1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/rrwlock.h> 30 #include <sys/trace_zfs.h> 31 32 /* 33 * This file contains the implementation of a re-entrant read 34 * reader/writer lock (aka "rrwlock"). 35 * 36 * This is a normal reader/writer lock with the additional feature 37 * of allowing threads who have already obtained a read lock to 38 * re-enter another read lock (re-entrant read) - even if there are 39 * waiting writers. 40 * 41 * Callers who have not obtained a read lock give waiting writers priority. 42 * 43 * The rrwlock_t lock does not allow re-entrant writers, nor does it 44 * allow a re-entrant mix of reads and writes (that is, it does not 45 * allow a caller who has already obtained a read lock to be able to 46 * then grab a write lock without first dropping all read locks, and 47 * vice versa). 48 * 49 * The rrwlock_t uses tsd (thread specific data) to keep a list of 50 * nodes (rrw_node_t), where each node keeps track of which specific 51 * lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering 52 * should be rare, a thread that grabs multiple reads on the same rrwlock_t 53 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the 54 * tsd list can represent a different rrwlock_t. This allows a thread 55 * to enter multiple and unique rrwlock_ts for read locks at the same time. 56 * 57 * Since using tsd exposes some overhead, the rrwlock_t only needs to 58 * keep tsd data when writers are waiting. If no writers are waiting, then 59 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd 60 * is needed. Once a writer attempts to grab the lock, readers then 61 * keep tsd data and bump the linked readers count (rr_linked_rcount). 62 * 63 * If there are waiting writers and there are anonymous readers, then a 64 * reader doesn't know if it is a re-entrant lock. But since it may be one, 65 * we allow the read to proceed (otherwise it could deadlock). Since once 66 * waiting writers are active, readers no longer bump the anonymous count, 67 * the anonymous readers will eventually flush themselves out. At this point, 68 * readers will be able to tell if they are a re-entrant lock (have a 69 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then 70 * we must let the proceed. If they are not, then the reader blocks for the 71 * waiting writers. Hence, we do not starve writers. 72 */ 73 74 /* global key for TSD */ 75 uint_t rrw_tsd_key; 76 77 typedef struct rrw_node { 78 struct rrw_node *rn_next; 79 rrwlock_t *rn_rrl; 80 const void *rn_tag; 81 } rrw_node_t; 82 83 static rrw_node_t * 84 rrn_find(rrwlock_t *rrl) 85 { 86 rrw_node_t *rn; 87 88 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0) 89 return (NULL); 90 91 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { 92 if (rn->rn_rrl == rrl) 93 return (rn); 94 } 95 return (NULL); 96 } 97 98 /* 99 * Add a node to the head of the singly linked list. 100 */ 101 static void 102 rrn_add(rrwlock_t *rrl, const void *tag) 103 { 104 rrw_node_t *rn; 105 106 rn = kmem_alloc(sizeof (*rn), KM_SLEEP); 107 rn->rn_rrl = rrl; 108 rn->rn_next = tsd_get(rrw_tsd_key); 109 rn->rn_tag = tag; 110 VERIFY(tsd_set(rrw_tsd_key, rn) == 0); 111 } 112 113 /* 114 * If a node is found for 'rrl', then remove the node from this 115 * thread's list and return TRUE; otherwise return FALSE. 116 */ 117 static boolean_t 118 rrn_find_and_remove(rrwlock_t *rrl, const void *tag) 119 { 120 rrw_node_t *rn; 121 rrw_node_t *prev = NULL; 122 123 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0) 124 return (B_FALSE); 125 126 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { 127 if (rn->rn_rrl == rrl && rn->rn_tag == tag) { 128 if (prev) 129 prev->rn_next = rn->rn_next; 130 else 131 VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0); 132 kmem_free(rn, sizeof (*rn)); 133 return (B_TRUE); 134 } 135 prev = rn; 136 } 137 return (B_FALSE); 138 } 139 140 void 141 rrw_init(rrwlock_t *rrl, boolean_t track_all) 142 { 143 mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL); 144 cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL); 145 rrl->rr_writer = NULL; 146 zfs_refcount_create(&rrl->rr_anon_rcount); 147 zfs_refcount_create(&rrl->rr_linked_rcount); 148 rrl->rr_writer_wanted = B_FALSE; 149 rrl->rr_track_all = track_all; 150 } 151 152 void 153 rrw_destroy(rrwlock_t *rrl) 154 { 155 mutex_destroy(&rrl->rr_lock); 156 cv_destroy(&rrl->rr_cv); 157 ASSERT(rrl->rr_writer == NULL); 158 zfs_refcount_destroy(&rrl->rr_anon_rcount); 159 zfs_refcount_destroy(&rrl->rr_linked_rcount); 160 } 161 162 static void 163 rrw_enter_read_impl(rrwlock_t *rrl, boolean_t prio, const void *tag) 164 { 165 mutex_enter(&rrl->rr_lock); 166 #if !defined(ZFS_DEBUG) && defined(_KERNEL) 167 if (rrl->rr_writer == NULL && !rrl->rr_writer_wanted && 168 !rrl->rr_track_all) { 169 rrl->rr_anon_rcount.rc_count++; 170 mutex_exit(&rrl->rr_lock); 171 return; 172 } 173 DTRACE_PROBE(zfs__rrwfastpath__rdmiss); 174 #endif 175 ASSERT(rrl->rr_writer != curthread); 176 ASSERT(zfs_refcount_count(&rrl->rr_anon_rcount) >= 0); 177 178 while (rrl->rr_writer != NULL || (rrl->rr_writer_wanted && 179 zfs_refcount_is_zero(&rrl->rr_anon_rcount) && !prio && 180 rrn_find(rrl) == NULL)) 181 cv_wait(&rrl->rr_cv, &rrl->rr_lock); 182 183 if (rrl->rr_writer_wanted || rrl->rr_track_all) { 184 /* may or may not be a re-entrant enter */ 185 rrn_add(rrl, tag); 186 (void) zfs_refcount_add(&rrl->rr_linked_rcount, tag); 187 } else { 188 (void) zfs_refcount_add(&rrl->rr_anon_rcount, tag); 189 } 190 ASSERT(rrl->rr_writer == NULL); 191 mutex_exit(&rrl->rr_lock); 192 } 193 194 void 195 rrw_enter_read(rrwlock_t *rrl, const void *tag) 196 { 197 rrw_enter_read_impl(rrl, B_FALSE, tag); 198 } 199 200 /* 201 * take a read lock even if there are pending write lock requests. if we want 202 * to take a lock reentrantly, but from different threads (that have a 203 * relationship to each other), the normal detection mechanism to overrule 204 * the pending writer does not work, so we have to give an explicit hint here. 205 */ 206 void 207 rrw_enter_read_prio(rrwlock_t *rrl, const void *tag) 208 { 209 rrw_enter_read_impl(rrl, B_TRUE, tag); 210 } 211 212 213 void 214 rrw_enter_write(rrwlock_t *rrl) 215 { 216 mutex_enter(&rrl->rr_lock); 217 ASSERT(rrl->rr_writer != curthread); 218 219 while (zfs_refcount_count(&rrl->rr_anon_rcount) > 0 || 220 zfs_refcount_count(&rrl->rr_linked_rcount) > 0 || 221 rrl->rr_writer != NULL) { 222 rrl->rr_writer_wanted = B_TRUE; 223 cv_wait(&rrl->rr_cv, &rrl->rr_lock); 224 } 225 rrl->rr_writer_wanted = B_FALSE; 226 rrl->rr_writer = curthread; 227 mutex_exit(&rrl->rr_lock); 228 } 229 230 void 231 rrw_enter(rrwlock_t *rrl, krw_t rw, const void *tag) 232 { 233 if (rw == RW_READER) 234 rrw_enter_read(rrl, tag); 235 else 236 rrw_enter_write(rrl); 237 } 238 239 void 240 rrw_exit(rrwlock_t *rrl, const void *tag) 241 { 242 mutex_enter(&rrl->rr_lock); 243 #if !defined(ZFS_DEBUG) && defined(_KERNEL) 244 if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) { 245 rrl->rr_anon_rcount.rc_count--; 246 if (rrl->rr_anon_rcount.rc_count == 0) 247 cv_broadcast(&rrl->rr_cv); 248 mutex_exit(&rrl->rr_lock); 249 return; 250 } 251 DTRACE_PROBE(zfs__rrwfastpath__exitmiss); 252 #endif 253 ASSERT(!zfs_refcount_is_zero(&rrl->rr_anon_rcount) || 254 !zfs_refcount_is_zero(&rrl->rr_linked_rcount) || 255 rrl->rr_writer != NULL); 256 257 if (rrl->rr_writer == NULL) { 258 int64_t count; 259 if (rrn_find_and_remove(rrl, tag)) { 260 count = zfs_refcount_remove( 261 &rrl->rr_linked_rcount, tag); 262 } else { 263 ASSERT(!rrl->rr_track_all); 264 count = zfs_refcount_remove(&rrl->rr_anon_rcount, tag); 265 } 266 if (count == 0) 267 cv_broadcast(&rrl->rr_cv); 268 } else { 269 ASSERT(rrl->rr_writer == curthread); 270 ASSERT(zfs_refcount_is_zero(&rrl->rr_anon_rcount) && 271 zfs_refcount_is_zero(&rrl->rr_linked_rcount)); 272 rrl->rr_writer = NULL; 273 cv_broadcast(&rrl->rr_cv); 274 } 275 mutex_exit(&rrl->rr_lock); 276 } 277 278 /* 279 * If the lock was created with track_all, rrw_held(RW_READER) will return 280 * B_TRUE iff the current thread has the lock for reader. Otherwise it may 281 * return B_TRUE if any thread has the lock for reader. 282 */ 283 boolean_t 284 rrw_held(rrwlock_t *rrl, krw_t rw) 285 { 286 boolean_t held; 287 288 mutex_enter(&rrl->rr_lock); 289 if (rw == RW_WRITER) { 290 held = (rrl->rr_writer == curthread); 291 } else { 292 held = (!zfs_refcount_is_zero(&rrl->rr_anon_rcount) || 293 rrn_find(rrl) != NULL); 294 } 295 mutex_exit(&rrl->rr_lock); 296 297 return (held); 298 } 299 300 void 301 rrw_tsd_destroy(void *arg) 302 { 303 rrw_node_t *rn = arg; 304 if (rn != NULL) { 305 panic("thread %p terminating with rrw lock %p held", 306 (void *)curthread, (void *)rn->rn_rrl); 307 } 308 } 309 310 /* 311 * A reader-mostly lock implementation, tuning above reader-writer locks 312 * for hightly parallel read acquisitions, while pessimizing writes. 313 * 314 * The idea is to split single busy lock into array of locks, so that 315 * each reader can lock only one of them for read, depending on result 316 * of simple hash function. That proportionally reduces lock congestion. 317 * Writer at the same time has to sequentially acquire write on all the locks. 318 * That makes write acquisition proportionally slower, but in places where 319 * it is used (filesystem unmount) performance is not critical. 320 * 321 * All the functions below are direct wrappers around functions above. 322 */ 323 void 324 rrm_init(rrmlock_t *rrl, boolean_t track_all) 325 { 326 int i; 327 328 for (i = 0; i < RRM_NUM_LOCKS; i++) 329 rrw_init(&rrl->locks[i], track_all); 330 } 331 332 void 333 rrm_destroy(rrmlock_t *rrl) 334 { 335 int i; 336 337 for (i = 0; i < RRM_NUM_LOCKS; i++) 338 rrw_destroy(&rrl->locks[i]); 339 } 340 341 void 342 rrm_enter(rrmlock_t *rrl, krw_t rw, const void *tag) 343 { 344 if (rw == RW_READER) 345 rrm_enter_read(rrl, tag); 346 else 347 rrm_enter_write(rrl); 348 } 349 350 /* 351 * This maps the current thread to a specific lock. Note that the lock 352 * must be released by the same thread that acquired it. We do this 353 * mapping by taking the thread pointer mod a prime number. We examine 354 * only the low 32 bits of the thread pointer, because 32-bit division 355 * is faster than 64-bit division, and the high 32 bits have little 356 * entropy anyway. 357 */ 358 #define RRM_TD_LOCK() (((uint32_t)(uintptr_t)(curthread)) % RRM_NUM_LOCKS) 359 360 void 361 rrm_enter_read(rrmlock_t *rrl, const void *tag) 362 { 363 rrw_enter_read(&rrl->locks[RRM_TD_LOCK()], tag); 364 } 365 366 void 367 rrm_enter_write(rrmlock_t *rrl) 368 { 369 int i; 370 371 for (i = 0; i < RRM_NUM_LOCKS; i++) 372 rrw_enter_write(&rrl->locks[i]); 373 } 374 375 void 376 rrm_exit(rrmlock_t *rrl, const void *tag) 377 { 378 int i; 379 380 if (rrl->locks[0].rr_writer == curthread) { 381 for (i = 0; i < RRM_NUM_LOCKS; i++) 382 rrw_exit(&rrl->locks[i], tag); 383 } else { 384 rrw_exit(&rrl->locks[RRM_TD_LOCK()], tag); 385 } 386 } 387 388 boolean_t 389 rrm_held(rrmlock_t *rrl, krw_t rw) 390 { 391 if (rw == RW_WRITER) { 392 return (rrw_held(&rrl->locks[0], rw)); 393 } else { 394 return (rrw_held(&rrl->locks[RRM_TD_LOCK()], rw)); 395 } 396 } 397