1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/dnode.h> 33 #include <sys/zio.h> 34 #include <sys/range_tree.h> 35 36 /* 37 * Range trees are tree-based data structures that can be used to 38 * track free space or generally any space allocation information. 39 * A range tree keeps track of individual segments and automatically 40 * provides facilities such as adjacent extent merging and extent 41 * splitting in response to range add/remove requests. 42 * 43 * A range tree starts out completely empty, with no segments in it. 44 * Adding an allocation via range_tree_add to the range tree can either: 45 * 1) create a new extent 46 * 2) extend an adjacent extent 47 * 3) merge two adjacent extents 48 * Conversely, removing an allocation via range_tree_remove can: 49 * 1) completely remove an extent 50 * 2) shorten an extent (if the allocation was near one of its ends) 51 * 3) split an extent into two extents, in effect punching a hole 52 * 53 * A range tree is also capable of 'bridging' gaps when adding 54 * allocations. This is useful for cases when close proximity of 55 * allocations is an important detail that needs to be represented 56 * in the range tree. See range_tree_set_gap(). The default behavior 57 * is not to bridge gaps (i.e. the maximum allowed gap size is 0). 58 * 59 * In order to traverse a range tree, use either the range_tree_walk() 60 * or range_tree_vacate() functions. 61 * 62 * To obtain more accurate information on individual segment 63 * operations that the range tree performs "under the hood", you can 64 * specify a set of callbacks by passing a range_tree_ops_t structure 65 * to the range_tree_create function. Any callbacks that are non-NULL 66 * are then called at the appropriate times. 67 * 68 * The range tree code also supports a special variant of range trees 69 * that can bridge small gaps between segments. This kind of tree is used 70 * by the dsl scanning code to group I/Os into mostly sequential chunks to 71 * optimize disk performance. The code here attempts to do this with as 72 * little memory and computational overhead as possible. One limitation of 73 * this implementation is that segments of range trees with gaps can only 74 * support removing complete segments. 75 */ 76 77 static inline void 78 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt) 79 { 80 ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES); 81 size_t size = 0; 82 switch (rt->rt_type) { 83 case RANGE_SEG32: 84 size = sizeof (range_seg32_t); 85 break; 86 case RANGE_SEG64: 87 size = sizeof (range_seg64_t); 88 break; 89 case RANGE_SEG_GAP: 90 size = sizeof (range_seg_gap_t); 91 break; 92 default: 93 VERIFY(0); 94 } 95 bcopy(src, dest, size); 96 } 97 98 void 99 range_tree_stat_verify(range_tree_t *rt) 100 { 101 range_seg_t *rs; 102 zfs_btree_index_t where; 103 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; 104 int i; 105 106 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; 107 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 108 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 109 int idx = highbit64(size) - 1; 110 111 hist[idx]++; 112 ASSERT3U(hist[idx], !=, 0); 113 } 114 115 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 116 if (hist[i] != rt->rt_histogram[i]) { 117 zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu", 118 i, hist, hist[i], rt->rt_histogram[i]); 119 } 120 VERIFY3U(hist[i], ==, rt->rt_histogram[i]); 121 } 122 } 123 124 static void 125 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) 126 { 127 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 128 int idx = highbit64(size) - 1; 129 130 ASSERT(size != 0); 131 ASSERT3U(idx, <, 132 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 133 134 rt->rt_histogram[idx]++; 135 ASSERT3U(rt->rt_histogram[idx], !=, 0); 136 } 137 138 static void 139 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) 140 { 141 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 142 int idx = highbit64(size) - 1; 143 144 ASSERT(size != 0); 145 ASSERT3U(idx, <, 146 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 147 148 ASSERT3U(rt->rt_histogram[idx], !=, 0); 149 rt->rt_histogram[idx]--; 150 } 151 152 static int 153 range_tree_seg32_compare(const void *x1, const void *x2) 154 { 155 const range_seg32_t *r1 = x1; 156 const range_seg32_t *r2 = x2; 157 158 ASSERT3U(r1->rs_start, <=, r1->rs_end); 159 ASSERT3U(r2->rs_start, <=, r2->rs_end); 160 161 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 162 } 163 164 static int 165 range_tree_seg64_compare(const void *x1, const void *x2) 166 { 167 const range_seg64_t *r1 = x1; 168 const range_seg64_t *r2 = x2; 169 170 ASSERT3U(r1->rs_start, <=, r1->rs_end); 171 ASSERT3U(r2->rs_start, <=, r2->rs_end); 172 173 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 174 } 175 176 static int 177 range_tree_seg_gap_compare(const void *x1, const void *x2) 178 { 179 const range_seg_gap_t *r1 = x1; 180 const range_seg_gap_t *r2 = x2; 181 182 ASSERT3U(r1->rs_start, <=, r1->rs_end); 183 ASSERT3U(r2->rs_start, <=, r2->rs_end); 184 185 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 186 } 187 188 range_tree_t * 189 range_tree_create_impl(range_tree_ops_t *ops, range_seg_type_t type, void *arg, 190 uint64_t start, uint64_t shift, 191 int (*zfs_btree_compare) (const void *, const void *), 192 uint64_t gap) 193 { 194 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); 195 196 ASSERT3U(shift, <, 64); 197 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES); 198 size_t size; 199 int (*compare) (const void *, const void *); 200 switch (type) { 201 case RANGE_SEG32: 202 size = sizeof (range_seg32_t); 203 compare = range_tree_seg32_compare; 204 break; 205 case RANGE_SEG64: 206 size = sizeof (range_seg64_t); 207 compare = range_tree_seg64_compare; 208 break; 209 case RANGE_SEG_GAP: 210 size = sizeof (range_seg_gap_t); 211 compare = range_tree_seg_gap_compare; 212 break; 213 default: 214 panic("Invalid range seg type %d", type); 215 } 216 zfs_btree_create(&rt->rt_root, compare, size); 217 218 rt->rt_ops = ops; 219 rt->rt_gap = gap; 220 rt->rt_arg = arg; 221 rt->rt_type = type; 222 rt->rt_start = start; 223 rt->rt_shift = shift; 224 rt->rt_btree_compare = zfs_btree_compare; 225 226 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) 227 rt->rt_ops->rtop_create(rt, rt->rt_arg); 228 229 return (rt); 230 } 231 232 range_tree_t * 233 range_tree_create(range_tree_ops_t *ops, range_seg_type_t type, 234 void *arg, uint64_t start, uint64_t shift) 235 { 236 return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0)); 237 } 238 239 void 240 range_tree_destroy(range_tree_t *rt) 241 { 242 VERIFY0(rt->rt_space); 243 244 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) 245 rt->rt_ops->rtop_destroy(rt, rt->rt_arg); 246 247 zfs_btree_destroy(&rt->rt_root); 248 kmem_free(rt, sizeof (*rt)); 249 } 250 251 void 252 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) 253 { 254 if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) { 255 zfs_panic_recover("zfs: attempting to decrease fill to or " 256 "below 0; probable double remove in segment [%llx:%llx]", 257 (longlong_t)rs_get_start(rs, rt), 258 (longlong_t)rs_get_end(rs, rt)); 259 } 260 if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) - 261 rs_get_start(rs, rt)) { 262 zfs_panic_recover("zfs: attempting to increase fill beyond " 263 "max; probable double add in segment [%llx:%llx]", 264 (longlong_t)rs_get_start(rs, rt), 265 (longlong_t)rs_get_end(rs, rt)); 266 } 267 268 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 269 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 270 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta); 271 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 272 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 273 } 274 275 static void 276 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) 277 { 278 range_tree_t *rt = arg; 279 zfs_btree_index_t where; 280 range_seg_t *rs_before, *rs_after, *rs; 281 range_seg_max_t tmp, rsearch; 282 uint64_t end = start + size, gap = rt->rt_gap; 283 uint64_t bridge_size = 0; 284 boolean_t merge_before, merge_after; 285 286 ASSERT3U(size, !=, 0); 287 ASSERT3U(fill, <=, size); 288 ASSERT3U(start + size, >, start); 289 290 rs_set_start(&rsearch, rt, start); 291 rs_set_end(&rsearch, rt, end); 292 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 293 294 /* 295 * If this is a gap-supporting range tree, it is possible that we 296 * are inserting into an existing segment. In this case simply 297 * bump the fill count and call the remove / add callbacks. If the 298 * new range will extend an existing segment, we remove the 299 * existing one, apply the new extent to it and re-insert it using 300 * the normal code paths. 301 */ 302 if (rs != NULL) { 303 if (gap == 0) { 304 zfs_panic_recover("zfs: adding existent segment to " 305 "range tree (offset=%llx size=%llx)", 306 (longlong_t)start, (longlong_t)size); 307 return; 308 } 309 uint64_t rstart = rs_get_start(rs, rt); 310 uint64_t rend = rs_get_end(rs, rt); 311 if (rstart <= start && rend >= end) { 312 range_tree_adjust_fill(rt, rs, fill); 313 return; 314 } 315 316 zfs_btree_remove(&rt->rt_root, rs); 317 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 318 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 319 320 range_tree_stat_decr(rt, rs); 321 rt->rt_space -= rend - rstart; 322 323 fill += rs_get_fill(rs, rt); 324 start = MIN(start, rstart); 325 end = MAX(end, rend); 326 size = end - start; 327 328 range_tree_add_impl(rt, start, size, fill); 329 return; 330 } 331 332 ASSERT3P(rs, ==, NULL); 333 334 /* 335 * Determine whether or not we will have to merge with our neighbors. 336 * If gap != 0, we might need to merge with our neighbors even if we 337 * aren't directly touching. 338 */ 339 zfs_btree_index_t where_before, where_after; 340 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before); 341 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after); 342 343 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >= 344 start - gap); 345 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end + 346 gap); 347 348 if (merge_before && gap != 0) 349 bridge_size += start - rs_get_end(rs_before, rt); 350 if (merge_after && gap != 0) 351 bridge_size += rs_get_start(rs_after, rt) - end; 352 353 if (merge_before && merge_after) { 354 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { 355 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 356 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 357 } 358 359 range_tree_stat_decr(rt, rs_before); 360 range_tree_stat_decr(rt, rs_after); 361 362 rs_copy(rs_after, &tmp, rt); 363 uint64_t before_start = rs_get_start_raw(rs_before, rt); 364 uint64_t before_fill = rs_get_fill(rs_before, rt); 365 uint64_t after_fill = rs_get_fill(rs_after, rt); 366 zfs_btree_remove_idx(&rt->rt_root, &where_before); 367 368 /* 369 * We have to re-find the node because our old reference is 370 * invalid as soon as we do any mutating btree operations. 371 */ 372 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after); 373 rs_set_start_raw(rs_after, rt, before_start); 374 rs_set_fill(rs_after, rt, after_fill + before_fill + fill); 375 rs = rs_after; 376 } else if (merge_before) { 377 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 378 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 379 380 range_tree_stat_decr(rt, rs_before); 381 382 uint64_t before_fill = rs_get_fill(rs_before, rt); 383 rs_set_end(rs_before, rt, end); 384 rs_set_fill(rs_before, rt, before_fill + fill); 385 rs = rs_before; 386 } else if (merge_after) { 387 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 388 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 389 390 range_tree_stat_decr(rt, rs_after); 391 392 uint64_t after_fill = rs_get_fill(rs_after, rt); 393 rs_set_start(rs_after, rt, start); 394 rs_set_fill(rs_after, rt, after_fill + fill); 395 rs = rs_after; 396 } else { 397 rs = &tmp; 398 399 rs_set_start(rs, rt, start); 400 rs_set_end(rs, rt, end); 401 rs_set_fill(rs, rt, fill); 402 zfs_btree_add_idx(&rt->rt_root, rs, &where); 403 } 404 405 if (gap != 0) { 406 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) - 407 rs_get_start(rs, rt)); 408 } else { 409 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) - 410 rs_get_start(rs, rt)); 411 } 412 413 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 414 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 415 416 range_tree_stat_incr(rt, rs); 417 rt->rt_space += size + bridge_size; 418 } 419 420 void 421 range_tree_add(void *arg, uint64_t start, uint64_t size) 422 { 423 range_tree_add_impl(arg, start, size, size); 424 } 425 426 static void 427 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, 428 boolean_t do_fill) 429 { 430 zfs_btree_index_t where; 431 range_seg_t *rs; 432 range_seg_max_t rsearch, rs_tmp; 433 uint64_t end = start + size; 434 boolean_t left_over, right_over; 435 436 VERIFY3U(size, !=, 0); 437 VERIFY3U(size, <=, rt->rt_space); 438 if (rt->rt_type == RANGE_SEG64) 439 ASSERT3U(start + size, >, start); 440 441 rs_set_start(&rsearch, rt, start); 442 rs_set_end(&rsearch, rt, end); 443 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 444 445 /* Make sure we completely overlap with someone */ 446 if (rs == NULL) { 447 zfs_panic_recover("zfs: removing nonexistent segment from " 448 "range tree (offset=%llx size=%llx)", 449 (longlong_t)start, (longlong_t)size); 450 return; 451 } 452 453 /* 454 * Range trees with gap support must only remove complete segments 455 * from the tree. This allows us to maintain accurate fill accounting 456 * and to ensure that bridged sections are not leaked. If we need to 457 * remove less than the full segment, we can only adjust the fill count. 458 */ 459 if (rt->rt_gap != 0) { 460 if (do_fill) { 461 if (rs_get_fill(rs, rt) == size) { 462 start = rs_get_start(rs, rt); 463 end = rs_get_end(rs, rt); 464 size = end - start; 465 } else { 466 range_tree_adjust_fill(rt, rs, -size); 467 return; 468 } 469 } else if (rs_get_start(rs, rt) != start || 470 rs_get_end(rs, rt) != end) { 471 zfs_panic_recover("zfs: freeing partial segment of " 472 "gap tree (offset=%llx size=%llx) of " 473 "(offset=%llx size=%llx)", 474 (longlong_t)start, (longlong_t)size, 475 (longlong_t)rs_get_start(rs, rt), 476 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs, 477 rt)); 478 return; 479 } 480 } 481 482 VERIFY3U(rs_get_start(rs, rt), <=, start); 483 VERIFY3U(rs_get_end(rs, rt), >=, end); 484 485 left_over = (rs_get_start(rs, rt) != start); 486 right_over = (rs_get_end(rs, rt) != end); 487 488 range_tree_stat_decr(rt, rs); 489 490 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 491 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 492 493 if (left_over && right_over) { 494 range_seg_max_t newseg; 495 rs_set_start(&newseg, rt, end); 496 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt)); 497 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end); 498 range_tree_stat_incr(rt, &newseg); 499 500 // This modifies the buffer already inside the range tree 501 rs_set_end(rs, rt, start); 502 503 rs_copy(rs, &rs_tmp, rt); 504 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL) 505 zfs_btree_add_idx(&rt->rt_root, &newseg, &where); 506 else 507 zfs_btree_add(&rt->rt_root, &newseg); 508 509 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 510 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg); 511 } else if (left_over) { 512 // This modifies the buffer already inside the range tree 513 rs_set_end(rs, rt, start); 514 rs_copy(rs, &rs_tmp, rt); 515 } else if (right_over) { 516 // This modifies the buffer already inside the range tree 517 rs_set_start(rs, rt, end); 518 rs_copy(rs, &rs_tmp, rt); 519 } else { 520 zfs_btree_remove_idx(&rt->rt_root, &where); 521 rs = NULL; 522 } 523 524 if (rs != NULL) { 525 /* 526 * The fill of the leftover segment will always be equal to 527 * the size, since we do not support removing partial segments 528 * of range trees with gaps. 529 */ 530 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) - 531 rs_get_start_raw(rs, rt)); 532 range_tree_stat_incr(rt, &rs_tmp); 533 534 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 535 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg); 536 } 537 538 rt->rt_space -= size; 539 } 540 541 void 542 range_tree_remove(void *arg, uint64_t start, uint64_t size) 543 { 544 range_tree_remove_impl(arg, start, size, B_FALSE); 545 } 546 547 void 548 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) 549 { 550 range_tree_remove_impl(rt, start, size, B_TRUE); 551 } 552 553 void 554 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, 555 uint64_t newstart, uint64_t newsize) 556 { 557 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt)); 558 559 range_tree_stat_decr(rt, rs); 560 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 561 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 562 563 rs_set_start(rs, rt, newstart); 564 rs_set_end(rs, rt, newstart + newsize); 565 566 range_tree_stat_incr(rt, rs); 567 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 568 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 569 570 rt->rt_space += delta; 571 } 572 573 static range_seg_t * 574 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) 575 { 576 range_seg_max_t rsearch; 577 uint64_t end = start + size; 578 579 VERIFY(size != 0); 580 581 rs_set_start(&rsearch, rt, start); 582 rs_set_end(&rsearch, rt, end); 583 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL)); 584 } 585 586 range_seg_t * 587 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) 588 { 589 if (rt->rt_type == RANGE_SEG64) 590 ASSERT3U(start + size, >, start); 591 592 range_seg_t *rs = range_tree_find_impl(rt, start, size); 593 if (rs != NULL && rs_get_start(rs, rt) <= start && 594 rs_get_end(rs, rt) >= start + size) { 595 return (rs); 596 } 597 return (NULL); 598 } 599 600 void 601 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size) 602 { 603 range_seg_t *rs = range_tree_find(rt, off, size); 604 if (rs != NULL) 605 panic("segment already in tree; rs=%p", (void *)rs); 606 } 607 608 boolean_t 609 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) 610 { 611 return (range_tree_find(rt, start, size) != NULL); 612 } 613 614 /* 615 * Returns the first subset of the given range which overlaps with the range 616 * tree. Returns true if there is a segment in the range, and false if there 617 * isn't. 618 */ 619 boolean_t 620 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size, 621 uint64_t *ostart, uint64_t *osize) 622 { 623 if (rt->rt_type == RANGE_SEG64) 624 ASSERT3U(start + size, >, start); 625 626 range_seg_max_t rsearch; 627 rs_set_start(&rsearch, rt, start); 628 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1); 629 630 zfs_btree_index_t where; 631 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 632 if (rs != NULL) { 633 *ostart = start; 634 *osize = MIN(size, rs_get_end(rs, rt) - start); 635 return (B_TRUE); 636 } 637 638 rs = zfs_btree_next(&rt->rt_root, &where, &where); 639 if (rs == NULL || rs_get_start(rs, rt) > start + size) 640 return (B_FALSE); 641 642 *ostart = rs_get_start(rs, rt); 643 *osize = MIN(start + size, rs_get_end(rs, rt)) - 644 rs_get_start(rs, rt); 645 return (B_TRUE); 646 } 647 648 /* 649 * Ensure that this range is not in the tree, regardless of whether 650 * it is currently in the tree. 651 */ 652 void 653 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) 654 { 655 range_seg_t *rs; 656 657 if (size == 0) 658 return; 659 660 if (rt->rt_type == RANGE_SEG64) 661 ASSERT3U(start + size, >, start); 662 663 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { 664 uint64_t free_start = MAX(rs_get_start(rs, rt), start); 665 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size); 666 range_tree_remove(rt, free_start, free_end - free_start); 667 } 668 } 669 670 void 671 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) 672 { 673 range_tree_t *rt; 674 675 ASSERT0(range_tree_space(*rtdst)); 676 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root)); 677 678 rt = *rtsrc; 679 *rtsrc = *rtdst; 680 *rtdst = rt; 681 } 682 683 void 684 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) 685 { 686 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) 687 rt->rt_ops->rtop_vacate(rt, rt->rt_arg); 688 689 if (func != NULL) { 690 range_seg_t *rs; 691 zfs_btree_index_t *cookie = NULL; 692 693 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) != 694 NULL) { 695 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 696 rs_get_start(rs, rt)); 697 } 698 } else { 699 zfs_btree_clear(&rt->rt_root); 700 } 701 702 bzero(rt->rt_histogram, sizeof (rt->rt_histogram)); 703 rt->rt_space = 0; 704 } 705 706 void 707 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) 708 { 709 zfs_btree_index_t where; 710 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); 711 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 712 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 713 rs_get_start(rs, rt)); 714 } 715 } 716 717 range_seg_t * 718 range_tree_first(range_tree_t *rt) 719 { 720 return (zfs_btree_first(&rt->rt_root, NULL)); 721 } 722 723 uint64_t 724 range_tree_space(range_tree_t *rt) 725 { 726 return (rt->rt_space); 727 } 728 729 uint64_t 730 range_tree_numsegs(range_tree_t *rt) 731 { 732 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root)); 733 } 734 735 boolean_t 736 range_tree_is_empty(range_tree_t *rt) 737 { 738 ASSERT(rt != NULL); 739 return (range_tree_space(rt) == 0); 740 } 741 742 /* ARGSUSED */ 743 void 744 rt_btree_create(range_tree_t *rt, void *arg) 745 { 746 zfs_btree_t *size_tree = arg; 747 748 size_t size; 749 switch (rt->rt_type) { 750 case RANGE_SEG32: 751 size = sizeof (range_seg32_t); 752 break; 753 case RANGE_SEG64: 754 size = sizeof (range_seg64_t); 755 break; 756 case RANGE_SEG_GAP: 757 size = sizeof (range_seg_gap_t); 758 break; 759 default: 760 panic("Invalid range seg type %d", rt->rt_type); 761 } 762 zfs_btree_create(size_tree, rt->rt_btree_compare, size); 763 } 764 765 /* ARGSUSED */ 766 void 767 rt_btree_destroy(range_tree_t *rt, void *arg) 768 { 769 zfs_btree_t *size_tree = arg; 770 ASSERT0(zfs_btree_numnodes(size_tree)); 771 772 zfs_btree_destroy(size_tree); 773 } 774 775 /* ARGSUSED */ 776 void 777 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg) 778 { 779 zfs_btree_t *size_tree = arg; 780 781 zfs_btree_add(size_tree, rs); 782 } 783 784 /* ARGSUSED */ 785 void 786 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 787 { 788 zfs_btree_t *size_tree = arg; 789 790 zfs_btree_remove(size_tree, rs); 791 } 792 793 /* ARGSUSED */ 794 void 795 rt_btree_vacate(range_tree_t *rt, void *arg) 796 { 797 zfs_btree_t *size_tree = arg; 798 zfs_btree_clear(size_tree); 799 zfs_btree_destroy(size_tree); 800 801 rt_btree_create(rt, arg); 802 } 803 804 range_tree_ops_t rt_btree_ops = { 805 .rtop_create = rt_btree_create, 806 .rtop_destroy = rt_btree_destroy, 807 .rtop_add = rt_btree_add, 808 .rtop_remove = rt_btree_remove, 809 .rtop_vacate = rt_btree_vacate 810 }; 811 812 /* 813 * Remove any overlapping ranges between the given segment [start, end) 814 * from removefrom. Add non-overlapping leftovers to addto. 815 */ 816 void 817 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end, 818 range_tree_t *removefrom, range_tree_t *addto) 819 { 820 zfs_btree_index_t where; 821 range_seg_max_t starting_rs; 822 rs_set_start(&starting_rs, removefrom, start); 823 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs, 824 removefrom) + 1); 825 826 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root, 827 &starting_rs, &where); 828 829 if (curr == NULL) 830 curr = zfs_btree_next(&removefrom->rt_root, &where, &where); 831 832 range_seg_t *next; 833 for (; curr != NULL; curr = next) { 834 if (start == end) 835 return; 836 VERIFY3U(start, <, end); 837 838 /* there is no overlap */ 839 if (end <= rs_get_start(curr, removefrom)) { 840 range_tree_add(addto, start, end - start); 841 return; 842 } 843 844 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom), 845 start); 846 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom), 847 end); 848 uint64_t overlap_size = overlap_end - overlap_start; 849 ASSERT3S(overlap_size, >, 0); 850 range_seg_max_t rs; 851 rs_copy(curr, &rs, removefrom); 852 853 range_tree_remove(removefrom, overlap_start, overlap_size); 854 855 if (start < overlap_start) 856 range_tree_add(addto, start, overlap_start - start); 857 858 start = overlap_end; 859 next = zfs_btree_find(&removefrom->rt_root, &rs, &where); 860 /* 861 * If we find something here, we only removed part of the 862 * curr segment. Either there's some left at the end 863 * because we've reached the end of the range we're removing, 864 * or there's some left at the start because we started 865 * partway through the range. Either way, we continue with 866 * the loop. If it's the former, we'll return at the start of 867 * the loop, and if it's the latter we'll see if there is more 868 * area to process. 869 */ 870 if (next != NULL) { 871 ASSERT(start == end || start == rs_get_end(&rs, 872 removefrom)); 873 } 874 875 next = zfs_btree_next(&removefrom->rt_root, &where, &where); 876 } 877 VERIFY3P(curr, ==, NULL); 878 879 if (start != end) { 880 VERIFY3U(start, <, end); 881 range_tree_add(addto, start, end - start); 882 } else { 883 VERIFY3U(start, ==, end); 884 } 885 } 886 887 /* 888 * For each entry in rt, if it exists in removefrom, remove it 889 * from removefrom. Otherwise, add it to addto. 890 */ 891 void 892 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom, 893 range_tree_t *addto) 894 { 895 zfs_btree_index_t where; 896 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs; 897 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 898 range_tree_remove_xor_add_segment(rs_get_start(rs, rt), 899 rs_get_end(rs, rt), removefrom, addto); 900 } 901 } 902 903 uint64_t 904 range_tree_min(range_tree_t *rt) 905 { 906 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL); 907 return (rs != NULL ? rs_get_start(rs, rt) : 0); 908 } 909 910 uint64_t 911 range_tree_max(range_tree_t *rt) 912 { 913 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL); 914 return (rs != NULL ? rs_get_end(rs, rt) : 0); 915 } 916 917 uint64_t 918 range_tree_span(range_tree_t *rt) 919 { 920 return (range_tree_max(rt) - range_tree_min(rt)); 921 } 922