xref: /freebsd/sys/contrib/openzfs/module/zfs/range_tree.c (revision 77ceadee6d88cf4ce968b42503acfb12c668ffa5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dnode.h>
33 #include <sys/zio.h>
34 #include <sys/range_tree.h>
35 
36 /*
37  * Range trees are tree-based data structures that can be used to
38  * track free space or generally any space allocation information.
39  * A range tree keeps track of individual segments and automatically
40  * provides facilities such as adjacent extent merging and extent
41  * splitting in response to range add/remove requests.
42  *
43  * A range tree starts out completely empty, with no segments in it.
44  * Adding an allocation via range_tree_add to the range tree can either:
45  * 1) create a new extent
46  * 2) extend an adjacent extent
47  * 3) merge two adjacent extents
48  * Conversely, removing an allocation via range_tree_remove can:
49  * 1) completely remove an extent
50  * 2) shorten an extent (if the allocation was near one of its ends)
51  * 3) split an extent into two extents, in effect punching a hole
52  *
53  * A range tree is also capable of 'bridging' gaps when adding
54  * allocations. This is useful for cases when close proximity of
55  * allocations is an important detail that needs to be represented
56  * in the range tree. See range_tree_set_gap(). The default behavior
57  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
58  *
59  * In order to traverse a range tree, use either the range_tree_walk()
60  * or range_tree_vacate() functions.
61  *
62  * To obtain more accurate information on individual segment
63  * operations that the range tree performs "under the hood", you can
64  * specify a set of callbacks by passing a range_tree_ops_t structure
65  * to the range_tree_create function. Any callbacks that are non-NULL
66  * are then called at the appropriate times.
67  *
68  * The range tree code also supports a special variant of range trees
69  * that can bridge small gaps between segments. This kind of tree is used
70  * by the dsl scanning code to group I/Os into mostly sequential chunks to
71  * optimize disk performance. The code here attempts to do this with as
72  * little memory and computational overhead as possible. One limitation of
73  * this implementation is that segments of range trees with gaps can only
74  * support removing complete segments.
75  */
76 
77 static inline void
78 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
79 {
80 	ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
81 	size_t size = 0;
82 	switch (rt->rt_type) {
83 	case RANGE_SEG32:
84 		size = sizeof (range_seg32_t);
85 		break;
86 	case RANGE_SEG64:
87 		size = sizeof (range_seg64_t);
88 		break;
89 	case RANGE_SEG_GAP:
90 		size = sizeof (range_seg_gap_t);
91 		break;
92 	default:
93 		VERIFY(0);
94 	}
95 	bcopy(src, dest, size);
96 }
97 
98 void
99 range_tree_stat_verify(range_tree_t *rt)
100 {
101 	range_seg_t *rs;
102 	zfs_btree_index_t where;
103 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
104 	int i;
105 
106 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
107 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
108 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
109 		int idx	= highbit64(size) - 1;
110 
111 		hist[idx]++;
112 		ASSERT3U(hist[idx], !=, 0);
113 	}
114 
115 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
116 		if (hist[i] != rt->rt_histogram[i]) {
117 			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
118 			    i, hist, hist[i], rt->rt_histogram[i]);
119 		}
120 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
121 	}
122 }
123 
124 static void
125 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
126 {
127 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
128 	int idx = highbit64(size) - 1;
129 
130 	ASSERT(size != 0);
131 	ASSERT3U(idx, <,
132 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
133 
134 	rt->rt_histogram[idx]++;
135 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
136 }
137 
138 static void
139 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
140 {
141 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
142 	int idx = highbit64(size) - 1;
143 
144 	ASSERT(size != 0);
145 	ASSERT3U(idx, <,
146 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
147 
148 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
149 	rt->rt_histogram[idx]--;
150 }
151 
152 static int
153 range_tree_seg32_compare(const void *x1, const void *x2)
154 {
155 	const range_seg32_t *r1 = x1;
156 	const range_seg32_t *r2 = x2;
157 
158 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
159 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
160 
161 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
162 }
163 
164 static int
165 range_tree_seg64_compare(const void *x1, const void *x2)
166 {
167 	const range_seg64_t *r1 = x1;
168 	const range_seg64_t *r2 = x2;
169 
170 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
171 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
172 
173 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
174 }
175 
176 static int
177 range_tree_seg_gap_compare(const void *x1, const void *x2)
178 {
179 	const range_seg_gap_t *r1 = x1;
180 	const range_seg_gap_t *r2 = x2;
181 
182 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
183 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
184 
185 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
186 }
187 
188 range_tree_t *
189 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg,
190     uint64_t start, uint64_t shift,
191     int (*zfs_btree_compare) (const void *, const void *),
192     uint64_t gap)
193 {
194 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
195 
196 	ASSERT3U(shift, <, 64);
197 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
198 	size_t size;
199 	int (*compare) (const void *, const void *);
200 	switch (type) {
201 	case RANGE_SEG32:
202 		size = sizeof (range_seg32_t);
203 		compare = range_tree_seg32_compare;
204 		break;
205 	case RANGE_SEG64:
206 		size = sizeof (range_seg64_t);
207 		compare = range_tree_seg64_compare;
208 		break;
209 	case RANGE_SEG_GAP:
210 		size = sizeof (range_seg_gap_t);
211 		compare = range_tree_seg_gap_compare;
212 		break;
213 	default:
214 		panic("Invalid range seg type %d", type);
215 	}
216 	zfs_btree_create(&rt->rt_root, compare, size);
217 
218 	rt->rt_ops = ops;
219 	rt->rt_gap = gap;
220 	rt->rt_arg = arg;
221 	rt->rt_type = type;
222 	rt->rt_start = start;
223 	rt->rt_shift = shift;
224 	rt->rt_btree_compare = zfs_btree_compare;
225 
226 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
227 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
228 
229 	return (rt);
230 }
231 
232 range_tree_t *
233 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type,
234     void *arg, uint64_t start, uint64_t shift)
235 {
236 	return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
237 }
238 
239 void
240 range_tree_destroy(range_tree_t *rt)
241 {
242 	VERIFY0(rt->rt_space);
243 
244 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
245 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
246 
247 	zfs_btree_destroy(&rt->rt_root);
248 	kmem_free(rt, sizeof (*rt));
249 }
250 
251 void
252 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
253 {
254 	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
255 		zfs_panic_recover("zfs: attempting to decrease fill to or "
256 		    "below 0; probable double remove in segment [%llx:%llx]",
257 		    (longlong_t)rs_get_start(rs, rt),
258 		    (longlong_t)rs_get_end(rs, rt));
259 	}
260 	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
261 	    rs_get_start(rs, rt)) {
262 		zfs_panic_recover("zfs: attempting to increase fill beyond "
263 		    "max; probable double add in segment [%llx:%llx]",
264 		    (longlong_t)rs_get_start(rs, rt),
265 		    (longlong_t)rs_get_end(rs, rt));
266 	}
267 
268 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
269 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
270 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
271 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
272 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
273 }
274 
275 static void
276 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
277 {
278 	range_tree_t *rt = arg;
279 	zfs_btree_index_t where;
280 	range_seg_t *rs_before, *rs_after, *rs;
281 	range_seg_max_t tmp, rsearch;
282 	uint64_t end = start + size, gap = rt->rt_gap;
283 	uint64_t bridge_size = 0;
284 	boolean_t merge_before, merge_after;
285 
286 	ASSERT3U(size, !=, 0);
287 	ASSERT3U(fill, <=, size);
288 	ASSERT3U(start + size, >, start);
289 
290 	rs_set_start(&rsearch, rt, start);
291 	rs_set_end(&rsearch, rt, end);
292 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
293 
294 	/*
295 	 * If this is a gap-supporting range tree, it is possible that we
296 	 * are inserting into an existing segment. In this case simply
297 	 * bump the fill count and call the remove / add callbacks. If the
298 	 * new range will extend an existing segment, we remove the
299 	 * existing one, apply the new extent to it and re-insert it using
300 	 * the normal code paths.
301 	 */
302 	if (rs != NULL) {
303 		if (gap == 0) {
304 			zfs_panic_recover("zfs: adding existent segment to "
305 			    "range tree (offset=%llx size=%llx)",
306 			    (longlong_t)start, (longlong_t)size);
307 			return;
308 		}
309 		uint64_t rstart = rs_get_start(rs, rt);
310 		uint64_t rend = rs_get_end(rs, rt);
311 		if (rstart <= start && rend >= end) {
312 			range_tree_adjust_fill(rt, rs, fill);
313 			return;
314 		}
315 
316 		zfs_btree_remove(&rt->rt_root, rs);
317 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
318 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
319 
320 		range_tree_stat_decr(rt, rs);
321 		rt->rt_space -= rend - rstart;
322 
323 		fill += rs_get_fill(rs, rt);
324 		start = MIN(start, rstart);
325 		end = MAX(end, rend);
326 		size = end - start;
327 
328 		range_tree_add_impl(rt, start, size, fill);
329 		return;
330 	}
331 
332 	ASSERT3P(rs, ==, NULL);
333 
334 	/*
335 	 * Determine whether or not we will have to merge with our neighbors.
336 	 * If gap != 0, we might need to merge with our neighbors even if we
337 	 * aren't directly touching.
338 	 */
339 	zfs_btree_index_t where_before, where_after;
340 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
341 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
342 
343 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
344 	    start - gap);
345 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
346 	    gap);
347 
348 	if (merge_before && gap != 0)
349 		bridge_size += start - rs_get_end(rs_before, rt);
350 	if (merge_after && gap != 0)
351 		bridge_size += rs_get_start(rs_after, rt) - end;
352 
353 	if (merge_before && merge_after) {
354 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
355 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
356 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
357 		}
358 
359 		range_tree_stat_decr(rt, rs_before);
360 		range_tree_stat_decr(rt, rs_after);
361 
362 		rs_copy(rs_after, &tmp, rt);
363 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
364 		uint64_t before_fill = rs_get_fill(rs_before, rt);
365 		uint64_t after_fill = rs_get_fill(rs_after, rt);
366 		zfs_btree_remove_idx(&rt->rt_root, &where_before);
367 
368 		/*
369 		 * We have to re-find the node because our old reference is
370 		 * invalid as soon as we do any mutating btree operations.
371 		 */
372 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
373 		rs_set_start_raw(rs_after, rt, before_start);
374 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
375 		rs = rs_after;
376 	} else if (merge_before) {
377 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
378 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
379 
380 		range_tree_stat_decr(rt, rs_before);
381 
382 		uint64_t before_fill = rs_get_fill(rs_before, rt);
383 		rs_set_end(rs_before, rt, end);
384 		rs_set_fill(rs_before, rt, before_fill + fill);
385 		rs = rs_before;
386 	} else if (merge_after) {
387 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
388 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
389 
390 		range_tree_stat_decr(rt, rs_after);
391 
392 		uint64_t after_fill = rs_get_fill(rs_after, rt);
393 		rs_set_start(rs_after, rt, start);
394 		rs_set_fill(rs_after, rt, after_fill + fill);
395 		rs = rs_after;
396 	} else {
397 		rs = &tmp;
398 
399 		rs_set_start(rs, rt, start);
400 		rs_set_end(rs, rt, end);
401 		rs_set_fill(rs, rt, fill);
402 		zfs_btree_add_idx(&rt->rt_root, rs, &where);
403 	}
404 
405 	if (gap != 0) {
406 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
407 		    rs_get_start(rs, rt));
408 	} else {
409 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
410 		    rs_get_start(rs, rt));
411 	}
412 
413 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
414 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
415 
416 	range_tree_stat_incr(rt, rs);
417 	rt->rt_space += size + bridge_size;
418 }
419 
420 void
421 range_tree_add(void *arg, uint64_t start, uint64_t size)
422 {
423 	range_tree_add_impl(arg, start, size, size);
424 }
425 
426 static void
427 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
428     boolean_t do_fill)
429 {
430 	zfs_btree_index_t where;
431 	range_seg_t *rs;
432 	range_seg_max_t rsearch, rs_tmp;
433 	uint64_t end = start + size;
434 	boolean_t left_over, right_over;
435 
436 	VERIFY3U(size, !=, 0);
437 	VERIFY3U(size, <=, rt->rt_space);
438 	if (rt->rt_type == RANGE_SEG64)
439 		ASSERT3U(start + size, >, start);
440 
441 	rs_set_start(&rsearch, rt, start);
442 	rs_set_end(&rsearch, rt, end);
443 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
444 
445 	/* Make sure we completely overlap with someone */
446 	if (rs == NULL) {
447 		zfs_panic_recover("zfs: removing nonexistent segment from "
448 		    "range tree (offset=%llx size=%llx)",
449 		    (longlong_t)start, (longlong_t)size);
450 		return;
451 	}
452 
453 	/*
454 	 * Range trees with gap support must only remove complete segments
455 	 * from the tree. This allows us to maintain accurate fill accounting
456 	 * and to ensure that bridged sections are not leaked. If we need to
457 	 * remove less than the full segment, we can only adjust the fill count.
458 	 */
459 	if (rt->rt_gap != 0) {
460 		if (do_fill) {
461 			if (rs_get_fill(rs, rt) == size) {
462 				start = rs_get_start(rs, rt);
463 				end = rs_get_end(rs, rt);
464 				size = end - start;
465 			} else {
466 				range_tree_adjust_fill(rt, rs, -size);
467 				return;
468 			}
469 		} else if (rs_get_start(rs, rt) != start ||
470 		    rs_get_end(rs, rt) != end) {
471 			zfs_panic_recover("zfs: freeing partial segment of "
472 			    "gap tree (offset=%llx size=%llx) of "
473 			    "(offset=%llx size=%llx)",
474 			    (longlong_t)start, (longlong_t)size,
475 			    (longlong_t)rs_get_start(rs, rt),
476 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
477 			    rt));
478 			return;
479 		}
480 	}
481 
482 	VERIFY3U(rs_get_start(rs, rt), <=, start);
483 	VERIFY3U(rs_get_end(rs, rt), >=, end);
484 
485 	left_over = (rs_get_start(rs, rt) != start);
486 	right_over = (rs_get_end(rs, rt) != end);
487 
488 	range_tree_stat_decr(rt, rs);
489 
490 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
491 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
492 
493 	if (left_over && right_over) {
494 		range_seg_max_t newseg;
495 		rs_set_start(&newseg, rt, end);
496 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
497 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
498 		range_tree_stat_incr(rt, &newseg);
499 
500 		// This modifies the buffer already inside the range tree
501 		rs_set_end(rs, rt, start);
502 
503 		rs_copy(rs, &rs_tmp, rt);
504 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
505 			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
506 		else
507 			zfs_btree_add(&rt->rt_root, &newseg);
508 
509 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
510 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
511 	} else if (left_over) {
512 		// This modifies the buffer already inside the range tree
513 		rs_set_end(rs, rt, start);
514 		rs_copy(rs, &rs_tmp, rt);
515 	} else if (right_over) {
516 		// This modifies the buffer already inside the range tree
517 		rs_set_start(rs, rt, end);
518 		rs_copy(rs, &rs_tmp, rt);
519 	} else {
520 		zfs_btree_remove_idx(&rt->rt_root, &where);
521 		rs = NULL;
522 	}
523 
524 	if (rs != NULL) {
525 		/*
526 		 * The fill of the leftover segment will always be equal to
527 		 * the size, since we do not support removing partial segments
528 		 * of range trees with gaps.
529 		 */
530 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
531 		    rs_get_start_raw(rs, rt));
532 		range_tree_stat_incr(rt, &rs_tmp);
533 
534 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
535 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
536 	}
537 
538 	rt->rt_space -= size;
539 }
540 
541 void
542 range_tree_remove(void *arg, uint64_t start, uint64_t size)
543 {
544 	range_tree_remove_impl(arg, start, size, B_FALSE);
545 }
546 
547 void
548 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
549 {
550 	range_tree_remove_impl(rt, start, size, B_TRUE);
551 }
552 
553 void
554 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
555     uint64_t newstart, uint64_t newsize)
556 {
557 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
558 
559 	range_tree_stat_decr(rt, rs);
560 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
561 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
562 
563 	rs_set_start(rs, rt, newstart);
564 	rs_set_end(rs, rt, newstart + newsize);
565 
566 	range_tree_stat_incr(rt, rs);
567 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
568 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
569 
570 	rt->rt_space += delta;
571 }
572 
573 static range_seg_t *
574 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
575 {
576 	range_seg_max_t rsearch;
577 	uint64_t end = start + size;
578 
579 	VERIFY(size != 0);
580 
581 	rs_set_start(&rsearch, rt, start);
582 	rs_set_end(&rsearch, rt, end);
583 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
584 }
585 
586 range_seg_t *
587 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
588 {
589 	if (rt->rt_type == RANGE_SEG64)
590 		ASSERT3U(start + size, >, start);
591 
592 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
593 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
594 	    rs_get_end(rs, rt) >= start + size) {
595 		return (rs);
596 	}
597 	return (NULL);
598 }
599 
600 void
601 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
602 {
603 	range_seg_t *rs = range_tree_find(rt, off, size);
604 	if (rs != NULL)
605 		panic("segment already in tree; rs=%p", (void *)rs);
606 }
607 
608 boolean_t
609 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
610 {
611 	return (range_tree_find(rt, start, size) != NULL);
612 }
613 
614 /*
615  * Returns the first subset of the given range which overlaps with the range
616  * tree. Returns true if there is a segment in the range, and false if there
617  * isn't.
618  */
619 boolean_t
620 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
621     uint64_t *ostart, uint64_t *osize)
622 {
623 	if (rt->rt_type == RANGE_SEG64)
624 		ASSERT3U(start + size, >, start);
625 
626 	range_seg_max_t rsearch;
627 	rs_set_start(&rsearch, rt, start);
628 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
629 
630 	zfs_btree_index_t where;
631 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
632 	if (rs != NULL) {
633 		*ostart = start;
634 		*osize = MIN(size, rs_get_end(rs, rt) - start);
635 		return (B_TRUE);
636 	}
637 
638 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
639 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
640 		return (B_FALSE);
641 
642 	*ostart = rs_get_start(rs, rt);
643 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
644 	    rs_get_start(rs, rt);
645 	return (B_TRUE);
646 }
647 
648 /*
649  * Ensure that this range is not in the tree, regardless of whether
650  * it is currently in the tree.
651  */
652 void
653 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
654 {
655 	range_seg_t *rs;
656 
657 	if (size == 0)
658 		return;
659 
660 	if (rt->rt_type == RANGE_SEG64)
661 		ASSERT3U(start + size, >, start);
662 
663 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
664 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
665 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
666 		range_tree_remove(rt, free_start, free_end - free_start);
667 	}
668 }
669 
670 void
671 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
672 {
673 	range_tree_t *rt;
674 
675 	ASSERT0(range_tree_space(*rtdst));
676 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
677 
678 	rt = *rtsrc;
679 	*rtsrc = *rtdst;
680 	*rtdst = rt;
681 }
682 
683 void
684 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
685 {
686 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
687 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
688 
689 	if (func != NULL) {
690 		range_seg_t *rs;
691 		zfs_btree_index_t *cookie = NULL;
692 
693 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
694 		    NULL) {
695 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
696 			    rs_get_start(rs, rt));
697 		}
698 	} else {
699 		zfs_btree_clear(&rt->rt_root);
700 	}
701 
702 	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
703 	rt->rt_space = 0;
704 }
705 
706 void
707 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
708 {
709 	zfs_btree_index_t where;
710 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
711 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
712 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
713 		    rs_get_start(rs, rt));
714 	}
715 }
716 
717 range_seg_t *
718 range_tree_first(range_tree_t *rt)
719 {
720 	return (zfs_btree_first(&rt->rt_root, NULL));
721 }
722 
723 uint64_t
724 range_tree_space(range_tree_t *rt)
725 {
726 	return (rt->rt_space);
727 }
728 
729 uint64_t
730 range_tree_numsegs(range_tree_t *rt)
731 {
732 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
733 }
734 
735 boolean_t
736 range_tree_is_empty(range_tree_t *rt)
737 {
738 	ASSERT(rt != NULL);
739 	return (range_tree_space(rt) == 0);
740 }
741 
742 /* ARGSUSED */
743 void
744 rt_btree_create(range_tree_t *rt, void *arg)
745 {
746 	zfs_btree_t *size_tree = arg;
747 
748 	size_t size;
749 	switch (rt->rt_type) {
750 	case RANGE_SEG32:
751 		size = sizeof (range_seg32_t);
752 		break;
753 	case RANGE_SEG64:
754 		size = sizeof (range_seg64_t);
755 		break;
756 	case RANGE_SEG_GAP:
757 		size = sizeof (range_seg_gap_t);
758 		break;
759 	default:
760 		panic("Invalid range seg type %d", rt->rt_type);
761 	}
762 	zfs_btree_create(size_tree, rt->rt_btree_compare, size);
763 }
764 
765 /* ARGSUSED */
766 void
767 rt_btree_destroy(range_tree_t *rt, void *arg)
768 {
769 	zfs_btree_t *size_tree = arg;
770 	ASSERT0(zfs_btree_numnodes(size_tree));
771 
772 	zfs_btree_destroy(size_tree);
773 }
774 
775 /* ARGSUSED */
776 void
777 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
778 {
779 	zfs_btree_t *size_tree = arg;
780 
781 	zfs_btree_add(size_tree, rs);
782 }
783 
784 /* ARGSUSED */
785 void
786 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
787 {
788 	zfs_btree_t *size_tree = arg;
789 
790 	zfs_btree_remove(size_tree, rs);
791 }
792 
793 /* ARGSUSED */
794 void
795 rt_btree_vacate(range_tree_t *rt, void *arg)
796 {
797 	zfs_btree_t *size_tree = arg;
798 	zfs_btree_clear(size_tree);
799 	zfs_btree_destroy(size_tree);
800 
801 	rt_btree_create(rt, arg);
802 }
803 
804 range_tree_ops_t rt_btree_ops = {
805 	.rtop_create = rt_btree_create,
806 	.rtop_destroy = rt_btree_destroy,
807 	.rtop_add = rt_btree_add,
808 	.rtop_remove = rt_btree_remove,
809 	.rtop_vacate = rt_btree_vacate
810 };
811 
812 /*
813  * Remove any overlapping ranges between the given segment [start, end)
814  * from removefrom. Add non-overlapping leftovers to addto.
815  */
816 void
817 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
818     range_tree_t *removefrom, range_tree_t *addto)
819 {
820 	zfs_btree_index_t where;
821 	range_seg_max_t starting_rs;
822 	rs_set_start(&starting_rs, removefrom, start);
823 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
824 	    removefrom) + 1);
825 
826 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
827 	    &starting_rs, &where);
828 
829 	if (curr == NULL)
830 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
831 
832 	range_seg_t *next;
833 	for (; curr != NULL; curr = next) {
834 		if (start == end)
835 			return;
836 		VERIFY3U(start, <, end);
837 
838 		/* there is no overlap */
839 		if (end <= rs_get_start(curr, removefrom)) {
840 			range_tree_add(addto, start, end - start);
841 			return;
842 		}
843 
844 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
845 		    start);
846 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
847 		    end);
848 		uint64_t overlap_size = overlap_end - overlap_start;
849 		ASSERT3S(overlap_size, >, 0);
850 		range_seg_max_t rs;
851 		rs_copy(curr, &rs, removefrom);
852 
853 		range_tree_remove(removefrom, overlap_start, overlap_size);
854 
855 		if (start < overlap_start)
856 			range_tree_add(addto, start, overlap_start - start);
857 
858 		start = overlap_end;
859 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
860 		/*
861 		 * If we find something here, we only removed part of the
862 		 * curr segment. Either there's some left at the end
863 		 * because we've reached the end of the range we're removing,
864 		 * or there's some left at the start because we started
865 		 * partway through the range.  Either way, we continue with
866 		 * the loop. If it's the former, we'll return at the start of
867 		 * the loop, and if it's the latter we'll see if there is more
868 		 * area to process.
869 		 */
870 		if (next != NULL) {
871 			ASSERT(start == end || start == rs_get_end(&rs,
872 			    removefrom));
873 		}
874 
875 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
876 	}
877 	VERIFY3P(curr, ==, NULL);
878 
879 	if (start != end) {
880 		VERIFY3U(start, <, end);
881 		range_tree_add(addto, start, end - start);
882 	} else {
883 		VERIFY3U(start, ==, end);
884 	}
885 }
886 
887 /*
888  * For each entry in rt, if it exists in removefrom, remove it
889  * from removefrom. Otherwise, add it to addto.
890  */
891 void
892 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
893     range_tree_t *addto)
894 {
895 	zfs_btree_index_t where;
896 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
897 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
898 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
899 		    rs_get_end(rs, rt), removefrom, addto);
900 	}
901 }
902 
903 uint64_t
904 range_tree_min(range_tree_t *rt)
905 {
906 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
907 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
908 }
909 
910 uint64_t
911 range_tree_max(range_tree_t *rt)
912 {
913 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
914 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
915 }
916 
917 uint64_t
918 range_tree_span(range_tree_t *rt)
919 {
920 	return (range_tree_max(rt) - range_tree_min(rt));
921 }
922