1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to each disk before 52 * moving on to the next top-level vdev. 53 */ 54 static uint64_t metaslab_aliquot = 1024 * 1024; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 uint_t zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 static const int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 static uint_t zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 static uint_t zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 static uint_t zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = B_FALSE; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 static int metaslab_debug_unload = B_FALSE; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 uint_t metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 static const uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 static int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 static uint_t metaslab_unload_delay = 32; 219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 uint_t metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 static int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 static int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 static int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 static int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 static int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 static const boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 static const uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 static const int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 static uint_t zfs_metaslab_mem_limit = 25; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 static const uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 static uint_t zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 static kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(&mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = &mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, 903 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd)); 904 metaslab_group_alloc_update(mg); 905 906 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 907 mg->mg_prev = mg; 908 mg->mg_next = mg; 909 } else { 910 mgnext = mgprev->mg_next; 911 mg->mg_prev = mgprev; 912 mg->mg_next = mgnext; 913 mgprev->mg_next = mg; 914 mgnext->mg_prev = mg; 915 } 916 for (int i = 0; i < spa->spa_alloc_count; i++) { 917 mc->mc_allocator[i].mca_rotor = mg; 918 mg = mg->mg_next; 919 } 920 } 921 922 /* 923 * Passivate a metaslab group and remove it from the allocation rotor. 924 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 925 * a metaslab group. This function will momentarily drop spa_config_locks 926 * that are lower than the SCL_ALLOC lock (see comment below). 927 */ 928 void 929 metaslab_group_passivate(metaslab_group_t *mg) 930 { 931 metaslab_class_t *mc = mg->mg_class; 932 spa_t *spa = mc->mc_spa; 933 metaslab_group_t *mgprev, *mgnext; 934 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 935 936 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 937 (SCL_ALLOC | SCL_ZIO)); 938 939 if (--mg->mg_activation_count != 0) { 940 for (int i = 0; i < spa->spa_alloc_count; i++) 941 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 942 ASSERT(mg->mg_prev == NULL); 943 ASSERT(mg->mg_next == NULL); 944 ASSERT(mg->mg_activation_count < 0); 945 return; 946 } 947 948 /* 949 * The spa_config_lock is an array of rwlocks, ordered as 950 * follows (from highest to lowest): 951 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 952 * SCL_ZIO > SCL_FREE > SCL_VDEV 953 * (For more information about the spa_config_lock see spa_misc.c) 954 * The higher the lock, the broader its coverage. When we passivate 955 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 956 * config locks. However, the metaslab group's taskq might be trying 957 * to preload metaslabs so we must drop the SCL_ZIO lock and any 958 * lower locks to allow the I/O to complete. At a minimum, 959 * we continue to hold the SCL_ALLOC lock, which prevents any future 960 * allocations from taking place and any changes to the vdev tree. 961 */ 962 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 963 taskq_wait_outstanding(mg->mg_taskq, 0); 964 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 965 metaslab_group_alloc_update(mg); 966 for (int i = 0; i < mg->mg_allocators; i++) { 967 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 968 metaslab_t *msp = mga->mga_primary; 969 if (msp != NULL) { 970 mutex_enter(&msp->ms_lock); 971 metaslab_passivate(msp, 972 metaslab_weight_from_range_tree(msp)); 973 mutex_exit(&msp->ms_lock); 974 } 975 msp = mga->mga_secondary; 976 if (msp != NULL) { 977 mutex_enter(&msp->ms_lock); 978 metaslab_passivate(msp, 979 metaslab_weight_from_range_tree(msp)); 980 mutex_exit(&msp->ms_lock); 981 } 982 } 983 984 mgprev = mg->mg_prev; 985 mgnext = mg->mg_next; 986 987 if (mg == mgnext) { 988 mgnext = NULL; 989 } else { 990 mgprev->mg_next = mgnext; 991 mgnext->mg_prev = mgprev; 992 } 993 for (int i = 0; i < spa->spa_alloc_count; i++) { 994 if (mc->mc_allocator[i].mca_rotor == mg) 995 mc->mc_allocator[i].mca_rotor = mgnext; 996 } 997 998 mg->mg_prev = NULL; 999 mg->mg_next = NULL; 1000 } 1001 1002 boolean_t 1003 metaslab_group_initialized(metaslab_group_t *mg) 1004 { 1005 vdev_t *vd = mg->mg_vd; 1006 vdev_stat_t *vs = &vd->vdev_stat; 1007 1008 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1009 } 1010 1011 uint64_t 1012 metaslab_group_get_space(metaslab_group_t *mg) 1013 { 1014 /* 1015 * Note that the number of nodes in mg_metaslab_tree may be one less 1016 * than vdev_ms_count, due to the embedded log metaslab. 1017 */ 1018 mutex_enter(&mg->mg_lock); 1019 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1020 mutex_exit(&mg->mg_lock); 1021 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1022 } 1023 1024 void 1025 metaslab_group_histogram_verify(metaslab_group_t *mg) 1026 { 1027 uint64_t *mg_hist; 1028 avl_tree_t *t = &mg->mg_metaslab_tree; 1029 uint64_t ashift = mg->mg_vd->vdev_ashift; 1030 1031 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1032 return; 1033 1034 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1035 KM_SLEEP); 1036 1037 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1038 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1039 1040 mutex_enter(&mg->mg_lock); 1041 for (metaslab_t *msp = avl_first(t); 1042 msp != NULL; msp = AVL_NEXT(t, msp)) { 1043 VERIFY3P(msp->ms_group, ==, mg); 1044 /* skip if not active */ 1045 if (msp->ms_sm == NULL) 1046 continue; 1047 1048 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1049 mg_hist[i + ashift] += 1050 msp->ms_sm->sm_phys->smp_histogram[i]; 1051 } 1052 } 1053 1054 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1055 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1056 1057 mutex_exit(&mg->mg_lock); 1058 1059 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1060 } 1061 1062 static void 1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1064 { 1065 metaslab_class_t *mc = mg->mg_class; 1066 uint64_t ashift = mg->mg_vd->vdev_ashift; 1067 1068 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1069 if (msp->ms_sm == NULL) 1070 return; 1071 1072 mutex_enter(&mg->mg_lock); 1073 mutex_enter(&mc->mc_lock); 1074 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1075 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1076 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1077 mg->mg_histogram[i + ashift] += 1078 msp->ms_sm->sm_phys->smp_histogram[i]; 1079 mc->mc_histogram[i + ashift] += 1080 msp->ms_sm->sm_phys->smp_histogram[i]; 1081 } 1082 mutex_exit(&mc->mc_lock); 1083 mutex_exit(&mg->mg_lock); 1084 } 1085 1086 void 1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1088 { 1089 metaslab_class_t *mc = mg->mg_class; 1090 uint64_t ashift = mg->mg_vd->vdev_ashift; 1091 1092 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1093 if (msp->ms_sm == NULL) 1094 return; 1095 1096 mutex_enter(&mg->mg_lock); 1097 mutex_enter(&mc->mc_lock); 1098 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1099 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1100 msp->ms_sm->sm_phys->smp_histogram[i]); 1101 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1102 msp->ms_sm->sm_phys->smp_histogram[i]); 1103 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1104 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1105 1106 mg->mg_histogram[i + ashift] -= 1107 msp->ms_sm->sm_phys->smp_histogram[i]; 1108 mc->mc_histogram[i + ashift] -= 1109 msp->ms_sm->sm_phys->smp_histogram[i]; 1110 } 1111 mutex_exit(&mc->mc_lock); 1112 mutex_exit(&mg->mg_lock); 1113 } 1114 1115 static void 1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1117 { 1118 ASSERT(msp->ms_group == NULL); 1119 mutex_enter(&mg->mg_lock); 1120 msp->ms_group = mg; 1121 msp->ms_weight = 0; 1122 avl_add(&mg->mg_metaslab_tree, msp); 1123 mutex_exit(&mg->mg_lock); 1124 1125 mutex_enter(&msp->ms_lock); 1126 metaslab_group_histogram_add(mg, msp); 1127 mutex_exit(&msp->ms_lock); 1128 } 1129 1130 static void 1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1132 { 1133 mutex_enter(&msp->ms_lock); 1134 metaslab_group_histogram_remove(mg, msp); 1135 mutex_exit(&msp->ms_lock); 1136 1137 mutex_enter(&mg->mg_lock); 1138 ASSERT(msp->ms_group == mg); 1139 avl_remove(&mg->mg_metaslab_tree, msp); 1140 1141 metaslab_class_t *mc = msp->ms_group->mg_class; 1142 multilist_sublist_t *mls = 1143 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1144 if (multilist_link_active(&msp->ms_class_txg_node)) 1145 multilist_sublist_remove(mls, msp); 1146 multilist_sublist_unlock(mls); 1147 1148 msp->ms_group = NULL; 1149 mutex_exit(&mg->mg_lock); 1150 } 1151 1152 static void 1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1154 { 1155 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1156 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1157 ASSERT(msp->ms_group == mg); 1158 1159 avl_remove(&mg->mg_metaslab_tree, msp); 1160 msp->ms_weight = weight; 1161 avl_add(&mg->mg_metaslab_tree, msp); 1162 1163 } 1164 1165 static void 1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1167 { 1168 /* 1169 * Although in principle the weight can be any value, in 1170 * practice we do not use values in the range [1, 511]. 1171 */ 1172 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1173 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1174 1175 mutex_enter(&mg->mg_lock); 1176 metaslab_group_sort_impl(mg, msp, weight); 1177 mutex_exit(&mg->mg_lock); 1178 } 1179 1180 /* 1181 * Calculate the fragmentation for a given metaslab group. We can use 1182 * a simple average here since all metaslabs within the group must have 1183 * the same size. The return value will be a value between 0 and 100 1184 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1185 * group have a fragmentation metric. 1186 */ 1187 uint64_t 1188 metaslab_group_fragmentation(metaslab_group_t *mg) 1189 { 1190 vdev_t *vd = mg->mg_vd; 1191 uint64_t fragmentation = 0; 1192 uint64_t valid_ms = 0; 1193 1194 for (int m = 0; m < vd->vdev_ms_count; m++) { 1195 metaslab_t *msp = vd->vdev_ms[m]; 1196 1197 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1198 continue; 1199 if (msp->ms_group != mg) 1200 continue; 1201 1202 valid_ms++; 1203 fragmentation += msp->ms_fragmentation; 1204 } 1205 1206 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1207 return (ZFS_FRAG_INVALID); 1208 1209 fragmentation /= valid_ms; 1210 ASSERT3U(fragmentation, <=, 100); 1211 return (fragmentation); 1212 } 1213 1214 /* 1215 * Determine if a given metaslab group should skip allocations. A metaslab 1216 * group should avoid allocations if its free capacity is less than the 1217 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1218 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1219 * that can still handle allocations. If the allocation throttle is enabled 1220 * then we skip allocations to devices that have reached their maximum 1221 * allocation queue depth unless the selected metaslab group is the only 1222 * eligible group remaining. 1223 */ 1224 static boolean_t 1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1226 int flags, uint64_t psize, int allocator, int d) 1227 { 1228 spa_t *spa = mg->mg_vd->vdev_spa; 1229 metaslab_class_t *mc = mg->mg_class; 1230 1231 /* 1232 * We can only consider skipping this metaslab group if it's 1233 * in the normal metaslab class and there are other metaslab 1234 * groups to select from. Otherwise, we always consider it eligible 1235 * for allocations. 1236 */ 1237 if ((mc != spa_normal_class(spa) && 1238 mc != spa_special_class(spa) && 1239 mc != spa_dedup_class(spa)) || 1240 mc->mc_groups <= 1) 1241 return (B_TRUE); 1242 1243 /* 1244 * If the metaslab group's mg_allocatable flag is set (see comments 1245 * in metaslab_group_alloc_update() for more information) and 1246 * the allocation throttle is disabled then allow allocations to this 1247 * device. However, if the allocation throttle is enabled then 1248 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1249 * to determine if we should allow allocations to this metaslab group. 1250 * If all metaslab groups are no longer considered allocatable 1251 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1252 * gang block size then we allow allocations on this metaslab group 1253 * regardless of the mg_allocatable or throttle settings. 1254 */ 1255 if (mg->mg_allocatable) { 1256 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1257 int64_t qdepth; 1258 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1259 1260 if (!mc->mc_alloc_throttle_enabled) 1261 return (B_TRUE); 1262 1263 /* 1264 * If this metaslab group does not have any free space, then 1265 * there is no point in looking further. 1266 */ 1267 if (mg->mg_no_free_space) 1268 return (B_FALSE); 1269 1270 /* 1271 * Some allocations (e.g., those coming from device removal 1272 * where the * allocations are not even counted in the 1273 * metaslab * allocation queues) are allowed to bypass 1274 * the throttle. 1275 */ 1276 if (flags & METASLAB_DONT_THROTTLE) 1277 return (B_TRUE); 1278 1279 /* 1280 * Relax allocation throttling for ditto blocks. Due to 1281 * random imbalances in allocation it tends to push copies 1282 * to one vdev, that looks a bit better at the moment. 1283 */ 1284 qmax = qmax * (4 + d) / 4; 1285 1286 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1287 1288 /* 1289 * If this metaslab group is below its qmax or it's 1290 * the only allocatable metasable group, then attempt 1291 * to allocate from it. 1292 */ 1293 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1294 return (B_TRUE); 1295 ASSERT3U(mc->mc_alloc_groups, >, 1); 1296 1297 /* 1298 * Since this metaslab group is at or over its qmax, we 1299 * need to determine if there are metaslab groups after this 1300 * one that might be able to handle this allocation. This is 1301 * racy since we can't hold the locks for all metaslab 1302 * groups at the same time when we make this check. 1303 */ 1304 for (metaslab_group_t *mgp = mg->mg_next; 1305 mgp != rotor; mgp = mgp->mg_next) { 1306 metaslab_group_allocator_t *mgap = 1307 &mgp->mg_allocator[allocator]; 1308 qmax = mgap->mga_cur_max_alloc_queue_depth; 1309 qmax = qmax * (4 + d) / 4; 1310 qdepth = 1311 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1312 1313 /* 1314 * If there is another metaslab group that 1315 * might be able to handle the allocation, then 1316 * we return false so that we skip this group. 1317 */ 1318 if (qdepth < qmax && !mgp->mg_no_free_space) 1319 return (B_FALSE); 1320 } 1321 1322 /* 1323 * We didn't find another group to handle the allocation 1324 * so we can't skip this metaslab group even though 1325 * we are at or over our qmax. 1326 */ 1327 return (B_TRUE); 1328 1329 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1330 return (B_TRUE); 1331 } 1332 return (B_FALSE); 1333 } 1334 1335 /* 1336 * ========================================================================== 1337 * Range tree callbacks 1338 * ========================================================================== 1339 */ 1340 1341 /* 1342 * Comparison function for the private size-ordered tree using 32-bit 1343 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1344 */ 1345 static int 1346 metaslab_rangesize32_compare(const void *x1, const void *x2) 1347 { 1348 const range_seg32_t *r1 = x1; 1349 const range_seg32_t *r2 = x2; 1350 1351 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1352 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1353 1354 int cmp = TREE_CMP(rs_size1, rs_size2); 1355 if (likely(cmp)) 1356 return (cmp); 1357 1358 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1359 } 1360 1361 /* 1362 * Comparison function for the private size-ordered tree using 64-bit 1363 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1364 */ 1365 static int 1366 metaslab_rangesize64_compare(const void *x1, const void *x2) 1367 { 1368 const range_seg64_t *r1 = x1; 1369 const range_seg64_t *r2 = x2; 1370 1371 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1372 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1373 1374 int cmp = TREE_CMP(rs_size1, rs_size2); 1375 if (likely(cmp)) 1376 return (cmp); 1377 1378 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1379 } 1380 typedef struct metaslab_rt_arg { 1381 zfs_btree_t *mra_bt; 1382 uint32_t mra_floor_shift; 1383 } metaslab_rt_arg_t; 1384 1385 struct mssa_arg { 1386 range_tree_t *rt; 1387 metaslab_rt_arg_t *mra; 1388 }; 1389 1390 static void 1391 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1392 { 1393 struct mssa_arg *mssap = arg; 1394 range_tree_t *rt = mssap->rt; 1395 metaslab_rt_arg_t *mrap = mssap->mra; 1396 range_seg_max_t seg = {0}; 1397 rs_set_start(&seg, rt, start); 1398 rs_set_end(&seg, rt, start + size); 1399 metaslab_rt_add(rt, &seg, mrap); 1400 } 1401 1402 static void 1403 metaslab_size_tree_full_load(range_tree_t *rt) 1404 { 1405 metaslab_rt_arg_t *mrap = rt->rt_arg; 1406 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1407 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1408 mrap->mra_floor_shift = 0; 1409 struct mssa_arg arg = {0}; 1410 arg.rt = rt; 1411 arg.mra = mrap; 1412 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1413 } 1414 1415 /* 1416 * Create any block allocator specific components. The current allocators 1417 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1418 */ 1419 static void 1420 metaslab_rt_create(range_tree_t *rt, void *arg) 1421 { 1422 metaslab_rt_arg_t *mrap = arg; 1423 zfs_btree_t *size_tree = mrap->mra_bt; 1424 1425 size_t size; 1426 int (*compare) (const void *, const void *); 1427 switch (rt->rt_type) { 1428 case RANGE_SEG32: 1429 size = sizeof (range_seg32_t); 1430 compare = metaslab_rangesize32_compare; 1431 break; 1432 case RANGE_SEG64: 1433 size = sizeof (range_seg64_t); 1434 compare = metaslab_rangesize64_compare; 1435 break; 1436 default: 1437 panic("Invalid range seg type %d", rt->rt_type); 1438 } 1439 zfs_btree_create(size_tree, compare, size); 1440 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1441 } 1442 1443 static void 1444 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1445 { 1446 (void) rt; 1447 metaslab_rt_arg_t *mrap = arg; 1448 zfs_btree_t *size_tree = mrap->mra_bt; 1449 1450 zfs_btree_destroy(size_tree); 1451 kmem_free(mrap, sizeof (*mrap)); 1452 } 1453 1454 static void 1455 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1456 { 1457 metaslab_rt_arg_t *mrap = arg; 1458 zfs_btree_t *size_tree = mrap->mra_bt; 1459 1460 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1461 (1ULL << mrap->mra_floor_shift)) 1462 return; 1463 1464 zfs_btree_add(size_tree, rs); 1465 } 1466 1467 static void 1468 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1469 { 1470 metaslab_rt_arg_t *mrap = arg; 1471 zfs_btree_t *size_tree = mrap->mra_bt; 1472 1473 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL << 1474 mrap->mra_floor_shift)) 1475 return; 1476 1477 zfs_btree_remove(size_tree, rs); 1478 } 1479 1480 static void 1481 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1482 { 1483 metaslab_rt_arg_t *mrap = arg; 1484 zfs_btree_t *size_tree = mrap->mra_bt; 1485 zfs_btree_clear(size_tree); 1486 zfs_btree_destroy(size_tree); 1487 1488 metaslab_rt_create(rt, arg); 1489 } 1490 1491 static const range_tree_ops_t metaslab_rt_ops = { 1492 .rtop_create = metaslab_rt_create, 1493 .rtop_destroy = metaslab_rt_destroy, 1494 .rtop_add = metaslab_rt_add, 1495 .rtop_remove = metaslab_rt_remove, 1496 .rtop_vacate = metaslab_rt_vacate 1497 }; 1498 1499 /* 1500 * ========================================================================== 1501 * Common allocator routines 1502 * ========================================================================== 1503 */ 1504 1505 /* 1506 * Return the maximum contiguous segment within the metaslab. 1507 */ 1508 uint64_t 1509 metaslab_largest_allocatable(metaslab_t *msp) 1510 { 1511 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1512 range_seg_t *rs; 1513 1514 if (t == NULL) 1515 return (0); 1516 if (zfs_btree_numnodes(t) == 0) 1517 metaslab_size_tree_full_load(msp->ms_allocatable); 1518 1519 rs = zfs_btree_last(t, NULL); 1520 if (rs == NULL) 1521 return (0); 1522 1523 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1524 msp->ms_allocatable)); 1525 } 1526 1527 /* 1528 * Return the maximum contiguous segment within the unflushed frees of this 1529 * metaslab. 1530 */ 1531 static uint64_t 1532 metaslab_largest_unflushed_free(metaslab_t *msp) 1533 { 1534 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1535 1536 if (msp->ms_unflushed_frees == NULL) 1537 return (0); 1538 1539 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1540 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1541 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1542 NULL); 1543 if (rs == NULL) 1544 return (0); 1545 1546 /* 1547 * When a range is freed from the metaslab, that range is added to 1548 * both the unflushed frees and the deferred frees. While the block 1549 * will eventually be usable, if the metaslab were loaded the range 1550 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1551 * txgs had passed. As a result, when attempting to estimate an upper 1552 * bound for the largest currently-usable free segment in the 1553 * metaslab, we need to not consider any ranges currently in the defer 1554 * trees. This algorithm approximates the largest available chunk in 1555 * the largest range in the unflushed_frees tree by taking the first 1556 * chunk. While this may be a poor estimate, it should only remain so 1557 * briefly and should eventually self-correct as frees are no longer 1558 * deferred. Similar logic applies to the ms_freed tree. See 1559 * metaslab_load() for more details. 1560 * 1561 * There are two primary sources of inaccuracy in this estimate. Both 1562 * are tolerated for performance reasons. The first source is that we 1563 * only check the largest segment for overlaps. Smaller segments may 1564 * have more favorable overlaps with the other trees, resulting in 1565 * larger usable chunks. Second, we only look at the first chunk in 1566 * the largest segment; there may be other usable chunks in the 1567 * largest segment, but we ignore them. 1568 */ 1569 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1570 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1571 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1572 uint64_t start = 0; 1573 uint64_t size = 0; 1574 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1575 rsize, &start, &size); 1576 if (found) { 1577 if (rstart == start) 1578 return (0); 1579 rsize = start - rstart; 1580 } 1581 } 1582 1583 uint64_t start = 0; 1584 uint64_t size = 0; 1585 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1586 rsize, &start, &size); 1587 if (found) 1588 rsize = start - rstart; 1589 1590 return (rsize); 1591 } 1592 1593 static range_seg_t * 1594 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1595 uint64_t size, zfs_btree_index_t *where) 1596 { 1597 range_seg_t *rs; 1598 range_seg_max_t rsearch; 1599 1600 rs_set_start(&rsearch, rt, start); 1601 rs_set_end(&rsearch, rt, start + size); 1602 1603 rs = zfs_btree_find(t, &rsearch, where); 1604 if (rs == NULL) { 1605 rs = zfs_btree_next(t, where, where); 1606 } 1607 1608 return (rs); 1609 } 1610 1611 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1612 defined(WITH_CF_BLOCK_ALLOCATOR) 1613 1614 /* 1615 * This is a helper function that can be used by the allocator to find a 1616 * suitable block to allocate. This will search the specified B-tree looking 1617 * for a block that matches the specified criteria. 1618 */ 1619 static uint64_t 1620 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1621 uint64_t max_search) 1622 { 1623 if (*cursor == 0) 1624 *cursor = rt->rt_start; 1625 zfs_btree_t *bt = &rt->rt_root; 1626 zfs_btree_index_t where; 1627 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1628 uint64_t first_found; 1629 int count_searched = 0; 1630 1631 if (rs != NULL) 1632 first_found = rs_get_start(rs, rt); 1633 1634 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1635 max_search || count_searched < metaslab_min_search_count)) { 1636 uint64_t offset = rs_get_start(rs, rt); 1637 if (offset + size <= rs_get_end(rs, rt)) { 1638 *cursor = offset + size; 1639 return (offset); 1640 } 1641 rs = zfs_btree_next(bt, &where, &where); 1642 count_searched++; 1643 } 1644 1645 *cursor = 0; 1646 return (-1ULL); 1647 } 1648 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1649 1650 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1651 /* 1652 * ========================================================================== 1653 * Dynamic Fit (df) block allocator 1654 * 1655 * Search for a free chunk of at least this size, starting from the last 1656 * offset (for this alignment of block) looking for up to 1657 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1658 * found within 16MB, then return a free chunk of exactly the requested size (or 1659 * larger). 1660 * 1661 * If it seems like searching from the last offset will be unproductive, skip 1662 * that and just return a free chunk of exactly the requested size (or larger). 1663 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1664 * mechanism is probably not very useful and may be removed in the future. 1665 * 1666 * The behavior when not searching can be changed to return the largest free 1667 * chunk, instead of a free chunk of exactly the requested size, by setting 1668 * metaslab_df_use_largest_segment. 1669 * ========================================================================== 1670 */ 1671 static uint64_t 1672 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1673 { 1674 /* 1675 * Find the largest power of 2 block size that evenly divides the 1676 * requested size. This is used to try to allocate blocks with similar 1677 * alignment from the same area of the metaslab (i.e. same cursor 1678 * bucket) but it does not guarantee that other allocations sizes 1679 * may exist in the same region. 1680 */ 1681 uint64_t align = size & -size; 1682 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1683 range_tree_t *rt = msp->ms_allocatable; 1684 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1685 uint64_t offset; 1686 1687 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1688 1689 /* 1690 * If we're running low on space, find a segment based on size, 1691 * rather than iterating based on offset. 1692 */ 1693 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1694 free_pct < metaslab_df_free_pct) { 1695 offset = -1; 1696 } else { 1697 offset = metaslab_block_picker(rt, 1698 cursor, size, metaslab_df_max_search); 1699 } 1700 1701 if (offset == -1) { 1702 range_seg_t *rs; 1703 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1704 metaslab_size_tree_full_load(msp->ms_allocatable); 1705 1706 if (metaslab_df_use_largest_segment) { 1707 /* use largest free segment */ 1708 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1709 } else { 1710 zfs_btree_index_t where; 1711 /* use segment of this size, or next largest */ 1712 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1713 rt, msp->ms_start, size, &where); 1714 } 1715 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1716 rt)) { 1717 offset = rs_get_start(rs, rt); 1718 *cursor = offset + size; 1719 } 1720 } 1721 1722 return (offset); 1723 } 1724 1725 const metaslab_ops_t zfs_metaslab_ops = { 1726 metaslab_df_alloc 1727 }; 1728 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1729 1730 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1731 /* 1732 * ========================================================================== 1733 * Cursor fit block allocator - 1734 * Select the largest region in the metaslab, set the cursor to the beginning 1735 * of the range and the cursor_end to the end of the range. As allocations 1736 * are made advance the cursor. Continue allocating from the cursor until 1737 * the range is exhausted and then find a new range. 1738 * ========================================================================== 1739 */ 1740 static uint64_t 1741 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1742 { 1743 range_tree_t *rt = msp->ms_allocatable; 1744 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1745 uint64_t *cursor = &msp->ms_lbas[0]; 1746 uint64_t *cursor_end = &msp->ms_lbas[1]; 1747 uint64_t offset = 0; 1748 1749 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1750 1751 ASSERT3U(*cursor_end, >=, *cursor); 1752 1753 if ((*cursor + size) > *cursor_end) { 1754 range_seg_t *rs; 1755 1756 if (zfs_btree_numnodes(t) == 0) 1757 metaslab_size_tree_full_load(msp->ms_allocatable); 1758 rs = zfs_btree_last(t, NULL); 1759 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1760 size) 1761 return (-1ULL); 1762 1763 *cursor = rs_get_start(rs, rt); 1764 *cursor_end = rs_get_end(rs, rt); 1765 } 1766 1767 offset = *cursor; 1768 *cursor += size; 1769 1770 return (offset); 1771 } 1772 1773 const metaslab_ops_t zfs_metaslab_ops = { 1774 metaslab_cf_alloc 1775 }; 1776 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1777 1778 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1779 /* 1780 * ========================================================================== 1781 * New dynamic fit allocator - 1782 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1783 * contiguous blocks. If no region is found then just use the largest segment 1784 * that remains. 1785 * ========================================================================== 1786 */ 1787 1788 /* 1789 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1790 * to request from the allocator. 1791 */ 1792 uint64_t metaslab_ndf_clump_shift = 4; 1793 1794 static uint64_t 1795 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1796 { 1797 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1798 range_tree_t *rt = msp->ms_allocatable; 1799 zfs_btree_index_t where; 1800 range_seg_t *rs; 1801 range_seg_max_t rsearch; 1802 uint64_t hbit = highbit64(size); 1803 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1804 uint64_t max_size = metaslab_largest_allocatable(msp); 1805 1806 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1807 1808 if (max_size < size) 1809 return (-1ULL); 1810 1811 rs_set_start(&rsearch, rt, *cursor); 1812 rs_set_end(&rsearch, rt, *cursor + size); 1813 1814 rs = zfs_btree_find(t, &rsearch, &where); 1815 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1816 t = &msp->ms_allocatable_by_size; 1817 1818 rs_set_start(&rsearch, rt, 0); 1819 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1820 metaslab_ndf_clump_shift))); 1821 1822 rs = zfs_btree_find(t, &rsearch, &where); 1823 if (rs == NULL) 1824 rs = zfs_btree_next(t, &where, &where); 1825 ASSERT(rs != NULL); 1826 } 1827 1828 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1829 *cursor = rs_get_start(rs, rt) + size; 1830 return (rs_get_start(rs, rt)); 1831 } 1832 return (-1ULL); 1833 } 1834 1835 const metaslab_ops_t zfs_metaslab_ops = { 1836 metaslab_ndf_alloc 1837 }; 1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1839 1840 1841 /* 1842 * ========================================================================== 1843 * Metaslabs 1844 * ========================================================================== 1845 */ 1846 1847 /* 1848 * Wait for any in-progress metaslab loads to complete. 1849 */ 1850 static void 1851 metaslab_load_wait(metaslab_t *msp) 1852 { 1853 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1854 1855 while (msp->ms_loading) { 1856 ASSERT(!msp->ms_loaded); 1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1858 } 1859 } 1860 1861 /* 1862 * Wait for any in-progress flushing to complete. 1863 */ 1864 static void 1865 metaslab_flush_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_flushing) 1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1871 } 1872 1873 static unsigned int 1874 metaslab_idx_func(multilist_t *ml, void *arg) 1875 { 1876 metaslab_t *msp = arg; 1877 1878 /* 1879 * ms_id values are allocated sequentially, so full 64bit 1880 * division would be a waste of time, so limit it to 32 bits. 1881 */ 1882 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1883 } 1884 1885 uint64_t 1886 metaslab_allocated_space(metaslab_t *msp) 1887 { 1888 return (msp->ms_allocated_space); 1889 } 1890 1891 /* 1892 * Verify that the space accounting on disk matches the in-core range_trees. 1893 */ 1894 static void 1895 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1896 { 1897 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1898 uint64_t allocating = 0; 1899 uint64_t sm_free_space, msp_free_space; 1900 1901 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1902 ASSERT(!msp->ms_condensing); 1903 1904 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1905 return; 1906 1907 /* 1908 * We can only verify the metaslab space when we're called 1909 * from syncing context with a loaded metaslab that has an 1910 * allocated space map. Calling this in non-syncing context 1911 * does not provide a consistent view of the metaslab since 1912 * we're performing allocations in the future. 1913 */ 1914 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1915 !msp->ms_loaded) 1916 return; 1917 1918 /* 1919 * Even though the smp_alloc field can get negative, 1920 * when it comes to a metaslab's space map, that should 1921 * never be the case. 1922 */ 1923 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1924 1925 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1926 range_tree_space(msp->ms_unflushed_frees)); 1927 1928 ASSERT3U(metaslab_allocated_space(msp), ==, 1929 space_map_allocated(msp->ms_sm) + 1930 range_tree_space(msp->ms_unflushed_allocs) - 1931 range_tree_space(msp->ms_unflushed_frees)); 1932 1933 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1934 1935 /* 1936 * Account for future allocations since we would have 1937 * already deducted that space from the ms_allocatable. 1938 */ 1939 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1940 allocating += 1941 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1942 } 1943 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1944 msp->ms_allocating_total); 1945 1946 ASSERT3U(msp->ms_deferspace, ==, 1947 range_tree_space(msp->ms_defer[0]) + 1948 range_tree_space(msp->ms_defer[1])); 1949 1950 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1951 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1952 1953 VERIFY3U(sm_free_space, ==, msp_free_space); 1954 } 1955 1956 static void 1957 metaslab_aux_histograms_clear(metaslab_t *msp) 1958 { 1959 /* 1960 * Auxiliary histograms are only cleared when resetting them, 1961 * which can only happen while the metaslab is loaded. 1962 */ 1963 ASSERT(msp->ms_loaded); 1964 1965 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 1966 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1967 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 1968 } 1969 1970 static void 1971 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1972 range_tree_t *rt) 1973 { 1974 /* 1975 * This is modeled after space_map_histogram_add(), so refer to that 1976 * function for implementation details. We want this to work like 1977 * the space map histogram, and not the range tree histogram, as we 1978 * are essentially constructing a delta that will be later subtracted 1979 * from the space map histogram. 1980 */ 1981 int idx = 0; 1982 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1983 ASSERT3U(i, >=, idx + shift); 1984 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1985 1986 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1987 ASSERT3U(idx + shift, ==, i); 1988 idx++; 1989 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1990 } 1991 } 1992 } 1993 1994 /* 1995 * Called at every sync pass that the metaslab gets synced. 1996 * 1997 * The reason is that we want our auxiliary histograms to be updated 1998 * wherever the metaslab's space map histogram is updated. This way 1999 * we stay consistent on which parts of the metaslab space map's 2000 * histogram are currently not available for allocations (e.g because 2001 * they are in the defer, freed, and freeing trees). 2002 */ 2003 static void 2004 metaslab_aux_histograms_update(metaslab_t *msp) 2005 { 2006 space_map_t *sm = msp->ms_sm; 2007 ASSERT(sm != NULL); 2008 2009 /* 2010 * This is similar to the metaslab's space map histogram updates 2011 * that take place in metaslab_sync(). The only difference is that 2012 * we only care about segments that haven't made it into the 2013 * ms_allocatable tree yet. 2014 */ 2015 if (msp->ms_loaded) { 2016 metaslab_aux_histograms_clear(msp); 2017 2018 metaslab_aux_histogram_add(msp->ms_synchist, 2019 sm->sm_shift, msp->ms_freed); 2020 2021 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2022 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2023 sm->sm_shift, msp->ms_defer[t]); 2024 } 2025 } 2026 2027 metaslab_aux_histogram_add(msp->ms_synchist, 2028 sm->sm_shift, msp->ms_freeing); 2029 } 2030 2031 /* 2032 * Called every time we are done syncing (writing to) the metaslab, 2033 * i.e. at the end of each sync pass. 2034 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2035 */ 2036 static void 2037 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2038 { 2039 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2040 space_map_t *sm = msp->ms_sm; 2041 2042 if (sm == NULL) { 2043 /* 2044 * We came here from metaslab_init() when creating/opening a 2045 * pool, looking at a metaslab that hasn't had any allocations 2046 * yet. 2047 */ 2048 return; 2049 } 2050 2051 /* 2052 * This is similar to the actions that we take for the ms_freed 2053 * and ms_defer trees in metaslab_sync_done(). 2054 */ 2055 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2056 if (defer_allowed) { 2057 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2058 sizeof (msp->ms_synchist)); 2059 } else { 2060 memset(msp->ms_deferhist[hist_index], 0, 2061 sizeof (msp->ms_deferhist[hist_index])); 2062 } 2063 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2064 } 2065 2066 /* 2067 * Ensure that the metaslab's weight and fragmentation are consistent 2068 * with the contents of the histogram (either the range tree's histogram 2069 * or the space map's depending whether the metaslab is loaded). 2070 */ 2071 static void 2072 metaslab_verify_weight_and_frag(metaslab_t *msp) 2073 { 2074 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2075 2076 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2077 return; 2078 2079 /* 2080 * We can end up here from vdev_remove_complete(), in which case we 2081 * cannot do these assertions because we hold spa config locks and 2082 * thus we are not allowed to read from the DMU. 2083 * 2084 * We check if the metaslab group has been removed and if that's 2085 * the case we return immediately as that would mean that we are 2086 * here from the aforementioned code path. 2087 */ 2088 if (msp->ms_group == NULL) 2089 return; 2090 2091 /* 2092 * Devices being removed always return a weight of 0 and leave 2093 * fragmentation and ms_max_size as is - there is nothing for 2094 * us to verify here. 2095 */ 2096 vdev_t *vd = msp->ms_group->mg_vd; 2097 if (vd->vdev_removing) 2098 return; 2099 2100 /* 2101 * If the metaslab is dirty it probably means that we've done 2102 * some allocations or frees that have changed our histograms 2103 * and thus the weight. 2104 */ 2105 for (int t = 0; t < TXG_SIZE; t++) { 2106 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2107 return; 2108 } 2109 2110 /* 2111 * This verification checks that our in-memory state is consistent 2112 * with what's on disk. If the pool is read-only then there aren't 2113 * any changes and we just have the initially-loaded state. 2114 */ 2115 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2116 return; 2117 2118 /* some extra verification for in-core tree if you can */ 2119 if (msp->ms_loaded) { 2120 range_tree_stat_verify(msp->ms_allocatable); 2121 VERIFY(space_map_histogram_verify(msp->ms_sm, 2122 msp->ms_allocatable)); 2123 } 2124 2125 uint64_t weight = msp->ms_weight; 2126 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2127 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2128 uint64_t frag = msp->ms_fragmentation; 2129 uint64_t max_segsize = msp->ms_max_size; 2130 2131 msp->ms_weight = 0; 2132 msp->ms_fragmentation = 0; 2133 2134 /* 2135 * This function is used for verification purposes and thus should 2136 * not introduce any side-effects/mutations on the system's state. 2137 * 2138 * Regardless of whether metaslab_weight() thinks this metaslab 2139 * should be active or not, we want to ensure that the actual weight 2140 * (and therefore the value of ms_weight) would be the same if it 2141 * was to be recalculated at this point. 2142 * 2143 * In addition we set the nodirty flag so metaslab_weight() does 2144 * not dirty the metaslab for future TXGs (e.g. when trying to 2145 * force condensing to upgrade the metaslab spacemaps). 2146 */ 2147 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2148 2149 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2150 2151 /* 2152 * If the weight type changed then there is no point in doing 2153 * verification. Revert fields to their original values. 2154 */ 2155 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2156 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2157 msp->ms_fragmentation = frag; 2158 msp->ms_weight = weight; 2159 return; 2160 } 2161 2162 VERIFY3U(msp->ms_fragmentation, ==, frag); 2163 VERIFY3U(msp->ms_weight, ==, weight); 2164 } 2165 2166 /* 2167 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2168 * this class that was used longest ago, and attempt to unload it. We don't 2169 * want to spend too much time in this loop to prevent performance 2170 * degradation, and we expect that most of the time this operation will 2171 * succeed. Between that and the normal unloading processing during txg sync, 2172 * we expect this to keep the metaslab memory usage under control. 2173 */ 2174 static void 2175 metaslab_potentially_evict(metaslab_class_t *mc) 2176 { 2177 #ifdef _KERNEL 2178 uint64_t allmem = arc_all_memory(); 2179 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2180 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2181 uint_t tries = 0; 2182 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2183 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2184 tries++) { 2185 unsigned int idx = multilist_get_random_index( 2186 &mc->mc_metaslab_txg_list); 2187 multilist_sublist_t *mls = 2188 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2189 metaslab_t *msp = multilist_sublist_head(mls); 2190 multilist_sublist_unlock(mls); 2191 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2192 inuse * size) { 2193 VERIFY3P(mls, ==, multilist_sublist_lock( 2194 &mc->mc_metaslab_txg_list, idx)); 2195 ASSERT3U(idx, ==, 2196 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2197 2198 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2199 multilist_sublist_unlock(mls); 2200 break; 2201 } 2202 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2203 multilist_sublist_unlock(mls); 2204 /* 2205 * If the metaslab is currently loading there are two 2206 * cases. If it's the metaslab we're evicting, we 2207 * can't continue on or we'll panic when we attempt to 2208 * recursively lock the mutex. If it's another 2209 * metaslab that's loading, it can be safely skipped, 2210 * since we know it's very new and therefore not a 2211 * good eviction candidate. We check later once the 2212 * lock is held that the metaslab is fully loaded 2213 * before actually unloading it. 2214 */ 2215 if (msp->ms_loading) { 2216 msp = next_msp; 2217 inuse = 2218 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2219 continue; 2220 } 2221 /* 2222 * We can't unload metaslabs with no spacemap because 2223 * they're not ready to be unloaded yet. We can't 2224 * unload metaslabs with outstanding allocations 2225 * because doing so could cause the metaslab's weight 2226 * to decrease while it's unloaded, which violates an 2227 * invariant that we use to prevent unnecessary 2228 * loading. We also don't unload metaslabs that are 2229 * currently active because they are high-weight 2230 * metaslabs that are likely to be used in the near 2231 * future. 2232 */ 2233 mutex_enter(&msp->ms_lock); 2234 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2235 msp->ms_allocating_total == 0) { 2236 metaslab_unload(msp); 2237 } 2238 mutex_exit(&msp->ms_lock); 2239 msp = next_msp; 2240 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2241 } 2242 } 2243 #else 2244 (void) mc, (void) zfs_metaslab_mem_limit; 2245 #endif 2246 } 2247 2248 static int 2249 metaslab_load_impl(metaslab_t *msp) 2250 { 2251 int error = 0; 2252 2253 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2254 ASSERT(msp->ms_loading); 2255 ASSERT(!msp->ms_condensing); 2256 2257 /* 2258 * We temporarily drop the lock to unblock other operations while we 2259 * are reading the space map. Therefore, metaslab_sync() and 2260 * metaslab_sync_done() can run at the same time as we do. 2261 * 2262 * If we are using the log space maps, metaslab_sync() can't write to 2263 * the metaslab's space map while we are loading as we only write to 2264 * it when we are flushing the metaslab, and that can't happen while 2265 * we are loading it. 2266 * 2267 * If we are not using log space maps though, metaslab_sync() can 2268 * append to the space map while we are loading. Therefore we load 2269 * only entries that existed when we started the load. Additionally, 2270 * metaslab_sync_done() has to wait for the load to complete because 2271 * there are potential races like metaslab_load() loading parts of the 2272 * space map that are currently being appended by metaslab_sync(). If 2273 * we didn't, the ms_allocatable would have entries that 2274 * metaslab_sync_done() would try to re-add later. 2275 * 2276 * That's why before dropping the lock we remember the synced length 2277 * of the metaslab and read up to that point of the space map, 2278 * ignoring entries appended by metaslab_sync() that happen after we 2279 * drop the lock. 2280 */ 2281 uint64_t length = msp->ms_synced_length; 2282 mutex_exit(&msp->ms_lock); 2283 2284 hrtime_t load_start = gethrtime(); 2285 metaslab_rt_arg_t *mrap; 2286 if (msp->ms_allocatable->rt_arg == NULL) { 2287 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2288 } else { 2289 mrap = msp->ms_allocatable->rt_arg; 2290 msp->ms_allocatable->rt_ops = NULL; 2291 msp->ms_allocatable->rt_arg = NULL; 2292 } 2293 mrap->mra_bt = &msp->ms_allocatable_by_size; 2294 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2295 2296 if (msp->ms_sm != NULL) { 2297 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2298 SM_FREE, length); 2299 2300 /* Now, populate the size-sorted tree. */ 2301 metaslab_rt_create(msp->ms_allocatable, mrap); 2302 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2303 msp->ms_allocatable->rt_arg = mrap; 2304 2305 struct mssa_arg arg = {0}; 2306 arg.rt = msp->ms_allocatable; 2307 arg.mra = mrap; 2308 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2309 &arg); 2310 } else { 2311 /* 2312 * Add the size-sorted tree first, since we don't need to load 2313 * the metaslab from the spacemap. 2314 */ 2315 metaslab_rt_create(msp->ms_allocatable, mrap); 2316 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2317 msp->ms_allocatable->rt_arg = mrap; 2318 /* 2319 * The space map has not been allocated yet, so treat 2320 * all the space in the metaslab as free and add it to the 2321 * ms_allocatable tree. 2322 */ 2323 range_tree_add(msp->ms_allocatable, 2324 msp->ms_start, msp->ms_size); 2325 2326 if (msp->ms_new) { 2327 /* 2328 * If the ms_sm doesn't exist, this means that this 2329 * metaslab hasn't gone through metaslab_sync() and 2330 * thus has never been dirtied. So we shouldn't 2331 * expect any unflushed allocs or frees from previous 2332 * TXGs. 2333 */ 2334 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2335 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2336 } 2337 } 2338 2339 /* 2340 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2341 * changing the ms_sm (or log_sm) and the metaslab's range trees 2342 * while we are about to use them and populate the ms_allocatable. 2343 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2344 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2345 */ 2346 mutex_enter(&msp->ms_sync_lock); 2347 mutex_enter(&msp->ms_lock); 2348 2349 ASSERT(!msp->ms_condensing); 2350 ASSERT(!msp->ms_flushing); 2351 2352 if (error != 0) { 2353 mutex_exit(&msp->ms_sync_lock); 2354 return (error); 2355 } 2356 2357 ASSERT3P(msp->ms_group, !=, NULL); 2358 msp->ms_loaded = B_TRUE; 2359 2360 /* 2361 * Apply all the unflushed changes to ms_allocatable right 2362 * away so any manipulations we do below have a clear view 2363 * of what is allocated and what is free. 2364 */ 2365 range_tree_walk(msp->ms_unflushed_allocs, 2366 range_tree_remove, msp->ms_allocatable); 2367 range_tree_walk(msp->ms_unflushed_frees, 2368 range_tree_add, msp->ms_allocatable); 2369 2370 ASSERT3P(msp->ms_group, !=, NULL); 2371 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2372 if (spa_syncing_log_sm(spa) != NULL) { 2373 ASSERT(spa_feature_is_enabled(spa, 2374 SPA_FEATURE_LOG_SPACEMAP)); 2375 2376 /* 2377 * If we use a log space map we add all the segments 2378 * that are in ms_unflushed_frees so they are available 2379 * for allocation. 2380 * 2381 * ms_allocatable needs to contain all free segments 2382 * that are ready for allocations (thus not segments 2383 * from ms_freeing, ms_freed, and the ms_defer trees). 2384 * But if we grab the lock in this code path at a sync 2385 * pass later that 1, then it also contains the 2386 * segments of ms_freed (they were added to it earlier 2387 * in this path through ms_unflushed_frees). So we 2388 * need to remove all the segments that exist in 2389 * ms_freed from ms_allocatable as they will be added 2390 * later in metaslab_sync_done(). 2391 * 2392 * When there's no log space map, the ms_allocatable 2393 * correctly doesn't contain any segments that exist 2394 * in ms_freed [see ms_synced_length]. 2395 */ 2396 range_tree_walk(msp->ms_freed, 2397 range_tree_remove, msp->ms_allocatable); 2398 } 2399 2400 /* 2401 * If we are not using the log space map, ms_allocatable 2402 * contains the segments that exist in the ms_defer trees 2403 * [see ms_synced_length]. Thus we need to remove them 2404 * from ms_allocatable as they will be added again in 2405 * metaslab_sync_done(). 2406 * 2407 * If we are using the log space map, ms_allocatable still 2408 * contains the segments that exist in the ms_defer trees. 2409 * Not because it read them through the ms_sm though. But 2410 * because these segments are part of ms_unflushed_frees 2411 * whose segments we add to ms_allocatable earlier in this 2412 * code path. 2413 */ 2414 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2415 range_tree_walk(msp->ms_defer[t], 2416 range_tree_remove, msp->ms_allocatable); 2417 } 2418 2419 /* 2420 * Call metaslab_recalculate_weight_and_sort() now that the 2421 * metaslab is loaded so we get the metaslab's real weight. 2422 * 2423 * Unless this metaslab was created with older software and 2424 * has not yet been converted to use segment-based weight, we 2425 * expect the new weight to be better or equal to the weight 2426 * that the metaslab had while it was not loaded. This is 2427 * because the old weight does not take into account the 2428 * consolidation of adjacent segments between TXGs. [see 2429 * comment for ms_synchist and ms_deferhist[] for more info] 2430 */ 2431 uint64_t weight = msp->ms_weight; 2432 uint64_t max_size = msp->ms_max_size; 2433 metaslab_recalculate_weight_and_sort(msp); 2434 if (!WEIGHT_IS_SPACEBASED(weight)) 2435 ASSERT3U(weight, <=, msp->ms_weight); 2436 msp->ms_max_size = metaslab_largest_allocatable(msp); 2437 ASSERT3U(max_size, <=, msp->ms_max_size); 2438 hrtime_t load_end = gethrtime(); 2439 msp->ms_load_time = load_end; 2440 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2441 "ms_id %llu, smp_length %llu, " 2442 "unflushed_allocs %llu, unflushed_frees %llu, " 2443 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2444 "loading_time %lld ms, ms_max_size %llu, " 2445 "max size error %lld, " 2446 "old_weight %llx, new_weight %llx", 2447 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2448 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2449 (u_longlong_t)msp->ms_id, 2450 (u_longlong_t)space_map_length(msp->ms_sm), 2451 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2452 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2453 (u_longlong_t)range_tree_space(msp->ms_freed), 2454 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2455 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2456 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2457 (longlong_t)((load_end - load_start) / 1000000), 2458 (u_longlong_t)msp->ms_max_size, 2459 (u_longlong_t)msp->ms_max_size - max_size, 2460 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2461 2462 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2463 mutex_exit(&msp->ms_sync_lock); 2464 return (0); 2465 } 2466 2467 int 2468 metaslab_load(metaslab_t *msp) 2469 { 2470 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2471 2472 /* 2473 * There may be another thread loading the same metaslab, if that's 2474 * the case just wait until the other thread is done and return. 2475 */ 2476 metaslab_load_wait(msp); 2477 if (msp->ms_loaded) 2478 return (0); 2479 VERIFY(!msp->ms_loading); 2480 ASSERT(!msp->ms_condensing); 2481 2482 /* 2483 * We set the loading flag BEFORE potentially dropping the lock to 2484 * wait for an ongoing flush (see ms_flushing below). This way other 2485 * threads know that there is already a thread that is loading this 2486 * metaslab. 2487 */ 2488 msp->ms_loading = B_TRUE; 2489 2490 /* 2491 * Wait for any in-progress flushing to finish as we drop the ms_lock 2492 * both here (during space_map_load()) and in metaslab_flush() (when 2493 * we flush our changes to the ms_sm). 2494 */ 2495 if (msp->ms_flushing) 2496 metaslab_flush_wait(msp); 2497 2498 /* 2499 * In the possibility that we were waiting for the metaslab to be 2500 * flushed (where we temporarily dropped the ms_lock), ensure that 2501 * no one else loaded the metaslab somehow. 2502 */ 2503 ASSERT(!msp->ms_loaded); 2504 2505 /* 2506 * If we're loading a metaslab in the normal class, consider evicting 2507 * another one to keep our memory usage under the limit defined by the 2508 * zfs_metaslab_mem_limit tunable. 2509 */ 2510 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2511 msp->ms_group->mg_class) { 2512 metaslab_potentially_evict(msp->ms_group->mg_class); 2513 } 2514 2515 int error = metaslab_load_impl(msp); 2516 2517 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2518 msp->ms_loading = B_FALSE; 2519 cv_broadcast(&msp->ms_load_cv); 2520 2521 return (error); 2522 } 2523 2524 void 2525 metaslab_unload(metaslab_t *msp) 2526 { 2527 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2528 2529 /* 2530 * This can happen if a metaslab is selected for eviction (in 2531 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2532 * metaslab_class_evict_old). 2533 */ 2534 if (!msp->ms_loaded) 2535 return; 2536 2537 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2538 msp->ms_loaded = B_FALSE; 2539 msp->ms_unload_time = gethrtime(); 2540 2541 msp->ms_activation_weight = 0; 2542 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2543 2544 if (msp->ms_group != NULL) { 2545 metaslab_class_t *mc = msp->ms_group->mg_class; 2546 multilist_sublist_t *mls = 2547 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2548 if (multilist_link_active(&msp->ms_class_txg_node)) 2549 multilist_sublist_remove(mls, msp); 2550 multilist_sublist_unlock(mls); 2551 2552 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2553 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2554 "ms_id %llu, weight %llx, " 2555 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2556 "loaded %llu ms ago, max_size %llu", 2557 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2558 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2559 (u_longlong_t)msp->ms_id, 2560 (u_longlong_t)msp->ms_weight, 2561 (u_longlong_t)msp->ms_selected_txg, 2562 (u_longlong_t)(msp->ms_unload_time - 2563 msp->ms_selected_time) / 1000 / 1000, 2564 (u_longlong_t)msp->ms_alloc_txg, 2565 (u_longlong_t)(msp->ms_unload_time - 2566 msp->ms_load_time) / 1000 / 1000, 2567 (u_longlong_t)msp->ms_max_size); 2568 } 2569 2570 /* 2571 * We explicitly recalculate the metaslab's weight based on its space 2572 * map (as it is now not loaded). We want unload metaslabs to always 2573 * have their weights calculated from the space map histograms, while 2574 * loaded ones have it calculated from their in-core range tree 2575 * [see metaslab_load()]. This way, the weight reflects the information 2576 * available in-core, whether it is loaded or not. 2577 * 2578 * If ms_group == NULL means that we came here from metaslab_fini(), 2579 * at which point it doesn't make sense for us to do the recalculation 2580 * and the sorting. 2581 */ 2582 if (msp->ms_group != NULL) 2583 metaslab_recalculate_weight_and_sort(msp); 2584 } 2585 2586 /* 2587 * We want to optimize the memory use of the per-metaslab range 2588 * trees. To do this, we store the segments in the range trees in 2589 * units of sectors, zero-indexing from the start of the metaslab. If 2590 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2591 * the ranges using two uint32_ts, rather than two uint64_ts. 2592 */ 2593 range_seg_type_t 2594 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2595 uint64_t *start, uint64_t *shift) 2596 { 2597 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2598 !zfs_metaslab_force_large_segs) { 2599 *shift = vdev->vdev_ashift; 2600 *start = msp->ms_start; 2601 return (RANGE_SEG32); 2602 } else { 2603 *shift = 0; 2604 *start = 0; 2605 return (RANGE_SEG64); 2606 } 2607 } 2608 2609 void 2610 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2611 { 2612 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2613 metaslab_class_t *mc = msp->ms_group->mg_class; 2614 multilist_sublist_t *mls = 2615 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2616 if (multilist_link_active(&msp->ms_class_txg_node)) 2617 multilist_sublist_remove(mls, msp); 2618 msp->ms_selected_txg = txg; 2619 msp->ms_selected_time = gethrtime(); 2620 multilist_sublist_insert_tail(mls, msp); 2621 multilist_sublist_unlock(mls); 2622 } 2623 2624 void 2625 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2626 int64_t defer_delta, int64_t space_delta) 2627 { 2628 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2629 2630 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2631 ASSERT(vd->vdev_ms_count != 0); 2632 2633 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2634 vdev_deflated_space(vd, space_delta)); 2635 } 2636 2637 int 2638 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2639 uint64_t txg, metaslab_t **msp) 2640 { 2641 vdev_t *vd = mg->mg_vd; 2642 spa_t *spa = vd->vdev_spa; 2643 objset_t *mos = spa->spa_meta_objset; 2644 metaslab_t *ms; 2645 int error; 2646 2647 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2648 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2649 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2650 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2651 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2652 multilist_link_init(&ms->ms_class_txg_node); 2653 2654 ms->ms_id = id; 2655 ms->ms_start = id << vd->vdev_ms_shift; 2656 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2657 ms->ms_allocator = -1; 2658 ms->ms_new = B_TRUE; 2659 2660 vdev_ops_t *ops = vd->vdev_ops; 2661 if (ops->vdev_op_metaslab_init != NULL) 2662 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2663 2664 /* 2665 * We only open space map objects that already exist. All others 2666 * will be opened when we finally allocate an object for it. For 2667 * readonly pools there is no need to open the space map object. 2668 * 2669 * Note: 2670 * When called from vdev_expand(), we can't call into the DMU as 2671 * we are holding the spa_config_lock as a writer and we would 2672 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2673 * that case, the object parameter is zero though, so we won't 2674 * call into the DMU. 2675 */ 2676 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2677 !spa->spa_read_spacemaps)) { 2678 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2679 ms->ms_size, vd->vdev_ashift); 2680 2681 if (error != 0) { 2682 kmem_free(ms, sizeof (metaslab_t)); 2683 return (error); 2684 } 2685 2686 ASSERT(ms->ms_sm != NULL); 2687 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2688 } 2689 2690 uint64_t shift, start; 2691 range_seg_type_t type = 2692 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2693 2694 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2695 for (int t = 0; t < TXG_SIZE; t++) { 2696 ms->ms_allocating[t] = range_tree_create(NULL, type, 2697 NULL, start, shift); 2698 } 2699 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2700 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2701 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2702 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2703 start, shift); 2704 } 2705 ms->ms_checkpointing = 2706 range_tree_create(NULL, type, NULL, start, shift); 2707 ms->ms_unflushed_allocs = 2708 range_tree_create(NULL, type, NULL, start, shift); 2709 2710 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2711 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2712 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2713 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2714 type, mrap, start, shift); 2715 2716 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2717 2718 metaslab_group_add(mg, ms); 2719 metaslab_set_fragmentation(ms, B_FALSE); 2720 2721 /* 2722 * If we're opening an existing pool (txg == 0) or creating 2723 * a new one (txg == TXG_INITIAL), all space is available now. 2724 * If we're adding space to an existing pool, the new space 2725 * does not become available until after this txg has synced. 2726 * The metaslab's weight will also be initialized when we sync 2727 * out this txg. This ensures that we don't attempt to allocate 2728 * from it before we have initialized it completely. 2729 */ 2730 if (txg <= TXG_INITIAL) { 2731 metaslab_sync_done(ms, 0); 2732 metaslab_space_update(vd, mg->mg_class, 2733 metaslab_allocated_space(ms), 0, 0); 2734 } 2735 2736 if (txg != 0) { 2737 vdev_dirty(vd, 0, NULL, txg); 2738 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2739 } 2740 2741 *msp = ms; 2742 2743 return (0); 2744 } 2745 2746 static void 2747 metaslab_fini_flush_data(metaslab_t *msp) 2748 { 2749 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2750 2751 if (metaslab_unflushed_txg(msp) == 0) { 2752 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2753 ==, NULL); 2754 return; 2755 } 2756 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2757 2758 mutex_enter(&spa->spa_flushed_ms_lock); 2759 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2760 mutex_exit(&spa->spa_flushed_ms_lock); 2761 2762 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2763 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2764 metaslab_unflushed_dirty(msp)); 2765 } 2766 2767 uint64_t 2768 metaslab_unflushed_changes_memused(metaslab_t *ms) 2769 { 2770 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2771 range_tree_numsegs(ms->ms_unflushed_frees)) * 2772 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2773 } 2774 2775 void 2776 metaslab_fini(metaslab_t *msp) 2777 { 2778 metaslab_group_t *mg = msp->ms_group; 2779 vdev_t *vd = mg->mg_vd; 2780 spa_t *spa = vd->vdev_spa; 2781 2782 metaslab_fini_flush_data(msp); 2783 2784 metaslab_group_remove(mg, msp); 2785 2786 mutex_enter(&msp->ms_lock); 2787 VERIFY(msp->ms_group == NULL); 2788 2789 /* 2790 * If this metaslab hasn't been through metaslab_sync_done() yet its 2791 * space hasn't been accounted for in its vdev and doesn't need to be 2792 * subtracted. 2793 */ 2794 if (!msp->ms_new) { 2795 metaslab_space_update(vd, mg->mg_class, 2796 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2797 2798 } 2799 space_map_close(msp->ms_sm); 2800 msp->ms_sm = NULL; 2801 2802 metaslab_unload(msp); 2803 2804 range_tree_destroy(msp->ms_allocatable); 2805 range_tree_destroy(msp->ms_freeing); 2806 range_tree_destroy(msp->ms_freed); 2807 2808 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2809 metaslab_unflushed_changes_memused(msp)); 2810 spa->spa_unflushed_stats.sus_memused -= 2811 metaslab_unflushed_changes_memused(msp); 2812 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2813 range_tree_destroy(msp->ms_unflushed_allocs); 2814 range_tree_destroy(msp->ms_checkpointing); 2815 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2816 range_tree_destroy(msp->ms_unflushed_frees); 2817 2818 for (int t = 0; t < TXG_SIZE; t++) { 2819 range_tree_destroy(msp->ms_allocating[t]); 2820 } 2821 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2822 range_tree_destroy(msp->ms_defer[t]); 2823 } 2824 ASSERT0(msp->ms_deferspace); 2825 2826 for (int t = 0; t < TXG_SIZE; t++) 2827 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2828 2829 range_tree_vacate(msp->ms_trim, NULL, NULL); 2830 range_tree_destroy(msp->ms_trim); 2831 2832 mutex_exit(&msp->ms_lock); 2833 cv_destroy(&msp->ms_load_cv); 2834 cv_destroy(&msp->ms_flush_cv); 2835 mutex_destroy(&msp->ms_lock); 2836 mutex_destroy(&msp->ms_sync_lock); 2837 ASSERT3U(msp->ms_allocator, ==, -1); 2838 2839 kmem_free(msp, sizeof (metaslab_t)); 2840 } 2841 2842 #define FRAGMENTATION_TABLE_SIZE 17 2843 2844 /* 2845 * This table defines a segment size based fragmentation metric that will 2846 * allow each metaslab to derive its own fragmentation value. This is done 2847 * by calculating the space in each bucket of the spacemap histogram and 2848 * multiplying that by the fragmentation metric in this table. Doing 2849 * this for all buckets and dividing it by the total amount of free 2850 * space in this metaslab (i.e. the total free space in all buckets) gives 2851 * us the fragmentation metric. This means that a high fragmentation metric 2852 * equates to most of the free space being comprised of small segments. 2853 * Conversely, if the metric is low, then most of the free space is in 2854 * large segments. A 10% change in fragmentation equates to approximately 2855 * double the number of segments. 2856 * 2857 * This table defines 0% fragmented space using 16MB segments. Testing has 2858 * shown that segments that are greater than or equal to 16MB do not suffer 2859 * from drastic performance problems. Using this value, we derive the rest 2860 * of the table. Since the fragmentation value is never stored on disk, it 2861 * is possible to change these calculations in the future. 2862 */ 2863 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2864 100, /* 512B */ 2865 100, /* 1K */ 2866 98, /* 2K */ 2867 95, /* 4K */ 2868 90, /* 8K */ 2869 80, /* 16K */ 2870 70, /* 32K */ 2871 60, /* 64K */ 2872 50, /* 128K */ 2873 40, /* 256K */ 2874 30, /* 512K */ 2875 20, /* 1M */ 2876 15, /* 2M */ 2877 10, /* 4M */ 2878 5, /* 8M */ 2879 0 /* 16M */ 2880 }; 2881 2882 /* 2883 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2884 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2885 * been upgraded and does not support this metric. Otherwise, the return 2886 * value should be in the range [0, 100]. 2887 */ 2888 static void 2889 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2890 { 2891 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2892 uint64_t fragmentation = 0; 2893 uint64_t total = 0; 2894 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2895 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2896 2897 if (!feature_enabled) { 2898 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2899 return; 2900 } 2901 2902 /* 2903 * A null space map means that the entire metaslab is free 2904 * and thus is not fragmented. 2905 */ 2906 if (msp->ms_sm == NULL) { 2907 msp->ms_fragmentation = 0; 2908 return; 2909 } 2910 2911 /* 2912 * If this metaslab's space map has not been upgraded, flag it 2913 * so that we upgrade next time we encounter it. 2914 */ 2915 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2916 uint64_t txg = spa_syncing_txg(spa); 2917 vdev_t *vd = msp->ms_group->mg_vd; 2918 2919 /* 2920 * If we've reached the final dirty txg, then we must 2921 * be shutting down the pool. We don't want to dirty 2922 * any data past this point so skip setting the condense 2923 * flag. We can retry this action the next time the pool 2924 * is imported. We also skip marking this metaslab for 2925 * condensing if the caller has explicitly set nodirty. 2926 */ 2927 if (!nodirty && 2928 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2929 msp->ms_condense_wanted = B_TRUE; 2930 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2931 zfs_dbgmsg("txg %llu, requesting force condense: " 2932 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2933 (u_longlong_t)msp->ms_id, 2934 (u_longlong_t)vd->vdev_id); 2935 } 2936 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2937 return; 2938 } 2939 2940 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2941 uint64_t space = 0; 2942 uint8_t shift = msp->ms_sm->sm_shift; 2943 2944 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2945 FRAGMENTATION_TABLE_SIZE - 1); 2946 2947 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2948 continue; 2949 2950 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2951 total += space; 2952 2953 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2954 fragmentation += space * zfs_frag_table[idx]; 2955 } 2956 2957 if (total > 0) 2958 fragmentation /= total; 2959 ASSERT3U(fragmentation, <=, 100); 2960 2961 msp->ms_fragmentation = fragmentation; 2962 } 2963 2964 /* 2965 * Compute a weight -- a selection preference value -- for the given metaslab. 2966 * This is based on the amount of free space, the level of fragmentation, 2967 * the LBA range, and whether the metaslab is loaded. 2968 */ 2969 static uint64_t 2970 metaslab_space_weight(metaslab_t *msp) 2971 { 2972 metaslab_group_t *mg = msp->ms_group; 2973 vdev_t *vd = mg->mg_vd; 2974 uint64_t weight, space; 2975 2976 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2977 2978 /* 2979 * The baseline weight is the metaslab's free space. 2980 */ 2981 space = msp->ms_size - metaslab_allocated_space(msp); 2982 2983 if (metaslab_fragmentation_factor_enabled && 2984 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2985 /* 2986 * Use the fragmentation information to inversely scale 2987 * down the baseline weight. We need to ensure that we 2988 * don't exclude this metaslab completely when it's 100% 2989 * fragmented. To avoid this we reduce the fragmented value 2990 * by 1. 2991 */ 2992 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2993 2994 /* 2995 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2996 * this metaslab again. The fragmentation metric may have 2997 * decreased the space to something smaller than 2998 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2999 * so that we can consume any remaining space. 3000 */ 3001 if (space > 0 && space < SPA_MINBLOCKSIZE) 3002 space = SPA_MINBLOCKSIZE; 3003 } 3004 weight = space; 3005 3006 /* 3007 * Modern disks have uniform bit density and constant angular velocity. 3008 * Therefore, the outer recording zones are faster (higher bandwidth) 3009 * than the inner zones by the ratio of outer to inner track diameter, 3010 * which is typically around 2:1. We account for this by assigning 3011 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3012 * In effect, this means that we'll select the metaslab with the most 3013 * free bandwidth rather than simply the one with the most free space. 3014 */ 3015 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3016 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3017 ASSERT(weight >= space && weight <= 2 * space); 3018 } 3019 3020 /* 3021 * If this metaslab is one we're actively using, adjust its 3022 * weight to make it preferable to any inactive metaslab so 3023 * we'll polish it off. If the fragmentation on this metaslab 3024 * has exceed our threshold, then don't mark it active. 3025 */ 3026 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3027 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3028 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3029 } 3030 3031 WEIGHT_SET_SPACEBASED(weight); 3032 return (weight); 3033 } 3034 3035 /* 3036 * Return the weight of the specified metaslab, according to the segment-based 3037 * weighting algorithm. The metaslab must be loaded. This function can 3038 * be called within a sync pass since it relies only on the metaslab's 3039 * range tree which is always accurate when the metaslab is loaded. 3040 */ 3041 static uint64_t 3042 metaslab_weight_from_range_tree(metaslab_t *msp) 3043 { 3044 uint64_t weight = 0; 3045 uint32_t segments = 0; 3046 3047 ASSERT(msp->ms_loaded); 3048 3049 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3050 i--) { 3051 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3052 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3053 3054 segments <<= 1; 3055 segments += msp->ms_allocatable->rt_histogram[i]; 3056 3057 /* 3058 * The range tree provides more precision than the space map 3059 * and must be downgraded so that all values fit within the 3060 * space map's histogram. This allows us to compare loaded 3061 * vs. unloaded metaslabs to determine which metaslab is 3062 * considered "best". 3063 */ 3064 if (i > max_idx) 3065 continue; 3066 3067 if (segments != 0) { 3068 WEIGHT_SET_COUNT(weight, segments); 3069 WEIGHT_SET_INDEX(weight, i); 3070 WEIGHT_SET_ACTIVE(weight, 0); 3071 break; 3072 } 3073 } 3074 return (weight); 3075 } 3076 3077 /* 3078 * Calculate the weight based on the on-disk histogram. Should be applied 3079 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3080 * give results consistent with the on-disk state 3081 */ 3082 static uint64_t 3083 metaslab_weight_from_spacemap(metaslab_t *msp) 3084 { 3085 space_map_t *sm = msp->ms_sm; 3086 ASSERT(!msp->ms_loaded); 3087 ASSERT(sm != NULL); 3088 ASSERT3U(space_map_object(sm), !=, 0); 3089 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3090 3091 /* 3092 * Create a joint histogram from all the segments that have made 3093 * it to the metaslab's space map histogram, that are not yet 3094 * available for allocation because they are still in the freeing 3095 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3096 * these segments from the space map's histogram to get a more 3097 * accurate weight. 3098 */ 3099 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3100 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3101 deferspace_histogram[i] += msp->ms_synchist[i]; 3102 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3103 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3104 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3105 } 3106 } 3107 3108 uint64_t weight = 0; 3109 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3110 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3111 deferspace_histogram[i]); 3112 uint64_t count = 3113 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3114 if (count != 0) { 3115 WEIGHT_SET_COUNT(weight, count); 3116 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3117 WEIGHT_SET_ACTIVE(weight, 0); 3118 break; 3119 } 3120 } 3121 return (weight); 3122 } 3123 3124 /* 3125 * Compute a segment-based weight for the specified metaslab. The weight 3126 * is determined by highest bucket in the histogram. The information 3127 * for the highest bucket is encoded into the weight value. 3128 */ 3129 static uint64_t 3130 metaslab_segment_weight(metaslab_t *msp) 3131 { 3132 metaslab_group_t *mg = msp->ms_group; 3133 uint64_t weight = 0; 3134 uint8_t shift = mg->mg_vd->vdev_ashift; 3135 3136 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3137 3138 /* 3139 * The metaslab is completely free. 3140 */ 3141 if (metaslab_allocated_space(msp) == 0) { 3142 int idx = highbit64(msp->ms_size) - 1; 3143 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3144 3145 if (idx < max_idx) { 3146 WEIGHT_SET_COUNT(weight, 1ULL); 3147 WEIGHT_SET_INDEX(weight, idx); 3148 } else { 3149 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3150 WEIGHT_SET_INDEX(weight, max_idx); 3151 } 3152 WEIGHT_SET_ACTIVE(weight, 0); 3153 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3154 return (weight); 3155 } 3156 3157 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3158 3159 /* 3160 * If the metaslab is fully allocated then just make the weight 0. 3161 */ 3162 if (metaslab_allocated_space(msp) == msp->ms_size) 3163 return (0); 3164 /* 3165 * If the metaslab is already loaded, then use the range tree to 3166 * determine the weight. Otherwise, we rely on the space map information 3167 * to generate the weight. 3168 */ 3169 if (msp->ms_loaded) { 3170 weight = metaslab_weight_from_range_tree(msp); 3171 } else { 3172 weight = metaslab_weight_from_spacemap(msp); 3173 } 3174 3175 /* 3176 * If the metaslab was active the last time we calculated its weight 3177 * then keep it active. We want to consume the entire region that 3178 * is associated with this weight. 3179 */ 3180 if (msp->ms_activation_weight != 0 && weight != 0) 3181 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3182 return (weight); 3183 } 3184 3185 /* 3186 * Determine if we should attempt to allocate from this metaslab. If the 3187 * metaslab is loaded, then we can determine if the desired allocation 3188 * can be satisfied by looking at the size of the maximum free segment 3189 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3190 * weight. For segment-based weighting we can determine the maximum 3191 * allocation based on the index encoded in its value. For space-based 3192 * weights we rely on the entire weight (excluding the weight-type bit). 3193 */ 3194 static boolean_t 3195 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3196 { 3197 /* 3198 * If the metaslab is loaded, ms_max_size is definitive and we can use 3199 * the fast check. If it's not, the ms_max_size is a lower bound (once 3200 * set), and we should use the fast check as long as we're not in 3201 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3202 * seconds since the metaslab was unloaded. 3203 */ 3204 if (msp->ms_loaded || 3205 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3206 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3207 return (msp->ms_max_size >= asize); 3208 3209 boolean_t should_allocate; 3210 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3211 /* 3212 * The metaslab segment weight indicates segments in the 3213 * range [2^i, 2^(i+1)), where i is the index in the weight. 3214 * Since the asize might be in the middle of the range, we 3215 * should attempt the allocation if asize < 2^(i+1). 3216 */ 3217 should_allocate = (asize < 3218 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3219 } else { 3220 should_allocate = (asize <= 3221 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3222 } 3223 3224 return (should_allocate); 3225 } 3226 3227 static uint64_t 3228 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3229 { 3230 vdev_t *vd = msp->ms_group->mg_vd; 3231 spa_t *spa = vd->vdev_spa; 3232 uint64_t weight; 3233 3234 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3235 3236 metaslab_set_fragmentation(msp, nodirty); 3237 3238 /* 3239 * Update the maximum size. If the metaslab is loaded, this will 3240 * ensure that we get an accurate maximum size if newly freed space 3241 * has been added back into the free tree. If the metaslab is 3242 * unloaded, we check if there's a larger free segment in the 3243 * unflushed frees. This is a lower bound on the largest allocatable 3244 * segment size. Coalescing of adjacent entries may reveal larger 3245 * allocatable segments, but we aren't aware of those until loading 3246 * the space map into a range tree. 3247 */ 3248 if (msp->ms_loaded) { 3249 msp->ms_max_size = metaslab_largest_allocatable(msp); 3250 } else { 3251 msp->ms_max_size = MAX(msp->ms_max_size, 3252 metaslab_largest_unflushed_free(msp)); 3253 } 3254 3255 /* 3256 * Segment-based weighting requires space map histogram support. 3257 */ 3258 if (zfs_metaslab_segment_weight_enabled && 3259 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3260 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3261 sizeof (space_map_phys_t))) { 3262 weight = metaslab_segment_weight(msp); 3263 } else { 3264 weight = metaslab_space_weight(msp); 3265 } 3266 return (weight); 3267 } 3268 3269 void 3270 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3271 { 3272 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3273 3274 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3275 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3276 metaslab_group_sort(msp->ms_group, msp, 3277 metaslab_weight(msp, B_FALSE) | was_active); 3278 } 3279 3280 static int 3281 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3282 int allocator, uint64_t activation_weight) 3283 { 3284 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3285 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3286 3287 /* 3288 * If we're activating for the claim code, we don't want to actually 3289 * set the metaslab up for a specific allocator. 3290 */ 3291 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3292 ASSERT0(msp->ms_activation_weight); 3293 msp->ms_activation_weight = msp->ms_weight; 3294 metaslab_group_sort(mg, msp, msp->ms_weight | 3295 activation_weight); 3296 return (0); 3297 } 3298 3299 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3300 &mga->mga_primary : &mga->mga_secondary); 3301 3302 mutex_enter(&mg->mg_lock); 3303 if (*mspp != NULL) { 3304 mutex_exit(&mg->mg_lock); 3305 return (EEXIST); 3306 } 3307 3308 *mspp = msp; 3309 ASSERT3S(msp->ms_allocator, ==, -1); 3310 msp->ms_allocator = allocator; 3311 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3312 3313 ASSERT0(msp->ms_activation_weight); 3314 msp->ms_activation_weight = msp->ms_weight; 3315 metaslab_group_sort_impl(mg, msp, 3316 msp->ms_weight | activation_weight); 3317 mutex_exit(&mg->mg_lock); 3318 3319 return (0); 3320 } 3321 3322 static int 3323 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3324 { 3325 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3326 3327 /* 3328 * The current metaslab is already activated for us so there 3329 * is nothing to do. Already activated though, doesn't mean 3330 * that this metaslab is activated for our allocator nor our 3331 * requested activation weight. The metaslab could have started 3332 * as an active one for our allocator but changed allocators 3333 * while we were waiting to grab its ms_lock or we stole it 3334 * [see find_valid_metaslab()]. This means that there is a 3335 * possibility of passivating a metaslab of another allocator 3336 * or from a different activation mask, from this thread. 3337 */ 3338 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3339 ASSERT(msp->ms_loaded); 3340 return (0); 3341 } 3342 3343 int error = metaslab_load(msp); 3344 if (error != 0) { 3345 metaslab_group_sort(msp->ms_group, msp, 0); 3346 return (error); 3347 } 3348 3349 /* 3350 * When entering metaslab_load() we may have dropped the 3351 * ms_lock because we were loading this metaslab, or we 3352 * were waiting for another thread to load it for us. In 3353 * that scenario, we recheck the weight of the metaslab 3354 * to see if it was activated by another thread. 3355 * 3356 * If the metaslab was activated for another allocator or 3357 * it was activated with a different activation weight (e.g. 3358 * we wanted to make it a primary but it was activated as 3359 * secondary) we return error (EBUSY). 3360 * 3361 * If the metaslab was activated for the same allocator 3362 * and requested activation mask, skip activating it. 3363 */ 3364 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3365 if (msp->ms_allocator != allocator) 3366 return (EBUSY); 3367 3368 if ((msp->ms_weight & activation_weight) == 0) 3369 return (SET_ERROR(EBUSY)); 3370 3371 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3372 msp->ms_primary); 3373 return (0); 3374 } 3375 3376 /* 3377 * If the metaslab has literally 0 space, it will have weight 0. In 3378 * that case, don't bother activating it. This can happen if the 3379 * metaslab had space during find_valid_metaslab, but another thread 3380 * loaded it and used all that space while we were waiting to grab the 3381 * lock. 3382 */ 3383 if (msp->ms_weight == 0) { 3384 ASSERT0(range_tree_space(msp->ms_allocatable)); 3385 return (SET_ERROR(ENOSPC)); 3386 } 3387 3388 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3389 allocator, activation_weight)) != 0) { 3390 return (error); 3391 } 3392 3393 ASSERT(msp->ms_loaded); 3394 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3395 3396 return (0); 3397 } 3398 3399 static void 3400 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3401 uint64_t weight) 3402 { 3403 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3404 ASSERT(msp->ms_loaded); 3405 3406 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3407 metaslab_group_sort(mg, msp, weight); 3408 return; 3409 } 3410 3411 mutex_enter(&mg->mg_lock); 3412 ASSERT3P(msp->ms_group, ==, mg); 3413 ASSERT3S(0, <=, msp->ms_allocator); 3414 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3415 3416 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3417 if (msp->ms_primary) { 3418 ASSERT3P(mga->mga_primary, ==, msp); 3419 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3420 mga->mga_primary = NULL; 3421 } else { 3422 ASSERT3P(mga->mga_secondary, ==, msp); 3423 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3424 mga->mga_secondary = NULL; 3425 } 3426 msp->ms_allocator = -1; 3427 metaslab_group_sort_impl(mg, msp, weight); 3428 mutex_exit(&mg->mg_lock); 3429 } 3430 3431 static void 3432 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3433 { 3434 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3435 3436 /* 3437 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3438 * this metaslab again. In that case, it had better be empty, 3439 * or we would be leaving space on the table. 3440 */ 3441 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3442 size >= SPA_MINBLOCKSIZE || 3443 range_tree_space(msp->ms_allocatable) == 0); 3444 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3445 3446 ASSERT(msp->ms_activation_weight != 0); 3447 msp->ms_activation_weight = 0; 3448 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3449 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3450 } 3451 3452 /* 3453 * Segment-based metaslabs are activated once and remain active until 3454 * we either fail an allocation attempt (similar to space-based metaslabs) 3455 * or have exhausted the free space in zfs_metaslab_switch_threshold 3456 * buckets since the metaslab was activated. This function checks to see 3457 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3458 * metaslab and passivates it proactively. This will allow us to select a 3459 * metaslab with a larger contiguous region, if any, remaining within this 3460 * metaslab group. If we're in sync pass > 1, then we continue using this 3461 * metaslab so that we don't dirty more block and cause more sync passes. 3462 */ 3463 static void 3464 metaslab_segment_may_passivate(metaslab_t *msp) 3465 { 3466 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3467 3468 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3469 return; 3470 3471 /* 3472 * Since we are in the middle of a sync pass, the most accurate 3473 * information that is accessible to us is the in-core range tree 3474 * histogram; calculate the new weight based on that information. 3475 */ 3476 uint64_t weight = metaslab_weight_from_range_tree(msp); 3477 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3478 int current_idx = WEIGHT_GET_INDEX(weight); 3479 3480 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3481 metaslab_passivate(msp, weight); 3482 } 3483 3484 static void 3485 metaslab_preload(void *arg) 3486 { 3487 metaslab_t *msp = arg; 3488 metaslab_class_t *mc = msp->ms_group->mg_class; 3489 spa_t *spa = mc->mc_spa; 3490 fstrans_cookie_t cookie = spl_fstrans_mark(); 3491 3492 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3493 3494 mutex_enter(&msp->ms_lock); 3495 (void) metaslab_load(msp); 3496 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3497 mutex_exit(&msp->ms_lock); 3498 spl_fstrans_unmark(cookie); 3499 } 3500 3501 static void 3502 metaslab_group_preload(metaslab_group_t *mg) 3503 { 3504 spa_t *spa = mg->mg_vd->vdev_spa; 3505 metaslab_t *msp; 3506 avl_tree_t *t = &mg->mg_metaslab_tree; 3507 int m = 0; 3508 3509 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3510 taskq_wait_outstanding(mg->mg_taskq, 0); 3511 return; 3512 } 3513 3514 mutex_enter(&mg->mg_lock); 3515 3516 /* 3517 * Load the next potential metaslabs 3518 */ 3519 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3520 ASSERT3P(msp->ms_group, ==, mg); 3521 3522 /* 3523 * We preload only the maximum number of metaslabs specified 3524 * by metaslab_preload_limit. If a metaslab is being forced 3525 * to condense then we preload it too. This will ensure 3526 * that force condensing happens in the next txg. 3527 */ 3528 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3529 continue; 3530 } 3531 3532 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3533 msp, TQ_SLEEP) != TASKQID_INVALID); 3534 } 3535 mutex_exit(&mg->mg_lock); 3536 } 3537 3538 /* 3539 * Determine if the space map's on-disk footprint is past our tolerance for 3540 * inefficiency. We would like to use the following criteria to make our 3541 * decision: 3542 * 3543 * 1. Do not condense if the size of the space map object would dramatically 3544 * increase as a result of writing out the free space range tree. 3545 * 3546 * 2. Condense if the on on-disk space map representation is at least 3547 * zfs_condense_pct/100 times the size of the optimal representation 3548 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3549 * 3550 * 3. Do not condense if the on-disk size of the space map does not actually 3551 * decrease. 3552 * 3553 * Unfortunately, we cannot compute the on-disk size of the space map in this 3554 * context because we cannot accurately compute the effects of compression, etc. 3555 * Instead, we apply the heuristic described in the block comment for 3556 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3557 * is greater than a threshold number of blocks. 3558 */ 3559 static boolean_t 3560 metaslab_should_condense(metaslab_t *msp) 3561 { 3562 space_map_t *sm = msp->ms_sm; 3563 vdev_t *vd = msp->ms_group->mg_vd; 3564 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3565 3566 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3567 ASSERT(msp->ms_loaded); 3568 ASSERT(sm != NULL); 3569 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3570 3571 /* 3572 * We always condense metaslabs that are empty and metaslabs for 3573 * which a condense request has been made. 3574 */ 3575 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3576 msp->ms_condense_wanted) 3577 return (B_TRUE); 3578 3579 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3580 uint64_t object_size = space_map_length(sm); 3581 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3582 msp->ms_allocatable, SM_NO_VDEVID); 3583 3584 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3585 object_size > zfs_metaslab_condense_block_threshold * record_size); 3586 } 3587 3588 /* 3589 * Condense the on-disk space map representation to its minimized form. 3590 * The minimized form consists of a small number of allocations followed 3591 * by the entries of the free range tree (ms_allocatable). The condensed 3592 * spacemap contains all the entries of previous TXGs (including those in 3593 * the pool-wide log spacemaps; thus this is effectively a superset of 3594 * metaslab_flush()), but this TXG's entries still need to be written. 3595 */ 3596 static void 3597 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3598 { 3599 range_tree_t *condense_tree; 3600 space_map_t *sm = msp->ms_sm; 3601 uint64_t txg = dmu_tx_get_txg(tx); 3602 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3603 3604 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3605 ASSERT(msp->ms_loaded); 3606 ASSERT(msp->ms_sm != NULL); 3607 3608 /* 3609 * In order to condense the space map, we need to change it so it 3610 * only describes which segments are currently allocated and free. 3611 * 3612 * All the current free space resides in the ms_allocatable, all 3613 * the ms_defer trees, and all the ms_allocating trees. We ignore 3614 * ms_freed because it is empty because we're in sync pass 1. We 3615 * ignore ms_freeing because these changes are not yet reflected 3616 * in the spacemap (they will be written later this txg). 3617 * 3618 * So to truncate the space map to represent all the entries of 3619 * previous TXGs we do the following: 3620 * 3621 * 1] We create a range tree (condense tree) that is 100% empty. 3622 * 2] We add to it all segments found in the ms_defer trees 3623 * as those segments are marked as free in the original space 3624 * map. We do the same with the ms_allocating trees for the same 3625 * reason. Adding these segments should be a relatively 3626 * inexpensive operation since we expect these trees to have a 3627 * small number of nodes. 3628 * 3] We vacate any unflushed allocs, since they are not frees we 3629 * need to add to the condense tree. Then we vacate any 3630 * unflushed frees as they should already be part of ms_allocatable. 3631 * 4] At this point, we would ideally like to add all segments 3632 * in the ms_allocatable tree from the condense tree. This way 3633 * we would write all the entries of the condense tree as the 3634 * condensed space map, which would only contain freed 3635 * segments with everything else assumed to be allocated. 3636 * 3637 * Doing so can be prohibitively expensive as ms_allocatable can 3638 * be large, and therefore computationally expensive to add to 3639 * the condense_tree. Instead we first sync out an entry marking 3640 * everything as allocated, then the condense_tree and then the 3641 * ms_allocatable, in the condensed space map. While this is not 3642 * optimal, it is typically close to optimal and more importantly 3643 * much cheaper to compute. 3644 * 3645 * 5] Finally, as both of the unflushed trees were written to our 3646 * new and condensed metaslab space map, we basically flushed 3647 * all the unflushed changes to disk, thus we call 3648 * metaslab_flush_update(). 3649 */ 3650 ASSERT3U(spa_sync_pass(spa), ==, 1); 3651 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3652 3653 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3654 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3655 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3656 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3657 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3658 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3659 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3660 3661 msp->ms_condense_wanted = B_FALSE; 3662 3663 range_seg_type_t type; 3664 uint64_t shift, start; 3665 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3666 &start, &shift); 3667 3668 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3669 3670 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3671 range_tree_walk(msp->ms_defer[t], 3672 range_tree_add, condense_tree); 3673 } 3674 3675 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3676 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3677 range_tree_add, condense_tree); 3678 } 3679 3680 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3681 metaslab_unflushed_changes_memused(msp)); 3682 spa->spa_unflushed_stats.sus_memused -= 3683 metaslab_unflushed_changes_memused(msp); 3684 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3685 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3686 3687 /* 3688 * We're about to drop the metaslab's lock thus allowing other 3689 * consumers to change it's content. Set the metaslab's ms_condensing 3690 * flag to ensure that allocations on this metaslab do not occur 3691 * while we're in the middle of committing it to disk. This is only 3692 * critical for ms_allocatable as all other range trees use per TXG 3693 * views of their content. 3694 */ 3695 msp->ms_condensing = B_TRUE; 3696 3697 mutex_exit(&msp->ms_lock); 3698 uint64_t object = space_map_object(msp->ms_sm); 3699 space_map_truncate(sm, 3700 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3701 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3702 3703 /* 3704 * space_map_truncate() may have reallocated the spacemap object. 3705 * If so, update the vdev_ms_array. 3706 */ 3707 if (space_map_object(msp->ms_sm) != object) { 3708 object = space_map_object(msp->ms_sm); 3709 dmu_write(spa->spa_meta_objset, 3710 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3711 msp->ms_id, sizeof (uint64_t), &object, tx); 3712 } 3713 3714 /* 3715 * Note: 3716 * When the log space map feature is enabled, each space map will 3717 * always have ALLOCS followed by FREES for each sync pass. This is 3718 * typically true even when the log space map feature is disabled, 3719 * except from the case where a metaslab goes through metaslab_sync() 3720 * and gets condensed. In that case the metaslab's space map will have 3721 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3722 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3723 * sync pass 1. 3724 */ 3725 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3726 shift); 3727 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3728 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3729 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3730 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3731 3732 range_tree_vacate(condense_tree, NULL, NULL); 3733 range_tree_destroy(condense_tree); 3734 range_tree_vacate(tmp_tree, NULL, NULL); 3735 range_tree_destroy(tmp_tree); 3736 mutex_enter(&msp->ms_lock); 3737 3738 msp->ms_condensing = B_FALSE; 3739 metaslab_flush_update(msp, tx); 3740 } 3741 3742 static void 3743 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3744 { 3745 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3746 ASSERT(spa_syncing_log_sm(spa) != NULL); 3747 ASSERT(msp->ms_sm != NULL); 3748 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3749 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3750 3751 mutex_enter(&spa->spa_flushed_ms_lock); 3752 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3753 metaslab_set_unflushed_dirty(msp, B_TRUE); 3754 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3755 mutex_exit(&spa->spa_flushed_ms_lock); 3756 3757 spa_log_sm_increment_current_mscount(spa); 3758 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3759 } 3760 3761 void 3762 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3763 { 3764 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3765 ASSERT(spa_syncing_log_sm(spa) != NULL); 3766 ASSERT(msp->ms_sm != NULL); 3767 ASSERT(metaslab_unflushed_txg(msp) != 0); 3768 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3769 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3770 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3771 3772 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3773 3774 /* update metaslab's position in our flushing tree */ 3775 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3776 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3777 mutex_enter(&spa->spa_flushed_ms_lock); 3778 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3779 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3780 metaslab_set_unflushed_dirty(msp, dirty); 3781 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3782 mutex_exit(&spa->spa_flushed_ms_lock); 3783 3784 /* update metaslab counts of spa_log_sm_t nodes */ 3785 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3786 spa_log_sm_increment_current_mscount(spa); 3787 3788 /* update log space map summary */ 3789 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 3790 ms_prev_flushed_dirty); 3791 spa_log_summary_add_flushed_metaslab(spa, dirty); 3792 3793 /* cleanup obsolete logs if any */ 3794 spa_cleanup_old_sm_logs(spa, tx); 3795 } 3796 3797 /* 3798 * Called when the metaslab has been flushed (its own spacemap now reflects 3799 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3800 * metadata and any pool-wide related log space map data (e.g. summary, 3801 * obsolete logs, etc..) to reflect that. 3802 */ 3803 static void 3804 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3805 { 3806 metaslab_group_t *mg = msp->ms_group; 3807 spa_t *spa = mg->mg_vd->vdev_spa; 3808 3809 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3810 3811 ASSERT3U(spa_sync_pass(spa), ==, 1); 3812 3813 /* 3814 * Just because a metaslab got flushed, that doesn't mean that 3815 * it will pass through metaslab_sync_done(). Thus, make sure to 3816 * update ms_synced_length here in case it doesn't. 3817 */ 3818 msp->ms_synced_length = space_map_length(msp->ms_sm); 3819 3820 /* 3821 * We may end up here from metaslab_condense() without the 3822 * feature being active. In that case this is a no-op. 3823 */ 3824 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 3825 metaslab_unflushed_txg(msp) == 0) 3826 return; 3827 3828 metaslab_unflushed_bump(msp, tx, B_FALSE); 3829 } 3830 3831 boolean_t 3832 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3833 { 3834 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3835 3836 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3837 ASSERT3U(spa_sync_pass(spa), ==, 1); 3838 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3839 3840 ASSERT(msp->ms_sm != NULL); 3841 ASSERT(metaslab_unflushed_txg(msp) != 0); 3842 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3843 3844 /* 3845 * There is nothing wrong with flushing the same metaslab twice, as 3846 * this codepath should work on that case. However, the current 3847 * flushing scheme makes sure to avoid this situation as we would be 3848 * making all these calls without having anything meaningful to write 3849 * to disk. We assert this behavior here. 3850 */ 3851 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3852 3853 /* 3854 * We can not flush while loading, because then we would 3855 * not load the ms_unflushed_{allocs,frees}. 3856 */ 3857 if (msp->ms_loading) 3858 return (B_FALSE); 3859 3860 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3861 metaslab_verify_weight_and_frag(msp); 3862 3863 /* 3864 * Metaslab condensing is effectively flushing. Therefore if the 3865 * metaslab can be condensed we can just condense it instead of 3866 * flushing it. 3867 * 3868 * Note that metaslab_condense() does call metaslab_flush_update() 3869 * so we can just return immediately after condensing. We also 3870 * don't need to care about setting ms_flushing or broadcasting 3871 * ms_flush_cv, even if we temporarily drop the ms_lock in 3872 * metaslab_condense(), as the metaslab is already loaded. 3873 */ 3874 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3875 metaslab_group_t *mg = msp->ms_group; 3876 3877 /* 3878 * For all histogram operations below refer to the 3879 * comments of metaslab_sync() where we follow a 3880 * similar procedure. 3881 */ 3882 metaslab_group_histogram_verify(mg); 3883 metaslab_class_histogram_verify(mg->mg_class); 3884 metaslab_group_histogram_remove(mg, msp); 3885 3886 metaslab_condense(msp, tx); 3887 3888 space_map_histogram_clear(msp->ms_sm); 3889 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3890 ASSERT(range_tree_is_empty(msp->ms_freed)); 3891 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3892 space_map_histogram_add(msp->ms_sm, 3893 msp->ms_defer[t], tx); 3894 } 3895 metaslab_aux_histograms_update(msp); 3896 3897 metaslab_group_histogram_add(mg, msp); 3898 metaslab_group_histogram_verify(mg); 3899 metaslab_class_histogram_verify(mg->mg_class); 3900 3901 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3902 3903 /* 3904 * Since we recreated the histogram (and potentially 3905 * the ms_sm too while condensing) ensure that the 3906 * weight is updated too because we are not guaranteed 3907 * that this metaslab is dirty and will go through 3908 * metaslab_sync_done(). 3909 */ 3910 metaslab_recalculate_weight_and_sort(msp); 3911 return (B_TRUE); 3912 } 3913 3914 msp->ms_flushing = B_TRUE; 3915 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3916 3917 mutex_exit(&msp->ms_lock); 3918 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3919 SM_NO_VDEVID, tx); 3920 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3921 SM_NO_VDEVID, tx); 3922 mutex_enter(&msp->ms_lock); 3923 3924 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3925 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3926 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3927 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3928 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3929 spa_name(spa), 3930 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3931 (u_longlong_t)msp->ms_id, 3932 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3933 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3934 (u_longlong_t)(sm_len_after - sm_len_before)); 3935 } 3936 3937 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3938 metaslab_unflushed_changes_memused(msp)); 3939 spa->spa_unflushed_stats.sus_memused -= 3940 metaslab_unflushed_changes_memused(msp); 3941 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3942 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3943 3944 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3945 metaslab_verify_weight_and_frag(msp); 3946 3947 metaslab_flush_update(msp, tx); 3948 3949 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3950 metaslab_verify_weight_and_frag(msp); 3951 3952 msp->ms_flushing = B_FALSE; 3953 cv_broadcast(&msp->ms_flush_cv); 3954 return (B_TRUE); 3955 } 3956 3957 /* 3958 * Write a metaslab to disk in the context of the specified transaction group. 3959 */ 3960 void 3961 metaslab_sync(metaslab_t *msp, uint64_t txg) 3962 { 3963 metaslab_group_t *mg = msp->ms_group; 3964 vdev_t *vd = mg->mg_vd; 3965 spa_t *spa = vd->vdev_spa; 3966 objset_t *mos = spa_meta_objset(spa); 3967 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3968 dmu_tx_t *tx; 3969 3970 ASSERT(!vd->vdev_ishole); 3971 3972 /* 3973 * This metaslab has just been added so there's no work to do now. 3974 */ 3975 if (msp->ms_new) { 3976 ASSERT0(range_tree_space(alloctree)); 3977 ASSERT0(range_tree_space(msp->ms_freeing)); 3978 ASSERT0(range_tree_space(msp->ms_freed)); 3979 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3980 ASSERT0(range_tree_space(msp->ms_trim)); 3981 return; 3982 } 3983 3984 /* 3985 * Normally, we don't want to process a metaslab if there are no 3986 * allocations or frees to perform. However, if the metaslab is being 3987 * forced to condense, it's loaded and we're not beyond the final 3988 * dirty txg, we need to let it through. Not condensing beyond the 3989 * final dirty txg prevents an issue where metaslabs that need to be 3990 * condensed but were loaded for other reasons could cause a panic 3991 * here. By only checking the txg in that branch of the conditional, 3992 * we preserve the utility of the VERIFY statements in all other 3993 * cases. 3994 */ 3995 if (range_tree_is_empty(alloctree) && 3996 range_tree_is_empty(msp->ms_freeing) && 3997 range_tree_is_empty(msp->ms_checkpointing) && 3998 !(msp->ms_loaded && msp->ms_condense_wanted && 3999 txg <= spa_final_dirty_txg(spa))) 4000 return; 4001 4002 4003 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4004 4005 /* 4006 * The only state that can actually be changing concurrently 4007 * with metaslab_sync() is the metaslab's ms_allocatable. No 4008 * other thread can be modifying this txg's alloc, freeing, 4009 * freed, or space_map_phys_t. We drop ms_lock whenever we 4010 * could call into the DMU, because the DMU can call down to 4011 * us (e.g. via zio_free()) at any time. 4012 * 4013 * The spa_vdev_remove_thread() can be reading metaslab state 4014 * concurrently, and it is locked out by the ms_sync_lock. 4015 * Note that the ms_lock is insufficient for this, because it 4016 * is dropped by space_map_write(). 4017 */ 4018 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4019 4020 /* 4021 * Generate a log space map if one doesn't exist already. 4022 */ 4023 spa_generate_syncing_log_sm(spa, tx); 4024 4025 if (msp->ms_sm == NULL) { 4026 uint64_t new_object = space_map_alloc(mos, 4027 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4028 zfs_metaslab_sm_blksz_with_log : 4029 zfs_metaslab_sm_blksz_no_log, tx); 4030 VERIFY3U(new_object, !=, 0); 4031 4032 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4033 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4034 4035 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4036 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4037 ASSERT(msp->ms_sm != NULL); 4038 4039 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4040 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4041 ASSERT0(metaslab_allocated_space(msp)); 4042 } 4043 4044 if (!range_tree_is_empty(msp->ms_checkpointing) && 4045 vd->vdev_checkpoint_sm == NULL) { 4046 ASSERT(spa_has_checkpoint(spa)); 4047 4048 uint64_t new_object = space_map_alloc(mos, 4049 zfs_vdev_standard_sm_blksz, tx); 4050 VERIFY3U(new_object, !=, 0); 4051 4052 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4053 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4054 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4055 4056 /* 4057 * We save the space map object as an entry in vdev_top_zap 4058 * so it can be retrieved when the pool is reopened after an 4059 * export or through zdb. 4060 */ 4061 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4062 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4063 sizeof (new_object), 1, &new_object, tx)); 4064 } 4065 4066 mutex_enter(&msp->ms_sync_lock); 4067 mutex_enter(&msp->ms_lock); 4068 4069 /* 4070 * Note: metaslab_condense() clears the space map's histogram. 4071 * Therefore we must verify and remove this histogram before 4072 * condensing. 4073 */ 4074 metaslab_group_histogram_verify(mg); 4075 metaslab_class_histogram_verify(mg->mg_class); 4076 metaslab_group_histogram_remove(mg, msp); 4077 4078 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4079 metaslab_should_condense(msp)) 4080 metaslab_condense(msp, tx); 4081 4082 /* 4083 * We'll be going to disk to sync our space accounting, thus we 4084 * drop the ms_lock during that time so allocations coming from 4085 * open-context (ZIL) for future TXGs do not block. 4086 */ 4087 mutex_exit(&msp->ms_lock); 4088 space_map_t *log_sm = spa_syncing_log_sm(spa); 4089 if (log_sm != NULL) { 4090 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4091 if (metaslab_unflushed_txg(msp) == 0) 4092 metaslab_unflushed_add(msp, tx); 4093 else if (!metaslab_unflushed_dirty(msp)) 4094 metaslab_unflushed_bump(msp, tx, B_TRUE); 4095 4096 space_map_write(log_sm, alloctree, SM_ALLOC, 4097 vd->vdev_id, tx); 4098 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4099 vd->vdev_id, tx); 4100 mutex_enter(&msp->ms_lock); 4101 4102 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4103 metaslab_unflushed_changes_memused(msp)); 4104 spa->spa_unflushed_stats.sus_memused -= 4105 metaslab_unflushed_changes_memused(msp); 4106 range_tree_remove_xor_add(alloctree, 4107 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4108 range_tree_remove_xor_add(msp->ms_freeing, 4109 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4110 spa->spa_unflushed_stats.sus_memused += 4111 metaslab_unflushed_changes_memused(msp); 4112 } else { 4113 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4114 4115 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4116 SM_NO_VDEVID, tx); 4117 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4118 SM_NO_VDEVID, tx); 4119 mutex_enter(&msp->ms_lock); 4120 } 4121 4122 msp->ms_allocated_space += range_tree_space(alloctree); 4123 ASSERT3U(msp->ms_allocated_space, >=, 4124 range_tree_space(msp->ms_freeing)); 4125 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4126 4127 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4128 ASSERT(spa_has_checkpoint(spa)); 4129 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4130 4131 /* 4132 * Since we are doing writes to disk and the ms_checkpointing 4133 * tree won't be changing during that time, we drop the 4134 * ms_lock while writing to the checkpoint space map, for the 4135 * same reason mentioned above. 4136 */ 4137 mutex_exit(&msp->ms_lock); 4138 space_map_write(vd->vdev_checkpoint_sm, 4139 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4140 mutex_enter(&msp->ms_lock); 4141 4142 spa->spa_checkpoint_info.sci_dspace += 4143 range_tree_space(msp->ms_checkpointing); 4144 vd->vdev_stat.vs_checkpoint_space += 4145 range_tree_space(msp->ms_checkpointing); 4146 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4147 -space_map_allocated(vd->vdev_checkpoint_sm)); 4148 4149 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4150 } 4151 4152 if (msp->ms_loaded) { 4153 /* 4154 * When the space map is loaded, we have an accurate 4155 * histogram in the range tree. This gives us an opportunity 4156 * to bring the space map's histogram up-to-date so we clear 4157 * it first before updating it. 4158 */ 4159 space_map_histogram_clear(msp->ms_sm); 4160 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4161 4162 /* 4163 * Since we've cleared the histogram we need to add back 4164 * any free space that has already been processed, plus 4165 * any deferred space. This allows the on-disk histogram 4166 * to accurately reflect all free space even if some space 4167 * is not yet available for allocation (i.e. deferred). 4168 */ 4169 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4170 4171 /* 4172 * Add back any deferred free space that has not been 4173 * added back into the in-core free tree yet. This will 4174 * ensure that we don't end up with a space map histogram 4175 * that is completely empty unless the metaslab is fully 4176 * allocated. 4177 */ 4178 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4179 space_map_histogram_add(msp->ms_sm, 4180 msp->ms_defer[t], tx); 4181 } 4182 } 4183 4184 /* 4185 * Always add the free space from this sync pass to the space 4186 * map histogram. We want to make sure that the on-disk histogram 4187 * accounts for all free space. If the space map is not loaded, 4188 * then we will lose some accuracy but will correct it the next 4189 * time we load the space map. 4190 */ 4191 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4192 metaslab_aux_histograms_update(msp); 4193 4194 metaslab_group_histogram_add(mg, msp); 4195 metaslab_group_histogram_verify(mg); 4196 metaslab_class_histogram_verify(mg->mg_class); 4197 4198 /* 4199 * For sync pass 1, we avoid traversing this txg's free range tree 4200 * and instead will just swap the pointers for freeing and freed. 4201 * We can safely do this since the freed_tree is guaranteed to be 4202 * empty on the initial pass. 4203 * 4204 * Keep in mind that even if we are currently using a log spacemap 4205 * we want current frees to end up in the ms_allocatable (but not 4206 * get appended to the ms_sm) so their ranges can be reused as usual. 4207 */ 4208 if (spa_sync_pass(spa) == 1) { 4209 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4210 ASSERT0(msp->ms_allocated_this_txg); 4211 } else { 4212 range_tree_vacate(msp->ms_freeing, 4213 range_tree_add, msp->ms_freed); 4214 } 4215 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4216 range_tree_vacate(alloctree, NULL, NULL); 4217 4218 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4219 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4220 & TXG_MASK])); 4221 ASSERT0(range_tree_space(msp->ms_freeing)); 4222 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4223 4224 mutex_exit(&msp->ms_lock); 4225 4226 /* 4227 * Verify that the space map object ID has been recorded in the 4228 * vdev_ms_array. 4229 */ 4230 uint64_t object; 4231 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4232 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4233 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4234 4235 mutex_exit(&msp->ms_sync_lock); 4236 dmu_tx_commit(tx); 4237 } 4238 4239 static void 4240 metaslab_evict(metaslab_t *msp, uint64_t txg) 4241 { 4242 if (!msp->ms_loaded || msp->ms_disabled != 0) 4243 return; 4244 4245 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4246 VERIFY0(range_tree_space( 4247 msp->ms_allocating[(txg + t) & TXG_MASK])); 4248 } 4249 if (msp->ms_allocator != -1) 4250 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4251 4252 if (!metaslab_debug_unload) 4253 metaslab_unload(msp); 4254 } 4255 4256 /* 4257 * Called after a transaction group has completely synced to mark 4258 * all of the metaslab's free space as usable. 4259 */ 4260 void 4261 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4262 { 4263 metaslab_group_t *mg = msp->ms_group; 4264 vdev_t *vd = mg->mg_vd; 4265 spa_t *spa = vd->vdev_spa; 4266 range_tree_t **defer_tree; 4267 int64_t alloc_delta, defer_delta; 4268 boolean_t defer_allowed = B_TRUE; 4269 4270 ASSERT(!vd->vdev_ishole); 4271 4272 mutex_enter(&msp->ms_lock); 4273 4274 if (msp->ms_new) { 4275 /* this is a new metaslab, add its capacity to the vdev */ 4276 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4277 4278 /* there should be no allocations nor frees at this point */ 4279 VERIFY0(msp->ms_allocated_this_txg); 4280 VERIFY0(range_tree_space(msp->ms_freed)); 4281 } 4282 4283 ASSERT0(range_tree_space(msp->ms_freeing)); 4284 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4285 4286 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4287 4288 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4289 metaslab_class_get_alloc(spa_normal_class(spa)); 4290 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4291 defer_allowed = B_FALSE; 4292 } 4293 4294 defer_delta = 0; 4295 alloc_delta = msp->ms_allocated_this_txg - 4296 range_tree_space(msp->ms_freed); 4297 4298 if (defer_allowed) { 4299 defer_delta = range_tree_space(msp->ms_freed) - 4300 range_tree_space(*defer_tree); 4301 } else { 4302 defer_delta -= range_tree_space(*defer_tree); 4303 } 4304 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4305 defer_delta, 0); 4306 4307 if (spa_syncing_log_sm(spa) == NULL) { 4308 /* 4309 * If there's a metaslab_load() in progress and we don't have 4310 * a log space map, it means that we probably wrote to the 4311 * metaslab's space map. If this is the case, we need to 4312 * make sure that we wait for the load to complete so that we 4313 * have a consistent view at the in-core side of the metaslab. 4314 */ 4315 metaslab_load_wait(msp); 4316 } else { 4317 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4318 } 4319 4320 /* 4321 * When auto-trimming is enabled, free ranges which are added to 4322 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4323 * periodically consumed by the vdev_autotrim_thread() which issues 4324 * trims for all ranges and then vacates the tree. The ms_trim tree 4325 * can be discarded at any time with the sole consequence of recent 4326 * frees not being trimmed. 4327 */ 4328 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4329 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4330 if (!defer_allowed) { 4331 range_tree_walk(msp->ms_freed, range_tree_add, 4332 msp->ms_trim); 4333 } 4334 } else { 4335 range_tree_vacate(msp->ms_trim, NULL, NULL); 4336 } 4337 4338 /* 4339 * Move the frees from the defer_tree back to the free 4340 * range tree (if it's loaded). Swap the freed_tree and 4341 * the defer_tree -- this is safe to do because we've 4342 * just emptied out the defer_tree. 4343 */ 4344 range_tree_vacate(*defer_tree, 4345 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4346 if (defer_allowed) { 4347 range_tree_swap(&msp->ms_freed, defer_tree); 4348 } else { 4349 range_tree_vacate(msp->ms_freed, 4350 msp->ms_loaded ? range_tree_add : NULL, 4351 msp->ms_allocatable); 4352 } 4353 4354 msp->ms_synced_length = space_map_length(msp->ms_sm); 4355 4356 msp->ms_deferspace += defer_delta; 4357 ASSERT3S(msp->ms_deferspace, >=, 0); 4358 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4359 if (msp->ms_deferspace != 0) { 4360 /* 4361 * Keep syncing this metaslab until all deferred frees 4362 * are back in circulation. 4363 */ 4364 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4365 } 4366 metaslab_aux_histograms_update_done(msp, defer_allowed); 4367 4368 if (msp->ms_new) { 4369 msp->ms_new = B_FALSE; 4370 mutex_enter(&mg->mg_lock); 4371 mg->mg_ms_ready++; 4372 mutex_exit(&mg->mg_lock); 4373 } 4374 4375 /* 4376 * Re-sort metaslab within its group now that we've adjusted 4377 * its allocatable space. 4378 */ 4379 metaslab_recalculate_weight_and_sort(msp); 4380 4381 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4382 ASSERT0(range_tree_space(msp->ms_freeing)); 4383 ASSERT0(range_tree_space(msp->ms_freed)); 4384 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4385 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4386 msp->ms_allocated_this_txg = 0; 4387 mutex_exit(&msp->ms_lock); 4388 } 4389 4390 void 4391 metaslab_sync_reassess(metaslab_group_t *mg) 4392 { 4393 spa_t *spa = mg->mg_class->mc_spa; 4394 4395 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4396 metaslab_group_alloc_update(mg); 4397 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4398 4399 /* 4400 * Preload the next potential metaslabs but only on active 4401 * metaslab groups. We can get into a state where the metaslab 4402 * is no longer active since we dirty metaslabs as we remove a 4403 * a device, thus potentially making the metaslab group eligible 4404 * for preloading. 4405 */ 4406 if (mg->mg_activation_count > 0) { 4407 metaslab_group_preload(mg); 4408 } 4409 spa_config_exit(spa, SCL_ALLOC, FTAG); 4410 } 4411 4412 /* 4413 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4414 * the same vdev as an existing DVA of this BP, then try to allocate it 4415 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4416 */ 4417 static boolean_t 4418 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4419 { 4420 uint64_t dva_ms_id; 4421 4422 if (DVA_GET_ASIZE(dva) == 0) 4423 return (B_TRUE); 4424 4425 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4426 return (B_TRUE); 4427 4428 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4429 4430 return (msp->ms_id != dva_ms_id); 4431 } 4432 4433 /* 4434 * ========================================================================== 4435 * Metaslab allocation tracing facility 4436 * ========================================================================== 4437 */ 4438 4439 /* 4440 * Add an allocation trace element to the allocation tracing list. 4441 */ 4442 static void 4443 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4444 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4445 int allocator) 4446 { 4447 metaslab_alloc_trace_t *mat; 4448 4449 if (!metaslab_trace_enabled) 4450 return; 4451 4452 /* 4453 * When the tracing list reaches its maximum we remove 4454 * the second element in the list before adding a new one. 4455 * By removing the second element we preserve the original 4456 * entry as a clue to what allocations steps have already been 4457 * performed. 4458 */ 4459 if (zal->zal_size == metaslab_trace_max_entries) { 4460 metaslab_alloc_trace_t *mat_next; 4461 #ifdef ZFS_DEBUG 4462 panic("too many entries in allocation list"); 4463 #endif 4464 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4465 zal->zal_size--; 4466 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4467 list_remove(&zal->zal_list, mat_next); 4468 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4469 } 4470 4471 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4472 list_link_init(&mat->mat_list_node); 4473 mat->mat_mg = mg; 4474 mat->mat_msp = msp; 4475 mat->mat_size = psize; 4476 mat->mat_dva_id = dva_id; 4477 mat->mat_offset = offset; 4478 mat->mat_weight = 0; 4479 mat->mat_allocator = allocator; 4480 4481 if (msp != NULL) 4482 mat->mat_weight = msp->ms_weight; 4483 4484 /* 4485 * The list is part of the zio so locking is not required. Only 4486 * a single thread will perform allocations for a given zio. 4487 */ 4488 list_insert_tail(&zal->zal_list, mat); 4489 zal->zal_size++; 4490 4491 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4492 } 4493 4494 void 4495 metaslab_trace_init(zio_alloc_list_t *zal) 4496 { 4497 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4498 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4499 zal->zal_size = 0; 4500 } 4501 4502 void 4503 metaslab_trace_fini(zio_alloc_list_t *zal) 4504 { 4505 metaslab_alloc_trace_t *mat; 4506 4507 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4508 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4509 list_destroy(&zal->zal_list); 4510 zal->zal_size = 0; 4511 } 4512 4513 /* 4514 * ========================================================================== 4515 * Metaslab block operations 4516 * ========================================================================== 4517 */ 4518 4519 static void 4520 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag, 4521 int flags, int allocator) 4522 { 4523 if (!(flags & METASLAB_ASYNC_ALLOC) || 4524 (flags & METASLAB_DONT_THROTTLE)) 4525 return; 4526 4527 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4528 if (!mg->mg_class->mc_alloc_throttle_enabled) 4529 return; 4530 4531 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4532 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4533 } 4534 4535 static void 4536 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4537 { 4538 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4539 metaslab_class_allocator_t *mca = 4540 &mg->mg_class->mc_allocator[allocator]; 4541 uint64_t max = mg->mg_max_alloc_queue_depth; 4542 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4543 while (cur < max) { 4544 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4545 cur, cur + 1) == cur) { 4546 atomic_inc_64(&mca->mca_alloc_max_slots); 4547 return; 4548 } 4549 cur = mga->mga_cur_max_alloc_queue_depth; 4550 } 4551 } 4552 4553 void 4554 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag, 4555 int flags, int allocator, boolean_t io_complete) 4556 { 4557 if (!(flags & METASLAB_ASYNC_ALLOC) || 4558 (flags & METASLAB_DONT_THROTTLE)) 4559 return; 4560 4561 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4562 if (!mg->mg_class->mc_alloc_throttle_enabled) 4563 return; 4564 4565 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4566 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4567 if (io_complete) 4568 metaslab_group_increment_qdepth(mg, allocator); 4569 } 4570 4571 void 4572 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag, 4573 int allocator) 4574 { 4575 #ifdef ZFS_DEBUG 4576 const dva_t *dva = bp->blk_dva; 4577 int ndvas = BP_GET_NDVAS(bp); 4578 4579 for (int d = 0; d < ndvas; d++) { 4580 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4581 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4582 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4583 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4584 } 4585 #endif 4586 } 4587 4588 static uint64_t 4589 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4590 { 4591 uint64_t start; 4592 range_tree_t *rt = msp->ms_allocatable; 4593 metaslab_class_t *mc = msp->ms_group->mg_class; 4594 4595 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4596 VERIFY(!msp->ms_condensing); 4597 VERIFY0(msp->ms_disabled); 4598 4599 start = mc->mc_ops->msop_alloc(msp, size); 4600 if (start != -1ULL) { 4601 metaslab_group_t *mg = msp->ms_group; 4602 vdev_t *vd = mg->mg_vd; 4603 4604 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4605 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4606 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4607 range_tree_remove(rt, start, size); 4608 range_tree_clear(msp->ms_trim, start, size); 4609 4610 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4611 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4612 4613 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4614 msp->ms_allocating_total += size; 4615 4616 /* Track the last successful allocation */ 4617 msp->ms_alloc_txg = txg; 4618 metaslab_verify_space(msp, txg); 4619 } 4620 4621 /* 4622 * Now that we've attempted the allocation we need to update the 4623 * metaslab's maximum block size since it may have changed. 4624 */ 4625 msp->ms_max_size = metaslab_largest_allocatable(msp); 4626 return (start); 4627 } 4628 4629 /* 4630 * Find the metaslab with the highest weight that is less than what we've 4631 * already tried. In the common case, this means that we will examine each 4632 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4633 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4634 * activated by another thread, and we fail to allocate from the metaslab we 4635 * have selected, we may not try the newly-activated metaslab, and instead 4636 * activate another metaslab. This is not optimal, but generally does not cause 4637 * any problems (a possible exception being if every metaslab is completely full 4638 * except for the newly-activated metaslab which we fail to examine). 4639 */ 4640 static metaslab_t * 4641 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4642 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4643 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4644 boolean_t *was_active) 4645 { 4646 avl_index_t idx; 4647 avl_tree_t *t = &mg->mg_metaslab_tree; 4648 metaslab_t *msp = avl_find(t, search, &idx); 4649 if (msp == NULL) 4650 msp = avl_nearest(t, idx, AVL_AFTER); 4651 4652 uint_t tries = 0; 4653 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4654 int i; 4655 4656 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4657 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4658 return (NULL); 4659 } 4660 tries++; 4661 4662 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4663 metaslab_trace_add(zal, mg, msp, asize, d, 4664 TRACE_TOO_SMALL, allocator); 4665 continue; 4666 } 4667 4668 /* 4669 * If the selected metaslab is condensing or disabled, 4670 * skip it. 4671 */ 4672 if (msp->ms_condensing || msp->ms_disabled > 0) 4673 continue; 4674 4675 *was_active = msp->ms_allocator != -1; 4676 /* 4677 * If we're activating as primary, this is our first allocation 4678 * from this disk, so we don't need to check how close we are. 4679 * If the metaslab under consideration was already active, 4680 * we're getting desperate enough to steal another allocator's 4681 * metaslab, so we still don't care about distances. 4682 */ 4683 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4684 break; 4685 4686 for (i = 0; i < d; i++) { 4687 if (want_unique && 4688 !metaslab_is_unique(msp, &dva[i])) 4689 break; /* try another metaslab */ 4690 } 4691 if (i == d) 4692 break; 4693 } 4694 4695 if (msp != NULL) { 4696 search->ms_weight = msp->ms_weight; 4697 search->ms_start = msp->ms_start + 1; 4698 search->ms_allocator = msp->ms_allocator; 4699 search->ms_primary = msp->ms_primary; 4700 } 4701 return (msp); 4702 } 4703 4704 static void 4705 metaslab_active_mask_verify(metaslab_t *msp) 4706 { 4707 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4708 4709 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4710 return; 4711 4712 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4713 return; 4714 4715 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4716 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4717 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4718 VERIFY3S(msp->ms_allocator, !=, -1); 4719 VERIFY(msp->ms_primary); 4720 return; 4721 } 4722 4723 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4724 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4725 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4726 VERIFY3S(msp->ms_allocator, !=, -1); 4727 VERIFY(!msp->ms_primary); 4728 return; 4729 } 4730 4731 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4732 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4733 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4734 VERIFY3S(msp->ms_allocator, ==, -1); 4735 return; 4736 } 4737 } 4738 4739 static uint64_t 4740 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4741 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4742 int allocator, boolean_t try_hard) 4743 { 4744 metaslab_t *msp = NULL; 4745 uint64_t offset = -1ULL; 4746 4747 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4748 for (int i = 0; i < d; i++) { 4749 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4750 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4751 activation_weight = METASLAB_WEIGHT_SECONDARY; 4752 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4753 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4754 activation_weight = METASLAB_WEIGHT_CLAIM; 4755 break; 4756 } 4757 } 4758 4759 /* 4760 * If we don't have enough metaslabs active to fill the entire array, we 4761 * just use the 0th slot. 4762 */ 4763 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4764 allocator = 0; 4765 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4766 4767 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4768 4769 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4770 search->ms_weight = UINT64_MAX; 4771 search->ms_start = 0; 4772 /* 4773 * At the end of the metaslab tree are the already-active metaslabs, 4774 * first the primaries, then the secondaries. When we resume searching 4775 * through the tree, we need to consider ms_allocator and ms_primary so 4776 * we start in the location right after where we left off, and don't 4777 * accidentally loop forever considering the same metaslabs. 4778 */ 4779 search->ms_allocator = -1; 4780 search->ms_primary = B_TRUE; 4781 for (;;) { 4782 boolean_t was_active = B_FALSE; 4783 4784 mutex_enter(&mg->mg_lock); 4785 4786 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4787 mga->mga_primary != NULL) { 4788 msp = mga->mga_primary; 4789 4790 /* 4791 * Even though we don't hold the ms_lock for the 4792 * primary metaslab, those fields should not 4793 * change while we hold the mg_lock. Thus it is 4794 * safe to make assertions on them. 4795 */ 4796 ASSERT(msp->ms_primary); 4797 ASSERT3S(msp->ms_allocator, ==, allocator); 4798 ASSERT(msp->ms_loaded); 4799 4800 was_active = B_TRUE; 4801 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4802 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4803 mga->mga_secondary != NULL) { 4804 msp = mga->mga_secondary; 4805 4806 /* 4807 * See comment above about the similar assertions 4808 * for the primary metaslab. 4809 */ 4810 ASSERT(!msp->ms_primary); 4811 ASSERT3S(msp->ms_allocator, ==, allocator); 4812 ASSERT(msp->ms_loaded); 4813 4814 was_active = B_TRUE; 4815 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4816 } else { 4817 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4818 want_unique, asize, allocator, try_hard, zal, 4819 search, &was_active); 4820 } 4821 4822 mutex_exit(&mg->mg_lock); 4823 if (msp == NULL) { 4824 kmem_free(search, sizeof (*search)); 4825 return (-1ULL); 4826 } 4827 mutex_enter(&msp->ms_lock); 4828 4829 metaslab_active_mask_verify(msp); 4830 4831 /* 4832 * This code is disabled out because of issues with 4833 * tracepoints in non-gpl kernel modules. 4834 */ 4835 #if 0 4836 DTRACE_PROBE3(ms__activation__attempt, 4837 metaslab_t *, msp, uint64_t, activation_weight, 4838 boolean_t, was_active); 4839 #endif 4840 4841 /* 4842 * Ensure that the metaslab we have selected is still 4843 * capable of handling our request. It's possible that 4844 * another thread may have changed the weight while we 4845 * were blocked on the metaslab lock. We check the 4846 * active status first to see if we need to set_selected_txg 4847 * a new metaslab. 4848 */ 4849 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4850 ASSERT3S(msp->ms_allocator, ==, -1); 4851 mutex_exit(&msp->ms_lock); 4852 continue; 4853 } 4854 4855 /* 4856 * If the metaslab was activated for another allocator 4857 * while we were waiting in the ms_lock above, or it's 4858 * a primary and we're seeking a secondary (or vice versa), 4859 * we go back and select a new metaslab. 4860 */ 4861 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4862 (msp->ms_allocator != -1) && 4863 (msp->ms_allocator != allocator || ((activation_weight == 4864 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4865 ASSERT(msp->ms_loaded); 4866 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4867 msp->ms_allocator != -1); 4868 mutex_exit(&msp->ms_lock); 4869 continue; 4870 } 4871 4872 /* 4873 * This metaslab was used for claiming regions allocated 4874 * by the ZIL during pool import. Once these regions are 4875 * claimed we don't need to keep the CLAIM bit set 4876 * anymore. Passivate this metaslab to zero its activation 4877 * mask. 4878 */ 4879 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4880 activation_weight != METASLAB_WEIGHT_CLAIM) { 4881 ASSERT(msp->ms_loaded); 4882 ASSERT3S(msp->ms_allocator, ==, -1); 4883 metaslab_passivate(msp, msp->ms_weight & 4884 ~METASLAB_WEIGHT_CLAIM); 4885 mutex_exit(&msp->ms_lock); 4886 continue; 4887 } 4888 4889 metaslab_set_selected_txg(msp, txg); 4890 4891 int activation_error = 4892 metaslab_activate(msp, allocator, activation_weight); 4893 metaslab_active_mask_verify(msp); 4894 4895 /* 4896 * If the metaslab was activated by another thread for 4897 * another allocator or activation_weight (EBUSY), or it 4898 * failed because another metaslab was assigned as primary 4899 * for this allocator (EEXIST) we continue using this 4900 * metaslab for our allocation, rather than going on to a 4901 * worse metaslab (we waited for that metaslab to be loaded 4902 * after all). 4903 * 4904 * If the activation failed due to an I/O error or ENOSPC we 4905 * skip to the next metaslab. 4906 */ 4907 boolean_t activated; 4908 if (activation_error == 0) { 4909 activated = B_TRUE; 4910 } else if (activation_error == EBUSY || 4911 activation_error == EEXIST) { 4912 activated = B_FALSE; 4913 } else { 4914 mutex_exit(&msp->ms_lock); 4915 continue; 4916 } 4917 ASSERT(msp->ms_loaded); 4918 4919 /* 4920 * Now that we have the lock, recheck to see if we should 4921 * continue to use this metaslab for this allocation. The 4922 * the metaslab is now loaded so metaslab_should_allocate() 4923 * can accurately determine if the allocation attempt should 4924 * proceed. 4925 */ 4926 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4927 /* Passivate this metaslab and select a new one. */ 4928 metaslab_trace_add(zal, mg, msp, asize, d, 4929 TRACE_TOO_SMALL, allocator); 4930 goto next; 4931 } 4932 4933 /* 4934 * If this metaslab is currently condensing then pick again 4935 * as we can't manipulate this metaslab until it's committed 4936 * to disk. If this metaslab is being initialized, we shouldn't 4937 * allocate from it since the allocated region might be 4938 * overwritten after allocation. 4939 */ 4940 if (msp->ms_condensing) { 4941 metaslab_trace_add(zal, mg, msp, asize, d, 4942 TRACE_CONDENSING, allocator); 4943 if (activated) { 4944 metaslab_passivate(msp, msp->ms_weight & 4945 ~METASLAB_ACTIVE_MASK); 4946 } 4947 mutex_exit(&msp->ms_lock); 4948 continue; 4949 } else if (msp->ms_disabled > 0) { 4950 metaslab_trace_add(zal, mg, msp, asize, d, 4951 TRACE_DISABLED, allocator); 4952 if (activated) { 4953 metaslab_passivate(msp, msp->ms_weight & 4954 ~METASLAB_ACTIVE_MASK); 4955 } 4956 mutex_exit(&msp->ms_lock); 4957 continue; 4958 } 4959 4960 offset = metaslab_block_alloc(msp, asize, txg); 4961 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4962 4963 if (offset != -1ULL) { 4964 /* Proactively passivate the metaslab, if needed */ 4965 if (activated) 4966 metaslab_segment_may_passivate(msp); 4967 break; 4968 } 4969 next: 4970 ASSERT(msp->ms_loaded); 4971 4972 /* 4973 * This code is disabled out because of issues with 4974 * tracepoints in non-gpl kernel modules. 4975 */ 4976 #if 0 4977 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4978 uint64_t, asize); 4979 #endif 4980 4981 /* 4982 * We were unable to allocate from this metaslab so determine 4983 * a new weight for this metaslab. Now that we have loaded 4984 * the metaslab we can provide a better hint to the metaslab 4985 * selector. 4986 * 4987 * For space-based metaslabs, we use the maximum block size. 4988 * This information is only available when the metaslab 4989 * is loaded and is more accurate than the generic free 4990 * space weight that was calculated by metaslab_weight(). 4991 * This information allows us to quickly compare the maximum 4992 * available allocation in the metaslab to the allocation 4993 * size being requested. 4994 * 4995 * For segment-based metaslabs, determine the new weight 4996 * based on the highest bucket in the range tree. We 4997 * explicitly use the loaded segment weight (i.e. the range 4998 * tree histogram) since it contains the space that is 4999 * currently available for allocation and is accurate 5000 * even within a sync pass. 5001 */ 5002 uint64_t weight; 5003 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5004 weight = metaslab_largest_allocatable(msp); 5005 WEIGHT_SET_SPACEBASED(weight); 5006 } else { 5007 weight = metaslab_weight_from_range_tree(msp); 5008 } 5009 5010 if (activated) { 5011 metaslab_passivate(msp, weight); 5012 } else { 5013 /* 5014 * For the case where we use the metaslab that is 5015 * active for another allocator we want to make 5016 * sure that we retain the activation mask. 5017 * 5018 * Note that we could attempt to use something like 5019 * metaslab_recalculate_weight_and_sort() that 5020 * retains the activation mask here. That function 5021 * uses metaslab_weight() to set the weight though 5022 * which is not as accurate as the calculations 5023 * above. 5024 */ 5025 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5026 metaslab_group_sort(mg, msp, weight); 5027 } 5028 metaslab_active_mask_verify(msp); 5029 5030 /* 5031 * We have just failed an allocation attempt, check 5032 * that metaslab_should_allocate() agrees. Otherwise, 5033 * we may end up in an infinite loop retrying the same 5034 * metaslab. 5035 */ 5036 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5037 5038 mutex_exit(&msp->ms_lock); 5039 } 5040 mutex_exit(&msp->ms_lock); 5041 kmem_free(search, sizeof (*search)); 5042 return (offset); 5043 } 5044 5045 static uint64_t 5046 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5047 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5048 int allocator, boolean_t try_hard) 5049 { 5050 uint64_t offset; 5051 ASSERT(mg->mg_initialized); 5052 5053 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5054 dva, d, allocator, try_hard); 5055 5056 mutex_enter(&mg->mg_lock); 5057 if (offset == -1ULL) { 5058 mg->mg_failed_allocations++; 5059 metaslab_trace_add(zal, mg, NULL, asize, d, 5060 TRACE_GROUP_FAILURE, allocator); 5061 if (asize == SPA_GANGBLOCKSIZE) { 5062 /* 5063 * This metaslab group was unable to allocate 5064 * the minimum gang block size so it must be out of 5065 * space. We must notify the allocation throttle 5066 * to start skipping allocation attempts to this 5067 * metaslab group until more space becomes available. 5068 * Note: this failure cannot be caused by the 5069 * allocation throttle since the allocation throttle 5070 * is only responsible for skipping devices and 5071 * not failing block allocations. 5072 */ 5073 mg->mg_no_free_space = B_TRUE; 5074 } 5075 } 5076 mg->mg_allocations++; 5077 mutex_exit(&mg->mg_lock); 5078 return (offset); 5079 } 5080 5081 /* 5082 * Allocate a block for the specified i/o. 5083 */ 5084 int 5085 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5086 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5087 zio_alloc_list_t *zal, int allocator) 5088 { 5089 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5090 metaslab_group_t *mg, *fast_mg, *rotor; 5091 vdev_t *vd; 5092 boolean_t try_hard = B_FALSE; 5093 5094 ASSERT(!DVA_IS_VALID(&dva[d])); 5095 5096 /* 5097 * For testing, make some blocks above a certain size be gang blocks. 5098 * This will result in more split blocks when using device removal, 5099 * and a large number of split blocks coupled with ztest-induced 5100 * damage can result in extremely long reconstruction times. This 5101 * will also test spilling from special to normal. 5102 */ 5103 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) { 5104 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5105 allocator); 5106 return (SET_ERROR(ENOSPC)); 5107 } 5108 5109 /* 5110 * Start at the rotor and loop through all mgs until we find something. 5111 * Note that there's no locking on mca_rotor or mca_aliquot because 5112 * nothing actually breaks if we miss a few updates -- we just won't 5113 * allocate quite as evenly. It all balances out over time. 5114 * 5115 * If we are doing ditto or log blocks, try to spread them across 5116 * consecutive vdevs. If we're forced to reuse a vdev before we've 5117 * allocated all of our ditto blocks, then try and spread them out on 5118 * that vdev as much as possible. If it turns out to not be possible, 5119 * gradually lower our standards until anything becomes acceptable. 5120 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5121 * gives us hope of containing our fault domains to something we're 5122 * able to reason about. Otherwise, any two top-level vdev failures 5123 * will guarantee the loss of data. With consecutive allocation, 5124 * only two adjacent top-level vdev failures will result in data loss. 5125 * 5126 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5127 * ourselves on the same vdev as our gang block header. That 5128 * way, we can hope for locality in vdev_cache, plus it makes our 5129 * fault domains something tractable. 5130 */ 5131 if (hintdva) { 5132 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5133 5134 /* 5135 * It's possible the vdev we're using as the hint no 5136 * longer exists or its mg has been closed (e.g. by 5137 * device removal). Consult the rotor when 5138 * all else fails. 5139 */ 5140 if (vd != NULL && vd->vdev_mg != NULL) { 5141 mg = vdev_get_mg(vd, mc); 5142 5143 if (flags & METASLAB_HINTBP_AVOID) 5144 mg = mg->mg_next; 5145 } else { 5146 mg = mca->mca_rotor; 5147 } 5148 } else if (d != 0) { 5149 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5150 mg = vd->vdev_mg->mg_next; 5151 } else if (flags & METASLAB_FASTWRITE) { 5152 mg = fast_mg = mca->mca_rotor; 5153 5154 do { 5155 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5156 mg->mg_vd->vdev_pending_fastwrite) 5157 mg = fast_mg; 5158 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5159 5160 } else { 5161 ASSERT(mca->mca_rotor != NULL); 5162 mg = mca->mca_rotor; 5163 } 5164 5165 /* 5166 * If the hint put us into the wrong metaslab class, or into a 5167 * metaslab group that has been passivated, just follow the rotor. 5168 */ 5169 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5170 mg = mca->mca_rotor; 5171 5172 rotor = mg; 5173 top: 5174 do { 5175 boolean_t allocatable; 5176 5177 ASSERT(mg->mg_activation_count == 1); 5178 vd = mg->mg_vd; 5179 5180 /* 5181 * Don't allocate from faulted devices. 5182 */ 5183 if (try_hard) { 5184 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5185 allocatable = vdev_allocatable(vd); 5186 spa_config_exit(spa, SCL_ZIO, FTAG); 5187 } else { 5188 allocatable = vdev_allocatable(vd); 5189 } 5190 5191 /* 5192 * Determine if the selected metaslab group is eligible 5193 * for allocations. If we're ganging then don't allow 5194 * this metaslab group to skip allocations since that would 5195 * inadvertently return ENOSPC and suspend the pool 5196 * even though space is still available. 5197 */ 5198 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5199 allocatable = metaslab_group_allocatable(mg, rotor, 5200 flags, psize, allocator, d); 5201 } 5202 5203 if (!allocatable) { 5204 metaslab_trace_add(zal, mg, NULL, psize, d, 5205 TRACE_NOT_ALLOCATABLE, allocator); 5206 goto next; 5207 } 5208 5209 ASSERT(mg->mg_initialized); 5210 5211 /* 5212 * Avoid writing single-copy data to an unhealthy, 5213 * non-redundant vdev, unless we've already tried all 5214 * other vdevs. 5215 */ 5216 if (vd->vdev_state < VDEV_STATE_HEALTHY && 5217 d == 0 && !try_hard && vd->vdev_children == 0) { 5218 metaslab_trace_add(zal, mg, NULL, psize, d, 5219 TRACE_VDEV_ERROR, allocator); 5220 goto next; 5221 } 5222 5223 ASSERT(mg->mg_class == mc); 5224 5225 uint64_t asize = vdev_psize_to_asize(vd, psize); 5226 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5227 5228 /* 5229 * If we don't need to try hard, then require that the 5230 * block be on a different metaslab from any other DVAs 5231 * in this BP (unique=true). If we are trying hard, then 5232 * allow any metaslab to be used (unique=false). 5233 */ 5234 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5235 !try_hard, dva, d, allocator, try_hard); 5236 5237 if (offset != -1ULL) { 5238 /* 5239 * If we've just selected this metaslab group, 5240 * figure out whether the corresponding vdev is 5241 * over- or under-used relative to the pool, 5242 * and set an allocation bias to even it out. 5243 * 5244 * Bias is also used to compensate for unequally 5245 * sized vdevs so that space is allocated fairly. 5246 */ 5247 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5248 vdev_stat_t *vs = &vd->vdev_stat; 5249 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5250 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5251 int64_t ratio; 5252 5253 /* 5254 * Calculate how much more or less we should 5255 * try to allocate from this device during 5256 * this iteration around the rotor. 5257 * 5258 * This basically introduces a zero-centered 5259 * bias towards the devices with the most 5260 * free space, while compensating for vdev 5261 * size differences. 5262 * 5263 * Examples: 5264 * vdev V1 = 16M/128M 5265 * vdev V2 = 16M/128M 5266 * ratio(V1) = 100% ratio(V2) = 100% 5267 * 5268 * vdev V1 = 16M/128M 5269 * vdev V2 = 64M/128M 5270 * ratio(V1) = 127% ratio(V2) = 72% 5271 * 5272 * vdev V1 = 16M/128M 5273 * vdev V2 = 64M/512M 5274 * ratio(V1) = 40% ratio(V2) = 160% 5275 */ 5276 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5277 (mc_free + 1); 5278 mg->mg_bias = ((ratio - 100) * 5279 (int64_t)mg->mg_aliquot) / 100; 5280 } else if (!metaslab_bias_enabled) { 5281 mg->mg_bias = 0; 5282 } 5283 5284 if ((flags & METASLAB_FASTWRITE) || 5285 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5286 mg->mg_aliquot + mg->mg_bias) { 5287 mca->mca_rotor = mg->mg_next; 5288 mca->mca_aliquot = 0; 5289 } 5290 5291 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5292 DVA_SET_OFFSET(&dva[d], offset); 5293 DVA_SET_GANG(&dva[d], 5294 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5295 DVA_SET_ASIZE(&dva[d], asize); 5296 5297 if (flags & METASLAB_FASTWRITE) { 5298 atomic_add_64(&vd->vdev_pending_fastwrite, 5299 psize); 5300 } 5301 5302 return (0); 5303 } 5304 next: 5305 mca->mca_rotor = mg->mg_next; 5306 mca->mca_aliquot = 0; 5307 } while ((mg = mg->mg_next) != rotor); 5308 5309 /* 5310 * If we haven't tried hard, perhaps do so now. 5311 */ 5312 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5313 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5314 psize <= 1 << spa->spa_min_ashift)) { 5315 METASLABSTAT_BUMP(metaslabstat_try_hard); 5316 try_hard = B_TRUE; 5317 goto top; 5318 } 5319 5320 memset(&dva[d], 0, sizeof (dva_t)); 5321 5322 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5323 return (SET_ERROR(ENOSPC)); 5324 } 5325 5326 void 5327 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5328 boolean_t checkpoint) 5329 { 5330 metaslab_t *msp; 5331 spa_t *spa = vd->vdev_spa; 5332 5333 ASSERT(vdev_is_concrete(vd)); 5334 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5335 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5336 5337 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5338 5339 VERIFY(!msp->ms_condensing); 5340 VERIFY3U(offset, >=, msp->ms_start); 5341 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5342 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5343 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5344 5345 metaslab_check_free_impl(vd, offset, asize); 5346 5347 mutex_enter(&msp->ms_lock); 5348 if (range_tree_is_empty(msp->ms_freeing) && 5349 range_tree_is_empty(msp->ms_checkpointing)) { 5350 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5351 } 5352 5353 if (checkpoint) { 5354 ASSERT(spa_has_checkpoint(spa)); 5355 range_tree_add(msp->ms_checkpointing, offset, asize); 5356 } else { 5357 range_tree_add(msp->ms_freeing, offset, asize); 5358 } 5359 mutex_exit(&msp->ms_lock); 5360 } 5361 5362 void 5363 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5364 uint64_t size, void *arg) 5365 { 5366 (void) inner_offset; 5367 boolean_t *checkpoint = arg; 5368 5369 ASSERT3P(checkpoint, !=, NULL); 5370 5371 if (vd->vdev_ops->vdev_op_remap != NULL) 5372 vdev_indirect_mark_obsolete(vd, offset, size); 5373 else 5374 metaslab_free_impl(vd, offset, size, *checkpoint); 5375 } 5376 5377 static void 5378 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5379 boolean_t checkpoint) 5380 { 5381 spa_t *spa = vd->vdev_spa; 5382 5383 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5384 5385 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5386 return; 5387 5388 if (spa->spa_vdev_removal != NULL && 5389 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5390 vdev_is_concrete(vd)) { 5391 /* 5392 * Note: we check if the vdev is concrete because when 5393 * we complete the removal, we first change the vdev to be 5394 * an indirect vdev (in open context), and then (in syncing 5395 * context) clear spa_vdev_removal. 5396 */ 5397 free_from_removing_vdev(vd, offset, size); 5398 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5399 vdev_indirect_mark_obsolete(vd, offset, size); 5400 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5401 metaslab_free_impl_cb, &checkpoint); 5402 } else { 5403 metaslab_free_concrete(vd, offset, size, checkpoint); 5404 } 5405 } 5406 5407 typedef struct remap_blkptr_cb_arg { 5408 blkptr_t *rbca_bp; 5409 spa_remap_cb_t rbca_cb; 5410 vdev_t *rbca_remap_vd; 5411 uint64_t rbca_remap_offset; 5412 void *rbca_cb_arg; 5413 } remap_blkptr_cb_arg_t; 5414 5415 static void 5416 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5417 uint64_t size, void *arg) 5418 { 5419 remap_blkptr_cb_arg_t *rbca = arg; 5420 blkptr_t *bp = rbca->rbca_bp; 5421 5422 /* We can not remap split blocks. */ 5423 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5424 return; 5425 ASSERT0(inner_offset); 5426 5427 if (rbca->rbca_cb != NULL) { 5428 /* 5429 * At this point we know that we are not handling split 5430 * blocks and we invoke the callback on the previous 5431 * vdev which must be indirect. 5432 */ 5433 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5434 5435 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5436 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5437 5438 /* set up remap_blkptr_cb_arg for the next call */ 5439 rbca->rbca_remap_vd = vd; 5440 rbca->rbca_remap_offset = offset; 5441 } 5442 5443 /* 5444 * The phys birth time is that of dva[0]. This ensures that we know 5445 * when each dva was written, so that resilver can determine which 5446 * blocks need to be scrubbed (i.e. those written during the time 5447 * the vdev was offline). It also ensures that the key used in 5448 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5449 * we didn't change the phys_birth, a lookup in the ARC for a 5450 * remapped BP could find the data that was previously stored at 5451 * this vdev + offset. 5452 */ 5453 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5454 DVA_GET_VDEV(&bp->blk_dva[0])); 5455 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5456 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5457 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5458 5459 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5460 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5461 } 5462 5463 /* 5464 * If the block pointer contains any indirect DVAs, modify them to refer to 5465 * concrete DVAs. Note that this will sometimes not be possible, leaving 5466 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5467 * segments in the mapping (i.e. it is a "split block"). 5468 * 5469 * If the BP was remapped, calls the callback on the original dva (note the 5470 * callback can be called multiple times if the original indirect DVA refers 5471 * to another indirect DVA, etc). 5472 * 5473 * Returns TRUE if the BP was remapped. 5474 */ 5475 boolean_t 5476 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5477 { 5478 remap_blkptr_cb_arg_t rbca; 5479 5480 if (!zfs_remap_blkptr_enable) 5481 return (B_FALSE); 5482 5483 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5484 return (B_FALSE); 5485 5486 /* 5487 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5488 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5489 */ 5490 if (BP_GET_DEDUP(bp)) 5491 return (B_FALSE); 5492 5493 /* 5494 * Gang blocks can not be remapped, because 5495 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5496 * the BP used to read the gang block header (GBH) being the same 5497 * as the DVA[0] that we allocated for the GBH. 5498 */ 5499 if (BP_IS_GANG(bp)) 5500 return (B_FALSE); 5501 5502 /* 5503 * Embedded BP's have no DVA to remap. 5504 */ 5505 if (BP_GET_NDVAS(bp) < 1) 5506 return (B_FALSE); 5507 5508 /* 5509 * Note: we only remap dva[0]. If we remapped other dvas, we 5510 * would no longer know what their phys birth txg is. 5511 */ 5512 dva_t *dva = &bp->blk_dva[0]; 5513 5514 uint64_t offset = DVA_GET_OFFSET(dva); 5515 uint64_t size = DVA_GET_ASIZE(dva); 5516 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5517 5518 if (vd->vdev_ops->vdev_op_remap == NULL) 5519 return (B_FALSE); 5520 5521 rbca.rbca_bp = bp; 5522 rbca.rbca_cb = callback; 5523 rbca.rbca_remap_vd = vd; 5524 rbca.rbca_remap_offset = offset; 5525 rbca.rbca_cb_arg = arg; 5526 5527 /* 5528 * remap_blkptr_cb() will be called in order for each level of 5529 * indirection, until a concrete vdev is reached or a split block is 5530 * encountered. old_vd and old_offset are updated within the callback 5531 * as we go from the one indirect vdev to the next one (either concrete 5532 * or indirect again) in that order. 5533 */ 5534 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5535 5536 /* Check if the DVA wasn't remapped because it is a split block */ 5537 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5538 return (B_FALSE); 5539 5540 return (B_TRUE); 5541 } 5542 5543 /* 5544 * Undo the allocation of a DVA which happened in the given transaction group. 5545 */ 5546 void 5547 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5548 { 5549 metaslab_t *msp; 5550 vdev_t *vd; 5551 uint64_t vdev = DVA_GET_VDEV(dva); 5552 uint64_t offset = DVA_GET_OFFSET(dva); 5553 uint64_t size = DVA_GET_ASIZE(dva); 5554 5555 ASSERT(DVA_IS_VALID(dva)); 5556 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5557 5558 if (txg > spa_freeze_txg(spa)) 5559 return; 5560 5561 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5562 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5563 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5564 (u_longlong_t)vdev, (u_longlong_t)offset, 5565 (u_longlong_t)size); 5566 return; 5567 } 5568 5569 ASSERT(!vd->vdev_removing); 5570 ASSERT(vdev_is_concrete(vd)); 5571 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5572 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5573 5574 if (DVA_GET_GANG(dva)) 5575 size = vdev_gang_header_asize(vd); 5576 5577 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5578 5579 mutex_enter(&msp->ms_lock); 5580 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5581 offset, size); 5582 msp->ms_allocating_total -= size; 5583 5584 VERIFY(!msp->ms_condensing); 5585 VERIFY3U(offset, >=, msp->ms_start); 5586 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5587 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5588 msp->ms_size); 5589 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5590 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5591 range_tree_add(msp->ms_allocatable, offset, size); 5592 mutex_exit(&msp->ms_lock); 5593 } 5594 5595 /* 5596 * Free the block represented by the given DVA. 5597 */ 5598 void 5599 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5600 { 5601 uint64_t vdev = DVA_GET_VDEV(dva); 5602 uint64_t offset = DVA_GET_OFFSET(dva); 5603 uint64_t size = DVA_GET_ASIZE(dva); 5604 vdev_t *vd = vdev_lookup_top(spa, vdev); 5605 5606 ASSERT(DVA_IS_VALID(dva)); 5607 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5608 5609 if (DVA_GET_GANG(dva)) { 5610 size = vdev_gang_header_asize(vd); 5611 } 5612 5613 metaslab_free_impl(vd, offset, size, checkpoint); 5614 } 5615 5616 /* 5617 * Reserve some allocation slots. The reservation system must be called 5618 * before we call into the allocator. If there aren't any available slots 5619 * then the I/O will be throttled until an I/O completes and its slots are 5620 * freed up. The function returns true if it was successful in placing 5621 * the reservation. 5622 */ 5623 boolean_t 5624 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5625 zio_t *zio, int flags) 5626 { 5627 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5628 uint64_t max = mca->mca_alloc_max_slots; 5629 5630 ASSERT(mc->mc_alloc_throttle_enabled); 5631 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5632 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5633 /* 5634 * The potential race between _count() and _add() is covered 5635 * by the allocator lock in most cases, or irrelevant due to 5636 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5637 * But even if we assume some other non-existing scenario, the 5638 * worst that can happen is few more I/Os get to allocation 5639 * earlier, that is not a problem. 5640 * 5641 * We reserve the slots individually so that we can unreserve 5642 * them individually when an I/O completes. 5643 */ 5644 for (int d = 0; d < slots; d++) 5645 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5646 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5647 return (B_TRUE); 5648 } 5649 return (B_FALSE); 5650 } 5651 5652 void 5653 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5654 int allocator, zio_t *zio) 5655 { 5656 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5657 5658 ASSERT(mc->mc_alloc_throttle_enabled); 5659 for (int d = 0; d < slots; d++) 5660 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5661 } 5662 5663 static int 5664 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5665 uint64_t txg) 5666 { 5667 metaslab_t *msp; 5668 spa_t *spa = vd->vdev_spa; 5669 int error = 0; 5670 5671 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5672 return (SET_ERROR(ENXIO)); 5673 5674 ASSERT3P(vd->vdev_ms, !=, NULL); 5675 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5676 5677 mutex_enter(&msp->ms_lock); 5678 5679 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5680 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5681 if (error == EBUSY) { 5682 ASSERT(msp->ms_loaded); 5683 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5684 error = 0; 5685 } 5686 } 5687 5688 if (error == 0 && 5689 !range_tree_contains(msp->ms_allocatable, offset, size)) 5690 error = SET_ERROR(ENOENT); 5691 5692 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5693 mutex_exit(&msp->ms_lock); 5694 return (error); 5695 } 5696 5697 VERIFY(!msp->ms_condensing); 5698 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5699 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5700 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5701 msp->ms_size); 5702 range_tree_remove(msp->ms_allocatable, offset, size); 5703 range_tree_clear(msp->ms_trim, offset, size); 5704 5705 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5706 metaslab_class_t *mc = msp->ms_group->mg_class; 5707 multilist_sublist_t *mls = 5708 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5709 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5710 msp->ms_selected_txg = txg; 5711 multilist_sublist_insert_head(mls, msp); 5712 } 5713 multilist_sublist_unlock(mls); 5714 5715 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5716 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5717 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5718 offset, size); 5719 msp->ms_allocating_total += size; 5720 } 5721 5722 mutex_exit(&msp->ms_lock); 5723 5724 return (0); 5725 } 5726 5727 typedef struct metaslab_claim_cb_arg_t { 5728 uint64_t mcca_txg; 5729 int mcca_error; 5730 } metaslab_claim_cb_arg_t; 5731 5732 static void 5733 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5734 uint64_t size, void *arg) 5735 { 5736 (void) inner_offset; 5737 metaslab_claim_cb_arg_t *mcca_arg = arg; 5738 5739 if (mcca_arg->mcca_error == 0) { 5740 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5741 size, mcca_arg->mcca_txg); 5742 } 5743 } 5744 5745 int 5746 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5747 { 5748 if (vd->vdev_ops->vdev_op_remap != NULL) { 5749 metaslab_claim_cb_arg_t arg; 5750 5751 /* 5752 * Only zdb(8) can claim on indirect vdevs. This is used 5753 * to detect leaks of mapped space (that are not accounted 5754 * for in the obsolete counts, spacemap, or bpobj). 5755 */ 5756 ASSERT(!spa_writeable(vd->vdev_spa)); 5757 arg.mcca_error = 0; 5758 arg.mcca_txg = txg; 5759 5760 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5761 metaslab_claim_impl_cb, &arg); 5762 5763 if (arg.mcca_error == 0) { 5764 arg.mcca_error = metaslab_claim_concrete(vd, 5765 offset, size, txg); 5766 } 5767 return (arg.mcca_error); 5768 } else { 5769 return (metaslab_claim_concrete(vd, offset, size, txg)); 5770 } 5771 } 5772 5773 /* 5774 * Intent log support: upon opening the pool after a crash, notify the SPA 5775 * of blocks that the intent log has allocated for immediate write, but 5776 * which are still considered free by the SPA because the last transaction 5777 * group didn't commit yet. 5778 */ 5779 static int 5780 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5781 { 5782 uint64_t vdev = DVA_GET_VDEV(dva); 5783 uint64_t offset = DVA_GET_OFFSET(dva); 5784 uint64_t size = DVA_GET_ASIZE(dva); 5785 vdev_t *vd; 5786 5787 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5788 return (SET_ERROR(ENXIO)); 5789 } 5790 5791 ASSERT(DVA_IS_VALID(dva)); 5792 5793 if (DVA_GET_GANG(dva)) 5794 size = vdev_gang_header_asize(vd); 5795 5796 return (metaslab_claim_impl(vd, offset, size, txg)); 5797 } 5798 5799 int 5800 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5801 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5802 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5803 { 5804 dva_t *dva = bp->blk_dva; 5805 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5806 int error = 0; 5807 5808 ASSERT(bp->blk_birth == 0); 5809 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5810 5811 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5812 5813 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5814 /* no vdevs in this class */ 5815 spa_config_exit(spa, SCL_ALLOC, FTAG); 5816 return (SET_ERROR(ENOSPC)); 5817 } 5818 5819 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5820 ASSERT(BP_GET_NDVAS(bp) == 0); 5821 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5822 ASSERT3P(zal, !=, NULL); 5823 5824 for (int d = 0; d < ndvas; d++) { 5825 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5826 txg, flags, zal, allocator); 5827 if (error != 0) { 5828 for (d--; d >= 0; d--) { 5829 metaslab_unalloc_dva(spa, &dva[d], txg); 5830 metaslab_group_alloc_decrement(spa, 5831 DVA_GET_VDEV(&dva[d]), zio, flags, 5832 allocator, B_FALSE); 5833 memset(&dva[d], 0, sizeof (dva_t)); 5834 } 5835 spa_config_exit(spa, SCL_ALLOC, FTAG); 5836 return (error); 5837 } else { 5838 /* 5839 * Update the metaslab group's queue depth 5840 * based on the newly allocated dva. 5841 */ 5842 metaslab_group_alloc_increment(spa, 5843 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5844 } 5845 } 5846 ASSERT(error == 0); 5847 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5848 5849 spa_config_exit(spa, SCL_ALLOC, FTAG); 5850 5851 BP_SET_BIRTH(bp, txg, 0); 5852 5853 return (0); 5854 } 5855 5856 void 5857 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5858 { 5859 const dva_t *dva = bp->blk_dva; 5860 int ndvas = BP_GET_NDVAS(bp); 5861 5862 ASSERT(!BP_IS_HOLE(bp)); 5863 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5864 5865 /* 5866 * If we have a checkpoint for the pool we need to make sure that 5867 * the blocks that we free that are part of the checkpoint won't be 5868 * reused until the checkpoint is discarded or we revert to it. 5869 * 5870 * The checkpoint flag is passed down the metaslab_free code path 5871 * and is set whenever we want to add a block to the checkpoint's 5872 * accounting. That is, we "checkpoint" blocks that existed at the 5873 * time the checkpoint was created and are therefore referenced by 5874 * the checkpointed uberblock. 5875 * 5876 * Note that, we don't checkpoint any blocks if the current 5877 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5878 * normally as they will be referenced by the checkpointed uberblock. 5879 */ 5880 boolean_t checkpoint = B_FALSE; 5881 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5882 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5883 /* 5884 * At this point, if the block is part of the checkpoint 5885 * there is no way it was created in the current txg. 5886 */ 5887 ASSERT(!now); 5888 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5889 checkpoint = B_TRUE; 5890 } 5891 5892 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5893 5894 for (int d = 0; d < ndvas; d++) { 5895 if (now) { 5896 metaslab_unalloc_dva(spa, &dva[d], txg); 5897 } else { 5898 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5899 metaslab_free_dva(spa, &dva[d], checkpoint); 5900 } 5901 } 5902 5903 spa_config_exit(spa, SCL_FREE, FTAG); 5904 } 5905 5906 int 5907 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5908 { 5909 const dva_t *dva = bp->blk_dva; 5910 int ndvas = BP_GET_NDVAS(bp); 5911 int error = 0; 5912 5913 ASSERT(!BP_IS_HOLE(bp)); 5914 5915 if (txg != 0) { 5916 /* 5917 * First do a dry run to make sure all DVAs are claimable, 5918 * so we don't have to unwind from partial failures below. 5919 */ 5920 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5921 return (error); 5922 } 5923 5924 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5925 5926 for (int d = 0; d < ndvas; d++) { 5927 error = metaslab_claim_dva(spa, &dva[d], txg); 5928 if (error != 0) 5929 break; 5930 } 5931 5932 spa_config_exit(spa, SCL_ALLOC, FTAG); 5933 5934 ASSERT(error == 0 || txg == 0); 5935 5936 return (error); 5937 } 5938 5939 void 5940 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5941 { 5942 const dva_t *dva = bp->blk_dva; 5943 int ndvas = BP_GET_NDVAS(bp); 5944 uint64_t psize = BP_GET_PSIZE(bp); 5945 int d; 5946 vdev_t *vd; 5947 5948 ASSERT(!BP_IS_HOLE(bp)); 5949 ASSERT(!BP_IS_EMBEDDED(bp)); 5950 ASSERT(psize > 0); 5951 5952 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5953 5954 for (d = 0; d < ndvas; d++) { 5955 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5956 continue; 5957 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5958 } 5959 5960 spa_config_exit(spa, SCL_VDEV, FTAG); 5961 } 5962 5963 void 5964 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5965 { 5966 const dva_t *dva = bp->blk_dva; 5967 int ndvas = BP_GET_NDVAS(bp); 5968 uint64_t psize = BP_GET_PSIZE(bp); 5969 int d; 5970 vdev_t *vd; 5971 5972 ASSERT(!BP_IS_HOLE(bp)); 5973 ASSERT(!BP_IS_EMBEDDED(bp)); 5974 ASSERT(psize > 0); 5975 5976 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5977 5978 for (d = 0; d < ndvas; d++) { 5979 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5980 continue; 5981 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5982 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5983 } 5984 5985 spa_config_exit(spa, SCL_VDEV, FTAG); 5986 } 5987 5988 static void 5989 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5990 uint64_t size, void *arg) 5991 { 5992 (void) inner, (void) arg; 5993 5994 if (vd->vdev_ops == &vdev_indirect_ops) 5995 return; 5996 5997 metaslab_check_free_impl(vd, offset, size); 5998 } 5999 6000 static void 6001 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 6002 { 6003 metaslab_t *msp; 6004 spa_t *spa __maybe_unused = vd->vdev_spa; 6005 6006 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6007 return; 6008 6009 if (vd->vdev_ops->vdev_op_remap != NULL) { 6010 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6011 metaslab_check_free_impl_cb, NULL); 6012 return; 6013 } 6014 6015 ASSERT(vdev_is_concrete(vd)); 6016 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6017 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6018 6019 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6020 6021 mutex_enter(&msp->ms_lock); 6022 if (msp->ms_loaded) { 6023 range_tree_verify_not_present(msp->ms_allocatable, 6024 offset, size); 6025 } 6026 6027 /* 6028 * Check all segments that currently exist in the freeing pipeline. 6029 * 6030 * It would intuitively make sense to also check the current allocating 6031 * tree since metaslab_unalloc_dva() exists for extents that are 6032 * allocated and freed in the same sync pass within the same txg. 6033 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6034 * segment but then we free part of it within the same txg 6035 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6036 * current allocating tree. 6037 */ 6038 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6039 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6040 range_tree_verify_not_present(msp->ms_freed, offset, size); 6041 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6042 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6043 range_tree_verify_not_present(msp->ms_trim, offset, size); 6044 mutex_exit(&msp->ms_lock); 6045 } 6046 6047 void 6048 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6049 { 6050 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6051 return; 6052 6053 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6054 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6055 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6056 vdev_t *vd = vdev_lookup_top(spa, vdev); 6057 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6058 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6059 6060 if (DVA_GET_GANG(&bp->blk_dva[i])) 6061 size = vdev_gang_header_asize(vd); 6062 6063 ASSERT3P(vd, !=, NULL); 6064 6065 metaslab_check_free_impl(vd, offset, size); 6066 } 6067 spa_config_exit(spa, SCL_VDEV, FTAG); 6068 } 6069 6070 static void 6071 metaslab_group_disable_wait(metaslab_group_t *mg) 6072 { 6073 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6074 while (mg->mg_disabled_updating) { 6075 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6076 } 6077 } 6078 6079 static void 6080 metaslab_group_disabled_increment(metaslab_group_t *mg) 6081 { 6082 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6083 ASSERT(mg->mg_disabled_updating); 6084 6085 while (mg->mg_ms_disabled >= max_disabled_ms) { 6086 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6087 } 6088 mg->mg_ms_disabled++; 6089 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6090 } 6091 6092 /* 6093 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6094 * We must also track how many metaslabs are currently disabled within a 6095 * metaslab group and limit them to prevent allocation failures from 6096 * occurring because all metaslabs are disabled. 6097 */ 6098 void 6099 metaslab_disable(metaslab_t *msp) 6100 { 6101 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6102 metaslab_group_t *mg = msp->ms_group; 6103 6104 mutex_enter(&mg->mg_ms_disabled_lock); 6105 6106 /* 6107 * To keep an accurate count of how many threads have disabled 6108 * a specific metaslab group, we only allow one thread to mark 6109 * the metaslab group at a time. This ensures that the value of 6110 * ms_disabled will be accurate when we decide to mark a metaslab 6111 * group as disabled. To do this we force all other threads 6112 * to wait till the metaslab's mg_disabled_updating flag is no 6113 * longer set. 6114 */ 6115 metaslab_group_disable_wait(mg); 6116 mg->mg_disabled_updating = B_TRUE; 6117 if (msp->ms_disabled == 0) { 6118 metaslab_group_disabled_increment(mg); 6119 } 6120 mutex_enter(&msp->ms_lock); 6121 msp->ms_disabled++; 6122 mutex_exit(&msp->ms_lock); 6123 6124 mg->mg_disabled_updating = B_FALSE; 6125 cv_broadcast(&mg->mg_ms_disabled_cv); 6126 mutex_exit(&mg->mg_ms_disabled_lock); 6127 } 6128 6129 void 6130 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6131 { 6132 metaslab_group_t *mg = msp->ms_group; 6133 spa_t *spa = mg->mg_vd->vdev_spa; 6134 6135 /* 6136 * Wait for the outstanding IO to be synced to prevent newly 6137 * allocated blocks from being overwritten. This used by 6138 * initialize and TRIM which are modifying unallocated space. 6139 */ 6140 if (sync) 6141 txg_wait_synced(spa_get_dsl(spa), 0); 6142 6143 mutex_enter(&mg->mg_ms_disabled_lock); 6144 mutex_enter(&msp->ms_lock); 6145 if (--msp->ms_disabled == 0) { 6146 mg->mg_ms_disabled--; 6147 cv_broadcast(&mg->mg_ms_disabled_cv); 6148 if (unload) 6149 metaslab_unload(msp); 6150 } 6151 mutex_exit(&msp->ms_lock); 6152 mutex_exit(&mg->mg_ms_disabled_lock); 6153 } 6154 6155 void 6156 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6157 { 6158 ms->ms_unflushed_dirty = dirty; 6159 } 6160 6161 static void 6162 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6163 { 6164 vdev_t *vd = ms->ms_group->mg_vd; 6165 spa_t *spa = vd->vdev_spa; 6166 objset_t *mos = spa_meta_objset(spa); 6167 6168 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6169 6170 metaslab_unflushed_phys_t entry = { 6171 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6172 }; 6173 uint64_t entry_size = sizeof (entry); 6174 uint64_t entry_offset = ms->ms_id * entry_size; 6175 6176 uint64_t object = 0; 6177 int err = zap_lookup(mos, vd->vdev_top_zap, 6178 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6179 &object); 6180 if (err == ENOENT) { 6181 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6182 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6183 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6184 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6185 &object, tx)); 6186 } else { 6187 VERIFY0(err); 6188 } 6189 6190 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6191 &entry, tx); 6192 } 6193 6194 void 6195 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6196 { 6197 ms->ms_unflushed_txg = txg; 6198 metaslab_update_ondisk_flush_data(ms, tx); 6199 } 6200 6201 boolean_t 6202 metaslab_unflushed_dirty(metaslab_t *ms) 6203 { 6204 return (ms->ms_unflushed_dirty); 6205 } 6206 6207 uint64_t 6208 metaslab_unflushed_txg(metaslab_t *ms) 6209 { 6210 return (ms->ms_unflushed_txg); 6211 } 6212 6213 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6214 "Allocation granularity (a.k.a. stripe size)"); 6215 6216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6217 "Load all metaslabs when pool is first opened"); 6218 6219 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6220 "Prevent metaslabs from being unloaded"); 6221 6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6223 "Preload potential metaslabs during reassessment"); 6224 6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6226 "Delay in txgs after metaslab was last used before unloading"); 6227 6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6229 "Delay in milliseconds after metaslab was last used before unloading"); 6230 6231 /* BEGIN CSTYLED */ 6232 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6233 "Percentage of metaslab group size that should be free to make it " 6234 "eligible for allocation"); 6235 6236 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6237 "Percentage of metaslab group size that should be considered eligible " 6238 "for allocations unless all metaslab groups within the metaslab class " 6239 "have also crossed this threshold"); 6240 6241 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6242 ZMOD_RW, 6243 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6244 /* END CSTYLED */ 6245 6246 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6247 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6248 6249 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6250 "Prefer metaslabs with lower LBAs"); 6251 6252 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6253 "Enable metaslab group biasing"); 6254 6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6256 ZMOD_RW, "Enable segment-based metaslab selection"); 6257 6258 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6259 "Segment-based metaslab selection maximum buckets before switching"); 6260 6261 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6262 "Blocks larger than this size are forced to be gang blocks"); 6263 6264 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6265 "Max distance (bytes) to search forward before using size tree"); 6266 6267 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6268 "When looking in size tree, use largest segment instead of exact fit"); 6269 6270 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6271 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6272 6273 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6274 "Percentage of memory that can be used to store metaslab range trees"); 6275 6276 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6277 ZMOD_RW, "Try hard to allocate before ganging"); 6278 6279 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 6280 "Normally only consider this many of the best metaslabs in each vdev"); 6281