xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zfeature.h>
38 #include <sys/vdev_indirect_mapping.h>
39 #include <sys/zap.h>
40 #include <sys/btree.h>
41 
42 #define	WITH_DF_BLOCK_ALLOCATOR
43 
44 #define	GANG_ALLOCATION(flags) \
45 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
46 
47 /*
48  * Metaslab granularity, in bytes. This is roughly similar to what would be
49  * referred to as the "stripe size" in traditional RAID arrays. In normal
50  * operation, we will try to write this amount of data to a top-level vdev
51  * before moving on to the next one.
52  */
53 unsigned long metaslab_aliquot = 512 << 10;
54 
55 /*
56  * For testing, make some blocks above a certain size be gang blocks.
57  */
58 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
59 
60 /*
61  * In pools where the log space map feature is not enabled we touch
62  * multiple metaslabs (and their respective space maps) with each
63  * transaction group. Thus, we benefit from having a small space map
64  * block size since it allows us to issue more I/O operations scattered
65  * around the disk. So a sane default for the space map block size
66  * is 8~16K.
67  */
68 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
69 
70 /*
71  * When the log space map feature is enabled, we accumulate a lot of
72  * changes per metaslab that are flushed once in a while so we benefit
73  * from a bigger block size like 128K for the metaslab space maps.
74  */
75 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
76 
77 /*
78  * The in-core space map representation is more compact than its on-disk form.
79  * The zfs_condense_pct determines how much more compact the in-core
80  * space map representation must be before we compact it on-disk.
81  * Values should be greater than or equal to 100.
82  */
83 int zfs_condense_pct = 200;
84 
85 /*
86  * Condensing a metaslab is not guaranteed to actually reduce the amount of
87  * space used on disk. In particular, a space map uses data in increments of
88  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
89  * same number of blocks after condensing. Since the goal of condensing is to
90  * reduce the number of IOPs required to read the space map, we only want to
91  * condense when we can be sure we will reduce the number of blocks used by the
92  * space map. Unfortunately, we cannot precisely compute whether or not this is
93  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
94  * we apply the following heuristic: do not condense a spacemap unless the
95  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
96  * blocks.
97  */
98 int zfs_metaslab_condense_block_threshold = 4;
99 
100 /*
101  * The zfs_mg_noalloc_threshold defines which metaslab groups should
102  * be eligible for allocation. The value is defined as a percentage of
103  * free space. Metaslab groups that have more free space than
104  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
105  * a metaslab group's free space is less than or equal to the
106  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
107  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
108  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
109  * groups are allowed to accept allocations. Gang blocks are always
110  * eligible to allocate on any metaslab group. The default value of 0 means
111  * no metaslab group will be excluded based on this criterion.
112  */
113 int zfs_mg_noalloc_threshold = 0;
114 
115 /*
116  * Metaslab groups are considered eligible for allocations if their
117  * fragmentation metric (measured as a percentage) is less than or
118  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
119  * exceeds this threshold then it will be skipped unless all metaslab
120  * groups within the metaslab class have also crossed this threshold.
121  *
122  * This tunable was introduced to avoid edge cases where we continue
123  * allocating from very fragmented disks in our pool while other, less
124  * fragmented disks, exists. On the other hand, if all disks in the
125  * pool are uniformly approaching the threshold, the threshold can
126  * be a speed bump in performance, where we keep switching the disks
127  * that we allocate from (e.g. we allocate some segments from disk A
128  * making it bypassing the threshold while freeing segments from disk
129  * B getting its fragmentation below the threshold).
130  *
131  * Empirically, we've seen that our vdev selection for allocations is
132  * good enough that fragmentation increases uniformly across all vdevs
133  * the majority of the time. Thus we set the threshold percentage high
134  * enough to avoid hitting the speed bump on pools that are being pushed
135  * to the edge.
136  */
137 int zfs_mg_fragmentation_threshold = 95;
138 
139 /*
140  * Allow metaslabs to keep their active state as long as their fragmentation
141  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
142  * active metaslab that exceeds this threshold will no longer keep its active
143  * status allowing better metaslabs to be selected.
144  */
145 int zfs_metaslab_fragmentation_threshold = 70;
146 
147 /*
148  * When set will load all metaslabs when pool is first opened.
149  */
150 int metaslab_debug_load = 0;
151 
152 /*
153  * When set will prevent metaslabs from being unloaded.
154  */
155 int metaslab_debug_unload = 0;
156 
157 /*
158  * Minimum size which forces the dynamic allocator to change
159  * it's allocation strategy.  Once the space map cannot satisfy
160  * an allocation of this size then it switches to using more
161  * aggressive strategy (i.e search by size rather than offset).
162  */
163 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
164 
165 /*
166  * The minimum free space, in percent, which must be available
167  * in a space map to continue allocations in a first-fit fashion.
168  * Once the space map's free space drops below this level we dynamically
169  * switch to using best-fit allocations.
170  */
171 int metaslab_df_free_pct = 4;
172 
173 /*
174  * Maximum distance to search forward from the last offset. Without this
175  * limit, fragmented pools can see >100,000 iterations and
176  * metaslab_block_picker() becomes the performance limiting factor on
177  * high-performance storage.
178  *
179  * With the default setting of 16MB, we typically see less than 500
180  * iterations, even with very fragmented, ashift=9 pools. The maximum number
181  * of iterations possible is:
182  *     metaslab_df_max_search / (2 * (1<<ashift))
183  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
184  * 2048 (with ashift=12).
185  */
186 int metaslab_df_max_search = 16 * 1024 * 1024;
187 
188 /*
189  * Forces the metaslab_block_picker function to search for at least this many
190  * segments forwards until giving up on finding a segment that the allocation
191  * will fit into.
192  */
193 uint32_t metaslab_min_search_count = 100;
194 
195 /*
196  * If we are not searching forward (due to metaslab_df_max_search,
197  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
198  * controls what segment is used.  If it is set, we will use the largest free
199  * segment.  If it is not set, we will use a segment of exactly the requested
200  * size (or larger).
201  */
202 int metaslab_df_use_largest_segment = B_FALSE;
203 
204 /*
205  * Percentage of all cpus that can be used by the metaslab taskq.
206  */
207 int metaslab_load_pct = 50;
208 
209 /*
210  * These tunables control how long a metaslab will remain loaded after the
211  * last allocation from it.  A metaslab can't be unloaded until at least
212  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
213  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
214  * unloaded sooner.  These settings are intended to be generous -- to keep
215  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
216  */
217 int metaslab_unload_delay = 32;
218 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
219 
220 /*
221  * Max number of metaslabs per group to preload.
222  */
223 int metaslab_preload_limit = 10;
224 
225 /*
226  * Enable/disable preloading of metaslab.
227  */
228 int metaslab_preload_enabled = B_TRUE;
229 
230 /*
231  * Enable/disable fragmentation weighting on metaslabs.
232  */
233 int metaslab_fragmentation_factor_enabled = B_TRUE;
234 
235 /*
236  * Enable/disable lba weighting (i.e. outer tracks are given preference).
237  */
238 int metaslab_lba_weighting_enabled = B_TRUE;
239 
240 /*
241  * Enable/disable metaslab group biasing.
242  */
243 int metaslab_bias_enabled = B_TRUE;
244 
245 /*
246  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
247  */
248 boolean_t zfs_remap_blkptr_enable = B_TRUE;
249 
250 /*
251  * Enable/disable segment-based metaslab selection.
252  */
253 int zfs_metaslab_segment_weight_enabled = B_TRUE;
254 
255 /*
256  * When using segment-based metaslab selection, we will continue
257  * allocating from the active metaslab until we have exhausted
258  * zfs_metaslab_switch_threshold of its buckets.
259  */
260 int zfs_metaslab_switch_threshold = 2;
261 
262 /*
263  * Internal switch to enable/disable the metaslab allocation tracing
264  * facility.
265  */
266 #ifdef _METASLAB_TRACING
267 boolean_t metaslab_trace_enabled = B_TRUE;
268 #endif
269 
270 /*
271  * Maximum entries that the metaslab allocation tracing facility will keep
272  * in a given list when running in non-debug mode. We limit the number
273  * of entries in non-debug mode to prevent us from using up too much memory.
274  * The limit should be sufficiently large that we don't expect any allocation
275  * to every exceed this value. In debug mode, the system will panic if this
276  * limit is ever reached allowing for further investigation.
277  */
278 #ifdef _METASLAB_TRACING
279 uint64_t metaslab_trace_max_entries = 5000;
280 #endif
281 
282 /*
283  * Maximum number of metaslabs per group that can be disabled
284  * simultaneously.
285  */
286 int max_disabled_ms = 3;
287 
288 /*
289  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
290  * To avoid 64-bit overflow, don't set above UINT32_MAX.
291  */
292 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
293 
294 /*
295  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
296  * a metaslab would take it over this percentage, the oldest selected metaslab
297  * is automatically unloaded.
298  */
299 int zfs_metaslab_mem_limit = 75;
300 
301 /*
302  * Force the per-metaslab range trees to use 64-bit integers to store
303  * segments. Used for debugging purposes.
304  */
305 boolean_t zfs_metaslab_force_large_segs = B_FALSE;
306 
307 /*
308  * By default we only store segments over a certain size in the size-sorted
309  * metaslab trees (ms_allocatable_by_size and
310  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
311  * improves load and unload times at the cost of causing us to use slightly
312  * larger segments than we would otherwise in some cases.
313  */
314 uint32_t metaslab_by_size_min_shift = 14;
315 
316 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
317 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
318 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
319 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
320 
321 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
322 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
323 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
324 static unsigned int metaslab_idx_func(multilist_t *, void *);
325 static void metaslab_evict(metaslab_t *, uint64_t);
326 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
327 #ifdef _METASLAB_TRACING
328 kmem_cache_t *metaslab_alloc_trace_cache;
329 
330 typedef struct metaslab_stats {
331 	kstat_named_t metaslabstat_trace_over_limit;
332 	kstat_named_t metaslabstat_df_find_under_floor;
333 	kstat_named_t metaslabstat_reload_tree;
334 } metaslab_stats_t;
335 
336 static metaslab_stats_t metaslab_stats = {
337 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
338 	{ "df_find_under_floor",	KSTAT_DATA_UINT64 },
339 	{ "reload_tree",		KSTAT_DATA_UINT64 },
340 };
341 
342 #define	METASLABSTAT_BUMP(stat) \
343 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
344 
345 
346 kstat_t *metaslab_ksp;
347 
348 void
349 metaslab_stat_init(void)
350 {
351 	ASSERT(metaslab_alloc_trace_cache == NULL);
352 	metaslab_alloc_trace_cache = kmem_cache_create(
353 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
354 	    0, NULL, NULL, NULL, NULL, NULL, 0);
355 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
356 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
357 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
358 	if (metaslab_ksp != NULL) {
359 		metaslab_ksp->ks_data = &metaslab_stats;
360 		kstat_install(metaslab_ksp);
361 	}
362 }
363 
364 void
365 metaslab_stat_fini(void)
366 {
367 	if (metaslab_ksp != NULL) {
368 		kstat_delete(metaslab_ksp);
369 		metaslab_ksp = NULL;
370 	}
371 
372 	kmem_cache_destroy(metaslab_alloc_trace_cache);
373 	metaslab_alloc_trace_cache = NULL;
374 }
375 #else
376 
377 void
378 metaslab_stat_init(void)
379 {
380 }
381 
382 void
383 metaslab_stat_fini(void)
384 {
385 }
386 #endif
387 
388 /*
389  * ==========================================================================
390  * Metaslab classes
391  * ==========================================================================
392  */
393 metaslab_class_t *
394 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
395 {
396 	metaslab_class_t *mc;
397 
398 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
399 
400 	mc->mc_spa = spa;
401 	mc->mc_rotor = NULL;
402 	mc->mc_ops = ops;
403 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
404 	mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t),
405 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
406 	mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
407 	    sizeof (zfs_refcount_t), KM_SLEEP);
408 	mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
409 	    sizeof (uint64_t), KM_SLEEP);
410 	for (int i = 0; i < spa->spa_alloc_count; i++)
411 		zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
412 
413 	return (mc);
414 }
415 
416 void
417 metaslab_class_destroy(metaslab_class_t *mc)
418 {
419 	ASSERT(mc->mc_rotor == NULL);
420 	ASSERT(mc->mc_alloc == 0);
421 	ASSERT(mc->mc_deferred == 0);
422 	ASSERT(mc->mc_space == 0);
423 	ASSERT(mc->mc_dspace == 0);
424 
425 	for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
426 		zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
427 	kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
428 	    sizeof (zfs_refcount_t));
429 	kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
430 	    sizeof (uint64_t));
431 	mutex_destroy(&mc->mc_lock);
432 	multilist_destroy(mc->mc_metaslab_txg_list);
433 	kmem_free(mc, sizeof (metaslab_class_t));
434 }
435 
436 int
437 metaslab_class_validate(metaslab_class_t *mc)
438 {
439 	metaslab_group_t *mg;
440 	vdev_t *vd;
441 
442 	/*
443 	 * Must hold one of the spa_config locks.
444 	 */
445 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
446 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
447 
448 	if ((mg = mc->mc_rotor) == NULL)
449 		return (0);
450 
451 	do {
452 		vd = mg->mg_vd;
453 		ASSERT(vd->vdev_mg != NULL);
454 		ASSERT3P(vd->vdev_top, ==, vd);
455 		ASSERT3P(mg->mg_class, ==, mc);
456 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
457 	} while ((mg = mg->mg_next) != mc->mc_rotor);
458 
459 	return (0);
460 }
461 
462 static void
463 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
464     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
465 {
466 	atomic_add_64(&mc->mc_alloc, alloc_delta);
467 	atomic_add_64(&mc->mc_deferred, defer_delta);
468 	atomic_add_64(&mc->mc_space, space_delta);
469 	atomic_add_64(&mc->mc_dspace, dspace_delta);
470 }
471 
472 uint64_t
473 metaslab_class_get_alloc(metaslab_class_t *mc)
474 {
475 	return (mc->mc_alloc);
476 }
477 
478 uint64_t
479 metaslab_class_get_deferred(metaslab_class_t *mc)
480 {
481 	return (mc->mc_deferred);
482 }
483 
484 uint64_t
485 metaslab_class_get_space(metaslab_class_t *mc)
486 {
487 	return (mc->mc_space);
488 }
489 
490 uint64_t
491 metaslab_class_get_dspace(metaslab_class_t *mc)
492 {
493 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
494 }
495 
496 void
497 metaslab_class_histogram_verify(metaslab_class_t *mc)
498 {
499 	spa_t *spa = mc->mc_spa;
500 	vdev_t *rvd = spa->spa_root_vdev;
501 	uint64_t *mc_hist;
502 	int i;
503 
504 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
505 		return;
506 
507 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
508 	    KM_SLEEP);
509 
510 	for (int c = 0; c < rvd->vdev_children; c++) {
511 		vdev_t *tvd = rvd->vdev_child[c];
512 		metaslab_group_t *mg = tvd->vdev_mg;
513 
514 		/*
515 		 * Skip any holes, uninitialized top-levels, or
516 		 * vdevs that are not in this metalab class.
517 		 */
518 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
519 		    mg->mg_class != mc) {
520 			continue;
521 		}
522 
523 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
524 			mc_hist[i] += mg->mg_histogram[i];
525 	}
526 
527 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
528 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
529 
530 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
531 }
532 
533 /*
534  * Calculate the metaslab class's fragmentation metric. The metric
535  * is weighted based on the space contribution of each metaslab group.
536  * The return value will be a number between 0 and 100 (inclusive), or
537  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
538  * zfs_frag_table for more information about the metric.
539  */
540 uint64_t
541 metaslab_class_fragmentation(metaslab_class_t *mc)
542 {
543 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
544 	uint64_t fragmentation = 0;
545 
546 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
547 
548 	for (int c = 0; c < rvd->vdev_children; c++) {
549 		vdev_t *tvd = rvd->vdev_child[c];
550 		metaslab_group_t *mg = tvd->vdev_mg;
551 
552 		/*
553 		 * Skip any holes, uninitialized top-levels,
554 		 * or vdevs that are not in this metalab class.
555 		 */
556 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
557 		    mg->mg_class != mc) {
558 			continue;
559 		}
560 
561 		/*
562 		 * If a metaslab group does not contain a fragmentation
563 		 * metric then just bail out.
564 		 */
565 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
566 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
567 			return (ZFS_FRAG_INVALID);
568 		}
569 
570 		/*
571 		 * Determine how much this metaslab_group is contributing
572 		 * to the overall pool fragmentation metric.
573 		 */
574 		fragmentation += mg->mg_fragmentation *
575 		    metaslab_group_get_space(mg);
576 	}
577 	fragmentation /= metaslab_class_get_space(mc);
578 
579 	ASSERT3U(fragmentation, <=, 100);
580 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
581 	return (fragmentation);
582 }
583 
584 /*
585  * Calculate the amount of expandable space that is available in
586  * this metaslab class. If a device is expanded then its expandable
587  * space will be the amount of allocatable space that is currently not
588  * part of this metaslab class.
589  */
590 uint64_t
591 metaslab_class_expandable_space(metaslab_class_t *mc)
592 {
593 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
594 	uint64_t space = 0;
595 
596 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
597 	for (int c = 0; c < rvd->vdev_children; c++) {
598 		vdev_t *tvd = rvd->vdev_child[c];
599 		metaslab_group_t *mg = tvd->vdev_mg;
600 
601 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
602 		    mg->mg_class != mc) {
603 			continue;
604 		}
605 
606 		/*
607 		 * Calculate if we have enough space to add additional
608 		 * metaslabs. We report the expandable space in terms
609 		 * of the metaslab size since that's the unit of expansion.
610 		 */
611 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
612 		    1ULL << tvd->vdev_ms_shift);
613 	}
614 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
615 	return (space);
616 }
617 
618 void
619 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
620 {
621 	multilist_t *ml = mc->mc_metaslab_txg_list;
622 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
623 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
624 		metaslab_t *msp = multilist_sublist_head(mls);
625 		multilist_sublist_unlock(mls);
626 		while (msp != NULL) {
627 			mutex_enter(&msp->ms_lock);
628 
629 			/*
630 			 * If the metaslab has been removed from the list
631 			 * (which could happen if we were at the memory limit
632 			 * and it was evicted during this loop), then we can't
633 			 * proceed and we should restart the sublist.
634 			 */
635 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
636 				mutex_exit(&msp->ms_lock);
637 				i--;
638 				break;
639 			}
640 			mls = multilist_sublist_lock(ml, i);
641 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
642 			multilist_sublist_unlock(mls);
643 			if (txg >
644 			    msp->ms_selected_txg + metaslab_unload_delay &&
645 			    gethrtime() > msp->ms_selected_time +
646 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
647 				metaslab_evict(msp, txg);
648 			} else {
649 				/*
650 				 * Once we've hit a metaslab selected too
651 				 * recently to evict, we're done evicting for
652 				 * now.
653 				 */
654 				mutex_exit(&msp->ms_lock);
655 				break;
656 			}
657 			mutex_exit(&msp->ms_lock);
658 			msp = next_msp;
659 		}
660 	}
661 }
662 
663 static int
664 metaslab_compare(const void *x1, const void *x2)
665 {
666 	const metaslab_t *m1 = (const metaslab_t *)x1;
667 	const metaslab_t *m2 = (const metaslab_t *)x2;
668 
669 	int sort1 = 0;
670 	int sort2 = 0;
671 	if (m1->ms_allocator != -1 && m1->ms_primary)
672 		sort1 = 1;
673 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
674 		sort1 = 2;
675 	if (m2->ms_allocator != -1 && m2->ms_primary)
676 		sort2 = 1;
677 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
678 		sort2 = 2;
679 
680 	/*
681 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
682 	 * selecting a metaslab to allocate from, an allocator first tries its
683 	 * primary, then secondary active metaslab. If it doesn't have active
684 	 * metaslabs, or can't allocate from them, it searches for an inactive
685 	 * metaslab to activate. If it can't find a suitable one, it will steal
686 	 * a primary or secondary metaslab from another allocator.
687 	 */
688 	if (sort1 < sort2)
689 		return (-1);
690 	if (sort1 > sort2)
691 		return (1);
692 
693 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
694 	if (likely(cmp))
695 		return (cmp);
696 
697 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
698 
699 	return (TREE_CMP(m1->ms_start, m2->ms_start));
700 }
701 
702 /*
703  * ==========================================================================
704  * Metaslab groups
705  * ==========================================================================
706  */
707 /*
708  * Update the allocatable flag and the metaslab group's capacity.
709  * The allocatable flag is set to true if the capacity is below
710  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
711  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
712  * transitions from allocatable to non-allocatable or vice versa then the
713  * metaslab group's class is updated to reflect the transition.
714  */
715 static void
716 metaslab_group_alloc_update(metaslab_group_t *mg)
717 {
718 	vdev_t *vd = mg->mg_vd;
719 	metaslab_class_t *mc = mg->mg_class;
720 	vdev_stat_t *vs = &vd->vdev_stat;
721 	boolean_t was_allocatable;
722 	boolean_t was_initialized;
723 
724 	ASSERT(vd == vd->vdev_top);
725 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
726 	    SCL_ALLOC);
727 
728 	mutex_enter(&mg->mg_lock);
729 	was_allocatable = mg->mg_allocatable;
730 	was_initialized = mg->mg_initialized;
731 
732 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
733 	    (vs->vs_space + 1);
734 
735 	mutex_enter(&mc->mc_lock);
736 
737 	/*
738 	 * If the metaslab group was just added then it won't
739 	 * have any space until we finish syncing out this txg.
740 	 * At that point we will consider it initialized and available
741 	 * for allocations.  We also don't consider non-activated
742 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
743 	 * to be initialized, because they can't be used for allocation.
744 	 */
745 	mg->mg_initialized = metaslab_group_initialized(mg);
746 	if (!was_initialized && mg->mg_initialized) {
747 		mc->mc_groups++;
748 	} else if (was_initialized && !mg->mg_initialized) {
749 		ASSERT3U(mc->mc_groups, >, 0);
750 		mc->mc_groups--;
751 	}
752 	if (mg->mg_initialized)
753 		mg->mg_no_free_space = B_FALSE;
754 
755 	/*
756 	 * A metaslab group is considered allocatable if it has plenty
757 	 * of free space or is not heavily fragmented. We only take
758 	 * fragmentation into account if the metaslab group has a valid
759 	 * fragmentation metric (i.e. a value between 0 and 100).
760 	 */
761 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
762 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
763 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
764 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
765 
766 	/*
767 	 * The mc_alloc_groups maintains a count of the number of
768 	 * groups in this metaslab class that are still above the
769 	 * zfs_mg_noalloc_threshold. This is used by the allocating
770 	 * threads to determine if they should avoid allocations to
771 	 * a given group. The allocator will avoid allocations to a group
772 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
773 	 * and there are still other groups that are above the threshold.
774 	 * When a group transitions from allocatable to non-allocatable or
775 	 * vice versa we update the metaslab class to reflect that change.
776 	 * When the mc_alloc_groups value drops to 0 that means that all
777 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
778 	 * eligible for allocations. This effectively means that all devices
779 	 * are balanced again.
780 	 */
781 	if (was_allocatable && !mg->mg_allocatable)
782 		mc->mc_alloc_groups--;
783 	else if (!was_allocatable && mg->mg_allocatable)
784 		mc->mc_alloc_groups++;
785 	mutex_exit(&mc->mc_lock);
786 
787 	mutex_exit(&mg->mg_lock);
788 }
789 
790 int
791 metaslab_sort_by_flushed(const void *va, const void *vb)
792 {
793 	const metaslab_t *a = va;
794 	const metaslab_t *b = vb;
795 
796 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
797 	if (likely(cmp))
798 		return (cmp);
799 
800 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
801 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
802 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
803 	if (cmp)
804 		return (cmp);
805 
806 	return (TREE_CMP(a->ms_id, b->ms_id));
807 }
808 
809 metaslab_group_t *
810 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
811 {
812 	metaslab_group_t *mg;
813 
814 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
815 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
816 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
817 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
818 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
819 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
820 	mg->mg_vd = vd;
821 	mg->mg_class = mc;
822 	mg->mg_activation_count = 0;
823 	mg->mg_initialized = B_FALSE;
824 	mg->mg_no_free_space = B_TRUE;
825 	mg->mg_allocators = allocators;
826 
827 	mg->mg_allocator = kmem_zalloc(allocators *
828 	    sizeof (metaslab_group_allocator_t), KM_SLEEP);
829 	for (int i = 0; i < allocators; i++) {
830 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
831 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
832 	}
833 
834 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
835 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
836 
837 	return (mg);
838 }
839 
840 void
841 metaslab_group_destroy(metaslab_group_t *mg)
842 {
843 	ASSERT(mg->mg_prev == NULL);
844 	ASSERT(mg->mg_next == NULL);
845 	/*
846 	 * We may have gone below zero with the activation count
847 	 * either because we never activated in the first place or
848 	 * because we're done, and possibly removing the vdev.
849 	 */
850 	ASSERT(mg->mg_activation_count <= 0);
851 
852 	taskq_destroy(mg->mg_taskq);
853 	avl_destroy(&mg->mg_metaslab_tree);
854 	mutex_destroy(&mg->mg_lock);
855 	mutex_destroy(&mg->mg_ms_disabled_lock);
856 	cv_destroy(&mg->mg_ms_disabled_cv);
857 
858 	for (int i = 0; i < mg->mg_allocators; i++) {
859 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
860 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
861 	}
862 	kmem_free(mg->mg_allocator, mg->mg_allocators *
863 	    sizeof (metaslab_group_allocator_t));
864 
865 	kmem_free(mg, sizeof (metaslab_group_t));
866 }
867 
868 void
869 metaslab_group_activate(metaslab_group_t *mg)
870 {
871 	metaslab_class_t *mc = mg->mg_class;
872 	metaslab_group_t *mgprev, *mgnext;
873 
874 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
875 
876 	ASSERT(mc->mc_rotor != mg);
877 	ASSERT(mg->mg_prev == NULL);
878 	ASSERT(mg->mg_next == NULL);
879 	ASSERT(mg->mg_activation_count <= 0);
880 
881 	if (++mg->mg_activation_count <= 0)
882 		return;
883 
884 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
885 	metaslab_group_alloc_update(mg);
886 
887 	if ((mgprev = mc->mc_rotor) == NULL) {
888 		mg->mg_prev = mg;
889 		mg->mg_next = mg;
890 	} else {
891 		mgnext = mgprev->mg_next;
892 		mg->mg_prev = mgprev;
893 		mg->mg_next = mgnext;
894 		mgprev->mg_next = mg;
895 		mgnext->mg_prev = mg;
896 	}
897 	mc->mc_rotor = mg;
898 }
899 
900 /*
901  * Passivate a metaslab group and remove it from the allocation rotor.
902  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
903  * a metaslab group. This function will momentarily drop spa_config_locks
904  * that are lower than the SCL_ALLOC lock (see comment below).
905  */
906 void
907 metaslab_group_passivate(metaslab_group_t *mg)
908 {
909 	metaslab_class_t *mc = mg->mg_class;
910 	spa_t *spa = mc->mc_spa;
911 	metaslab_group_t *mgprev, *mgnext;
912 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
913 
914 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
915 	    (SCL_ALLOC | SCL_ZIO));
916 
917 	if (--mg->mg_activation_count != 0) {
918 		ASSERT(mc->mc_rotor != mg);
919 		ASSERT(mg->mg_prev == NULL);
920 		ASSERT(mg->mg_next == NULL);
921 		ASSERT(mg->mg_activation_count < 0);
922 		return;
923 	}
924 
925 	/*
926 	 * The spa_config_lock is an array of rwlocks, ordered as
927 	 * follows (from highest to lowest):
928 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
929 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
930 	 * (For more information about the spa_config_lock see spa_misc.c)
931 	 * The higher the lock, the broader its coverage. When we passivate
932 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
933 	 * config locks. However, the metaslab group's taskq might be trying
934 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
935 	 * lower locks to allow the I/O to complete. At a minimum,
936 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
937 	 * allocations from taking place and any changes to the vdev tree.
938 	 */
939 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
940 	taskq_wait_outstanding(mg->mg_taskq, 0);
941 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
942 	metaslab_group_alloc_update(mg);
943 	for (int i = 0; i < mg->mg_allocators; i++) {
944 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
945 		metaslab_t *msp = mga->mga_primary;
946 		if (msp != NULL) {
947 			mutex_enter(&msp->ms_lock);
948 			metaslab_passivate(msp,
949 			    metaslab_weight_from_range_tree(msp));
950 			mutex_exit(&msp->ms_lock);
951 		}
952 		msp = mga->mga_secondary;
953 		if (msp != NULL) {
954 			mutex_enter(&msp->ms_lock);
955 			metaslab_passivate(msp,
956 			    metaslab_weight_from_range_tree(msp));
957 			mutex_exit(&msp->ms_lock);
958 		}
959 	}
960 
961 	mgprev = mg->mg_prev;
962 	mgnext = mg->mg_next;
963 
964 	if (mg == mgnext) {
965 		mc->mc_rotor = NULL;
966 	} else {
967 		mc->mc_rotor = mgnext;
968 		mgprev->mg_next = mgnext;
969 		mgnext->mg_prev = mgprev;
970 	}
971 
972 	mg->mg_prev = NULL;
973 	mg->mg_next = NULL;
974 }
975 
976 boolean_t
977 metaslab_group_initialized(metaslab_group_t *mg)
978 {
979 	vdev_t *vd = mg->mg_vd;
980 	vdev_stat_t *vs = &vd->vdev_stat;
981 
982 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
983 }
984 
985 uint64_t
986 metaslab_group_get_space(metaslab_group_t *mg)
987 {
988 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
989 }
990 
991 void
992 metaslab_group_histogram_verify(metaslab_group_t *mg)
993 {
994 	uint64_t *mg_hist;
995 	vdev_t *vd = mg->mg_vd;
996 	uint64_t ashift = vd->vdev_ashift;
997 	int i;
998 
999 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1000 		return;
1001 
1002 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1003 	    KM_SLEEP);
1004 
1005 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1006 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1007 
1008 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1009 		metaslab_t *msp = vd->vdev_ms[m];
1010 
1011 		/* skip if not active or not a member */
1012 		if (msp->ms_sm == NULL || msp->ms_group != mg)
1013 			continue;
1014 
1015 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
1016 			mg_hist[i + ashift] +=
1017 			    msp->ms_sm->sm_phys->smp_histogram[i];
1018 	}
1019 
1020 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1021 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1022 
1023 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1024 }
1025 
1026 static void
1027 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1028 {
1029 	metaslab_class_t *mc = mg->mg_class;
1030 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1031 
1032 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1033 	if (msp->ms_sm == NULL)
1034 		return;
1035 
1036 	mutex_enter(&mg->mg_lock);
1037 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1038 		mg->mg_histogram[i + ashift] +=
1039 		    msp->ms_sm->sm_phys->smp_histogram[i];
1040 		mc->mc_histogram[i + ashift] +=
1041 		    msp->ms_sm->sm_phys->smp_histogram[i];
1042 	}
1043 	mutex_exit(&mg->mg_lock);
1044 }
1045 
1046 void
1047 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1048 {
1049 	metaslab_class_t *mc = mg->mg_class;
1050 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1051 
1052 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1053 	if (msp->ms_sm == NULL)
1054 		return;
1055 
1056 	mutex_enter(&mg->mg_lock);
1057 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1058 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1059 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1060 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1061 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1062 
1063 		mg->mg_histogram[i + ashift] -=
1064 		    msp->ms_sm->sm_phys->smp_histogram[i];
1065 		mc->mc_histogram[i + ashift] -=
1066 		    msp->ms_sm->sm_phys->smp_histogram[i];
1067 	}
1068 	mutex_exit(&mg->mg_lock);
1069 }
1070 
1071 static void
1072 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1073 {
1074 	ASSERT(msp->ms_group == NULL);
1075 	mutex_enter(&mg->mg_lock);
1076 	msp->ms_group = mg;
1077 	msp->ms_weight = 0;
1078 	avl_add(&mg->mg_metaslab_tree, msp);
1079 	mutex_exit(&mg->mg_lock);
1080 
1081 	mutex_enter(&msp->ms_lock);
1082 	metaslab_group_histogram_add(mg, msp);
1083 	mutex_exit(&msp->ms_lock);
1084 }
1085 
1086 static void
1087 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 	mutex_enter(&msp->ms_lock);
1090 	metaslab_group_histogram_remove(mg, msp);
1091 	mutex_exit(&msp->ms_lock);
1092 
1093 	mutex_enter(&mg->mg_lock);
1094 	ASSERT(msp->ms_group == mg);
1095 	avl_remove(&mg->mg_metaslab_tree, msp);
1096 
1097 	metaslab_class_t *mc = msp->ms_group->mg_class;
1098 	multilist_sublist_t *mls =
1099 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
1100 	if (multilist_link_active(&msp->ms_class_txg_node))
1101 		multilist_sublist_remove(mls, msp);
1102 	multilist_sublist_unlock(mls);
1103 
1104 	msp->ms_group = NULL;
1105 	mutex_exit(&mg->mg_lock);
1106 }
1107 
1108 static void
1109 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1110 {
1111 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1112 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1113 	ASSERT(msp->ms_group == mg);
1114 
1115 	avl_remove(&mg->mg_metaslab_tree, msp);
1116 	msp->ms_weight = weight;
1117 	avl_add(&mg->mg_metaslab_tree, msp);
1118 
1119 }
1120 
1121 static void
1122 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1123 {
1124 	/*
1125 	 * Although in principle the weight can be any value, in
1126 	 * practice we do not use values in the range [1, 511].
1127 	 */
1128 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1129 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1130 
1131 	mutex_enter(&mg->mg_lock);
1132 	metaslab_group_sort_impl(mg, msp, weight);
1133 	mutex_exit(&mg->mg_lock);
1134 }
1135 
1136 /*
1137  * Calculate the fragmentation for a given metaslab group. We can use
1138  * a simple average here since all metaslabs within the group must have
1139  * the same size. The return value will be a value between 0 and 100
1140  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1141  * group have a fragmentation metric.
1142  */
1143 uint64_t
1144 metaslab_group_fragmentation(metaslab_group_t *mg)
1145 {
1146 	vdev_t *vd = mg->mg_vd;
1147 	uint64_t fragmentation = 0;
1148 	uint64_t valid_ms = 0;
1149 
1150 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1151 		metaslab_t *msp = vd->vdev_ms[m];
1152 
1153 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1154 			continue;
1155 		if (msp->ms_group != mg)
1156 			continue;
1157 
1158 		valid_ms++;
1159 		fragmentation += msp->ms_fragmentation;
1160 	}
1161 
1162 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1163 		return (ZFS_FRAG_INVALID);
1164 
1165 	fragmentation /= valid_ms;
1166 	ASSERT3U(fragmentation, <=, 100);
1167 	return (fragmentation);
1168 }
1169 
1170 /*
1171  * Determine if a given metaslab group should skip allocations. A metaslab
1172  * group should avoid allocations if its free capacity is less than the
1173  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1174  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1175  * that can still handle allocations. If the allocation throttle is enabled
1176  * then we skip allocations to devices that have reached their maximum
1177  * allocation queue depth unless the selected metaslab group is the only
1178  * eligible group remaining.
1179  */
1180 static boolean_t
1181 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1182     uint64_t psize, int allocator, int d)
1183 {
1184 	spa_t *spa = mg->mg_vd->vdev_spa;
1185 	metaslab_class_t *mc = mg->mg_class;
1186 
1187 	/*
1188 	 * We can only consider skipping this metaslab group if it's
1189 	 * in the normal metaslab class and there are other metaslab
1190 	 * groups to select from. Otherwise, we always consider it eligible
1191 	 * for allocations.
1192 	 */
1193 	if ((mc != spa_normal_class(spa) &&
1194 	    mc != spa_special_class(spa) &&
1195 	    mc != spa_dedup_class(spa)) ||
1196 	    mc->mc_groups <= 1)
1197 		return (B_TRUE);
1198 
1199 	/*
1200 	 * If the metaslab group's mg_allocatable flag is set (see comments
1201 	 * in metaslab_group_alloc_update() for more information) and
1202 	 * the allocation throttle is disabled then allow allocations to this
1203 	 * device. However, if the allocation throttle is enabled then
1204 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1205 	 * to determine if we should allow allocations to this metaslab group.
1206 	 * If all metaslab groups are no longer considered allocatable
1207 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1208 	 * gang block size then we allow allocations on this metaslab group
1209 	 * regardless of the mg_allocatable or throttle settings.
1210 	 */
1211 	if (mg->mg_allocatable) {
1212 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1213 		int64_t qdepth;
1214 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1215 
1216 		if (!mc->mc_alloc_throttle_enabled)
1217 			return (B_TRUE);
1218 
1219 		/*
1220 		 * If this metaslab group does not have any free space, then
1221 		 * there is no point in looking further.
1222 		 */
1223 		if (mg->mg_no_free_space)
1224 			return (B_FALSE);
1225 
1226 		/*
1227 		 * Relax allocation throttling for ditto blocks.  Due to
1228 		 * random imbalances in allocation it tends to push copies
1229 		 * to one vdev, that looks a bit better at the moment.
1230 		 */
1231 		qmax = qmax * (4 + d) / 4;
1232 
1233 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1234 
1235 		/*
1236 		 * If this metaslab group is below its qmax or it's
1237 		 * the only allocatable metasable group, then attempt
1238 		 * to allocate from it.
1239 		 */
1240 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1241 			return (B_TRUE);
1242 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1243 
1244 		/*
1245 		 * Since this metaslab group is at or over its qmax, we
1246 		 * need to determine if there are metaslab groups after this
1247 		 * one that might be able to handle this allocation. This is
1248 		 * racy since we can't hold the locks for all metaslab
1249 		 * groups at the same time when we make this check.
1250 		 */
1251 		for (metaslab_group_t *mgp = mg->mg_next;
1252 		    mgp != rotor; mgp = mgp->mg_next) {
1253 			metaslab_group_allocator_t *mgap =
1254 			    &mgp->mg_allocator[allocator];
1255 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1256 			qmax = qmax * (4 + d) / 4;
1257 			qdepth =
1258 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1259 
1260 			/*
1261 			 * If there is another metaslab group that
1262 			 * might be able to handle the allocation, then
1263 			 * we return false so that we skip this group.
1264 			 */
1265 			if (qdepth < qmax && !mgp->mg_no_free_space)
1266 				return (B_FALSE);
1267 		}
1268 
1269 		/*
1270 		 * We didn't find another group to handle the allocation
1271 		 * so we can't skip this metaslab group even though
1272 		 * we are at or over our qmax.
1273 		 */
1274 		return (B_TRUE);
1275 
1276 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1277 		return (B_TRUE);
1278 	}
1279 	return (B_FALSE);
1280 }
1281 
1282 /*
1283  * ==========================================================================
1284  * Range tree callbacks
1285  * ==========================================================================
1286  */
1287 
1288 /*
1289  * Comparison function for the private size-ordered tree using 32-bit
1290  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1291  */
1292 static int
1293 metaslab_rangesize32_compare(const void *x1, const void *x2)
1294 {
1295 	const range_seg32_t *r1 = x1;
1296 	const range_seg32_t *r2 = x2;
1297 
1298 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1299 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1300 
1301 	int cmp = TREE_CMP(rs_size1, rs_size2);
1302 	if (likely(cmp))
1303 		return (cmp);
1304 
1305 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1306 }
1307 
1308 /*
1309  * Comparison function for the private size-ordered tree using 64-bit
1310  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1311  */
1312 static int
1313 metaslab_rangesize64_compare(const void *x1, const void *x2)
1314 {
1315 	const range_seg64_t *r1 = x1;
1316 	const range_seg64_t *r2 = x2;
1317 
1318 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1319 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1320 
1321 	int cmp = TREE_CMP(rs_size1, rs_size2);
1322 	if (likely(cmp))
1323 		return (cmp);
1324 
1325 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1326 }
1327 typedef struct metaslab_rt_arg {
1328 	zfs_btree_t *mra_bt;
1329 	uint32_t mra_floor_shift;
1330 } metaslab_rt_arg_t;
1331 
1332 struct mssa_arg {
1333 	range_tree_t *rt;
1334 	metaslab_rt_arg_t *mra;
1335 };
1336 
1337 static void
1338 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1339 {
1340 	struct mssa_arg *mssap = arg;
1341 	range_tree_t *rt = mssap->rt;
1342 	metaslab_rt_arg_t *mrap = mssap->mra;
1343 	range_seg_max_t seg = {0};
1344 	rs_set_start(&seg, rt, start);
1345 	rs_set_end(&seg, rt, start + size);
1346 	metaslab_rt_add(rt, &seg, mrap);
1347 }
1348 
1349 static void
1350 metaslab_size_tree_full_load(range_tree_t *rt)
1351 {
1352 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1353 #ifdef _METASLAB_TRACING
1354 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1355 #endif
1356 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1357 	mrap->mra_floor_shift = 0;
1358 	struct mssa_arg arg = {0};
1359 	arg.rt = rt;
1360 	arg.mra = mrap;
1361 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1362 }
1363 
1364 /*
1365  * Create any block allocator specific components. The current allocators
1366  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1367  */
1368 /* ARGSUSED */
1369 static void
1370 metaslab_rt_create(range_tree_t *rt, void *arg)
1371 {
1372 	metaslab_rt_arg_t *mrap = arg;
1373 	zfs_btree_t *size_tree = mrap->mra_bt;
1374 
1375 	size_t size;
1376 	int (*compare) (const void *, const void *);
1377 	switch (rt->rt_type) {
1378 	case RANGE_SEG32:
1379 		size = sizeof (range_seg32_t);
1380 		compare = metaslab_rangesize32_compare;
1381 		break;
1382 	case RANGE_SEG64:
1383 		size = sizeof (range_seg64_t);
1384 		compare = metaslab_rangesize64_compare;
1385 		break;
1386 	default:
1387 		panic("Invalid range seg type %d", rt->rt_type);
1388 	}
1389 	zfs_btree_create(size_tree, compare, size);
1390 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1391 }
1392 
1393 /* ARGSUSED */
1394 static void
1395 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1396 {
1397 	metaslab_rt_arg_t *mrap = arg;
1398 	zfs_btree_t *size_tree = mrap->mra_bt;
1399 
1400 	zfs_btree_destroy(size_tree);
1401 	kmem_free(mrap, sizeof (*mrap));
1402 }
1403 
1404 /* ARGSUSED */
1405 static void
1406 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1407 {
1408 	metaslab_rt_arg_t *mrap = arg;
1409 	zfs_btree_t *size_tree = mrap->mra_bt;
1410 
1411 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1412 	    (1 << mrap->mra_floor_shift))
1413 		return;
1414 
1415 	zfs_btree_add(size_tree, rs);
1416 }
1417 
1418 /* ARGSUSED */
1419 static void
1420 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1421 {
1422 	metaslab_rt_arg_t *mrap = arg;
1423 	zfs_btree_t *size_tree = mrap->mra_bt;
1424 
1425 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
1426 	    mrap->mra_floor_shift))
1427 		return;
1428 
1429 	zfs_btree_remove(size_tree, rs);
1430 }
1431 
1432 /* ARGSUSED */
1433 static void
1434 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1435 {
1436 	metaslab_rt_arg_t *mrap = arg;
1437 	zfs_btree_t *size_tree = mrap->mra_bt;
1438 	zfs_btree_clear(size_tree);
1439 	zfs_btree_destroy(size_tree);
1440 
1441 	metaslab_rt_create(rt, arg);
1442 }
1443 
1444 static range_tree_ops_t metaslab_rt_ops = {
1445 	.rtop_create = metaslab_rt_create,
1446 	.rtop_destroy = metaslab_rt_destroy,
1447 	.rtop_add = metaslab_rt_add,
1448 	.rtop_remove = metaslab_rt_remove,
1449 	.rtop_vacate = metaslab_rt_vacate
1450 };
1451 
1452 /*
1453  * ==========================================================================
1454  * Common allocator routines
1455  * ==========================================================================
1456  */
1457 
1458 /*
1459  * Return the maximum contiguous segment within the metaslab.
1460  */
1461 uint64_t
1462 metaslab_largest_allocatable(metaslab_t *msp)
1463 {
1464 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1465 	range_seg_t *rs;
1466 
1467 	if (t == NULL)
1468 		return (0);
1469 	if (zfs_btree_numnodes(t) == 0)
1470 		metaslab_size_tree_full_load(msp->ms_allocatable);
1471 
1472 	rs = zfs_btree_last(t, NULL);
1473 	if (rs == NULL)
1474 		return (0);
1475 
1476 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1477 	    msp->ms_allocatable));
1478 }
1479 
1480 /*
1481  * Return the maximum contiguous segment within the unflushed frees of this
1482  * metaslab.
1483  */
1484 static uint64_t
1485 metaslab_largest_unflushed_free(metaslab_t *msp)
1486 {
1487 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1488 
1489 	if (msp->ms_unflushed_frees == NULL)
1490 		return (0);
1491 
1492 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1493 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1494 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1495 	    NULL);
1496 	if (rs == NULL)
1497 		return (0);
1498 
1499 	/*
1500 	 * When a range is freed from the metaslab, that range is added to
1501 	 * both the unflushed frees and the deferred frees. While the block
1502 	 * will eventually be usable, if the metaslab were loaded the range
1503 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1504 	 * txgs had passed.  As a result, when attempting to estimate an upper
1505 	 * bound for the largest currently-usable free segment in the
1506 	 * metaslab, we need to not consider any ranges currently in the defer
1507 	 * trees. This algorithm approximates the largest available chunk in
1508 	 * the largest range in the unflushed_frees tree by taking the first
1509 	 * chunk.  While this may be a poor estimate, it should only remain so
1510 	 * briefly and should eventually self-correct as frees are no longer
1511 	 * deferred. Similar logic applies to the ms_freed tree. See
1512 	 * metaslab_load() for more details.
1513 	 *
1514 	 * There are two primary sources of inaccuracy in this estimate. Both
1515 	 * are tolerated for performance reasons. The first source is that we
1516 	 * only check the largest segment for overlaps. Smaller segments may
1517 	 * have more favorable overlaps with the other trees, resulting in
1518 	 * larger usable chunks.  Second, we only look at the first chunk in
1519 	 * the largest segment; there may be other usable chunks in the
1520 	 * largest segment, but we ignore them.
1521 	 */
1522 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1523 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1524 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1525 		uint64_t start = 0;
1526 		uint64_t size = 0;
1527 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1528 		    rsize, &start, &size);
1529 		if (found) {
1530 			if (rstart == start)
1531 				return (0);
1532 			rsize = start - rstart;
1533 		}
1534 	}
1535 
1536 	uint64_t start = 0;
1537 	uint64_t size = 0;
1538 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1539 	    rsize, &start, &size);
1540 	if (found)
1541 		rsize = start - rstart;
1542 
1543 	return (rsize);
1544 }
1545 
1546 static range_seg_t *
1547 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1548     uint64_t size, zfs_btree_index_t *where)
1549 {
1550 	range_seg_t *rs;
1551 	range_seg_max_t rsearch;
1552 
1553 	rs_set_start(&rsearch, rt, start);
1554 	rs_set_end(&rsearch, rt, start + size);
1555 
1556 	rs = zfs_btree_find(t, &rsearch, where);
1557 	if (rs == NULL) {
1558 		rs = zfs_btree_next(t, where, where);
1559 	}
1560 
1561 	return (rs);
1562 }
1563 
1564 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1565     defined(WITH_CF_BLOCK_ALLOCATOR)
1566 /*
1567  * This is a helper function that can be used by the allocator to find a
1568  * suitable block to allocate. This will search the specified B-tree looking
1569  * for a block that matches the specified criteria.
1570  */
1571 static uint64_t
1572 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1573     uint64_t max_search)
1574 {
1575 	if (*cursor == 0)
1576 		*cursor = rt->rt_start;
1577 	zfs_btree_t *bt = &rt->rt_root;
1578 	zfs_btree_index_t where;
1579 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1580 	uint64_t first_found;
1581 	int count_searched = 0;
1582 
1583 	if (rs != NULL)
1584 		first_found = rs_get_start(rs, rt);
1585 
1586 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1587 	    max_search || count_searched < metaslab_min_search_count)) {
1588 		uint64_t offset = rs_get_start(rs, rt);
1589 		if (offset + size <= rs_get_end(rs, rt)) {
1590 			*cursor = offset + size;
1591 			return (offset);
1592 		}
1593 		rs = zfs_btree_next(bt, &where, &where);
1594 		count_searched++;
1595 	}
1596 
1597 	*cursor = 0;
1598 	return (-1ULL);
1599 }
1600 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1601 
1602 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1603 /*
1604  * ==========================================================================
1605  * Dynamic Fit (df) block allocator
1606  *
1607  * Search for a free chunk of at least this size, starting from the last
1608  * offset (for this alignment of block) looking for up to
1609  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1610  * found within 16MB, then return a free chunk of exactly the requested size (or
1611  * larger).
1612  *
1613  * If it seems like searching from the last offset will be unproductive, skip
1614  * that and just return a free chunk of exactly the requested size (or larger).
1615  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1616  * mechanism is probably not very useful and may be removed in the future.
1617  *
1618  * The behavior when not searching can be changed to return the largest free
1619  * chunk, instead of a free chunk of exactly the requested size, by setting
1620  * metaslab_df_use_largest_segment.
1621  * ==========================================================================
1622  */
1623 static uint64_t
1624 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1625 {
1626 	/*
1627 	 * Find the largest power of 2 block size that evenly divides the
1628 	 * requested size. This is used to try to allocate blocks with similar
1629 	 * alignment from the same area of the metaslab (i.e. same cursor
1630 	 * bucket) but it does not guarantee that other allocations sizes
1631 	 * may exist in the same region.
1632 	 */
1633 	uint64_t align = size & -size;
1634 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1635 	range_tree_t *rt = msp->ms_allocatable;
1636 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1637 	uint64_t offset;
1638 
1639 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1640 
1641 	/*
1642 	 * If we're running low on space, find a segment based on size,
1643 	 * rather than iterating based on offset.
1644 	 */
1645 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1646 	    free_pct < metaslab_df_free_pct) {
1647 		offset = -1;
1648 	} else {
1649 		offset = metaslab_block_picker(rt,
1650 		    cursor, size, metaslab_df_max_search);
1651 	}
1652 
1653 	if (offset == -1) {
1654 		range_seg_t *rs;
1655 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1656 			metaslab_size_tree_full_load(msp->ms_allocatable);
1657 		if (metaslab_df_use_largest_segment) {
1658 			/* use largest free segment */
1659 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1660 		} else {
1661 			zfs_btree_index_t where;
1662 			/* use segment of this size, or next largest */
1663 #ifdef _METASLAB_TRACING
1664 			metaslab_rt_arg_t *mrap = msp->ms_allocatable->rt_arg;
1665 			if (size < (1 << mrap->mra_floor_shift)) {
1666 				METASLABSTAT_BUMP(
1667 				    metaslabstat_df_find_under_floor);
1668 			}
1669 #endif
1670 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1671 			    rt, msp->ms_start, size, &where);
1672 		}
1673 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1674 		    rt)) {
1675 			offset = rs_get_start(rs, rt);
1676 			*cursor = offset + size;
1677 		}
1678 	}
1679 
1680 	return (offset);
1681 }
1682 
1683 static metaslab_ops_t metaslab_df_ops = {
1684 	metaslab_df_alloc
1685 };
1686 
1687 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1688 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1689 
1690 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1691 /*
1692  * ==========================================================================
1693  * Cursor fit block allocator -
1694  * Select the largest region in the metaslab, set the cursor to the beginning
1695  * of the range and the cursor_end to the end of the range. As allocations
1696  * are made advance the cursor. Continue allocating from the cursor until
1697  * the range is exhausted and then find a new range.
1698  * ==========================================================================
1699  */
1700 static uint64_t
1701 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1702 {
1703 	range_tree_t *rt = msp->ms_allocatable;
1704 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1705 	uint64_t *cursor = &msp->ms_lbas[0];
1706 	uint64_t *cursor_end = &msp->ms_lbas[1];
1707 	uint64_t offset = 0;
1708 
1709 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1710 
1711 	ASSERT3U(*cursor_end, >=, *cursor);
1712 
1713 	if ((*cursor + size) > *cursor_end) {
1714 		range_seg_t *rs;
1715 
1716 		if (zfs_btree_numnodes(t) == 0)
1717 			metaslab_size_tree_full_load(msp->ms_allocatable);
1718 		rs = zfs_btree_last(t, NULL);
1719 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1720 		    size)
1721 			return (-1ULL);
1722 
1723 		*cursor = rs_get_start(rs, rt);
1724 		*cursor_end = rs_get_end(rs, rt);
1725 	}
1726 
1727 	offset = *cursor;
1728 	*cursor += size;
1729 
1730 	return (offset);
1731 }
1732 
1733 static metaslab_ops_t metaslab_cf_ops = {
1734 	metaslab_cf_alloc
1735 };
1736 
1737 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1738 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1739 
1740 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1741 /*
1742  * ==========================================================================
1743  * New dynamic fit allocator -
1744  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1745  * contiguous blocks. If no region is found then just use the largest segment
1746  * that remains.
1747  * ==========================================================================
1748  */
1749 
1750 /*
1751  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1752  * to request from the allocator.
1753  */
1754 uint64_t metaslab_ndf_clump_shift = 4;
1755 
1756 static uint64_t
1757 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1758 {
1759 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1760 	range_tree_t *rt = msp->ms_allocatable;
1761 	zfs_btree_index_t where;
1762 	range_seg_t *rs;
1763 	range_seg_max_t rsearch;
1764 	uint64_t hbit = highbit64(size);
1765 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1766 	uint64_t max_size = metaslab_largest_allocatable(msp);
1767 
1768 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1769 
1770 	if (max_size < size)
1771 		return (-1ULL);
1772 
1773 	rs_set_start(&rsearch, rt, *cursor);
1774 	rs_set_end(&rsearch, rt, *cursor + size);
1775 
1776 	rs = zfs_btree_find(t, &rsearch, &where);
1777 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1778 		t = &msp->ms_allocatable_by_size;
1779 
1780 		rs_set_start(&rsearch, rt, 0);
1781 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1782 		    metaslab_ndf_clump_shift)));
1783 
1784 		rs = zfs_btree_find(t, &rsearch, &where);
1785 		if (rs == NULL)
1786 			rs = zfs_btree_next(t, &where, &where);
1787 		ASSERT(rs != NULL);
1788 	}
1789 
1790 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1791 		*cursor = rs_get_start(rs, rt) + size;
1792 		return (rs_get_start(rs, rt));
1793 	}
1794 	return (-1ULL);
1795 }
1796 
1797 static metaslab_ops_t metaslab_ndf_ops = {
1798 	metaslab_ndf_alloc
1799 };
1800 
1801 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1802 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1803 
1804 
1805 /*
1806  * ==========================================================================
1807  * Metaslabs
1808  * ==========================================================================
1809  */
1810 
1811 /*
1812  * Wait for any in-progress metaslab loads to complete.
1813  */
1814 static void
1815 metaslab_load_wait(metaslab_t *msp)
1816 {
1817 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1818 
1819 	while (msp->ms_loading) {
1820 		ASSERT(!msp->ms_loaded);
1821 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1822 	}
1823 }
1824 
1825 /*
1826  * Wait for any in-progress flushing to complete.
1827  */
1828 static void
1829 metaslab_flush_wait(metaslab_t *msp)
1830 {
1831 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1832 
1833 	while (msp->ms_flushing)
1834 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1835 }
1836 
1837 static unsigned int
1838 metaslab_idx_func(multilist_t *ml, void *arg)
1839 {
1840 	metaslab_t *msp = arg;
1841 	return (msp->ms_id % multilist_get_num_sublists(ml));
1842 }
1843 
1844 uint64_t
1845 metaslab_allocated_space(metaslab_t *msp)
1846 {
1847 	return (msp->ms_allocated_space);
1848 }
1849 
1850 /*
1851  * Verify that the space accounting on disk matches the in-core range_trees.
1852  */
1853 static void
1854 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1855 {
1856 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1857 	uint64_t allocating = 0;
1858 	uint64_t sm_free_space, msp_free_space;
1859 
1860 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1861 	ASSERT(!msp->ms_condensing);
1862 
1863 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1864 		return;
1865 
1866 	/*
1867 	 * We can only verify the metaslab space when we're called
1868 	 * from syncing context with a loaded metaslab that has an
1869 	 * allocated space map. Calling this in non-syncing context
1870 	 * does not provide a consistent view of the metaslab since
1871 	 * we're performing allocations in the future.
1872 	 */
1873 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1874 	    !msp->ms_loaded)
1875 		return;
1876 
1877 	/*
1878 	 * Even though the smp_alloc field can get negative,
1879 	 * when it comes to a metaslab's space map, that should
1880 	 * never be the case.
1881 	 */
1882 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1883 
1884 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1885 	    range_tree_space(msp->ms_unflushed_frees));
1886 
1887 	ASSERT3U(metaslab_allocated_space(msp), ==,
1888 	    space_map_allocated(msp->ms_sm) +
1889 	    range_tree_space(msp->ms_unflushed_allocs) -
1890 	    range_tree_space(msp->ms_unflushed_frees));
1891 
1892 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1893 
1894 	/*
1895 	 * Account for future allocations since we would have
1896 	 * already deducted that space from the ms_allocatable.
1897 	 */
1898 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1899 		allocating +=
1900 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1901 	}
1902 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1903 	    msp->ms_allocating_total);
1904 
1905 	ASSERT3U(msp->ms_deferspace, ==,
1906 	    range_tree_space(msp->ms_defer[0]) +
1907 	    range_tree_space(msp->ms_defer[1]));
1908 
1909 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1910 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1911 
1912 	VERIFY3U(sm_free_space, ==, msp_free_space);
1913 }
1914 
1915 static void
1916 metaslab_aux_histograms_clear(metaslab_t *msp)
1917 {
1918 	/*
1919 	 * Auxiliary histograms are only cleared when resetting them,
1920 	 * which can only happen while the metaslab is loaded.
1921 	 */
1922 	ASSERT(msp->ms_loaded);
1923 
1924 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1925 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1926 		bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1927 }
1928 
1929 static void
1930 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1931     range_tree_t *rt)
1932 {
1933 	/*
1934 	 * This is modeled after space_map_histogram_add(), so refer to that
1935 	 * function for implementation details. We want this to work like
1936 	 * the space map histogram, and not the range tree histogram, as we
1937 	 * are essentially constructing a delta that will be later subtracted
1938 	 * from the space map histogram.
1939 	 */
1940 	int idx = 0;
1941 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1942 		ASSERT3U(i, >=, idx + shift);
1943 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1944 
1945 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1946 			ASSERT3U(idx + shift, ==, i);
1947 			idx++;
1948 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * Called at every sync pass that the metaslab gets synced.
1955  *
1956  * The reason is that we want our auxiliary histograms to be updated
1957  * wherever the metaslab's space map histogram is updated. This way
1958  * we stay consistent on which parts of the metaslab space map's
1959  * histogram are currently not available for allocations (e.g because
1960  * they are in the defer, freed, and freeing trees).
1961  */
1962 static void
1963 metaslab_aux_histograms_update(metaslab_t *msp)
1964 {
1965 	space_map_t *sm = msp->ms_sm;
1966 	ASSERT(sm != NULL);
1967 
1968 	/*
1969 	 * This is similar to the metaslab's space map histogram updates
1970 	 * that take place in metaslab_sync(). The only difference is that
1971 	 * we only care about segments that haven't made it into the
1972 	 * ms_allocatable tree yet.
1973 	 */
1974 	if (msp->ms_loaded) {
1975 		metaslab_aux_histograms_clear(msp);
1976 
1977 		metaslab_aux_histogram_add(msp->ms_synchist,
1978 		    sm->sm_shift, msp->ms_freed);
1979 
1980 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1981 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
1982 			    sm->sm_shift, msp->ms_defer[t]);
1983 		}
1984 	}
1985 
1986 	metaslab_aux_histogram_add(msp->ms_synchist,
1987 	    sm->sm_shift, msp->ms_freeing);
1988 }
1989 
1990 /*
1991  * Called every time we are done syncing (writing to) the metaslab,
1992  * i.e. at the end of each sync pass.
1993  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1994  */
1995 static void
1996 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1997 {
1998 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1999 	space_map_t *sm = msp->ms_sm;
2000 
2001 	if (sm == NULL) {
2002 		/*
2003 		 * We came here from metaslab_init() when creating/opening a
2004 		 * pool, looking at a metaslab that hasn't had any allocations
2005 		 * yet.
2006 		 */
2007 		return;
2008 	}
2009 
2010 	/*
2011 	 * This is similar to the actions that we take for the ms_freed
2012 	 * and ms_defer trees in metaslab_sync_done().
2013 	 */
2014 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2015 	if (defer_allowed) {
2016 		bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
2017 		    sizeof (msp->ms_synchist));
2018 	} else {
2019 		bzero(msp->ms_deferhist[hist_index],
2020 		    sizeof (msp->ms_deferhist[hist_index]));
2021 	}
2022 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
2023 }
2024 
2025 /*
2026  * Ensure that the metaslab's weight and fragmentation are consistent
2027  * with the contents of the histogram (either the range tree's histogram
2028  * or the space map's depending whether the metaslab is loaded).
2029  */
2030 static void
2031 metaslab_verify_weight_and_frag(metaslab_t *msp)
2032 {
2033 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2034 
2035 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2036 		return;
2037 
2038 	/*
2039 	 * We can end up here from vdev_remove_complete(), in which case we
2040 	 * cannot do these assertions because we hold spa config locks and
2041 	 * thus we are not allowed to read from the DMU.
2042 	 *
2043 	 * We check if the metaslab group has been removed and if that's
2044 	 * the case we return immediately as that would mean that we are
2045 	 * here from the aforementioned code path.
2046 	 */
2047 	if (msp->ms_group == NULL)
2048 		return;
2049 
2050 	/*
2051 	 * Devices being removed always return a weight of 0 and leave
2052 	 * fragmentation and ms_max_size as is - there is nothing for
2053 	 * us to verify here.
2054 	 */
2055 	vdev_t *vd = msp->ms_group->mg_vd;
2056 	if (vd->vdev_removing)
2057 		return;
2058 
2059 	/*
2060 	 * If the metaslab is dirty it probably means that we've done
2061 	 * some allocations or frees that have changed our histograms
2062 	 * and thus the weight.
2063 	 */
2064 	for (int t = 0; t < TXG_SIZE; t++) {
2065 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2066 			return;
2067 	}
2068 
2069 	/*
2070 	 * This verification checks that our in-memory state is consistent
2071 	 * with what's on disk. If the pool is read-only then there aren't
2072 	 * any changes and we just have the initially-loaded state.
2073 	 */
2074 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2075 		return;
2076 
2077 	/* some extra verification for in-core tree if you can */
2078 	if (msp->ms_loaded) {
2079 		range_tree_stat_verify(msp->ms_allocatable);
2080 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2081 		    msp->ms_allocatable));
2082 	}
2083 
2084 	uint64_t weight = msp->ms_weight;
2085 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2086 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2087 	uint64_t frag = msp->ms_fragmentation;
2088 	uint64_t max_segsize = msp->ms_max_size;
2089 
2090 	msp->ms_weight = 0;
2091 	msp->ms_fragmentation = 0;
2092 
2093 	/*
2094 	 * This function is used for verification purposes and thus should
2095 	 * not introduce any side-effects/mutations on the system's state.
2096 	 *
2097 	 * Regardless of whether metaslab_weight() thinks this metaslab
2098 	 * should be active or not, we want to ensure that the actual weight
2099 	 * (and therefore the value of ms_weight) would be the same if it
2100 	 * was to be recalculated at this point.
2101 	 *
2102 	 * In addition we set the nodirty flag so metaslab_weight() does
2103 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2104 	 * force condensing to upgrade the metaslab spacemaps).
2105 	 */
2106 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2107 
2108 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2109 
2110 	/*
2111 	 * If the weight type changed then there is no point in doing
2112 	 * verification. Revert fields to their original values.
2113 	 */
2114 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2115 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2116 		msp->ms_fragmentation = frag;
2117 		msp->ms_weight = weight;
2118 		return;
2119 	}
2120 
2121 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2122 	VERIFY3U(msp->ms_weight, ==, weight);
2123 }
2124 
2125 /*
2126  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2127  * this class that was used longest ago, and attempt to unload it.  We don't
2128  * want to spend too much time in this loop to prevent performance
2129  * degradation, and we expect that most of the time this operation will
2130  * succeed. Between that and the normal unloading processing during txg sync,
2131  * we expect this to keep the metaslab memory usage under control.
2132  */
2133 static void
2134 metaslab_potentially_evict(metaslab_class_t *mc)
2135 {
2136 #ifdef _KERNEL
2137 	uint64_t allmem = arc_all_memory();
2138 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2139 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2140 	int tries = 0;
2141 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2142 	    tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2;
2143 	    tries++) {
2144 		unsigned int idx = multilist_get_random_index(
2145 		    mc->mc_metaslab_txg_list);
2146 		multilist_sublist_t *mls =
2147 		    multilist_sublist_lock(mc->mc_metaslab_txg_list, idx);
2148 		metaslab_t *msp = multilist_sublist_head(mls);
2149 		multilist_sublist_unlock(mls);
2150 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2151 		    inuse * size) {
2152 			VERIFY3P(mls, ==, multilist_sublist_lock(
2153 			    mc->mc_metaslab_txg_list, idx));
2154 			ASSERT3U(idx, ==,
2155 			    metaslab_idx_func(mc->mc_metaslab_txg_list, msp));
2156 
2157 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2158 				multilist_sublist_unlock(mls);
2159 				break;
2160 			}
2161 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2162 			multilist_sublist_unlock(mls);
2163 			/*
2164 			 * If the metaslab is currently loading there are two
2165 			 * cases. If it's the metaslab we're evicting, we
2166 			 * can't continue on or we'll panic when we attempt to
2167 			 * recursively lock the mutex. If it's another
2168 			 * metaslab that's loading, it can be safely skipped,
2169 			 * since we know it's very new and therefore not a
2170 			 * good eviction candidate. We check later once the
2171 			 * lock is held that the metaslab is fully loaded
2172 			 * before actually unloading it.
2173 			 */
2174 			if (msp->ms_loading) {
2175 				msp = next_msp;
2176 				inuse =
2177 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2178 				continue;
2179 			}
2180 			/*
2181 			 * We can't unload metaslabs with no spacemap because
2182 			 * they're not ready to be unloaded yet. We can't
2183 			 * unload metaslabs with outstanding allocations
2184 			 * because doing so could cause the metaslab's weight
2185 			 * to decrease while it's unloaded, which violates an
2186 			 * invariant that we use to prevent unnecessary
2187 			 * loading. We also don't unload metaslabs that are
2188 			 * currently active because they are high-weight
2189 			 * metaslabs that are likely to be used in the near
2190 			 * future.
2191 			 */
2192 			mutex_enter(&msp->ms_lock);
2193 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2194 			    msp->ms_allocating_total == 0) {
2195 				metaslab_unload(msp);
2196 			}
2197 			mutex_exit(&msp->ms_lock);
2198 			msp = next_msp;
2199 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2200 		}
2201 	}
2202 #endif
2203 }
2204 
2205 static int
2206 metaslab_load_impl(metaslab_t *msp)
2207 {
2208 	int error = 0;
2209 
2210 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2211 	ASSERT(msp->ms_loading);
2212 	ASSERT(!msp->ms_condensing);
2213 
2214 	/*
2215 	 * We temporarily drop the lock to unblock other operations while we
2216 	 * are reading the space map. Therefore, metaslab_sync() and
2217 	 * metaslab_sync_done() can run at the same time as we do.
2218 	 *
2219 	 * If we are using the log space maps, metaslab_sync() can't write to
2220 	 * the metaslab's space map while we are loading as we only write to
2221 	 * it when we are flushing the metaslab, and that can't happen while
2222 	 * we are loading it.
2223 	 *
2224 	 * If we are not using log space maps though, metaslab_sync() can
2225 	 * append to the space map while we are loading. Therefore we load
2226 	 * only entries that existed when we started the load. Additionally,
2227 	 * metaslab_sync_done() has to wait for the load to complete because
2228 	 * there are potential races like metaslab_load() loading parts of the
2229 	 * space map that are currently being appended by metaslab_sync(). If
2230 	 * we didn't, the ms_allocatable would have entries that
2231 	 * metaslab_sync_done() would try to re-add later.
2232 	 *
2233 	 * That's why before dropping the lock we remember the synced length
2234 	 * of the metaslab and read up to that point of the space map,
2235 	 * ignoring entries appended by metaslab_sync() that happen after we
2236 	 * drop the lock.
2237 	 */
2238 	uint64_t length = msp->ms_synced_length;
2239 	mutex_exit(&msp->ms_lock);
2240 
2241 	hrtime_t load_start = gethrtime();
2242 	metaslab_rt_arg_t *mrap;
2243 	if (msp->ms_allocatable->rt_arg == NULL) {
2244 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2245 	} else {
2246 		mrap = msp->ms_allocatable->rt_arg;
2247 		msp->ms_allocatable->rt_ops = NULL;
2248 		msp->ms_allocatable->rt_arg = NULL;
2249 	}
2250 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2251 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2252 
2253 	if (msp->ms_sm != NULL) {
2254 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2255 		    SM_FREE, length);
2256 
2257 		/* Now, populate the size-sorted tree. */
2258 		metaslab_rt_create(msp->ms_allocatable, mrap);
2259 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2260 		msp->ms_allocatable->rt_arg = mrap;
2261 
2262 		struct mssa_arg arg = {0};
2263 		arg.rt = msp->ms_allocatable;
2264 		arg.mra = mrap;
2265 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2266 		    &arg);
2267 	} else {
2268 		/*
2269 		 * Add the size-sorted tree first, since we don't need to load
2270 		 * the metaslab from the spacemap.
2271 		 */
2272 		metaslab_rt_create(msp->ms_allocatable, mrap);
2273 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2274 		msp->ms_allocatable->rt_arg = mrap;
2275 		/*
2276 		 * The space map has not been allocated yet, so treat
2277 		 * all the space in the metaslab as free and add it to the
2278 		 * ms_allocatable tree.
2279 		 */
2280 		range_tree_add(msp->ms_allocatable,
2281 		    msp->ms_start, msp->ms_size);
2282 
2283 		if (msp->ms_freed != NULL) {
2284 			/*
2285 			 * If the ms_sm doesn't exist, this means that this
2286 			 * metaslab hasn't gone through metaslab_sync() and
2287 			 * thus has never been dirtied. So we shouldn't
2288 			 * expect any unflushed allocs or frees from previous
2289 			 * TXGs.
2290 			 *
2291 			 * Note: ms_freed and all the other trees except for
2292 			 * the ms_allocatable, can be NULL at this point only
2293 			 * if this is a new metaslab of a vdev that just got
2294 			 * expanded.
2295 			 */
2296 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2297 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2298 		}
2299 	}
2300 
2301 	/*
2302 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2303 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2304 	 * while we are about to use them and populate the ms_allocatable.
2305 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2306 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2307 	 */
2308 	mutex_enter(&msp->ms_sync_lock);
2309 	mutex_enter(&msp->ms_lock);
2310 
2311 	ASSERT(!msp->ms_condensing);
2312 	ASSERT(!msp->ms_flushing);
2313 
2314 	if (error != 0) {
2315 		mutex_exit(&msp->ms_sync_lock);
2316 		return (error);
2317 	}
2318 
2319 	ASSERT3P(msp->ms_group, !=, NULL);
2320 	msp->ms_loaded = B_TRUE;
2321 
2322 	/*
2323 	 * Apply all the unflushed changes to ms_allocatable right
2324 	 * away so any manipulations we do below have a clear view
2325 	 * of what is allocated and what is free.
2326 	 */
2327 	range_tree_walk(msp->ms_unflushed_allocs,
2328 	    range_tree_remove, msp->ms_allocatable);
2329 	range_tree_walk(msp->ms_unflushed_frees,
2330 	    range_tree_add, msp->ms_allocatable);
2331 
2332 	msp->ms_loaded = B_TRUE;
2333 
2334 	ASSERT3P(msp->ms_group, !=, NULL);
2335 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2336 	if (spa_syncing_log_sm(spa) != NULL) {
2337 		ASSERT(spa_feature_is_enabled(spa,
2338 		    SPA_FEATURE_LOG_SPACEMAP));
2339 
2340 		/*
2341 		 * If we use a log space map we add all the segments
2342 		 * that are in ms_unflushed_frees so they are available
2343 		 * for allocation.
2344 		 *
2345 		 * ms_allocatable needs to contain all free segments
2346 		 * that are ready for allocations (thus not segments
2347 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2348 		 * But if we grab the lock in this code path at a sync
2349 		 * pass later that 1, then it also contains the
2350 		 * segments of ms_freed (they were added to it earlier
2351 		 * in this path through ms_unflushed_frees). So we
2352 		 * need to remove all the segments that exist in
2353 		 * ms_freed from ms_allocatable as they will be added
2354 		 * later in metaslab_sync_done().
2355 		 *
2356 		 * When there's no log space map, the ms_allocatable
2357 		 * correctly doesn't contain any segments that exist
2358 		 * in ms_freed [see ms_synced_length].
2359 		 */
2360 		range_tree_walk(msp->ms_freed,
2361 		    range_tree_remove, msp->ms_allocatable);
2362 	}
2363 
2364 	/*
2365 	 * If we are not using the log space map, ms_allocatable
2366 	 * contains the segments that exist in the ms_defer trees
2367 	 * [see ms_synced_length]. Thus we need to remove them
2368 	 * from ms_allocatable as they will be added again in
2369 	 * metaslab_sync_done().
2370 	 *
2371 	 * If we are using the log space map, ms_allocatable still
2372 	 * contains the segments that exist in the ms_defer trees.
2373 	 * Not because it read them through the ms_sm though. But
2374 	 * because these segments are part of ms_unflushed_frees
2375 	 * whose segments we add to ms_allocatable earlier in this
2376 	 * code path.
2377 	 */
2378 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2379 		range_tree_walk(msp->ms_defer[t],
2380 		    range_tree_remove, msp->ms_allocatable);
2381 	}
2382 
2383 	/*
2384 	 * Call metaslab_recalculate_weight_and_sort() now that the
2385 	 * metaslab is loaded so we get the metaslab's real weight.
2386 	 *
2387 	 * Unless this metaslab was created with older software and
2388 	 * has not yet been converted to use segment-based weight, we
2389 	 * expect the new weight to be better or equal to the weight
2390 	 * that the metaslab had while it was not loaded. This is
2391 	 * because the old weight does not take into account the
2392 	 * consolidation of adjacent segments between TXGs. [see
2393 	 * comment for ms_synchist and ms_deferhist[] for more info]
2394 	 */
2395 	uint64_t weight = msp->ms_weight;
2396 	uint64_t max_size = msp->ms_max_size;
2397 	metaslab_recalculate_weight_and_sort(msp);
2398 	if (!WEIGHT_IS_SPACEBASED(weight))
2399 		ASSERT3U(weight, <=, msp->ms_weight);
2400 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2401 	ASSERT3U(max_size, <=, msp->ms_max_size);
2402 	hrtime_t load_end = gethrtime();
2403 	msp->ms_load_time = load_end;
2404 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2405 	    "ms_id %llu, smp_length %llu, "
2406 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2407 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2408 	    "loading_time %lld ms, ms_max_size %llu, "
2409 	    "max size error %lld, "
2410 	    "old_weight %llx, new_weight %llx",
2411 	    spa_syncing_txg(spa), spa_name(spa),
2412 	    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2413 	    space_map_length(msp->ms_sm),
2414 	    range_tree_space(msp->ms_unflushed_allocs),
2415 	    range_tree_space(msp->ms_unflushed_frees),
2416 	    range_tree_space(msp->ms_freed),
2417 	    range_tree_space(msp->ms_defer[0]),
2418 	    range_tree_space(msp->ms_defer[1]),
2419 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2420 	    (longlong_t)((load_end - load_start) / 1000000),
2421 	    msp->ms_max_size, msp->ms_max_size - max_size,
2422 	    weight, msp->ms_weight);
2423 
2424 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2425 	mutex_exit(&msp->ms_sync_lock);
2426 	return (0);
2427 }
2428 
2429 int
2430 metaslab_load(metaslab_t *msp)
2431 {
2432 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2433 
2434 	/*
2435 	 * There may be another thread loading the same metaslab, if that's
2436 	 * the case just wait until the other thread is done and return.
2437 	 */
2438 	metaslab_load_wait(msp);
2439 	if (msp->ms_loaded)
2440 		return (0);
2441 	VERIFY(!msp->ms_loading);
2442 	ASSERT(!msp->ms_condensing);
2443 
2444 	/*
2445 	 * We set the loading flag BEFORE potentially dropping the lock to
2446 	 * wait for an ongoing flush (see ms_flushing below). This way other
2447 	 * threads know that there is already a thread that is loading this
2448 	 * metaslab.
2449 	 */
2450 	msp->ms_loading = B_TRUE;
2451 
2452 	/*
2453 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2454 	 * both here (during space_map_load()) and in metaslab_flush() (when
2455 	 * we flush our changes to the ms_sm).
2456 	 */
2457 	if (msp->ms_flushing)
2458 		metaslab_flush_wait(msp);
2459 
2460 	/*
2461 	 * In the possibility that we were waiting for the metaslab to be
2462 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2463 	 * no one else loaded the metaslab somehow.
2464 	 */
2465 	ASSERT(!msp->ms_loaded);
2466 
2467 	/*
2468 	 * If we're loading a metaslab in the normal class, consider evicting
2469 	 * another one to keep our memory usage under the limit defined by the
2470 	 * zfs_metaslab_mem_limit tunable.
2471 	 */
2472 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2473 	    msp->ms_group->mg_class) {
2474 		metaslab_potentially_evict(msp->ms_group->mg_class);
2475 	}
2476 
2477 	int error = metaslab_load_impl(msp);
2478 
2479 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2480 	msp->ms_loading = B_FALSE;
2481 	cv_broadcast(&msp->ms_load_cv);
2482 
2483 	return (error);
2484 }
2485 
2486 void
2487 metaslab_unload(metaslab_t *msp)
2488 {
2489 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2490 
2491 	/*
2492 	 * This can happen if a metaslab is selected for eviction (in
2493 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2494 	 * metaslab_class_evict_old).
2495 	 */
2496 	if (!msp->ms_loaded)
2497 		return;
2498 
2499 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2500 	msp->ms_loaded = B_FALSE;
2501 	msp->ms_unload_time = gethrtime();
2502 
2503 	msp->ms_activation_weight = 0;
2504 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2505 
2506 	if (msp->ms_group != NULL) {
2507 		metaslab_class_t *mc = msp->ms_group->mg_class;
2508 		multilist_sublist_t *mls =
2509 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2510 		if (multilist_link_active(&msp->ms_class_txg_node))
2511 			multilist_sublist_remove(mls, msp);
2512 		multilist_sublist_unlock(mls);
2513 
2514 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2515 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2516 		    "ms_id %llu, weight %llx, "
2517 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2518 		    "loaded %llu ms ago, max_size %llu",
2519 		    spa_syncing_txg(spa), spa_name(spa),
2520 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2521 		    msp->ms_weight,
2522 		    msp->ms_selected_txg,
2523 		    (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000,
2524 		    msp->ms_alloc_txg,
2525 		    (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000,
2526 		    msp->ms_max_size);
2527 	}
2528 
2529 	/*
2530 	 * We explicitly recalculate the metaslab's weight based on its space
2531 	 * map (as it is now not loaded). We want unload metaslabs to always
2532 	 * have their weights calculated from the space map histograms, while
2533 	 * loaded ones have it calculated from their in-core range tree
2534 	 * [see metaslab_load()]. This way, the weight reflects the information
2535 	 * available in-core, whether it is loaded or not.
2536 	 *
2537 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2538 	 * at which point it doesn't make sense for us to do the recalculation
2539 	 * and the sorting.
2540 	 */
2541 	if (msp->ms_group != NULL)
2542 		metaslab_recalculate_weight_and_sort(msp);
2543 }
2544 
2545 /*
2546  * We want to optimize the memory use of the per-metaslab range
2547  * trees. To do this, we store the segments in the range trees in
2548  * units of sectors, zero-indexing from the start of the metaslab. If
2549  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2550  * the ranges using two uint32_ts, rather than two uint64_ts.
2551  */
2552 range_seg_type_t
2553 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2554     uint64_t *start, uint64_t *shift)
2555 {
2556 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2557 	    !zfs_metaslab_force_large_segs) {
2558 		*shift = vdev->vdev_ashift;
2559 		*start = msp->ms_start;
2560 		return (RANGE_SEG32);
2561 	} else {
2562 		*shift = 0;
2563 		*start = 0;
2564 		return (RANGE_SEG64);
2565 	}
2566 }
2567 
2568 void
2569 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2570 {
2571 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2572 	metaslab_class_t *mc = msp->ms_group->mg_class;
2573 	multilist_sublist_t *mls =
2574 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2575 	if (multilist_link_active(&msp->ms_class_txg_node))
2576 		multilist_sublist_remove(mls, msp);
2577 	msp->ms_selected_txg = txg;
2578 	msp->ms_selected_time = gethrtime();
2579 	multilist_sublist_insert_tail(mls, msp);
2580 	multilist_sublist_unlock(mls);
2581 }
2582 
2583 void
2584 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2585     int64_t defer_delta, int64_t space_delta)
2586 {
2587 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2588 
2589 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2590 	ASSERT(vd->vdev_ms_count != 0);
2591 
2592 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2593 	    vdev_deflated_space(vd, space_delta));
2594 }
2595 
2596 int
2597 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2598     uint64_t txg, metaslab_t **msp)
2599 {
2600 	vdev_t *vd = mg->mg_vd;
2601 	spa_t *spa = vd->vdev_spa;
2602 	objset_t *mos = spa->spa_meta_objset;
2603 	metaslab_t *ms;
2604 	int error;
2605 
2606 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2607 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2608 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2609 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2610 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2611 	multilist_link_init(&ms->ms_class_txg_node);
2612 
2613 	ms->ms_id = id;
2614 	ms->ms_start = id << vd->vdev_ms_shift;
2615 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2616 	ms->ms_allocator = -1;
2617 	ms->ms_new = B_TRUE;
2618 
2619 	/*
2620 	 * We only open space map objects that already exist. All others
2621 	 * will be opened when we finally allocate an object for it.
2622 	 *
2623 	 * Note:
2624 	 * When called from vdev_expand(), we can't call into the DMU as
2625 	 * we are holding the spa_config_lock as a writer and we would
2626 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2627 	 * that case, the object parameter is zero though, so we won't
2628 	 * call into the DMU.
2629 	 */
2630 	if (object != 0) {
2631 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2632 		    ms->ms_size, vd->vdev_ashift);
2633 
2634 		if (error != 0) {
2635 			kmem_free(ms, sizeof (metaslab_t));
2636 			return (error);
2637 		}
2638 
2639 		ASSERT(ms->ms_sm != NULL);
2640 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2641 	}
2642 
2643 	range_seg_type_t type;
2644 	uint64_t shift, start;
2645 	type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2646 
2647 	/*
2648 	 * We create the ms_allocatable here, but we don't create the
2649 	 * other range trees until metaslab_sync_done().  This serves
2650 	 * two purposes: it allows metaslab_sync_done() to detect the
2651 	 * addition of new space; and for debugging, it ensures that
2652 	 * we'd data fault on any attempt to use this metaslab before
2653 	 * it's ready.
2654 	 */
2655 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2656 
2657 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2658 
2659 	metaslab_group_add(mg, ms);
2660 	metaslab_set_fragmentation(ms, B_FALSE);
2661 
2662 	/*
2663 	 * If we're opening an existing pool (txg == 0) or creating
2664 	 * a new one (txg == TXG_INITIAL), all space is available now.
2665 	 * If we're adding space to an existing pool, the new space
2666 	 * does not become available until after this txg has synced.
2667 	 * The metaslab's weight will also be initialized when we sync
2668 	 * out this txg. This ensures that we don't attempt to allocate
2669 	 * from it before we have initialized it completely.
2670 	 */
2671 	if (txg <= TXG_INITIAL) {
2672 		metaslab_sync_done(ms, 0);
2673 		metaslab_space_update(vd, mg->mg_class,
2674 		    metaslab_allocated_space(ms), 0, 0);
2675 	}
2676 
2677 	if (txg != 0) {
2678 		vdev_dirty(vd, 0, NULL, txg);
2679 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2680 	}
2681 
2682 	*msp = ms;
2683 
2684 	return (0);
2685 }
2686 
2687 static void
2688 metaslab_fini_flush_data(metaslab_t *msp)
2689 {
2690 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2691 
2692 	if (metaslab_unflushed_txg(msp) == 0) {
2693 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2694 		    ==, NULL);
2695 		return;
2696 	}
2697 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2698 
2699 	mutex_enter(&spa->spa_flushed_ms_lock);
2700 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2701 	mutex_exit(&spa->spa_flushed_ms_lock);
2702 
2703 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2704 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2705 }
2706 
2707 uint64_t
2708 metaslab_unflushed_changes_memused(metaslab_t *ms)
2709 {
2710 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2711 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2712 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2713 }
2714 
2715 void
2716 metaslab_fini(metaslab_t *msp)
2717 {
2718 	metaslab_group_t *mg = msp->ms_group;
2719 	vdev_t *vd = mg->mg_vd;
2720 	spa_t *spa = vd->vdev_spa;
2721 
2722 	metaslab_fini_flush_data(msp);
2723 
2724 	metaslab_group_remove(mg, msp);
2725 
2726 	mutex_enter(&msp->ms_lock);
2727 	VERIFY(msp->ms_group == NULL);
2728 	metaslab_space_update(vd, mg->mg_class,
2729 	    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2730 
2731 	space_map_close(msp->ms_sm);
2732 	msp->ms_sm = NULL;
2733 
2734 	metaslab_unload(msp);
2735 	range_tree_destroy(msp->ms_allocatable);
2736 	range_tree_destroy(msp->ms_freeing);
2737 	range_tree_destroy(msp->ms_freed);
2738 
2739 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2740 	    metaslab_unflushed_changes_memused(msp));
2741 	spa->spa_unflushed_stats.sus_memused -=
2742 	    metaslab_unflushed_changes_memused(msp);
2743 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2744 	range_tree_destroy(msp->ms_unflushed_allocs);
2745 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2746 	range_tree_destroy(msp->ms_unflushed_frees);
2747 
2748 	for (int t = 0; t < TXG_SIZE; t++) {
2749 		range_tree_destroy(msp->ms_allocating[t]);
2750 	}
2751 
2752 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2753 		range_tree_destroy(msp->ms_defer[t]);
2754 	}
2755 	ASSERT0(msp->ms_deferspace);
2756 
2757 	range_tree_destroy(msp->ms_checkpointing);
2758 
2759 	for (int t = 0; t < TXG_SIZE; t++)
2760 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2761 
2762 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2763 	range_tree_destroy(msp->ms_trim);
2764 
2765 	mutex_exit(&msp->ms_lock);
2766 	cv_destroy(&msp->ms_load_cv);
2767 	cv_destroy(&msp->ms_flush_cv);
2768 	mutex_destroy(&msp->ms_lock);
2769 	mutex_destroy(&msp->ms_sync_lock);
2770 	ASSERT3U(msp->ms_allocator, ==, -1);
2771 
2772 	kmem_free(msp, sizeof (metaslab_t));
2773 }
2774 
2775 #define	FRAGMENTATION_TABLE_SIZE	17
2776 
2777 /*
2778  * This table defines a segment size based fragmentation metric that will
2779  * allow each metaslab to derive its own fragmentation value. This is done
2780  * by calculating the space in each bucket of the spacemap histogram and
2781  * multiplying that by the fragmentation metric in this table. Doing
2782  * this for all buckets and dividing it by the total amount of free
2783  * space in this metaslab (i.e. the total free space in all buckets) gives
2784  * us the fragmentation metric. This means that a high fragmentation metric
2785  * equates to most of the free space being comprised of small segments.
2786  * Conversely, if the metric is low, then most of the free space is in
2787  * large segments. A 10% change in fragmentation equates to approximately
2788  * double the number of segments.
2789  *
2790  * This table defines 0% fragmented space using 16MB segments. Testing has
2791  * shown that segments that are greater than or equal to 16MB do not suffer
2792  * from drastic performance problems. Using this value, we derive the rest
2793  * of the table. Since the fragmentation value is never stored on disk, it
2794  * is possible to change these calculations in the future.
2795  */
2796 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2797 	100,	/* 512B	*/
2798 	100,	/* 1K	*/
2799 	98,	/* 2K	*/
2800 	95,	/* 4K	*/
2801 	90,	/* 8K	*/
2802 	80,	/* 16K	*/
2803 	70,	/* 32K	*/
2804 	60,	/* 64K	*/
2805 	50,	/* 128K	*/
2806 	40,	/* 256K	*/
2807 	30,	/* 512K	*/
2808 	20,	/* 1M	*/
2809 	15,	/* 2M	*/
2810 	10,	/* 4M	*/
2811 	5,	/* 8M	*/
2812 	0	/* 16M	*/
2813 };
2814 
2815 /*
2816  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2817  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2818  * been upgraded and does not support this metric. Otherwise, the return
2819  * value should be in the range [0, 100].
2820  */
2821 static void
2822 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2823 {
2824 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2825 	uint64_t fragmentation = 0;
2826 	uint64_t total = 0;
2827 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2828 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2829 
2830 	if (!feature_enabled) {
2831 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2832 		return;
2833 	}
2834 
2835 	/*
2836 	 * A null space map means that the entire metaslab is free
2837 	 * and thus is not fragmented.
2838 	 */
2839 	if (msp->ms_sm == NULL) {
2840 		msp->ms_fragmentation = 0;
2841 		return;
2842 	}
2843 
2844 	/*
2845 	 * If this metaslab's space map has not been upgraded, flag it
2846 	 * so that we upgrade next time we encounter it.
2847 	 */
2848 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2849 		uint64_t txg = spa_syncing_txg(spa);
2850 		vdev_t *vd = msp->ms_group->mg_vd;
2851 
2852 		/*
2853 		 * If we've reached the final dirty txg, then we must
2854 		 * be shutting down the pool. We don't want to dirty
2855 		 * any data past this point so skip setting the condense
2856 		 * flag. We can retry this action the next time the pool
2857 		 * is imported. We also skip marking this metaslab for
2858 		 * condensing if the caller has explicitly set nodirty.
2859 		 */
2860 		if (!nodirty &&
2861 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2862 			msp->ms_condense_wanted = B_TRUE;
2863 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2864 			zfs_dbgmsg("txg %llu, requesting force condense: "
2865 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2866 			    vd->vdev_id);
2867 		}
2868 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2869 		return;
2870 	}
2871 
2872 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2873 		uint64_t space = 0;
2874 		uint8_t shift = msp->ms_sm->sm_shift;
2875 
2876 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2877 		    FRAGMENTATION_TABLE_SIZE - 1);
2878 
2879 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2880 			continue;
2881 
2882 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2883 		total += space;
2884 
2885 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2886 		fragmentation += space * zfs_frag_table[idx];
2887 	}
2888 
2889 	if (total > 0)
2890 		fragmentation /= total;
2891 	ASSERT3U(fragmentation, <=, 100);
2892 
2893 	msp->ms_fragmentation = fragmentation;
2894 }
2895 
2896 /*
2897  * Compute a weight -- a selection preference value -- for the given metaslab.
2898  * This is based on the amount of free space, the level of fragmentation,
2899  * the LBA range, and whether the metaslab is loaded.
2900  */
2901 static uint64_t
2902 metaslab_space_weight(metaslab_t *msp)
2903 {
2904 	metaslab_group_t *mg = msp->ms_group;
2905 	vdev_t *vd = mg->mg_vd;
2906 	uint64_t weight, space;
2907 
2908 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2909 
2910 	/*
2911 	 * The baseline weight is the metaslab's free space.
2912 	 */
2913 	space = msp->ms_size - metaslab_allocated_space(msp);
2914 
2915 	if (metaslab_fragmentation_factor_enabled &&
2916 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2917 		/*
2918 		 * Use the fragmentation information to inversely scale
2919 		 * down the baseline weight. We need to ensure that we
2920 		 * don't exclude this metaslab completely when it's 100%
2921 		 * fragmented. To avoid this we reduce the fragmented value
2922 		 * by 1.
2923 		 */
2924 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2925 
2926 		/*
2927 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2928 		 * this metaslab again. The fragmentation metric may have
2929 		 * decreased the space to something smaller than
2930 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2931 		 * so that we can consume any remaining space.
2932 		 */
2933 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2934 			space = SPA_MINBLOCKSIZE;
2935 	}
2936 	weight = space;
2937 
2938 	/*
2939 	 * Modern disks have uniform bit density and constant angular velocity.
2940 	 * Therefore, the outer recording zones are faster (higher bandwidth)
2941 	 * than the inner zones by the ratio of outer to inner track diameter,
2942 	 * which is typically around 2:1.  We account for this by assigning
2943 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2944 	 * In effect, this means that we'll select the metaslab with the most
2945 	 * free bandwidth rather than simply the one with the most free space.
2946 	 */
2947 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2948 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2949 		ASSERT(weight >= space && weight <= 2 * space);
2950 	}
2951 
2952 	/*
2953 	 * If this metaslab is one we're actively using, adjust its
2954 	 * weight to make it preferable to any inactive metaslab so
2955 	 * we'll polish it off. If the fragmentation on this metaslab
2956 	 * has exceed our threshold, then don't mark it active.
2957 	 */
2958 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2959 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2960 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2961 	}
2962 
2963 	WEIGHT_SET_SPACEBASED(weight);
2964 	return (weight);
2965 }
2966 
2967 /*
2968  * Return the weight of the specified metaslab, according to the segment-based
2969  * weighting algorithm. The metaslab must be loaded. This function can
2970  * be called within a sync pass since it relies only on the metaslab's
2971  * range tree which is always accurate when the metaslab is loaded.
2972  */
2973 static uint64_t
2974 metaslab_weight_from_range_tree(metaslab_t *msp)
2975 {
2976 	uint64_t weight = 0;
2977 	uint32_t segments = 0;
2978 
2979 	ASSERT(msp->ms_loaded);
2980 
2981 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2982 	    i--) {
2983 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2984 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2985 
2986 		segments <<= 1;
2987 		segments += msp->ms_allocatable->rt_histogram[i];
2988 
2989 		/*
2990 		 * The range tree provides more precision than the space map
2991 		 * and must be downgraded so that all values fit within the
2992 		 * space map's histogram. This allows us to compare loaded
2993 		 * vs. unloaded metaslabs to determine which metaslab is
2994 		 * considered "best".
2995 		 */
2996 		if (i > max_idx)
2997 			continue;
2998 
2999 		if (segments != 0) {
3000 			WEIGHT_SET_COUNT(weight, segments);
3001 			WEIGHT_SET_INDEX(weight, i);
3002 			WEIGHT_SET_ACTIVE(weight, 0);
3003 			break;
3004 		}
3005 	}
3006 	return (weight);
3007 }
3008 
3009 /*
3010  * Calculate the weight based on the on-disk histogram. Should be applied
3011  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3012  * give results consistent with the on-disk state
3013  */
3014 static uint64_t
3015 metaslab_weight_from_spacemap(metaslab_t *msp)
3016 {
3017 	space_map_t *sm = msp->ms_sm;
3018 	ASSERT(!msp->ms_loaded);
3019 	ASSERT(sm != NULL);
3020 	ASSERT3U(space_map_object(sm), !=, 0);
3021 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3022 
3023 	/*
3024 	 * Create a joint histogram from all the segments that have made
3025 	 * it to the metaslab's space map histogram, that are not yet
3026 	 * available for allocation because they are still in the freeing
3027 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3028 	 * these segments from the space map's histogram to get a more
3029 	 * accurate weight.
3030 	 */
3031 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3032 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3033 		deferspace_histogram[i] += msp->ms_synchist[i];
3034 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3035 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3036 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3037 		}
3038 	}
3039 
3040 	uint64_t weight = 0;
3041 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3042 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3043 		    deferspace_histogram[i]);
3044 		uint64_t count =
3045 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3046 		if (count != 0) {
3047 			WEIGHT_SET_COUNT(weight, count);
3048 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3049 			WEIGHT_SET_ACTIVE(weight, 0);
3050 			break;
3051 		}
3052 	}
3053 	return (weight);
3054 }
3055 
3056 /*
3057  * Compute a segment-based weight for the specified metaslab. The weight
3058  * is determined by highest bucket in the histogram. The information
3059  * for the highest bucket is encoded into the weight value.
3060  */
3061 static uint64_t
3062 metaslab_segment_weight(metaslab_t *msp)
3063 {
3064 	metaslab_group_t *mg = msp->ms_group;
3065 	uint64_t weight = 0;
3066 	uint8_t shift = mg->mg_vd->vdev_ashift;
3067 
3068 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3069 
3070 	/*
3071 	 * The metaslab is completely free.
3072 	 */
3073 	if (metaslab_allocated_space(msp) == 0) {
3074 		int idx = highbit64(msp->ms_size) - 1;
3075 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3076 
3077 		if (idx < max_idx) {
3078 			WEIGHT_SET_COUNT(weight, 1ULL);
3079 			WEIGHT_SET_INDEX(weight, idx);
3080 		} else {
3081 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3082 			WEIGHT_SET_INDEX(weight, max_idx);
3083 		}
3084 		WEIGHT_SET_ACTIVE(weight, 0);
3085 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3086 		return (weight);
3087 	}
3088 
3089 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3090 
3091 	/*
3092 	 * If the metaslab is fully allocated then just make the weight 0.
3093 	 */
3094 	if (metaslab_allocated_space(msp) == msp->ms_size)
3095 		return (0);
3096 	/*
3097 	 * If the metaslab is already loaded, then use the range tree to
3098 	 * determine the weight. Otherwise, we rely on the space map information
3099 	 * to generate the weight.
3100 	 */
3101 	if (msp->ms_loaded) {
3102 		weight = metaslab_weight_from_range_tree(msp);
3103 	} else {
3104 		weight = metaslab_weight_from_spacemap(msp);
3105 	}
3106 
3107 	/*
3108 	 * If the metaslab was active the last time we calculated its weight
3109 	 * then keep it active. We want to consume the entire region that
3110 	 * is associated with this weight.
3111 	 */
3112 	if (msp->ms_activation_weight != 0 && weight != 0)
3113 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3114 	return (weight);
3115 }
3116 
3117 /*
3118  * Determine if we should attempt to allocate from this metaslab. If the
3119  * metaslab is loaded, then we can determine if the desired allocation
3120  * can be satisfied by looking at the size of the maximum free segment
3121  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3122  * weight. For segment-based weighting we can determine the maximum
3123  * allocation based on the index encoded in its value. For space-based
3124  * weights we rely on the entire weight (excluding the weight-type bit).
3125  */
3126 static boolean_t
3127 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3128 {
3129 	/*
3130 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3131 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3132 	 * set), and we should use the fast check as long as we're not in
3133 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3134 	 * seconds since the metaslab was unloaded.
3135 	 */
3136 	if (msp->ms_loaded ||
3137 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3138 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3139 		return (msp->ms_max_size >= asize);
3140 
3141 	boolean_t should_allocate;
3142 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3143 		/*
3144 		 * The metaslab segment weight indicates segments in the
3145 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3146 		 * Since the asize might be in the middle of the range, we
3147 		 * should attempt the allocation if asize < 2^(i+1).
3148 		 */
3149 		should_allocate = (asize <
3150 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3151 	} else {
3152 		should_allocate = (asize <=
3153 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3154 	}
3155 
3156 	return (should_allocate);
3157 }
3158 
3159 static uint64_t
3160 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3161 {
3162 	vdev_t *vd = msp->ms_group->mg_vd;
3163 	spa_t *spa = vd->vdev_spa;
3164 	uint64_t weight;
3165 
3166 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3167 
3168 	metaslab_set_fragmentation(msp, nodirty);
3169 
3170 	/*
3171 	 * Update the maximum size. If the metaslab is loaded, this will
3172 	 * ensure that we get an accurate maximum size if newly freed space
3173 	 * has been added back into the free tree. If the metaslab is
3174 	 * unloaded, we check if there's a larger free segment in the
3175 	 * unflushed frees. This is a lower bound on the largest allocatable
3176 	 * segment size. Coalescing of adjacent entries may reveal larger
3177 	 * allocatable segments, but we aren't aware of those until loading
3178 	 * the space map into a range tree.
3179 	 */
3180 	if (msp->ms_loaded) {
3181 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3182 	} else {
3183 		msp->ms_max_size = MAX(msp->ms_max_size,
3184 		    metaslab_largest_unflushed_free(msp));
3185 	}
3186 
3187 	/*
3188 	 * Segment-based weighting requires space map histogram support.
3189 	 */
3190 	if (zfs_metaslab_segment_weight_enabled &&
3191 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3192 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3193 	    sizeof (space_map_phys_t))) {
3194 		weight = metaslab_segment_weight(msp);
3195 	} else {
3196 		weight = metaslab_space_weight(msp);
3197 	}
3198 	return (weight);
3199 }
3200 
3201 void
3202 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3203 {
3204 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3205 
3206 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3207 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3208 	metaslab_group_sort(msp->ms_group, msp,
3209 	    metaslab_weight(msp, B_FALSE) | was_active);
3210 }
3211 
3212 static int
3213 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3214     int allocator, uint64_t activation_weight)
3215 {
3216 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3217 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3218 
3219 	/*
3220 	 * If we're activating for the claim code, we don't want to actually
3221 	 * set the metaslab up for a specific allocator.
3222 	 */
3223 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3224 		ASSERT0(msp->ms_activation_weight);
3225 		msp->ms_activation_weight = msp->ms_weight;
3226 		metaslab_group_sort(mg, msp, msp->ms_weight |
3227 		    activation_weight);
3228 		return (0);
3229 	}
3230 
3231 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3232 	    &mga->mga_primary : &mga->mga_secondary);
3233 
3234 	mutex_enter(&mg->mg_lock);
3235 	if (*mspp != NULL) {
3236 		mutex_exit(&mg->mg_lock);
3237 		return (EEXIST);
3238 	}
3239 
3240 	*mspp = msp;
3241 	ASSERT3S(msp->ms_allocator, ==, -1);
3242 	msp->ms_allocator = allocator;
3243 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3244 
3245 	ASSERT0(msp->ms_activation_weight);
3246 	msp->ms_activation_weight = msp->ms_weight;
3247 	metaslab_group_sort_impl(mg, msp,
3248 	    msp->ms_weight | activation_weight);
3249 	mutex_exit(&mg->mg_lock);
3250 
3251 	return (0);
3252 }
3253 
3254 static int
3255 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3256 {
3257 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3258 
3259 	/*
3260 	 * The current metaslab is already activated for us so there
3261 	 * is nothing to do. Already activated though, doesn't mean
3262 	 * that this metaslab is activated for our allocator nor our
3263 	 * requested activation weight. The metaslab could have started
3264 	 * as an active one for our allocator but changed allocators
3265 	 * while we were waiting to grab its ms_lock or we stole it
3266 	 * [see find_valid_metaslab()]. This means that there is a
3267 	 * possibility of passivating a metaslab of another allocator
3268 	 * or from a different activation mask, from this thread.
3269 	 */
3270 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3271 		ASSERT(msp->ms_loaded);
3272 		return (0);
3273 	}
3274 
3275 	int error = metaslab_load(msp);
3276 	if (error != 0) {
3277 		metaslab_group_sort(msp->ms_group, msp, 0);
3278 		return (error);
3279 	}
3280 
3281 	/*
3282 	 * When entering metaslab_load() we may have dropped the
3283 	 * ms_lock because we were loading this metaslab, or we
3284 	 * were waiting for another thread to load it for us. In
3285 	 * that scenario, we recheck the weight of the metaslab
3286 	 * to see if it was activated by another thread.
3287 	 *
3288 	 * If the metaslab was activated for another allocator or
3289 	 * it was activated with a different activation weight (e.g.
3290 	 * we wanted to make it a primary but it was activated as
3291 	 * secondary) we return error (EBUSY).
3292 	 *
3293 	 * If the metaslab was activated for the same allocator
3294 	 * and requested activation mask, skip activating it.
3295 	 */
3296 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3297 		if (msp->ms_allocator != allocator)
3298 			return (EBUSY);
3299 
3300 		if ((msp->ms_weight & activation_weight) == 0)
3301 			return (SET_ERROR(EBUSY));
3302 
3303 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3304 		    msp->ms_primary);
3305 		return (0);
3306 	}
3307 
3308 	/*
3309 	 * If the metaslab has literally 0 space, it will have weight 0. In
3310 	 * that case, don't bother activating it. This can happen if the
3311 	 * metaslab had space during find_valid_metaslab, but another thread
3312 	 * loaded it and used all that space while we were waiting to grab the
3313 	 * lock.
3314 	 */
3315 	if (msp->ms_weight == 0) {
3316 		ASSERT0(range_tree_space(msp->ms_allocatable));
3317 		return (SET_ERROR(ENOSPC));
3318 	}
3319 
3320 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3321 	    allocator, activation_weight)) != 0) {
3322 		return (error);
3323 	}
3324 
3325 	ASSERT(msp->ms_loaded);
3326 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3327 
3328 	return (0);
3329 }
3330 
3331 static void
3332 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3333     uint64_t weight)
3334 {
3335 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3336 	ASSERT(msp->ms_loaded);
3337 
3338 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3339 		metaslab_group_sort(mg, msp, weight);
3340 		return;
3341 	}
3342 
3343 	mutex_enter(&mg->mg_lock);
3344 	ASSERT3P(msp->ms_group, ==, mg);
3345 	ASSERT3S(0, <=, msp->ms_allocator);
3346 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3347 
3348 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3349 	if (msp->ms_primary) {
3350 		ASSERT3P(mga->mga_primary, ==, msp);
3351 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3352 		mga->mga_primary = NULL;
3353 	} else {
3354 		ASSERT3P(mga->mga_secondary, ==, msp);
3355 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3356 		mga->mga_secondary = NULL;
3357 	}
3358 	msp->ms_allocator = -1;
3359 	metaslab_group_sort_impl(mg, msp, weight);
3360 	mutex_exit(&mg->mg_lock);
3361 }
3362 
3363 static void
3364 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3365 {
3366 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3367 
3368 	/*
3369 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3370 	 * this metaslab again.  In that case, it had better be empty,
3371 	 * or we would be leaving space on the table.
3372 	 */
3373 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3374 	    size >= SPA_MINBLOCKSIZE ||
3375 	    range_tree_space(msp->ms_allocatable) == 0);
3376 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3377 
3378 	ASSERT(msp->ms_activation_weight != 0);
3379 	msp->ms_activation_weight = 0;
3380 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3381 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3382 }
3383 
3384 /*
3385  * Segment-based metaslabs are activated once and remain active until
3386  * we either fail an allocation attempt (similar to space-based metaslabs)
3387  * or have exhausted the free space in zfs_metaslab_switch_threshold
3388  * buckets since the metaslab was activated. This function checks to see
3389  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3390  * metaslab and passivates it proactively. This will allow us to select a
3391  * metaslab with a larger contiguous region, if any, remaining within this
3392  * metaslab group. If we're in sync pass > 1, then we continue using this
3393  * metaslab so that we don't dirty more block and cause more sync passes.
3394  */
3395 static void
3396 metaslab_segment_may_passivate(metaslab_t *msp)
3397 {
3398 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3399 
3400 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3401 		return;
3402 
3403 	/*
3404 	 * Since we are in the middle of a sync pass, the most accurate
3405 	 * information that is accessible to us is the in-core range tree
3406 	 * histogram; calculate the new weight based on that information.
3407 	 */
3408 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3409 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3410 	int current_idx = WEIGHT_GET_INDEX(weight);
3411 
3412 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3413 		metaslab_passivate(msp, weight);
3414 }
3415 
3416 static void
3417 metaslab_preload(void *arg)
3418 {
3419 	metaslab_t *msp = arg;
3420 	metaslab_class_t *mc = msp->ms_group->mg_class;
3421 	spa_t *spa = mc->mc_spa;
3422 	fstrans_cookie_t cookie = spl_fstrans_mark();
3423 
3424 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3425 
3426 	mutex_enter(&msp->ms_lock);
3427 	(void) metaslab_load(msp);
3428 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3429 	mutex_exit(&msp->ms_lock);
3430 	spl_fstrans_unmark(cookie);
3431 }
3432 
3433 static void
3434 metaslab_group_preload(metaslab_group_t *mg)
3435 {
3436 	spa_t *spa = mg->mg_vd->vdev_spa;
3437 	metaslab_t *msp;
3438 	avl_tree_t *t = &mg->mg_metaslab_tree;
3439 	int m = 0;
3440 
3441 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3442 		taskq_wait_outstanding(mg->mg_taskq, 0);
3443 		return;
3444 	}
3445 
3446 	mutex_enter(&mg->mg_lock);
3447 
3448 	/*
3449 	 * Load the next potential metaslabs
3450 	 */
3451 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3452 		ASSERT3P(msp->ms_group, ==, mg);
3453 
3454 		/*
3455 		 * We preload only the maximum number of metaslabs specified
3456 		 * by metaslab_preload_limit. If a metaslab is being forced
3457 		 * to condense then we preload it too. This will ensure
3458 		 * that force condensing happens in the next txg.
3459 		 */
3460 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3461 			continue;
3462 		}
3463 
3464 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3465 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3466 	}
3467 	mutex_exit(&mg->mg_lock);
3468 }
3469 
3470 /*
3471  * Determine if the space map's on-disk footprint is past our tolerance for
3472  * inefficiency. We would like to use the following criteria to make our
3473  * decision:
3474  *
3475  * 1. Do not condense if the size of the space map object would dramatically
3476  *    increase as a result of writing out the free space range tree.
3477  *
3478  * 2. Condense if the on on-disk space map representation is at least
3479  *    zfs_condense_pct/100 times the size of the optimal representation
3480  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3481  *
3482  * 3. Do not condense if the on-disk size of the space map does not actually
3483  *    decrease.
3484  *
3485  * Unfortunately, we cannot compute the on-disk size of the space map in this
3486  * context because we cannot accurately compute the effects of compression, etc.
3487  * Instead, we apply the heuristic described in the block comment for
3488  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3489  * is greater than a threshold number of blocks.
3490  */
3491 static boolean_t
3492 metaslab_should_condense(metaslab_t *msp)
3493 {
3494 	space_map_t *sm = msp->ms_sm;
3495 	vdev_t *vd = msp->ms_group->mg_vd;
3496 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3497 
3498 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3499 	ASSERT(msp->ms_loaded);
3500 	ASSERT(sm != NULL);
3501 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3502 
3503 	/*
3504 	 * We always condense metaslabs that are empty and metaslabs for
3505 	 * which a condense request has been made.
3506 	 */
3507 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3508 	    msp->ms_condense_wanted)
3509 		return (B_TRUE);
3510 
3511 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3512 	uint64_t object_size = space_map_length(sm);
3513 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3514 	    msp->ms_allocatable, SM_NO_VDEVID);
3515 
3516 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3517 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3518 }
3519 
3520 /*
3521  * Condense the on-disk space map representation to its minimized form.
3522  * The minimized form consists of a small number of allocations followed
3523  * by the entries of the free range tree (ms_allocatable). The condensed
3524  * spacemap contains all the entries of previous TXGs (including those in
3525  * the pool-wide log spacemaps; thus this is effectively a superset of
3526  * metaslab_flush()), but this TXG's entries still need to be written.
3527  */
3528 static void
3529 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3530 {
3531 	range_tree_t *condense_tree;
3532 	space_map_t *sm = msp->ms_sm;
3533 	uint64_t txg = dmu_tx_get_txg(tx);
3534 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3535 
3536 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3537 	ASSERT(msp->ms_loaded);
3538 	ASSERT(msp->ms_sm != NULL);
3539 
3540 	/*
3541 	 * In order to condense the space map, we need to change it so it
3542 	 * only describes which segments are currently allocated and free.
3543 	 *
3544 	 * All the current free space resides in the ms_allocatable, all
3545 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3546 	 * ms_freed because it is empty because we're in sync pass 1. We
3547 	 * ignore ms_freeing because these changes are not yet reflected
3548 	 * in the spacemap (they will be written later this txg).
3549 	 *
3550 	 * So to truncate the space map to represent all the entries of
3551 	 * previous TXGs we do the following:
3552 	 *
3553 	 * 1] We create a range tree (condense tree) that is 100% empty.
3554 	 * 2] We add to it all segments found in the ms_defer trees
3555 	 *    as those segments are marked as free in the original space
3556 	 *    map. We do the same with the ms_allocating trees for the same
3557 	 *    reason. Adding these segments should be a relatively
3558 	 *    inexpensive operation since we expect these trees to have a
3559 	 *    small number of nodes.
3560 	 * 3] We vacate any unflushed allocs, since they are not frees we
3561 	 *    need to add to the condense tree. Then we vacate any
3562 	 *    unflushed frees as they should already be part of ms_allocatable.
3563 	 * 4] At this point, we would ideally like to add all segments
3564 	 *    in the ms_allocatable tree from the condense tree. This way
3565 	 *    we would write all the entries of the condense tree as the
3566 	 *    condensed space map, which would only contain freed
3567 	 *    segments with everything else assumed to be allocated.
3568 	 *
3569 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3570 	 *    be large, and therefore computationally expensive to add to
3571 	 *    the condense_tree. Instead we first sync out an entry marking
3572 	 *    everything as allocated, then the condense_tree and then the
3573 	 *    ms_allocatable, in the condensed space map. While this is not
3574 	 *    optimal, it is typically close to optimal and more importantly
3575 	 *    much cheaper to compute.
3576 	 *
3577 	 * 5] Finally, as both of the unflushed trees were written to our
3578 	 *    new and condensed metaslab space map, we basically flushed
3579 	 *    all the unflushed changes to disk, thus we call
3580 	 *    metaslab_flush_update().
3581 	 */
3582 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3583 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3584 
3585 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3586 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
3587 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
3588 	    spa->spa_name, space_map_length(msp->ms_sm),
3589 	    range_tree_numsegs(msp->ms_allocatable),
3590 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3591 
3592 	msp->ms_condense_wanted = B_FALSE;
3593 
3594 	range_seg_type_t type;
3595 	uint64_t shift, start;
3596 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3597 	    &start, &shift);
3598 
3599 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3600 
3601 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3602 		range_tree_walk(msp->ms_defer[t],
3603 		    range_tree_add, condense_tree);
3604 	}
3605 
3606 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3607 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3608 		    range_tree_add, condense_tree);
3609 	}
3610 
3611 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3612 	    metaslab_unflushed_changes_memused(msp));
3613 	spa->spa_unflushed_stats.sus_memused -=
3614 	    metaslab_unflushed_changes_memused(msp);
3615 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3616 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3617 
3618 	/*
3619 	 * We're about to drop the metaslab's lock thus allowing other
3620 	 * consumers to change it's content. Set the metaslab's ms_condensing
3621 	 * flag to ensure that allocations on this metaslab do not occur
3622 	 * while we're in the middle of committing it to disk. This is only
3623 	 * critical for ms_allocatable as all other range trees use per TXG
3624 	 * views of their content.
3625 	 */
3626 	msp->ms_condensing = B_TRUE;
3627 
3628 	mutex_exit(&msp->ms_lock);
3629 	uint64_t object = space_map_object(msp->ms_sm);
3630 	space_map_truncate(sm,
3631 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3632 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3633 
3634 	/*
3635 	 * space_map_truncate() may have reallocated the spacemap object.
3636 	 * If so, update the vdev_ms_array.
3637 	 */
3638 	if (space_map_object(msp->ms_sm) != object) {
3639 		object = space_map_object(msp->ms_sm);
3640 		dmu_write(spa->spa_meta_objset,
3641 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3642 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3643 	}
3644 
3645 	/*
3646 	 * Note:
3647 	 * When the log space map feature is enabled, each space map will
3648 	 * always have ALLOCS followed by FREES for each sync pass. This is
3649 	 * typically true even when the log space map feature is disabled,
3650 	 * except from the case where a metaslab goes through metaslab_sync()
3651 	 * and gets condensed. In that case the metaslab's space map will have
3652 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3653 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3654 	 * sync pass 1.
3655 	 */
3656 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3657 	    shift);
3658 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3659 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3660 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3661 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3662 
3663 	range_tree_vacate(condense_tree, NULL, NULL);
3664 	range_tree_destroy(condense_tree);
3665 	range_tree_vacate(tmp_tree, NULL, NULL);
3666 	range_tree_destroy(tmp_tree);
3667 	mutex_enter(&msp->ms_lock);
3668 
3669 	msp->ms_condensing = B_FALSE;
3670 	metaslab_flush_update(msp, tx);
3671 }
3672 
3673 /*
3674  * Called when the metaslab has been flushed (its own spacemap now reflects
3675  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3676  * metadata and any pool-wide related log space map data (e.g. summary,
3677  * obsolete logs, etc..) to reflect that.
3678  */
3679 static void
3680 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3681 {
3682 	metaslab_group_t *mg = msp->ms_group;
3683 	spa_t *spa = mg->mg_vd->vdev_spa;
3684 
3685 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3686 
3687 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3688 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3689 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3690 
3691 	/*
3692 	 * Just because a metaslab got flushed, that doesn't mean that
3693 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3694 	 * update ms_synced_length here in case it doesn't.
3695 	 */
3696 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3697 
3698 	/*
3699 	 * We may end up here from metaslab_condense() without the
3700 	 * feature being active. In that case this is a no-op.
3701 	 */
3702 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
3703 		return;
3704 
3705 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3706 	ASSERT(msp->ms_sm != NULL);
3707 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3708 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3709 
3710 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3711 
3712 	/* update metaslab's position in our flushing tree */
3713 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3714 	mutex_enter(&spa->spa_flushed_ms_lock);
3715 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3716 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3717 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3718 	mutex_exit(&spa->spa_flushed_ms_lock);
3719 
3720 	/* update metaslab counts of spa_log_sm_t nodes */
3721 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3722 	spa_log_sm_increment_current_mscount(spa);
3723 
3724 	/* cleanup obsolete logs if any */
3725 	uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3726 	spa_cleanup_old_sm_logs(spa, tx);
3727 	uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3728 	VERIFY3U(log_blocks_after, <=, log_blocks_before);
3729 
3730 	/* update log space map summary */
3731 	uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3732 	spa_log_summary_add_flushed_metaslab(spa);
3733 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3734 	spa_log_summary_decrement_blkcount(spa, blocks_gone);
3735 }
3736 
3737 boolean_t
3738 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3739 {
3740 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3741 
3742 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3743 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3744 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3745 
3746 	ASSERT(msp->ms_sm != NULL);
3747 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3748 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3749 
3750 	/*
3751 	 * There is nothing wrong with flushing the same metaslab twice, as
3752 	 * this codepath should work on that case. However, the current
3753 	 * flushing scheme makes sure to avoid this situation as we would be
3754 	 * making all these calls without having anything meaningful to write
3755 	 * to disk. We assert this behavior here.
3756 	 */
3757 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3758 
3759 	/*
3760 	 * We can not flush while loading, because then we would
3761 	 * not load the ms_unflushed_{allocs,frees}.
3762 	 */
3763 	if (msp->ms_loading)
3764 		return (B_FALSE);
3765 
3766 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3767 	metaslab_verify_weight_and_frag(msp);
3768 
3769 	/*
3770 	 * Metaslab condensing is effectively flushing. Therefore if the
3771 	 * metaslab can be condensed we can just condense it instead of
3772 	 * flushing it.
3773 	 *
3774 	 * Note that metaslab_condense() does call metaslab_flush_update()
3775 	 * so we can just return immediately after condensing. We also
3776 	 * don't need to care about setting ms_flushing or broadcasting
3777 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3778 	 * metaslab_condense(), as the metaslab is already loaded.
3779 	 */
3780 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3781 		metaslab_group_t *mg = msp->ms_group;
3782 
3783 		/*
3784 		 * For all histogram operations below refer to the
3785 		 * comments of metaslab_sync() where we follow a
3786 		 * similar procedure.
3787 		 */
3788 		metaslab_group_histogram_verify(mg);
3789 		metaslab_class_histogram_verify(mg->mg_class);
3790 		metaslab_group_histogram_remove(mg, msp);
3791 
3792 		metaslab_condense(msp, tx);
3793 
3794 		space_map_histogram_clear(msp->ms_sm);
3795 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3796 		ASSERT(range_tree_is_empty(msp->ms_freed));
3797 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3798 			space_map_histogram_add(msp->ms_sm,
3799 			    msp->ms_defer[t], tx);
3800 		}
3801 		metaslab_aux_histograms_update(msp);
3802 
3803 		metaslab_group_histogram_add(mg, msp);
3804 		metaslab_group_histogram_verify(mg);
3805 		metaslab_class_histogram_verify(mg->mg_class);
3806 
3807 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3808 
3809 		/*
3810 		 * Since we recreated the histogram (and potentially
3811 		 * the ms_sm too while condensing) ensure that the
3812 		 * weight is updated too because we are not guaranteed
3813 		 * that this metaslab is dirty and will go through
3814 		 * metaslab_sync_done().
3815 		 */
3816 		metaslab_recalculate_weight_and_sort(msp);
3817 		return (B_TRUE);
3818 	}
3819 
3820 	msp->ms_flushing = B_TRUE;
3821 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3822 
3823 	mutex_exit(&msp->ms_lock);
3824 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3825 	    SM_NO_VDEVID, tx);
3826 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3827 	    SM_NO_VDEVID, tx);
3828 	mutex_enter(&msp->ms_lock);
3829 
3830 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3831 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3832 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3833 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3834 		    "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
3835 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
3836 		    range_tree_space(msp->ms_unflushed_allocs),
3837 		    range_tree_space(msp->ms_unflushed_frees),
3838 		    (sm_len_after - sm_len_before));
3839 	}
3840 
3841 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3842 	    metaslab_unflushed_changes_memused(msp));
3843 	spa->spa_unflushed_stats.sus_memused -=
3844 	    metaslab_unflushed_changes_memused(msp);
3845 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3846 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3847 
3848 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3849 	metaslab_verify_weight_and_frag(msp);
3850 
3851 	metaslab_flush_update(msp, tx);
3852 
3853 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3854 	metaslab_verify_weight_and_frag(msp);
3855 
3856 	msp->ms_flushing = B_FALSE;
3857 	cv_broadcast(&msp->ms_flush_cv);
3858 	return (B_TRUE);
3859 }
3860 
3861 /*
3862  * Write a metaslab to disk in the context of the specified transaction group.
3863  */
3864 void
3865 metaslab_sync(metaslab_t *msp, uint64_t txg)
3866 {
3867 	metaslab_group_t *mg = msp->ms_group;
3868 	vdev_t *vd = mg->mg_vd;
3869 	spa_t *spa = vd->vdev_spa;
3870 	objset_t *mos = spa_meta_objset(spa);
3871 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3872 	dmu_tx_t *tx;
3873 
3874 	ASSERT(!vd->vdev_ishole);
3875 
3876 	/*
3877 	 * This metaslab has just been added so there's no work to do now.
3878 	 */
3879 	if (msp->ms_freeing == NULL) {
3880 		ASSERT3P(alloctree, ==, NULL);
3881 		return;
3882 	}
3883 
3884 	ASSERT3P(alloctree, !=, NULL);
3885 	ASSERT3P(msp->ms_freeing, !=, NULL);
3886 	ASSERT3P(msp->ms_freed, !=, NULL);
3887 	ASSERT3P(msp->ms_checkpointing, !=, NULL);
3888 	ASSERT3P(msp->ms_trim, !=, NULL);
3889 
3890 	/*
3891 	 * Normally, we don't want to process a metaslab if there are no
3892 	 * allocations or frees to perform. However, if the metaslab is being
3893 	 * forced to condense, it's loaded and we're not beyond the final
3894 	 * dirty txg, we need to let it through. Not condensing beyond the
3895 	 * final dirty txg prevents an issue where metaslabs that need to be
3896 	 * condensed but were loaded for other reasons could cause a panic
3897 	 * here. By only checking the txg in that branch of the conditional,
3898 	 * we preserve the utility of the VERIFY statements in all other
3899 	 * cases.
3900 	 */
3901 	if (range_tree_is_empty(alloctree) &&
3902 	    range_tree_is_empty(msp->ms_freeing) &&
3903 	    range_tree_is_empty(msp->ms_checkpointing) &&
3904 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3905 	    txg <= spa_final_dirty_txg(spa)))
3906 		return;
3907 
3908 
3909 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3910 
3911 	/*
3912 	 * The only state that can actually be changing concurrently
3913 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3914 	 * other thread can be modifying this txg's alloc, freeing,
3915 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
3916 	 * could call into the DMU, because the DMU can call down to
3917 	 * us (e.g. via zio_free()) at any time.
3918 	 *
3919 	 * The spa_vdev_remove_thread() can be reading metaslab state
3920 	 * concurrently, and it is locked out by the ms_sync_lock.
3921 	 * Note that the ms_lock is insufficient for this, because it
3922 	 * is dropped by space_map_write().
3923 	 */
3924 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3925 
3926 	/*
3927 	 * Generate a log space map if one doesn't exist already.
3928 	 */
3929 	spa_generate_syncing_log_sm(spa, tx);
3930 
3931 	if (msp->ms_sm == NULL) {
3932 		uint64_t new_object = space_map_alloc(mos,
3933 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3934 		    zfs_metaslab_sm_blksz_with_log :
3935 		    zfs_metaslab_sm_blksz_no_log, tx);
3936 		VERIFY3U(new_object, !=, 0);
3937 
3938 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3939 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
3940 
3941 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
3942 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
3943 		ASSERT(msp->ms_sm != NULL);
3944 
3945 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3946 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3947 		ASSERT0(metaslab_allocated_space(msp));
3948 	}
3949 
3950 	if (metaslab_unflushed_txg(msp) == 0 &&
3951 	    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
3952 		ASSERT(spa_syncing_log_sm(spa) != NULL);
3953 
3954 		metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3955 		spa_log_sm_increment_current_mscount(spa);
3956 		spa_log_summary_add_flushed_metaslab(spa);
3957 
3958 		ASSERT(msp->ms_sm != NULL);
3959 		mutex_enter(&spa->spa_flushed_ms_lock);
3960 		avl_add(&spa->spa_metaslabs_by_flushed, msp);
3961 		mutex_exit(&spa->spa_flushed_ms_lock);
3962 
3963 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3964 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3965 	}
3966 
3967 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
3968 	    vd->vdev_checkpoint_sm == NULL) {
3969 		ASSERT(spa_has_checkpoint(spa));
3970 
3971 		uint64_t new_object = space_map_alloc(mos,
3972 		    zfs_vdev_standard_sm_blksz, tx);
3973 		VERIFY3U(new_object, !=, 0);
3974 
3975 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
3976 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
3977 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3978 
3979 		/*
3980 		 * We save the space map object as an entry in vdev_top_zap
3981 		 * so it can be retrieved when the pool is reopened after an
3982 		 * export or through zdb.
3983 		 */
3984 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
3985 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
3986 		    sizeof (new_object), 1, &new_object, tx));
3987 	}
3988 
3989 	mutex_enter(&msp->ms_sync_lock);
3990 	mutex_enter(&msp->ms_lock);
3991 
3992 	/*
3993 	 * Note: metaslab_condense() clears the space map's histogram.
3994 	 * Therefore we must verify and remove this histogram before
3995 	 * condensing.
3996 	 */
3997 	metaslab_group_histogram_verify(mg);
3998 	metaslab_class_histogram_verify(mg->mg_class);
3999 	metaslab_group_histogram_remove(mg, msp);
4000 
4001 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4002 	    metaslab_should_condense(msp))
4003 		metaslab_condense(msp, tx);
4004 
4005 	/*
4006 	 * We'll be going to disk to sync our space accounting, thus we
4007 	 * drop the ms_lock during that time so allocations coming from
4008 	 * open-context (ZIL) for future TXGs do not block.
4009 	 */
4010 	mutex_exit(&msp->ms_lock);
4011 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4012 	if (log_sm != NULL) {
4013 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4014 
4015 		space_map_write(log_sm, alloctree, SM_ALLOC,
4016 		    vd->vdev_id, tx);
4017 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4018 		    vd->vdev_id, tx);
4019 		mutex_enter(&msp->ms_lock);
4020 
4021 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4022 		    metaslab_unflushed_changes_memused(msp));
4023 		spa->spa_unflushed_stats.sus_memused -=
4024 		    metaslab_unflushed_changes_memused(msp);
4025 		range_tree_remove_xor_add(alloctree,
4026 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4027 		range_tree_remove_xor_add(msp->ms_freeing,
4028 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4029 		spa->spa_unflushed_stats.sus_memused +=
4030 		    metaslab_unflushed_changes_memused(msp);
4031 	} else {
4032 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4033 
4034 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4035 		    SM_NO_VDEVID, tx);
4036 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4037 		    SM_NO_VDEVID, tx);
4038 		mutex_enter(&msp->ms_lock);
4039 	}
4040 
4041 	msp->ms_allocated_space += range_tree_space(alloctree);
4042 	ASSERT3U(msp->ms_allocated_space, >=,
4043 	    range_tree_space(msp->ms_freeing));
4044 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4045 
4046 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4047 		ASSERT(spa_has_checkpoint(spa));
4048 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4049 
4050 		/*
4051 		 * Since we are doing writes to disk and the ms_checkpointing
4052 		 * tree won't be changing during that time, we drop the
4053 		 * ms_lock while writing to the checkpoint space map, for the
4054 		 * same reason mentioned above.
4055 		 */
4056 		mutex_exit(&msp->ms_lock);
4057 		space_map_write(vd->vdev_checkpoint_sm,
4058 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4059 		mutex_enter(&msp->ms_lock);
4060 
4061 		spa->spa_checkpoint_info.sci_dspace +=
4062 		    range_tree_space(msp->ms_checkpointing);
4063 		vd->vdev_stat.vs_checkpoint_space +=
4064 		    range_tree_space(msp->ms_checkpointing);
4065 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4066 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4067 
4068 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4069 	}
4070 
4071 	if (msp->ms_loaded) {
4072 		/*
4073 		 * When the space map is loaded, we have an accurate
4074 		 * histogram in the range tree. This gives us an opportunity
4075 		 * to bring the space map's histogram up-to-date so we clear
4076 		 * it first before updating it.
4077 		 */
4078 		space_map_histogram_clear(msp->ms_sm);
4079 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4080 
4081 		/*
4082 		 * Since we've cleared the histogram we need to add back
4083 		 * any free space that has already been processed, plus
4084 		 * any deferred space. This allows the on-disk histogram
4085 		 * to accurately reflect all free space even if some space
4086 		 * is not yet available for allocation (i.e. deferred).
4087 		 */
4088 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4089 
4090 		/*
4091 		 * Add back any deferred free space that has not been
4092 		 * added back into the in-core free tree yet. This will
4093 		 * ensure that we don't end up with a space map histogram
4094 		 * that is completely empty unless the metaslab is fully
4095 		 * allocated.
4096 		 */
4097 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4098 			space_map_histogram_add(msp->ms_sm,
4099 			    msp->ms_defer[t], tx);
4100 		}
4101 	}
4102 
4103 	/*
4104 	 * Always add the free space from this sync pass to the space
4105 	 * map histogram. We want to make sure that the on-disk histogram
4106 	 * accounts for all free space. If the space map is not loaded,
4107 	 * then we will lose some accuracy but will correct it the next
4108 	 * time we load the space map.
4109 	 */
4110 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4111 	metaslab_aux_histograms_update(msp);
4112 
4113 	metaslab_group_histogram_add(mg, msp);
4114 	metaslab_group_histogram_verify(mg);
4115 	metaslab_class_histogram_verify(mg->mg_class);
4116 
4117 	/*
4118 	 * For sync pass 1, we avoid traversing this txg's free range tree
4119 	 * and instead will just swap the pointers for freeing and freed.
4120 	 * We can safely do this since the freed_tree is guaranteed to be
4121 	 * empty on the initial pass.
4122 	 *
4123 	 * Keep in mind that even if we are currently using a log spacemap
4124 	 * we want current frees to end up in the ms_allocatable (but not
4125 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4126 	 */
4127 	if (spa_sync_pass(spa) == 1) {
4128 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4129 		ASSERT0(msp->ms_allocated_this_txg);
4130 	} else {
4131 		range_tree_vacate(msp->ms_freeing,
4132 		    range_tree_add, msp->ms_freed);
4133 	}
4134 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4135 	range_tree_vacate(alloctree, NULL, NULL);
4136 
4137 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4138 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4139 	    & TXG_MASK]));
4140 	ASSERT0(range_tree_space(msp->ms_freeing));
4141 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4142 
4143 	mutex_exit(&msp->ms_lock);
4144 
4145 	/*
4146 	 * Verify that the space map object ID has been recorded in the
4147 	 * vdev_ms_array.
4148 	 */
4149 	uint64_t object;
4150 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4151 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4152 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4153 
4154 	mutex_exit(&msp->ms_sync_lock);
4155 	dmu_tx_commit(tx);
4156 }
4157 
4158 static void
4159 metaslab_evict(metaslab_t *msp, uint64_t txg)
4160 {
4161 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4162 		return;
4163 
4164 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4165 		VERIFY0(range_tree_space(
4166 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4167 	}
4168 	if (msp->ms_allocator != -1)
4169 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4170 
4171 	if (!metaslab_debug_unload)
4172 		metaslab_unload(msp);
4173 }
4174 
4175 /*
4176  * Called after a transaction group has completely synced to mark
4177  * all of the metaslab's free space as usable.
4178  */
4179 void
4180 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4181 {
4182 	metaslab_group_t *mg = msp->ms_group;
4183 	vdev_t *vd = mg->mg_vd;
4184 	spa_t *spa = vd->vdev_spa;
4185 	range_tree_t **defer_tree;
4186 	int64_t alloc_delta, defer_delta;
4187 	boolean_t defer_allowed = B_TRUE;
4188 
4189 	ASSERT(!vd->vdev_ishole);
4190 
4191 	mutex_enter(&msp->ms_lock);
4192 
4193 	/*
4194 	 * If this metaslab is just becoming available, initialize its
4195 	 * range trees and add its capacity to the vdev.
4196 	 */
4197 	if (msp->ms_freed == NULL) {
4198 		range_seg_type_t type;
4199 		uint64_t shift, start;
4200 		type = metaslab_calculate_range_tree_type(vd, msp, &start,
4201 		    &shift);
4202 
4203 		for (int t = 0; t < TXG_SIZE; t++) {
4204 			ASSERT(msp->ms_allocating[t] == NULL);
4205 
4206 			msp->ms_allocating[t] = range_tree_create(NULL, type,
4207 			    NULL, start, shift);
4208 		}
4209 
4210 		ASSERT3P(msp->ms_freeing, ==, NULL);
4211 		msp->ms_freeing = range_tree_create(NULL, type, NULL, start,
4212 		    shift);
4213 
4214 		ASSERT3P(msp->ms_freed, ==, NULL);
4215 		msp->ms_freed = range_tree_create(NULL, type, NULL, start,
4216 		    shift);
4217 
4218 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4219 			ASSERT3P(msp->ms_defer[t], ==, NULL);
4220 			msp->ms_defer[t] = range_tree_create(NULL, type, NULL,
4221 			    start, shift);
4222 		}
4223 
4224 		ASSERT3P(msp->ms_checkpointing, ==, NULL);
4225 		msp->ms_checkpointing = range_tree_create(NULL, type, NULL,
4226 		    start, shift);
4227 
4228 		ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
4229 		msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL,
4230 		    start, shift);
4231 
4232 		metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
4233 		mrap->mra_bt = &msp->ms_unflushed_frees_by_size;
4234 		mrap->mra_floor_shift = metaslab_by_size_min_shift;
4235 		ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
4236 		msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
4237 		    type, mrap, start, shift);
4238 
4239 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4240 	}
4241 	ASSERT0(range_tree_space(msp->ms_freeing));
4242 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4243 
4244 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4245 
4246 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4247 	    metaslab_class_get_alloc(spa_normal_class(spa));
4248 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4249 		defer_allowed = B_FALSE;
4250 	}
4251 
4252 	defer_delta = 0;
4253 	alloc_delta = msp->ms_allocated_this_txg -
4254 	    range_tree_space(msp->ms_freed);
4255 
4256 	if (defer_allowed) {
4257 		defer_delta = range_tree_space(msp->ms_freed) -
4258 		    range_tree_space(*defer_tree);
4259 	} else {
4260 		defer_delta -= range_tree_space(*defer_tree);
4261 	}
4262 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4263 	    defer_delta, 0);
4264 
4265 	if (spa_syncing_log_sm(spa) == NULL) {
4266 		/*
4267 		 * If there's a metaslab_load() in progress and we don't have
4268 		 * a log space map, it means that we probably wrote to the
4269 		 * metaslab's space map. If this is the case, we need to
4270 		 * make sure that we wait for the load to complete so that we
4271 		 * have a consistent view at the in-core side of the metaslab.
4272 		 */
4273 		metaslab_load_wait(msp);
4274 	} else {
4275 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4276 	}
4277 
4278 	/*
4279 	 * When auto-trimming is enabled, free ranges which are added to
4280 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4281 	 * periodically consumed by the vdev_autotrim_thread() which issues
4282 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4283 	 * can be discarded at any time with the sole consequence of recent
4284 	 * frees not being trimmed.
4285 	 */
4286 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4287 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4288 		if (!defer_allowed) {
4289 			range_tree_walk(msp->ms_freed, range_tree_add,
4290 			    msp->ms_trim);
4291 		}
4292 	} else {
4293 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4294 	}
4295 
4296 	/*
4297 	 * Move the frees from the defer_tree back to the free
4298 	 * range tree (if it's loaded). Swap the freed_tree and
4299 	 * the defer_tree -- this is safe to do because we've
4300 	 * just emptied out the defer_tree.
4301 	 */
4302 	range_tree_vacate(*defer_tree,
4303 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4304 	if (defer_allowed) {
4305 		range_tree_swap(&msp->ms_freed, defer_tree);
4306 	} else {
4307 		range_tree_vacate(msp->ms_freed,
4308 		    msp->ms_loaded ? range_tree_add : NULL,
4309 		    msp->ms_allocatable);
4310 	}
4311 
4312 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4313 
4314 	msp->ms_deferspace += defer_delta;
4315 	ASSERT3S(msp->ms_deferspace, >=, 0);
4316 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4317 	if (msp->ms_deferspace != 0) {
4318 		/*
4319 		 * Keep syncing this metaslab until all deferred frees
4320 		 * are back in circulation.
4321 		 */
4322 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4323 	}
4324 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4325 
4326 	if (msp->ms_new) {
4327 		msp->ms_new = B_FALSE;
4328 		mutex_enter(&mg->mg_lock);
4329 		mg->mg_ms_ready++;
4330 		mutex_exit(&mg->mg_lock);
4331 	}
4332 
4333 	/*
4334 	 * Re-sort metaslab within its group now that we've adjusted
4335 	 * its allocatable space.
4336 	 */
4337 	metaslab_recalculate_weight_and_sort(msp);
4338 
4339 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4340 	ASSERT0(range_tree_space(msp->ms_freeing));
4341 	ASSERT0(range_tree_space(msp->ms_freed));
4342 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4343 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4344 	msp->ms_allocated_this_txg = 0;
4345 	mutex_exit(&msp->ms_lock);
4346 }
4347 
4348 void
4349 metaslab_sync_reassess(metaslab_group_t *mg)
4350 {
4351 	spa_t *spa = mg->mg_class->mc_spa;
4352 
4353 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4354 	metaslab_group_alloc_update(mg);
4355 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4356 
4357 	/*
4358 	 * Preload the next potential metaslabs but only on active
4359 	 * metaslab groups. We can get into a state where the metaslab
4360 	 * is no longer active since we dirty metaslabs as we remove a
4361 	 * a device, thus potentially making the metaslab group eligible
4362 	 * for preloading.
4363 	 */
4364 	if (mg->mg_activation_count > 0) {
4365 		metaslab_group_preload(mg);
4366 	}
4367 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4368 }
4369 
4370 /*
4371  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4372  * the same vdev as an existing DVA of this BP, then try to allocate it
4373  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4374  */
4375 static boolean_t
4376 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4377 {
4378 	uint64_t dva_ms_id;
4379 
4380 	if (DVA_GET_ASIZE(dva) == 0)
4381 		return (B_TRUE);
4382 
4383 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4384 		return (B_TRUE);
4385 
4386 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4387 
4388 	return (msp->ms_id != dva_ms_id);
4389 }
4390 
4391 /*
4392  * ==========================================================================
4393  * Metaslab allocation tracing facility
4394  * ==========================================================================
4395  */
4396 #ifdef _METASLAB_TRACING
4397 
4398 /*
4399  * Add an allocation trace element to the allocation tracing list.
4400  */
4401 static void
4402 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4403     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4404     int allocator)
4405 {
4406 	metaslab_alloc_trace_t *mat;
4407 
4408 	if (!metaslab_trace_enabled)
4409 		return;
4410 
4411 	/*
4412 	 * When the tracing list reaches its maximum we remove
4413 	 * the second element in the list before adding a new one.
4414 	 * By removing the second element we preserve the original
4415 	 * entry as a clue to what allocations steps have already been
4416 	 * performed.
4417 	 */
4418 	if (zal->zal_size == metaslab_trace_max_entries) {
4419 		metaslab_alloc_trace_t *mat_next;
4420 #ifdef ZFS_DEBUG
4421 		panic("too many entries in allocation list");
4422 #endif
4423 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4424 		zal->zal_size--;
4425 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4426 		list_remove(&zal->zal_list, mat_next);
4427 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4428 	}
4429 
4430 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4431 	list_link_init(&mat->mat_list_node);
4432 	mat->mat_mg = mg;
4433 	mat->mat_msp = msp;
4434 	mat->mat_size = psize;
4435 	mat->mat_dva_id = dva_id;
4436 	mat->mat_offset = offset;
4437 	mat->mat_weight = 0;
4438 	mat->mat_allocator = allocator;
4439 
4440 	if (msp != NULL)
4441 		mat->mat_weight = msp->ms_weight;
4442 
4443 	/*
4444 	 * The list is part of the zio so locking is not required. Only
4445 	 * a single thread will perform allocations for a given zio.
4446 	 */
4447 	list_insert_tail(&zal->zal_list, mat);
4448 	zal->zal_size++;
4449 
4450 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4451 }
4452 
4453 void
4454 metaslab_trace_init(zio_alloc_list_t *zal)
4455 {
4456 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4457 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4458 	zal->zal_size = 0;
4459 }
4460 
4461 void
4462 metaslab_trace_fini(zio_alloc_list_t *zal)
4463 {
4464 	metaslab_alloc_trace_t *mat;
4465 
4466 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4467 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4468 	list_destroy(&zal->zal_list);
4469 	zal->zal_size = 0;
4470 }
4471 #else
4472 
4473 #define	metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
4474 
4475 void
4476 metaslab_trace_init(zio_alloc_list_t *zal)
4477 {
4478 }
4479 
4480 void
4481 metaslab_trace_fini(zio_alloc_list_t *zal)
4482 {
4483 }
4484 
4485 #endif /* _METASLAB_TRACING */
4486 
4487 /*
4488  * ==========================================================================
4489  * Metaslab block operations
4490  * ==========================================================================
4491  */
4492 
4493 static void
4494 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
4495     int allocator)
4496 {
4497 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4498 	    (flags & METASLAB_DONT_THROTTLE))
4499 		return;
4500 
4501 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4502 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4503 		return;
4504 
4505 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4506 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4507 }
4508 
4509 static void
4510 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4511 {
4512 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4513 	uint64_t max = mg->mg_max_alloc_queue_depth;
4514 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4515 	while (cur < max) {
4516 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4517 		    cur, cur + 1) == cur) {
4518 			atomic_inc_64(
4519 			    &mg->mg_class->mc_alloc_max_slots[allocator]);
4520 			return;
4521 		}
4522 		cur = mga->mga_cur_max_alloc_queue_depth;
4523 	}
4524 }
4525 
4526 void
4527 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
4528     int allocator, boolean_t io_complete)
4529 {
4530 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4531 	    (flags & METASLAB_DONT_THROTTLE))
4532 		return;
4533 
4534 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4535 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4536 		return;
4537 
4538 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4539 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4540 	if (io_complete)
4541 		metaslab_group_increment_qdepth(mg, allocator);
4542 }
4543 
4544 void
4545 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
4546     int allocator)
4547 {
4548 #ifdef ZFS_DEBUG
4549 	const dva_t *dva = bp->blk_dva;
4550 	int ndvas = BP_GET_NDVAS(bp);
4551 
4552 	for (int d = 0; d < ndvas; d++) {
4553 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4554 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4555 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4556 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4557 	}
4558 #endif
4559 }
4560 
4561 static uint64_t
4562 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4563 {
4564 	uint64_t start;
4565 	range_tree_t *rt = msp->ms_allocatable;
4566 	metaslab_class_t *mc = msp->ms_group->mg_class;
4567 
4568 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4569 	VERIFY(!msp->ms_condensing);
4570 	VERIFY0(msp->ms_disabled);
4571 
4572 	start = mc->mc_ops->msop_alloc(msp, size);
4573 	if (start != -1ULL) {
4574 		metaslab_group_t *mg = msp->ms_group;
4575 		vdev_t *vd = mg->mg_vd;
4576 
4577 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4578 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4579 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4580 		range_tree_remove(rt, start, size);
4581 		range_tree_clear(msp->ms_trim, start, size);
4582 
4583 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4584 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4585 
4586 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4587 		msp->ms_allocating_total += size;
4588 
4589 		/* Track the last successful allocation */
4590 		msp->ms_alloc_txg = txg;
4591 		metaslab_verify_space(msp, txg);
4592 	}
4593 
4594 	/*
4595 	 * Now that we've attempted the allocation we need to update the
4596 	 * metaslab's maximum block size since it may have changed.
4597 	 */
4598 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4599 	return (start);
4600 }
4601 
4602 /*
4603  * Find the metaslab with the highest weight that is less than what we've
4604  * already tried.  In the common case, this means that we will examine each
4605  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4606  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4607  * activated by another thread, and we fail to allocate from the metaslab we
4608  * have selected, we may not try the newly-activated metaslab, and instead
4609  * activate another metaslab.  This is not optimal, but generally does not cause
4610  * any problems (a possible exception being if every metaslab is completely full
4611  * except for the newly-activated metaslab which we fail to examine).
4612  */
4613 static metaslab_t *
4614 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4615     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4616     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4617     boolean_t *was_active)
4618 {
4619 	avl_index_t idx;
4620 	avl_tree_t *t = &mg->mg_metaslab_tree;
4621 	metaslab_t *msp = avl_find(t, search, &idx);
4622 	if (msp == NULL)
4623 		msp = avl_nearest(t, idx, AVL_AFTER);
4624 
4625 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4626 		int i;
4627 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4628 			metaslab_trace_add(zal, mg, msp, asize, d,
4629 			    TRACE_TOO_SMALL, allocator);
4630 			continue;
4631 		}
4632 
4633 		/*
4634 		 * If the selected metaslab is condensing or disabled,
4635 		 * skip it.
4636 		 */
4637 		if (msp->ms_condensing || msp->ms_disabled > 0)
4638 			continue;
4639 
4640 		*was_active = msp->ms_allocator != -1;
4641 		/*
4642 		 * If we're activating as primary, this is our first allocation
4643 		 * from this disk, so we don't need to check how close we are.
4644 		 * If the metaslab under consideration was already active,
4645 		 * we're getting desperate enough to steal another allocator's
4646 		 * metaslab, so we still don't care about distances.
4647 		 */
4648 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4649 			break;
4650 
4651 		for (i = 0; i < d; i++) {
4652 			if (want_unique &&
4653 			    !metaslab_is_unique(msp, &dva[i]))
4654 				break;  /* try another metaslab */
4655 		}
4656 		if (i == d)
4657 			break;
4658 	}
4659 
4660 	if (msp != NULL) {
4661 		search->ms_weight = msp->ms_weight;
4662 		search->ms_start = msp->ms_start + 1;
4663 		search->ms_allocator = msp->ms_allocator;
4664 		search->ms_primary = msp->ms_primary;
4665 	}
4666 	return (msp);
4667 }
4668 
4669 static void
4670 metaslab_active_mask_verify(metaslab_t *msp)
4671 {
4672 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4673 
4674 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4675 		return;
4676 
4677 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4678 		return;
4679 
4680 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4681 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4682 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4683 		VERIFY3S(msp->ms_allocator, !=, -1);
4684 		VERIFY(msp->ms_primary);
4685 		return;
4686 	}
4687 
4688 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4689 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4690 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4691 		VERIFY3S(msp->ms_allocator, !=, -1);
4692 		VERIFY(!msp->ms_primary);
4693 		return;
4694 	}
4695 
4696 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4697 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4698 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4699 		VERIFY3S(msp->ms_allocator, ==, -1);
4700 		return;
4701 	}
4702 }
4703 
4704 /* ARGSUSED */
4705 static uint64_t
4706 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4707     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4708     int allocator, boolean_t try_hard)
4709 {
4710 	metaslab_t *msp = NULL;
4711 	uint64_t offset = -1ULL;
4712 
4713 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4714 	for (int i = 0; i < d; i++) {
4715 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4716 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4717 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4718 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4719 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4720 			activation_weight = METASLAB_WEIGHT_CLAIM;
4721 			break;
4722 		}
4723 	}
4724 
4725 	/*
4726 	 * If we don't have enough metaslabs active to fill the entire array, we
4727 	 * just use the 0th slot.
4728 	 */
4729 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4730 		allocator = 0;
4731 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4732 
4733 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4734 
4735 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4736 	search->ms_weight = UINT64_MAX;
4737 	search->ms_start = 0;
4738 	/*
4739 	 * At the end of the metaslab tree are the already-active metaslabs,
4740 	 * first the primaries, then the secondaries. When we resume searching
4741 	 * through the tree, we need to consider ms_allocator and ms_primary so
4742 	 * we start in the location right after where we left off, and don't
4743 	 * accidentally loop forever considering the same metaslabs.
4744 	 */
4745 	search->ms_allocator = -1;
4746 	search->ms_primary = B_TRUE;
4747 	for (;;) {
4748 		boolean_t was_active = B_FALSE;
4749 
4750 		mutex_enter(&mg->mg_lock);
4751 
4752 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4753 		    mga->mga_primary != NULL) {
4754 			msp = mga->mga_primary;
4755 
4756 			/*
4757 			 * Even though we don't hold the ms_lock for the
4758 			 * primary metaslab, those fields should not
4759 			 * change while we hold the mg_lock. Thus it is
4760 			 * safe to make assertions on them.
4761 			 */
4762 			ASSERT(msp->ms_primary);
4763 			ASSERT3S(msp->ms_allocator, ==, allocator);
4764 			ASSERT(msp->ms_loaded);
4765 
4766 			was_active = B_TRUE;
4767 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4768 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4769 		    mga->mga_secondary != NULL) {
4770 			msp = mga->mga_secondary;
4771 
4772 			/*
4773 			 * See comment above about the similar assertions
4774 			 * for the primary metaslab.
4775 			 */
4776 			ASSERT(!msp->ms_primary);
4777 			ASSERT3S(msp->ms_allocator, ==, allocator);
4778 			ASSERT(msp->ms_loaded);
4779 
4780 			was_active = B_TRUE;
4781 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4782 		} else {
4783 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4784 			    want_unique, asize, allocator, try_hard, zal,
4785 			    search, &was_active);
4786 		}
4787 
4788 		mutex_exit(&mg->mg_lock);
4789 		if (msp == NULL) {
4790 			kmem_free(search, sizeof (*search));
4791 			return (-1ULL);
4792 		}
4793 		mutex_enter(&msp->ms_lock);
4794 
4795 		metaslab_active_mask_verify(msp);
4796 
4797 		/*
4798 		 * This code is disabled out because of issues with
4799 		 * tracepoints in non-gpl kernel modules.
4800 		 */
4801 #if 0
4802 		DTRACE_PROBE3(ms__activation__attempt,
4803 		    metaslab_t *, msp, uint64_t, activation_weight,
4804 		    boolean_t, was_active);
4805 #endif
4806 
4807 		/*
4808 		 * Ensure that the metaslab we have selected is still
4809 		 * capable of handling our request. It's possible that
4810 		 * another thread may have changed the weight while we
4811 		 * were blocked on the metaslab lock. We check the
4812 		 * active status first to see if we need to set_selected_txg
4813 		 * a new metaslab.
4814 		 */
4815 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4816 			ASSERT3S(msp->ms_allocator, ==, -1);
4817 			mutex_exit(&msp->ms_lock);
4818 			continue;
4819 		}
4820 
4821 		/*
4822 		 * If the metaslab was activated for another allocator
4823 		 * while we were waiting in the ms_lock above, or it's
4824 		 * a primary and we're seeking a secondary (or vice versa),
4825 		 * we go back and select a new metaslab.
4826 		 */
4827 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4828 		    (msp->ms_allocator != -1) &&
4829 		    (msp->ms_allocator != allocator || ((activation_weight ==
4830 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4831 			ASSERT(msp->ms_loaded);
4832 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4833 			    msp->ms_allocator != -1);
4834 			mutex_exit(&msp->ms_lock);
4835 			continue;
4836 		}
4837 
4838 		/*
4839 		 * This metaslab was used for claiming regions allocated
4840 		 * by the ZIL during pool import. Once these regions are
4841 		 * claimed we don't need to keep the CLAIM bit set
4842 		 * anymore. Passivate this metaslab to zero its activation
4843 		 * mask.
4844 		 */
4845 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4846 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4847 			ASSERT(msp->ms_loaded);
4848 			ASSERT3S(msp->ms_allocator, ==, -1);
4849 			metaslab_passivate(msp, msp->ms_weight &
4850 			    ~METASLAB_WEIGHT_CLAIM);
4851 			mutex_exit(&msp->ms_lock);
4852 			continue;
4853 		}
4854 
4855 		metaslab_set_selected_txg(msp, txg);
4856 
4857 		int activation_error =
4858 		    metaslab_activate(msp, allocator, activation_weight);
4859 		metaslab_active_mask_verify(msp);
4860 
4861 		/*
4862 		 * If the metaslab was activated by another thread for
4863 		 * another allocator or activation_weight (EBUSY), or it
4864 		 * failed because another metaslab was assigned as primary
4865 		 * for this allocator (EEXIST) we continue using this
4866 		 * metaslab for our allocation, rather than going on to a
4867 		 * worse metaslab (we waited for that metaslab to be loaded
4868 		 * after all).
4869 		 *
4870 		 * If the activation failed due to an I/O error or ENOSPC we
4871 		 * skip to the next metaslab.
4872 		 */
4873 		boolean_t activated;
4874 		if (activation_error == 0) {
4875 			activated = B_TRUE;
4876 		} else if (activation_error == EBUSY ||
4877 		    activation_error == EEXIST) {
4878 			activated = B_FALSE;
4879 		} else {
4880 			mutex_exit(&msp->ms_lock);
4881 			continue;
4882 		}
4883 		ASSERT(msp->ms_loaded);
4884 
4885 		/*
4886 		 * Now that we have the lock, recheck to see if we should
4887 		 * continue to use this metaslab for this allocation. The
4888 		 * the metaslab is now loaded so metaslab_should_allocate()
4889 		 * can accurately determine if the allocation attempt should
4890 		 * proceed.
4891 		 */
4892 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4893 			/* Passivate this metaslab and select a new one. */
4894 			metaslab_trace_add(zal, mg, msp, asize, d,
4895 			    TRACE_TOO_SMALL, allocator);
4896 			goto next;
4897 		}
4898 
4899 		/*
4900 		 * If this metaslab is currently condensing then pick again
4901 		 * as we can't manipulate this metaslab until it's committed
4902 		 * to disk. If this metaslab is being initialized, we shouldn't
4903 		 * allocate from it since the allocated region might be
4904 		 * overwritten after allocation.
4905 		 */
4906 		if (msp->ms_condensing) {
4907 			metaslab_trace_add(zal, mg, msp, asize, d,
4908 			    TRACE_CONDENSING, allocator);
4909 			if (activated) {
4910 				metaslab_passivate(msp, msp->ms_weight &
4911 				    ~METASLAB_ACTIVE_MASK);
4912 			}
4913 			mutex_exit(&msp->ms_lock);
4914 			continue;
4915 		} else if (msp->ms_disabled > 0) {
4916 			metaslab_trace_add(zal, mg, msp, asize, d,
4917 			    TRACE_DISABLED, allocator);
4918 			if (activated) {
4919 				metaslab_passivate(msp, msp->ms_weight &
4920 				    ~METASLAB_ACTIVE_MASK);
4921 			}
4922 			mutex_exit(&msp->ms_lock);
4923 			continue;
4924 		}
4925 
4926 		offset = metaslab_block_alloc(msp, asize, txg);
4927 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4928 
4929 		if (offset != -1ULL) {
4930 			/* Proactively passivate the metaslab, if needed */
4931 			if (activated)
4932 				metaslab_segment_may_passivate(msp);
4933 			break;
4934 		}
4935 next:
4936 		ASSERT(msp->ms_loaded);
4937 
4938 		/*
4939 		 * This code is disabled out because of issues with
4940 		 * tracepoints in non-gpl kernel modules.
4941 		 */
4942 #if 0
4943 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4944 		    uint64_t, asize);
4945 #endif
4946 
4947 		/*
4948 		 * We were unable to allocate from this metaslab so determine
4949 		 * a new weight for this metaslab. Now that we have loaded
4950 		 * the metaslab we can provide a better hint to the metaslab
4951 		 * selector.
4952 		 *
4953 		 * For space-based metaslabs, we use the maximum block size.
4954 		 * This information is only available when the metaslab
4955 		 * is loaded and is more accurate than the generic free
4956 		 * space weight that was calculated by metaslab_weight().
4957 		 * This information allows us to quickly compare the maximum
4958 		 * available allocation in the metaslab to the allocation
4959 		 * size being requested.
4960 		 *
4961 		 * For segment-based metaslabs, determine the new weight
4962 		 * based on the highest bucket in the range tree. We
4963 		 * explicitly use the loaded segment weight (i.e. the range
4964 		 * tree histogram) since it contains the space that is
4965 		 * currently available for allocation and is accurate
4966 		 * even within a sync pass.
4967 		 */
4968 		uint64_t weight;
4969 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4970 			weight = metaslab_largest_allocatable(msp);
4971 			WEIGHT_SET_SPACEBASED(weight);
4972 		} else {
4973 			weight = metaslab_weight_from_range_tree(msp);
4974 		}
4975 
4976 		if (activated) {
4977 			metaslab_passivate(msp, weight);
4978 		} else {
4979 			/*
4980 			 * For the case where we use the metaslab that is
4981 			 * active for another allocator we want to make
4982 			 * sure that we retain the activation mask.
4983 			 *
4984 			 * Note that we could attempt to use something like
4985 			 * metaslab_recalculate_weight_and_sort() that
4986 			 * retains the activation mask here. That function
4987 			 * uses metaslab_weight() to set the weight though
4988 			 * which is not as accurate as the calculations
4989 			 * above.
4990 			 */
4991 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
4992 			metaslab_group_sort(mg, msp, weight);
4993 		}
4994 		metaslab_active_mask_verify(msp);
4995 
4996 		/*
4997 		 * We have just failed an allocation attempt, check
4998 		 * that metaslab_should_allocate() agrees. Otherwise,
4999 		 * we may end up in an infinite loop retrying the same
5000 		 * metaslab.
5001 		 */
5002 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5003 
5004 		mutex_exit(&msp->ms_lock);
5005 	}
5006 	mutex_exit(&msp->ms_lock);
5007 	kmem_free(search, sizeof (*search));
5008 	return (offset);
5009 }
5010 
5011 static uint64_t
5012 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5013     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5014     int allocator, boolean_t try_hard)
5015 {
5016 	uint64_t offset;
5017 	ASSERT(mg->mg_initialized);
5018 
5019 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5020 	    dva, d, allocator, try_hard);
5021 
5022 	mutex_enter(&mg->mg_lock);
5023 	if (offset == -1ULL) {
5024 		mg->mg_failed_allocations++;
5025 		metaslab_trace_add(zal, mg, NULL, asize, d,
5026 		    TRACE_GROUP_FAILURE, allocator);
5027 		if (asize == SPA_GANGBLOCKSIZE) {
5028 			/*
5029 			 * This metaslab group was unable to allocate
5030 			 * the minimum gang block size so it must be out of
5031 			 * space. We must notify the allocation throttle
5032 			 * to start skipping allocation attempts to this
5033 			 * metaslab group until more space becomes available.
5034 			 * Note: this failure cannot be caused by the
5035 			 * allocation throttle since the allocation throttle
5036 			 * is only responsible for skipping devices and
5037 			 * not failing block allocations.
5038 			 */
5039 			mg->mg_no_free_space = B_TRUE;
5040 		}
5041 	}
5042 	mg->mg_allocations++;
5043 	mutex_exit(&mg->mg_lock);
5044 	return (offset);
5045 }
5046 
5047 /*
5048  * Allocate a block for the specified i/o.
5049  */
5050 int
5051 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5052     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5053     zio_alloc_list_t *zal, int allocator)
5054 {
5055 	metaslab_group_t *mg, *fast_mg, *rotor;
5056 	vdev_t *vd;
5057 	boolean_t try_hard = B_FALSE;
5058 
5059 	ASSERT(!DVA_IS_VALID(&dva[d]));
5060 
5061 	/*
5062 	 * For testing, make some blocks above a certain size be gang blocks.
5063 	 * This will result in more split blocks when using device removal,
5064 	 * and a large number of split blocks coupled with ztest-induced
5065 	 * damage can result in extremely long reconstruction times.  This
5066 	 * will also test spilling from special to normal.
5067 	 */
5068 	if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
5069 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5070 		    allocator);
5071 		return (SET_ERROR(ENOSPC));
5072 	}
5073 
5074 	/*
5075 	 * Start at the rotor and loop through all mgs until we find something.
5076 	 * Note that there's no locking on mc_rotor or mc_aliquot because
5077 	 * nothing actually breaks if we miss a few updates -- we just won't
5078 	 * allocate quite as evenly.  It all balances out over time.
5079 	 *
5080 	 * If we are doing ditto or log blocks, try to spread them across
5081 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5082 	 * allocated all of our ditto blocks, then try and spread them out on
5083 	 * that vdev as much as possible.  If it turns out to not be possible,
5084 	 * gradually lower our standards until anything becomes acceptable.
5085 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5086 	 * gives us hope of containing our fault domains to something we're
5087 	 * able to reason about.  Otherwise, any two top-level vdev failures
5088 	 * will guarantee the loss of data.  With consecutive allocation,
5089 	 * only two adjacent top-level vdev failures will result in data loss.
5090 	 *
5091 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5092 	 * ourselves on the same vdev as our gang block header.  That
5093 	 * way, we can hope for locality in vdev_cache, plus it makes our
5094 	 * fault domains something tractable.
5095 	 */
5096 	if (hintdva) {
5097 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5098 
5099 		/*
5100 		 * It's possible the vdev we're using as the hint no
5101 		 * longer exists or its mg has been closed (e.g. by
5102 		 * device removal).  Consult the rotor when
5103 		 * all else fails.
5104 		 */
5105 		if (vd != NULL && vd->vdev_mg != NULL) {
5106 			mg = vd->vdev_mg;
5107 
5108 			if (flags & METASLAB_HINTBP_AVOID &&
5109 			    mg->mg_next != NULL)
5110 				mg = mg->mg_next;
5111 		} else {
5112 			mg = mc->mc_rotor;
5113 		}
5114 	} else if (d != 0) {
5115 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5116 		mg = vd->vdev_mg->mg_next;
5117 	} else if (flags & METASLAB_FASTWRITE) {
5118 		mg = fast_mg = mc->mc_rotor;
5119 
5120 		do {
5121 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5122 			    mg->mg_vd->vdev_pending_fastwrite)
5123 				mg = fast_mg;
5124 		} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
5125 
5126 	} else {
5127 		ASSERT(mc->mc_rotor != NULL);
5128 		mg = mc->mc_rotor;
5129 	}
5130 
5131 	/*
5132 	 * If the hint put us into the wrong metaslab class, or into a
5133 	 * metaslab group that has been passivated, just follow the rotor.
5134 	 */
5135 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5136 		mg = mc->mc_rotor;
5137 
5138 	rotor = mg;
5139 top:
5140 	do {
5141 		boolean_t allocatable;
5142 
5143 		ASSERT(mg->mg_activation_count == 1);
5144 		vd = mg->mg_vd;
5145 
5146 		/*
5147 		 * Don't allocate from faulted devices.
5148 		 */
5149 		if (try_hard) {
5150 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5151 			allocatable = vdev_allocatable(vd);
5152 			spa_config_exit(spa, SCL_ZIO, FTAG);
5153 		} else {
5154 			allocatable = vdev_allocatable(vd);
5155 		}
5156 
5157 		/*
5158 		 * Determine if the selected metaslab group is eligible
5159 		 * for allocations. If we're ganging then don't allow
5160 		 * this metaslab group to skip allocations since that would
5161 		 * inadvertently return ENOSPC and suspend the pool
5162 		 * even though space is still available.
5163 		 */
5164 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5165 			allocatable = metaslab_group_allocatable(mg, rotor,
5166 			    psize, allocator, d);
5167 		}
5168 
5169 		if (!allocatable) {
5170 			metaslab_trace_add(zal, mg, NULL, psize, d,
5171 			    TRACE_NOT_ALLOCATABLE, allocator);
5172 			goto next;
5173 		}
5174 
5175 		ASSERT(mg->mg_initialized);
5176 
5177 		/*
5178 		 * Avoid writing single-copy data to a failing,
5179 		 * non-redundant vdev, unless we've already tried all
5180 		 * other vdevs.
5181 		 */
5182 		if ((vd->vdev_stat.vs_write_errors > 0 ||
5183 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
5184 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5185 			metaslab_trace_add(zal, mg, NULL, psize, d,
5186 			    TRACE_VDEV_ERROR, allocator);
5187 			goto next;
5188 		}
5189 
5190 		ASSERT(mg->mg_class == mc);
5191 
5192 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5193 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5194 
5195 		/*
5196 		 * If we don't need to try hard, then require that the
5197 		 * block be on a different metaslab from any other DVAs
5198 		 * in this BP (unique=true).  If we are trying hard, then
5199 		 * allow any metaslab to be used (unique=false).
5200 		 */
5201 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5202 		    !try_hard, dva, d, allocator, try_hard);
5203 
5204 		if (offset != -1ULL) {
5205 			/*
5206 			 * If we've just selected this metaslab group,
5207 			 * figure out whether the corresponding vdev is
5208 			 * over- or under-used relative to the pool,
5209 			 * and set an allocation bias to even it out.
5210 			 *
5211 			 * Bias is also used to compensate for unequally
5212 			 * sized vdevs so that space is allocated fairly.
5213 			 */
5214 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
5215 				vdev_stat_t *vs = &vd->vdev_stat;
5216 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5217 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5218 				int64_t ratio;
5219 
5220 				/*
5221 				 * Calculate how much more or less we should
5222 				 * try to allocate from this device during
5223 				 * this iteration around the rotor.
5224 				 *
5225 				 * This basically introduces a zero-centered
5226 				 * bias towards the devices with the most
5227 				 * free space, while compensating for vdev
5228 				 * size differences.
5229 				 *
5230 				 * Examples:
5231 				 *  vdev V1 = 16M/128M
5232 				 *  vdev V2 = 16M/128M
5233 				 *  ratio(V1) = 100% ratio(V2) = 100%
5234 				 *
5235 				 *  vdev V1 = 16M/128M
5236 				 *  vdev V2 = 64M/128M
5237 				 *  ratio(V1) = 127% ratio(V2) =  72%
5238 				 *
5239 				 *  vdev V1 = 16M/128M
5240 				 *  vdev V2 = 64M/512M
5241 				 *  ratio(V1) =  40% ratio(V2) = 160%
5242 				 */
5243 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5244 				    (mc_free + 1);
5245 				mg->mg_bias = ((ratio - 100) *
5246 				    (int64_t)mg->mg_aliquot) / 100;
5247 			} else if (!metaslab_bias_enabled) {
5248 				mg->mg_bias = 0;
5249 			}
5250 
5251 			if ((flags & METASLAB_FASTWRITE) ||
5252 			    atomic_add_64_nv(&mc->mc_aliquot, asize) >=
5253 			    mg->mg_aliquot + mg->mg_bias) {
5254 				mc->mc_rotor = mg->mg_next;
5255 				mc->mc_aliquot = 0;
5256 			}
5257 
5258 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5259 			DVA_SET_OFFSET(&dva[d], offset);
5260 			DVA_SET_GANG(&dva[d],
5261 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5262 			DVA_SET_ASIZE(&dva[d], asize);
5263 
5264 			if (flags & METASLAB_FASTWRITE) {
5265 				atomic_add_64(&vd->vdev_pending_fastwrite,
5266 				    psize);
5267 			}
5268 
5269 			return (0);
5270 		}
5271 next:
5272 		mc->mc_rotor = mg->mg_next;
5273 		mc->mc_aliquot = 0;
5274 	} while ((mg = mg->mg_next) != rotor);
5275 
5276 	/*
5277 	 * If we haven't tried hard, do so now.
5278 	 */
5279 	if (!try_hard) {
5280 		try_hard = B_TRUE;
5281 		goto top;
5282 	}
5283 
5284 	bzero(&dva[d], sizeof (dva_t));
5285 
5286 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5287 	return (SET_ERROR(ENOSPC));
5288 }
5289 
5290 void
5291 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5292     boolean_t checkpoint)
5293 {
5294 	metaslab_t *msp;
5295 	spa_t *spa = vd->vdev_spa;
5296 
5297 	ASSERT(vdev_is_concrete(vd));
5298 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5299 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5300 
5301 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5302 
5303 	VERIFY(!msp->ms_condensing);
5304 	VERIFY3U(offset, >=, msp->ms_start);
5305 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5306 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5307 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5308 
5309 	metaslab_check_free_impl(vd, offset, asize);
5310 
5311 	mutex_enter(&msp->ms_lock);
5312 	if (range_tree_is_empty(msp->ms_freeing) &&
5313 	    range_tree_is_empty(msp->ms_checkpointing)) {
5314 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5315 	}
5316 
5317 	if (checkpoint) {
5318 		ASSERT(spa_has_checkpoint(spa));
5319 		range_tree_add(msp->ms_checkpointing, offset, asize);
5320 	} else {
5321 		range_tree_add(msp->ms_freeing, offset, asize);
5322 	}
5323 	mutex_exit(&msp->ms_lock);
5324 }
5325 
5326 /* ARGSUSED */
5327 void
5328 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5329     uint64_t size, void *arg)
5330 {
5331 	boolean_t *checkpoint = arg;
5332 
5333 	ASSERT3P(checkpoint, !=, NULL);
5334 
5335 	if (vd->vdev_ops->vdev_op_remap != NULL)
5336 		vdev_indirect_mark_obsolete(vd, offset, size);
5337 	else
5338 		metaslab_free_impl(vd, offset, size, *checkpoint);
5339 }
5340 
5341 static void
5342 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5343     boolean_t checkpoint)
5344 {
5345 	spa_t *spa = vd->vdev_spa;
5346 
5347 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5348 
5349 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5350 		return;
5351 
5352 	if (spa->spa_vdev_removal != NULL &&
5353 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5354 	    vdev_is_concrete(vd)) {
5355 		/*
5356 		 * Note: we check if the vdev is concrete because when
5357 		 * we complete the removal, we first change the vdev to be
5358 		 * an indirect vdev (in open context), and then (in syncing
5359 		 * context) clear spa_vdev_removal.
5360 		 */
5361 		free_from_removing_vdev(vd, offset, size);
5362 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5363 		vdev_indirect_mark_obsolete(vd, offset, size);
5364 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5365 		    metaslab_free_impl_cb, &checkpoint);
5366 	} else {
5367 		metaslab_free_concrete(vd, offset, size, checkpoint);
5368 	}
5369 }
5370 
5371 typedef struct remap_blkptr_cb_arg {
5372 	blkptr_t *rbca_bp;
5373 	spa_remap_cb_t rbca_cb;
5374 	vdev_t *rbca_remap_vd;
5375 	uint64_t rbca_remap_offset;
5376 	void *rbca_cb_arg;
5377 } remap_blkptr_cb_arg_t;
5378 
5379 static void
5380 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5381     uint64_t size, void *arg)
5382 {
5383 	remap_blkptr_cb_arg_t *rbca = arg;
5384 	blkptr_t *bp = rbca->rbca_bp;
5385 
5386 	/* We can not remap split blocks. */
5387 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5388 		return;
5389 	ASSERT0(inner_offset);
5390 
5391 	if (rbca->rbca_cb != NULL) {
5392 		/*
5393 		 * At this point we know that we are not handling split
5394 		 * blocks and we invoke the callback on the previous
5395 		 * vdev which must be indirect.
5396 		 */
5397 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5398 
5399 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5400 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5401 
5402 		/* set up remap_blkptr_cb_arg for the next call */
5403 		rbca->rbca_remap_vd = vd;
5404 		rbca->rbca_remap_offset = offset;
5405 	}
5406 
5407 	/*
5408 	 * The phys birth time is that of dva[0].  This ensures that we know
5409 	 * when each dva was written, so that resilver can determine which
5410 	 * blocks need to be scrubbed (i.e. those written during the time
5411 	 * the vdev was offline).  It also ensures that the key used in
5412 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5413 	 * we didn't change the phys_birth, a lookup in the ARC for a
5414 	 * remapped BP could find the data that was previously stored at
5415 	 * this vdev + offset.
5416 	 */
5417 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5418 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5419 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5420 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5421 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5422 
5423 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5424 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5425 }
5426 
5427 /*
5428  * If the block pointer contains any indirect DVAs, modify them to refer to
5429  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5430  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5431  * segments in the mapping (i.e. it is a "split block").
5432  *
5433  * If the BP was remapped, calls the callback on the original dva (note the
5434  * callback can be called multiple times if the original indirect DVA refers
5435  * to another indirect DVA, etc).
5436  *
5437  * Returns TRUE if the BP was remapped.
5438  */
5439 boolean_t
5440 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5441 {
5442 	remap_blkptr_cb_arg_t rbca;
5443 
5444 	if (!zfs_remap_blkptr_enable)
5445 		return (B_FALSE);
5446 
5447 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5448 		return (B_FALSE);
5449 
5450 	/*
5451 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5452 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5453 	 */
5454 	if (BP_GET_DEDUP(bp))
5455 		return (B_FALSE);
5456 
5457 	/*
5458 	 * Gang blocks can not be remapped, because
5459 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5460 	 * the BP used to read the gang block header (GBH) being the same
5461 	 * as the DVA[0] that we allocated for the GBH.
5462 	 */
5463 	if (BP_IS_GANG(bp))
5464 		return (B_FALSE);
5465 
5466 	/*
5467 	 * Embedded BP's have no DVA to remap.
5468 	 */
5469 	if (BP_GET_NDVAS(bp) < 1)
5470 		return (B_FALSE);
5471 
5472 	/*
5473 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5474 	 * would no longer know what their phys birth txg is.
5475 	 */
5476 	dva_t *dva = &bp->blk_dva[0];
5477 
5478 	uint64_t offset = DVA_GET_OFFSET(dva);
5479 	uint64_t size = DVA_GET_ASIZE(dva);
5480 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5481 
5482 	if (vd->vdev_ops->vdev_op_remap == NULL)
5483 		return (B_FALSE);
5484 
5485 	rbca.rbca_bp = bp;
5486 	rbca.rbca_cb = callback;
5487 	rbca.rbca_remap_vd = vd;
5488 	rbca.rbca_remap_offset = offset;
5489 	rbca.rbca_cb_arg = arg;
5490 
5491 	/*
5492 	 * remap_blkptr_cb() will be called in order for each level of
5493 	 * indirection, until a concrete vdev is reached or a split block is
5494 	 * encountered. old_vd and old_offset are updated within the callback
5495 	 * as we go from the one indirect vdev to the next one (either concrete
5496 	 * or indirect again) in that order.
5497 	 */
5498 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5499 
5500 	/* Check if the DVA wasn't remapped because it is a split block */
5501 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5502 		return (B_FALSE);
5503 
5504 	return (B_TRUE);
5505 }
5506 
5507 /*
5508  * Undo the allocation of a DVA which happened in the given transaction group.
5509  */
5510 void
5511 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5512 {
5513 	metaslab_t *msp;
5514 	vdev_t *vd;
5515 	uint64_t vdev = DVA_GET_VDEV(dva);
5516 	uint64_t offset = DVA_GET_OFFSET(dva);
5517 	uint64_t size = DVA_GET_ASIZE(dva);
5518 
5519 	ASSERT(DVA_IS_VALID(dva));
5520 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5521 
5522 	if (txg > spa_freeze_txg(spa))
5523 		return;
5524 
5525 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5526 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5527 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5528 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5529 		    (u_longlong_t)size);
5530 		return;
5531 	}
5532 
5533 	ASSERT(!vd->vdev_removing);
5534 	ASSERT(vdev_is_concrete(vd));
5535 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5536 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5537 
5538 	if (DVA_GET_GANG(dva))
5539 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5540 
5541 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5542 
5543 	mutex_enter(&msp->ms_lock);
5544 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5545 	    offset, size);
5546 	msp->ms_allocating_total -= size;
5547 
5548 	VERIFY(!msp->ms_condensing);
5549 	VERIFY3U(offset, >=, msp->ms_start);
5550 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5551 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5552 	    msp->ms_size);
5553 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5554 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5555 	range_tree_add(msp->ms_allocatable, offset, size);
5556 	mutex_exit(&msp->ms_lock);
5557 }
5558 
5559 /*
5560  * Free the block represented by the given DVA.
5561  */
5562 void
5563 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5564 {
5565 	uint64_t vdev = DVA_GET_VDEV(dva);
5566 	uint64_t offset = DVA_GET_OFFSET(dva);
5567 	uint64_t size = DVA_GET_ASIZE(dva);
5568 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5569 
5570 	ASSERT(DVA_IS_VALID(dva));
5571 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5572 
5573 	if (DVA_GET_GANG(dva)) {
5574 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5575 	}
5576 
5577 	metaslab_free_impl(vd, offset, size, checkpoint);
5578 }
5579 
5580 /*
5581  * Reserve some allocation slots. The reservation system must be called
5582  * before we call into the allocator. If there aren't any available slots
5583  * then the I/O will be throttled until an I/O completes and its slots are
5584  * freed up. The function returns true if it was successful in placing
5585  * the reservation.
5586  */
5587 boolean_t
5588 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5589     zio_t *zio, int flags)
5590 {
5591 	uint64_t available_slots = 0;
5592 	boolean_t slot_reserved = B_FALSE;
5593 	uint64_t max = mc->mc_alloc_max_slots[allocator];
5594 
5595 	ASSERT(mc->mc_alloc_throttle_enabled);
5596 	mutex_enter(&mc->mc_lock);
5597 
5598 	uint64_t reserved_slots =
5599 	    zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
5600 	if (reserved_slots < max)
5601 		available_slots = max - reserved_slots;
5602 
5603 	if (slots <= available_slots || GANG_ALLOCATION(flags) ||
5604 	    flags & METASLAB_MUST_RESERVE) {
5605 		/*
5606 		 * We reserve the slots individually so that we can unreserve
5607 		 * them individually when an I/O completes.
5608 		 */
5609 		for (int d = 0; d < slots; d++) {
5610 			reserved_slots =
5611 			    zfs_refcount_add(&mc->mc_alloc_slots[allocator],
5612 			    zio);
5613 		}
5614 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5615 		slot_reserved = B_TRUE;
5616 	}
5617 
5618 	mutex_exit(&mc->mc_lock);
5619 	return (slot_reserved);
5620 }
5621 
5622 void
5623 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5624     int allocator, zio_t *zio)
5625 {
5626 	ASSERT(mc->mc_alloc_throttle_enabled);
5627 	mutex_enter(&mc->mc_lock);
5628 	for (int d = 0; d < slots; d++) {
5629 		(void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
5630 		    zio);
5631 	}
5632 	mutex_exit(&mc->mc_lock);
5633 }
5634 
5635 static int
5636 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5637     uint64_t txg)
5638 {
5639 	metaslab_t *msp;
5640 	spa_t *spa = vd->vdev_spa;
5641 	int error = 0;
5642 
5643 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5644 		return (SET_ERROR(ENXIO));
5645 
5646 	ASSERT3P(vd->vdev_ms, !=, NULL);
5647 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5648 
5649 	mutex_enter(&msp->ms_lock);
5650 
5651 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5652 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5653 		if (error == EBUSY) {
5654 			ASSERT(msp->ms_loaded);
5655 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5656 			error = 0;
5657 		}
5658 	}
5659 
5660 	if (error == 0 &&
5661 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5662 		error = SET_ERROR(ENOENT);
5663 
5664 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5665 		mutex_exit(&msp->ms_lock);
5666 		return (error);
5667 	}
5668 
5669 	VERIFY(!msp->ms_condensing);
5670 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5671 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5672 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5673 	    msp->ms_size);
5674 	range_tree_remove(msp->ms_allocatable, offset, size);
5675 	range_tree_clear(msp->ms_trim, offset, size);
5676 
5677 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
5678 		metaslab_class_t *mc = msp->ms_group->mg_class;
5679 		multilist_sublist_t *mls =
5680 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
5681 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5682 			msp->ms_selected_txg = txg;
5683 			multilist_sublist_insert_head(mls, msp);
5684 		}
5685 		multilist_sublist_unlock(mls);
5686 
5687 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5688 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5689 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5690 		    offset, size);
5691 		msp->ms_allocating_total += size;
5692 	}
5693 
5694 	mutex_exit(&msp->ms_lock);
5695 
5696 	return (0);
5697 }
5698 
5699 typedef struct metaslab_claim_cb_arg_t {
5700 	uint64_t	mcca_txg;
5701 	int		mcca_error;
5702 } metaslab_claim_cb_arg_t;
5703 
5704 /* ARGSUSED */
5705 static void
5706 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5707     uint64_t size, void *arg)
5708 {
5709 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5710 
5711 	if (mcca_arg->mcca_error == 0) {
5712 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5713 		    size, mcca_arg->mcca_txg);
5714 	}
5715 }
5716 
5717 int
5718 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5719 {
5720 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5721 		metaslab_claim_cb_arg_t arg;
5722 
5723 		/*
5724 		 * Only zdb(1M) can claim on indirect vdevs.  This is used
5725 		 * to detect leaks of mapped space (that are not accounted
5726 		 * for in the obsolete counts, spacemap, or bpobj).
5727 		 */
5728 		ASSERT(!spa_writeable(vd->vdev_spa));
5729 		arg.mcca_error = 0;
5730 		arg.mcca_txg = txg;
5731 
5732 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5733 		    metaslab_claim_impl_cb, &arg);
5734 
5735 		if (arg.mcca_error == 0) {
5736 			arg.mcca_error = metaslab_claim_concrete(vd,
5737 			    offset, size, txg);
5738 		}
5739 		return (arg.mcca_error);
5740 	} else {
5741 		return (metaslab_claim_concrete(vd, offset, size, txg));
5742 	}
5743 }
5744 
5745 /*
5746  * Intent log support: upon opening the pool after a crash, notify the SPA
5747  * of blocks that the intent log has allocated for immediate write, but
5748  * which are still considered free by the SPA because the last transaction
5749  * group didn't commit yet.
5750  */
5751 static int
5752 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5753 {
5754 	uint64_t vdev = DVA_GET_VDEV(dva);
5755 	uint64_t offset = DVA_GET_OFFSET(dva);
5756 	uint64_t size = DVA_GET_ASIZE(dva);
5757 	vdev_t *vd;
5758 
5759 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5760 		return (SET_ERROR(ENXIO));
5761 	}
5762 
5763 	ASSERT(DVA_IS_VALID(dva));
5764 
5765 	if (DVA_GET_GANG(dva))
5766 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5767 
5768 	return (metaslab_claim_impl(vd, offset, size, txg));
5769 }
5770 
5771 int
5772 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5773     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5774     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5775 {
5776 	dva_t *dva = bp->blk_dva;
5777 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5778 	int error = 0;
5779 
5780 	ASSERT(bp->blk_birth == 0);
5781 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5782 
5783 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5784 
5785 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
5786 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5787 		return (SET_ERROR(ENOSPC));
5788 	}
5789 
5790 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5791 	ASSERT(BP_GET_NDVAS(bp) == 0);
5792 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5793 	ASSERT3P(zal, !=, NULL);
5794 
5795 	for (int d = 0; d < ndvas; d++) {
5796 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5797 		    txg, flags, zal, allocator);
5798 		if (error != 0) {
5799 			for (d--; d >= 0; d--) {
5800 				metaslab_unalloc_dva(spa, &dva[d], txg);
5801 				metaslab_group_alloc_decrement(spa,
5802 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5803 				    allocator, B_FALSE);
5804 				bzero(&dva[d], sizeof (dva_t));
5805 			}
5806 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5807 			return (error);
5808 		} else {
5809 			/*
5810 			 * Update the metaslab group's queue depth
5811 			 * based on the newly allocated dva.
5812 			 */
5813 			metaslab_group_alloc_increment(spa,
5814 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5815 		}
5816 
5817 	}
5818 	ASSERT(error == 0);
5819 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5820 
5821 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5822 
5823 	BP_SET_BIRTH(bp, txg, 0);
5824 
5825 	return (0);
5826 }
5827 
5828 void
5829 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5830 {
5831 	const dva_t *dva = bp->blk_dva;
5832 	int ndvas = BP_GET_NDVAS(bp);
5833 
5834 	ASSERT(!BP_IS_HOLE(bp));
5835 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5836 
5837 	/*
5838 	 * If we have a checkpoint for the pool we need to make sure that
5839 	 * the blocks that we free that are part of the checkpoint won't be
5840 	 * reused until the checkpoint is discarded or we revert to it.
5841 	 *
5842 	 * The checkpoint flag is passed down the metaslab_free code path
5843 	 * and is set whenever we want to add a block to the checkpoint's
5844 	 * accounting. That is, we "checkpoint" blocks that existed at the
5845 	 * time the checkpoint was created and are therefore referenced by
5846 	 * the checkpointed uberblock.
5847 	 *
5848 	 * Note that, we don't checkpoint any blocks if the current
5849 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5850 	 * normally as they will be referenced by the checkpointed uberblock.
5851 	 */
5852 	boolean_t checkpoint = B_FALSE;
5853 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5854 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5855 		/*
5856 		 * At this point, if the block is part of the checkpoint
5857 		 * there is no way it was created in the current txg.
5858 		 */
5859 		ASSERT(!now);
5860 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5861 		checkpoint = B_TRUE;
5862 	}
5863 
5864 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5865 
5866 	for (int d = 0; d < ndvas; d++) {
5867 		if (now) {
5868 			metaslab_unalloc_dva(spa, &dva[d], txg);
5869 		} else {
5870 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5871 			metaslab_free_dva(spa, &dva[d], checkpoint);
5872 		}
5873 	}
5874 
5875 	spa_config_exit(spa, SCL_FREE, FTAG);
5876 }
5877 
5878 int
5879 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5880 {
5881 	const dva_t *dva = bp->blk_dva;
5882 	int ndvas = BP_GET_NDVAS(bp);
5883 	int error = 0;
5884 
5885 	ASSERT(!BP_IS_HOLE(bp));
5886 
5887 	if (txg != 0) {
5888 		/*
5889 		 * First do a dry run to make sure all DVAs are claimable,
5890 		 * so we don't have to unwind from partial failures below.
5891 		 */
5892 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5893 			return (error);
5894 	}
5895 
5896 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5897 
5898 	for (int d = 0; d < ndvas; d++) {
5899 		error = metaslab_claim_dva(spa, &dva[d], txg);
5900 		if (error != 0)
5901 			break;
5902 	}
5903 
5904 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5905 
5906 	ASSERT(error == 0 || txg == 0);
5907 
5908 	return (error);
5909 }
5910 
5911 void
5912 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5913 {
5914 	const dva_t *dva = bp->blk_dva;
5915 	int ndvas = BP_GET_NDVAS(bp);
5916 	uint64_t psize = BP_GET_PSIZE(bp);
5917 	int d;
5918 	vdev_t *vd;
5919 
5920 	ASSERT(!BP_IS_HOLE(bp));
5921 	ASSERT(!BP_IS_EMBEDDED(bp));
5922 	ASSERT(psize > 0);
5923 
5924 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5925 
5926 	for (d = 0; d < ndvas; d++) {
5927 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5928 			continue;
5929 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5930 	}
5931 
5932 	spa_config_exit(spa, SCL_VDEV, FTAG);
5933 }
5934 
5935 void
5936 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5937 {
5938 	const dva_t *dva = bp->blk_dva;
5939 	int ndvas = BP_GET_NDVAS(bp);
5940 	uint64_t psize = BP_GET_PSIZE(bp);
5941 	int d;
5942 	vdev_t *vd;
5943 
5944 	ASSERT(!BP_IS_HOLE(bp));
5945 	ASSERT(!BP_IS_EMBEDDED(bp));
5946 	ASSERT(psize > 0);
5947 
5948 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5949 
5950 	for (d = 0; d < ndvas; d++) {
5951 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5952 			continue;
5953 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5954 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5955 	}
5956 
5957 	spa_config_exit(spa, SCL_VDEV, FTAG);
5958 }
5959 
5960 /* ARGSUSED */
5961 static void
5962 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5963     uint64_t size, void *arg)
5964 {
5965 	if (vd->vdev_ops == &vdev_indirect_ops)
5966 		return;
5967 
5968 	metaslab_check_free_impl(vd, offset, size);
5969 }
5970 
5971 static void
5972 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5973 {
5974 	metaslab_t *msp;
5975 	spa_t *spa __maybe_unused = vd->vdev_spa;
5976 
5977 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5978 		return;
5979 
5980 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5981 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5982 		    metaslab_check_free_impl_cb, NULL);
5983 		return;
5984 	}
5985 
5986 	ASSERT(vdev_is_concrete(vd));
5987 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5988 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5989 
5990 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5991 
5992 	mutex_enter(&msp->ms_lock);
5993 	if (msp->ms_loaded) {
5994 		range_tree_verify_not_present(msp->ms_allocatable,
5995 		    offset, size);
5996 	}
5997 
5998 	/*
5999 	 * Check all segments that currently exist in the freeing pipeline.
6000 	 *
6001 	 * It would intuitively make sense to also check the current allocating
6002 	 * tree since metaslab_unalloc_dva() exists for extents that are
6003 	 * allocated and freed in the same sync pass within the same txg.
6004 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6005 	 * segment but then we free part of it within the same txg
6006 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6007 	 * current allocating tree.
6008 	 */
6009 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6010 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6011 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6012 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6013 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6014 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6015 	mutex_exit(&msp->ms_lock);
6016 }
6017 
6018 void
6019 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6020 {
6021 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6022 		return;
6023 
6024 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6025 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6026 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6027 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6028 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6029 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6030 
6031 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6032 			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
6033 
6034 		ASSERT3P(vd, !=, NULL);
6035 
6036 		metaslab_check_free_impl(vd, offset, size);
6037 	}
6038 	spa_config_exit(spa, SCL_VDEV, FTAG);
6039 }
6040 
6041 static void
6042 metaslab_group_disable_wait(metaslab_group_t *mg)
6043 {
6044 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6045 	while (mg->mg_disabled_updating) {
6046 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6047 	}
6048 }
6049 
6050 static void
6051 metaslab_group_disabled_increment(metaslab_group_t *mg)
6052 {
6053 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6054 	ASSERT(mg->mg_disabled_updating);
6055 
6056 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6057 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6058 	}
6059 	mg->mg_ms_disabled++;
6060 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6061 }
6062 
6063 /*
6064  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6065  * We must also track how many metaslabs are currently disabled within a
6066  * metaslab group and limit them to prevent allocation failures from
6067  * occurring because all metaslabs are disabled.
6068  */
6069 void
6070 metaslab_disable(metaslab_t *msp)
6071 {
6072 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6073 	metaslab_group_t *mg = msp->ms_group;
6074 
6075 	mutex_enter(&mg->mg_ms_disabled_lock);
6076 
6077 	/*
6078 	 * To keep an accurate count of how many threads have disabled
6079 	 * a specific metaslab group, we only allow one thread to mark
6080 	 * the metaslab group at a time. This ensures that the value of
6081 	 * ms_disabled will be accurate when we decide to mark a metaslab
6082 	 * group as disabled. To do this we force all other threads
6083 	 * to wait till the metaslab's mg_disabled_updating flag is no
6084 	 * longer set.
6085 	 */
6086 	metaslab_group_disable_wait(mg);
6087 	mg->mg_disabled_updating = B_TRUE;
6088 	if (msp->ms_disabled == 0) {
6089 		metaslab_group_disabled_increment(mg);
6090 	}
6091 	mutex_enter(&msp->ms_lock);
6092 	msp->ms_disabled++;
6093 	mutex_exit(&msp->ms_lock);
6094 
6095 	mg->mg_disabled_updating = B_FALSE;
6096 	cv_broadcast(&mg->mg_ms_disabled_cv);
6097 	mutex_exit(&mg->mg_ms_disabled_lock);
6098 }
6099 
6100 void
6101 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6102 {
6103 	metaslab_group_t *mg = msp->ms_group;
6104 	spa_t *spa = mg->mg_vd->vdev_spa;
6105 
6106 	/*
6107 	 * Wait for the outstanding IO to be synced to prevent newly
6108 	 * allocated blocks from being overwritten.  This used by
6109 	 * initialize and TRIM which are modifying unallocated space.
6110 	 */
6111 	if (sync)
6112 		txg_wait_synced(spa_get_dsl(spa), 0);
6113 
6114 	mutex_enter(&mg->mg_ms_disabled_lock);
6115 	mutex_enter(&msp->ms_lock);
6116 	if (--msp->ms_disabled == 0) {
6117 		mg->mg_ms_disabled--;
6118 		cv_broadcast(&mg->mg_ms_disabled_cv);
6119 		if (unload)
6120 			metaslab_unload(msp);
6121 	}
6122 	mutex_exit(&msp->ms_lock);
6123 	mutex_exit(&mg->mg_ms_disabled_lock);
6124 }
6125 
6126 static void
6127 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6128 {
6129 	vdev_t *vd = ms->ms_group->mg_vd;
6130 	spa_t *spa = vd->vdev_spa;
6131 	objset_t *mos = spa_meta_objset(spa);
6132 
6133 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6134 
6135 	metaslab_unflushed_phys_t entry = {
6136 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6137 	};
6138 	uint64_t entry_size = sizeof (entry);
6139 	uint64_t entry_offset = ms->ms_id * entry_size;
6140 
6141 	uint64_t object = 0;
6142 	int err = zap_lookup(mos, vd->vdev_top_zap,
6143 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6144 	    &object);
6145 	if (err == ENOENT) {
6146 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6147 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6148 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6149 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6150 		    &object, tx));
6151 	} else {
6152 		VERIFY0(err);
6153 	}
6154 
6155 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6156 	    &entry, tx);
6157 }
6158 
6159 void
6160 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6161 {
6162 	spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
6163 
6164 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
6165 		return;
6166 
6167 	ms->ms_unflushed_txg = txg;
6168 	metaslab_update_ondisk_flush_data(ms, tx);
6169 }
6170 
6171 uint64_t
6172 metaslab_unflushed_txg(metaslab_t *ms)
6173 {
6174 	return (ms->ms_unflushed_txg);
6175 }
6176 
6177 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6178 	"Allocation granularity (a.k.a. stripe size)");
6179 
6180 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6181 	"Load all metaslabs when pool is first opened");
6182 
6183 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6184 	"Prevent metaslabs from being unloaded");
6185 
6186 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6187 	"Preload potential metaslabs during reassessment");
6188 
6189 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
6190 	"Delay in txgs after metaslab was last used before unloading");
6191 
6192 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
6193 	"Delay in milliseconds after metaslab was last used before unloading");
6194 
6195 /* BEGIN CSTYLED */
6196 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
6197 	"Percentage of metaslab group size that should be free to make it "
6198 	"eligible for allocation");
6199 
6200 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
6201 	"Percentage of metaslab group size that should be considered eligible "
6202 	"for allocations unless all metaslab groups within the metaslab class "
6203 	"have also crossed this threshold");
6204 
6205 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
6206 	 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6207 
6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW,
6209 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6210 /* END CSTYLED */
6211 
6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6213 	"Prefer metaslabs with lower LBAs");
6214 
6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6216 	"Enable metaslab group biasing");
6217 
6218 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6219 	ZMOD_RW, "Enable segment-based metaslab selection");
6220 
6221 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6222 	"Segment-based metaslab selection maximum buckets before switching");
6223 
6224 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6225 	"Blocks larger than this size are forced to be gang blocks");
6226 
6227 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
6228 	"Max distance (bytes) to search forward before using size tree");
6229 
6230 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6231 	"When looking in size tree, use largest segment instead of exact fit");
6232 
6233 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6234 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6235 
6236 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
6237 	"Percentage of memory that can be used to store metaslab range trees");
6238