1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to each disk before 52 * moving on to the next top-level vdev. 53 */ 54 static unsigned long metaslab_aliquot = 1024 * 1024; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 static const int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 static int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 static int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 static int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = B_FALSE; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 static int metaslab_debug_unload = B_FALSE; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 static int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 static const uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 static int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 static int metaslab_unload_delay = 32; 219 static int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 static int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 static int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 static int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 static int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 static int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 static const boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 static const uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 static const int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 static unsigned long zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 static int zfs_metaslab_mem_limit = 25; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 static const uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 static int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 static kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(&mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = &mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, 903 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd)); 904 metaslab_group_alloc_update(mg); 905 906 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 907 mg->mg_prev = mg; 908 mg->mg_next = mg; 909 } else { 910 mgnext = mgprev->mg_next; 911 mg->mg_prev = mgprev; 912 mg->mg_next = mgnext; 913 mgprev->mg_next = mg; 914 mgnext->mg_prev = mg; 915 } 916 for (int i = 0; i < spa->spa_alloc_count; i++) { 917 mc->mc_allocator[i].mca_rotor = mg; 918 mg = mg->mg_next; 919 } 920 } 921 922 /* 923 * Passivate a metaslab group and remove it from the allocation rotor. 924 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 925 * a metaslab group. This function will momentarily drop spa_config_locks 926 * that are lower than the SCL_ALLOC lock (see comment below). 927 */ 928 void 929 metaslab_group_passivate(metaslab_group_t *mg) 930 { 931 metaslab_class_t *mc = mg->mg_class; 932 spa_t *spa = mc->mc_spa; 933 metaslab_group_t *mgprev, *mgnext; 934 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 935 936 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 937 (SCL_ALLOC | SCL_ZIO)); 938 939 if (--mg->mg_activation_count != 0) { 940 for (int i = 0; i < spa->spa_alloc_count; i++) 941 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 942 ASSERT(mg->mg_prev == NULL); 943 ASSERT(mg->mg_next == NULL); 944 ASSERT(mg->mg_activation_count < 0); 945 return; 946 } 947 948 /* 949 * The spa_config_lock is an array of rwlocks, ordered as 950 * follows (from highest to lowest): 951 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 952 * SCL_ZIO > SCL_FREE > SCL_VDEV 953 * (For more information about the spa_config_lock see spa_misc.c) 954 * The higher the lock, the broader its coverage. When we passivate 955 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 956 * config locks. However, the metaslab group's taskq might be trying 957 * to preload metaslabs so we must drop the SCL_ZIO lock and any 958 * lower locks to allow the I/O to complete. At a minimum, 959 * we continue to hold the SCL_ALLOC lock, which prevents any future 960 * allocations from taking place and any changes to the vdev tree. 961 */ 962 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 963 taskq_wait_outstanding(mg->mg_taskq, 0); 964 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 965 metaslab_group_alloc_update(mg); 966 for (int i = 0; i < mg->mg_allocators; i++) { 967 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 968 metaslab_t *msp = mga->mga_primary; 969 if (msp != NULL) { 970 mutex_enter(&msp->ms_lock); 971 metaslab_passivate(msp, 972 metaslab_weight_from_range_tree(msp)); 973 mutex_exit(&msp->ms_lock); 974 } 975 msp = mga->mga_secondary; 976 if (msp != NULL) { 977 mutex_enter(&msp->ms_lock); 978 metaslab_passivate(msp, 979 metaslab_weight_from_range_tree(msp)); 980 mutex_exit(&msp->ms_lock); 981 } 982 } 983 984 mgprev = mg->mg_prev; 985 mgnext = mg->mg_next; 986 987 if (mg == mgnext) { 988 mgnext = NULL; 989 } else { 990 mgprev->mg_next = mgnext; 991 mgnext->mg_prev = mgprev; 992 } 993 for (int i = 0; i < spa->spa_alloc_count; i++) { 994 if (mc->mc_allocator[i].mca_rotor == mg) 995 mc->mc_allocator[i].mca_rotor = mgnext; 996 } 997 998 mg->mg_prev = NULL; 999 mg->mg_next = NULL; 1000 } 1001 1002 boolean_t 1003 metaslab_group_initialized(metaslab_group_t *mg) 1004 { 1005 vdev_t *vd = mg->mg_vd; 1006 vdev_stat_t *vs = &vd->vdev_stat; 1007 1008 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1009 } 1010 1011 uint64_t 1012 metaslab_group_get_space(metaslab_group_t *mg) 1013 { 1014 /* 1015 * Note that the number of nodes in mg_metaslab_tree may be one less 1016 * than vdev_ms_count, due to the embedded log metaslab. 1017 */ 1018 mutex_enter(&mg->mg_lock); 1019 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1020 mutex_exit(&mg->mg_lock); 1021 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1022 } 1023 1024 void 1025 metaslab_group_histogram_verify(metaslab_group_t *mg) 1026 { 1027 uint64_t *mg_hist; 1028 avl_tree_t *t = &mg->mg_metaslab_tree; 1029 uint64_t ashift = mg->mg_vd->vdev_ashift; 1030 1031 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1032 return; 1033 1034 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1035 KM_SLEEP); 1036 1037 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1038 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1039 1040 mutex_enter(&mg->mg_lock); 1041 for (metaslab_t *msp = avl_first(t); 1042 msp != NULL; msp = AVL_NEXT(t, msp)) { 1043 VERIFY3P(msp->ms_group, ==, mg); 1044 /* skip if not active */ 1045 if (msp->ms_sm == NULL) 1046 continue; 1047 1048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1049 mg_hist[i + ashift] += 1050 msp->ms_sm->sm_phys->smp_histogram[i]; 1051 } 1052 } 1053 1054 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1055 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1056 1057 mutex_exit(&mg->mg_lock); 1058 1059 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1060 } 1061 1062 static void 1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1064 { 1065 metaslab_class_t *mc = mg->mg_class; 1066 uint64_t ashift = mg->mg_vd->vdev_ashift; 1067 1068 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1069 if (msp->ms_sm == NULL) 1070 return; 1071 1072 mutex_enter(&mg->mg_lock); 1073 mutex_enter(&mc->mc_lock); 1074 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1075 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1076 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1077 mg->mg_histogram[i + ashift] += 1078 msp->ms_sm->sm_phys->smp_histogram[i]; 1079 mc->mc_histogram[i + ashift] += 1080 msp->ms_sm->sm_phys->smp_histogram[i]; 1081 } 1082 mutex_exit(&mc->mc_lock); 1083 mutex_exit(&mg->mg_lock); 1084 } 1085 1086 void 1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1088 { 1089 metaslab_class_t *mc = mg->mg_class; 1090 uint64_t ashift = mg->mg_vd->vdev_ashift; 1091 1092 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1093 if (msp->ms_sm == NULL) 1094 return; 1095 1096 mutex_enter(&mg->mg_lock); 1097 mutex_enter(&mc->mc_lock); 1098 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1099 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1100 msp->ms_sm->sm_phys->smp_histogram[i]); 1101 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1102 msp->ms_sm->sm_phys->smp_histogram[i]); 1103 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1104 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1105 1106 mg->mg_histogram[i + ashift] -= 1107 msp->ms_sm->sm_phys->smp_histogram[i]; 1108 mc->mc_histogram[i + ashift] -= 1109 msp->ms_sm->sm_phys->smp_histogram[i]; 1110 } 1111 mutex_exit(&mc->mc_lock); 1112 mutex_exit(&mg->mg_lock); 1113 } 1114 1115 static void 1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1117 { 1118 ASSERT(msp->ms_group == NULL); 1119 mutex_enter(&mg->mg_lock); 1120 msp->ms_group = mg; 1121 msp->ms_weight = 0; 1122 avl_add(&mg->mg_metaslab_tree, msp); 1123 mutex_exit(&mg->mg_lock); 1124 1125 mutex_enter(&msp->ms_lock); 1126 metaslab_group_histogram_add(mg, msp); 1127 mutex_exit(&msp->ms_lock); 1128 } 1129 1130 static void 1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1132 { 1133 mutex_enter(&msp->ms_lock); 1134 metaslab_group_histogram_remove(mg, msp); 1135 mutex_exit(&msp->ms_lock); 1136 1137 mutex_enter(&mg->mg_lock); 1138 ASSERT(msp->ms_group == mg); 1139 avl_remove(&mg->mg_metaslab_tree, msp); 1140 1141 metaslab_class_t *mc = msp->ms_group->mg_class; 1142 multilist_sublist_t *mls = 1143 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1144 if (multilist_link_active(&msp->ms_class_txg_node)) 1145 multilist_sublist_remove(mls, msp); 1146 multilist_sublist_unlock(mls); 1147 1148 msp->ms_group = NULL; 1149 mutex_exit(&mg->mg_lock); 1150 } 1151 1152 static void 1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1154 { 1155 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1156 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1157 ASSERT(msp->ms_group == mg); 1158 1159 avl_remove(&mg->mg_metaslab_tree, msp); 1160 msp->ms_weight = weight; 1161 avl_add(&mg->mg_metaslab_tree, msp); 1162 1163 } 1164 1165 static void 1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1167 { 1168 /* 1169 * Although in principle the weight can be any value, in 1170 * practice we do not use values in the range [1, 511]. 1171 */ 1172 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1173 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1174 1175 mutex_enter(&mg->mg_lock); 1176 metaslab_group_sort_impl(mg, msp, weight); 1177 mutex_exit(&mg->mg_lock); 1178 } 1179 1180 /* 1181 * Calculate the fragmentation for a given metaslab group. We can use 1182 * a simple average here since all metaslabs within the group must have 1183 * the same size. The return value will be a value between 0 and 100 1184 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1185 * group have a fragmentation metric. 1186 */ 1187 uint64_t 1188 metaslab_group_fragmentation(metaslab_group_t *mg) 1189 { 1190 vdev_t *vd = mg->mg_vd; 1191 uint64_t fragmentation = 0; 1192 uint64_t valid_ms = 0; 1193 1194 for (int m = 0; m < vd->vdev_ms_count; m++) { 1195 metaslab_t *msp = vd->vdev_ms[m]; 1196 1197 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1198 continue; 1199 if (msp->ms_group != mg) 1200 continue; 1201 1202 valid_ms++; 1203 fragmentation += msp->ms_fragmentation; 1204 } 1205 1206 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1207 return (ZFS_FRAG_INVALID); 1208 1209 fragmentation /= valid_ms; 1210 ASSERT3U(fragmentation, <=, 100); 1211 return (fragmentation); 1212 } 1213 1214 /* 1215 * Determine if a given metaslab group should skip allocations. A metaslab 1216 * group should avoid allocations if its free capacity is less than the 1217 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1218 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1219 * that can still handle allocations. If the allocation throttle is enabled 1220 * then we skip allocations to devices that have reached their maximum 1221 * allocation queue depth unless the selected metaslab group is the only 1222 * eligible group remaining. 1223 */ 1224 static boolean_t 1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1226 uint64_t psize, int allocator, int d) 1227 { 1228 spa_t *spa = mg->mg_vd->vdev_spa; 1229 metaslab_class_t *mc = mg->mg_class; 1230 1231 /* 1232 * We can only consider skipping this metaslab group if it's 1233 * in the normal metaslab class and there are other metaslab 1234 * groups to select from. Otherwise, we always consider it eligible 1235 * for allocations. 1236 */ 1237 if ((mc != spa_normal_class(spa) && 1238 mc != spa_special_class(spa) && 1239 mc != spa_dedup_class(spa)) || 1240 mc->mc_groups <= 1) 1241 return (B_TRUE); 1242 1243 /* 1244 * If the metaslab group's mg_allocatable flag is set (see comments 1245 * in metaslab_group_alloc_update() for more information) and 1246 * the allocation throttle is disabled then allow allocations to this 1247 * device. However, if the allocation throttle is enabled then 1248 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1249 * to determine if we should allow allocations to this metaslab group. 1250 * If all metaslab groups are no longer considered allocatable 1251 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1252 * gang block size then we allow allocations on this metaslab group 1253 * regardless of the mg_allocatable or throttle settings. 1254 */ 1255 if (mg->mg_allocatable) { 1256 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1257 int64_t qdepth; 1258 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1259 1260 if (!mc->mc_alloc_throttle_enabled) 1261 return (B_TRUE); 1262 1263 /* 1264 * If this metaslab group does not have any free space, then 1265 * there is no point in looking further. 1266 */ 1267 if (mg->mg_no_free_space) 1268 return (B_FALSE); 1269 1270 /* 1271 * Relax allocation throttling for ditto blocks. Due to 1272 * random imbalances in allocation it tends to push copies 1273 * to one vdev, that looks a bit better at the moment. 1274 */ 1275 qmax = qmax * (4 + d) / 4; 1276 1277 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1278 1279 /* 1280 * If this metaslab group is below its qmax or it's 1281 * the only allocatable metasable group, then attempt 1282 * to allocate from it. 1283 */ 1284 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1285 return (B_TRUE); 1286 ASSERT3U(mc->mc_alloc_groups, >, 1); 1287 1288 /* 1289 * Since this metaslab group is at or over its qmax, we 1290 * need to determine if there are metaslab groups after this 1291 * one that might be able to handle this allocation. This is 1292 * racy since we can't hold the locks for all metaslab 1293 * groups at the same time when we make this check. 1294 */ 1295 for (metaslab_group_t *mgp = mg->mg_next; 1296 mgp != rotor; mgp = mgp->mg_next) { 1297 metaslab_group_allocator_t *mgap = 1298 &mgp->mg_allocator[allocator]; 1299 qmax = mgap->mga_cur_max_alloc_queue_depth; 1300 qmax = qmax * (4 + d) / 4; 1301 qdepth = 1302 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1303 1304 /* 1305 * If there is another metaslab group that 1306 * might be able to handle the allocation, then 1307 * we return false so that we skip this group. 1308 */ 1309 if (qdepth < qmax && !mgp->mg_no_free_space) 1310 return (B_FALSE); 1311 } 1312 1313 /* 1314 * We didn't find another group to handle the allocation 1315 * so we can't skip this metaslab group even though 1316 * we are at or over our qmax. 1317 */ 1318 return (B_TRUE); 1319 1320 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1321 return (B_TRUE); 1322 } 1323 return (B_FALSE); 1324 } 1325 1326 /* 1327 * ========================================================================== 1328 * Range tree callbacks 1329 * ========================================================================== 1330 */ 1331 1332 /* 1333 * Comparison function for the private size-ordered tree using 32-bit 1334 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1335 */ 1336 static int 1337 metaslab_rangesize32_compare(const void *x1, const void *x2) 1338 { 1339 const range_seg32_t *r1 = x1; 1340 const range_seg32_t *r2 = x2; 1341 1342 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1343 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1344 1345 int cmp = TREE_CMP(rs_size1, rs_size2); 1346 if (likely(cmp)) 1347 return (cmp); 1348 1349 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1350 } 1351 1352 /* 1353 * Comparison function for the private size-ordered tree using 64-bit 1354 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1355 */ 1356 static int 1357 metaslab_rangesize64_compare(const void *x1, const void *x2) 1358 { 1359 const range_seg64_t *r1 = x1; 1360 const range_seg64_t *r2 = x2; 1361 1362 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1363 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1364 1365 int cmp = TREE_CMP(rs_size1, rs_size2); 1366 if (likely(cmp)) 1367 return (cmp); 1368 1369 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1370 } 1371 typedef struct metaslab_rt_arg { 1372 zfs_btree_t *mra_bt; 1373 uint32_t mra_floor_shift; 1374 } metaslab_rt_arg_t; 1375 1376 struct mssa_arg { 1377 range_tree_t *rt; 1378 metaslab_rt_arg_t *mra; 1379 }; 1380 1381 static void 1382 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1383 { 1384 struct mssa_arg *mssap = arg; 1385 range_tree_t *rt = mssap->rt; 1386 metaslab_rt_arg_t *mrap = mssap->mra; 1387 range_seg_max_t seg = {0}; 1388 rs_set_start(&seg, rt, start); 1389 rs_set_end(&seg, rt, start + size); 1390 metaslab_rt_add(rt, &seg, mrap); 1391 } 1392 1393 static void 1394 metaslab_size_tree_full_load(range_tree_t *rt) 1395 { 1396 metaslab_rt_arg_t *mrap = rt->rt_arg; 1397 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1398 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1399 mrap->mra_floor_shift = 0; 1400 struct mssa_arg arg = {0}; 1401 arg.rt = rt; 1402 arg.mra = mrap; 1403 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1404 } 1405 1406 /* 1407 * Create any block allocator specific components. The current allocators 1408 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1409 */ 1410 static void 1411 metaslab_rt_create(range_tree_t *rt, void *arg) 1412 { 1413 metaslab_rt_arg_t *mrap = arg; 1414 zfs_btree_t *size_tree = mrap->mra_bt; 1415 1416 size_t size; 1417 int (*compare) (const void *, const void *); 1418 switch (rt->rt_type) { 1419 case RANGE_SEG32: 1420 size = sizeof (range_seg32_t); 1421 compare = metaslab_rangesize32_compare; 1422 break; 1423 case RANGE_SEG64: 1424 size = sizeof (range_seg64_t); 1425 compare = metaslab_rangesize64_compare; 1426 break; 1427 default: 1428 panic("Invalid range seg type %d", rt->rt_type); 1429 } 1430 zfs_btree_create(size_tree, compare, size); 1431 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1432 } 1433 1434 static void 1435 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1436 { 1437 (void) rt; 1438 metaslab_rt_arg_t *mrap = arg; 1439 zfs_btree_t *size_tree = mrap->mra_bt; 1440 1441 zfs_btree_destroy(size_tree); 1442 kmem_free(mrap, sizeof (*mrap)); 1443 } 1444 1445 static void 1446 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1447 { 1448 metaslab_rt_arg_t *mrap = arg; 1449 zfs_btree_t *size_tree = mrap->mra_bt; 1450 1451 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1452 (1 << mrap->mra_floor_shift)) 1453 return; 1454 1455 zfs_btree_add(size_tree, rs); 1456 } 1457 1458 static void 1459 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1460 { 1461 metaslab_rt_arg_t *mrap = arg; 1462 zfs_btree_t *size_tree = mrap->mra_bt; 1463 1464 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1465 mrap->mra_floor_shift)) 1466 return; 1467 1468 zfs_btree_remove(size_tree, rs); 1469 } 1470 1471 static void 1472 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1473 { 1474 metaslab_rt_arg_t *mrap = arg; 1475 zfs_btree_t *size_tree = mrap->mra_bt; 1476 zfs_btree_clear(size_tree); 1477 zfs_btree_destroy(size_tree); 1478 1479 metaslab_rt_create(rt, arg); 1480 } 1481 1482 static const range_tree_ops_t metaslab_rt_ops = { 1483 .rtop_create = metaslab_rt_create, 1484 .rtop_destroy = metaslab_rt_destroy, 1485 .rtop_add = metaslab_rt_add, 1486 .rtop_remove = metaslab_rt_remove, 1487 .rtop_vacate = metaslab_rt_vacate 1488 }; 1489 1490 /* 1491 * ========================================================================== 1492 * Common allocator routines 1493 * ========================================================================== 1494 */ 1495 1496 /* 1497 * Return the maximum contiguous segment within the metaslab. 1498 */ 1499 uint64_t 1500 metaslab_largest_allocatable(metaslab_t *msp) 1501 { 1502 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1503 range_seg_t *rs; 1504 1505 if (t == NULL) 1506 return (0); 1507 if (zfs_btree_numnodes(t) == 0) 1508 metaslab_size_tree_full_load(msp->ms_allocatable); 1509 1510 rs = zfs_btree_last(t, NULL); 1511 if (rs == NULL) 1512 return (0); 1513 1514 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1515 msp->ms_allocatable)); 1516 } 1517 1518 /* 1519 * Return the maximum contiguous segment within the unflushed frees of this 1520 * metaslab. 1521 */ 1522 static uint64_t 1523 metaslab_largest_unflushed_free(metaslab_t *msp) 1524 { 1525 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1526 1527 if (msp->ms_unflushed_frees == NULL) 1528 return (0); 1529 1530 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1531 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1532 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1533 NULL); 1534 if (rs == NULL) 1535 return (0); 1536 1537 /* 1538 * When a range is freed from the metaslab, that range is added to 1539 * both the unflushed frees and the deferred frees. While the block 1540 * will eventually be usable, if the metaslab were loaded the range 1541 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1542 * txgs had passed. As a result, when attempting to estimate an upper 1543 * bound for the largest currently-usable free segment in the 1544 * metaslab, we need to not consider any ranges currently in the defer 1545 * trees. This algorithm approximates the largest available chunk in 1546 * the largest range in the unflushed_frees tree by taking the first 1547 * chunk. While this may be a poor estimate, it should only remain so 1548 * briefly and should eventually self-correct as frees are no longer 1549 * deferred. Similar logic applies to the ms_freed tree. See 1550 * metaslab_load() for more details. 1551 * 1552 * There are two primary sources of inaccuracy in this estimate. Both 1553 * are tolerated for performance reasons. The first source is that we 1554 * only check the largest segment for overlaps. Smaller segments may 1555 * have more favorable overlaps with the other trees, resulting in 1556 * larger usable chunks. Second, we only look at the first chunk in 1557 * the largest segment; there may be other usable chunks in the 1558 * largest segment, but we ignore them. 1559 */ 1560 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1561 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1562 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1563 uint64_t start = 0; 1564 uint64_t size = 0; 1565 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1566 rsize, &start, &size); 1567 if (found) { 1568 if (rstart == start) 1569 return (0); 1570 rsize = start - rstart; 1571 } 1572 } 1573 1574 uint64_t start = 0; 1575 uint64_t size = 0; 1576 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1577 rsize, &start, &size); 1578 if (found) 1579 rsize = start - rstart; 1580 1581 return (rsize); 1582 } 1583 1584 static range_seg_t * 1585 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1586 uint64_t size, zfs_btree_index_t *where) 1587 { 1588 range_seg_t *rs; 1589 range_seg_max_t rsearch; 1590 1591 rs_set_start(&rsearch, rt, start); 1592 rs_set_end(&rsearch, rt, start + size); 1593 1594 rs = zfs_btree_find(t, &rsearch, where); 1595 if (rs == NULL) { 1596 rs = zfs_btree_next(t, where, where); 1597 } 1598 1599 return (rs); 1600 } 1601 1602 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1603 defined(WITH_CF_BLOCK_ALLOCATOR) 1604 1605 /* 1606 * This is a helper function that can be used by the allocator to find a 1607 * suitable block to allocate. This will search the specified B-tree looking 1608 * for a block that matches the specified criteria. 1609 */ 1610 static uint64_t 1611 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1612 uint64_t max_search) 1613 { 1614 if (*cursor == 0) 1615 *cursor = rt->rt_start; 1616 zfs_btree_t *bt = &rt->rt_root; 1617 zfs_btree_index_t where; 1618 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1619 uint64_t first_found; 1620 int count_searched = 0; 1621 1622 if (rs != NULL) 1623 first_found = rs_get_start(rs, rt); 1624 1625 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1626 max_search || count_searched < metaslab_min_search_count)) { 1627 uint64_t offset = rs_get_start(rs, rt); 1628 if (offset + size <= rs_get_end(rs, rt)) { 1629 *cursor = offset + size; 1630 return (offset); 1631 } 1632 rs = zfs_btree_next(bt, &where, &where); 1633 count_searched++; 1634 } 1635 1636 *cursor = 0; 1637 return (-1ULL); 1638 } 1639 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1640 1641 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1642 /* 1643 * ========================================================================== 1644 * Dynamic Fit (df) block allocator 1645 * 1646 * Search for a free chunk of at least this size, starting from the last 1647 * offset (for this alignment of block) looking for up to 1648 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1649 * found within 16MB, then return a free chunk of exactly the requested size (or 1650 * larger). 1651 * 1652 * If it seems like searching from the last offset will be unproductive, skip 1653 * that and just return a free chunk of exactly the requested size (or larger). 1654 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1655 * mechanism is probably not very useful and may be removed in the future. 1656 * 1657 * The behavior when not searching can be changed to return the largest free 1658 * chunk, instead of a free chunk of exactly the requested size, by setting 1659 * metaslab_df_use_largest_segment. 1660 * ========================================================================== 1661 */ 1662 static uint64_t 1663 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1664 { 1665 /* 1666 * Find the largest power of 2 block size that evenly divides the 1667 * requested size. This is used to try to allocate blocks with similar 1668 * alignment from the same area of the metaslab (i.e. same cursor 1669 * bucket) but it does not guarantee that other allocations sizes 1670 * may exist in the same region. 1671 */ 1672 uint64_t align = size & -size; 1673 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1674 range_tree_t *rt = msp->ms_allocatable; 1675 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1676 uint64_t offset; 1677 1678 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1679 1680 /* 1681 * If we're running low on space, find a segment based on size, 1682 * rather than iterating based on offset. 1683 */ 1684 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1685 free_pct < metaslab_df_free_pct) { 1686 offset = -1; 1687 } else { 1688 offset = metaslab_block_picker(rt, 1689 cursor, size, metaslab_df_max_search); 1690 } 1691 1692 if (offset == -1) { 1693 range_seg_t *rs; 1694 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1695 metaslab_size_tree_full_load(msp->ms_allocatable); 1696 1697 if (metaslab_df_use_largest_segment) { 1698 /* use largest free segment */ 1699 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1700 } else { 1701 zfs_btree_index_t where; 1702 /* use segment of this size, or next largest */ 1703 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1704 rt, msp->ms_start, size, &where); 1705 } 1706 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1707 rt)) { 1708 offset = rs_get_start(rs, rt); 1709 *cursor = offset + size; 1710 } 1711 } 1712 1713 return (offset); 1714 } 1715 1716 const metaslab_ops_t zfs_metaslab_ops = { 1717 metaslab_df_alloc 1718 }; 1719 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1720 1721 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1722 /* 1723 * ========================================================================== 1724 * Cursor fit block allocator - 1725 * Select the largest region in the metaslab, set the cursor to the beginning 1726 * of the range and the cursor_end to the end of the range. As allocations 1727 * are made advance the cursor. Continue allocating from the cursor until 1728 * the range is exhausted and then find a new range. 1729 * ========================================================================== 1730 */ 1731 static uint64_t 1732 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1733 { 1734 range_tree_t *rt = msp->ms_allocatable; 1735 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1736 uint64_t *cursor = &msp->ms_lbas[0]; 1737 uint64_t *cursor_end = &msp->ms_lbas[1]; 1738 uint64_t offset = 0; 1739 1740 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1741 1742 ASSERT3U(*cursor_end, >=, *cursor); 1743 1744 if ((*cursor + size) > *cursor_end) { 1745 range_seg_t *rs; 1746 1747 if (zfs_btree_numnodes(t) == 0) 1748 metaslab_size_tree_full_load(msp->ms_allocatable); 1749 rs = zfs_btree_last(t, NULL); 1750 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1751 size) 1752 return (-1ULL); 1753 1754 *cursor = rs_get_start(rs, rt); 1755 *cursor_end = rs_get_end(rs, rt); 1756 } 1757 1758 offset = *cursor; 1759 *cursor += size; 1760 1761 return (offset); 1762 } 1763 1764 const metaslab_ops_t zfs_metaslab_ops = { 1765 metaslab_cf_alloc 1766 }; 1767 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1768 1769 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1770 /* 1771 * ========================================================================== 1772 * New dynamic fit allocator - 1773 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1774 * contiguous blocks. If no region is found then just use the largest segment 1775 * that remains. 1776 * ========================================================================== 1777 */ 1778 1779 /* 1780 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1781 * to request from the allocator. 1782 */ 1783 uint64_t metaslab_ndf_clump_shift = 4; 1784 1785 static uint64_t 1786 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1787 { 1788 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1789 range_tree_t *rt = msp->ms_allocatable; 1790 zfs_btree_index_t where; 1791 range_seg_t *rs; 1792 range_seg_max_t rsearch; 1793 uint64_t hbit = highbit64(size); 1794 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1795 uint64_t max_size = metaslab_largest_allocatable(msp); 1796 1797 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1798 1799 if (max_size < size) 1800 return (-1ULL); 1801 1802 rs_set_start(&rsearch, rt, *cursor); 1803 rs_set_end(&rsearch, rt, *cursor + size); 1804 1805 rs = zfs_btree_find(t, &rsearch, &where); 1806 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1807 t = &msp->ms_allocatable_by_size; 1808 1809 rs_set_start(&rsearch, rt, 0); 1810 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1811 metaslab_ndf_clump_shift))); 1812 1813 rs = zfs_btree_find(t, &rsearch, &where); 1814 if (rs == NULL) 1815 rs = zfs_btree_next(t, &where, &where); 1816 ASSERT(rs != NULL); 1817 } 1818 1819 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1820 *cursor = rs_get_start(rs, rt) + size; 1821 return (rs_get_start(rs, rt)); 1822 } 1823 return (-1ULL); 1824 } 1825 1826 const metaslab_ops_t zfs_metaslab_ops = { 1827 metaslab_ndf_alloc 1828 }; 1829 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1830 1831 1832 /* 1833 * ========================================================================== 1834 * Metaslabs 1835 * ========================================================================== 1836 */ 1837 1838 /* 1839 * Wait for any in-progress metaslab loads to complete. 1840 */ 1841 static void 1842 metaslab_load_wait(metaslab_t *msp) 1843 { 1844 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1845 1846 while (msp->ms_loading) { 1847 ASSERT(!msp->ms_loaded); 1848 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1849 } 1850 } 1851 1852 /* 1853 * Wait for any in-progress flushing to complete. 1854 */ 1855 static void 1856 metaslab_flush_wait(metaslab_t *msp) 1857 { 1858 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1859 1860 while (msp->ms_flushing) 1861 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1862 } 1863 1864 static unsigned int 1865 metaslab_idx_func(multilist_t *ml, void *arg) 1866 { 1867 metaslab_t *msp = arg; 1868 1869 /* 1870 * ms_id values are allocated sequentially, so full 64bit 1871 * division would be a waste of time, so limit it to 32 bits. 1872 */ 1873 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1874 } 1875 1876 uint64_t 1877 metaslab_allocated_space(metaslab_t *msp) 1878 { 1879 return (msp->ms_allocated_space); 1880 } 1881 1882 /* 1883 * Verify that the space accounting on disk matches the in-core range_trees. 1884 */ 1885 static void 1886 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1887 { 1888 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1889 uint64_t allocating = 0; 1890 uint64_t sm_free_space, msp_free_space; 1891 1892 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1893 ASSERT(!msp->ms_condensing); 1894 1895 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1896 return; 1897 1898 /* 1899 * We can only verify the metaslab space when we're called 1900 * from syncing context with a loaded metaslab that has an 1901 * allocated space map. Calling this in non-syncing context 1902 * does not provide a consistent view of the metaslab since 1903 * we're performing allocations in the future. 1904 */ 1905 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1906 !msp->ms_loaded) 1907 return; 1908 1909 /* 1910 * Even though the smp_alloc field can get negative, 1911 * when it comes to a metaslab's space map, that should 1912 * never be the case. 1913 */ 1914 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1915 1916 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1917 range_tree_space(msp->ms_unflushed_frees)); 1918 1919 ASSERT3U(metaslab_allocated_space(msp), ==, 1920 space_map_allocated(msp->ms_sm) + 1921 range_tree_space(msp->ms_unflushed_allocs) - 1922 range_tree_space(msp->ms_unflushed_frees)); 1923 1924 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1925 1926 /* 1927 * Account for future allocations since we would have 1928 * already deducted that space from the ms_allocatable. 1929 */ 1930 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1931 allocating += 1932 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1933 } 1934 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1935 msp->ms_allocating_total); 1936 1937 ASSERT3U(msp->ms_deferspace, ==, 1938 range_tree_space(msp->ms_defer[0]) + 1939 range_tree_space(msp->ms_defer[1])); 1940 1941 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1942 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1943 1944 VERIFY3U(sm_free_space, ==, msp_free_space); 1945 } 1946 1947 static void 1948 metaslab_aux_histograms_clear(metaslab_t *msp) 1949 { 1950 /* 1951 * Auxiliary histograms are only cleared when resetting them, 1952 * which can only happen while the metaslab is loaded. 1953 */ 1954 ASSERT(msp->ms_loaded); 1955 1956 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 1957 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1958 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 1959 } 1960 1961 static void 1962 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1963 range_tree_t *rt) 1964 { 1965 /* 1966 * This is modeled after space_map_histogram_add(), so refer to that 1967 * function for implementation details. We want this to work like 1968 * the space map histogram, and not the range tree histogram, as we 1969 * are essentially constructing a delta that will be later subtracted 1970 * from the space map histogram. 1971 */ 1972 int idx = 0; 1973 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1974 ASSERT3U(i, >=, idx + shift); 1975 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1976 1977 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1978 ASSERT3U(idx + shift, ==, i); 1979 idx++; 1980 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1981 } 1982 } 1983 } 1984 1985 /* 1986 * Called at every sync pass that the metaslab gets synced. 1987 * 1988 * The reason is that we want our auxiliary histograms to be updated 1989 * wherever the metaslab's space map histogram is updated. This way 1990 * we stay consistent on which parts of the metaslab space map's 1991 * histogram are currently not available for allocations (e.g because 1992 * they are in the defer, freed, and freeing trees). 1993 */ 1994 static void 1995 metaslab_aux_histograms_update(metaslab_t *msp) 1996 { 1997 space_map_t *sm = msp->ms_sm; 1998 ASSERT(sm != NULL); 1999 2000 /* 2001 * This is similar to the metaslab's space map histogram updates 2002 * that take place in metaslab_sync(). The only difference is that 2003 * we only care about segments that haven't made it into the 2004 * ms_allocatable tree yet. 2005 */ 2006 if (msp->ms_loaded) { 2007 metaslab_aux_histograms_clear(msp); 2008 2009 metaslab_aux_histogram_add(msp->ms_synchist, 2010 sm->sm_shift, msp->ms_freed); 2011 2012 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2013 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2014 sm->sm_shift, msp->ms_defer[t]); 2015 } 2016 } 2017 2018 metaslab_aux_histogram_add(msp->ms_synchist, 2019 sm->sm_shift, msp->ms_freeing); 2020 } 2021 2022 /* 2023 * Called every time we are done syncing (writing to) the metaslab, 2024 * i.e. at the end of each sync pass. 2025 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2026 */ 2027 static void 2028 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2029 { 2030 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2031 space_map_t *sm = msp->ms_sm; 2032 2033 if (sm == NULL) { 2034 /* 2035 * We came here from metaslab_init() when creating/opening a 2036 * pool, looking at a metaslab that hasn't had any allocations 2037 * yet. 2038 */ 2039 return; 2040 } 2041 2042 /* 2043 * This is similar to the actions that we take for the ms_freed 2044 * and ms_defer trees in metaslab_sync_done(). 2045 */ 2046 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2047 if (defer_allowed) { 2048 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2049 sizeof (msp->ms_synchist)); 2050 } else { 2051 memset(msp->ms_deferhist[hist_index], 0, 2052 sizeof (msp->ms_deferhist[hist_index])); 2053 } 2054 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2055 } 2056 2057 /* 2058 * Ensure that the metaslab's weight and fragmentation are consistent 2059 * with the contents of the histogram (either the range tree's histogram 2060 * or the space map's depending whether the metaslab is loaded). 2061 */ 2062 static void 2063 metaslab_verify_weight_and_frag(metaslab_t *msp) 2064 { 2065 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2066 2067 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2068 return; 2069 2070 /* 2071 * We can end up here from vdev_remove_complete(), in which case we 2072 * cannot do these assertions because we hold spa config locks and 2073 * thus we are not allowed to read from the DMU. 2074 * 2075 * We check if the metaslab group has been removed and if that's 2076 * the case we return immediately as that would mean that we are 2077 * here from the aforementioned code path. 2078 */ 2079 if (msp->ms_group == NULL) 2080 return; 2081 2082 /* 2083 * Devices being removed always return a weight of 0 and leave 2084 * fragmentation and ms_max_size as is - there is nothing for 2085 * us to verify here. 2086 */ 2087 vdev_t *vd = msp->ms_group->mg_vd; 2088 if (vd->vdev_removing) 2089 return; 2090 2091 /* 2092 * If the metaslab is dirty it probably means that we've done 2093 * some allocations or frees that have changed our histograms 2094 * and thus the weight. 2095 */ 2096 for (int t = 0; t < TXG_SIZE; t++) { 2097 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2098 return; 2099 } 2100 2101 /* 2102 * This verification checks that our in-memory state is consistent 2103 * with what's on disk. If the pool is read-only then there aren't 2104 * any changes and we just have the initially-loaded state. 2105 */ 2106 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2107 return; 2108 2109 /* some extra verification for in-core tree if you can */ 2110 if (msp->ms_loaded) { 2111 range_tree_stat_verify(msp->ms_allocatable); 2112 VERIFY(space_map_histogram_verify(msp->ms_sm, 2113 msp->ms_allocatable)); 2114 } 2115 2116 uint64_t weight = msp->ms_weight; 2117 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2118 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2119 uint64_t frag = msp->ms_fragmentation; 2120 uint64_t max_segsize = msp->ms_max_size; 2121 2122 msp->ms_weight = 0; 2123 msp->ms_fragmentation = 0; 2124 2125 /* 2126 * This function is used for verification purposes and thus should 2127 * not introduce any side-effects/mutations on the system's state. 2128 * 2129 * Regardless of whether metaslab_weight() thinks this metaslab 2130 * should be active or not, we want to ensure that the actual weight 2131 * (and therefore the value of ms_weight) would be the same if it 2132 * was to be recalculated at this point. 2133 * 2134 * In addition we set the nodirty flag so metaslab_weight() does 2135 * not dirty the metaslab for future TXGs (e.g. when trying to 2136 * force condensing to upgrade the metaslab spacemaps). 2137 */ 2138 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2139 2140 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2141 2142 /* 2143 * If the weight type changed then there is no point in doing 2144 * verification. Revert fields to their original values. 2145 */ 2146 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2147 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2148 msp->ms_fragmentation = frag; 2149 msp->ms_weight = weight; 2150 return; 2151 } 2152 2153 VERIFY3U(msp->ms_fragmentation, ==, frag); 2154 VERIFY3U(msp->ms_weight, ==, weight); 2155 } 2156 2157 /* 2158 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2159 * this class that was used longest ago, and attempt to unload it. We don't 2160 * want to spend too much time in this loop to prevent performance 2161 * degradation, and we expect that most of the time this operation will 2162 * succeed. Between that and the normal unloading processing during txg sync, 2163 * we expect this to keep the metaslab memory usage under control. 2164 */ 2165 static void 2166 metaslab_potentially_evict(metaslab_class_t *mc) 2167 { 2168 #ifdef _KERNEL 2169 uint64_t allmem = arc_all_memory(); 2170 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2171 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2172 int tries = 0; 2173 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2174 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2175 tries++) { 2176 unsigned int idx = multilist_get_random_index( 2177 &mc->mc_metaslab_txg_list); 2178 multilist_sublist_t *mls = 2179 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2180 metaslab_t *msp = multilist_sublist_head(mls); 2181 multilist_sublist_unlock(mls); 2182 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2183 inuse * size) { 2184 VERIFY3P(mls, ==, multilist_sublist_lock( 2185 &mc->mc_metaslab_txg_list, idx)); 2186 ASSERT3U(idx, ==, 2187 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2188 2189 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2190 multilist_sublist_unlock(mls); 2191 break; 2192 } 2193 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2194 multilist_sublist_unlock(mls); 2195 /* 2196 * If the metaslab is currently loading there are two 2197 * cases. If it's the metaslab we're evicting, we 2198 * can't continue on or we'll panic when we attempt to 2199 * recursively lock the mutex. If it's another 2200 * metaslab that's loading, it can be safely skipped, 2201 * since we know it's very new and therefore not a 2202 * good eviction candidate. We check later once the 2203 * lock is held that the metaslab is fully loaded 2204 * before actually unloading it. 2205 */ 2206 if (msp->ms_loading) { 2207 msp = next_msp; 2208 inuse = 2209 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2210 continue; 2211 } 2212 /* 2213 * We can't unload metaslabs with no spacemap because 2214 * they're not ready to be unloaded yet. We can't 2215 * unload metaslabs with outstanding allocations 2216 * because doing so could cause the metaslab's weight 2217 * to decrease while it's unloaded, which violates an 2218 * invariant that we use to prevent unnecessary 2219 * loading. We also don't unload metaslabs that are 2220 * currently active because they are high-weight 2221 * metaslabs that are likely to be used in the near 2222 * future. 2223 */ 2224 mutex_enter(&msp->ms_lock); 2225 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2226 msp->ms_allocating_total == 0) { 2227 metaslab_unload(msp); 2228 } 2229 mutex_exit(&msp->ms_lock); 2230 msp = next_msp; 2231 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2232 } 2233 } 2234 #else 2235 (void) mc, (void) zfs_metaslab_mem_limit; 2236 #endif 2237 } 2238 2239 static int 2240 metaslab_load_impl(metaslab_t *msp) 2241 { 2242 int error = 0; 2243 2244 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2245 ASSERT(msp->ms_loading); 2246 ASSERT(!msp->ms_condensing); 2247 2248 /* 2249 * We temporarily drop the lock to unblock other operations while we 2250 * are reading the space map. Therefore, metaslab_sync() and 2251 * metaslab_sync_done() can run at the same time as we do. 2252 * 2253 * If we are using the log space maps, metaslab_sync() can't write to 2254 * the metaslab's space map while we are loading as we only write to 2255 * it when we are flushing the metaslab, and that can't happen while 2256 * we are loading it. 2257 * 2258 * If we are not using log space maps though, metaslab_sync() can 2259 * append to the space map while we are loading. Therefore we load 2260 * only entries that existed when we started the load. Additionally, 2261 * metaslab_sync_done() has to wait for the load to complete because 2262 * there are potential races like metaslab_load() loading parts of the 2263 * space map that are currently being appended by metaslab_sync(). If 2264 * we didn't, the ms_allocatable would have entries that 2265 * metaslab_sync_done() would try to re-add later. 2266 * 2267 * That's why before dropping the lock we remember the synced length 2268 * of the metaslab and read up to that point of the space map, 2269 * ignoring entries appended by metaslab_sync() that happen after we 2270 * drop the lock. 2271 */ 2272 uint64_t length = msp->ms_synced_length; 2273 mutex_exit(&msp->ms_lock); 2274 2275 hrtime_t load_start = gethrtime(); 2276 metaslab_rt_arg_t *mrap; 2277 if (msp->ms_allocatable->rt_arg == NULL) { 2278 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2279 } else { 2280 mrap = msp->ms_allocatable->rt_arg; 2281 msp->ms_allocatable->rt_ops = NULL; 2282 msp->ms_allocatable->rt_arg = NULL; 2283 } 2284 mrap->mra_bt = &msp->ms_allocatable_by_size; 2285 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2286 2287 if (msp->ms_sm != NULL) { 2288 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2289 SM_FREE, length); 2290 2291 /* Now, populate the size-sorted tree. */ 2292 metaslab_rt_create(msp->ms_allocatable, mrap); 2293 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2294 msp->ms_allocatable->rt_arg = mrap; 2295 2296 struct mssa_arg arg = {0}; 2297 arg.rt = msp->ms_allocatable; 2298 arg.mra = mrap; 2299 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2300 &arg); 2301 } else { 2302 /* 2303 * Add the size-sorted tree first, since we don't need to load 2304 * the metaslab from the spacemap. 2305 */ 2306 metaslab_rt_create(msp->ms_allocatable, mrap); 2307 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2308 msp->ms_allocatable->rt_arg = mrap; 2309 /* 2310 * The space map has not been allocated yet, so treat 2311 * all the space in the metaslab as free and add it to the 2312 * ms_allocatable tree. 2313 */ 2314 range_tree_add(msp->ms_allocatable, 2315 msp->ms_start, msp->ms_size); 2316 2317 if (msp->ms_new) { 2318 /* 2319 * If the ms_sm doesn't exist, this means that this 2320 * metaslab hasn't gone through metaslab_sync() and 2321 * thus has never been dirtied. So we shouldn't 2322 * expect any unflushed allocs or frees from previous 2323 * TXGs. 2324 */ 2325 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2326 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2327 } 2328 } 2329 2330 /* 2331 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2332 * changing the ms_sm (or log_sm) and the metaslab's range trees 2333 * while we are about to use them and populate the ms_allocatable. 2334 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2335 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2336 */ 2337 mutex_enter(&msp->ms_sync_lock); 2338 mutex_enter(&msp->ms_lock); 2339 2340 ASSERT(!msp->ms_condensing); 2341 ASSERT(!msp->ms_flushing); 2342 2343 if (error != 0) { 2344 mutex_exit(&msp->ms_sync_lock); 2345 return (error); 2346 } 2347 2348 ASSERT3P(msp->ms_group, !=, NULL); 2349 msp->ms_loaded = B_TRUE; 2350 2351 /* 2352 * Apply all the unflushed changes to ms_allocatable right 2353 * away so any manipulations we do below have a clear view 2354 * of what is allocated and what is free. 2355 */ 2356 range_tree_walk(msp->ms_unflushed_allocs, 2357 range_tree_remove, msp->ms_allocatable); 2358 range_tree_walk(msp->ms_unflushed_frees, 2359 range_tree_add, msp->ms_allocatable); 2360 2361 ASSERT3P(msp->ms_group, !=, NULL); 2362 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2363 if (spa_syncing_log_sm(spa) != NULL) { 2364 ASSERT(spa_feature_is_enabled(spa, 2365 SPA_FEATURE_LOG_SPACEMAP)); 2366 2367 /* 2368 * If we use a log space map we add all the segments 2369 * that are in ms_unflushed_frees so they are available 2370 * for allocation. 2371 * 2372 * ms_allocatable needs to contain all free segments 2373 * that are ready for allocations (thus not segments 2374 * from ms_freeing, ms_freed, and the ms_defer trees). 2375 * But if we grab the lock in this code path at a sync 2376 * pass later that 1, then it also contains the 2377 * segments of ms_freed (they were added to it earlier 2378 * in this path through ms_unflushed_frees). So we 2379 * need to remove all the segments that exist in 2380 * ms_freed from ms_allocatable as they will be added 2381 * later in metaslab_sync_done(). 2382 * 2383 * When there's no log space map, the ms_allocatable 2384 * correctly doesn't contain any segments that exist 2385 * in ms_freed [see ms_synced_length]. 2386 */ 2387 range_tree_walk(msp->ms_freed, 2388 range_tree_remove, msp->ms_allocatable); 2389 } 2390 2391 /* 2392 * If we are not using the log space map, ms_allocatable 2393 * contains the segments that exist in the ms_defer trees 2394 * [see ms_synced_length]. Thus we need to remove them 2395 * from ms_allocatable as they will be added again in 2396 * metaslab_sync_done(). 2397 * 2398 * If we are using the log space map, ms_allocatable still 2399 * contains the segments that exist in the ms_defer trees. 2400 * Not because it read them through the ms_sm though. But 2401 * because these segments are part of ms_unflushed_frees 2402 * whose segments we add to ms_allocatable earlier in this 2403 * code path. 2404 */ 2405 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2406 range_tree_walk(msp->ms_defer[t], 2407 range_tree_remove, msp->ms_allocatable); 2408 } 2409 2410 /* 2411 * Call metaslab_recalculate_weight_and_sort() now that the 2412 * metaslab is loaded so we get the metaslab's real weight. 2413 * 2414 * Unless this metaslab was created with older software and 2415 * has not yet been converted to use segment-based weight, we 2416 * expect the new weight to be better or equal to the weight 2417 * that the metaslab had while it was not loaded. This is 2418 * because the old weight does not take into account the 2419 * consolidation of adjacent segments between TXGs. [see 2420 * comment for ms_synchist and ms_deferhist[] for more info] 2421 */ 2422 uint64_t weight = msp->ms_weight; 2423 uint64_t max_size = msp->ms_max_size; 2424 metaslab_recalculate_weight_and_sort(msp); 2425 if (!WEIGHT_IS_SPACEBASED(weight)) 2426 ASSERT3U(weight, <=, msp->ms_weight); 2427 msp->ms_max_size = metaslab_largest_allocatable(msp); 2428 ASSERT3U(max_size, <=, msp->ms_max_size); 2429 hrtime_t load_end = gethrtime(); 2430 msp->ms_load_time = load_end; 2431 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2432 "ms_id %llu, smp_length %llu, " 2433 "unflushed_allocs %llu, unflushed_frees %llu, " 2434 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2435 "loading_time %lld ms, ms_max_size %llu, " 2436 "max size error %lld, " 2437 "old_weight %llx, new_weight %llx", 2438 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2439 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2440 (u_longlong_t)msp->ms_id, 2441 (u_longlong_t)space_map_length(msp->ms_sm), 2442 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2443 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2444 (u_longlong_t)range_tree_space(msp->ms_freed), 2445 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2446 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2447 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2448 (longlong_t)((load_end - load_start) / 1000000), 2449 (u_longlong_t)msp->ms_max_size, 2450 (u_longlong_t)msp->ms_max_size - max_size, 2451 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2452 2453 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2454 mutex_exit(&msp->ms_sync_lock); 2455 return (0); 2456 } 2457 2458 int 2459 metaslab_load(metaslab_t *msp) 2460 { 2461 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2462 2463 /* 2464 * There may be another thread loading the same metaslab, if that's 2465 * the case just wait until the other thread is done and return. 2466 */ 2467 metaslab_load_wait(msp); 2468 if (msp->ms_loaded) 2469 return (0); 2470 VERIFY(!msp->ms_loading); 2471 ASSERT(!msp->ms_condensing); 2472 2473 /* 2474 * We set the loading flag BEFORE potentially dropping the lock to 2475 * wait for an ongoing flush (see ms_flushing below). This way other 2476 * threads know that there is already a thread that is loading this 2477 * metaslab. 2478 */ 2479 msp->ms_loading = B_TRUE; 2480 2481 /* 2482 * Wait for any in-progress flushing to finish as we drop the ms_lock 2483 * both here (during space_map_load()) and in metaslab_flush() (when 2484 * we flush our changes to the ms_sm). 2485 */ 2486 if (msp->ms_flushing) 2487 metaslab_flush_wait(msp); 2488 2489 /* 2490 * In the possibility that we were waiting for the metaslab to be 2491 * flushed (where we temporarily dropped the ms_lock), ensure that 2492 * no one else loaded the metaslab somehow. 2493 */ 2494 ASSERT(!msp->ms_loaded); 2495 2496 /* 2497 * If we're loading a metaslab in the normal class, consider evicting 2498 * another one to keep our memory usage under the limit defined by the 2499 * zfs_metaslab_mem_limit tunable. 2500 */ 2501 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2502 msp->ms_group->mg_class) { 2503 metaslab_potentially_evict(msp->ms_group->mg_class); 2504 } 2505 2506 int error = metaslab_load_impl(msp); 2507 2508 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2509 msp->ms_loading = B_FALSE; 2510 cv_broadcast(&msp->ms_load_cv); 2511 2512 return (error); 2513 } 2514 2515 void 2516 metaslab_unload(metaslab_t *msp) 2517 { 2518 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2519 2520 /* 2521 * This can happen if a metaslab is selected for eviction (in 2522 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2523 * metaslab_class_evict_old). 2524 */ 2525 if (!msp->ms_loaded) 2526 return; 2527 2528 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2529 msp->ms_loaded = B_FALSE; 2530 msp->ms_unload_time = gethrtime(); 2531 2532 msp->ms_activation_weight = 0; 2533 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2534 2535 if (msp->ms_group != NULL) { 2536 metaslab_class_t *mc = msp->ms_group->mg_class; 2537 multilist_sublist_t *mls = 2538 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2539 if (multilist_link_active(&msp->ms_class_txg_node)) 2540 multilist_sublist_remove(mls, msp); 2541 multilist_sublist_unlock(mls); 2542 2543 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2544 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2545 "ms_id %llu, weight %llx, " 2546 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2547 "loaded %llu ms ago, max_size %llu", 2548 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2549 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2550 (u_longlong_t)msp->ms_id, 2551 (u_longlong_t)msp->ms_weight, 2552 (u_longlong_t)msp->ms_selected_txg, 2553 (u_longlong_t)(msp->ms_unload_time - 2554 msp->ms_selected_time) / 1000 / 1000, 2555 (u_longlong_t)msp->ms_alloc_txg, 2556 (u_longlong_t)(msp->ms_unload_time - 2557 msp->ms_load_time) / 1000 / 1000, 2558 (u_longlong_t)msp->ms_max_size); 2559 } 2560 2561 /* 2562 * We explicitly recalculate the metaslab's weight based on its space 2563 * map (as it is now not loaded). We want unload metaslabs to always 2564 * have their weights calculated from the space map histograms, while 2565 * loaded ones have it calculated from their in-core range tree 2566 * [see metaslab_load()]. This way, the weight reflects the information 2567 * available in-core, whether it is loaded or not. 2568 * 2569 * If ms_group == NULL means that we came here from metaslab_fini(), 2570 * at which point it doesn't make sense for us to do the recalculation 2571 * and the sorting. 2572 */ 2573 if (msp->ms_group != NULL) 2574 metaslab_recalculate_weight_and_sort(msp); 2575 } 2576 2577 /* 2578 * We want to optimize the memory use of the per-metaslab range 2579 * trees. To do this, we store the segments in the range trees in 2580 * units of sectors, zero-indexing from the start of the metaslab. If 2581 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2582 * the ranges using two uint32_ts, rather than two uint64_ts. 2583 */ 2584 range_seg_type_t 2585 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2586 uint64_t *start, uint64_t *shift) 2587 { 2588 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2589 !zfs_metaslab_force_large_segs) { 2590 *shift = vdev->vdev_ashift; 2591 *start = msp->ms_start; 2592 return (RANGE_SEG32); 2593 } else { 2594 *shift = 0; 2595 *start = 0; 2596 return (RANGE_SEG64); 2597 } 2598 } 2599 2600 void 2601 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2602 { 2603 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2604 metaslab_class_t *mc = msp->ms_group->mg_class; 2605 multilist_sublist_t *mls = 2606 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2607 if (multilist_link_active(&msp->ms_class_txg_node)) 2608 multilist_sublist_remove(mls, msp); 2609 msp->ms_selected_txg = txg; 2610 msp->ms_selected_time = gethrtime(); 2611 multilist_sublist_insert_tail(mls, msp); 2612 multilist_sublist_unlock(mls); 2613 } 2614 2615 void 2616 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2617 int64_t defer_delta, int64_t space_delta) 2618 { 2619 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2620 2621 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2622 ASSERT(vd->vdev_ms_count != 0); 2623 2624 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2625 vdev_deflated_space(vd, space_delta)); 2626 } 2627 2628 int 2629 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2630 uint64_t txg, metaslab_t **msp) 2631 { 2632 vdev_t *vd = mg->mg_vd; 2633 spa_t *spa = vd->vdev_spa; 2634 objset_t *mos = spa->spa_meta_objset; 2635 metaslab_t *ms; 2636 int error; 2637 2638 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2639 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2640 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2641 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2642 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2643 multilist_link_init(&ms->ms_class_txg_node); 2644 2645 ms->ms_id = id; 2646 ms->ms_start = id << vd->vdev_ms_shift; 2647 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2648 ms->ms_allocator = -1; 2649 ms->ms_new = B_TRUE; 2650 2651 vdev_ops_t *ops = vd->vdev_ops; 2652 if (ops->vdev_op_metaslab_init != NULL) 2653 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2654 2655 /* 2656 * We only open space map objects that already exist. All others 2657 * will be opened when we finally allocate an object for it. For 2658 * readonly pools there is no need to open the space map object. 2659 * 2660 * Note: 2661 * When called from vdev_expand(), we can't call into the DMU as 2662 * we are holding the spa_config_lock as a writer and we would 2663 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2664 * that case, the object parameter is zero though, so we won't 2665 * call into the DMU. 2666 */ 2667 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2668 !spa->spa_read_spacemaps)) { 2669 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2670 ms->ms_size, vd->vdev_ashift); 2671 2672 if (error != 0) { 2673 kmem_free(ms, sizeof (metaslab_t)); 2674 return (error); 2675 } 2676 2677 ASSERT(ms->ms_sm != NULL); 2678 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2679 } 2680 2681 uint64_t shift, start; 2682 range_seg_type_t type = 2683 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2684 2685 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2686 for (int t = 0; t < TXG_SIZE; t++) { 2687 ms->ms_allocating[t] = range_tree_create(NULL, type, 2688 NULL, start, shift); 2689 } 2690 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2691 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2692 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2693 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2694 start, shift); 2695 } 2696 ms->ms_checkpointing = 2697 range_tree_create(NULL, type, NULL, start, shift); 2698 ms->ms_unflushed_allocs = 2699 range_tree_create(NULL, type, NULL, start, shift); 2700 2701 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2702 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2703 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2704 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2705 type, mrap, start, shift); 2706 2707 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2708 2709 metaslab_group_add(mg, ms); 2710 metaslab_set_fragmentation(ms, B_FALSE); 2711 2712 /* 2713 * If we're opening an existing pool (txg == 0) or creating 2714 * a new one (txg == TXG_INITIAL), all space is available now. 2715 * If we're adding space to an existing pool, the new space 2716 * does not become available until after this txg has synced. 2717 * The metaslab's weight will also be initialized when we sync 2718 * out this txg. This ensures that we don't attempt to allocate 2719 * from it before we have initialized it completely. 2720 */ 2721 if (txg <= TXG_INITIAL) { 2722 metaslab_sync_done(ms, 0); 2723 metaslab_space_update(vd, mg->mg_class, 2724 metaslab_allocated_space(ms), 0, 0); 2725 } 2726 2727 if (txg != 0) { 2728 vdev_dirty(vd, 0, NULL, txg); 2729 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2730 } 2731 2732 *msp = ms; 2733 2734 return (0); 2735 } 2736 2737 static void 2738 metaslab_fini_flush_data(metaslab_t *msp) 2739 { 2740 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2741 2742 if (metaslab_unflushed_txg(msp) == 0) { 2743 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2744 ==, NULL); 2745 return; 2746 } 2747 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2748 2749 mutex_enter(&spa->spa_flushed_ms_lock); 2750 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2751 mutex_exit(&spa->spa_flushed_ms_lock); 2752 2753 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2754 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2755 metaslab_unflushed_dirty(msp)); 2756 } 2757 2758 uint64_t 2759 metaslab_unflushed_changes_memused(metaslab_t *ms) 2760 { 2761 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2762 range_tree_numsegs(ms->ms_unflushed_frees)) * 2763 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2764 } 2765 2766 void 2767 metaslab_fini(metaslab_t *msp) 2768 { 2769 metaslab_group_t *mg = msp->ms_group; 2770 vdev_t *vd = mg->mg_vd; 2771 spa_t *spa = vd->vdev_spa; 2772 2773 metaslab_fini_flush_data(msp); 2774 2775 metaslab_group_remove(mg, msp); 2776 2777 mutex_enter(&msp->ms_lock); 2778 VERIFY(msp->ms_group == NULL); 2779 2780 /* 2781 * If this metaslab hasn't been through metaslab_sync_done() yet its 2782 * space hasn't been accounted for in its vdev and doesn't need to be 2783 * subtracted. 2784 */ 2785 if (!msp->ms_new) { 2786 metaslab_space_update(vd, mg->mg_class, 2787 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2788 2789 } 2790 space_map_close(msp->ms_sm); 2791 msp->ms_sm = NULL; 2792 2793 metaslab_unload(msp); 2794 2795 range_tree_destroy(msp->ms_allocatable); 2796 range_tree_destroy(msp->ms_freeing); 2797 range_tree_destroy(msp->ms_freed); 2798 2799 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2800 metaslab_unflushed_changes_memused(msp)); 2801 spa->spa_unflushed_stats.sus_memused -= 2802 metaslab_unflushed_changes_memused(msp); 2803 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2804 range_tree_destroy(msp->ms_unflushed_allocs); 2805 range_tree_destroy(msp->ms_checkpointing); 2806 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2807 range_tree_destroy(msp->ms_unflushed_frees); 2808 2809 for (int t = 0; t < TXG_SIZE; t++) { 2810 range_tree_destroy(msp->ms_allocating[t]); 2811 } 2812 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2813 range_tree_destroy(msp->ms_defer[t]); 2814 } 2815 ASSERT0(msp->ms_deferspace); 2816 2817 for (int t = 0; t < TXG_SIZE; t++) 2818 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2819 2820 range_tree_vacate(msp->ms_trim, NULL, NULL); 2821 range_tree_destroy(msp->ms_trim); 2822 2823 mutex_exit(&msp->ms_lock); 2824 cv_destroy(&msp->ms_load_cv); 2825 cv_destroy(&msp->ms_flush_cv); 2826 mutex_destroy(&msp->ms_lock); 2827 mutex_destroy(&msp->ms_sync_lock); 2828 ASSERT3U(msp->ms_allocator, ==, -1); 2829 2830 kmem_free(msp, sizeof (metaslab_t)); 2831 } 2832 2833 #define FRAGMENTATION_TABLE_SIZE 17 2834 2835 /* 2836 * This table defines a segment size based fragmentation metric that will 2837 * allow each metaslab to derive its own fragmentation value. This is done 2838 * by calculating the space in each bucket of the spacemap histogram and 2839 * multiplying that by the fragmentation metric in this table. Doing 2840 * this for all buckets and dividing it by the total amount of free 2841 * space in this metaslab (i.e. the total free space in all buckets) gives 2842 * us the fragmentation metric. This means that a high fragmentation metric 2843 * equates to most of the free space being comprised of small segments. 2844 * Conversely, if the metric is low, then most of the free space is in 2845 * large segments. A 10% change in fragmentation equates to approximately 2846 * double the number of segments. 2847 * 2848 * This table defines 0% fragmented space using 16MB segments. Testing has 2849 * shown that segments that are greater than or equal to 16MB do not suffer 2850 * from drastic performance problems. Using this value, we derive the rest 2851 * of the table. Since the fragmentation value is never stored on disk, it 2852 * is possible to change these calculations in the future. 2853 */ 2854 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2855 100, /* 512B */ 2856 100, /* 1K */ 2857 98, /* 2K */ 2858 95, /* 4K */ 2859 90, /* 8K */ 2860 80, /* 16K */ 2861 70, /* 32K */ 2862 60, /* 64K */ 2863 50, /* 128K */ 2864 40, /* 256K */ 2865 30, /* 512K */ 2866 20, /* 1M */ 2867 15, /* 2M */ 2868 10, /* 4M */ 2869 5, /* 8M */ 2870 0 /* 16M */ 2871 }; 2872 2873 /* 2874 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2875 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2876 * been upgraded and does not support this metric. Otherwise, the return 2877 * value should be in the range [0, 100]. 2878 */ 2879 static void 2880 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2881 { 2882 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2883 uint64_t fragmentation = 0; 2884 uint64_t total = 0; 2885 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2886 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2887 2888 if (!feature_enabled) { 2889 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2890 return; 2891 } 2892 2893 /* 2894 * A null space map means that the entire metaslab is free 2895 * and thus is not fragmented. 2896 */ 2897 if (msp->ms_sm == NULL) { 2898 msp->ms_fragmentation = 0; 2899 return; 2900 } 2901 2902 /* 2903 * If this metaslab's space map has not been upgraded, flag it 2904 * so that we upgrade next time we encounter it. 2905 */ 2906 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2907 uint64_t txg = spa_syncing_txg(spa); 2908 vdev_t *vd = msp->ms_group->mg_vd; 2909 2910 /* 2911 * If we've reached the final dirty txg, then we must 2912 * be shutting down the pool. We don't want to dirty 2913 * any data past this point so skip setting the condense 2914 * flag. We can retry this action the next time the pool 2915 * is imported. We also skip marking this metaslab for 2916 * condensing if the caller has explicitly set nodirty. 2917 */ 2918 if (!nodirty && 2919 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2920 msp->ms_condense_wanted = B_TRUE; 2921 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2922 zfs_dbgmsg("txg %llu, requesting force condense: " 2923 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2924 (u_longlong_t)msp->ms_id, 2925 (u_longlong_t)vd->vdev_id); 2926 } 2927 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2928 return; 2929 } 2930 2931 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2932 uint64_t space = 0; 2933 uint8_t shift = msp->ms_sm->sm_shift; 2934 2935 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2936 FRAGMENTATION_TABLE_SIZE - 1); 2937 2938 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2939 continue; 2940 2941 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2942 total += space; 2943 2944 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2945 fragmentation += space * zfs_frag_table[idx]; 2946 } 2947 2948 if (total > 0) 2949 fragmentation /= total; 2950 ASSERT3U(fragmentation, <=, 100); 2951 2952 msp->ms_fragmentation = fragmentation; 2953 } 2954 2955 /* 2956 * Compute a weight -- a selection preference value -- for the given metaslab. 2957 * This is based on the amount of free space, the level of fragmentation, 2958 * the LBA range, and whether the metaslab is loaded. 2959 */ 2960 static uint64_t 2961 metaslab_space_weight(metaslab_t *msp) 2962 { 2963 metaslab_group_t *mg = msp->ms_group; 2964 vdev_t *vd = mg->mg_vd; 2965 uint64_t weight, space; 2966 2967 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2968 2969 /* 2970 * The baseline weight is the metaslab's free space. 2971 */ 2972 space = msp->ms_size - metaslab_allocated_space(msp); 2973 2974 if (metaslab_fragmentation_factor_enabled && 2975 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2976 /* 2977 * Use the fragmentation information to inversely scale 2978 * down the baseline weight. We need to ensure that we 2979 * don't exclude this metaslab completely when it's 100% 2980 * fragmented. To avoid this we reduce the fragmented value 2981 * by 1. 2982 */ 2983 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2984 2985 /* 2986 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2987 * this metaslab again. The fragmentation metric may have 2988 * decreased the space to something smaller than 2989 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2990 * so that we can consume any remaining space. 2991 */ 2992 if (space > 0 && space < SPA_MINBLOCKSIZE) 2993 space = SPA_MINBLOCKSIZE; 2994 } 2995 weight = space; 2996 2997 /* 2998 * Modern disks have uniform bit density and constant angular velocity. 2999 * Therefore, the outer recording zones are faster (higher bandwidth) 3000 * than the inner zones by the ratio of outer to inner track diameter, 3001 * which is typically around 2:1. We account for this by assigning 3002 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3003 * In effect, this means that we'll select the metaslab with the most 3004 * free bandwidth rather than simply the one with the most free space. 3005 */ 3006 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3007 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3008 ASSERT(weight >= space && weight <= 2 * space); 3009 } 3010 3011 /* 3012 * If this metaslab is one we're actively using, adjust its 3013 * weight to make it preferable to any inactive metaslab so 3014 * we'll polish it off. If the fragmentation on this metaslab 3015 * has exceed our threshold, then don't mark it active. 3016 */ 3017 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3018 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3019 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3020 } 3021 3022 WEIGHT_SET_SPACEBASED(weight); 3023 return (weight); 3024 } 3025 3026 /* 3027 * Return the weight of the specified metaslab, according to the segment-based 3028 * weighting algorithm. The metaslab must be loaded. This function can 3029 * be called within a sync pass since it relies only on the metaslab's 3030 * range tree which is always accurate when the metaslab is loaded. 3031 */ 3032 static uint64_t 3033 metaslab_weight_from_range_tree(metaslab_t *msp) 3034 { 3035 uint64_t weight = 0; 3036 uint32_t segments = 0; 3037 3038 ASSERT(msp->ms_loaded); 3039 3040 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3041 i--) { 3042 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3043 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3044 3045 segments <<= 1; 3046 segments += msp->ms_allocatable->rt_histogram[i]; 3047 3048 /* 3049 * The range tree provides more precision than the space map 3050 * and must be downgraded so that all values fit within the 3051 * space map's histogram. This allows us to compare loaded 3052 * vs. unloaded metaslabs to determine which metaslab is 3053 * considered "best". 3054 */ 3055 if (i > max_idx) 3056 continue; 3057 3058 if (segments != 0) { 3059 WEIGHT_SET_COUNT(weight, segments); 3060 WEIGHT_SET_INDEX(weight, i); 3061 WEIGHT_SET_ACTIVE(weight, 0); 3062 break; 3063 } 3064 } 3065 return (weight); 3066 } 3067 3068 /* 3069 * Calculate the weight based on the on-disk histogram. Should be applied 3070 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3071 * give results consistent with the on-disk state 3072 */ 3073 static uint64_t 3074 metaslab_weight_from_spacemap(metaslab_t *msp) 3075 { 3076 space_map_t *sm = msp->ms_sm; 3077 ASSERT(!msp->ms_loaded); 3078 ASSERT(sm != NULL); 3079 ASSERT3U(space_map_object(sm), !=, 0); 3080 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3081 3082 /* 3083 * Create a joint histogram from all the segments that have made 3084 * it to the metaslab's space map histogram, that are not yet 3085 * available for allocation because they are still in the freeing 3086 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3087 * these segments from the space map's histogram to get a more 3088 * accurate weight. 3089 */ 3090 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3091 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3092 deferspace_histogram[i] += msp->ms_synchist[i]; 3093 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3094 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3095 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3096 } 3097 } 3098 3099 uint64_t weight = 0; 3100 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3101 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3102 deferspace_histogram[i]); 3103 uint64_t count = 3104 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3105 if (count != 0) { 3106 WEIGHT_SET_COUNT(weight, count); 3107 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3108 WEIGHT_SET_ACTIVE(weight, 0); 3109 break; 3110 } 3111 } 3112 return (weight); 3113 } 3114 3115 /* 3116 * Compute a segment-based weight for the specified metaslab. The weight 3117 * is determined by highest bucket in the histogram. The information 3118 * for the highest bucket is encoded into the weight value. 3119 */ 3120 static uint64_t 3121 metaslab_segment_weight(metaslab_t *msp) 3122 { 3123 metaslab_group_t *mg = msp->ms_group; 3124 uint64_t weight = 0; 3125 uint8_t shift = mg->mg_vd->vdev_ashift; 3126 3127 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3128 3129 /* 3130 * The metaslab is completely free. 3131 */ 3132 if (metaslab_allocated_space(msp) == 0) { 3133 int idx = highbit64(msp->ms_size) - 1; 3134 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3135 3136 if (idx < max_idx) { 3137 WEIGHT_SET_COUNT(weight, 1ULL); 3138 WEIGHT_SET_INDEX(weight, idx); 3139 } else { 3140 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3141 WEIGHT_SET_INDEX(weight, max_idx); 3142 } 3143 WEIGHT_SET_ACTIVE(weight, 0); 3144 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3145 return (weight); 3146 } 3147 3148 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3149 3150 /* 3151 * If the metaslab is fully allocated then just make the weight 0. 3152 */ 3153 if (metaslab_allocated_space(msp) == msp->ms_size) 3154 return (0); 3155 /* 3156 * If the metaslab is already loaded, then use the range tree to 3157 * determine the weight. Otherwise, we rely on the space map information 3158 * to generate the weight. 3159 */ 3160 if (msp->ms_loaded) { 3161 weight = metaslab_weight_from_range_tree(msp); 3162 } else { 3163 weight = metaslab_weight_from_spacemap(msp); 3164 } 3165 3166 /* 3167 * If the metaslab was active the last time we calculated its weight 3168 * then keep it active. We want to consume the entire region that 3169 * is associated with this weight. 3170 */ 3171 if (msp->ms_activation_weight != 0 && weight != 0) 3172 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3173 return (weight); 3174 } 3175 3176 /* 3177 * Determine if we should attempt to allocate from this metaslab. If the 3178 * metaslab is loaded, then we can determine if the desired allocation 3179 * can be satisfied by looking at the size of the maximum free segment 3180 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3181 * weight. For segment-based weighting we can determine the maximum 3182 * allocation based on the index encoded in its value. For space-based 3183 * weights we rely on the entire weight (excluding the weight-type bit). 3184 */ 3185 static boolean_t 3186 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3187 { 3188 /* 3189 * If the metaslab is loaded, ms_max_size is definitive and we can use 3190 * the fast check. If it's not, the ms_max_size is a lower bound (once 3191 * set), and we should use the fast check as long as we're not in 3192 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3193 * seconds since the metaslab was unloaded. 3194 */ 3195 if (msp->ms_loaded || 3196 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3197 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3198 return (msp->ms_max_size >= asize); 3199 3200 boolean_t should_allocate; 3201 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3202 /* 3203 * The metaslab segment weight indicates segments in the 3204 * range [2^i, 2^(i+1)), where i is the index in the weight. 3205 * Since the asize might be in the middle of the range, we 3206 * should attempt the allocation if asize < 2^(i+1). 3207 */ 3208 should_allocate = (asize < 3209 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3210 } else { 3211 should_allocate = (asize <= 3212 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3213 } 3214 3215 return (should_allocate); 3216 } 3217 3218 static uint64_t 3219 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3220 { 3221 vdev_t *vd = msp->ms_group->mg_vd; 3222 spa_t *spa = vd->vdev_spa; 3223 uint64_t weight; 3224 3225 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3226 3227 metaslab_set_fragmentation(msp, nodirty); 3228 3229 /* 3230 * Update the maximum size. If the metaslab is loaded, this will 3231 * ensure that we get an accurate maximum size if newly freed space 3232 * has been added back into the free tree. If the metaslab is 3233 * unloaded, we check if there's a larger free segment in the 3234 * unflushed frees. This is a lower bound on the largest allocatable 3235 * segment size. Coalescing of adjacent entries may reveal larger 3236 * allocatable segments, but we aren't aware of those until loading 3237 * the space map into a range tree. 3238 */ 3239 if (msp->ms_loaded) { 3240 msp->ms_max_size = metaslab_largest_allocatable(msp); 3241 } else { 3242 msp->ms_max_size = MAX(msp->ms_max_size, 3243 metaslab_largest_unflushed_free(msp)); 3244 } 3245 3246 /* 3247 * Segment-based weighting requires space map histogram support. 3248 */ 3249 if (zfs_metaslab_segment_weight_enabled && 3250 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3251 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3252 sizeof (space_map_phys_t))) { 3253 weight = metaslab_segment_weight(msp); 3254 } else { 3255 weight = metaslab_space_weight(msp); 3256 } 3257 return (weight); 3258 } 3259 3260 void 3261 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3262 { 3263 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3264 3265 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3266 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3267 metaslab_group_sort(msp->ms_group, msp, 3268 metaslab_weight(msp, B_FALSE) | was_active); 3269 } 3270 3271 static int 3272 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3273 int allocator, uint64_t activation_weight) 3274 { 3275 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3276 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3277 3278 /* 3279 * If we're activating for the claim code, we don't want to actually 3280 * set the metaslab up for a specific allocator. 3281 */ 3282 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3283 ASSERT0(msp->ms_activation_weight); 3284 msp->ms_activation_weight = msp->ms_weight; 3285 metaslab_group_sort(mg, msp, msp->ms_weight | 3286 activation_weight); 3287 return (0); 3288 } 3289 3290 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3291 &mga->mga_primary : &mga->mga_secondary); 3292 3293 mutex_enter(&mg->mg_lock); 3294 if (*mspp != NULL) { 3295 mutex_exit(&mg->mg_lock); 3296 return (EEXIST); 3297 } 3298 3299 *mspp = msp; 3300 ASSERT3S(msp->ms_allocator, ==, -1); 3301 msp->ms_allocator = allocator; 3302 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3303 3304 ASSERT0(msp->ms_activation_weight); 3305 msp->ms_activation_weight = msp->ms_weight; 3306 metaslab_group_sort_impl(mg, msp, 3307 msp->ms_weight | activation_weight); 3308 mutex_exit(&mg->mg_lock); 3309 3310 return (0); 3311 } 3312 3313 static int 3314 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3315 { 3316 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3317 3318 /* 3319 * The current metaslab is already activated for us so there 3320 * is nothing to do. Already activated though, doesn't mean 3321 * that this metaslab is activated for our allocator nor our 3322 * requested activation weight. The metaslab could have started 3323 * as an active one for our allocator but changed allocators 3324 * while we were waiting to grab its ms_lock or we stole it 3325 * [see find_valid_metaslab()]. This means that there is a 3326 * possibility of passivating a metaslab of another allocator 3327 * or from a different activation mask, from this thread. 3328 */ 3329 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3330 ASSERT(msp->ms_loaded); 3331 return (0); 3332 } 3333 3334 int error = metaslab_load(msp); 3335 if (error != 0) { 3336 metaslab_group_sort(msp->ms_group, msp, 0); 3337 return (error); 3338 } 3339 3340 /* 3341 * When entering metaslab_load() we may have dropped the 3342 * ms_lock because we were loading this metaslab, or we 3343 * were waiting for another thread to load it for us. In 3344 * that scenario, we recheck the weight of the metaslab 3345 * to see if it was activated by another thread. 3346 * 3347 * If the metaslab was activated for another allocator or 3348 * it was activated with a different activation weight (e.g. 3349 * we wanted to make it a primary but it was activated as 3350 * secondary) we return error (EBUSY). 3351 * 3352 * If the metaslab was activated for the same allocator 3353 * and requested activation mask, skip activating it. 3354 */ 3355 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3356 if (msp->ms_allocator != allocator) 3357 return (EBUSY); 3358 3359 if ((msp->ms_weight & activation_weight) == 0) 3360 return (SET_ERROR(EBUSY)); 3361 3362 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3363 msp->ms_primary); 3364 return (0); 3365 } 3366 3367 /* 3368 * If the metaslab has literally 0 space, it will have weight 0. In 3369 * that case, don't bother activating it. This can happen if the 3370 * metaslab had space during find_valid_metaslab, but another thread 3371 * loaded it and used all that space while we were waiting to grab the 3372 * lock. 3373 */ 3374 if (msp->ms_weight == 0) { 3375 ASSERT0(range_tree_space(msp->ms_allocatable)); 3376 return (SET_ERROR(ENOSPC)); 3377 } 3378 3379 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3380 allocator, activation_weight)) != 0) { 3381 return (error); 3382 } 3383 3384 ASSERT(msp->ms_loaded); 3385 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3386 3387 return (0); 3388 } 3389 3390 static void 3391 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3392 uint64_t weight) 3393 { 3394 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3395 ASSERT(msp->ms_loaded); 3396 3397 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3398 metaslab_group_sort(mg, msp, weight); 3399 return; 3400 } 3401 3402 mutex_enter(&mg->mg_lock); 3403 ASSERT3P(msp->ms_group, ==, mg); 3404 ASSERT3S(0, <=, msp->ms_allocator); 3405 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3406 3407 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3408 if (msp->ms_primary) { 3409 ASSERT3P(mga->mga_primary, ==, msp); 3410 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3411 mga->mga_primary = NULL; 3412 } else { 3413 ASSERT3P(mga->mga_secondary, ==, msp); 3414 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3415 mga->mga_secondary = NULL; 3416 } 3417 msp->ms_allocator = -1; 3418 metaslab_group_sort_impl(mg, msp, weight); 3419 mutex_exit(&mg->mg_lock); 3420 } 3421 3422 static void 3423 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3424 { 3425 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3426 3427 /* 3428 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3429 * this metaslab again. In that case, it had better be empty, 3430 * or we would be leaving space on the table. 3431 */ 3432 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3433 size >= SPA_MINBLOCKSIZE || 3434 range_tree_space(msp->ms_allocatable) == 0); 3435 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3436 3437 ASSERT(msp->ms_activation_weight != 0); 3438 msp->ms_activation_weight = 0; 3439 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3440 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3441 } 3442 3443 /* 3444 * Segment-based metaslabs are activated once and remain active until 3445 * we either fail an allocation attempt (similar to space-based metaslabs) 3446 * or have exhausted the free space in zfs_metaslab_switch_threshold 3447 * buckets since the metaslab was activated. This function checks to see 3448 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3449 * metaslab and passivates it proactively. This will allow us to select a 3450 * metaslab with a larger contiguous region, if any, remaining within this 3451 * metaslab group. If we're in sync pass > 1, then we continue using this 3452 * metaslab so that we don't dirty more block and cause more sync passes. 3453 */ 3454 static void 3455 metaslab_segment_may_passivate(metaslab_t *msp) 3456 { 3457 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3458 3459 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3460 return; 3461 3462 /* 3463 * Since we are in the middle of a sync pass, the most accurate 3464 * information that is accessible to us is the in-core range tree 3465 * histogram; calculate the new weight based on that information. 3466 */ 3467 uint64_t weight = metaslab_weight_from_range_tree(msp); 3468 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3469 int current_idx = WEIGHT_GET_INDEX(weight); 3470 3471 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3472 metaslab_passivate(msp, weight); 3473 } 3474 3475 static void 3476 metaslab_preload(void *arg) 3477 { 3478 metaslab_t *msp = arg; 3479 metaslab_class_t *mc = msp->ms_group->mg_class; 3480 spa_t *spa = mc->mc_spa; 3481 fstrans_cookie_t cookie = spl_fstrans_mark(); 3482 3483 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3484 3485 mutex_enter(&msp->ms_lock); 3486 (void) metaslab_load(msp); 3487 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3488 mutex_exit(&msp->ms_lock); 3489 spl_fstrans_unmark(cookie); 3490 } 3491 3492 static void 3493 metaslab_group_preload(metaslab_group_t *mg) 3494 { 3495 spa_t *spa = mg->mg_vd->vdev_spa; 3496 metaslab_t *msp; 3497 avl_tree_t *t = &mg->mg_metaslab_tree; 3498 int m = 0; 3499 3500 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3501 taskq_wait_outstanding(mg->mg_taskq, 0); 3502 return; 3503 } 3504 3505 mutex_enter(&mg->mg_lock); 3506 3507 /* 3508 * Load the next potential metaslabs 3509 */ 3510 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3511 ASSERT3P(msp->ms_group, ==, mg); 3512 3513 /* 3514 * We preload only the maximum number of metaslabs specified 3515 * by metaslab_preload_limit. If a metaslab is being forced 3516 * to condense then we preload it too. This will ensure 3517 * that force condensing happens in the next txg. 3518 */ 3519 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3520 continue; 3521 } 3522 3523 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3524 msp, TQ_SLEEP) != TASKQID_INVALID); 3525 } 3526 mutex_exit(&mg->mg_lock); 3527 } 3528 3529 /* 3530 * Determine if the space map's on-disk footprint is past our tolerance for 3531 * inefficiency. We would like to use the following criteria to make our 3532 * decision: 3533 * 3534 * 1. Do not condense if the size of the space map object would dramatically 3535 * increase as a result of writing out the free space range tree. 3536 * 3537 * 2. Condense if the on on-disk space map representation is at least 3538 * zfs_condense_pct/100 times the size of the optimal representation 3539 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3540 * 3541 * 3. Do not condense if the on-disk size of the space map does not actually 3542 * decrease. 3543 * 3544 * Unfortunately, we cannot compute the on-disk size of the space map in this 3545 * context because we cannot accurately compute the effects of compression, etc. 3546 * Instead, we apply the heuristic described in the block comment for 3547 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3548 * is greater than a threshold number of blocks. 3549 */ 3550 static boolean_t 3551 metaslab_should_condense(metaslab_t *msp) 3552 { 3553 space_map_t *sm = msp->ms_sm; 3554 vdev_t *vd = msp->ms_group->mg_vd; 3555 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3556 3557 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3558 ASSERT(msp->ms_loaded); 3559 ASSERT(sm != NULL); 3560 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3561 3562 /* 3563 * We always condense metaslabs that are empty and metaslabs for 3564 * which a condense request has been made. 3565 */ 3566 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3567 msp->ms_condense_wanted) 3568 return (B_TRUE); 3569 3570 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3571 uint64_t object_size = space_map_length(sm); 3572 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3573 msp->ms_allocatable, SM_NO_VDEVID); 3574 3575 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3576 object_size > zfs_metaslab_condense_block_threshold * record_size); 3577 } 3578 3579 /* 3580 * Condense the on-disk space map representation to its minimized form. 3581 * The minimized form consists of a small number of allocations followed 3582 * by the entries of the free range tree (ms_allocatable). The condensed 3583 * spacemap contains all the entries of previous TXGs (including those in 3584 * the pool-wide log spacemaps; thus this is effectively a superset of 3585 * metaslab_flush()), but this TXG's entries still need to be written. 3586 */ 3587 static void 3588 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3589 { 3590 range_tree_t *condense_tree; 3591 space_map_t *sm = msp->ms_sm; 3592 uint64_t txg = dmu_tx_get_txg(tx); 3593 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3594 3595 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3596 ASSERT(msp->ms_loaded); 3597 ASSERT(msp->ms_sm != NULL); 3598 3599 /* 3600 * In order to condense the space map, we need to change it so it 3601 * only describes which segments are currently allocated and free. 3602 * 3603 * All the current free space resides in the ms_allocatable, all 3604 * the ms_defer trees, and all the ms_allocating trees. We ignore 3605 * ms_freed because it is empty because we're in sync pass 1. We 3606 * ignore ms_freeing because these changes are not yet reflected 3607 * in the spacemap (they will be written later this txg). 3608 * 3609 * So to truncate the space map to represent all the entries of 3610 * previous TXGs we do the following: 3611 * 3612 * 1] We create a range tree (condense tree) that is 100% empty. 3613 * 2] We add to it all segments found in the ms_defer trees 3614 * as those segments are marked as free in the original space 3615 * map. We do the same with the ms_allocating trees for the same 3616 * reason. Adding these segments should be a relatively 3617 * inexpensive operation since we expect these trees to have a 3618 * small number of nodes. 3619 * 3] We vacate any unflushed allocs, since they are not frees we 3620 * need to add to the condense tree. Then we vacate any 3621 * unflushed frees as they should already be part of ms_allocatable. 3622 * 4] At this point, we would ideally like to add all segments 3623 * in the ms_allocatable tree from the condense tree. This way 3624 * we would write all the entries of the condense tree as the 3625 * condensed space map, which would only contain freed 3626 * segments with everything else assumed to be allocated. 3627 * 3628 * Doing so can be prohibitively expensive as ms_allocatable can 3629 * be large, and therefore computationally expensive to add to 3630 * the condense_tree. Instead we first sync out an entry marking 3631 * everything as allocated, then the condense_tree and then the 3632 * ms_allocatable, in the condensed space map. While this is not 3633 * optimal, it is typically close to optimal and more importantly 3634 * much cheaper to compute. 3635 * 3636 * 5] Finally, as both of the unflushed trees were written to our 3637 * new and condensed metaslab space map, we basically flushed 3638 * all the unflushed changes to disk, thus we call 3639 * metaslab_flush_update(). 3640 */ 3641 ASSERT3U(spa_sync_pass(spa), ==, 1); 3642 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3643 3644 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3645 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3646 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3647 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3648 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3649 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3650 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3651 3652 msp->ms_condense_wanted = B_FALSE; 3653 3654 range_seg_type_t type; 3655 uint64_t shift, start; 3656 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3657 &start, &shift); 3658 3659 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3660 3661 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3662 range_tree_walk(msp->ms_defer[t], 3663 range_tree_add, condense_tree); 3664 } 3665 3666 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3667 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3668 range_tree_add, condense_tree); 3669 } 3670 3671 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3672 metaslab_unflushed_changes_memused(msp)); 3673 spa->spa_unflushed_stats.sus_memused -= 3674 metaslab_unflushed_changes_memused(msp); 3675 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3676 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3677 3678 /* 3679 * We're about to drop the metaslab's lock thus allowing other 3680 * consumers to change it's content. Set the metaslab's ms_condensing 3681 * flag to ensure that allocations on this metaslab do not occur 3682 * while we're in the middle of committing it to disk. This is only 3683 * critical for ms_allocatable as all other range trees use per TXG 3684 * views of their content. 3685 */ 3686 msp->ms_condensing = B_TRUE; 3687 3688 mutex_exit(&msp->ms_lock); 3689 uint64_t object = space_map_object(msp->ms_sm); 3690 space_map_truncate(sm, 3691 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3692 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3693 3694 /* 3695 * space_map_truncate() may have reallocated the spacemap object. 3696 * If so, update the vdev_ms_array. 3697 */ 3698 if (space_map_object(msp->ms_sm) != object) { 3699 object = space_map_object(msp->ms_sm); 3700 dmu_write(spa->spa_meta_objset, 3701 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3702 msp->ms_id, sizeof (uint64_t), &object, tx); 3703 } 3704 3705 /* 3706 * Note: 3707 * When the log space map feature is enabled, each space map will 3708 * always have ALLOCS followed by FREES for each sync pass. This is 3709 * typically true even when the log space map feature is disabled, 3710 * except from the case where a metaslab goes through metaslab_sync() 3711 * and gets condensed. In that case the metaslab's space map will have 3712 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3713 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3714 * sync pass 1. 3715 */ 3716 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3717 shift); 3718 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3719 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3720 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3721 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3722 3723 range_tree_vacate(condense_tree, NULL, NULL); 3724 range_tree_destroy(condense_tree); 3725 range_tree_vacate(tmp_tree, NULL, NULL); 3726 range_tree_destroy(tmp_tree); 3727 mutex_enter(&msp->ms_lock); 3728 3729 msp->ms_condensing = B_FALSE; 3730 metaslab_flush_update(msp, tx); 3731 } 3732 3733 static void 3734 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3735 { 3736 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3737 ASSERT(spa_syncing_log_sm(spa) != NULL); 3738 ASSERT(msp->ms_sm != NULL); 3739 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3740 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3741 3742 mutex_enter(&spa->spa_flushed_ms_lock); 3743 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3744 metaslab_set_unflushed_dirty(msp, B_TRUE); 3745 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3746 mutex_exit(&spa->spa_flushed_ms_lock); 3747 3748 spa_log_sm_increment_current_mscount(spa); 3749 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3750 } 3751 3752 void 3753 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3754 { 3755 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3756 ASSERT(spa_syncing_log_sm(spa) != NULL); 3757 ASSERT(msp->ms_sm != NULL); 3758 ASSERT(metaslab_unflushed_txg(msp) != 0); 3759 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3760 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3761 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3762 3763 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3764 3765 /* update metaslab's position in our flushing tree */ 3766 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3767 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3768 mutex_enter(&spa->spa_flushed_ms_lock); 3769 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3770 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3771 metaslab_set_unflushed_dirty(msp, dirty); 3772 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3773 mutex_exit(&spa->spa_flushed_ms_lock); 3774 3775 /* update metaslab counts of spa_log_sm_t nodes */ 3776 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3777 spa_log_sm_increment_current_mscount(spa); 3778 3779 /* update log space map summary */ 3780 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 3781 ms_prev_flushed_dirty); 3782 spa_log_summary_add_flushed_metaslab(spa, dirty); 3783 3784 /* cleanup obsolete logs if any */ 3785 spa_cleanup_old_sm_logs(spa, tx); 3786 } 3787 3788 /* 3789 * Called when the metaslab has been flushed (its own spacemap now reflects 3790 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3791 * metadata and any pool-wide related log space map data (e.g. summary, 3792 * obsolete logs, etc..) to reflect that. 3793 */ 3794 static void 3795 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3796 { 3797 metaslab_group_t *mg = msp->ms_group; 3798 spa_t *spa = mg->mg_vd->vdev_spa; 3799 3800 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3801 3802 ASSERT3U(spa_sync_pass(spa), ==, 1); 3803 3804 /* 3805 * Just because a metaslab got flushed, that doesn't mean that 3806 * it will pass through metaslab_sync_done(). Thus, make sure to 3807 * update ms_synced_length here in case it doesn't. 3808 */ 3809 msp->ms_synced_length = space_map_length(msp->ms_sm); 3810 3811 /* 3812 * We may end up here from metaslab_condense() without the 3813 * feature being active. In that case this is a no-op. 3814 */ 3815 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 3816 metaslab_unflushed_txg(msp) == 0) 3817 return; 3818 3819 metaslab_unflushed_bump(msp, tx, B_FALSE); 3820 } 3821 3822 boolean_t 3823 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3824 { 3825 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3826 3827 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3828 ASSERT3U(spa_sync_pass(spa), ==, 1); 3829 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3830 3831 ASSERT(msp->ms_sm != NULL); 3832 ASSERT(metaslab_unflushed_txg(msp) != 0); 3833 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3834 3835 /* 3836 * There is nothing wrong with flushing the same metaslab twice, as 3837 * this codepath should work on that case. However, the current 3838 * flushing scheme makes sure to avoid this situation as we would be 3839 * making all these calls without having anything meaningful to write 3840 * to disk. We assert this behavior here. 3841 */ 3842 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3843 3844 /* 3845 * We can not flush while loading, because then we would 3846 * not load the ms_unflushed_{allocs,frees}. 3847 */ 3848 if (msp->ms_loading) 3849 return (B_FALSE); 3850 3851 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3852 metaslab_verify_weight_and_frag(msp); 3853 3854 /* 3855 * Metaslab condensing is effectively flushing. Therefore if the 3856 * metaslab can be condensed we can just condense it instead of 3857 * flushing it. 3858 * 3859 * Note that metaslab_condense() does call metaslab_flush_update() 3860 * so we can just return immediately after condensing. We also 3861 * don't need to care about setting ms_flushing or broadcasting 3862 * ms_flush_cv, even if we temporarily drop the ms_lock in 3863 * metaslab_condense(), as the metaslab is already loaded. 3864 */ 3865 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3866 metaslab_group_t *mg = msp->ms_group; 3867 3868 /* 3869 * For all histogram operations below refer to the 3870 * comments of metaslab_sync() where we follow a 3871 * similar procedure. 3872 */ 3873 metaslab_group_histogram_verify(mg); 3874 metaslab_class_histogram_verify(mg->mg_class); 3875 metaslab_group_histogram_remove(mg, msp); 3876 3877 metaslab_condense(msp, tx); 3878 3879 space_map_histogram_clear(msp->ms_sm); 3880 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3881 ASSERT(range_tree_is_empty(msp->ms_freed)); 3882 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3883 space_map_histogram_add(msp->ms_sm, 3884 msp->ms_defer[t], tx); 3885 } 3886 metaslab_aux_histograms_update(msp); 3887 3888 metaslab_group_histogram_add(mg, msp); 3889 metaslab_group_histogram_verify(mg); 3890 metaslab_class_histogram_verify(mg->mg_class); 3891 3892 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3893 3894 /* 3895 * Since we recreated the histogram (and potentially 3896 * the ms_sm too while condensing) ensure that the 3897 * weight is updated too because we are not guaranteed 3898 * that this metaslab is dirty and will go through 3899 * metaslab_sync_done(). 3900 */ 3901 metaslab_recalculate_weight_and_sort(msp); 3902 return (B_TRUE); 3903 } 3904 3905 msp->ms_flushing = B_TRUE; 3906 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3907 3908 mutex_exit(&msp->ms_lock); 3909 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3910 SM_NO_VDEVID, tx); 3911 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3912 SM_NO_VDEVID, tx); 3913 mutex_enter(&msp->ms_lock); 3914 3915 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3916 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3917 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3918 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3919 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3920 spa_name(spa), 3921 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3922 (u_longlong_t)msp->ms_id, 3923 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3924 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3925 (u_longlong_t)(sm_len_after - sm_len_before)); 3926 } 3927 3928 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3929 metaslab_unflushed_changes_memused(msp)); 3930 spa->spa_unflushed_stats.sus_memused -= 3931 metaslab_unflushed_changes_memused(msp); 3932 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3933 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3934 3935 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3936 metaslab_verify_weight_and_frag(msp); 3937 3938 metaslab_flush_update(msp, tx); 3939 3940 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3941 metaslab_verify_weight_and_frag(msp); 3942 3943 msp->ms_flushing = B_FALSE; 3944 cv_broadcast(&msp->ms_flush_cv); 3945 return (B_TRUE); 3946 } 3947 3948 /* 3949 * Write a metaslab to disk in the context of the specified transaction group. 3950 */ 3951 void 3952 metaslab_sync(metaslab_t *msp, uint64_t txg) 3953 { 3954 metaslab_group_t *mg = msp->ms_group; 3955 vdev_t *vd = mg->mg_vd; 3956 spa_t *spa = vd->vdev_spa; 3957 objset_t *mos = spa_meta_objset(spa); 3958 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3959 dmu_tx_t *tx; 3960 3961 ASSERT(!vd->vdev_ishole); 3962 3963 /* 3964 * This metaslab has just been added so there's no work to do now. 3965 */ 3966 if (msp->ms_new) { 3967 ASSERT0(range_tree_space(alloctree)); 3968 ASSERT0(range_tree_space(msp->ms_freeing)); 3969 ASSERT0(range_tree_space(msp->ms_freed)); 3970 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3971 ASSERT0(range_tree_space(msp->ms_trim)); 3972 return; 3973 } 3974 3975 /* 3976 * Normally, we don't want to process a metaslab if there are no 3977 * allocations or frees to perform. However, if the metaslab is being 3978 * forced to condense, it's loaded and we're not beyond the final 3979 * dirty txg, we need to let it through. Not condensing beyond the 3980 * final dirty txg prevents an issue where metaslabs that need to be 3981 * condensed but were loaded for other reasons could cause a panic 3982 * here. By only checking the txg in that branch of the conditional, 3983 * we preserve the utility of the VERIFY statements in all other 3984 * cases. 3985 */ 3986 if (range_tree_is_empty(alloctree) && 3987 range_tree_is_empty(msp->ms_freeing) && 3988 range_tree_is_empty(msp->ms_checkpointing) && 3989 !(msp->ms_loaded && msp->ms_condense_wanted && 3990 txg <= spa_final_dirty_txg(spa))) 3991 return; 3992 3993 3994 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3995 3996 /* 3997 * The only state that can actually be changing concurrently 3998 * with metaslab_sync() is the metaslab's ms_allocatable. No 3999 * other thread can be modifying this txg's alloc, freeing, 4000 * freed, or space_map_phys_t. We drop ms_lock whenever we 4001 * could call into the DMU, because the DMU can call down to 4002 * us (e.g. via zio_free()) at any time. 4003 * 4004 * The spa_vdev_remove_thread() can be reading metaslab state 4005 * concurrently, and it is locked out by the ms_sync_lock. 4006 * Note that the ms_lock is insufficient for this, because it 4007 * is dropped by space_map_write(). 4008 */ 4009 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4010 4011 /* 4012 * Generate a log space map if one doesn't exist already. 4013 */ 4014 spa_generate_syncing_log_sm(spa, tx); 4015 4016 if (msp->ms_sm == NULL) { 4017 uint64_t new_object = space_map_alloc(mos, 4018 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4019 zfs_metaslab_sm_blksz_with_log : 4020 zfs_metaslab_sm_blksz_no_log, tx); 4021 VERIFY3U(new_object, !=, 0); 4022 4023 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4024 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4025 4026 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4027 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4028 ASSERT(msp->ms_sm != NULL); 4029 4030 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4031 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4032 ASSERT0(metaslab_allocated_space(msp)); 4033 } 4034 4035 if (!range_tree_is_empty(msp->ms_checkpointing) && 4036 vd->vdev_checkpoint_sm == NULL) { 4037 ASSERT(spa_has_checkpoint(spa)); 4038 4039 uint64_t new_object = space_map_alloc(mos, 4040 zfs_vdev_standard_sm_blksz, tx); 4041 VERIFY3U(new_object, !=, 0); 4042 4043 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4044 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4045 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4046 4047 /* 4048 * We save the space map object as an entry in vdev_top_zap 4049 * so it can be retrieved when the pool is reopened after an 4050 * export or through zdb. 4051 */ 4052 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4053 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4054 sizeof (new_object), 1, &new_object, tx)); 4055 } 4056 4057 mutex_enter(&msp->ms_sync_lock); 4058 mutex_enter(&msp->ms_lock); 4059 4060 /* 4061 * Note: metaslab_condense() clears the space map's histogram. 4062 * Therefore we must verify and remove this histogram before 4063 * condensing. 4064 */ 4065 metaslab_group_histogram_verify(mg); 4066 metaslab_class_histogram_verify(mg->mg_class); 4067 metaslab_group_histogram_remove(mg, msp); 4068 4069 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4070 metaslab_should_condense(msp)) 4071 metaslab_condense(msp, tx); 4072 4073 /* 4074 * We'll be going to disk to sync our space accounting, thus we 4075 * drop the ms_lock during that time so allocations coming from 4076 * open-context (ZIL) for future TXGs do not block. 4077 */ 4078 mutex_exit(&msp->ms_lock); 4079 space_map_t *log_sm = spa_syncing_log_sm(spa); 4080 if (log_sm != NULL) { 4081 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4082 if (metaslab_unflushed_txg(msp) == 0) 4083 metaslab_unflushed_add(msp, tx); 4084 else if (!metaslab_unflushed_dirty(msp)) 4085 metaslab_unflushed_bump(msp, tx, B_TRUE); 4086 4087 space_map_write(log_sm, alloctree, SM_ALLOC, 4088 vd->vdev_id, tx); 4089 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4090 vd->vdev_id, tx); 4091 mutex_enter(&msp->ms_lock); 4092 4093 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4094 metaslab_unflushed_changes_memused(msp)); 4095 spa->spa_unflushed_stats.sus_memused -= 4096 metaslab_unflushed_changes_memused(msp); 4097 range_tree_remove_xor_add(alloctree, 4098 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4099 range_tree_remove_xor_add(msp->ms_freeing, 4100 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4101 spa->spa_unflushed_stats.sus_memused += 4102 metaslab_unflushed_changes_memused(msp); 4103 } else { 4104 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4105 4106 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4107 SM_NO_VDEVID, tx); 4108 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4109 SM_NO_VDEVID, tx); 4110 mutex_enter(&msp->ms_lock); 4111 } 4112 4113 msp->ms_allocated_space += range_tree_space(alloctree); 4114 ASSERT3U(msp->ms_allocated_space, >=, 4115 range_tree_space(msp->ms_freeing)); 4116 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4117 4118 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4119 ASSERT(spa_has_checkpoint(spa)); 4120 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4121 4122 /* 4123 * Since we are doing writes to disk and the ms_checkpointing 4124 * tree won't be changing during that time, we drop the 4125 * ms_lock while writing to the checkpoint space map, for the 4126 * same reason mentioned above. 4127 */ 4128 mutex_exit(&msp->ms_lock); 4129 space_map_write(vd->vdev_checkpoint_sm, 4130 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4131 mutex_enter(&msp->ms_lock); 4132 4133 spa->spa_checkpoint_info.sci_dspace += 4134 range_tree_space(msp->ms_checkpointing); 4135 vd->vdev_stat.vs_checkpoint_space += 4136 range_tree_space(msp->ms_checkpointing); 4137 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4138 -space_map_allocated(vd->vdev_checkpoint_sm)); 4139 4140 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4141 } 4142 4143 if (msp->ms_loaded) { 4144 /* 4145 * When the space map is loaded, we have an accurate 4146 * histogram in the range tree. This gives us an opportunity 4147 * to bring the space map's histogram up-to-date so we clear 4148 * it first before updating it. 4149 */ 4150 space_map_histogram_clear(msp->ms_sm); 4151 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4152 4153 /* 4154 * Since we've cleared the histogram we need to add back 4155 * any free space that has already been processed, plus 4156 * any deferred space. This allows the on-disk histogram 4157 * to accurately reflect all free space even if some space 4158 * is not yet available for allocation (i.e. deferred). 4159 */ 4160 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4161 4162 /* 4163 * Add back any deferred free space that has not been 4164 * added back into the in-core free tree yet. This will 4165 * ensure that we don't end up with a space map histogram 4166 * that is completely empty unless the metaslab is fully 4167 * allocated. 4168 */ 4169 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4170 space_map_histogram_add(msp->ms_sm, 4171 msp->ms_defer[t], tx); 4172 } 4173 } 4174 4175 /* 4176 * Always add the free space from this sync pass to the space 4177 * map histogram. We want to make sure that the on-disk histogram 4178 * accounts for all free space. If the space map is not loaded, 4179 * then we will lose some accuracy but will correct it the next 4180 * time we load the space map. 4181 */ 4182 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4183 metaslab_aux_histograms_update(msp); 4184 4185 metaslab_group_histogram_add(mg, msp); 4186 metaslab_group_histogram_verify(mg); 4187 metaslab_class_histogram_verify(mg->mg_class); 4188 4189 /* 4190 * For sync pass 1, we avoid traversing this txg's free range tree 4191 * and instead will just swap the pointers for freeing and freed. 4192 * We can safely do this since the freed_tree is guaranteed to be 4193 * empty on the initial pass. 4194 * 4195 * Keep in mind that even if we are currently using a log spacemap 4196 * we want current frees to end up in the ms_allocatable (but not 4197 * get appended to the ms_sm) so their ranges can be reused as usual. 4198 */ 4199 if (spa_sync_pass(spa) == 1) { 4200 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4201 ASSERT0(msp->ms_allocated_this_txg); 4202 } else { 4203 range_tree_vacate(msp->ms_freeing, 4204 range_tree_add, msp->ms_freed); 4205 } 4206 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4207 range_tree_vacate(alloctree, NULL, NULL); 4208 4209 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4210 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4211 & TXG_MASK])); 4212 ASSERT0(range_tree_space(msp->ms_freeing)); 4213 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4214 4215 mutex_exit(&msp->ms_lock); 4216 4217 /* 4218 * Verify that the space map object ID has been recorded in the 4219 * vdev_ms_array. 4220 */ 4221 uint64_t object; 4222 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4223 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4224 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4225 4226 mutex_exit(&msp->ms_sync_lock); 4227 dmu_tx_commit(tx); 4228 } 4229 4230 static void 4231 metaslab_evict(metaslab_t *msp, uint64_t txg) 4232 { 4233 if (!msp->ms_loaded || msp->ms_disabled != 0) 4234 return; 4235 4236 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4237 VERIFY0(range_tree_space( 4238 msp->ms_allocating[(txg + t) & TXG_MASK])); 4239 } 4240 if (msp->ms_allocator != -1) 4241 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4242 4243 if (!metaslab_debug_unload) 4244 metaslab_unload(msp); 4245 } 4246 4247 /* 4248 * Called after a transaction group has completely synced to mark 4249 * all of the metaslab's free space as usable. 4250 */ 4251 void 4252 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4253 { 4254 metaslab_group_t *mg = msp->ms_group; 4255 vdev_t *vd = mg->mg_vd; 4256 spa_t *spa = vd->vdev_spa; 4257 range_tree_t **defer_tree; 4258 int64_t alloc_delta, defer_delta; 4259 boolean_t defer_allowed = B_TRUE; 4260 4261 ASSERT(!vd->vdev_ishole); 4262 4263 mutex_enter(&msp->ms_lock); 4264 4265 if (msp->ms_new) { 4266 /* this is a new metaslab, add its capacity to the vdev */ 4267 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4268 4269 /* there should be no allocations nor frees at this point */ 4270 VERIFY0(msp->ms_allocated_this_txg); 4271 VERIFY0(range_tree_space(msp->ms_freed)); 4272 } 4273 4274 ASSERT0(range_tree_space(msp->ms_freeing)); 4275 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4276 4277 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4278 4279 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4280 metaslab_class_get_alloc(spa_normal_class(spa)); 4281 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4282 defer_allowed = B_FALSE; 4283 } 4284 4285 defer_delta = 0; 4286 alloc_delta = msp->ms_allocated_this_txg - 4287 range_tree_space(msp->ms_freed); 4288 4289 if (defer_allowed) { 4290 defer_delta = range_tree_space(msp->ms_freed) - 4291 range_tree_space(*defer_tree); 4292 } else { 4293 defer_delta -= range_tree_space(*defer_tree); 4294 } 4295 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4296 defer_delta, 0); 4297 4298 if (spa_syncing_log_sm(spa) == NULL) { 4299 /* 4300 * If there's a metaslab_load() in progress and we don't have 4301 * a log space map, it means that we probably wrote to the 4302 * metaslab's space map. If this is the case, we need to 4303 * make sure that we wait for the load to complete so that we 4304 * have a consistent view at the in-core side of the metaslab. 4305 */ 4306 metaslab_load_wait(msp); 4307 } else { 4308 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4309 } 4310 4311 /* 4312 * When auto-trimming is enabled, free ranges which are added to 4313 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4314 * periodically consumed by the vdev_autotrim_thread() which issues 4315 * trims for all ranges and then vacates the tree. The ms_trim tree 4316 * can be discarded at any time with the sole consequence of recent 4317 * frees not being trimmed. 4318 */ 4319 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4320 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4321 if (!defer_allowed) { 4322 range_tree_walk(msp->ms_freed, range_tree_add, 4323 msp->ms_trim); 4324 } 4325 } else { 4326 range_tree_vacate(msp->ms_trim, NULL, NULL); 4327 } 4328 4329 /* 4330 * Move the frees from the defer_tree back to the free 4331 * range tree (if it's loaded). Swap the freed_tree and 4332 * the defer_tree -- this is safe to do because we've 4333 * just emptied out the defer_tree. 4334 */ 4335 range_tree_vacate(*defer_tree, 4336 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4337 if (defer_allowed) { 4338 range_tree_swap(&msp->ms_freed, defer_tree); 4339 } else { 4340 range_tree_vacate(msp->ms_freed, 4341 msp->ms_loaded ? range_tree_add : NULL, 4342 msp->ms_allocatable); 4343 } 4344 4345 msp->ms_synced_length = space_map_length(msp->ms_sm); 4346 4347 msp->ms_deferspace += defer_delta; 4348 ASSERT3S(msp->ms_deferspace, >=, 0); 4349 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4350 if (msp->ms_deferspace != 0) { 4351 /* 4352 * Keep syncing this metaslab until all deferred frees 4353 * are back in circulation. 4354 */ 4355 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4356 } 4357 metaslab_aux_histograms_update_done(msp, defer_allowed); 4358 4359 if (msp->ms_new) { 4360 msp->ms_new = B_FALSE; 4361 mutex_enter(&mg->mg_lock); 4362 mg->mg_ms_ready++; 4363 mutex_exit(&mg->mg_lock); 4364 } 4365 4366 /* 4367 * Re-sort metaslab within its group now that we've adjusted 4368 * its allocatable space. 4369 */ 4370 metaslab_recalculate_weight_and_sort(msp); 4371 4372 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4373 ASSERT0(range_tree_space(msp->ms_freeing)); 4374 ASSERT0(range_tree_space(msp->ms_freed)); 4375 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4376 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4377 msp->ms_allocated_this_txg = 0; 4378 mutex_exit(&msp->ms_lock); 4379 } 4380 4381 void 4382 metaslab_sync_reassess(metaslab_group_t *mg) 4383 { 4384 spa_t *spa = mg->mg_class->mc_spa; 4385 4386 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4387 metaslab_group_alloc_update(mg); 4388 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4389 4390 /* 4391 * Preload the next potential metaslabs but only on active 4392 * metaslab groups. We can get into a state where the metaslab 4393 * is no longer active since we dirty metaslabs as we remove a 4394 * a device, thus potentially making the metaslab group eligible 4395 * for preloading. 4396 */ 4397 if (mg->mg_activation_count > 0) { 4398 metaslab_group_preload(mg); 4399 } 4400 spa_config_exit(spa, SCL_ALLOC, FTAG); 4401 } 4402 4403 /* 4404 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4405 * the same vdev as an existing DVA of this BP, then try to allocate it 4406 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4407 */ 4408 static boolean_t 4409 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4410 { 4411 uint64_t dva_ms_id; 4412 4413 if (DVA_GET_ASIZE(dva) == 0) 4414 return (B_TRUE); 4415 4416 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4417 return (B_TRUE); 4418 4419 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4420 4421 return (msp->ms_id != dva_ms_id); 4422 } 4423 4424 /* 4425 * ========================================================================== 4426 * Metaslab allocation tracing facility 4427 * ========================================================================== 4428 */ 4429 4430 /* 4431 * Add an allocation trace element to the allocation tracing list. 4432 */ 4433 static void 4434 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4435 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4436 int allocator) 4437 { 4438 metaslab_alloc_trace_t *mat; 4439 4440 if (!metaslab_trace_enabled) 4441 return; 4442 4443 /* 4444 * When the tracing list reaches its maximum we remove 4445 * the second element in the list before adding a new one. 4446 * By removing the second element we preserve the original 4447 * entry as a clue to what allocations steps have already been 4448 * performed. 4449 */ 4450 if (zal->zal_size == metaslab_trace_max_entries) { 4451 metaslab_alloc_trace_t *mat_next; 4452 #ifdef ZFS_DEBUG 4453 panic("too many entries in allocation list"); 4454 #endif 4455 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4456 zal->zal_size--; 4457 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4458 list_remove(&zal->zal_list, mat_next); 4459 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4460 } 4461 4462 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4463 list_link_init(&mat->mat_list_node); 4464 mat->mat_mg = mg; 4465 mat->mat_msp = msp; 4466 mat->mat_size = psize; 4467 mat->mat_dva_id = dva_id; 4468 mat->mat_offset = offset; 4469 mat->mat_weight = 0; 4470 mat->mat_allocator = allocator; 4471 4472 if (msp != NULL) 4473 mat->mat_weight = msp->ms_weight; 4474 4475 /* 4476 * The list is part of the zio so locking is not required. Only 4477 * a single thread will perform allocations for a given zio. 4478 */ 4479 list_insert_tail(&zal->zal_list, mat); 4480 zal->zal_size++; 4481 4482 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4483 } 4484 4485 void 4486 metaslab_trace_init(zio_alloc_list_t *zal) 4487 { 4488 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4489 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4490 zal->zal_size = 0; 4491 } 4492 4493 void 4494 metaslab_trace_fini(zio_alloc_list_t *zal) 4495 { 4496 metaslab_alloc_trace_t *mat; 4497 4498 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4499 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4500 list_destroy(&zal->zal_list); 4501 zal->zal_size = 0; 4502 } 4503 4504 /* 4505 * ========================================================================== 4506 * Metaslab block operations 4507 * ========================================================================== 4508 */ 4509 4510 static void 4511 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag, 4512 int flags, int allocator) 4513 { 4514 if (!(flags & METASLAB_ASYNC_ALLOC) || 4515 (flags & METASLAB_DONT_THROTTLE)) 4516 return; 4517 4518 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4519 if (!mg->mg_class->mc_alloc_throttle_enabled) 4520 return; 4521 4522 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4523 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4524 } 4525 4526 static void 4527 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4528 { 4529 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4530 metaslab_class_allocator_t *mca = 4531 &mg->mg_class->mc_allocator[allocator]; 4532 uint64_t max = mg->mg_max_alloc_queue_depth; 4533 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4534 while (cur < max) { 4535 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4536 cur, cur + 1) == cur) { 4537 atomic_inc_64(&mca->mca_alloc_max_slots); 4538 return; 4539 } 4540 cur = mga->mga_cur_max_alloc_queue_depth; 4541 } 4542 } 4543 4544 void 4545 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag, 4546 int flags, int allocator, boolean_t io_complete) 4547 { 4548 if (!(flags & METASLAB_ASYNC_ALLOC) || 4549 (flags & METASLAB_DONT_THROTTLE)) 4550 return; 4551 4552 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4553 if (!mg->mg_class->mc_alloc_throttle_enabled) 4554 return; 4555 4556 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4557 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4558 if (io_complete) 4559 metaslab_group_increment_qdepth(mg, allocator); 4560 } 4561 4562 void 4563 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag, 4564 int allocator) 4565 { 4566 #ifdef ZFS_DEBUG 4567 const dva_t *dva = bp->blk_dva; 4568 int ndvas = BP_GET_NDVAS(bp); 4569 4570 for (int d = 0; d < ndvas; d++) { 4571 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4572 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4573 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4574 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4575 } 4576 #endif 4577 } 4578 4579 static uint64_t 4580 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4581 { 4582 uint64_t start; 4583 range_tree_t *rt = msp->ms_allocatable; 4584 metaslab_class_t *mc = msp->ms_group->mg_class; 4585 4586 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4587 VERIFY(!msp->ms_condensing); 4588 VERIFY0(msp->ms_disabled); 4589 4590 start = mc->mc_ops->msop_alloc(msp, size); 4591 if (start != -1ULL) { 4592 metaslab_group_t *mg = msp->ms_group; 4593 vdev_t *vd = mg->mg_vd; 4594 4595 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4596 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4597 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4598 range_tree_remove(rt, start, size); 4599 range_tree_clear(msp->ms_trim, start, size); 4600 4601 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4602 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4603 4604 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4605 msp->ms_allocating_total += size; 4606 4607 /* Track the last successful allocation */ 4608 msp->ms_alloc_txg = txg; 4609 metaslab_verify_space(msp, txg); 4610 } 4611 4612 /* 4613 * Now that we've attempted the allocation we need to update the 4614 * metaslab's maximum block size since it may have changed. 4615 */ 4616 msp->ms_max_size = metaslab_largest_allocatable(msp); 4617 return (start); 4618 } 4619 4620 /* 4621 * Find the metaslab with the highest weight that is less than what we've 4622 * already tried. In the common case, this means that we will examine each 4623 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4624 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4625 * activated by another thread, and we fail to allocate from the metaslab we 4626 * have selected, we may not try the newly-activated metaslab, and instead 4627 * activate another metaslab. This is not optimal, but generally does not cause 4628 * any problems (a possible exception being if every metaslab is completely full 4629 * except for the newly-activated metaslab which we fail to examine). 4630 */ 4631 static metaslab_t * 4632 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4633 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4634 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4635 boolean_t *was_active) 4636 { 4637 avl_index_t idx; 4638 avl_tree_t *t = &mg->mg_metaslab_tree; 4639 metaslab_t *msp = avl_find(t, search, &idx); 4640 if (msp == NULL) 4641 msp = avl_nearest(t, idx, AVL_AFTER); 4642 4643 int tries = 0; 4644 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4645 int i; 4646 4647 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4648 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4649 return (NULL); 4650 } 4651 tries++; 4652 4653 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4654 metaslab_trace_add(zal, mg, msp, asize, d, 4655 TRACE_TOO_SMALL, allocator); 4656 continue; 4657 } 4658 4659 /* 4660 * If the selected metaslab is condensing or disabled, 4661 * skip it. 4662 */ 4663 if (msp->ms_condensing || msp->ms_disabled > 0) 4664 continue; 4665 4666 *was_active = msp->ms_allocator != -1; 4667 /* 4668 * If we're activating as primary, this is our first allocation 4669 * from this disk, so we don't need to check how close we are. 4670 * If the metaslab under consideration was already active, 4671 * we're getting desperate enough to steal another allocator's 4672 * metaslab, so we still don't care about distances. 4673 */ 4674 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4675 break; 4676 4677 for (i = 0; i < d; i++) { 4678 if (want_unique && 4679 !metaslab_is_unique(msp, &dva[i])) 4680 break; /* try another metaslab */ 4681 } 4682 if (i == d) 4683 break; 4684 } 4685 4686 if (msp != NULL) { 4687 search->ms_weight = msp->ms_weight; 4688 search->ms_start = msp->ms_start + 1; 4689 search->ms_allocator = msp->ms_allocator; 4690 search->ms_primary = msp->ms_primary; 4691 } 4692 return (msp); 4693 } 4694 4695 static void 4696 metaslab_active_mask_verify(metaslab_t *msp) 4697 { 4698 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4699 4700 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4701 return; 4702 4703 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4704 return; 4705 4706 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4707 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4708 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4709 VERIFY3S(msp->ms_allocator, !=, -1); 4710 VERIFY(msp->ms_primary); 4711 return; 4712 } 4713 4714 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4715 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4716 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4717 VERIFY3S(msp->ms_allocator, !=, -1); 4718 VERIFY(!msp->ms_primary); 4719 return; 4720 } 4721 4722 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4723 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4724 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4725 VERIFY3S(msp->ms_allocator, ==, -1); 4726 return; 4727 } 4728 } 4729 4730 static uint64_t 4731 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4732 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4733 int allocator, boolean_t try_hard) 4734 { 4735 metaslab_t *msp = NULL; 4736 uint64_t offset = -1ULL; 4737 4738 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4739 for (int i = 0; i < d; i++) { 4740 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4741 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4742 activation_weight = METASLAB_WEIGHT_SECONDARY; 4743 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4744 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4745 activation_weight = METASLAB_WEIGHT_CLAIM; 4746 break; 4747 } 4748 } 4749 4750 /* 4751 * If we don't have enough metaslabs active to fill the entire array, we 4752 * just use the 0th slot. 4753 */ 4754 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4755 allocator = 0; 4756 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4757 4758 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4759 4760 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4761 search->ms_weight = UINT64_MAX; 4762 search->ms_start = 0; 4763 /* 4764 * At the end of the metaslab tree are the already-active metaslabs, 4765 * first the primaries, then the secondaries. When we resume searching 4766 * through the tree, we need to consider ms_allocator and ms_primary so 4767 * we start in the location right after where we left off, and don't 4768 * accidentally loop forever considering the same metaslabs. 4769 */ 4770 search->ms_allocator = -1; 4771 search->ms_primary = B_TRUE; 4772 for (;;) { 4773 boolean_t was_active = B_FALSE; 4774 4775 mutex_enter(&mg->mg_lock); 4776 4777 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4778 mga->mga_primary != NULL) { 4779 msp = mga->mga_primary; 4780 4781 /* 4782 * Even though we don't hold the ms_lock for the 4783 * primary metaslab, those fields should not 4784 * change while we hold the mg_lock. Thus it is 4785 * safe to make assertions on them. 4786 */ 4787 ASSERT(msp->ms_primary); 4788 ASSERT3S(msp->ms_allocator, ==, allocator); 4789 ASSERT(msp->ms_loaded); 4790 4791 was_active = B_TRUE; 4792 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4793 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4794 mga->mga_secondary != NULL) { 4795 msp = mga->mga_secondary; 4796 4797 /* 4798 * See comment above about the similar assertions 4799 * for the primary metaslab. 4800 */ 4801 ASSERT(!msp->ms_primary); 4802 ASSERT3S(msp->ms_allocator, ==, allocator); 4803 ASSERT(msp->ms_loaded); 4804 4805 was_active = B_TRUE; 4806 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4807 } else { 4808 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4809 want_unique, asize, allocator, try_hard, zal, 4810 search, &was_active); 4811 } 4812 4813 mutex_exit(&mg->mg_lock); 4814 if (msp == NULL) { 4815 kmem_free(search, sizeof (*search)); 4816 return (-1ULL); 4817 } 4818 mutex_enter(&msp->ms_lock); 4819 4820 metaslab_active_mask_verify(msp); 4821 4822 /* 4823 * This code is disabled out because of issues with 4824 * tracepoints in non-gpl kernel modules. 4825 */ 4826 #if 0 4827 DTRACE_PROBE3(ms__activation__attempt, 4828 metaslab_t *, msp, uint64_t, activation_weight, 4829 boolean_t, was_active); 4830 #endif 4831 4832 /* 4833 * Ensure that the metaslab we have selected is still 4834 * capable of handling our request. It's possible that 4835 * another thread may have changed the weight while we 4836 * were blocked on the metaslab lock. We check the 4837 * active status first to see if we need to set_selected_txg 4838 * a new metaslab. 4839 */ 4840 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4841 ASSERT3S(msp->ms_allocator, ==, -1); 4842 mutex_exit(&msp->ms_lock); 4843 continue; 4844 } 4845 4846 /* 4847 * If the metaslab was activated for another allocator 4848 * while we were waiting in the ms_lock above, or it's 4849 * a primary and we're seeking a secondary (or vice versa), 4850 * we go back and select a new metaslab. 4851 */ 4852 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4853 (msp->ms_allocator != -1) && 4854 (msp->ms_allocator != allocator || ((activation_weight == 4855 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4856 ASSERT(msp->ms_loaded); 4857 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4858 msp->ms_allocator != -1); 4859 mutex_exit(&msp->ms_lock); 4860 continue; 4861 } 4862 4863 /* 4864 * This metaslab was used for claiming regions allocated 4865 * by the ZIL during pool import. Once these regions are 4866 * claimed we don't need to keep the CLAIM bit set 4867 * anymore. Passivate this metaslab to zero its activation 4868 * mask. 4869 */ 4870 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4871 activation_weight != METASLAB_WEIGHT_CLAIM) { 4872 ASSERT(msp->ms_loaded); 4873 ASSERT3S(msp->ms_allocator, ==, -1); 4874 metaslab_passivate(msp, msp->ms_weight & 4875 ~METASLAB_WEIGHT_CLAIM); 4876 mutex_exit(&msp->ms_lock); 4877 continue; 4878 } 4879 4880 metaslab_set_selected_txg(msp, txg); 4881 4882 int activation_error = 4883 metaslab_activate(msp, allocator, activation_weight); 4884 metaslab_active_mask_verify(msp); 4885 4886 /* 4887 * If the metaslab was activated by another thread for 4888 * another allocator or activation_weight (EBUSY), or it 4889 * failed because another metaslab was assigned as primary 4890 * for this allocator (EEXIST) we continue using this 4891 * metaslab for our allocation, rather than going on to a 4892 * worse metaslab (we waited for that metaslab to be loaded 4893 * after all). 4894 * 4895 * If the activation failed due to an I/O error or ENOSPC we 4896 * skip to the next metaslab. 4897 */ 4898 boolean_t activated; 4899 if (activation_error == 0) { 4900 activated = B_TRUE; 4901 } else if (activation_error == EBUSY || 4902 activation_error == EEXIST) { 4903 activated = B_FALSE; 4904 } else { 4905 mutex_exit(&msp->ms_lock); 4906 continue; 4907 } 4908 ASSERT(msp->ms_loaded); 4909 4910 /* 4911 * Now that we have the lock, recheck to see if we should 4912 * continue to use this metaslab for this allocation. The 4913 * the metaslab is now loaded so metaslab_should_allocate() 4914 * can accurately determine if the allocation attempt should 4915 * proceed. 4916 */ 4917 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4918 /* Passivate this metaslab and select a new one. */ 4919 metaslab_trace_add(zal, mg, msp, asize, d, 4920 TRACE_TOO_SMALL, allocator); 4921 goto next; 4922 } 4923 4924 /* 4925 * If this metaslab is currently condensing then pick again 4926 * as we can't manipulate this metaslab until it's committed 4927 * to disk. If this metaslab is being initialized, we shouldn't 4928 * allocate from it since the allocated region might be 4929 * overwritten after allocation. 4930 */ 4931 if (msp->ms_condensing) { 4932 metaslab_trace_add(zal, mg, msp, asize, d, 4933 TRACE_CONDENSING, allocator); 4934 if (activated) { 4935 metaslab_passivate(msp, msp->ms_weight & 4936 ~METASLAB_ACTIVE_MASK); 4937 } 4938 mutex_exit(&msp->ms_lock); 4939 continue; 4940 } else if (msp->ms_disabled > 0) { 4941 metaslab_trace_add(zal, mg, msp, asize, d, 4942 TRACE_DISABLED, allocator); 4943 if (activated) { 4944 metaslab_passivate(msp, msp->ms_weight & 4945 ~METASLAB_ACTIVE_MASK); 4946 } 4947 mutex_exit(&msp->ms_lock); 4948 continue; 4949 } 4950 4951 offset = metaslab_block_alloc(msp, asize, txg); 4952 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4953 4954 if (offset != -1ULL) { 4955 /* Proactively passivate the metaslab, if needed */ 4956 if (activated) 4957 metaslab_segment_may_passivate(msp); 4958 break; 4959 } 4960 next: 4961 ASSERT(msp->ms_loaded); 4962 4963 /* 4964 * This code is disabled out because of issues with 4965 * tracepoints in non-gpl kernel modules. 4966 */ 4967 #if 0 4968 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4969 uint64_t, asize); 4970 #endif 4971 4972 /* 4973 * We were unable to allocate from this metaslab so determine 4974 * a new weight for this metaslab. Now that we have loaded 4975 * the metaslab we can provide a better hint to the metaslab 4976 * selector. 4977 * 4978 * For space-based metaslabs, we use the maximum block size. 4979 * This information is only available when the metaslab 4980 * is loaded and is more accurate than the generic free 4981 * space weight that was calculated by metaslab_weight(). 4982 * This information allows us to quickly compare the maximum 4983 * available allocation in the metaslab to the allocation 4984 * size being requested. 4985 * 4986 * For segment-based metaslabs, determine the new weight 4987 * based on the highest bucket in the range tree. We 4988 * explicitly use the loaded segment weight (i.e. the range 4989 * tree histogram) since it contains the space that is 4990 * currently available for allocation and is accurate 4991 * even within a sync pass. 4992 */ 4993 uint64_t weight; 4994 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4995 weight = metaslab_largest_allocatable(msp); 4996 WEIGHT_SET_SPACEBASED(weight); 4997 } else { 4998 weight = metaslab_weight_from_range_tree(msp); 4999 } 5000 5001 if (activated) { 5002 metaslab_passivate(msp, weight); 5003 } else { 5004 /* 5005 * For the case where we use the metaslab that is 5006 * active for another allocator we want to make 5007 * sure that we retain the activation mask. 5008 * 5009 * Note that we could attempt to use something like 5010 * metaslab_recalculate_weight_and_sort() that 5011 * retains the activation mask here. That function 5012 * uses metaslab_weight() to set the weight though 5013 * which is not as accurate as the calculations 5014 * above. 5015 */ 5016 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5017 metaslab_group_sort(mg, msp, weight); 5018 } 5019 metaslab_active_mask_verify(msp); 5020 5021 /* 5022 * We have just failed an allocation attempt, check 5023 * that metaslab_should_allocate() agrees. Otherwise, 5024 * we may end up in an infinite loop retrying the same 5025 * metaslab. 5026 */ 5027 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5028 5029 mutex_exit(&msp->ms_lock); 5030 } 5031 mutex_exit(&msp->ms_lock); 5032 kmem_free(search, sizeof (*search)); 5033 return (offset); 5034 } 5035 5036 static uint64_t 5037 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5038 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5039 int allocator, boolean_t try_hard) 5040 { 5041 uint64_t offset; 5042 ASSERT(mg->mg_initialized); 5043 5044 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5045 dva, d, allocator, try_hard); 5046 5047 mutex_enter(&mg->mg_lock); 5048 if (offset == -1ULL) { 5049 mg->mg_failed_allocations++; 5050 metaslab_trace_add(zal, mg, NULL, asize, d, 5051 TRACE_GROUP_FAILURE, allocator); 5052 if (asize == SPA_GANGBLOCKSIZE) { 5053 /* 5054 * This metaslab group was unable to allocate 5055 * the minimum gang block size so it must be out of 5056 * space. We must notify the allocation throttle 5057 * to start skipping allocation attempts to this 5058 * metaslab group until more space becomes available. 5059 * Note: this failure cannot be caused by the 5060 * allocation throttle since the allocation throttle 5061 * is only responsible for skipping devices and 5062 * not failing block allocations. 5063 */ 5064 mg->mg_no_free_space = B_TRUE; 5065 } 5066 } 5067 mg->mg_allocations++; 5068 mutex_exit(&mg->mg_lock); 5069 return (offset); 5070 } 5071 5072 /* 5073 * Allocate a block for the specified i/o. 5074 */ 5075 int 5076 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5077 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5078 zio_alloc_list_t *zal, int allocator) 5079 { 5080 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5081 metaslab_group_t *mg, *fast_mg, *rotor; 5082 vdev_t *vd; 5083 boolean_t try_hard = B_FALSE; 5084 5085 ASSERT(!DVA_IS_VALID(&dva[d])); 5086 5087 /* 5088 * For testing, make some blocks above a certain size be gang blocks. 5089 * This will result in more split blocks when using device removal, 5090 * and a large number of split blocks coupled with ztest-induced 5091 * damage can result in extremely long reconstruction times. This 5092 * will also test spilling from special to normal. 5093 */ 5094 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) { 5095 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5096 allocator); 5097 return (SET_ERROR(ENOSPC)); 5098 } 5099 5100 /* 5101 * Start at the rotor and loop through all mgs until we find something. 5102 * Note that there's no locking on mca_rotor or mca_aliquot because 5103 * nothing actually breaks if we miss a few updates -- we just won't 5104 * allocate quite as evenly. It all balances out over time. 5105 * 5106 * If we are doing ditto or log blocks, try to spread them across 5107 * consecutive vdevs. If we're forced to reuse a vdev before we've 5108 * allocated all of our ditto blocks, then try and spread them out on 5109 * that vdev as much as possible. If it turns out to not be possible, 5110 * gradually lower our standards until anything becomes acceptable. 5111 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5112 * gives us hope of containing our fault domains to something we're 5113 * able to reason about. Otherwise, any two top-level vdev failures 5114 * will guarantee the loss of data. With consecutive allocation, 5115 * only two adjacent top-level vdev failures will result in data loss. 5116 * 5117 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5118 * ourselves on the same vdev as our gang block header. That 5119 * way, we can hope for locality in vdev_cache, plus it makes our 5120 * fault domains something tractable. 5121 */ 5122 if (hintdva) { 5123 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5124 5125 /* 5126 * It's possible the vdev we're using as the hint no 5127 * longer exists or its mg has been closed (e.g. by 5128 * device removal). Consult the rotor when 5129 * all else fails. 5130 */ 5131 if (vd != NULL && vd->vdev_mg != NULL) { 5132 mg = vdev_get_mg(vd, mc); 5133 5134 if (flags & METASLAB_HINTBP_AVOID && 5135 mg->mg_next != NULL) 5136 mg = mg->mg_next; 5137 } else { 5138 mg = mca->mca_rotor; 5139 } 5140 } else if (d != 0) { 5141 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5142 mg = vd->vdev_mg->mg_next; 5143 } else if (flags & METASLAB_FASTWRITE) { 5144 mg = fast_mg = mca->mca_rotor; 5145 5146 do { 5147 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5148 mg->mg_vd->vdev_pending_fastwrite) 5149 mg = fast_mg; 5150 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5151 5152 } else { 5153 ASSERT(mca->mca_rotor != NULL); 5154 mg = mca->mca_rotor; 5155 } 5156 5157 /* 5158 * If the hint put us into the wrong metaslab class, or into a 5159 * metaslab group that has been passivated, just follow the rotor. 5160 */ 5161 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5162 mg = mca->mca_rotor; 5163 5164 rotor = mg; 5165 top: 5166 do { 5167 boolean_t allocatable; 5168 5169 ASSERT(mg->mg_activation_count == 1); 5170 vd = mg->mg_vd; 5171 5172 /* 5173 * Don't allocate from faulted devices. 5174 */ 5175 if (try_hard) { 5176 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5177 allocatable = vdev_allocatable(vd); 5178 spa_config_exit(spa, SCL_ZIO, FTAG); 5179 } else { 5180 allocatable = vdev_allocatable(vd); 5181 } 5182 5183 /* 5184 * Determine if the selected metaslab group is eligible 5185 * for allocations. If we're ganging then don't allow 5186 * this metaslab group to skip allocations since that would 5187 * inadvertently return ENOSPC and suspend the pool 5188 * even though space is still available. 5189 */ 5190 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5191 allocatable = metaslab_group_allocatable(mg, rotor, 5192 psize, allocator, d); 5193 } 5194 5195 if (!allocatable) { 5196 metaslab_trace_add(zal, mg, NULL, psize, d, 5197 TRACE_NOT_ALLOCATABLE, allocator); 5198 goto next; 5199 } 5200 5201 ASSERT(mg->mg_initialized); 5202 5203 /* 5204 * Avoid writing single-copy data to a failing, 5205 * non-redundant vdev, unless we've already tried all 5206 * other vdevs. 5207 */ 5208 if ((vd->vdev_stat.vs_write_errors > 0 || 5209 vd->vdev_state < VDEV_STATE_HEALTHY) && 5210 d == 0 && !try_hard && vd->vdev_children == 0) { 5211 metaslab_trace_add(zal, mg, NULL, psize, d, 5212 TRACE_VDEV_ERROR, allocator); 5213 goto next; 5214 } 5215 5216 ASSERT(mg->mg_class == mc); 5217 5218 uint64_t asize = vdev_psize_to_asize(vd, psize); 5219 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5220 5221 /* 5222 * If we don't need to try hard, then require that the 5223 * block be on a different metaslab from any other DVAs 5224 * in this BP (unique=true). If we are trying hard, then 5225 * allow any metaslab to be used (unique=false). 5226 */ 5227 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5228 !try_hard, dva, d, allocator, try_hard); 5229 5230 if (offset != -1ULL) { 5231 /* 5232 * If we've just selected this metaslab group, 5233 * figure out whether the corresponding vdev is 5234 * over- or under-used relative to the pool, 5235 * and set an allocation bias to even it out. 5236 * 5237 * Bias is also used to compensate for unequally 5238 * sized vdevs so that space is allocated fairly. 5239 */ 5240 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5241 vdev_stat_t *vs = &vd->vdev_stat; 5242 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5243 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5244 int64_t ratio; 5245 5246 /* 5247 * Calculate how much more or less we should 5248 * try to allocate from this device during 5249 * this iteration around the rotor. 5250 * 5251 * This basically introduces a zero-centered 5252 * bias towards the devices with the most 5253 * free space, while compensating for vdev 5254 * size differences. 5255 * 5256 * Examples: 5257 * vdev V1 = 16M/128M 5258 * vdev V2 = 16M/128M 5259 * ratio(V1) = 100% ratio(V2) = 100% 5260 * 5261 * vdev V1 = 16M/128M 5262 * vdev V2 = 64M/128M 5263 * ratio(V1) = 127% ratio(V2) = 72% 5264 * 5265 * vdev V1 = 16M/128M 5266 * vdev V2 = 64M/512M 5267 * ratio(V1) = 40% ratio(V2) = 160% 5268 */ 5269 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5270 (mc_free + 1); 5271 mg->mg_bias = ((ratio - 100) * 5272 (int64_t)mg->mg_aliquot) / 100; 5273 } else if (!metaslab_bias_enabled) { 5274 mg->mg_bias = 0; 5275 } 5276 5277 if ((flags & METASLAB_FASTWRITE) || 5278 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5279 mg->mg_aliquot + mg->mg_bias) { 5280 mca->mca_rotor = mg->mg_next; 5281 mca->mca_aliquot = 0; 5282 } 5283 5284 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5285 DVA_SET_OFFSET(&dva[d], offset); 5286 DVA_SET_GANG(&dva[d], 5287 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5288 DVA_SET_ASIZE(&dva[d], asize); 5289 5290 if (flags & METASLAB_FASTWRITE) { 5291 atomic_add_64(&vd->vdev_pending_fastwrite, 5292 psize); 5293 } 5294 5295 return (0); 5296 } 5297 next: 5298 mca->mca_rotor = mg->mg_next; 5299 mca->mca_aliquot = 0; 5300 } while ((mg = mg->mg_next) != rotor); 5301 5302 /* 5303 * If we haven't tried hard, perhaps do so now. 5304 */ 5305 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5306 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5307 psize <= 1 << spa->spa_min_ashift)) { 5308 METASLABSTAT_BUMP(metaslabstat_try_hard); 5309 try_hard = B_TRUE; 5310 goto top; 5311 } 5312 5313 memset(&dva[d], 0, sizeof (dva_t)); 5314 5315 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5316 return (SET_ERROR(ENOSPC)); 5317 } 5318 5319 void 5320 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5321 boolean_t checkpoint) 5322 { 5323 metaslab_t *msp; 5324 spa_t *spa = vd->vdev_spa; 5325 5326 ASSERT(vdev_is_concrete(vd)); 5327 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5328 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5329 5330 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5331 5332 VERIFY(!msp->ms_condensing); 5333 VERIFY3U(offset, >=, msp->ms_start); 5334 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5335 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5336 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5337 5338 metaslab_check_free_impl(vd, offset, asize); 5339 5340 mutex_enter(&msp->ms_lock); 5341 if (range_tree_is_empty(msp->ms_freeing) && 5342 range_tree_is_empty(msp->ms_checkpointing)) { 5343 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5344 } 5345 5346 if (checkpoint) { 5347 ASSERT(spa_has_checkpoint(spa)); 5348 range_tree_add(msp->ms_checkpointing, offset, asize); 5349 } else { 5350 range_tree_add(msp->ms_freeing, offset, asize); 5351 } 5352 mutex_exit(&msp->ms_lock); 5353 } 5354 5355 void 5356 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5357 uint64_t size, void *arg) 5358 { 5359 (void) inner_offset; 5360 boolean_t *checkpoint = arg; 5361 5362 ASSERT3P(checkpoint, !=, NULL); 5363 5364 if (vd->vdev_ops->vdev_op_remap != NULL) 5365 vdev_indirect_mark_obsolete(vd, offset, size); 5366 else 5367 metaslab_free_impl(vd, offset, size, *checkpoint); 5368 } 5369 5370 static void 5371 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5372 boolean_t checkpoint) 5373 { 5374 spa_t *spa = vd->vdev_spa; 5375 5376 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5377 5378 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5379 return; 5380 5381 if (spa->spa_vdev_removal != NULL && 5382 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5383 vdev_is_concrete(vd)) { 5384 /* 5385 * Note: we check if the vdev is concrete because when 5386 * we complete the removal, we first change the vdev to be 5387 * an indirect vdev (in open context), and then (in syncing 5388 * context) clear spa_vdev_removal. 5389 */ 5390 free_from_removing_vdev(vd, offset, size); 5391 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5392 vdev_indirect_mark_obsolete(vd, offset, size); 5393 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5394 metaslab_free_impl_cb, &checkpoint); 5395 } else { 5396 metaslab_free_concrete(vd, offset, size, checkpoint); 5397 } 5398 } 5399 5400 typedef struct remap_blkptr_cb_arg { 5401 blkptr_t *rbca_bp; 5402 spa_remap_cb_t rbca_cb; 5403 vdev_t *rbca_remap_vd; 5404 uint64_t rbca_remap_offset; 5405 void *rbca_cb_arg; 5406 } remap_blkptr_cb_arg_t; 5407 5408 static void 5409 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5410 uint64_t size, void *arg) 5411 { 5412 remap_blkptr_cb_arg_t *rbca = arg; 5413 blkptr_t *bp = rbca->rbca_bp; 5414 5415 /* We can not remap split blocks. */ 5416 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5417 return; 5418 ASSERT0(inner_offset); 5419 5420 if (rbca->rbca_cb != NULL) { 5421 /* 5422 * At this point we know that we are not handling split 5423 * blocks and we invoke the callback on the previous 5424 * vdev which must be indirect. 5425 */ 5426 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5427 5428 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5429 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5430 5431 /* set up remap_blkptr_cb_arg for the next call */ 5432 rbca->rbca_remap_vd = vd; 5433 rbca->rbca_remap_offset = offset; 5434 } 5435 5436 /* 5437 * The phys birth time is that of dva[0]. This ensures that we know 5438 * when each dva was written, so that resilver can determine which 5439 * blocks need to be scrubbed (i.e. those written during the time 5440 * the vdev was offline). It also ensures that the key used in 5441 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5442 * we didn't change the phys_birth, a lookup in the ARC for a 5443 * remapped BP could find the data that was previously stored at 5444 * this vdev + offset. 5445 */ 5446 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5447 DVA_GET_VDEV(&bp->blk_dva[0])); 5448 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5449 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5450 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5451 5452 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5453 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5454 } 5455 5456 /* 5457 * If the block pointer contains any indirect DVAs, modify them to refer to 5458 * concrete DVAs. Note that this will sometimes not be possible, leaving 5459 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5460 * segments in the mapping (i.e. it is a "split block"). 5461 * 5462 * If the BP was remapped, calls the callback on the original dva (note the 5463 * callback can be called multiple times if the original indirect DVA refers 5464 * to another indirect DVA, etc). 5465 * 5466 * Returns TRUE if the BP was remapped. 5467 */ 5468 boolean_t 5469 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5470 { 5471 remap_blkptr_cb_arg_t rbca; 5472 5473 if (!zfs_remap_blkptr_enable) 5474 return (B_FALSE); 5475 5476 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5477 return (B_FALSE); 5478 5479 /* 5480 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5481 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5482 */ 5483 if (BP_GET_DEDUP(bp)) 5484 return (B_FALSE); 5485 5486 /* 5487 * Gang blocks can not be remapped, because 5488 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5489 * the BP used to read the gang block header (GBH) being the same 5490 * as the DVA[0] that we allocated for the GBH. 5491 */ 5492 if (BP_IS_GANG(bp)) 5493 return (B_FALSE); 5494 5495 /* 5496 * Embedded BP's have no DVA to remap. 5497 */ 5498 if (BP_GET_NDVAS(bp) < 1) 5499 return (B_FALSE); 5500 5501 /* 5502 * Note: we only remap dva[0]. If we remapped other dvas, we 5503 * would no longer know what their phys birth txg is. 5504 */ 5505 dva_t *dva = &bp->blk_dva[0]; 5506 5507 uint64_t offset = DVA_GET_OFFSET(dva); 5508 uint64_t size = DVA_GET_ASIZE(dva); 5509 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5510 5511 if (vd->vdev_ops->vdev_op_remap == NULL) 5512 return (B_FALSE); 5513 5514 rbca.rbca_bp = bp; 5515 rbca.rbca_cb = callback; 5516 rbca.rbca_remap_vd = vd; 5517 rbca.rbca_remap_offset = offset; 5518 rbca.rbca_cb_arg = arg; 5519 5520 /* 5521 * remap_blkptr_cb() will be called in order for each level of 5522 * indirection, until a concrete vdev is reached or a split block is 5523 * encountered. old_vd and old_offset are updated within the callback 5524 * as we go from the one indirect vdev to the next one (either concrete 5525 * or indirect again) in that order. 5526 */ 5527 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5528 5529 /* Check if the DVA wasn't remapped because it is a split block */ 5530 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5531 return (B_FALSE); 5532 5533 return (B_TRUE); 5534 } 5535 5536 /* 5537 * Undo the allocation of a DVA which happened in the given transaction group. 5538 */ 5539 void 5540 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5541 { 5542 metaslab_t *msp; 5543 vdev_t *vd; 5544 uint64_t vdev = DVA_GET_VDEV(dva); 5545 uint64_t offset = DVA_GET_OFFSET(dva); 5546 uint64_t size = DVA_GET_ASIZE(dva); 5547 5548 ASSERT(DVA_IS_VALID(dva)); 5549 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5550 5551 if (txg > spa_freeze_txg(spa)) 5552 return; 5553 5554 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5555 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5556 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5557 (u_longlong_t)vdev, (u_longlong_t)offset, 5558 (u_longlong_t)size); 5559 return; 5560 } 5561 5562 ASSERT(!vd->vdev_removing); 5563 ASSERT(vdev_is_concrete(vd)); 5564 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5565 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5566 5567 if (DVA_GET_GANG(dva)) 5568 size = vdev_gang_header_asize(vd); 5569 5570 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5571 5572 mutex_enter(&msp->ms_lock); 5573 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5574 offset, size); 5575 msp->ms_allocating_total -= size; 5576 5577 VERIFY(!msp->ms_condensing); 5578 VERIFY3U(offset, >=, msp->ms_start); 5579 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5580 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5581 msp->ms_size); 5582 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5583 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5584 range_tree_add(msp->ms_allocatable, offset, size); 5585 mutex_exit(&msp->ms_lock); 5586 } 5587 5588 /* 5589 * Free the block represented by the given DVA. 5590 */ 5591 void 5592 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5593 { 5594 uint64_t vdev = DVA_GET_VDEV(dva); 5595 uint64_t offset = DVA_GET_OFFSET(dva); 5596 uint64_t size = DVA_GET_ASIZE(dva); 5597 vdev_t *vd = vdev_lookup_top(spa, vdev); 5598 5599 ASSERT(DVA_IS_VALID(dva)); 5600 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5601 5602 if (DVA_GET_GANG(dva)) { 5603 size = vdev_gang_header_asize(vd); 5604 } 5605 5606 metaslab_free_impl(vd, offset, size, checkpoint); 5607 } 5608 5609 /* 5610 * Reserve some allocation slots. The reservation system must be called 5611 * before we call into the allocator. If there aren't any available slots 5612 * then the I/O will be throttled until an I/O completes and its slots are 5613 * freed up. The function returns true if it was successful in placing 5614 * the reservation. 5615 */ 5616 boolean_t 5617 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5618 zio_t *zio, int flags) 5619 { 5620 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5621 uint64_t max = mca->mca_alloc_max_slots; 5622 5623 ASSERT(mc->mc_alloc_throttle_enabled); 5624 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5625 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5626 /* 5627 * The potential race between _count() and _add() is covered 5628 * by the allocator lock in most cases, or irrelevant due to 5629 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5630 * But even if we assume some other non-existing scenario, the 5631 * worst that can happen is few more I/Os get to allocation 5632 * earlier, that is not a problem. 5633 * 5634 * We reserve the slots individually so that we can unreserve 5635 * them individually when an I/O completes. 5636 */ 5637 for (int d = 0; d < slots; d++) 5638 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5639 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5640 return (B_TRUE); 5641 } 5642 return (B_FALSE); 5643 } 5644 5645 void 5646 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5647 int allocator, zio_t *zio) 5648 { 5649 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5650 5651 ASSERT(mc->mc_alloc_throttle_enabled); 5652 for (int d = 0; d < slots; d++) 5653 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5654 } 5655 5656 static int 5657 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5658 uint64_t txg) 5659 { 5660 metaslab_t *msp; 5661 spa_t *spa = vd->vdev_spa; 5662 int error = 0; 5663 5664 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5665 return (SET_ERROR(ENXIO)); 5666 5667 ASSERT3P(vd->vdev_ms, !=, NULL); 5668 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5669 5670 mutex_enter(&msp->ms_lock); 5671 5672 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5673 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5674 if (error == EBUSY) { 5675 ASSERT(msp->ms_loaded); 5676 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5677 error = 0; 5678 } 5679 } 5680 5681 if (error == 0 && 5682 !range_tree_contains(msp->ms_allocatable, offset, size)) 5683 error = SET_ERROR(ENOENT); 5684 5685 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5686 mutex_exit(&msp->ms_lock); 5687 return (error); 5688 } 5689 5690 VERIFY(!msp->ms_condensing); 5691 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5692 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5693 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5694 msp->ms_size); 5695 range_tree_remove(msp->ms_allocatable, offset, size); 5696 range_tree_clear(msp->ms_trim, offset, size); 5697 5698 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5699 metaslab_class_t *mc = msp->ms_group->mg_class; 5700 multilist_sublist_t *mls = 5701 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5702 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5703 msp->ms_selected_txg = txg; 5704 multilist_sublist_insert_head(mls, msp); 5705 } 5706 multilist_sublist_unlock(mls); 5707 5708 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5709 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5710 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5711 offset, size); 5712 msp->ms_allocating_total += size; 5713 } 5714 5715 mutex_exit(&msp->ms_lock); 5716 5717 return (0); 5718 } 5719 5720 typedef struct metaslab_claim_cb_arg_t { 5721 uint64_t mcca_txg; 5722 int mcca_error; 5723 } metaslab_claim_cb_arg_t; 5724 5725 static void 5726 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5727 uint64_t size, void *arg) 5728 { 5729 (void) inner_offset; 5730 metaslab_claim_cb_arg_t *mcca_arg = arg; 5731 5732 if (mcca_arg->mcca_error == 0) { 5733 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5734 size, mcca_arg->mcca_txg); 5735 } 5736 } 5737 5738 int 5739 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5740 { 5741 if (vd->vdev_ops->vdev_op_remap != NULL) { 5742 metaslab_claim_cb_arg_t arg; 5743 5744 /* 5745 * Only zdb(8) can claim on indirect vdevs. This is used 5746 * to detect leaks of mapped space (that are not accounted 5747 * for in the obsolete counts, spacemap, or bpobj). 5748 */ 5749 ASSERT(!spa_writeable(vd->vdev_spa)); 5750 arg.mcca_error = 0; 5751 arg.mcca_txg = txg; 5752 5753 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5754 metaslab_claim_impl_cb, &arg); 5755 5756 if (arg.mcca_error == 0) { 5757 arg.mcca_error = metaslab_claim_concrete(vd, 5758 offset, size, txg); 5759 } 5760 return (arg.mcca_error); 5761 } else { 5762 return (metaslab_claim_concrete(vd, offset, size, txg)); 5763 } 5764 } 5765 5766 /* 5767 * Intent log support: upon opening the pool after a crash, notify the SPA 5768 * of blocks that the intent log has allocated for immediate write, but 5769 * which are still considered free by the SPA because the last transaction 5770 * group didn't commit yet. 5771 */ 5772 static int 5773 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5774 { 5775 uint64_t vdev = DVA_GET_VDEV(dva); 5776 uint64_t offset = DVA_GET_OFFSET(dva); 5777 uint64_t size = DVA_GET_ASIZE(dva); 5778 vdev_t *vd; 5779 5780 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5781 return (SET_ERROR(ENXIO)); 5782 } 5783 5784 ASSERT(DVA_IS_VALID(dva)); 5785 5786 if (DVA_GET_GANG(dva)) 5787 size = vdev_gang_header_asize(vd); 5788 5789 return (metaslab_claim_impl(vd, offset, size, txg)); 5790 } 5791 5792 int 5793 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5794 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5795 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5796 { 5797 dva_t *dva = bp->blk_dva; 5798 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5799 int error = 0; 5800 5801 ASSERT(bp->blk_birth == 0); 5802 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5803 5804 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5805 5806 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5807 /* no vdevs in this class */ 5808 spa_config_exit(spa, SCL_ALLOC, FTAG); 5809 return (SET_ERROR(ENOSPC)); 5810 } 5811 5812 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5813 ASSERT(BP_GET_NDVAS(bp) == 0); 5814 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5815 ASSERT3P(zal, !=, NULL); 5816 5817 for (int d = 0; d < ndvas; d++) { 5818 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5819 txg, flags, zal, allocator); 5820 if (error != 0) { 5821 for (d--; d >= 0; d--) { 5822 metaslab_unalloc_dva(spa, &dva[d], txg); 5823 metaslab_group_alloc_decrement(spa, 5824 DVA_GET_VDEV(&dva[d]), zio, flags, 5825 allocator, B_FALSE); 5826 memset(&dva[d], 0, sizeof (dva_t)); 5827 } 5828 spa_config_exit(spa, SCL_ALLOC, FTAG); 5829 return (error); 5830 } else { 5831 /* 5832 * Update the metaslab group's queue depth 5833 * based on the newly allocated dva. 5834 */ 5835 metaslab_group_alloc_increment(spa, 5836 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5837 } 5838 } 5839 ASSERT(error == 0); 5840 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5841 5842 spa_config_exit(spa, SCL_ALLOC, FTAG); 5843 5844 BP_SET_BIRTH(bp, txg, 0); 5845 5846 return (0); 5847 } 5848 5849 void 5850 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5851 { 5852 const dva_t *dva = bp->blk_dva; 5853 int ndvas = BP_GET_NDVAS(bp); 5854 5855 ASSERT(!BP_IS_HOLE(bp)); 5856 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5857 5858 /* 5859 * If we have a checkpoint for the pool we need to make sure that 5860 * the blocks that we free that are part of the checkpoint won't be 5861 * reused until the checkpoint is discarded or we revert to it. 5862 * 5863 * The checkpoint flag is passed down the metaslab_free code path 5864 * and is set whenever we want to add a block to the checkpoint's 5865 * accounting. That is, we "checkpoint" blocks that existed at the 5866 * time the checkpoint was created and are therefore referenced by 5867 * the checkpointed uberblock. 5868 * 5869 * Note that, we don't checkpoint any blocks if the current 5870 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5871 * normally as they will be referenced by the checkpointed uberblock. 5872 */ 5873 boolean_t checkpoint = B_FALSE; 5874 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5875 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5876 /* 5877 * At this point, if the block is part of the checkpoint 5878 * there is no way it was created in the current txg. 5879 */ 5880 ASSERT(!now); 5881 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5882 checkpoint = B_TRUE; 5883 } 5884 5885 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5886 5887 for (int d = 0; d < ndvas; d++) { 5888 if (now) { 5889 metaslab_unalloc_dva(spa, &dva[d], txg); 5890 } else { 5891 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5892 metaslab_free_dva(spa, &dva[d], checkpoint); 5893 } 5894 } 5895 5896 spa_config_exit(spa, SCL_FREE, FTAG); 5897 } 5898 5899 int 5900 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5901 { 5902 const dva_t *dva = bp->blk_dva; 5903 int ndvas = BP_GET_NDVAS(bp); 5904 int error = 0; 5905 5906 ASSERT(!BP_IS_HOLE(bp)); 5907 5908 if (txg != 0) { 5909 /* 5910 * First do a dry run to make sure all DVAs are claimable, 5911 * so we don't have to unwind from partial failures below. 5912 */ 5913 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5914 return (error); 5915 } 5916 5917 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5918 5919 for (int d = 0; d < ndvas; d++) { 5920 error = metaslab_claim_dva(spa, &dva[d], txg); 5921 if (error != 0) 5922 break; 5923 } 5924 5925 spa_config_exit(spa, SCL_ALLOC, FTAG); 5926 5927 ASSERT(error == 0 || txg == 0); 5928 5929 return (error); 5930 } 5931 5932 void 5933 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5934 { 5935 const dva_t *dva = bp->blk_dva; 5936 int ndvas = BP_GET_NDVAS(bp); 5937 uint64_t psize = BP_GET_PSIZE(bp); 5938 int d; 5939 vdev_t *vd; 5940 5941 ASSERT(!BP_IS_HOLE(bp)); 5942 ASSERT(!BP_IS_EMBEDDED(bp)); 5943 ASSERT(psize > 0); 5944 5945 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5946 5947 for (d = 0; d < ndvas; d++) { 5948 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5949 continue; 5950 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5951 } 5952 5953 spa_config_exit(spa, SCL_VDEV, FTAG); 5954 } 5955 5956 void 5957 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5958 { 5959 const dva_t *dva = bp->blk_dva; 5960 int ndvas = BP_GET_NDVAS(bp); 5961 uint64_t psize = BP_GET_PSIZE(bp); 5962 int d; 5963 vdev_t *vd; 5964 5965 ASSERT(!BP_IS_HOLE(bp)); 5966 ASSERT(!BP_IS_EMBEDDED(bp)); 5967 ASSERT(psize > 0); 5968 5969 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5970 5971 for (d = 0; d < ndvas; d++) { 5972 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5973 continue; 5974 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5975 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5976 } 5977 5978 spa_config_exit(spa, SCL_VDEV, FTAG); 5979 } 5980 5981 static void 5982 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5983 uint64_t size, void *arg) 5984 { 5985 (void) inner, (void) arg; 5986 5987 if (vd->vdev_ops == &vdev_indirect_ops) 5988 return; 5989 5990 metaslab_check_free_impl(vd, offset, size); 5991 } 5992 5993 static void 5994 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5995 { 5996 metaslab_t *msp; 5997 spa_t *spa __maybe_unused = vd->vdev_spa; 5998 5999 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6000 return; 6001 6002 if (vd->vdev_ops->vdev_op_remap != NULL) { 6003 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6004 metaslab_check_free_impl_cb, NULL); 6005 return; 6006 } 6007 6008 ASSERT(vdev_is_concrete(vd)); 6009 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6010 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6011 6012 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6013 6014 mutex_enter(&msp->ms_lock); 6015 if (msp->ms_loaded) { 6016 range_tree_verify_not_present(msp->ms_allocatable, 6017 offset, size); 6018 } 6019 6020 /* 6021 * Check all segments that currently exist in the freeing pipeline. 6022 * 6023 * It would intuitively make sense to also check the current allocating 6024 * tree since metaslab_unalloc_dva() exists for extents that are 6025 * allocated and freed in the same sync pass within the same txg. 6026 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6027 * segment but then we free part of it within the same txg 6028 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6029 * current allocating tree. 6030 */ 6031 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6032 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6033 range_tree_verify_not_present(msp->ms_freed, offset, size); 6034 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6035 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6036 range_tree_verify_not_present(msp->ms_trim, offset, size); 6037 mutex_exit(&msp->ms_lock); 6038 } 6039 6040 void 6041 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6042 { 6043 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6044 return; 6045 6046 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6047 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6048 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6049 vdev_t *vd = vdev_lookup_top(spa, vdev); 6050 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6051 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6052 6053 if (DVA_GET_GANG(&bp->blk_dva[i])) 6054 size = vdev_gang_header_asize(vd); 6055 6056 ASSERT3P(vd, !=, NULL); 6057 6058 metaslab_check_free_impl(vd, offset, size); 6059 } 6060 spa_config_exit(spa, SCL_VDEV, FTAG); 6061 } 6062 6063 static void 6064 metaslab_group_disable_wait(metaslab_group_t *mg) 6065 { 6066 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6067 while (mg->mg_disabled_updating) { 6068 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6069 } 6070 } 6071 6072 static void 6073 metaslab_group_disabled_increment(metaslab_group_t *mg) 6074 { 6075 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6076 ASSERT(mg->mg_disabled_updating); 6077 6078 while (mg->mg_ms_disabled >= max_disabled_ms) { 6079 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6080 } 6081 mg->mg_ms_disabled++; 6082 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6083 } 6084 6085 /* 6086 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6087 * We must also track how many metaslabs are currently disabled within a 6088 * metaslab group and limit them to prevent allocation failures from 6089 * occurring because all metaslabs are disabled. 6090 */ 6091 void 6092 metaslab_disable(metaslab_t *msp) 6093 { 6094 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6095 metaslab_group_t *mg = msp->ms_group; 6096 6097 mutex_enter(&mg->mg_ms_disabled_lock); 6098 6099 /* 6100 * To keep an accurate count of how many threads have disabled 6101 * a specific metaslab group, we only allow one thread to mark 6102 * the metaslab group at a time. This ensures that the value of 6103 * ms_disabled will be accurate when we decide to mark a metaslab 6104 * group as disabled. To do this we force all other threads 6105 * to wait till the metaslab's mg_disabled_updating flag is no 6106 * longer set. 6107 */ 6108 metaslab_group_disable_wait(mg); 6109 mg->mg_disabled_updating = B_TRUE; 6110 if (msp->ms_disabled == 0) { 6111 metaslab_group_disabled_increment(mg); 6112 } 6113 mutex_enter(&msp->ms_lock); 6114 msp->ms_disabled++; 6115 mutex_exit(&msp->ms_lock); 6116 6117 mg->mg_disabled_updating = B_FALSE; 6118 cv_broadcast(&mg->mg_ms_disabled_cv); 6119 mutex_exit(&mg->mg_ms_disabled_lock); 6120 } 6121 6122 void 6123 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6124 { 6125 metaslab_group_t *mg = msp->ms_group; 6126 spa_t *spa = mg->mg_vd->vdev_spa; 6127 6128 /* 6129 * Wait for the outstanding IO to be synced to prevent newly 6130 * allocated blocks from being overwritten. This used by 6131 * initialize and TRIM which are modifying unallocated space. 6132 */ 6133 if (sync) 6134 txg_wait_synced(spa_get_dsl(spa), 0); 6135 6136 mutex_enter(&mg->mg_ms_disabled_lock); 6137 mutex_enter(&msp->ms_lock); 6138 if (--msp->ms_disabled == 0) { 6139 mg->mg_ms_disabled--; 6140 cv_broadcast(&mg->mg_ms_disabled_cv); 6141 if (unload) 6142 metaslab_unload(msp); 6143 } 6144 mutex_exit(&msp->ms_lock); 6145 mutex_exit(&mg->mg_ms_disabled_lock); 6146 } 6147 6148 void 6149 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6150 { 6151 ms->ms_unflushed_dirty = dirty; 6152 } 6153 6154 static void 6155 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6156 { 6157 vdev_t *vd = ms->ms_group->mg_vd; 6158 spa_t *spa = vd->vdev_spa; 6159 objset_t *mos = spa_meta_objset(spa); 6160 6161 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6162 6163 metaslab_unflushed_phys_t entry = { 6164 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6165 }; 6166 uint64_t entry_size = sizeof (entry); 6167 uint64_t entry_offset = ms->ms_id * entry_size; 6168 6169 uint64_t object = 0; 6170 int err = zap_lookup(mos, vd->vdev_top_zap, 6171 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6172 &object); 6173 if (err == ENOENT) { 6174 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6175 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6176 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6177 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6178 &object, tx)); 6179 } else { 6180 VERIFY0(err); 6181 } 6182 6183 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6184 &entry, tx); 6185 } 6186 6187 void 6188 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6189 { 6190 ms->ms_unflushed_txg = txg; 6191 metaslab_update_ondisk_flush_data(ms, tx); 6192 } 6193 6194 boolean_t 6195 metaslab_unflushed_dirty(metaslab_t *ms) 6196 { 6197 return (ms->ms_unflushed_dirty); 6198 } 6199 6200 uint64_t 6201 metaslab_unflushed_txg(metaslab_t *ms) 6202 { 6203 return (ms->ms_unflushed_txg); 6204 } 6205 6206 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6207 "Allocation granularity (a.k.a. stripe size)"); 6208 6209 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6210 "Load all metaslabs when pool is first opened"); 6211 6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6213 "Prevent metaslabs from being unloaded"); 6214 6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6216 "Preload potential metaslabs during reassessment"); 6217 6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6219 "Delay in txgs after metaslab was last used before unloading"); 6220 6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6222 "Delay in milliseconds after metaslab was last used before unloading"); 6223 6224 /* BEGIN CSTYLED */ 6225 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6226 "Percentage of metaslab group size that should be free to make it " 6227 "eligible for allocation"); 6228 6229 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6230 "Percentage of metaslab group size that should be considered eligible " 6231 "for allocations unless all metaslab groups within the metaslab class " 6232 "have also crossed this threshold"); 6233 6234 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6235 ZMOD_RW, 6236 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6237 /* END CSTYLED */ 6238 6239 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6240 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6241 6242 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6243 "Prefer metaslabs with lower LBAs"); 6244 6245 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6246 "Enable metaslab group biasing"); 6247 6248 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6249 ZMOD_RW, "Enable segment-based metaslab selection"); 6250 6251 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6252 "Segment-based metaslab selection maximum buckets before switching"); 6253 6254 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6255 "Blocks larger than this size are forced to be gang blocks"); 6256 6257 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6258 "Max distance (bytes) to search forward before using size tree"); 6259 6260 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6261 "When looking in size tree, use largest segment instead of exact fit"); 6262 6263 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6264 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6265 6266 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6267 "Percentage of memory that can be used to store metaslab range trees"); 6268 6269 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6270 ZMOD_RW, "Try hard to allocate before ganging"); 6271 6272 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6273 "Normally only consider this many of the best metaslabs in each vdev"); 6274