1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = 0; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 int metaslab_debug_unload = 0; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 int metaslab_unload_delay = 32; 219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 int zfs_metaslab_mem_limit = 75; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 for (int c = 0; c < rvd->vdev_children; c++) { 526 vdev_t *tvd = rvd->vdev_child[c]; 527 metaslab_group_t *mg = tvd->vdev_mg; 528 529 /* 530 * Skip any holes, uninitialized top-levels, or 531 * vdevs that are not in this metalab class. 532 */ 533 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 534 mg->mg_class != mc) { 535 continue; 536 } 537 538 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 539 mc_hist[i] += mg->mg_histogram[i]; 540 } 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 544 545 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 546 } 547 548 /* 549 * Calculate the metaslab class's fragmentation metric. The metric 550 * is weighted based on the space contribution of each metaslab group. 551 * The return value will be a number between 0 and 100 (inclusive), or 552 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 553 * zfs_frag_table for more information about the metric. 554 */ 555 uint64_t 556 metaslab_class_fragmentation(metaslab_class_t *mc) 557 { 558 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 559 uint64_t fragmentation = 0; 560 561 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 562 563 for (int c = 0; c < rvd->vdev_children; c++) { 564 vdev_t *tvd = rvd->vdev_child[c]; 565 metaslab_group_t *mg = tvd->vdev_mg; 566 567 /* 568 * Skip any holes, uninitialized top-levels, 569 * or vdevs that are not in this metalab class. 570 */ 571 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 572 mg->mg_class != mc) { 573 continue; 574 } 575 576 /* 577 * If a metaslab group does not contain a fragmentation 578 * metric then just bail out. 579 */ 580 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 581 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 582 return (ZFS_FRAG_INVALID); 583 } 584 585 /* 586 * Determine how much this metaslab_group is contributing 587 * to the overall pool fragmentation metric. 588 */ 589 fragmentation += mg->mg_fragmentation * 590 metaslab_group_get_space(mg); 591 } 592 fragmentation /= metaslab_class_get_space(mc); 593 594 ASSERT3U(fragmentation, <=, 100); 595 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 596 return (fragmentation); 597 } 598 599 /* 600 * Calculate the amount of expandable space that is available in 601 * this metaslab class. If a device is expanded then its expandable 602 * space will be the amount of allocatable space that is currently not 603 * part of this metaslab class. 604 */ 605 uint64_t 606 metaslab_class_expandable_space(metaslab_class_t *mc) 607 { 608 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 609 uint64_t space = 0; 610 611 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 612 for (int c = 0; c < rvd->vdev_children; c++) { 613 vdev_t *tvd = rvd->vdev_child[c]; 614 metaslab_group_t *mg = tvd->vdev_mg; 615 616 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 617 mg->mg_class != mc) { 618 continue; 619 } 620 621 /* 622 * Calculate if we have enough space to add additional 623 * metaslabs. We report the expandable space in terms 624 * of the metaslab size since that's the unit of expansion. 625 */ 626 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 627 1ULL << tvd->vdev_ms_shift); 628 } 629 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 630 return (space); 631 } 632 633 void 634 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 635 { 636 multilist_t *ml = mc->mc_metaslab_txg_list; 637 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 638 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 639 metaslab_t *msp = multilist_sublist_head(mls); 640 multilist_sublist_unlock(mls); 641 while (msp != NULL) { 642 mutex_enter(&msp->ms_lock); 643 644 /* 645 * If the metaslab has been removed from the list 646 * (which could happen if we were at the memory limit 647 * and it was evicted during this loop), then we can't 648 * proceed and we should restart the sublist. 649 */ 650 if (!multilist_link_active(&msp->ms_class_txg_node)) { 651 mutex_exit(&msp->ms_lock); 652 i--; 653 break; 654 } 655 mls = multilist_sublist_lock(ml, i); 656 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 657 multilist_sublist_unlock(mls); 658 if (txg > 659 msp->ms_selected_txg + metaslab_unload_delay && 660 gethrtime() > msp->ms_selected_time + 661 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 662 metaslab_evict(msp, txg); 663 } else { 664 /* 665 * Once we've hit a metaslab selected too 666 * recently to evict, we're done evicting for 667 * now. 668 */ 669 mutex_exit(&msp->ms_lock); 670 break; 671 } 672 mutex_exit(&msp->ms_lock); 673 msp = next_msp; 674 } 675 } 676 } 677 678 static int 679 metaslab_compare(const void *x1, const void *x2) 680 { 681 const metaslab_t *m1 = (const metaslab_t *)x1; 682 const metaslab_t *m2 = (const metaslab_t *)x2; 683 684 int sort1 = 0; 685 int sort2 = 0; 686 if (m1->ms_allocator != -1 && m1->ms_primary) 687 sort1 = 1; 688 else if (m1->ms_allocator != -1 && !m1->ms_primary) 689 sort1 = 2; 690 if (m2->ms_allocator != -1 && m2->ms_primary) 691 sort2 = 1; 692 else if (m2->ms_allocator != -1 && !m2->ms_primary) 693 sort2 = 2; 694 695 /* 696 * Sort inactive metaslabs first, then primaries, then secondaries. When 697 * selecting a metaslab to allocate from, an allocator first tries its 698 * primary, then secondary active metaslab. If it doesn't have active 699 * metaslabs, or can't allocate from them, it searches for an inactive 700 * metaslab to activate. If it can't find a suitable one, it will steal 701 * a primary or secondary metaslab from another allocator. 702 */ 703 if (sort1 < sort2) 704 return (-1); 705 if (sort1 > sort2) 706 return (1); 707 708 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 709 if (likely(cmp)) 710 return (cmp); 711 712 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 713 714 return (TREE_CMP(m1->ms_start, m2->ms_start)); 715 } 716 717 /* 718 * ========================================================================== 719 * Metaslab groups 720 * ========================================================================== 721 */ 722 /* 723 * Update the allocatable flag and the metaslab group's capacity. 724 * The allocatable flag is set to true if the capacity is below 725 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 726 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 727 * transitions from allocatable to non-allocatable or vice versa then the 728 * metaslab group's class is updated to reflect the transition. 729 */ 730 static void 731 metaslab_group_alloc_update(metaslab_group_t *mg) 732 { 733 vdev_t *vd = mg->mg_vd; 734 metaslab_class_t *mc = mg->mg_class; 735 vdev_stat_t *vs = &vd->vdev_stat; 736 boolean_t was_allocatable; 737 boolean_t was_initialized; 738 739 ASSERT(vd == vd->vdev_top); 740 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 741 SCL_ALLOC); 742 743 mutex_enter(&mg->mg_lock); 744 was_allocatable = mg->mg_allocatable; 745 was_initialized = mg->mg_initialized; 746 747 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 748 (vs->vs_space + 1); 749 750 mutex_enter(&mc->mc_lock); 751 752 /* 753 * If the metaslab group was just added then it won't 754 * have any space until we finish syncing out this txg. 755 * At that point we will consider it initialized and available 756 * for allocations. We also don't consider non-activated 757 * metaslab groups (e.g. vdevs that are in the middle of being removed) 758 * to be initialized, because they can't be used for allocation. 759 */ 760 mg->mg_initialized = metaslab_group_initialized(mg); 761 if (!was_initialized && mg->mg_initialized) { 762 mc->mc_groups++; 763 } else if (was_initialized && !mg->mg_initialized) { 764 ASSERT3U(mc->mc_groups, >, 0); 765 mc->mc_groups--; 766 } 767 if (mg->mg_initialized) 768 mg->mg_no_free_space = B_FALSE; 769 770 /* 771 * A metaslab group is considered allocatable if it has plenty 772 * of free space or is not heavily fragmented. We only take 773 * fragmentation into account if the metaslab group has a valid 774 * fragmentation metric (i.e. a value between 0 and 100). 775 */ 776 mg->mg_allocatable = (mg->mg_activation_count > 0 && 777 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 778 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 779 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 780 781 /* 782 * The mc_alloc_groups maintains a count of the number of 783 * groups in this metaslab class that are still above the 784 * zfs_mg_noalloc_threshold. This is used by the allocating 785 * threads to determine if they should avoid allocations to 786 * a given group. The allocator will avoid allocations to a group 787 * if that group has reached or is below the zfs_mg_noalloc_threshold 788 * and there are still other groups that are above the threshold. 789 * When a group transitions from allocatable to non-allocatable or 790 * vice versa we update the metaslab class to reflect that change. 791 * When the mc_alloc_groups value drops to 0 that means that all 792 * groups have reached the zfs_mg_noalloc_threshold making all groups 793 * eligible for allocations. This effectively means that all devices 794 * are balanced again. 795 */ 796 if (was_allocatable && !mg->mg_allocatable) 797 mc->mc_alloc_groups--; 798 else if (!was_allocatable && mg->mg_allocatable) 799 mc->mc_alloc_groups++; 800 mutex_exit(&mc->mc_lock); 801 802 mutex_exit(&mg->mg_lock); 803 } 804 805 int 806 metaslab_sort_by_flushed(const void *va, const void *vb) 807 { 808 const metaslab_t *a = va; 809 const metaslab_t *b = vb; 810 811 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 812 if (likely(cmp)) 813 return (cmp); 814 815 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 816 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 817 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 818 if (cmp) 819 return (cmp); 820 821 return (TREE_CMP(a->ms_id, b->ms_id)); 822 } 823 824 metaslab_group_t * 825 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 826 { 827 metaslab_group_t *mg; 828 829 mg = kmem_zalloc(offsetof(metaslab_group_t, 830 mg_allocator[allocators]), KM_SLEEP); 831 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 832 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 833 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 834 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 835 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 836 mg->mg_vd = vd; 837 mg->mg_class = mc; 838 mg->mg_activation_count = 0; 839 mg->mg_initialized = B_FALSE; 840 mg->mg_no_free_space = B_TRUE; 841 mg->mg_allocators = allocators; 842 843 for (int i = 0; i < allocators; i++) { 844 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 845 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 846 } 847 848 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 849 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 850 851 return (mg); 852 } 853 854 void 855 metaslab_group_destroy(metaslab_group_t *mg) 856 { 857 ASSERT(mg->mg_prev == NULL); 858 ASSERT(mg->mg_next == NULL); 859 /* 860 * We may have gone below zero with the activation count 861 * either because we never activated in the first place or 862 * because we're done, and possibly removing the vdev. 863 */ 864 ASSERT(mg->mg_activation_count <= 0); 865 866 taskq_destroy(mg->mg_taskq); 867 avl_destroy(&mg->mg_metaslab_tree); 868 mutex_destroy(&mg->mg_lock); 869 mutex_destroy(&mg->mg_ms_disabled_lock); 870 cv_destroy(&mg->mg_ms_disabled_cv); 871 872 for (int i = 0; i < mg->mg_allocators; i++) { 873 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 874 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 875 } 876 kmem_free(mg, offsetof(metaslab_group_t, 877 mg_allocator[mg->mg_allocators])); 878 } 879 880 void 881 metaslab_group_activate(metaslab_group_t *mg) 882 { 883 metaslab_class_t *mc = mg->mg_class; 884 spa_t *spa = mc->mc_spa; 885 metaslab_group_t *mgprev, *mgnext; 886 887 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 888 889 ASSERT(mg->mg_prev == NULL); 890 ASSERT(mg->mg_next == NULL); 891 ASSERT(mg->mg_activation_count <= 0); 892 893 if (++mg->mg_activation_count <= 0) 894 return; 895 896 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 897 metaslab_group_alloc_update(mg); 898 899 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 900 mg->mg_prev = mg; 901 mg->mg_next = mg; 902 } else { 903 mgnext = mgprev->mg_next; 904 mg->mg_prev = mgprev; 905 mg->mg_next = mgnext; 906 mgprev->mg_next = mg; 907 mgnext->mg_prev = mg; 908 } 909 for (int i = 0; i < spa->spa_alloc_count; i++) { 910 mc->mc_allocator[i].mca_rotor = mg; 911 mg = mg->mg_next; 912 } 913 } 914 915 /* 916 * Passivate a metaslab group and remove it from the allocation rotor. 917 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 918 * a metaslab group. This function will momentarily drop spa_config_locks 919 * that are lower than the SCL_ALLOC lock (see comment below). 920 */ 921 void 922 metaslab_group_passivate(metaslab_group_t *mg) 923 { 924 metaslab_class_t *mc = mg->mg_class; 925 spa_t *spa = mc->mc_spa; 926 metaslab_group_t *mgprev, *mgnext; 927 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 928 929 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 930 (SCL_ALLOC | SCL_ZIO)); 931 932 if (--mg->mg_activation_count != 0) { 933 for (int i = 0; i < spa->spa_alloc_count; i++) 934 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 935 ASSERT(mg->mg_prev == NULL); 936 ASSERT(mg->mg_next == NULL); 937 ASSERT(mg->mg_activation_count < 0); 938 return; 939 } 940 941 /* 942 * The spa_config_lock is an array of rwlocks, ordered as 943 * follows (from highest to lowest): 944 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 945 * SCL_ZIO > SCL_FREE > SCL_VDEV 946 * (For more information about the spa_config_lock see spa_misc.c) 947 * The higher the lock, the broader its coverage. When we passivate 948 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 949 * config locks. However, the metaslab group's taskq might be trying 950 * to preload metaslabs so we must drop the SCL_ZIO lock and any 951 * lower locks to allow the I/O to complete. At a minimum, 952 * we continue to hold the SCL_ALLOC lock, which prevents any future 953 * allocations from taking place and any changes to the vdev tree. 954 */ 955 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 956 taskq_wait_outstanding(mg->mg_taskq, 0); 957 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 958 metaslab_group_alloc_update(mg); 959 for (int i = 0; i < mg->mg_allocators; i++) { 960 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 961 metaslab_t *msp = mga->mga_primary; 962 if (msp != NULL) { 963 mutex_enter(&msp->ms_lock); 964 metaslab_passivate(msp, 965 metaslab_weight_from_range_tree(msp)); 966 mutex_exit(&msp->ms_lock); 967 } 968 msp = mga->mga_secondary; 969 if (msp != NULL) { 970 mutex_enter(&msp->ms_lock); 971 metaslab_passivate(msp, 972 metaslab_weight_from_range_tree(msp)); 973 mutex_exit(&msp->ms_lock); 974 } 975 } 976 977 mgprev = mg->mg_prev; 978 mgnext = mg->mg_next; 979 980 if (mg == mgnext) { 981 mgnext = NULL; 982 } else { 983 mgprev->mg_next = mgnext; 984 mgnext->mg_prev = mgprev; 985 } 986 for (int i = 0; i < spa->spa_alloc_count; i++) { 987 if (mc->mc_allocator[i].mca_rotor == mg) 988 mc->mc_allocator[i].mca_rotor = mgnext; 989 } 990 991 mg->mg_prev = NULL; 992 mg->mg_next = NULL; 993 } 994 995 boolean_t 996 metaslab_group_initialized(metaslab_group_t *mg) 997 { 998 vdev_t *vd = mg->mg_vd; 999 vdev_stat_t *vs = &vd->vdev_stat; 1000 1001 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1002 } 1003 1004 uint64_t 1005 metaslab_group_get_space(metaslab_group_t *mg) 1006 { 1007 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 1008 } 1009 1010 void 1011 metaslab_group_histogram_verify(metaslab_group_t *mg) 1012 { 1013 uint64_t *mg_hist; 1014 vdev_t *vd = mg->mg_vd; 1015 uint64_t ashift = vd->vdev_ashift; 1016 int i; 1017 1018 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1019 return; 1020 1021 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1022 KM_SLEEP); 1023 1024 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1025 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1026 1027 for (int m = 0; m < vd->vdev_ms_count; m++) { 1028 metaslab_t *msp = vd->vdev_ms[m]; 1029 1030 /* skip if not active or not a member */ 1031 if (msp->ms_sm == NULL || msp->ms_group != mg) 1032 continue; 1033 1034 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 1035 mg_hist[i + ashift] += 1036 msp->ms_sm->sm_phys->smp_histogram[i]; 1037 } 1038 1039 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1040 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1041 1042 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1043 } 1044 1045 static void 1046 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1047 { 1048 metaslab_class_t *mc = mg->mg_class; 1049 uint64_t ashift = mg->mg_vd->vdev_ashift; 1050 1051 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1052 if (msp->ms_sm == NULL) 1053 return; 1054 1055 mutex_enter(&mg->mg_lock); 1056 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1057 mg->mg_histogram[i + ashift] += 1058 msp->ms_sm->sm_phys->smp_histogram[i]; 1059 mc->mc_histogram[i + ashift] += 1060 msp->ms_sm->sm_phys->smp_histogram[i]; 1061 } 1062 mutex_exit(&mg->mg_lock); 1063 } 1064 1065 void 1066 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1067 { 1068 metaslab_class_t *mc = mg->mg_class; 1069 uint64_t ashift = mg->mg_vd->vdev_ashift; 1070 1071 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1072 if (msp->ms_sm == NULL) 1073 return; 1074 1075 mutex_enter(&mg->mg_lock); 1076 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1077 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1078 msp->ms_sm->sm_phys->smp_histogram[i]); 1079 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1080 msp->ms_sm->sm_phys->smp_histogram[i]); 1081 1082 mg->mg_histogram[i + ashift] -= 1083 msp->ms_sm->sm_phys->smp_histogram[i]; 1084 mc->mc_histogram[i + ashift] -= 1085 msp->ms_sm->sm_phys->smp_histogram[i]; 1086 } 1087 mutex_exit(&mg->mg_lock); 1088 } 1089 1090 static void 1091 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1092 { 1093 ASSERT(msp->ms_group == NULL); 1094 mutex_enter(&mg->mg_lock); 1095 msp->ms_group = mg; 1096 msp->ms_weight = 0; 1097 avl_add(&mg->mg_metaslab_tree, msp); 1098 mutex_exit(&mg->mg_lock); 1099 1100 mutex_enter(&msp->ms_lock); 1101 metaslab_group_histogram_add(mg, msp); 1102 mutex_exit(&msp->ms_lock); 1103 } 1104 1105 static void 1106 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1107 { 1108 mutex_enter(&msp->ms_lock); 1109 metaslab_group_histogram_remove(mg, msp); 1110 mutex_exit(&msp->ms_lock); 1111 1112 mutex_enter(&mg->mg_lock); 1113 ASSERT(msp->ms_group == mg); 1114 avl_remove(&mg->mg_metaslab_tree, msp); 1115 1116 metaslab_class_t *mc = msp->ms_group->mg_class; 1117 multilist_sublist_t *mls = 1118 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 1119 if (multilist_link_active(&msp->ms_class_txg_node)) 1120 multilist_sublist_remove(mls, msp); 1121 multilist_sublist_unlock(mls); 1122 1123 msp->ms_group = NULL; 1124 mutex_exit(&mg->mg_lock); 1125 } 1126 1127 static void 1128 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1129 { 1130 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1131 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1132 ASSERT(msp->ms_group == mg); 1133 1134 avl_remove(&mg->mg_metaslab_tree, msp); 1135 msp->ms_weight = weight; 1136 avl_add(&mg->mg_metaslab_tree, msp); 1137 1138 } 1139 1140 static void 1141 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1142 { 1143 /* 1144 * Although in principle the weight can be any value, in 1145 * practice we do not use values in the range [1, 511]. 1146 */ 1147 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1148 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1149 1150 mutex_enter(&mg->mg_lock); 1151 metaslab_group_sort_impl(mg, msp, weight); 1152 mutex_exit(&mg->mg_lock); 1153 } 1154 1155 /* 1156 * Calculate the fragmentation for a given metaslab group. We can use 1157 * a simple average here since all metaslabs within the group must have 1158 * the same size. The return value will be a value between 0 and 100 1159 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1160 * group have a fragmentation metric. 1161 */ 1162 uint64_t 1163 metaslab_group_fragmentation(metaslab_group_t *mg) 1164 { 1165 vdev_t *vd = mg->mg_vd; 1166 uint64_t fragmentation = 0; 1167 uint64_t valid_ms = 0; 1168 1169 for (int m = 0; m < vd->vdev_ms_count; m++) { 1170 metaslab_t *msp = vd->vdev_ms[m]; 1171 1172 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1173 continue; 1174 if (msp->ms_group != mg) 1175 continue; 1176 1177 valid_ms++; 1178 fragmentation += msp->ms_fragmentation; 1179 } 1180 1181 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1182 return (ZFS_FRAG_INVALID); 1183 1184 fragmentation /= valid_ms; 1185 ASSERT3U(fragmentation, <=, 100); 1186 return (fragmentation); 1187 } 1188 1189 /* 1190 * Determine if a given metaslab group should skip allocations. A metaslab 1191 * group should avoid allocations if its free capacity is less than the 1192 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1193 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1194 * that can still handle allocations. If the allocation throttle is enabled 1195 * then we skip allocations to devices that have reached their maximum 1196 * allocation queue depth unless the selected metaslab group is the only 1197 * eligible group remaining. 1198 */ 1199 static boolean_t 1200 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1201 uint64_t psize, int allocator, int d) 1202 { 1203 spa_t *spa = mg->mg_vd->vdev_spa; 1204 metaslab_class_t *mc = mg->mg_class; 1205 1206 /* 1207 * We can only consider skipping this metaslab group if it's 1208 * in the normal metaslab class and there are other metaslab 1209 * groups to select from. Otherwise, we always consider it eligible 1210 * for allocations. 1211 */ 1212 if ((mc != spa_normal_class(spa) && 1213 mc != spa_special_class(spa) && 1214 mc != spa_dedup_class(spa)) || 1215 mc->mc_groups <= 1) 1216 return (B_TRUE); 1217 1218 /* 1219 * If the metaslab group's mg_allocatable flag is set (see comments 1220 * in metaslab_group_alloc_update() for more information) and 1221 * the allocation throttle is disabled then allow allocations to this 1222 * device. However, if the allocation throttle is enabled then 1223 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1224 * to determine if we should allow allocations to this metaslab group. 1225 * If all metaslab groups are no longer considered allocatable 1226 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1227 * gang block size then we allow allocations on this metaslab group 1228 * regardless of the mg_allocatable or throttle settings. 1229 */ 1230 if (mg->mg_allocatable) { 1231 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1232 int64_t qdepth; 1233 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1234 1235 if (!mc->mc_alloc_throttle_enabled) 1236 return (B_TRUE); 1237 1238 /* 1239 * If this metaslab group does not have any free space, then 1240 * there is no point in looking further. 1241 */ 1242 if (mg->mg_no_free_space) 1243 return (B_FALSE); 1244 1245 /* 1246 * Relax allocation throttling for ditto blocks. Due to 1247 * random imbalances in allocation it tends to push copies 1248 * to one vdev, that looks a bit better at the moment. 1249 */ 1250 qmax = qmax * (4 + d) / 4; 1251 1252 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1253 1254 /* 1255 * If this metaslab group is below its qmax or it's 1256 * the only allocatable metasable group, then attempt 1257 * to allocate from it. 1258 */ 1259 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1260 return (B_TRUE); 1261 ASSERT3U(mc->mc_alloc_groups, >, 1); 1262 1263 /* 1264 * Since this metaslab group is at or over its qmax, we 1265 * need to determine if there are metaslab groups after this 1266 * one that might be able to handle this allocation. This is 1267 * racy since we can't hold the locks for all metaslab 1268 * groups at the same time when we make this check. 1269 */ 1270 for (metaslab_group_t *mgp = mg->mg_next; 1271 mgp != rotor; mgp = mgp->mg_next) { 1272 metaslab_group_allocator_t *mgap = 1273 &mgp->mg_allocator[allocator]; 1274 qmax = mgap->mga_cur_max_alloc_queue_depth; 1275 qmax = qmax * (4 + d) / 4; 1276 qdepth = 1277 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1278 1279 /* 1280 * If there is another metaslab group that 1281 * might be able to handle the allocation, then 1282 * we return false so that we skip this group. 1283 */ 1284 if (qdepth < qmax && !mgp->mg_no_free_space) 1285 return (B_FALSE); 1286 } 1287 1288 /* 1289 * We didn't find another group to handle the allocation 1290 * so we can't skip this metaslab group even though 1291 * we are at or over our qmax. 1292 */ 1293 return (B_TRUE); 1294 1295 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1296 return (B_TRUE); 1297 } 1298 return (B_FALSE); 1299 } 1300 1301 /* 1302 * ========================================================================== 1303 * Range tree callbacks 1304 * ========================================================================== 1305 */ 1306 1307 /* 1308 * Comparison function for the private size-ordered tree using 32-bit 1309 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1310 */ 1311 static int 1312 metaslab_rangesize32_compare(const void *x1, const void *x2) 1313 { 1314 const range_seg32_t *r1 = x1; 1315 const range_seg32_t *r2 = x2; 1316 1317 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1318 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1319 1320 int cmp = TREE_CMP(rs_size1, rs_size2); 1321 if (likely(cmp)) 1322 return (cmp); 1323 1324 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1325 } 1326 1327 /* 1328 * Comparison function for the private size-ordered tree using 64-bit 1329 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1330 */ 1331 static int 1332 metaslab_rangesize64_compare(const void *x1, const void *x2) 1333 { 1334 const range_seg64_t *r1 = x1; 1335 const range_seg64_t *r2 = x2; 1336 1337 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1338 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1339 1340 int cmp = TREE_CMP(rs_size1, rs_size2); 1341 if (likely(cmp)) 1342 return (cmp); 1343 1344 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1345 } 1346 typedef struct metaslab_rt_arg { 1347 zfs_btree_t *mra_bt; 1348 uint32_t mra_floor_shift; 1349 } metaslab_rt_arg_t; 1350 1351 struct mssa_arg { 1352 range_tree_t *rt; 1353 metaslab_rt_arg_t *mra; 1354 }; 1355 1356 static void 1357 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1358 { 1359 struct mssa_arg *mssap = arg; 1360 range_tree_t *rt = mssap->rt; 1361 metaslab_rt_arg_t *mrap = mssap->mra; 1362 range_seg_max_t seg = {0}; 1363 rs_set_start(&seg, rt, start); 1364 rs_set_end(&seg, rt, start + size); 1365 metaslab_rt_add(rt, &seg, mrap); 1366 } 1367 1368 static void 1369 metaslab_size_tree_full_load(range_tree_t *rt) 1370 { 1371 metaslab_rt_arg_t *mrap = rt->rt_arg; 1372 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1373 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1374 mrap->mra_floor_shift = 0; 1375 struct mssa_arg arg = {0}; 1376 arg.rt = rt; 1377 arg.mra = mrap; 1378 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1379 } 1380 1381 /* 1382 * Create any block allocator specific components. The current allocators 1383 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1384 */ 1385 /* ARGSUSED */ 1386 static void 1387 metaslab_rt_create(range_tree_t *rt, void *arg) 1388 { 1389 metaslab_rt_arg_t *mrap = arg; 1390 zfs_btree_t *size_tree = mrap->mra_bt; 1391 1392 size_t size; 1393 int (*compare) (const void *, const void *); 1394 switch (rt->rt_type) { 1395 case RANGE_SEG32: 1396 size = sizeof (range_seg32_t); 1397 compare = metaslab_rangesize32_compare; 1398 break; 1399 case RANGE_SEG64: 1400 size = sizeof (range_seg64_t); 1401 compare = metaslab_rangesize64_compare; 1402 break; 1403 default: 1404 panic("Invalid range seg type %d", rt->rt_type); 1405 } 1406 zfs_btree_create(size_tree, compare, size); 1407 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1408 } 1409 1410 /* ARGSUSED */ 1411 static void 1412 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1413 { 1414 metaslab_rt_arg_t *mrap = arg; 1415 zfs_btree_t *size_tree = mrap->mra_bt; 1416 1417 zfs_btree_destroy(size_tree); 1418 kmem_free(mrap, sizeof (*mrap)); 1419 } 1420 1421 /* ARGSUSED */ 1422 static void 1423 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1424 { 1425 metaslab_rt_arg_t *mrap = arg; 1426 zfs_btree_t *size_tree = mrap->mra_bt; 1427 1428 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1429 (1 << mrap->mra_floor_shift)) 1430 return; 1431 1432 zfs_btree_add(size_tree, rs); 1433 } 1434 1435 /* ARGSUSED */ 1436 static void 1437 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1438 { 1439 metaslab_rt_arg_t *mrap = arg; 1440 zfs_btree_t *size_tree = mrap->mra_bt; 1441 1442 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1443 mrap->mra_floor_shift)) 1444 return; 1445 1446 zfs_btree_remove(size_tree, rs); 1447 } 1448 1449 /* ARGSUSED */ 1450 static void 1451 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1452 { 1453 metaslab_rt_arg_t *mrap = arg; 1454 zfs_btree_t *size_tree = mrap->mra_bt; 1455 zfs_btree_clear(size_tree); 1456 zfs_btree_destroy(size_tree); 1457 1458 metaslab_rt_create(rt, arg); 1459 } 1460 1461 static range_tree_ops_t metaslab_rt_ops = { 1462 .rtop_create = metaslab_rt_create, 1463 .rtop_destroy = metaslab_rt_destroy, 1464 .rtop_add = metaslab_rt_add, 1465 .rtop_remove = metaslab_rt_remove, 1466 .rtop_vacate = metaslab_rt_vacate 1467 }; 1468 1469 /* 1470 * ========================================================================== 1471 * Common allocator routines 1472 * ========================================================================== 1473 */ 1474 1475 /* 1476 * Return the maximum contiguous segment within the metaslab. 1477 */ 1478 uint64_t 1479 metaslab_largest_allocatable(metaslab_t *msp) 1480 { 1481 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1482 range_seg_t *rs; 1483 1484 if (t == NULL) 1485 return (0); 1486 if (zfs_btree_numnodes(t) == 0) 1487 metaslab_size_tree_full_load(msp->ms_allocatable); 1488 1489 rs = zfs_btree_last(t, NULL); 1490 if (rs == NULL) 1491 return (0); 1492 1493 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1494 msp->ms_allocatable)); 1495 } 1496 1497 /* 1498 * Return the maximum contiguous segment within the unflushed frees of this 1499 * metaslab. 1500 */ 1501 static uint64_t 1502 metaslab_largest_unflushed_free(metaslab_t *msp) 1503 { 1504 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1505 1506 if (msp->ms_unflushed_frees == NULL) 1507 return (0); 1508 1509 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1510 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1511 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1512 NULL); 1513 if (rs == NULL) 1514 return (0); 1515 1516 /* 1517 * When a range is freed from the metaslab, that range is added to 1518 * both the unflushed frees and the deferred frees. While the block 1519 * will eventually be usable, if the metaslab were loaded the range 1520 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1521 * txgs had passed. As a result, when attempting to estimate an upper 1522 * bound for the largest currently-usable free segment in the 1523 * metaslab, we need to not consider any ranges currently in the defer 1524 * trees. This algorithm approximates the largest available chunk in 1525 * the largest range in the unflushed_frees tree by taking the first 1526 * chunk. While this may be a poor estimate, it should only remain so 1527 * briefly and should eventually self-correct as frees are no longer 1528 * deferred. Similar logic applies to the ms_freed tree. See 1529 * metaslab_load() for more details. 1530 * 1531 * There are two primary sources of inaccuracy in this estimate. Both 1532 * are tolerated for performance reasons. The first source is that we 1533 * only check the largest segment for overlaps. Smaller segments may 1534 * have more favorable overlaps with the other trees, resulting in 1535 * larger usable chunks. Second, we only look at the first chunk in 1536 * the largest segment; there may be other usable chunks in the 1537 * largest segment, but we ignore them. 1538 */ 1539 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1540 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1541 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1542 uint64_t start = 0; 1543 uint64_t size = 0; 1544 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1545 rsize, &start, &size); 1546 if (found) { 1547 if (rstart == start) 1548 return (0); 1549 rsize = start - rstart; 1550 } 1551 } 1552 1553 uint64_t start = 0; 1554 uint64_t size = 0; 1555 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1556 rsize, &start, &size); 1557 if (found) 1558 rsize = start - rstart; 1559 1560 return (rsize); 1561 } 1562 1563 static range_seg_t * 1564 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1565 uint64_t size, zfs_btree_index_t *where) 1566 { 1567 range_seg_t *rs; 1568 range_seg_max_t rsearch; 1569 1570 rs_set_start(&rsearch, rt, start); 1571 rs_set_end(&rsearch, rt, start + size); 1572 1573 rs = zfs_btree_find(t, &rsearch, where); 1574 if (rs == NULL) { 1575 rs = zfs_btree_next(t, where, where); 1576 } 1577 1578 return (rs); 1579 } 1580 1581 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1582 defined(WITH_CF_BLOCK_ALLOCATOR) 1583 1584 /* 1585 * This is a helper function that can be used by the allocator to find a 1586 * suitable block to allocate. This will search the specified B-tree looking 1587 * for a block that matches the specified criteria. 1588 */ 1589 static uint64_t 1590 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1591 uint64_t max_search) 1592 { 1593 if (*cursor == 0) 1594 *cursor = rt->rt_start; 1595 zfs_btree_t *bt = &rt->rt_root; 1596 zfs_btree_index_t where; 1597 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1598 uint64_t first_found; 1599 int count_searched = 0; 1600 1601 if (rs != NULL) 1602 first_found = rs_get_start(rs, rt); 1603 1604 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1605 max_search || count_searched < metaslab_min_search_count)) { 1606 uint64_t offset = rs_get_start(rs, rt); 1607 if (offset + size <= rs_get_end(rs, rt)) { 1608 *cursor = offset + size; 1609 return (offset); 1610 } 1611 rs = zfs_btree_next(bt, &where, &where); 1612 count_searched++; 1613 } 1614 1615 *cursor = 0; 1616 return (-1ULL); 1617 } 1618 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1619 1620 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1621 /* 1622 * ========================================================================== 1623 * Dynamic Fit (df) block allocator 1624 * 1625 * Search for a free chunk of at least this size, starting from the last 1626 * offset (for this alignment of block) looking for up to 1627 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1628 * found within 16MB, then return a free chunk of exactly the requested size (or 1629 * larger). 1630 * 1631 * If it seems like searching from the last offset will be unproductive, skip 1632 * that and just return a free chunk of exactly the requested size (or larger). 1633 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1634 * mechanism is probably not very useful and may be removed in the future. 1635 * 1636 * The behavior when not searching can be changed to return the largest free 1637 * chunk, instead of a free chunk of exactly the requested size, by setting 1638 * metaslab_df_use_largest_segment. 1639 * ========================================================================== 1640 */ 1641 static uint64_t 1642 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1643 { 1644 /* 1645 * Find the largest power of 2 block size that evenly divides the 1646 * requested size. This is used to try to allocate blocks with similar 1647 * alignment from the same area of the metaslab (i.e. same cursor 1648 * bucket) but it does not guarantee that other allocations sizes 1649 * may exist in the same region. 1650 */ 1651 uint64_t align = size & -size; 1652 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1653 range_tree_t *rt = msp->ms_allocatable; 1654 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1655 uint64_t offset; 1656 1657 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1658 1659 /* 1660 * If we're running low on space, find a segment based on size, 1661 * rather than iterating based on offset. 1662 */ 1663 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1664 free_pct < metaslab_df_free_pct) { 1665 offset = -1; 1666 } else { 1667 offset = metaslab_block_picker(rt, 1668 cursor, size, metaslab_df_max_search); 1669 } 1670 1671 if (offset == -1) { 1672 range_seg_t *rs; 1673 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1674 metaslab_size_tree_full_load(msp->ms_allocatable); 1675 1676 if (metaslab_df_use_largest_segment) { 1677 /* use largest free segment */ 1678 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1679 } else { 1680 zfs_btree_index_t where; 1681 /* use segment of this size, or next largest */ 1682 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1683 rt, msp->ms_start, size, &where); 1684 } 1685 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1686 rt)) { 1687 offset = rs_get_start(rs, rt); 1688 *cursor = offset + size; 1689 } 1690 } 1691 1692 return (offset); 1693 } 1694 1695 static metaslab_ops_t metaslab_df_ops = { 1696 metaslab_df_alloc 1697 }; 1698 1699 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1700 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1701 1702 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1703 /* 1704 * ========================================================================== 1705 * Cursor fit block allocator - 1706 * Select the largest region in the metaslab, set the cursor to the beginning 1707 * of the range and the cursor_end to the end of the range. As allocations 1708 * are made advance the cursor. Continue allocating from the cursor until 1709 * the range is exhausted and then find a new range. 1710 * ========================================================================== 1711 */ 1712 static uint64_t 1713 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1714 { 1715 range_tree_t *rt = msp->ms_allocatable; 1716 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1717 uint64_t *cursor = &msp->ms_lbas[0]; 1718 uint64_t *cursor_end = &msp->ms_lbas[1]; 1719 uint64_t offset = 0; 1720 1721 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1722 1723 ASSERT3U(*cursor_end, >=, *cursor); 1724 1725 if ((*cursor + size) > *cursor_end) { 1726 range_seg_t *rs; 1727 1728 if (zfs_btree_numnodes(t) == 0) 1729 metaslab_size_tree_full_load(msp->ms_allocatable); 1730 rs = zfs_btree_last(t, NULL); 1731 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1732 size) 1733 return (-1ULL); 1734 1735 *cursor = rs_get_start(rs, rt); 1736 *cursor_end = rs_get_end(rs, rt); 1737 } 1738 1739 offset = *cursor; 1740 *cursor += size; 1741 1742 return (offset); 1743 } 1744 1745 static metaslab_ops_t metaslab_cf_ops = { 1746 metaslab_cf_alloc 1747 }; 1748 1749 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1750 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1751 1752 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1753 /* 1754 * ========================================================================== 1755 * New dynamic fit allocator - 1756 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1757 * contiguous blocks. If no region is found then just use the largest segment 1758 * that remains. 1759 * ========================================================================== 1760 */ 1761 1762 /* 1763 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1764 * to request from the allocator. 1765 */ 1766 uint64_t metaslab_ndf_clump_shift = 4; 1767 1768 static uint64_t 1769 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1770 { 1771 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1772 range_tree_t *rt = msp->ms_allocatable; 1773 zfs_btree_index_t where; 1774 range_seg_t *rs; 1775 range_seg_max_t rsearch; 1776 uint64_t hbit = highbit64(size); 1777 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1778 uint64_t max_size = metaslab_largest_allocatable(msp); 1779 1780 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1781 1782 if (max_size < size) 1783 return (-1ULL); 1784 1785 rs_set_start(&rsearch, rt, *cursor); 1786 rs_set_end(&rsearch, rt, *cursor + size); 1787 1788 rs = zfs_btree_find(t, &rsearch, &where); 1789 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1790 t = &msp->ms_allocatable_by_size; 1791 1792 rs_set_start(&rsearch, rt, 0); 1793 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1794 metaslab_ndf_clump_shift))); 1795 1796 rs = zfs_btree_find(t, &rsearch, &where); 1797 if (rs == NULL) 1798 rs = zfs_btree_next(t, &where, &where); 1799 ASSERT(rs != NULL); 1800 } 1801 1802 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1803 *cursor = rs_get_start(rs, rt) + size; 1804 return (rs_get_start(rs, rt)); 1805 } 1806 return (-1ULL); 1807 } 1808 1809 static metaslab_ops_t metaslab_ndf_ops = { 1810 metaslab_ndf_alloc 1811 }; 1812 1813 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1814 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1815 1816 1817 /* 1818 * ========================================================================== 1819 * Metaslabs 1820 * ========================================================================== 1821 */ 1822 1823 /* 1824 * Wait for any in-progress metaslab loads to complete. 1825 */ 1826 static void 1827 metaslab_load_wait(metaslab_t *msp) 1828 { 1829 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1830 1831 while (msp->ms_loading) { 1832 ASSERT(!msp->ms_loaded); 1833 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1834 } 1835 } 1836 1837 /* 1838 * Wait for any in-progress flushing to complete. 1839 */ 1840 static void 1841 metaslab_flush_wait(metaslab_t *msp) 1842 { 1843 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1844 1845 while (msp->ms_flushing) 1846 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1847 } 1848 1849 static unsigned int 1850 metaslab_idx_func(multilist_t *ml, void *arg) 1851 { 1852 metaslab_t *msp = arg; 1853 return (msp->ms_id % multilist_get_num_sublists(ml)); 1854 } 1855 1856 uint64_t 1857 metaslab_allocated_space(metaslab_t *msp) 1858 { 1859 return (msp->ms_allocated_space); 1860 } 1861 1862 /* 1863 * Verify that the space accounting on disk matches the in-core range_trees. 1864 */ 1865 static void 1866 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1867 { 1868 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1869 uint64_t allocating = 0; 1870 uint64_t sm_free_space, msp_free_space; 1871 1872 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1873 ASSERT(!msp->ms_condensing); 1874 1875 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1876 return; 1877 1878 /* 1879 * We can only verify the metaslab space when we're called 1880 * from syncing context with a loaded metaslab that has an 1881 * allocated space map. Calling this in non-syncing context 1882 * does not provide a consistent view of the metaslab since 1883 * we're performing allocations in the future. 1884 */ 1885 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1886 !msp->ms_loaded) 1887 return; 1888 1889 /* 1890 * Even though the smp_alloc field can get negative, 1891 * when it comes to a metaslab's space map, that should 1892 * never be the case. 1893 */ 1894 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1895 1896 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1897 range_tree_space(msp->ms_unflushed_frees)); 1898 1899 ASSERT3U(metaslab_allocated_space(msp), ==, 1900 space_map_allocated(msp->ms_sm) + 1901 range_tree_space(msp->ms_unflushed_allocs) - 1902 range_tree_space(msp->ms_unflushed_frees)); 1903 1904 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1905 1906 /* 1907 * Account for future allocations since we would have 1908 * already deducted that space from the ms_allocatable. 1909 */ 1910 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1911 allocating += 1912 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1913 } 1914 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1915 msp->ms_allocating_total); 1916 1917 ASSERT3U(msp->ms_deferspace, ==, 1918 range_tree_space(msp->ms_defer[0]) + 1919 range_tree_space(msp->ms_defer[1])); 1920 1921 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1922 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1923 1924 VERIFY3U(sm_free_space, ==, msp_free_space); 1925 } 1926 1927 static void 1928 metaslab_aux_histograms_clear(metaslab_t *msp) 1929 { 1930 /* 1931 * Auxiliary histograms are only cleared when resetting them, 1932 * which can only happen while the metaslab is loaded. 1933 */ 1934 ASSERT(msp->ms_loaded); 1935 1936 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1937 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1938 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1939 } 1940 1941 static void 1942 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1943 range_tree_t *rt) 1944 { 1945 /* 1946 * This is modeled after space_map_histogram_add(), so refer to that 1947 * function for implementation details. We want this to work like 1948 * the space map histogram, and not the range tree histogram, as we 1949 * are essentially constructing a delta that will be later subtracted 1950 * from the space map histogram. 1951 */ 1952 int idx = 0; 1953 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1954 ASSERT3U(i, >=, idx + shift); 1955 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1956 1957 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1958 ASSERT3U(idx + shift, ==, i); 1959 idx++; 1960 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1961 } 1962 } 1963 } 1964 1965 /* 1966 * Called at every sync pass that the metaslab gets synced. 1967 * 1968 * The reason is that we want our auxiliary histograms to be updated 1969 * wherever the metaslab's space map histogram is updated. This way 1970 * we stay consistent on which parts of the metaslab space map's 1971 * histogram are currently not available for allocations (e.g because 1972 * they are in the defer, freed, and freeing trees). 1973 */ 1974 static void 1975 metaslab_aux_histograms_update(metaslab_t *msp) 1976 { 1977 space_map_t *sm = msp->ms_sm; 1978 ASSERT(sm != NULL); 1979 1980 /* 1981 * This is similar to the metaslab's space map histogram updates 1982 * that take place in metaslab_sync(). The only difference is that 1983 * we only care about segments that haven't made it into the 1984 * ms_allocatable tree yet. 1985 */ 1986 if (msp->ms_loaded) { 1987 metaslab_aux_histograms_clear(msp); 1988 1989 metaslab_aux_histogram_add(msp->ms_synchist, 1990 sm->sm_shift, msp->ms_freed); 1991 1992 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1993 metaslab_aux_histogram_add(msp->ms_deferhist[t], 1994 sm->sm_shift, msp->ms_defer[t]); 1995 } 1996 } 1997 1998 metaslab_aux_histogram_add(msp->ms_synchist, 1999 sm->sm_shift, msp->ms_freeing); 2000 } 2001 2002 /* 2003 * Called every time we are done syncing (writing to) the metaslab, 2004 * i.e. at the end of each sync pass. 2005 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2006 */ 2007 static void 2008 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2009 { 2010 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2011 space_map_t *sm = msp->ms_sm; 2012 2013 if (sm == NULL) { 2014 /* 2015 * We came here from metaslab_init() when creating/opening a 2016 * pool, looking at a metaslab that hasn't had any allocations 2017 * yet. 2018 */ 2019 return; 2020 } 2021 2022 /* 2023 * This is similar to the actions that we take for the ms_freed 2024 * and ms_defer trees in metaslab_sync_done(). 2025 */ 2026 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2027 if (defer_allowed) { 2028 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2029 sizeof (msp->ms_synchist)); 2030 } else { 2031 bzero(msp->ms_deferhist[hist_index], 2032 sizeof (msp->ms_deferhist[hist_index])); 2033 } 2034 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2035 } 2036 2037 /* 2038 * Ensure that the metaslab's weight and fragmentation are consistent 2039 * with the contents of the histogram (either the range tree's histogram 2040 * or the space map's depending whether the metaslab is loaded). 2041 */ 2042 static void 2043 metaslab_verify_weight_and_frag(metaslab_t *msp) 2044 { 2045 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2046 2047 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2048 return; 2049 2050 /* 2051 * We can end up here from vdev_remove_complete(), in which case we 2052 * cannot do these assertions because we hold spa config locks and 2053 * thus we are not allowed to read from the DMU. 2054 * 2055 * We check if the metaslab group has been removed and if that's 2056 * the case we return immediately as that would mean that we are 2057 * here from the aforementioned code path. 2058 */ 2059 if (msp->ms_group == NULL) 2060 return; 2061 2062 /* 2063 * Devices being removed always return a weight of 0 and leave 2064 * fragmentation and ms_max_size as is - there is nothing for 2065 * us to verify here. 2066 */ 2067 vdev_t *vd = msp->ms_group->mg_vd; 2068 if (vd->vdev_removing) 2069 return; 2070 2071 /* 2072 * If the metaslab is dirty it probably means that we've done 2073 * some allocations or frees that have changed our histograms 2074 * and thus the weight. 2075 */ 2076 for (int t = 0; t < TXG_SIZE; t++) { 2077 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2078 return; 2079 } 2080 2081 /* 2082 * This verification checks that our in-memory state is consistent 2083 * with what's on disk. If the pool is read-only then there aren't 2084 * any changes and we just have the initially-loaded state. 2085 */ 2086 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2087 return; 2088 2089 /* some extra verification for in-core tree if you can */ 2090 if (msp->ms_loaded) { 2091 range_tree_stat_verify(msp->ms_allocatable); 2092 VERIFY(space_map_histogram_verify(msp->ms_sm, 2093 msp->ms_allocatable)); 2094 } 2095 2096 uint64_t weight = msp->ms_weight; 2097 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2098 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2099 uint64_t frag = msp->ms_fragmentation; 2100 uint64_t max_segsize = msp->ms_max_size; 2101 2102 msp->ms_weight = 0; 2103 msp->ms_fragmentation = 0; 2104 2105 /* 2106 * This function is used for verification purposes and thus should 2107 * not introduce any side-effects/mutations on the system's state. 2108 * 2109 * Regardless of whether metaslab_weight() thinks this metaslab 2110 * should be active or not, we want to ensure that the actual weight 2111 * (and therefore the value of ms_weight) would be the same if it 2112 * was to be recalculated at this point. 2113 * 2114 * In addition we set the nodirty flag so metaslab_weight() does 2115 * not dirty the metaslab for future TXGs (e.g. when trying to 2116 * force condensing to upgrade the metaslab spacemaps). 2117 */ 2118 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2119 2120 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2121 2122 /* 2123 * If the weight type changed then there is no point in doing 2124 * verification. Revert fields to their original values. 2125 */ 2126 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2127 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2128 msp->ms_fragmentation = frag; 2129 msp->ms_weight = weight; 2130 return; 2131 } 2132 2133 VERIFY3U(msp->ms_fragmentation, ==, frag); 2134 VERIFY3U(msp->ms_weight, ==, weight); 2135 } 2136 2137 /* 2138 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2139 * this class that was used longest ago, and attempt to unload it. We don't 2140 * want to spend too much time in this loop to prevent performance 2141 * degradation, and we expect that most of the time this operation will 2142 * succeed. Between that and the normal unloading processing during txg sync, 2143 * we expect this to keep the metaslab memory usage under control. 2144 */ 2145 static void 2146 metaslab_potentially_evict(metaslab_class_t *mc) 2147 { 2148 #ifdef _KERNEL 2149 uint64_t allmem = arc_all_memory(); 2150 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2151 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2152 int tries = 0; 2153 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2154 tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2; 2155 tries++) { 2156 unsigned int idx = multilist_get_random_index( 2157 mc->mc_metaslab_txg_list); 2158 multilist_sublist_t *mls = 2159 multilist_sublist_lock(mc->mc_metaslab_txg_list, idx); 2160 metaslab_t *msp = multilist_sublist_head(mls); 2161 multilist_sublist_unlock(mls); 2162 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2163 inuse * size) { 2164 VERIFY3P(mls, ==, multilist_sublist_lock( 2165 mc->mc_metaslab_txg_list, idx)); 2166 ASSERT3U(idx, ==, 2167 metaslab_idx_func(mc->mc_metaslab_txg_list, msp)); 2168 2169 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2170 multilist_sublist_unlock(mls); 2171 break; 2172 } 2173 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2174 multilist_sublist_unlock(mls); 2175 /* 2176 * If the metaslab is currently loading there are two 2177 * cases. If it's the metaslab we're evicting, we 2178 * can't continue on or we'll panic when we attempt to 2179 * recursively lock the mutex. If it's another 2180 * metaslab that's loading, it can be safely skipped, 2181 * since we know it's very new and therefore not a 2182 * good eviction candidate. We check later once the 2183 * lock is held that the metaslab is fully loaded 2184 * before actually unloading it. 2185 */ 2186 if (msp->ms_loading) { 2187 msp = next_msp; 2188 inuse = 2189 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2190 continue; 2191 } 2192 /* 2193 * We can't unload metaslabs with no spacemap because 2194 * they're not ready to be unloaded yet. We can't 2195 * unload metaslabs with outstanding allocations 2196 * because doing so could cause the metaslab's weight 2197 * to decrease while it's unloaded, which violates an 2198 * invariant that we use to prevent unnecessary 2199 * loading. We also don't unload metaslabs that are 2200 * currently active because they are high-weight 2201 * metaslabs that are likely to be used in the near 2202 * future. 2203 */ 2204 mutex_enter(&msp->ms_lock); 2205 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2206 msp->ms_allocating_total == 0) { 2207 metaslab_unload(msp); 2208 } 2209 mutex_exit(&msp->ms_lock); 2210 msp = next_msp; 2211 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2212 } 2213 } 2214 #endif 2215 } 2216 2217 static int 2218 metaslab_load_impl(metaslab_t *msp) 2219 { 2220 int error = 0; 2221 2222 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2223 ASSERT(msp->ms_loading); 2224 ASSERT(!msp->ms_condensing); 2225 2226 /* 2227 * We temporarily drop the lock to unblock other operations while we 2228 * are reading the space map. Therefore, metaslab_sync() and 2229 * metaslab_sync_done() can run at the same time as we do. 2230 * 2231 * If we are using the log space maps, metaslab_sync() can't write to 2232 * the metaslab's space map while we are loading as we only write to 2233 * it when we are flushing the metaslab, and that can't happen while 2234 * we are loading it. 2235 * 2236 * If we are not using log space maps though, metaslab_sync() can 2237 * append to the space map while we are loading. Therefore we load 2238 * only entries that existed when we started the load. Additionally, 2239 * metaslab_sync_done() has to wait for the load to complete because 2240 * there are potential races like metaslab_load() loading parts of the 2241 * space map that are currently being appended by metaslab_sync(). If 2242 * we didn't, the ms_allocatable would have entries that 2243 * metaslab_sync_done() would try to re-add later. 2244 * 2245 * That's why before dropping the lock we remember the synced length 2246 * of the metaslab and read up to that point of the space map, 2247 * ignoring entries appended by metaslab_sync() that happen after we 2248 * drop the lock. 2249 */ 2250 uint64_t length = msp->ms_synced_length; 2251 mutex_exit(&msp->ms_lock); 2252 2253 hrtime_t load_start = gethrtime(); 2254 metaslab_rt_arg_t *mrap; 2255 if (msp->ms_allocatable->rt_arg == NULL) { 2256 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2257 } else { 2258 mrap = msp->ms_allocatable->rt_arg; 2259 msp->ms_allocatable->rt_ops = NULL; 2260 msp->ms_allocatable->rt_arg = NULL; 2261 } 2262 mrap->mra_bt = &msp->ms_allocatable_by_size; 2263 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2264 2265 if (msp->ms_sm != NULL) { 2266 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2267 SM_FREE, length); 2268 2269 /* Now, populate the size-sorted tree. */ 2270 metaslab_rt_create(msp->ms_allocatable, mrap); 2271 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2272 msp->ms_allocatable->rt_arg = mrap; 2273 2274 struct mssa_arg arg = {0}; 2275 arg.rt = msp->ms_allocatable; 2276 arg.mra = mrap; 2277 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2278 &arg); 2279 } else { 2280 /* 2281 * Add the size-sorted tree first, since we don't need to load 2282 * the metaslab from the spacemap. 2283 */ 2284 metaslab_rt_create(msp->ms_allocatable, mrap); 2285 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2286 msp->ms_allocatable->rt_arg = mrap; 2287 /* 2288 * The space map has not been allocated yet, so treat 2289 * all the space in the metaslab as free and add it to the 2290 * ms_allocatable tree. 2291 */ 2292 range_tree_add(msp->ms_allocatable, 2293 msp->ms_start, msp->ms_size); 2294 2295 if (msp->ms_freed != NULL) { 2296 /* 2297 * If the ms_sm doesn't exist, this means that this 2298 * metaslab hasn't gone through metaslab_sync() and 2299 * thus has never been dirtied. So we shouldn't 2300 * expect any unflushed allocs or frees from previous 2301 * TXGs. 2302 * 2303 * Note: ms_freed and all the other trees except for 2304 * the ms_allocatable, can be NULL at this point only 2305 * if this is a new metaslab of a vdev that just got 2306 * expanded. 2307 */ 2308 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2309 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2310 } 2311 } 2312 2313 /* 2314 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2315 * changing the ms_sm (or log_sm) and the metaslab's range trees 2316 * while we are about to use them and populate the ms_allocatable. 2317 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2318 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2319 */ 2320 mutex_enter(&msp->ms_sync_lock); 2321 mutex_enter(&msp->ms_lock); 2322 2323 ASSERT(!msp->ms_condensing); 2324 ASSERT(!msp->ms_flushing); 2325 2326 if (error != 0) { 2327 mutex_exit(&msp->ms_sync_lock); 2328 return (error); 2329 } 2330 2331 ASSERT3P(msp->ms_group, !=, NULL); 2332 msp->ms_loaded = B_TRUE; 2333 2334 /* 2335 * Apply all the unflushed changes to ms_allocatable right 2336 * away so any manipulations we do below have a clear view 2337 * of what is allocated and what is free. 2338 */ 2339 range_tree_walk(msp->ms_unflushed_allocs, 2340 range_tree_remove, msp->ms_allocatable); 2341 range_tree_walk(msp->ms_unflushed_frees, 2342 range_tree_add, msp->ms_allocatable); 2343 2344 msp->ms_loaded = B_TRUE; 2345 2346 ASSERT3P(msp->ms_group, !=, NULL); 2347 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2348 if (spa_syncing_log_sm(spa) != NULL) { 2349 ASSERT(spa_feature_is_enabled(spa, 2350 SPA_FEATURE_LOG_SPACEMAP)); 2351 2352 /* 2353 * If we use a log space map we add all the segments 2354 * that are in ms_unflushed_frees so they are available 2355 * for allocation. 2356 * 2357 * ms_allocatable needs to contain all free segments 2358 * that are ready for allocations (thus not segments 2359 * from ms_freeing, ms_freed, and the ms_defer trees). 2360 * But if we grab the lock in this code path at a sync 2361 * pass later that 1, then it also contains the 2362 * segments of ms_freed (they were added to it earlier 2363 * in this path through ms_unflushed_frees). So we 2364 * need to remove all the segments that exist in 2365 * ms_freed from ms_allocatable as they will be added 2366 * later in metaslab_sync_done(). 2367 * 2368 * When there's no log space map, the ms_allocatable 2369 * correctly doesn't contain any segments that exist 2370 * in ms_freed [see ms_synced_length]. 2371 */ 2372 range_tree_walk(msp->ms_freed, 2373 range_tree_remove, msp->ms_allocatable); 2374 } 2375 2376 /* 2377 * If we are not using the log space map, ms_allocatable 2378 * contains the segments that exist in the ms_defer trees 2379 * [see ms_synced_length]. Thus we need to remove them 2380 * from ms_allocatable as they will be added again in 2381 * metaslab_sync_done(). 2382 * 2383 * If we are using the log space map, ms_allocatable still 2384 * contains the segments that exist in the ms_defer trees. 2385 * Not because it read them through the ms_sm though. But 2386 * because these segments are part of ms_unflushed_frees 2387 * whose segments we add to ms_allocatable earlier in this 2388 * code path. 2389 */ 2390 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2391 range_tree_walk(msp->ms_defer[t], 2392 range_tree_remove, msp->ms_allocatable); 2393 } 2394 2395 /* 2396 * Call metaslab_recalculate_weight_and_sort() now that the 2397 * metaslab is loaded so we get the metaslab's real weight. 2398 * 2399 * Unless this metaslab was created with older software and 2400 * has not yet been converted to use segment-based weight, we 2401 * expect the new weight to be better or equal to the weight 2402 * that the metaslab had while it was not loaded. This is 2403 * because the old weight does not take into account the 2404 * consolidation of adjacent segments between TXGs. [see 2405 * comment for ms_synchist and ms_deferhist[] for more info] 2406 */ 2407 uint64_t weight = msp->ms_weight; 2408 uint64_t max_size = msp->ms_max_size; 2409 metaslab_recalculate_weight_and_sort(msp); 2410 if (!WEIGHT_IS_SPACEBASED(weight)) 2411 ASSERT3U(weight, <=, msp->ms_weight); 2412 msp->ms_max_size = metaslab_largest_allocatable(msp); 2413 ASSERT3U(max_size, <=, msp->ms_max_size); 2414 hrtime_t load_end = gethrtime(); 2415 msp->ms_load_time = load_end; 2416 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2417 "ms_id %llu, smp_length %llu, " 2418 "unflushed_allocs %llu, unflushed_frees %llu, " 2419 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2420 "loading_time %lld ms, ms_max_size %llu, " 2421 "max size error %lld, " 2422 "old_weight %llx, new_weight %llx", 2423 spa_syncing_txg(spa), spa_name(spa), 2424 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2425 space_map_length(msp->ms_sm), 2426 range_tree_space(msp->ms_unflushed_allocs), 2427 range_tree_space(msp->ms_unflushed_frees), 2428 range_tree_space(msp->ms_freed), 2429 range_tree_space(msp->ms_defer[0]), 2430 range_tree_space(msp->ms_defer[1]), 2431 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2432 (longlong_t)((load_end - load_start) / 1000000), 2433 msp->ms_max_size, msp->ms_max_size - max_size, 2434 weight, msp->ms_weight); 2435 2436 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2437 mutex_exit(&msp->ms_sync_lock); 2438 return (0); 2439 } 2440 2441 int 2442 metaslab_load(metaslab_t *msp) 2443 { 2444 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2445 2446 /* 2447 * There may be another thread loading the same metaslab, if that's 2448 * the case just wait until the other thread is done and return. 2449 */ 2450 metaslab_load_wait(msp); 2451 if (msp->ms_loaded) 2452 return (0); 2453 VERIFY(!msp->ms_loading); 2454 ASSERT(!msp->ms_condensing); 2455 2456 /* 2457 * We set the loading flag BEFORE potentially dropping the lock to 2458 * wait for an ongoing flush (see ms_flushing below). This way other 2459 * threads know that there is already a thread that is loading this 2460 * metaslab. 2461 */ 2462 msp->ms_loading = B_TRUE; 2463 2464 /* 2465 * Wait for any in-progress flushing to finish as we drop the ms_lock 2466 * both here (during space_map_load()) and in metaslab_flush() (when 2467 * we flush our changes to the ms_sm). 2468 */ 2469 if (msp->ms_flushing) 2470 metaslab_flush_wait(msp); 2471 2472 /* 2473 * In the possibility that we were waiting for the metaslab to be 2474 * flushed (where we temporarily dropped the ms_lock), ensure that 2475 * no one else loaded the metaslab somehow. 2476 */ 2477 ASSERT(!msp->ms_loaded); 2478 2479 /* 2480 * If we're loading a metaslab in the normal class, consider evicting 2481 * another one to keep our memory usage under the limit defined by the 2482 * zfs_metaslab_mem_limit tunable. 2483 */ 2484 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2485 msp->ms_group->mg_class) { 2486 metaslab_potentially_evict(msp->ms_group->mg_class); 2487 } 2488 2489 int error = metaslab_load_impl(msp); 2490 2491 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2492 msp->ms_loading = B_FALSE; 2493 cv_broadcast(&msp->ms_load_cv); 2494 2495 return (error); 2496 } 2497 2498 void 2499 metaslab_unload(metaslab_t *msp) 2500 { 2501 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2502 2503 /* 2504 * This can happen if a metaslab is selected for eviction (in 2505 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2506 * metaslab_class_evict_old). 2507 */ 2508 if (!msp->ms_loaded) 2509 return; 2510 2511 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2512 msp->ms_loaded = B_FALSE; 2513 msp->ms_unload_time = gethrtime(); 2514 2515 msp->ms_activation_weight = 0; 2516 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2517 2518 if (msp->ms_group != NULL) { 2519 metaslab_class_t *mc = msp->ms_group->mg_class; 2520 multilist_sublist_t *mls = 2521 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2522 if (multilist_link_active(&msp->ms_class_txg_node)) 2523 multilist_sublist_remove(mls, msp); 2524 multilist_sublist_unlock(mls); 2525 2526 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2527 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2528 "ms_id %llu, weight %llx, " 2529 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2530 "loaded %llu ms ago, max_size %llu", 2531 spa_syncing_txg(spa), spa_name(spa), 2532 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2533 msp->ms_weight, 2534 msp->ms_selected_txg, 2535 (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000, 2536 msp->ms_alloc_txg, 2537 (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000, 2538 msp->ms_max_size); 2539 } 2540 2541 /* 2542 * We explicitly recalculate the metaslab's weight based on its space 2543 * map (as it is now not loaded). We want unload metaslabs to always 2544 * have their weights calculated from the space map histograms, while 2545 * loaded ones have it calculated from their in-core range tree 2546 * [see metaslab_load()]. This way, the weight reflects the information 2547 * available in-core, whether it is loaded or not. 2548 * 2549 * If ms_group == NULL means that we came here from metaslab_fini(), 2550 * at which point it doesn't make sense for us to do the recalculation 2551 * and the sorting. 2552 */ 2553 if (msp->ms_group != NULL) 2554 metaslab_recalculate_weight_and_sort(msp); 2555 } 2556 2557 /* 2558 * We want to optimize the memory use of the per-metaslab range 2559 * trees. To do this, we store the segments in the range trees in 2560 * units of sectors, zero-indexing from the start of the metaslab. If 2561 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2562 * the ranges using two uint32_ts, rather than two uint64_ts. 2563 */ 2564 range_seg_type_t 2565 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2566 uint64_t *start, uint64_t *shift) 2567 { 2568 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2569 !zfs_metaslab_force_large_segs) { 2570 *shift = vdev->vdev_ashift; 2571 *start = msp->ms_start; 2572 return (RANGE_SEG32); 2573 } else { 2574 *shift = 0; 2575 *start = 0; 2576 return (RANGE_SEG64); 2577 } 2578 } 2579 2580 void 2581 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2582 { 2583 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2584 metaslab_class_t *mc = msp->ms_group->mg_class; 2585 multilist_sublist_t *mls = 2586 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2587 if (multilist_link_active(&msp->ms_class_txg_node)) 2588 multilist_sublist_remove(mls, msp); 2589 msp->ms_selected_txg = txg; 2590 msp->ms_selected_time = gethrtime(); 2591 multilist_sublist_insert_tail(mls, msp); 2592 multilist_sublist_unlock(mls); 2593 } 2594 2595 void 2596 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2597 int64_t defer_delta, int64_t space_delta) 2598 { 2599 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2600 2601 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2602 ASSERT(vd->vdev_ms_count != 0); 2603 2604 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2605 vdev_deflated_space(vd, space_delta)); 2606 } 2607 2608 int 2609 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2610 uint64_t txg, metaslab_t **msp) 2611 { 2612 vdev_t *vd = mg->mg_vd; 2613 spa_t *spa = vd->vdev_spa; 2614 objset_t *mos = spa->spa_meta_objset; 2615 metaslab_t *ms; 2616 int error; 2617 2618 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2619 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2620 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2621 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2622 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2623 multilist_link_init(&ms->ms_class_txg_node); 2624 2625 ms->ms_id = id; 2626 ms->ms_start = id << vd->vdev_ms_shift; 2627 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2628 ms->ms_allocator = -1; 2629 ms->ms_new = B_TRUE; 2630 2631 vdev_ops_t *ops = vd->vdev_ops; 2632 if (ops->vdev_op_metaslab_init != NULL) 2633 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2634 2635 /* 2636 * We only open space map objects that already exist. All others 2637 * will be opened when we finally allocate an object for it. 2638 * 2639 * Note: 2640 * When called from vdev_expand(), we can't call into the DMU as 2641 * we are holding the spa_config_lock as a writer and we would 2642 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2643 * that case, the object parameter is zero though, so we won't 2644 * call into the DMU. 2645 */ 2646 if (object != 0) { 2647 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2648 ms->ms_size, vd->vdev_ashift); 2649 2650 if (error != 0) { 2651 kmem_free(ms, sizeof (metaslab_t)); 2652 return (error); 2653 } 2654 2655 ASSERT(ms->ms_sm != NULL); 2656 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2657 } 2658 2659 range_seg_type_t type; 2660 uint64_t shift, start; 2661 type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2662 2663 /* 2664 * We create the ms_allocatable here, but we don't create the 2665 * other range trees until metaslab_sync_done(). This serves 2666 * two purposes: it allows metaslab_sync_done() to detect the 2667 * addition of new space; and for debugging, it ensures that 2668 * we'd data fault on any attempt to use this metaslab before 2669 * it's ready. 2670 */ 2671 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2672 2673 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2674 2675 metaslab_group_add(mg, ms); 2676 metaslab_set_fragmentation(ms, B_FALSE); 2677 2678 /* 2679 * If we're opening an existing pool (txg == 0) or creating 2680 * a new one (txg == TXG_INITIAL), all space is available now. 2681 * If we're adding space to an existing pool, the new space 2682 * does not become available until after this txg has synced. 2683 * The metaslab's weight will also be initialized when we sync 2684 * out this txg. This ensures that we don't attempt to allocate 2685 * from it before we have initialized it completely. 2686 */ 2687 if (txg <= TXG_INITIAL) { 2688 metaslab_sync_done(ms, 0); 2689 metaslab_space_update(vd, mg->mg_class, 2690 metaslab_allocated_space(ms), 0, 0); 2691 } 2692 2693 if (txg != 0) { 2694 vdev_dirty(vd, 0, NULL, txg); 2695 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2696 } 2697 2698 *msp = ms; 2699 2700 return (0); 2701 } 2702 2703 static void 2704 metaslab_fini_flush_data(metaslab_t *msp) 2705 { 2706 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2707 2708 if (metaslab_unflushed_txg(msp) == 0) { 2709 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2710 ==, NULL); 2711 return; 2712 } 2713 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2714 2715 mutex_enter(&spa->spa_flushed_ms_lock); 2716 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2717 mutex_exit(&spa->spa_flushed_ms_lock); 2718 2719 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2720 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2721 } 2722 2723 uint64_t 2724 metaslab_unflushed_changes_memused(metaslab_t *ms) 2725 { 2726 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2727 range_tree_numsegs(ms->ms_unflushed_frees)) * 2728 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2729 } 2730 2731 void 2732 metaslab_fini(metaslab_t *msp) 2733 { 2734 metaslab_group_t *mg = msp->ms_group; 2735 vdev_t *vd = mg->mg_vd; 2736 spa_t *spa = vd->vdev_spa; 2737 2738 metaslab_fini_flush_data(msp); 2739 2740 metaslab_group_remove(mg, msp); 2741 2742 mutex_enter(&msp->ms_lock); 2743 VERIFY(msp->ms_group == NULL); 2744 metaslab_space_update(vd, mg->mg_class, 2745 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2746 2747 space_map_close(msp->ms_sm); 2748 msp->ms_sm = NULL; 2749 2750 metaslab_unload(msp); 2751 range_tree_destroy(msp->ms_allocatable); 2752 range_tree_destroy(msp->ms_freeing); 2753 range_tree_destroy(msp->ms_freed); 2754 2755 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2756 metaslab_unflushed_changes_memused(msp)); 2757 spa->spa_unflushed_stats.sus_memused -= 2758 metaslab_unflushed_changes_memused(msp); 2759 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2760 range_tree_destroy(msp->ms_unflushed_allocs); 2761 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2762 range_tree_destroy(msp->ms_unflushed_frees); 2763 2764 for (int t = 0; t < TXG_SIZE; t++) { 2765 range_tree_destroy(msp->ms_allocating[t]); 2766 } 2767 2768 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2769 range_tree_destroy(msp->ms_defer[t]); 2770 } 2771 ASSERT0(msp->ms_deferspace); 2772 2773 range_tree_destroy(msp->ms_checkpointing); 2774 2775 for (int t = 0; t < TXG_SIZE; t++) 2776 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2777 2778 range_tree_vacate(msp->ms_trim, NULL, NULL); 2779 range_tree_destroy(msp->ms_trim); 2780 2781 mutex_exit(&msp->ms_lock); 2782 cv_destroy(&msp->ms_load_cv); 2783 cv_destroy(&msp->ms_flush_cv); 2784 mutex_destroy(&msp->ms_lock); 2785 mutex_destroy(&msp->ms_sync_lock); 2786 ASSERT3U(msp->ms_allocator, ==, -1); 2787 2788 kmem_free(msp, sizeof (metaslab_t)); 2789 } 2790 2791 #define FRAGMENTATION_TABLE_SIZE 17 2792 2793 /* 2794 * This table defines a segment size based fragmentation metric that will 2795 * allow each metaslab to derive its own fragmentation value. This is done 2796 * by calculating the space in each bucket of the spacemap histogram and 2797 * multiplying that by the fragmentation metric in this table. Doing 2798 * this for all buckets and dividing it by the total amount of free 2799 * space in this metaslab (i.e. the total free space in all buckets) gives 2800 * us the fragmentation metric. This means that a high fragmentation metric 2801 * equates to most of the free space being comprised of small segments. 2802 * Conversely, if the metric is low, then most of the free space is in 2803 * large segments. A 10% change in fragmentation equates to approximately 2804 * double the number of segments. 2805 * 2806 * This table defines 0% fragmented space using 16MB segments. Testing has 2807 * shown that segments that are greater than or equal to 16MB do not suffer 2808 * from drastic performance problems. Using this value, we derive the rest 2809 * of the table. Since the fragmentation value is never stored on disk, it 2810 * is possible to change these calculations in the future. 2811 */ 2812 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2813 100, /* 512B */ 2814 100, /* 1K */ 2815 98, /* 2K */ 2816 95, /* 4K */ 2817 90, /* 8K */ 2818 80, /* 16K */ 2819 70, /* 32K */ 2820 60, /* 64K */ 2821 50, /* 128K */ 2822 40, /* 256K */ 2823 30, /* 512K */ 2824 20, /* 1M */ 2825 15, /* 2M */ 2826 10, /* 4M */ 2827 5, /* 8M */ 2828 0 /* 16M */ 2829 }; 2830 2831 /* 2832 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2833 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2834 * been upgraded and does not support this metric. Otherwise, the return 2835 * value should be in the range [0, 100]. 2836 */ 2837 static void 2838 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2839 { 2840 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2841 uint64_t fragmentation = 0; 2842 uint64_t total = 0; 2843 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2844 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2845 2846 if (!feature_enabled) { 2847 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2848 return; 2849 } 2850 2851 /* 2852 * A null space map means that the entire metaslab is free 2853 * and thus is not fragmented. 2854 */ 2855 if (msp->ms_sm == NULL) { 2856 msp->ms_fragmentation = 0; 2857 return; 2858 } 2859 2860 /* 2861 * If this metaslab's space map has not been upgraded, flag it 2862 * so that we upgrade next time we encounter it. 2863 */ 2864 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2865 uint64_t txg = spa_syncing_txg(spa); 2866 vdev_t *vd = msp->ms_group->mg_vd; 2867 2868 /* 2869 * If we've reached the final dirty txg, then we must 2870 * be shutting down the pool. We don't want to dirty 2871 * any data past this point so skip setting the condense 2872 * flag. We can retry this action the next time the pool 2873 * is imported. We also skip marking this metaslab for 2874 * condensing if the caller has explicitly set nodirty. 2875 */ 2876 if (!nodirty && 2877 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2878 msp->ms_condense_wanted = B_TRUE; 2879 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2880 zfs_dbgmsg("txg %llu, requesting force condense: " 2881 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 2882 vd->vdev_id); 2883 } 2884 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2885 return; 2886 } 2887 2888 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2889 uint64_t space = 0; 2890 uint8_t shift = msp->ms_sm->sm_shift; 2891 2892 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2893 FRAGMENTATION_TABLE_SIZE - 1); 2894 2895 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2896 continue; 2897 2898 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2899 total += space; 2900 2901 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2902 fragmentation += space * zfs_frag_table[idx]; 2903 } 2904 2905 if (total > 0) 2906 fragmentation /= total; 2907 ASSERT3U(fragmentation, <=, 100); 2908 2909 msp->ms_fragmentation = fragmentation; 2910 } 2911 2912 /* 2913 * Compute a weight -- a selection preference value -- for the given metaslab. 2914 * This is based on the amount of free space, the level of fragmentation, 2915 * the LBA range, and whether the metaslab is loaded. 2916 */ 2917 static uint64_t 2918 metaslab_space_weight(metaslab_t *msp) 2919 { 2920 metaslab_group_t *mg = msp->ms_group; 2921 vdev_t *vd = mg->mg_vd; 2922 uint64_t weight, space; 2923 2924 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2925 2926 /* 2927 * The baseline weight is the metaslab's free space. 2928 */ 2929 space = msp->ms_size - metaslab_allocated_space(msp); 2930 2931 if (metaslab_fragmentation_factor_enabled && 2932 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2933 /* 2934 * Use the fragmentation information to inversely scale 2935 * down the baseline weight. We need to ensure that we 2936 * don't exclude this metaslab completely when it's 100% 2937 * fragmented. To avoid this we reduce the fragmented value 2938 * by 1. 2939 */ 2940 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2941 2942 /* 2943 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2944 * this metaslab again. The fragmentation metric may have 2945 * decreased the space to something smaller than 2946 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2947 * so that we can consume any remaining space. 2948 */ 2949 if (space > 0 && space < SPA_MINBLOCKSIZE) 2950 space = SPA_MINBLOCKSIZE; 2951 } 2952 weight = space; 2953 2954 /* 2955 * Modern disks have uniform bit density and constant angular velocity. 2956 * Therefore, the outer recording zones are faster (higher bandwidth) 2957 * than the inner zones by the ratio of outer to inner track diameter, 2958 * which is typically around 2:1. We account for this by assigning 2959 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 2960 * In effect, this means that we'll select the metaslab with the most 2961 * free bandwidth rather than simply the one with the most free space. 2962 */ 2963 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 2964 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 2965 ASSERT(weight >= space && weight <= 2 * space); 2966 } 2967 2968 /* 2969 * If this metaslab is one we're actively using, adjust its 2970 * weight to make it preferable to any inactive metaslab so 2971 * we'll polish it off. If the fragmentation on this metaslab 2972 * has exceed our threshold, then don't mark it active. 2973 */ 2974 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 2975 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 2976 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 2977 } 2978 2979 WEIGHT_SET_SPACEBASED(weight); 2980 return (weight); 2981 } 2982 2983 /* 2984 * Return the weight of the specified metaslab, according to the segment-based 2985 * weighting algorithm. The metaslab must be loaded. This function can 2986 * be called within a sync pass since it relies only on the metaslab's 2987 * range tree which is always accurate when the metaslab is loaded. 2988 */ 2989 static uint64_t 2990 metaslab_weight_from_range_tree(metaslab_t *msp) 2991 { 2992 uint64_t weight = 0; 2993 uint32_t segments = 0; 2994 2995 ASSERT(msp->ms_loaded); 2996 2997 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 2998 i--) { 2999 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3000 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3001 3002 segments <<= 1; 3003 segments += msp->ms_allocatable->rt_histogram[i]; 3004 3005 /* 3006 * The range tree provides more precision than the space map 3007 * and must be downgraded so that all values fit within the 3008 * space map's histogram. This allows us to compare loaded 3009 * vs. unloaded metaslabs to determine which metaslab is 3010 * considered "best". 3011 */ 3012 if (i > max_idx) 3013 continue; 3014 3015 if (segments != 0) { 3016 WEIGHT_SET_COUNT(weight, segments); 3017 WEIGHT_SET_INDEX(weight, i); 3018 WEIGHT_SET_ACTIVE(weight, 0); 3019 break; 3020 } 3021 } 3022 return (weight); 3023 } 3024 3025 /* 3026 * Calculate the weight based on the on-disk histogram. Should be applied 3027 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3028 * give results consistent with the on-disk state 3029 */ 3030 static uint64_t 3031 metaslab_weight_from_spacemap(metaslab_t *msp) 3032 { 3033 space_map_t *sm = msp->ms_sm; 3034 ASSERT(!msp->ms_loaded); 3035 ASSERT(sm != NULL); 3036 ASSERT3U(space_map_object(sm), !=, 0); 3037 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3038 3039 /* 3040 * Create a joint histogram from all the segments that have made 3041 * it to the metaslab's space map histogram, that are not yet 3042 * available for allocation because they are still in the freeing 3043 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3044 * these segments from the space map's histogram to get a more 3045 * accurate weight. 3046 */ 3047 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3049 deferspace_histogram[i] += msp->ms_synchist[i]; 3050 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3051 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3052 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3053 } 3054 } 3055 3056 uint64_t weight = 0; 3057 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3058 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3059 deferspace_histogram[i]); 3060 uint64_t count = 3061 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3062 if (count != 0) { 3063 WEIGHT_SET_COUNT(weight, count); 3064 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3065 WEIGHT_SET_ACTIVE(weight, 0); 3066 break; 3067 } 3068 } 3069 return (weight); 3070 } 3071 3072 /* 3073 * Compute a segment-based weight for the specified metaslab. The weight 3074 * is determined by highest bucket in the histogram. The information 3075 * for the highest bucket is encoded into the weight value. 3076 */ 3077 static uint64_t 3078 metaslab_segment_weight(metaslab_t *msp) 3079 { 3080 metaslab_group_t *mg = msp->ms_group; 3081 uint64_t weight = 0; 3082 uint8_t shift = mg->mg_vd->vdev_ashift; 3083 3084 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3085 3086 /* 3087 * The metaslab is completely free. 3088 */ 3089 if (metaslab_allocated_space(msp) == 0) { 3090 int idx = highbit64(msp->ms_size) - 1; 3091 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3092 3093 if (idx < max_idx) { 3094 WEIGHT_SET_COUNT(weight, 1ULL); 3095 WEIGHT_SET_INDEX(weight, idx); 3096 } else { 3097 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3098 WEIGHT_SET_INDEX(weight, max_idx); 3099 } 3100 WEIGHT_SET_ACTIVE(weight, 0); 3101 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3102 return (weight); 3103 } 3104 3105 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3106 3107 /* 3108 * If the metaslab is fully allocated then just make the weight 0. 3109 */ 3110 if (metaslab_allocated_space(msp) == msp->ms_size) 3111 return (0); 3112 /* 3113 * If the metaslab is already loaded, then use the range tree to 3114 * determine the weight. Otherwise, we rely on the space map information 3115 * to generate the weight. 3116 */ 3117 if (msp->ms_loaded) { 3118 weight = metaslab_weight_from_range_tree(msp); 3119 } else { 3120 weight = metaslab_weight_from_spacemap(msp); 3121 } 3122 3123 /* 3124 * If the metaslab was active the last time we calculated its weight 3125 * then keep it active. We want to consume the entire region that 3126 * is associated with this weight. 3127 */ 3128 if (msp->ms_activation_weight != 0 && weight != 0) 3129 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3130 return (weight); 3131 } 3132 3133 /* 3134 * Determine if we should attempt to allocate from this metaslab. If the 3135 * metaslab is loaded, then we can determine if the desired allocation 3136 * can be satisfied by looking at the size of the maximum free segment 3137 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3138 * weight. For segment-based weighting we can determine the maximum 3139 * allocation based on the index encoded in its value. For space-based 3140 * weights we rely on the entire weight (excluding the weight-type bit). 3141 */ 3142 static boolean_t 3143 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3144 { 3145 /* 3146 * If the metaslab is loaded, ms_max_size is definitive and we can use 3147 * the fast check. If it's not, the ms_max_size is a lower bound (once 3148 * set), and we should use the fast check as long as we're not in 3149 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3150 * seconds since the metaslab was unloaded. 3151 */ 3152 if (msp->ms_loaded || 3153 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3154 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3155 return (msp->ms_max_size >= asize); 3156 3157 boolean_t should_allocate; 3158 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3159 /* 3160 * The metaslab segment weight indicates segments in the 3161 * range [2^i, 2^(i+1)), where i is the index in the weight. 3162 * Since the asize might be in the middle of the range, we 3163 * should attempt the allocation if asize < 2^(i+1). 3164 */ 3165 should_allocate = (asize < 3166 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3167 } else { 3168 should_allocate = (asize <= 3169 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3170 } 3171 3172 return (should_allocate); 3173 } 3174 3175 static uint64_t 3176 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3177 { 3178 vdev_t *vd = msp->ms_group->mg_vd; 3179 spa_t *spa = vd->vdev_spa; 3180 uint64_t weight; 3181 3182 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3183 3184 metaslab_set_fragmentation(msp, nodirty); 3185 3186 /* 3187 * Update the maximum size. If the metaslab is loaded, this will 3188 * ensure that we get an accurate maximum size if newly freed space 3189 * has been added back into the free tree. If the metaslab is 3190 * unloaded, we check if there's a larger free segment in the 3191 * unflushed frees. This is a lower bound on the largest allocatable 3192 * segment size. Coalescing of adjacent entries may reveal larger 3193 * allocatable segments, but we aren't aware of those until loading 3194 * the space map into a range tree. 3195 */ 3196 if (msp->ms_loaded) { 3197 msp->ms_max_size = metaslab_largest_allocatable(msp); 3198 } else { 3199 msp->ms_max_size = MAX(msp->ms_max_size, 3200 metaslab_largest_unflushed_free(msp)); 3201 } 3202 3203 /* 3204 * Segment-based weighting requires space map histogram support. 3205 */ 3206 if (zfs_metaslab_segment_weight_enabled && 3207 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3208 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3209 sizeof (space_map_phys_t))) { 3210 weight = metaslab_segment_weight(msp); 3211 } else { 3212 weight = metaslab_space_weight(msp); 3213 } 3214 return (weight); 3215 } 3216 3217 void 3218 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3219 { 3220 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3221 3222 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3223 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3224 metaslab_group_sort(msp->ms_group, msp, 3225 metaslab_weight(msp, B_FALSE) | was_active); 3226 } 3227 3228 static int 3229 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3230 int allocator, uint64_t activation_weight) 3231 { 3232 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3233 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3234 3235 /* 3236 * If we're activating for the claim code, we don't want to actually 3237 * set the metaslab up for a specific allocator. 3238 */ 3239 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3240 ASSERT0(msp->ms_activation_weight); 3241 msp->ms_activation_weight = msp->ms_weight; 3242 metaslab_group_sort(mg, msp, msp->ms_weight | 3243 activation_weight); 3244 return (0); 3245 } 3246 3247 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3248 &mga->mga_primary : &mga->mga_secondary); 3249 3250 mutex_enter(&mg->mg_lock); 3251 if (*mspp != NULL) { 3252 mutex_exit(&mg->mg_lock); 3253 return (EEXIST); 3254 } 3255 3256 *mspp = msp; 3257 ASSERT3S(msp->ms_allocator, ==, -1); 3258 msp->ms_allocator = allocator; 3259 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3260 3261 ASSERT0(msp->ms_activation_weight); 3262 msp->ms_activation_weight = msp->ms_weight; 3263 metaslab_group_sort_impl(mg, msp, 3264 msp->ms_weight | activation_weight); 3265 mutex_exit(&mg->mg_lock); 3266 3267 return (0); 3268 } 3269 3270 static int 3271 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3272 { 3273 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3274 3275 /* 3276 * The current metaslab is already activated for us so there 3277 * is nothing to do. Already activated though, doesn't mean 3278 * that this metaslab is activated for our allocator nor our 3279 * requested activation weight. The metaslab could have started 3280 * as an active one for our allocator but changed allocators 3281 * while we were waiting to grab its ms_lock or we stole it 3282 * [see find_valid_metaslab()]. This means that there is a 3283 * possibility of passivating a metaslab of another allocator 3284 * or from a different activation mask, from this thread. 3285 */ 3286 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3287 ASSERT(msp->ms_loaded); 3288 return (0); 3289 } 3290 3291 int error = metaslab_load(msp); 3292 if (error != 0) { 3293 metaslab_group_sort(msp->ms_group, msp, 0); 3294 return (error); 3295 } 3296 3297 /* 3298 * When entering metaslab_load() we may have dropped the 3299 * ms_lock because we were loading this metaslab, or we 3300 * were waiting for another thread to load it for us. In 3301 * that scenario, we recheck the weight of the metaslab 3302 * to see if it was activated by another thread. 3303 * 3304 * If the metaslab was activated for another allocator or 3305 * it was activated with a different activation weight (e.g. 3306 * we wanted to make it a primary but it was activated as 3307 * secondary) we return error (EBUSY). 3308 * 3309 * If the metaslab was activated for the same allocator 3310 * and requested activation mask, skip activating it. 3311 */ 3312 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3313 if (msp->ms_allocator != allocator) 3314 return (EBUSY); 3315 3316 if ((msp->ms_weight & activation_weight) == 0) 3317 return (SET_ERROR(EBUSY)); 3318 3319 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3320 msp->ms_primary); 3321 return (0); 3322 } 3323 3324 /* 3325 * If the metaslab has literally 0 space, it will have weight 0. In 3326 * that case, don't bother activating it. This can happen if the 3327 * metaslab had space during find_valid_metaslab, but another thread 3328 * loaded it and used all that space while we were waiting to grab the 3329 * lock. 3330 */ 3331 if (msp->ms_weight == 0) { 3332 ASSERT0(range_tree_space(msp->ms_allocatable)); 3333 return (SET_ERROR(ENOSPC)); 3334 } 3335 3336 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3337 allocator, activation_weight)) != 0) { 3338 return (error); 3339 } 3340 3341 ASSERT(msp->ms_loaded); 3342 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3343 3344 return (0); 3345 } 3346 3347 static void 3348 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3349 uint64_t weight) 3350 { 3351 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3352 ASSERT(msp->ms_loaded); 3353 3354 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3355 metaslab_group_sort(mg, msp, weight); 3356 return; 3357 } 3358 3359 mutex_enter(&mg->mg_lock); 3360 ASSERT3P(msp->ms_group, ==, mg); 3361 ASSERT3S(0, <=, msp->ms_allocator); 3362 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3363 3364 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3365 if (msp->ms_primary) { 3366 ASSERT3P(mga->mga_primary, ==, msp); 3367 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3368 mga->mga_primary = NULL; 3369 } else { 3370 ASSERT3P(mga->mga_secondary, ==, msp); 3371 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3372 mga->mga_secondary = NULL; 3373 } 3374 msp->ms_allocator = -1; 3375 metaslab_group_sort_impl(mg, msp, weight); 3376 mutex_exit(&mg->mg_lock); 3377 } 3378 3379 static void 3380 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3381 { 3382 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3383 3384 /* 3385 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3386 * this metaslab again. In that case, it had better be empty, 3387 * or we would be leaving space on the table. 3388 */ 3389 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3390 size >= SPA_MINBLOCKSIZE || 3391 range_tree_space(msp->ms_allocatable) == 0); 3392 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3393 3394 ASSERT(msp->ms_activation_weight != 0); 3395 msp->ms_activation_weight = 0; 3396 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3397 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3398 } 3399 3400 /* 3401 * Segment-based metaslabs are activated once and remain active until 3402 * we either fail an allocation attempt (similar to space-based metaslabs) 3403 * or have exhausted the free space in zfs_metaslab_switch_threshold 3404 * buckets since the metaslab was activated. This function checks to see 3405 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3406 * metaslab and passivates it proactively. This will allow us to select a 3407 * metaslab with a larger contiguous region, if any, remaining within this 3408 * metaslab group. If we're in sync pass > 1, then we continue using this 3409 * metaslab so that we don't dirty more block and cause more sync passes. 3410 */ 3411 static void 3412 metaslab_segment_may_passivate(metaslab_t *msp) 3413 { 3414 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3415 3416 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3417 return; 3418 3419 /* 3420 * Since we are in the middle of a sync pass, the most accurate 3421 * information that is accessible to us is the in-core range tree 3422 * histogram; calculate the new weight based on that information. 3423 */ 3424 uint64_t weight = metaslab_weight_from_range_tree(msp); 3425 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3426 int current_idx = WEIGHT_GET_INDEX(weight); 3427 3428 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3429 metaslab_passivate(msp, weight); 3430 } 3431 3432 static void 3433 metaslab_preload(void *arg) 3434 { 3435 metaslab_t *msp = arg; 3436 metaslab_class_t *mc = msp->ms_group->mg_class; 3437 spa_t *spa = mc->mc_spa; 3438 fstrans_cookie_t cookie = spl_fstrans_mark(); 3439 3440 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3441 3442 mutex_enter(&msp->ms_lock); 3443 (void) metaslab_load(msp); 3444 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3445 mutex_exit(&msp->ms_lock); 3446 spl_fstrans_unmark(cookie); 3447 } 3448 3449 static void 3450 metaslab_group_preload(metaslab_group_t *mg) 3451 { 3452 spa_t *spa = mg->mg_vd->vdev_spa; 3453 metaslab_t *msp; 3454 avl_tree_t *t = &mg->mg_metaslab_tree; 3455 int m = 0; 3456 3457 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3458 taskq_wait_outstanding(mg->mg_taskq, 0); 3459 return; 3460 } 3461 3462 mutex_enter(&mg->mg_lock); 3463 3464 /* 3465 * Load the next potential metaslabs 3466 */ 3467 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3468 ASSERT3P(msp->ms_group, ==, mg); 3469 3470 /* 3471 * We preload only the maximum number of metaslabs specified 3472 * by metaslab_preload_limit. If a metaslab is being forced 3473 * to condense then we preload it too. This will ensure 3474 * that force condensing happens in the next txg. 3475 */ 3476 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3477 continue; 3478 } 3479 3480 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3481 msp, TQ_SLEEP) != TASKQID_INVALID); 3482 } 3483 mutex_exit(&mg->mg_lock); 3484 } 3485 3486 /* 3487 * Determine if the space map's on-disk footprint is past our tolerance for 3488 * inefficiency. We would like to use the following criteria to make our 3489 * decision: 3490 * 3491 * 1. Do not condense if the size of the space map object would dramatically 3492 * increase as a result of writing out the free space range tree. 3493 * 3494 * 2. Condense if the on on-disk space map representation is at least 3495 * zfs_condense_pct/100 times the size of the optimal representation 3496 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3497 * 3498 * 3. Do not condense if the on-disk size of the space map does not actually 3499 * decrease. 3500 * 3501 * Unfortunately, we cannot compute the on-disk size of the space map in this 3502 * context because we cannot accurately compute the effects of compression, etc. 3503 * Instead, we apply the heuristic described in the block comment for 3504 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3505 * is greater than a threshold number of blocks. 3506 */ 3507 static boolean_t 3508 metaslab_should_condense(metaslab_t *msp) 3509 { 3510 space_map_t *sm = msp->ms_sm; 3511 vdev_t *vd = msp->ms_group->mg_vd; 3512 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3513 3514 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3515 ASSERT(msp->ms_loaded); 3516 ASSERT(sm != NULL); 3517 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3518 3519 /* 3520 * We always condense metaslabs that are empty and metaslabs for 3521 * which a condense request has been made. 3522 */ 3523 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3524 msp->ms_condense_wanted) 3525 return (B_TRUE); 3526 3527 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3528 uint64_t object_size = space_map_length(sm); 3529 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3530 msp->ms_allocatable, SM_NO_VDEVID); 3531 3532 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3533 object_size > zfs_metaslab_condense_block_threshold * record_size); 3534 } 3535 3536 /* 3537 * Condense the on-disk space map representation to its minimized form. 3538 * The minimized form consists of a small number of allocations followed 3539 * by the entries of the free range tree (ms_allocatable). The condensed 3540 * spacemap contains all the entries of previous TXGs (including those in 3541 * the pool-wide log spacemaps; thus this is effectively a superset of 3542 * metaslab_flush()), but this TXG's entries still need to be written. 3543 */ 3544 static void 3545 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3546 { 3547 range_tree_t *condense_tree; 3548 space_map_t *sm = msp->ms_sm; 3549 uint64_t txg = dmu_tx_get_txg(tx); 3550 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3551 3552 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3553 ASSERT(msp->ms_loaded); 3554 ASSERT(msp->ms_sm != NULL); 3555 3556 /* 3557 * In order to condense the space map, we need to change it so it 3558 * only describes which segments are currently allocated and free. 3559 * 3560 * All the current free space resides in the ms_allocatable, all 3561 * the ms_defer trees, and all the ms_allocating trees. We ignore 3562 * ms_freed because it is empty because we're in sync pass 1. We 3563 * ignore ms_freeing because these changes are not yet reflected 3564 * in the spacemap (they will be written later this txg). 3565 * 3566 * So to truncate the space map to represent all the entries of 3567 * previous TXGs we do the following: 3568 * 3569 * 1] We create a range tree (condense tree) that is 100% empty. 3570 * 2] We add to it all segments found in the ms_defer trees 3571 * as those segments are marked as free in the original space 3572 * map. We do the same with the ms_allocating trees for the same 3573 * reason. Adding these segments should be a relatively 3574 * inexpensive operation since we expect these trees to have a 3575 * small number of nodes. 3576 * 3] We vacate any unflushed allocs, since they are not frees we 3577 * need to add to the condense tree. Then we vacate any 3578 * unflushed frees as they should already be part of ms_allocatable. 3579 * 4] At this point, we would ideally like to add all segments 3580 * in the ms_allocatable tree from the condense tree. This way 3581 * we would write all the entries of the condense tree as the 3582 * condensed space map, which would only contain freed 3583 * segments with everything else assumed to be allocated. 3584 * 3585 * Doing so can be prohibitively expensive as ms_allocatable can 3586 * be large, and therefore computationally expensive to add to 3587 * the condense_tree. Instead we first sync out an entry marking 3588 * everything as allocated, then the condense_tree and then the 3589 * ms_allocatable, in the condensed space map. While this is not 3590 * optimal, it is typically close to optimal and more importantly 3591 * much cheaper to compute. 3592 * 3593 * 5] Finally, as both of the unflushed trees were written to our 3594 * new and condensed metaslab space map, we basically flushed 3595 * all the unflushed changes to disk, thus we call 3596 * metaslab_flush_update(). 3597 */ 3598 ASSERT3U(spa_sync_pass(spa), ==, 1); 3599 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3600 3601 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3602 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 3603 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 3604 spa->spa_name, space_map_length(msp->ms_sm), 3605 range_tree_numsegs(msp->ms_allocatable), 3606 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3607 3608 msp->ms_condense_wanted = B_FALSE; 3609 3610 range_seg_type_t type; 3611 uint64_t shift, start; 3612 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3613 &start, &shift); 3614 3615 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3616 3617 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3618 range_tree_walk(msp->ms_defer[t], 3619 range_tree_add, condense_tree); 3620 } 3621 3622 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3623 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3624 range_tree_add, condense_tree); 3625 } 3626 3627 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3628 metaslab_unflushed_changes_memused(msp)); 3629 spa->spa_unflushed_stats.sus_memused -= 3630 metaslab_unflushed_changes_memused(msp); 3631 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3632 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3633 3634 /* 3635 * We're about to drop the metaslab's lock thus allowing other 3636 * consumers to change it's content. Set the metaslab's ms_condensing 3637 * flag to ensure that allocations on this metaslab do not occur 3638 * while we're in the middle of committing it to disk. This is only 3639 * critical for ms_allocatable as all other range trees use per TXG 3640 * views of their content. 3641 */ 3642 msp->ms_condensing = B_TRUE; 3643 3644 mutex_exit(&msp->ms_lock); 3645 uint64_t object = space_map_object(msp->ms_sm); 3646 space_map_truncate(sm, 3647 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3648 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3649 3650 /* 3651 * space_map_truncate() may have reallocated the spacemap object. 3652 * If so, update the vdev_ms_array. 3653 */ 3654 if (space_map_object(msp->ms_sm) != object) { 3655 object = space_map_object(msp->ms_sm); 3656 dmu_write(spa->spa_meta_objset, 3657 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3658 msp->ms_id, sizeof (uint64_t), &object, tx); 3659 } 3660 3661 /* 3662 * Note: 3663 * When the log space map feature is enabled, each space map will 3664 * always have ALLOCS followed by FREES for each sync pass. This is 3665 * typically true even when the log space map feature is disabled, 3666 * except from the case where a metaslab goes through metaslab_sync() 3667 * and gets condensed. In that case the metaslab's space map will have 3668 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3669 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3670 * sync pass 1. 3671 */ 3672 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3673 shift); 3674 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3675 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3676 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3677 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3678 3679 range_tree_vacate(condense_tree, NULL, NULL); 3680 range_tree_destroy(condense_tree); 3681 range_tree_vacate(tmp_tree, NULL, NULL); 3682 range_tree_destroy(tmp_tree); 3683 mutex_enter(&msp->ms_lock); 3684 3685 msp->ms_condensing = B_FALSE; 3686 metaslab_flush_update(msp, tx); 3687 } 3688 3689 /* 3690 * Called when the metaslab has been flushed (its own spacemap now reflects 3691 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3692 * metadata and any pool-wide related log space map data (e.g. summary, 3693 * obsolete logs, etc..) to reflect that. 3694 */ 3695 static void 3696 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3697 { 3698 metaslab_group_t *mg = msp->ms_group; 3699 spa_t *spa = mg->mg_vd->vdev_spa; 3700 3701 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3702 3703 ASSERT3U(spa_sync_pass(spa), ==, 1); 3704 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3705 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3706 3707 /* 3708 * Just because a metaslab got flushed, that doesn't mean that 3709 * it will pass through metaslab_sync_done(). Thus, make sure to 3710 * update ms_synced_length here in case it doesn't. 3711 */ 3712 msp->ms_synced_length = space_map_length(msp->ms_sm); 3713 3714 /* 3715 * We may end up here from metaslab_condense() without the 3716 * feature being active. In that case this is a no-op. 3717 */ 3718 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3719 return; 3720 3721 ASSERT(spa_syncing_log_sm(spa) != NULL); 3722 ASSERT(msp->ms_sm != NULL); 3723 ASSERT(metaslab_unflushed_txg(msp) != 0); 3724 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3725 3726 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3727 3728 /* update metaslab's position in our flushing tree */ 3729 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3730 mutex_enter(&spa->spa_flushed_ms_lock); 3731 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3732 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3733 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3734 mutex_exit(&spa->spa_flushed_ms_lock); 3735 3736 /* update metaslab counts of spa_log_sm_t nodes */ 3737 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3738 spa_log_sm_increment_current_mscount(spa); 3739 3740 /* cleanup obsolete logs if any */ 3741 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3742 spa_cleanup_old_sm_logs(spa, tx); 3743 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3744 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3745 3746 /* update log space map summary */ 3747 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3748 spa_log_summary_add_flushed_metaslab(spa); 3749 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3750 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3751 } 3752 3753 boolean_t 3754 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3755 { 3756 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3757 3758 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3759 ASSERT3U(spa_sync_pass(spa), ==, 1); 3760 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3761 3762 ASSERT(msp->ms_sm != NULL); 3763 ASSERT(metaslab_unflushed_txg(msp) != 0); 3764 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3765 3766 /* 3767 * There is nothing wrong with flushing the same metaslab twice, as 3768 * this codepath should work on that case. However, the current 3769 * flushing scheme makes sure to avoid this situation as we would be 3770 * making all these calls without having anything meaningful to write 3771 * to disk. We assert this behavior here. 3772 */ 3773 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3774 3775 /* 3776 * We can not flush while loading, because then we would 3777 * not load the ms_unflushed_{allocs,frees}. 3778 */ 3779 if (msp->ms_loading) 3780 return (B_FALSE); 3781 3782 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3783 metaslab_verify_weight_and_frag(msp); 3784 3785 /* 3786 * Metaslab condensing is effectively flushing. Therefore if the 3787 * metaslab can be condensed we can just condense it instead of 3788 * flushing it. 3789 * 3790 * Note that metaslab_condense() does call metaslab_flush_update() 3791 * so we can just return immediately after condensing. We also 3792 * don't need to care about setting ms_flushing or broadcasting 3793 * ms_flush_cv, even if we temporarily drop the ms_lock in 3794 * metaslab_condense(), as the metaslab is already loaded. 3795 */ 3796 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3797 metaslab_group_t *mg = msp->ms_group; 3798 3799 /* 3800 * For all histogram operations below refer to the 3801 * comments of metaslab_sync() where we follow a 3802 * similar procedure. 3803 */ 3804 metaslab_group_histogram_verify(mg); 3805 metaslab_class_histogram_verify(mg->mg_class); 3806 metaslab_group_histogram_remove(mg, msp); 3807 3808 metaslab_condense(msp, tx); 3809 3810 space_map_histogram_clear(msp->ms_sm); 3811 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3812 ASSERT(range_tree_is_empty(msp->ms_freed)); 3813 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3814 space_map_histogram_add(msp->ms_sm, 3815 msp->ms_defer[t], tx); 3816 } 3817 metaslab_aux_histograms_update(msp); 3818 3819 metaslab_group_histogram_add(mg, msp); 3820 metaslab_group_histogram_verify(mg); 3821 metaslab_class_histogram_verify(mg->mg_class); 3822 3823 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3824 3825 /* 3826 * Since we recreated the histogram (and potentially 3827 * the ms_sm too while condensing) ensure that the 3828 * weight is updated too because we are not guaranteed 3829 * that this metaslab is dirty and will go through 3830 * metaslab_sync_done(). 3831 */ 3832 metaslab_recalculate_weight_and_sort(msp); 3833 return (B_TRUE); 3834 } 3835 3836 msp->ms_flushing = B_TRUE; 3837 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3838 3839 mutex_exit(&msp->ms_lock); 3840 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3841 SM_NO_VDEVID, tx); 3842 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3843 SM_NO_VDEVID, tx); 3844 mutex_enter(&msp->ms_lock); 3845 3846 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3847 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3848 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3849 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3850 "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa), 3851 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 3852 range_tree_space(msp->ms_unflushed_allocs), 3853 range_tree_space(msp->ms_unflushed_frees), 3854 (sm_len_after - sm_len_before)); 3855 } 3856 3857 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3858 metaslab_unflushed_changes_memused(msp)); 3859 spa->spa_unflushed_stats.sus_memused -= 3860 metaslab_unflushed_changes_memused(msp); 3861 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3862 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3863 3864 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3865 metaslab_verify_weight_and_frag(msp); 3866 3867 metaslab_flush_update(msp, tx); 3868 3869 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3870 metaslab_verify_weight_and_frag(msp); 3871 3872 msp->ms_flushing = B_FALSE; 3873 cv_broadcast(&msp->ms_flush_cv); 3874 return (B_TRUE); 3875 } 3876 3877 /* 3878 * Write a metaslab to disk in the context of the specified transaction group. 3879 */ 3880 void 3881 metaslab_sync(metaslab_t *msp, uint64_t txg) 3882 { 3883 metaslab_group_t *mg = msp->ms_group; 3884 vdev_t *vd = mg->mg_vd; 3885 spa_t *spa = vd->vdev_spa; 3886 objset_t *mos = spa_meta_objset(spa); 3887 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3888 dmu_tx_t *tx; 3889 3890 ASSERT(!vd->vdev_ishole); 3891 3892 /* 3893 * This metaslab has just been added so there's no work to do now. 3894 */ 3895 if (msp->ms_freeing == NULL) { 3896 ASSERT3P(alloctree, ==, NULL); 3897 return; 3898 } 3899 3900 ASSERT3P(alloctree, !=, NULL); 3901 ASSERT3P(msp->ms_freeing, !=, NULL); 3902 ASSERT3P(msp->ms_freed, !=, NULL); 3903 ASSERT3P(msp->ms_checkpointing, !=, NULL); 3904 ASSERT3P(msp->ms_trim, !=, NULL); 3905 3906 /* 3907 * Normally, we don't want to process a metaslab if there are no 3908 * allocations or frees to perform. However, if the metaslab is being 3909 * forced to condense, it's loaded and we're not beyond the final 3910 * dirty txg, we need to let it through. Not condensing beyond the 3911 * final dirty txg prevents an issue where metaslabs that need to be 3912 * condensed but were loaded for other reasons could cause a panic 3913 * here. By only checking the txg in that branch of the conditional, 3914 * we preserve the utility of the VERIFY statements in all other 3915 * cases. 3916 */ 3917 if (range_tree_is_empty(alloctree) && 3918 range_tree_is_empty(msp->ms_freeing) && 3919 range_tree_is_empty(msp->ms_checkpointing) && 3920 !(msp->ms_loaded && msp->ms_condense_wanted && 3921 txg <= spa_final_dirty_txg(spa))) 3922 return; 3923 3924 3925 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3926 3927 /* 3928 * The only state that can actually be changing concurrently 3929 * with metaslab_sync() is the metaslab's ms_allocatable. No 3930 * other thread can be modifying this txg's alloc, freeing, 3931 * freed, or space_map_phys_t. We drop ms_lock whenever we 3932 * could call into the DMU, because the DMU can call down to 3933 * us (e.g. via zio_free()) at any time. 3934 * 3935 * The spa_vdev_remove_thread() can be reading metaslab state 3936 * concurrently, and it is locked out by the ms_sync_lock. 3937 * Note that the ms_lock is insufficient for this, because it 3938 * is dropped by space_map_write(). 3939 */ 3940 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3941 3942 /* 3943 * Generate a log space map if one doesn't exist already. 3944 */ 3945 spa_generate_syncing_log_sm(spa, tx); 3946 3947 if (msp->ms_sm == NULL) { 3948 uint64_t new_object = space_map_alloc(mos, 3949 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3950 zfs_metaslab_sm_blksz_with_log : 3951 zfs_metaslab_sm_blksz_no_log, tx); 3952 VERIFY3U(new_object, !=, 0); 3953 3954 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3955 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3956 3957 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 3958 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 3959 ASSERT(msp->ms_sm != NULL); 3960 3961 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3962 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3963 ASSERT0(metaslab_allocated_space(msp)); 3964 } 3965 3966 if (metaslab_unflushed_txg(msp) == 0 && 3967 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 3968 ASSERT(spa_syncing_log_sm(spa) != NULL); 3969 3970 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3971 spa_log_sm_increment_current_mscount(spa); 3972 spa_log_summary_add_flushed_metaslab(spa); 3973 3974 ASSERT(msp->ms_sm != NULL); 3975 mutex_enter(&spa->spa_flushed_ms_lock); 3976 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3977 mutex_exit(&spa->spa_flushed_ms_lock); 3978 3979 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3980 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3981 } 3982 3983 if (!range_tree_is_empty(msp->ms_checkpointing) && 3984 vd->vdev_checkpoint_sm == NULL) { 3985 ASSERT(spa_has_checkpoint(spa)); 3986 3987 uint64_t new_object = space_map_alloc(mos, 3988 zfs_vdev_standard_sm_blksz, tx); 3989 VERIFY3U(new_object, !=, 0); 3990 3991 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 3992 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 3993 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3994 3995 /* 3996 * We save the space map object as an entry in vdev_top_zap 3997 * so it can be retrieved when the pool is reopened after an 3998 * export or through zdb. 3999 */ 4000 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4001 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4002 sizeof (new_object), 1, &new_object, tx)); 4003 } 4004 4005 mutex_enter(&msp->ms_sync_lock); 4006 mutex_enter(&msp->ms_lock); 4007 4008 /* 4009 * Note: metaslab_condense() clears the space map's histogram. 4010 * Therefore we must verify and remove this histogram before 4011 * condensing. 4012 */ 4013 metaslab_group_histogram_verify(mg); 4014 metaslab_class_histogram_verify(mg->mg_class); 4015 metaslab_group_histogram_remove(mg, msp); 4016 4017 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4018 metaslab_should_condense(msp)) 4019 metaslab_condense(msp, tx); 4020 4021 /* 4022 * We'll be going to disk to sync our space accounting, thus we 4023 * drop the ms_lock during that time so allocations coming from 4024 * open-context (ZIL) for future TXGs do not block. 4025 */ 4026 mutex_exit(&msp->ms_lock); 4027 space_map_t *log_sm = spa_syncing_log_sm(spa); 4028 if (log_sm != NULL) { 4029 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4030 4031 space_map_write(log_sm, alloctree, SM_ALLOC, 4032 vd->vdev_id, tx); 4033 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4034 vd->vdev_id, tx); 4035 mutex_enter(&msp->ms_lock); 4036 4037 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4038 metaslab_unflushed_changes_memused(msp)); 4039 spa->spa_unflushed_stats.sus_memused -= 4040 metaslab_unflushed_changes_memused(msp); 4041 range_tree_remove_xor_add(alloctree, 4042 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4043 range_tree_remove_xor_add(msp->ms_freeing, 4044 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4045 spa->spa_unflushed_stats.sus_memused += 4046 metaslab_unflushed_changes_memused(msp); 4047 } else { 4048 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4049 4050 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4051 SM_NO_VDEVID, tx); 4052 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4053 SM_NO_VDEVID, tx); 4054 mutex_enter(&msp->ms_lock); 4055 } 4056 4057 msp->ms_allocated_space += range_tree_space(alloctree); 4058 ASSERT3U(msp->ms_allocated_space, >=, 4059 range_tree_space(msp->ms_freeing)); 4060 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4061 4062 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4063 ASSERT(spa_has_checkpoint(spa)); 4064 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4065 4066 /* 4067 * Since we are doing writes to disk and the ms_checkpointing 4068 * tree won't be changing during that time, we drop the 4069 * ms_lock while writing to the checkpoint space map, for the 4070 * same reason mentioned above. 4071 */ 4072 mutex_exit(&msp->ms_lock); 4073 space_map_write(vd->vdev_checkpoint_sm, 4074 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4075 mutex_enter(&msp->ms_lock); 4076 4077 spa->spa_checkpoint_info.sci_dspace += 4078 range_tree_space(msp->ms_checkpointing); 4079 vd->vdev_stat.vs_checkpoint_space += 4080 range_tree_space(msp->ms_checkpointing); 4081 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4082 -space_map_allocated(vd->vdev_checkpoint_sm)); 4083 4084 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4085 } 4086 4087 if (msp->ms_loaded) { 4088 /* 4089 * When the space map is loaded, we have an accurate 4090 * histogram in the range tree. This gives us an opportunity 4091 * to bring the space map's histogram up-to-date so we clear 4092 * it first before updating it. 4093 */ 4094 space_map_histogram_clear(msp->ms_sm); 4095 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4096 4097 /* 4098 * Since we've cleared the histogram we need to add back 4099 * any free space that has already been processed, plus 4100 * any deferred space. This allows the on-disk histogram 4101 * to accurately reflect all free space even if some space 4102 * is not yet available for allocation (i.e. deferred). 4103 */ 4104 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4105 4106 /* 4107 * Add back any deferred free space that has not been 4108 * added back into the in-core free tree yet. This will 4109 * ensure that we don't end up with a space map histogram 4110 * that is completely empty unless the metaslab is fully 4111 * allocated. 4112 */ 4113 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4114 space_map_histogram_add(msp->ms_sm, 4115 msp->ms_defer[t], tx); 4116 } 4117 } 4118 4119 /* 4120 * Always add the free space from this sync pass to the space 4121 * map histogram. We want to make sure that the on-disk histogram 4122 * accounts for all free space. If the space map is not loaded, 4123 * then we will lose some accuracy but will correct it the next 4124 * time we load the space map. 4125 */ 4126 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4127 metaslab_aux_histograms_update(msp); 4128 4129 metaslab_group_histogram_add(mg, msp); 4130 metaslab_group_histogram_verify(mg); 4131 metaslab_class_histogram_verify(mg->mg_class); 4132 4133 /* 4134 * For sync pass 1, we avoid traversing this txg's free range tree 4135 * and instead will just swap the pointers for freeing and freed. 4136 * We can safely do this since the freed_tree is guaranteed to be 4137 * empty on the initial pass. 4138 * 4139 * Keep in mind that even if we are currently using a log spacemap 4140 * we want current frees to end up in the ms_allocatable (but not 4141 * get appended to the ms_sm) so their ranges can be reused as usual. 4142 */ 4143 if (spa_sync_pass(spa) == 1) { 4144 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4145 ASSERT0(msp->ms_allocated_this_txg); 4146 } else { 4147 range_tree_vacate(msp->ms_freeing, 4148 range_tree_add, msp->ms_freed); 4149 } 4150 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4151 range_tree_vacate(alloctree, NULL, NULL); 4152 4153 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4154 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4155 & TXG_MASK])); 4156 ASSERT0(range_tree_space(msp->ms_freeing)); 4157 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4158 4159 mutex_exit(&msp->ms_lock); 4160 4161 /* 4162 * Verify that the space map object ID has been recorded in the 4163 * vdev_ms_array. 4164 */ 4165 uint64_t object; 4166 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4167 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4168 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4169 4170 mutex_exit(&msp->ms_sync_lock); 4171 dmu_tx_commit(tx); 4172 } 4173 4174 static void 4175 metaslab_evict(metaslab_t *msp, uint64_t txg) 4176 { 4177 if (!msp->ms_loaded || msp->ms_disabled != 0) 4178 return; 4179 4180 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4181 VERIFY0(range_tree_space( 4182 msp->ms_allocating[(txg + t) & TXG_MASK])); 4183 } 4184 if (msp->ms_allocator != -1) 4185 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4186 4187 if (!metaslab_debug_unload) 4188 metaslab_unload(msp); 4189 } 4190 4191 /* 4192 * Called after a transaction group has completely synced to mark 4193 * all of the metaslab's free space as usable. 4194 */ 4195 void 4196 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4197 { 4198 metaslab_group_t *mg = msp->ms_group; 4199 vdev_t *vd = mg->mg_vd; 4200 spa_t *spa = vd->vdev_spa; 4201 range_tree_t **defer_tree; 4202 int64_t alloc_delta, defer_delta; 4203 boolean_t defer_allowed = B_TRUE; 4204 4205 ASSERT(!vd->vdev_ishole); 4206 4207 mutex_enter(&msp->ms_lock); 4208 4209 /* 4210 * If this metaslab is just becoming available, initialize its 4211 * range trees and add its capacity to the vdev. 4212 */ 4213 if (msp->ms_freed == NULL) { 4214 range_seg_type_t type; 4215 uint64_t shift, start; 4216 type = metaslab_calculate_range_tree_type(vd, msp, &start, 4217 &shift); 4218 4219 for (int t = 0; t < TXG_SIZE; t++) { 4220 ASSERT(msp->ms_allocating[t] == NULL); 4221 4222 msp->ms_allocating[t] = range_tree_create(NULL, type, 4223 NULL, start, shift); 4224 } 4225 4226 ASSERT3P(msp->ms_freeing, ==, NULL); 4227 msp->ms_freeing = range_tree_create(NULL, type, NULL, start, 4228 shift); 4229 4230 ASSERT3P(msp->ms_freed, ==, NULL); 4231 msp->ms_freed = range_tree_create(NULL, type, NULL, start, 4232 shift); 4233 4234 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4235 ASSERT3P(msp->ms_defer[t], ==, NULL); 4236 msp->ms_defer[t] = range_tree_create(NULL, type, NULL, 4237 start, shift); 4238 } 4239 4240 ASSERT3P(msp->ms_checkpointing, ==, NULL); 4241 msp->ms_checkpointing = range_tree_create(NULL, type, NULL, 4242 start, shift); 4243 4244 ASSERT3P(msp->ms_unflushed_allocs, ==, NULL); 4245 msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL, 4246 start, shift); 4247 4248 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 4249 mrap->mra_bt = &msp->ms_unflushed_frees_by_size; 4250 mrap->mra_floor_shift = metaslab_by_size_min_shift; 4251 ASSERT3P(msp->ms_unflushed_frees, ==, NULL); 4252 msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 4253 type, mrap, start, shift); 4254 4255 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4256 } 4257 ASSERT0(range_tree_space(msp->ms_freeing)); 4258 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4259 4260 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4261 4262 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4263 metaslab_class_get_alloc(spa_normal_class(spa)); 4264 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4265 defer_allowed = B_FALSE; 4266 } 4267 4268 defer_delta = 0; 4269 alloc_delta = msp->ms_allocated_this_txg - 4270 range_tree_space(msp->ms_freed); 4271 4272 if (defer_allowed) { 4273 defer_delta = range_tree_space(msp->ms_freed) - 4274 range_tree_space(*defer_tree); 4275 } else { 4276 defer_delta -= range_tree_space(*defer_tree); 4277 } 4278 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4279 defer_delta, 0); 4280 4281 if (spa_syncing_log_sm(spa) == NULL) { 4282 /* 4283 * If there's a metaslab_load() in progress and we don't have 4284 * a log space map, it means that we probably wrote to the 4285 * metaslab's space map. If this is the case, we need to 4286 * make sure that we wait for the load to complete so that we 4287 * have a consistent view at the in-core side of the metaslab. 4288 */ 4289 metaslab_load_wait(msp); 4290 } else { 4291 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4292 } 4293 4294 /* 4295 * When auto-trimming is enabled, free ranges which are added to 4296 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4297 * periodically consumed by the vdev_autotrim_thread() which issues 4298 * trims for all ranges and then vacates the tree. The ms_trim tree 4299 * can be discarded at any time with the sole consequence of recent 4300 * frees not being trimmed. 4301 */ 4302 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4303 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4304 if (!defer_allowed) { 4305 range_tree_walk(msp->ms_freed, range_tree_add, 4306 msp->ms_trim); 4307 } 4308 } else { 4309 range_tree_vacate(msp->ms_trim, NULL, NULL); 4310 } 4311 4312 /* 4313 * Move the frees from the defer_tree back to the free 4314 * range tree (if it's loaded). Swap the freed_tree and 4315 * the defer_tree -- this is safe to do because we've 4316 * just emptied out the defer_tree. 4317 */ 4318 range_tree_vacate(*defer_tree, 4319 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4320 if (defer_allowed) { 4321 range_tree_swap(&msp->ms_freed, defer_tree); 4322 } else { 4323 range_tree_vacate(msp->ms_freed, 4324 msp->ms_loaded ? range_tree_add : NULL, 4325 msp->ms_allocatable); 4326 } 4327 4328 msp->ms_synced_length = space_map_length(msp->ms_sm); 4329 4330 msp->ms_deferspace += defer_delta; 4331 ASSERT3S(msp->ms_deferspace, >=, 0); 4332 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4333 if (msp->ms_deferspace != 0) { 4334 /* 4335 * Keep syncing this metaslab until all deferred frees 4336 * are back in circulation. 4337 */ 4338 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4339 } 4340 metaslab_aux_histograms_update_done(msp, defer_allowed); 4341 4342 if (msp->ms_new) { 4343 msp->ms_new = B_FALSE; 4344 mutex_enter(&mg->mg_lock); 4345 mg->mg_ms_ready++; 4346 mutex_exit(&mg->mg_lock); 4347 } 4348 4349 /* 4350 * Re-sort metaslab within its group now that we've adjusted 4351 * its allocatable space. 4352 */ 4353 metaslab_recalculate_weight_and_sort(msp); 4354 4355 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4356 ASSERT0(range_tree_space(msp->ms_freeing)); 4357 ASSERT0(range_tree_space(msp->ms_freed)); 4358 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4359 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4360 msp->ms_allocated_this_txg = 0; 4361 mutex_exit(&msp->ms_lock); 4362 } 4363 4364 void 4365 metaslab_sync_reassess(metaslab_group_t *mg) 4366 { 4367 spa_t *spa = mg->mg_class->mc_spa; 4368 4369 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4370 metaslab_group_alloc_update(mg); 4371 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4372 4373 /* 4374 * Preload the next potential metaslabs but only on active 4375 * metaslab groups. We can get into a state where the metaslab 4376 * is no longer active since we dirty metaslabs as we remove a 4377 * a device, thus potentially making the metaslab group eligible 4378 * for preloading. 4379 */ 4380 if (mg->mg_activation_count > 0) { 4381 metaslab_group_preload(mg); 4382 } 4383 spa_config_exit(spa, SCL_ALLOC, FTAG); 4384 } 4385 4386 /* 4387 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4388 * the same vdev as an existing DVA of this BP, then try to allocate it 4389 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4390 */ 4391 static boolean_t 4392 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4393 { 4394 uint64_t dva_ms_id; 4395 4396 if (DVA_GET_ASIZE(dva) == 0) 4397 return (B_TRUE); 4398 4399 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4400 return (B_TRUE); 4401 4402 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4403 4404 return (msp->ms_id != dva_ms_id); 4405 } 4406 4407 /* 4408 * ========================================================================== 4409 * Metaslab allocation tracing facility 4410 * ========================================================================== 4411 */ 4412 4413 /* 4414 * Add an allocation trace element to the allocation tracing list. 4415 */ 4416 static void 4417 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4418 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4419 int allocator) 4420 { 4421 metaslab_alloc_trace_t *mat; 4422 4423 if (!metaslab_trace_enabled) 4424 return; 4425 4426 /* 4427 * When the tracing list reaches its maximum we remove 4428 * the second element in the list before adding a new one. 4429 * By removing the second element we preserve the original 4430 * entry as a clue to what allocations steps have already been 4431 * performed. 4432 */ 4433 if (zal->zal_size == metaslab_trace_max_entries) { 4434 metaslab_alloc_trace_t *mat_next; 4435 #ifdef ZFS_DEBUG 4436 panic("too many entries in allocation list"); 4437 #endif 4438 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4439 zal->zal_size--; 4440 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4441 list_remove(&zal->zal_list, mat_next); 4442 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4443 } 4444 4445 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4446 list_link_init(&mat->mat_list_node); 4447 mat->mat_mg = mg; 4448 mat->mat_msp = msp; 4449 mat->mat_size = psize; 4450 mat->mat_dva_id = dva_id; 4451 mat->mat_offset = offset; 4452 mat->mat_weight = 0; 4453 mat->mat_allocator = allocator; 4454 4455 if (msp != NULL) 4456 mat->mat_weight = msp->ms_weight; 4457 4458 /* 4459 * The list is part of the zio so locking is not required. Only 4460 * a single thread will perform allocations for a given zio. 4461 */ 4462 list_insert_tail(&zal->zal_list, mat); 4463 zal->zal_size++; 4464 4465 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4466 } 4467 4468 void 4469 metaslab_trace_init(zio_alloc_list_t *zal) 4470 { 4471 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4472 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4473 zal->zal_size = 0; 4474 } 4475 4476 void 4477 metaslab_trace_fini(zio_alloc_list_t *zal) 4478 { 4479 metaslab_alloc_trace_t *mat; 4480 4481 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4482 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4483 list_destroy(&zal->zal_list); 4484 zal->zal_size = 0; 4485 } 4486 4487 /* 4488 * ========================================================================== 4489 * Metaslab block operations 4490 * ========================================================================== 4491 */ 4492 4493 static void 4494 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4495 int allocator) 4496 { 4497 if (!(flags & METASLAB_ASYNC_ALLOC) || 4498 (flags & METASLAB_DONT_THROTTLE)) 4499 return; 4500 4501 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4502 if (!mg->mg_class->mc_alloc_throttle_enabled) 4503 return; 4504 4505 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4506 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4507 } 4508 4509 static void 4510 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4511 { 4512 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4513 metaslab_class_allocator_t *mca = 4514 &mg->mg_class->mc_allocator[allocator]; 4515 uint64_t max = mg->mg_max_alloc_queue_depth; 4516 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4517 while (cur < max) { 4518 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4519 cur, cur + 1) == cur) { 4520 atomic_inc_64(&mca->mca_alloc_max_slots); 4521 return; 4522 } 4523 cur = mga->mga_cur_max_alloc_queue_depth; 4524 } 4525 } 4526 4527 void 4528 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4529 int allocator, boolean_t io_complete) 4530 { 4531 if (!(flags & METASLAB_ASYNC_ALLOC) || 4532 (flags & METASLAB_DONT_THROTTLE)) 4533 return; 4534 4535 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4536 if (!mg->mg_class->mc_alloc_throttle_enabled) 4537 return; 4538 4539 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4540 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4541 if (io_complete) 4542 metaslab_group_increment_qdepth(mg, allocator); 4543 } 4544 4545 void 4546 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4547 int allocator) 4548 { 4549 #ifdef ZFS_DEBUG 4550 const dva_t *dva = bp->blk_dva; 4551 int ndvas = BP_GET_NDVAS(bp); 4552 4553 for (int d = 0; d < ndvas; d++) { 4554 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4555 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4556 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4557 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4558 } 4559 #endif 4560 } 4561 4562 static uint64_t 4563 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4564 { 4565 uint64_t start; 4566 range_tree_t *rt = msp->ms_allocatable; 4567 metaslab_class_t *mc = msp->ms_group->mg_class; 4568 4569 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4570 VERIFY(!msp->ms_condensing); 4571 VERIFY0(msp->ms_disabled); 4572 4573 start = mc->mc_ops->msop_alloc(msp, size); 4574 if (start != -1ULL) { 4575 metaslab_group_t *mg = msp->ms_group; 4576 vdev_t *vd = mg->mg_vd; 4577 4578 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4579 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4580 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4581 range_tree_remove(rt, start, size); 4582 range_tree_clear(msp->ms_trim, start, size); 4583 4584 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4585 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4586 4587 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4588 msp->ms_allocating_total += size; 4589 4590 /* Track the last successful allocation */ 4591 msp->ms_alloc_txg = txg; 4592 metaslab_verify_space(msp, txg); 4593 } 4594 4595 /* 4596 * Now that we've attempted the allocation we need to update the 4597 * metaslab's maximum block size since it may have changed. 4598 */ 4599 msp->ms_max_size = metaslab_largest_allocatable(msp); 4600 return (start); 4601 } 4602 4603 /* 4604 * Find the metaslab with the highest weight that is less than what we've 4605 * already tried. In the common case, this means that we will examine each 4606 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4607 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4608 * activated by another thread, and we fail to allocate from the metaslab we 4609 * have selected, we may not try the newly-activated metaslab, and instead 4610 * activate another metaslab. This is not optimal, but generally does not cause 4611 * any problems (a possible exception being if every metaslab is completely full 4612 * except for the newly-activated metaslab which we fail to examine). 4613 */ 4614 static metaslab_t * 4615 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4616 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4617 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4618 boolean_t *was_active) 4619 { 4620 avl_index_t idx; 4621 avl_tree_t *t = &mg->mg_metaslab_tree; 4622 metaslab_t *msp = avl_find(t, search, &idx); 4623 if (msp == NULL) 4624 msp = avl_nearest(t, idx, AVL_AFTER); 4625 4626 int tries = 0; 4627 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4628 int i; 4629 4630 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4631 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4632 return (NULL); 4633 } 4634 tries++; 4635 4636 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4637 metaslab_trace_add(zal, mg, msp, asize, d, 4638 TRACE_TOO_SMALL, allocator); 4639 continue; 4640 } 4641 4642 /* 4643 * If the selected metaslab is condensing or disabled, 4644 * skip it. 4645 */ 4646 if (msp->ms_condensing || msp->ms_disabled > 0) 4647 continue; 4648 4649 *was_active = msp->ms_allocator != -1; 4650 /* 4651 * If we're activating as primary, this is our first allocation 4652 * from this disk, so we don't need to check how close we are. 4653 * If the metaslab under consideration was already active, 4654 * we're getting desperate enough to steal another allocator's 4655 * metaslab, so we still don't care about distances. 4656 */ 4657 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4658 break; 4659 4660 for (i = 0; i < d; i++) { 4661 if (want_unique && 4662 !metaslab_is_unique(msp, &dva[i])) 4663 break; /* try another metaslab */ 4664 } 4665 if (i == d) 4666 break; 4667 } 4668 4669 if (msp != NULL) { 4670 search->ms_weight = msp->ms_weight; 4671 search->ms_start = msp->ms_start + 1; 4672 search->ms_allocator = msp->ms_allocator; 4673 search->ms_primary = msp->ms_primary; 4674 } 4675 return (msp); 4676 } 4677 4678 static void 4679 metaslab_active_mask_verify(metaslab_t *msp) 4680 { 4681 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4682 4683 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4684 return; 4685 4686 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4687 return; 4688 4689 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4690 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4691 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4692 VERIFY3S(msp->ms_allocator, !=, -1); 4693 VERIFY(msp->ms_primary); 4694 return; 4695 } 4696 4697 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4698 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4699 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4700 VERIFY3S(msp->ms_allocator, !=, -1); 4701 VERIFY(!msp->ms_primary); 4702 return; 4703 } 4704 4705 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4706 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4707 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4708 VERIFY3S(msp->ms_allocator, ==, -1); 4709 return; 4710 } 4711 } 4712 4713 /* ARGSUSED */ 4714 static uint64_t 4715 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4716 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4717 int allocator, boolean_t try_hard) 4718 { 4719 metaslab_t *msp = NULL; 4720 uint64_t offset = -1ULL; 4721 4722 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4723 for (int i = 0; i < d; i++) { 4724 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4725 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4726 activation_weight = METASLAB_WEIGHT_SECONDARY; 4727 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4728 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4729 activation_weight = METASLAB_WEIGHT_CLAIM; 4730 break; 4731 } 4732 } 4733 4734 /* 4735 * If we don't have enough metaslabs active to fill the entire array, we 4736 * just use the 0th slot. 4737 */ 4738 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4739 allocator = 0; 4740 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4741 4742 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4743 4744 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4745 search->ms_weight = UINT64_MAX; 4746 search->ms_start = 0; 4747 /* 4748 * At the end of the metaslab tree are the already-active metaslabs, 4749 * first the primaries, then the secondaries. When we resume searching 4750 * through the tree, we need to consider ms_allocator and ms_primary so 4751 * we start in the location right after where we left off, and don't 4752 * accidentally loop forever considering the same metaslabs. 4753 */ 4754 search->ms_allocator = -1; 4755 search->ms_primary = B_TRUE; 4756 for (;;) { 4757 boolean_t was_active = B_FALSE; 4758 4759 mutex_enter(&mg->mg_lock); 4760 4761 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4762 mga->mga_primary != NULL) { 4763 msp = mga->mga_primary; 4764 4765 /* 4766 * Even though we don't hold the ms_lock for the 4767 * primary metaslab, those fields should not 4768 * change while we hold the mg_lock. Thus it is 4769 * safe to make assertions on them. 4770 */ 4771 ASSERT(msp->ms_primary); 4772 ASSERT3S(msp->ms_allocator, ==, allocator); 4773 ASSERT(msp->ms_loaded); 4774 4775 was_active = B_TRUE; 4776 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4777 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4778 mga->mga_secondary != NULL) { 4779 msp = mga->mga_secondary; 4780 4781 /* 4782 * See comment above about the similar assertions 4783 * for the primary metaslab. 4784 */ 4785 ASSERT(!msp->ms_primary); 4786 ASSERT3S(msp->ms_allocator, ==, allocator); 4787 ASSERT(msp->ms_loaded); 4788 4789 was_active = B_TRUE; 4790 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4791 } else { 4792 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4793 want_unique, asize, allocator, try_hard, zal, 4794 search, &was_active); 4795 } 4796 4797 mutex_exit(&mg->mg_lock); 4798 if (msp == NULL) { 4799 kmem_free(search, sizeof (*search)); 4800 return (-1ULL); 4801 } 4802 mutex_enter(&msp->ms_lock); 4803 4804 metaslab_active_mask_verify(msp); 4805 4806 /* 4807 * This code is disabled out because of issues with 4808 * tracepoints in non-gpl kernel modules. 4809 */ 4810 #if 0 4811 DTRACE_PROBE3(ms__activation__attempt, 4812 metaslab_t *, msp, uint64_t, activation_weight, 4813 boolean_t, was_active); 4814 #endif 4815 4816 /* 4817 * Ensure that the metaslab we have selected is still 4818 * capable of handling our request. It's possible that 4819 * another thread may have changed the weight while we 4820 * were blocked on the metaslab lock. We check the 4821 * active status first to see if we need to set_selected_txg 4822 * a new metaslab. 4823 */ 4824 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4825 ASSERT3S(msp->ms_allocator, ==, -1); 4826 mutex_exit(&msp->ms_lock); 4827 continue; 4828 } 4829 4830 /* 4831 * If the metaslab was activated for another allocator 4832 * while we were waiting in the ms_lock above, or it's 4833 * a primary and we're seeking a secondary (or vice versa), 4834 * we go back and select a new metaslab. 4835 */ 4836 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4837 (msp->ms_allocator != -1) && 4838 (msp->ms_allocator != allocator || ((activation_weight == 4839 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4840 ASSERT(msp->ms_loaded); 4841 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4842 msp->ms_allocator != -1); 4843 mutex_exit(&msp->ms_lock); 4844 continue; 4845 } 4846 4847 /* 4848 * This metaslab was used for claiming regions allocated 4849 * by the ZIL during pool import. Once these regions are 4850 * claimed we don't need to keep the CLAIM bit set 4851 * anymore. Passivate this metaslab to zero its activation 4852 * mask. 4853 */ 4854 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4855 activation_weight != METASLAB_WEIGHT_CLAIM) { 4856 ASSERT(msp->ms_loaded); 4857 ASSERT3S(msp->ms_allocator, ==, -1); 4858 metaslab_passivate(msp, msp->ms_weight & 4859 ~METASLAB_WEIGHT_CLAIM); 4860 mutex_exit(&msp->ms_lock); 4861 continue; 4862 } 4863 4864 metaslab_set_selected_txg(msp, txg); 4865 4866 int activation_error = 4867 metaslab_activate(msp, allocator, activation_weight); 4868 metaslab_active_mask_verify(msp); 4869 4870 /* 4871 * If the metaslab was activated by another thread for 4872 * another allocator or activation_weight (EBUSY), or it 4873 * failed because another metaslab was assigned as primary 4874 * for this allocator (EEXIST) we continue using this 4875 * metaslab for our allocation, rather than going on to a 4876 * worse metaslab (we waited for that metaslab to be loaded 4877 * after all). 4878 * 4879 * If the activation failed due to an I/O error or ENOSPC we 4880 * skip to the next metaslab. 4881 */ 4882 boolean_t activated; 4883 if (activation_error == 0) { 4884 activated = B_TRUE; 4885 } else if (activation_error == EBUSY || 4886 activation_error == EEXIST) { 4887 activated = B_FALSE; 4888 } else { 4889 mutex_exit(&msp->ms_lock); 4890 continue; 4891 } 4892 ASSERT(msp->ms_loaded); 4893 4894 /* 4895 * Now that we have the lock, recheck to see if we should 4896 * continue to use this metaslab for this allocation. The 4897 * the metaslab is now loaded so metaslab_should_allocate() 4898 * can accurately determine if the allocation attempt should 4899 * proceed. 4900 */ 4901 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4902 /* Passivate this metaslab and select a new one. */ 4903 metaslab_trace_add(zal, mg, msp, asize, d, 4904 TRACE_TOO_SMALL, allocator); 4905 goto next; 4906 } 4907 4908 /* 4909 * If this metaslab is currently condensing then pick again 4910 * as we can't manipulate this metaslab until it's committed 4911 * to disk. If this metaslab is being initialized, we shouldn't 4912 * allocate from it since the allocated region might be 4913 * overwritten after allocation. 4914 */ 4915 if (msp->ms_condensing) { 4916 metaslab_trace_add(zal, mg, msp, asize, d, 4917 TRACE_CONDENSING, allocator); 4918 if (activated) { 4919 metaslab_passivate(msp, msp->ms_weight & 4920 ~METASLAB_ACTIVE_MASK); 4921 } 4922 mutex_exit(&msp->ms_lock); 4923 continue; 4924 } else if (msp->ms_disabled > 0) { 4925 metaslab_trace_add(zal, mg, msp, asize, d, 4926 TRACE_DISABLED, allocator); 4927 if (activated) { 4928 metaslab_passivate(msp, msp->ms_weight & 4929 ~METASLAB_ACTIVE_MASK); 4930 } 4931 mutex_exit(&msp->ms_lock); 4932 continue; 4933 } 4934 4935 offset = metaslab_block_alloc(msp, asize, txg); 4936 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4937 4938 if (offset != -1ULL) { 4939 /* Proactively passivate the metaslab, if needed */ 4940 if (activated) 4941 metaslab_segment_may_passivate(msp); 4942 break; 4943 } 4944 next: 4945 ASSERT(msp->ms_loaded); 4946 4947 /* 4948 * This code is disabled out because of issues with 4949 * tracepoints in non-gpl kernel modules. 4950 */ 4951 #if 0 4952 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4953 uint64_t, asize); 4954 #endif 4955 4956 /* 4957 * We were unable to allocate from this metaslab so determine 4958 * a new weight for this metaslab. Now that we have loaded 4959 * the metaslab we can provide a better hint to the metaslab 4960 * selector. 4961 * 4962 * For space-based metaslabs, we use the maximum block size. 4963 * This information is only available when the metaslab 4964 * is loaded and is more accurate than the generic free 4965 * space weight that was calculated by metaslab_weight(). 4966 * This information allows us to quickly compare the maximum 4967 * available allocation in the metaslab to the allocation 4968 * size being requested. 4969 * 4970 * For segment-based metaslabs, determine the new weight 4971 * based on the highest bucket in the range tree. We 4972 * explicitly use the loaded segment weight (i.e. the range 4973 * tree histogram) since it contains the space that is 4974 * currently available for allocation and is accurate 4975 * even within a sync pass. 4976 */ 4977 uint64_t weight; 4978 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4979 weight = metaslab_largest_allocatable(msp); 4980 WEIGHT_SET_SPACEBASED(weight); 4981 } else { 4982 weight = metaslab_weight_from_range_tree(msp); 4983 } 4984 4985 if (activated) { 4986 metaslab_passivate(msp, weight); 4987 } else { 4988 /* 4989 * For the case where we use the metaslab that is 4990 * active for another allocator we want to make 4991 * sure that we retain the activation mask. 4992 * 4993 * Note that we could attempt to use something like 4994 * metaslab_recalculate_weight_and_sort() that 4995 * retains the activation mask here. That function 4996 * uses metaslab_weight() to set the weight though 4997 * which is not as accurate as the calculations 4998 * above. 4999 */ 5000 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5001 metaslab_group_sort(mg, msp, weight); 5002 } 5003 metaslab_active_mask_verify(msp); 5004 5005 /* 5006 * We have just failed an allocation attempt, check 5007 * that metaslab_should_allocate() agrees. Otherwise, 5008 * we may end up in an infinite loop retrying the same 5009 * metaslab. 5010 */ 5011 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5012 5013 mutex_exit(&msp->ms_lock); 5014 } 5015 mutex_exit(&msp->ms_lock); 5016 kmem_free(search, sizeof (*search)); 5017 return (offset); 5018 } 5019 5020 static uint64_t 5021 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5022 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5023 int allocator, boolean_t try_hard) 5024 { 5025 uint64_t offset; 5026 ASSERT(mg->mg_initialized); 5027 5028 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5029 dva, d, allocator, try_hard); 5030 5031 mutex_enter(&mg->mg_lock); 5032 if (offset == -1ULL) { 5033 mg->mg_failed_allocations++; 5034 metaslab_trace_add(zal, mg, NULL, asize, d, 5035 TRACE_GROUP_FAILURE, allocator); 5036 if (asize == SPA_GANGBLOCKSIZE) { 5037 /* 5038 * This metaslab group was unable to allocate 5039 * the minimum gang block size so it must be out of 5040 * space. We must notify the allocation throttle 5041 * to start skipping allocation attempts to this 5042 * metaslab group until more space becomes available. 5043 * Note: this failure cannot be caused by the 5044 * allocation throttle since the allocation throttle 5045 * is only responsible for skipping devices and 5046 * not failing block allocations. 5047 */ 5048 mg->mg_no_free_space = B_TRUE; 5049 } 5050 } 5051 mg->mg_allocations++; 5052 mutex_exit(&mg->mg_lock); 5053 return (offset); 5054 } 5055 5056 /* 5057 * Allocate a block for the specified i/o. 5058 */ 5059 int 5060 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5061 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5062 zio_alloc_list_t *zal, int allocator) 5063 { 5064 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5065 metaslab_group_t *mg, *fast_mg, *rotor; 5066 vdev_t *vd; 5067 boolean_t try_hard = B_FALSE; 5068 5069 ASSERT(!DVA_IS_VALID(&dva[d])); 5070 5071 /* 5072 * For testing, make some blocks above a certain size be gang blocks. 5073 * This will result in more split blocks when using device removal, 5074 * and a large number of split blocks coupled with ztest-induced 5075 * damage can result in extremely long reconstruction times. This 5076 * will also test spilling from special to normal. 5077 */ 5078 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) { 5079 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5080 allocator); 5081 return (SET_ERROR(ENOSPC)); 5082 } 5083 5084 /* 5085 * Start at the rotor and loop through all mgs until we find something. 5086 * Note that there's no locking on mca_rotor or mca_aliquot because 5087 * nothing actually breaks if we miss a few updates -- we just won't 5088 * allocate quite as evenly. It all balances out over time. 5089 * 5090 * If we are doing ditto or log blocks, try to spread them across 5091 * consecutive vdevs. If we're forced to reuse a vdev before we've 5092 * allocated all of our ditto blocks, then try and spread them out on 5093 * that vdev as much as possible. If it turns out to not be possible, 5094 * gradually lower our standards until anything becomes acceptable. 5095 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5096 * gives us hope of containing our fault domains to something we're 5097 * able to reason about. Otherwise, any two top-level vdev failures 5098 * will guarantee the loss of data. With consecutive allocation, 5099 * only two adjacent top-level vdev failures will result in data loss. 5100 * 5101 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5102 * ourselves on the same vdev as our gang block header. That 5103 * way, we can hope for locality in vdev_cache, plus it makes our 5104 * fault domains something tractable. 5105 */ 5106 if (hintdva) { 5107 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5108 5109 /* 5110 * It's possible the vdev we're using as the hint no 5111 * longer exists or its mg has been closed (e.g. by 5112 * device removal). Consult the rotor when 5113 * all else fails. 5114 */ 5115 if (vd != NULL && vd->vdev_mg != NULL) { 5116 mg = vd->vdev_mg; 5117 5118 if (flags & METASLAB_HINTBP_AVOID && 5119 mg->mg_next != NULL) 5120 mg = mg->mg_next; 5121 } else { 5122 mg = mca->mca_rotor; 5123 } 5124 } else if (d != 0) { 5125 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5126 mg = vd->vdev_mg->mg_next; 5127 } else if (flags & METASLAB_FASTWRITE) { 5128 mg = fast_mg = mca->mca_rotor; 5129 5130 do { 5131 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5132 mg->mg_vd->vdev_pending_fastwrite) 5133 mg = fast_mg; 5134 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5135 5136 } else { 5137 ASSERT(mca->mca_rotor != NULL); 5138 mg = mca->mca_rotor; 5139 } 5140 5141 /* 5142 * If the hint put us into the wrong metaslab class, or into a 5143 * metaslab group that has been passivated, just follow the rotor. 5144 */ 5145 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5146 mg = mca->mca_rotor; 5147 5148 rotor = mg; 5149 top: 5150 do { 5151 boolean_t allocatable; 5152 5153 ASSERT(mg->mg_activation_count == 1); 5154 vd = mg->mg_vd; 5155 5156 /* 5157 * Don't allocate from faulted devices. 5158 */ 5159 if (try_hard) { 5160 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5161 allocatable = vdev_allocatable(vd); 5162 spa_config_exit(spa, SCL_ZIO, FTAG); 5163 } else { 5164 allocatable = vdev_allocatable(vd); 5165 } 5166 5167 /* 5168 * Determine if the selected metaslab group is eligible 5169 * for allocations. If we're ganging then don't allow 5170 * this metaslab group to skip allocations since that would 5171 * inadvertently return ENOSPC and suspend the pool 5172 * even though space is still available. 5173 */ 5174 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5175 allocatable = metaslab_group_allocatable(mg, rotor, 5176 psize, allocator, d); 5177 } 5178 5179 if (!allocatable) { 5180 metaslab_trace_add(zal, mg, NULL, psize, d, 5181 TRACE_NOT_ALLOCATABLE, allocator); 5182 goto next; 5183 } 5184 5185 ASSERT(mg->mg_initialized); 5186 5187 /* 5188 * Avoid writing single-copy data to a failing, 5189 * non-redundant vdev, unless we've already tried all 5190 * other vdevs. 5191 */ 5192 if ((vd->vdev_stat.vs_write_errors > 0 || 5193 vd->vdev_state < VDEV_STATE_HEALTHY) && 5194 d == 0 && !try_hard && vd->vdev_children == 0) { 5195 metaslab_trace_add(zal, mg, NULL, psize, d, 5196 TRACE_VDEV_ERROR, allocator); 5197 goto next; 5198 } 5199 5200 ASSERT(mg->mg_class == mc); 5201 5202 uint64_t asize = vdev_psize_to_asize(vd, psize); 5203 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5204 5205 /* 5206 * If we don't need to try hard, then require that the 5207 * block be on a different metaslab from any other DVAs 5208 * in this BP (unique=true). If we are trying hard, then 5209 * allow any metaslab to be used (unique=false). 5210 */ 5211 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5212 !try_hard, dva, d, allocator, try_hard); 5213 5214 if (offset != -1ULL) { 5215 /* 5216 * If we've just selected this metaslab group, 5217 * figure out whether the corresponding vdev is 5218 * over- or under-used relative to the pool, 5219 * and set an allocation bias to even it out. 5220 * 5221 * Bias is also used to compensate for unequally 5222 * sized vdevs so that space is allocated fairly. 5223 */ 5224 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5225 vdev_stat_t *vs = &vd->vdev_stat; 5226 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5227 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5228 int64_t ratio; 5229 5230 /* 5231 * Calculate how much more or less we should 5232 * try to allocate from this device during 5233 * this iteration around the rotor. 5234 * 5235 * This basically introduces a zero-centered 5236 * bias towards the devices with the most 5237 * free space, while compensating for vdev 5238 * size differences. 5239 * 5240 * Examples: 5241 * vdev V1 = 16M/128M 5242 * vdev V2 = 16M/128M 5243 * ratio(V1) = 100% ratio(V2) = 100% 5244 * 5245 * vdev V1 = 16M/128M 5246 * vdev V2 = 64M/128M 5247 * ratio(V1) = 127% ratio(V2) = 72% 5248 * 5249 * vdev V1 = 16M/128M 5250 * vdev V2 = 64M/512M 5251 * ratio(V1) = 40% ratio(V2) = 160% 5252 */ 5253 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5254 (mc_free + 1); 5255 mg->mg_bias = ((ratio - 100) * 5256 (int64_t)mg->mg_aliquot) / 100; 5257 } else if (!metaslab_bias_enabled) { 5258 mg->mg_bias = 0; 5259 } 5260 5261 if ((flags & METASLAB_FASTWRITE) || 5262 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5263 mg->mg_aliquot + mg->mg_bias) { 5264 mca->mca_rotor = mg->mg_next; 5265 mca->mca_aliquot = 0; 5266 } 5267 5268 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5269 DVA_SET_OFFSET(&dva[d], offset); 5270 DVA_SET_GANG(&dva[d], 5271 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5272 DVA_SET_ASIZE(&dva[d], asize); 5273 5274 if (flags & METASLAB_FASTWRITE) { 5275 atomic_add_64(&vd->vdev_pending_fastwrite, 5276 psize); 5277 } 5278 5279 return (0); 5280 } 5281 next: 5282 mca->mca_rotor = mg->mg_next; 5283 mca->mca_aliquot = 0; 5284 } while ((mg = mg->mg_next) != rotor); 5285 5286 /* 5287 * If we haven't tried hard, perhaps do so now. 5288 */ 5289 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5290 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5291 psize <= 1 << spa->spa_min_ashift)) { 5292 METASLABSTAT_BUMP(metaslabstat_try_hard); 5293 try_hard = B_TRUE; 5294 goto top; 5295 } 5296 5297 bzero(&dva[d], sizeof (dva_t)); 5298 5299 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5300 return (SET_ERROR(ENOSPC)); 5301 } 5302 5303 void 5304 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5305 boolean_t checkpoint) 5306 { 5307 metaslab_t *msp; 5308 spa_t *spa = vd->vdev_spa; 5309 5310 ASSERT(vdev_is_concrete(vd)); 5311 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5312 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5313 5314 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5315 5316 VERIFY(!msp->ms_condensing); 5317 VERIFY3U(offset, >=, msp->ms_start); 5318 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5319 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5320 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5321 5322 metaslab_check_free_impl(vd, offset, asize); 5323 5324 mutex_enter(&msp->ms_lock); 5325 if (range_tree_is_empty(msp->ms_freeing) && 5326 range_tree_is_empty(msp->ms_checkpointing)) { 5327 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5328 } 5329 5330 if (checkpoint) { 5331 ASSERT(spa_has_checkpoint(spa)); 5332 range_tree_add(msp->ms_checkpointing, offset, asize); 5333 } else { 5334 range_tree_add(msp->ms_freeing, offset, asize); 5335 } 5336 mutex_exit(&msp->ms_lock); 5337 } 5338 5339 /* ARGSUSED */ 5340 void 5341 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5342 uint64_t size, void *arg) 5343 { 5344 boolean_t *checkpoint = arg; 5345 5346 ASSERT3P(checkpoint, !=, NULL); 5347 5348 if (vd->vdev_ops->vdev_op_remap != NULL) 5349 vdev_indirect_mark_obsolete(vd, offset, size); 5350 else 5351 metaslab_free_impl(vd, offset, size, *checkpoint); 5352 } 5353 5354 static void 5355 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5356 boolean_t checkpoint) 5357 { 5358 spa_t *spa = vd->vdev_spa; 5359 5360 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5361 5362 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5363 return; 5364 5365 if (spa->spa_vdev_removal != NULL && 5366 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5367 vdev_is_concrete(vd)) { 5368 /* 5369 * Note: we check if the vdev is concrete because when 5370 * we complete the removal, we first change the vdev to be 5371 * an indirect vdev (in open context), and then (in syncing 5372 * context) clear spa_vdev_removal. 5373 */ 5374 free_from_removing_vdev(vd, offset, size); 5375 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5376 vdev_indirect_mark_obsolete(vd, offset, size); 5377 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5378 metaslab_free_impl_cb, &checkpoint); 5379 } else { 5380 metaslab_free_concrete(vd, offset, size, checkpoint); 5381 } 5382 } 5383 5384 typedef struct remap_blkptr_cb_arg { 5385 blkptr_t *rbca_bp; 5386 spa_remap_cb_t rbca_cb; 5387 vdev_t *rbca_remap_vd; 5388 uint64_t rbca_remap_offset; 5389 void *rbca_cb_arg; 5390 } remap_blkptr_cb_arg_t; 5391 5392 static void 5393 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5394 uint64_t size, void *arg) 5395 { 5396 remap_blkptr_cb_arg_t *rbca = arg; 5397 blkptr_t *bp = rbca->rbca_bp; 5398 5399 /* We can not remap split blocks. */ 5400 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5401 return; 5402 ASSERT0(inner_offset); 5403 5404 if (rbca->rbca_cb != NULL) { 5405 /* 5406 * At this point we know that we are not handling split 5407 * blocks and we invoke the callback on the previous 5408 * vdev which must be indirect. 5409 */ 5410 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5411 5412 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5413 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5414 5415 /* set up remap_blkptr_cb_arg for the next call */ 5416 rbca->rbca_remap_vd = vd; 5417 rbca->rbca_remap_offset = offset; 5418 } 5419 5420 /* 5421 * The phys birth time is that of dva[0]. This ensures that we know 5422 * when each dva was written, so that resilver can determine which 5423 * blocks need to be scrubbed (i.e. those written during the time 5424 * the vdev was offline). It also ensures that the key used in 5425 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5426 * we didn't change the phys_birth, a lookup in the ARC for a 5427 * remapped BP could find the data that was previously stored at 5428 * this vdev + offset. 5429 */ 5430 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5431 DVA_GET_VDEV(&bp->blk_dva[0])); 5432 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5433 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5434 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5435 5436 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5437 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5438 } 5439 5440 /* 5441 * If the block pointer contains any indirect DVAs, modify them to refer to 5442 * concrete DVAs. Note that this will sometimes not be possible, leaving 5443 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5444 * segments in the mapping (i.e. it is a "split block"). 5445 * 5446 * If the BP was remapped, calls the callback on the original dva (note the 5447 * callback can be called multiple times if the original indirect DVA refers 5448 * to another indirect DVA, etc). 5449 * 5450 * Returns TRUE if the BP was remapped. 5451 */ 5452 boolean_t 5453 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5454 { 5455 remap_blkptr_cb_arg_t rbca; 5456 5457 if (!zfs_remap_blkptr_enable) 5458 return (B_FALSE); 5459 5460 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5461 return (B_FALSE); 5462 5463 /* 5464 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5465 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5466 */ 5467 if (BP_GET_DEDUP(bp)) 5468 return (B_FALSE); 5469 5470 /* 5471 * Gang blocks can not be remapped, because 5472 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5473 * the BP used to read the gang block header (GBH) being the same 5474 * as the DVA[0] that we allocated for the GBH. 5475 */ 5476 if (BP_IS_GANG(bp)) 5477 return (B_FALSE); 5478 5479 /* 5480 * Embedded BP's have no DVA to remap. 5481 */ 5482 if (BP_GET_NDVAS(bp) < 1) 5483 return (B_FALSE); 5484 5485 /* 5486 * Note: we only remap dva[0]. If we remapped other dvas, we 5487 * would no longer know what their phys birth txg is. 5488 */ 5489 dva_t *dva = &bp->blk_dva[0]; 5490 5491 uint64_t offset = DVA_GET_OFFSET(dva); 5492 uint64_t size = DVA_GET_ASIZE(dva); 5493 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5494 5495 if (vd->vdev_ops->vdev_op_remap == NULL) 5496 return (B_FALSE); 5497 5498 rbca.rbca_bp = bp; 5499 rbca.rbca_cb = callback; 5500 rbca.rbca_remap_vd = vd; 5501 rbca.rbca_remap_offset = offset; 5502 rbca.rbca_cb_arg = arg; 5503 5504 /* 5505 * remap_blkptr_cb() will be called in order for each level of 5506 * indirection, until a concrete vdev is reached or a split block is 5507 * encountered. old_vd and old_offset are updated within the callback 5508 * as we go from the one indirect vdev to the next one (either concrete 5509 * or indirect again) in that order. 5510 */ 5511 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5512 5513 /* Check if the DVA wasn't remapped because it is a split block */ 5514 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5515 return (B_FALSE); 5516 5517 return (B_TRUE); 5518 } 5519 5520 /* 5521 * Undo the allocation of a DVA which happened in the given transaction group. 5522 */ 5523 void 5524 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5525 { 5526 metaslab_t *msp; 5527 vdev_t *vd; 5528 uint64_t vdev = DVA_GET_VDEV(dva); 5529 uint64_t offset = DVA_GET_OFFSET(dva); 5530 uint64_t size = DVA_GET_ASIZE(dva); 5531 5532 ASSERT(DVA_IS_VALID(dva)); 5533 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5534 5535 if (txg > spa_freeze_txg(spa)) 5536 return; 5537 5538 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5539 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5540 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5541 (u_longlong_t)vdev, (u_longlong_t)offset, 5542 (u_longlong_t)size); 5543 return; 5544 } 5545 5546 ASSERT(!vd->vdev_removing); 5547 ASSERT(vdev_is_concrete(vd)); 5548 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5549 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5550 5551 if (DVA_GET_GANG(dva)) 5552 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5553 5554 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5555 5556 mutex_enter(&msp->ms_lock); 5557 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5558 offset, size); 5559 msp->ms_allocating_total -= size; 5560 5561 VERIFY(!msp->ms_condensing); 5562 VERIFY3U(offset, >=, msp->ms_start); 5563 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5564 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5565 msp->ms_size); 5566 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5567 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5568 range_tree_add(msp->ms_allocatable, offset, size); 5569 mutex_exit(&msp->ms_lock); 5570 } 5571 5572 /* 5573 * Free the block represented by the given DVA. 5574 */ 5575 void 5576 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5577 { 5578 uint64_t vdev = DVA_GET_VDEV(dva); 5579 uint64_t offset = DVA_GET_OFFSET(dva); 5580 uint64_t size = DVA_GET_ASIZE(dva); 5581 vdev_t *vd = vdev_lookup_top(spa, vdev); 5582 5583 ASSERT(DVA_IS_VALID(dva)); 5584 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5585 5586 if (DVA_GET_GANG(dva)) { 5587 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5588 } 5589 5590 metaslab_free_impl(vd, offset, size, checkpoint); 5591 } 5592 5593 /* 5594 * Reserve some allocation slots. The reservation system must be called 5595 * before we call into the allocator. If there aren't any available slots 5596 * then the I/O will be throttled until an I/O completes and its slots are 5597 * freed up. The function returns true if it was successful in placing 5598 * the reservation. 5599 */ 5600 boolean_t 5601 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5602 zio_t *zio, int flags) 5603 { 5604 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5605 uint64_t available_slots = 0; 5606 boolean_t slot_reserved = B_FALSE; 5607 uint64_t max = mca->mca_alloc_max_slots; 5608 5609 ASSERT(mc->mc_alloc_throttle_enabled); 5610 mutex_enter(&mc->mc_lock); 5611 5612 uint64_t reserved_slots = zfs_refcount_count(&mca->mca_alloc_slots); 5613 if (reserved_slots < max) 5614 available_slots = max - reserved_slots; 5615 5616 if (slots <= available_slots || GANG_ALLOCATION(flags) || 5617 flags & METASLAB_MUST_RESERVE) { 5618 /* 5619 * We reserve the slots individually so that we can unreserve 5620 * them individually when an I/O completes. 5621 */ 5622 for (int d = 0; d < slots; d++) 5623 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5624 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5625 slot_reserved = B_TRUE; 5626 } 5627 5628 mutex_exit(&mc->mc_lock); 5629 return (slot_reserved); 5630 } 5631 5632 void 5633 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5634 int allocator, zio_t *zio) 5635 { 5636 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5637 5638 ASSERT(mc->mc_alloc_throttle_enabled); 5639 mutex_enter(&mc->mc_lock); 5640 for (int d = 0; d < slots; d++) 5641 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5642 mutex_exit(&mc->mc_lock); 5643 } 5644 5645 static int 5646 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5647 uint64_t txg) 5648 { 5649 metaslab_t *msp; 5650 spa_t *spa = vd->vdev_spa; 5651 int error = 0; 5652 5653 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5654 return (SET_ERROR(ENXIO)); 5655 5656 ASSERT3P(vd->vdev_ms, !=, NULL); 5657 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5658 5659 mutex_enter(&msp->ms_lock); 5660 5661 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5662 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5663 if (error == EBUSY) { 5664 ASSERT(msp->ms_loaded); 5665 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5666 error = 0; 5667 } 5668 } 5669 5670 if (error == 0 && 5671 !range_tree_contains(msp->ms_allocatable, offset, size)) 5672 error = SET_ERROR(ENOENT); 5673 5674 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5675 mutex_exit(&msp->ms_lock); 5676 return (error); 5677 } 5678 5679 VERIFY(!msp->ms_condensing); 5680 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5681 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5682 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5683 msp->ms_size); 5684 range_tree_remove(msp->ms_allocatable, offset, size); 5685 range_tree_clear(msp->ms_trim, offset, size); 5686 5687 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5688 metaslab_class_t *mc = msp->ms_group->mg_class; 5689 multilist_sublist_t *mls = 5690 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 5691 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5692 msp->ms_selected_txg = txg; 5693 multilist_sublist_insert_head(mls, msp); 5694 } 5695 multilist_sublist_unlock(mls); 5696 5697 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5698 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5699 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5700 offset, size); 5701 msp->ms_allocating_total += size; 5702 } 5703 5704 mutex_exit(&msp->ms_lock); 5705 5706 return (0); 5707 } 5708 5709 typedef struct metaslab_claim_cb_arg_t { 5710 uint64_t mcca_txg; 5711 int mcca_error; 5712 } metaslab_claim_cb_arg_t; 5713 5714 /* ARGSUSED */ 5715 static void 5716 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5717 uint64_t size, void *arg) 5718 { 5719 metaslab_claim_cb_arg_t *mcca_arg = arg; 5720 5721 if (mcca_arg->mcca_error == 0) { 5722 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5723 size, mcca_arg->mcca_txg); 5724 } 5725 } 5726 5727 int 5728 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5729 { 5730 if (vd->vdev_ops->vdev_op_remap != NULL) { 5731 metaslab_claim_cb_arg_t arg; 5732 5733 /* 5734 * Only zdb(8) can claim on indirect vdevs. This is used 5735 * to detect leaks of mapped space (that are not accounted 5736 * for in the obsolete counts, spacemap, or bpobj). 5737 */ 5738 ASSERT(!spa_writeable(vd->vdev_spa)); 5739 arg.mcca_error = 0; 5740 arg.mcca_txg = txg; 5741 5742 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5743 metaslab_claim_impl_cb, &arg); 5744 5745 if (arg.mcca_error == 0) { 5746 arg.mcca_error = metaslab_claim_concrete(vd, 5747 offset, size, txg); 5748 } 5749 return (arg.mcca_error); 5750 } else { 5751 return (metaslab_claim_concrete(vd, offset, size, txg)); 5752 } 5753 } 5754 5755 /* 5756 * Intent log support: upon opening the pool after a crash, notify the SPA 5757 * of blocks that the intent log has allocated for immediate write, but 5758 * which are still considered free by the SPA because the last transaction 5759 * group didn't commit yet. 5760 */ 5761 static int 5762 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5763 { 5764 uint64_t vdev = DVA_GET_VDEV(dva); 5765 uint64_t offset = DVA_GET_OFFSET(dva); 5766 uint64_t size = DVA_GET_ASIZE(dva); 5767 vdev_t *vd; 5768 5769 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5770 return (SET_ERROR(ENXIO)); 5771 } 5772 5773 ASSERT(DVA_IS_VALID(dva)); 5774 5775 if (DVA_GET_GANG(dva)) 5776 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5777 5778 return (metaslab_claim_impl(vd, offset, size, txg)); 5779 } 5780 5781 int 5782 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5783 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5784 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5785 { 5786 dva_t *dva = bp->blk_dva; 5787 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5788 int error = 0; 5789 5790 ASSERT(bp->blk_birth == 0); 5791 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5792 5793 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5794 5795 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5796 /* no vdevs in this class */ 5797 spa_config_exit(spa, SCL_ALLOC, FTAG); 5798 return (SET_ERROR(ENOSPC)); 5799 } 5800 5801 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5802 ASSERT(BP_GET_NDVAS(bp) == 0); 5803 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5804 ASSERT3P(zal, !=, NULL); 5805 5806 for (int d = 0; d < ndvas; d++) { 5807 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5808 txg, flags, zal, allocator); 5809 if (error != 0) { 5810 for (d--; d >= 0; d--) { 5811 metaslab_unalloc_dva(spa, &dva[d], txg); 5812 metaslab_group_alloc_decrement(spa, 5813 DVA_GET_VDEV(&dva[d]), zio, flags, 5814 allocator, B_FALSE); 5815 bzero(&dva[d], sizeof (dva_t)); 5816 } 5817 spa_config_exit(spa, SCL_ALLOC, FTAG); 5818 return (error); 5819 } else { 5820 /* 5821 * Update the metaslab group's queue depth 5822 * based on the newly allocated dva. 5823 */ 5824 metaslab_group_alloc_increment(spa, 5825 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5826 } 5827 } 5828 ASSERT(error == 0); 5829 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5830 5831 spa_config_exit(spa, SCL_ALLOC, FTAG); 5832 5833 BP_SET_BIRTH(bp, txg, 0); 5834 5835 return (0); 5836 } 5837 5838 void 5839 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5840 { 5841 const dva_t *dva = bp->blk_dva; 5842 int ndvas = BP_GET_NDVAS(bp); 5843 5844 ASSERT(!BP_IS_HOLE(bp)); 5845 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5846 5847 /* 5848 * If we have a checkpoint for the pool we need to make sure that 5849 * the blocks that we free that are part of the checkpoint won't be 5850 * reused until the checkpoint is discarded or we revert to it. 5851 * 5852 * The checkpoint flag is passed down the metaslab_free code path 5853 * and is set whenever we want to add a block to the checkpoint's 5854 * accounting. That is, we "checkpoint" blocks that existed at the 5855 * time the checkpoint was created and are therefore referenced by 5856 * the checkpointed uberblock. 5857 * 5858 * Note that, we don't checkpoint any blocks if the current 5859 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5860 * normally as they will be referenced by the checkpointed uberblock. 5861 */ 5862 boolean_t checkpoint = B_FALSE; 5863 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5864 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5865 /* 5866 * At this point, if the block is part of the checkpoint 5867 * there is no way it was created in the current txg. 5868 */ 5869 ASSERT(!now); 5870 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5871 checkpoint = B_TRUE; 5872 } 5873 5874 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5875 5876 for (int d = 0; d < ndvas; d++) { 5877 if (now) { 5878 metaslab_unalloc_dva(spa, &dva[d], txg); 5879 } else { 5880 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5881 metaslab_free_dva(spa, &dva[d], checkpoint); 5882 } 5883 } 5884 5885 spa_config_exit(spa, SCL_FREE, FTAG); 5886 } 5887 5888 int 5889 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5890 { 5891 const dva_t *dva = bp->blk_dva; 5892 int ndvas = BP_GET_NDVAS(bp); 5893 int error = 0; 5894 5895 ASSERT(!BP_IS_HOLE(bp)); 5896 5897 if (txg != 0) { 5898 /* 5899 * First do a dry run to make sure all DVAs are claimable, 5900 * so we don't have to unwind from partial failures below. 5901 */ 5902 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5903 return (error); 5904 } 5905 5906 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5907 5908 for (int d = 0; d < ndvas; d++) { 5909 error = metaslab_claim_dva(spa, &dva[d], txg); 5910 if (error != 0) 5911 break; 5912 } 5913 5914 spa_config_exit(spa, SCL_ALLOC, FTAG); 5915 5916 ASSERT(error == 0 || txg == 0); 5917 5918 return (error); 5919 } 5920 5921 void 5922 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5923 { 5924 const dva_t *dva = bp->blk_dva; 5925 int ndvas = BP_GET_NDVAS(bp); 5926 uint64_t psize = BP_GET_PSIZE(bp); 5927 int d; 5928 vdev_t *vd; 5929 5930 ASSERT(!BP_IS_HOLE(bp)); 5931 ASSERT(!BP_IS_EMBEDDED(bp)); 5932 ASSERT(psize > 0); 5933 5934 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5935 5936 for (d = 0; d < ndvas; d++) { 5937 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5938 continue; 5939 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5940 } 5941 5942 spa_config_exit(spa, SCL_VDEV, FTAG); 5943 } 5944 5945 void 5946 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5947 { 5948 const dva_t *dva = bp->blk_dva; 5949 int ndvas = BP_GET_NDVAS(bp); 5950 uint64_t psize = BP_GET_PSIZE(bp); 5951 int d; 5952 vdev_t *vd; 5953 5954 ASSERT(!BP_IS_HOLE(bp)); 5955 ASSERT(!BP_IS_EMBEDDED(bp)); 5956 ASSERT(psize > 0); 5957 5958 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5959 5960 for (d = 0; d < ndvas; d++) { 5961 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5962 continue; 5963 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5964 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5965 } 5966 5967 spa_config_exit(spa, SCL_VDEV, FTAG); 5968 } 5969 5970 /* ARGSUSED */ 5971 static void 5972 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5973 uint64_t size, void *arg) 5974 { 5975 if (vd->vdev_ops == &vdev_indirect_ops) 5976 return; 5977 5978 metaslab_check_free_impl(vd, offset, size); 5979 } 5980 5981 static void 5982 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5983 { 5984 metaslab_t *msp; 5985 spa_t *spa __maybe_unused = vd->vdev_spa; 5986 5987 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5988 return; 5989 5990 if (vd->vdev_ops->vdev_op_remap != NULL) { 5991 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5992 metaslab_check_free_impl_cb, NULL); 5993 return; 5994 } 5995 5996 ASSERT(vdev_is_concrete(vd)); 5997 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5998 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5999 6000 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6001 6002 mutex_enter(&msp->ms_lock); 6003 if (msp->ms_loaded) { 6004 range_tree_verify_not_present(msp->ms_allocatable, 6005 offset, size); 6006 } 6007 6008 /* 6009 * Check all segments that currently exist in the freeing pipeline. 6010 * 6011 * It would intuitively make sense to also check the current allocating 6012 * tree since metaslab_unalloc_dva() exists for extents that are 6013 * allocated and freed in the same sync pass within the same txg. 6014 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6015 * segment but then we free part of it within the same txg 6016 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6017 * current allocating tree. 6018 */ 6019 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6020 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6021 range_tree_verify_not_present(msp->ms_freed, offset, size); 6022 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6023 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6024 range_tree_verify_not_present(msp->ms_trim, offset, size); 6025 mutex_exit(&msp->ms_lock); 6026 } 6027 6028 void 6029 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6030 { 6031 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6032 return; 6033 6034 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6035 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6036 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6037 vdev_t *vd = vdev_lookup_top(spa, vdev); 6038 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6039 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6040 6041 if (DVA_GET_GANG(&bp->blk_dva[i])) 6042 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 6043 6044 ASSERT3P(vd, !=, NULL); 6045 6046 metaslab_check_free_impl(vd, offset, size); 6047 } 6048 spa_config_exit(spa, SCL_VDEV, FTAG); 6049 } 6050 6051 static void 6052 metaslab_group_disable_wait(metaslab_group_t *mg) 6053 { 6054 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6055 while (mg->mg_disabled_updating) { 6056 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6057 } 6058 } 6059 6060 static void 6061 metaslab_group_disabled_increment(metaslab_group_t *mg) 6062 { 6063 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6064 ASSERT(mg->mg_disabled_updating); 6065 6066 while (mg->mg_ms_disabled >= max_disabled_ms) { 6067 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6068 } 6069 mg->mg_ms_disabled++; 6070 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6071 } 6072 6073 /* 6074 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6075 * We must also track how many metaslabs are currently disabled within a 6076 * metaslab group and limit them to prevent allocation failures from 6077 * occurring because all metaslabs are disabled. 6078 */ 6079 void 6080 metaslab_disable(metaslab_t *msp) 6081 { 6082 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6083 metaslab_group_t *mg = msp->ms_group; 6084 6085 mutex_enter(&mg->mg_ms_disabled_lock); 6086 6087 /* 6088 * To keep an accurate count of how many threads have disabled 6089 * a specific metaslab group, we only allow one thread to mark 6090 * the metaslab group at a time. This ensures that the value of 6091 * ms_disabled will be accurate when we decide to mark a metaslab 6092 * group as disabled. To do this we force all other threads 6093 * to wait till the metaslab's mg_disabled_updating flag is no 6094 * longer set. 6095 */ 6096 metaslab_group_disable_wait(mg); 6097 mg->mg_disabled_updating = B_TRUE; 6098 if (msp->ms_disabled == 0) { 6099 metaslab_group_disabled_increment(mg); 6100 } 6101 mutex_enter(&msp->ms_lock); 6102 msp->ms_disabled++; 6103 mutex_exit(&msp->ms_lock); 6104 6105 mg->mg_disabled_updating = B_FALSE; 6106 cv_broadcast(&mg->mg_ms_disabled_cv); 6107 mutex_exit(&mg->mg_ms_disabled_lock); 6108 } 6109 6110 void 6111 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6112 { 6113 metaslab_group_t *mg = msp->ms_group; 6114 spa_t *spa = mg->mg_vd->vdev_spa; 6115 6116 /* 6117 * Wait for the outstanding IO to be synced to prevent newly 6118 * allocated blocks from being overwritten. This used by 6119 * initialize and TRIM which are modifying unallocated space. 6120 */ 6121 if (sync) 6122 txg_wait_synced(spa_get_dsl(spa), 0); 6123 6124 mutex_enter(&mg->mg_ms_disabled_lock); 6125 mutex_enter(&msp->ms_lock); 6126 if (--msp->ms_disabled == 0) { 6127 mg->mg_ms_disabled--; 6128 cv_broadcast(&mg->mg_ms_disabled_cv); 6129 if (unload) 6130 metaslab_unload(msp); 6131 } 6132 mutex_exit(&msp->ms_lock); 6133 mutex_exit(&mg->mg_ms_disabled_lock); 6134 } 6135 6136 static void 6137 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6138 { 6139 vdev_t *vd = ms->ms_group->mg_vd; 6140 spa_t *spa = vd->vdev_spa; 6141 objset_t *mos = spa_meta_objset(spa); 6142 6143 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6144 6145 metaslab_unflushed_phys_t entry = { 6146 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6147 }; 6148 uint64_t entry_size = sizeof (entry); 6149 uint64_t entry_offset = ms->ms_id * entry_size; 6150 6151 uint64_t object = 0; 6152 int err = zap_lookup(mos, vd->vdev_top_zap, 6153 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6154 &object); 6155 if (err == ENOENT) { 6156 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6157 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6158 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6159 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6160 &object, tx)); 6161 } else { 6162 VERIFY0(err); 6163 } 6164 6165 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6166 &entry, tx); 6167 } 6168 6169 void 6170 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6171 { 6172 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6173 6174 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6175 return; 6176 6177 ms->ms_unflushed_txg = txg; 6178 metaslab_update_ondisk_flush_data(ms, tx); 6179 } 6180 6181 uint64_t 6182 metaslab_unflushed_txg(metaslab_t *ms) 6183 { 6184 return (ms->ms_unflushed_txg); 6185 } 6186 6187 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6188 "Allocation granularity (a.k.a. stripe size)"); 6189 6190 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6191 "Load all metaslabs when pool is first opened"); 6192 6193 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6194 "Prevent metaslabs from being unloaded"); 6195 6196 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6197 "Preload potential metaslabs during reassessment"); 6198 6199 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6200 "Delay in txgs after metaslab was last used before unloading"); 6201 6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6203 "Delay in milliseconds after metaslab was last used before unloading"); 6204 6205 /* BEGIN CSTYLED */ 6206 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6207 "Percentage of metaslab group size that should be free to make it " 6208 "eligible for allocation"); 6209 6210 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6211 "Percentage of metaslab group size that should be considered eligible " 6212 "for allocations unless all metaslab groups within the metaslab class " 6213 "have also crossed this threshold"); 6214 6215 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6216 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6217 6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6219 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6220 /* END CSTYLED */ 6221 6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6223 "Prefer metaslabs with lower LBAs"); 6224 6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6226 "Enable metaslab group biasing"); 6227 6228 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6229 ZMOD_RW, "Enable segment-based metaslab selection"); 6230 6231 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6232 "Segment-based metaslab selection maximum buckets before switching"); 6233 6234 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6235 "Blocks larger than this size are forced to be gang blocks"); 6236 6237 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6238 "Max distance (bytes) to search forward before using size tree"); 6239 6240 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6241 "When looking in size tree, use largest segment instead of exact fit"); 6242 6243 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6244 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6245 6246 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6247 "Percentage of memory that can be used to store metaslab range trees"); 6248 6249 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6250 ZMOD_RW, "Try hard to allocate before ganging"); 6251 6252 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6253 "Normally only consider this many of the best metaslabs in each vdev"); 6254