xref: /freebsd/sys/contrib/openzfs/module/zfs/range_tree.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/dnode.h>
34 #include <sys/zio.h>
35 #include <sys/range_tree.h>
36 
37 /*
38  * Range trees are tree-based data structures that can be used to
39  * track free space or generally any space allocation information.
40  * A range tree keeps track of individual segments and automatically
41  * provides facilities such as adjacent extent merging and extent
42  * splitting in response to range add/remove requests.
43  *
44  * A range tree starts out completely empty, with no segments in it.
45  * Adding an allocation via range_tree_add to the range tree can either:
46  * 1) create a new extent
47  * 2) extend an adjacent extent
48  * 3) merge two adjacent extents
49  * Conversely, removing an allocation via range_tree_remove can:
50  * 1) completely remove an extent
51  * 2) shorten an extent (if the allocation was near one of its ends)
52  * 3) split an extent into two extents, in effect punching a hole
53  *
54  * A range tree is also capable of 'bridging' gaps when adding
55  * allocations. This is useful for cases when close proximity of
56  * allocations is an important detail that needs to be represented
57  * in the range tree. See range_tree_set_gap(). The default behavior
58  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
59  *
60  * In order to traverse a range tree, use either the range_tree_walk()
61  * or range_tree_vacate() functions.
62  *
63  * To obtain more accurate information on individual segment
64  * operations that the range tree performs "under the hood", you can
65  * specify a set of callbacks by passing a range_tree_ops_t structure
66  * to the range_tree_create function. Any callbacks that are non-NULL
67  * are then called at the appropriate times.
68  *
69  * The range tree code also supports a special variant of range trees
70  * that can bridge small gaps between segments. This kind of tree is used
71  * by the dsl scanning code to group I/Os into mostly sequential chunks to
72  * optimize disk performance. The code here attempts to do this with as
73  * little memory and computational overhead as possible. One limitation of
74  * this implementation is that segments of range trees with gaps can only
75  * support removing complete segments.
76  */
77 
78 static inline void
79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
80 {
81 	ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES);
82 	size_t size = 0;
83 	switch (rt->rt_type) {
84 	case RANGE_SEG32:
85 		size = sizeof (range_seg32_t);
86 		break;
87 	case RANGE_SEG64:
88 		size = sizeof (range_seg64_t);
89 		break;
90 	case RANGE_SEG_GAP:
91 		size = sizeof (range_seg_gap_t);
92 		break;
93 	default:
94 		__builtin_unreachable();
95 	}
96 	memcpy(dest, src, size);
97 }
98 
99 void
100 range_tree_stat_verify(range_tree_t *rt)
101 {
102 	range_seg_t *rs;
103 	zfs_btree_index_t where;
104 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
105 	int i;
106 
107 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
108 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
109 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
110 		int idx	= highbit64(size) - 1;
111 
112 		hist[idx]++;
113 		ASSERT3U(hist[idx], !=, 0);
114 	}
115 
116 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
117 		if (hist[i] != rt->rt_histogram[i]) {
118 			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
119 			    i, hist, (u_longlong_t)hist[i],
120 			    (u_longlong_t)rt->rt_histogram[i]);
121 		}
122 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
123 	}
124 }
125 
126 static void
127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
128 {
129 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
130 	int idx = highbit64(size) - 1;
131 
132 	ASSERT(size != 0);
133 	ASSERT3U(idx, <,
134 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
135 
136 	rt->rt_histogram[idx]++;
137 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
138 }
139 
140 static void
141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
142 {
143 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
144 	int idx = highbit64(size) - 1;
145 
146 	ASSERT(size != 0);
147 	ASSERT3U(idx, <,
148 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
149 
150 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
151 	rt->rt_histogram[idx]--;
152 }
153 
154 __attribute__((always_inline)) inline
155 static int
156 range_tree_seg32_compare(const void *x1, const void *x2)
157 {
158 	const range_seg32_t *r1 = x1;
159 	const range_seg32_t *r2 = x2;
160 
161 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
162 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
163 
164 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
165 }
166 
167 __attribute__((always_inline)) inline
168 static int
169 range_tree_seg64_compare(const void *x1, const void *x2)
170 {
171 	const range_seg64_t *r1 = x1;
172 	const range_seg64_t *r2 = x2;
173 
174 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
175 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
176 
177 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
178 }
179 
180 __attribute__((always_inline)) inline
181 static int
182 range_tree_seg_gap_compare(const void *x1, const void *x2)
183 {
184 	const range_seg_gap_t *r1 = x1;
185 	const range_seg_gap_t *r2 = x2;
186 
187 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
188 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
189 
190 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
191 }
192 
193 ZFS_BTREE_FIND_IN_BUF_FUNC(range_tree_seg32_find_in_buf, range_seg32_t,
194     range_tree_seg32_compare)
195 
196 ZFS_BTREE_FIND_IN_BUF_FUNC(range_tree_seg64_find_in_buf, range_seg64_t,
197     range_tree_seg64_compare)
198 
199 ZFS_BTREE_FIND_IN_BUF_FUNC(range_tree_seg_gap_find_in_buf, range_seg_gap_t,
200     range_tree_seg_gap_compare)
201 
202 range_tree_t *
203 range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type,
204     void *arg, uint64_t start, uint64_t shift, uint64_t gap)
205 {
206 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
207 
208 	ASSERT3U(shift, <, 64);
209 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
210 	size_t size;
211 	int (*compare) (const void *, const void *);
212 	bt_find_in_buf_f bt_find;
213 	switch (type) {
214 	case RANGE_SEG32:
215 		size = sizeof (range_seg32_t);
216 		compare = range_tree_seg32_compare;
217 		bt_find = range_tree_seg32_find_in_buf;
218 		break;
219 	case RANGE_SEG64:
220 		size = sizeof (range_seg64_t);
221 		compare = range_tree_seg64_compare;
222 		bt_find = range_tree_seg64_find_in_buf;
223 		break;
224 	case RANGE_SEG_GAP:
225 		size = sizeof (range_seg_gap_t);
226 		compare = range_tree_seg_gap_compare;
227 		bt_find = range_tree_seg_gap_find_in_buf;
228 		break;
229 	default:
230 		panic("Invalid range seg type %d", type);
231 	}
232 	zfs_btree_create(&rt->rt_root, compare, bt_find, size);
233 
234 	rt->rt_ops = ops;
235 	rt->rt_gap = gap;
236 	rt->rt_arg = arg;
237 	rt->rt_type = type;
238 	rt->rt_start = start;
239 	rt->rt_shift = shift;
240 
241 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
242 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
243 
244 	return (rt);
245 }
246 
247 range_tree_t *
248 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
249     void *arg, uint64_t start, uint64_t shift)
250 {
251 	return (range_tree_create_gap(ops, type, arg, start, shift, 0));
252 }
253 
254 void
255 range_tree_destroy(range_tree_t *rt)
256 {
257 	VERIFY0(rt->rt_space);
258 
259 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
260 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
261 
262 	zfs_btree_destroy(&rt->rt_root);
263 	kmem_free(rt, sizeof (*rt));
264 }
265 
266 void
267 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
268 {
269 	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
270 		zfs_panic_recover("zfs: attempting to decrease fill to or "
271 		    "below 0; probable double remove in segment [%llx:%llx]",
272 		    (longlong_t)rs_get_start(rs, rt),
273 		    (longlong_t)rs_get_end(rs, rt));
274 	}
275 	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
276 	    rs_get_start(rs, rt)) {
277 		zfs_panic_recover("zfs: attempting to increase fill beyond "
278 		    "max; probable double add in segment [%llx:%llx]",
279 		    (longlong_t)rs_get_start(rs, rt),
280 		    (longlong_t)rs_get_end(rs, rt));
281 	}
282 
283 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
284 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
285 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
286 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
287 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
288 }
289 
290 static void
291 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
292 {
293 	range_tree_t *rt = arg;
294 	zfs_btree_index_t where;
295 	range_seg_t *rs_before, *rs_after, *rs;
296 	range_seg_max_t tmp, rsearch;
297 	uint64_t end = start + size, gap = rt->rt_gap;
298 	uint64_t bridge_size = 0;
299 	boolean_t merge_before, merge_after;
300 
301 	ASSERT3U(size, !=, 0);
302 	ASSERT3U(fill, <=, size);
303 	ASSERT3U(start + size, >, start);
304 
305 	rs_set_start(&rsearch, rt, start);
306 	rs_set_end(&rsearch, rt, end);
307 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
308 
309 	/*
310 	 * If this is a gap-supporting range tree, it is possible that we
311 	 * are inserting into an existing segment. In this case simply
312 	 * bump the fill count and call the remove / add callbacks. If the
313 	 * new range will extend an existing segment, we remove the
314 	 * existing one, apply the new extent to it and re-insert it using
315 	 * the normal code paths.
316 	 */
317 	if (rs != NULL) {
318 		if (gap == 0) {
319 			zfs_panic_recover("zfs: adding existent segment to "
320 			    "range tree (offset=%llx size=%llx)",
321 			    (longlong_t)start, (longlong_t)size);
322 			return;
323 		}
324 		uint64_t rstart = rs_get_start(rs, rt);
325 		uint64_t rend = rs_get_end(rs, rt);
326 		if (rstart <= start && rend >= end) {
327 			range_tree_adjust_fill(rt, rs, fill);
328 			return;
329 		}
330 
331 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
332 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
333 
334 		range_tree_stat_decr(rt, rs);
335 		rt->rt_space -= rend - rstart;
336 
337 		fill += rs_get_fill(rs, rt);
338 		start = MIN(start, rstart);
339 		end = MAX(end, rend);
340 		size = end - start;
341 
342 		zfs_btree_remove(&rt->rt_root, rs);
343 		range_tree_add_impl(rt, start, size, fill);
344 		return;
345 	}
346 
347 	ASSERT3P(rs, ==, NULL);
348 
349 	/*
350 	 * Determine whether or not we will have to merge with our neighbors.
351 	 * If gap != 0, we might need to merge with our neighbors even if we
352 	 * aren't directly touching.
353 	 */
354 	zfs_btree_index_t where_before, where_after;
355 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
356 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
357 
358 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
359 	    start - gap);
360 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
361 	    gap);
362 
363 	if (merge_before && gap != 0)
364 		bridge_size += start - rs_get_end(rs_before, rt);
365 	if (merge_after && gap != 0)
366 		bridge_size += rs_get_start(rs_after, rt) - end;
367 
368 	if (merge_before && merge_after) {
369 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
370 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
371 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
372 		}
373 
374 		range_tree_stat_decr(rt, rs_before);
375 		range_tree_stat_decr(rt, rs_after);
376 
377 		rs_copy(rs_after, &tmp, rt);
378 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
379 		uint64_t before_fill = rs_get_fill(rs_before, rt);
380 		uint64_t after_fill = rs_get_fill(rs_after, rt);
381 		zfs_btree_remove_idx(&rt->rt_root, &where_before);
382 
383 		/*
384 		 * We have to re-find the node because our old reference is
385 		 * invalid as soon as we do any mutating btree operations.
386 		 */
387 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
388 		ASSERT3P(rs_after, !=, NULL);
389 		rs_set_start_raw(rs_after, rt, before_start);
390 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
391 		rs = rs_after;
392 	} else if (merge_before) {
393 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
394 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
395 
396 		range_tree_stat_decr(rt, rs_before);
397 
398 		uint64_t before_fill = rs_get_fill(rs_before, rt);
399 		rs_set_end(rs_before, rt, end);
400 		rs_set_fill(rs_before, rt, before_fill + fill);
401 		rs = rs_before;
402 	} else if (merge_after) {
403 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
404 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
405 
406 		range_tree_stat_decr(rt, rs_after);
407 
408 		uint64_t after_fill = rs_get_fill(rs_after, rt);
409 		rs_set_start(rs_after, rt, start);
410 		rs_set_fill(rs_after, rt, after_fill + fill);
411 		rs = rs_after;
412 	} else {
413 		rs = &tmp;
414 
415 		rs_set_start(rs, rt, start);
416 		rs_set_end(rs, rt, end);
417 		rs_set_fill(rs, rt, fill);
418 		zfs_btree_add_idx(&rt->rt_root, rs, &where);
419 	}
420 
421 	if (gap != 0) {
422 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
423 		    rs_get_start(rs, rt));
424 	} else {
425 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
426 		    rs_get_start(rs, rt));
427 	}
428 
429 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
430 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
431 
432 	range_tree_stat_incr(rt, rs);
433 	rt->rt_space += size + bridge_size;
434 }
435 
436 void
437 range_tree_add(void *arg, uint64_t start, uint64_t size)
438 {
439 	range_tree_add_impl(arg, start, size, size);
440 }
441 
442 static void
443 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
444     boolean_t do_fill)
445 {
446 	zfs_btree_index_t where;
447 	range_seg_t *rs;
448 	range_seg_max_t rsearch, rs_tmp;
449 	uint64_t end = start + size;
450 	boolean_t left_over, right_over;
451 
452 	VERIFY3U(size, !=, 0);
453 	VERIFY3U(size, <=, rt->rt_space);
454 	if (rt->rt_type == RANGE_SEG64)
455 		ASSERT3U(start + size, >, start);
456 
457 	rs_set_start(&rsearch, rt, start);
458 	rs_set_end(&rsearch, rt, end);
459 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
460 
461 	/* Make sure we completely overlap with someone */
462 	if (rs == NULL) {
463 		zfs_panic_recover("zfs: removing nonexistent segment from "
464 		    "range tree (offset=%llx size=%llx)",
465 		    (longlong_t)start, (longlong_t)size);
466 		return;
467 	}
468 
469 	/*
470 	 * Range trees with gap support must only remove complete segments
471 	 * from the tree. This allows us to maintain accurate fill accounting
472 	 * and to ensure that bridged sections are not leaked. If we need to
473 	 * remove less than the full segment, we can only adjust the fill count.
474 	 */
475 	if (rt->rt_gap != 0) {
476 		if (do_fill) {
477 			if (rs_get_fill(rs, rt) == size) {
478 				start = rs_get_start(rs, rt);
479 				end = rs_get_end(rs, rt);
480 				size = end - start;
481 			} else {
482 				range_tree_adjust_fill(rt, rs, -size);
483 				return;
484 			}
485 		} else if (rs_get_start(rs, rt) != start ||
486 		    rs_get_end(rs, rt) != end) {
487 			zfs_panic_recover("zfs: freeing partial segment of "
488 			    "gap tree (offset=%llx size=%llx) of "
489 			    "(offset=%llx size=%llx)",
490 			    (longlong_t)start, (longlong_t)size,
491 			    (longlong_t)rs_get_start(rs, rt),
492 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
493 			    rt));
494 			return;
495 		}
496 	}
497 
498 	VERIFY3U(rs_get_start(rs, rt), <=, start);
499 	VERIFY3U(rs_get_end(rs, rt), >=, end);
500 
501 	left_over = (rs_get_start(rs, rt) != start);
502 	right_over = (rs_get_end(rs, rt) != end);
503 
504 	range_tree_stat_decr(rt, rs);
505 
506 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
507 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
508 
509 	if (left_over && right_over) {
510 		range_seg_max_t newseg;
511 		rs_set_start(&newseg, rt, end);
512 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
513 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
514 		range_tree_stat_incr(rt, &newseg);
515 
516 		// This modifies the buffer already inside the range tree
517 		rs_set_end(rs, rt, start);
518 
519 		rs_copy(rs, &rs_tmp, rt);
520 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
521 			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
522 		else
523 			zfs_btree_add(&rt->rt_root, &newseg);
524 
525 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
526 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
527 	} else if (left_over) {
528 		// This modifies the buffer already inside the range tree
529 		rs_set_end(rs, rt, start);
530 		rs_copy(rs, &rs_tmp, rt);
531 	} else if (right_over) {
532 		// This modifies the buffer already inside the range tree
533 		rs_set_start(rs, rt, end);
534 		rs_copy(rs, &rs_tmp, rt);
535 	} else {
536 		zfs_btree_remove_idx(&rt->rt_root, &where);
537 		rs = NULL;
538 	}
539 
540 	if (rs != NULL) {
541 		/*
542 		 * The fill of the leftover segment will always be equal to
543 		 * the size, since we do not support removing partial segments
544 		 * of range trees with gaps.
545 		 */
546 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
547 		    rs_get_start_raw(rs, rt));
548 		range_tree_stat_incr(rt, &rs_tmp);
549 
550 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
551 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
552 	}
553 
554 	rt->rt_space -= size;
555 }
556 
557 void
558 range_tree_remove(void *arg, uint64_t start, uint64_t size)
559 {
560 	range_tree_remove_impl(arg, start, size, B_FALSE);
561 }
562 
563 void
564 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
565 {
566 	range_tree_remove_impl(rt, start, size, B_TRUE);
567 }
568 
569 void
570 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
571     uint64_t newstart, uint64_t newsize)
572 {
573 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
574 
575 	range_tree_stat_decr(rt, rs);
576 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
577 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
578 
579 	rs_set_start(rs, rt, newstart);
580 	rs_set_end(rs, rt, newstart + newsize);
581 
582 	range_tree_stat_incr(rt, rs);
583 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
584 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
585 
586 	rt->rt_space += delta;
587 }
588 
589 static range_seg_t *
590 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
591 {
592 	range_seg_max_t rsearch;
593 	uint64_t end = start + size;
594 
595 	VERIFY(size != 0);
596 
597 	rs_set_start(&rsearch, rt, start);
598 	rs_set_end(&rsearch, rt, end);
599 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
600 }
601 
602 range_seg_t *
603 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
604 {
605 	if (rt->rt_type == RANGE_SEG64)
606 		ASSERT3U(start + size, >, start);
607 
608 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
609 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
610 	    rs_get_end(rs, rt) >= start + size) {
611 		return (rs);
612 	}
613 	return (NULL);
614 }
615 
616 void
617 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
618 {
619 	range_seg_t *rs = range_tree_find(rt, off, size);
620 	if (rs != NULL)
621 		panic("segment already in tree; rs=%p", (void *)rs);
622 }
623 
624 boolean_t
625 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
626 {
627 	return (range_tree_find(rt, start, size) != NULL);
628 }
629 
630 /*
631  * Returns the first subset of the given range which overlaps with the range
632  * tree. Returns true if there is a segment in the range, and false if there
633  * isn't.
634  */
635 boolean_t
636 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
637     uint64_t *ostart, uint64_t *osize)
638 {
639 	if (rt->rt_type == RANGE_SEG64)
640 		ASSERT3U(start + size, >, start);
641 
642 	range_seg_max_t rsearch;
643 	rs_set_start(&rsearch, rt, start);
644 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
645 
646 	zfs_btree_index_t where;
647 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
648 	if (rs != NULL) {
649 		*ostart = start;
650 		*osize = MIN(size, rs_get_end(rs, rt) - start);
651 		return (B_TRUE);
652 	}
653 
654 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
655 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
656 		return (B_FALSE);
657 
658 	*ostart = rs_get_start(rs, rt);
659 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
660 	    rs_get_start(rs, rt);
661 	return (B_TRUE);
662 }
663 
664 /*
665  * Ensure that this range is not in the tree, regardless of whether
666  * it is currently in the tree.
667  */
668 void
669 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
670 {
671 	range_seg_t *rs;
672 
673 	if (size == 0)
674 		return;
675 
676 	if (rt->rt_type == RANGE_SEG64)
677 		ASSERT3U(start + size, >, start);
678 
679 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
680 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
681 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
682 		range_tree_remove(rt, free_start, free_end - free_start);
683 	}
684 }
685 
686 void
687 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
688 {
689 	range_tree_t *rt;
690 
691 	ASSERT0(range_tree_space(*rtdst));
692 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
693 
694 	rt = *rtsrc;
695 	*rtsrc = *rtdst;
696 	*rtdst = rt;
697 }
698 
699 void
700 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
701 {
702 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
703 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
704 
705 	if (func != NULL) {
706 		range_seg_t *rs;
707 		zfs_btree_index_t *cookie = NULL;
708 
709 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
710 		    NULL) {
711 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
712 			    rs_get_start(rs, rt));
713 		}
714 	} else {
715 		zfs_btree_clear(&rt->rt_root);
716 	}
717 
718 	memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram));
719 	rt->rt_space = 0;
720 }
721 
722 void
723 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
724 {
725 	zfs_btree_index_t where;
726 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
727 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
728 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
729 		    rs_get_start(rs, rt));
730 	}
731 }
732 
733 range_seg_t *
734 range_tree_first(range_tree_t *rt)
735 {
736 	return (zfs_btree_first(&rt->rt_root, NULL));
737 }
738 
739 uint64_t
740 range_tree_space(range_tree_t *rt)
741 {
742 	return (rt->rt_space);
743 }
744 
745 uint64_t
746 range_tree_numsegs(range_tree_t *rt)
747 {
748 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
749 }
750 
751 boolean_t
752 range_tree_is_empty(range_tree_t *rt)
753 {
754 	ASSERT(rt != NULL);
755 	return (range_tree_space(rt) == 0);
756 }
757 
758 /*
759  * Remove any overlapping ranges between the given segment [start, end)
760  * from removefrom. Add non-overlapping leftovers to addto.
761  */
762 void
763 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
764     range_tree_t *removefrom, range_tree_t *addto)
765 {
766 	zfs_btree_index_t where;
767 	range_seg_max_t starting_rs;
768 	rs_set_start(&starting_rs, removefrom, start);
769 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
770 	    removefrom) + 1);
771 
772 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
773 	    &starting_rs, &where);
774 
775 	if (curr == NULL)
776 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
777 
778 	range_seg_t *next;
779 	for (; curr != NULL; curr = next) {
780 		if (start == end)
781 			return;
782 		VERIFY3U(start, <, end);
783 
784 		/* there is no overlap */
785 		if (end <= rs_get_start(curr, removefrom)) {
786 			range_tree_add(addto, start, end - start);
787 			return;
788 		}
789 
790 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
791 		    start);
792 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
793 		    end);
794 		uint64_t overlap_size = overlap_end - overlap_start;
795 		ASSERT3S(overlap_size, >, 0);
796 		range_seg_max_t rs;
797 		rs_copy(curr, &rs, removefrom);
798 
799 		range_tree_remove(removefrom, overlap_start, overlap_size);
800 
801 		if (start < overlap_start)
802 			range_tree_add(addto, start, overlap_start - start);
803 
804 		start = overlap_end;
805 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
806 		/*
807 		 * If we find something here, we only removed part of the
808 		 * curr segment. Either there's some left at the end
809 		 * because we've reached the end of the range we're removing,
810 		 * or there's some left at the start because we started
811 		 * partway through the range.  Either way, we continue with
812 		 * the loop. If it's the former, we'll return at the start of
813 		 * the loop, and if it's the latter we'll see if there is more
814 		 * area to process.
815 		 */
816 		if (next != NULL) {
817 			ASSERT(start == end || start == rs_get_end(&rs,
818 			    removefrom));
819 		}
820 
821 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
822 	}
823 	VERIFY3P(curr, ==, NULL);
824 
825 	if (start != end) {
826 		VERIFY3U(start, <, end);
827 		range_tree_add(addto, start, end - start);
828 	} else {
829 		VERIFY3U(start, ==, end);
830 	}
831 }
832 
833 /*
834  * For each entry in rt, if it exists in removefrom, remove it
835  * from removefrom. Otherwise, add it to addto.
836  */
837 void
838 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
839     range_tree_t *addto)
840 {
841 	zfs_btree_index_t where;
842 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
843 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
844 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
845 		    rs_get_end(rs, rt), removefrom, addto);
846 	}
847 }
848 
849 uint64_t
850 range_tree_min(range_tree_t *rt)
851 {
852 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
853 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
854 }
855 
856 uint64_t
857 range_tree_max(range_tree_t *rt)
858 {
859 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
860 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
861 }
862 
863 uint64_t
864 range_tree_span(range_tree_t *rt)
865 {
866 	return (range_tree_max(rt) - range_tree_min(rt));
867 }
868