xref: /freebsd/sys/contrib/openzfs/module/zfs/range_tree.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2019 by Delphix. All rights reserved.
27  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/dmu.h>
33 #include <sys/dnode.h>
34 #include <sys/zio.h>
35 #include <sys/range_tree.h>
36 
37 /*
38  * Range trees are tree-based data structures that can be used to
39  * track free space or generally any space allocation information.
40  * A range tree keeps track of individual segments and automatically
41  * provides facilities such as adjacent extent merging and extent
42  * splitting in response to range add/remove requests.
43  *
44  * A range tree starts out completely empty, with no segments in it.
45  * Adding an allocation via range_tree_add to the range tree can either:
46  * 1) create a new extent
47  * 2) extend an adjacent extent
48  * 3) merge two adjacent extents
49  * Conversely, removing an allocation via range_tree_remove can:
50  * 1) completely remove an extent
51  * 2) shorten an extent (if the allocation was near one of its ends)
52  * 3) split an extent into two extents, in effect punching a hole
53  *
54  * A range tree is also capable of 'bridging' gaps when adding
55  * allocations. This is useful for cases when close proximity of
56  * allocations is an important detail that needs to be represented
57  * in the range tree. See range_tree_set_gap(). The default behavior
58  * is not to bridge gaps (i.e. the maximum allowed gap size is 0).
59  *
60  * In order to traverse a range tree, use either the range_tree_walk()
61  * or range_tree_vacate() functions.
62  *
63  * To obtain more accurate information on individual segment
64  * operations that the range tree performs "under the hood", you can
65  * specify a set of callbacks by passing a range_tree_ops_t structure
66  * to the range_tree_create function. Any callbacks that are non-NULL
67  * are then called at the appropriate times.
68  *
69  * The range tree code also supports a special variant of range trees
70  * that can bridge small gaps between segments. This kind of tree is used
71  * by the dsl scanning code to group I/Os into mostly sequential chunks to
72  * optimize disk performance. The code here attempts to do this with as
73  * little memory and computational overhead as possible. One limitation of
74  * this implementation is that segments of range trees with gaps can only
75  * support removing complete segments.
76  */
77 
78 static inline void
79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt)
80 {
81 	ASSERT3U(rt->rt_type, <=, RANGE_SEG_NUM_TYPES);
82 	size_t size = 0;
83 	switch (rt->rt_type) {
84 	case RANGE_SEG32:
85 		size = sizeof (range_seg32_t);
86 		break;
87 	case RANGE_SEG64:
88 		size = sizeof (range_seg64_t);
89 		break;
90 	case RANGE_SEG_GAP:
91 		size = sizeof (range_seg_gap_t);
92 		break;
93 	default:
94 		VERIFY(0);
95 	}
96 	bcopy(src, dest, size);
97 }
98 
99 void
100 range_tree_stat_verify(range_tree_t *rt)
101 {
102 	range_seg_t *rs;
103 	zfs_btree_index_t where;
104 	uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 };
105 	int i;
106 
107 	for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL;
108 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
109 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
110 		int idx	= highbit64(size) - 1;
111 
112 		hist[idx]++;
113 		ASSERT3U(hist[idx], !=, 0);
114 	}
115 
116 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
117 		if (hist[i] != rt->rt_histogram[i]) {
118 			zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu",
119 			    i, hist, (u_longlong_t)hist[i],
120 			    (u_longlong_t)rt->rt_histogram[i]);
121 		}
122 		VERIFY3U(hist[i], ==, rt->rt_histogram[i]);
123 	}
124 }
125 
126 static void
127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs)
128 {
129 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
130 	int idx = highbit64(size) - 1;
131 
132 	ASSERT(size != 0);
133 	ASSERT3U(idx, <,
134 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
135 
136 	rt->rt_histogram[idx]++;
137 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
138 }
139 
140 static void
141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs)
142 {
143 	uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
144 	int idx = highbit64(size) - 1;
145 
146 	ASSERT(size != 0);
147 	ASSERT3U(idx, <,
148 	    sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram));
149 
150 	ASSERT3U(rt->rt_histogram[idx], !=, 0);
151 	rt->rt_histogram[idx]--;
152 }
153 
154 static int
155 range_tree_seg32_compare(const void *x1, const void *x2)
156 {
157 	const range_seg32_t *r1 = x1;
158 	const range_seg32_t *r2 = x2;
159 
160 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
161 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
162 
163 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
164 }
165 
166 static int
167 range_tree_seg64_compare(const void *x1, const void *x2)
168 {
169 	const range_seg64_t *r1 = x1;
170 	const range_seg64_t *r2 = x2;
171 
172 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
173 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
174 
175 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
176 }
177 
178 static int
179 range_tree_seg_gap_compare(const void *x1, const void *x2)
180 {
181 	const range_seg_gap_t *r1 = x1;
182 	const range_seg_gap_t *r2 = x2;
183 
184 	ASSERT3U(r1->rs_start, <=, r1->rs_end);
185 	ASSERT3U(r2->rs_start, <=, r2->rs_end);
186 
187 	return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start));
188 }
189 
190 range_tree_t *
191 range_tree_create_impl(const range_tree_ops_t *ops, range_seg_type_t type,
192     void *arg, uint64_t start, uint64_t shift,
193     int (*zfs_btree_compare) (const void *, const void *),
194     uint64_t gap)
195 {
196 	range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP);
197 
198 	ASSERT3U(shift, <, 64);
199 	ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES);
200 	size_t size;
201 	int (*compare) (const void *, const void *);
202 	switch (type) {
203 	case RANGE_SEG32:
204 		size = sizeof (range_seg32_t);
205 		compare = range_tree_seg32_compare;
206 		break;
207 	case RANGE_SEG64:
208 		size = sizeof (range_seg64_t);
209 		compare = range_tree_seg64_compare;
210 		break;
211 	case RANGE_SEG_GAP:
212 		size = sizeof (range_seg_gap_t);
213 		compare = range_tree_seg_gap_compare;
214 		break;
215 	default:
216 		panic("Invalid range seg type %d", type);
217 	}
218 	zfs_btree_create(&rt->rt_root, compare, size);
219 
220 	rt->rt_ops = ops;
221 	rt->rt_gap = gap;
222 	rt->rt_arg = arg;
223 	rt->rt_type = type;
224 	rt->rt_start = start;
225 	rt->rt_shift = shift;
226 	rt->rt_btree_compare = zfs_btree_compare;
227 
228 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL)
229 		rt->rt_ops->rtop_create(rt, rt->rt_arg);
230 
231 	return (rt);
232 }
233 
234 range_tree_t *
235 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type,
236     void *arg, uint64_t start, uint64_t shift)
237 {
238 	return (range_tree_create_impl(ops, type, arg, start, shift, NULL, 0));
239 }
240 
241 void
242 range_tree_destroy(range_tree_t *rt)
243 {
244 	VERIFY0(rt->rt_space);
245 
246 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL)
247 		rt->rt_ops->rtop_destroy(rt, rt->rt_arg);
248 
249 	zfs_btree_destroy(&rt->rt_root);
250 	kmem_free(rt, sizeof (*rt));
251 }
252 
253 void
254 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta)
255 {
256 	if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) {
257 		zfs_panic_recover("zfs: attempting to decrease fill to or "
258 		    "below 0; probable double remove in segment [%llx:%llx]",
259 		    (longlong_t)rs_get_start(rs, rt),
260 		    (longlong_t)rs_get_end(rs, rt));
261 	}
262 	if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) -
263 	    rs_get_start(rs, rt)) {
264 		zfs_panic_recover("zfs: attempting to increase fill beyond "
265 		    "max; probable double add in segment [%llx:%llx]",
266 		    (longlong_t)rs_get_start(rs, rt),
267 		    (longlong_t)rs_get_end(rs, rt));
268 	}
269 
270 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
271 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
272 	rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta);
273 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
274 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
275 }
276 
277 static void
278 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill)
279 {
280 	range_tree_t *rt = arg;
281 	zfs_btree_index_t where;
282 	range_seg_t *rs_before, *rs_after, *rs;
283 	range_seg_max_t tmp, rsearch;
284 	uint64_t end = start + size, gap = rt->rt_gap;
285 	uint64_t bridge_size = 0;
286 	boolean_t merge_before, merge_after;
287 
288 	ASSERT3U(size, !=, 0);
289 	ASSERT3U(fill, <=, size);
290 	ASSERT3U(start + size, >, start);
291 
292 	rs_set_start(&rsearch, rt, start);
293 	rs_set_end(&rsearch, rt, end);
294 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
295 
296 	/*
297 	 * If this is a gap-supporting range tree, it is possible that we
298 	 * are inserting into an existing segment. In this case simply
299 	 * bump the fill count and call the remove / add callbacks. If the
300 	 * new range will extend an existing segment, we remove the
301 	 * existing one, apply the new extent to it and re-insert it using
302 	 * the normal code paths.
303 	 */
304 	if (rs != NULL) {
305 		if (gap == 0) {
306 			zfs_panic_recover("zfs: adding existent segment to "
307 			    "range tree (offset=%llx size=%llx)",
308 			    (longlong_t)start, (longlong_t)size);
309 			return;
310 		}
311 		uint64_t rstart = rs_get_start(rs, rt);
312 		uint64_t rend = rs_get_end(rs, rt);
313 		if (rstart <= start && rend >= end) {
314 			range_tree_adjust_fill(rt, rs, fill);
315 			return;
316 		}
317 
318 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
319 			rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
320 
321 		range_tree_stat_decr(rt, rs);
322 		rt->rt_space -= rend - rstart;
323 
324 		fill += rs_get_fill(rs, rt);
325 		start = MIN(start, rstart);
326 		end = MAX(end, rend);
327 		size = end - start;
328 
329 		zfs_btree_remove(&rt->rt_root, rs);
330 		range_tree_add_impl(rt, start, size, fill);
331 		return;
332 	}
333 
334 	ASSERT3P(rs, ==, NULL);
335 
336 	/*
337 	 * Determine whether or not we will have to merge with our neighbors.
338 	 * If gap != 0, we might need to merge with our neighbors even if we
339 	 * aren't directly touching.
340 	 */
341 	zfs_btree_index_t where_before, where_after;
342 	rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before);
343 	rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after);
344 
345 	merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >=
346 	    start - gap);
347 	merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end +
348 	    gap);
349 
350 	if (merge_before && gap != 0)
351 		bridge_size += start - rs_get_end(rs_before, rt);
352 	if (merge_after && gap != 0)
353 		bridge_size += rs_get_start(rs_after, rt) - end;
354 
355 	if (merge_before && merge_after) {
356 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) {
357 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
358 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
359 		}
360 
361 		range_tree_stat_decr(rt, rs_before);
362 		range_tree_stat_decr(rt, rs_after);
363 
364 		rs_copy(rs_after, &tmp, rt);
365 		uint64_t before_start = rs_get_start_raw(rs_before, rt);
366 		uint64_t before_fill = rs_get_fill(rs_before, rt);
367 		uint64_t after_fill = rs_get_fill(rs_after, rt);
368 		zfs_btree_remove_idx(&rt->rt_root, &where_before);
369 
370 		/*
371 		 * We have to re-find the node because our old reference is
372 		 * invalid as soon as we do any mutating btree operations.
373 		 */
374 		rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after);
375 		rs_set_start_raw(rs_after, rt, before_start);
376 		rs_set_fill(rs_after, rt, after_fill + before_fill + fill);
377 		rs = rs_after;
378 	} else if (merge_before) {
379 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
380 			rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg);
381 
382 		range_tree_stat_decr(rt, rs_before);
383 
384 		uint64_t before_fill = rs_get_fill(rs_before, rt);
385 		rs_set_end(rs_before, rt, end);
386 		rs_set_fill(rs_before, rt, before_fill + fill);
387 		rs = rs_before;
388 	} else if (merge_after) {
389 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
390 			rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg);
391 
392 		range_tree_stat_decr(rt, rs_after);
393 
394 		uint64_t after_fill = rs_get_fill(rs_after, rt);
395 		rs_set_start(rs_after, rt, start);
396 		rs_set_fill(rs_after, rt, after_fill + fill);
397 		rs = rs_after;
398 	} else {
399 		rs = &tmp;
400 
401 		rs_set_start(rs, rt, start);
402 		rs_set_end(rs, rt, end);
403 		rs_set_fill(rs, rt, fill);
404 		zfs_btree_add_idx(&rt->rt_root, rs, &where);
405 	}
406 
407 	if (gap != 0) {
408 		ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) -
409 		    rs_get_start(rs, rt));
410 	} else {
411 		ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) -
412 		    rs_get_start(rs, rt));
413 	}
414 
415 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
416 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
417 
418 	range_tree_stat_incr(rt, rs);
419 	rt->rt_space += size + bridge_size;
420 }
421 
422 void
423 range_tree_add(void *arg, uint64_t start, uint64_t size)
424 {
425 	range_tree_add_impl(arg, start, size, size);
426 }
427 
428 static void
429 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size,
430     boolean_t do_fill)
431 {
432 	zfs_btree_index_t where;
433 	range_seg_t *rs;
434 	range_seg_max_t rsearch, rs_tmp;
435 	uint64_t end = start + size;
436 	boolean_t left_over, right_over;
437 
438 	VERIFY3U(size, !=, 0);
439 	VERIFY3U(size, <=, rt->rt_space);
440 	if (rt->rt_type == RANGE_SEG64)
441 		ASSERT3U(start + size, >, start);
442 
443 	rs_set_start(&rsearch, rt, start);
444 	rs_set_end(&rsearch, rt, end);
445 	rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
446 
447 	/* Make sure we completely overlap with someone */
448 	if (rs == NULL) {
449 		zfs_panic_recover("zfs: removing nonexistent segment from "
450 		    "range tree (offset=%llx size=%llx)",
451 		    (longlong_t)start, (longlong_t)size);
452 		return;
453 	}
454 
455 	/*
456 	 * Range trees with gap support must only remove complete segments
457 	 * from the tree. This allows us to maintain accurate fill accounting
458 	 * and to ensure that bridged sections are not leaked. If we need to
459 	 * remove less than the full segment, we can only adjust the fill count.
460 	 */
461 	if (rt->rt_gap != 0) {
462 		if (do_fill) {
463 			if (rs_get_fill(rs, rt) == size) {
464 				start = rs_get_start(rs, rt);
465 				end = rs_get_end(rs, rt);
466 				size = end - start;
467 			} else {
468 				range_tree_adjust_fill(rt, rs, -size);
469 				return;
470 			}
471 		} else if (rs_get_start(rs, rt) != start ||
472 		    rs_get_end(rs, rt) != end) {
473 			zfs_panic_recover("zfs: freeing partial segment of "
474 			    "gap tree (offset=%llx size=%llx) of "
475 			    "(offset=%llx size=%llx)",
476 			    (longlong_t)start, (longlong_t)size,
477 			    (longlong_t)rs_get_start(rs, rt),
478 			    (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs,
479 			    rt));
480 			return;
481 		}
482 	}
483 
484 	VERIFY3U(rs_get_start(rs, rt), <=, start);
485 	VERIFY3U(rs_get_end(rs, rt), >=, end);
486 
487 	left_over = (rs_get_start(rs, rt) != start);
488 	right_over = (rs_get_end(rs, rt) != end);
489 
490 	range_tree_stat_decr(rt, rs);
491 
492 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
493 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
494 
495 	if (left_over && right_over) {
496 		range_seg_max_t newseg;
497 		rs_set_start(&newseg, rt, end);
498 		rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt));
499 		rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end);
500 		range_tree_stat_incr(rt, &newseg);
501 
502 		// This modifies the buffer already inside the range tree
503 		rs_set_end(rs, rt, start);
504 
505 		rs_copy(rs, &rs_tmp, rt);
506 		if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL)
507 			zfs_btree_add_idx(&rt->rt_root, &newseg, &where);
508 		else
509 			zfs_btree_add(&rt->rt_root, &newseg);
510 
511 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
512 			rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg);
513 	} else if (left_over) {
514 		// This modifies the buffer already inside the range tree
515 		rs_set_end(rs, rt, start);
516 		rs_copy(rs, &rs_tmp, rt);
517 	} else if (right_over) {
518 		// This modifies the buffer already inside the range tree
519 		rs_set_start(rs, rt, end);
520 		rs_copy(rs, &rs_tmp, rt);
521 	} else {
522 		zfs_btree_remove_idx(&rt->rt_root, &where);
523 		rs = NULL;
524 	}
525 
526 	if (rs != NULL) {
527 		/*
528 		 * The fill of the leftover segment will always be equal to
529 		 * the size, since we do not support removing partial segments
530 		 * of range trees with gaps.
531 		 */
532 		rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) -
533 		    rs_get_start_raw(rs, rt));
534 		range_tree_stat_incr(rt, &rs_tmp);
535 
536 		if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
537 			rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg);
538 	}
539 
540 	rt->rt_space -= size;
541 }
542 
543 void
544 range_tree_remove(void *arg, uint64_t start, uint64_t size)
545 {
546 	range_tree_remove_impl(arg, start, size, B_FALSE);
547 }
548 
549 void
550 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size)
551 {
552 	range_tree_remove_impl(rt, start, size, B_TRUE);
553 }
554 
555 void
556 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs,
557     uint64_t newstart, uint64_t newsize)
558 {
559 	int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt));
560 
561 	range_tree_stat_decr(rt, rs);
562 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL)
563 		rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg);
564 
565 	rs_set_start(rs, rt, newstart);
566 	rs_set_end(rs, rt, newstart + newsize);
567 
568 	range_tree_stat_incr(rt, rs);
569 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL)
570 		rt->rt_ops->rtop_add(rt, rs, rt->rt_arg);
571 
572 	rt->rt_space += delta;
573 }
574 
575 static range_seg_t *
576 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size)
577 {
578 	range_seg_max_t rsearch;
579 	uint64_t end = start + size;
580 
581 	VERIFY(size != 0);
582 
583 	rs_set_start(&rsearch, rt, start);
584 	rs_set_end(&rsearch, rt, end);
585 	return (zfs_btree_find(&rt->rt_root, &rsearch, NULL));
586 }
587 
588 range_seg_t *
589 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size)
590 {
591 	if (rt->rt_type == RANGE_SEG64)
592 		ASSERT3U(start + size, >, start);
593 
594 	range_seg_t *rs = range_tree_find_impl(rt, start, size);
595 	if (rs != NULL && rs_get_start(rs, rt) <= start &&
596 	    rs_get_end(rs, rt) >= start + size) {
597 		return (rs);
598 	}
599 	return (NULL);
600 }
601 
602 void
603 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size)
604 {
605 	range_seg_t *rs = range_tree_find(rt, off, size);
606 	if (rs != NULL)
607 		panic("segment already in tree; rs=%p", (void *)rs);
608 }
609 
610 boolean_t
611 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size)
612 {
613 	return (range_tree_find(rt, start, size) != NULL);
614 }
615 
616 /*
617  * Returns the first subset of the given range which overlaps with the range
618  * tree. Returns true if there is a segment in the range, and false if there
619  * isn't.
620  */
621 boolean_t
622 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size,
623     uint64_t *ostart, uint64_t *osize)
624 {
625 	if (rt->rt_type == RANGE_SEG64)
626 		ASSERT3U(start + size, >, start);
627 
628 	range_seg_max_t rsearch;
629 	rs_set_start(&rsearch, rt, start);
630 	rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1);
631 
632 	zfs_btree_index_t where;
633 	range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where);
634 	if (rs != NULL) {
635 		*ostart = start;
636 		*osize = MIN(size, rs_get_end(rs, rt) - start);
637 		return (B_TRUE);
638 	}
639 
640 	rs = zfs_btree_next(&rt->rt_root, &where, &where);
641 	if (rs == NULL || rs_get_start(rs, rt) > start + size)
642 		return (B_FALSE);
643 
644 	*ostart = rs_get_start(rs, rt);
645 	*osize = MIN(start + size, rs_get_end(rs, rt)) -
646 	    rs_get_start(rs, rt);
647 	return (B_TRUE);
648 }
649 
650 /*
651  * Ensure that this range is not in the tree, regardless of whether
652  * it is currently in the tree.
653  */
654 void
655 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size)
656 {
657 	range_seg_t *rs;
658 
659 	if (size == 0)
660 		return;
661 
662 	if (rt->rt_type == RANGE_SEG64)
663 		ASSERT3U(start + size, >, start);
664 
665 	while ((rs = range_tree_find_impl(rt, start, size)) != NULL) {
666 		uint64_t free_start = MAX(rs_get_start(rs, rt), start);
667 		uint64_t free_end = MIN(rs_get_end(rs, rt), start + size);
668 		range_tree_remove(rt, free_start, free_end - free_start);
669 	}
670 }
671 
672 void
673 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst)
674 {
675 	range_tree_t *rt;
676 
677 	ASSERT0(range_tree_space(*rtdst));
678 	ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root));
679 
680 	rt = *rtsrc;
681 	*rtsrc = *rtdst;
682 	*rtdst = rt;
683 }
684 
685 void
686 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg)
687 {
688 	if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL)
689 		rt->rt_ops->rtop_vacate(rt, rt->rt_arg);
690 
691 	if (func != NULL) {
692 		range_seg_t *rs;
693 		zfs_btree_index_t *cookie = NULL;
694 
695 		while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) !=
696 		    NULL) {
697 			func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
698 			    rs_get_start(rs, rt));
699 		}
700 	} else {
701 		zfs_btree_clear(&rt->rt_root);
702 	}
703 
704 	bzero(rt->rt_histogram, sizeof (rt->rt_histogram));
705 	rt->rt_space = 0;
706 }
707 
708 void
709 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg)
710 {
711 	zfs_btree_index_t where;
712 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where);
713 	    rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
714 		func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) -
715 		    rs_get_start(rs, rt));
716 	}
717 }
718 
719 range_seg_t *
720 range_tree_first(range_tree_t *rt)
721 {
722 	return (zfs_btree_first(&rt->rt_root, NULL));
723 }
724 
725 uint64_t
726 range_tree_space(range_tree_t *rt)
727 {
728 	return (rt->rt_space);
729 }
730 
731 uint64_t
732 range_tree_numsegs(range_tree_t *rt)
733 {
734 	return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root));
735 }
736 
737 boolean_t
738 range_tree_is_empty(range_tree_t *rt)
739 {
740 	ASSERT(rt != NULL);
741 	return (range_tree_space(rt) == 0);
742 }
743 
744 void
745 rt_btree_create(range_tree_t *rt, void *arg)
746 {
747 	zfs_btree_t *size_tree = arg;
748 
749 	size_t size;
750 	switch (rt->rt_type) {
751 	case RANGE_SEG32:
752 		size = sizeof (range_seg32_t);
753 		break;
754 	case RANGE_SEG64:
755 		size = sizeof (range_seg64_t);
756 		break;
757 	case RANGE_SEG_GAP:
758 		size = sizeof (range_seg_gap_t);
759 		break;
760 	default:
761 		panic("Invalid range seg type %d", rt->rt_type);
762 	}
763 	zfs_btree_create(size_tree, rt->rt_btree_compare, size);
764 }
765 
766 void
767 rt_btree_destroy(range_tree_t *rt, void *arg)
768 {
769 	(void) rt;
770 	zfs_btree_t *size_tree = arg;
771 	ASSERT0(zfs_btree_numnodes(size_tree));
772 
773 	zfs_btree_destroy(size_tree);
774 }
775 
776 void
777 rt_btree_add(range_tree_t *rt, range_seg_t *rs, void *arg)
778 {
779 	(void) rt;
780 	zfs_btree_t *size_tree = arg;
781 
782 	zfs_btree_add(size_tree, rs);
783 }
784 
785 void
786 rt_btree_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
787 {
788 	(void) rt;
789 	zfs_btree_t *size_tree = arg;
790 
791 	zfs_btree_remove(size_tree, rs);
792 }
793 
794 void
795 rt_btree_vacate(range_tree_t *rt, void *arg)
796 {
797 	zfs_btree_t *size_tree = arg;
798 	zfs_btree_clear(size_tree);
799 	zfs_btree_destroy(size_tree);
800 
801 	rt_btree_create(rt, arg);
802 }
803 
804 const range_tree_ops_t rt_btree_ops = {
805 	.rtop_create = rt_btree_create,
806 	.rtop_destroy = rt_btree_destroy,
807 	.rtop_add = rt_btree_add,
808 	.rtop_remove = rt_btree_remove,
809 	.rtop_vacate = rt_btree_vacate
810 };
811 
812 /*
813  * Remove any overlapping ranges between the given segment [start, end)
814  * from removefrom. Add non-overlapping leftovers to addto.
815  */
816 void
817 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end,
818     range_tree_t *removefrom, range_tree_t *addto)
819 {
820 	zfs_btree_index_t where;
821 	range_seg_max_t starting_rs;
822 	rs_set_start(&starting_rs, removefrom, start);
823 	rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs,
824 	    removefrom) + 1);
825 
826 	range_seg_t *curr = zfs_btree_find(&removefrom->rt_root,
827 	    &starting_rs, &where);
828 
829 	if (curr == NULL)
830 		curr = zfs_btree_next(&removefrom->rt_root, &where, &where);
831 
832 	range_seg_t *next;
833 	for (; curr != NULL; curr = next) {
834 		if (start == end)
835 			return;
836 		VERIFY3U(start, <, end);
837 
838 		/* there is no overlap */
839 		if (end <= rs_get_start(curr, removefrom)) {
840 			range_tree_add(addto, start, end - start);
841 			return;
842 		}
843 
844 		uint64_t overlap_start = MAX(rs_get_start(curr, removefrom),
845 		    start);
846 		uint64_t overlap_end = MIN(rs_get_end(curr, removefrom),
847 		    end);
848 		uint64_t overlap_size = overlap_end - overlap_start;
849 		ASSERT3S(overlap_size, >, 0);
850 		range_seg_max_t rs;
851 		rs_copy(curr, &rs, removefrom);
852 
853 		range_tree_remove(removefrom, overlap_start, overlap_size);
854 
855 		if (start < overlap_start)
856 			range_tree_add(addto, start, overlap_start - start);
857 
858 		start = overlap_end;
859 		next = zfs_btree_find(&removefrom->rt_root, &rs, &where);
860 		/*
861 		 * If we find something here, we only removed part of the
862 		 * curr segment. Either there's some left at the end
863 		 * because we've reached the end of the range we're removing,
864 		 * or there's some left at the start because we started
865 		 * partway through the range.  Either way, we continue with
866 		 * the loop. If it's the former, we'll return at the start of
867 		 * the loop, and if it's the latter we'll see if there is more
868 		 * area to process.
869 		 */
870 		if (next != NULL) {
871 			ASSERT(start == end || start == rs_get_end(&rs,
872 			    removefrom));
873 		}
874 
875 		next = zfs_btree_next(&removefrom->rt_root, &where, &where);
876 	}
877 	VERIFY3P(curr, ==, NULL);
878 
879 	if (start != end) {
880 		VERIFY3U(start, <, end);
881 		range_tree_add(addto, start, end - start);
882 	} else {
883 		VERIFY3U(start, ==, end);
884 	}
885 }
886 
887 /*
888  * For each entry in rt, if it exists in removefrom, remove it
889  * from removefrom. Otherwise, add it to addto.
890  */
891 void
892 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom,
893     range_tree_t *addto)
894 {
895 	zfs_btree_index_t where;
896 	for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs;
897 	    rs = zfs_btree_next(&rt->rt_root, &where, &where)) {
898 		range_tree_remove_xor_add_segment(rs_get_start(rs, rt),
899 		    rs_get_end(rs, rt), removefrom, addto);
900 	}
901 }
902 
903 uint64_t
904 range_tree_min(range_tree_t *rt)
905 {
906 	range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL);
907 	return (rs != NULL ? rs_get_start(rs, rt) : 0);
908 }
909 
910 uint64_t
911 range_tree_max(range_tree_t *rt)
912 {
913 	range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL);
914 	return (rs != NULL ? rs_get_end(rs, rt) : 0);
915 }
916 
917 uint64_t
918 range_tree_span(range_tree_t *rt)
919 {
920 	return (range_tree_max(rt) - range_tree_min(rt));
921 }
922