waste time.
2844 	 */
2845 	sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2846 	    (policy.zlp_maxdata < UINT64_MAX);
2847 
2848 	rio = zio_root(spa, NULL, &sle,
2849 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2850 
2851 	if (spa_load_verify_metadata) {
2852 		if (spa->spa_extreme_rewind) {
2853 			spa_load_note(spa, "performing a complete scan of the "
2854 			    "pool since extreme rewind is on. This may take "
2855 			    "a very long time.\n  (spa_load_verify_data=%u, "
2856 			    "spa_load_verify_metadata=%u)",
2857 			    spa_load_verify_data, spa_load_verify_metadata);
2858 		}
2859 
2860 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2861 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2862 		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2863 	}
2864 
2865 	(void) zio_wait(rio);
2866 	ASSERT0(spa->spa_load_verify_bytes);
2867 
2868 	spa->spa_load_meta_errors = sle.sle_meta_count;
2869 	spa->spa_load_data_errors = sle.sle_data_count;
2870 
2871 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2872 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2873 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2874 		    (u_longlong_t)sle.sle_data_count);
2875 	}
2876 
2877 	if (spa_load_verify_dryrun ||
2878 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2879 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2880 		int64_t loss = 0;
2881 
2882 		verify_ok = B_TRUE;
2883 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2884 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2885 
2886 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2887 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2888 		    spa->spa_load_txg_ts);
2889 		fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2890 		    loss);
2891 		fnvlist_add_uint64(spa->spa_load_info,
2892 		    ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2893 		fnvlist_add_uint64(spa->spa_load_info,
2894 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2895 	} else {
2896 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2897 	}
2898 
2899 	if (spa_load_verify_dryrun)
2900 		return (0);
2901 
2902 	if (error) {
2903 		if (error != ENXIO && error != EIO)
2904 			error = SET_ERROR(EIO);
2905 		return (error);
2906 	}
2907 
2908 	return (verify_ok ? 0 : EIO);
2909 }
2910 
2911 /*
2912  * Find a value in the pool props object.
2913  */
2914 static void
2915 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2916 {
2917 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2918 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2919 }
2920 
2921 /*
2922  * Find a value in the pool directory object.
2923  */
2924 static int
2925 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2926 {
2927 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2928 	    name, sizeof (uint64_t), 1, val);
2929 
2930 	if (error != 0 && (error != ENOENT || log_enoent)) {
2931 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2932 		    "[error=%d]", name, error);
2933 	}
2934 
2935 	return (error);
2936 }
2937 
2938 static int
2939 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2940 {
2941 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2942 	return (SET_ERROR(err));
2943 }
2944 
2945 boolean_t
2946 spa_livelist_delete_check(spa_t *spa)
2947 {
2948 	return (spa->spa_livelists_to_delete != 0);
2949 }
2950 
2951 static boolean_t
2952 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2953 {
2954 	(void) z;
2955 	spa_t *spa = arg;
2956 	return (spa_livelist_delete_check(spa));
2957 }
2958 
2959 static int
2960 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2961 {
2962 	spa_t *spa = arg;
2963 	zio_free(spa, tx->tx_txg, bp);
2964 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2965 	    -bp_get_dsize_sync(spa, bp),
2966 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2967 	return (0);
2968 }
2969 
2970 static int
2971 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2972 {
2973 	int err;
2974 	zap_cursor_t zc;
2975 	zap_attribute_t za;
2976 	zap_cursor_init(&zc, os, zap_obj);
2977 	err = zap_cursor_retrieve(&zc, &za);
2978 	zap_cursor_fini(&zc);
2979 	if (err == 0)
2980 		*llp = za.za_first_integer;
2981 	return (err);
2982 }
2983 
2984 /*
2985  * Components of livelist deletion that must be performed in syncing
2986  * context: freeing block pointers and updating the pool-wide data
2987  * structures to indicate how much work is left to do
2988  */
2989 typedef struct sublist_delete_arg {
2990 	spa_t *spa;
2991 	dsl_deadlist_t *ll;
2992 	uint64_t key;
2993 	bplist_t *to_free;
2994 } sublist_delete_arg_t;
2995 
2996 static void
2997 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2998 {
2999 	sublist_delete_arg_t *sda = arg;
3000 	spa_t *spa = sda->spa;
3001 	dsl_deadlist_t *ll = sda->ll;
3002 	uint64_t key = sda->key;
3003 	bplist_t *to_free = sda->to_free;
3004 
3005 	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3006 	dsl_deadlist_remove_entry(ll, key, tx);
3007 }
3008 
3009 typedef struct livelist_delete_arg {
3010 	spa_t *spa;
3011 	uint64_t ll_obj;
3012 	uint64_t zap_obj;
3013 } livelist_delete_arg_t;
3014 
3015 static void
3016 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3017 {
3018 	livelist_delete_arg_t *lda = arg;
3019 	spa_t *spa = lda->spa;
3020 	uint64_t ll_obj = lda->ll_obj;
3021 	uint64_t zap_obj = lda->zap_obj;
3022 	objset_t *mos = spa->spa_meta_objset;
3023 	uint64_t count;
3024 
3025 	/* free the livelist and decrement the feature count */
3026 	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3027 	dsl_deadlist_free(mos, ll_obj, tx);
3028 	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3029 	VERIFY0(zap_count(mos, zap_obj, &count));
3030 	if (count == 0) {
3031 		/* no more livelists to delete */
3032 		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3033 		    DMU_POOL_DELETED_CLONES, tx));
3034 		VERIFY0(zap_destroy(mos, zap_obj, tx));
3035 		spa->spa_livelists_to_delete = 0;
3036 		spa_notify_waiters(spa);
3037 	}
3038 }
3039 
3040 /*
3041  * Load in the value for the livelist to be removed and open it. Then,
3042  * load its first sublist and determine which block pointers should actually
3043  * be freed. Then, call a synctask which performs the actual frees and updates
3044  * the pool-wide livelist data.
3045  */
3046 static void
3047 spa_livelist_delete_cb(void *arg, zthr_t *z)
3048 {
3049 	spa_t *spa = arg;
3050 	uint64_t ll_obj = 0, count;
3051 	objset_t *mos = spa->spa_meta_objset;
3052 	uint64_t zap_obj = spa->spa_livelists_to_delete;
3053 	/*
3054 	 * Determine the next livelist to delete. This function should only
3055 	 * be called if there is at least one deleted clone.
3056 	 */
3057 	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3058 	VERIFY0(zap_count(mos, ll_obj, &count));
3059 	if (count > 0) {
3060 		dsl_deadlist_t *ll;
3061 		dsl_deadlist_entry_t *dle;
3062 		bplist_t to_free;
3063 		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3064 		dsl_deadlist_open(ll, mos, ll_obj);
3065 		dle = dsl_deadlist_first(ll);
3066 		ASSERT3P(dle, !=, NULL);
3067 		bplist_create(&to_free);
3068 		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3069 		    z, NULL);
3070 		if (err == 0) {
3071 			sublist_delete_arg_t sync_arg = {
3072 			    .spa = spa,
3073 			    .ll = ll,
3074 			    .key = dle->dle_mintxg,
3075 			    .to_free = &to_free
3076 			};
3077 			zfs_dbgmsg("deleting sublist (id %llu) from"
3078 			    " livelist %llu, %lld remaining",
3079 			    (u_longlong_t)dle->dle_bpobj.bpo_object,
3080 			    (u_longlong_t)ll_obj, (longlong_t)count - 1);
3081 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3082 			    sublist_delete_sync, &sync_arg, 0,
3083 			    ZFS_SPACE_CHECK_DESTROY));
3084 		} else {
3085 			VERIFY3U(err, ==, EINTR);
3086 		}
3087 		bplist_clear(&to_free);
3088 		bplist_destroy(&to_free);
3089 		dsl_deadlist_close(ll);
3090 		kmem_free(ll, sizeof (dsl_deadlist_t));
3091 	} else {
3092 		livelist_delete_arg_t sync_arg = {
3093 		    .spa = spa,
3094 		    .ll_obj = ll_obj,
3095 		    .zap_obj = zap_obj
3096 		};
3097 		zfs_dbgmsg("deletion of livelist %llu completed",
3098 		    (u_longlong_t)ll_obj);
3099 		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3100 		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3101 	}
3102 }
3103 
3104 static void
3105 spa_start_livelist_destroy_thread(spa_t *spa)
3106 {
3107 	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3108 	spa->spa_livelist_delete_zthr =
3109 	    zthr_create("z_livelist_destroy",
3110 	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3111 	    minclsyspri);
3112 }
3113 
3114 typedef struct livelist_new_arg {
3115 	bplist_t *allocs;
3116 	bplist_t *frees;
3117 } livelist_new_arg_t;
3118 
3119 static int
3120 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3121     dmu_tx_t *tx)
3122 {
3123 	ASSERT(tx == NULL);
3124 	livelist_new_arg_t *lna = arg;
3125 	if (bp_freed) {
3126 		bplist_append(lna->frees, bp);
3127 	} else {
3128 		bplist_append(lna->allocs, bp);
3129 		zfs_livelist_condense_new_alloc++;
3130 	}
3131 	return (0);
3132 }
3133 
3134 typedef struct livelist_condense_arg {
3135 	spa_t *spa;
3136 	bplist_t to_keep;
3137 	uint64_t first_size;
3138 	uint64_t next_size;
3139 } livelist_condense_arg_t;
3140 
3141 static void
3142 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3143 {
3144 	livelist_condense_arg_t *lca = arg;
3145 	spa_t *spa = lca->spa;
3146 	bplist_t new_frees;
3147 	dsl_dataset_t *ds = spa->spa_to_condense.ds;
3148 
3149 	/* Have we been cancelled? */
3150 	if (spa->spa_to_condense.cancelled) {
3151 		zfs_livelist_condense_sync_cancel++;
3152 		goto out;
3153 	}
3154 
3155 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3156 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3157 	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3158 
3159 	/*
3160 	 * It's possible that the livelist was changed while the zthr was
3161 	 * running. Therefore, we need to check for new blkptrs in the two
3162 	 * entries being condensed and continue to track them in the livelist.
3163 	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3164 	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3165 	 * we need to sort them into two different bplists.
3166 	 */
3167 	uint64_t first_obj = first->dle_bpobj.bpo_object;
3168 	uint64_t next_obj = next->dle_bpobj.bpo_object;
3169 	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3170 	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3171 
3172 	bplist_create(&new_frees);
3173 	livelist_new_arg_t new_bps = {
3174 	    .allocs = &lca->to_keep,
3175 	    .frees = &new_frees,
3176 	};
3177 
3178 	if (cur_first_size > lca->first_size) {
3179 		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3180 		    livelist_track_new_cb, &new_bps, lca->first_size));
3181 	}
3182 	if (cur_next_size > lca->next_size) {
3183 		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3184 		    livelist_track_new_cb, &new_bps, lca->next_size));
3185 	}
3186 
3187 	dsl_deadlist_clear_entry(first, ll, tx);
3188 	ASSERT(bpobj_is_empty(&first->dle_bpobj));
3189 	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3190 
3191 	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3192 	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3193 	bplist_destroy(&new_frees);
3194 
3195 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
3196 	dsl_dataset_name(ds, dsname);
3197 	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3198 	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3199 	    "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3200 	    (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3201 	    (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3202 	    (u_longlong_t)cur_next_size,
3203 	    (u_longlong_t)first->dle_bpobj.bpo_object,
3204 	    (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3205 out:
3206 	dmu_buf_rele(ds->ds_dbuf, spa);
3207 	spa->spa_to_condense.ds = NULL;
3208 	bplist_clear(&lca->to_keep);
3209 	bplist_destroy(&lca->to_keep);
3210 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3211 	spa->spa_to_condense.syncing = B_FALSE;
3212 }
3213 
3214 static void
3215 spa_livelist_condense_cb(void *arg, zthr_t *t)
3216 {
3217 	while (zfs_livelist_condense_zthr_pause &&
3218 	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3219 		delay(1);
3220 
3221 	spa_t *spa = arg;
3222 	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3223 	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3224 	uint64_t first_size, next_size;
3225 
3226 	livelist_condense_arg_t *lca =
3227 	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3228 	bplist_create(&lca->to_keep);
3229 
3230 	/*
3231 	 * Process the livelists (matching FREEs and ALLOCs) in open context
3232 	 * so we have minimal work in syncing context to condense.
3233 	 *
3234 	 * We save bpobj sizes (first_size and next_size) to use later in
3235 	 * syncing context to determine if entries were added to these sublists
3236 	 * while in open context. This is possible because the clone is still
3237 	 * active and open for normal writes and we want to make sure the new,
3238 	 * unprocessed blockpointers are inserted into the livelist normally.
3239 	 *
3240 	 * Note that dsl_process_sub_livelist() both stores the size number of
3241 	 * blockpointers and iterates over them while the bpobj's lock held, so
3242 	 * the sizes returned to us are consistent which what was actually
3243 	 * processed.
3244 	 */
3245 	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3246 	    &first_size);
3247 	if (err == 0)
3248 		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3249 		    t, &next_size);
3250 
3251 	if (err == 0) {
3252 		while (zfs_livelist_condense_sync_pause &&
3253 		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3254 			delay(1);
3255 
3256 		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3257 		dmu_tx_mark_netfree(tx);
3258 		dmu_tx_hold_space(tx, 1);
3259 		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3260 		if (err == 0) {
3261 			/*
3262 			 * Prevent the condense zthr restarting before
3263 			 * the synctask completes.
3264 			 */
3265 			spa->spa_to_condense.syncing = B_TRUE;
3266 			lca->spa = spa;
3267 			lca->first_size = first_size;
3268 			lca->next_size = next_size;
3269 			dsl_sync_task_nowait(spa_get_dsl(spa),
3270 			    spa_livelist_condense_sync, lca, tx);
3271 			dmu_tx_commit(tx);
3272 			return;
3273 		}
3274 	}
3275 	/*
3276 	 * Condensing can not continue: either it was externally stopped or
3277 	 * we were unable to assign to a tx because the pool has run out of
3278 	 * space. In the second case, we'll just end up trying to condense
3279 	 * again in a later txg.
3280 	 */
3281 	ASSERT(err != 0);
3282 	bplist_clear(&lca->to_keep);
3283 	bplist_destroy(&lca->to_keep);
3284 	kmem_free(lca, sizeof (livelist_condense_arg_t));
3285 	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3286 	spa->spa_to_condense.ds = NULL;
3287 	if (err == EINTR)
3288 		zfs_livelist_condense_zthr_cancel++;
3289 }
3290 
3291 /*
3292  * Check that there is something to condense but that a condense is not
3293  * already in progress and that condensing has not been cancelled.
3294  */
3295 static boolean_t
3296 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3297 {
3298 	(void) z;
3299 	spa_t *spa = arg;
3300 	if ((spa->spa_to_condense.ds != NULL) &&
3301 	    (spa->spa_to_condense.syncing == B_FALSE) &&
3302 	    (spa->spa_to_condense.cancelled == B_FALSE)) {
3303 		return (B_TRUE);
3304 	}
3305 	return (B_FALSE);
3306 }
3307 
3308 static void
3309 spa_start_livelist_condensing_thread(spa_t *spa)
3310 {
3311 	spa->spa_to_condense.ds = NULL;
3312 	spa->spa_to_condense.first = NULL;
3313 	spa->spa_to_condense.next = NULL;
3314 	spa->spa_to_condense.syncing = B_FALSE;
3315 	spa->spa_to_condense.cancelled = B_FALSE;
3316 
3317 	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3318 	spa->spa_livelist_condense_zthr =
3319 	    zthr_create("z_livelist_condense",
3320 	    spa_livelist_condense_cb_check,
3321 	    spa_livelist_condense_cb, spa, minclsyspri);
3322 }
3323 
3324 static void
3325 spa_spawn_aux_threads(spa_t *spa)
3326 {
3327 	ASSERT(spa_writeable(spa));
3328 
3329 	spa_start_raidz_expansion_thread(spa);
3330 	spa_start_indirect_condensing_thread(spa);
3331 	spa_start_livelist_destroy_thread(spa);
3332 	spa_start_livelist_condensing_thread(spa);
3333 
3334 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3335 	spa->spa_checkpoint_discard_zthr =
3336 	    zthr_create("z_checkpoint_discard",
3337 	    spa_checkpoint_discard_thread_check,
3338 	    spa_checkpoint_discard_thread, spa, minclsyspri);
3339 }
3340 
3341 /*
3342  * Fix up config after a partly-completed split.  This is done with the
3343  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
3344  * pool have that entry in their config, but only the splitting one contains
3345  * a list of all the guids of the vdevs that are being split off.
3346  *
3347  * This function determines what to do with that list: either rejoin
3348  * all the disks to the pool, or complete the splitting process.  To attempt
3349  * the rejoin, each disk that is offlined is marked online again, and
3350  * we do a reopen() call.  If the vdev label for every disk that was
3351  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3352  * then we call vdev_split() on each disk, and complete the split.
3353  *
3354  * Otherwise we leave the config alone, with all the vdevs in place in
3355  * the original pool.
3356  */
3357 static void
3358 spa_try_repair(spa_t *spa, nvlist_t *config)
3359 {
3360 	uint_t extracted;
3361 	uint64_t *glist;
3362 	uint_t i, gcount;
3363 	nvlist_t *nvl;
3364 	vdev_t **vd;
3365 	boolean_t attempt_reopen;
3366 
3367 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3368 		return;
3369 
3370 	/* check that the config is complete */
3371 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3372 	    &glist, &gcount) != 0)
3373 		return;
3374 
3375 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3376 
3377 	/* attempt to online all the vdevs & validate */
3378 	attempt_reopen = B_TRUE;
3379 	for (i = 0; i < gcount; i++) {
3380 		if (glist[i] == 0)	/* vdev is hole */
3381 			continue;
3382 
3383 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3384 		if (vd[i] == NULL) {
3385 			/*
3386 			 * Don't bother attempting to reopen the disks;
3387 			 * just do the split.
3388 			 */
3389 			attempt_reopen = B_FALSE;
3390 		} else {
3391 			/* attempt to re-online it */
3392 			vd[i]->vdev_offline = B_FALSE;
3393 		}
3394 	}
3395 
3396 	if (attempt_reopen) {
3397 		vdev_reopen(spa->spa_root_vdev);
3398 
3399 		/* check each device to see what state it's in */
3400 		for (extracted = 0, i = 0; i < gcount; i++) {
3401 			if (vd[i] != NULL &&
3402 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3403 				break;
3404 			++extracted;
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * If every disk has been moved to the new pool, or if we never
3410 	 * even attempted to look at them, then we split them off for
3411 	 * good.
3412 	 */
3413 	if (!attempt_reopen || gcount == extracted) {
3414 		for (i = 0; i < gcount; i++)
3415 			if (vd[i] != NULL)
3416 				vdev_split(vd[i]);
3417 		vdev_reopen(spa->spa_root_vdev);
3418 	}
3419 
3420 	kmem_free(vd, gcount * sizeof (vdev_t *));
3421 }
3422 
3423 static int
3424 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3425 {
3426 	const char *ereport = FM_EREPORT_ZFS_POOL;
3427 	int error;
3428 
3429 	spa->spa_load_state = state;
3430 	(void) spa_import_progress_set_state(spa_guid(spa),
3431 	    spa_load_state(spa));
3432 	spa_import_progress_set_notes(spa, "spa_load()");
3433 
3434 	gethrestime(&spa->spa_loaded_ts);
3435 	error = spa_load_impl(spa, type, &ereport);
3436 
3437 	/*
3438 	 * Don't count references from objsets that are already closed
3439 	 * and are making their way through the eviction process.
3440 	 */
3441 	spa_evicting_os_wait(spa);
3442 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3443 	if (error) {
3444 		if (error != EEXIST) {
3445 			spa->spa_loaded_ts.tv_sec = 0;
3446 			spa->spa_loaded_ts.tv_nsec = 0;
3447 		}
3448 		if (error != EBADF) {
3449 			(void) zfs_ereport_post(ereport, spa,
3450 			    NULL, NULL, NULL, 0);
3451 		}
3452 	}
3453 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3454 	spa->spa_ena = 0;
3455 
3456 	(void) spa_import_progress_set_state(spa_guid(spa),
3457 	    spa_load_state(spa));
3458 
3459 	return (error);
3460 }
3461 
3462 #ifdef ZFS_DEBUG
3463 /*
3464  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3465  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3466  * spa's per-vdev ZAP list.
3467  */
3468 static uint64_t
3469 vdev_count_verify_zaps(vdev_t *vd)
3470 {
3471 	spa_t *spa = vd->vdev_spa;
3472 	uint64_t total = 0;
3473 
3474 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3475 	    vd->vdev_root_zap != 0) {
3476 		total++;
3477 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3478 		    spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3479 	}
3480 	if (vd->vdev_top_zap != 0) {
3481 		total++;
3482 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3483 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3484 	}
3485 	if (vd->vdev_leaf_zap != 0) {
3486 		total++;
3487 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3488 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3489 	}
3490 
3491 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3492 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
3493 	}
3494 
3495 	return (total);
3496 }
3497 #else
3498 #define	vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3499 #endif
3500 
3501 /*
3502  * Determine whether the activity check is required.
3503  */
3504 static boolean_t
3505 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3506     nvlist_t *config)
3507 {
3508 	uint64_t state = 0;
3509 	uint64_t hostid = 0;
3510 	uint64_t tryconfig_txg = 0;
3511 	uint64_t tryconfig_timestamp = 0;
3512 	uint16_t tryconfig_mmp_seq = 0;
3513 	nvlist_t *nvinfo;
3514 
3515 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3516 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3517 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3518 		    &tryconfig_txg);
3519 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3520 		    &tryconfig_timestamp);
3521 		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3522 		    &tryconfig_mmp_seq);
3523 	}
3524 
3525 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3526 
3527 	/*
3528 	 * Disable the MMP activity check - This is used by zdb which
3529 	 * is intended to be used on potentially active pools.
3530 	 */
3531 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3532 		return (B_FALSE);
3533 
3534 	/*
3535 	 * Skip the activity check when the MMP feature is disabled.
3536 	 */
3537 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3538 		return (B_FALSE);
3539 
3540 	/*
3541 	 * If the tryconfig_ values are nonzero, they are the results of an
3542 	 * earlier tryimport.  If they all match the uberblock we just found,
3543 	 * then the pool has not changed and we return false so we do not test
3544 	 * a second time.
3545 	 */
3546 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3547 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3548 	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3549 	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3550 		return (B_FALSE);
3551 
3552 	/*
3553 	 * Allow the activity check to be skipped when importing the pool
3554 	 * on the same host which last imported it.  Since the hostid from
3555 	 * configuration may be stale use the one read from the label.
3556 	 */
3557 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3558 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3559 
3560 	if (hostid == spa_get_hostid(spa))
3561 		return (B_FALSE);
3562 
3563 	/*
3564 	 * Skip the activity test when the pool was cleanly exported.
3565 	 */
3566 	if (state != POOL_STATE_ACTIVE)
3567 		return (B_FALSE);
3568 
3569 	return (B_TRUE);
3570 }
3571 
3572 /*
3573  * Nanoseconds the activity check must watch for changes on-disk.
3574  */
3575 static uint64_t
3576 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3577 {
3578 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3579 	uint64_t multihost_interval = MSEC2NSEC(
3580 	    MMP_INTERVAL_OK(zfs_multihost_interval));
3581 	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3582 	    multihost_interval);
3583 
3584 	/*
3585 	 * Local tunables determine a minimum duration except for the case
3586 	 * where we know when the remote host will suspend the pool if MMP
3587 	 * writes do not land.
3588 	 *
3589 	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3590 	 * these cases and times.
3591 	 */
3592 
3593 	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3594 
3595 	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3596 	    MMP_FAIL_INT(ub) > 0) {
3597 
3598 		/* MMP on remote host will suspend pool after failed writes */
3599 		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3600 		    MMP_IMPORT_SAFETY_FACTOR / 100;
3601 
3602 		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3603 		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3604 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3605 		    (u_longlong_t)MMP_FAIL_INT(ub),
3606 		    (u_longlong_t)MMP_INTERVAL(ub),
3607 		    (u_longlong_t)import_intervals);
3608 
3609 	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3610 	    MMP_FAIL_INT(ub) == 0) {
3611 
3612 		/* MMP on remote host will never suspend pool */
3613 		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3614 		    ub->ub_mmp_delay) * import_intervals);
3615 
3616 		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3617 		    "mmp_interval=%llu ub_mmp_delay=%llu "
3618 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3619 		    (u_longlong_t)MMP_INTERVAL(ub),
3620 		    (u_longlong_t)ub->ub_mmp_delay,
3621 		    (u_longlong_t)import_intervals);
3622 
3623 	} else if (MMP_VALID(ub)) {
3624 		/*
3625 		 * zfs-0.7 compatibility case
3626 		 */
3627 
3628 		import_delay = MAX(import_delay, (multihost_interval +
3629 		    ub->ub_mmp_delay) * import_intervals);
3630 
3631 		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3632 		    "import_intervals=%llu leaves=%u",
3633 		    (u_longlong_t)import_delay,
3634 		    (u_longlong_t)ub->ub_mmp_delay,
3635 		    (u_longlong_t)import_intervals,
3636 		    vdev_count_leaves(spa));
3637 	} else {
3638 		/* Using local tunings is the only reasonable option */
3639 		zfs_dbgmsg("pool last imported on non-MMP aware "
3640 		    "host using import_delay=%llu multihost_interval=%llu "
3641 		    "import_intervals=%llu", (u_longlong_t)import_delay,
3642 		    (u_longlong_t)multihost_interval,
3643 		    (u_longlong_t)import_intervals);
3644 	}
3645 
3646 	return (import_delay);
3647 }
3648 
3649 /*
3650  * Remote host activity check.
3651  *
3652  * error results:
3653  *          0 - no activity detected
3654  *  EREMOTEIO - remote activity detected
3655  *      EINTR - user canceled the operation
3656  */
3657 static int
3658 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3659     boolean_t importing)
3660 {
3661 	uint64_t txg = ub->ub_txg;
3662 	uint64_t timestamp = ub->ub_timestamp;
3663 	uint64_t mmp_config = ub->ub_mmp_config;
3664 	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3665 	uint64_t import_delay;
3666 	hrtime_t import_expire, now;
3667 	nvlist_t *mmp_label = NULL;
3668 	vdev_t *rvd = spa->spa_root_vdev;
3669 	kcondvar_t cv;
3670 	kmutex_t mtx;
3671 	int error = 0;
3672 
3673 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3674 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3675 	mutex_enter(&mtx);
3676 
3677 	/*
3678 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3679 	 * during the earlier tryimport.  If the txg recorded there is 0 then
3680 	 * the pool is known to be active on another host.
3681 	 *
3682 	 * Otherwise, the pool might be in use on another host.  Check for
3683 	 * changes in the uberblocks on disk if necessary.
3684 	 */
3685 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3686 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3687 		    ZPOOL_CONFIG_LOAD_INFO);
3688 
3689 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3690 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3691 			vdev_uberblock_load(rvd, ub, &mmp_label);
3692 			error = SET_ERROR(EREMOTEIO);
3693 			goto out;
3694 		}
3695 	}
3696 
3697 	import_delay = spa_activity_check_duration(spa, ub);
3698 
3699 	/* Add a small random factor in case of simultaneous imports (0-25%) */
3700 	import_delay += import_delay * random_in_range(250) / 1000;
3701 
3702 	import_expire = gethrtime() + import_delay;
3703 
3704 	if (importing) {
3705 		spa_import_progress_set_notes(spa, "Checking MMP activity, "
3706 		    "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3707 	}
3708 
3709 	int iterations = 0;
3710 	while ((now = gethrtime()) < import_expire) {
3711 		if (importing && iterations++ % 30 == 0) {
3712 			spa_import_progress_set_notes(spa, "Checking MMP "
3713 			    "activity, %llu ms remaining",
3714 			    (u_longlong_t)NSEC2MSEC(import_expire - now));
3715 		}
3716 
3717 		if (importing) {
3718 			(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3719 			    NSEC2SEC(import_expire - gethrtime()));
3720 		}
3721 
3722 		vdev_uberblock_load(rvd, ub, &mmp_label);
3723 
3724 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3725 		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3726 			zfs_dbgmsg("multihost activity detected "
3727 			    "txg %llu ub_txg  %llu "
3728 			    "timestamp %llu ub_timestamp  %llu "
3729 			    "mmp_config %#llx ub_mmp_config %#llx",
3730 			    (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3731 			    (u_longlong_t)timestamp,
3732 			    (u_longlong_t)ub->ub_timestamp,
3733 			    (u_longlong_t)mmp_config,
3734 			    (u_longlong_t)ub->ub_mmp_config);
3735 
3736 			error = SET_ERROR(EREMOTEIO);
3737 			break;
3738 		}
3739 
3740 		if (mmp_label) {
3741 			nvlist_free(mmp_label);
3742 			mmp_label = NULL;
3743 		}
3744 
3745 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3746 		if (error != -1) {
3747 			error = SET_ERROR(EINTR);
3748 			break;
3749 		}
3750 		error = 0;
3751 	}
3752 
3753 out:
3754 	mutex_exit(&mtx);
3755 	mutex_destroy(&mtx);
3756 	cv_destroy(&cv);
3757 
3758 	/*
3759 	 * If the pool is determined to be active store the status in the
3760 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3761 	 * available from configuration read from disk store them as well.
3762 	 * This allows 'zpool import' to generate a more useful message.
3763 	 *
3764 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3765 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3766 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3767 	 */
3768 	if (error == EREMOTEIO) {
3769 		const char *hostname = "<unknown>";
3770 		uint64_t hostid = 0;
3771 
3772 		if (mmp_label) {
3773 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3774 				hostname = fnvlist_lookup_string(mmp_label,
3775 				    ZPOOL_CONFIG_HOSTNAME);
3776 				fnvlist_add_string(spa->spa_load_info,
3777 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3778 			}
3779 
3780 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3781 				hostid = fnvlist_lookup_uint64(mmp_label,
3782 				    ZPOOL_CONFIG_HOSTID);
3783 				fnvlist_add_uint64(spa->spa_load_info,
3784 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3785 			}
3786 		}
3787 
3788 		fnvlist_add_uint64(spa->spa_load_info,
3789 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3790 		fnvlist_add_uint64(spa->spa_load_info,
3791 		    ZPOOL_CONFIG_MMP_TXG, 0);
3792 
3793 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3794 	}
3795 
3796 	if (mmp_label)
3797 		nvlist_free(mmp_label);
3798 
3799 	return (error);
3800 }
3801 
3802 /*
3803  * Called from zfs_ioc_clear for a pool that was suspended
3804  * after failing mmp write checks.
3805  */
3806 boolean_t
3807 spa_mmp_remote_host_activity(spa_t *spa)
3808 {
3809 	ASSERT(spa_multihost(spa) && spa_suspended(spa));
3810 
3811 	nvlist_t *best_label;
3812 	uberblock_t best_ub;
3813 
3814 	/*
3815 	 * Locate the best uberblock on disk
3816 	 */
3817 	vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3818 	if (best_label) {
3819 		/*
3820 		 * confirm that the best hostid matches our hostid
3821 		 */
3822 		if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3823 		    spa_get_hostid(spa) !=
3824 		    fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3825 			nvlist_free(best_label);
3826 			return (B_TRUE);
3827 		}
3828 		nvlist_free(best_label);
3829 	} else {
3830 		return (B_TRUE);
3831 	}
3832 
3833 	if (!MMP_VALID(&best_ub) ||
3834 	    !MMP_FAIL_INT_VALID(&best_ub) ||
3835 	    MMP_FAIL_INT(&best_ub) == 0) {
3836 		return (B_TRUE);
3837 	}
3838 
3839 	if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3840 	    best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3841 		zfs_dbgmsg("txg mismatch detected during pool clear "
3842 		    "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3843 		    (u_longlong_t)spa->spa_uberblock.ub_txg,
3844 		    (u_longlong_t)best_ub.ub_txg,
3845 		    (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3846 		    (u_longlong_t)best_ub.ub_timestamp);
3847 		return (B_TRUE);
3848 	}
3849 
3850 	/*
3851 	 * Perform an activity check looking for any remote writer
3852 	 */
3853 	return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3854 	    B_FALSE) != 0);
3855 }
3856 
3857 static int
3858 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3859 {
3860 	uint64_t hostid;
3861 	const char *hostname;
3862 	uint64_t myhostid = 0;
3863 
3864 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3865 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3866 		hostname = fnvlist_lookup_string(mos_config,
3867 		    ZPOOL_CONFIG_HOSTNAME);
3868 
3869 		myhostid = zone_get_hostid(NULL);
3870 
3871 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3872 			cmn_err(CE_WARN, "pool '%s' could not be "
3873 			    "loaded as it was last accessed by "
3874 			    "another system (host: %s hostid: 0x%llx). "
3875 			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3876 			    "ZFS-8000-EY",
3877 			    spa_name(spa), hostname, (u_longlong_t)hostid);
3878 			spa_load_failed(spa, "hostid verification failed: pool "
3879 			    "last accessed by host: %s (hostid: 0x%llx)",
3880 			    hostname, (u_longlong_t)hostid);
3881 			return (SET_ERROR(EBADF));
3882 		}
3883 	}
3884 
3885 	return (0);
3886 }
3887 
3888 static int
3889 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3890 {
3891 	int error = 0;
3892 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3893 	int parse;
3894 	vdev_t *rvd;
3895 	uint64_t pool_guid;
3896 	const char *comment;
3897 	const char *compatibility;
3898 
3899 	/*
3900 	 * Versioning wasn't explicitly added to the label until later, so if
3901 	 * it's not present treat it as the initial version.
3902 	 */
3903 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3904 	    &spa->spa_ubsync.ub_version) != 0)
3905 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3906 
3907 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3908 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3909 		    ZPOOL_CONFIG_POOL_GUID);
3910 		return (SET_ERROR(EINVAL));
3911 	}
3912 
3913 	/*
3914 	 * If we are doing an import, ensure that the pool is not already
3915 	 * imported by checking if its pool guid already exists in the
3916 	 * spa namespace.
3917 	 *
3918 	 * The only case that we allow an already imported pool to be
3919 	 * imported again, is when the pool is checkpointed and we want to
3920 	 * look at its checkpointed state from userland tools like zdb.
3921 	 */
3922 #ifdef _KERNEL
3923 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3924 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3925 	    spa_guid_exists(pool_guid, 0)) {
3926 #else
3927 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3928 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3929 	    spa_guid_exists(pool_guid, 0) &&
3930 	    !spa_importing_readonly_checkpoint(spa)) {
3931 #endif
3932 		spa_load_failed(spa, "a pool with guid %llu is already open",
3933 		    (u_longlong_t)pool_guid);
3934 		return (SET_ERROR(EEXIST));
3935 	}
3936 
3937 	spa->spa_config_guid = pool_guid;
3938 
3939 	nvlist_free(spa->spa_load_info);
3940 	spa->spa_load_info = fnvlist_alloc();
3941 
3942 	ASSERT(spa->spa_comment == NULL);
3943 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3944 		spa->spa_comment = spa_strdup(comment);
3945 
3946 	ASSERT(spa->spa_compatibility == NULL);
3947 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3948 	    &compatibility) == 0)
3949 		spa->spa_compatibility = spa_strdup(compatibility);
3950 
3951 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3952 	    &spa->spa_config_txg);
3953 
3954 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3955 		spa->spa_config_splitting = fnvlist_dup(nvl);
3956 
3957 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3958 		spa_load_failed(spa, "invalid config provided: '%s' missing",
3959 		    ZPOOL_CONFIG_VDEV_TREE);
3960 		return (SET_ERROR(EINVAL));
3961 	}
3962 
3963 	/*
3964 	 * Create "The Godfather" zio to hold all async IOs
3965 	 */
3966 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3967 	    KM_SLEEP);
3968 	for (int i = 0; i < max_ncpus; i++) {
3969 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3970 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3971 		    ZIO_FLAG_GODFATHER);
3972 	}
3973 
3974 	/*
3975 	 * Parse the configuration into a vdev tree.  We explicitly set the
3976 	 * value that will be returned by spa_version() since parsing the
3977 	 * configuration requires knowing the version number.
3978 	 */
3979 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3980 	parse = (type == SPA_IMPORT_EXISTING ?
3981 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3982 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3983 	spa_config_exit(spa, SCL_ALL, FTAG);
3984 
3985 	if (error != 0) {
3986 		spa_load_failed(spa, "unable to parse config [error=%d]",
3987 		    error);
3988 		return (error);
3989 	}
3990 
3991 	ASSERT(spa->spa_root_vdev == rvd);
3992 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3993 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3994 
3995 	if (type != SPA_IMPORT_ASSEMBLE) {
3996 		ASSERT(spa_guid(spa) == pool_guid);
3997 	}
3998 
3999 	return (0);
4000 }
4001 
4002 /*
4003  * Recursively open all vdevs in the vdev tree. This function is called twice:
4004  * first with the untrusted config, then with the trusted config.
4005  */
4006 static int
4007 spa_ld_open_vdevs(spa_t *spa)
4008 {
4009 	int error = 0;
4010 
4011 	/*
4012 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4013 	 * missing/unopenable for the root vdev to be still considered openable.
4014 	 */
4015 	if (spa->spa_trust_config) {
4016 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4017 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4018 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4019 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4020 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4021 	} else {
4022 		spa->spa_missing_tvds_allowed = 0;
4023 	}
4024 
4025 	spa->spa_missing_tvds_allowed =
4026 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4027 
4028 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4029 	error = vdev_open(spa->spa_root_vdev);
4030 	spa_config_exit(spa, SCL_ALL, FTAG);
4031 
4032 	if (spa->spa_missing_tvds != 0) {
4033 		spa_load_note(spa, "vdev tree has %lld missing top-level "
4034 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4035 		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4036 			/*
4037 			 * Although theoretically we could allow users to open
4038 			 * incomplete pools in RW mode, we'd need to add a lot
4039 			 * of extra logic (e.g. adjust pool space to account
4040 			 * for missing vdevs).
4041 			 * This limitation also prevents users from accidentally
4042 			 * opening the pool in RW mode during data recovery and
4043 			 * damaging it further.
4044 			 */
4045 			spa_load_note(spa, "pools with missing top-level "
4046 			    "vdevs can only be opened in read-only mode.");
4047 			error = SET_ERROR(ENXIO);
4048 		} else {
4049 			spa_load_note(spa, "current settings allow for maximum "
4050 			    "%lld missing top-level vdevs at this stage.",
4051 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
4052 		}
4053 	}
4054 	if (error != 0) {
4055 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4056 		    error);
4057 	}
4058 	if (spa->spa_missing_tvds != 0 || error != 0)
4059 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4060 
4061 	return (error);
4062 }
4063 
4064 /*
4065  * We need to validate the vdev labels against the configuration that
4066  * we have in hand. This function is called twice: first with an untrusted
4067  * config, then with a trusted config. The validation is more strict when the
4068  * config is trusted.
4069  */
4070 static int
4071 spa_ld_validate_vdevs(spa_t *spa)
4072 {
4073 	int error = 0;
4074 	vdev_t *rvd = spa->spa_root_vdev;
4075 
4076 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4077 	error = vdev_validate(rvd);
4078 	spa_config_exit(spa, SCL_ALL, FTAG);
4079 
4080 	if (error != 0) {
4081 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4082 		return (error);
4083 	}
4084 
4085 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4086 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
4087 		    "some vdevs");
4088 		vdev_dbgmsg_print_tree(rvd, 2);
4089 		return (SET_ERROR(ENXIO));
4090 	}
4091 
4092 	return (0);
4093 }
4094 
4095 static void
4096 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4097 {
4098 	spa->spa_state = POOL_STATE_ACTIVE;
4099 	spa->spa_ubsync = spa->spa_uberblock;
4100 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4101 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4102 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4103 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4104 	spa->spa_claim_max_txg = spa->spa_first_txg;
4105 	spa->spa_prev_software_version = ub->ub_software_version;
4106 }
4107 
4108 static int
4109 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4110 {
4111 	vdev_t *rvd = spa->spa_root_vdev;
4112 	nvlist_t *label;
4113 	uberblock_t *ub = &spa->spa_uberblock;
4114 	boolean_t activity_check = B_FALSE;
4115 
4116 	/*
4117 	 * If we are opening the checkpointed state of the pool by
4118 	 * rewinding to it, at this point we will have written the
4119 	 * checkpointed uberblock to the vdev labels, so searching
4120 	 * the labels will find the right uberblock.  However, if
4121 	 * we are opening the checkpointed state read-only, we have
4122 	 * not modified the labels. Therefore, we must ignore the
4123 	 * labels and continue using the spa_uberblock that was set
4124 	 * by spa_ld_checkpoint_rewind.
4125 	 *
4126 	 * Note that it would be fine to ignore the labels when
4127 	 * rewinding (opening writeable) as well. However, if we
4128 	 * crash just after writing the labels, we will end up
4129 	 * searching the labels. Doing so in the common case means
4130 	 * that this code path gets exercised normally, rather than
4131 	 * just in the edge case.
4132 	 */
4133 	if (ub->ub_checkpoint_txg != 0 &&
4134 	    spa_importing_readonly_checkpoint(spa)) {
4135 		spa_ld_select_uberblock_done(spa, ub);
4136 		return (0);
4137 	}
4138 
4139 	/*
4140 	 * Find the best uberblock.
4141 	 */
4142 	vdev_uberblock_load(rvd, ub, &label);
4143 
4144 	/*
4145 	 * If we weren't able to find a single valid uberblock, return failure.
4146 	 */
4147 	if (ub->ub_txg == 0) {
4148 		nvlist_free(label);
4149 		spa_load_failed(spa, "no valid uberblock found");
4150 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4151 	}
4152 
4153 	if (spa->spa_load_max_txg != UINT64_MAX) {
4154 		(void) spa_import_progress_set_max_txg(spa_guid(spa),
4155 		    (u_longlong_t)spa->spa_load_max_txg);
4156 	}
4157 	spa_load_note(spa, "using uberblock with txg=%llu",
4158 	    (u_longlong_t)ub->ub_txg);
4159 	if (ub->ub_raidz_reflow_info != 0) {
4160 		spa_load_note(spa, "uberblock raidz_reflow_info: "
4161 		    "state=%u offset=%llu",
4162 		    (int)RRSS_GET_STATE(ub),
4163 		    (u_longlong_t)RRSS_GET_OFFSET(ub));
4164 	}
4165 
4166 
4167 	/*
4168 	 * For pools which have the multihost property on determine if the
4169 	 * pool is truly inactive and can be safely imported.  Prevent
4170 	 * hosts which don't have a hostid set from importing the pool.
4171 	 */
4172 	activity_check = spa_activity_check_required(spa, ub, label,
4173 	    spa->spa_config);
4174 	if (activity_check) {
4175 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4176 		    spa_get_hostid(spa) == 0) {
4177 			nvlist_free(label);
4178 			fnvlist_add_uint64(spa->spa_load_info,
4179 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4180 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4181 		}
4182 
4183 		int error =
4184 		    spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4185 		if (error) {
4186 			nvlist_free(label);
4187 			return (error);
4188 		}
4189 
4190 		fnvlist_add_uint64(spa->spa_load_info,
4191 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4192 		fnvlist_add_uint64(spa->spa_load_info,
4193 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4194 		fnvlist_add_uint16(spa->spa_load_info,
4195 		    ZPOOL_CONFIG_MMP_SEQ,
4196 		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4197 	}
4198 
4199 	/*
4200 	 * If the pool has an unsupported version we can't open it.
4201 	 */
4202 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4203 		nvlist_free(label);
4204 		spa_load_failed(spa, "version %llu is not supported",
4205 		    (u_longlong_t)ub->ub_version);
4206 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4207 	}
4208 
4209 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4210 		nvlist_t *features;
4211 
4212 		/*
4213 		 * If we weren't able to find what's necessary for reading the
4214 		 * MOS in the label, return failure.
4215 		 */
4216 		if (label == NULL) {
4217 			spa_load_failed(spa, "label config unavailable");
4218 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4219 			    ENXIO));
4220 		}
4221 
4222 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4223 		    &features) != 0) {
4224 			nvlist_free(label);
4225 			spa_load_failed(spa, "invalid label: '%s' missing",
4226 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
4227 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4228 			    ENXIO));
4229 		}
4230 
4231 		/*
4232 		 * Update our in-core representation with the definitive values
4233 		 * from the label.
4234 		 */
4235 		nvlist_free(spa->spa_label_features);
4236 		spa->spa_label_features = fnvlist_dup(features);
4237 	}
4238 
4239 	nvlist_free(label);
4240 
4241 	/*
4242 	 * Look through entries in the label nvlist's features_for_read. If
4243 	 * there is a feature listed there which we don't understand then we
4244 	 * cannot open a pool.
4245 	 */
4246 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
4247 		nvlist_t *unsup_feat;
4248 
4249 		unsup_feat = fnvlist_alloc();
4250 
4251 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4252 		    NULL); nvp != NULL;
4253 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4254 			if (!zfeature_is_supported(nvpair_name(nvp))) {
4255 				fnvlist_add_string(unsup_feat,
4256 				    nvpair_name(nvp), "");
4257 			}
4258 		}
4259 
4260 		if (!nvlist_empty(unsup_feat)) {
4261 			fnvlist_add_nvlist(spa->spa_load_info,
4262 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4263 			nvlist_free(unsup_feat);
4264 			spa_load_failed(spa, "some features are unsupported");
4265 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4266 			    ENOTSUP));
4267 		}
4268 
4269 		nvlist_free(unsup_feat);
4270 	}
4271 
4272 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4273 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4274 		spa_try_repair(spa, spa->spa_config);
4275 		spa_config_exit(spa, SCL_ALL, FTAG);
4276 		nvlist_free(spa->spa_config_splitting);
4277 		spa->spa_config_splitting = NULL;
4278 	}
4279 
4280 	/*
4281 	 * Initialize internal SPA structures.
4282 	 */
4283 	spa_ld_select_uberblock_done(spa, ub);
4284 
4285 	return (0);
4286 }
4287 
4288 static int
4289 spa_ld_open_rootbp(spa_t *spa)
4290 {
4291 	int error = 0;
4292 	vdev_t *rvd = spa->spa_root_vdev;
4293 
4294 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4295 	if (error != 0) {
4296 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4297 		    "[error=%d]", error);
4298 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4299 	}
4300 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4301 
4302 	return (0);
4303 }
4304 
4305 static int
4306 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4307     boolean_t reloading)
4308 {
4309 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4310 	nvlist_t *nv, *mos_config, *policy;
4311 	int error = 0, copy_error;
4312 	uint64_t healthy_tvds, healthy_tvds_mos;
4313 	uint64_t mos_config_txg;
4314 
4315 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4316 	    != 0)
4317 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4318 
4319 	/*
4320 	 * If we're assembling a pool from a split, the config provided is
4321 	 * already trusted so there is nothing to do.
4322 	 */
4323 	if (type == SPA_IMPORT_ASSEMBLE)
4324 		return (0);
4325 
4326 	healthy_tvds = spa_healthy_core_tvds(spa);
4327 
4328 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4329 	    != 0) {
4330 		spa_load_failed(spa, "unable to retrieve MOS config");
4331 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4332 	}
4333 
4334 	/*
4335 	 * If we are doing an open, pool owner wasn't verified yet, thus do
4336 	 * the verification here.
4337 	 */
4338 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
4339 		error = spa_verify_host(spa, mos_config);
4340 		if (error != 0) {
4341 			nvlist_free(mos_config);
4342 			return (error);
4343 		}
4344 	}
4345 
4346 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4347 
4348 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4349 
4350 	/*
4351 	 * Build a new vdev tree from the trusted config
4352 	 */
4353 	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4354 	if (error != 0) {
4355 		nvlist_free(mos_config);
4356 		spa_config_exit(spa, SCL_ALL, FTAG);
4357 		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4358 		    error);
4359 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4360 	}
4361 
4362 	/*
4363 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4364 	 * obtained by scanning /dev/dsk, then it will have the right vdev
4365 	 * paths. We update the trusted MOS config with this information.
4366 	 * We first try to copy the paths with vdev_copy_path_strict, which
4367 	 * succeeds only when both configs have exactly the same vdev tree.
4368 	 * If that fails, we fall back to a more flexible method that has a
4369 	 * best effort policy.
4370 	 */
4371 	copy_error = vdev_copy_path_strict(rvd, mrvd);
4372 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4373 		spa_load_note(spa, "provided vdev tree:");
4374 		vdev_dbgmsg_print_tree(rvd, 2);
4375 		spa_load_note(spa, "MOS vdev tree:");
4376 		vdev_dbgmsg_print_tree(mrvd, 2);
4377 	}
4378 	if (copy_error != 0) {
4379 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4380 		    "back to vdev_copy_path_relaxed");
4381 		vdev_copy_path_relaxed(rvd, mrvd);
4382 	}
4383 
4384 	vdev_close(rvd);
4385 	vdev_free(rvd);
4386 	spa->spa_root_vdev = mrvd;
4387 	rvd = mrvd;
4388 	spa_config_exit(spa, SCL_ALL, FTAG);
4389 
4390 	/*
4391 	 * If 'zpool import' used a cached config, then the on-disk hostid and
4392 	 * hostname may be different to the cached config in ways that should
4393 	 * prevent import.  Userspace can't discover this without a scan, but
4394 	 * we know, so we add these values to LOAD_INFO so the caller can know
4395 	 * the difference.
4396 	 *
4397 	 * Note that we have to do this before the config is regenerated,
4398 	 * because the new config will have the hostid and hostname for this
4399 	 * host, in readiness for import.
4400 	 */
4401 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4402 		fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4403 		    fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4404 	if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4405 		fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4406 		    fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4407 
4408 	/*
4409 	 * We will use spa_config if we decide to reload the spa or if spa_load
4410 	 * fails and we rewind. We must thus regenerate the config using the
4411 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4412 	 * pass settings on how to load the pool and is not stored in the MOS.
4413 	 * We copy it over to our new, trusted config.
4414 	 */
4415 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
4416 	    ZPOOL_CONFIG_POOL_TXG);
4417 	nvlist_free(mos_config);
4418 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4419 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4420 	    &policy) == 0)
4421 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4422 	spa_config_set(spa, mos_config);
4423 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4424 
4425 	/*
4426 	 * Now that we got the config from the MOS, we should be more strict
4427 	 * in checking blkptrs and can make assumptions about the consistency
4428 	 * of the vdev tree. spa_trust_config must be set to true before opening
4429 	 * vdevs in order for them to be writeable.
4430 	 */
4431 	spa->spa_trust_config = B_TRUE;
4432 
4433 	/*
4434 	 * Open and validate the new vdev tree
4435 	 */
4436 	error = spa_ld_open_vdevs(spa);
4437 	if (error != 0)
4438 		return (error);
4439 
4440 	error = spa_ld_validate_vdevs(spa);
4441 	if (error != 0)
4442 		return (error);
4443 
4444 	if (copy_error != 0 || spa_load_print_vdev_tree) {
4445 		spa_load_note(spa, "final vdev tree:");
4446 		vdev_dbgmsg_print_tree(rvd, 2);
4447 	}
4448 
4449 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4450 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4451 		/*
4452 		 * Sanity check to make sure that we are indeed loading the
4453 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4454 		 * in the config provided and they happened to be the only ones
4455 		 * to have the latest uberblock, we could involuntarily perform
4456 		 * an extreme rewind.
4457 		 */
4458 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
4459 		if (healthy_tvds_mos - healthy_tvds >=
4460 		    SPA_SYNC_MIN_VDEVS) {
4461 			spa_load_note(spa, "config provided misses too many "
4462 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
4463 			    (u_longlong_t)healthy_tvds,
4464 			    (u_longlong_t)healthy_tvds_mos);
4465 			spa_load_note(spa, "vdev tree:");
4466 			vdev_dbgmsg_print_tree(rvd, 2);
4467 			if (reloading) {
4468 				spa_load_failed(spa, "config was already "
4469 				    "provided from MOS. Aborting.");
4470 				return (spa_vdev_err(rvd,
4471 				    VDEV_AUX_CORRUPT_DATA, EIO));
4472 			}
4473 			spa_load_note(spa, "spa must be reloaded using MOS "
4474 			    "config");
4475 			return (SET_ERROR(EAGAIN));
4476 		}
4477 	}
4478 
4479 	error = spa_check_for_missing_logs(spa);
4480 	if (error != 0)
4481 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4482 
4483 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4484 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4485 		    "guid sum (%llu != %llu)",
4486 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4487 		    (u_longlong_t)rvd->vdev_guid_sum);
4488 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4489 		    ENXIO));
4490 	}
4491 
4492 	return (0);
4493 }
4494 
4495 static int
4496 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4497 {
4498 	int error = 0;
4499 	vdev_t *rvd = spa->spa_root_vdev;
4500 
4501 	/*
4502 	 * Everything that we read before spa_remove_init() must be stored
4503 	 * on concreted vdevs.  Therefore we do this as early as possible.
4504 	 */
4505 	error = spa_remove_init(spa);
4506 	if (error != 0) {
4507 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4508 		    error);
4509 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4510 	}
4511 
4512 	/*
4513 	 * Retrieve information needed to condense indirect vdev mappings.
4514 	 */
4515 	error = spa_condense_init(spa);
4516 	if (error != 0) {
4517 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4518 		    error);
4519 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4520 	}
4521 
4522 	return (0);
4523 }
4524 
4525 static int
4526 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4527 {
4528 	int error = 0;
4529 	vdev_t *rvd = spa->spa_root_vdev;
4530 
4531 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4532 		boolean_t missing_feat_read = B_FALSE;
4533 		nvlist_t *unsup_feat, *enabled_feat;
4534 
4535 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4536 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4537 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4538 		}
4539 
4540 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4541 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4542 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4543 		}
4544 
4545 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4546 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4547 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4548 		}
4549 
4550 		enabled_feat = fnvlist_alloc();
4551 		unsup_feat = fnvlist_alloc();
4552 
4553 		if (!spa_features_check(spa, B_FALSE,
4554 		    unsup_feat, enabled_feat))
4555 			missing_feat_read = B_TRUE;
4556 
4557 		if (spa_writeable(spa) ||
4558 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4559 			if (!spa_features_check(spa, B_TRUE,
4560 			    unsup_feat, enabled_feat)) {
4561 				*missing_feat_writep = B_TRUE;
4562 			}
4563 		}
4564 
4565 		fnvlist_add_nvlist(spa->spa_load_info,
4566 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4567 
4568 		if (!nvlist_empty(unsup_feat)) {
4569 			fnvlist_add_nvlist(spa->spa_load_info,
4570 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4571 		}
4572 
4573 		fnvlist_free(enabled_feat);
4574 		fnvlist_free(unsup_feat);
4575 
4576 		if (!missing_feat_read) {
4577 			fnvlist_add_boolean(spa->spa_load_info,
4578 			    ZPOOL_CONFIG_CAN_RDONLY);
4579 		}
4580 
4581 		/*
4582 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4583 		 * twofold: to determine whether the pool is available for
4584 		 * import in read-write mode and (if it is not) whether the
4585 		 * pool is available for import in read-only mode. If the pool
4586 		 * is available for import in read-write mode, it is displayed
4587 		 * as available in userland; if it is not available for import
4588 		 * in read-only mode, it is displayed as unavailable in
4589 		 * userland. If the pool is available for import in read-only
4590 		 * mode but not read-write mode, it is displayed as unavailable
4591 		 * in userland with a special note that the pool is actually
4592 		 * available for open in read-only mode.
4593 		 *
4594 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4595 		 * missing a feature for write, we must first determine whether
4596 		 * the pool can be opened read-only before returning to
4597 		 * userland in order to know whether to display the
4598 		 * abovementioned note.
4599 		 */
4600 		if (missing_feat_read || (*missing_feat_writep &&
4601 		    spa_writeable(spa))) {
4602 			spa_load_failed(spa, "pool uses unsupported features");
4603 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4604 			    ENOTSUP));
4605 		}
4606 
4607 		/*
4608 		 * Load refcounts for ZFS features from disk into an in-memory
4609 		 * cache during SPA initialization.
4610 		 */
4611 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4612 			uint64_t refcount;
4613 
4614 			error = feature_get_refcount_from_disk(spa,
4615 			    &spa_feature_table[i], &refcount);
4616 			if (error == 0) {
4617 				spa->spa_feat_refcount_cache[i] = refcount;
4618 			} else if (error == ENOTSUP) {
4619 				spa->spa_feat_refcount_cache[i] =
4620 				    SPA_FEATURE_DISABLED;
4621 			} else {
4622 				spa_load_failed(spa, "error getting refcount "
4623 				    "for feature %s [error=%d]",
4624 				    spa_feature_table[i].fi_guid, error);
4625 				return (spa_vdev_err(rvd,
4626 				    VDEV_AUX_CORRUPT_DATA, EIO));
4627 			}
4628 		}
4629 	}
4630 
4631 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4632 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4633 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4634 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4635 	}
4636 
4637 	/*
4638 	 * Encryption was added before bookmark_v2, even though bookmark_v2
4639 	 * is now a dependency. If this pool has encryption enabled without
4640 	 * bookmark_v2, trigger an errata message.
4641 	 */
4642 	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4643 	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4644 		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4645 	}
4646 
4647 	return (0);
4648 }
4649 
4650 static int
4651 spa_ld_load_special_directories(spa_t *spa)
4652 {
4653 	int error = 0;
4654 	vdev_t *rvd = spa->spa_root_vdev;
4655 
4656 	spa->spa_is_initializing = B_TRUE;
4657 	error = dsl_pool_open(spa->spa_dsl_pool);
4658 	spa->spa_is_initializing = B_FALSE;
4659 	if (error != 0) {
4660 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4661 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4662 	}
4663 
4664 	return (0);
4665 }
4666 
4667 static int
4668 spa_ld_get_props(spa_t *spa)
4669 {
4670 	int error = 0;
4671 	uint64_t obj;
4672 	vdev_t *rvd = spa->spa_root_vdev;
4673 
4674 	/* Grab the checksum salt from the MOS. */
4675 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4676 	    DMU_POOL_CHECKSUM_SALT, 1,
4677 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4678 	    spa->spa_cksum_salt.zcs_bytes);
4679 	if (error == ENOENT) {
4680 		/* Generate a new salt for subsequent use */
4681 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4682 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4683 	} else if (error != 0) {
4684 		spa_load_failed(spa, "unable to retrieve checksum salt from "
4685 		    "MOS [error=%d]", error);
4686 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4687 	}
4688 
4689 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4690 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4691 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4692 	if (error != 0) {
4693 		spa_load_failed(spa, "error opening deferred-frees bpobj "
4694 		    "[error=%d]", error);
4695 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4696 	}
4697 
4698 	/*
4699 	 * Load the bit that tells us to use the new accounting function
4700 	 * (raid-z deflation).  If we have an older pool, this will not
4701 	 * be present.
4702 	 */
4703 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4704 	if (error != 0 && error != ENOENT)
4705 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4706 
4707 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4708 	    &spa->spa_creation_version, B_FALSE);
4709 	if (error != 0 && error != ENOENT)
4710 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4711 
4712 	/*
4713 	 * Load the persistent error log.  If we have an older pool, this will
4714 	 * not be present.
4715 	 */
4716 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4717 	    B_FALSE);
4718 	if (error != 0 && error != ENOENT)
4719 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4720 
4721 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4722 	    &spa->spa_errlog_scrub, B_FALSE);
4723 	if (error != 0 && error != ENOENT)
4724 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4725 
4726 	/*
4727 	 * Load the livelist deletion field. If a livelist is queued for
4728 	 * deletion, indicate that in the spa
4729 	 */
4730 	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4731 	    &spa->spa_livelists_to_delete, B_FALSE);
4732 	if (error != 0 && error != ENOENT)
4733 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4734 
4735 	/*
4736 	 * Load the history object.  If we have an older pool, this
4737 	 * will not be present.
4738 	 */
4739 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4740 	if (error != 0 && error != ENOENT)
4741 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4742 
4743 	/*
4744 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4745 	 * be present; in this case, defer its creation to a later time to
4746 	 * avoid dirtying the MOS this early / out of sync context. See
4747 	 * spa_sync_config_object.
4748 	 */
4749 
4750 	/* The sentinel is only available in the MOS config. */
4751 	nvlist_t *mos_config;
4752 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4753 		spa_load_failed(spa, "unable to retrieve MOS config");
4754 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4755 	}
4756 
4757 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4758 	    &spa->spa_all_vdev_zaps, B_FALSE);
4759 
4760 	if (error == ENOENT) {
4761 		VERIFY(!nvlist_exists(mos_config,
4762 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4763 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4764 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4765 	} else if (error != 0) {
4766 		nvlist_free(mos_config);
4767 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4768 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4769 		/*
4770 		 * An older version of ZFS overwrote the sentinel value, so
4771 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4772 		 * destruction to later; see spa_sync_config_object.
4773 		 */
4774 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4775 		/*
4776 		 * We're assuming that no vdevs have had their ZAPs created
4777 		 * before this. Better be sure of it.
4778 		 */
4779 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4780 	}
4781 	nvlist_free(mos_config);
4782 
4783 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4784 
4785 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4786 	    B_FALSE);
4787 	if (error && error != ENOENT)
4788 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4789 
4790 	if (error == 0) {
4791 		uint64_t autoreplace = 0;
4792 
4793 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4794 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4795 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4796 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4797 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4798 		spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4799 		    &spa->spa_dedup_table_quota);
4800 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4801 		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4802 		spa->spa_autoreplace = (autoreplace != 0);
4803 	}
4804 
4805 	/*
4806 	 * If we are importing a pool with missing top-level vdevs,
4807 	 * we enforce that the pool doesn't panic or get suspended on
4808 	 * error since the likelihood of missing data is extremely high.
4809 	 */
4810 	if (spa->spa_missing_tvds > 0 &&
4811 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4812 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4813 		spa_load_note(spa, "forcing failmode to 'continue' "
4814 		    "as some top level vdevs are missing");
4815 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4816 	}
4817 
4818 	return (0);
4819 }
4820 
4821 static int
4822 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4823 {
4824 	int error = 0;
4825 	vdev_t *rvd = spa->spa_root_vdev;
4826 
4827 	/*
4828 	 * If we're assembling the pool from the split-off vdevs of
4829 	 * an existing pool, we don't want to attach the spares & cache
4830 	 * devices.
4831 	 */
4832 
4833 	/*
4834 	 * Load any hot spares for this pool.
4835 	 */
4836 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4837 	    B_FALSE);
4838 	if (error != 0 && error != ENOENT)
4839 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4840 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4841 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4842 		if (load_nvlist(spa, spa->spa_spares.sav_object,
4843 		    &spa->spa_spares.sav_config) != 0) {
4844 			spa_load_failed(spa, "error loading spares nvlist");
4845 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4846 		}
4847 
4848 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4849 		spa_load_spares(spa);
4850 		spa_config_exit(spa, SCL_ALL, FTAG);
4851 	} else if (error == 0) {
4852 		spa->spa_spares.sav_sync = B_TRUE;
4853 	}
4854 
4855 	/*
4856 	 * Load any level 2 ARC devices for this pool.
4857 	 */
4858 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4859 	    &spa->spa_l2cache.sav_object, B_FALSE);
4860 	if (error != 0 && error != ENOENT)
4861 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4862 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4863 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4864 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4865 		    &spa->spa_l2cache.sav_config) != 0) {
4866 			spa_load_failed(spa, "error loading l2cache nvlist");
4867 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4868 		}
4869 
4870 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4871 		spa_load_l2cache(spa);
4872 		spa_config_exit(spa, SCL_ALL, FTAG);
4873 	} else if (error == 0) {
4874 		spa->spa_l2cache.sav_sync = B_TRUE;
4875 	}
4876 
4877 	return (0);
4878 }
4879 
4880 static int
4881 spa_ld_load_vdev_metadata(spa_t *spa)
4882 {
4883 	int error = 0;
4884 	vdev_t *rvd = spa->spa_root_vdev;
4885 
4886 	/*
4887 	 * If the 'multihost' property is set, then never allow a pool to
4888 	 * be imported when the system hostid is zero.  The exception to
4889 	 * this rule is zdb which is always allowed to access pools.
4890 	 */
4891 	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4892 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4893 		fnvlist_add_uint64(spa->spa_load_info,
4894 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4895 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4896 	}
4897 
4898 	/*
4899 	 * If the 'autoreplace' property is set, then post a resource notifying
4900 	 * the ZFS DE that it should not issue any faults for unopenable
4901 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4902 	 * unopenable vdevs so that the normal autoreplace handler can take
4903 	 * over.
4904 	 */
4905 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4906 		spa_check_removed(spa->spa_root_vdev);
4907 		/*
4908 		 * For the import case, this is done in spa_import(), because
4909 		 * at this point we're using the spare definitions from
4910 		 * the MOS config, not necessarily from the userland config.
4911 		 */
4912 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4913 			spa_aux_check_removed(&spa->spa_spares);
4914 			spa_aux_check_removed(&spa->spa_l2cache);
4915 		}
4916 	}
4917 
4918 	/*
4919 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4920 	 */
4921 	error = vdev_load(rvd);
4922 	if (error != 0) {
4923 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4924 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4925 	}
4926 
4927 	error = spa_ld_log_spacemaps(spa);
4928 	if (error != 0) {
4929 		spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4930 		    error);
4931 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4932 	}
4933 
4934 	/*
4935 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4936 	 */
4937 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4938 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4939 	spa_config_exit(spa, SCL_ALL, FTAG);
4940 
4941 	return (0);
4942 }
4943 
4944 static int
4945 spa_ld_load_dedup_tables(spa_t *spa)
4946 {
4947 	int error = 0;
4948 	vdev_t *rvd = spa->spa_root_vdev;
4949 
4950 	error = ddt_load(spa);
4951 	if (error != 0) {
4952 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4953 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4954 	}
4955 
4956 	return (0);
4957 }
4958 
4959 static int
4960 spa_ld_load_brt(spa_t *spa)
4961 {
4962 	int error = 0;
4963 	vdev_t *rvd = spa->spa_root_vdev;
4964 
4965 	error = brt_load(spa);
4966 	if (error != 0) {
4967 		spa_load_failed(spa, "brt_load failed [error=%d]", error);
4968 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4969 	}
4970 
4971 	return (0);
4972 }
4973 
4974 static int
4975 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4976 {
4977 	vdev_t *rvd = spa->spa_root_vdev;
4978 
4979 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4980 		boolean_t missing = spa_check_logs(spa);
4981 		if (missing) {
4982 			if (spa->spa_missing_tvds != 0) {
4983 				spa_load_note(spa, "spa_check_logs failed "
4984 				    "so dropping the logs");
4985 			} else {
4986 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4987 				spa_load_failed(spa, "spa_check_logs failed");
4988 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4989 				    ENXIO));
4990 			}
4991 		}
4992 	}
4993 
4994 	return (0);
4995 }
4996 
4997 static int
4998 spa_ld_verify_pool_data(spa_t *spa)
4999 {
5000 	int error = 0;
5001 	vdev_t *rvd = spa->spa_root_vdev;
5002 
5003 	/*
5004 	 * We've successfully opened the pool, verify that we're ready
5005 	 * to start pushing transactions.
5006 	 */
5007 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5008 		error = spa_load_verify(spa);
5009 		if (error != 0) {
5010 			spa_load_failed(spa, "spa_load_verify failed "
5011 			    "[error=%d]", error);
5012 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5013 			    error));
5014 		}
5015 	}
5016 
5017 	return (0);
5018 }
5019 
5020 static void
5021 spa_ld_claim_log_blocks(spa_t *spa)
5022 {
5023 	dmu_tx_t *tx;
5024 	dsl_pool_t *dp = spa_get_dsl(spa);
5025 
5026 	/*
5027 	 * Claim log blocks that haven't been committed yet.
5028 	 * This must all happen in a single txg.
5029 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5030 	 * invoked from zil_claim_log_block()'s i/o done callback.
5031 	 * Price of rollback is that we abandon the log.
5032 	 */
5033 	spa->spa_claiming = B_TRUE;
5034 
5035 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5036 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5037 	    zil_claim, tx, DS_FIND_CHILDREN);
5038 	dmu_tx_commit(tx);
5039 
5040 	spa->spa_claiming = B_FALSE;
5041 
5042 	spa_set_log_state(spa, SPA_LOG_GOOD);
5043 }
5044 
5045 static void
5046 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5047     boolean_t update_config_cache)
5048 {
5049 	vdev_t *rvd = spa->spa_root_vdev;
5050 	int need_update = B_FALSE;
5051 
5052 	/*
5053 	 * If the config cache is stale, or we have uninitialized
5054 	 * metaslabs (see spa_vdev_add()), then update the config.
5055 	 *
5056 	 * If this is a verbatim import, trust the current
5057 	 * in-core spa_config and update the disk labels.
5058 	 */
5059 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5060 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
5061 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
5062 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5063 		need_update = B_TRUE;
5064 
5065 	for (int c = 0; c < rvd->vdev_children; c++)
5066 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
5067 			need_update = B_TRUE;
5068 
5069 	/*
5070 	 * Update the config cache asynchronously in case we're the
5071 	 * root pool, in which case the config cache isn't writable yet.
5072 	 */
5073 	if (need_update)
5074 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5075 }
5076 
5077 static void
5078 spa_ld_prepare_for_reload(spa_t *spa)
5079 {
5080 	spa_mode_t mode = spa->spa_mode;
5081 	int async_suspended = spa->spa_async_suspended;
5082 
5083 	spa_unload(spa);
5084 	spa_deactivate(spa);
5085 	spa_activate(spa, mode);
5086 
5087 	/*
5088 	 * We save the value of spa_async_suspended as it gets reset to 0 by
5089 	 * spa_unload(). We want to restore it back to the original value before
5090 	 * returning as we might be calling spa_async_resume() later.
5091 	 */
5092 	spa->spa_async_suspended = async_suspended;
5093 }
5094 
5095 static int
5096 spa_ld_read_checkpoint_txg(spa_t *spa)
5097 {
5098 	uberblock_t checkpoint;
5099 	int error = 0;
5100 
5101 	ASSERT0(spa->spa_checkpoint_txg);
5102 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5103 	    spa->spa_load_thread == curthread);
5104 
5105 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5106 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5107 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5108 
5109 	if (error == ENOENT)
5110 		return (0);
5111 
5112 	if (error != 0)
5113 		return (error);
5114 
5115 	ASSERT3U(checkpoint.ub_txg, !=, 0);
5116 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5117 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5118 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
5119 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5120 
5121 	return (0);
5122 }
5123 
5124 static int
5125 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5126 {
5127 	int error = 0;
5128 
5129 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5130 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5131 
5132 	/*
5133 	 * Never trust the config that is provided unless we are assembling
5134 	 * a pool following a split.
5135 	 * This means don't trust blkptrs and the vdev tree in general. This
5136 	 * also effectively puts the spa in read-only mode since
5137 	 * spa_writeable() checks for spa_trust_config to be true.
5138 	 * We will later load a trusted config from the MOS.
5139 	 */
5140 	if (type != SPA_IMPORT_ASSEMBLE)
5141 		spa->spa_trust_config = B_FALSE;
5142 
5143 	/*
5144 	 * Parse the config provided to create a vdev tree.
5145 	 */
5146 	error = spa_ld_parse_config(spa, type);
5147 	if (error != 0)
5148 		return (error);
5149 
5150 	spa_import_progress_add(spa);
5151 
5152 	/*
5153 	 * Now that we have the vdev tree, try to open each vdev. This involves
5154 	 * opening the underlying physical device, retrieving its geometry and
5155 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
5156 	 * based on the success of those operations. After this we'll be ready
5157 	 * to read from the vdevs.
5158 	 */
5159 	error = spa_ld_open_vdevs(spa);
5160 	if (error != 0)
5161 		return (error);
5162 
5163 	/*
5164 	 * Read the label of each vdev and make sure that the GUIDs stored
5165 	 * there match the GUIDs in the config provided.
5166 	 * If we're assembling a new pool that's been split off from an
5167 	 * existing pool, the labels haven't yet been updated so we skip
5168 	 * validation for now.
5169 	 */
5170 	if (type != SPA_IMPORT_ASSEMBLE) {
5171 		error = spa_ld_validate_vdevs(spa);
5172 		if (error != 0)
5173 			return (error);
5174 	}
5175 
5176 	/*
5177 	 * Read all vdev labels to find the best uberblock (i.e. latest,
5178 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5179 	 * get the list of features required to read blkptrs in the MOS from
5180 	 * the vdev label with the best uberblock and verify that our version
5181 	 * of zfs supports them all.
5182 	 */
5183 	error = spa_ld_select_uberblock(spa, type);
5184 	if (error != 0)
5185 		return (error);
5186 
5187 	/*
5188 	 * Pass that uberblock to the dsl_pool layer which will open the root
5189 	 * blkptr. This blkptr points to the latest version of the MOS and will
5190 	 * allow us to read its contents.
5191 	 */
5192 	error = spa_ld_open_rootbp(spa);
5193 	if (error != 0)
5194 		return (error);
5195 
5196 	return (0);
5197 }
5198 
5199 static int
5200 spa_ld_checkpoint_rewind(spa_t *spa)
5201 {
5202 	uberblock_t checkpoint;
5203 	int error = 0;
5204 
5205 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5206 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5207 
5208 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5209 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5210 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5211 
5212 	if (error != 0) {
5213 		spa_load_failed(spa, "unable to retrieve checkpointed "
5214 		    "uberblock from the MOS config [error=%d]", error);
5215 
5216 		if (error == ENOENT)
5217 			error = ZFS_ERR_NO_CHECKPOINT;
5218 
5219 		return (error);
5220 	}
5221 
5222 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5223 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5224 
5225 	/*
5226 	 * We need to update the txg and timestamp of the checkpointed
5227 	 * uberblock to be higher than the latest one. This ensures that
5228 	 * the checkpointed uberblock is selected if we were to close and
5229 	 * reopen the pool right after we've written it in the vdev labels.
5230 	 * (also see block comment in vdev_uberblock_compare)
5231 	 */
5232 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5233 	checkpoint.ub_timestamp = gethrestime_sec();
5234 
5235 	/*
5236 	 * Set current uberblock to be the checkpointed uberblock.
5237 	 */
5238 	spa->spa_uberblock = checkpoint;
5239 
5240 	/*
5241 	 * If we are doing a normal rewind, then the pool is open for
5242 	 * writing and we sync the "updated" checkpointed uberblock to
5243 	 * disk. Once this is done, we've basically rewound the whole
5244 	 * pool and there is no way back.
5245 	 *
5246 	 * There are cases when we don't want to attempt and sync the
5247 	 * checkpointed uberblock to disk because we are opening a
5248 	 * pool as read-only. Specifically, verifying the checkpointed
5249 	 * state with zdb, and importing the checkpointed state to get
5250 	 * a "preview" of its content.
5251 	 */
5252 	if (spa_writeable(spa)) {
5253 		vdev_t *rvd = spa->spa_root_vdev;
5254 
5255 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5256 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5257 		int svdcount = 0;
5258 		int children = rvd->vdev_children;
5259 		int c0 = random_in_range(children);
5260 
5261 		for (int c = 0; c < children; c++) {
5262 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5263 
5264 			/* Stop when revisiting the first vdev */
5265 			if (c > 0 && svd[0] == vd)
5266 				break;
5267 
5268 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5269 			    !vdev_is_concrete(vd))
5270 				continue;
5271 
5272 			svd[svdcount++] = vd;
5273 			if (svdcount == SPA_SYNC_MIN_VDEVS)
5274 				break;
5275 		}
5276 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5277 		if (error == 0)
5278 			spa->spa_last_synced_guid = rvd->vdev_guid;
5279 		spa_config_exit(spa, SCL_ALL, FTAG);
5280 
5281 		if (error != 0) {
5282 			spa_load_failed(spa, "failed to write checkpointed "
5283 			    "uberblock to the vdev labels [error=%d]", error);
5284 			return (error);
5285 		}
5286 	}
5287 
5288 	return (0);
5289 }
5290 
5291 static int
5292 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5293     boolean_t *update_config_cache)
5294 {
5295 	int error;
5296 
5297 	/*
5298 	 * Parse the config for pool, open and validate vdevs,
5299 	 * select an uberblock, and use that uberblock to open
5300 	 * the MOS.
5301 	 */
5302 	error = spa_ld_mos_init(spa, type);
5303 	if (error != 0)
5304 		return (error);
5305 
5306 	/*
5307 	 * Retrieve the trusted config stored in the MOS and use it to create
5308 	 * a new, exact version of the vdev tree, then reopen all vdevs.
5309 	 */
5310 	error = spa_ld_trusted_config(spa, type, B_FALSE);
5311 	if (error == EAGAIN) {
5312 		if (update_config_cache != NULL)
5313 			*update_config_cache = B_TRUE;
5314 
5315 		/*
5316 		 * Redo the loading process with the trusted config if it is
5317 		 * too different from the untrusted config.
5318 		 */
5319 		spa_ld_prepare_for_reload(spa);
5320 		spa_load_note(spa, "RELOADING");
5321 		error = spa_ld_mos_init(spa, type);
5322 		if (error != 0)
5323 			return (error);
5324 
5325 		error = spa_ld_trusted_config(spa, type, B_TRUE);
5326 		if (error != 0)
5327 			return (error);
5328 
5329 	} else if (error != 0) {
5330 		return (error);
5331 	}
5332 
5333 	return (0);
5334 }
5335 
5336 /*
5337  * Load an existing storage pool, using the config provided. This config
5338  * describes which vdevs are part of the pool and is later validated against
5339  * partial configs present in each vdev's label and an entire copy of the
5340  * config stored in the MOS.
5341  */
5342 static int
5343 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5344 {
5345 	int error = 0;
5346 	boolean_t missing_feat_write = B_FALSE;
5347 	boolean_t checkpoint_rewind =
5348 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5349 	boolean_t update_config_cache = B_FALSE;
5350 	hrtime_t load_start = gethrtime();
5351 
5352 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5353 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5354 
5355 	spa_load_note(spa, "LOADING");
5356 
5357 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5358 	if (error != 0)
5359 		return (error);
5360 
5361 	/*
5362 	 * If we are rewinding to the checkpoint then we need to repeat
5363 	 * everything we've done so far in this function but this time
5364 	 * selecting the checkpointed uberblock and using that to open
5365 	 * the MOS.
5366 	 */
5367 	if (checkpoint_rewind) {
5368 		/*
5369 		 * If we are rewinding to the checkpoint update config cache
5370 		 * anyway.
5371 		 */
5372 		update_config_cache = B_TRUE;
5373 
5374 		/*
5375 		 * Extract the checkpointed uberblock from the current MOS
5376 		 * and use this as the pool's uberblock from now on. If the
5377 		 * pool is imported as writeable we also write the checkpoint
5378 		 * uberblock to the labels, making the rewind permanent.
5379 		 */
5380 		error = spa_ld_checkpoint_rewind(spa);
5381 		if (error != 0)
5382 			return (error);
5383 
5384 		/*
5385 		 * Redo the loading process again with the
5386 		 * checkpointed uberblock.
5387 		 */
5388 		spa_ld_prepare_for_reload(spa);
5389 		spa_load_note(spa, "LOADING checkpointed uberblock");
5390 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5391 		if (error != 0)
5392 			return (error);
5393 	}
5394 
5395 	/*
5396 	 * Drop the namespace lock for the rest of the function.
5397 	 */
5398 	spa->spa_load_thread = curthread;
5399 	mutex_exit(&spa_namespace_lock);
5400 
5401 	/*
5402 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
5403 	 */
5404 	spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5405 	error = spa_ld_read_checkpoint_txg(spa);
5406 	if (error != 0)
5407 		goto fail;
5408 
5409 	/*
5410 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5411 	 * from the pool and their contents were re-mapped to other vdevs. Note
5412 	 * that everything that we read before this step must have been
5413 	 * rewritten on concrete vdevs after the last device removal was
5414 	 * initiated. Otherwise we could be reading from indirect vdevs before
5415 	 * we have loaded their mappings.
5416 	 */
5417 	spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5418 	error = spa_ld_open_indirect_vdev_metadata(spa);
5419 	if (error != 0)
5420 		goto fail;
5421 
5422 	/*
5423 	 * Retrieve the full list of active features from the MOS and check if
5424 	 * they are all supported.
5425 	 */
5426 	spa_import_progress_set_notes(spa, "Checking feature flags");
5427 	error = spa_ld_check_features(spa, &missing_feat_write);
5428 	if (error != 0)
5429 		goto fail;
5430 
5431 	/*
5432 	 * Load several special directories from the MOS needed by the dsl_pool
5433 	 * layer.
5434 	 */
5435 	spa_import_progress_set_notes(spa, "Loading special MOS directories");
5436 	error = spa_ld_load_special_directories(spa);
5437 	if (error != 0)
5438 		goto fail;
5439 
5440 	/*
5441 	 * Retrieve pool properties from the MOS.
5442 	 */
5443 	spa_import_progress_set_notes(spa, "Loading properties");
5444 	error = spa_ld_get_props(spa);
5445 	if (error != 0)
5446 		goto fail;
5447 
5448 	/*
5449 	 * Retrieve the list of auxiliary devices - cache devices and spares -
5450 	 * and open them.
5451 	 */
5452 	spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5453 	error = spa_ld_open_aux_vdevs(spa, type);
5454 	if (error != 0)
5455 		goto fail;
5456 
5457 	/*
5458 	 * Load the metadata for all vdevs. Also check if unopenable devices
5459 	 * should be autoreplaced.
5460 	 */
5461 	spa_import_progress_set_notes(spa, "Loading vdev metadata");
5462 	error = spa_ld_load_vdev_metadata(spa);
5463 	if (error != 0)
5464 		goto fail;
5465 
5466 	spa_import_progress_set_notes(spa, "Loading dedup tables");
5467 	error = spa_ld_load_dedup_tables(spa);
5468 	if (error != 0)
5469 		goto fail;
5470 
5471 	spa_import_progress_set_notes(spa, "Loading BRT");
5472 	error = spa_ld_load_brt(spa);
5473 	if (error != 0)
5474 		goto fail;
5475 
5476 	/*
5477 	 * Verify the logs now to make sure we don't have any unexpected errors
5478 	 * when we claim log blocks later.
5479 	 */
5480 	spa_import_progress_set_notes(spa, "Verifying Log Devices");
5481 	error = spa_ld_verify_logs(spa, type, ereport);
5482 	if (error != 0)
5483 		goto fail;
5484 
5485 	if (missing_feat_write) {
5486 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5487 
5488 		/*
5489 		 * At this point, we know that we can open the pool in
5490 		 * read-only mode but not read-write mode. We now have enough
5491 		 * information and can return to userland.
5492 		 */
5493 		error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5494 		    ENOTSUP);
5495 		goto fail;
5496 	}
5497 
5498 	/*
5499 	 * Traverse the last txgs to make sure the pool was left off in a safe
5500 	 * state. When performing an extreme rewind, we verify the whole pool,
5501 	 * which can take a very long time.
5502 	 */
5503 	spa_import_progress_set_notes(spa, "Verifying pool data");
5504 	error = spa_ld_verify_pool_data(spa);
5505 	if (error != 0)
5506 		goto fail;
5507 
5508 	/*
5509 	 * Calculate the deflated space for the pool. This must be done before
5510 	 * we write anything to the pool because we'd need to update the space
5511 	 * accounting using the deflated sizes.
5512 	 */
5513 	spa_import_progress_set_notes(spa, "Calculating deflated space");
5514 	spa_update_dspace(spa);
5515 
5516 	/*
5517 	 * We have now retrieved all the information we needed to open the
5518 	 * pool. If we are importing the pool in read-write mode, a few
5519 	 * additional steps must be performed to finish the import.
5520 	 */
5521 	spa_import_progress_set_notes(spa, "Starting import");
5522 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5523 	    spa->spa_load_max_txg == UINT64_MAX)) {
5524 		uint64_t config_cache_txg = spa->spa_config_txg;
5525 
5526 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5527 
5528 		/*
5529 		 * Before we do any zio_write's, complete the raidz expansion
5530 		 * scratch space copying, if necessary.
5531 		 */
5532 		if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5533 			vdev_raidz_reflow_copy_scratch(spa);
5534 
5535 		/*
5536 		 * In case of a checkpoint rewind, log the original txg
5537 		 * of the checkpointed uberblock.
5538 		 */
5539 		if (checkpoint_rewind) {
5540 			spa_history_log_internal(spa, "checkpoint rewind",
5541 			    NULL, "rewound state to txg=%llu",
5542 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5543 		}
5544 
5545 		spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5546 		/*
5547 		 * Traverse the ZIL and claim all blocks.
5548 		 */
5549 		spa_ld_claim_log_blocks(spa);
5550 
5551 		/*
5552 		 * Kick-off the syncing thread.
5553 		 */
5554 		spa->spa_sync_on = B_TRUE;
5555 		txg_sync_start(spa->spa_dsl_pool);
5556 		mmp_thread_start(spa);
5557 
5558 		/*
5559 		 * Wait for all claims to sync.  We sync up to the highest
5560 		 * claimed log block birth time so that claimed log blocks
5561 		 * don't appear to be from the future.  spa_claim_max_txg
5562 		 * will have been set for us by ZIL traversal operations
5563 		 * performed above.
5564 		 */
5565 		spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5566 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5567 
5568 		/*
5569 		 * Check if we need to request an update of the config. On the
5570 		 * next sync, we would update the config stored in vdev labels
5571 		 * and the cachefile (by default /etc/zfs/zpool.cache).
5572 		 */
5573 		spa_import_progress_set_notes(spa, "Updating configs");
5574 		spa_ld_check_for_config_update(spa, config_cache_txg,
5575 		    update_config_cache);
5576 
5577 		/*
5578 		 * Check if a rebuild was in progress and if so resume it.
5579 		 * Then check all DTLs to see if anything needs resilvering.
5580 		 * The resilver will be deferred if a rebuild was started.
5581 		 */
5582 		spa_import_progress_set_notes(spa, "Starting resilvers");
5583 		if (vdev_rebuild_active(spa->spa_root_vdev)) {
5584 			vdev_rebuild_restart(spa);
5585 		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5586 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5587 			spa_async_request(spa, SPA_ASYNC_RESILVER);
5588 		}
5589 
5590 		/*
5591 		 * Log the fact that we booted up (so that we can detect if
5592 		 * we rebooted in the middle of an operation).
5593 		 */
5594 		spa_history_log_version(spa, "open", NULL);
5595 
5596 		spa_import_progress_set_notes(spa,
5597 		    "Restarting device removals");
5598 		spa_restart_removal(spa);
5599 		spa_spawn_aux_threads(spa);
5600 
5601 		/*
5602 		 * Delete any inconsistent datasets.
5603 		 *
5604 		 * Note:
5605 		 * Since we may be issuing deletes for clones here,
5606 		 * we make sure to do so after we've spawned all the
5607 		 * auxiliary threads above (from which the livelist
5608 		 * deletion zthr is part of).
5609 		 */
5610 		spa_import_progress_set_notes(spa,
5611 		    "Cleaning up inconsistent objsets");
5612 		(void) dmu_objset_find(spa_name(spa),
5613 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5614 
5615 		/*
5616 		 * Clean up any stale temporary dataset userrefs.
5617 		 */
5618 		spa_import_progress_set_notes(spa,
5619 		    "Cleaning up temporary userrefs");
5620 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5621 
5622 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5623 		spa_import_progress_set_notes(spa, "Restarting initialize");
5624 		vdev_initialize_restart(spa->spa_root_vdev);
5625 		spa_import_progress_set_notes(spa, "Restarting TRIM");
5626 		vdev_trim_restart(spa->spa_root_vdev);
5627 		vdev_autotrim_restart(spa);
5628 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5629 		spa_import_progress_set_notes(spa, "Finished importing");
5630 	}
5631 	zio_handle_import_delay(spa, gethrtime() - load_start);
5632 
5633 	spa_import_progress_remove(spa_guid(spa));
5634 	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5635 
5636 	spa_load_note(spa, "LOADED");
5637 fail:
5638 	mutex_enter(&spa_namespace_lock);
5639 	spa->spa_load_thread = NULL;
5640 	cv_broadcast(&spa_namespace_cv);
5641 
5642 	return (error);
5643 
5644 }
5645 
5646 static int
5647 spa_load_retry(spa_t *spa, spa_load_state_t state)
5648 {
5649 	spa_mode_t mode = spa->spa_mode;
5650 
5651 	spa_unload(spa);
5652 	spa_deactivate(spa);
5653 
5654 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5655 
5656 	spa_activate(spa, mode);
5657 	spa_async_suspend(spa);
5658 
5659 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5660 	    (u_longlong_t)spa->spa_load_max_txg);
5661 
5662 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5663 }
5664 
5665 /*
5666  * If spa_load() fails this function will try loading prior txg's. If
5667  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5668  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5669  * function will not rewind the pool and will return the same error as
5670  * spa_load().
5671  */
5672 static int
5673 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5674     int rewind_flags)
5675 {
5676 	nvlist_t *loadinfo = NULL;
5677 	nvlist_t *config = NULL;
5678 	int load_error, rewind_error;
5679 	uint64_t safe_rewind_txg;
5680 	uint64_t min_txg;
5681 
5682 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5683 		spa->spa_load_max_txg = spa->spa_load_txg;
5684 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5685 	} else {
5686 		spa->spa_load_max_txg = max_request;
5687 		if (max_request != UINT64_MAX)
5688 			spa->spa_extreme_rewind = B_TRUE;
5689 	}
5690 
5691 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5692 	if (load_error == 0)
5693 		return (0);
5694 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5695 		/*
5696 		 * When attempting checkpoint-rewind on a pool with no
5697 		 * checkpoint, we should not attempt to load uberblocks
5698 		 * from previous txgs when spa_load fails.
5699 		 */
5700 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5701 		spa_import_progress_remove(spa_guid(spa));
5702 		return (load_error);
5703 	}
5704 
5705 	if (spa->spa_root_vdev != NULL)
5706 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5707 
5708 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5709 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5710 
5711 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5712 		nvlist_free(config);
5713 		spa_import_progress_remove(spa_guid(spa));
5714 		return (load_error);
5715 	}
5716 
5717 	if (state == SPA_LOAD_RECOVER) {
5718 		/* Price of rolling back is discarding txgs, including log */
5719 		spa_set_log_state(spa, SPA_LOG_CLEAR);
5720 	} else {
5721 		/*
5722 		 * If we aren't rolling back save the load info from our first
5723 		 * import attempt so that we can restore it after attempting
5724 		 * to rewind.
5725 		 */
5726 		loadinfo = spa->spa_load_info;
5727 		spa->spa_load_info = fnvlist_alloc();
5728 	}
5729 
5730 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5731 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5732 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5733 	    TXG_INITIAL : safe_rewind_txg;
5734 
5735 	/*
5736 	 * Continue as long as we're finding errors, we're still within
5737 	 * the acceptable rewind range, and we're still finding uberblocks
5738 	 */
5739 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5740 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5741 		if (spa->spa_load_max_txg < safe_rewind_txg)
5742 			spa->spa_extreme_rewind = B_TRUE;
5743 		rewind_error = spa_load_retry(spa, state);
5744 	}
5745 
5746 	spa->spa_extreme_rewind = B_FALSE;
5747 	spa->spa_load_max_txg = UINT64_MAX;
5748 
5749 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5750 		spa_config_set(spa, config);
5751 	else
5752 		nvlist_free(config);
5753 
5754 	if (state == SPA_LOAD_RECOVER) {
5755 		ASSERT3P(loadinfo, ==, NULL);
5756 		spa_import_progress_remove(spa_guid(spa));
5757 		return (rewind_error);
5758 	} else {
5759 		/* Store the rewind info as part of the initial load info */
5760 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5761 		    spa->spa_load_info);
5762 
5763 		/* Restore the initial load info */
5764 		fnvlist_free(spa->spa_load_info);
5765 		spa->spa_load_info = loadinfo;
5766 
5767 		spa_import_progress_remove(spa_guid(spa));
5768 		return (load_error);
5769 	}
5770 }
5771 
5772 /*
5773  * Pool Open/Import
5774  *
5775  * The import case is identical to an open except that the configuration is sent
5776  * down from userland, instead of grabbed from the configuration cache.  For the
5777  * case of an open, the pool configuration will exist in the
5778  * POOL_STATE_UNINITIALIZED state.
5779  *
5780  * The stats information (gen/count/ustats) is used to gather vdev statistics at
5781  * the same time open the pool, without having to keep around the spa_t in some
5782  * ambiguous state.
5783  */
5784 static int
5785 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5786     nvlist_t *nvpolicy, nvlist_t **config)
5787 {
5788 	spa_t *spa;
5789 	spa_load_state_t state = SPA_LOAD_OPEN;
5790 	int error;
5791 	int locked = B_FALSE;
5792 	int firstopen = B_FALSE;
5793 
5794 	*spapp = NULL;
5795 
5796 	/*
5797 	 * As disgusting as this is, we need to support recursive calls to this
5798 	 * function because dsl_dir_open() is called during spa_load(), and ends
5799 	 * up calling spa_open() again.  The real fix is to figure out how to
5800 	 * avoid dsl_dir_open() calling this in the first place.
5801 	 */
5802 	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5803 		mutex_enter(&spa_namespace_lock);
5804 		locked = B_TRUE;
5805 	}
5806 
5807 	if ((spa = spa_lookup(pool)) == NULL) {
5808 		if (locked)
5809 			mutex_exit(&spa_namespace_lock);
5810 		return (SET_ERROR(ENOENT));
5811 	}
5812 
5813 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5814 		zpool_load_policy_t policy;
5815 
5816 		firstopen = B_TRUE;
5817 
5818 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5819 		    &policy);
5820 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5821 			state = SPA_LOAD_RECOVER;
5822 
5823 		spa_activate(spa, spa_mode_global);
5824 
5825 		if (state != SPA_LOAD_RECOVER)
5826 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5827 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5828 
5829 		zfs_dbgmsg("spa_open_common: opening %s", pool);
5830 		error = spa_load_best(spa, state, policy.zlp_txg,
5831 		    policy.zlp_rewind);
5832 
5833 		if (error == EBADF) {
5834 			/*
5835 			 * If vdev_validate() returns failure (indicated by
5836 			 * EBADF), it indicates that one of the vdevs indicates
5837 			 * that the pool has been exported or destroyed.  If
5838 			 * this is the case, the config cache is out of sync and
5839 			 * we should remove the pool from the namespace.
5840 			 */
5841 			spa_unload(spa);
5842 			spa_deactivate(spa);
5843 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5844 			spa_remove(spa);
5845 			if (locked)
5846 				mutex_exit(&spa_namespace_lock);
5847 			return (SET_ERROR(ENOENT));
5848 		}
5849 
5850 		if (error) {
5851 			/*
5852 			 * We can't open the pool, but we still have useful
5853 			 * information: the state of each vdev after the
5854 			 * attempted vdev_open().  Return this to the user.
5855 			 */
5856 			if (config != NULL && spa->spa_config) {
5857 				*config = fnvlist_dup(spa->spa_config);
5858 				fnvlist_add_nvlist(*config,
5859 				    ZPOOL_CONFIG_LOAD_INFO,
5860 				    spa->spa_load_info);
5861 			}
5862 			spa_unload(spa);
5863 			spa_deactivate(spa);
5864 			spa->spa_last_open_failed = error;
5865 			if (locked)
5866 				mutex_exit(&spa_namespace_lock);
5867 			*spapp = NULL;
5868 			return (error);
5869 		}
5870 	}
5871 
5872 	spa_open_ref(spa, tag);
5873 
5874 	if (config != NULL)
5875 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5876 
5877 	/*
5878 	 * If we've recovered the pool, pass back any information we
5879 	 * gathered while doing the load.
5880 	 */
5881 	if (state == SPA_LOAD_RECOVER && config != NULL) {
5882 		fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5883 		    spa->spa_load_info);
5884 	}
5885 
5886 	if (locked) {
5887 		spa->spa_last_open_failed = 0;
5888 		spa->spa_last_ubsync_txg = 0;
5889 		spa->spa_load_txg = 0;
5890 		mutex_exit(&spa_namespace_lock);
5891 	}
5892 
5893 	if (firstopen)
5894 		zvol_create_minors_recursive(spa_name(spa));
5895 
5896 	*spapp = spa;
5897 
5898 	return (0);
5899 }
5900 
5901 int
5902 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5903     nvlist_t *policy, nvlist_t **config)
5904 {
5905 	return (spa_open_common(name, spapp, tag, policy, config));
5906 }
5907 
5908 int
5909 spa_open(const char *name, spa_t **spapp, const void *tag)
5910 {
5911 	return (spa_open_common(name, spapp, tag, NULL, NULL));
5912 }
5913 
5914 /*
5915  * Lookup the given spa_t, incrementing the inject count in the process,
5916  * preventing it from being exported or destroyed.
5917  */
5918 spa_t *
5919 spa_inject_addref(char *name)
5920 {
5921 	spa_t *spa;
5922 
5923 	mutex_enter(&spa_namespace_lock);
5924 	if ((spa = spa_lookup(name)) == NULL) {
5925 		mutex_exit(&spa_namespace_lock);
5926 		return (NULL);
5927 	}
5928 	spa->spa_inject_ref++;
5929 	mutex_exit(&spa_namespace_lock);
5930 
5931 	return (spa);
5932 }
5933 
5934 void
5935 spa_inject_delref(spa_t *spa)
5936 {
5937 	mutex_enter(&spa_namespace_lock);
5938 	spa->spa_inject_ref--;
5939 	mutex_exit(&spa_namespace_lock);
5940 }
5941 
5942 /*
5943  * Add spares device information to the nvlist.
5944  */
5945 static void
5946 spa_add_spares(spa_t *spa, nvlist_t *config)
5947 {
5948 	nvlist_t **spares;
5949 	uint_t i, nspares;
5950 	nvlist_t *nvroot;
5951 	uint64_t guid;
5952 	vdev_stat_t *vs;
5953 	uint_t vsc;
5954 	uint64_t pool;
5955 
5956 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5957 
5958 	if (spa->spa_spares.sav_count == 0)
5959 		return;
5960 
5961 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5962 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5963 	    ZPOOL_CONFIG_SPARES, &spares, &nspares));
5964 	if (nspares != 0) {
5965 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5966 		    (const nvlist_t * const *)spares, nspares);
5967 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5968 		    &spares, &nspares));
5969 
5970 		/*
5971 		 * Go through and find any spares which have since been
5972 		 * repurposed as an active spare.  If this is the case, update
5973 		 * their status appropriately.
5974 		 */
5975 		for (i = 0; i < nspares; i++) {
5976 			guid = fnvlist_lookup_uint64(spares[i],
5977 			    ZPOOL_CONFIG_GUID);
5978 			VERIFY0(nvlist_lookup_uint64_array(spares[i],
5979 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5980 			if (spa_spare_exists(guid, &pool, NULL) &&
5981 			    pool != 0ULL) {
5982 				vs->vs_state = VDEV_STATE_CANT_OPEN;
5983 				vs->vs_aux = VDEV_AUX_SPARED;
5984 			} else {
5985 				vs->vs_state =
5986 				    spa->spa_spares.sav_vdevs[i]->vdev_state;
5987 			}
5988 		}
5989 	}
5990 }
5991 
5992 /*
5993  * Add l2cache device information to the nvlist, including vdev stats.
5994  */
5995 static void
5996 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5997 {
5998 	nvlist_t **l2cache;
5999 	uint_t i, j, nl2cache;
6000 	nvlist_t *nvroot;
6001 	uint64_t guid;
6002 	vdev_t *vd;
6003 	vdev_stat_t *vs;
6004 	uint_t vsc;
6005 
6006 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6007 
6008 	if (spa->spa_l2cache.sav_count == 0)
6009 		return;
6010 
6011 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6012 	VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6013 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6014 	if (nl2cache != 0) {
6015 		fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6016 		    (const nvlist_t * const *)l2cache, nl2cache);
6017 		VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6018 		    &l2cache, &nl2cache));
6019 
6020 		/*
6021 		 * Update level 2 cache device stats.
6022 		 */
6023 
6024 		for (i = 0; i < nl2cache; i++) {
6025 			guid = fnvlist_lookup_uint64(l2cache[i],
6026 			    ZPOOL_CONFIG_GUID);
6027 
6028 			vd = NULL;
6029 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6030 				if (guid ==
6031 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6032 					vd = spa->spa_l2cache.sav_vdevs[j];
6033 					break;
6034 				}
6035 			}
6036 			ASSERT(vd != NULL);
6037 
6038 			VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6039 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6040 			vdev_get_stats(vd, vs);
6041 			vdev_config_generate_stats(vd, l2cache[i]);
6042 
6043 		}
6044 	}
6045 }
6046 
6047 static void
6048 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6049 {
6050 	zap_cursor_t zc;
6051 	zap_attribute_t za;
6052 
6053 	if (spa->spa_feat_for_read_obj != 0) {
6054 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6055 		    spa->spa_feat_for_read_obj);
6056 		    zap_cursor_retrieve(&zc, &za) == 0;
6057 		    zap_cursor_advance(&zc)) {
6058 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6059 			    za.za_num_integers == 1);
6060 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6061 			    za.za_first_integer));
6062 		}
6063 		zap_cursor_fini(&zc);
6064 	}
6065 
6066 	if (spa->spa_feat_for_write_obj != 0) {
6067 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6068 		    spa->spa_feat_for_write_obj);
6069 		    zap_cursor_retrieve(&zc, &za) == 0;
6070 		    zap_cursor_advance(&zc)) {
6071 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6072 			    za.za_num_integers == 1);
6073 			VERIFY0(nvlist_add_uint64(features, za.za_name,
6074 			    za.za_first_integer));
6075 		}
6076 		zap_cursor_fini(&zc);
6077 	}
6078 }
6079 
6080 static void
6081 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6082 {
6083 	int i;
6084 
6085 	for (i = 0; i < SPA_FEATURES; i++) {
6086 		zfeature_info_t feature = spa_feature_table[i];
6087 		uint64_t refcount;
6088 
6089 		if (feature_get_refcount(spa, &feature, &refcount) != 0)
6090 			continue;
6091 
6092 		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6093 	}
6094 }
6095 
6096 /*
6097  * Store a list of pool features and their reference counts in the
6098  * config.
6099  *
6100  * The first time this is called on a spa, allocate a new nvlist, fetch
6101  * the pool features and reference counts from disk, then save the list
6102  * in the spa. In subsequent calls on the same spa use the saved nvlist
6103  * and refresh its values from the cached reference counts.  This
6104  * ensures we don't block here on I/O on a suspended pool so 'zpool
6105  * clear' can resume the pool.
6106  */
6107 static void
6108 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6109 {
6110 	nvlist_t *features;
6111 
6112 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6113 
6114 	mutex_enter(&spa->spa_feat_stats_lock);
6115 	features = spa->spa_feat_stats;
6116 
6117 	if (features != NULL) {
6118 		spa_feature_stats_from_cache(spa, features);
6119 	} else {
6120 		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6121 		spa->spa_feat_stats = features;
6122 		spa_feature_stats_from_disk(spa, features);
6123 	}
6124 
6125 	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6126 	    features));
6127 
6128 	mutex_exit(&spa->spa_feat_stats_lock);
6129 }
6130 
6131 int
6132 spa_get_stats(const char *name, nvlist_t **config,
6133     char *altroot, size_t buflen)
6134 {
6135 	int error;
6136 	spa_t *spa;
6137 
6138 	*config = NULL;
6139 	error = spa_open_common(name, &spa, FTAG, NULL, config);
6140 
6141 	if (spa != NULL) {
6142 		/*
6143 		 * This still leaves a window of inconsistency where the spares
6144 		 * or l2cache devices could change and the config would be
6145 		 * self-inconsistent.
6146 		 */
6147 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6148 
6149 		if (*config != NULL) {
6150 			uint64_t loadtimes[2];
6151 
6152 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6153 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6154 			fnvlist_add_uint64_array(*config,
6155 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6156 
6157 			fnvlist_add_uint64(*config,
6158 			    ZPOOL_CONFIG_ERRCOUNT,
6159 			    spa_approx_errlog_size(spa));
6160 
6161 			if (spa_suspended(spa)) {
6162 				fnvlist_add_uint64(*config,
6163 				    ZPOOL_CONFIG_SUSPENDED,
6164 				    spa->spa_failmode);
6165 				fnvlist_add_uint64(*config,
6166 				    ZPOOL_CONFIG_SUSPENDED_REASON,
6167 				    spa->spa_suspended);
6168 			}
6169 
6170 			spa_add_spares(spa, *config);
6171 			spa_add_l2cache(spa, *config);
6172 			spa_add_feature_stats(spa, *config);
6173 		}
6174 	}
6175 
6176 	/*
6177 	 * We want to get the alternate root even for faulted pools, so we cheat
6178 	 * and call spa_lookup() directly.
6179 	 */
6180 	if (altroot) {
6181 		if (spa == NULL) {
6182 			mutex_enter(&spa_namespace_lock);
6183 			spa = spa_lookup(name);
6184 			if (spa)
6185 				spa_altroot(spa, altroot, buflen);
6186 			else
6187 				altroot[0] = '\0';
6188 			spa = NULL;
6189 			mutex_exit(&spa_namespace_lock);
6190 		} else {
6191 			spa_altroot(spa, altroot, buflen);
6192 		}
6193 	}
6194 
6195 	if (spa != NULL) {
6196 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6197 		spa_close(spa, FTAG);
6198 	}
6199 
6200 	return (error);
6201 }
6202 
6203 /*
6204  * Validate that the auxiliary device array is well formed.  We must have an
6205  * array of nvlists, each which describes a valid leaf vdev.  If this is an
6206  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6207  * specified, as long as they are well-formed.
6208  */
6209 static int
6210 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6211     spa_aux_vdev_t *sav, const char *config, uint64_t version,
6212     vdev_labeltype_t label)
6213 {
6214 	nvlist_t **dev;
6215 	uint_t i, ndev;
6216 	vdev_t *vd;
6217 	int error;
6218 
6219 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6220 
6221 	/*
6222 	 * It's acceptable to have no devs specified.
6223 	 */
6224 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6225 		return (0);
6226 
6227 	if (ndev == 0)
6228 		return (SET_ERROR(EINVAL));
6229 
6230 	/*
6231 	 * Make sure the pool is formatted with a version that supports this
6232 	 * device type.
6233 	 */
6234 	if (spa_version(spa) < version)
6235 		return (SET_ERROR(ENOTSUP));
6236 
6237 	/*
6238 	 * Set the pending device list so we correctly handle device in-use
6239 	 * checking.
6240 	 */
6241 	sav->sav_pending = dev;
6242 	sav->sav_npending = ndev;
6243 
6244 	for (i = 0; i < ndev; i++) {
6245 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6246 		    mode)) != 0)
6247 			goto out;
6248 
6249 		if (!vd->vdev_ops->vdev_op_leaf) {
6250 			vdev_free(vd);
6251 			error = SET_ERROR(EINVAL);
6252 			goto out;
6253 		}
6254 
6255 		vd->vdev_top = vd;
6256 
6257 		if ((error = vdev_open(vd)) == 0 &&
6258 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
6259 			fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6260 			    vd->vdev_guid);
6261 		}
6262 
6263 		vdev_free(vd);
6264 
6265 		if (error &&
6266 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6267 			goto out;
6268 		else
6269 			error = 0;
6270 	}
6271 
6272 out:
6273 	sav->sav_pending = NULL;
6274 	sav->sav_npending = 0;
6275 	return (error);
6276 }
6277 
6278 static int
6279 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6280 {
6281 	int error;
6282 
6283 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6284 
6285 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6286 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6287 	    VDEV_LABEL_SPARE)) != 0) {
6288 		return (error);
6289 	}
6290 
6291 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6292 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6293 	    VDEV_LABEL_L2CACHE));
6294 }
6295 
6296 static void
6297 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6298     const char *config)
6299 {
6300 	int i;
6301 
6302 	if (sav->sav_config != NULL) {
6303 		nvlist_t **olddevs;
6304 		uint_t oldndevs;
6305 		nvlist_t **newdevs;
6306 
6307 		/*
6308 		 * Generate new dev list by concatenating with the
6309 		 * current dev list.
6310 		 */
6311 		VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6312 		    &olddevs, &oldndevs));
6313 
6314 		newdevs = kmem_alloc(sizeof (void *) *
6315 		    (ndevs + oldndevs), KM_SLEEP);
6316 		for (i = 0; i < oldndevs; i++)
6317 			newdevs[i] = fnvlist_dup(olddevs[i]);
6318 		for (i = 0; i < ndevs; i++)
6319 			newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6320 
6321 		fnvlist_remove(sav->sav_config, config);
6322 
6323 		fnvlist_add_nvlist_array(sav->sav_config, config,
6324 		    (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6325 		for (i = 0; i < oldndevs + ndevs; i++)
6326 			nvlist_free(newdevs[i]);
6327 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6328 	} else {
6329 		/*
6330 		 * Generate a new dev list.
6331 		 */
6332 		sav->sav_config = fnvlist_alloc();
6333 		fnvlist_add_nvlist_array(sav->sav_config, config,
6334 		    (const nvlist_t * const *)devs, ndevs);
6335 	}
6336 }
6337 
6338 /*
6339  * Stop and drop level 2 ARC devices
6340  */
6341 void
6342 spa_l2cache_drop(spa_t *spa)
6343 {
6344 	vdev_t *vd;
6345 	int i;
6346 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
6347 
6348 	for (i = 0; i < sav->sav_count; i++) {
6349 		uint64_t pool;
6350 
6351 		vd = sav->sav_vdevs[i];
6352 		ASSERT(vd != NULL);
6353 
6354 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6355 		    pool != 0ULL && l2arc_vdev_present(vd))
6356 			l2arc_remove_vdev(vd);
6357 	}
6358 }
6359 
6360 /*
6361  * Verify encryption parameters for spa creation. If we are encrypting, we must
6362  * have the encryption feature flag enabled.
6363  */
6364 static int
6365 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6366     boolean_t has_encryption)
6367 {
6368 	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6369 	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6370 	    !has_encryption)
6371 		return (SET_ERROR(ENOTSUP));
6372 
6373 	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6374 }
6375 
6376 /*
6377  * Pool Creation
6378  */
6379 int
6380 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6381     nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6382 {
6383 	spa_t *spa;
6384 	const char *altroot = NULL;
6385 	vdev_t *rvd;
6386 	dsl_pool_t *dp;
6387 	dmu_tx_t *tx;
6388 	int error = 0;
6389 	uint64_t txg = TXG_INITIAL;
6390 	nvlist_t **spares, **l2cache;
6391 	uint_t nspares, nl2cache;
6392 	uint64_t version, obj, ndraid = 0;
6393 	boolean_t has_features;
6394 	boolean_t has_encryption;
6395 	boolean_t has_allocclass;
6396 	spa_feature_t feat;
6397 	const char *feat_name;
6398 	const char *poolname;
6399 	nvlist_t *nvl;
6400 
6401 	if (props == NULL ||
6402 	    nvlist_lookup_string(props,
6403 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6404 		poolname = (char *)pool;
6405 
6406 	/*
6407 	 * If this pool already exists, return failure.
6408 	 */
6409 	mutex_enter(&spa_namespace_lock);
6410 	if (spa_lookup(poolname) != NULL) {
6411 		mutex_exit(&spa_namespace_lock);
6412 		return (SET_ERROR(EEXIST));
6413 	}
6414 
6415 	/*
6416 	 * Allocate a new spa_t structure.
6417 	 */
6418 	nvl = fnvlist_alloc();
6419 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6420 	(void) nvlist_lookup_string(props,
6421 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6422 	spa = spa_add(poolname, nvl, altroot);
6423 	fnvlist_free(nvl);
6424 	spa_activate(spa, spa_mode_global);
6425 
6426 	if (props && (error = spa_prop_validate(spa, props))) {
6427 		spa_deactivate(spa);
6428 		spa_remove(spa);
6429 		mutex_exit(&spa_namespace_lock);
6430 		return (error);
6431 	}
6432 
6433 	/*
6434 	 * Temporary pool names should never be written to disk.
6435 	 */
6436 	if (poolname != pool)
6437 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6438 
6439 	has_features = B_FALSE;
6440 	has_encryption = B_FALSE;
6441 	has_allocclass = B_FALSE;
6442 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6443 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6444 		if (zpool_prop_feature(nvpair_name(elem))) {
6445 			has_features = B_TRUE;
6446 
6447 			feat_name = strchr(nvpair_name(elem), '@') + 1;
6448 			VERIFY0(zfeature_lookup_name(feat_name, &feat));
6449 			if (feat == SPA_FEATURE_ENCRYPTION)
6450 				has_encryption = B_TRUE;
6451 			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6452 				has_allocclass = B_TRUE;
6453 		}
6454 	}
6455 
6456 	/* verify encryption params, if they were provided */
6457 	if (dcp != NULL) {
6458 		error = spa_create_check_encryption_params(dcp, has_encryption);
6459 		if (error != 0) {
6460 			spa_deactivate(spa);
6461 			spa_remove(spa);
6462 			mutex_exit(&spa_namespace_lock);
6463 			return (error);
6464 		}
6465 	}
6466 	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6467 		spa_deactivate(spa);
6468 		spa_remove(spa);
6469 		mutex_exit(&spa_namespace_lock);
6470 		return (ENOTSUP);
6471 	}
6472 
6473 	if (has_features || nvlist_lookup_uint64(props,
6474 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6475 		version = SPA_VERSION;
6476 	}
6477 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6478 
6479 	spa->spa_first_txg = txg;
6480 	spa->spa_uberblock.ub_txg = txg - 1;
6481 	spa->spa_uberblock.ub_version = version;
6482 	spa->spa_ubsync = spa->spa_uberblock;
6483 	spa->spa_load_state = SPA_LOAD_CREATE;
6484 	spa->spa_removing_phys.sr_state = DSS_NONE;
6485 	spa->spa_removing_phys.sr_removing_vdev = -1;
6486 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6487 	spa->spa_indirect_vdevs_loaded = B_TRUE;
6488 
6489 	/*
6490 	 * Create "The Godfather" zio to hold all async IOs
6491 	 */
6492 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6493 	    KM_SLEEP);
6494 	for (int i = 0; i < max_ncpus; i++) {
6495 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6496 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6497 		    ZIO_FLAG_GODFATHER);
6498 	}
6499 
6500 	/*
6501 	 * Create the root vdev.
6502 	 */
6503 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6504 
6505 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6506 
6507 	ASSERT(error != 0 || rvd != NULL);
6508 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6509 
6510 	if (error == 0 && !zfs_allocatable_devs(nvroot))
6511 		error = SET_ERROR(EINVAL);
6512 
6513 	if (error == 0 &&
6514 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6515 	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6516 	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6517 		/*
6518 		 * instantiate the metaslab groups (this will dirty the vdevs)
6519 		 * we can no longer error exit past this point
6520 		 */
6521 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6522 			vdev_t *vd = rvd->vdev_child[c];
6523 
6524 			vdev_metaslab_set_size(vd);
6525 			vdev_expand(vd, txg);
6526 		}
6527 	}
6528 
6529 	spa_config_exit(spa, SCL_ALL, FTAG);
6530 
6531 	if (error != 0) {
6532 		spa_unload(spa);
6533 		spa_deactivate(spa);
6534 		spa_remove(spa);
6535 		mutex_exit(&spa_namespace_lock);
6536 		return (error);
6537 	}
6538 
6539 	/*
6540 	 * Get the list of spares, if specified.
6541 	 */
6542 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6543 	    &spares, &nspares) == 0) {
6544 		spa->spa_spares.sav_config = fnvlist_alloc();
6545 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6546 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6547 		    nspares);
6548 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6549 		spa_load_spares(spa);
6550 		spa_config_exit(spa, SCL_ALL, FTAG);
6551 		spa->spa_spares.sav_sync = B_TRUE;
6552 	}
6553 
6554 	/*
6555 	 * Get the list of level 2 cache devices, if specified.
6556 	 */
6557 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6558 	    &l2cache, &nl2cache) == 0) {
6559 		VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6560 		    NV_UNIQUE_NAME, KM_SLEEP));
6561 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6562 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6563 		    nl2cache);
6564 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6565 		spa_load_l2cache(spa);
6566 		spa_config_exit(spa, SCL_ALL, FTAG);
6567 		spa->spa_l2cache.sav_sync = B_TRUE;
6568 	}
6569 
6570 	spa->spa_is_initializing = B_TRUE;
6571 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6572 	spa->spa_is_initializing = B_FALSE;
6573 
6574 	/*
6575 	 * Create DDTs (dedup tables).
6576 	 */
6577 	ddt_create(spa);
6578 	/*
6579 	 * Create BRT table and BRT table object.
6580 	 */
6581 	brt_create(spa);
6582 
6583 	spa_update_dspace(spa);
6584 
6585 	tx = dmu_tx_create_assigned(dp, txg);
6586 
6587 	/*
6588 	 * Create the pool's history object.
6589 	 */
6590 	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6591 		spa_history_create_obj(spa, tx);
6592 
6593 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6594 	spa_history_log_version(spa, "create", tx);
6595 
6596 	/*
6597 	 * Create the pool config object.
6598 	 */
6599 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6600 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6601 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6602 
6603 	if (zap_add(spa->spa_meta_objset,
6604 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6605 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6606 		cmn_err(CE_PANIC, "failed to add pool config");
6607 	}
6608 
6609 	if (zap_add(spa->spa_meta_objset,
6610 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6611 	    sizeof (uint64_t), 1, &version, tx) != 0) {
6612 		cmn_err(CE_PANIC, "failed to add pool version");
6613 	}
6614 
6615 	/* Newly created pools with the right version are always deflated. */
6616 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6617 		spa->spa_deflate = TRUE;
6618 		if (zap_add(spa->spa_meta_objset,
6619 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6620 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6621 			cmn_err(CE_PANIC, "failed to add deflate");
6622 		}
6623 	}
6624 
6625 	/*
6626 	 * Create the deferred-free bpobj.  Turn off compression
6627 	 * because sync-to-convergence takes longer if the blocksize
6628 	 * keeps changing.
6629 	 */
6630 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6631 	dmu_object_set_compress(spa->spa_meta_objset, obj,
6632 	    ZIO_COMPRESS_OFF, tx);
6633 	if (zap_add(spa->spa_meta_objset,
6634 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6635 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
6636 		cmn_err(CE_PANIC, "failed to add bpobj");
6637 	}
6638 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6639 	    spa->spa_meta_objset, obj));
6640 
6641 	/*
6642 	 * Generate some random noise for salted checksums to operate on.
6643 	 */
6644 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6645 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
6646 
6647 	/*
6648 	 * Set pool properties.
6649 	 */
6650 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6651 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6652 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6653 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6654 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6655 	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6656 	spa->spa_dedup_table_quota =
6657 	    zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6658 
6659 	if (props != NULL) {
6660 		spa_configfile_set(spa, props, B_FALSE);
6661 		spa_sync_props(props, tx);
6662 	}
6663 
6664 	for (int i = 0; i < ndraid; i++)
6665 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6666 
6667 	dmu_tx_commit(tx);
6668 
6669 	spa->spa_sync_on = B_TRUE;
6670 	txg_sync_start(dp);
6671 	mmp_thread_start(spa);
6672 	txg_wait_synced(dp, txg);
6673 
6674 	spa_spawn_aux_threads(spa);
6675 
6676 	spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6677 
6678 	/*
6679 	 * Don't count references from objsets that are already closed
6680 	 * and are making their way through the eviction process.
6681 	 */
6682 	spa_evicting_os_wait(spa);
6683 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6684 	spa->spa_load_state = SPA_LOAD_NONE;
6685 
6686 	spa_import_os(spa);
6687 
6688 	mutex_exit(&spa_namespace_lock);
6689 
6690 	return (0);
6691 }
6692 
6693 /*
6694  * Import a non-root pool into the system.
6695  */
6696 int
6697 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6698 {
6699 	spa_t *spa;
6700 	const char *altroot = NULL;
6701 	spa_load_state_t state = SPA_LOAD_IMPORT;
6702 	zpool_load_policy_t policy;
6703 	spa_mode_t mode = spa_mode_global;
6704 	uint64_t readonly = B_FALSE;
6705 	int error;
6706 	nvlist_t *nvroot;
6707 	nvlist_t **spares, **l2cache;
6708 	uint_t nspares, nl2cache;
6709 
6710 	/*
6711 	 * If a pool with this name exists, return failure.
6712 	 */
6713 	mutex_enter(&spa_namespace_lock);
6714 	if (spa_lookup(pool) != NULL) {
6715 		mutex_exit(&spa_namespace_lock);
6716 		return (SET_ERROR(EEXIST));
6717 	}
6718 
6719 	/*
6720 	 * Create and initialize the spa structure.
6721 	 */
6722 	(void) nvlist_lookup_string(props,
6723 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6724 	(void) nvlist_lookup_uint64(props,
6725 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6726 	if (readonly)
6727 		mode = SPA_MODE_READ;
6728 	spa = spa_add(pool, config, altroot);
6729 	spa->spa_import_flags = flags;
6730 
6731 	/*
6732 	 * Verbatim import - Take a pool and insert it into the namespace
6733 	 * as if it had been loaded at boot.
6734 	 */
6735 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6736 		if (props != NULL)
6737 			spa_configfile_set(spa, props, B_FALSE);
6738 
6739 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6740 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6741 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6742 		mutex_exit(&spa_namespace_lock);
6743 		return (0);
6744 	}
6745 
6746 	spa_activate(spa, mode);
6747 
6748 	/*
6749 	 * Don't start async tasks until we know everything is healthy.
6750 	 */
6751 	spa_async_suspend(spa);
6752 
6753 	zpool_get_load_policy(config, &policy);
6754 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6755 		state = SPA_LOAD_RECOVER;
6756 
6757 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6758 
6759 	if (state != SPA_LOAD_RECOVER) {
6760 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6761 		zfs_dbgmsg("spa_import: importing %s", pool);
6762 	} else {
6763 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6764 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6765 	}
6766 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6767 
6768 	/*
6769 	 * Propagate anything learned while loading the pool and pass it
6770 	 * back to caller (i.e. rewind info, missing devices, etc).
6771 	 */
6772 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6773 
6774 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6775 	/*
6776 	 * Toss any existing sparelist, as it doesn't have any validity
6777 	 * anymore, and conflicts with spa_has_spare().
6778 	 */
6779 	if (spa->spa_spares.sav_config) {
6780 		nvlist_free(spa->spa_spares.sav_config);
6781 		spa->spa_spares.sav_config = NULL;
6782 		spa_load_spares(spa);
6783 	}
6784 	if (spa->spa_l2cache.sav_config) {
6785 		nvlist_free(spa->spa_l2cache.sav_config);
6786 		spa->spa_l2cache.sav_config = NULL;
6787 		spa_load_l2cache(spa);
6788 	}
6789 
6790 	nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6791 	spa_config_exit(spa, SCL_ALL, FTAG);
6792 
6793 	if (props != NULL)
6794 		spa_configfile_set(spa, props, B_FALSE);
6795 
6796 	if (error != 0 || (props && spa_writeable(spa) &&
6797 	    (error = spa_prop_set(spa, props)))) {
6798 		spa_unload(spa);
6799 		spa_deactivate(spa);
6800 		spa_remove(spa);
6801 		mutex_exit(&spa_namespace_lock);
6802 		return (error);
6803 	}
6804 
6805 	spa_async_resume(spa);
6806 
6807 	/*
6808 	 * Override any spares and level 2 cache devices as specified by
6809 	 * the user, as these may have correct device names/devids, etc.
6810 	 */
6811 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6812 	    &spares, &nspares) == 0) {
6813 		if (spa->spa_spares.sav_config)
6814 			fnvlist_remove(spa->spa_spares.sav_config,
6815 			    ZPOOL_CONFIG_SPARES);
6816 		else
6817 			spa->spa_spares.sav_config = fnvlist_alloc();
6818 		fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6819 		    ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6820 		    nspares);
6821 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6822 		spa_load_spares(spa);
6823 		spa_config_exit(spa, SCL_ALL, FTAG);
6824 		spa->spa_spares.sav_sync = B_TRUE;
6825 		spa->spa_spares.sav_label_sync = B_TRUE;
6826 	}
6827 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6828 	    &l2cache, &nl2cache) == 0) {
6829 		if (spa->spa_l2cache.sav_config)
6830 			fnvlist_remove(spa->spa_l2cache.sav_config,
6831 			    ZPOOL_CONFIG_L2CACHE);
6832 		else
6833 			spa->spa_l2cache.sav_config = fnvlist_alloc();
6834 		fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6835 		    ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6836 		    nl2cache);
6837 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6838 		spa_load_l2cache(spa);
6839 		spa_config_exit(spa, SCL_ALL, FTAG);
6840 		spa->spa_l2cache.sav_sync = B_TRUE;
6841 		spa->spa_l2cache.sav_label_sync = B_TRUE;
6842 	}
6843 
6844 	/*
6845 	 * Check for any removed devices.
6846 	 */
6847 	if (spa->spa_autoreplace) {
6848 		spa_aux_check_removed(&spa->spa_spares);
6849 		spa_aux_check_removed(&spa->spa_l2cache);
6850 	}
6851 
6852 	if (spa_writeable(spa)) {
6853 		/*
6854 		 * Update the config cache to include the newly-imported pool.
6855 		 */
6856 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6857 	}
6858 
6859 	/*
6860 	 * It's possible that the pool was expanded while it was exported.
6861 	 * We kick off an async task to handle this for us.
6862 	 */
6863 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6864 
6865 	spa_history_log_version(spa, "import", NULL);
6866 
6867 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6868 
6869 	mutex_exit(&spa_namespace_lock);
6870 
6871 	zvol_create_minors_recursive(pool);
6872 
6873 	spa_import_os(spa);
6874 
6875 	return (0);
6876 }
6877 
6878 nvlist_t *
6879 spa_tryimport(nvlist_t *tryconfig)
6880 {
6881 	nvlist_t *config = NULL;
6882 	const char *poolname, *cachefile;
6883 	spa_t *spa;
6884 	uint64_t state;
6885 	int error;
6886 	zpool_load_policy_t policy;
6887 
6888 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6889 		return (NULL);
6890 
6891 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6892 		return (NULL);
6893 
6894 	/*
6895 	 * Create and initialize the spa structure.
6896 	 */
6897 	char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6898 	(void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6899 	    TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6900 
6901 	mutex_enter(&spa_namespace_lock);
6902 	spa = spa_add(name, tryconfig, NULL);
6903 	spa_activate(spa, SPA_MODE_READ);
6904 	kmem_free(name, MAXPATHLEN);
6905 
6906 	/*
6907 	 * Rewind pool if a max txg was provided.
6908 	 */
6909 	zpool_get_load_policy(spa->spa_config, &policy);
6910 	if (policy.zlp_txg != UINT64_MAX) {
6911 		spa->spa_load_max_txg = policy.zlp_txg;
6912 		spa->spa_extreme_rewind = B_TRUE;
6913 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6914 		    poolname, (longlong_t)policy.zlp_txg);
6915 	} else {
6916 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6917 	}
6918 
6919 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6920 	    == 0) {
6921 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6922 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6923 	} else {
6924 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6925 	}
6926 
6927 	/*
6928 	 * spa_import() relies on a pool config fetched by spa_try_import()
6929 	 * for spare/cache devices. Import flags are not passed to
6930 	 * spa_tryimport(), which makes it return early due to a missing log
6931 	 * device and missing retrieving the cache device and spare eventually.
6932 	 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6933 	 * the correct configuration regardless of the missing log device.
6934 	 */
6935 	spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6936 
6937 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6938 
6939 	/*
6940 	 * If 'tryconfig' was at least parsable, return the current config.
6941 	 */
6942 	if (spa->spa_root_vdev != NULL) {
6943 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6944 		fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6945 		fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6946 		fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6947 		    spa->spa_uberblock.ub_timestamp);
6948 		fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6949 		    spa->spa_load_info);
6950 		fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6951 		    spa->spa_errata);
6952 
6953 		/*
6954 		 * If the bootfs property exists on this pool then we
6955 		 * copy it out so that external consumers can tell which
6956 		 * pools are bootable.
6957 		 */
6958 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6959 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6960 
6961 			/*
6962 			 * We have to play games with the name since the
6963 			 * pool was opened as TRYIMPORT_NAME.
6964 			 */
6965 			if (dsl_dsobj_to_dsname(spa_name(spa),
6966 			    spa->spa_bootfs, tmpname) == 0) {
6967 				char *cp;
6968 				char *dsname;
6969 
6970 				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6971 
6972 				cp = strchr(tmpname, '/');
6973 				if (cp == NULL) {
6974 					(void) strlcpy(dsname, tmpname,
6975 					    MAXPATHLEN);
6976 				} else {
6977 					(void) snprintf(dsname, MAXPATHLEN,
6978 					    "%s/%s", poolname, ++cp);
6979 				}
6980 				fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6981 				    dsname);
6982 				kmem_free(dsname, MAXPATHLEN);
6983 			}
6984 			kmem_free(tmpname, MAXPATHLEN);
6985 		}
6986 
6987 		/*
6988 		 * Add the list of hot spares and level 2 cache devices.
6989 		 */
6990 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6991 		spa_add_spares(spa, config);
6992 		spa_add_l2cache(spa, config);
6993 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6994 	}
6995 
6996 	spa_unload(spa);
6997 	spa_deactivate(spa);
6998 	spa_remove(spa);
6999 	mutex_exit(&spa_namespace_lock);
7000 
7001 	return (config);
7002 }
7003 
7004 /*
7005  * Pool export/destroy
7006  *
7007  * The act of destroying or exporting a pool is very simple.  We make sure there
7008  * is no more pending I/O and any references to the pool are gone.  Then, we
7009  * update the pool state and sync all the labels to disk, removing the
7010  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7011  * we don't sync the labels or remove the configuration cache.
7012  */
7013 static int
7014 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7015     boolean_t force, boolean_t hardforce)
7016 {
7017 	int error = 0;
7018 	spa_t *spa;
7019 	hrtime_t export_start = gethrtime();
7020 
7021 	if (oldconfig)
7022 		*oldconfig = NULL;
7023 
7024 	if (!(spa_mode_global & SPA_MODE_WRITE))
7025 		return (SET_ERROR(EROFS));
7026 
7027 	mutex_enter(&spa_namespace_lock);
7028 	if ((spa = spa_lookup(pool)) == NULL) {
7029 		mutex_exit(&spa_namespace_lock);
7030 		return (SET_ERROR(ENOENT));
7031 	}
7032 
7033 	if (spa->spa_is_exporting) {
7034 		/* the pool is being exported by another thread */
7035 		mutex_exit(&spa_namespace_lock);
7036 		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7037 	}
7038 	spa->spa_is_exporting = B_TRUE;
7039 
7040 	/*
7041 	 * Put a hold on the pool, drop the namespace lock, stop async tasks
7042 	 * and see if we can export.
7043 	 */
7044 	spa_open_ref(spa, FTAG);
7045 	mutex_exit(&spa_namespace_lock);
7046 	spa_async_suspend(spa);
7047 	if (spa->spa_zvol_taskq) {
7048 		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7049 		taskq_wait(spa->spa_zvol_taskq);
7050 	}
7051 	mutex_enter(&spa_namespace_lock);
7052 	spa->spa_export_thread = curthread;
7053 	spa_close(spa, FTAG);
7054 
7055 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7056 		mutex_exit(&spa_namespace_lock);
7057 		goto export_spa;
7058 	}
7059 
7060 	/*
7061 	 * The pool will be in core if it's openable, in which case we can
7062 	 * modify its state.  Objsets may be open only because they're dirty,
7063 	 * so we have to force it to sync before checking spa_refcnt.
7064 	 */
7065 	if (spa->spa_sync_on) {
7066 		txg_wait_synced(spa->spa_dsl_pool, 0);
7067 		spa_evicting_os_wait(spa);
7068 	}
7069 
7070 	/*
7071 	 * A pool cannot be exported or destroyed if there are active
7072 	 * references.  If we are resetting a pool, allow references by
7073 	 * fault injection handlers.
7074 	 */
7075 	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7076 		error = SET_ERROR(EBUSY);
7077 		goto fail;
7078 	}
7079 
7080 	mutex_exit(&spa_namespace_lock);
7081 	/*
7082 	 * At this point we no longer hold the spa_namespace_lock and
7083 	 * there were no references on the spa. Future spa_lookups will
7084 	 * notice the spa->spa_export_thread and wait until we signal
7085 	 * that we are finshed.
7086 	 */
7087 
7088 	if (spa->spa_sync_on) {
7089 		vdev_t *rvd = spa->spa_root_vdev;
7090 		/*
7091 		 * A pool cannot be exported if it has an active shared spare.
7092 		 * This is to prevent other pools stealing the active spare
7093 		 * from an exported pool. At user's own will, such pool can
7094 		 * be forcedly exported.
7095 		 */
7096 		if (!force && new_state == POOL_STATE_EXPORTED &&
7097 		    spa_has_active_shared_spare(spa)) {
7098 			error = SET_ERROR(EXDEV);
7099 			mutex_enter(&spa_namespace_lock);
7100 			goto fail;
7101 		}
7102 
7103 		/*
7104 		 * We're about to export or destroy this pool. Make sure
7105 		 * we stop all initialization and trim activity here before
7106 		 * we set the spa_final_txg. This will ensure that all
7107 		 * dirty data resulting from the initialization is
7108 		 * committed to disk before we unload the pool.
7109 		 */
7110 		vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7111 		vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7112 		vdev_autotrim_stop_all(spa);
7113 		vdev_rebuild_stop_all(spa);
7114 
7115 		/*
7116 		 * We want this to be reflected on every label,
7117 		 * so mark them all dirty.  spa_unload() will do the
7118 		 * final sync that pushes these changes out.
7119 		 */
7120 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7121 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7122 			spa->spa_state = new_state;
7123 			vdev_config_dirty(rvd);
7124 			spa_config_exit(spa, SCL_ALL, FTAG);
7125 		}
7126 
7127 		/*
7128 		 * If the log space map feature is enabled and the pool is
7129 		 * getting exported (but not destroyed), we want to spend some
7130 		 * time flushing as many metaslabs as we can in an attempt to
7131 		 * destroy log space maps and save import time. This has to be
7132 		 * done before we set the spa_final_txg, otherwise
7133 		 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7134 		 * spa_should_flush_logs_on_unload() should be called after
7135 		 * spa_state has been set to the new_state.
7136 		 */
7137 		if (spa_should_flush_logs_on_unload(spa))
7138 			spa_unload_log_sm_flush_all(spa);
7139 
7140 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7141 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7142 			spa->spa_final_txg = spa_last_synced_txg(spa) +
7143 			    TXG_DEFER_SIZE + 1;
7144 			spa_config_exit(spa, SCL_ALL, FTAG);
7145 		}
7146 	}
7147 
7148 export_spa:
7149 	spa_export_os(spa);
7150 
7151 	if (new_state == POOL_STATE_DESTROYED)
7152 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7153 	else if (new_state == POOL_STATE_EXPORTED)
7154 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7155 
7156 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7157 		spa_unload(spa);
7158 		spa_deactivate(spa);
7159 	}
7160 
7161 	if (oldconfig && spa->spa_config)
7162 		*oldconfig = fnvlist_dup(spa->spa_config);
7163 
7164 	if (new_state == POOL_STATE_EXPORTED)
7165 		zio_handle_export_delay(spa, gethrtime() - export_start);
7166 
7167 	/*
7168 	 * Take the namespace lock for the actual spa_t removal
7169 	 */
7170 	mutex_enter(&spa_namespace_lock);
7171 	if (new_state != POOL_STATE_UNINITIALIZED) {
7172 		if (!hardforce)
7173 			spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7174 		spa_remove(spa);
7175 	} else {
7176 		/*
7177 		 * If spa_remove() is not called for this spa_t and
7178 		 * there is any possibility that it can be reused,
7179 		 * we make sure to reset the exporting flag.
7180 		 */
7181 		spa->spa_is_exporting = B_FALSE;
7182 		spa->spa_export_thread = NULL;
7183 	}
7184 
7185 	/*
7186 	 * Wake up any waiters in spa_lookup()
7187 	 */
7188 	cv_broadcast(&spa_namespace_cv);
7189 	mutex_exit(&spa_namespace_lock);
7190 	return (0);
7191 
7192 fail:
7193 	spa->spa_is_exporting = B_FALSE;
7194 	spa->spa_export_thread = NULL;
7195 
7196 	spa_async_resume(spa);
7197 	/*
7198 	 * Wake up any waiters in spa_lookup()
7199 	 */
7200 	cv_broadcast(&spa_namespace_cv);
7201 	mutex_exit(&spa_namespace_lock);
7202 	return (error);
7203 }
7204 
7205 /*
7206  * Destroy a storage pool.
7207  */
7208 int
7209 spa_destroy(const char *pool)
7210 {
7211 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7212 	    B_FALSE, B_FALSE));
7213 }
7214 
7215 /*
7216  * Export a storage pool.
7217  */
7218 int
7219 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7220     boolean_t hardforce)
7221 {
7222 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7223 	    force, hardforce));
7224 }
7225 
7226 /*
7227  * Similar to spa_export(), this unloads the spa_t without actually removing it
7228  * from the namespace in any way.
7229  */
7230 int
7231 spa_reset(const char *pool)
7232 {
7233 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7234 	    B_FALSE, B_FALSE));
7235 }
7236 
7237 /*
7238  * ==========================================================================
7239  * Device manipulation
7240  * ==========================================================================
7241  */
7242 
7243 /*
7244  * This is called as a synctask to increment the draid feature flag
7245  */
7246 static void
7247 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7248 {
7249 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7250 	int draid = (int)(uintptr_t)arg;
7251 
7252 	for (int c = 0; c < draid; c++)
7253 		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7254 }
7255 
7256 /*
7257  * Add a device to a storage pool.
7258  */
7259 int
7260 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7261 {
7262 	uint64_t txg, ndraid = 0;
7263 	int error;
7264 	vdev_t *rvd = spa->spa_root_vdev;
7265 	vdev_t *vd, *tvd;
7266 	nvlist_t **spares, **l2cache;
7267 	uint_t nspares, nl2cache;
7268 
7269 	ASSERT(spa_writeable(spa));
7270 
7271 	txg = spa_vdev_enter(spa);
7272 
7273 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7274 	    VDEV_ALLOC_ADD)) != 0)
7275 		return (spa_vdev_exit(spa, NULL, txg, error));
7276 
7277 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
7278 
7279 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7280 	    &nspares) != 0)
7281 		nspares = 0;
7282 
7283 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7284 	    &nl2cache) != 0)
7285 		nl2cache = 0;
7286 
7287 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7288 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
7289 
7290 	if (vd->vdev_children != 0 &&
7291 	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7292 		return (spa_vdev_exit(spa, vd, txg, error));
7293 	}
7294 
7295 	/*
7296 	 * The virtual dRAID spares must be added after vdev tree is created
7297 	 * and the vdev guids are generated.  The guid of their associated
7298 	 * dRAID is stored in the config and used when opening the spare.
7299 	 */
7300 	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7301 	    rvd->vdev_children)) == 0) {
7302 		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7303 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7304 			nspares = 0;
7305 	} else {
7306 		return (spa_vdev_exit(spa, vd, txg, error));
7307 	}
7308 
7309 	/*
7310 	 * We must validate the spares and l2cache devices after checking the
7311 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
7312 	 */
7313 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7314 		return (spa_vdev_exit(spa, vd, txg, error));
7315 
7316 	/*
7317 	 * If we are in the middle of a device removal, we can only add
7318 	 * devices which match the existing devices in the pool.
7319 	 * If we are in the middle of a removal, or have some indirect
7320 	 * vdevs, we can not add raidz or dRAID top levels.
7321 	 */
7322 	if (spa->spa_vdev_removal != NULL ||
7323 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7324 		for (int c = 0; c < vd->vdev_children; c++) {
7325 			tvd = vd->vdev_child[c];
7326 			if (spa->spa_vdev_removal != NULL &&
7327 			    tvd->vdev_ashift != spa->spa_max_ashift) {
7328 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7329 			}
7330 			/* Fail if top level vdev is raidz or a dRAID */
7331 			if (vdev_get_nparity(tvd) != 0)
7332 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
7333 
7334 			/*
7335 			 * Need the top level mirror to be
7336 			 * a mirror of leaf vdevs only
7337 			 */
7338 			if (tvd->vdev_ops == &vdev_mirror_ops) {
7339 				for (uint64_t cid = 0;
7340 				    cid < tvd->vdev_children; cid++) {
7341 					vdev_t *cvd = tvd->vdev_child[cid];
7342 					if (!cvd->vdev_ops->vdev_op_leaf) {
7343 						return (spa_vdev_exit(spa, vd,
7344 						    txg, EINVAL));
7345 					}
7346 				}
7347 			}
7348 		}
7349 	}
7350 
7351 	if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7352 		for (int c = 0; c < vd->vdev_children; c++) {
7353 			tvd = vd->vdev_child[c];
7354 			if (tvd->vdev_ashift != spa->spa_max_ashift) {
7355 				return (spa_vdev_exit(spa, vd, txg,
7356 				    ZFS_ERR_ASHIFT_MISMATCH));
7357 			}
7358 		}
7359 	}
7360 
7361 	for (int c = 0; c < vd->vdev_children; c++) {
7362 		tvd = vd->vdev_child[c];
7363 		vdev_remove_child(vd, tvd);
7364 		tvd->vdev_id = rvd->vdev_children;
7365 		vdev_add_child(rvd, tvd);
7366 		vdev_config_dirty(tvd);
7367 	}
7368 
7369 	if (nspares != 0) {
7370 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7371 		    ZPOOL_CONFIG_SPARES);
7372 		spa_load_spares(spa);
7373 		spa->spa_spares.sav_sync = B_TRUE;
7374 	}
7375 
7376 	if (nl2cache != 0) {
7377 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7378 		    ZPOOL_CONFIG_L2CACHE);
7379 		spa_load_l2cache(spa);
7380 		spa->spa_l2cache.sav_sync = B_TRUE;
7381 	}
7382 
7383 	/*
7384 	 * We can't increment a feature while holding spa_vdev so we
7385 	 * have to do it in a synctask.
7386 	 */
7387 	if (ndraid != 0) {
7388 		dmu_tx_t *tx;
7389 
7390 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7391 		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7392 		    (void *)(uintptr_t)ndraid, tx);
7393 		dmu_tx_commit(tx);
7394 	}
7395 
7396 	/*
7397 	 * We have to be careful when adding new vdevs to an existing pool.
7398 	 * If other threads start allocating from these vdevs before we
7399 	 * sync the config cache, and we lose power, then upon reboot we may
7400 	 * fail to open the pool because there are DVAs that the config cache
7401 	 * can't translate.  Therefore, we first add the vdevs without
7402 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7403 	 * and then let spa_config_update() initialize the new metaslabs.
7404 	 *
7405 	 * spa_load() checks for added-but-not-initialized vdevs, so that
7406 	 * if we lose power at any point in this sequence, the remaining
7407 	 * steps will be completed the next time we load the pool.
7408 	 */
7409 	(void) spa_vdev_exit(spa, vd, txg, 0);
7410 
7411 	mutex_enter(&spa_namespace_lock);
7412 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7413 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7414 	mutex_exit(&spa_namespace_lock);
7415 
7416 	return (0);
7417 }
7418 
7419 /*
7420  * Attach a device to a vdev specified by its guid.  The vdev type can be
7421  * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7422  * single device). When the vdev is a single device, a mirror vdev will be
7423  * automatically inserted.
7424  *
7425  * If 'replacing' is specified, the new device is intended to replace the
7426  * existing device; in this case the two devices are made into their own
7427  * mirror using the 'replacing' vdev, which is functionally identical to
7428  * the mirror vdev (it actually reuses all the same ops) but has a few
7429  * extra rules: you can't attach to it after it's been created, and upon
7430  * completion of resilvering, the first disk (the one being replaced)
7431  * is automatically detached.
7432  *
7433  * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7434  * should be performed instead of traditional healing reconstruction.  From
7435  * an administrators perspective these are both resilver operations.
7436  */
7437 int
7438 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7439     int rebuild)
7440 {
7441 	uint64_t txg, dtl_max_txg;
7442 	vdev_t *rvd = spa->spa_root_vdev;
7443 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7444 	vdev_ops_t *pvops;
7445 	char *oldvdpath, *newvdpath;
7446 	int newvd_isspare = B_FALSE;
7447 	int error;
7448 
7449 	ASSERT(spa_writeable(spa));
7450 
7451 	txg = spa_vdev_enter(spa);
7452 
7453 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7454 
7455 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7456 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7457 		error = (spa_has_checkpoint(spa)) ?
7458 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7459 		return (spa_vdev_exit(spa, NULL, txg, error));
7460 	}
7461 
7462 	if (rebuild) {
7463 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7464 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7465 
7466 		if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7467 		    dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7468 			return (spa_vdev_exit(spa, NULL, txg,
7469 			    ZFS_ERR_RESILVER_IN_PROGRESS));
7470 		}
7471 	} else {
7472 		if (vdev_rebuild_active(rvd))
7473 			return (spa_vdev_exit(spa, NULL, txg,
7474 			    ZFS_ERR_REBUILD_IN_PROGRESS));
7475 	}
7476 
7477 	if (spa->spa_vdev_removal != NULL) {
7478 		return (spa_vdev_exit(spa, NULL, txg,
7479 		    ZFS_ERR_DEVRM_IN_PROGRESS));
7480 	}
7481 
7482 	if (oldvd == NULL)
7483 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7484 
7485 	boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7486 
7487 	if (raidz) {
7488 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7489 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7490 
7491 		/*
7492 		 * Can't expand a raidz while prior expand is in progress.
7493 		 */
7494 		if (spa->spa_raidz_expand != NULL) {
7495 			return (spa_vdev_exit(spa, NULL, txg,
7496 			    ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7497 		}
7498 	} else if (!oldvd->vdev_ops->vdev_op_leaf) {
7499 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7500 	}
7501 
7502 	if (raidz)
7503 		pvd = oldvd;
7504 	else
7505 		pvd = oldvd->vdev_parent;
7506 
7507 	if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7508 	    VDEV_ALLOC_ATTACH) != 0)
7509 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7510 
7511 	if (newrootvd->vdev_children != 1)
7512 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7513 
7514 	newvd = newrootvd->vdev_child[0];
7515 
7516 	if (!newvd->vdev_ops->vdev_op_leaf)
7517 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7518 
7519 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7520 		return (spa_vdev_exit(spa, newrootvd, txg, error));
7521 
7522 	/*
7523 	 * log, dedup and special vdevs should not be replaced by spares.
7524 	 */
7525 	if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7526 	    oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7527 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7528 	}
7529 
7530 	/*
7531 	 * A dRAID spare can only replace a child of its parent dRAID vdev.
7532 	 */
7533 	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7534 	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7535 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7536 	}
7537 
7538 	if (rebuild) {
7539 		/*
7540 		 * For rebuilds, the top vdev must support reconstruction
7541 		 * using only space maps.  This means the only allowable
7542 		 * vdevs types are the root vdev, a mirror, or dRAID.
7543 		 */
7544 		tvd = pvd;
7545 		if (pvd->vdev_top != NULL)
7546 			tvd = pvd->vdev_top;
7547 
7548 		if (tvd->vdev_ops != &vdev_mirror_ops &&
7549 		    tvd->vdev_ops != &vdev_root_ops &&
7550 		    tvd->vdev_ops != &vdev_draid_ops) {
7551 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7552 		}
7553 	}
7554 
7555 	if (!replacing) {
7556 		/*
7557 		 * For attach, the only allowable parent is a mirror or
7558 		 * the root vdev. A raidz vdev can be attached to, but
7559 		 * you cannot attach to a raidz child.
7560 		 */
7561 		if (pvd->vdev_ops != &vdev_mirror_ops &&
7562 		    pvd->vdev_ops != &vdev_root_ops &&
7563 		    !raidz)
7564 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7565 
7566 		pvops = &vdev_mirror_ops;
7567 	} else {
7568 		/*
7569 		 * Active hot spares can only be replaced by inactive hot
7570 		 * spares.
7571 		 */
7572 		if (pvd->vdev_ops == &vdev_spare_ops &&
7573 		    oldvd->vdev_isspare &&
7574 		    !spa_has_spare(spa, newvd->vdev_guid))
7575 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7576 
7577 		/*
7578 		 * If the source is a hot spare, and the parent isn't already a
7579 		 * spare, then we want to create a new hot spare.  Otherwise, we
7580 		 * want to create a replacing vdev.  The user is not allowed to
7581 		 * attach to a spared vdev child unless the 'isspare' state is
7582 		 * the same (spare replaces spare, non-spare replaces
7583 		 * non-spare).
7584 		 */
7585 		if (pvd->vdev_ops == &vdev_replacing_ops &&
7586 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7587 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7588 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
7589 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
7590 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7591 		}
7592 
7593 		if (newvd->vdev_isspare)
7594 			pvops = &vdev_spare_ops;
7595 		else
7596 			pvops = &vdev_replacing_ops;
7597 	}
7598 
7599 	/*
7600 	 * Make sure the new device is big enough.
7601 	 */
7602 	vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7603 	if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7604 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7605 
7606 	/*
7607 	 * The new device cannot have a higher alignment requirement
7608 	 * than the top-level vdev.
7609 	 */
7610 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7611 		return (spa_vdev_exit(spa, newrootvd, txg,
7612 		    ZFS_ERR_ASHIFT_MISMATCH));
7613 	}
7614 
7615 	/*
7616 	 * RAIDZ-expansion-specific checks.
7617 	 */
7618 	if (raidz) {
7619 		if (vdev_raidz_attach_check(newvd) != 0)
7620 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7621 
7622 		/*
7623 		 * Fail early if a child is not healthy or being replaced
7624 		 */
7625 		for (int i = 0; i < oldvd->vdev_children; i++) {
7626 			if (vdev_is_dead(oldvd->vdev_child[i]) ||
7627 			    !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7628 				return (spa_vdev_exit(spa, newrootvd, txg,
7629 				    ENXIO));
7630 			}
7631 			/* Also fail if reserved boot area is in-use */
7632 			if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7633 			    != 0) {
7634 				return (spa_vdev_exit(spa, newrootvd, txg,
7635 				    EADDRINUSE));
7636 			}
7637 		}
7638 	}
7639 
7640 	if (raidz) {
7641 		/*
7642 		 * Note: oldvdpath is freed by spa_strfree(),  but
7643 		 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7644 		 * move it to a spa_strdup-ed string.
7645 		 */
7646 		char *tmp = kmem_asprintf("raidz%u-%u",
7647 		    (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7648 		oldvdpath = spa_strdup(tmp);
7649 		kmem_strfree(tmp);
7650 	} else {
7651 		oldvdpath = spa_strdup(oldvd->vdev_path);
7652 	}
7653 	newvdpath = spa_strdup(newvd->vdev_path);
7654 
7655 	/*
7656 	 * If this is an in-place replacement, update oldvd's path and devid
7657 	 * to make it distinguishable from newvd, and unopenable from now on.
7658 	 */
7659 	if (strcmp(oldvdpath, newvdpath) == 0) {
7660 		spa_strfree(oldvd->vdev_path);
7661 		oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7662 		    KM_SLEEP);
7663 		(void) sprintf(oldvd->vdev_path, "%s/old",
7664 		    newvdpath);
7665 		if (oldvd->vdev_devid != NULL) {
7666 			spa_strfree(oldvd->vdev_devid);
7667 			oldvd->vdev_devid = NULL;
7668 		}
7669 		spa_strfree(oldvdpath);
7670 		oldvdpath = spa_strdup(oldvd->vdev_path);
7671 	}
7672 
7673 	/*
7674 	 * If the parent is not a mirror, or if we're replacing, insert the new
7675 	 * mirror/replacing/spare vdev above oldvd.
7676 	 */
7677 	if (!raidz && pvd->vdev_ops != pvops) {
7678 		pvd = vdev_add_parent(oldvd, pvops);
7679 		ASSERT(pvd->vdev_ops == pvops);
7680 		ASSERT(oldvd->vdev_parent == pvd);
7681 	}
7682 
7683 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
7684 
7685 	/*
7686 	 * Extract the new device from its root and add it to pvd.
7687 	 */
7688 	vdev_remove_child(newrootvd, newvd);
7689 	newvd->vdev_id = pvd->vdev_children;
7690 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
7691 	vdev_add_child(pvd, newvd);
7692 
7693 	/*
7694 	 * Reevaluate the parent vdev state.
7695 	 */
7696 	vdev_propagate_state(pvd);
7697 
7698 	tvd = newvd->vdev_top;
7699 	ASSERT(pvd->vdev_top == tvd);
7700 	ASSERT(tvd->vdev_parent == rvd);
7701 
7702 	vdev_config_dirty(tvd);
7703 
7704 	/*
7705 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7706 	 * for any dmu_sync-ed blocks.  It will propagate upward when
7707 	 * spa_vdev_exit() calls vdev_dtl_reassess().
7708 	 */
7709 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7710 
7711 	if (raidz) {
7712 		/*
7713 		 * Wait for the youngest allocations and frees to sync,
7714 		 * and then wait for the deferral of those frees to finish.
7715 		 */
7716 		spa_vdev_config_exit(spa, NULL,
7717 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7718 
7719 		vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7720 		vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7721 		vdev_autotrim_stop_wait(tvd);
7722 
7723 		dtl_max_txg = spa_vdev_config_enter(spa);
7724 
7725 		tvd->vdev_rz_expanding = B_TRUE;
7726 
7727 		vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7728 		vdev_config_dirty(tvd);
7729 
7730 		dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7731 		    dtl_max_txg);
7732 		dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7733 		    newvd, tx);
7734 		dmu_tx_commit(tx);
7735 	} else {
7736 		vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7737 		    dtl_max_txg - TXG_INITIAL);
7738 
7739 		if (newvd->vdev_isspare) {
7740 			spa_spare_activate(newvd);
7741 			spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7742 		}
7743 
7744 		newvd_isspare = newvd->vdev_isspare;
7745 
7746 		/*
7747 		 * Mark newvd's DTL dirty in this txg.
7748 		 */
7749 		vdev_dirty(tvd, VDD_DTL, newvd, txg);
7750 
7751 		/*
7752 		 * Schedule the resilver or rebuild to restart in the future.
7753 		 * We do this to ensure that dmu_sync-ed blocks have been
7754 		 * stitched into the respective datasets.
7755 		 */
7756 		if (rebuild) {
7757 			newvd->vdev_rebuild_txg = txg;
7758 
7759 			vdev_rebuild(tvd);
7760 		} else {
7761 			newvd->vdev_resilver_txg = txg;
7762 
7763 			if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7764 			    spa_feature_is_enabled(spa,
7765 			    SPA_FEATURE_RESILVER_DEFER)) {
7766 				vdev_defer_resilver(newvd);
7767 			} else {
7768 				dsl_scan_restart_resilver(spa->spa_dsl_pool,
7769 				    dtl_max_txg);
7770 			}
7771 		}
7772 	}
7773 
7774 	if (spa->spa_bootfs)
7775 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7776 
7777 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7778 
7779 	/*
7780 	 * Commit the config
7781 	 */
7782 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7783 
7784 	spa_history_log_internal(spa, "vdev attach", NULL,
7785 	    "%s vdev=%s %s vdev=%s",
7786 	    replacing && newvd_isspare ? "spare in" :
7787 	    replacing ? "replace" : "attach", newvdpath,
7788 	    replacing ? "for" : "to", oldvdpath);
7789 
7790 	spa_strfree(oldvdpath);
7791 	spa_strfree(newvdpath);
7792 
7793 	return (0);
7794 }
7795 
7796 /*
7797  * Detach a device from a mirror or replacing vdev.
7798  *
7799  * If 'replace_done' is specified, only detach if the parent
7800  * is a replacing or a spare vdev.
7801  */
7802 int
7803 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7804 {
7805 	uint64_t txg;
7806 	int error;
7807 	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7808 	vdev_t *vd, *pvd, *cvd, *tvd;
7809 	boolean_t unspare = B_FALSE;
7810 	uint64_t unspare_guid = 0;
7811 	char *vdpath;
7812 
7813 	ASSERT(spa_writeable(spa));
7814 
7815 	txg = spa_vdev_detach_enter(spa, guid);
7816 
7817 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7818 
7819 	/*
7820 	 * Besides being called directly from the userland through the
7821 	 * ioctl interface, spa_vdev_detach() can be potentially called
7822 	 * at the end of spa_vdev_resilver_done().
7823 	 *
7824 	 * In the regular case, when we have a checkpoint this shouldn't
7825 	 * happen as we never empty the DTLs of a vdev during the scrub
7826 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7827 	 * should never get here when we have a checkpoint.
7828 	 *
7829 	 * That said, even in a case when we checkpoint the pool exactly
7830 	 * as spa_vdev_resilver_done() calls this function everything
7831 	 * should be fine as the resilver will return right away.
7832 	 */
7833 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7834 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7835 		error = (spa_has_checkpoint(spa)) ?
7836 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7837 		return (spa_vdev_exit(spa, NULL, txg, error));
7838 	}
7839 
7840 	if (vd == NULL)
7841 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7842 
7843 	if (!vd->vdev_ops->vdev_op_leaf)
7844 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7845 
7846 	pvd = vd->vdev_parent;
7847 
7848 	/*
7849 	 * If the parent/child relationship is not as expected, don't do it.
7850 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7851 	 * vdev that's replacing B with C.  The user's intent in replacing
7852 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
7853 	 * the replace by detaching C, the expected behavior is to end up
7854 	 * M(A,B).  But suppose that right after deciding to detach C,
7855 	 * the replacement of B completes.  We would have M(A,C), and then
7856 	 * ask to detach C, which would leave us with just A -- not what
7857 	 * the user wanted.  To prevent this, we make sure that the
7858 	 * parent/child relationship hasn't changed -- in this example,
7859 	 * that C's parent is still the replacing vdev R.
7860 	 */
7861 	if (pvd->vdev_guid != pguid && pguid != 0)
7862 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7863 
7864 	/*
7865 	 * Only 'replacing' or 'spare' vdevs can be replaced.
7866 	 */
7867 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7868 	    pvd->vdev_ops != &vdev_spare_ops)
7869 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7870 
7871 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7872 	    spa_version(spa) >= SPA_VERSION_SPARES);
7873 
7874 	/*
7875 	 * Only mirror, replacing, and spare vdevs support detach.
7876 	 */
7877 	if (pvd->vdev_ops != &vdev_replacing_ops &&
7878 	    pvd->vdev_ops != &vdev_mirror_ops &&
7879 	    pvd->vdev_ops != &vdev_spare_ops)
7880 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7881 
7882 	/*
7883 	 * If this device has the only valid copy of some data,
7884 	 * we cannot safely detach it.
7885 	 */
7886 	if (vdev_dtl_required(vd))
7887 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7888 
7889 	ASSERT(pvd->vdev_children >= 2);
7890 
7891 	/*
7892 	 * If we are detaching the second disk from a replacing vdev, then
7893 	 * check to see if we changed the original vdev's path to have "/old"
7894 	 * at the end in spa_vdev_attach().  If so, undo that change now.
7895 	 */
7896 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7897 	    vd->vdev_path != NULL) {
7898 		size_t len = strlen(vd->vdev_path);
7899 
7900 		for (int c = 0; c < pvd->vdev_children; c++) {
7901 			cvd = pvd->vdev_child[c];
7902 
7903 			if (cvd == vd || cvd->vdev_path == NULL)
7904 				continue;
7905 
7906 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7907 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7908 				spa_strfree(cvd->vdev_path);
7909 				cvd->vdev_path = spa_strdup(vd->vdev_path);
7910 				break;
7911 			}
7912 		}
7913 	}
7914 
7915 	/*
7916 	 * If we are detaching the original disk from a normal spare, then it
7917 	 * implies that the spare should become a real disk, and be removed
7918 	 * from the active spare list for the pool.  dRAID spares on the
7919 	 * other hand are coupled to the pool and thus should never be removed
7920 	 * from the spares list.
7921 	 */
7922 	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7923 		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7924 
7925 		if (last_cvd->vdev_isspare &&
7926 		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7927 			unspare = B_TRUE;
7928 		}
7929 	}
7930 
7931 	/*
7932 	 * Erase the disk labels so the disk can be used for other things.
7933 	 * This must be done after all other error cases are handled,
7934 	 * but before we disembowel vd (so we can still do I/O to it).
7935 	 * But if we can't do it, don't treat the error as fatal --
7936 	 * it may be that the unwritability of the disk is the reason
7937 	 * it's being detached!
7938 	 */
7939 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7940 
7941 	/*
7942 	 * Remove vd from its parent and compact the parent's children.
7943 	 */
7944 	vdev_remove_child(pvd, vd);
7945 	vdev_compact_children(pvd);
7946 
7947 	/*
7948 	 * Remember one of the remaining children so we can get tvd below.
7949 	 */
7950 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7951 
7952 	/*
7953 	 * If we need to remove the remaining child from the list of hot spares,
7954 	 * do it now, marking the vdev as no longer a spare in the process.
7955 	 * We must do this before vdev_remove_parent(), because that can
7956 	 * change the GUID if it creates a new toplevel GUID.  For a similar
7957 	 * reason, we must remove the spare now, in the same txg as the detach;
7958 	 * otherwise someone could attach a new sibling, change the GUID, and
7959 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7960 	 */
7961 	if (unspare) {
7962 		ASSERT(cvd->vdev_isspare);
7963 		spa_spare_remove(cvd);
7964 		unspare_guid = cvd->vdev_guid;
7965 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7966 		cvd->vdev_unspare = B_TRUE;
7967 	}
7968 
7969 	/*
7970 	 * If the parent mirror/replacing vdev only has one child,
7971 	 * the parent is no longer needed.  Remove it from the tree.
7972 	 */
7973 	if (pvd->vdev_children == 1) {
7974 		if (pvd->vdev_ops == &vdev_spare_ops)
7975 			cvd->vdev_unspare = B_FALSE;
7976 		vdev_remove_parent(cvd);
7977 	}
7978 
7979 	/*
7980 	 * We don't set tvd until now because the parent we just removed
7981 	 * may have been the previous top-level vdev.
7982 	 */
7983 	tvd = cvd->vdev_top;
7984 	ASSERT(tvd->vdev_parent == rvd);
7985 
7986 	/*
7987 	 * Reevaluate the parent vdev state.
7988 	 */
7989 	vdev_propagate_state(cvd);
7990 
7991 	/*
7992 	 * If the 'autoexpand' property is set on the pool then automatically
7993 	 * try to expand the size of the pool. For example if the device we
7994 	 * just detached was smaller than the others, it may be possible to
7995 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7996 	 * first so that we can obtain the updated sizes of the leaf vdevs.
7997 	 */
7998 	if (spa->spa_autoexpand) {
7999 		vdev_reopen(tvd);
8000 		vdev_expand(tvd, txg);
8001 	}
8002 
8003 	vdev_config_dirty(tvd);
8004 
8005 	/*
8006 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
8007 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8008 	 * But first make sure we're not on any *other* txg's DTL list, to
8009 	 * prevent vd from being accessed after it's freed.
8010 	 */
8011 	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8012 	for (int t = 0; t < TXG_SIZE; t++)
8013 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8014 	vd->vdev_detached = B_TRUE;
8015 	vdev_dirty(tvd, VDD_DTL, vd, txg);
8016 
8017 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8018 	spa_notify_waiters(spa);
8019 
8020 	/* hang on to the spa before we release the lock */
8021 	spa_open_ref(spa, FTAG);
8022 
8023 	error = spa_vdev_exit(spa, vd, txg, 0);
8024 
8025 	spa_history_log_internal(spa, "detach", NULL,
8026 	    "vdev=%s", vdpath);
8027 	spa_strfree(vdpath);
8028 
8029 	/*
8030 	 * If this was the removal of the original device in a hot spare vdev,
8031 	 * then we want to go through and remove the device from the hot spare
8032 	 * list of every other pool.
8033 	 */
8034 	if (unspare) {
8035 		spa_t *altspa = NULL;
8036 
8037 		mutex_enter(&spa_namespace_lock);
8038 		while ((altspa = spa_next(altspa)) != NULL) {
8039 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
8040 			    altspa == spa)
8041 				continue;
8042 
8043 			spa_open_ref(altspa, FTAG);
8044 			mutex_exit(&spa_namespace_lock);
8045 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8046 			mutex_enter(&spa_namespace_lock);
8047 			spa_close(altspa, FTAG);
8048 		}
8049 		mutex_exit(&spa_namespace_lock);
8050 
8051 		/* search the rest of the vdevs for spares to remove */
8052 		spa_vdev_resilver_done(spa);
8053 	}
8054 
8055 	/* all done with the spa; OK to release */
8056 	mutex_enter(&spa_namespace_lock);
8057 	spa_close(spa, FTAG);
8058 	mutex_exit(&spa_namespace_lock);
8059 
8060 	return (error);
8061 }
8062 
8063 static int
8064 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8065     list_t *vd_list)
8066 {
8067 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8068 
8069 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8070 
8071 	/* Look up vdev and ensure it's a leaf. */
8072 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8073 	if (vd == NULL || vd->vdev_detached) {
8074 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8075 		return (SET_ERROR(ENODEV));
8076 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8077 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8078 		return (SET_ERROR(EINVAL));
8079 	} else if (!vdev_writeable(vd)) {
8080 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8081 		return (SET_ERROR(EROFS));
8082 	}
8083 	mutex_enter(&vd->vdev_initialize_lock);
8084 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8085 
8086 	/*
8087 	 * When we activate an initialize action we check to see
8088 	 * if the vdev_initialize_thread is NULL. We do this instead
8089 	 * of using the vdev_initialize_state since there might be
8090 	 * a previous initialization process which has completed but
8091 	 * the thread is not exited.
8092 	 */
8093 	if (cmd_type == POOL_INITIALIZE_START &&
8094 	    (vd->vdev_initialize_thread != NULL ||
8095 	    vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8096 		mutex_exit(&vd->vdev_initialize_lock);
8097 		return (SET_ERROR(EBUSY));
8098 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8099 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8100 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8101 		mutex_exit(&vd->vdev_initialize_lock);
8102 		return (SET_ERROR(ESRCH));
8103 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8104 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8105 		mutex_exit(&vd->vdev_initialize_lock);
8106 		return (SET_ERROR(ESRCH));
8107 	} else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8108 	    vd->vdev_initialize_thread != NULL) {
8109 		mutex_exit(&vd->vdev_initialize_lock);
8110 		return (SET_ERROR(EBUSY));
8111 	}
8112 
8113 	switch (cmd_type) {
8114 	case POOL_INITIALIZE_START:
8115 		vdev_initialize(vd);
8116 		break;
8117 	case POOL_INITIALIZE_CANCEL:
8118 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8119 		break;
8120 	case POOL_INITIALIZE_SUSPEND:
8121 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8122 		break;
8123 	case POOL_INITIALIZE_UNINIT:
8124 		vdev_uninitialize(vd);
8125 		break;
8126 	default:
8127 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8128 	}
8129 	mutex_exit(&vd->vdev_initialize_lock);
8130 
8131 	return (0);
8132 }
8133 
8134 int
8135 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8136     nvlist_t *vdev_errlist)
8137 {
8138 	int total_errors = 0;
8139 	list_t vd_list;
8140 
8141 	list_create(&vd_list, sizeof (vdev_t),
8142 	    offsetof(vdev_t, vdev_initialize_node));
8143 
8144 	/*
8145 	 * We hold the namespace lock through the whole function
8146 	 * to prevent any changes to the pool while we're starting or
8147 	 * stopping initialization. The config and state locks are held so that
8148 	 * we can properly assess the vdev state before we commit to
8149 	 * the initializing operation.
8150 	 */
8151 	mutex_enter(&spa_namespace_lock);
8152 
8153 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8154 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8155 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8156 
8157 		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8158 		    &vd_list);
8159 		if (error != 0) {
8160 			char guid_as_str[MAXNAMELEN];
8161 
8162 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8163 			    "%llu", (unsigned long long)vdev_guid);
8164 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8165 			total_errors++;
8166 		}
8167 	}
8168 
8169 	/* Wait for all initialize threads to stop. */
8170 	vdev_initialize_stop_wait(spa, &vd_list);
8171 
8172 	/* Sync out the initializing state */
8173 	txg_wait_synced(spa->spa_dsl_pool, 0);
8174 	mutex_exit(&spa_namespace_lock);
8175 
8176 	list_destroy(&vd_list);
8177 
8178 	return (total_errors);
8179 }
8180 
8181 static int
8182 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8183     uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8184 {
8185 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8186 
8187 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8188 
8189 	/* Look up vdev and ensure it's a leaf. */
8190 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8191 	if (vd == NULL || vd->vdev_detached) {
8192 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8193 		return (SET_ERROR(ENODEV));
8194 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8195 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8196 		return (SET_ERROR(EINVAL));
8197 	} else if (!vdev_writeable(vd)) {
8198 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8199 		return (SET_ERROR(EROFS));
8200 	} else if (!vd->vdev_has_trim) {
8201 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8202 		return (SET_ERROR(EOPNOTSUPP));
8203 	} else if (secure && !vd->vdev_has_securetrim) {
8204 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8205 		return (SET_ERROR(EOPNOTSUPP));
8206 	}
8207 	mutex_enter(&vd->vdev_trim_lock);
8208 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 
8210 	/*
8211 	 * When we activate a TRIM action we check to see if the
8212 	 * vdev_trim_thread is NULL. We do this instead of using the
8213 	 * vdev_trim_state since there might be a previous TRIM process
8214 	 * which has completed but the thread is not exited.
8215 	 */
8216 	if (cmd_type == POOL_TRIM_START &&
8217 	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8218 	    vd->vdev_top->vdev_rz_expanding)) {
8219 		mutex_exit(&vd->vdev_trim_lock);
8220 		return (SET_ERROR(EBUSY));
8221 	} else if (cmd_type == POOL_TRIM_CANCEL &&
8222 	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8223 	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8224 		mutex_exit(&vd->vdev_trim_lock);
8225 		return (SET_ERROR(ESRCH));
8226 	} else if (cmd_type == POOL_TRIM_SUSPEND &&
8227 	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8228 		mutex_exit(&vd->vdev_trim_lock);
8229 		return (SET_ERROR(ESRCH));
8230 	}
8231 
8232 	switch (cmd_type) {
8233 	case POOL_TRIM_START:
8234 		vdev_trim(vd, rate, partial, secure);
8235 		break;
8236 	case POOL_TRIM_CANCEL:
8237 		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8238 		break;
8239 	case POOL_TRIM_SUSPEND:
8240 		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8241 		break;
8242 	default:
8243 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8244 	}
8245 	mutex_exit(&vd->vdev_trim_lock);
8246 
8247 	return (0);
8248 }
8249 
8250 /*
8251  * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8252  * TRIM threads for each child vdev.  These threads pass over all of the free
8253  * space in the vdev's metaslabs and issues TRIM commands for that space.
8254  */
8255 int
8256 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8257     boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8258 {
8259 	int total_errors = 0;
8260 	list_t vd_list;
8261 
8262 	list_create(&vd_list, sizeof (vdev_t),
8263 	    offsetof(vdev_t, vdev_trim_node));
8264 
8265 	/*
8266 	 * We hold the namespace lock through the whole function
8267 	 * to prevent any changes to the pool while we're starting or
8268 	 * stopping TRIM. The config and state locks are held so that
8269 	 * we can properly assess the vdev state before we commit to
8270 	 * the TRIM operation.
8271 	 */
8272 	mutex_enter(&spa_namespace_lock);
8273 
8274 	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8275 	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8276 		uint64_t vdev_guid = fnvpair_value_uint64(pair);
8277 
8278 		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8279 		    rate, partial, secure, &vd_list);
8280 		if (error != 0) {
8281 			char guid_as_str[MAXNAMELEN];
8282 
8283 			(void) snprintf(guid_as_str, sizeof (guid_as_str),
8284 			    "%llu", (unsigned long long)vdev_guid);
8285 			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8286 			total_errors++;
8287 		}
8288 	}
8289 
8290 	/* Wait for all TRIM threads to stop. */
8291 	vdev_trim_stop_wait(spa, &vd_list);
8292 
8293 	/* Sync out the TRIM state */
8294 	txg_wait_synced(spa->spa_dsl_pool, 0);
8295 	mutex_exit(&spa_namespace_lock);
8296 
8297 	list_destroy(&vd_list);
8298 
8299 	return (total_errors);
8300 }
8301 
8302 /*
8303  * Split a set of devices from their mirrors, and create a new pool from them.
8304  */
8305 int
8306 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8307     nvlist_t *props, boolean_t exp)
8308 {
8309 	int error = 0;
8310 	uint64_t txg, *glist;
8311 	spa_t *newspa;
8312 	uint_t c, children, lastlog;
8313 	nvlist_t **child, *nvl, *tmp;
8314 	dmu_tx_t *tx;
8315 	const char *altroot = NULL;
8316 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
8317 	boolean_t activate_slog;
8318 
8319 	ASSERT(spa_writeable(spa));
8320 
8321 	txg = spa_vdev_enter(spa);
8322 
8323 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
8324 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8325 		error = (spa_has_checkpoint(spa)) ?
8326 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8327 		return (spa_vdev_exit(spa, NULL, txg, error));
8328 	}
8329 
8330 	/* clear the log and flush everything up to now */
8331 	activate_slog = spa_passivate_log(spa);
8332 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8333 	error = spa_reset_logs(spa);
8334 	txg = spa_vdev_config_enter(spa);
8335 
8336 	if (activate_slog)
8337 		spa_activate_log(spa);
8338 
8339 	if (error != 0)
8340 		return (spa_vdev_exit(spa, NULL, txg, error));
8341 
8342 	/* check new spa name before going any further */
8343 	if (spa_lookup(newname) != NULL)
8344 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8345 
8346 	/*
8347 	 * scan through all the children to ensure they're all mirrors
8348 	 */
8349 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8350 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8351 	    &children) != 0)
8352 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8353 
8354 	/* first, check to ensure we've got the right child count */
8355 	rvd = spa->spa_root_vdev;
8356 	lastlog = 0;
8357 	for (c = 0; c < rvd->vdev_children; c++) {
8358 		vdev_t *vd = rvd->vdev_child[c];
8359 
8360 		/* don't count the holes & logs as children */
8361 		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8362 		    !vdev_is_concrete(vd))) {
8363 			if (lastlog == 0)
8364 				lastlog = c;
8365 			continue;
8366 		}
8367 
8368 		lastlog = 0;
8369 	}
8370 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8371 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8372 
8373 	/* next, ensure no spare or cache devices are part of the split */
8374 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8375 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8376 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8377 
8378 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8379 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8380 
8381 	/* then, loop over each vdev and validate it */
8382 	for (c = 0; c < children; c++) {
8383 		uint64_t is_hole = 0;
8384 
8385 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8386 		    &is_hole);
8387 
8388 		if (is_hole != 0) {
8389 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8390 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8391 				continue;
8392 			} else {
8393 				error = SET_ERROR(EINVAL);
8394 				break;
8395 			}
8396 		}
8397 
8398 		/* deal with indirect vdevs */
8399 		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8400 		    &vdev_indirect_ops)
8401 			continue;
8402 
8403 		/* which disk is going to be split? */
8404 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8405 		    &glist[c]) != 0) {
8406 			error = SET_ERROR(EINVAL);
8407 			break;
8408 		}
8409 
8410 		/* look it up in the spa */
8411 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8412 		if (vml[c] == NULL) {
8413 			error = SET_ERROR(ENODEV);
8414 			break;
8415 		}
8416 
8417 		/* make sure there's nothing stopping the split */
8418 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8419 		    vml[c]->vdev_islog ||
8420 		    !vdev_is_concrete(vml[c]) ||
8421 		    vml[c]->vdev_isspare ||
8422 		    vml[c]->vdev_isl2cache ||
8423 		    !vdev_writeable(vml[c]) ||
8424 		    vml[c]->vdev_children != 0 ||
8425 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8426 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8427 			error = SET_ERROR(EINVAL);
8428 			break;
8429 		}
8430 
8431 		if (vdev_dtl_required(vml[c]) ||
8432 		    vdev_resilver_needed(vml[c], NULL, NULL)) {
8433 			error = SET_ERROR(EBUSY);
8434 			break;
8435 		}
8436 
8437 		/* we need certain info from the top level */
8438 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8439 		    vml[c]->vdev_top->vdev_ms_array);
8440 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8441 		    vml[c]->vdev_top->vdev_ms_shift);
8442 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8443 		    vml[c]->vdev_top->vdev_asize);
8444 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8445 		    vml[c]->vdev_top->vdev_ashift);
8446 
8447 		/* transfer per-vdev ZAPs */
8448 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8449 		VERIFY0(nvlist_add_uint64(child[c],
8450 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8451 
8452 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8453 		VERIFY0(nvlist_add_uint64(child[c],
8454 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
8455 		    vml[c]->vdev_parent->vdev_top_zap));
8456 	}
8457 
8458 	if (error != 0) {
8459 		kmem_free(vml, children * sizeof (vdev_t *));
8460 		kmem_free(glist, children * sizeof (uint64_t));
8461 		return (spa_vdev_exit(spa, NULL, txg, error));
8462 	}
8463 
8464 	/* stop writers from using the disks */
8465 	for (c = 0; c < children; c++) {
8466 		if (vml[c] != NULL)
8467 			vml[c]->vdev_offline = B_TRUE;
8468 	}
8469 	vdev_reopen(spa->spa_root_vdev);
8470 
8471 	/*
8472 	 * Temporarily record the splitting vdevs in the spa config.  This
8473 	 * will disappear once the config is regenerated.
8474 	 */
8475 	nvl = fnvlist_alloc();
8476 	fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8477 	kmem_free(glist, children * sizeof (uint64_t));
8478 
8479 	mutex_enter(&spa->spa_props_lock);
8480 	fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8481 	mutex_exit(&spa->spa_props_lock);
8482 	spa->spa_config_splitting = nvl;
8483 	vdev_config_dirty(spa->spa_root_vdev);
8484 
8485 	/* configure and create the new pool */
8486 	fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8487 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8488 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8489 	fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8490 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8491 	fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8492 	    spa_generate_guid(NULL));
8493 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8494 	(void) nvlist_lookup_string(props,
8495 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8496 
8497 	/* add the new pool to the namespace */
8498 	newspa = spa_add(newname, config, altroot);
8499 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8500 	newspa->spa_config_txg = spa->spa_config_txg;
8501 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
8502 
8503 	/* release the spa config lock, retaining the namespace lock */
8504 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8505 
8506 	if (zio_injection_enabled)
8507 		zio_handle_panic_injection(spa, FTAG, 1);
8508 
8509 	spa_activate(newspa, spa_mode_global);
8510 	spa_async_suspend(newspa);
8511 
8512 	/*
8513 	 * Temporarily stop the initializing and TRIM activity.  We set the
8514 	 * state to ACTIVE so that we know to resume initializing or TRIM
8515 	 * once the split has completed.
8516 	 */
8517 	list_t vd_initialize_list;
8518 	list_create(&vd_initialize_list, sizeof (vdev_t),
8519 	    offsetof(vdev_t, vdev_initialize_node));
8520 
8521 	list_t vd_trim_list;
8522 	list_create(&vd_trim_list, sizeof (vdev_t),
8523 	    offsetof(vdev_t, vdev_trim_node));
8524 
8525 	for (c = 0; c < children; c++) {
8526 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8527 			mutex_enter(&vml[c]->vdev_initialize_lock);
8528 			vdev_initialize_stop(vml[c],
8529 			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8530 			mutex_exit(&vml[c]->vdev_initialize_lock);
8531 
8532 			mutex_enter(&vml[c]->vdev_trim_lock);
8533 			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8534 			mutex_exit(&vml[c]->vdev_trim_lock);
8535 		}
8536 	}
8537 
8538 	vdev_initialize_stop_wait(spa, &vd_initialize_list);
8539 	vdev_trim_stop_wait(spa, &vd_trim_list);
8540 
8541 	list_destroy(&vd_initialize_list);
8542 	list_destroy(&vd_trim_list);
8543 
8544 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8545 	newspa->spa_is_splitting = B_TRUE;
8546 
8547 	/* create the new pool from the disks of the original pool */
8548 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8549 	if (error)
8550 		goto out;
8551 
8552 	/* if that worked, generate a real config for the new pool */
8553 	if (newspa->spa_root_vdev != NULL) {
8554 		newspa->spa_config_splitting = fnvlist_alloc();
8555 		fnvlist_add_uint64(newspa->spa_config_splitting,
8556 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8557 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8558 		    B_TRUE));
8559 	}
8560 
8561 	/* set the props */
8562 	if (props != NULL) {
8563 		spa_configfile_set(newspa, props, B_FALSE);
8564 		error = spa_prop_set(newspa, props);
8565 		if (error)
8566 			goto out;
8567 	}
8568 
8569 	/* flush everything */
8570 	txg = spa_vdev_config_enter(newspa);
8571 	vdev_config_dirty(newspa->spa_root_vdev);
8572 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8573 
8574 	if (zio_injection_enabled)
8575 		zio_handle_panic_injection(spa, FTAG, 2);
8576 
8577 	spa_async_resume(newspa);
8578 
8579 	/* finally, update the original pool's config */
8580 	txg = spa_vdev_config_enter(spa);
8581 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8582 	error = dmu_tx_assign(tx, TXG_WAIT);
8583 	if (error != 0)
8584 		dmu_tx_abort(tx);
8585 	for (c = 0; c < children; c++) {
8586 		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8587 			vdev_t *tvd = vml[c]->vdev_top;
8588 
8589 			/*
8590 			 * Need to be sure the detachable VDEV is not
8591 			 * on any *other* txg's DTL list to prevent it
8592 			 * from being accessed after it's freed.
8593 			 */
8594 			for (int t = 0; t < TXG_SIZE; t++) {
8595 				(void) txg_list_remove_this(
8596 				    &tvd->vdev_dtl_list, vml[c], t);
8597 			}
8598 
8599 			vdev_split(vml[c]);
8600 			if (error == 0)
8601 				spa_history_log_internal(spa, "detach", tx,
8602 				    "vdev=%s", vml[c]->vdev_path);
8603 
8604 			vdev_free(vml[c]);
8605 		}
8606 	}
8607 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
8608 	vdev_config_dirty(spa->spa_root_vdev);
8609 	spa->spa_config_splitting = NULL;
8610 	nvlist_free(nvl);
8611 	if (error == 0)
8612 		dmu_tx_commit(tx);
8613 	(void) spa_vdev_exit(spa, NULL, txg, 0);
8614 
8615 	if (zio_injection_enabled)
8616 		zio_handle_panic_injection(spa, FTAG, 3);
8617 
8618 	/* split is complete; log a history record */
8619 	spa_history_log_internal(newspa, "split", NULL,
8620 	    "from pool %s", spa_name(spa));
8621 
8622 	newspa->spa_is_splitting = B_FALSE;
8623 	kmem_free(vml, children * sizeof (vdev_t *));
8624 
8625 	/* if we're not going to mount the filesystems in userland, export */
8626 	if (exp)
8627 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8628 		    B_FALSE, B_FALSE);
8629 
8630 	return (error);
8631 
8632 out:
8633 	spa_unload(newspa);
8634 	spa_deactivate(newspa);
8635 	spa_remove(newspa);
8636 
8637 	txg = spa_vdev_config_enter(spa);
8638 
8639 	/* re-online all offlined disks */
8640 	for (c = 0; c < children; c++) {
8641 		if (vml[c] != NULL)
8642 			vml[c]->vdev_offline = B_FALSE;
8643 	}
8644 
8645 	/* restart initializing or trimming disks as necessary */
8646 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8647 	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8648 	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8649 
8650 	vdev_reopen(spa->spa_root_vdev);
8651 
8652 	nvlist_free(spa->spa_config_splitting);
8653 	spa->spa_config_splitting = NULL;
8654 	(void) spa_vdev_exit(spa, NULL, txg, error);
8655 
8656 	kmem_free(vml, children * sizeof (vdev_t *));
8657 	return (error);
8658 }
8659 
8660 /*
8661  * Find any device that's done replacing, or a vdev marked 'unspare' that's
8662  * currently spared, so we can detach it.
8663  */
8664 static vdev_t *
8665 spa_vdev_resilver_done_hunt(vdev_t *vd)
8666 {
8667 	vdev_t *newvd, *oldvd;
8668 
8669 	for (int c = 0; c < vd->vdev_children; c++) {
8670 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8671 		if (oldvd != NULL)
8672 			return (oldvd);
8673 	}
8674 
8675 	/*
8676 	 * Check for a completed replacement.  We always consider the first
8677 	 * vdev in the list to be the oldest vdev, and the last one to be
8678 	 * the newest (see spa_vdev_attach() for how that works).  In
8679 	 * the case where the newest vdev is faulted, we will not automatically
8680 	 * remove it after a resilver completes.  This is OK as it will require
8681 	 * user intervention to determine which disk the admin wishes to keep.
8682 	 */
8683 	if (vd->vdev_ops == &vdev_replacing_ops) {
8684 		ASSERT(vd->vdev_children > 1);
8685 
8686 		newvd = vd->vdev_child[vd->vdev_children - 1];
8687 		oldvd = vd->vdev_child[0];
8688 
8689 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8690 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8691 		    !vdev_dtl_required(oldvd))
8692 			return (oldvd);
8693 	}
8694 
8695 	/*
8696 	 * Check for a completed resilver with the 'unspare' flag set.
8697 	 * Also potentially update faulted state.
8698 	 */
8699 	if (vd->vdev_ops == &vdev_spare_ops) {
8700 		vdev_t *first = vd->vdev_child[0];
8701 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8702 
8703 		if (last->vdev_unspare) {
8704 			oldvd = first;
8705 			newvd = last;
8706 		} else if (first->vdev_unspare) {
8707 			oldvd = last;
8708 			newvd = first;
8709 		} else {
8710 			oldvd = NULL;
8711 		}
8712 
8713 		if (oldvd != NULL &&
8714 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
8715 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8716 		    !vdev_dtl_required(oldvd))
8717 			return (oldvd);
8718 
8719 		vdev_propagate_state(vd);
8720 
8721 		/*
8722 		 * If there are more than two spares attached to a disk,
8723 		 * and those spares are not required, then we want to
8724 		 * attempt to free them up now so that they can be used
8725 		 * by other pools.  Once we're back down to a single
8726 		 * disk+spare, we stop removing them.
8727 		 */
8728 		if (vd->vdev_children > 2) {
8729 			newvd = vd->vdev_child[1];
8730 
8731 			if (newvd->vdev_isspare && last->vdev_isspare &&
8732 			    vdev_dtl_empty(last, DTL_MISSING) &&
8733 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
8734 			    !vdev_dtl_required(newvd))
8735 				return (newvd);
8736 		}
8737 	}
8738 
8739 	return (NULL);
8740 }
8741 
8742 static void
8743 spa_vdev_resilver_done(spa_t *spa)
8744 {
8745 	vdev_t *vd, *pvd, *ppvd;
8746 	uint64_t guid, sguid, pguid, ppguid;
8747 
8748 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8749 
8750 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8751 		pvd = vd->vdev_parent;
8752 		ppvd = pvd->vdev_parent;
8753 		guid = vd->vdev_guid;
8754 		pguid = pvd->vdev_guid;
8755 		ppguid = ppvd->vdev_guid;
8756 		sguid = 0;
8757 		/*
8758 		 * If we have just finished replacing a hot spared device, then
8759 		 * we need to detach the parent's first child (the original hot
8760 		 * spare) as well.
8761 		 */
8762 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8763 		    ppvd->vdev_children == 2) {
8764 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8765 			sguid = ppvd->vdev_child[1]->vdev_guid;
8766 		}
8767 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8768 
8769 		spa_config_exit(spa, SCL_ALL, FTAG);
8770 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8771 			return;
8772 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8773 			return;
8774 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8775 	}
8776 
8777 	spa_config_exit(spa, SCL_ALL, FTAG);
8778 
8779 	/*
8780 	 * If a detach was not performed above replace waiters will not have
8781 	 * been notified.  In which case we must do so now.
8782 	 */
8783 	spa_notify_waiters(spa);
8784 }
8785 
8786 /*
8787  * Update the stored path or FRU for this vdev.
8788  */
8789 static int
8790 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8791     boolean_t ispath)
8792 {
8793 	vdev_t *vd;
8794 	boolean_t sync = B_FALSE;
8795 
8796 	ASSERT(spa_writeable(spa));
8797 
8798 	spa_vdev_state_enter(spa, SCL_ALL);
8799 
8800 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8801 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
8802 
8803 	if (!vd->vdev_ops->vdev_op_leaf)
8804 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8805 
8806 	if (ispath) {
8807 		if (strcmp(value, vd->vdev_path) != 0) {
8808 			spa_strfree(vd->vdev_path);
8809 			vd->vdev_path = spa_strdup(value);
8810 			sync = B_TRUE;
8811 		}
8812 	} else {
8813 		if (vd->vdev_fru == NULL) {
8814 			vd->vdev_fru = spa_strdup(value);
8815 			sync = B_TRUE;
8816 		} else if (strcmp(value, vd->vdev_fru) != 0) {
8817 			spa_strfree(vd->vdev_fru);
8818 			vd->vdev_fru = spa_strdup(value);
8819 			sync = B_TRUE;
8820 		}
8821 	}
8822 
8823 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8824 }
8825 
8826 int
8827 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8828 {
8829 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8830 }
8831 
8832 int
8833 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8834 {
8835 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8836 }
8837 
8838 /*
8839  * ==========================================================================
8840  * SPA Scanning
8841  * ==========================================================================
8842  */
8843 int
8844 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8845 {
8846 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8847 
8848 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8849 		return (SET_ERROR(EBUSY));
8850 
8851 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8852 }
8853 
8854 int
8855 spa_scan_stop(spa_t *spa)
8856 {
8857 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8858 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
8859 		return (SET_ERROR(EBUSY));
8860 
8861 	return (dsl_scan_cancel(spa->spa_dsl_pool));
8862 }
8863 
8864 int
8865 spa_scan(spa_t *spa, pool_scan_func_t func)
8866 {
8867 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8868 
8869 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8870 		return (SET_ERROR(ENOTSUP));
8871 
8872 	if (func == POOL_SCAN_RESILVER &&
8873 	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8874 		return (SET_ERROR(ENOTSUP));
8875 
8876 	/*
8877 	 * If a resilver was requested, but there is no DTL on a
8878 	 * writeable leaf device, we have nothing to do.
8879 	 */
8880 	if (func == POOL_SCAN_RESILVER &&
8881 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8882 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8883 		return (0);
8884 	}
8885 
8886 	if (func == POOL_SCAN_ERRORSCRUB &&
8887 	    !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8888 		return (SET_ERROR(ENOTSUP));
8889 
8890 	return (dsl_scan(spa->spa_dsl_pool, func));
8891 }
8892 
8893 /*
8894  * ==========================================================================
8895  * SPA async task processing
8896  * ==========================================================================
8897  */
8898 
8899 static void
8900 spa_async_remove(spa_t *spa, vdev_t *vd)
8901 {
8902 	if (vd->vdev_remove_wanted) {
8903 		vd->vdev_remove_wanted = B_FALSE;
8904 		vd->vdev_delayed_close = B_FALSE;
8905 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8906 
8907 		/*
8908 		 * We want to clear the stats, but we don't want to do a full
8909 		 * vdev_clear() as that will cause us to throw away
8910 		 * degraded/faulted state as well as attempt to reopen the
8911 		 * device, all of which is a waste.
8912 		 */
8913 		vd->vdev_stat.vs_read_errors = 0;
8914 		vd->vdev_stat.vs_write_errors = 0;
8915 		vd->vdev_stat.vs_checksum_errors = 0;
8916 
8917 		vdev_state_dirty(vd->vdev_top);
8918 
8919 		/* Tell userspace that the vdev is gone. */
8920 		zfs_post_remove(spa, vd);
8921 	}
8922 
8923 	for (int c = 0; c < vd->vdev_children; c++)
8924 		spa_async_remove(spa, vd->vdev_child[c]);
8925 }
8926 
8927 static void
8928 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8929 {
8930 	if (vd->vdev_fault_wanted) {
8931 		vd->vdev_fault_wanted = B_FALSE;
8932 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8933 		    VDEV_AUX_ERR_EXCEEDED);
8934 	}
8935 
8936 	for (int c = 0; c < vd->vdev_children; c++)
8937 		spa_async_fault_vdev(spa, vd->vdev_child[c]);
8938 }
8939 
8940 static void
8941 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8942 {
8943 	if (!spa->spa_autoexpand)
8944 		return;
8945 
8946 	for (int c = 0; c < vd->vdev_children; c++) {
8947 		vdev_t *cvd = vd->vdev_child[c];
8948 		spa_async_autoexpand(spa, cvd);
8949 	}
8950 
8951 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8952 		return;
8953 
8954 	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8955 }
8956 
8957 static __attribute__((noreturn)) void
8958 spa_async_thread(void *arg)
8959 {
8960 	spa_t *spa = (spa_t *)arg;
8961 	dsl_pool_t *dp = spa->spa_dsl_pool;
8962 	int tasks;
8963 
8964 	ASSERT(spa->spa_sync_on);
8965 
8966 	mutex_enter(&spa->spa_async_lock);
8967 	tasks = spa->spa_async_tasks;
8968 	spa->spa_async_tasks = 0;
8969 	mutex_exit(&spa->spa_async_lock);
8970 
8971 	/*
8972 	 * See if the config needs to be updated.
8973 	 */
8974 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8975 		uint64_t old_space, new_space;
8976 
8977 		mutex_enter(&spa_namespace_lock);
8978 		old_space = metaslab_class_get_space(spa_normal_class(spa));
8979 		old_space += metaslab_class_get_space(spa_special_class(spa));
8980 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8981 		old_space += metaslab_class_get_space(
8982 		    spa_embedded_log_class(spa));
8983 
8984 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8985 
8986 		new_space = metaslab_class_get_space(spa_normal_class(spa));
8987 		new_space += metaslab_class_get_space(spa_special_class(spa));
8988 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8989 		new_space += metaslab_class_get_space(
8990 		    spa_embedded_log_class(spa));
8991 		mutex_exit(&spa_namespace_lock);
8992 
8993 		/*
8994 		 * If the pool grew as a result of the config update,
8995 		 * then log an internal history event.
8996 		 */
8997 		if (new_space != old_space) {
8998 			spa_history_log_internal(spa, "vdev online", NULL,
8999 			    "pool '%s' size: %llu(+%llu)",
9000 			    spa_name(spa), (u_longlong_t)new_space,
9001 			    (u_longlong_t)(new_space - old_space));
9002 		}
9003 	}
9004 
9005 	/*
9006 	 * See if any devices need to be marked REMOVED.
9007 	 */
9008 	if (tasks & SPA_ASYNC_REMOVE) {
9009 		spa_vdev_state_enter(spa, SCL_NONE);
9010 		spa_async_remove(spa, spa->spa_root_vdev);
9011 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9012 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9013 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
9014 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9015 		(void) spa_vdev_state_exit(spa, NULL, 0);
9016 	}
9017 
9018 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9019 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9020 		spa_async_autoexpand(spa, spa->spa_root_vdev);
9021 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9022 	}
9023 
9024 	/*
9025 	 * See if any devices need to be marked faulted.
9026 	 */
9027 	if (tasks & SPA_ASYNC_FAULT_VDEV) {
9028 		spa_vdev_state_enter(spa, SCL_NONE);
9029 		spa_async_fault_vdev(spa, spa->spa_root_vdev);
9030 		(void) spa_vdev_state_exit(spa, NULL, 0);
9031 	}
9032 
9033 	/*
9034 	 * If any devices are done replacing, detach them.
9035 	 */
9036 	if (tasks & SPA_ASYNC_RESILVER_DONE ||
9037 	    tasks & SPA_ASYNC_REBUILD_DONE ||
9038 	    tasks & SPA_ASYNC_DETACH_SPARE) {
9039 		spa_vdev_resilver_done(spa);
9040 	}
9041 
9042 	/*
9043 	 * Kick off a resilver.
9044 	 */
9045 	if (tasks & SPA_ASYNC_RESILVER &&
9046 	    !vdev_rebuild_active(spa->spa_root_vdev) &&
9047 	    (!dsl_scan_resilvering(dp) ||
9048 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9049 		dsl_scan_restart_resilver(dp, 0);
9050 
9051 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9052 		mutex_enter(&spa_namespace_lock);
9053 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9054 		vdev_initialize_restart(spa->spa_root_vdev);
9055 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9056 		mutex_exit(&spa_namespace_lock);
9057 	}
9058 
9059 	if (tasks & SPA_ASYNC_TRIM_RESTART) {
9060 		mutex_enter(&spa_namespace_lock);
9061 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9062 		vdev_trim_restart(spa->spa_root_vdev);
9063 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9064 		mutex_exit(&spa_namespace_lock);
9065 	}
9066 
9067 	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9068 		mutex_enter(&spa_namespace_lock);
9069 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9070 		vdev_autotrim_restart(spa);
9071 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9072 		mutex_exit(&spa_namespace_lock);
9073 	}
9074 
9075 	/*
9076 	 * Kick off L2 cache whole device TRIM.
9077 	 */
9078 	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9079 		mutex_enter(&spa_namespace_lock);
9080 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9081 		vdev_trim_l2arc(spa);
9082 		spa_config_exit(spa, SCL_CONFIG, FTAG);
9083 		mutex_exit(&spa_namespace_lock);
9084 	}
9085 
9086 	/*
9087 	 * Kick off L2 cache rebuilding.
9088 	 */
9089 	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9090 		mutex_enter(&spa_namespace_lock);
9091 		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9092 		l2arc_spa_rebuild_start(spa);
9093 		spa_config_exit(spa, SCL_L2ARC, FTAG);
9094 		mutex_exit(&spa_namespace_lock);
9095 	}
9096 
9097 	/*
9098 	 * Let the world know that we're done.
9099 	 */
9100 	mutex_enter(&spa->spa_async_lock);
9101 	spa->spa_async_thread = NULL;
9102 	cv_broadcast(&spa->spa_async_cv);
9103 	mutex_exit(&spa->spa_async_lock);
9104 	thread_exit();
9105 }
9106 
9107 void
9108 spa_async_suspend(spa_t *spa)
9109 {
9110 	mutex_enter(&spa->spa_async_lock);
9111 	spa->spa_async_suspended++;
9112 	while (spa->spa_async_thread != NULL)
9113 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9114 	mutex_exit(&spa->spa_async_lock);
9115 
9116 	spa_vdev_remove_suspend(spa);
9117 
9118 	zthr_t *condense_thread = spa->spa_condense_zthr;
9119 	if (condense_thread != NULL)
9120 		zthr_cancel(condense_thread);
9121 
9122 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9123 	if (raidz_expand_thread != NULL)
9124 		zthr_cancel(raidz_expand_thread);
9125 
9126 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9127 	if (discard_thread != NULL)
9128 		zthr_cancel(discard_thread);
9129 
9130 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9131 	if (ll_delete_thread != NULL)
9132 		zthr_cancel(ll_delete_thread);
9133 
9134 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9135 	if (ll_condense_thread != NULL)
9136 		zthr_cancel(ll_condense_thread);
9137 }
9138 
9139 void
9140 spa_async_resume(spa_t *spa)
9141 {
9142 	mutex_enter(&spa->spa_async_lock);
9143 	ASSERT(spa->spa_async_suspended != 0);
9144 	spa->spa_async_suspended--;
9145 	mutex_exit(&spa->spa_async_lock);
9146 	spa_restart_removal(spa);
9147 
9148 	zthr_t *condense_thread = spa->spa_condense_zthr;
9149 	if (condense_thread != NULL)
9150 		zthr_resume(condense_thread);
9151 
9152 	zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9153 	if (raidz_expand_thread != NULL)
9154 		zthr_resume(raidz_expand_thread);
9155 
9156 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9157 	if (discard_thread != NULL)
9158 		zthr_resume(discard_thread);
9159 
9160 	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9161 	if (ll_delete_thread != NULL)
9162 		zthr_resume(ll_delete_thread);
9163 
9164 	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9165 	if (ll_condense_thread != NULL)
9166 		zthr_resume(ll_condense_thread);
9167 }
9168 
9169 static boolean_t
9170 spa_async_tasks_pending(spa_t *spa)
9171 {
9172 	uint_t non_config_tasks;
9173 	uint_t config_task;
9174 	boolean_t config_task_suspended;
9175 
9176 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9177 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9178 	if (spa->spa_ccw_fail_time == 0) {
9179 		config_task_suspended = B_FALSE;
9180 	} else {
9181 		config_task_suspended =
9182 		    (gethrtime() - spa->spa_ccw_fail_time) <
9183 		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9184 	}
9185 
9186 	return (non_config_tasks || (config_task && !config_task_suspended));
9187 }
9188 
9189 static void
9190 spa_async_dispatch(spa_t *spa)
9191 {
9192 	mutex_enter(&spa->spa_async_lock);
9193 	if (spa_async_tasks_pending(spa) &&
9194 	    !spa->spa_async_suspended &&
9195 	    spa->spa_async_thread == NULL)
9196 		spa->spa_async_thread = thread_create(NULL, 0,
9197 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9198 	mutex_exit(&spa->spa_async_lock);
9199 }
9200 
9201 void
9202 spa_async_request(spa_t *spa, int task)
9203 {
9204 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9205 	mutex_enter(&spa->spa_async_lock);
9206 	spa->spa_async_tasks |= task;
9207 	mutex_exit(&spa->spa_async_lock);
9208 }
9209 
9210 int
9211 spa_async_tasks(spa_t *spa)
9212 {
9213 	return (spa->spa_async_tasks);
9214 }
9215 
9216 /*
9217  * ==========================================================================
9218  * SPA syncing routines
9219  * ==========================================================================
9220  */
9221 
9222 
9223 static int
9224 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9225     dmu_tx_t *tx)
9226 {
9227 	bpobj_t *bpo = arg;
9228 	bpobj_enqueue(bpo, bp, bp_freed, tx);
9229 	return (0);
9230 }
9231 
9232 int
9233 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9234 {
9235 	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9236 }
9237 
9238 int
9239 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9240 {
9241 	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9242 }
9243 
9244 static int
9245 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9246 {
9247 	zio_t *pio = arg;
9248 
9249 	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9250 	    pio->io_flags));
9251 	return (0);
9252 }
9253 
9254 static int
9255 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9256     dmu_tx_t *tx)
9257 {
9258 	ASSERT(!bp_freed);
9259 	return (spa_free_sync_cb(arg, bp, tx));
9260 }
9261 
9262 /*
9263  * Note: this simple function is not inlined to make it easier to dtrace the
9264  * amount of time spent syncing frees.
9265  */
9266 static void
9267 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9268 {
9269 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9270 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9271 	VERIFY(zio_wait(zio) == 0);
9272 }
9273 
9274 /*
9275  * Note: this simple function is not inlined to make it easier to dtrace the
9276  * amount of time spent syncing deferred frees.
9277  */
9278 static void
9279 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9280 {
9281 	if (spa_sync_pass(spa) != 1)
9282 		return;
9283 
9284 	/*
9285 	 * Note:
9286 	 * If the log space map feature is active, we stop deferring
9287 	 * frees to the next TXG and therefore running this function
9288 	 * would be considered a no-op as spa_deferred_bpobj should
9289 	 * not have any entries.
9290 	 *
9291 	 * That said we run this function anyway (instead of returning
9292 	 * immediately) for the edge-case scenario where we just
9293 	 * activated the log space map feature in this TXG but we have
9294 	 * deferred frees from the previous TXG.
9295 	 */
9296 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
9297 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9298 	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9299 	VERIFY0(zio_wait(zio));
9300 }
9301 
9302 static void
9303 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9304 {
9305 	char *packed = NULL;
9306 	size_t bufsize;
9307 	size_t nvsize = 0;
9308 	dmu_buf_t *db;
9309 
9310 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9311 
9312 	/*
9313 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9314 	 * information.  This avoids the dmu_buf_will_dirty() path and
9315 	 * saves us a pre-read to get data we don't actually care about.
9316 	 */
9317 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9318 	packed = vmem_alloc(bufsize, KM_SLEEP);
9319 
9320 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9321 	    KM_SLEEP) == 0);
9322 	memset(packed + nvsize, 0, bufsize - nvsize);
9323 
9324 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9325 
9326 	vmem_free(packed, bufsize);
9327 
9328 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9329 	dmu_buf_will_dirty(db, tx);
9330 	*(uint64_t *)db->db_data = nvsize;
9331 	dmu_buf_rele(db, FTAG);
9332 }
9333 
9334 static void
9335 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9336     const char *config, const char *entry)
9337 {
9338 	nvlist_t *nvroot;
9339 	nvlist_t **list;
9340 	int i;
9341 
9342 	if (!sav->sav_sync)
9343 		return;
9344 
9345 	/*
9346 	 * Update the MOS nvlist describing the list of available devices.
9347 	 * spa_validate_aux() will have already made sure this nvlist is
9348 	 * valid and the vdevs are labeled appropriately.
9349 	 */
9350 	if (sav->sav_object == 0) {
9351 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9352 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9353 		    sizeof (uint64_t), tx);
9354 		VERIFY(zap_update(spa->spa_meta_objset,
9355 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9356 		    &sav->sav_object, tx) == 0);
9357 	}
9358 
9359 	nvroot = fnvlist_alloc();
9360 	if (sav->sav_count == 0) {
9361 		fnvlist_add_nvlist_array(nvroot, config,
9362 		    (const nvlist_t * const *)NULL, 0);
9363 	} else {
9364 		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9365 		for (i = 0; i < sav->sav_count; i++)
9366 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9367 			    B_FALSE, VDEV_CONFIG_L2CACHE);
9368 		fnvlist_add_nvlist_array(nvroot, config,
9369 		    (const nvlist_t * const *)list, sav->sav_count);
9370 		for (i = 0; i < sav->sav_count; i++)
9371 			nvlist_free(list[i]);
9372 		kmem_free(list, sav->sav_count * sizeof (void *));
9373 	}
9374 
9375 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9376 	nvlist_free(nvroot);
9377 
9378 	sav->sav_sync = B_FALSE;
9379 }
9380 
9381 /*
9382  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9383  * The all-vdev ZAP must be empty.
9384  */
9385 static void
9386 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9387 {
9388 	spa_t *spa = vd->vdev_spa;
9389 
9390 	if (vd->vdev_root_zap != 0 &&
9391 	    spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9392 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9393 		    vd->vdev_root_zap, tx));
9394 	}
9395 	if (vd->vdev_top_zap != 0) {
9396 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9397 		    vd->vdev_top_zap, tx));
9398 	}
9399 	if (vd->vdev_leaf_zap != 0) {
9400 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9401 		    vd->vdev_leaf_zap, tx));
9402 	}
9403 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
9404 		spa_avz_build(vd->vdev_child[i], avz, tx);
9405 	}
9406 }
9407 
9408 static void
9409 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9410 {
9411 	nvlist_t *config;
9412 
9413 	/*
9414 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9415 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
9416 	 * Similarly, if the pool is being assembled (e.g. after a split), we
9417 	 * need to rebuild the AVZ although the config may not be dirty.
9418 	 */
9419 	if (list_is_empty(&spa->spa_config_dirty_list) &&
9420 	    spa->spa_avz_action == AVZ_ACTION_NONE)
9421 		return;
9422 
9423 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9424 
9425 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9426 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9427 	    spa->spa_all_vdev_zaps != 0);
9428 
9429 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9430 		/* Make and build the new AVZ */
9431 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
9432 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9433 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9434 
9435 		/* Diff old AVZ with new one */
9436 		zap_cursor_t zc;
9437 		zap_attribute_t za;
9438 
9439 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9440 		    spa->spa_all_vdev_zaps);
9441 		    zap_cursor_retrieve(&zc, &za) == 0;
9442 		    zap_cursor_advance(&zc)) {
9443 			uint64_t vdzap = za.za_first_integer;
9444 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9445 			    vdzap) == ENOENT) {
9446 				/*
9447 				 * ZAP is listed in old AVZ but not in new one;
9448 				 * destroy it
9449 				 */
9450 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9451 				    tx));
9452 			}
9453 		}
9454 
9455 		zap_cursor_fini(&zc);
9456 
9457 		/* Destroy the old AVZ */
9458 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9459 		    spa->spa_all_vdev_zaps, tx));
9460 
9461 		/* Replace the old AVZ in the dir obj with the new one */
9462 		VERIFY0(zap_update(spa->spa_meta_objset,
9463 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9464 		    sizeof (new_avz), 1, &new_avz, tx));
9465 
9466 		spa->spa_all_vdev_zaps = new_avz;
9467 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9468 		zap_cursor_t zc;
9469 		zap_attribute_t za;
9470 
9471 		/* Walk through the AVZ and destroy all listed ZAPs */
9472 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
9473 		    spa->spa_all_vdev_zaps);
9474 		    zap_cursor_retrieve(&zc, &za) == 0;
9475 		    zap_cursor_advance(&zc)) {
9476 			uint64_t zap = za.za_first_integer;
9477 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9478 		}
9479 
9480 		zap_cursor_fini(&zc);
9481 
9482 		/* Destroy and unlink the AVZ itself */
9483 		VERIFY0(zap_destroy(spa->spa_meta_objset,
9484 		    spa->spa_all_vdev_zaps, tx));
9485 		VERIFY0(zap_remove(spa->spa_meta_objset,
9486 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9487 		spa->spa_all_vdev_zaps = 0;
9488 	}
9489 
9490 	if (spa->spa_all_vdev_zaps == 0) {
9491 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9492 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9493 		    DMU_POOL_VDEV_ZAP_MAP, tx);
9494 	}
9495 	spa->spa_avz_action = AVZ_ACTION_NONE;
9496 
9497 	/* Create ZAPs for vdevs that don't have them. */
9498 	vdev_construct_zaps(spa->spa_root_vdev, tx);
9499 
9500 	config = spa_config_generate(spa, spa->spa_root_vdev,
9501 	    dmu_tx_get_txg(tx), B_FALSE);
9502 
9503 	/*
9504 	 * If we're upgrading the spa version then make sure that
9505 	 * the config object gets updated with the correct version.
9506 	 */
9507 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9508 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9509 		    spa->spa_uberblock.ub_version);
9510 
9511 	spa_config_exit(spa, SCL_STATE, FTAG);
9512 
9513 	nvlist_free(spa->spa_config_syncing);
9514 	spa->spa_config_syncing = config;
9515 
9516 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9517 }
9518 
9519 static void
9520 spa_sync_version(void *arg, dmu_tx_t *tx)
9521 {
9522 	uint64_t *versionp = arg;
9523 	uint64_t version = *versionp;
9524 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9525 
9526 	/*
9527 	 * Setting the version is special cased when first creating the pool.
9528 	 */
9529 	ASSERT(tx->tx_txg != TXG_INITIAL);
9530 
9531 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9532 	ASSERT(version >= spa_version(spa));
9533 
9534 	spa->spa_uberblock.ub_version = version;
9535 	vdev_config_dirty(spa->spa_root_vdev);
9536 	spa_history_log_internal(spa, "set", tx, "version=%lld",
9537 	    (longlong_t)version);
9538 }
9539 
9540 /*
9541  * Set zpool properties.
9542  */
9543 static void
9544 spa_sync_props(void *arg, dmu_tx_t *tx)
9545 {
9546 	nvlist_t *nvp = arg;
9547 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9548 	objset_t *mos = spa->spa_meta_objset;
9549 	nvpair_t *elem = NULL;
9550 
9551 	mutex_enter(&spa->spa_props_lock);
9552 
9553 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
9554 		uint64_t intval;
9555 		const char *strval, *fname;
9556 		zpool_prop_t prop;
9557 		const char *propname;
9558 		const char *elemname = nvpair_name(elem);
9559 		zprop_type_t proptype;
9560 		spa_feature_t fid;
9561 
9562 		switch (prop = zpool_name_to_prop(elemname)) {
9563 		case ZPOOL_PROP_VERSION:
9564 			intval = fnvpair_value_uint64(elem);
9565 			/*
9566 			 * The version is synced separately before other
9567 			 * properties and should be correct by now.
9568 			 */
9569 			ASSERT3U(spa_version(spa), >=, intval);
9570 			break;
9571 
9572 		case ZPOOL_PROP_ALTROOT:
9573 			/*
9574 			 * 'altroot' is a non-persistent property. It should
9575 			 * have been set temporarily at creation or import time.
9576 			 */
9577 			ASSERT(spa->spa_root != NULL);
9578 			break;
9579 
9580 		case ZPOOL_PROP_READONLY:
9581 		case ZPOOL_PROP_CACHEFILE:
9582 			/*
9583 			 * 'readonly' and 'cachefile' are also non-persistent
9584 			 * properties.
9585 			 */
9586 			break;
9587 		case ZPOOL_PROP_COMMENT:
9588 			strval = fnvpair_value_string(elem);
9589 			if (spa->spa_comment != NULL)
9590 				spa_strfree(spa->spa_comment);
9591 			spa->spa_comment = spa_strdup(strval);
9592 			/*
9593 			 * We need to dirty the configuration on all the vdevs
9594 			 * so that their labels get updated.  We also need to
9595 			 * update the cache file to keep it in sync with the
9596 			 * MOS version. It's unnecessary to do this for pool
9597 			 * creation since the vdev's configuration has already
9598 			 * been dirtied.
9599 			 */
9600 			if (tx->tx_txg != TXG_INITIAL) {
9601 				vdev_config_dirty(spa->spa_root_vdev);
9602 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9603 			}
9604 			spa_history_log_internal(spa, "set", tx,
9605 			    "%s=%s", elemname, strval);
9606 			break;
9607 		case ZPOOL_PROP_COMPATIBILITY:
9608 			strval = fnvpair_value_string(elem);
9609 			if (spa->spa_compatibility != NULL)
9610 				spa_strfree(spa->spa_compatibility);
9611 			spa->spa_compatibility = spa_strdup(strval);
9612 			/*
9613 			 * Dirty the configuration on vdevs as above.
9614 			 */
9615 			if (tx->tx_txg != TXG_INITIAL) {
9616 				vdev_config_dirty(spa->spa_root_vdev);
9617 				spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9618 			}
9619 
9620 			spa_history_log_internal(spa, "set", tx,
9621 			    "%s=%s", nvpair_name(elem), strval);
9622 			break;
9623 
9624 		case ZPOOL_PROP_INVAL:
9625 			if (zpool_prop_feature(elemname)) {
9626 				fname = strchr(elemname, '@') + 1;
9627 				VERIFY0(zfeature_lookup_name(fname, &fid));
9628 
9629 				spa_feature_enable(spa, fid, tx);
9630 				spa_history_log_internal(spa, "set", tx,
9631 				    "%s=enabled", elemname);
9632 				break;
9633 			} else if (!zfs_prop_user(elemname)) {
9634 				ASSERT(zpool_prop_feature(elemname));
9635 				break;
9636 			}
9637 			zfs_fallthrough;
9638 		default:
9639 			/*
9640 			 * Set pool property values in the poolprops mos object.
9641 			 */
9642 			if (spa->spa_pool_props_object == 0) {
9643 				spa->spa_pool_props_object =
9644 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
9645 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9646 				    tx);
9647 			}
9648 
9649 			/* normalize the property name */
9650 			if (prop == ZPOOL_PROP_INVAL) {
9651 				propname = elemname;
9652 				proptype = PROP_TYPE_STRING;
9653 			} else {
9654 				propname = zpool_prop_to_name(prop);
9655 				proptype = zpool_prop_get_type(prop);
9656 			}
9657 
9658 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
9659 				ASSERT(proptype == PROP_TYPE_STRING);
9660 				strval = fnvpair_value_string(elem);
9661 				VERIFY0(zap_update(mos,
9662 				    spa->spa_pool_props_object, propname,
9663 				    1, strlen(strval) + 1, strval, tx));
9664 				spa_history_log_internal(spa, "set", tx,
9665 				    "%s=%s", elemname, strval);
9666 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9667 				intval = fnvpair_value_uint64(elem);
9668 
9669 				if (proptype == PROP_TYPE_INDEX) {
9670 					const char *unused;
9671 					VERIFY0(zpool_prop_index_to_string(
9672 					    prop, intval, &unused));
9673 				}
9674 				VERIFY0(zap_update(mos,
9675 				    spa->spa_pool_props_object, propname,
9676 				    8, 1, &intval, tx));
9677 				spa_history_log_internal(spa, "set", tx,
9678 				    "%s=%lld", elemname,
9679 				    (longlong_t)intval);
9680 
9681 				switch (prop) {
9682 				case ZPOOL_PROP_DELEGATION:
9683 					spa->spa_delegation = intval;
9684 					break;
9685 				case ZPOOL_PROP_BOOTFS:
9686 					spa->spa_bootfs = intval;
9687 					break;
9688 				case ZPOOL_PROP_FAILUREMODE:
9689 					spa->spa_failmode = intval;
9690 					break;
9691 				case ZPOOL_PROP_AUTOTRIM:
9692 					spa->spa_autotrim = intval;
9693 					spa_async_request(spa,
9694 					    SPA_ASYNC_AUTOTRIM_RESTART);
9695 					break;
9696 				case ZPOOL_PROP_AUTOEXPAND:
9697 					spa->spa_autoexpand = intval;
9698 					if (tx->tx_txg != TXG_INITIAL)
9699 						spa_async_request(spa,
9700 						    SPA_ASYNC_AUTOEXPAND);
9701 					break;
9702 				case ZPOOL_PROP_MULTIHOST:
9703 					spa->spa_multihost = intval;
9704 					break;
9705 				case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9706 					spa->spa_dedup_table_quota = intval;
9707 					break;
9708 				default:
9709 					break;
9710 				}
9711 			} else {
9712 				ASSERT(0); /* not allowed */
9713 			}
9714 		}
9715 
9716 	}
9717 
9718 	mutex_exit(&spa->spa_props_lock);
9719 }
9720 
9721 /*
9722  * Perform one-time upgrade on-disk changes.  spa_version() does not
9723  * reflect the new version this txg, so there must be no changes this
9724  * txg to anything that the upgrade code depends on after it executes.
9725  * Therefore this must be called after dsl_pool_sync() does the sync
9726  * tasks.
9727  */
9728 static void
9729 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9730 {
9731 	if (spa_sync_pass(spa) != 1)
9732 		return;
9733 
9734 	dsl_pool_t *dp = spa->spa_dsl_pool;
9735 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9736 
9737 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9738 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9739 		dsl_pool_create_origin(dp, tx);
9740 
9741 		/* Keeping the origin open increases spa_minref */
9742 		spa->spa_minref += 3;
9743 	}
9744 
9745 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9746 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9747 		dsl_pool_upgrade_clones(dp, tx);
9748 	}
9749 
9750 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9751 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9752 		dsl_pool_upgrade_dir_clones(dp, tx);
9753 
9754 		/* Keeping the freedir open increases spa_minref */
9755 		spa->spa_minref += 3;
9756 	}
9757 
9758 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9759 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9760 		spa_feature_create_zap_objects(spa, tx);
9761 	}
9762 
9763 	/*
9764 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9765 	 * when possibility to use lz4 compression for metadata was added
9766 	 * Old pools that have this feature enabled must be upgraded to have
9767 	 * this feature active
9768 	 */
9769 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9770 		boolean_t lz4_en = spa_feature_is_enabled(spa,
9771 		    SPA_FEATURE_LZ4_COMPRESS);
9772 		boolean_t lz4_ac = spa_feature_is_active(spa,
9773 		    SPA_FEATURE_LZ4_COMPRESS);
9774 
9775 		if (lz4_en && !lz4_ac)
9776 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9777 	}
9778 
9779 	/*
9780 	 * If we haven't written the salt, do so now.  Note that the
9781 	 * feature may not be activated yet, but that's fine since
9782 	 * the presence of this ZAP entry is backwards compatible.
9783 	 */
9784 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9785 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9786 		VERIFY0(zap_add(spa->spa_meta_objset,
9787 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9788 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
9789 		    spa->spa_cksum_salt.zcs_bytes, tx));
9790 	}
9791 
9792 	rrw_exit(&dp->dp_config_rwlock, FTAG);
9793 }
9794 
9795 static void
9796 vdev_indirect_state_sync_verify(vdev_t *vd)
9797 {
9798 	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9799 	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9800 
9801 	if (vd->vdev_ops == &vdev_indirect_ops) {
9802 		ASSERT(vim != NULL);
9803 		ASSERT(vib != NULL);
9804 	}
9805 
9806 	uint64_t obsolete_sm_object = 0;
9807 	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9808 	if (obsolete_sm_object != 0) {
9809 		ASSERT(vd->vdev_obsolete_sm != NULL);
9810 		ASSERT(vd->vdev_removing ||
9811 		    vd->vdev_ops == &vdev_indirect_ops);
9812 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9813 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9814 		ASSERT3U(obsolete_sm_object, ==,
9815 		    space_map_object(vd->vdev_obsolete_sm));
9816 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9817 		    space_map_allocated(vd->vdev_obsolete_sm));
9818 	}
9819 	ASSERT(vd->vdev_obsolete_segments != NULL);
9820 
9821 	/*
9822 	 * Since frees / remaps to an indirect vdev can only
9823 	 * happen in syncing context, the obsolete segments
9824 	 * tree must be empty when we start syncing.
9825 	 */
9826 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9827 }
9828 
9829 /*
9830  * Set the top-level vdev's max queue depth. Evaluate each top-level's
9831  * async write queue depth in case it changed. The max queue depth will
9832  * not change in the middle of syncing out this txg.
9833  */
9834 static void
9835 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9836 {
9837 	ASSERT(spa_writeable(spa));
9838 
9839 	vdev_t *rvd = spa->spa_root_vdev;
9840 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9841 	    zfs_vdev_queue_depth_pct / 100;
9842 	metaslab_class_t *normal = spa_normal_class(spa);
9843 	metaslab_class_t *special = spa_special_class(spa);
9844 	metaslab_class_t *dedup = spa_dedup_class(spa);
9845 
9846 	uint64_t slots_per_allocator = 0;
9847 	for (int c = 0; c < rvd->vdev_children; c++) {
9848 		vdev_t *tvd = rvd->vdev_child[c];
9849 
9850 		metaslab_group_t *mg = tvd->vdev_mg;
9851 		if (mg == NULL || !metaslab_group_initialized(mg))
9852 			continue;
9853 
9854 		metaslab_class_t *mc = mg->mg_class;
9855 		if (mc != normal && mc != special && mc != dedup)
9856 			continue;
9857 
9858 		/*
9859 		 * It is safe to do a lock-free check here because only async
9860 		 * allocations look at mg_max_alloc_queue_depth, and async
9861 		 * allocations all happen from spa_sync().
9862 		 */
9863 		for (int i = 0; i < mg->mg_allocators; i++) {
9864 			ASSERT0(zfs_refcount_count(
9865 			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9866 		}
9867 		mg->mg_max_alloc_queue_depth = max_queue_depth;
9868 
9869 		for (int i = 0; i < mg->mg_allocators; i++) {
9870 			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9871 			    zfs_vdev_def_queue_depth;
9872 		}
9873 		slots_per_allocator += zfs_vdev_def_queue_depth;
9874 	}
9875 
9876 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9877 		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9878 		    mca_alloc_slots));
9879 		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9880 		    mca_alloc_slots));
9881 		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9882 		    mca_alloc_slots));
9883 		normal->mc_allocator[i].mca_alloc_max_slots =
9884 		    slots_per_allocator;
9885 		special->mc_allocator[i].mca_alloc_max_slots =
9886 		    slots_per_allocator;
9887 		dedup->mc_allocator[i].mca_alloc_max_slots =
9888 		    slots_per_allocator;
9889 	}
9890 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9891 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9892 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9893 }
9894 
9895 static void
9896 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9897 {
9898 	ASSERT(spa_writeable(spa));
9899 
9900 	vdev_t *rvd = spa->spa_root_vdev;
9901 	for (int c = 0; c < rvd->vdev_children; c++) {
9902 		vdev_t *vd = rvd->vdev_child[c];
9903 		vdev_indirect_state_sync_verify(vd);
9904 
9905 		if (vdev_indirect_should_condense(vd)) {
9906 			spa_condense_indirect_start_sync(vd, tx);
9907 			break;
9908 		}
9909 	}
9910 }
9911 
9912 static void
9913 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9914 {
9915 	objset_t *mos = spa->spa_meta_objset;
9916 	dsl_pool_t *dp = spa->spa_dsl_pool;
9917 	uint64_t txg = tx->tx_txg;
9918 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9919 
9920 	do {
9921 		int pass = ++spa->spa_sync_pass;
9922 
9923 		spa_sync_config_object(spa, tx);
9924 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9925 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9926 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9927 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9928 		spa_errlog_sync(spa, txg);
9929 		dsl_pool_sync(dp, txg);
9930 
9931 		if (pass < zfs_sync_pass_deferred_free ||
9932 		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9933 			/*
9934 			 * If the log space map feature is active we don't
9935 			 * care about deferred frees and the deferred bpobj
9936 			 * as the log space map should effectively have the
9937 			 * same results (i.e. appending only to one object).
9938 			 */
9939 			spa_sync_frees(spa, free_bpl, tx);
9940 		} else {
9941 			/*
9942 			 * We can not defer frees in pass 1, because
9943 			 * we sync the deferred frees later in pass 1.
9944 			 */
9945 			ASSERT3U(pass, >, 1);
9946 			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9947 			    &spa->spa_deferred_bpobj, tx);
9948 		}
9949 
9950 		brt_sync(spa, txg);
9951 		ddt_sync(spa, txg);
9952 		dsl_scan_sync(dp, tx);
9953 		dsl_errorscrub_sync(dp, tx);
9954 		svr_sync(spa, tx);
9955 		spa_sync_upgrades(spa, tx);
9956 
9957 		spa_flush_metaslabs(spa, tx);
9958 
9959 		vdev_t *vd = NULL;
9960 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9961 		    != NULL)
9962 			vdev_sync(vd, txg);
9963 
9964 		if (pass == 1) {
9965 			/*
9966 			 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9967 			 * the config. If that happens, this txg should not
9968 			 * be a no-op. So we must sync the config to the MOS
9969 			 * before checking for no-op.
9970 			 *
9971 			 * Note that when the config is dirty, it will
9972 			 * be written to the MOS (i.e. the MOS will be
9973 			 * dirtied) every time we call spa_sync_config_object()
9974 			 * in this txg.  Therefore we can't call this after
9975 			 * dsl_pool_sync() every pass, because it would
9976 			 * prevent us from converging, since we'd dirty
9977 			 * the MOS every pass.
9978 			 *
9979 			 * Sync tasks can only be processed in pass 1, so
9980 			 * there's no need to do this in later passes.
9981 			 */
9982 			spa_sync_config_object(spa, tx);
9983 		}
9984 
9985 		/*
9986 		 * Note: We need to check if the MOS is dirty because we could
9987 		 * have marked the MOS dirty without updating the uberblock
9988 		 * (e.g. if we have sync tasks but no dirty user data). We need
9989 		 * to check the uberblock's rootbp because it is updated if we
9990 		 * have synced out dirty data (though in this case the MOS will
9991 		 * most likely also be dirty due to second order effects, we
9992 		 * don't want to rely on that here).
9993 		 */
9994 		if (pass == 1 &&
9995 		    BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9996 		    !dmu_objset_is_dirty(mos, txg)) {
9997 			/*
9998 			 * Nothing changed on the first pass, therefore this
9999 			 * TXG is a no-op. Avoid syncing deferred frees, so
10000 			 * that we can keep this TXG as a no-op.
10001 			 */
10002 			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10003 			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10004 			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10005 			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10006 			break;
10007 		}
10008 
10009 		spa_sync_deferred_frees(spa, tx);
10010 	} while (dmu_objset_is_dirty(mos, txg));
10011 }
10012 
10013 /*
10014  * Rewrite the vdev configuration (which includes the uberblock) to
10015  * commit the transaction group.
10016  *
10017  * If there are no dirty vdevs, we sync the uberblock to a few random
10018  * top-level vdevs that are known to be visible in the config cache
10019  * (see spa_vdev_add() for a complete description). If there *are* dirty
10020  * vdevs, sync the uberblock to all vdevs.
10021  */
10022 static void
10023 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10024 {
10025 	vdev_t *rvd = spa->spa_root_vdev;
10026 	uint64_t txg = tx->tx_txg;
10027 
10028 	for (;;) {
10029 		int error = 0;
10030 
10031 		/*
10032 		 * We hold SCL_STATE to prevent vdev open/close/etc.
10033 		 * while we're attempting to write the vdev labels.
10034 		 */
10035 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10036 
10037 		if (list_is_empty(&spa->spa_config_dirty_list)) {
10038 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10039 			int svdcount = 0;
10040 			int children = rvd->vdev_children;
10041 			int c0 = random_in_range(children);
10042 
10043 			for (int c = 0; c < children; c++) {
10044 				vdev_t *vd =
10045 				    rvd->vdev_child[(c0 + c) % children];
10046 
10047 				/* Stop when revisiting the first vdev */
10048 				if (c > 0 && svd[0] == vd)
10049 					break;
10050 
10051 				if (vd->vdev_ms_array == 0 ||
10052 				    vd->vdev_islog ||
10053 				    !vdev_is_concrete(vd))
10054 					continue;
10055 
10056 				svd[svdcount++] = vd;
10057 				if (svdcount == SPA_SYNC_MIN_VDEVS)
10058 					break;
10059 			}
10060 			error = vdev_config_sync(svd, svdcount, txg);
10061 		} else {
10062 			error = vdev_config_sync(rvd->vdev_child,
10063 			    rvd->vdev_children, txg);
10064 		}
10065 
10066 		if (error == 0)
10067 			spa->spa_last_synced_guid = rvd->vdev_guid;
10068 
10069 		spa_config_exit(spa, SCL_STATE, FTAG);
10070 
10071 		if (error == 0)
10072 			break;
10073 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10074 		zio_resume_wait(spa);
10075 	}
10076 }
10077 
10078 /*
10079  * Sync the specified transaction group.  New blocks may be dirtied as
10080  * part of the process, so we iterate until it converges.
10081  */
10082 void
10083 spa_sync(spa_t *spa, uint64_t txg)
10084 {
10085 	vdev_t *vd = NULL;
10086 
10087 	VERIFY(spa_writeable(spa));
10088 
10089 	/*
10090 	 * Wait for i/os issued in open context that need to complete
10091 	 * before this txg syncs.
10092 	 */
10093 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10094 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10095 	    ZIO_FLAG_CANFAIL);
10096 
10097 	/*
10098 	 * Now that there can be no more cloning in this transaction group,
10099 	 * but we are still before issuing frees, we can process pending BRT
10100 	 * updates.
10101 	 */
10102 	brt_pending_apply(spa, txg);
10103 
10104 	/*
10105 	 * Lock out configuration changes.
10106 	 */
10107 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10108 
10109 	spa->spa_syncing_txg = txg;
10110 	spa->spa_sync_pass = 0;
10111 
10112 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10113 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10114 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10115 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10116 	}
10117 
10118 	/*
10119 	 * If there are any pending vdev state changes, convert them
10120 	 * into config changes that go out with this transaction group.
10121 	 */
10122 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10123 	while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10124 		/* Avoid holding the write lock unless actually necessary */
10125 		if (vd->vdev_aux == NULL) {
10126 			vdev_state_clean(vd);
10127 			vdev_config_dirty(vd);
10128 			continue;
10129 		}
10130 		/*
10131 		 * We need the write lock here because, for aux vdevs,
10132 		 * calling vdev_config_dirty() modifies sav_config.
10133 		 * This is ugly and will become unnecessary when we
10134 		 * eliminate the aux vdev wart by integrating all vdevs
10135 		 * into the root vdev tree.
10136 		 */
10137 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10138 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10139 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10140 			vdev_state_clean(vd);
10141 			vdev_config_dirty(vd);
10142 		}
10143 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10144 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10145 	}
10146 	spa_config_exit(spa, SCL_STATE, FTAG);
10147 
10148 	dsl_pool_t *dp = spa->spa_dsl_pool;
10149 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10150 
10151 	spa->spa_sync_starttime = gethrtime();
10152 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10153 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10154 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10155 	    NSEC_TO_TICK(spa->spa_deadman_synctime));
10156 
10157 	/*
10158 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10159 	 * set spa_deflate if we have no raid-z vdevs.
10160 	 */
10161 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10162 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10163 		vdev_t *rvd = spa->spa_root_vdev;
10164 
10165 		int i;
10166 		for (i = 0; i < rvd->vdev_children; i++) {
10167 			vd = rvd->vdev_child[i];
10168 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10169 				break;
10170 		}
10171 		if (i == rvd->vdev_children) {
10172 			spa->spa_deflate = TRUE;
10173 			VERIFY0(zap_add(spa->spa_meta_objset,
10174 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10175 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10176 		}
10177 	}
10178 
10179 	spa_sync_adjust_vdev_max_queue_depth(spa);
10180 
10181 	spa_sync_condense_indirect(spa, tx);
10182 
10183 	spa_sync_iterate_to_convergence(spa, tx);
10184 
10185 #ifdef ZFS_DEBUG
10186 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
10187 	/*
10188 	 * Make sure that the number of ZAPs for all the vdevs matches
10189 	 * the number of ZAPs in the per-vdev ZAP list. This only gets
10190 	 * called if the config is dirty; otherwise there may be
10191 	 * outstanding AVZ operations that weren't completed in
10192 	 * spa_sync_config_object.
10193 	 */
10194 		uint64_t all_vdev_zap_entry_count;
10195 		ASSERT0(zap_count(spa->spa_meta_objset,
10196 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10197 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10198 		    all_vdev_zap_entry_count);
10199 	}
10200 #endif
10201 
10202 	if (spa->spa_vdev_removal != NULL) {
10203 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10204 	}
10205 
10206 	spa_sync_rewrite_vdev_config(spa, tx);
10207 	dmu_tx_commit(tx);
10208 
10209 	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10210 	spa->spa_deadman_tqid = 0;
10211 
10212 	/*
10213 	 * Clear the dirty config list.
10214 	 */
10215 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10216 		vdev_config_clean(vd);
10217 
10218 	/*
10219 	 * Now that the new config has synced transactionally,
10220 	 * let it become visible to the config cache.
10221 	 */
10222 	if (spa->spa_config_syncing != NULL) {
10223 		spa_config_set(spa, spa->spa_config_syncing);
10224 		spa->spa_config_txg = txg;
10225 		spa->spa_config_syncing = NULL;
10226 	}
10227 
10228 	dsl_pool_sync_done(dp, txg);
10229 
10230 	for (int i = 0; i < spa->spa_alloc_count; i++) {
10231 		mutex_enter(&spa->spa_allocs[i].spaa_lock);
10232 		VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10233 		mutex_exit(&spa->spa_allocs[i].spaa_lock);
10234 	}
10235 
10236 	/*
10237 	 * Update usable space statistics.
10238 	 */
10239 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10240 	    != NULL)
10241 		vdev_sync_done(vd, txg);
10242 
10243 	metaslab_class_evict_old(spa->spa_normal_class, txg);
10244 	metaslab_class_evict_old(spa->spa_log_class, txg);
10245 	/* spa_embedded_log_class has only one metaslab per vdev. */
10246 	metaslab_class_evict_old(spa->spa_special_class, txg);
10247 	metaslab_class_evict_old(spa->spa_dedup_class, txg);
10248 
10249 	spa_sync_close_syncing_log_sm(spa);
10250 
10251 	spa_update_dspace(spa);
10252 
10253 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10254 		vdev_autotrim_kick(spa);
10255 
10256 	/*
10257 	 * It had better be the case that we didn't dirty anything
10258 	 * since vdev_config_sync().
10259 	 */
10260 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10261 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10262 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10263 
10264 	while (zfs_pause_spa_sync)
10265 		delay(1);
10266 
10267 	spa->spa_sync_pass = 0;
10268 
10269 	/*
10270 	 * Update the last synced uberblock here. We want to do this at
10271 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10272 	 * will be guaranteed that all the processing associated with
10273 	 * that txg has been completed.
10274 	 */
10275 	spa->spa_ubsync = spa->spa_uberblock;
10276 	spa_config_exit(spa, SCL_CONFIG, FTAG);
10277 
10278 	spa_handle_ignored_writes(spa);
10279 
10280 	/*
10281 	 * If any async tasks have been requested, kick them off.
10282 	 */
10283 	spa_async_dispatch(spa);
10284 }
10285 
10286 /*
10287  * Sync all pools.  We don't want to hold the namespace lock across these
10288  * operations, so we take a reference on the spa_t and drop the lock during the
10289  * sync.
10290  */
10291 void
10292 spa_sync_allpools(void)
10293 {
10294 	spa_t *spa = NULL;
10295 	mutex_enter(&spa_namespace_lock);
10296 	while ((spa = spa_next(spa)) != NULL) {
10297 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
10298 		    !spa_writeable(spa) || spa_suspended(spa))
10299 			continue;
10300 		spa_open_ref(spa, FTAG);
10301 		mutex_exit(&spa_namespace_lock);
10302 		txg_wait_synced(spa_get_dsl(spa), 0);
10303 		mutex_enter(&spa_namespace_lock);
10304 		spa_close(spa, FTAG);
10305 	}
10306 	mutex_exit(&spa_namespace_lock);
10307 }
10308 
10309 taskq_t *
10310 spa_sync_tq_create(spa_t *spa, const char *name)
10311 {
10312 	kthread_t **kthreads;
10313 
10314 	ASSERT(spa->spa_sync_tq == NULL);
10315 	ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10316 
10317 	/*
10318 	 * - do not allow more allocators than cpus.
10319 	 * - there may be more cpus than allocators.
10320 	 * - do not allow more sync taskq threads than allocators or cpus.
10321 	 */
10322 	int nthreads = spa->spa_alloc_count;
10323 	spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10324 	    nthreads, KM_SLEEP);
10325 
10326 	spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10327 	    nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10328 	VERIFY(spa->spa_sync_tq != NULL);
10329 	VERIFY(kthreads != NULL);
10330 
10331 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10332 	for (int i = 0; i < nthreads; i++, ti++) {
10333 		ti->sti_thread = kthreads[i];
10334 		ti->sti_allocator = i;
10335 	}
10336 
10337 	kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10338 	return (spa->spa_sync_tq);
10339 }
10340 
10341 void
10342 spa_sync_tq_destroy(spa_t *spa)
10343 {
10344 	ASSERT(spa->spa_sync_tq != NULL);
10345 
10346 	taskq_wait(spa->spa_sync_tq);
10347 	taskq_destroy(spa->spa_sync_tq);
10348 	kmem_free(spa->spa_syncthreads,
10349 	    sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10350 	spa->spa_sync_tq = NULL;
10351 }
10352 
10353 uint_t
10354 spa_acq_allocator(spa_t *spa)
10355 {
10356 	int i;
10357 
10358 	if (spa->spa_alloc_count == 1)
10359 		return (0);
10360 
10361 	mutex_enter(&spa->spa_allocs_use->sau_lock);
10362 	uint_t r = spa->spa_allocs_use->sau_rotor;
10363 	do {
10364 		if (++r == spa->spa_alloc_count)
10365 			r = 0;
10366 	} while (spa->spa_allocs_use->sau_inuse[r]);
10367 	spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10368 	spa->spa_allocs_use->sau_rotor = r;
10369 	mutex_exit(&spa->spa_allocs_use->sau_lock);
10370 
10371 	spa_syncthread_info_t *ti = spa->spa_syncthreads;
10372 	for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10373 		if (ti->sti_thread == curthread) {
10374 			ti->sti_allocator = r;
10375 			break;
10376 		}
10377 	}
10378 	ASSERT3S(i, <, spa->spa_alloc_count);
10379 	return (r);
10380 }
10381 
10382 void
10383 spa_rel_allocator(spa_t *spa, uint_t allocator)
10384 {
10385 	if (spa->spa_alloc_count > 1)
10386 		spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10387 }
10388 
10389 void
10390 spa_select_allocator(zio_t *zio)
10391 {
10392 	zbookmark_phys_t *bm = &zio->io_bookmark;
10393 	spa_t *spa = zio->io_spa;
10394 
10395 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10396 
10397 	/*
10398 	 * A gang block (for example) may have inherited its parent's
10399 	 * allocator, in which case there is nothing further to do here.
10400 	 */
10401 	if (ZIO_HAS_ALLOCATOR(zio))
10402 		return;
10403 
10404 	ASSERT(spa != NULL);
10405 	ASSERT(bm != NULL);
10406 
10407 	/*
10408 	 * First try to use an allocator assigned to the syncthread, and set
10409 	 * the corresponding write issue taskq for the allocator.
10410 	 * Note, we must have an open pool to do this.
10411 	 */
10412 	if (spa->spa_sync_tq != NULL) {
10413 		spa_syncthread_info_t *ti = spa->spa_syncthreads;
10414 		for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10415 			if (ti->sti_thread == curthread) {
10416 				zio->io_allocator = ti->sti_allocator;
10417 				return;
10418 			}
10419 		}
10420 	}
10421 
10422 	/*
10423 	 * We want to try to use as many allocators as possible to help improve
10424 	 * performance, but we also want logically adjacent IOs to be physically
10425 	 * adjacent to improve sequential read performance. We chunk each object
10426 	 * into 2^20 block regions, and then hash based on the objset, object,
10427 	 * level, and region to accomplish both of these goals.
10428 	 */
10429 	uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10430 	    bm->zb_blkid >> 20);
10431 
10432 	zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10433 }
10434 
10435 /*
10436  * ==========================================================================
10437  * Miscellaneous routines
10438  * ==========================================================================
10439  */
10440 
10441 /*
10442  * Remove all pools in the system.
10443  */
10444 void
10445 spa_evict_all(void)
10446 {
10447 	spa_t *spa;
10448 
10449 	/*
10450 	 * Remove all cached state.  All pools should be closed now,
10451 	 * so every spa in the AVL tree should be unreferenced.
10452 	 */
10453 	mutex_enter(&spa_namespace_lock);
10454 	while ((spa = spa_next(NULL)) != NULL) {
10455 		/*
10456 		 * Stop async tasks.  The async thread may need to detach
10457 		 * a device that's been replaced, which requires grabbing
10458 		 * spa_namespace_lock, so we must drop it here.
10459 		 */
10460 		spa_open_ref(spa, FTAG);
10461 		mutex_exit(&spa_namespace_lock);
10462 		spa_async_suspend(spa);
10463 		mutex_enter(&spa_namespace_lock);
10464 		spa_close(spa, FTAG);
10465 
10466 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10467 			spa_unload(spa);
10468 			spa_deactivate(spa);
10469 		}
10470 		spa_remove(spa);
10471 	}
10472 	mutex_exit(&spa_namespace_lock);
10473 }
10474 
10475 vdev_t *
10476 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10477 {
10478 	vdev_t *vd;
10479 	int i;
10480 
10481 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10482 		return (vd);
10483 
10484 	if (aux) {
10485 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10486 			vd = spa->spa_l2cache.sav_vdevs[i];
10487 			if (vd->vdev_guid == guid)
10488 				return (vd);
10489 		}
10490 
10491 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
10492 			vd = spa->spa_spares.sav_vdevs[i];
10493 			if (vd->vdev_guid == guid)
10494 				return (vd);
10495 		}
10496 	}
10497 
10498 	return (NULL);
10499 }
10500 
10501 void
10502 spa_upgrade(spa_t *spa, uint64_t version)
10503 {
10504 	ASSERT(spa_writeable(spa));
10505 
10506 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10507 
10508 	/*
10509 	 * This should only be called for a non-faulted pool, and since a
10510 	 * future version would result in an unopenable pool, this shouldn't be
10511 	 * possible.
10512 	 */
10513 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10514 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10515 
10516 	spa->spa_uberblock.ub_version = version;
10517 	vdev_config_dirty(spa->spa_root_vdev);
10518 
10519 	spa_config_exit(spa, SCL_ALL, FTAG);
10520 
10521 	txg_wait_synced(spa_get_dsl(spa), 0);
10522 }
10523 
10524 static boolean_t
10525 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10526 {
10527 	(void) spa;
10528 	int i;
10529 	uint64_t vdev_guid;
10530 
10531 	for (i = 0; i < sav->sav_count; i++)
10532 		if (sav->sav_vdevs[i]->vdev_guid == guid)
10533 			return (B_TRUE);
10534 
10535 	for (i = 0; i < sav->sav_npending; i++) {
10536 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10537 		    &vdev_guid) == 0 && vdev_guid == guid)
10538 			return (B_TRUE);
10539 	}
10540 
10541 	return (B_FALSE);
10542 }
10543 
10544 boolean_t
10545 spa_has_l2cache(spa_t *spa, uint64_t guid)
10546 {
10547 	return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10548 }
10549 
10550 boolean_t
10551 spa_has_spare(spa_t *spa, uint64_t guid)
10552 {
10553 	return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10554 }
10555 
10556 /*
10557  * Check if a pool has an active shared spare device.
10558  * Note: reference count of an active spare is 2, as a spare and as a replace
10559  */
10560 static boolean_t
10561 spa_has_active_shared_spare(spa_t *spa)
10562 {
10563 	int i, refcnt;
10564 	uint64_t pool;
10565 	spa_aux_vdev_t *sav = &spa->spa_spares;
10566 
10567 	for (i = 0; i < sav->sav_count; i++) {
10568 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10569 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10570 		    refcnt > 2)
10571 			return (B_TRUE);
10572 	}
10573 
10574 	return (B_FALSE);
10575 }
10576 
10577 uint64_t
10578 spa_total_metaslabs(spa_t *spa)
10579 {
10580 	vdev_t *rvd = spa->spa_root_vdev;
10581 
10582 	uint64_t m = 0;
10583 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10584 		vdev_t *vd = rvd->vdev_child[c];
10585 		if (!vdev_is_concrete(vd))
10586 			continue;
10587 		m += vd->vdev_ms_count;
10588 	}
10589 	return (m);
10590 }
10591 
10592 /*
10593  * Notify any waiting threads that some activity has switched from being in-
10594  * progress to not-in-progress so that the thread can wake up and determine
10595  * whether it is finished waiting.
10596  */
10597 void
10598 spa_notify_waiters(spa_t *spa)
10599 {
10600 	/*
10601 	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10602 	 * happening between the waiting thread's check and cv_wait.
10603 	 */
10604 	mutex_enter(&spa->spa_activities_lock);
10605 	cv_broadcast(&spa->spa_activities_cv);
10606 	mutex_exit(&spa->spa_activities_lock);
10607 }
10608 
10609 /*
10610  * Notify any waiting threads that the pool is exporting, and then block until
10611  * they are finished using the spa_t.
10612  */
10613 void
10614 spa_wake_waiters(spa_t *spa)
10615 {
10616 	mutex_enter(&spa->spa_activities_lock);
10617 	spa->spa_waiters_cancel = B_TRUE;
10618 	cv_broadcast(&spa->spa_activities_cv);
10619 	while (spa->spa_waiters != 0)
10620 		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10621 	spa->spa_waiters_cancel = B_FALSE;
10622 	mutex_exit(&spa->spa_activities_lock);
10623 }
10624 
10625 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10626 static boolean_t
10627 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10628 {
10629 	spa_t *spa = vd->vdev_spa;
10630 
10631 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10632 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10633 	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10634 	    activity == ZPOOL_WAIT_TRIM);
10635 
10636 	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10637 	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10638 
10639 	mutex_exit(&spa->spa_activities_lock);
10640 	mutex_enter(lock);
10641 	mutex_enter(&spa->spa_activities_lock);
10642 
10643 	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10644 	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10645 	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10646 	mutex_exit(lock);
10647 
10648 	if (in_progress)
10649 		return (B_TRUE);
10650 
10651 	for (int i = 0; i < vd->vdev_children; i++) {
10652 		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10653 		    activity))
10654 			return (B_TRUE);
10655 	}
10656 
10657 	return (B_FALSE);
10658 }
10659 
10660 /*
10661  * If use_guid is true, this checks whether the vdev specified by guid is
10662  * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10663  * is being initialized/trimmed. The caller must hold the config lock and
10664  * spa_activities_lock.
10665  */
10666 static int
10667 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10668     zpool_wait_activity_t activity, boolean_t *in_progress)
10669 {
10670 	mutex_exit(&spa->spa_activities_lock);
10671 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10672 	mutex_enter(&spa->spa_activities_lock);
10673 
10674 	vdev_t *vd;
10675 	if (use_guid) {
10676 		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10677 		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10678 			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10679 			return (EINVAL);
10680 		}
10681 	} else {
10682 		vd = spa->spa_root_vdev;
10683 	}
10684 
10685 	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10686 
10687 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10688 	return (0);
10689 }
10690 
10691 /*
10692  * Locking for waiting threads
10693  * ---------------------------
10694  *
10695  * Waiting threads need a way to check whether a given activity is in progress,
10696  * and then, if it is, wait for it to complete. Each activity will have some
10697  * in-memory representation of the relevant on-disk state which can be used to
10698  * determine whether or not the activity is in progress. The in-memory state and
10699  * the locking used to protect it will be different for each activity, and may
10700  * not be suitable for use with a cvar (e.g., some state is protected by the
10701  * config lock). To allow waiting threads to wait without any races, another
10702  * lock, spa_activities_lock, is used.
10703  *
10704  * When the state is checked, both the activity-specific lock (if there is one)
10705  * and spa_activities_lock are held. In some cases, the activity-specific lock
10706  * is acquired explicitly (e.g. the config lock). In others, the locking is
10707  * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10708  * thread releases the activity-specific lock and, if the activity is in
10709  * progress, then cv_waits using spa_activities_lock.
10710  *
10711  * The waiting thread is woken when another thread, one completing some
10712  * activity, updates the state of the activity and then calls
10713  * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10714  * needs to hold its activity-specific lock when updating the state, and this
10715  * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10716  *
10717  * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10718  * and because it is held when the waiting thread checks the state of the
10719  * activity, it can never be the case that the completing thread both updates
10720  * the activity state and cv_broadcasts in between the waiting thread's check
10721  * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10722  *
10723  * In order to prevent deadlock, when the waiting thread does its check, in some
10724  * cases it will temporarily drop spa_activities_lock in order to acquire the
10725  * activity-specific lock. The order in which spa_activities_lock and the
10726  * activity specific lock are acquired in the waiting thread is determined by
10727  * the order in which they are acquired in the completing thread; if the
10728  * completing thread calls spa_notify_waiters with the activity-specific lock
10729  * held, then the waiting thread must also acquire the activity-specific lock
10730  * first.
10731  */
10732 
10733 static int
10734 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10735     boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10736 {
10737 	int error = 0;
10738 
10739 	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10740 
10741 	switch (activity) {
10742 	case ZPOOL_WAIT_CKPT_DISCARD:
10743 		*in_progress =
10744 		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10745 		    zap_contains(spa_meta_objset(spa),
10746 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10747 		    ENOENT);
10748 		break;
10749 	case ZPOOL_WAIT_FREE:
10750 		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10751 		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10752 		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10753 		    spa_livelist_delete_check(spa));
10754 		break;
10755 	case ZPOOL_WAIT_INITIALIZE:
10756 	case ZPOOL_WAIT_TRIM:
10757 		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10758 		    activity, in_progress);
10759 		break;
10760 	case ZPOOL_WAIT_REPLACE:
10761 		mutex_exit(&spa->spa_activities_lock);
10762 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10763 		mutex_enter(&spa->spa_activities_lock);
10764 
10765 		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10766 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10767 		break;
10768 	case ZPOOL_WAIT_REMOVE:
10769 		*in_progress = (spa->spa_removing_phys.sr_state ==
10770 		    DSS_SCANNING);
10771 		break;
10772 	case ZPOOL_WAIT_RESILVER:
10773 		*in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10774 		if (*in_progress)
10775 			break;
10776 		zfs_fallthrough;
10777 	case ZPOOL_WAIT_SCRUB:
10778 	{
10779 		boolean_t scanning, paused, is_scrub;
10780 		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
10781 
10782 		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10783 		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10784 		paused = dsl_scan_is_paused_scrub(scn);
10785 		*in_progress = (scanning && !paused &&
10786 		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10787 		break;
10788 	}
10789 	case ZPOOL_WAIT_RAIDZ_EXPAND:
10790 	{
10791 		vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10792 		*in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10793 		break;
10794 	}
10795 	default:
10796 		panic("unrecognized value for activity %d", activity);
10797 	}
10798 
10799 	return (error);
10800 }
10801 
10802 static int
10803 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10804     boolean_t use_tag, uint64_t tag, boolean_t *waited)
10805 {
10806 	/*
10807 	 * The tag is used to distinguish between instances of an activity.
10808 	 * 'initialize' and 'trim' are the only activities that we use this for.
10809 	 * The other activities can only have a single instance in progress in a
10810 	 * pool at one time, making the tag unnecessary.
10811 	 *
10812 	 * There can be multiple devices being replaced at once, but since they
10813 	 * all finish once resilvering finishes, we don't bother keeping track
10814 	 * of them individually, we just wait for them all to finish.
10815 	 */
10816 	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10817 	    activity != ZPOOL_WAIT_TRIM)
10818 		return (EINVAL);
10819 
10820 	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10821 		return (EINVAL);
10822 
10823 	spa_t *spa;
10824 	int error = spa_open(pool, &spa, FTAG);
10825 	if (error != 0)
10826 		return (error);
10827 
10828 	/*
10829 	 * Increment the spa's waiter count so that we can call spa_close and
10830 	 * still ensure that the spa_t doesn't get freed before this thread is
10831 	 * finished with it when the pool is exported. We want to call spa_close
10832 	 * before we start waiting because otherwise the additional ref would
10833 	 * prevent the pool from being exported or destroyed throughout the
10834 	 * potentially long wait.
10835 	 */
10836 	mutex_enter(&spa->spa_activities_lock);
10837 	spa->spa_waiters++;
10838 	spa_close(spa, FTAG);
10839 
10840 	*waited = B_FALSE;
10841 	for (;;) {
10842 		boolean_t in_progress;
10843 		error = spa_activity_in_progress(spa, activity, use_tag, tag,
10844 		    &in_progress);
10845 
10846 		if (error || !in_progress || spa->spa_waiters_cancel)
10847 			break;
10848 
10849 		*waited = B_TRUE;
10850 
10851 		if (cv_wait_sig(&spa->spa_activities_cv,
10852 		    &spa->spa_activities_lock) == 0) {
10853 			error = EINTR;
10854 			break;
10855 		}
10856 	}
10857 
10858 	spa->spa_waiters--;
10859 	cv_signal(&spa->spa_waiters_cv);
10860 	mutex_exit(&spa->spa_activities_lock);
10861 
10862 	return (error);
10863 }
10864 
10865 /*
10866  * Wait for a particular instance of the specified activity to complete, where
10867  * the instance is identified by 'tag'
10868  */
10869 int
10870 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10871     boolean_t *waited)
10872 {
10873 	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10874 }
10875 
10876 /*
10877  * Wait for all instances of the specified activity complete
10878  */
10879 int
10880 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10881 {
10882 
10883 	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10884 }
10885 
10886 sysevent_t *
10887 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10888 {
10889 	sysevent_t *ev = NULL;
10890 #ifdef _KERNEL
10891 	nvlist_t *resource;
10892 
10893 	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10894 	if (resource) {
10895 		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10896 		ev->resource = resource;
10897 	}
10898 #else
10899 	(void) spa, (void) vd, (void) hist_nvl, (void) name;
10900 #endif
10901 	return (ev);
10902 }
10903 
10904 void
10905 spa_event_post(sysevent_t *ev)
10906 {
10907 #ifdef _KERNEL
10908 	if (ev) {
10909 		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10910 		kmem_free(ev, sizeof (*ev));
10911 	}
10912 #else
10913 	(void) ev;
10914 #endif
10915 }
10916 
10917 /*
10918  * Post a zevent corresponding to the given sysevent.   The 'name' must be one
10919  * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
10920  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
10921  * in the userland libzpool, as we don't want consumers to misinterpret ztest
10922  * or zdb as real changes.
10923  */
10924 void
10925 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10926 {
10927 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10928 }
10929 
10930 /* state manipulation functions */
10931 EXPORT_SYMBOL(spa_open);
10932 EXPORT_SYMBOL(spa_open_rewind);
10933 EXPORT_SYMBOL(spa_get_stats);
10934 EXPORT_SYMBOL(spa_create);
10935 EXPORT_SYMBOL(spa_import);
10936 EXPORT_SYMBOL(spa_tryimport);
10937 EXPORT_SYMBOL(spa_destroy);
10938 EXPORT_SYMBOL(spa_export);
10939 EXPORT_SYMBOL(spa_reset);
10940 EXPORT_SYMBOL(spa_async_request);
10941 EXPORT_SYMBOL(spa_async_suspend);
10942 EXPORT_SYMBOL(spa_async_resume);
10943 EXPORT_SYMBOL(spa_inject_addref);
10944 EXPORT_SYMBOL(spa_inject_delref);
10945 EXPORT_SYMBOL(spa_scan_stat_init);
10946 EXPORT_SYMBOL(spa_scan_get_stats);
10947 
10948 /* device manipulation */
10949 EXPORT_SYMBOL(spa_vdev_add);
10950 EXPORT_SYMBOL(spa_vdev_attach);
10951 EXPORT_SYMBOL(spa_vdev_detach);
10952 EXPORT_SYMBOL(spa_vdev_setpath);
10953 EXPORT_SYMBOL(spa_vdev_setfru);
10954 EXPORT_SYMBOL(spa_vdev_split_mirror);
10955 
10956 /* spare statech is global across all pools) */
10957 EXPORT_SYMBOL(spa_spare_add);
10958 EXPORT_SYMBOL(spa_spare_remove);
10959 EXPORT_SYMBOL(spa_spare_exists);
10960 EXPORT_SYMBOL(spa_spare_activate);
10961 
10962 /* L2ARC statech is global across all pools) */
10963 EXPORT_SYMBOL(spa_l2cache_add);
10964 EXPORT_SYMBOL(spa_l2cache_remove);
10965 EXPORT_SYMBOL(spa_l2cache_exists);
10966 EXPORT_SYMBOL(spa_l2cache_activate);
10967 EXPORT_SYMBOL(spa_l2cache_drop);
10968 
10969 /* scanning */
10970 EXPORT_SYMBOL(spa_scan);
10971 EXPORT_SYMBOL(spa_scan_stop);
10972 
10973 /* spa syncing */
10974 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10975 EXPORT_SYMBOL(spa_sync_allpools);
10976 
10977 /* properties */
10978 EXPORT_SYMBOL(spa_prop_set);
10979 EXPORT_SYMBOL(spa_prop_get);
10980 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10981 
10982 /* asynchronous event notification */
10983 EXPORT_SYMBOL(spa_event_notify);
10984 
10985 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10986 	"Percentage of CPUs to run a metaslab preload taskq");
10987 
10988 /* BEGIN CSTYLED */
10989 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10990 	"log2 fraction of arc that can be used by inflight I/Os when "
10991 	"verifying pool during import");
10992 /* END CSTYLED */
10993 
10994 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10995 	"Set to traverse metadata on pool import");
10996 
10997 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10998 	"Set to traverse data on pool import");
10999 
11000 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11001 	"Print vdev tree to zfs_dbgmsg during pool import");
11002 
11003 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11004 	"Percentage of CPUs to run an IO worker thread");
11005 
11006 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11007 	"Number of threads per IO worker taskqueue");
11008 
11009 /* BEGIN CSTYLED */
11010 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11011 	"Allow importing pool with up to this number of missing top-level "
11012 	"vdevs (in read-only mode)");
11013 /* END CSTYLED */
11014 
11015 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11016 	ZMOD_RW, "Set the livelist condense zthr to pause");
11017 
11018 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11019 	ZMOD_RW, "Set the livelist condense synctask to pause");
11020 
11021 /* BEGIN CSTYLED */
11022 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11023 	INT, ZMOD_RW,
11024 	"Whether livelist condensing was canceled in the synctask");
11025 
11026 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11027 	INT, ZMOD_RW,
11028 	"Whether livelist condensing was canceled in the zthr function");
11029 
11030 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11031 	ZMOD_RW,
11032 	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
11033 	"was being condensed");
11034 
11035 #ifdef _KERNEL
11036 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11037 	spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11038 	"Configure IO queues for read IO");
11039 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11040 	spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11041 	"Configure IO queues for write IO");
11042 #endif
11043 /* END CSTYLED */
11044 
11045 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11046 	"Number of CPUs per write issue taskq");
11047