1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved. 27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/dnode.h> 34 #include <sys/zio.h> 35 #include <sys/range_tree.h> 36 37 /* 38 * Range trees are tree-based data structures that can be used to 39 * track free space or generally any space allocation information. 40 * A range tree keeps track of individual segments and automatically 41 * provides facilities such as adjacent extent merging and extent 42 * splitting in response to range add/remove requests. 43 * 44 * A range tree starts out completely empty, with no segments in it. 45 * Adding an allocation via range_tree_add to the range tree can either: 46 * 1) create a new extent 47 * 2) extend an adjacent extent 48 * 3) merge two adjacent extents 49 * Conversely, removing an allocation via range_tree_remove can: 50 * 1) completely remove an extent 51 * 2) shorten an extent (if the allocation was near one of its ends) 52 * 3) split an extent into two extents, in effect punching a hole 53 * 54 * A range tree is also capable of 'bridging' gaps when adding 55 * allocations. This is useful for cases when close proximity of 56 * allocations is an important detail that needs to be represented 57 * in the range tree. See range_tree_set_gap(). The default behavior 58 * is not to bridge gaps (i.e. the maximum allowed gap size is 0). 59 * 60 * In order to traverse a range tree, use either the range_tree_walk() 61 * or range_tree_vacate() functions. 62 * 63 * To obtain more accurate information on individual segment 64 * operations that the range tree performs "under the hood", you can 65 * specify a set of callbacks by passing a range_tree_ops_t structure 66 * to the range_tree_create function. Any callbacks that are non-NULL 67 * are then called at the appropriate times. 68 * 69 * The range tree code also supports a special variant of range trees 70 * that can bridge small gaps between segments. This kind of tree is used 71 * by the dsl scanning code to group I/Os into mostly sequential chunks to 72 * optimize disk performance. The code here attempts to do this with as 73 * little memory and computational overhead as possible. One limitation of 74 * this implementation is that segments of range trees with gaps can only 75 * support removing complete segments. 76 */ 77 78 static inline void 79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt) 80 { 81 ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES); 82 size_t size = 0; 83 switch (rt->rt_type) { 84 case RANGE_SEG32: 85 size = sizeof (range_seg32_t); 86 break; 87 case RANGE_SEG64: 88 size = sizeof (range_seg64_t); 89 break; 90 case RANGE_SEG_GAP: 91 size = sizeof (range_seg_gap_t); 92 break; 93 default: 94 __builtin_unreachable(); 95 } 96 memcpy(dest, src, size); 97 } 98 99 void 100 range_tree_stat_verify(range_tree_t *rt) 101 { 102 range_seg_t *rs; 103 zfs_btree_index_t where; 104 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; 105 int i; 106 107 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; 108 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 109 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 110 int idx = highbit64(size) - 1; 111 112 hist[idx]++; 113 ASSERT3U(hist[idx], !=, 0); 114 } 115 116 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 117 if (hist[i] != rt->rt_histogram[i]) { 118 zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu", 119 i, hist, (u_longlong_t)hist[i], 120 (u_longlong_t)rt->rt_histogram[i]); 121 } 122 VERIFY3U(hist[i], ==, rt->rt_histogram[i]); 123 } 124 } 125 126 static void 127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) 128 { 129 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 130 int idx = highbit64(size) - 1; 131 132 ASSERT(size != 0); 133 ASSERT3U(idx, <, 134 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 135 136 rt->rt_histogram[idx]++; 137 ASSERT3U(rt->rt_histogram[idx], !=, 0); 138 } 139 140 static void 141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) 142 { 143 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 144 int idx = highbit64(size) - 1; 145 146 ASSERT(size != 0); 147 ASSERT3U(idx, <, 148 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 149 150 ASSERT3U(rt->rt_histogram[idx], !=, 0); 151 rt->rt_histogram[idx]--; 152 } 153 154 static int 155 range_tree_seg32_compare(const void *x1, const void *x2) 156 { 157 const range_seg32_t *r1 = x1; 158 const range_seg32_t *r2 = x2; 159 160 ASSERT3U(r1->rs_start, <=, r1->rs_end); 161 ASSERT3U(r2->rs_start, <=, r2->rs_end); 162 163 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 164 } 165 166 static int 167 range_tree_seg64_compare(const void *x1, const void *x2) 168 { 169 const range_seg64_t *r1 = x1; 170 const range_seg64_t *r2 = x2; 171 172 ASSERT3U(r1->rs_start, <=, r1->rs_end); 173 ASSERT3U(r2->rs_start, <=, r2->rs_end); 174 175 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 176 } 177 178 static int 179 range_tree_seg_gap_compare(const void *x1, const void *x2) 180 { 181 const range_seg_gap_t *r1 = x1; 182 const range_seg_gap_t *r2 = x2; 183 184 ASSERT3U(r1->rs_start, <=, r1->rs_end); 185 ASSERT3U(r2->rs_start, <=, r2->rs_end); 186 187 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 188 } 189 190 range_tree_t * 191 range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type, 192 void *arg, uint64_t start, uint64_t shift, uint64_t gap) 193 { 194 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); 195 196 ASSERT3U(shift, <, 64); 197 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES); 198 size_t size; 199 int (*compare) (const void *, const void *); 200 switch (type) { 201 case RANGE_SEG32: 202 size = sizeof (range_seg32_t); 203 compare = range_tree_seg32_compare; 204 break; 205 case RANGE_SEG64: 206 size = sizeof (range_seg64_t); 207 compare = range_tree_seg64_compare; 208 break; 209 case RANGE_SEG_GAP: 210 size = sizeof (range_seg_gap_t); 211 compare = range_tree_seg_gap_compare; 212 break; 213 default: 214 panic("Invalid range seg type %d", type); 215 } 216 zfs_btree_create(&rt->rt_root, compare, size); 217 218 rt->rt_ops = ops; 219 rt->rt_gap = gap; 220 rt->rt_arg = arg; 221 rt->rt_type = type; 222 rt->rt_start = start; 223 rt->rt_shift = shift; 224 225 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) 226 rt->rt_ops->rtop_create(rt, rt->rt_arg); 227 228 return (rt); 229 } 230 231 range_tree_t * 232 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type, 233 void *arg, uint64_t start, uint64_t shift) 234 { 235 return (range_tree_create_gap(ops, type, arg, start, shift, 0)); 236 } 237 238 void 239 range_tree_destroy(range_tree_t *rt) 240 { 241 VERIFY0(rt->rt_space); 242 243 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) 244 rt->rt_ops->rtop_destroy(rt, rt->rt_arg); 245 246 zfs_btree_destroy(&rt->rt_root); 247 kmem_free(rt, sizeof (*rt)); 248 } 249 250 void 251 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) 252 { 253 if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) { 254 zfs_panic_recover("zfs: attempting to decrease fill to or " 255 "below 0; probable double remove in segment [%llx:%llx]", 256 (longlong_t)rs_get_start(rs, rt), 257 (longlong_t)rs_get_end(rs, rt)); 258 } 259 if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) - 260 rs_get_start(rs, rt)) { 261 zfs_panic_recover("zfs: attempting to increase fill beyond " 262 "max; probable double add in segment [%llx:%llx]", 263 (longlong_t)rs_get_start(rs, rt), 264 (longlong_t)rs_get_end(rs, rt)); 265 } 266 267 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 268 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 269 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta); 270 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 271 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 272 } 273 274 static void 275 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) 276 { 277 range_tree_t *rt = arg; 278 zfs_btree_index_t where; 279 range_seg_t *rs_before, *rs_after, *rs; 280 range_seg_max_t tmp, rsearch; 281 uint64_t end = start + size, gap = rt->rt_gap; 282 uint64_t bridge_size = 0; 283 boolean_t merge_before, merge_after; 284 285 ASSERT3U(size, !=, 0); 286 ASSERT3U(fill, <=, size); 287 ASSERT3U(start + size, >, start); 288 289 rs_set_start(&rsearch, rt, start); 290 rs_set_end(&rsearch, rt, end); 291 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 292 293 /* 294 * If this is a gap-supporting range tree, it is possible that we 295 * are inserting into an existing segment. In this case simply 296 * bump the fill count and call the remove / add callbacks. If the 297 * new range will extend an existing segment, we remove the 298 * existing one, apply the new extent to it and re-insert it using 299 * the normal code paths. 300 */ 301 if (rs != NULL) { 302 if (gap == 0) { 303 zfs_panic_recover("zfs: adding existent segment to " 304 "range tree (offset=%llx size=%llx)", 305 (longlong_t)start, (longlong_t)size); 306 return; 307 } 308 uint64_t rstart = rs_get_start(rs, rt); 309 uint64_t rend = rs_get_end(rs, rt); 310 if (rstart <= start && rend >= end) { 311 range_tree_adjust_fill(rt, rs, fill); 312 return; 313 } 314 315 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 316 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 317 318 range_tree_stat_decr(rt, rs); 319 rt->rt_space -= rend - rstart; 320 321 fill += rs_get_fill(rs, rt); 322 start = MIN(start, rstart); 323 end = MAX(end, rend); 324 size = end - start; 325 326 zfs_btree_remove(&rt->rt_root, rs); 327 range_tree_add_impl(rt, start, size, fill); 328 return; 329 } 330 331 ASSERT3P(rs, ==, NULL); 332 333 /* 334 * Determine whether or not we will have to merge with our neighbors. 335 * If gap != 0, we might need to merge with our neighbors even if we 336 * aren't directly touching. 337 */ 338 zfs_btree_index_t where_before, where_after; 339 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before); 340 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after); 341 342 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >= 343 start - gap); 344 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end + 345 gap); 346 347 if (merge_before && gap != 0) 348 bridge_size += start - rs_get_end(rs_before, rt); 349 if (merge_after && gap != 0) 350 bridge_size += rs_get_start(rs_after, rt) - end; 351 352 if (merge_before && merge_after) { 353 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { 354 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 355 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 356 } 357 358 range_tree_stat_decr(rt, rs_before); 359 range_tree_stat_decr(rt, rs_after); 360 361 rs_copy(rs_after, &tmp, rt); 362 uint64_t before_start = rs_get_start_raw(rs_before, rt); 363 uint64_t before_fill = rs_get_fill(rs_before, rt); 364 uint64_t after_fill = rs_get_fill(rs_after, rt); 365 zfs_btree_remove_idx(&rt->rt_root, &where_before); 366 367 /* 368 * We have to re-find the node because our old reference is 369 * invalid as soon as we do any mutating btree operations. 370 */ 371 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after); 372 rs_set_start_raw(rs_after, rt, before_start); 373 rs_set_fill(rs_after, rt, after_fill + before_fill + fill); 374 rs = rs_after; 375 } else if (merge_before) { 376 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 377 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 378 379 range_tree_stat_decr(rt, rs_before); 380 381 uint64_t before_fill = rs_get_fill(rs_before, rt); 382 rs_set_end(rs_before, rt, end); 383 rs_set_fill(rs_before, rt, before_fill + fill); 384 rs = rs_before; 385 } else if (merge_after) { 386 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 387 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 388 389 range_tree_stat_decr(rt, rs_after); 390 391 uint64_t after_fill = rs_get_fill(rs_after, rt); 392 rs_set_start(rs_after, rt, start); 393 rs_set_fill(rs_after, rt, after_fill + fill); 394 rs = rs_after; 395 } else { 396 rs = &tmp; 397 398 rs_set_start(rs, rt, start); 399 rs_set_end(rs, rt, end); 400 rs_set_fill(rs, rt, fill); 401 zfs_btree_add_idx(&rt->rt_root, rs, &where); 402 } 403 404 if (gap != 0) { 405 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) - 406 rs_get_start(rs, rt)); 407 } else { 408 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) - 409 rs_get_start(rs, rt)); 410 } 411 412 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 413 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 414 415 range_tree_stat_incr(rt, rs); 416 rt->rt_space += size + bridge_size; 417 } 418 419 void 420 range_tree_add(void *arg, uint64_t start, uint64_t size) 421 { 422 range_tree_add_impl(arg, start, size, size); 423 } 424 425 static void 426 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, 427 boolean_t do_fill) 428 { 429 zfs_btree_index_t where; 430 range_seg_t *rs; 431 range_seg_max_t rsearch, rs_tmp; 432 uint64_t end = start + size; 433 boolean_t left_over, right_over; 434 435 VERIFY3U(size, !=, 0); 436 VERIFY3U(size, <=, rt->rt_space); 437 if (rt->rt_type == RANGE_SEG64) 438 ASSERT3U(start + size, >, start); 439 440 rs_set_start(&rsearch, rt, start); 441 rs_set_end(&rsearch, rt, end); 442 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 443 444 /* Make sure we completely overlap with someone */ 445 if (rs == NULL) { 446 zfs_panic_recover("zfs: removing nonexistent segment from " 447 "range tree (offset=%llx size=%llx)", 448 (longlong_t)start, (longlong_t)size); 449 return; 450 } 451 452 /* 453 * Range trees with gap support must only remove complete segments 454 * from the tree. This allows us to maintain accurate fill accounting 455 * and to ensure that bridged sections are not leaked. If we need to 456 * remove less than the full segment, we can only adjust the fill count. 457 */ 458 if (rt->rt_gap != 0) { 459 if (do_fill) { 460 if (rs_get_fill(rs, rt) == size) { 461 start = rs_get_start(rs, rt); 462 end = rs_get_end(rs, rt); 463 size = end - start; 464 } else { 465 range_tree_adjust_fill(rt, rs, -size); 466 return; 467 } 468 } else if (rs_get_start(rs, rt) != start || 469 rs_get_end(rs, rt) != end) { 470 zfs_panic_recover("zfs: freeing partial segment of " 471 "gap tree (offset=%llx size=%llx) of " 472 "(offset=%llx size=%llx)", 473 (longlong_t)start, (longlong_t)size, 474 (longlong_t)rs_get_start(rs, rt), 475 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs, 476 rt)); 477 return; 478 } 479 } 480 481 VERIFY3U(rs_get_start(rs, rt), <=, start); 482 VERIFY3U(rs_get_end(rs, rt), >=, end); 483 484 left_over = (rs_get_start(rs, rt) != start); 485 right_over = (rs_get_end(rs, rt) != end); 486 487 range_tree_stat_decr(rt, rs); 488 489 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 490 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 491 492 if (left_over && right_over) { 493 range_seg_max_t newseg; 494 rs_set_start(&newseg, rt, end); 495 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt)); 496 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end); 497 range_tree_stat_incr(rt, &newseg); 498 499 // This modifies the buffer already inside the range tree 500 rs_set_end(rs, rt, start); 501 502 rs_copy(rs, &rs_tmp, rt); 503 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL) 504 zfs_btree_add_idx(&rt->rt_root, &newseg, &where); 505 else 506 zfs_btree_add(&rt->rt_root, &newseg); 507 508 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 509 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg); 510 } else if (left_over) { 511 // This modifies the buffer already inside the range tree 512 rs_set_end(rs, rt, start); 513 rs_copy(rs, &rs_tmp, rt); 514 } else if (right_over) { 515 // This modifies the buffer already inside the range tree 516 rs_set_start(rs, rt, end); 517 rs_copy(rs, &rs_tmp, rt); 518 } else { 519 zfs_btree_remove_idx(&rt->rt_root, &where); 520 rs = NULL; 521 } 522 523 if (rs != NULL) { 524 /* 525 * The fill of the leftover segment will always be equal to 526 * the size, since we do not support removing partial segments 527 * of range trees with gaps. 528 */ 529 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) - 530 rs_get_start_raw(rs, rt)); 531 range_tree_stat_incr(rt, &rs_tmp); 532 533 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 534 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg); 535 } 536 537 rt->rt_space -= size; 538 } 539 540 void 541 range_tree_remove(void *arg, uint64_t start, uint64_t size) 542 { 543 range_tree_remove_impl(arg, start, size, B_FALSE); 544 } 545 546 void 547 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) 548 { 549 range_tree_remove_impl(rt, start, size, B_TRUE); 550 } 551 552 void 553 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, 554 uint64_t newstart, uint64_t newsize) 555 { 556 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt)); 557 558 range_tree_stat_decr(rt, rs); 559 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 560 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 561 562 rs_set_start(rs, rt, newstart); 563 rs_set_end(rs, rt, newstart + newsize); 564 565 range_tree_stat_incr(rt, rs); 566 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 567 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 568 569 rt->rt_space += delta; 570 } 571 572 static range_seg_t * 573 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) 574 { 575 range_seg_max_t rsearch; 576 uint64_t end = start + size; 577 578 VERIFY(size != 0); 579 580 rs_set_start(&rsearch, rt, start); 581 rs_set_end(&rsearch, rt, end); 582 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL)); 583 } 584 585 range_seg_t * 586 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) 587 { 588 if (rt->rt_type == RANGE_SEG64) 589 ASSERT3U(start + size, >, start); 590 591 range_seg_t *rs = range_tree_find_impl(rt, start, size); 592 if (rs != NULL && rs_get_start(rs, rt) <= start && 593 rs_get_end(rs, rt) >= start + size) { 594 return (rs); 595 } 596 return (NULL); 597 } 598 599 void 600 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size) 601 { 602 range_seg_t *rs = range_tree_find(rt, off, size); 603 if (rs != NULL) 604 panic("segment already in tree; rs=%p", (void *)rs); 605 } 606 607 boolean_t 608 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) 609 { 610 return (range_tree_find(rt, start, size) != NULL); 611 } 612 613 /* 614 * Returns the first subset of the given range which overlaps with the range 615 * tree. Returns true if there is a segment in the range, and false if there 616 * isn't. 617 */ 618 boolean_t 619 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size, 620 uint64_t *ostart, uint64_t *osize) 621 { 622 if (rt->rt_type == RANGE_SEG64) 623 ASSERT3U(start + size, >, start); 624 625 range_seg_max_t rsearch; 626 rs_set_start(&rsearch, rt, start); 627 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1); 628 629 zfs_btree_index_t where; 630 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 631 if (rs != NULL) { 632 *ostart = start; 633 *osize = MIN(size, rs_get_end(rs, rt) - start); 634 return (B_TRUE); 635 } 636 637 rs = zfs_btree_next(&rt->rt_root, &where, &where); 638 if (rs == NULL || rs_get_start(rs, rt) > start + size) 639 return (B_FALSE); 640 641 *ostart = rs_get_start(rs, rt); 642 *osize = MIN(start + size, rs_get_end(rs, rt)) - 643 rs_get_start(rs, rt); 644 return (B_TRUE); 645 } 646 647 /* 648 * Ensure that this range is not in the tree, regardless of whether 649 * it is currently in the tree. 650 */ 651 void 652 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) 653 { 654 range_seg_t *rs; 655 656 if (size == 0) 657 return; 658 659 if (rt->rt_type == RANGE_SEG64) 660 ASSERT3U(start + size, >, start); 661 662 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { 663 uint64_t free_start = MAX(rs_get_start(rs, rt), start); 664 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size); 665 range_tree_remove(rt, free_start, free_end - free_start); 666 } 667 } 668 669 void 670 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) 671 { 672 range_tree_t *rt; 673 674 ASSERT0(range_tree_space(*rtdst)); 675 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root)); 676 677 rt = *rtsrc; 678 *rtsrc = *rtdst; 679 *rtdst = rt; 680 } 681 682 void 683 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) 684 { 685 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) 686 rt->rt_ops->rtop_vacate(rt, rt->rt_arg); 687 688 if (func != NULL) { 689 range_seg_t *rs; 690 zfs_btree_index_t *cookie = NULL; 691 692 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) != 693 NULL) { 694 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 695 rs_get_start(rs, rt)); 696 } 697 } else { 698 zfs_btree_clear(&rt->rt_root); 699 } 700 701 memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram)); 702 rt->rt_space = 0; 703 } 704 705 void 706 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) 707 { 708 zfs_btree_index_t where; 709 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); 710 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 711 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 712 rs_get_start(rs, rt)); 713 } 714 } 715 716 range_seg_t * 717 range_tree_first(range_tree_t *rt) 718 { 719 return (zfs_btree_first(&rt->rt_root, NULL)); 720 } 721 722 uint64_t 723 range_tree_space(range_tree_t *rt) 724 { 725 return (rt->rt_space); 726 } 727 728 uint64_t 729 range_tree_numsegs(range_tree_t *rt) 730 { 731 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root)); 732 } 733 734 boolean_t 735 range_tree_is_empty(range_tree_t *rt) 736 { 737 ASSERT(rt != NULL); 738 return (range_tree_space(rt) == 0); 739 } 740 741 /* 742 * Remove any overlapping ranges between the given segment [start, end) 743 * from removefrom. Add non-overlapping leftovers to addto. 744 */ 745 void 746 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end, 747 range_tree_t *removefrom, range_tree_t *addto) 748 { 749 zfs_btree_index_t where; 750 range_seg_max_t starting_rs; 751 rs_set_start(&starting_rs, removefrom, start); 752 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs, 753 removefrom) + 1); 754 755 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root, 756 &starting_rs, &where); 757 758 if (curr == NULL) 759 curr = zfs_btree_next(&removefrom->rt_root, &where, &where); 760 761 range_seg_t *next; 762 for (; curr != NULL; curr = next) { 763 if (start == end) 764 return; 765 VERIFY3U(start, <, end); 766 767 /* there is no overlap */ 768 if (end <= rs_get_start(curr, removefrom)) { 769 range_tree_add(addto, start, end - start); 770 return; 771 } 772 773 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom), 774 start); 775 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom), 776 end); 777 uint64_t overlap_size = overlap_end - overlap_start; 778 ASSERT3S(overlap_size, >, 0); 779 range_seg_max_t rs; 780 rs_copy(curr, &rs, removefrom); 781 782 range_tree_remove(removefrom, overlap_start, overlap_size); 783 784 if (start < overlap_start) 785 range_tree_add(addto, start, overlap_start - start); 786 787 start = overlap_end; 788 next = zfs_btree_find(&removefrom->rt_root, &rs, &where); 789 /* 790 * If we find something here, we only removed part of the 791 * curr segment. Either there's some left at the end 792 * because we've reached the end of the range we're removing, 793 * or there's some left at the start because we started 794 * partway through the range. Either way, we continue with 795 * the loop. If it's the former, we'll return at the start of 796 * the loop, and if it's the latter we'll see if there is more 797 * area to process. 798 */ 799 if (next != NULL) { 800 ASSERT(start == end || start == rs_get_end(&rs, 801 removefrom)); 802 } 803 804 next = zfs_btree_next(&removefrom->rt_root, &where, &where); 805 } 806 VERIFY3P(curr, ==, NULL); 807 808 if (start != end) { 809 VERIFY3U(start, <, end); 810 range_tree_add(addto, start, end - start); 811 } else { 812 VERIFY3U(start, ==, end); 813 } 814 } 815 816 /* 817 * For each entry in rt, if it exists in removefrom, remove it 818 * from removefrom. Otherwise, add it to addto. 819 */ 820 void 821 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom, 822 range_tree_t *addto) 823 { 824 zfs_btree_index_t where; 825 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs; 826 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 827 range_tree_remove_xor_add_segment(rs_get_start(rs, rt), 828 rs_get_end(rs, rt), removefrom, addto); 829 } 830 } 831 832 uint64_t 833 range_tree_min(range_tree_t *rt) 834 { 835 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL); 836 return (rs != NULL ? rs_get_start(rs, rt) : 0); 837 } 838 839 uint64_t 840 range_tree_max(range_tree_t *rt) 841 { 842 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL); 843 return (rs != NULL ? rs_get_end(rs, rt) : 0); 844 } 845 846 uint64_t 847 range_tree_span(range_tree_t *rt) 848 { 849 return (range_tree_max(rt) - range_tree_min(rt)); 850 } 851