1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = 0; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 int metaslab_debug_unload = 0; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 int metaslab_unload_delay = 32; 219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 int zfs_metaslab_mem_limit = 75; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 903 metaslab_group_alloc_update(mg); 904 905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 906 mg->mg_prev = mg; 907 mg->mg_next = mg; 908 } else { 909 mgnext = mgprev->mg_next; 910 mg->mg_prev = mgprev; 911 mg->mg_next = mgnext; 912 mgprev->mg_next = mg; 913 mgnext->mg_prev = mg; 914 } 915 for (int i = 0; i < spa->spa_alloc_count; i++) { 916 mc->mc_allocator[i].mca_rotor = mg; 917 mg = mg->mg_next; 918 } 919 } 920 921 /* 922 * Passivate a metaslab group and remove it from the allocation rotor. 923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 924 * a metaslab group. This function will momentarily drop spa_config_locks 925 * that are lower than the SCL_ALLOC lock (see comment below). 926 */ 927 void 928 metaslab_group_passivate(metaslab_group_t *mg) 929 { 930 metaslab_class_t *mc = mg->mg_class; 931 spa_t *spa = mc->mc_spa; 932 metaslab_group_t *mgprev, *mgnext; 933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 934 935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 936 (SCL_ALLOC | SCL_ZIO)); 937 938 if (--mg->mg_activation_count != 0) { 939 for (int i = 0; i < spa->spa_alloc_count; i++) 940 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 941 ASSERT(mg->mg_prev == NULL); 942 ASSERT(mg->mg_next == NULL); 943 ASSERT(mg->mg_activation_count < 0); 944 return; 945 } 946 947 /* 948 * The spa_config_lock is an array of rwlocks, ordered as 949 * follows (from highest to lowest): 950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 951 * SCL_ZIO > SCL_FREE > SCL_VDEV 952 * (For more information about the spa_config_lock see spa_misc.c) 953 * The higher the lock, the broader its coverage. When we passivate 954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 955 * config locks. However, the metaslab group's taskq might be trying 956 * to preload metaslabs so we must drop the SCL_ZIO lock and any 957 * lower locks to allow the I/O to complete. At a minimum, 958 * we continue to hold the SCL_ALLOC lock, which prevents any future 959 * allocations from taking place and any changes to the vdev tree. 960 */ 961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 962 taskq_wait_outstanding(mg->mg_taskq, 0); 963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 964 metaslab_group_alloc_update(mg); 965 for (int i = 0; i < mg->mg_allocators; i++) { 966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 967 metaslab_t *msp = mga->mga_primary; 968 if (msp != NULL) { 969 mutex_enter(&msp->ms_lock); 970 metaslab_passivate(msp, 971 metaslab_weight_from_range_tree(msp)); 972 mutex_exit(&msp->ms_lock); 973 } 974 msp = mga->mga_secondary; 975 if (msp != NULL) { 976 mutex_enter(&msp->ms_lock); 977 metaslab_passivate(msp, 978 metaslab_weight_from_range_tree(msp)); 979 mutex_exit(&msp->ms_lock); 980 } 981 } 982 983 mgprev = mg->mg_prev; 984 mgnext = mg->mg_next; 985 986 if (mg == mgnext) { 987 mgnext = NULL; 988 } else { 989 mgprev->mg_next = mgnext; 990 mgnext->mg_prev = mgprev; 991 } 992 for (int i = 0; i < spa->spa_alloc_count; i++) { 993 if (mc->mc_allocator[i].mca_rotor == mg) 994 mc->mc_allocator[i].mca_rotor = mgnext; 995 } 996 997 mg->mg_prev = NULL; 998 mg->mg_next = NULL; 999 } 1000 1001 boolean_t 1002 metaslab_group_initialized(metaslab_group_t *mg) 1003 { 1004 vdev_t *vd = mg->mg_vd; 1005 vdev_stat_t *vs = &vd->vdev_stat; 1006 1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1008 } 1009 1010 uint64_t 1011 metaslab_group_get_space(metaslab_group_t *mg) 1012 { 1013 /* 1014 * Note that the number of nodes in mg_metaslab_tree may be one less 1015 * than vdev_ms_count, due to the embedded log metaslab. 1016 */ 1017 mutex_enter(&mg->mg_lock); 1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1019 mutex_exit(&mg->mg_lock); 1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1021 } 1022 1023 void 1024 metaslab_group_histogram_verify(metaslab_group_t *mg) 1025 { 1026 uint64_t *mg_hist; 1027 avl_tree_t *t = &mg->mg_metaslab_tree; 1028 uint64_t ashift = mg->mg_vd->vdev_ashift; 1029 1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1031 return; 1032 1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1034 KM_SLEEP); 1035 1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1037 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1038 1039 mutex_enter(&mg->mg_lock); 1040 for (metaslab_t *msp = avl_first(t); 1041 msp != NULL; msp = AVL_NEXT(t, msp)) { 1042 VERIFY3P(msp->ms_group, ==, mg); 1043 /* skip if not active */ 1044 if (msp->ms_sm == NULL) 1045 continue; 1046 1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1048 mg_hist[i + ashift] += 1049 msp->ms_sm->sm_phys->smp_histogram[i]; 1050 } 1051 } 1052 1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1055 1056 mutex_exit(&mg->mg_lock); 1057 1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1059 } 1060 1061 static void 1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1063 { 1064 metaslab_class_t *mc = mg->mg_class; 1065 uint64_t ashift = mg->mg_vd->vdev_ashift; 1066 1067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1068 if (msp->ms_sm == NULL) 1069 return; 1070 1071 mutex_enter(&mg->mg_lock); 1072 mutex_enter(&mc->mc_lock); 1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1074 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1076 mg->mg_histogram[i + ashift] += 1077 msp->ms_sm->sm_phys->smp_histogram[i]; 1078 mc->mc_histogram[i + ashift] += 1079 msp->ms_sm->sm_phys->smp_histogram[i]; 1080 } 1081 mutex_exit(&mc->mc_lock); 1082 mutex_exit(&mg->mg_lock); 1083 } 1084 1085 void 1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 metaslab_class_t *mc = mg->mg_class; 1089 uint64_t ashift = mg->mg_vd->vdev_ashift; 1090 1091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1092 if (msp->ms_sm == NULL) 1093 return; 1094 1095 mutex_enter(&mg->mg_lock); 1096 mutex_enter(&mc->mc_lock); 1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1098 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1099 msp->ms_sm->sm_phys->smp_histogram[i]); 1100 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1101 msp->ms_sm->sm_phys->smp_histogram[i]); 1102 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1104 1105 mg->mg_histogram[i + ashift] -= 1106 msp->ms_sm->sm_phys->smp_histogram[i]; 1107 mc->mc_histogram[i + ashift] -= 1108 msp->ms_sm->sm_phys->smp_histogram[i]; 1109 } 1110 mutex_exit(&mc->mc_lock); 1111 mutex_exit(&mg->mg_lock); 1112 } 1113 1114 static void 1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1116 { 1117 ASSERT(msp->ms_group == NULL); 1118 mutex_enter(&mg->mg_lock); 1119 msp->ms_group = mg; 1120 msp->ms_weight = 0; 1121 avl_add(&mg->mg_metaslab_tree, msp); 1122 mutex_exit(&mg->mg_lock); 1123 1124 mutex_enter(&msp->ms_lock); 1125 metaslab_group_histogram_add(mg, msp); 1126 mutex_exit(&msp->ms_lock); 1127 } 1128 1129 static void 1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1131 { 1132 mutex_enter(&msp->ms_lock); 1133 metaslab_group_histogram_remove(mg, msp); 1134 mutex_exit(&msp->ms_lock); 1135 1136 mutex_enter(&mg->mg_lock); 1137 ASSERT(msp->ms_group == mg); 1138 avl_remove(&mg->mg_metaslab_tree, msp); 1139 1140 metaslab_class_t *mc = msp->ms_group->mg_class; 1141 multilist_sublist_t *mls = 1142 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 1143 if (multilist_link_active(&msp->ms_class_txg_node)) 1144 multilist_sublist_remove(mls, msp); 1145 multilist_sublist_unlock(mls); 1146 1147 msp->ms_group = NULL; 1148 mutex_exit(&mg->mg_lock); 1149 } 1150 1151 static void 1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1153 { 1154 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1155 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1156 ASSERT(msp->ms_group == mg); 1157 1158 avl_remove(&mg->mg_metaslab_tree, msp); 1159 msp->ms_weight = weight; 1160 avl_add(&mg->mg_metaslab_tree, msp); 1161 1162 } 1163 1164 static void 1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1166 { 1167 /* 1168 * Although in principle the weight can be any value, in 1169 * practice we do not use values in the range [1, 511]. 1170 */ 1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1172 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1173 1174 mutex_enter(&mg->mg_lock); 1175 metaslab_group_sort_impl(mg, msp, weight); 1176 mutex_exit(&mg->mg_lock); 1177 } 1178 1179 /* 1180 * Calculate the fragmentation for a given metaslab group. We can use 1181 * a simple average here since all metaslabs within the group must have 1182 * the same size. The return value will be a value between 0 and 100 1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1184 * group have a fragmentation metric. 1185 */ 1186 uint64_t 1187 metaslab_group_fragmentation(metaslab_group_t *mg) 1188 { 1189 vdev_t *vd = mg->mg_vd; 1190 uint64_t fragmentation = 0; 1191 uint64_t valid_ms = 0; 1192 1193 for (int m = 0; m < vd->vdev_ms_count; m++) { 1194 metaslab_t *msp = vd->vdev_ms[m]; 1195 1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1197 continue; 1198 if (msp->ms_group != mg) 1199 continue; 1200 1201 valid_ms++; 1202 fragmentation += msp->ms_fragmentation; 1203 } 1204 1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1206 return (ZFS_FRAG_INVALID); 1207 1208 fragmentation /= valid_ms; 1209 ASSERT3U(fragmentation, <=, 100); 1210 return (fragmentation); 1211 } 1212 1213 /* 1214 * Determine if a given metaslab group should skip allocations. A metaslab 1215 * group should avoid allocations if its free capacity is less than the 1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1218 * that can still handle allocations. If the allocation throttle is enabled 1219 * then we skip allocations to devices that have reached their maximum 1220 * allocation queue depth unless the selected metaslab group is the only 1221 * eligible group remaining. 1222 */ 1223 static boolean_t 1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1225 uint64_t psize, int allocator, int d) 1226 { 1227 spa_t *spa = mg->mg_vd->vdev_spa; 1228 metaslab_class_t *mc = mg->mg_class; 1229 1230 /* 1231 * We can only consider skipping this metaslab group if it's 1232 * in the normal metaslab class and there are other metaslab 1233 * groups to select from. Otherwise, we always consider it eligible 1234 * for allocations. 1235 */ 1236 if ((mc != spa_normal_class(spa) && 1237 mc != spa_special_class(spa) && 1238 mc != spa_dedup_class(spa)) || 1239 mc->mc_groups <= 1) 1240 return (B_TRUE); 1241 1242 /* 1243 * If the metaslab group's mg_allocatable flag is set (see comments 1244 * in metaslab_group_alloc_update() for more information) and 1245 * the allocation throttle is disabled then allow allocations to this 1246 * device. However, if the allocation throttle is enabled then 1247 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1248 * to determine if we should allow allocations to this metaslab group. 1249 * If all metaslab groups are no longer considered allocatable 1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1251 * gang block size then we allow allocations on this metaslab group 1252 * regardless of the mg_allocatable or throttle settings. 1253 */ 1254 if (mg->mg_allocatable) { 1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1256 int64_t qdepth; 1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1258 1259 if (!mc->mc_alloc_throttle_enabled) 1260 return (B_TRUE); 1261 1262 /* 1263 * If this metaslab group does not have any free space, then 1264 * there is no point in looking further. 1265 */ 1266 if (mg->mg_no_free_space) 1267 return (B_FALSE); 1268 1269 /* 1270 * Relax allocation throttling for ditto blocks. Due to 1271 * random imbalances in allocation it tends to push copies 1272 * to one vdev, that looks a bit better at the moment. 1273 */ 1274 qmax = qmax * (4 + d) / 4; 1275 1276 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1277 1278 /* 1279 * If this metaslab group is below its qmax or it's 1280 * the only allocatable metasable group, then attempt 1281 * to allocate from it. 1282 */ 1283 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1284 return (B_TRUE); 1285 ASSERT3U(mc->mc_alloc_groups, >, 1); 1286 1287 /* 1288 * Since this metaslab group is at or over its qmax, we 1289 * need to determine if there are metaslab groups after this 1290 * one that might be able to handle this allocation. This is 1291 * racy since we can't hold the locks for all metaslab 1292 * groups at the same time when we make this check. 1293 */ 1294 for (metaslab_group_t *mgp = mg->mg_next; 1295 mgp != rotor; mgp = mgp->mg_next) { 1296 metaslab_group_allocator_t *mgap = 1297 &mgp->mg_allocator[allocator]; 1298 qmax = mgap->mga_cur_max_alloc_queue_depth; 1299 qmax = qmax * (4 + d) / 4; 1300 qdepth = 1301 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1302 1303 /* 1304 * If there is another metaslab group that 1305 * might be able to handle the allocation, then 1306 * we return false so that we skip this group. 1307 */ 1308 if (qdepth < qmax && !mgp->mg_no_free_space) 1309 return (B_FALSE); 1310 } 1311 1312 /* 1313 * We didn't find another group to handle the allocation 1314 * so we can't skip this metaslab group even though 1315 * we are at or over our qmax. 1316 */ 1317 return (B_TRUE); 1318 1319 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1320 return (B_TRUE); 1321 } 1322 return (B_FALSE); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Range tree callbacks 1328 * ========================================================================== 1329 */ 1330 1331 /* 1332 * Comparison function for the private size-ordered tree using 32-bit 1333 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1334 */ 1335 static int 1336 metaslab_rangesize32_compare(const void *x1, const void *x2) 1337 { 1338 const range_seg32_t *r1 = x1; 1339 const range_seg32_t *r2 = x2; 1340 1341 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1342 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1343 1344 int cmp = TREE_CMP(rs_size1, rs_size2); 1345 if (likely(cmp)) 1346 return (cmp); 1347 1348 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1349 } 1350 1351 /* 1352 * Comparison function for the private size-ordered tree using 64-bit 1353 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1354 */ 1355 static int 1356 metaslab_rangesize64_compare(const void *x1, const void *x2) 1357 { 1358 const range_seg64_t *r1 = x1; 1359 const range_seg64_t *r2 = x2; 1360 1361 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1362 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1363 1364 int cmp = TREE_CMP(rs_size1, rs_size2); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1369 } 1370 typedef struct metaslab_rt_arg { 1371 zfs_btree_t *mra_bt; 1372 uint32_t mra_floor_shift; 1373 } metaslab_rt_arg_t; 1374 1375 struct mssa_arg { 1376 range_tree_t *rt; 1377 metaslab_rt_arg_t *mra; 1378 }; 1379 1380 static void 1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1382 { 1383 struct mssa_arg *mssap = arg; 1384 range_tree_t *rt = mssap->rt; 1385 metaslab_rt_arg_t *mrap = mssap->mra; 1386 range_seg_max_t seg = {0}; 1387 rs_set_start(&seg, rt, start); 1388 rs_set_end(&seg, rt, start + size); 1389 metaslab_rt_add(rt, &seg, mrap); 1390 } 1391 1392 static void 1393 metaslab_size_tree_full_load(range_tree_t *rt) 1394 { 1395 metaslab_rt_arg_t *mrap = rt->rt_arg; 1396 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1397 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1398 mrap->mra_floor_shift = 0; 1399 struct mssa_arg arg = {0}; 1400 arg.rt = rt; 1401 arg.mra = mrap; 1402 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1403 } 1404 1405 /* 1406 * Create any block allocator specific components. The current allocators 1407 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1408 */ 1409 /* ARGSUSED */ 1410 static void 1411 metaslab_rt_create(range_tree_t *rt, void *arg) 1412 { 1413 metaslab_rt_arg_t *mrap = arg; 1414 zfs_btree_t *size_tree = mrap->mra_bt; 1415 1416 size_t size; 1417 int (*compare) (const void *, const void *); 1418 switch (rt->rt_type) { 1419 case RANGE_SEG32: 1420 size = sizeof (range_seg32_t); 1421 compare = metaslab_rangesize32_compare; 1422 break; 1423 case RANGE_SEG64: 1424 size = sizeof (range_seg64_t); 1425 compare = metaslab_rangesize64_compare; 1426 break; 1427 default: 1428 panic("Invalid range seg type %d", rt->rt_type); 1429 } 1430 zfs_btree_create(size_tree, compare, size); 1431 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1432 } 1433 1434 /* ARGSUSED */ 1435 static void 1436 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1437 { 1438 metaslab_rt_arg_t *mrap = arg; 1439 zfs_btree_t *size_tree = mrap->mra_bt; 1440 1441 zfs_btree_destroy(size_tree); 1442 kmem_free(mrap, sizeof (*mrap)); 1443 } 1444 1445 /* ARGSUSED */ 1446 static void 1447 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1448 { 1449 metaslab_rt_arg_t *mrap = arg; 1450 zfs_btree_t *size_tree = mrap->mra_bt; 1451 1452 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1453 (1 << mrap->mra_floor_shift)) 1454 return; 1455 1456 zfs_btree_add(size_tree, rs); 1457 } 1458 1459 /* ARGSUSED */ 1460 static void 1461 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1462 { 1463 metaslab_rt_arg_t *mrap = arg; 1464 zfs_btree_t *size_tree = mrap->mra_bt; 1465 1466 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1467 mrap->mra_floor_shift)) 1468 return; 1469 1470 zfs_btree_remove(size_tree, rs); 1471 } 1472 1473 /* ARGSUSED */ 1474 static void 1475 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1476 { 1477 metaslab_rt_arg_t *mrap = arg; 1478 zfs_btree_t *size_tree = mrap->mra_bt; 1479 zfs_btree_clear(size_tree); 1480 zfs_btree_destroy(size_tree); 1481 1482 metaslab_rt_create(rt, arg); 1483 } 1484 1485 static range_tree_ops_t metaslab_rt_ops = { 1486 .rtop_create = metaslab_rt_create, 1487 .rtop_destroy = metaslab_rt_destroy, 1488 .rtop_add = metaslab_rt_add, 1489 .rtop_remove = metaslab_rt_remove, 1490 .rtop_vacate = metaslab_rt_vacate 1491 }; 1492 1493 /* 1494 * ========================================================================== 1495 * Common allocator routines 1496 * ========================================================================== 1497 */ 1498 1499 /* 1500 * Return the maximum contiguous segment within the metaslab. 1501 */ 1502 uint64_t 1503 metaslab_largest_allocatable(metaslab_t *msp) 1504 { 1505 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1506 range_seg_t *rs; 1507 1508 if (t == NULL) 1509 return (0); 1510 if (zfs_btree_numnodes(t) == 0) 1511 metaslab_size_tree_full_load(msp->ms_allocatable); 1512 1513 rs = zfs_btree_last(t, NULL); 1514 if (rs == NULL) 1515 return (0); 1516 1517 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1518 msp->ms_allocatable)); 1519 } 1520 1521 /* 1522 * Return the maximum contiguous segment within the unflushed frees of this 1523 * metaslab. 1524 */ 1525 static uint64_t 1526 metaslab_largest_unflushed_free(metaslab_t *msp) 1527 { 1528 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1529 1530 if (msp->ms_unflushed_frees == NULL) 1531 return (0); 1532 1533 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1534 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1535 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1536 NULL); 1537 if (rs == NULL) 1538 return (0); 1539 1540 /* 1541 * When a range is freed from the metaslab, that range is added to 1542 * both the unflushed frees and the deferred frees. While the block 1543 * will eventually be usable, if the metaslab were loaded the range 1544 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1545 * txgs had passed. As a result, when attempting to estimate an upper 1546 * bound for the largest currently-usable free segment in the 1547 * metaslab, we need to not consider any ranges currently in the defer 1548 * trees. This algorithm approximates the largest available chunk in 1549 * the largest range in the unflushed_frees tree by taking the first 1550 * chunk. While this may be a poor estimate, it should only remain so 1551 * briefly and should eventually self-correct as frees are no longer 1552 * deferred. Similar logic applies to the ms_freed tree. See 1553 * metaslab_load() for more details. 1554 * 1555 * There are two primary sources of inaccuracy in this estimate. Both 1556 * are tolerated for performance reasons. The first source is that we 1557 * only check the largest segment for overlaps. Smaller segments may 1558 * have more favorable overlaps with the other trees, resulting in 1559 * larger usable chunks. Second, we only look at the first chunk in 1560 * the largest segment; there may be other usable chunks in the 1561 * largest segment, but we ignore them. 1562 */ 1563 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1564 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1565 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1566 uint64_t start = 0; 1567 uint64_t size = 0; 1568 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1569 rsize, &start, &size); 1570 if (found) { 1571 if (rstart == start) 1572 return (0); 1573 rsize = start - rstart; 1574 } 1575 } 1576 1577 uint64_t start = 0; 1578 uint64_t size = 0; 1579 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1580 rsize, &start, &size); 1581 if (found) 1582 rsize = start - rstart; 1583 1584 return (rsize); 1585 } 1586 1587 static range_seg_t * 1588 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1589 uint64_t size, zfs_btree_index_t *where) 1590 { 1591 range_seg_t *rs; 1592 range_seg_max_t rsearch; 1593 1594 rs_set_start(&rsearch, rt, start); 1595 rs_set_end(&rsearch, rt, start + size); 1596 1597 rs = zfs_btree_find(t, &rsearch, where); 1598 if (rs == NULL) { 1599 rs = zfs_btree_next(t, where, where); 1600 } 1601 1602 return (rs); 1603 } 1604 1605 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1606 defined(WITH_CF_BLOCK_ALLOCATOR) 1607 1608 /* 1609 * This is a helper function that can be used by the allocator to find a 1610 * suitable block to allocate. This will search the specified B-tree looking 1611 * for a block that matches the specified criteria. 1612 */ 1613 static uint64_t 1614 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1615 uint64_t max_search) 1616 { 1617 if (*cursor == 0) 1618 *cursor = rt->rt_start; 1619 zfs_btree_t *bt = &rt->rt_root; 1620 zfs_btree_index_t where; 1621 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1622 uint64_t first_found; 1623 int count_searched = 0; 1624 1625 if (rs != NULL) 1626 first_found = rs_get_start(rs, rt); 1627 1628 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1629 max_search || count_searched < metaslab_min_search_count)) { 1630 uint64_t offset = rs_get_start(rs, rt); 1631 if (offset + size <= rs_get_end(rs, rt)) { 1632 *cursor = offset + size; 1633 return (offset); 1634 } 1635 rs = zfs_btree_next(bt, &where, &where); 1636 count_searched++; 1637 } 1638 1639 *cursor = 0; 1640 return (-1ULL); 1641 } 1642 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1643 1644 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1645 /* 1646 * ========================================================================== 1647 * Dynamic Fit (df) block allocator 1648 * 1649 * Search for a free chunk of at least this size, starting from the last 1650 * offset (for this alignment of block) looking for up to 1651 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1652 * found within 16MB, then return a free chunk of exactly the requested size (or 1653 * larger). 1654 * 1655 * If it seems like searching from the last offset will be unproductive, skip 1656 * that and just return a free chunk of exactly the requested size (or larger). 1657 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1658 * mechanism is probably not very useful and may be removed in the future. 1659 * 1660 * The behavior when not searching can be changed to return the largest free 1661 * chunk, instead of a free chunk of exactly the requested size, by setting 1662 * metaslab_df_use_largest_segment. 1663 * ========================================================================== 1664 */ 1665 static uint64_t 1666 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1667 { 1668 /* 1669 * Find the largest power of 2 block size that evenly divides the 1670 * requested size. This is used to try to allocate blocks with similar 1671 * alignment from the same area of the metaslab (i.e. same cursor 1672 * bucket) but it does not guarantee that other allocations sizes 1673 * may exist in the same region. 1674 */ 1675 uint64_t align = size & -size; 1676 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1677 range_tree_t *rt = msp->ms_allocatable; 1678 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1679 uint64_t offset; 1680 1681 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1682 1683 /* 1684 * If we're running low on space, find a segment based on size, 1685 * rather than iterating based on offset. 1686 */ 1687 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1688 free_pct < metaslab_df_free_pct) { 1689 offset = -1; 1690 } else { 1691 offset = metaslab_block_picker(rt, 1692 cursor, size, metaslab_df_max_search); 1693 } 1694 1695 if (offset == -1) { 1696 range_seg_t *rs; 1697 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1698 metaslab_size_tree_full_load(msp->ms_allocatable); 1699 1700 if (metaslab_df_use_largest_segment) { 1701 /* use largest free segment */ 1702 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1703 } else { 1704 zfs_btree_index_t where; 1705 /* use segment of this size, or next largest */ 1706 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1707 rt, msp->ms_start, size, &where); 1708 } 1709 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1710 rt)) { 1711 offset = rs_get_start(rs, rt); 1712 *cursor = offset + size; 1713 } 1714 } 1715 1716 return (offset); 1717 } 1718 1719 static metaslab_ops_t metaslab_df_ops = { 1720 metaslab_df_alloc 1721 }; 1722 1723 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1724 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1725 1726 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1727 /* 1728 * ========================================================================== 1729 * Cursor fit block allocator - 1730 * Select the largest region in the metaslab, set the cursor to the beginning 1731 * of the range and the cursor_end to the end of the range. As allocations 1732 * are made advance the cursor. Continue allocating from the cursor until 1733 * the range is exhausted and then find a new range. 1734 * ========================================================================== 1735 */ 1736 static uint64_t 1737 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1738 { 1739 range_tree_t *rt = msp->ms_allocatable; 1740 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1741 uint64_t *cursor = &msp->ms_lbas[0]; 1742 uint64_t *cursor_end = &msp->ms_lbas[1]; 1743 uint64_t offset = 0; 1744 1745 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1746 1747 ASSERT3U(*cursor_end, >=, *cursor); 1748 1749 if ((*cursor + size) > *cursor_end) { 1750 range_seg_t *rs; 1751 1752 if (zfs_btree_numnodes(t) == 0) 1753 metaslab_size_tree_full_load(msp->ms_allocatable); 1754 rs = zfs_btree_last(t, NULL); 1755 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1756 size) 1757 return (-1ULL); 1758 1759 *cursor = rs_get_start(rs, rt); 1760 *cursor_end = rs_get_end(rs, rt); 1761 } 1762 1763 offset = *cursor; 1764 *cursor += size; 1765 1766 return (offset); 1767 } 1768 1769 static metaslab_ops_t metaslab_cf_ops = { 1770 metaslab_cf_alloc 1771 }; 1772 1773 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1774 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1775 1776 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1777 /* 1778 * ========================================================================== 1779 * New dynamic fit allocator - 1780 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1781 * contiguous blocks. If no region is found then just use the largest segment 1782 * that remains. 1783 * ========================================================================== 1784 */ 1785 1786 /* 1787 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1788 * to request from the allocator. 1789 */ 1790 uint64_t metaslab_ndf_clump_shift = 4; 1791 1792 static uint64_t 1793 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1794 { 1795 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1796 range_tree_t *rt = msp->ms_allocatable; 1797 zfs_btree_index_t where; 1798 range_seg_t *rs; 1799 range_seg_max_t rsearch; 1800 uint64_t hbit = highbit64(size); 1801 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1802 uint64_t max_size = metaslab_largest_allocatable(msp); 1803 1804 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1805 1806 if (max_size < size) 1807 return (-1ULL); 1808 1809 rs_set_start(&rsearch, rt, *cursor); 1810 rs_set_end(&rsearch, rt, *cursor + size); 1811 1812 rs = zfs_btree_find(t, &rsearch, &where); 1813 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1814 t = &msp->ms_allocatable_by_size; 1815 1816 rs_set_start(&rsearch, rt, 0); 1817 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1818 metaslab_ndf_clump_shift))); 1819 1820 rs = zfs_btree_find(t, &rsearch, &where); 1821 if (rs == NULL) 1822 rs = zfs_btree_next(t, &where, &where); 1823 ASSERT(rs != NULL); 1824 } 1825 1826 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1827 *cursor = rs_get_start(rs, rt) + size; 1828 return (rs_get_start(rs, rt)); 1829 } 1830 return (-1ULL); 1831 } 1832 1833 static metaslab_ops_t metaslab_ndf_ops = { 1834 metaslab_ndf_alloc 1835 }; 1836 1837 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1839 1840 1841 /* 1842 * ========================================================================== 1843 * Metaslabs 1844 * ========================================================================== 1845 */ 1846 1847 /* 1848 * Wait for any in-progress metaslab loads to complete. 1849 */ 1850 static void 1851 metaslab_load_wait(metaslab_t *msp) 1852 { 1853 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1854 1855 while (msp->ms_loading) { 1856 ASSERT(!msp->ms_loaded); 1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1858 } 1859 } 1860 1861 /* 1862 * Wait for any in-progress flushing to complete. 1863 */ 1864 static void 1865 metaslab_flush_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_flushing) 1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1871 } 1872 1873 static unsigned int 1874 metaslab_idx_func(multilist_t *ml, void *arg) 1875 { 1876 metaslab_t *msp = arg; 1877 return (msp->ms_id % multilist_get_num_sublists(ml)); 1878 } 1879 1880 uint64_t 1881 metaslab_allocated_space(metaslab_t *msp) 1882 { 1883 return (msp->ms_allocated_space); 1884 } 1885 1886 /* 1887 * Verify that the space accounting on disk matches the in-core range_trees. 1888 */ 1889 static void 1890 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1891 { 1892 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1893 uint64_t allocating = 0; 1894 uint64_t sm_free_space, msp_free_space; 1895 1896 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1897 ASSERT(!msp->ms_condensing); 1898 1899 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1900 return; 1901 1902 /* 1903 * We can only verify the metaslab space when we're called 1904 * from syncing context with a loaded metaslab that has an 1905 * allocated space map. Calling this in non-syncing context 1906 * does not provide a consistent view of the metaslab since 1907 * we're performing allocations in the future. 1908 */ 1909 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1910 !msp->ms_loaded) 1911 return; 1912 1913 /* 1914 * Even though the smp_alloc field can get negative, 1915 * when it comes to a metaslab's space map, that should 1916 * never be the case. 1917 */ 1918 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1919 1920 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1921 range_tree_space(msp->ms_unflushed_frees)); 1922 1923 ASSERT3U(metaslab_allocated_space(msp), ==, 1924 space_map_allocated(msp->ms_sm) + 1925 range_tree_space(msp->ms_unflushed_allocs) - 1926 range_tree_space(msp->ms_unflushed_frees)); 1927 1928 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1929 1930 /* 1931 * Account for future allocations since we would have 1932 * already deducted that space from the ms_allocatable. 1933 */ 1934 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1935 allocating += 1936 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1937 } 1938 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1939 msp->ms_allocating_total); 1940 1941 ASSERT3U(msp->ms_deferspace, ==, 1942 range_tree_space(msp->ms_defer[0]) + 1943 range_tree_space(msp->ms_defer[1])); 1944 1945 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1946 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1947 1948 VERIFY3U(sm_free_space, ==, msp_free_space); 1949 } 1950 1951 static void 1952 metaslab_aux_histograms_clear(metaslab_t *msp) 1953 { 1954 /* 1955 * Auxiliary histograms are only cleared when resetting them, 1956 * which can only happen while the metaslab is loaded. 1957 */ 1958 ASSERT(msp->ms_loaded); 1959 1960 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1961 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1962 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1963 } 1964 1965 static void 1966 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1967 range_tree_t *rt) 1968 { 1969 /* 1970 * This is modeled after space_map_histogram_add(), so refer to that 1971 * function for implementation details. We want this to work like 1972 * the space map histogram, and not the range tree histogram, as we 1973 * are essentially constructing a delta that will be later subtracted 1974 * from the space map histogram. 1975 */ 1976 int idx = 0; 1977 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1978 ASSERT3U(i, >=, idx + shift); 1979 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1980 1981 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1982 ASSERT3U(idx + shift, ==, i); 1983 idx++; 1984 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Called at every sync pass that the metaslab gets synced. 1991 * 1992 * The reason is that we want our auxiliary histograms to be updated 1993 * wherever the metaslab's space map histogram is updated. This way 1994 * we stay consistent on which parts of the metaslab space map's 1995 * histogram are currently not available for allocations (e.g because 1996 * they are in the defer, freed, and freeing trees). 1997 */ 1998 static void 1999 metaslab_aux_histograms_update(metaslab_t *msp) 2000 { 2001 space_map_t *sm = msp->ms_sm; 2002 ASSERT(sm != NULL); 2003 2004 /* 2005 * This is similar to the metaslab's space map histogram updates 2006 * that take place in metaslab_sync(). The only difference is that 2007 * we only care about segments that haven't made it into the 2008 * ms_allocatable tree yet. 2009 */ 2010 if (msp->ms_loaded) { 2011 metaslab_aux_histograms_clear(msp); 2012 2013 metaslab_aux_histogram_add(msp->ms_synchist, 2014 sm->sm_shift, msp->ms_freed); 2015 2016 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2017 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2018 sm->sm_shift, msp->ms_defer[t]); 2019 } 2020 } 2021 2022 metaslab_aux_histogram_add(msp->ms_synchist, 2023 sm->sm_shift, msp->ms_freeing); 2024 } 2025 2026 /* 2027 * Called every time we are done syncing (writing to) the metaslab, 2028 * i.e. at the end of each sync pass. 2029 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2030 */ 2031 static void 2032 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2033 { 2034 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2035 space_map_t *sm = msp->ms_sm; 2036 2037 if (sm == NULL) { 2038 /* 2039 * We came here from metaslab_init() when creating/opening a 2040 * pool, looking at a metaslab that hasn't had any allocations 2041 * yet. 2042 */ 2043 return; 2044 } 2045 2046 /* 2047 * This is similar to the actions that we take for the ms_freed 2048 * and ms_defer trees in metaslab_sync_done(). 2049 */ 2050 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2051 if (defer_allowed) { 2052 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2053 sizeof (msp->ms_synchist)); 2054 } else { 2055 bzero(msp->ms_deferhist[hist_index], 2056 sizeof (msp->ms_deferhist[hist_index])); 2057 } 2058 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2059 } 2060 2061 /* 2062 * Ensure that the metaslab's weight and fragmentation are consistent 2063 * with the contents of the histogram (either the range tree's histogram 2064 * or the space map's depending whether the metaslab is loaded). 2065 */ 2066 static void 2067 metaslab_verify_weight_and_frag(metaslab_t *msp) 2068 { 2069 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2070 2071 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2072 return; 2073 2074 /* 2075 * We can end up here from vdev_remove_complete(), in which case we 2076 * cannot do these assertions because we hold spa config locks and 2077 * thus we are not allowed to read from the DMU. 2078 * 2079 * We check if the metaslab group has been removed and if that's 2080 * the case we return immediately as that would mean that we are 2081 * here from the aforementioned code path. 2082 */ 2083 if (msp->ms_group == NULL) 2084 return; 2085 2086 /* 2087 * Devices being removed always return a weight of 0 and leave 2088 * fragmentation and ms_max_size as is - there is nothing for 2089 * us to verify here. 2090 */ 2091 vdev_t *vd = msp->ms_group->mg_vd; 2092 if (vd->vdev_removing) 2093 return; 2094 2095 /* 2096 * If the metaslab is dirty it probably means that we've done 2097 * some allocations or frees that have changed our histograms 2098 * and thus the weight. 2099 */ 2100 for (int t = 0; t < TXG_SIZE; t++) { 2101 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2102 return; 2103 } 2104 2105 /* 2106 * This verification checks that our in-memory state is consistent 2107 * with what's on disk. If the pool is read-only then there aren't 2108 * any changes and we just have the initially-loaded state. 2109 */ 2110 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2111 return; 2112 2113 /* some extra verification for in-core tree if you can */ 2114 if (msp->ms_loaded) { 2115 range_tree_stat_verify(msp->ms_allocatable); 2116 VERIFY(space_map_histogram_verify(msp->ms_sm, 2117 msp->ms_allocatable)); 2118 } 2119 2120 uint64_t weight = msp->ms_weight; 2121 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2122 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2123 uint64_t frag = msp->ms_fragmentation; 2124 uint64_t max_segsize = msp->ms_max_size; 2125 2126 msp->ms_weight = 0; 2127 msp->ms_fragmentation = 0; 2128 2129 /* 2130 * This function is used for verification purposes and thus should 2131 * not introduce any side-effects/mutations on the system's state. 2132 * 2133 * Regardless of whether metaslab_weight() thinks this metaslab 2134 * should be active or not, we want to ensure that the actual weight 2135 * (and therefore the value of ms_weight) would be the same if it 2136 * was to be recalculated at this point. 2137 * 2138 * In addition we set the nodirty flag so metaslab_weight() does 2139 * not dirty the metaslab for future TXGs (e.g. when trying to 2140 * force condensing to upgrade the metaslab spacemaps). 2141 */ 2142 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2143 2144 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2145 2146 /* 2147 * If the weight type changed then there is no point in doing 2148 * verification. Revert fields to their original values. 2149 */ 2150 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2151 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2152 msp->ms_fragmentation = frag; 2153 msp->ms_weight = weight; 2154 return; 2155 } 2156 2157 VERIFY3U(msp->ms_fragmentation, ==, frag); 2158 VERIFY3U(msp->ms_weight, ==, weight); 2159 } 2160 2161 /* 2162 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2163 * this class that was used longest ago, and attempt to unload it. We don't 2164 * want to spend too much time in this loop to prevent performance 2165 * degradation, and we expect that most of the time this operation will 2166 * succeed. Between that and the normal unloading processing during txg sync, 2167 * we expect this to keep the metaslab memory usage under control. 2168 */ 2169 static void 2170 metaslab_potentially_evict(metaslab_class_t *mc) 2171 { 2172 #ifdef _KERNEL 2173 uint64_t allmem = arc_all_memory(); 2174 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2175 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2176 int tries = 0; 2177 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2178 tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2; 2179 tries++) { 2180 unsigned int idx = multilist_get_random_index( 2181 mc->mc_metaslab_txg_list); 2182 multilist_sublist_t *mls = 2183 multilist_sublist_lock(mc->mc_metaslab_txg_list, idx); 2184 metaslab_t *msp = multilist_sublist_head(mls); 2185 multilist_sublist_unlock(mls); 2186 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2187 inuse * size) { 2188 VERIFY3P(mls, ==, multilist_sublist_lock( 2189 mc->mc_metaslab_txg_list, idx)); 2190 ASSERT3U(idx, ==, 2191 metaslab_idx_func(mc->mc_metaslab_txg_list, msp)); 2192 2193 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2194 multilist_sublist_unlock(mls); 2195 break; 2196 } 2197 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2198 multilist_sublist_unlock(mls); 2199 /* 2200 * If the metaslab is currently loading there are two 2201 * cases. If it's the metaslab we're evicting, we 2202 * can't continue on or we'll panic when we attempt to 2203 * recursively lock the mutex. If it's another 2204 * metaslab that's loading, it can be safely skipped, 2205 * since we know it's very new and therefore not a 2206 * good eviction candidate. We check later once the 2207 * lock is held that the metaslab is fully loaded 2208 * before actually unloading it. 2209 */ 2210 if (msp->ms_loading) { 2211 msp = next_msp; 2212 inuse = 2213 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2214 continue; 2215 } 2216 /* 2217 * We can't unload metaslabs with no spacemap because 2218 * they're not ready to be unloaded yet. We can't 2219 * unload metaslabs with outstanding allocations 2220 * because doing so could cause the metaslab's weight 2221 * to decrease while it's unloaded, which violates an 2222 * invariant that we use to prevent unnecessary 2223 * loading. We also don't unload metaslabs that are 2224 * currently active because they are high-weight 2225 * metaslabs that are likely to be used in the near 2226 * future. 2227 */ 2228 mutex_enter(&msp->ms_lock); 2229 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2230 msp->ms_allocating_total == 0) { 2231 metaslab_unload(msp); 2232 } 2233 mutex_exit(&msp->ms_lock); 2234 msp = next_msp; 2235 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2236 } 2237 } 2238 #endif 2239 } 2240 2241 static int 2242 metaslab_load_impl(metaslab_t *msp) 2243 { 2244 int error = 0; 2245 2246 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2247 ASSERT(msp->ms_loading); 2248 ASSERT(!msp->ms_condensing); 2249 2250 /* 2251 * We temporarily drop the lock to unblock other operations while we 2252 * are reading the space map. Therefore, metaslab_sync() and 2253 * metaslab_sync_done() can run at the same time as we do. 2254 * 2255 * If we are using the log space maps, metaslab_sync() can't write to 2256 * the metaslab's space map while we are loading as we only write to 2257 * it when we are flushing the metaslab, and that can't happen while 2258 * we are loading it. 2259 * 2260 * If we are not using log space maps though, metaslab_sync() can 2261 * append to the space map while we are loading. Therefore we load 2262 * only entries that existed when we started the load. Additionally, 2263 * metaslab_sync_done() has to wait for the load to complete because 2264 * there are potential races like metaslab_load() loading parts of the 2265 * space map that are currently being appended by metaslab_sync(). If 2266 * we didn't, the ms_allocatable would have entries that 2267 * metaslab_sync_done() would try to re-add later. 2268 * 2269 * That's why before dropping the lock we remember the synced length 2270 * of the metaslab and read up to that point of the space map, 2271 * ignoring entries appended by metaslab_sync() that happen after we 2272 * drop the lock. 2273 */ 2274 uint64_t length = msp->ms_synced_length; 2275 mutex_exit(&msp->ms_lock); 2276 2277 hrtime_t load_start = gethrtime(); 2278 metaslab_rt_arg_t *mrap; 2279 if (msp->ms_allocatable->rt_arg == NULL) { 2280 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2281 } else { 2282 mrap = msp->ms_allocatable->rt_arg; 2283 msp->ms_allocatable->rt_ops = NULL; 2284 msp->ms_allocatable->rt_arg = NULL; 2285 } 2286 mrap->mra_bt = &msp->ms_allocatable_by_size; 2287 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2288 2289 if (msp->ms_sm != NULL) { 2290 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2291 SM_FREE, length); 2292 2293 /* Now, populate the size-sorted tree. */ 2294 metaslab_rt_create(msp->ms_allocatable, mrap); 2295 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2296 msp->ms_allocatable->rt_arg = mrap; 2297 2298 struct mssa_arg arg = {0}; 2299 arg.rt = msp->ms_allocatable; 2300 arg.mra = mrap; 2301 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2302 &arg); 2303 } else { 2304 /* 2305 * Add the size-sorted tree first, since we don't need to load 2306 * the metaslab from the spacemap. 2307 */ 2308 metaslab_rt_create(msp->ms_allocatable, mrap); 2309 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2310 msp->ms_allocatable->rt_arg = mrap; 2311 /* 2312 * The space map has not been allocated yet, so treat 2313 * all the space in the metaslab as free and add it to the 2314 * ms_allocatable tree. 2315 */ 2316 range_tree_add(msp->ms_allocatable, 2317 msp->ms_start, msp->ms_size); 2318 2319 if (msp->ms_new) { 2320 /* 2321 * If the ms_sm doesn't exist, this means that this 2322 * metaslab hasn't gone through metaslab_sync() and 2323 * thus has never been dirtied. So we shouldn't 2324 * expect any unflushed allocs or frees from previous 2325 * TXGs. 2326 */ 2327 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2328 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2329 } 2330 } 2331 2332 /* 2333 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2334 * changing the ms_sm (or log_sm) and the metaslab's range trees 2335 * while we are about to use them and populate the ms_allocatable. 2336 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2337 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2338 */ 2339 mutex_enter(&msp->ms_sync_lock); 2340 mutex_enter(&msp->ms_lock); 2341 2342 ASSERT(!msp->ms_condensing); 2343 ASSERT(!msp->ms_flushing); 2344 2345 if (error != 0) { 2346 mutex_exit(&msp->ms_sync_lock); 2347 return (error); 2348 } 2349 2350 ASSERT3P(msp->ms_group, !=, NULL); 2351 msp->ms_loaded = B_TRUE; 2352 2353 /* 2354 * Apply all the unflushed changes to ms_allocatable right 2355 * away so any manipulations we do below have a clear view 2356 * of what is allocated and what is free. 2357 */ 2358 range_tree_walk(msp->ms_unflushed_allocs, 2359 range_tree_remove, msp->ms_allocatable); 2360 range_tree_walk(msp->ms_unflushed_frees, 2361 range_tree_add, msp->ms_allocatable); 2362 2363 ASSERT3P(msp->ms_group, !=, NULL); 2364 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2365 if (spa_syncing_log_sm(spa) != NULL) { 2366 ASSERT(spa_feature_is_enabled(spa, 2367 SPA_FEATURE_LOG_SPACEMAP)); 2368 2369 /* 2370 * If we use a log space map we add all the segments 2371 * that are in ms_unflushed_frees so they are available 2372 * for allocation. 2373 * 2374 * ms_allocatable needs to contain all free segments 2375 * that are ready for allocations (thus not segments 2376 * from ms_freeing, ms_freed, and the ms_defer trees). 2377 * But if we grab the lock in this code path at a sync 2378 * pass later that 1, then it also contains the 2379 * segments of ms_freed (they were added to it earlier 2380 * in this path through ms_unflushed_frees). So we 2381 * need to remove all the segments that exist in 2382 * ms_freed from ms_allocatable as they will be added 2383 * later in metaslab_sync_done(). 2384 * 2385 * When there's no log space map, the ms_allocatable 2386 * correctly doesn't contain any segments that exist 2387 * in ms_freed [see ms_synced_length]. 2388 */ 2389 range_tree_walk(msp->ms_freed, 2390 range_tree_remove, msp->ms_allocatable); 2391 } 2392 2393 /* 2394 * If we are not using the log space map, ms_allocatable 2395 * contains the segments that exist in the ms_defer trees 2396 * [see ms_synced_length]. Thus we need to remove them 2397 * from ms_allocatable as they will be added again in 2398 * metaslab_sync_done(). 2399 * 2400 * If we are using the log space map, ms_allocatable still 2401 * contains the segments that exist in the ms_defer trees. 2402 * Not because it read them through the ms_sm though. But 2403 * because these segments are part of ms_unflushed_frees 2404 * whose segments we add to ms_allocatable earlier in this 2405 * code path. 2406 */ 2407 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2408 range_tree_walk(msp->ms_defer[t], 2409 range_tree_remove, msp->ms_allocatable); 2410 } 2411 2412 /* 2413 * Call metaslab_recalculate_weight_and_sort() now that the 2414 * metaslab is loaded so we get the metaslab's real weight. 2415 * 2416 * Unless this metaslab was created with older software and 2417 * has not yet been converted to use segment-based weight, we 2418 * expect the new weight to be better or equal to the weight 2419 * that the metaslab had while it was not loaded. This is 2420 * because the old weight does not take into account the 2421 * consolidation of adjacent segments between TXGs. [see 2422 * comment for ms_synchist and ms_deferhist[] for more info] 2423 */ 2424 uint64_t weight = msp->ms_weight; 2425 uint64_t max_size = msp->ms_max_size; 2426 metaslab_recalculate_weight_and_sort(msp); 2427 if (!WEIGHT_IS_SPACEBASED(weight)) 2428 ASSERT3U(weight, <=, msp->ms_weight); 2429 msp->ms_max_size = metaslab_largest_allocatable(msp); 2430 ASSERT3U(max_size, <=, msp->ms_max_size); 2431 hrtime_t load_end = gethrtime(); 2432 msp->ms_load_time = load_end; 2433 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2434 "ms_id %llu, smp_length %llu, " 2435 "unflushed_allocs %llu, unflushed_frees %llu, " 2436 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2437 "loading_time %lld ms, ms_max_size %llu, " 2438 "max size error %lld, " 2439 "old_weight %llx, new_weight %llx", 2440 spa_syncing_txg(spa), spa_name(spa), 2441 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2442 space_map_length(msp->ms_sm), 2443 range_tree_space(msp->ms_unflushed_allocs), 2444 range_tree_space(msp->ms_unflushed_frees), 2445 range_tree_space(msp->ms_freed), 2446 range_tree_space(msp->ms_defer[0]), 2447 range_tree_space(msp->ms_defer[1]), 2448 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2449 (longlong_t)((load_end - load_start) / 1000000), 2450 msp->ms_max_size, msp->ms_max_size - max_size, 2451 weight, msp->ms_weight); 2452 2453 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2454 mutex_exit(&msp->ms_sync_lock); 2455 return (0); 2456 } 2457 2458 int 2459 metaslab_load(metaslab_t *msp) 2460 { 2461 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2462 2463 /* 2464 * There may be another thread loading the same metaslab, if that's 2465 * the case just wait until the other thread is done and return. 2466 */ 2467 metaslab_load_wait(msp); 2468 if (msp->ms_loaded) 2469 return (0); 2470 VERIFY(!msp->ms_loading); 2471 ASSERT(!msp->ms_condensing); 2472 2473 /* 2474 * We set the loading flag BEFORE potentially dropping the lock to 2475 * wait for an ongoing flush (see ms_flushing below). This way other 2476 * threads know that there is already a thread that is loading this 2477 * metaslab. 2478 */ 2479 msp->ms_loading = B_TRUE; 2480 2481 /* 2482 * Wait for any in-progress flushing to finish as we drop the ms_lock 2483 * both here (during space_map_load()) and in metaslab_flush() (when 2484 * we flush our changes to the ms_sm). 2485 */ 2486 if (msp->ms_flushing) 2487 metaslab_flush_wait(msp); 2488 2489 /* 2490 * In the possibility that we were waiting for the metaslab to be 2491 * flushed (where we temporarily dropped the ms_lock), ensure that 2492 * no one else loaded the metaslab somehow. 2493 */ 2494 ASSERT(!msp->ms_loaded); 2495 2496 /* 2497 * If we're loading a metaslab in the normal class, consider evicting 2498 * another one to keep our memory usage under the limit defined by the 2499 * zfs_metaslab_mem_limit tunable. 2500 */ 2501 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2502 msp->ms_group->mg_class) { 2503 metaslab_potentially_evict(msp->ms_group->mg_class); 2504 } 2505 2506 int error = metaslab_load_impl(msp); 2507 2508 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2509 msp->ms_loading = B_FALSE; 2510 cv_broadcast(&msp->ms_load_cv); 2511 2512 return (error); 2513 } 2514 2515 void 2516 metaslab_unload(metaslab_t *msp) 2517 { 2518 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2519 2520 /* 2521 * This can happen if a metaslab is selected for eviction (in 2522 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2523 * metaslab_class_evict_old). 2524 */ 2525 if (!msp->ms_loaded) 2526 return; 2527 2528 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2529 msp->ms_loaded = B_FALSE; 2530 msp->ms_unload_time = gethrtime(); 2531 2532 msp->ms_activation_weight = 0; 2533 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2534 2535 if (msp->ms_group != NULL) { 2536 metaslab_class_t *mc = msp->ms_group->mg_class; 2537 multilist_sublist_t *mls = 2538 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2539 if (multilist_link_active(&msp->ms_class_txg_node)) 2540 multilist_sublist_remove(mls, msp); 2541 multilist_sublist_unlock(mls); 2542 2543 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2544 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2545 "ms_id %llu, weight %llx, " 2546 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2547 "loaded %llu ms ago, max_size %llu", 2548 spa_syncing_txg(spa), spa_name(spa), 2549 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2550 msp->ms_weight, 2551 msp->ms_selected_txg, 2552 (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000, 2553 msp->ms_alloc_txg, 2554 (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000, 2555 msp->ms_max_size); 2556 } 2557 2558 /* 2559 * We explicitly recalculate the metaslab's weight based on its space 2560 * map (as it is now not loaded). We want unload metaslabs to always 2561 * have their weights calculated from the space map histograms, while 2562 * loaded ones have it calculated from their in-core range tree 2563 * [see metaslab_load()]. This way, the weight reflects the information 2564 * available in-core, whether it is loaded or not. 2565 * 2566 * If ms_group == NULL means that we came here from metaslab_fini(), 2567 * at which point it doesn't make sense for us to do the recalculation 2568 * and the sorting. 2569 */ 2570 if (msp->ms_group != NULL) 2571 metaslab_recalculate_weight_and_sort(msp); 2572 } 2573 2574 /* 2575 * We want to optimize the memory use of the per-metaslab range 2576 * trees. To do this, we store the segments in the range trees in 2577 * units of sectors, zero-indexing from the start of the metaslab. If 2578 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2579 * the ranges using two uint32_ts, rather than two uint64_ts. 2580 */ 2581 range_seg_type_t 2582 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2583 uint64_t *start, uint64_t *shift) 2584 { 2585 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2586 !zfs_metaslab_force_large_segs) { 2587 *shift = vdev->vdev_ashift; 2588 *start = msp->ms_start; 2589 return (RANGE_SEG32); 2590 } else { 2591 *shift = 0; 2592 *start = 0; 2593 return (RANGE_SEG64); 2594 } 2595 } 2596 2597 void 2598 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2599 { 2600 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2601 metaslab_class_t *mc = msp->ms_group->mg_class; 2602 multilist_sublist_t *mls = 2603 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2604 if (multilist_link_active(&msp->ms_class_txg_node)) 2605 multilist_sublist_remove(mls, msp); 2606 msp->ms_selected_txg = txg; 2607 msp->ms_selected_time = gethrtime(); 2608 multilist_sublist_insert_tail(mls, msp); 2609 multilist_sublist_unlock(mls); 2610 } 2611 2612 void 2613 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2614 int64_t defer_delta, int64_t space_delta) 2615 { 2616 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2617 2618 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2619 ASSERT(vd->vdev_ms_count != 0); 2620 2621 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2622 vdev_deflated_space(vd, space_delta)); 2623 } 2624 2625 int 2626 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2627 uint64_t txg, metaslab_t **msp) 2628 { 2629 vdev_t *vd = mg->mg_vd; 2630 spa_t *spa = vd->vdev_spa; 2631 objset_t *mos = spa->spa_meta_objset; 2632 metaslab_t *ms; 2633 int error; 2634 2635 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2636 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2637 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2638 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2639 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2640 multilist_link_init(&ms->ms_class_txg_node); 2641 2642 ms->ms_id = id; 2643 ms->ms_start = id << vd->vdev_ms_shift; 2644 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2645 ms->ms_allocator = -1; 2646 ms->ms_new = B_TRUE; 2647 2648 vdev_ops_t *ops = vd->vdev_ops; 2649 if (ops->vdev_op_metaslab_init != NULL) 2650 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2651 2652 /* 2653 * We only open space map objects that already exist. All others 2654 * will be opened when we finally allocate an object for it. 2655 * 2656 * Note: 2657 * When called from vdev_expand(), we can't call into the DMU as 2658 * we are holding the spa_config_lock as a writer and we would 2659 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2660 * that case, the object parameter is zero though, so we won't 2661 * call into the DMU. 2662 */ 2663 if (object != 0) { 2664 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2665 ms->ms_size, vd->vdev_ashift); 2666 2667 if (error != 0) { 2668 kmem_free(ms, sizeof (metaslab_t)); 2669 return (error); 2670 } 2671 2672 ASSERT(ms->ms_sm != NULL); 2673 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2674 } 2675 2676 uint64_t shift, start; 2677 range_seg_type_t type = 2678 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2679 2680 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2681 for (int t = 0; t < TXG_SIZE; t++) { 2682 ms->ms_allocating[t] = range_tree_create(NULL, type, 2683 NULL, start, shift); 2684 } 2685 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2686 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2687 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2688 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2689 start, shift); 2690 } 2691 ms->ms_checkpointing = 2692 range_tree_create(NULL, type, NULL, start, shift); 2693 ms->ms_unflushed_allocs = 2694 range_tree_create(NULL, type, NULL, start, shift); 2695 2696 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2697 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2698 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2699 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2700 type, mrap, start, shift); 2701 2702 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2703 2704 metaslab_group_add(mg, ms); 2705 metaslab_set_fragmentation(ms, B_FALSE); 2706 2707 /* 2708 * If we're opening an existing pool (txg == 0) or creating 2709 * a new one (txg == TXG_INITIAL), all space is available now. 2710 * If we're adding space to an existing pool, the new space 2711 * does not become available until after this txg has synced. 2712 * The metaslab's weight will also be initialized when we sync 2713 * out this txg. This ensures that we don't attempt to allocate 2714 * from it before we have initialized it completely. 2715 */ 2716 if (txg <= TXG_INITIAL) { 2717 metaslab_sync_done(ms, 0); 2718 metaslab_space_update(vd, mg->mg_class, 2719 metaslab_allocated_space(ms), 0, 0); 2720 } 2721 2722 if (txg != 0) { 2723 vdev_dirty(vd, 0, NULL, txg); 2724 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2725 } 2726 2727 *msp = ms; 2728 2729 return (0); 2730 } 2731 2732 static void 2733 metaslab_fini_flush_data(metaslab_t *msp) 2734 { 2735 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2736 2737 if (metaslab_unflushed_txg(msp) == 0) { 2738 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2739 ==, NULL); 2740 return; 2741 } 2742 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2743 2744 mutex_enter(&spa->spa_flushed_ms_lock); 2745 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2746 mutex_exit(&spa->spa_flushed_ms_lock); 2747 2748 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2749 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2750 } 2751 2752 uint64_t 2753 metaslab_unflushed_changes_memused(metaslab_t *ms) 2754 { 2755 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2756 range_tree_numsegs(ms->ms_unflushed_frees)) * 2757 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2758 } 2759 2760 void 2761 metaslab_fini(metaslab_t *msp) 2762 { 2763 metaslab_group_t *mg = msp->ms_group; 2764 vdev_t *vd = mg->mg_vd; 2765 spa_t *spa = vd->vdev_spa; 2766 2767 metaslab_fini_flush_data(msp); 2768 2769 metaslab_group_remove(mg, msp); 2770 2771 mutex_enter(&msp->ms_lock); 2772 VERIFY(msp->ms_group == NULL); 2773 2774 /* 2775 * If this metaslab hasn't been through metaslab_sync_done() yet its 2776 * space hasn't been accounted for in its vdev and doesn't need to be 2777 * subtracted. 2778 */ 2779 if (!msp->ms_new) { 2780 metaslab_space_update(vd, mg->mg_class, 2781 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2782 2783 } 2784 space_map_close(msp->ms_sm); 2785 msp->ms_sm = NULL; 2786 2787 metaslab_unload(msp); 2788 2789 range_tree_destroy(msp->ms_allocatable); 2790 range_tree_destroy(msp->ms_freeing); 2791 range_tree_destroy(msp->ms_freed); 2792 2793 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2794 metaslab_unflushed_changes_memused(msp)); 2795 spa->spa_unflushed_stats.sus_memused -= 2796 metaslab_unflushed_changes_memused(msp); 2797 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2798 range_tree_destroy(msp->ms_unflushed_allocs); 2799 range_tree_destroy(msp->ms_checkpointing); 2800 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2801 range_tree_destroy(msp->ms_unflushed_frees); 2802 2803 for (int t = 0; t < TXG_SIZE; t++) { 2804 range_tree_destroy(msp->ms_allocating[t]); 2805 } 2806 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2807 range_tree_destroy(msp->ms_defer[t]); 2808 } 2809 ASSERT0(msp->ms_deferspace); 2810 2811 for (int t = 0; t < TXG_SIZE; t++) 2812 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2813 2814 range_tree_vacate(msp->ms_trim, NULL, NULL); 2815 range_tree_destroy(msp->ms_trim); 2816 2817 mutex_exit(&msp->ms_lock); 2818 cv_destroy(&msp->ms_load_cv); 2819 cv_destroy(&msp->ms_flush_cv); 2820 mutex_destroy(&msp->ms_lock); 2821 mutex_destroy(&msp->ms_sync_lock); 2822 ASSERT3U(msp->ms_allocator, ==, -1); 2823 2824 kmem_free(msp, sizeof (metaslab_t)); 2825 } 2826 2827 #define FRAGMENTATION_TABLE_SIZE 17 2828 2829 /* 2830 * This table defines a segment size based fragmentation metric that will 2831 * allow each metaslab to derive its own fragmentation value. This is done 2832 * by calculating the space in each bucket of the spacemap histogram and 2833 * multiplying that by the fragmentation metric in this table. Doing 2834 * this for all buckets and dividing it by the total amount of free 2835 * space in this metaslab (i.e. the total free space in all buckets) gives 2836 * us the fragmentation metric. This means that a high fragmentation metric 2837 * equates to most of the free space being comprised of small segments. 2838 * Conversely, if the metric is low, then most of the free space is in 2839 * large segments. A 10% change in fragmentation equates to approximately 2840 * double the number of segments. 2841 * 2842 * This table defines 0% fragmented space using 16MB segments. Testing has 2843 * shown that segments that are greater than or equal to 16MB do not suffer 2844 * from drastic performance problems. Using this value, we derive the rest 2845 * of the table. Since the fragmentation value is never stored on disk, it 2846 * is possible to change these calculations in the future. 2847 */ 2848 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2849 100, /* 512B */ 2850 100, /* 1K */ 2851 98, /* 2K */ 2852 95, /* 4K */ 2853 90, /* 8K */ 2854 80, /* 16K */ 2855 70, /* 32K */ 2856 60, /* 64K */ 2857 50, /* 128K */ 2858 40, /* 256K */ 2859 30, /* 512K */ 2860 20, /* 1M */ 2861 15, /* 2M */ 2862 10, /* 4M */ 2863 5, /* 8M */ 2864 0 /* 16M */ 2865 }; 2866 2867 /* 2868 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2869 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2870 * been upgraded and does not support this metric. Otherwise, the return 2871 * value should be in the range [0, 100]. 2872 */ 2873 static void 2874 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2875 { 2876 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2877 uint64_t fragmentation = 0; 2878 uint64_t total = 0; 2879 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2880 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2881 2882 if (!feature_enabled) { 2883 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2884 return; 2885 } 2886 2887 /* 2888 * A null space map means that the entire metaslab is free 2889 * and thus is not fragmented. 2890 */ 2891 if (msp->ms_sm == NULL) { 2892 msp->ms_fragmentation = 0; 2893 return; 2894 } 2895 2896 /* 2897 * If this metaslab's space map has not been upgraded, flag it 2898 * so that we upgrade next time we encounter it. 2899 */ 2900 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2901 uint64_t txg = spa_syncing_txg(spa); 2902 vdev_t *vd = msp->ms_group->mg_vd; 2903 2904 /* 2905 * If we've reached the final dirty txg, then we must 2906 * be shutting down the pool. We don't want to dirty 2907 * any data past this point so skip setting the condense 2908 * flag. We can retry this action the next time the pool 2909 * is imported. We also skip marking this metaslab for 2910 * condensing if the caller has explicitly set nodirty. 2911 */ 2912 if (!nodirty && 2913 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2914 msp->ms_condense_wanted = B_TRUE; 2915 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2916 zfs_dbgmsg("txg %llu, requesting force condense: " 2917 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 2918 vd->vdev_id); 2919 } 2920 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2921 return; 2922 } 2923 2924 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2925 uint64_t space = 0; 2926 uint8_t shift = msp->ms_sm->sm_shift; 2927 2928 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2929 FRAGMENTATION_TABLE_SIZE - 1); 2930 2931 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2932 continue; 2933 2934 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2935 total += space; 2936 2937 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2938 fragmentation += space * zfs_frag_table[idx]; 2939 } 2940 2941 if (total > 0) 2942 fragmentation /= total; 2943 ASSERT3U(fragmentation, <=, 100); 2944 2945 msp->ms_fragmentation = fragmentation; 2946 } 2947 2948 /* 2949 * Compute a weight -- a selection preference value -- for the given metaslab. 2950 * This is based on the amount of free space, the level of fragmentation, 2951 * the LBA range, and whether the metaslab is loaded. 2952 */ 2953 static uint64_t 2954 metaslab_space_weight(metaslab_t *msp) 2955 { 2956 metaslab_group_t *mg = msp->ms_group; 2957 vdev_t *vd = mg->mg_vd; 2958 uint64_t weight, space; 2959 2960 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2961 2962 /* 2963 * The baseline weight is the metaslab's free space. 2964 */ 2965 space = msp->ms_size - metaslab_allocated_space(msp); 2966 2967 if (metaslab_fragmentation_factor_enabled && 2968 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2969 /* 2970 * Use the fragmentation information to inversely scale 2971 * down the baseline weight. We need to ensure that we 2972 * don't exclude this metaslab completely when it's 100% 2973 * fragmented. To avoid this we reduce the fragmented value 2974 * by 1. 2975 */ 2976 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2977 2978 /* 2979 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2980 * this metaslab again. The fragmentation metric may have 2981 * decreased the space to something smaller than 2982 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2983 * so that we can consume any remaining space. 2984 */ 2985 if (space > 0 && space < SPA_MINBLOCKSIZE) 2986 space = SPA_MINBLOCKSIZE; 2987 } 2988 weight = space; 2989 2990 /* 2991 * Modern disks have uniform bit density and constant angular velocity. 2992 * Therefore, the outer recording zones are faster (higher bandwidth) 2993 * than the inner zones by the ratio of outer to inner track diameter, 2994 * which is typically around 2:1. We account for this by assigning 2995 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 2996 * In effect, this means that we'll select the metaslab with the most 2997 * free bandwidth rather than simply the one with the most free space. 2998 */ 2999 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3000 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3001 ASSERT(weight >= space && weight <= 2 * space); 3002 } 3003 3004 /* 3005 * If this metaslab is one we're actively using, adjust its 3006 * weight to make it preferable to any inactive metaslab so 3007 * we'll polish it off. If the fragmentation on this metaslab 3008 * has exceed our threshold, then don't mark it active. 3009 */ 3010 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3011 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3012 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3013 } 3014 3015 WEIGHT_SET_SPACEBASED(weight); 3016 return (weight); 3017 } 3018 3019 /* 3020 * Return the weight of the specified metaslab, according to the segment-based 3021 * weighting algorithm. The metaslab must be loaded. This function can 3022 * be called within a sync pass since it relies only on the metaslab's 3023 * range tree which is always accurate when the metaslab is loaded. 3024 */ 3025 static uint64_t 3026 metaslab_weight_from_range_tree(metaslab_t *msp) 3027 { 3028 uint64_t weight = 0; 3029 uint32_t segments = 0; 3030 3031 ASSERT(msp->ms_loaded); 3032 3033 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3034 i--) { 3035 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3036 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3037 3038 segments <<= 1; 3039 segments += msp->ms_allocatable->rt_histogram[i]; 3040 3041 /* 3042 * The range tree provides more precision than the space map 3043 * and must be downgraded so that all values fit within the 3044 * space map's histogram. This allows us to compare loaded 3045 * vs. unloaded metaslabs to determine which metaslab is 3046 * considered "best". 3047 */ 3048 if (i > max_idx) 3049 continue; 3050 3051 if (segments != 0) { 3052 WEIGHT_SET_COUNT(weight, segments); 3053 WEIGHT_SET_INDEX(weight, i); 3054 WEIGHT_SET_ACTIVE(weight, 0); 3055 break; 3056 } 3057 } 3058 return (weight); 3059 } 3060 3061 /* 3062 * Calculate the weight based on the on-disk histogram. Should be applied 3063 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3064 * give results consistent with the on-disk state 3065 */ 3066 static uint64_t 3067 metaslab_weight_from_spacemap(metaslab_t *msp) 3068 { 3069 space_map_t *sm = msp->ms_sm; 3070 ASSERT(!msp->ms_loaded); 3071 ASSERT(sm != NULL); 3072 ASSERT3U(space_map_object(sm), !=, 0); 3073 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3074 3075 /* 3076 * Create a joint histogram from all the segments that have made 3077 * it to the metaslab's space map histogram, that are not yet 3078 * available for allocation because they are still in the freeing 3079 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3080 * these segments from the space map's histogram to get a more 3081 * accurate weight. 3082 */ 3083 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3084 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3085 deferspace_histogram[i] += msp->ms_synchist[i]; 3086 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3087 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3088 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3089 } 3090 } 3091 3092 uint64_t weight = 0; 3093 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3094 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3095 deferspace_histogram[i]); 3096 uint64_t count = 3097 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3098 if (count != 0) { 3099 WEIGHT_SET_COUNT(weight, count); 3100 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3101 WEIGHT_SET_ACTIVE(weight, 0); 3102 break; 3103 } 3104 } 3105 return (weight); 3106 } 3107 3108 /* 3109 * Compute a segment-based weight for the specified metaslab. The weight 3110 * is determined by highest bucket in the histogram. The information 3111 * for the highest bucket is encoded into the weight value. 3112 */ 3113 static uint64_t 3114 metaslab_segment_weight(metaslab_t *msp) 3115 { 3116 metaslab_group_t *mg = msp->ms_group; 3117 uint64_t weight = 0; 3118 uint8_t shift = mg->mg_vd->vdev_ashift; 3119 3120 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3121 3122 /* 3123 * The metaslab is completely free. 3124 */ 3125 if (metaslab_allocated_space(msp) == 0) { 3126 int idx = highbit64(msp->ms_size) - 1; 3127 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3128 3129 if (idx < max_idx) { 3130 WEIGHT_SET_COUNT(weight, 1ULL); 3131 WEIGHT_SET_INDEX(weight, idx); 3132 } else { 3133 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3134 WEIGHT_SET_INDEX(weight, max_idx); 3135 } 3136 WEIGHT_SET_ACTIVE(weight, 0); 3137 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3138 return (weight); 3139 } 3140 3141 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3142 3143 /* 3144 * If the metaslab is fully allocated then just make the weight 0. 3145 */ 3146 if (metaslab_allocated_space(msp) == msp->ms_size) 3147 return (0); 3148 /* 3149 * If the metaslab is already loaded, then use the range tree to 3150 * determine the weight. Otherwise, we rely on the space map information 3151 * to generate the weight. 3152 */ 3153 if (msp->ms_loaded) { 3154 weight = metaslab_weight_from_range_tree(msp); 3155 } else { 3156 weight = metaslab_weight_from_spacemap(msp); 3157 } 3158 3159 /* 3160 * If the metaslab was active the last time we calculated its weight 3161 * then keep it active. We want to consume the entire region that 3162 * is associated with this weight. 3163 */ 3164 if (msp->ms_activation_weight != 0 && weight != 0) 3165 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3166 return (weight); 3167 } 3168 3169 /* 3170 * Determine if we should attempt to allocate from this metaslab. If the 3171 * metaslab is loaded, then we can determine if the desired allocation 3172 * can be satisfied by looking at the size of the maximum free segment 3173 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3174 * weight. For segment-based weighting we can determine the maximum 3175 * allocation based on the index encoded in its value. For space-based 3176 * weights we rely on the entire weight (excluding the weight-type bit). 3177 */ 3178 static boolean_t 3179 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3180 { 3181 /* 3182 * If the metaslab is loaded, ms_max_size is definitive and we can use 3183 * the fast check. If it's not, the ms_max_size is a lower bound (once 3184 * set), and we should use the fast check as long as we're not in 3185 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3186 * seconds since the metaslab was unloaded. 3187 */ 3188 if (msp->ms_loaded || 3189 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3190 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3191 return (msp->ms_max_size >= asize); 3192 3193 boolean_t should_allocate; 3194 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3195 /* 3196 * The metaslab segment weight indicates segments in the 3197 * range [2^i, 2^(i+1)), where i is the index in the weight. 3198 * Since the asize might be in the middle of the range, we 3199 * should attempt the allocation if asize < 2^(i+1). 3200 */ 3201 should_allocate = (asize < 3202 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3203 } else { 3204 should_allocate = (asize <= 3205 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3206 } 3207 3208 return (should_allocate); 3209 } 3210 3211 static uint64_t 3212 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3213 { 3214 vdev_t *vd = msp->ms_group->mg_vd; 3215 spa_t *spa = vd->vdev_spa; 3216 uint64_t weight; 3217 3218 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3219 3220 metaslab_set_fragmentation(msp, nodirty); 3221 3222 /* 3223 * Update the maximum size. If the metaslab is loaded, this will 3224 * ensure that we get an accurate maximum size if newly freed space 3225 * has been added back into the free tree. If the metaslab is 3226 * unloaded, we check if there's a larger free segment in the 3227 * unflushed frees. This is a lower bound on the largest allocatable 3228 * segment size. Coalescing of adjacent entries may reveal larger 3229 * allocatable segments, but we aren't aware of those until loading 3230 * the space map into a range tree. 3231 */ 3232 if (msp->ms_loaded) { 3233 msp->ms_max_size = metaslab_largest_allocatable(msp); 3234 } else { 3235 msp->ms_max_size = MAX(msp->ms_max_size, 3236 metaslab_largest_unflushed_free(msp)); 3237 } 3238 3239 /* 3240 * Segment-based weighting requires space map histogram support. 3241 */ 3242 if (zfs_metaslab_segment_weight_enabled && 3243 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3244 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3245 sizeof (space_map_phys_t))) { 3246 weight = metaslab_segment_weight(msp); 3247 } else { 3248 weight = metaslab_space_weight(msp); 3249 } 3250 return (weight); 3251 } 3252 3253 void 3254 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3255 { 3256 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3257 3258 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3259 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3260 metaslab_group_sort(msp->ms_group, msp, 3261 metaslab_weight(msp, B_FALSE) | was_active); 3262 } 3263 3264 static int 3265 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3266 int allocator, uint64_t activation_weight) 3267 { 3268 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3269 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3270 3271 /* 3272 * If we're activating for the claim code, we don't want to actually 3273 * set the metaslab up for a specific allocator. 3274 */ 3275 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3276 ASSERT0(msp->ms_activation_weight); 3277 msp->ms_activation_weight = msp->ms_weight; 3278 metaslab_group_sort(mg, msp, msp->ms_weight | 3279 activation_weight); 3280 return (0); 3281 } 3282 3283 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3284 &mga->mga_primary : &mga->mga_secondary); 3285 3286 mutex_enter(&mg->mg_lock); 3287 if (*mspp != NULL) { 3288 mutex_exit(&mg->mg_lock); 3289 return (EEXIST); 3290 } 3291 3292 *mspp = msp; 3293 ASSERT3S(msp->ms_allocator, ==, -1); 3294 msp->ms_allocator = allocator; 3295 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3296 3297 ASSERT0(msp->ms_activation_weight); 3298 msp->ms_activation_weight = msp->ms_weight; 3299 metaslab_group_sort_impl(mg, msp, 3300 msp->ms_weight | activation_weight); 3301 mutex_exit(&mg->mg_lock); 3302 3303 return (0); 3304 } 3305 3306 static int 3307 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3308 { 3309 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3310 3311 /* 3312 * The current metaslab is already activated for us so there 3313 * is nothing to do. Already activated though, doesn't mean 3314 * that this metaslab is activated for our allocator nor our 3315 * requested activation weight. The metaslab could have started 3316 * as an active one for our allocator but changed allocators 3317 * while we were waiting to grab its ms_lock or we stole it 3318 * [see find_valid_metaslab()]. This means that there is a 3319 * possibility of passivating a metaslab of another allocator 3320 * or from a different activation mask, from this thread. 3321 */ 3322 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3323 ASSERT(msp->ms_loaded); 3324 return (0); 3325 } 3326 3327 int error = metaslab_load(msp); 3328 if (error != 0) { 3329 metaslab_group_sort(msp->ms_group, msp, 0); 3330 return (error); 3331 } 3332 3333 /* 3334 * When entering metaslab_load() we may have dropped the 3335 * ms_lock because we were loading this metaslab, or we 3336 * were waiting for another thread to load it for us. In 3337 * that scenario, we recheck the weight of the metaslab 3338 * to see if it was activated by another thread. 3339 * 3340 * If the metaslab was activated for another allocator or 3341 * it was activated with a different activation weight (e.g. 3342 * we wanted to make it a primary but it was activated as 3343 * secondary) we return error (EBUSY). 3344 * 3345 * If the metaslab was activated for the same allocator 3346 * and requested activation mask, skip activating it. 3347 */ 3348 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3349 if (msp->ms_allocator != allocator) 3350 return (EBUSY); 3351 3352 if ((msp->ms_weight & activation_weight) == 0) 3353 return (SET_ERROR(EBUSY)); 3354 3355 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3356 msp->ms_primary); 3357 return (0); 3358 } 3359 3360 /* 3361 * If the metaslab has literally 0 space, it will have weight 0. In 3362 * that case, don't bother activating it. This can happen if the 3363 * metaslab had space during find_valid_metaslab, but another thread 3364 * loaded it and used all that space while we were waiting to grab the 3365 * lock. 3366 */ 3367 if (msp->ms_weight == 0) { 3368 ASSERT0(range_tree_space(msp->ms_allocatable)); 3369 return (SET_ERROR(ENOSPC)); 3370 } 3371 3372 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3373 allocator, activation_weight)) != 0) { 3374 return (error); 3375 } 3376 3377 ASSERT(msp->ms_loaded); 3378 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3379 3380 return (0); 3381 } 3382 3383 static void 3384 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3385 uint64_t weight) 3386 { 3387 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3388 ASSERT(msp->ms_loaded); 3389 3390 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3391 metaslab_group_sort(mg, msp, weight); 3392 return; 3393 } 3394 3395 mutex_enter(&mg->mg_lock); 3396 ASSERT3P(msp->ms_group, ==, mg); 3397 ASSERT3S(0, <=, msp->ms_allocator); 3398 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3399 3400 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3401 if (msp->ms_primary) { 3402 ASSERT3P(mga->mga_primary, ==, msp); 3403 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3404 mga->mga_primary = NULL; 3405 } else { 3406 ASSERT3P(mga->mga_secondary, ==, msp); 3407 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3408 mga->mga_secondary = NULL; 3409 } 3410 msp->ms_allocator = -1; 3411 metaslab_group_sort_impl(mg, msp, weight); 3412 mutex_exit(&mg->mg_lock); 3413 } 3414 3415 static void 3416 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3417 { 3418 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3419 3420 /* 3421 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3422 * this metaslab again. In that case, it had better be empty, 3423 * or we would be leaving space on the table. 3424 */ 3425 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3426 size >= SPA_MINBLOCKSIZE || 3427 range_tree_space(msp->ms_allocatable) == 0); 3428 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3429 3430 ASSERT(msp->ms_activation_weight != 0); 3431 msp->ms_activation_weight = 0; 3432 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3433 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3434 } 3435 3436 /* 3437 * Segment-based metaslabs are activated once and remain active until 3438 * we either fail an allocation attempt (similar to space-based metaslabs) 3439 * or have exhausted the free space in zfs_metaslab_switch_threshold 3440 * buckets since the metaslab was activated. This function checks to see 3441 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3442 * metaslab and passivates it proactively. This will allow us to select a 3443 * metaslab with a larger contiguous region, if any, remaining within this 3444 * metaslab group. If we're in sync pass > 1, then we continue using this 3445 * metaslab so that we don't dirty more block and cause more sync passes. 3446 */ 3447 static void 3448 metaslab_segment_may_passivate(metaslab_t *msp) 3449 { 3450 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3451 3452 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3453 return; 3454 3455 /* 3456 * Since we are in the middle of a sync pass, the most accurate 3457 * information that is accessible to us is the in-core range tree 3458 * histogram; calculate the new weight based on that information. 3459 */ 3460 uint64_t weight = metaslab_weight_from_range_tree(msp); 3461 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3462 int current_idx = WEIGHT_GET_INDEX(weight); 3463 3464 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3465 metaslab_passivate(msp, weight); 3466 } 3467 3468 static void 3469 metaslab_preload(void *arg) 3470 { 3471 metaslab_t *msp = arg; 3472 metaslab_class_t *mc = msp->ms_group->mg_class; 3473 spa_t *spa = mc->mc_spa; 3474 fstrans_cookie_t cookie = spl_fstrans_mark(); 3475 3476 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3477 3478 mutex_enter(&msp->ms_lock); 3479 (void) metaslab_load(msp); 3480 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3481 mutex_exit(&msp->ms_lock); 3482 spl_fstrans_unmark(cookie); 3483 } 3484 3485 static void 3486 metaslab_group_preload(metaslab_group_t *mg) 3487 { 3488 spa_t *spa = mg->mg_vd->vdev_spa; 3489 metaslab_t *msp; 3490 avl_tree_t *t = &mg->mg_metaslab_tree; 3491 int m = 0; 3492 3493 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3494 taskq_wait_outstanding(mg->mg_taskq, 0); 3495 return; 3496 } 3497 3498 mutex_enter(&mg->mg_lock); 3499 3500 /* 3501 * Load the next potential metaslabs 3502 */ 3503 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3504 ASSERT3P(msp->ms_group, ==, mg); 3505 3506 /* 3507 * We preload only the maximum number of metaslabs specified 3508 * by metaslab_preload_limit. If a metaslab is being forced 3509 * to condense then we preload it too. This will ensure 3510 * that force condensing happens in the next txg. 3511 */ 3512 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3513 continue; 3514 } 3515 3516 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3517 msp, TQ_SLEEP) != TASKQID_INVALID); 3518 } 3519 mutex_exit(&mg->mg_lock); 3520 } 3521 3522 /* 3523 * Determine if the space map's on-disk footprint is past our tolerance for 3524 * inefficiency. We would like to use the following criteria to make our 3525 * decision: 3526 * 3527 * 1. Do not condense if the size of the space map object would dramatically 3528 * increase as a result of writing out the free space range tree. 3529 * 3530 * 2. Condense if the on on-disk space map representation is at least 3531 * zfs_condense_pct/100 times the size of the optimal representation 3532 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3533 * 3534 * 3. Do not condense if the on-disk size of the space map does not actually 3535 * decrease. 3536 * 3537 * Unfortunately, we cannot compute the on-disk size of the space map in this 3538 * context because we cannot accurately compute the effects of compression, etc. 3539 * Instead, we apply the heuristic described in the block comment for 3540 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3541 * is greater than a threshold number of blocks. 3542 */ 3543 static boolean_t 3544 metaslab_should_condense(metaslab_t *msp) 3545 { 3546 space_map_t *sm = msp->ms_sm; 3547 vdev_t *vd = msp->ms_group->mg_vd; 3548 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3549 3550 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3551 ASSERT(msp->ms_loaded); 3552 ASSERT(sm != NULL); 3553 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3554 3555 /* 3556 * We always condense metaslabs that are empty and metaslabs for 3557 * which a condense request has been made. 3558 */ 3559 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3560 msp->ms_condense_wanted) 3561 return (B_TRUE); 3562 3563 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3564 uint64_t object_size = space_map_length(sm); 3565 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3566 msp->ms_allocatable, SM_NO_VDEVID); 3567 3568 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3569 object_size > zfs_metaslab_condense_block_threshold * record_size); 3570 } 3571 3572 /* 3573 * Condense the on-disk space map representation to its minimized form. 3574 * The minimized form consists of a small number of allocations followed 3575 * by the entries of the free range tree (ms_allocatable). The condensed 3576 * spacemap contains all the entries of previous TXGs (including those in 3577 * the pool-wide log spacemaps; thus this is effectively a superset of 3578 * metaslab_flush()), but this TXG's entries still need to be written. 3579 */ 3580 static void 3581 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3582 { 3583 range_tree_t *condense_tree; 3584 space_map_t *sm = msp->ms_sm; 3585 uint64_t txg = dmu_tx_get_txg(tx); 3586 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3587 3588 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3589 ASSERT(msp->ms_loaded); 3590 ASSERT(msp->ms_sm != NULL); 3591 3592 /* 3593 * In order to condense the space map, we need to change it so it 3594 * only describes which segments are currently allocated and free. 3595 * 3596 * All the current free space resides in the ms_allocatable, all 3597 * the ms_defer trees, and all the ms_allocating trees. We ignore 3598 * ms_freed because it is empty because we're in sync pass 1. We 3599 * ignore ms_freeing because these changes are not yet reflected 3600 * in the spacemap (they will be written later this txg). 3601 * 3602 * So to truncate the space map to represent all the entries of 3603 * previous TXGs we do the following: 3604 * 3605 * 1] We create a range tree (condense tree) that is 100% empty. 3606 * 2] We add to it all segments found in the ms_defer trees 3607 * as those segments are marked as free in the original space 3608 * map. We do the same with the ms_allocating trees for the same 3609 * reason. Adding these segments should be a relatively 3610 * inexpensive operation since we expect these trees to have a 3611 * small number of nodes. 3612 * 3] We vacate any unflushed allocs, since they are not frees we 3613 * need to add to the condense tree. Then we vacate any 3614 * unflushed frees as they should already be part of ms_allocatable. 3615 * 4] At this point, we would ideally like to add all segments 3616 * in the ms_allocatable tree from the condense tree. This way 3617 * we would write all the entries of the condense tree as the 3618 * condensed space map, which would only contain freed 3619 * segments with everything else assumed to be allocated. 3620 * 3621 * Doing so can be prohibitively expensive as ms_allocatable can 3622 * be large, and therefore computationally expensive to add to 3623 * the condense_tree. Instead we first sync out an entry marking 3624 * everything as allocated, then the condense_tree and then the 3625 * ms_allocatable, in the condensed space map. While this is not 3626 * optimal, it is typically close to optimal and more importantly 3627 * much cheaper to compute. 3628 * 3629 * 5] Finally, as both of the unflushed trees were written to our 3630 * new and condensed metaslab space map, we basically flushed 3631 * all the unflushed changes to disk, thus we call 3632 * metaslab_flush_update(). 3633 */ 3634 ASSERT3U(spa_sync_pass(spa), ==, 1); 3635 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3636 3637 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3638 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 3639 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 3640 spa->spa_name, space_map_length(msp->ms_sm), 3641 range_tree_numsegs(msp->ms_allocatable), 3642 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3643 3644 msp->ms_condense_wanted = B_FALSE; 3645 3646 range_seg_type_t type; 3647 uint64_t shift, start; 3648 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3649 &start, &shift); 3650 3651 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3652 3653 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3654 range_tree_walk(msp->ms_defer[t], 3655 range_tree_add, condense_tree); 3656 } 3657 3658 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3659 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3660 range_tree_add, condense_tree); 3661 } 3662 3663 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3664 metaslab_unflushed_changes_memused(msp)); 3665 spa->spa_unflushed_stats.sus_memused -= 3666 metaslab_unflushed_changes_memused(msp); 3667 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3668 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3669 3670 /* 3671 * We're about to drop the metaslab's lock thus allowing other 3672 * consumers to change it's content. Set the metaslab's ms_condensing 3673 * flag to ensure that allocations on this metaslab do not occur 3674 * while we're in the middle of committing it to disk. This is only 3675 * critical for ms_allocatable as all other range trees use per TXG 3676 * views of their content. 3677 */ 3678 msp->ms_condensing = B_TRUE; 3679 3680 mutex_exit(&msp->ms_lock); 3681 uint64_t object = space_map_object(msp->ms_sm); 3682 space_map_truncate(sm, 3683 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3684 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3685 3686 /* 3687 * space_map_truncate() may have reallocated the spacemap object. 3688 * If so, update the vdev_ms_array. 3689 */ 3690 if (space_map_object(msp->ms_sm) != object) { 3691 object = space_map_object(msp->ms_sm); 3692 dmu_write(spa->spa_meta_objset, 3693 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3694 msp->ms_id, sizeof (uint64_t), &object, tx); 3695 } 3696 3697 /* 3698 * Note: 3699 * When the log space map feature is enabled, each space map will 3700 * always have ALLOCS followed by FREES for each sync pass. This is 3701 * typically true even when the log space map feature is disabled, 3702 * except from the case where a metaslab goes through metaslab_sync() 3703 * and gets condensed. In that case the metaslab's space map will have 3704 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3705 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3706 * sync pass 1. 3707 */ 3708 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3709 shift); 3710 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3711 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3712 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3713 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3714 3715 range_tree_vacate(condense_tree, NULL, NULL); 3716 range_tree_destroy(condense_tree); 3717 range_tree_vacate(tmp_tree, NULL, NULL); 3718 range_tree_destroy(tmp_tree); 3719 mutex_enter(&msp->ms_lock); 3720 3721 msp->ms_condensing = B_FALSE; 3722 metaslab_flush_update(msp, tx); 3723 } 3724 3725 /* 3726 * Called when the metaslab has been flushed (its own spacemap now reflects 3727 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3728 * metadata and any pool-wide related log space map data (e.g. summary, 3729 * obsolete logs, etc..) to reflect that. 3730 */ 3731 static void 3732 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3733 { 3734 metaslab_group_t *mg = msp->ms_group; 3735 spa_t *spa = mg->mg_vd->vdev_spa; 3736 3737 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3738 3739 ASSERT3U(spa_sync_pass(spa), ==, 1); 3740 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3741 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3742 3743 /* 3744 * Just because a metaslab got flushed, that doesn't mean that 3745 * it will pass through metaslab_sync_done(). Thus, make sure to 3746 * update ms_synced_length here in case it doesn't. 3747 */ 3748 msp->ms_synced_length = space_map_length(msp->ms_sm); 3749 3750 /* 3751 * We may end up here from metaslab_condense() without the 3752 * feature being active. In that case this is a no-op. 3753 */ 3754 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3755 return; 3756 3757 ASSERT(spa_syncing_log_sm(spa) != NULL); 3758 ASSERT(msp->ms_sm != NULL); 3759 ASSERT(metaslab_unflushed_txg(msp) != 0); 3760 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3761 3762 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3763 3764 /* update metaslab's position in our flushing tree */ 3765 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3766 mutex_enter(&spa->spa_flushed_ms_lock); 3767 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3768 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3769 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3770 mutex_exit(&spa->spa_flushed_ms_lock); 3771 3772 /* update metaslab counts of spa_log_sm_t nodes */ 3773 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3774 spa_log_sm_increment_current_mscount(spa); 3775 3776 /* cleanup obsolete logs if any */ 3777 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3778 spa_cleanup_old_sm_logs(spa, tx); 3779 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3780 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3781 3782 /* update log space map summary */ 3783 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3784 spa_log_summary_add_flushed_metaslab(spa); 3785 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3786 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3787 } 3788 3789 boolean_t 3790 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3791 { 3792 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3793 3794 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3795 ASSERT3U(spa_sync_pass(spa), ==, 1); 3796 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3797 3798 ASSERT(msp->ms_sm != NULL); 3799 ASSERT(metaslab_unflushed_txg(msp) != 0); 3800 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3801 3802 /* 3803 * There is nothing wrong with flushing the same metaslab twice, as 3804 * this codepath should work on that case. However, the current 3805 * flushing scheme makes sure to avoid this situation as we would be 3806 * making all these calls without having anything meaningful to write 3807 * to disk. We assert this behavior here. 3808 */ 3809 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3810 3811 /* 3812 * We can not flush while loading, because then we would 3813 * not load the ms_unflushed_{allocs,frees}. 3814 */ 3815 if (msp->ms_loading) 3816 return (B_FALSE); 3817 3818 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3819 metaslab_verify_weight_and_frag(msp); 3820 3821 /* 3822 * Metaslab condensing is effectively flushing. Therefore if the 3823 * metaslab can be condensed we can just condense it instead of 3824 * flushing it. 3825 * 3826 * Note that metaslab_condense() does call metaslab_flush_update() 3827 * so we can just return immediately after condensing. We also 3828 * don't need to care about setting ms_flushing or broadcasting 3829 * ms_flush_cv, even if we temporarily drop the ms_lock in 3830 * metaslab_condense(), as the metaslab is already loaded. 3831 */ 3832 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3833 metaslab_group_t *mg = msp->ms_group; 3834 3835 /* 3836 * For all histogram operations below refer to the 3837 * comments of metaslab_sync() where we follow a 3838 * similar procedure. 3839 */ 3840 metaslab_group_histogram_verify(mg); 3841 metaslab_class_histogram_verify(mg->mg_class); 3842 metaslab_group_histogram_remove(mg, msp); 3843 3844 metaslab_condense(msp, tx); 3845 3846 space_map_histogram_clear(msp->ms_sm); 3847 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3848 ASSERT(range_tree_is_empty(msp->ms_freed)); 3849 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3850 space_map_histogram_add(msp->ms_sm, 3851 msp->ms_defer[t], tx); 3852 } 3853 metaslab_aux_histograms_update(msp); 3854 3855 metaslab_group_histogram_add(mg, msp); 3856 metaslab_group_histogram_verify(mg); 3857 metaslab_class_histogram_verify(mg->mg_class); 3858 3859 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3860 3861 /* 3862 * Since we recreated the histogram (and potentially 3863 * the ms_sm too while condensing) ensure that the 3864 * weight is updated too because we are not guaranteed 3865 * that this metaslab is dirty and will go through 3866 * metaslab_sync_done(). 3867 */ 3868 metaslab_recalculate_weight_and_sort(msp); 3869 return (B_TRUE); 3870 } 3871 3872 msp->ms_flushing = B_TRUE; 3873 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3874 3875 mutex_exit(&msp->ms_lock); 3876 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3877 SM_NO_VDEVID, tx); 3878 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3879 SM_NO_VDEVID, tx); 3880 mutex_enter(&msp->ms_lock); 3881 3882 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3883 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3884 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3885 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3886 "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa), 3887 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 3888 range_tree_space(msp->ms_unflushed_allocs), 3889 range_tree_space(msp->ms_unflushed_frees), 3890 (sm_len_after - sm_len_before)); 3891 } 3892 3893 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3894 metaslab_unflushed_changes_memused(msp)); 3895 spa->spa_unflushed_stats.sus_memused -= 3896 metaslab_unflushed_changes_memused(msp); 3897 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3898 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3899 3900 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3901 metaslab_verify_weight_and_frag(msp); 3902 3903 metaslab_flush_update(msp, tx); 3904 3905 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3906 metaslab_verify_weight_and_frag(msp); 3907 3908 msp->ms_flushing = B_FALSE; 3909 cv_broadcast(&msp->ms_flush_cv); 3910 return (B_TRUE); 3911 } 3912 3913 /* 3914 * Write a metaslab to disk in the context of the specified transaction group. 3915 */ 3916 void 3917 metaslab_sync(metaslab_t *msp, uint64_t txg) 3918 { 3919 metaslab_group_t *mg = msp->ms_group; 3920 vdev_t *vd = mg->mg_vd; 3921 spa_t *spa = vd->vdev_spa; 3922 objset_t *mos = spa_meta_objset(spa); 3923 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3924 dmu_tx_t *tx; 3925 3926 ASSERT(!vd->vdev_ishole); 3927 3928 /* 3929 * This metaslab has just been added so there's no work to do now. 3930 */ 3931 if (msp->ms_new) { 3932 ASSERT0(range_tree_space(alloctree)); 3933 ASSERT0(range_tree_space(msp->ms_freeing)); 3934 ASSERT0(range_tree_space(msp->ms_freed)); 3935 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3936 ASSERT0(range_tree_space(msp->ms_trim)); 3937 return; 3938 } 3939 3940 /* 3941 * Normally, we don't want to process a metaslab if there are no 3942 * allocations or frees to perform. However, if the metaslab is being 3943 * forced to condense, it's loaded and we're not beyond the final 3944 * dirty txg, we need to let it through. Not condensing beyond the 3945 * final dirty txg prevents an issue where metaslabs that need to be 3946 * condensed but were loaded for other reasons could cause a panic 3947 * here. By only checking the txg in that branch of the conditional, 3948 * we preserve the utility of the VERIFY statements in all other 3949 * cases. 3950 */ 3951 if (range_tree_is_empty(alloctree) && 3952 range_tree_is_empty(msp->ms_freeing) && 3953 range_tree_is_empty(msp->ms_checkpointing) && 3954 !(msp->ms_loaded && msp->ms_condense_wanted && 3955 txg <= spa_final_dirty_txg(spa))) 3956 return; 3957 3958 3959 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3960 3961 /* 3962 * The only state that can actually be changing concurrently 3963 * with metaslab_sync() is the metaslab's ms_allocatable. No 3964 * other thread can be modifying this txg's alloc, freeing, 3965 * freed, or space_map_phys_t. We drop ms_lock whenever we 3966 * could call into the DMU, because the DMU can call down to 3967 * us (e.g. via zio_free()) at any time. 3968 * 3969 * The spa_vdev_remove_thread() can be reading metaslab state 3970 * concurrently, and it is locked out by the ms_sync_lock. 3971 * Note that the ms_lock is insufficient for this, because it 3972 * is dropped by space_map_write(). 3973 */ 3974 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3975 3976 /* 3977 * Generate a log space map if one doesn't exist already. 3978 */ 3979 spa_generate_syncing_log_sm(spa, tx); 3980 3981 if (msp->ms_sm == NULL) { 3982 uint64_t new_object = space_map_alloc(mos, 3983 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3984 zfs_metaslab_sm_blksz_with_log : 3985 zfs_metaslab_sm_blksz_no_log, tx); 3986 VERIFY3U(new_object, !=, 0); 3987 3988 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3989 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3990 3991 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 3992 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 3993 ASSERT(msp->ms_sm != NULL); 3994 3995 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3996 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3997 ASSERT0(metaslab_allocated_space(msp)); 3998 } 3999 4000 if (metaslab_unflushed_txg(msp) == 0 && 4001 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 4002 ASSERT(spa_syncing_log_sm(spa) != NULL); 4003 4004 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4005 spa_log_sm_increment_current_mscount(spa); 4006 spa_log_summary_add_flushed_metaslab(spa); 4007 4008 ASSERT(msp->ms_sm != NULL); 4009 mutex_enter(&spa->spa_flushed_ms_lock); 4010 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4011 mutex_exit(&spa->spa_flushed_ms_lock); 4012 4013 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4014 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4015 } 4016 4017 if (!range_tree_is_empty(msp->ms_checkpointing) && 4018 vd->vdev_checkpoint_sm == NULL) { 4019 ASSERT(spa_has_checkpoint(spa)); 4020 4021 uint64_t new_object = space_map_alloc(mos, 4022 zfs_vdev_standard_sm_blksz, tx); 4023 VERIFY3U(new_object, !=, 0); 4024 4025 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4026 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4027 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4028 4029 /* 4030 * We save the space map object as an entry in vdev_top_zap 4031 * so it can be retrieved when the pool is reopened after an 4032 * export or through zdb. 4033 */ 4034 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4035 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4036 sizeof (new_object), 1, &new_object, tx)); 4037 } 4038 4039 mutex_enter(&msp->ms_sync_lock); 4040 mutex_enter(&msp->ms_lock); 4041 4042 /* 4043 * Note: metaslab_condense() clears the space map's histogram. 4044 * Therefore we must verify and remove this histogram before 4045 * condensing. 4046 */ 4047 metaslab_group_histogram_verify(mg); 4048 metaslab_class_histogram_verify(mg->mg_class); 4049 metaslab_group_histogram_remove(mg, msp); 4050 4051 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4052 metaslab_should_condense(msp)) 4053 metaslab_condense(msp, tx); 4054 4055 /* 4056 * We'll be going to disk to sync our space accounting, thus we 4057 * drop the ms_lock during that time so allocations coming from 4058 * open-context (ZIL) for future TXGs do not block. 4059 */ 4060 mutex_exit(&msp->ms_lock); 4061 space_map_t *log_sm = spa_syncing_log_sm(spa); 4062 if (log_sm != NULL) { 4063 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4064 4065 space_map_write(log_sm, alloctree, SM_ALLOC, 4066 vd->vdev_id, tx); 4067 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4068 vd->vdev_id, tx); 4069 mutex_enter(&msp->ms_lock); 4070 4071 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4072 metaslab_unflushed_changes_memused(msp)); 4073 spa->spa_unflushed_stats.sus_memused -= 4074 metaslab_unflushed_changes_memused(msp); 4075 range_tree_remove_xor_add(alloctree, 4076 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4077 range_tree_remove_xor_add(msp->ms_freeing, 4078 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4079 spa->spa_unflushed_stats.sus_memused += 4080 metaslab_unflushed_changes_memused(msp); 4081 } else { 4082 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4083 4084 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4085 SM_NO_VDEVID, tx); 4086 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4087 SM_NO_VDEVID, tx); 4088 mutex_enter(&msp->ms_lock); 4089 } 4090 4091 msp->ms_allocated_space += range_tree_space(alloctree); 4092 ASSERT3U(msp->ms_allocated_space, >=, 4093 range_tree_space(msp->ms_freeing)); 4094 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4095 4096 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4097 ASSERT(spa_has_checkpoint(spa)); 4098 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4099 4100 /* 4101 * Since we are doing writes to disk and the ms_checkpointing 4102 * tree won't be changing during that time, we drop the 4103 * ms_lock while writing to the checkpoint space map, for the 4104 * same reason mentioned above. 4105 */ 4106 mutex_exit(&msp->ms_lock); 4107 space_map_write(vd->vdev_checkpoint_sm, 4108 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4109 mutex_enter(&msp->ms_lock); 4110 4111 spa->spa_checkpoint_info.sci_dspace += 4112 range_tree_space(msp->ms_checkpointing); 4113 vd->vdev_stat.vs_checkpoint_space += 4114 range_tree_space(msp->ms_checkpointing); 4115 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4116 -space_map_allocated(vd->vdev_checkpoint_sm)); 4117 4118 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4119 } 4120 4121 if (msp->ms_loaded) { 4122 /* 4123 * When the space map is loaded, we have an accurate 4124 * histogram in the range tree. This gives us an opportunity 4125 * to bring the space map's histogram up-to-date so we clear 4126 * it first before updating it. 4127 */ 4128 space_map_histogram_clear(msp->ms_sm); 4129 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4130 4131 /* 4132 * Since we've cleared the histogram we need to add back 4133 * any free space that has already been processed, plus 4134 * any deferred space. This allows the on-disk histogram 4135 * to accurately reflect all free space even if some space 4136 * is not yet available for allocation (i.e. deferred). 4137 */ 4138 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4139 4140 /* 4141 * Add back any deferred free space that has not been 4142 * added back into the in-core free tree yet. This will 4143 * ensure that we don't end up with a space map histogram 4144 * that is completely empty unless the metaslab is fully 4145 * allocated. 4146 */ 4147 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4148 space_map_histogram_add(msp->ms_sm, 4149 msp->ms_defer[t], tx); 4150 } 4151 } 4152 4153 /* 4154 * Always add the free space from this sync pass to the space 4155 * map histogram. We want to make sure that the on-disk histogram 4156 * accounts for all free space. If the space map is not loaded, 4157 * then we will lose some accuracy but will correct it the next 4158 * time we load the space map. 4159 */ 4160 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4161 metaslab_aux_histograms_update(msp); 4162 4163 metaslab_group_histogram_add(mg, msp); 4164 metaslab_group_histogram_verify(mg); 4165 metaslab_class_histogram_verify(mg->mg_class); 4166 4167 /* 4168 * For sync pass 1, we avoid traversing this txg's free range tree 4169 * and instead will just swap the pointers for freeing and freed. 4170 * We can safely do this since the freed_tree is guaranteed to be 4171 * empty on the initial pass. 4172 * 4173 * Keep in mind that even if we are currently using a log spacemap 4174 * we want current frees to end up in the ms_allocatable (but not 4175 * get appended to the ms_sm) so their ranges can be reused as usual. 4176 */ 4177 if (spa_sync_pass(spa) == 1) { 4178 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4179 ASSERT0(msp->ms_allocated_this_txg); 4180 } else { 4181 range_tree_vacate(msp->ms_freeing, 4182 range_tree_add, msp->ms_freed); 4183 } 4184 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4185 range_tree_vacate(alloctree, NULL, NULL); 4186 4187 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4188 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4189 & TXG_MASK])); 4190 ASSERT0(range_tree_space(msp->ms_freeing)); 4191 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4192 4193 mutex_exit(&msp->ms_lock); 4194 4195 /* 4196 * Verify that the space map object ID has been recorded in the 4197 * vdev_ms_array. 4198 */ 4199 uint64_t object; 4200 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4201 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4202 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4203 4204 mutex_exit(&msp->ms_sync_lock); 4205 dmu_tx_commit(tx); 4206 } 4207 4208 static void 4209 metaslab_evict(metaslab_t *msp, uint64_t txg) 4210 { 4211 if (!msp->ms_loaded || msp->ms_disabled != 0) 4212 return; 4213 4214 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4215 VERIFY0(range_tree_space( 4216 msp->ms_allocating[(txg + t) & TXG_MASK])); 4217 } 4218 if (msp->ms_allocator != -1) 4219 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4220 4221 if (!metaslab_debug_unload) 4222 metaslab_unload(msp); 4223 } 4224 4225 /* 4226 * Called after a transaction group has completely synced to mark 4227 * all of the metaslab's free space as usable. 4228 */ 4229 void 4230 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4231 { 4232 metaslab_group_t *mg = msp->ms_group; 4233 vdev_t *vd = mg->mg_vd; 4234 spa_t *spa = vd->vdev_spa; 4235 range_tree_t **defer_tree; 4236 int64_t alloc_delta, defer_delta; 4237 boolean_t defer_allowed = B_TRUE; 4238 4239 ASSERT(!vd->vdev_ishole); 4240 4241 mutex_enter(&msp->ms_lock); 4242 4243 if (msp->ms_new) { 4244 /* this is a new metaslab, add its capacity to the vdev */ 4245 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4246 4247 /* there should be no allocations nor frees at this point */ 4248 VERIFY0(msp->ms_allocated_this_txg); 4249 VERIFY0(range_tree_space(msp->ms_freed)); 4250 } 4251 4252 ASSERT0(range_tree_space(msp->ms_freeing)); 4253 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4254 4255 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4256 4257 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4258 metaslab_class_get_alloc(spa_normal_class(spa)); 4259 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4260 defer_allowed = B_FALSE; 4261 } 4262 4263 defer_delta = 0; 4264 alloc_delta = msp->ms_allocated_this_txg - 4265 range_tree_space(msp->ms_freed); 4266 4267 if (defer_allowed) { 4268 defer_delta = range_tree_space(msp->ms_freed) - 4269 range_tree_space(*defer_tree); 4270 } else { 4271 defer_delta -= range_tree_space(*defer_tree); 4272 } 4273 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4274 defer_delta, 0); 4275 4276 if (spa_syncing_log_sm(spa) == NULL) { 4277 /* 4278 * If there's a metaslab_load() in progress and we don't have 4279 * a log space map, it means that we probably wrote to the 4280 * metaslab's space map. If this is the case, we need to 4281 * make sure that we wait for the load to complete so that we 4282 * have a consistent view at the in-core side of the metaslab. 4283 */ 4284 metaslab_load_wait(msp); 4285 } else { 4286 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4287 } 4288 4289 /* 4290 * When auto-trimming is enabled, free ranges which are added to 4291 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4292 * periodically consumed by the vdev_autotrim_thread() which issues 4293 * trims for all ranges and then vacates the tree. The ms_trim tree 4294 * can be discarded at any time with the sole consequence of recent 4295 * frees not being trimmed. 4296 */ 4297 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4298 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4299 if (!defer_allowed) { 4300 range_tree_walk(msp->ms_freed, range_tree_add, 4301 msp->ms_trim); 4302 } 4303 } else { 4304 range_tree_vacate(msp->ms_trim, NULL, NULL); 4305 } 4306 4307 /* 4308 * Move the frees from the defer_tree back to the free 4309 * range tree (if it's loaded). Swap the freed_tree and 4310 * the defer_tree -- this is safe to do because we've 4311 * just emptied out the defer_tree. 4312 */ 4313 range_tree_vacate(*defer_tree, 4314 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4315 if (defer_allowed) { 4316 range_tree_swap(&msp->ms_freed, defer_tree); 4317 } else { 4318 range_tree_vacate(msp->ms_freed, 4319 msp->ms_loaded ? range_tree_add : NULL, 4320 msp->ms_allocatable); 4321 } 4322 4323 msp->ms_synced_length = space_map_length(msp->ms_sm); 4324 4325 msp->ms_deferspace += defer_delta; 4326 ASSERT3S(msp->ms_deferspace, >=, 0); 4327 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4328 if (msp->ms_deferspace != 0) { 4329 /* 4330 * Keep syncing this metaslab until all deferred frees 4331 * are back in circulation. 4332 */ 4333 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4334 } 4335 metaslab_aux_histograms_update_done(msp, defer_allowed); 4336 4337 if (msp->ms_new) { 4338 msp->ms_new = B_FALSE; 4339 mutex_enter(&mg->mg_lock); 4340 mg->mg_ms_ready++; 4341 mutex_exit(&mg->mg_lock); 4342 } 4343 4344 /* 4345 * Re-sort metaslab within its group now that we've adjusted 4346 * its allocatable space. 4347 */ 4348 metaslab_recalculate_weight_and_sort(msp); 4349 4350 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4351 ASSERT0(range_tree_space(msp->ms_freeing)); 4352 ASSERT0(range_tree_space(msp->ms_freed)); 4353 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4354 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4355 msp->ms_allocated_this_txg = 0; 4356 mutex_exit(&msp->ms_lock); 4357 } 4358 4359 void 4360 metaslab_sync_reassess(metaslab_group_t *mg) 4361 { 4362 spa_t *spa = mg->mg_class->mc_spa; 4363 4364 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4365 metaslab_group_alloc_update(mg); 4366 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4367 4368 /* 4369 * Preload the next potential metaslabs but only on active 4370 * metaslab groups. We can get into a state where the metaslab 4371 * is no longer active since we dirty metaslabs as we remove a 4372 * a device, thus potentially making the metaslab group eligible 4373 * for preloading. 4374 */ 4375 if (mg->mg_activation_count > 0) { 4376 metaslab_group_preload(mg); 4377 } 4378 spa_config_exit(spa, SCL_ALLOC, FTAG); 4379 } 4380 4381 /* 4382 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4383 * the same vdev as an existing DVA of this BP, then try to allocate it 4384 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4385 */ 4386 static boolean_t 4387 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4388 { 4389 uint64_t dva_ms_id; 4390 4391 if (DVA_GET_ASIZE(dva) == 0) 4392 return (B_TRUE); 4393 4394 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4395 return (B_TRUE); 4396 4397 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4398 4399 return (msp->ms_id != dva_ms_id); 4400 } 4401 4402 /* 4403 * ========================================================================== 4404 * Metaslab allocation tracing facility 4405 * ========================================================================== 4406 */ 4407 4408 /* 4409 * Add an allocation trace element to the allocation tracing list. 4410 */ 4411 static void 4412 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4413 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4414 int allocator) 4415 { 4416 metaslab_alloc_trace_t *mat; 4417 4418 if (!metaslab_trace_enabled) 4419 return; 4420 4421 /* 4422 * When the tracing list reaches its maximum we remove 4423 * the second element in the list before adding a new one. 4424 * By removing the second element we preserve the original 4425 * entry as a clue to what allocations steps have already been 4426 * performed. 4427 */ 4428 if (zal->zal_size == metaslab_trace_max_entries) { 4429 metaslab_alloc_trace_t *mat_next; 4430 #ifdef ZFS_DEBUG 4431 panic("too many entries in allocation list"); 4432 #endif 4433 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4434 zal->zal_size--; 4435 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4436 list_remove(&zal->zal_list, mat_next); 4437 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4438 } 4439 4440 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4441 list_link_init(&mat->mat_list_node); 4442 mat->mat_mg = mg; 4443 mat->mat_msp = msp; 4444 mat->mat_size = psize; 4445 mat->mat_dva_id = dva_id; 4446 mat->mat_offset = offset; 4447 mat->mat_weight = 0; 4448 mat->mat_allocator = allocator; 4449 4450 if (msp != NULL) 4451 mat->mat_weight = msp->ms_weight; 4452 4453 /* 4454 * The list is part of the zio so locking is not required. Only 4455 * a single thread will perform allocations for a given zio. 4456 */ 4457 list_insert_tail(&zal->zal_list, mat); 4458 zal->zal_size++; 4459 4460 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4461 } 4462 4463 void 4464 metaslab_trace_init(zio_alloc_list_t *zal) 4465 { 4466 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4467 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4468 zal->zal_size = 0; 4469 } 4470 4471 void 4472 metaslab_trace_fini(zio_alloc_list_t *zal) 4473 { 4474 metaslab_alloc_trace_t *mat; 4475 4476 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4477 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4478 list_destroy(&zal->zal_list); 4479 zal->zal_size = 0; 4480 } 4481 4482 /* 4483 * ========================================================================== 4484 * Metaslab block operations 4485 * ========================================================================== 4486 */ 4487 4488 static void 4489 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4490 int allocator) 4491 { 4492 if (!(flags & METASLAB_ASYNC_ALLOC) || 4493 (flags & METASLAB_DONT_THROTTLE)) 4494 return; 4495 4496 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4497 if (!mg->mg_class->mc_alloc_throttle_enabled) 4498 return; 4499 4500 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4501 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4502 } 4503 4504 static void 4505 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4506 { 4507 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4508 metaslab_class_allocator_t *mca = 4509 &mg->mg_class->mc_allocator[allocator]; 4510 uint64_t max = mg->mg_max_alloc_queue_depth; 4511 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4512 while (cur < max) { 4513 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4514 cur, cur + 1) == cur) { 4515 atomic_inc_64(&mca->mca_alloc_max_slots); 4516 return; 4517 } 4518 cur = mga->mga_cur_max_alloc_queue_depth; 4519 } 4520 } 4521 4522 void 4523 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4524 int allocator, boolean_t io_complete) 4525 { 4526 if (!(flags & METASLAB_ASYNC_ALLOC) || 4527 (flags & METASLAB_DONT_THROTTLE)) 4528 return; 4529 4530 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4531 if (!mg->mg_class->mc_alloc_throttle_enabled) 4532 return; 4533 4534 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4535 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4536 if (io_complete) 4537 metaslab_group_increment_qdepth(mg, allocator); 4538 } 4539 4540 void 4541 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4542 int allocator) 4543 { 4544 #ifdef ZFS_DEBUG 4545 const dva_t *dva = bp->blk_dva; 4546 int ndvas = BP_GET_NDVAS(bp); 4547 4548 for (int d = 0; d < ndvas; d++) { 4549 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4550 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4551 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4552 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4553 } 4554 #endif 4555 } 4556 4557 static uint64_t 4558 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4559 { 4560 uint64_t start; 4561 range_tree_t *rt = msp->ms_allocatable; 4562 metaslab_class_t *mc = msp->ms_group->mg_class; 4563 4564 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4565 VERIFY(!msp->ms_condensing); 4566 VERIFY0(msp->ms_disabled); 4567 4568 start = mc->mc_ops->msop_alloc(msp, size); 4569 if (start != -1ULL) { 4570 metaslab_group_t *mg = msp->ms_group; 4571 vdev_t *vd = mg->mg_vd; 4572 4573 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4574 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4575 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4576 range_tree_remove(rt, start, size); 4577 range_tree_clear(msp->ms_trim, start, size); 4578 4579 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4580 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4581 4582 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4583 msp->ms_allocating_total += size; 4584 4585 /* Track the last successful allocation */ 4586 msp->ms_alloc_txg = txg; 4587 metaslab_verify_space(msp, txg); 4588 } 4589 4590 /* 4591 * Now that we've attempted the allocation we need to update the 4592 * metaslab's maximum block size since it may have changed. 4593 */ 4594 msp->ms_max_size = metaslab_largest_allocatable(msp); 4595 return (start); 4596 } 4597 4598 /* 4599 * Find the metaslab with the highest weight that is less than what we've 4600 * already tried. In the common case, this means that we will examine each 4601 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4602 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4603 * activated by another thread, and we fail to allocate from the metaslab we 4604 * have selected, we may not try the newly-activated metaslab, and instead 4605 * activate another metaslab. This is not optimal, but generally does not cause 4606 * any problems (a possible exception being if every metaslab is completely full 4607 * except for the newly-activated metaslab which we fail to examine). 4608 */ 4609 static metaslab_t * 4610 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4611 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4612 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4613 boolean_t *was_active) 4614 { 4615 avl_index_t idx; 4616 avl_tree_t *t = &mg->mg_metaslab_tree; 4617 metaslab_t *msp = avl_find(t, search, &idx); 4618 if (msp == NULL) 4619 msp = avl_nearest(t, idx, AVL_AFTER); 4620 4621 int tries = 0; 4622 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4623 int i; 4624 4625 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4626 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4627 return (NULL); 4628 } 4629 tries++; 4630 4631 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4632 metaslab_trace_add(zal, mg, msp, asize, d, 4633 TRACE_TOO_SMALL, allocator); 4634 continue; 4635 } 4636 4637 /* 4638 * If the selected metaslab is condensing or disabled, 4639 * skip it. 4640 */ 4641 if (msp->ms_condensing || msp->ms_disabled > 0) 4642 continue; 4643 4644 *was_active = msp->ms_allocator != -1; 4645 /* 4646 * If we're activating as primary, this is our first allocation 4647 * from this disk, so we don't need to check how close we are. 4648 * If the metaslab under consideration was already active, 4649 * we're getting desperate enough to steal another allocator's 4650 * metaslab, so we still don't care about distances. 4651 */ 4652 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4653 break; 4654 4655 for (i = 0; i < d; i++) { 4656 if (want_unique && 4657 !metaslab_is_unique(msp, &dva[i])) 4658 break; /* try another metaslab */ 4659 } 4660 if (i == d) 4661 break; 4662 } 4663 4664 if (msp != NULL) { 4665 search->ms_weight = msp->ms_weight; 4666 search->ms_start = msp->ms_start + 1; 4667 search->ms_allocator = msp->ms_allocator; 4668 search->ms_primary = msp->ms_primary; 4669 } 4670 return (msp); 4671 } 4672 4673 static void 4674 metaslab_active_mask_verify(metaslab_t *msp) 4675 { 4676 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4677 4678 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4679 return; 4680 4681 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4682 return; 4683 4684 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4685 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4686 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4687 VERIFY3S(msp->ms_allocator, !=, -1); 4688 VERIFY(msp->ms_primary); 4689 return; 4690 } 4691 4692 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4693 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4694 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4695 VERIFY3S(msp->ms_allocator, !=, -1); 4696 VERIFY(!msp->ms_primary); 4697 return; 4698 } 4699 4700 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4701 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4702 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4703 VERIFY3S(msp->ms_allocator, ==, -1); 4704 return; 4705 } 4706 } 4707 4708 /* ARGSUSED */ 4709 static uint64_t 4710 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4711 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4712 int allocator, boolean_t try_hard) 4713 { 4714 metaslab_t *msp = NULL; 4715 uint64_t offset = -1ULL; 4716 4717 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4718 for (int i = 0; i < d; i++) { 4719 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4720 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4721 activation_weight = METASLAB_WEIGHT_SECONDARY; 4722 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4723 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4724 activation_weight = METASLAB_WEIGHT_CLAIM; 4725 break; 4726 } 4727 } 4728 4729 /* 4730 * If we don't have enough metaslabs active to fill the entire array, we 4731 * just use the 0th slot. 4732 */ 4733 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4734 allocator = 0; 4735 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4736 4737 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4738 4739 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4740 search->ms_weight = UINT64_MAX; 4741 search->ms_start = 0; 4742 /* 4743 * At the end of the metaslab tree are the already-active metaslabs, 4744 * first the primaries, then the secondaries. When we resume searching 4745 * through the tree, we need to consider ms_allocator and ms_primary so 4746 * we start in the location right after where we left off, and don't 4747 * accidentally loop forever considering the same metaslabs. 4748 */ 4749 search->ms_allocator = -1; 4750 search->ms_primary = B_TRUE; 4751 for (;;) { 4752 boolean_t was_active = B_FALSE; 4753 4754 mutex_enter(&mg->mg_lock); 4755 4756 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4757 mga->mga_primary != NULL) { 4758 msp = mga->mga_primary; 4759 4760 /* 4761 * Even though we don't hold the ms_lock for the 4762 * primary metaslab, those fields should not 4763 * change while we hold the mg_lock. Thus it is 4764 * safe to make assertions on them. 4765 */ 4766 ASSERT(msp->ms_primary); 4767 ASSERT3S(msp->ms_allocator, ==, allocator); 4768 ASSERT(msp->ms_loaded); 4769 4770 was_active = B_TRUE; 4771 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4772 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4773 mga->mga_secondary != NULL) { 4774 msp = mga->mga_secondary; 4775 4776 /* 4777 * See comment above about the similar assertions 4778 * for the primary metaslab. 4779 */ 4780 ASSERT(!msp->ms_primary); 4781 ASSERT3S(msp->ms_allocator, ==, allocator); 4782 ASSERT(msp->ms_loaded); 4783 4784 was_active = B_TRUE; 4785 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4786 } else { 4787 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4788 want_unique, asize, allocator, try_hard, zal, 4789 search, &was_active); 4790 } 4791 4792 mutex_exit(&mg->mg_lock); 4793 if (msp == NULL) { 4794 kmem_free(search, sizeof (*search)); 4795 return (-1ULL); 4796 } 4797 mutex_enter(&msp->ms_lock); 4798 4799 metaslab_active_mask_verify(msp); 4800 4801 /* 4802 * This code is disabled out because of issues with 4803 * tracepoints in non-gpl kernel modules. 4804 */ 4805 #if 0 4806 DTRACE_PROBE3(ms__activation__attempt, 4807 metaslab_t *, msp, uint64_t, activation_weight, 4808 boolean_t, was_active); 4809 #endif 4810 4811 /* 4812 * Ensure that the metaslab we have selected is still 4813 * capable of handling our request. It's possible that 4814 * another thread may have changed the weight while we 4815 * were blocked on the metaslab lock. We check the 4816 * active status first to see if we need to set_selected_txg 4817 * a new metaslab. 4818 */ 4819 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4820 ASSERT3S(msp->ms_allocator, ==, -1); 4821 mutex_exit(&msp->ms_lock); 4822 continue; 4823 } 4824 4825 /* 4826 * If the metaslab was activated for another allocator 4827 * while we were waiting in the ms_lock above, or it's 4828 * a primary and we're seeking a secondary (or vice versa), 4829 * we go back and select a new metaslab. 4830 */ 4831 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4832 (msp->ms_allocator != -1) && 4833 (msp->ms_allocator != allocator || ((activation_weight == 4834 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4835 ASSERT(msp->ms_loaded); 4836 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4837 msp->ms_allocator != -1); 4838 mutex_exit(&msp->ms_lock); 4839 continue; 4840 } 4841 4842 /* 4843 * This metaslab was used for claiming regions allocated 4844 * by the ZIL during pool import. Once these regions are 4845 * claimed we don't need to keep the CLAIM bit set 4846 * anymore. Passivate this metaslab to zero its activation 4847 * mask. 4848 */ 4849 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4850 activation_weight != METASLAB_WEIGHT_CLAIM) { 4851 ASSERT(msp->ms_loaded); 4852 ASSERT3S(msp->ms_allocator, ==, -1); 4853 metaslab_passivate(msp, msp->ms_weight & 4854 ~METASLAB_WEIGHT_CLAIM); 4855 mutex_exit(&msp->ms_lock); 4856 continue; 4857 } 4858 4859 metaslab_set_selected_txg(msp, txg); 4860 4861 int activation_error = 4862 metaslab_activate(msp, allocator, activation_weight); 4863 metaslab_active_mask_verify(msp); 4864 4865 /* 4866 * If the metaslab was activated by another thread for 4867 * another allocator or activation_weight (EBUSY), or it 4868 * failed because another metaslab was assigned as primary 4869 * for this allocator (EEXIST) we continue using this 4870 * metaslab for our allocation, rather than going on to a 4871 * worse metaslab (we waited for that metaslab to be loaded 4872 * after all). 4873 * 4874 * If the activation failed due to an I/O error or ENOSPC we 4875 * skip to the next metaslab. 4876 */ 4877 boolean_t activated; 4878 if (activation_error == 0) { 4879 activated = B_TRUE; 4880 } else if (activation_error == EBUSY || 4881 activation_error == EEXIST) { 4882 activated = B_FALSE; 4883 } else { 4884 mutex_exit(&msp->ms_lock); 4885 continue; 4886 } 4887 ASSERT(msp->ms_loaded); 4888 4889 /* 4890 * Now that we have the lock, recheck to see if we should 4891 * continue to use this metaslab for this allocation. The 4892 * the metaslab is now loaded so metaslab_should_allocate() 4893 * can accurately determine if the allocation attempt should 4894 * proceed. 4895 */ 4896 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4897 /* Passivate this metaslab and select a new one. */ 4898 metaslab_trace_add(zal, mg, msp, asize, d, 4899 TRACE_TOO_SMALL, allocator); 4900 goto next; 4901 } 4902 4903 /* 4904 * If this metaslab is currently condensing then pick again 4905 * as we can't manipulate this metaslab until it's committed 4906 * to disk. If this metaslab is being initialized, we shouldn't 4907 * allocate from it since the allocated region might be 4908 * overwritten after allocation. 4909 */ 4910 if (msp->ms_condensing) { 4911 metaslab_trace_add(zal, mg, msp, asize, d, 4912 TRACE_CONDENSING, allocator); 4913 if (activated) { 4914 metaslab_passivate(msp, msp->ms_weight & 4915 ~METASLAB_ACTIVE_MASK); 4916 } 4917 mutex_exit(&msp->ms_lock); 4918 continue; 4919 } else if (msp->ms_disabled > 0) { 4920 metaslab_trace_add(zal, mg, msp, asize, d, 4921 TRACE_DISABLED, allocator); 4922 if (activated) { 4923 metaslab_passivate(msp, msp->ms_weight & 4924 ~METASLAB_ACTIVE_MASK); 4925 } 4926 mutex_exit(&msp->ms_lock); 4927 continue; 4928 } 4929 4930 offset = metaslab_block_alloc(msp, asize, txg); 4931 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4932 4933 if (offset != -1ULL) { 4934 /* Proactively passivate the metaslab, if needed */ 4935 if (activated) 4936 metaslab_segment_may_passivate(msp); 4937 break; 4938 } 4939 next: 4940 ASSERT(msp->ms_loaded); 4941 4942 /* 4943 * This code is disabled out because of issues with 4944 * tracepoints in non-gpl kernel modules. 4945 */ 4946 #if 0 4947 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4948 uint64_t, asize); 4949 #endif 4950 4951 /* 4952 * We were unable to allocate from this metaslab so determine 4953 * a new weight for this metaslab. Now that we have loaded 4954 * the metaslab we can provide a better hint to the metaslab 4955 * selector. 4956 * 4957 * For space-based metaslabs, we use the maximum block size. 4958 * This information is only available when the metaslab 4959 * is loaded and is more accurate than the generic free 4960 * space weight that was calculated by metaslab_weight(). 4961 * This information allows us to quickly compare the maximum 4962 * available allocation in the metaslab to the allocation 4963 * size being requested. 4964 * 4965 * For segment-based metaslabs, determine the new weight 4966 * based on the highest bucket in the range tree. We 4967 * explicitly use the loaded segment weight (i.e. the range 4968 * tree histogram) since it contains the space that is 4969 * currently available for allocation and is accurate 4970 * even within a sync pass. 4971 */ 4972 uint64_t weight; 4973 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4974 weight = metaslab_largest_allocatable(msp); 4975 WEIGHT_SET_SPACEBASED(weight); 4976 } else { 4977 weight = metaslab_weight_from_range_tree(msp); 4978 } 4979 4980 if (activated) { 4981 metaslab_passivate(msp, weight); 4982 } else { 4983 /* 4984 * For the case where we use the metaslab that is 4985 * active for another allocator we want to make 4986 * sure that we retain the activation mask. 4987 * 4988 * Note that we could attempt to use something like 4989 * metaslab_recalculate_weight_and_sort() that 4990 * retains the activation mask here. That function 4991 * uses metaslab_weight() to set the weight though 4992 * which is not as accurate as the calculations 4993 * above. 4994 */ 4995 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 4996 metaslab_group_sort(mg, msp, weight); 4997 } 4998 metaslab_active_mask_verify(msp); 4999 5000 /* 5001 * We have just failed an allocation attempt, check 5002 * that metaslab_should_allocate() agrees. Otherwise, 5003 * we may end up in an infinite loop retrying the same 5004 * metaslab. 5005 */ 5006 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5007 5008 mutex_exit(&msp->ms_lock); 5009 } 5010 mutex_exit(&msp->ms_lock); 5011 kmem_free(search, sizeof (*search)); 5012 return (offset); 5013 } 5014 5015 static uint64_t 5016 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5017 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5018 int allocator, boolean_t try_hard) 5019 { 5020 uint64_t offset; 5021 ASSERT(mg->mg_initialized); 5022 5023 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5024 dva, d, allocator, try_hard); 5025 5026 mutex_enter(&mg->mg_lock); 5027 if (offset == -1ULL) { 5028 mg->mg_failed_allocations++; 5029 metaslab_trace_add(zal, mg, NULL, asize, d, 5030 TRACE_GROUP_FAILURE, allocator); 5031 if (asize == SPA_GANGBLOCKSIZE) { 5032 /* 5033 * This metaslab group was unable to allocate 5034 * the minimum gang block size so it must be out of 5035 * space. We must notify the allocation throttle 5036 * to start skipping allocation attempts to this 5037 * metaslab group until more space becomes available. 5038 * Note: this failure cannot be caused by the 5039 * allocation throttle since the allocation throttle 5040 * is only responsible for skipping devices and 5041 * not failing block allocations. 5042 */ 5043 mg->mg_no_free_space = B_TRUE; 5044 } 5045 } 5046 mg->mg_allocations++; 5047 mutex_exit(&mg->mg_lock); 5048 return (offset); 5049 } 5050 5051 /* 5052 * Allocate a block for the specified i/o. 5053 */ 5054 int 5055 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5056 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5057 zio_alloc_list_t *zal, int allocator) 5058 { 5059 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5060 metaslab_group_t *mg, *fast_mg, *rotor; 5061 vdev_t *vd; 5062 boolean_t try_hard = B_FALSE; 5063 5064 ASSERT(!DVA_IS_VALID(&dva[d])); 5065 5066 /* 5067 * For testing, make some blocks above a certain size be gang blocks. 5068 * This will result in more split blocks when using device removal, 5069 * and a large number of split blocks coupled with ztest-induced 5070 * damage can result in extremely long reconstruction times. This 5071 * will also test spilling from special to normal. 5072 */ 5073 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) { 5074 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5075 allocator); 5076 return (SET_ERROR(ENOSPC)); 5077 } 5078 5079 /* 5080 * Start at the rotor and loop through all mgs until we find something. 5081 * Note that there's no locking on mca_rotor or mca_aliquot because 5082 * nothing actually breaks if we miss a few updates -- we just won't 5083 * allocate quite as evenly. It all balances out over time. 5084 * 5085 * If we are doing ditto or log blocks, try to spread them across 5086 * consecutive vdevs. If we're forced to reuse a vdev before we've 5087 * allocated all of our ditto blocks, then try and spread them out on 5088 * that vdev as much as possible. If it turns out to not be possible, 5089 * gradually lower our standards until anything becomes acceptable. 5090 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5091 * gives us hope of containing our fault domains to something we're 5092 * able to reason about. Otherwise, any two top-level vdev failures 5093 * will guarantee the loss of data. With consecutive allocation, 5094 * only two adjacent top-level vdev failures will result in data loss. 5095 * 5096 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5097 * ourselves on the same vdev as our gang block header. That 5098 * way, we can hope for locality in vdev_cache, plus it makes our 5099 * fault domains something tractable. 5100 */ 5101 if (hintdva) { 5102 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5103 5104 /* 5105 * It's possible the vdev we're using as the hint no 5106 * longer exists or its mg has been closed (e.g. by 5107 * device removal). Consult the rotor when 5108 * all else fails. 5109 */ 5110 if (vd != NULL && vd->vdev_mg != NULL) { 5111 mg = vdev_get_mg(vd, mc); 5112 5113 if (flags & METASLAB_HINTBP_AVOID && 5114 mg->mg_next != NULL) 5115 mg = mg->mg_next; 5116 } else { 5117 mg = mca->mca_rotor; 5118 } 5119 } else if (d != 0) { 5120 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5121 mg = vd->vdev_mg->mg_next; 5122 } else if (flags & METASLAB_FASTWRITE) { 5123 mg = fast_mg = mca->mca_rotor; 5124 5125 do { 5126 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5127 mg->mg_vd->vdev_pending_fastwrite) 5128 mg = fast_mg; 5129 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5130 5131 } else { 5132 ASSERT(mca->mca_rotor != NULL); 5133 mg = mca->mca_rotor; 5134 } 5135 5136 /* 5137 * If the hint put us into the wrong metaslab class, or into a 5138 * metaslab group that has been passivated, just follow the rotor. 5139 */ 5140 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5141 mg = mca->mca_rotor; 5142 5143 rotor = mg; 5144 top: 5145 do { 5146 boolean_t allocatable; 5147 5148 ASSERT(mg->mg_activation_count == 1); 5149 vd = mg->mg_vd; 5150 5151 /* 5152 * Don't allocate from faulted devices. 5153 */ 5154 if (try_hard) { 5155 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5156 allocatable = vdev_allocatable(vd); 5157 spa_config_exit(spa, SCL_ZIO, FTAG); 5158 } else { 5159 allocatable = vdev_allocatable(vd); 5160 } 5161 5162 /* 5163 * Determine if the selected metaslab group is eligible 5164 * for allocations. If we're ganging then don't allow 5165 * this metaslab group to skip allocations since that would 5166 * inadvertently return ENOSPC and suspend the pool 5167 * even though space is still available. 5168 */ 5169 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5170 allocatable = metaslab_group_allocatable(mg, rotor, 5171 psize, allocator, d); 5172 } 5173 5174 if (!allocatable) { 5175 metaslab_trace_add(zal, mg, NULL, psize, d, 5176 TRACE_NOT_ALLOCATABLE, allocator); 5177 goto next; 5178 } 5179 5180 ASSERT(mg->mg_initialized); 5181 5182 /* 5183 * Avoid writing single-copy data to a failing, 5184 * non-redundant vdev, unless we've already tried all 5185 * other vdevs. 5186 */ 5187 if ((vd->vdev_stat.vs_write_errors > 0 || 5188 vd->vdev_state < VDEV_STATE_HEALTHY) && 5189 d == 0 && !try_hard && vd->vdev_children == 0) { 5190 metaslab_trace_add(zal, mg, NULL, psize, d, 5191 TRACE_VDEV_ERROR, allocator); 5192 goto next; 5193 } 5194 5195 ASSERT(mg->mg_class == mc); 5196 5197 uint64_t asize = vdev_psize_to_asize(vd, psize); 5198 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5199 5200 /* 5201 * If we don't need to try hard, then require that the 5202 * block be on a different metaslab from any other DVAs 5203 * in this BP (unique=true). If we are trying hard, then 5204 * allow any metaslab to be used (unique=false). 5205 */ 5206 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5207 !try_hard, dva, d, allocator, try_hard); 5208 5209 if (offset != -1ULL) { 5210 /* 5211 * If we've just selected this metaslab group, 5212 * figure out whether the corresponding vdev is 5213 * over- or under-used relative to the pool, 5214 * and set an allocation bias to even it out. 5215 * 5216 * Bias is also used to compensate for unequally 5217 * sized vdevs so that space is allocated fairly. 5218 */ 5219 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5220 vdev_stat_t *vs = &vd->vdev_stat; 5221 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5222 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5223 int64_t ratio; 5224 5225 /* 5226 * Calculate how much more or less we should 5227 * try to allocate from this device during 5228 * this iteration around the rotor. 5229 * 5230 * This basically introduces a zero-centered 5231 * bias towards the devices with the most 5232 * free space, while compensating for vdev 5233 * size differences. 5234 * 5235 * Examples: 5236 * vdev V1 = 16M/128M 5237 * vdev V2 = 16M/128M 5238 * ratio(V1) = 100% ratio(V2) = 100% 5239 * 5240 * vdev V1 = 16M/128M 5241 * vdev V2 = 64M/128M 5242 * ratio(V1) = 127% ratio(V2) = 72% 5243 * 5244 * vdev V1 = 16M/128M 5245 * vdev V2 = 64M/512M 5246 * ratio(V1) = 40% ratio(V2) = 160% 5247 */ 5248 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5249 (mc_free + 1); 5250 mg->mg_bias = ((ratio - 100) * 5251 (int64_t)mg->mg_aliquot) / 100; 5252 } else if (!metaslab_bias_enabled) { 5253 mg->mg_bias = 0; 5254 } 5255 5256 if ((flags & METASLAB_FASTWRITE) || 5257 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5258 mg->mg_aliquot + mg->mg_bias) { 5259 mca->mca_rotor = mg->mg_next; 5260 mca->mca_aliquot = 0; 5261 } 5262 5263 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5264 DVA_SET_OFFSET(&dva[d], offset); 5265 DVA_SET_GANG(&dva[d], 5266 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5267 DVA_SET_ASIZE(&dva[d], asize); 5268 5269 if (flags & METASLAB_FASTWRITE) { 5270 atomic_add_64(&vd->vdev_pending_fastwrite, 5271 psize); 5272 } 5273 5274 return (0); 5275 } 5276 next: 5277 mca->mca_rotor = mg->mg_next; 5278 mca->mca_aliquot = 0; 5279 } while ((mg = mg->mg_next) != rotor); 5280 5281 /* 5282 * If we haven't tried hard, perhaps do so now. 5283 */ 5284 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5285 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5286 psize <= 1 << spa->spa_min_ashift)) { 5287 METASLABSTAT_BUMP(metaslabstat_try_hard); 5288 try_hard = B_TRUE; 5289 goto top; 5290 } 5291 5292 bzero(&dva[d], sizeof (dva_t)); 5293 5294 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5295 return (SET_ERROR(ENOSPC)); 5296 } 5297 5298 void 5299 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5300 boolean_t checkpoint) 5301 { 5302 metaslab_t *msp; 5303 spa_t *spa = vd->vdev_spa; 5304 5305 ASSERT(vdev_is_concrete(vd)); 5306 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5307 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5308 5309 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5310 5311 VERIFY(!msp->ms_condensing); 5312 VERIFY3U(offset, >=, msp->ms_start); 5313 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5314 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5315 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5316 5317 metaslab_check_free_impl(vd, offset, asize); 5318 5319 mutex_enter(&msp->ms_lock); 5320 if (range_tree_is_empty(msp->ms_freeing) && 5321 range_tree_is_empty(msp->ms_checkpointing)) { 5322 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5323 } 5324 5325 if (checkpoint) { 5326 ASSERT(spa_has_checkpoint(spa)); 5327 range_tree_add(msp->ms_checkpointing, offset, asize); 5328 } else { 5329 range_tree_add(msp->ms_freeing, offset, asize); 5330 } 5331 mutex_exit(&msp->ms_lock); 5332 } 5333 5334 /* ARGSUSED */ 5335 void 5336 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5337 uint64_t size, void *arg) 5338 { 5339 boolean_t *checkpoint = arg; 5340 5341 ASSERT3P(checkpoint, !=, NULL); 5342 5343 if (vd->vdev_ops->vdev_op_remap != NULL) 5344 vdev_indirect_mark_obsolete(vd, offset, size); 5345 else 5346 metaslab_free_impl(vd, offset, size, *checkpoint); 5347 } 5348 5349 static void 5350 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5351 boolean_t checkpoint) 5352 { 5353 spa_t *spa = vd->vdev_spa; 5354 5355 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5356 5357 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5358 return; 5359 5360 if (spa->spa_vdev_removal != NULL && 5361 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5362 vdev_is_concrete(vd)) { 5363 /* 5364 * Note: we check if the vdev is concrete because when 5365 * we complete the removal, we first change the vdev to be 5366 * an indirect vdev (in open context), and then (in syncing 5367 * context) clear spa_vdev_removal. 5368 */ 5369 free_from_removing_vdev(vd, offset, size); 5370 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5371 vdev_indirect_mark_obsolete(vd, offset, size); 5372 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5373 metaslab_free_impl_cb, &checkpoint); 5374 } else { 5375 metaslab_free_concrete(vd, offset, size, checkpoint); 5376 } 5377 } 5378 5379 typedef struct remap_blkptr_cb_arg { 5380 blkptr_t *rbca_bp; 5381 spa_remap_cb_t rbca_cb; 5382 vdev_t *rbca_remap_vd; 5383 uint64_t rbca_remap_offset; 5384 void *rbca_cb_arg; 5385 } remap_blkptr_cb_arg_t; 5386 5387 static void 5388 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5389 uint64_t size, void *arg) 5390 { 5391 remap_blkptr_cb_arg_t *rbca = arg; 5392 blkptr_t *bp = rbca->rbca_bp; 5393 5394 /* We can not remap split blocks. */ 5395 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5396 return; 5397 ASSERT0(inner_offset); 5398 5399 if (rbca->rbca_cb != NULL) { 5400 /* 5401 * At this point we know that we are not handling split 5402 * blocks and we invoke the callback on the previous 5403 * vdev which must be indirect. 5404 */ 5405 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5406 5407 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5408 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5409 5410 /* set up remap_blkptr_cb_arg for the next call */ 5411 rbca->rbca_remap_vd = vd; 5412 rbca->rbca_remap_offset = offset; 5413 } 5414 5415 /* 5416 * The phys birth time is that of dva[0]. This ensures that we know 5417 * when each dva was written, so that resilver can determine which 5418 * blocks need to be scrubbed (i.e. those written during the time 5419 * the vdev was offline). It also ensures that the key used in 5420 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5421 * we didn't change the phys_birth, a lookup in the ARC for a 5422 * remapped BP could find the data that was previously stored at 5423 * this vdev + offset. 5424 */ 5425 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5426 DVA_GET_VDEV(&bp->blk_dva[0])); 5427 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5428 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5429 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5430 5431 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5432 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5433 } 5434 5435 /* 5436 * If the block pointer contains any indirect DVAs, modify them to refer to 5437 * concrete DVAs. Note that this will sometimes not be possible, leaving 5438 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5439 * segments in the mapping (i.e. it is a "split block"). 5440 * 5441 * If the BP was remapped, calls the callback on the original dva (note the 5442 * callback can be called multiple times if the original indirect DVA refers 5443 * to another indirect DVA, etc). 5444 * 5445 * Returns TRUE if the BP was remapped. 5446 */ 5447 boolean_t 5448 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5449 { 5450 remap_blkptr_cb_arg_t rbca; 5451 5452 if (!zfs_remap_blkptr_enable) 5453 return (B_FALSE); 5454 5455 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5456 return (B_FALSE); 5457 5458 /* 5459 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5460 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5461 */ 5462 if (BP_GET_DEDUP(bp)) 5463 return (B_FALSE); 5464 5465 /* 5466 * Gang blocks can not be remapped, because 5467 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5468 * the BP used to read the gang block header (GBH) being the same 5469 * as the DVA[0] that we allocated for the GBH. 5470 */ 5471 if (BP_IS_GANG(bp)) 5472 return (B_FALSE); 5473 5474 /* 5475 * Embedded BP's have no DVA to remap. 5476 */ 5477 if (BP_GET_NDVAS(bp) < 1) 5478 return (B_FALSE); 5479 5480 /* 5481 * Note: we only remap dva[0]. If we remapped other dvas, we 5482 * would no longer know what their phys birth txg is. 5483 */ 5484 dva_t *dva = &bp->blk_dva[0]; 5485 5486 uint64_t offset = DVA_GET_OFFSET(dva); 5487 uint64_t size = DVA_GET_ASIZE(dva); 5488 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5489 5490 if (vd->vdev_ops->vdev_op_remap == NULL) 5491 return (B_FALSE); 5492 5493 rbca.rbca_bp = bp; 5494 rbca.rbca_cb = callback; 5495 rbca.rbca_remap_vd = vd; 5496 rbca.rbca_remap_offset = offset; 5497 rbca.rbca_cb_arg = arg; 5498 5499 /* 5500 * remap_blkptr_cb() will be called in order for each level of 5501 * indirection, until a concrete vdev is reached or a split block is 5502 * encountered. old_vd and old_offset are updated within the callback 5503 * as we go from the one indirect vdev to the next one (either concrete 5504 * or indirect again) in that order. 5505 */ 5506 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5507 5508 /* Check if the DVA wasn't remapped because it is a split block */ 5509 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5510 return (B_FALSE); 5511 5512 return (B_TRUE); 5513 } 5514 5515 /* 5516 * Undo the allocation of a DVA which happened in the given transaction group. 5517 */ 5518 void 5519 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5520 { 5521 metaslab_t *msp; 5522 vdev_t *vd; 5523 uint64_t vdev = DVA_GET_VDEV(dva); 5524 uint64_t offset = DVA_GET_OFFSET(dva); 5525 uint64_t size = DVA_GET_ASIZE(dva); 5526 5527 ASSERT(DVA_IS_VALID(dva)); 5528 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5529 5530 if (txg > spa_freeze_txg(spa)) 5531 return; 5532 5533 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5534 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5535 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5536 (u_longlong_t)vdev, (u_longlong_t)offset, 5537 (u_longlong_t)size); 5538 return; 5539 } 5540 5541 ASSERT(!vd->vdev_removing); 5542 ASSERT(vdev_is_concrete(vd)); 5543 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5544 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5545 5546 if (DVA_GET_GANG(dva)) 5547 size = vdev_gang_header_asize(vd); 5548 5549 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5550 5551 mutex_enter(&msp->ms_lock); 5552 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5553 offset, size); 5554 msp->ms_allocating_total -= size; 5555 5556 VERIFY(!msp->ms_condensing); 5557 VERIFY3U(offset, >=, msp->ms_start); 5558 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5559 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5560 msp->ms_size); 5561 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5562 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5563 range_tree_add(msp->ms_allocatable, offset, size); 5564 mutex_exit(&msp->ms_lock); 5565 } 5566 5567 /* 5568 * Free the block represented by the given DVA. 5569 */ 5570 void 5571 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5572 { 5573 uint64_t vdev = DVA_GET_VDEV(dva); 5574 uint64_t offset = DVA_GET_OFFSET(dva); 5575 uint64_t size = DVA_GET_ASIZE(dva); 5576 vdev_t *vd = vdev_lookup_top(spa, vdev); 5577 5578 ASSERT(DVA_IS_VALID(dva)); 5579 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5580 5581 if (DVA_GET_GANG(dva)) { 5582 size = vdev_gang_header_asize(vd); 5583 } 5584 5585 metaslab_free_impl(vd, offset, size, checkpoint); 5586 } 5587 5588 /* 5589 * Reserve some allocation slots. The reservation system must be called 5590 * before we call into the allocator. If there aren't any available slots 5591 * then the I/O will be throttled until an I/O completes and its slots are 5592 * freed up. The function returns true if it was successful in placing 5593 * the reservation. 5594 */ 5595 boolean_t 5596 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5597 zio_t *zio, int flags) 5598 { 5599 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5600 uint64_t available_slots = 0; 5601 boolean_t slot_reserved = B_FALSE; 5602 uint64_t max = mca->mca_alloc_max_slots; 5603 5604 ASSERT(mc->mc_alloc_throttle_enabled); 5605 mutex_enter(&mc->mc_lock); 5606 5607 uint64_t reserved_slots = zfs_refcount_count(&mca->mca_alloc_slots); 5608 if (reserved_slots < max) 5609 available_slots = max - reserved_slots; 5610 5611 if (slots <= available_slots || GANG_ALLOCATION(flags) || 5612 flags & METASLAB_MUST_RESERVE) { 5613 /* 5614 * We reserve the slots individually so that we can unreserve 5615 * them individually when an I/O completes. 5616 */ 5617 for (int d = 0; d < slots; d++) 5618 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5619 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5620 slot_reserved = B_TRUE; 5621 } 5622 5623 mutex_exit(&mc->mc_lock); 5624 return (slot_reserved); 5625 } 5626 5627 void 5628 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5629 int allocator, zio_t *zio) 5630 { 5631 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5632 5633 ASSERT(mc->mc_alloc_throttle_enabled); 5634 mutex_enter(&mc->mc_lock); 5635 for (int d = 0; d < slots; d++) 5636 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5637 mutex_exit(&mc->mc_lock); 5638 } 5639 5640 static int 5641 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5642 uint64_t txg) 5643 { 5644 metaslab_t *msp; 5645 spa_t *spa = vd->vdev_spa; 5646 int error = 0; 5647 5648 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5649 return (SET_ERROR(ENXIO)); 5650 5651 ASSERT3P(vd->vdev_ms, !=, NULL); 5652 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5653 5654 mutex_enter(&msp->ms_lock); 5655 5656 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5657 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5658 if (error == EBUSY) { 5659 ASSERT(msp->ms_loaded); 5660 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5661 error = 0; 5662 } 5663 } 5664 5665 if (error == 0 && 5666 !range_tree_contains(msp->ms_allocatable, offset, size)) 5667 error = SET_ERROR(ENOENT); 5668 5669 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5670 mutex_exit(&msp->ms_lock); 5671 return (error); 5672 } 5673 5674 VERIFY(!msp->ms_condensing); 5675 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5676 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5677 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5678 msp->ms_size); 5679 range_tree_remove(msp->ms_allocatable, offset, size); 5680 range_tree_clear(msp->ms_trim, offset, size); 5681 5682 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5683 metaslab_class_t *mc = msp->ms_group->mg_class; 5684 multilist_sublist_t *mls = 5685 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 5686 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5687 msp->ms_selected_txg = txg; 5688 multilist_sublist_insert_head(mls, msp); 5689 } 5690 multilist_sublist_unlock(mls); 5691 5692 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5693 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5694 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5695 offset, size); 5696 msp->ms_allocating_total += size; 5697 } 5698 5699 mutex_exit(&msp->ms_lock); 5700 5701 return (0); 5702 } 5703 5704 typedef struct metaslab_claim_cb_arg_t { 5705 uint64_t mcca_txg; 5706 int mcca_error; 5707 } metaslab_claim_cb_arg_t; 5708 5709 /* ARGSUSED */ 5710 static void 5711 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5712 uint64_t size, void *arg) 5713 { 5714 metaslab_claim_cb_arg_t *mcca_arg = arg; 5715 5716 if (mcca_arg->mcca_error == 0) { 5717 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5718 size, mcca_arg->mcca_txg); 5719 } 5720 } 5721 5722 int 5723 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5724 { 5725 if (vd->vdev_ops->vdev_op_remap != NULL) { 5726 metaslab_claim_cb_arg_t arg; 5727 5728 /* 5729 * Only zdb(8) can claim on indirect vdevs. This is used 5730 * to detect leaks of mapped space (that are not accounted 5731 * for in the obsolete counts, spacemap, or bpobj). 5732 */ 5733 ASSERT(!spa_writeable(vd->vdev_spa)); 5734 arg.mcca_error = 0; 5735 arg.mcca_txg = txg; 5736 5737 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5738 metaslab_claim_impl_cb, &arg); 5739 5740 if (arg.mcca_error == 0) { 5741 arg.mcca_error = metaslab_claim_concrete(vd, 5742 offset, size, txg); 5743 } 5744 return (arg.mcca_error); 5745 } else { 5746 return (metaslab_claim_concrete(vd, offset, size, txg)); 5747 } 5748 } 5749 5750 /* 5751 * Intent log support: upon opening the pool after a crash, notify the SPA 5752 * of blocks that the intent log has allocated for immediate write, but 5753 * which are still considered free by the SPA because the last transaction 5754 * group didn't commit yet. 5755 */ 5756 static int 5757 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5758 { 5759 uint64_t vdev = DVA_GET_VDEV(dva); 5760 uint64_t offset = DVA_GET_OFFSET(dva); 5761 uint64_t size = DVA_GET_ASIZE(dva); 5762 vdev_t *vd; 5763 5764 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5765 return (SET_ERROR(ENXIO)); 5766 } 5767 5768 ASSERT(DVA_IS_VALID(dva)); 5769 5770 if (DVA_GET_GANG(dva)) 5771 size = vdev_gang_header_asize(vd); 5772 5773 return (metaslab_claim_impl(vd, offset, size, txg)); 5774 } 5775 5776 int 5777 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5778 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5779 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5780 { 5781 dva_t *dva = bp->blk_dva; 5782 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5783 int error = 0; 5784 5785 ASSERT(bp->blk_birth == 0); 5786 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5787 5788 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5789 5790 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5791 /* no vdevs in this class */ 5792 spa_config_exit(spa, SCL_ALLOC, FTAG); 5793 return (SET_ERROR(ENOSPC)); 5794 } 5795 5796 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5797 ASSERT(BP_GET_NDVAS(bp) == 0); 5798 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5799 ASSERT3P(zal, !=, NULL); 5800 5801 for (int d = 0; d < ndvas; d++) { 5802 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5803 txg, flags, zal, allocator); 5804 if (error != 0) { 5805 for (d--; d >= 0; d--) { 5806 metaslab_unalloc_dva(spa, &dva[d], txg); 5807 metaslab_group_alloc_decrement(spa, 5808 DVA_GET_VDEV(&dva[d]), zio, flags, 5809 allocator, B_FALSE); 5810 bzero(&dva[d], sizeof (dva_t)); 5811 } 5812 spa_config_exit(spa, SCL_ALLOC, FTAG); 5813 return (error); 5814 } else { 5815 /* 5816 * Update the metaslab group's queue depth 5817 * based on the newly allocated dva. 5818 */ 5819 metaslab_group_alloc_increment(spa, 5820 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5821 } 5822 } 5823 ASSERT(error == 0); 5824 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5825 5826 spa_config_exit(spa, SCL_ALLOC, FTAG); 5827 5828 BP_SET_BIRTH(bp, txg, 0); 5829 5830 return (0); 5831 } 5832 5833 void 5834 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5835 { 5836 const dva_t *dva = bp->blk_dva; 5837 int ndvas = BP_GET_NDVAS(bp); 5838 5839 ASSERT(!BP_IS_HOLE(bp)); 5840 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5841 5842 /* 5843 * If we have a checkpoint for the pool we need to make sure that 5844 * the blocks that we free that are part of the checkpoint won't be 5845 * reused until the checkpoint is discarded or we revert to it. 5846 * 5847 * The checkpoint flag is passed down the metaslab_free code path 5848 * and is set whenever we want to add a block to the checkpoint's 5849 * accounting. That is, we "checkpoint" blocks that existed at the 5850 * time the checkpoint was created and are therefore referenced by 5851 * the checkpointed uberblock. 5852 * 5853 * Note that, we don't checkpoint any blocks if the current 5854 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5855 * normally as they will be referenced by the checkpointed uberblock. 5856 */ 5857 boolean_t checkpoint = B_FALSE; 5858 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5859 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5860 /* 5861 * At this point, if the block is part of the checkpoint 5862 * there is no way it was created in the current txg. 5863 */ 5864 ASSERT(!now); 5865 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5866 checkpoint = B_TRUE; 5867 } 5868 5869 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5870 5871 for (int d = 0; d < ndvas; d++) { 5872 if (now) { 5873 metaslab_unalloc_dva(spa, &dva[d], txg); 5874 } else { 5875 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5876 metaslab_free_dva(spa, &dva[d], checkpoint); 5877 } 5878 } 5879 5880 spa_config_exit(spa, SCL_FREE, FTAG); 5881 } 5882 5883 int 5884 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5885 { 5886 const dva_t *dva = bp->blk_dva; 5887 int ndvas = BP_GET_NDVAS(bp); 5888 int error = 0; 5889 5890 ASSERT(!BP_IS_HOLE(bp)); 5891 5892 if (txg != 0) { 5893 /* 5894 * First do a dry run to make sure all DVAs are claimable, 5895 * so we don't have to unwind from partial failures below. 5896 */ 5897 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5898 return (error); 5899 } 5900 5901 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5902 5903 for (int d = 0; d < ndvas; d++) { 5904 error = metaslab_claim_dva(spa, &dva[d], txg); 5905 if (error != 0) 5906 break; 5907 } 5908 5909 spa_config_exit(spa, SCL_ALLOC, FTAG); 5910 5911 ASSERT(error == 0 || txg == 0); 5912 5913 return (error); 5914 } 5915 5916 void 5917 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5918 { 5919 const dva_t *dva = bp->blk_dva; 5920 int ndvas = BP_GET_NDVAS(bp); 5921 uint64_t psize = BP_GET_PSIZE(bp); 5922 int d; 5923 vdev_t *vd; 5924 5925 ASSERT(!BP_IS_HOLE(bp)); 5926 ASSERT(!BP_IS_EMBEDDED(bp)); 5927 ASSERT(psize > 0); 5928 5929 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5930 5931 for (d = 0; d < ndvas; d++) { 5932 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5933 continue; 5934 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5935 } 5936 5937 spa_config_exit(spa, SCL_VDEV, FTAG); 5938 } 5939 5940 void 5941 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5942 { 5943 const dva_t *dva = bp->blk_dva; 5944 int ndvas = BP_GET_NDVAS(bp); 5945 uint64_t psize = BP_GET_PSIZE(bp); 5946 int d; 5947 vdev_t *vd; 5948 5949 ASSERT(!BP_IS_HOLE(bp)); 5950 ASSERT(!BP_IS_EMBEDDED(bp)); 5951 ASSERT(psize > 0); 5952 5953 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5954 5955 for (d = 0; d < ndvas; d++) { 5956 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5957 continue; 5958 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5959 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5960 } 5961 5962 spa_config_exit(spa, SCL_VDEV, FTAG); 5963 } 5964 5965 /* ARGSUSED */ 5966 static void 5967 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5968 uint64_t size, void *arg) 5969 { 5970 if (vd->vdev_ops == &vdev_indirect_ops) 5971 return; 5972 5973 metaslab_check_free_impl(vd, offset, size); 5974 } 5975 5976 static void 5977 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5978 { 5979 metaslab_t *msp; 5980 spa_t *spa __maybe_unused = vd->vdev_spa; 5981 5982 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5983 return; 5984 5985 if (vd->vdev_ops->vdev_op_remap != NULL) { 5986 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5987 metaslab_check_free_impl_cb, NULL); 5988 return; 5989 } 5990 5991 ASSERT(vdev_is_concrete(vd)); 5992 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5993 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5994 5995 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5996 5997 mutex_enter(&msp->ms_lock); 5998 if (msp->ms_loaded) { 5999 range_tree_verify_not_present(msp->ms_allocatable, 6000 offset, size); 6001 } 6002 6003 /* 6004 * Check all segments that currently exist in the freeing pipeline. 6005 * 6006 * It would intuitively make sense to also check the current allocating 6007 * tree since metaslab_unalloc_dva() exists for extents that are 6008 * allocated and freed in the same sync pass within the same txg. 6009 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6010 * segment but then we free part of it within the same txg 6011 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6012 * current allocating tree. 6013 */ 6014 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6015 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6016 range_tree_verify_not_present(msp->ms_freed, offset, size); 6017 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6018 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6019 range_tree_verify_not_present(msp->ms_trim, offset, size); 6020 mutex_exit(&msp->ms_lock); 6021 } 6022 6023 void 6024 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6025 { 6026 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6027 return; 6028 6029 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6030 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6031 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6032 vdev_t *vd = vdev_lookup_top(spa, vdev); 6033 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6034 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6035 6036 if (DVA_GET_GANG(&bp->blk_dva[i])) 6037 size = vdev_gang_header_asize(vd); 6038 6039 ASSERT3P(vd, !=, NULL); 6040 6041 metaslab_check_free_impl(vd, offset, size); 6042 } 6043 spa_config_exit(spa, SCL_VDEV, FTAG); 6044 } 6045 6046 static void 6047 metaslab_group_disable_wait(metaslab_group_t *mg) 6048 { 6049 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6050 while (mg->mg_disabled_updating) { 6051 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6052 } 6053 } 6054 6055 static void 6056 metaslab_group_disabled_increment(metaslab_group_t *mg) 6057 { 6058 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6059 ASSERT(mg->mg_disabled_updating); 6060 6061 while (mg->mg_ms_disabled >= max_disabled_ms) { 6062 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6063 } 6064 mg->mg_ms_disabled++; 6065 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6066 } 6067 6068 /* 6069 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6070 * We must also track how many metaslabs are currently disabled within a 6071 * metaslab group and limit them to prevent allocation failures from 6072 * occurring because all metaslabs are disabled. 6073 */ 6074 void 6075 metaslab_disable(metaslab_t *msp) 6076 { 6077 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6078 metaslab_group_t *mg = msp->ms_group; 6079 6080 mutex_enter(&mg->mg_ms_disabled_lock); 6081 6082 /* 6083 * To keep an accurate count of how many threads have disabled 6084 * a specific metaslab group, we only allow one thread to mark 6085 * the metaslab group at a time. This ensures that the value of 6086 * ms_disabled will be accurate when we decide to mark a metaslab 6087 * group as disabled. To do this we force all other threads 6088 * to wait till the metaslab's mg_disabled_updating flag is no 6089 * longer set. 6090 */ 6091 metaslab_group_disable_wait(mg); 6092 mg->mg_disabled_updating = B_TRUE; 6093 if (msp->ms_disabled == 0) { 6094 metaslab_group_disabled_increment(mg); 6095 } 6096 mutex_enter(&msp->ms_lock); 6097 msp->ms_disabled++; 6098 mutex_exit(&msp->ms_lock); 6099 6100 mg->mg_disabled_updating = B_FALSE; 6101 cv_broadcast(&mg->mg_ms_disabled_cv); 6102 mutex_exit(&mg->mg_ms_disabled_lock); 6103 } 6104 6105 void 6106 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6107 { 6108 metaslab_group_t *mg = msp->ms_group; 6109 spa_t *spa = mg->mg_vd->vdev_spa; 6110 6111 /* 6112 * Wait for the outstanding IO to be synced to prevent newly 6113 * allocated blocks from being overwritten. This used by 6114 * initialize and TRIM which are modifying unallocated space. 6115 */ 6116 if (sync) 6117 txg_wait_synced(spa_get_dsl(spa), 0); 6118 6119 mutex_enter(&mg->mg_ms_disabled_lock); 6120 mutex_enter(&msp->ms_lock); 6121 if (--msp->ms_disabled == 0) { 6122 mg->mg_ms_disabled--; 6123 cv_broadcast(&mg->mg_ms_disabled_cv); 6124 if (unload) 6125 metaslab_unload(msp); 6126 } 6127 mutex_exit(&msp->ms_lock); 6128 mutex_exit(&mg->mg_ms_disabled_lock); 6129 } 6130 6131 static void 6132 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6133 { 6134 vdev_t *vd = ms->ms_group->mg_vd; 6135 spa_t *spa = vd->vdev_spa; 6136 objset_t *mos = spa_meta_objset(spa); 6137 6138 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6139 6140 metaslab_unflushed_phys_t entry = { 6141 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6142 }; 6143 uint64_t entry_size = sizeof (entry); 6144 uint64_t entry_offset = ms->ms_id * entry_size; 6145 6146 uint64_t object = 0; 6147 int err = zap_lookup(mos, vd->vdev_top_zap, 6148 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6149 &object); 6150 if (err == ENOENT) { 6151 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6152 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6153 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6154 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6155 &object, tx)); 6156 } else { 6157 VERIFY0(err); 6158 } 6159 6160 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6161 &entry, tx); 6162 } 6163 6164 void 6165 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6166 { 6167 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6168 6169 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6170 return; 6171 6172 ms->ms_unflushed_txg = txg; 6173 metaslab_update_ondisk_flush_data(ms, tx); 6174 } 6175 6176 uint64_t 6177 metaslab_unflushed_txg(metaslab_t *ms) 6178 { 6179 return (ms->ms_unflushed_txg); 6180 } 6181 6182 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6183 "Allocation granularity (a.k.a. stripe size)"); 6184 6185 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6186 "Load all metaslabs when pool is first opened"); 6187 6188 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6189 "Prevent metaslabs from being unloaded"); 6190 6191 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6192 "Preload potential metaslabs during reassessment"); 6193 6194 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6195 "Delay in txgs after metaslab was last used before unloading"); 6196 6197 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6198 "Delay in milliseconds after metaslab was last used before unloading"); 6199 6200 /* BEGIN CSTYLED */ 6201 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6202 "Percentage of metaslab group size that should be free to make it " 6203 "eligible for allocation"); 6204 6205 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6206 "Percentage of metaslab group size that should be considered eligible " 6207 "for allocations unless all metaslab groups within the metaslab class " 6208 "have also crossed this threshold"); 6209 6210 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6211 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6212 6213 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6214 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6215 /* END CSTYLED */ 6216 6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6218 "Prefer metaslabs with lower LBAs"); 6219 6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6221 "Enable metaslab group biasing"); 6222 6223 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6224 ZMOD_RW, "Enable segment-based metaslab selection"); 6225 6226 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6227 "Segment-based metaslab selection maximum buckets before switching"); 6228 6229 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6230 "Blocks larger than this size are forced to be gang blocks"); 6231 6232 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6233 "Max distance (bytes) to search forward before using size tree"); 6234 6235 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6236 "When looking in size tree, use largest segment instead of exact fit"); 6237 6238 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6239 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6240 6241 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6242 "Percentage of memory that can be used to store metaslab range trees"); 6243 6244 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6245 ZMOD_RW, "Try hard to allocate before ganging"); 6246 6247 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6248 "Normally only consider this many of the best metaslabs in each vdev"); 6249