1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2013, 2019 by Delphix. All rights reserved. 27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/dmu.h> 33 #include <sys/dnode.h> 34 #include <sys/zio.h> 35 #include <sys/range_tree.h> 36 37 /* 38 * Range trees are tree-based data structures that can be used to 39 * track free space or generally any space allocation information. 40 * A range tree keeps track of individual segments and automatically 41 * provides facilities such as adjacent extent merging and extent 42 * splitting in response to range add/remove requests. 43 * 44 * A range tree starts out completely empty, with no segments in it. 45 * Adding an allocation via range_tree_add to the range tree can either: 46 * 1) create a new extent 47 * 2) extend an adjacent extent 48 * 3) merge two adjacent extents 49 * Conversely, removing an allocation via range_tree_remove can: 50 * 1) completely remove an extent 51 * 2) shorten an extent (if the allocation was near one of its ends) 52 * 3) split an extent into two extents, in effect punching a hole 53 * 54 * A range tree is also capable of 'bridging' gaps when adding 55 * allocations. This is useful for cases when close proximity of 56 * allocations is an important detail that needs to be represented 57 * in the range tree. See range_tree_set_gap(). The default behavior 58 * is not to bridge gaps (i.e. the maximum allowed gap size is 0). 59 * 60 * In order to traverse a range tree, use either the range_tree_walk() 61 * or range_tree_vacate() functions. 62 * 63 * To obtain more accurate information on individual segment 64 * operations that the range tree performs "under the hood", you can 65 * specify a set of callbacks by passing a range_tree_ops_t structure 66 * to the range_tree_create function. Any callbacks that are non-NULL 67 * are then called at the appropriate times. 68 * 69 * The range tree code also supports a special variant of range trees 70 * that can bridge small gaps between segments. This kind of tree is used 71 * by the dsl scanning code to group I/Os into mostly sequential chunks to 72 * optimize disk performance. The code here attempts to do this with as 73 * little memory and computational overhead as possible. One limitation of 74 * this implementation is that segments of range trees with gaps can only 75 * support removing complete segments. 76 */ 77 78 static inline void 79 rs_copy(range_seg_t *src, range_seg_t *dest, range_tree_t *rt) 80 { 81 ASSERT3U(rt->rt_type, <, RANGE_SEG_NUM_TYPES); 82 size_t size = 0; 83 switch (rt->rt_type) { 84 case RANGE_SEG32: 85 size = sizeof (range_seg32_t); 86 break; 87 case RANGE_SEG64: 88 size = sizeof (range_seg64_t); 89 break; 90 case RANGE_SEG_GAP: 91 size = sizeof (range_seg_gap_t); 92 break; 93 default: 94 __builtin_unreachable(); 95 } 96 memcpy(dest, src, size); 97 } 98 99 void 100 range_tree_stat_verify(range_tree_t *rt) 101 { 102 range_seg_t *rs; 103 zfs_btree_index_t where; 104 uint64_t hist[RANGE_TREE_HISTOGRAM_SIZE] = { 0 }; 105 int i; 106 107 for (rs = zfs_btree_first(&rt->rt_root, &where); rs != NULL; 108 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 109 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 110 int idx = highbit64(size) - 1; 111 112 hist[idx]++; 113 ASSERT3U(hist[idx], !=, 0); 114 } 115 116 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 117 if (hist[i] != rt->rt_histogram[i]) { 118 zfs_dbgmsg("i=%d, hist=%px, hist=%llu, rt_hist=%llu", 119 i, hist, (u_longlong_t)hist[i], 120 (u_longlong_t)rt->rt_histogram[i]); 121 } 122 VERIFY3U(hist[i], ==, rt->rt_histogram[i]); 123 } 124 } 125 126 static void 127 range_tree_stat_incr(range_tree_t *rt, range_seg_t *rs) 128 { 129 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 130 int idx = highbit64(size) - 1; 131 132 ASSERT(size != 0); 133 ASSERT3U(idx, <, 134 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 135 136 rt->rt_histogram[idx]++; 137 ASSERT3U(rt->rt_histogram[idx], !=, 0); 138 } 139 140 static void 141 range_tree_stat_decr(range_tree_t *rt, range_seg_t *rs) 142 { 143 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 144 int idx = highbit64(size) - 1; 145 146 ASSERT(size != 0); 147 ASSERT3U(idx, <, 148 sizeof (rt->rt_histogram) / sizeof (*rt->rt_histogram)); 149 150 ASSERT3U(rt->rt_histogram[idx], !=, 0); 151 rt->rt_histogram[idx]--; 152 } 153 154 static int 155 range_tree_seg32_compare(const void *x1, const void *x2) 156 { 157 const range_seg32_t *r1 = x1; 158 const range_seg32_t *r2 = x2; 159 160 ASSERT3U(r1->rs_start, <=, r1->rs_end); 161 ASSERT3U(r2->rs_start, <=, r2->rs_end); 162 163 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 164 } 165 166 static int 167 range_tree_seg64_compare(const void *x1, const void *x2) 168 { 169 const range_seg64_t *r1 = x1; 170 const range_seg64_t *r2 = x2; 171 172 ASSERT3U(r1->rs_start, <=, r1->rs_end); 173 ASSERT3U(r2->rs_start, <=, r2->rs_end); 174 175 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 176 } 177 178 static int 179 range_tree_seg_gap_compare(const void *x1, const void *x2) 180 { 181 const range_seg_gap_t *r1 = x1; 182 const range_seg_gap_t *r2 = x2; 183 184 ASSERT3U(r1->rs_start, <=, r1->rs_end); 185 ASSERT3U(r2->rs_start, <=, r2->rs_end); 186 187 return ((r1->rs_start >= r2->rs_end) - (r1->rs_end <= r2->rs_start)); 188 } 189 190 range_tree_t * 191 range_tree_create_gap(const range_tree_ops_t *ops, range_seg_type_t type, 192 void *arg, uint64_t start, uint64_t shift, uint64_t gap) 193 { 194 range_tree_t *rt = kmem_zalloc(sizeof (range_tree_t), KM_SLEEP); 195 196 ASSERT3U(shift, <, 64); 197 ASSERT3U(type, <=, RANGE_SEG_NUM_TYPES); 198 size_t size; 199 int (*compare) (const void *, const void *); 200 switch (type) { 201 case RANGE_SEG32: 202 size = sizeof (range_seg32_t); 203 compare = range_tree_seg32_compare; 204 break; 205 case RANGE_SEG64: 206 size = sizeof (range_seg64_t); 207 compare = range_tree_seg64_compare; 208 break; 209 case RANGE_SEG_GAP: 210 size = sizeof (range_seg_gap_t); 211 compare = range_tree_seg_gap_compare; 212 break; 213 default: 214 panic("Invalid range seg type %d", type); 215 } 216 zfs_btree_create(&rt->rt_root, compare, size); 217 218 rt->rt_ops = ops; 219 rt->rt_gap = gap; 220 rt->rt_arg = arg; 221 rt->rt_type = type; 222 rt->rt_start = start; 223 rt->rt_shift = shift; 224 225 if (rt->rt_ops != NULL && rt->rt_ops->rtop_create != NULL) 226 rt->rt_ops->rtop_create(rt, rt->rt_arg); 227 228 return (rt); 229 } 230 231 range_tree_t * 232 range_tree_create(const range_tree_ops_t *ops, range_seg_type_t type, 233 void *arg, uint64_t start, uint64_t shift) 234 { 235 return (range_tree_create_gap(ops, type, arg, start, shift, 0)); 236 } 237 238 void 239 range_tree_destroy(range_tree_t *rt) 240 { 241 VERIFY0(rt->rt_space); 242 243 if (rt->rt_ops != NULL && rt->rt_ops->rtop_destroy != NULL) 244 rt->rt_ops->rtop_destroy(rt, rt->rt_arg); 245 246 zfs_btree_destroy(&rt->rt_root); 247 kmem_free(rt, sizeof (*rt)); 248 } 249 250 void 251 range_tree_adjust_fill(range_tree_t *rt, range_seg_t *rs, int64_t delta) 252 { 253 if (delta < 0 && delta * -1 >= rs_get_fill(rs, rt)) { 254 zfs_panic_recover("zfs: attempting to decrease fill to or " 255 "below 0; probable double remove in segment [%llx:%llx]", 256 (longlong_t)rs_get_start(rs, rt), 257 (longlong_t)rs_get_end(rs, rt)); 258 } 259 if (rs_get_fill(rs, rt) + delta > rs_get_end(rs, rt) - 260 rs_get_start(rs, rt)) { 261 zfs_panic_recover("zfs: attempting to increase fill beyond " 262 "max; probable double add in segment [%llx:%llx]", 263 (longlong_t)rs_get_start(rs, rt), 264 (longlong_t)rs_get_end(rs, rt)); 265 } 266 267 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 268 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 269 rs_set_fill(rs, rt, rs_get_fill(rs, rt) + delta); 270 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 271 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 272 } 273 274 static void 275 range_tree_add_impl(void *arg, uint64_t start, uint64_t size, uint64_t fill) 276 { 277 range_tree_t *rt = arg; 278 zfs_btree_index_t where; 279 range_seg_t *rs_before, *rs_after, *rs; 280 range_seg_max_t tmp, rsearch; 281 uint64_t end = start + size, gap = rt->rt_gap; 282 uint64_t bridge_size = 0; 283 boolean_t merge_before, merge_after; 284 285 ASSERT3U(size, !=, 0); 286 ASSERT3U(fill, <=, size); 287 ASSERT3U(start + size, >, start); 288 289 rs_set_start(&rsearch, rt, start); 290 rs_set_end(&rsearch, rt, end); 291 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 292 293 /* 294 * If this is a gap-supporting range tree, it is possible that we 295 * are inserting into an existing segment. In this case simply 296 * bump the fill count and call the remove / add callbacks. If the 297 * new range will extend an existing segment, we remove the 298 * existing one, apply the new extent to it and re-insert it using 299 * the normal code paths. 300 */ 301 if (rs != NULL) { 302 if (gap == 0) { 303 zfs_panic_recover("zfs: adding existent segment to " 304 "range tree (offset=%llx size=%llx)", 305 (longlong_t)start, (longlong_t)size); 306 return; 307 } 308 uint64_t rstart = rs_get_start(rs, rt); 309 uint64_t rend = rs_get_end(rs, rt); 310 if (rstart <= start && rend >= end) { 311 range_tree_adjust_fill(rt, rs, fill); 312 return; 313 } 314 315 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 316 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 317 318 range_tree_stat_decr(rt, rs); 319 rt->rt_space -= rend - rstart; 320 321 fill += rs_get_fill(rs, rt); 322 start = MIN(start, rstart); 323 end = MAX(end, rend); 324 size = end - start; 325 326 zfs_btree_remove(&rt->rt_root, rs); 327 range_tree_add_impl(rt, start, size, fill); 328 return; 329 } 330 331 ASSERT3P(rs, ==, NULL); 332 333 /* 334 * Determine whether or not we will have to merge with our neighbors. 335 * If gap != 0, we might need to merge with our neighbors even if we 336 * aren't directly touching. 337 */ 338 zfs_btree_index_t where_before, where_after; 339 rs_before = zfs_btree_prev(&rt->rt_root, &where, &where_before); 340 rs_after = zfs_btree_next(&rt->rt_root, &where, &where_after); 341 342 merge_before = (rs_before != NULL && rs_get_end(rs_before, rt) >= 343 start - gap); 344 merge_after = (rs_after != NULL && rs_get_start(rs_after, rt) <= end + 345 gap); 346 347 if (merge_before && gap != 0) 348 bridge_size += start - rs_get_end(rs_before, rt); 349 if (merge_after && gap != 0) 350 bridge_size += rs_get_start(rs_after, rt) - end; 351 352 if (merge_before && merge_after) { 353 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) { 354 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 355 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 356 } 357 358 range_tree_stat_decr(rt, rs_before); 359 range_tree_stat_decr(rt, rs_after); 360 361 rs_copy(rs_after, &tmp, rt); 362 uint64_t before_start = rs_get_start_raw(rs_before, rt); 363 uint64_t before_fill = rs_get_fill(rs_before, rt); 364 uint64_t after_fill = rs_get_fill(rs_after, rt); 365 zfs_btree_remove_idx(&rt->rt_root, &where_before); 366 367 /* 368 * We have to re-find the node because our old reference is 369 * invalid as soon as we do any mutating btree operations. 370 */ 371 rs_after = zfs_btree_find(&rt->rt_root, &tmp, &where_after); 372 ASSERT3P(rs_after, !=, NULL); 373 rs_set_start_raw(rs_after, rt, before_start); 374 rs_set_fill(rs_after, rt, after_fill + before_fill + fill); 375 rs = rs_after; 376 } else if (merge_before) { 377 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 378 rt->rt_ops->rtop_remove(rt, rs_before, rt->rt_arg); 379 380 range_tree_stat_decr(rt, rs_before); 381 382 uint64_t before_fill = rs_get_fill(rs_before, rt); 383 rs_set_end(rs_before, rt, end); 384 rs_set_fill(rs_before, rt, before_fill + fill); 385 rs = rs_before; 386 } else if (merge_after) { 387 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 388 rt->rt_ops->rtop_remove(rt, rs_after, rt->rt_arg); 389 390 range_tree_stat_decr(rt, rs_after); 391 392 uint64_t after_fill = rs_get_fill(rs_after, rt); 393 rs_set_start(rs_after, rt, start); 394 rs_set_fill(rs_after, rt, after_fill + fill); 395 rs = rs_after; 396 } else { 397 rs = &tmp; 398 399 rs_set_start(rs, rt, start); 400 rs_set_end(rs, rt, end); 401 rs_set_fill(rs, rt, fill); 402 zfs_btree_add_idx(&rt->rt_root, rs, &where); 403 } 404 405 if (gap != 0) { 406 ASSERT3U(rs_get_fill(rs, rt), <=, rs_get_end(rs, rt) - 407 rs_get_start(rs, rt)); 408 } else { 409 ASSERT3U(rs_get_fill(rs, rt), ==, rs_get_end(rs, rt) - 410 rs_get_start(rs, rt)); 411 } 412 413 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 414 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 415 416 range_tree_stat_incr(rt, rs); 417 rt->rt_space += size + bridge_size; 418 } 419 420 void 421 range_tree_add(void *arg, uint64_t start, uint64_t size) 422 { 423 range_tree_add_impl(arg, start, size, size); 424 } 425 426 static void 427 range_tree_remove_impl(range_tree_t *rt, uint64_t start, uint64_t size, 428 boolean_t do_fill) 429 { 430 zfs_btree_index_t where; 431 range_seg_t *rs; 432 range_seg_max_t rsearch, rs_tmp; 433 uint64_t end = start + size; 434 boolean_t left_over, right_over; 435 436 VERIFY3U(size, !=, 0); 437 VERIFY3U(size, <=, rt->rt_space); 438 if (rt->rt_type == RANGE_SEG64) 439 ASSERT3U(start + size, >, start); 440 441 rs_set_start(&rsearch, rt, start); 442 rs_set_end(&rsearch, rt, end); 443 rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 444 445 /* Make sure we completely overlap with someone */ 446 if (rs == NULL) { 447 zfs_panic_recover("zfs: removing nonexistent segment from " 448 "range tree (offset=%llx size=%llx)", 449 (longlong_t)start, (longlong_t)size); 450 return; 451 } 452 453 /* 454 * Range trees with gap support must only remove complete segments 455 * from the tree. This allows us to maintain accurate fill accounting 456 * and to ensure that bridged sections are not leaked. If we need to 457 * remove less than the full segment, we can only adjust the fill count. 458 */ 459 if (rt->rt_gap != 0) { 460 if (do_fill) { 461 if (rs_get_fill(rs, rt) == size) { 462 start = rs_get_start(rs, rt); 463 end = rs_get_end(rs, rt); 464 size = end - start; 465 } else { 466 range_tree_adjust_fill(rt, rs, -size); 467 return; 468 } 469 } else if (rs_get_start(rs, rt) != start || 470 rs_get_end(rs, rt) != end) { 471 zfs_panic_recover("zfs: freeing partial segment of " 472 "gap tree (offset=%llx size=%llx) of " 473 "(offset=%llx size=%llx)", 474 (longlong_t)start, (longlong_t)size, 475 (longlong_t)rs_get_start(rs, rt), 476 (longlong_t)rs_get_end(rs, rt) - rs_get_start(rs, 477 rt)); 478 return; 479 } 480 } 481 482 VERIFY3U(rs_get_start(rs, rt), <=, start); 483 VERIFY3U(rs_get_end(rs, rt), >=, end); 484 485 left_over = (rs_get_start(rs, rt) != start); 486 right_over = (rs_get_end(rs, rt) != end); 487 488 range_tree_stat_decr(rt, rs); 489 490 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 491 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 492 493 if (left_over && right_over) { 494 range_seg_max_t newseg; 495 rs_set_start(&newseg, rt, end); 496 rs_set_end_raw(&newseg, rt, rs_get_end_raw(rs, rt)); 497 rs_set_fill(&newseg, rt, rs_get_end(rs, rt) - end); 498 range_tree_stat_incr(rt, &newseg); 499 500 // This modifies the buffer already inside the range tree 501 rs_set_end(rs, rt, start); 502 503 rs_copy(rs, &rs_tmp, rt); 504 if (zfs_btree_next(&rt->rt_root, &where, &where) != NULL) 505 zfs_btree_add_idx(&rt->rt_root, &newseg, &where); 506 else 507 zfs_btree_add(&rt->rt_root, &newseg); 508 509 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 510 rt->rt_ops->rtop_add(rt, &newseg, rt->rt_arg); 511 } else if (left_over) { 512 // This modifies the buffer already inside the range tree 513 rs_set_end(rs, rt, start); 514 rs_copy(rs, &rs_tmp, rt); 515 } else if (right_over) { 516 // This modifies the buffer already inside the range tree 517 rs_set_start(rs, rt, end); 518 rs_copy(rs, &rs_tmp, rt); 519 } else { 520 zfs_btree_remove_idx(&rt->rt_root, &where); 521 rs = NULL; 522 } 523 524 if (rs != NULL) { 525 /* 526 * The fill of the leftover segment will always be equal to 527 * the size, since we do not support removing partial segments 528 * of range trees with gaps. 529 */ 530 rs_set_fill_raw(rs, rt, rs_get_end_raw(rs, rt) - 531 rs_get_start_raw(rs, rt)); 532 range_tree_stat_incr(rt, &rs_tmp); 533 534 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 535 rt->rt_ops->rtop_add(rt, &rs_tmp, rt->rt_arg); 536 } 537 538 rt->rt_space -= size; 539 } 540 541 void 542 range_tree_remove(void *arg, uint64_t start, uint64_t size) 543 { 544 range_tree_remove_impl(arg, start, size, B_FALSE); 545 } 546 547 void 548 range_tree_remove_fill(range_tree_t *rt, uint64_t start, uint64_t size) 549 { 550 range_tree_remove_impl(rt, start, size, B_TRUE); 551 } 552 553 void 554 range_tree_resize_segment(range_tree_t *rt, range_seg_t *rs, 555 uint64_t newstart, uint64_t newsize) 556 { 557 int64_t delta = newsize - (rs_get_end(rs, rt) - rs_get_start(rs, rt)); 558 559 range_tree_stat_decr(rt, rs); 560 if (rt->rt_ops != NULL && rt->rt_ops->rtop_remove != NULL) 561 rt->rt_ops->rtop_remove(rt, rs, rt->rt_arg); 562 563 rs_set_start(rs, rt, newstart); 564 rs_set_end(rs, rt, newstart + newsize); 565 566 range_tree_stat_incr(rt, rs); 567 if (rt->rt_ops != NULL && rt->rt_ops->rtop_add != NULL) 568 rt->rt_ops->rtop_add(rt, rs, rt->rt_arg); 569 570 rt->rt_space += delta; 571 } 572 573 static range_seg_t * 574 range_tree_find_impl(range_tree_t *rt, uint64_t start, uint64_t size) 575 { 576 range_seg_max_t rsearch; 577 uint64_t end = start + size; 578 579 VERIFY(size != 0); 580 581 rs_set_start(&rsearch, rt, start); 582 rs_set_end(&rsearch, rt, end); 583 return (zfs_btree_find(&rt->rt_root, &rsearch, NULL)); 584 } 585 586 range_seg_t * 587 range_tree_find(range_tree_t *rt, uint64_t start, uint64_t size) 588 { 589 if (rt->rt_type == RANGE_SEG64) 590 ASSERT3U(start + size, >, start); 591 592 range_seg_t *rs = range_tree_find_impl(rt, start, size); 593 if (rs != NULL && rs_get_start(rs, rt) <= start && 594 rs_get_end(rs, rt) >= start + size) { 595 return (rs); 596 } 597 return (NULL); 598 } 599 600 void 601 range_tree_verify_not_present(range_tree_t *rt, uint64_t off, uint64_t size) 602 { 603 range_seg_t *rs = range_tree_find(rt, off, size); 604 if (rs != NULL) 605 panic("segment already in tree; rs=%p", (void *)rs); 606 } 607 608 boolean_t 609 range_tree_contains(range_tree_t *rt, uint64_t start, uint64_t size) 610 { 611 return (range_tree_find(rt, start, size) != NULL); 612 } 613 614 /* 615 * Returns the first subset of the given range which overlaps with the range 616 * tree. Returns true if there is a segment in the range, and false if there 617 * isn't. 618 */ 619 boolean_t 620 range_tree_find_in(range_tree_t *rt, uint64_t start, uint64_t size, 621 uint64_t *ostart, uint64_t *osize) 622 { 623 if (rt->rt_type == RANGE_SEG64) 624 ASSERT3U(start + size, >, start); 625 626 range_seg_max_t rsearch; 627 rs_set_start(&rsearch, rt, start); 628 rs_set_end_raw(&rsearch, rt, rs_get_start_raw(&rsearch, rt) + 1); 629 630 zfs_btree_index_t where; 631 range_seg_t *rs = zfs_btree_find(&rt->rt_root, &rsearch, &where); 632 if (rs != NULL) { 633 *ostart = start; 634 *osize = MIN(size, rs_get_end(rs, rt) - start); 635 return (B_TRUE); 636 } 637 638 rs = zfs_btree_next(&rt->rt_root, &where, &where); 639 if (rs == NULL || rs_get_start(rs, rt) > start + size) 640 return (B_FALSE); 641 642 *ostart = rs_get_start(rs, rt); 643 *osize = MIN(start + size, rs_get_end(rs, rt)) - 644 rs_get_start(rs, rt); 645 return (B_TRUE); 646 } 647 648 /* 649 * Ensure that this range is not in the tree, regardless of whether 650 * it is currently in the tree. 651 */ 652 void 653 range_tree_clear(range_tree_t *rt, uint64_t start, uint64_t size) 654 { 655 range_seg_t *rs; 656 657 if (size == 0) 658 return; 659 660 if (rt->rt_type == RANGE_SEG64) 661 ASSERT3U(start + size, >, start); 662 663 while ((rs = range_tree_find_impl(rt, start, size)) != NULL) { 664 uint64_t free_start = MAX(rs_get_start(rs, rt), start); 665 uint64_t free_end = MIN(rs_get_end(rs, rt), start + size); 666 range_tree_remove(rt, free_start, free_end - free_start); 667 } 668 } 669 670 void 671 range_tree_swap(range_tree_t **rtsrc, range_tree_t **rtdst) 672 { 673 range_tree_t *rt; 674 675 ASSERT0(range_tree_space(*rtdst)); 676 ASSERT0(zfs_btree_numnodes(&(*rtdst)->rt_root)); 677 678 rt = *rtsrc; 679 *rtsrc = *rtdst; 680 *rtdst = rt; 681 } 682 683 void 684 range_tree_vacate(range_tree_t *rt, range_tree_func_t *func, void *arg) 685 { 686 if (rt->rt_ops != NULL && rt->rt_ops->rtop_vacate != NULL) 687 rt->rt_ops->rtop_vacate(rt, rt->rt_arg); 688 689 if (func != NULL) { 690 range_seg_t *rs; 691 zfs_btree_index_t *cookie = NULL; 692 693 while ((rs = zfs_btree_destroy_nodes(&rt->rt_root, &cookie)) != 694 NULL) { 695 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 696 rs_get_start(rs, rt)); 697 } 698 } else { 699 zfs_btree_clear(&rt->rt_root); 700 } 701 702 memset(rt->rt_histogram, 0, sizeof (rt->rt_histogram)); 703 rt->rt_space = 0; 704 } 705 706 void 707 range_tree_walk(range_tree_t *rt, range_tree_func_t *func, void *arg) 708 { 709 zfs_btree_index_t where; 710 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); 711 rs != NULL; rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 712 func(arg, rs_get_start(rs, rt), rs_get_end(rs, rt) - 713 rs_get_start(rs, rt)); 714 } 715 } 716 717 range_seg_t * 718 range_tree_first(range_tree_t *rt) 719 { 720 return (zfs_btree_first(&rt->rt_root, NULL)); 721 } 722 723 uint64_t 724 range_tree_space(range_tree_t *rt) 725 { 726 return (rt->rt_space); 727 } 728 729 uint64_t 730 range_tree_numsegs(range_tree_t *rt) 731 { 732 return ((rt == NULL) ? 0 : zfs_btree_numnodes(&rt->rt_root)); 733 } 734 735 boolean_t 736 range_tree_is_empty(range_tree_t *rt) 737 { 738 ASSERT(rt != NULL); 739 return (range_tree_space(rt) == 0); 740 } 741 742 /* 743 * Remove any overlapping ranges between the given segment [start, end) 744 * from removefrom. Add non-overlapping leftovers to addto. 745 */ 746 void 747 range_tree_remove_xor_add_segment(uint64_t start, uint64_t end, 748 range_tree_t *removefrom, range_tree_t *addto) 749 { 750 zfs_btree_index_t where; 751 range_seg_max_t starting_rs; 752 rs_set_start(&starting_rs, removefrom, start); 753 rs_set_end_raw(&starting_rs, removefrom, rs_get_start_raw(&starting_rs, 754 removefrom) + 1); 755 756 range_seg_t *curr = zfs_btree_find(&removefrom->rt_root, 757 &starting_rs, &where); 758 759 if (curr == NULL) 760 curr = zfs_btree_next(&removefrom->rt_root, &where, &where); 761 762 range_seg_t *next; 763 for (; curr != NULL; curr = next) { 764 if (start == end) 765 return; 766 VERIFY3U(start, <, end); 767 768 /* there is no overlap */ 769 if (end <= rs_get_start(curr, removefrom)) { 770 range_tree_add(addto, start, end - start); 771 return; 772 } 773 774 uint64_t overlap_start = MAX(rs_get_start(curr, removefrom), 775 start); 776 uint64_t overlap_end = MIN(rs_get_end(curr, removefrom), 777 end); 778 uint64_t overlap_size = overlap_end - overlap_start; 779 ASSERT3S(overlap_size, >, 0); 780 range_seg_max_t rs; 781 rs_copy(curr, &rs, removefrom); 782 783 range_tree_remove(removefrom, overlap_start, overlap_size); 784 785 if (start < overlap_start) 786 range_tree_add(addto, start, overlap_start - start); 787 788 start = overlap_end; 789 next = zfs_btree_find(&removefrom->rt_root, &rs, &where); 790 /* 791 * If we find something here, we only removed part of the 792 * curr segment. Either there's some left at the end 793 * because we've reached the end of the range we're removing, 794 * or there's some left at the start because we started 795 * partway through the range. Either way, we continue with 796 * the loop. If it's the former, we'll return at the start of 797 * the loop, and if it's the latter we'll see if there is more 798 * area to process. 799 */ 800 if (next != NULL) { 801 ASSERT(start == end || start == rs_get_end(&rs, 802 removefrom)); 803 } 804 805 next = zfs_btree_next(&removefrom->rt_root, &where, &where); 806 } 807 VERIFY3P(curr, ==, NULL); 808 809 if (start != end) { 810 VERIFY3U(start, <, end); 811 range_tree_add(addto, start, end - start); 812 } else { 813 VERIFY3U(start, ==, end); 814 } 815 } 816 817 /* 818 * For each entry in rt, if it exists in removefrom, remove it 819 * from removefrom. Otherwise, add it to addto. 820 */ 821 void 822 range_tree_remove_xor_add(range_tree_t *rt, range_tree_t *removefrom, 823 range_tree_t *addto) 824 { 825 zfs_btree_index_t where; 826 for (range_seg_t *rs = zfs_btree_first(&rt->rt_root, &where); rs; 827 rs = zfs_btree_next(&rt->rt_root, &where, &where)) { 828 range_tree_remove_xor_add_segment(rs_get_start(rs, rt), 829 rs_get_end(rs, rt), removefrom, addto); 830 } 831 } 832 833 uint64_t 834 range_tree_min(range_tree_t *rt) 835 { 836 range_seg_t *rs = zfs_btree_first(&rt->rt_root, NULL); 837 return (rs != NULL ? rs_get_start(rs, rt) : 0); 838 } 839 840 uint64_t 841 range_tree_max(range_tree_t *rt) 842 { 843 range_seg_t *rs = zfs_btree_last(&rt->rt_root, NULL); 844 return (rs != NULL ? rs_get_end(rs, rt) : 0); 845 } 846 847 uint64_t 848 range_tree_span(range_tree_t *rt) 849 { 850 return (range_tree_max(rt) - range_tree_min(rt)); 851 } 852