1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2017, Intel Corporation. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/brt.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/space_map.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_draid.h> 38 #include <sys/zio.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zfeature.h> 41 #include <sys/vdev_indirect_mapping.h> 42 #include <sys/zap.h> 43 #include <sys/btree.h> 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab group's per child vdev granularity, in bytes. This is roughly 50 * similar to what would be referred to as the "stripe size" in traditional 51 * RAID arrays. In normal operation, we will try to write this amount of 52 * data to each disk before moving on to the next top-level vdev. 53 */ 54 static uint64_t metaslab_aliquot = 2 * 1024 * 1024; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often. 63 */ 64 uint_t metaslab_force_ganging_pct = 3; 65 66 /* 67 * In pools where the log space map feature is not enabled we touch 68 * multiple metaslabs (and their respective space maps) with each 69 * transaction group. Thus, we benefit from having a small space map 70 * block size since it allows us to issue more I/O operations scattered 71 * around the disk. So a sane default for the space map block size 72 * is 8~16K. 73 */ 74 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 75 76 /* 77 * When the log space map feature is enabled, we accumulate a lot of 78 * changes per metaslab that are flushed once in a while so we benefit 79 * from a bigger block size like 128K for the metaslab space maps. 80 */ 81 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 82 83 /* 84 * The in-core space map representation is more compact than its on-disk form. 85 * The zfs_condense_pct determines how much more compact the in-core 86 * space map representation must be before we compact it on-disk. 87 * Values should be greater than or equal to 100. 88 */ 89 uint_t zfs_condense_pct = 200; 90 91 /* 92 * Condensing a metaslab is not guaranteed to actually reduce the amount of 93 * space used on disk. In particular, a space map uses data in increments of 94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 95 * same number of blocks after condensing. Since the goal of condensing is to 96 * reduce the number of IOPs required to read the space map, we only want to 97 * condense when we can be sure we will reduce the number of blocks used by the 98 * space map. Unfortunately, we cannot precisely compute whether or not this is 99 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 100 * we apply the following heuristic: do not condense a spacemap unless the 101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 102 * blocks. 103 */ 104 static const int zfs_metaslab_condense_block_threshold = 4; 105 106 /* 107 * The zfs_mg_noalloc_threshold defines which metaslab groups should 108 * be eligible for allocation. The value is defined as a percentage of 109 * free space. Metaslab groups that have more free space than 110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 111 * a metaslab group's free space is less than or equal to the 112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 115 * groups are allowed to accept allocations. Gang blocks are always 116 * eligible to allocate on any metaslab group. The default value of 0 means 117 * no metaslab group will be excluded based on this criterion. 118 */ 119 static uint_t zfs_mg_noalloc_threshold = 0; 120 121 /* 122 * Metaslab groups are considered eligible for allocations if their 123 * fragmentation metric (measured as a percentage) is less than or 124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 125 * exceeds this threshold then it will be skipped unless all metaslab 126 * groups within the metaslab class have also crossed this threshold. 127 * 128 * This tunable was introduced to avoid edge cases where we continue 129 * allocating from very fragmented disks in our pool while other, less 130 * fragmented disks, exists. On the other hand, if all disks in the 131 * pool are uniformly approaching the threshold, the threshold can 132 * be a speed bump in performance, where we keep switching the disks 133 * that we allocate from (e.g. we allocate some segments from disk A 134 * making it bypassing the threshold while freeing segments from disk 135 * B getting its fragmentation below the threshold). 136 * 137 * Empirically, we've seen that our vdev selection for allocations is 138 * good enough that fragmentation increases uniformly across all vdevs 139 * the majority of the time. Thus we set the threshold percentage high 140 * enough to avoid hitting the speed bump on pools that are being pushed 141 * to the edge. 142 */ 143 static uint_t zfs_mg_fragmentation_threshold = 95; 144 145 /* 146 * Allow metaslabs to keep their active state as long as their fragmentation 147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 148 * active metaslab that exceeds this threshold will no longer keep its active 149 * status allowing better metaslabs to be selected. 150 */ 151 static uint_t zfs_metaslab_fragmentation_threshold = 77; 152 153 /* 154 * When set will load all metaslabs when pool is first opened. 155 */ 156 int metaslab_debug_load = B_FALSE; 157 158 /* 159 * When set will prevent metaslabs from being unloaded. 160 */ 161 static int metaslab_debug_unload = B_FALSE; 162 163 /* 164 * Minimum size which forces the dynamic allocator to change 165 * it's allocation strategy. Once the space map cannot satisfy 166 * an allocation of this size then it switches to using more 167 * aggressive strategy (i.e search by size rather than offset). 168 */ 169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 170 171 /* 172 * The minimum free space, in percent, which must be available 173 * in a space map to continue allocations in a first-fit fashion. 174 * Once the space map's free space drops below this level we dynamically 175 * switch to using best-fit allocations. 176 */ 177 uint_t metaslab_df_free_pct = 4; 178 179 /* 180 * Maximum distance to search forward from the last offset. Without this 181 * limit, fragmented pools can see >100,000 iterations and 182 * metaslab_block_picker() becomes the performance limiting factor on 183 * high-performance storage. 184 * 185 * With the default setting of 16MB, we typically see less than 500 186 * iterations, even with very fragmented, ashift=9 pools. The maximum number 187 * of iterations possible is: 188 * metaslab_df_max_search / (2 * (1<<ashift)) 189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 190 * 2048 (with ashift=12). 191 */ 192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 193 194 /* 195 * Forces the metaslab_block_picker function to search for at least this many 196 * segments forwards until giving up on finding a segment that the allocation 197 * will fit into. 198 */ 199 static const uint32_t metaslab_min_search_count = 100; 200 201 /* 202 * If we are not searching forward (due to metaslab_df_max_search, 203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 204 * controls what segment is used. If it is set, we will use the largest free 205 * segment. If it is not set, we will use a segment of exactly the requested 206 * size (or larger). 207 */ 208 static int metaslab_df_use_largest_segment = B_FALSE; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 static uint_t metaslab_unload_delay = 32; 219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 uint_t metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 static int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 static int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 static int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable space-based metaslab group biasing. 243 */ 244 static int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Control performance-based metaslab group biasing. 248 */ 249 static int metaslab_perf_bias = 1; 250 251 /* 252 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 253 */ 254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 255 256 /* 257 * Enable/disable segment-based metaslab selection. 258 */ 259 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 260 261 /* 262 * When using segment-based metaslab selection, we will continue 263 * allocating from the active metaslab until we have exhausted 264 * zfs_metaslab_switch_threshold of its buckets. 265 */ 266 static int zfs_metaslab_switch_threshold = 2; 267 268 /* 269 * Internal switch to enable/disable the metaslab allocation tracing 270 * facility. 271 */ 272 static const boolean_t metaslab_trace_enabled = B_FALSE; 273 274 /* 275 * Maximum entries that the metaslab allocation tracing facility will keep 276 * in a given list when running in non-debug mode. We limit the number 277 * of entries in non-debug mode to prevent us from using up too much memory. 278 * The limit should be sufficiently large that we don't expect any allocation 279 * to every exceed this value. In debug mode, the system will panic if this 280 * limit is ever reached allowing for further investigation. 281 */ 282 static const uint64_t metaslab_trace_max_entries = 5000; 283 284 /* 285 * Maximum number of metaslabs per group that can be disabled 286 * simultaneously. 287 */ 288 static const int max_disabled_ms = 3; 289 290 /* 291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 292 * To avoid 64-bit overflow, don't set above UINT32_MAX. 293 */ 294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 295 296 /* 297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 298 * a metaslab would take it over this percentage, the oldest selected metaslab 299 * is automatically unloaded. 300 */ 301 static uint_t zfs_metaslab_mem_limit = 25; 302 303 /* 304 * Force the per-metaslab range trees to use 64-bit integers to store 305 * segments. Used for debugging purposes. 306 */ 307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 308 309 /* 310 * By default we only store segments over a certain size in the size-sorted 311 * metaslab trees (ms_allocatable_by_size and 312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 313 * improves load and unload times at the cost of causing us to use slightly 314 * larger segments than we would otherwise in some cases. 315 */ 316 static const uint32_t metaslab_by_size_min_shift = 14; 317 318 /* 319 * If not set, we will first try normal allocation. If that fails then 320 * we will do a gang allocation. If that fails then we will do a "try hard" 321 * gang allocation. If that fails then we will have a multi-layer gang 322 * block. 323 * 324 * If set, we will first try normal allocation. If that fails then 325 * we will do a "try hard" allocation. If that fails we will do a gang 326 * allocation. If that fails we will do a "try hard" gang allocation. If 327 * that fails then we will have a multi-layer gang block. 328 */ 329 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 330 331 /* 332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 333 * metaslabs. This improves performance, especially when there are many 334 * metaslabs per vdev and the allocation can't actually be satisfied (so we 335 * would otherwise iterate all the metaslabs). If there is a metaslab with a 336 * worse weight but it can actually satisfy the allocation, we won't find it 337 * until trying hard. This may happen if the worse metaslab is not loaded 338 * (and the true weight is better than we have calculated), or due to weight 339 * bucketization. E.g. we are looking for a 60K segment, and the best 340 * metaslabs all have free segments in the 32-63K bucket, but the best 341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 343 * bucket, and therefore a lower weight). 344 */ 345 static uint_t zfs_metaslab_find_max_tries = 100; 346 347 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 351 352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 355 static unsigned int metaslab_idx_func(multilist_t *, void *); 356 static void metaslab_evict(metaslab_t *, uint64_t); 357 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, 358 void *arg); 359 kmem_cache_t *metaslab_alloc_trace_cache; 360 361 typedef struct metaslab_stats { 362 kstat_named_t metaslabstat_trace_over_limit; 363 kstat_named_t metaslabstat_reload_tree; 364 kstat_named_t metaslabstat_too_many_tries; 365 kstat_named_t metaslabstat_try_hard; 366 } metaslab_stats_t; 367 368 static metaslab_stats_t metaslab_stats = { 369 { "trace_over_limit", KSTAT_DATA_UINT64 }, 370 { "reload_tree", KSTAT_DATA_UINT64 }, 371 { "too_many_tries", KSTAT_DATA_UINT64 }, 372 { "try_hard", KSTAT_DATA_UINT64 }, 373 }; 374 375 #define METASLABSTAT_BUMP(stat) \ 376 atomic_inc_64(&metaslab_stats.stat.value.ui64); 377 378 379 static kstat_t *metaslab_ksp; 380 381 void 382 metaslab_stat_init(void) 383 { 384 ASSERT(metaslab_alloc_trace_cache == NULL); 385 metaslab_alloc_trace_cache = kmem_cache_create( 386 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 387 0, NULL, NULL, NULL, NULL, NULL, 0); 388 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 389 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 390 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 391 if (metaslab_ksp != NULL) { 392 metaslab_ksp->ks_data = &metaslab_stats; 393 kstat_install(metaslab_ksp); 394 } 395 } 396 397 void 398 metaslab_stat_fini(void) 399 { 400 if (metaslab_ksp != NULL) { 401 kstat_delete(metaslab_ksp); 402 metaslab_ksp = NULL; 403 } 404 405 kmem_cache_destroy(metaslab_alloc_trace_cache); 406 metaslab_alloc_trace_cache = NULL; 407 } 408 409 /* 410 * ========================================================================== 411 * Metaslab classes 412 * ========================================================================== 413 */ 414 metaslab_class_t * 415 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops, boolean_t is_log) 416 { 417 metaslab_class_t *mc; 418 419 mc = kmem_zalloc(offsetof(metaslab_class_t, 420 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 421 422 mc->mc_spa = spa; 423 mc->mc_ops = ops; 424 mc->mc_is_log = is_log; 425 mc->mc_alloc_io_size = SPA_OLD_MAXBLOCKSIZE; 426 mc->mc_alloc_max = UINT64_MAX; 427 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 428 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 429 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 430 for (int i = 0; i < spa->spa_alloc_count; i++) { 431 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 432 mutex_init(&mca->mca_lock, NULL, MUTEX_DEFAULT, NULL); 433 avl_create(&mca->mca_tree, zio_bookmark_compare, 434 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 435 mca->mca_rotor = NULL; 436 mca->mca_reserved = 0; 437 } 438 439 return (mc); 440 } 441 442 void 443 metaslab_class_destroy(metaslab_class_t *mc) 444 { 445 spa_t *spa = mc->mc_spa; 446 447 ASSERT(mc->mc_alloc == 0); 448 ASSERT(mc->mc_deferred == 0); 449 ASSERT(mc->mc_space == 0); 450 ASSERT(mc->mc_dspace == 0); 451 452 for (int i = 0; i < spa->spa_alloc_count; i++) { 453 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 454 avl_destroy(&mca->mca_tree); 455 mutex_destroy(&mca->mca_lock); 456 ASSERT(mca->mca_rotor == NULL); 457 ASSERT0(mca->mca_reserved); 458 } 459 mutex_destroy(&mc->mc_lock); 460 multilist_destroy(&mc->mc_metaslab_txg_list); 461 kmem_free(mc, offsetof(metaslab_class_t, 462 mc_allocator[spa->spa_alloc_count])); 463 } 464 465 void 466 metaslab_class_validate(metaslab_class_t *mc) 467 { 468 #ifdef ZFS_DEBUG 469 spa_t *spa = mc->mc_spa; 470 471 /* 472 * Must hold one of the spa_config locks. 473 */ 474 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) || 475 spa_config_held(spa, SCL_ALL, RW_WRITER)); 476 477 for (int i = 0; i < spa->spa_alloc_count; i++) { 478 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 479 metaslab_group_t *mg, *rotor; 480 481 ASSERT0(avl_numnodes(&mca->mca_tree)); 482 ASSERT0(mca->mca_reserved); 483 484 if ((mg = rotor = mca->mca_rotor) == NULL) 485 continue; 486 do { 487 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 488 vdev_t *vd = mg->mg_vd; 489 490 ASSERT3P(vd->vdev_top, ==, vd); 491 ASSERT(vd->vdev_mg == mg || vd->vdev_log_mg == mg); 492 ASSERT3P(mg->mg_class, ==, mc); 493 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 494 ASSERT0(zfs_refcount_count(&mga->mga_queue_depth)); 495 } while ((mg = mg->mg_next) != rotor); 496 } 497 #endif 498 } 499 500 /* 501 * For each metaslab group in a class pre-calculate allocation quota and 502 * target queue depth to balance their space usage and write performance. 503 * Based on those pre-calculate class allocation throttle threshold for 504 * optimal saturation. onsync is true once per TXG to enable/disable 505 * allocation throttling and update moving average of maximum I/O size. 506 */ 507 void 508 metaslab_class_balance(metaslab_class_t *mc, boolean_t onsync) 509 { 510 metaslab_group_t *mg, *first; 511 512 /* 513 * Must hold one of the spa_config locks. 514 */ 515 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 516 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 517 518 if (onsync) 519 metaslab_class_validate(mc); 520 521 if (mc->mc_groups == 0) { 522 if (onsync) 523 mc->mc_alloc_throttle_enabled = B_FALSE; 524 mc->mc_alloc_max = UINT64_MAX; 525 return; 526 } 527 528 if (onsync) { 529 /* 530 * Moving average of maximum allocation size, in absence of 531 * large allocations shrinking to 1/8 of metaslab_aliquot. 532 */ 533 mc->mc_alloc_io_size = (3 * mc->mc_alloc_io_size + 534 metaslab_aliquot / 8) / 4; 535 mc->mc_alloc_throttle_enabled = mc->mc_is_log ? 0 : 536 zio_dva_throttle_enabled; 537 } 538 539 mg = first = mc->mc_allocator[0].mca_rotor; 540 uint64_t children = 0; 541 do { 542 children += vdev_get_ndisks(mg->mg_vd) - 543 vdev_get_nparity(mg->mg_vd); 544 } while ((mg = mg->mg_next) != first); 545 546 uint64_t sum_aliquot = 0; 547 do { 548 vdev_stat_t *vs = &mg->mg_vd->vdev_stat; 549 uint_t ratio; 550 551 /* 552 * Scale allocations per iteration with average number of 553 * children. Wider vdevs need more sequential allocations 554 * to keep decent per-child I/O size. 555 */ 556 uint64_t mg_aliquot = MAX(metaslab_aliquot * children / 557 mc->mc_groups, mc->mc_alloc_io_size * 4); 558 559 /* 560 * Scale allocations per iteration with the vdev capacity, 561 * relative to average. Bigger vdevs should get more to 562 * fill up at the same time as smaller ones. 563 */ 564 if (mc->mc_space > 0 && vs->vs_space > 0) { 565 ratio = vs->vs_space / (mc->mc_space / (mc->mc_groups * 566 256) + 1); 567 mg_aliquot = mg_aliquot * ratio / 256; 568 } 569 570 /* 571 * Scale allocations per iteration with the vdev's free space 572 * fraction, relative to average. Despite the above, vdevs free 573 * space fractions may get imbalanced, for example due to new 574 * vdev addition or different performance. We want free space 575 * fractions to be similar to postpone fragmentation. 576 * 577 * But same time we don't want to throttle vdevs still having 578 * plenty of free space, that appear faster than others, even 579 * if that cause temporary imbalance. Allow them to allocate 580 * more by keeping their allocation queue depth equivalent to 581 * 2.5 full iteration, even if they repeatedly drain it. Later 582 * with the free space reduction gradually reduce the target 583 * queue depth, stronger enforcing the free space balance. 584 */ 585 if (metaslab_bias_enabled && 586 mc->mc_space > 0 && vs->vs_space > 0) { 587 uint64_t vs_free = vs->vs_space > vs->vs_alloc ? 588 vs->vs_space - vs->vs_alloc : 0; 589 uint64_t mc_free = mc->mc_space > mc->mc_alloc ? 590 mc->mc_space - mc->mc_alloc : 0; 591 /* 592 * vs_fr is 16 bit fixed-point free space fraction. 593 * mc_fr is 8 bit fixed-point free space fraction. 594 * ratio as their quotient is 8 bit fixed-point. 595 */ 596 uint_t vs_fr = vs_free / (vs->vs_space / 65536 + 1); 597 uint_t mc_fr = mc_free / (mc->mc_space / 256 + 1); 598 ratio = vs_fr / (mc_fr + 1); 599 mg->mg_aliquot = mg_aliquot * ratio / 256; 600 /* From 2.5x at 25% full to 1x at 75%. */ 601 ratio = MIN(163840, vs_fr * 3 + 16384); 602 mg->mg_queue_target = MAX(mg->mg_aliquot, 603 mg->mg_aliquot * ratio / 65536); 604 } else { 605 mg->mg_aliquot = mg_aliquot; 606 mg->mg_queue_target = mg->mg_aliquot * 2; 607 } 608 sum_aliquot += mg->mg_aliquot; 609 } while ((mg = mg->mg_next) != first); 610 611 /* 612 * Set per-class allocation throttle threshold to 4 iterations through 613 * all the vdevs. This should keep all vdevs busy even if some are 614 * allocating more than we planned for them due to bigger blocks or 615 * better performance. 616 */ 617 mc->mc_alloc_max = sum_aliquot * 4; 618 } 619 620 static void 621 metaslab_class_rotate(metaslab_group_t *mg, int allocator, uint64_t psize, 622 boolean_t success) 623 { 624 metaslab_class_t *mc = mg->mg_class; 625 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 626 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 627 628 /* 629 * Exit fast if there is nothing to rotate, we are not following 630 * the rotor (copies, gangs, etc) or somebody already rotated it. 631 */ 632 if (mc->mc_groups < 2 || mca->mca_rotor != mg) 633 return; 634 635 /* 636 * Always rotate in case of allocation error or a log class. 637 */ 638 if (!success || mc->mc_is_log) 639 goto rotate; 640 641 /* 642 * Allocate from this group if we expect next I/O of the same size to 643 * mostly fit within the allocation quota. Rotate if we expect it to 644 * mostly go over the target queue depth. Meanwhile, to stripe between 645 * groups in configured amounts per child even if we can't reach the 646 * target queue depth, i.e. can't saturate the group write performance, 647 * always rotate after allocating the queue target bytes. 648 */ 649 uint64_t naq = atomic_add_64_nv(&mca->mca_aliquot, psize) + psize / 2; 650 if (naq < mg->mg_aliquot) 651 return; 652 if (naq >= mg->mg_queue_target) 653 goto rotate; 654 if (zfs_refcount_count(&mga->mga_queue_depth) + psize + psize / 2 >= 655 mg->mg_queue_target) 656 goto rotate; 657 658 /* 659 * When the pool is not too busy, prefer restoring the vdev free space 660 * balance instead of getting maximum speed we might not need, so that 661 * we could have more flexibility during more busy times later. 662 */ 663 if (metaslab_perf_bias <= 0) 664 goto rotate; 665 if (metaslab_perf_bias >= 2) 666 return; 667 spa_t *spa = mc->mc_spa; 668 dsl_pool_t *dp = spa_get_dsl(spa); 669 if (dp == NULL) 670 return; 671 uint64_t busy_thresh = zfs_dirty_data_max * 672 (zfs_vdev_async_write_active_min_dirty_percent + 673 zfs_vdev_async_write_active_max_dirty_percent) / 200; 674 if (dp->dp_dirty_total > busy_thresh || spa_has_pending_synctask(spa)) 675 return; 676 677 rotate: 678 mca->mca_rotor = mg->mg_next; 679 mca->mca_aliquot = 0; 680 } 681 682 static void 683 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 684 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 685 { 686 atomic_add_64(&mc->mc_alloc, alloc_delta); 687 atomic_add_64(&mc->mc_deferred, defer_delta); 688 atomic_add_64(&mc->mc_space, space_delta); 689 atomic_add_64(&mc->mc_dspace, dspace_delta); 690 } 691 692 uint64_t 693 metaslab_class_get_alloc(metaslab_class_t *mc) 694 { 695 return (mc->mc_alloc); 696 } 697 698 uint64_t 699 metaslab_class_get_deferred(metaslab_class_t *mc) 700 { 701 return (mc->mc_deferred); 702 } 703 704 uint64_t 705 metaslab_class_get_space(metaslab_class_t *mc) 706 { 707 return (mc->mc_space); 708 } 709 710 uint64_t 711 metaslab_class_get_dspace(metaslab_class_t *mc) 712 { 713 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 714 } 715 716 void 717 metaslab_class_histogram_verify(metaslab_class_t *mc) 718 { 719 spa_t *spa = mc->mc_spa; 720 vdev_t *rvd = spa->spa_root_vdev; 721 uint64_t *mc_hist; 722 int i; 723 724 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 725 return; 726 727 mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE, 728 KM_SLEEP); 729 730 mutex_enter(&mc->mc_lock); 731 for (int c = 0; c < rvd->vdev_children; c++) { 732 vdev_t *tvd = rvd->vdev_child[c]; 733 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 734 735 /* 736 * Skip any holes, uninitialized top-levels, or 737 * vdevs that are not in this metalab class. 738 */ 739 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 740 mg->mg_class != mc) { 741 continue; 742 } 743 744 IMPLY(mg == mg->mg_vd->vdev_log_mg, 745 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 746 747 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) 748 mc_hist[i] += mg->mg_histogram[i]; 749 } 750 751 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 752 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 753 } 754 755 mutex_exit(&mc->mc_lock); 756 kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE); 757 } 758 759 /* 760 * Calculate the metaslab class's fragmentation metric. The metric 761 * is weighted based on the space contribution of each metaslab group. 762 * The return value will be a number between 0 and 100 (inclusive), or 763 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 764 * zfs_frag_table for more information about the metric. 765 */ 766 uint64_t 767 metaslab_class_fragmentation(metaslab_class_t *mc) 768 { 769 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 770 uint64_t fragmentation = 0; 771 772 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 773 774 for (int c = 0; c < rvd->vdev_children; c++) { 775 vdev_t *tvd = rvd->vdev_child[c]; 776 metaslab_group_t *mg = tvd->vdev_mg; 777 778 /* 779 * Skip any holes, uninitialized top-levels, 780 * or vdevs that are not in this metalab class. 781 */ 782 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 783 mg->mg_class != mc) { 784 continue; 785 } 786 787 /* 788 * If a metaslab group does not contain a fragmentation 789 * metric then just bail out. 790 */ 791 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 792 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 793 return (ZFS_FRAG_INVALID); 794 } 795 796 /* 797 * Determine how much this metaslab_group is contributing 798 * to the overall pool fragmentation metric. 799 */ 800 fragmentation += mg->mg_fragmentation * 801 metaslab_group_get_space(mg); 802 } 803 fragmentation /= metaslab_class_get_space(mc); 804 805 ASSERT3U(fragmentation, <=, 100); 806 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 807 return (fragmentation); 808 } 809 810 /* 811 * Calculate the amount of expandable space that is available in 812 * this metaslab class. If a device is expanded then its expandable 813 * space will be the amount of allocatable space that is currently not 814 * part of this metaslab class. 815 */ 816 uint64_t 817 metaslab_class_expandable_space(metaslab_class_t *mc) 818 { 819 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 820 uint64_t space = 0; 821 822 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 823 for (int c = 0; c < rvd->vdev_children; c++) { 824 vdev_t *tvd = rvd->vdev_child[c]; 825 metaslab_group_t *mg = tvd->vdev_mg; 826 827 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 828 mg->mg_class != mc) { 829 continue; 830 } 831 832 /* 833 * Calculate if we have enough space to add additional 834 * metaslabs. We report the expandable space in terms 835 * of the metaslab size since that's the unit of expansion. 836 */ 837 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize, 838 1ULL << tvd->vdev_ms_shift, uint64_t); 839 } 840 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 841 return (space); 842 } 843 844 void 845 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 846 { 847 multilist_t *ml = &mc->mc_metaslab_txg_list; 848 uint64_t now = gethrestime_sec(); 849 /* Round delay up to next second. */ 850 uint_t delay = (metaslab_unload_delay_ms + 999) / 1000; 851 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 852 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 853 metaslab_t *msp = multilist_sublist_head(mls); 854 multilist_sublist_unlock(mls); 855 while (msp != NULL) { 856 mutex_enter(&msp->ms_lock); 857 858 /* 859 * If the metaslab has been removed from the list 860 * (which could happen if we were at the memory limit 861 * and it was evicted during this loop), then we can't 862 * proceed and we should restart the sublist. 863 */ 864 if (!multilist_link_active(&msp->ms_class_txg_node)) { 865 mutex_exit(&msp->ms_lock); 866 i--; 867 break; 868 } 869 mls = multilist_sublist_lock_idx(ml, i); 870 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 871 multilist_sublist_unlock(mls); 872 if (txg > 873 msp->ms_selected_txg + metaslab_unload_delay && 874 now > msp->ms_selected_time + delay && 875 (msp->ms_allocator == -1 || 876 !metaslab_preload_enabled)) { 877 metaslab_evict(msp, txg); 878 } else { 879 /* 880 * Once we've hit a metaslab selected too 881 * recently to evict, we're done evicting for 882 * now. 883 */ 884 mutex_exit(&msp->ms_lock); 885 break; 886 } 887 mutex_exit(&msp->ms_lock); 888 msp = next_msp; 889 } 890 } 891 } 892 893 static int 894 metaslab_compare(const void *x1, const void *x2) 895 { 896 const metaslab_t *m1 = (const metaslab_t *)x1; 897 const metaslab_t *m2 = (const metaslab_t *)x2; 898 899 int sort1 = 0; 900 int sort2 = 0; 901 if (m1->ms_allocator != -1 && m1->ms_primary) 902 sort1 = 1; 903 else if (m1->ms_allocator != -1 && !m1->ms_primary) 904 sort1 = 2; 905 if (m2->ms_allocator != -1 && m2->ms_primary) 906 sort2 = 1; 907 else if (m2->ms_allocator != -1 && !m2->ms_primary) 908 sort2 = 2; 909 910 /* 911 * Sort inactive metaslabs first, then primaries, then secondaries. When 912 * selecting a metaslab to allocate from, an allocator first tries its 913 * primary, then secondary active metaslab. If it doesn't have active 914 * metaslabs, or can't allocate from them, it searches for an inactive 915 * metaslab to activate. If it can't find a suitable one, it will steal 916 * a primary or secondary metaslab from another allocator. 917 */ 918 if (sort1 < sort2) 919 return (-1); 920 if (sort1 > sort2) 921 return (1); 922 923 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 924 if (likely(cmp)) 925 return (cmp); 926 927 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 928 929 return (TREE_CMP(m1->ms_start, m2->ms_start)); 930 } 931 932 /* 933 * ========================================================================== 934 * Metaslab groups 935 * ========================================================================== 936 */ 937 /* 938 * Update the allocatable flag and the metaslab group's capacity. 939 * The allocatable flag is set to true if the capacity is below 940 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 941 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 942 * transitions from allocatable to non-allocatable or vice versa then the 943 * metaslab group's class is updated to reflect the transition. 944 */ 945 static void 946 metaslab_group_alloc_update(metaslab_group_t *mg) 947 { 948 vdev_t *vd = mg->mg_vd; 949 metaslab_class_t *mc = mg->mg_class; 950 vdev_stat_t *vs = &vd->vdev_stat; 951 boolean_t was_allocatable; 952 boolean_t was_initialized; 953 954 ASSERT(vd == vd->vdev_top); 955 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 956 SCL_ALLOC); 957 958 mutex_enter(&mg->mg_lock); 959 was_allocatable = mg->mg_allocatable; 960 was_initialized = mg->mg_initialized; 961 962 uint64_t free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 963 (vs->vs_space + 1); 964 965 mutex_enter(&mc->mc_lock); 966 967 /* 968 * If the metaslab group was just added then it won't 969 * have any space until we finish syncing out this txg. 970 * At that point we will consider it initialized and available 971 * for allocations. We also don't consider non-activated 972 * metaslab groups (e.g. vdevs that are in the middle of being removed) 973 * to be initialized, because they can't be used for allocation. 974 */ 975 mg->mg_initialized = metaslab_group_initialized(mg); 976 if (!was_initialized && mg->mg_initialized) { 977 mc->mc_groups++; 978 } else if (was_initialized && !mg->mg_initialized) { 979 ASSERT3U(mc->mc_groups, >, 0); 980 mc->mc_groups--; 981 } 982 if (mg->mg_initialized) 983 mg->mg_no_free_space = B_FALSE; 984 985 /* 986 * A metaslab group is considered allocatable if it has plenty 987 * of free space or is not heavily fragmented. We only take 988 * fragmentation into account if the metaslab group has a valid 989 * fragmentation metric (i.e. a value between 0 and 100). 990 */ 991 mg->mg_allocatable = (mg->mg_activation_count > 0 && 992 free_capacity > zfs_mg_noalloc_threshold && 993 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 994 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 995 996 /* 997 * The mc_alloc_groups maintains a count of the number of 998 * groups in this metaslab class that are still above the 999 * zfs_mg_noalloc_threshold. This is used by the allocating 1000 * threads to determine if they should avoid allocations to 1001 * a given group. The allocator will avoid allocations to a group 1002 * if that group has reached or is below the zfs_mg_noalloc_threshold 1003 * and there are still other groups that are above the threshold. 1004 * When a group transitions from allocatable to non-allocatable or 1005 * vice versa we update the metaslab class to reflect that change. 1006 * When the mc_alloc_groups value drops to 0 that means that all 1007 * groups have reached the zfs_mg_noalloc_threshold making all groups 1008 * eligible for allocations. This effectively means that all devices 1009 * are balanced again. 1010 */ 1011 if (was_allocatable && !mg->mg_allocatable) 1012 mc->mc_alloc_groups--; 1013 else if (!was_allocatable && mg->mg_allocatable) 1014 mc->mc_alloc_groups++; 1015 mutex_exit(&mc->mc_lock); 1016 1017 mutex_exit(&mg->mg_lock); 1018 } 1019 1020 int 1021 metaslab_sort_by_flushed(const void *va, const void *vb) 1022 { 1023 const metaslab_t *a = va; 1024 const metaslab_t *b = vb; 1025 1026 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 1027 if (likely(cmp)) 1028 return (cmp); 1029 1030 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 1031 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 1032 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 1033 if (cmp) 1034 return (cmp); 1035 1036 return (TREE_CMP(a->ms_id, b->ms_id)); 1037 } 1038 1039 metaslab_group_t * 1040 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 1041 { 1042 spa_t *spa = mc->mc_spa; 1043 metaslab_group_t *mg; 1044 1045 mg = kmem_zalloc(offsetof(metaslab_group_t, 1046 mg_allocator[spa->spa_alloc_count]), KM_SLEEP); 1047 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 1048 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 1049 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 1050 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 1051 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 1052 mg->mg_vd = vd; 1053 mg->mg_class = mc; 1054 mg->mg_activation_count = 0; 1055 mg->mg_initialized = B_FALSE; 1056 mg->mg_no_free_space = B_TRUE; 1057 1058 for (int i = 0; i < spa->spa_alloc_count; i++) { 1059 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1060 zfs_refcount_create_tracked(&mga->mga_queue_depth); 1061 } 1062 1063 return (mg); 1064 } 1065 1066 void 1067 metaslab_group_destroy(metaslab_group_t *mg) 1068 { 1069 spa_t *spa = mg->mg_class->mc_spa; 1070 1071 ASSERT(mg->mg_prev == NULL); 1072 ASSERT(mg->mg_next == NULL); 1073 /* 1074 * We may have gone below zero with the activation count 1075 * either because we never activated in the first place or 1076 * because we're done, and possibly removing the vdev. 1077 */ 1078 ASSERT(mg->mg_activation_count <= 0); 1079 1080 avl_destroy(&mg->mg_metaslab_tree); 1081 mutex_destroy(&mg->mg_lock); 1082 mutex_destroy(&mg->mg_ms_disabled_lock); 1083 cv_destroy(&mg->mg_ms_disabled_cv); 1084 1085 for (int i = 0; i < spa->spa_alloc_count; i++) { 1086 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1087 zfs_refcount_destroy(&mga->mga_queue_depth); 1088 } 1089 kmem_free(mg, offsetof(metaslab_group_t, 1090 mg_allocator[spa->spa_alloc_count])); 1091 } 1092 1093 void 1094 metaslab_group_activate(metaslab_group_t *mg) 1095 { 1096 metaslab_class_t *mc = mg->mg_class; 1097 spa_t *spa = mc->mc_spa; 1098 metaslab_group_t *mgprev, *mgnext; 1099 1100 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 1101 1102 ASSERT(mg->mg_prev == NULL); 1103 ASSERT(mg->mg_next == NULL); 1104 ASSERT(mg->mg_activation_count <= 0); 1105 1106 if (++mg->mg_activation_count <= 0) 1107 return; 1108 1109 metaslab_group_alloc_update(mg); 1110 1111 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 1112 mg->mg_prev = mg; 1113 mg->mg_next = mg; 1114 } else { 1115 mgnext = mgprev->mg_next; 1116 mg->mg_prev = mgprev; 1117 mg->mg_next = mgnext; 1118 mgprev->mg_next = mg; 1119 mgnext->mg_prev = mg; 1120 } 1121 for (int i = 0; i < spa->spa_alloc_count; i++) { 1122 mc->mc_allocator[i].mca_rotor = mg; 1123 mg = mg->mg_next; 1124 } 1125 metaslab_class_balance(mc, B_FALSE); 1126 } 1127 1128 /* 1129 * Passivate a metaslab group and remove it from the allocation rotor. 1130 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 1131 * a metaslab group. This function will momentarily drop spa_config_locks 1132 * that are lower than the SCL_ALLOC lock (see comment below). 1133 */ 1134 void 1135 metaslab_group_passivate(metaslab_group_t *mg) 1136 { 1137 metaslab_class_t *mc = mg->mg_class; 1138 spa_t *spa = mc->mc_spa; 1139 metaslab_group_t *mgprev, *mgnext; 1140 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 1141 1142 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 1143 (SCL_ALLOC | SCL_ZIO)); 1144 1145 if (--mg->mg_activation_count != 0) { 1146 for (int i = 0; i < spa->spa_alloc_count; i++) 1147 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 1148 ASSERT(mg->mg_prev == NULL); 1149 ASSERT(mg->mg_next == NULL); 1150 ASSERT(mg->mg_activation_count < 0); 1151 return; 1152 } 1153 1154 /* 1155 * The spa_config_lock is an array of rwlocks, ordered as 1156 * follows (from highest to lowest): 1157 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 1158 * SCL_ZIO > SCL_FREE > SCL_VDEV 1159 * (For more information about the spa_config_lock see spa_misc.c) 1160 * The higher the lock, the broader its coverage. When we passivate 1161 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 1162 * config locks. However, the metaslab group's taskq might be trying 1163 * to preload metaslabs so we must drop the SCL_ZIO lock and any 1164 * lower locks to allow the I/O to complete. At a minimum, 1165 * we continue to hold the SCL_ALLOC lock, which prevents any future 1166 * allocations from taking place and any changes to the vdev tree. 1167 */ 1168 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 1169 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0); 1170 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 1171 metaslab_group_alloc_update(mg); 1172 for (int i = 0; i < spa->spa_alloc_count; i++) { 1173 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1174 metaslab_t *msp = mga->mga_primary; 1175 if (msp != NULL) { 1176 mutex_enter(&msp->ms_lock); 1177 metaslab_passivate(msp, 1178 metaslab_weight_from_range_tree(msp)); 1179 mutex_exit(&msp->ms_lock); 1180 } 1181 msp = mga->mga_secondary; 1182 if (msp != NULL) { 1183 mutex_enter(&msp->ms_lock); 1184 metaslab_passivate(msp, 1185 metaslab_weight_from_range_tree(msp)); 1186 mutex_exit(&msp->ms_lock); 1187 } 1188 } 1189 1190 mgprev = mg->mg_prev; 1191 mgnext = mg->mg_next; 1192 1193 if (mg == mgnext) { 1194 mgnext = NULL; 1195 } else { 1196 mgprev->mg_next = mgnext; 1197 mgnext->mg_prev = mgprev; 1198 } 1199 for (int i = 0; i < spa->spa_alloc_count; i++) { 1200 if (mc->mc_allocator[i].mca_rotor == mg) 1201 mc->mc_allocator[i].mca_rotor = mgnext; 1202 } 1203 1204 mg->mg_prev = NULL; 1205 mg->mg_next = NULL; 1206 metaslab_class_balance(mc, B_FALSE); 1207 } 1208 1209 boolean_t 1210 metaslab_group_initialized(metaslab_group_t *mg) 1211 { 1212 vdev_t *vd = mg->mg_vd; 1213 vdev_stat_t *vs = &vd->vdev_stat; 1214 1215 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1216 } 1217 1218 uint64_t 1219 metaslab_group_get_space(metaslab_group_t *mg) 1220 { 1221 /* 1222 * Note that the number of nodes in mg_metaslab_tree may be one less 1223 * than vdev_ms_count, due to the embedded log metaslab. 1224 */ 1225 mutex_enter(&mg->mg_lock); 1226 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1227 mutex_exit(&mg->mg_lock); 1228 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1229 } 1230 1231 void 1232 metaslab_group_histogram_verify(metaslab_group_t *mg) 1233 { 1234 uint64_t *mg_hist; 1235 avl_tree_t *t = &mg->mg_metaslab_tree; 1236 uint64_t ashift = mg->mg_vd->vdev_ashift; 1237 1238 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1239 return; 1240 1241 mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE, 1242 KM_SLEEP); 1243 1244 ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=, 1245 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1246 1247 mutex_enter(&mg->mg_lock); 1248 for (metaslab_t *msp = avl_first(t); 1249 msp != NULL; msp = AVL_NEXT(t, msp)) { 1250 VERIFY3P(msp->ms_group, ==, mg); 1251 /* skip if not active */ 1252 if (msp->ms_sm == NULL) 1253 continue; 1254 1255 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1256 mg_hist[i + ashift] += 1257 msp->ms_sm->sm_phys->smp_histogram[i]; 1258 } 1259 } 1260 1261 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++) 1262 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1263 1264 mutex_exit(&mg->mg_lock); 1265 1266 kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE); 1267 } 1268 1269 static void 1270 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1271 { 1272 metaslab_class_t *mc = mg->mg_class; 1273 uint64_t ashift = mg->mg_vd->vdev_ashift; 1274 1275 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1276 if (msp->ms_sm == NULL) 1277 return; 1278 1279 mutex_enter(&mg->mg_lock); 1280 mutex_enter(&mc->mc_lock); 1281 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1282 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1283 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1284 mg->mg_histogram[i + ashift] += 1285 msp->ms_sm->sm_phys->smp_histogram[i]; 1286 mc->mc_histogram[i + ashift] += 1287 msp->ms_sm->sm_phys->smp_histogram[i]; 1288 } 1289 mutex_exit(&mc->mc_lock); 1290 mutex_exit(&mg->mg_lock); 1291 } 1292 1293 void 1294 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1295 { 1296 metaslab_class_t *mc = mg->mg_class; 1297 uint64_t ashift = mg->mg_vd->vdev_ashift; 1298 1299 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1300 if (msp->ms_sm == NULL) 1301 return; 1302 1303 mutex_enter(&mg->mg_lock); 1304 mutex_enter(&mc->mc_lock); 1305 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1306 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1307 msp->ms_sm->sm_phys->smp_histogram[i]); 1308 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1309 msp->ms_sm->sm_phys->smp_histogram[i]); 1310 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1311 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1312 1313 mg->mg_histogram[i + ashift] -= 1314 msp->ms_sm->sm_phys->smp_histogram[i]; 1315 mc->mc_histogram[i + ashift] -= 1316 msp->ms_sm->sm_phys->smp_histogram[i]; 1317 } 1318 mutex_exit(&mc->mc_lock); 1319 mutex_exit(&mg->mg_lock); 1320 } 1321 1322 static void 1323 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1324 { 1325 ASSERT(msp->ms_group == NULL); 1326 mutex_enter(&mg->mg_lock); 1327 msp->ms_group = mg; 1328 msp->ms_weight = 0; 1329 avl_add(&mg->mg_metaslab_tree, msp); 1330 mutex_exit(&mg->mg_lock); 1331 1332 mutex_enter(&msp->ms_lock); 1333 metaslab_group_histogram_add(mg, msp); 1334 mutex_exit(&msp->ms_lock); 1335 } 1336 1337 static void 1338 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1339 { 1340 mutex_enter(&msp->ms_lock); 1341 metaslab_group_histogram_remove(mg, msp); 1342 mutex_exit(&msp->ms_lock); 1343 1344 mutex_enter(&mg->mg_lock); 1345 ASSERT(msp->ms_group == mg); 1346 avl_remove(&mg->mg_metaslab_tree, msp); 1347 1348 metaslab_class_t *mc = msp->ms_group->mg_class; 1349 multilist_sublist_t *mls = 1350 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1351 if (multilist_link_active(&msp->ms_class_txg_node)) 1352 multilist_sublist_remove(mls, msp); 1353 multilist_sublist_unlock(mls); 1354 1355 msp->ms_group = NULL; 1356 mutex_exit(&mg->mg_lock); 1357 } 1358 1359 static void 1360 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1361 { 1362 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1363 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1364 ASSERT(msp->ms_group == mg); 1365 1366 avl_remove(&mg->mg_metaslab_tree, msp); 1367 msp->ms_weight = weight; 1368 avl_add(&mg->mg_metaslab_tree, msp); 1369 1370 } 1371 1372 static void 1373 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1374 { 1375 /* 1376 * Although in principle the weight can be any value, in 1377 * practice we do not use values in the range [1, 511]. 1378 */ 1379 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1380 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1381 1382 mutex_enter(&mg->mg_lock); 1383 metaslab_group_sort_impl(mg, msp, weight); 1384 mutex_exit(&mg->mg_lock); 1385 } 1386 1387 /* 1388 * Calculate the fragmentation for a given metaslab group. Weight metaslabs 1389 * on the amount of free space. The return value will be between 0 and 100 1390 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1391 * group have a fragmentation metric. 1392 */ 1393 uint64_t 1394 metaslab_group_fragmentation(metaslab_group_t *mg) 1395 { 1396 vdev_t *vd = mg->mg_vd; 1397 uint64_t fragmentation = 0; 1398 uint64_t valid_ms = 0, total_ms = 0; 1399 uint64_t free, total_free = 0; 1400 1401 for (int m = 0; m < vd->vdev_ms_count; m++) { 1402 metaslab_t *msp = vd->vdev_ms[m]; 1403 1404 if (msp->ms_group != mg) 1405 continue; 1406 total_ms++; 1407 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1408 continue; 1409 1410 valid_ms++; 1411 free = (msp->ms_size - metaslab_allocated_space(msp)) / 1412 SPA_MINBLOCKSIZE; /* To prevent overflows. */ 1413 total_free += free; 1414 fragmentation += msp->ms_fragmentation * free; 1415 } 1416 1417 if (valid_ms < (total_ms + 1) / 2 || total_free == 0) 1418 return (ZFS_FRAG_INVALID); 1419 1420 fragmentation /= total_free; 1421 ASSERT3U(fragmentation, <=, 100); 1422 return (fragmentation); 1423 } 1424 1425 /* 1426 * ========================================================================== 1427 * Range tree callbacks 1428 * ========================================================================== 1429 */ 1430 1431 /* 1432 * Comparison function for the private size-ordered tree using 32-bit 1433 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1434 */ 1435 __attribute__((always_inline)) inline 1436 static int 1437 metaslab_rangesize32_compare(const void *x1, const void *x2) 1438 { 1439 const zfs_range_seg32_t *r1 = x1; 1440 const zfs_range_seg32_t *r2 = x2; 1441 1442 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1443 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1444 1445 int cmp = TREE_CMP(rs_size1, rs_size2); 1446 1447 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1448 } 1449 1450 /* 1451 * Comparison function for the private size-ordered tree using 64-bit 1452 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1453 */ 1454 __attribute__((always_inline)) inline 1455 static int 1456 metaslab_rangesize64_compare(const void *x1, const void *x2) 1457 { 1458 const zfs_range_seg64_t *r1 = x1; 1459 const zfs_range_seg64_t *r2 = x2; 1460 1461 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1462 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1463 1464 int cmp = TREE_CMP(rs_size1, rs_size2); 1465 1466 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1467 } 1468 1469 typedef struct metaslab_rt_arg { 1470 zfs_btree_t *mra_bt; 1471 uint32_t mra_floor_shift; 1472 } metaslab_rt_arg_t; 1473 1474 struct mssa_arg { 1475 zfs_range_tree_t *rt; 1476 metaslab_rt_arg_t *mra; 1477 }; 1478 1479 static void 1480 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1481 { 1482 struct mssa_arg *mssap = arg; 1483 zfs_range_tree_t *rt = mssap->rt; 1484 metaslab_rt_arg_t *mrap = mssap->mra; 1485 zfs_range_seg_max_t seg = {0}; 1486 zfs_rs_set_start(&seg, rt, start); 1487 zfs_rs_set_end(&seg, rt, start + size); 1488 metaslab_rt_add(rt, &seg, mrap); 1489 } 1490 1491 static void 1492 metaslab_size_tree_full_load(zfs_range_tree_t *rt) 1493 { 1494 metaslab_rt_arg_t *mrap = rt->rt_arg; 1495 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1496 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1497 mrap->mra_floor_shift = 0; 1498 struct mssa_arg arg = {0}; 1499 arg.rt = rt; 1500 arg.mra = mrap; 1501 zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1502 } 1503 1504 1505 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf, 1506 zfs_range_seg32_t, metaslab_rangesize32_compare) 1507 1508 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf, 1509 zfs_range_seg64_t, metaslab_rangesize64_compare) 1510 1511 /* 1512 * Create any block allocator specific components. The current allocators 1513 * rely on using both a size-ordered zfs_range_tree_t and an array of 1514 * uint64_t's. 1515 */ 1516 static void 1517 metaslab_rt_create(zfs_range_tree_t *rt, void *arg) 1518 { 1519 metaslab_rt_arg_t *mrap = arg; 1520 zfs_btree_t *size_tree = mrap->mra_bt; 1521 1522 size_t size; 1523 int (*compare) (const void *, const void *); 1524 bt_find_in_buf_f bt_find; 1525 switch (rt->rt_type) { 1526 case ZFS_RANGE_SEG32: 1527 size = sizeof (zfs_range_seg32_t); 1528 compare = metaslab_rangesize32_compare; 1529 bt_find = metaslab_rt_find_rangesize32_in_buf; 1530 break; 1531 case ZFS_RANGE_SEG64: 1532 size = sizeof (zfs_range_seg64_t); 1533 compare = metaslab_rangesize64_compare; 1534 bt_find = metaslab_rt_find_rangesize64_in_buf; 1535 break; 1536 default: 1537 panic("Invalid range seg type %d", rt->rt_type); 1538 } 1539 zfs_btree_create(size_tree, compare, bt_find, size); 1540 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1541 } 1542 1543 static void 1544 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg) 1545 { 1546 (void) rt; 1547 metaslab_rt_arg_t *mrap = arg; 1548 zfs_btree_t *size_tree = mrap->mra_bt; 1549 1550 zfs_btree_destroy(size_tree); 1551 kmem_free(mrap, sizeof (*mrap)); 1552 } 1553 1554 static void 1555 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 1556 { 1557 metaslab_rt_arg_t *mrap = arg; 1558 zfs_btree_t *size_tree = mrap->mra_bt; 1559 1560 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < 1561 (1ULL << mrap->mra_floor_shift)) 1562 return; 1563 1564 zfs_btree_add(size_tree, rs); 1565 } 1566 1567 static void 1568 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 1569 { 1570 metaslab_rt_arg_t *mrap = arg; 1571 zfs_btree_t *size_tree = mrap->mra_bt; 1572 1573 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL << 1574 mrap->mra_floor_shift)) 1575 return; 1576 1577 zfs_btree_remove(size_tree, rs); 1578 } 1579 1580 static void 1581 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg) 1582 { 1583 metaslab_rt_arg_t *mrap = arg; 1584 zfs_btree_t *size_tree = mrap->mra_bt; 1585 zfs_btree_clear(size_tree); 1586 zfs_btree_destroy(size_tree); 1587 1588 metaslab_rt_create(rt, arg); 1589 } 1590 1591 static const zfs_range_tree_ops_t metaslab_rt_ops = { 1592 .rtop_create = metaslab_rt_create, 1593 .rtop_destroy = metaslab_rt_destroy, 1594 .rtop_add = metaslab_rt_add, 1595 .rtop_remove = metaslab_rt_remove, 1596 .rtop_vacate = metaslab_rt_vacate 1597 }; 1598 1599 /* 1600 * ========================================================================== 1601 * Common allocator routines 1602 * ========================================================================== 1603 */ 1604 1605 /* 1606 * Return the maximum contiguous segment within the metaslab. 1607 */ 1608 uint64_t 1609 metaslab_largest_allocatable(metaslab_t *msp) 1610 { 1611 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1612 zfs_range_seg_t *rs; 1613 1614 if (t == NULL) 1615 return (0); 1616 if (zfs_btree_numnodes(t) == 0) 1617 metaslab_size_tree_full_load(msp->ms_allocatable); 1618 1619 rs = zfs_btree_last(t, NULL); 1620 if (rs == NULL) 1621 return (0); 1622 1623 return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs, 1624 msp->ms_allocatable)); 1625 } 1626 1627 /* 1628 * Return the maximum contiguous segment within the unflushed frees of this 1629 * metaslab. 1630 */ 1631 static uint64_t 1632 metaslab_largest_unflushed_free(metaslab_t *msp) 1633 { 1634 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1635 1636 if (msp->ms_unflushed_frees == NULL) 1637 return (0); 1638 1639 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1640 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1641 zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1642 NULL); 1643 if (rs == NULL) 1644 return (0); 1645 1646 /* 1647 * When a range is freed from the metaslab, that range is added to 1648 * both the unflushed frees and the deferred frees. While the block 1649 * will eventually be usable, if the metaslab were loaded the range 1650 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1651 * txgs had passed. As a result, when attempting to estimate an upper 1652 * bound for the largest currently-usable free segment in the 1653 * metaslab, we need to not consider any ranges currently in the defer 1654 * trees. This algorithm approximates the largest available chunk in 1655 * the largest range in the unflushed_frees tree by taking the first 1656 * chunk. While this may be a poor estimate, it should only remain so 1657 * briefly and should eventually self-correct as frees are no longer 1658 * deferred. Similar logic applies to the ms_freed tree. See 1659 * metaslab_load() for more details. 1660 * 1661 * There are two primary sources of inaccuracy in this estimate. Both 1662 * are tolerated for performance reasons. The first source is that we 1663 * only check the largest segment for overlaps. Smaller segments may 1664 * have more favorable overlaps with the other trees, resulting in 1665 * larger usable chunks. Second, we only look at the first chunk in 1666 * the largest segment; there may be other usable chunks in the 1667 * largest segment, but we ignore them. 1668 */ 1669 uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees); 1670 uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1671 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1672 uint64_t start = 0; 1673 uint64_t size = 0; 1674 boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t], 1675 rstart, rsize, &start, &size); 1676 if (found) { 1677 if (rstart == start) 1678 return (0); 1679 rsize = start - rstart; 1680 } 1681 } 1682 1683 uint64_t start = 0; 1684 uint64_t size = 0; 1685 boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart, 1686 rsize, &start, &size); 1687 if (found) 1688 rsize = start - rstart; 1689 1690 return (rsize); 1691 } 1692 1693 static zfs_range_seg_t * 1694 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start, 1695 uint64_t size, uint64_t max_size, zfs_btree_index_t *where) 1696 { 1697 zfs_range_seg_t *rs; 1698 zfs_range_seg_max_t rsearch; 1699 1700 zfs_rs_set_start(&rsearch, rt, start); 1701 zfs_rs_set_end(&rsearch, rt, start + max_size); 1702 1703 rs = zfs_btree_find(t, &rsearch, where); 1704 if (rs == NULL) { 1705 if (size == max_size) { 1706 rs = zfs_btree_next(t, where, where); 1707 } else { 1708 /* 1709 * If we're searching for a range, get the largest 1710 * segment in that range, or the smallest one bigger 1711 * than it. 1712 */ 1713 rs = zfs_btree_prev(t, where, where); 1714 if (rs == NULL || zfs_rs_get_end(rs, rt) - 1715 zfs_rs_get_start(rs, rt) < size) { 1716 rs = zfs_btree_next(t, where, where); 1717 } 1718 } 1719 } 1720 1721 return (rs); 1722 } 1723 1724 /* 1725 * This is a helper function that can be used by the allocator to find a 1726 * suitable block to allocate. This will search the specified B-tree looking 1727 * for a block that matches the specified criteria. 1728 */ 1729 static uint64_t 1730 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size, 1731 uint64_t max_size, uint64_t max_search, uint64_t *found_size) 1732 { 1733 if (*cursor == 0) 1734 *cursor = rt->rt_start; 1735 zfs_btree_t *bt = &rt->rt_root; 1736 zfs_btree_index_t where; 1737 zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, 1738 max_size, &where); 1739 uint64_t first_found; 1740 int count_searched = 0; 1741 1742 if (rs != NULL) 1743 first_found = zfs_rs_get_start(rs, rt); 1744 1745 while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <= 1746 max_search || count_searched < metaslab_min_search_count)) { 1747 uint64_t offset = zfs_rs_get_start(rs, rt); 1748 if (offset + size <= zfs_rs_get_end(rs, rt)) { 1749 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset, 1750 max_size); 1751 *cursor = offset + *found_size; 1752 return (offset); 1753 } 1754 rs = zfs_btree_next(bt, &where, &where); 1755 count_searched++; 1756 } 1757 1758 *cursor = 0; 1759 *found_size = 0; 1760 return (-1ULL); 1761 } 1762 1763 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size, 1764 uint64_t max_size, uint64_t *found_size); 1765 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size, 1766 uint64_t max_size, uint64_t *found_size); 1767 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, 1768 uint64_t max_size, uint64_t *found_size); 1769 metaslab_ops_t *metaslab_allocator(spa_t *spa); 1770 1771 static metaslab_ops_t metaslab_allocators[] = { 1772 { "dynamic", metaslab_df_alloc }, 1773 { "cursor", metaslab_cf_alloc }, 1774 { "new-dynamic", metaslab_ndf_alloc }, 1775 }; 1776 1777 static int 1778 spa_find_allocator_byname(const char *val) 1779 { 1780 int a = ARRAY_SIZE(metaslab_allocators) - 1; 1781 if (strcmp("new-dynamic", val) == 0) 1782 return (-1); /* remove when ndf is working */ 1783 for (; a >= 0; a--) { 1784 if (strcmp(val, metaslab_allocators[a].msop_name) == 0) 1785 return (a); 1786 } 1787 return (-1); 1788 } 1789 1790 void 1791 spa_set_allocator(spa_t *spa, const char *allocator) 1792 { 1793 int a = spa_find_allocator_byname(allocator); 1794 if (a < 0) a = 0; 1795 spa->spa_active_allocator = a; 1796 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name); 1797 } 1798 1799 int 1800 spa_get_allocator(spa_t *spa) 1801 { 1802 return (spa->spa_active_allocator); 1803 } 1804 1805 #if defined(_KERNEL) 1806 int 1807 param_set_active_allocator_common(const char *val) 1808 { 1809 char *p; 1810 1811 if (val == NULL) 1812 return (SET_ERROR(EINVAL)); 1813 1814 if ((p = strchr(val, '\n')) != NULL) 1815 *p = '\0'; 1816 1817 int a = spa_find_allocator_byname(val); 1818 if (a < 0) 1819 return (SET_ERROR(EINVAL)); 1820 1821 zfs_active_allocator = metaslab_allocators[a].msop_name; 1822 return (0); 1823 } 1824 #endif 1825 1826 metaslab_ops_t * 1827 metaslab_allocator(spa_t *spa) 1828 { 1829 int allocator = spa_get_allocator(spa); 1830 return (&metaslab_allocators[allocator]); 1831 } 1832 1833 /* 1834 * ========================================================================== 1835 * Dynamic Fit (df) block allocator 1836 * 1837 * Search for a free chunk of at least this size, starting from the last 1838 * offset (for this alignment of block) looking for up to 1839 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1840 * found within 16MB, then return a free chunk of exactly the requested size (or 1841 * larger). 1842 * 1843 * If it seems like searching from the last offset will be unproductive, skip 1844 * that and just return a free chunk of exactly the requested size (or larger). 1845 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1846 * mechanism is probably not very useful and may be removed in the future. 1847 * 1848 * The behavior when not searching can be changed to return the largest free 1849 * chunk, instead of a free chunk of exactly the requested size, by setting 1850 * metaslab_df_use_largest_segment. 1851 * ========================================================================== 1852 */ 1853 static uint64_t 1854 metaslab_df_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1855 uint64_t *found_size) 1856 { 1857 /* 1858 * Find the largest power of 2 block size that evenly divides the 1859 * requested size. This is used to try to allocate blocks with similar 1860 * alignment from the same area of the metaslab (i.e. same cursor 1861 * bucket) but it does not guarantee that other allocations sizes 1862 * may exist in the same region. 1863 */ 1864 uint64_t align = max_size & -max_size; 1865 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1866 zfs_range_tree_t *rt = msp->ms_allocatable; 1867 uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size; 1868 uint64_t offset; 1869 1870 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1871 1872 /* 1873 * If we're running low on space, find a segment based on size, 1874 * rather than iterating based on offset. 1875 */ 1876 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1877 free_pct < metaslab_df_free_pct) { 1878 align = size & -size; 1879 cursor = &msp->ms_lbas[highbit64(align) - 1]; 1880 offset = -1; 1881 } else { 1882 offset = metaslab_block_picker(rt, cursor, size, max_size, 1883 metaslab_df_max_search, found_size); 1884 if (max_size != size && offset == -1) { 1885 align = size & -size; 1886 cursor = &msp->ms_lbas[highbit64(align) - 1]; 1887 offset = metaslab_block_picker(rt, cursor, size, 1888 max_size, metaslab_df_max_search, found_size); 1889 } 1890 } 1891 1892 if (offset == -1) { 1893 zfs_range_seg_t *rs; 1894 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1895 metaslab_size_tree_full_load(msp->ms_allocatable); 1896 1897 if (metaslab_df_use_largest_segment) { 1898 /* use largest free segment */ 1899 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1900 } else { 1901 zfs_btree_index_t where; 1902 /* use segment of this size, or next largest */ 1903 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1904 rt, msp->ms_start, size, max_size, &where); 1905 } 1906 if (rs != NULL && zfs_rs_get_start(rs, rt) + size <= 1907 zfs_rs_get_end(rs, rt)) { 1908 offset = zfs_rs_get_start(rs, rt); 1909 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset, 1910 max_size); 1911 *cursor = offset + *found_size; 1912 } 1913 } 1914 1915 return (offset); 1916 } 1917 1918 /* 1919 * ========================================================================== 1920 * Cursor fit block allocator - 1921 * Select the largest region in the metaslab, set the cursor to the beginning 1922 * of the range and the cursor_end to the end of the range. As allocations 1923 * are made advance the cursor. Continue allocating from the cursor until 1924 * the range is exhausted and then find a new range. 1925 * ========================================================================== 1926 */ 1927 static uint64_t 1928 metaslab_cf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1929 uint64_t *found_size) 1930 { 1931 zfs_range_tree_t *rt = msp->ms_allocatable; 1932 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1933 uint64_t *cursor = &msp->ms_lbas[0]; 1934 uint64_t *cursor_end = &msp->ms_lbas[1]; 1935 uint64_t offset = 0; 1936 1937 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1938 1939 ASSERT3U(*cursor_end, >=, *cursor); 1940 1941 if ((*cursor + size) > *cursor_end) { 1942 zfs_range_seg_t *rs; 1943 1944 if (zfs_btree_numnodes(t) == 0) 1945 metaslab_size_tree_full_load(msp->ms_allocatable); 1946 rs = zfs_btree_last(t, NULL); 1947 if (rs == NULL || (zfs_rs_get_end(rs, rt) - 1948 zfs_rs_get_start(rs, rt)) < size) 1949 return (-1ULL); 1950 1951 *cursor = zfs_rs_get_start(rs, rt); 1952 *cursor_end = zfs_rs_get_end(rs, rt); 1953 } 1954 1955 offset = *cursor; 1956 *found_size = MIN(*cursor_end - offset, max_size); 1957 *cursor = offset + *found_size; 1958 1959 return (offset); 1960 } 1961 1962 /* 1963 * ========================================================================== 1964 * New dynamic fit allocator - 1965 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1966 * contiguous blocks. If no region is found then just use the largest segment 1967 * that remains. 1968 * ========================================================================== 1969 */ 1970 1971 /* 1972 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1973 * to request from the allocator. 1974 */ 1975 uint64_t metaslab_ndf_clump_shift = 4; 1976 1977 static uint64_t 1978 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1979 uint64_t *found_size) 1980 { 1981 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1982 zfs_range_tree_t *rt = msp->ms_allocatable; 1983 zfs_btree_index_t where; 1984 zfs_range_seg_t *rs; 1985 zfs_range_seg_max_t rsearch; 1986 uint64_t hbit = highbit64(max_size); 1987 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1988 uint64_t max_possible_size = metaslab_largest_allocatable(msp); 1989 1990 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1991 1992 if (max_possible_size < size) 1993 return (-1ULL); 1994 1995 zfs_rs_set_start(&rsearch, rt, *cursor); 1996 zfs_rs_set_end(&rsearch, rt, *cursor + max_size); 1997 1998 rs = zfs_btree_find(t, &rsearch, &where); 1999 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) < 2000 max_size) { 2001 hbit = highbit64(size); 2002 cursor = &msp->ms_lbas[hbit - 1]; 2003 zfs_rs_set_start(&rsearch, rt, *cursor); 2004 zfs_rs_set_end(&rsearch, rt, *cursor + size); 2005 2006 rs = zfs_btree_find(t, &rsearch, &where); 2007 } 2008 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) < 2009 size) { 2010 t = &msp->ms_allocatable_by_size; 2011 2012 zfs_rs_set_start(&rsearch, rt, 0); 2013 zfs_rs_set_end(&rsearch, rt, MIN(max_possible_size, 2014 1ULL << (hbit + metaslab_ndf_clump_shift))); 2015 2016 rs = zfs_btree_find(t, &rsearch, &where); 2017 if (rs == NULL) 2018 rs = zfs_btree_next(t, &where, &where); 2019 ASSERT(rs != NULL); 2020 } 2021 2022 if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) { 2023 *found_size = MIN(zfs_rs_get_end(rs, rt) - 2024 zfs_rs_get_start(rs, rt), max_size); 2025 *cursor = zfs_rs_get_start(rs, rt) + *found_size; 2026 return (zfs_rs_get_start(rs, rt)); 2027 } 2028 return (-1ULL); 2029 } 2030 2031 /* 2032 * ========================================================================== 2033 * Metaslabs 2034 * ========================================================================== 2035 */ 2036 2037 /* 2038 * Wait for any in-progress metaslab loads to complete. 2039 */ 2040 static void 2041 metaslab_load_wait(metaslab_t *msp) 2042 { 2043 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2044 2045 while (msp->ms_loading) { 2046 ASSERT(!msp->ms_loaded); 2047 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 2048 } 2049 } 2050 2051 /* 2052 * Wait for any in-progress flushing to complete. 2053 */ 2054 static void 2055 metaslab_flush_wait(metaslab_t *msp) 2056 { 2057 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2058 2059 while (msp->ms_flushing) 2060 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 2061 } 2062 2063 static unsigned int 2064 metaslab_idx_func(multilist_t *ml, void *arg) 2065 { 2066 metaslab_t *msp = arg; 2067 2068 /* 2069 * ms_id values are allocated sequentially, so full 64bit 2070 * division would be a waste of time, so limit it to 32 bits. 2071 */ 2072 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 2073 } 2074 2075 uint64_t 2076 metaslab_allocated_space(metaslab_t *msp) 2077 { 2078 return (msp->ms_allocated_space); 2079 } 2080 2081 /* 2082 * Verify that the space accounting on disk matches the in-core range_trees. 2083 */ 2084 static void 2085 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 2086 { 2087 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2088 uint64_t allocating = 0; 2089 uint64_t sm_free_space, msp_free_space; 2090 2091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2092 ASSERT(!msp->ms_condensing); 2093 2094 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2095 return; 2096 2097 /* 2098 * We can only verify the metaslab space when we're called 2099 * from syncing context with a loaded metaslab that has an 2100 * allocated space map. Calling this in non-syncing context 2101 * does not provide a consistent view of the metaslab since 2102 * we're performing allocations in the future. 2103 */ 2104 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 2105 !msp->ms_loaded) 2106 return; 2107 2108 /* 2109 * Even though the smp_alloc field can get negative, 2110 * when it comes to a metaslab's space map, that should 2111 * never be the case. 2112 */ 2113 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 2114 2115 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 2116 zfs_range_tree_space(msp->ms_unflushed_frees)); 2117 2118 ASSERT3U(metaslab_allocated_space(msp), ==, 2119 space_map_allocated(msp->ms_sm) + 2120 zfs_range_tree_space(msp->ms_unflushed_allocs) - 2121 zfs_range_tree_space(msp->ms_unflushed_frees)); 2122 2123 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 2124 2125 /* 2126 * Account for future allocations since we would have 2127 * already deducted that space from the ms_allocatable. 2128 */ 2129 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 2130 allocating += 2131 zfs_range_tree_space(msp->ms_allocating[(txg + t) & 2132 TXG_MASK]); 2133 } 2134 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 2135 msp->ms_allocating_total); 2136 2137 ASSERT3U(msp->ms_deferspace, ==, 2138 zfs_range_tree_space(msp->ms_defer[0]) + 2139 zfs_range_tree_space(msp->ms_defer[1])); 2140 2141 msp_free_space = zfs_range_tree_space(msp->ms_allocatable) + 2142 allocating + msp->ms_deferspace + 2143 zfs_range_tree_space(msp->ms_freed); 2144 2145 VERIFY3U(sm_free_space, ==, msp_free_space); 2146 } 2147 2148 static void 2149 metaslab_aux_histograms_clear(metaslab_t *msp) 2150 { 2151 /* 2152 * Auxiliary histograms are only cleared when resetting them, 2153 * which can only happen while the metaslab is loaded. 2154 */ 2155 ASSERT(msp->ms_loaded); 2156 2157 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2158 for (int t = 0; t < TXG_DEFER_SIZE; t++) 2159 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 2160 } 2161 2162 static void 2163 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 2164 zfs_range_tree_t *rt) 2165 { 2166 /* 2167 * This is modeled after space_map_histogram_add(), so refer to that 2168 * function for implementation details. We want this to work like 2169 * the space map histogram, and not the range tree histogram, as we 2170 * are essentially constructing a delta that will be later subtracted 2171 * from the space map histogram. 2172 */ 2173 int idx = 0; 2174 for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 2175 ASSERT3U(i, >=, idx + shift); 2176 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 2177 2178 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 2179 ASSERT3U(idx + shift, ==, i); 2180 idx++; 2181 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 2182 } 2183 } 2184 } 2185 2186 /* 2187 * Called at every sync pass that the metaslab gets synced. 2188 * 2189 * The reason is that we want our auxiliary histograms to be updated 2190 * wherever the metaslab's space map histogram is updated. This way 2191 * we stay consistent on which parts of the metaslab space map's 2192 * histogram are currently not available for allocations (e.g because 2193 * they are in the defer, freed, and freeing trees). 2194 */ 2195 static void 2196 metaslab_aux_histograms_update(metaslab_t *msp) 2197 { 2198 space_map_t *sm = msp->ms_sm; 2199 ASSERT(sm != NULL); 2200 2201 /* 2202 * This is similar to the metaslab's space map histogram updates 2203 * that take place in metaslab_sync(). The only difference is that 2204 * we only care about segments that haven't made it into the 2205 * ms_allocatable tree yet. 2206 */ 2207 if (msp->ms_loaded) { 2208 metaslab_aux_histograms_clear(msp); 2209 2210 metaslab_aux_histogram_add(msp->ms_synchist, 2211 sm->sm_shift, msp->ms_freed); 2212 2213 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2214 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2215 sm->sm_shift, msp->ms_defer[t]); 2216 } 2217 } 2218 2219 metaslab_aux_histogram_add(msp->ms_synchist, 2220 sm->sm_shift, msp->ms_freeing); 2221 } 2222 2223 /* 2224 * Called every time we are done syncing (writing to) the metaslab, 2225 * i.e. at the end of each sync pass. 2226 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2227 */ 2228 static void 2229 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2230 { 2231 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2232 space_map_t *sm = msp->ms_sm; 2233 2234 if (sm == NULL) { 2235 /* 2236 * We came here from metaslab_init() when creating/opening a 2237 * pool, looking at a metaslab that hasn't had any allocations 2238 * yet. 2239 */ 2240 return; 2241 } 2242 2243 /* 2244 * This is similar to the actions that we take for the ms_freed 2245 * and ms_defer trees in metaslab_sync_done(). 2246 */ 2247 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2248 if (defer_allowed) { 2249 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2250 sizeof (msp->ms_synchist)); 2251 } else { 2252 memset(msp->ms_deferhist[hist_index], 0, 2253 sizeof (msp->ms_deferhist[hist_index])); 2254 } 2255 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2256 } 2257 2258 /* 2259 * Ensure that the metaslab's weight and fragmentation are consistent 2260 * with the contents of the histogram (either the range tree's histogram 2261 * or the space map's depending whether the metaslab is loaded). 2262 */ 2263 static void 2264 metaslab_verify_weight_and_frag(metaslab_t *msp) 2265 { 2266 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2267 2268 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2269 return; 2270 2271 /* 2272 * We can end up here from vdev_remove_complete(), in which case we 2273 * cannot do these assertions because we hold spa config locks and 2274 * thus we are not allowed to read from the DMU. 2275 * 2276 * We check if the metaslab group has been removed and if that's 2277 * the case we return immediately as that would mean that we are 2278 * here from the aforementioned code path. 2279 */ 2280 if (msp->ms_group == NULL) 2281 return; 2282 2283 /* 2284 * Devices being removed always return a weight of 0 and leave 2285 * fragmentation and ms_max_size as is - there is nothing for 2286 * us to verify here. 2287 */ 2288 vdev_t *vd = msp->ms_group->mg_vd; 2289 if (vd->vdev_removing) 2290 return; 2291 2292 /* 2293 * If the metaslab is dirty it probably means that we've done 2294 * some allocations or frees that have changed our histograms 2295 * and thus the weight. 2296 */ 2297 for (int t = 0; t < TXG_SIZE; t++) { 2298 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2299 return; 2300 } 2301 2302 /* 2303 * This verification checks that our in-memory state is consistent 2304 * with what's on disk. If the pool is read-only then there aren't 2305 * any changes and we just have the initially-loaded state. 2306 */ 2307 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2308 return; 2309 2310 /* some extra verification for in-core tree if you can */ 2311 if (msp->ms_loaded) { 2312 zfs_range_tree_stat_verify(msp->ms_allocatable); 2313 VERIFY(space_map_histogram_verify(msp->ms_sm, 2314 msp->ms_allocatable)); 2315 } 2316 2317 uint64_t weight = msp->ms_weight; 2318 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2319 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2320 uint64_t frag = msp->ms_fragmentation; 2321 uint64_t max_segsize = msp->ms_max_size; 2322 2323 msp->ms_weight = 0; 2324 msp->ms_fragmentation = 0; 2325 2326 /* 2327 * This function is used for verification purposes and thus should 2328 * not introduce any side-effects/mutations on the system's state. 2329 * 2330 * Regardless of whether metaslab_weight() thinks this metaslab 2331 * should be active or not, we want to ensure that the actual weight 2332 * (and therefore the value of ms_weight) would be the same if it 2333 * was to be recalculated at this point. 2334 * 2335 * In addition we set the nodirty flag so metaslab_weight() does 2336 * not dirty the metaslab for future TXGs (e.g. when trying to 2337 * force condensing to upgrade the metaslab spacemaps). 2338 */ 2339 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2340 2341 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2342 2343 /* 2344 * If the weight type changed then there is no point in doing 2345 * verification. Revert fields to their original values. 2346 */ 2347 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2348 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2349 msp->ms_fragmentation = frag; 2350 msp->ms_weight = weight; 2351 return; 2352 } 2353 2354 VERIFY3U(msp->ms_fragmentation, ==, frag); 2355 VERIFY3U(msp->ms_weight, ==, weight); 2356 } 2357 2358 /* 2359 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2360 * this class that was used longest ago, and attempt to unload it. We don't 2361 * want to spend too much time in this loop to prevent performance 2362 * degradation, and we expect that most of the time this operation will 2363 * succeed. Between that and the normal unloading processing during txg sync, 2364 * we expect this to keep the metaslab memory usage under control. 2365 */ 2366 static void 2367 metaslab_potentially_evict(metaslab_class_t *mc) 2368 { 2369 #ifdef _KERNEL 2370 uint64_t allmem = arc_all_memory(); 2371 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2372 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2373 uint_t tries = 0; 2374 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2375 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2376 tries++) { 2377 unsigned int idx = multilist_get_random_index( 2378 &mc->mc_metaslab_txg_list); 2379 multilist_sublist_t *mls = 2380 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx); 2381 metaslab_t *msp = multilist_sublist_head(mls); 2382 multilist_sublist_unlock(mls); 2383 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2384 inuse * size) { 2385 VERIFY3P(mls, ==, multilist_sublist_lock_idx( 2386 &mc->mc_metaslab_txg_list, idx)); 2387 ASSERT3U(idx, ==, 2388 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2389 2390 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2391 multilist_sublist_unlock(mls); 2392 break; 2393 } 2394 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2395 multilist_sublist_unlock(mls); 2396 /* 2397 * If the metaslab is currently loading there are two 2398 * cases. If it's the metaslab we're evicting, we 2399 * can't continue on or we'll panic when we attempt to 2400 * recursively lock the mutex. If it's another 2401 * metaslab that's loading, it can be safely skipped, 2402 * since we know it's very new and therefore not a 2403 * good eviction candidate. We check later once the 2404 * lock is held that the metaslab is fully loaded 2405 * before actually unloading it. 2406 */ 2407 if (msp->ms_loading) { 2408 msp = next_msp; 2409 inuse = 2410 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2411 continue; 2412 } 2413 /* 2414 * We can't unload metaslabs with no spacemap because 2415 * they're not ready to be unloaded yet. We can't 2416 * unload metaslabs with outstanding allocations 2417 * because doing so could cause the metaslab's weight 2418 * to decrease while it's unloaded, which violates an 2419 * invariant that we use to prevent unnecessary 2420 * loading. We also don't unload metaslabs that are 2421 * currently active because they are high-weight 2422 * metaslabs that are likely to be used in the near 2423 * future. 2424 */ 2425 mutex_enter(&msp->ms_lock); 2426 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2427 msp->ms_allocating_total == 0) { 2428 metaslab_unload(msp); 2429 } 2430 mutex_exit(&msp->ms_lock); 2431 msp = next_msp; 2432 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2433 } 2434 } 2435 #else 2436 (void) mc, (void) zfs_metaslab_mem_limit; 2437 #endif 2438 } 2439 2440 static int 2441 metaslab_load_impl(metaslab_t *msp) 2442 { 2443 int error = 0; 2444 2445 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2446 ASSERT(msp->ms_loading); 2447 ASSERT(!msp->ms_condensing); 2448 2449 /* 2450 * We temporarily drop the lock to unblock other operations while we 2451 * are reading the space map. Therefore, metaslab_sync() and 2452 * metaslab_sync_done() can run at the same time as we do. 2453 * 2454 * If we are using the log space maps, metaslab_sync() can't write to 2455 * the metaslab's space map while we are loading as we only write to 2456 * it when we are flushing the metaslab, and that can't happen while 2457 * we are loading it. 2458 * 2459 * If we are not using log space maps though, metaslab_sync() can 2460 * append to the space map while we are loading. Therefore we load 2461 * only entries that existed when we started the load. Additionally, 2462 * metaslab_sync_done() has to wait for the load to complete because 2463 * there are potential races like metaslab_load() loading parts of the 2464 * space map that are currently being appended by metaslab_sync(). If 2465 * we didn't, the ms_allocatable would have entries that 2466 * metaslab_sync_done() would try to re-add later. 2467 * 2468 * That's why before dropping the lock we remember the synced length 2469 * of the metaslab and read up to that point of the space map, 2470 * ignoring entries appended by metaslab_sync() that happen after we 2471 * drop the lock. 2472 */ 2473 uint64_t length = msp->ms_synced_length; 2474 mutex_exit(&msp->ms_lock); 2475 2476 hrtime_t load_start = gethrtime(); 2477 metaslab_rt_arg_t *mrap; 2478 if (msp->ms_allocatable->rt_arg == NULL) { 2479 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2480 } else { 2481 mrap = msp->ms_allocatable->rt_arg; 2482 msp->ms_allocatable->rt_ops = NULL; 2483 msp->ms_allocatable->rt_arg = NULL; 2484 } 2485 mrap->mra_bt = &msp->ms_allocatable_by_size; 2486 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2487 2488 if (msp->ms_sm != NULL) { 2489 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2490 SM_FREE, length); 2491 2492 /* Now, populate the size-sorted tree. */ 2493 metaslab_rt_create(msp->ms_allocatable, mrap); 2494 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2495 msp->ms_allocatable->rt_arg = mrap; 2496 2497 struct mssa_arg arg = {0}; 2498 arg.rt = msp->ms_allocatable; 2499 arg.mra = mrap; 2500 zfs_range_tree_walk(msp->ms_allocatable, 2501 metaslab_size_sorted_add, &arg); 2502 } else { 2503 /* 2504 * Add the size-sorted tree first, since we don't need to load 2505 * the metaslab from the spacemap. 2506 */ 2507 metaslab_rt_create(msp->ms_allocatable, mrap); 2508 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2509 msp->ms_allocatable->rt_arg = mrap; 2510 /* 2511 * The space map has not been allocated yet, so treat 2512 * all the space in the metaslab as free and add it to the 2513 * ms_allocatable tree. 2514 */ 2515 zfs_range_tree_add(msp->ms_allocatable, 2516 msp->ms_start, msp->ms_size); 2517 2518 if (msp->ms_new) { 2519 /* 2520 * If the ms_sm doesn't exist, this means that this 2521 * metaslab hasn't gone through metaslab_sync() and 2522 * thus has never been dirtied. So we shouldn't 2523 * expect any unflushed allocs or frees from previous 2524 * TXGs. 2525 */ 2526 ASSERT(zfs_range_tree_is_empty( 2527 msp->ms_unflushed_allocs)); 2528 ASSERT(zfs_range_tree_is_empty( 2529 msp->ms_unflushed_frees)); 2530 } 2531 } 2532 2533 /* 2534 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2535 * changing the ms_sm (or log_sm) and the metaslab's range trees 2536 * while we are about to use them and populate the ms_allocatable. 2537 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2538 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2539 */ 2540 mutex_enter(&msp->ms_sync_lock); 2541 mutex_enter(&msp->ms_lock); 2542 2543 ASSERT(!msp->ms_condensing); 2544 ASSERT(!msp->ms_flushing); 2545 2546 if (error != 0) { 2547 mutex_exit(&msp->ms_sync_lock); 2548 return (error); 2549 } 2550 2551 ASSERT3P(msp->ms_group, !=, NULL); 2552 msp->ms_loaded = B_TRUE; 2553 2554 /* 2555 * Apply all the unflushed changes to ms_allocatable right 2556 * away so any manipulations we do below have a clear view 2557 * of what is allocated and what is free. 2558 */ 2559 zfs_range_tree_walk(msp->ms_unflushed_allocs, 2560 zfs_range_tree_remove, msp->ms_allocatable); 2561 zfs_range_tree_walk(msp->ms_unflushed_frees, 2562 zfs_range_tree_add, msp->ms_allocatable); 2563 2564 ASSERT3P(msp->ms_group, !=, NULL); 2565 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2566 if (spa_syncing_log_sm(spa) != NULL) { 2567 ASSERT(spa_feature_is_enabled(spa, 2568 SPA_FEATURE_LOG_SPACEMAP)); 2569 2570 /* 2571 * If we use a log space map we add all the segments 2572 * that are in ms_unflushed_frees so they are available 2573 * for allocation. 2574 * 2575 * ms_allocatable needs to contain all free segments 2576 * that are ready for allocations (thus not segments 2577 * from ms_freeing, ms_freed, and the ms_defer trees). 2578 * But if we grab the lock in this code path at a sync 2579 * pass later that 1, then it also contains the 2580 * segments of ms_freed (they were added to it earlier 2581 * in this path through ms_unflushed_frees). So we 2582 * need to remove all the segments that exist in 2583 * ms_freed from ms_allocatable as they will be added 2584 * later in metaslab_sync_done(). 2585 * 2586 * When there's no log space map, the ms_allocatable 2587 * correctly doesn't contain any segments that exist 2588 * in ms_freed [see ms_synced_length]. 2589 */ 2590 zfs_range_tree_walk(msp->ms_freed, 2591 zfs_range_tree_remove, msp->ms_allocatable); 2592 } 2593 2594 /* 2595 * If we are not using the log space map, ms_allocatable 2596 * contains the segments that exist in the ms_defer trees 2597 * [see ms_synced_length]. Thus we need to remove them 2598 * from ms_allocatable as they will be added again in 2599 * metaslab_sync_done(). 2600 * 2601 * If we are using the log space map, ms_allocatable still 2602 * contains the segments that exist in the ms_defer trees. 2603 * Not because it read them through the ms_sm though. But 2604 * because these segments are part of ms_unflushed_frees 2605 * whose segments we add to ms_allocatable earlier in this 2606 * code path. 2607 */ 2608 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2609 zfs_range_tree_walk(msp->ms_defer[t], 2610 zfs_range_tree_remove, msp->ms_allocatable); 2611 } 2612 2613 /* 2614 * Call metaslab_recalculate_weight_and_sort() now that the 2615 * metaslab is loaded so we get the metaslab's real weight. 2616 * 2617 * Unless this metaslab was created with older software and 2618 * has not yet been converted to use segment-based weight, we 2619 * expect the new weight to be better or equal to the weight 2620 * that the metaslab had while it was not loaded. This is 2621 * because the old weight does not take into account the 2622 * consolidation of adjacent segments between TXGs. [see 2623 * comment for ms_synchist and ms_deferhist[] for more info] 2624 */ 2625 uint64_t weight = msp->ms_weight; 2626 uint64_t max_size = msp->ms_max_size; 2627 metaslab_recalculate_weight_and_sort(msp); 2628 if (!WEIGHT_IS_SPACEBASED(weight)) 2629 ASSERT3U(weight, <=, msp->ms_weight); 2630 msp->ms_max_size = metaslab_largest_allocatable(msp); 2631 ASSERT3U(max_size, <=, msp->ms_max_size); 2632 hrtime_t load_end = gethrtime(); 2633 msp->ms_load_time = load_end; 2634 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2635 "ms_id %llu, smp_length %llu, " 2636 "unflushed_allocs %llu, unflushed_frees %llu, " 2637 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2638 "loading_time %lld ms, ms_max_size %llu, " 2639 "max size error %lld, " 2640 "old_weight %llx, new_weight %llx", 2641 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2642 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2643 (u_longlong_t)msp->ms_id, 2644 (u_longlong_t)space_map_length(msp->ms_sm), 2645 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs), 2646 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees), 2647 (u_longlong_t)zfs_range_tree_space(msp->ms_freed), 2648 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]), 2649 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]), 2650 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2651 (longlong_t)((load_end - load_start) / 1000000), 2652 (u_longlong_t)msp->ms_max_size, 2653 (u_longlong_t)msp->ms_max_size - max_size, 2654 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2655 2656 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2657 mutex_exit(&msp->ms_sync_lock); 2658 return (0); 2659 } 2660 2661 int 2662 metaslab_load(metaslab_t *msp) 2663 { 2664 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2665 2666 /* 2667 * There may be another thread loading the same metaslab, if that's 2668 * the case just wait until the other thread is done and return. 2669 */ 2670 metaslab_load_wait(msp); 2671 if (msp->ms_loaded) 2672 return (0); 2673 VERIFY(!msp->ms_loading); 2674 ASSERT(!msp->ms_condensing); 2675 2676 /* 2677 * We set the loading flag BEFORE potentially dropping the lock to 2678 * wait for an ongoing flush (see ms_flushing below). This way other 2679 * threads know that there is already a thread that is loading this 2680 * metaslab. 2681 */ 2682 msp->ms_loading = B_TRUE; 2683 2684 /* 2685 * Wait for any in-progress flushing to finish as we drop the ms_lock 2686 * both here (during space_map_load()) and in metaslab_flush() (when 2687 * we flush our changes to the ms_sm). 2688 */ 2689 if (msp->ms_flushing) 2690 metaslab_flush_wait(msp); 2691 2692 /* 2693 * In the possibility that we were waiting for the metaslab to be 2694 * flushed (where we temporarily dropped the ms_lock), ensure that 2695 * no one else loaded the metaslab somehow. 2696 */ 2697 ASSERT(!msp->ms_loaded); 2698 2699 /* 2700 * If we're loading a metaslab in the normal class, consider evicting 2701 * another one to keep our memory usage under the limit defined by the 2702 * zfs_metaslab_mem_limit tunable. 2703 */ 2704 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2705 msp->ms_group->mg_class) { 2706 metaslab_potentially_evict(msp->ms_group->mg_class); 2707 } 2708 2709 int error = metaslab_load_impl(msp); 2710 2711 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2712 msp->ms_loading = B_FALSE; 2713 cv_broadcast(&msp->ms_load_cv); 2714 2715 return (error); 2716 } 2717 2718 void 2719 metaslab_unload(metaslab_t *msp) 2720 { 2721 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2722 2723 /* 2724 * This can happen if a metaslab is selected for eviction (in 2725 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2726 * metaslab_class_evict_old). 2727 */ 2728 if (!msp->ms_loaded) 2729 return; 2730 2731 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2732 msp->ms_loaded = B_FALSE; 2733 msp->ms_unload_time = gethrtime(); 2734 2735 msp->ms_activation_weight = 0; 2736 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2737 2738 if (msp->ms_group != NULL) { 2739 metaslab_class_t *mc = msp->ms_group->mg_class; 2740 multilist_sublist_t *mls = 2741 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2742 if (multilist_link_active(&msp->ms_class_txg_node)) 2743 multilist_sublist_remove(mls, msp); 2744 multilist_sublist_unlock(mls); 2745 2746 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2747 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2748 "ms_id %llu, weight %llx, " 2749 "selected txg %llu (%llu s ago), alloc_txg %llu, " 2750 "loaded %llu ms ago, max_size %llu", 2751 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2752 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2753 (u_longlong_t)msp->ms_id, 2754 (u_longlong_t)msp->ms_weight, 2755 (u_longlong_t)msp->ms_selected_txg, 2756 (u_longlong_t)(NSEC2SEC(msp->ms_unload_time) - 2757 msp->ms_selected_time), 2758 (u_longlong_t)msp->ms_alloc_txg, 2759 (u_longlong_t)(msp->ms_unload_time - 2760 msp->ms_load_time) / 1000 / 1000, 2761 (u_longlong_t)msp->ms_max_size); 2762 } 2763 2764 /* 2765 * We explicitly recalculate the metaslab's weight based on its space 2766 * map (as it is now not loaded). We want unload metaslabs to always 2767 * have their weights calculated from the space map histograms, while 2768 * loaded ones have it calculated from their in-core range tree 2769 * [see metaslab_load()]. This way, the weight reflects the information 2770 * available in-core, whether it is loaded or not. 2771 * 2772 * If ms_group == NULL means that we came here from metaslab_fini(), 2773 * at which point it doesn't make sense for us to do the recalculation 2774 * and the sorting. 2775 */ 2776 if (msp->ms_group != NULL) 2777 metaslab_recalculate_weight_and_sort(msp); 2778 } 2779 2780 /* 2781 * We want to optimize the memory use of the per-metaslab range 2782 * trees. To do this, we store the segments in the range trees in 2783 * units of sectors, zero-indexing from the start of the metaslab. If 2784 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2785 * the ranges using two uint32_ts, rather than two uint64_ts. 2786 */ 2787 zfs_range_seg_type_t 2788 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2789 uint64_t *start, uint64_t *shift) 2790 { 2791 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2792 !zfs_metaslab_force_large_segs) { 2793 *shift = vdev->vdev_ashift; 2794 *start = msp->ms_start; 2795 return (ZFS_RANGE_SEG32); 2796 } else { 2797 *shift = 0; 2798 *start = 0; 2799 return (ZFS_RANGE_SEG64); 2800 } 2801 } 2802 2803 void 2804 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2805 { 2806 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2807 metaslab_class_t *mc = msp->ms_group->mg_class; 2808 multilist_sublist_t *mls = 2809 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2810 if (multilist_link_active(&msp->ms_class_txg_node)) 2811 multilist_sublist_remove(mls, msp); 2812 msp->ms_selected_txg = txg; 2813 msp->ms_selected_time = gethrestime_sec(); 2814 multilist_sublist_insert_tail(mls, msp); 2815 multilist_sublist_unlock(mls); 2816 } 2817 2818 void 2819 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2820 int64_t defer_delta, int64_t space_delta) 2821 { 2822 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2823 2824 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2825 ASSERT(vd->vdev_ms_count != 0); 2826 2827 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2828 vdev_deflated_space(vd, space_delta)); 2829 } 2830 2831 int 2832 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2833 uint64_t txg, metaslab_t **msp) 2834 { 2835 vdev_t *vd = mg->mg_vd; 2836 spa_t *spa = vd->vdev_spa; 2837 objset_t *mos = spa->spa_meta_objset; 2838 metaslab_t *ms; 2839 int error; 2840 2841 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2842 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2843 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2844 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2845 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2846 multilist_link_init(&ms->ms_class_txg_node); 2847 2848 ms->ms_id = id; 2849 ms->ms_start = id << vd->vdev_ms_shift; 2850 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2851 ms->ms_allocator = -1; 2852 ms->ms_new = B_TRUE; 2853 2854 vdev_ops_t *ops = vd->vdev_ops; 2855 if (ops->vdev_op_metaslab_init != NULL) 2856 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2857 2858 /* 2859 * We only open space map objects that already exist. All others 2860 * will be opened when we finally allocate an object for it. For 2861 * readonly pools there is no need to open the space map object. 2862 * 2863 * Note: 2864 * When called from vdev_expand(), we can't call into the DMU as 2865 * we are holding the spa_config_lock as a writer and we would 2866 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2867 * that case, the object parameter is zero though, so we won't 2868 * call into the DMU. 2869 */ 2870 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2871 !spa->spa_read_spacemaps)) { 2872 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2873 ms->ms_size, vd->vdev_ashift); 2874 2875 if (error != 0) { 2876 kmem_free(ms, sizeof (metaslab_t)); 2877 return (error); 2878 } 2879 2880 ASSERT(ms->ms_sm != NULL); 2881 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2882 } 2883 2884 uint64_t shift, start; 2885 zfs_range_seg_type_t type = 2886 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2887 2888 ms->ms_allocatable = zfs_range_tree_create(NULL, type, NULL, start, 2889 shift); 2890 for (int t = 0; t < TXG_SIZE; t++) { 2891 ms->ms_allocating[t] = zfs_range_tree_create(NULL, type, 2892 NULL, start, shift); 2893 } 2894 ms->ms_freeing = zfs_range_tree_create(NULL, type, NULL, start, shift); 2895 ms->ms_freed = zfs_range_tree_create(NULL, type, NULL, start, shift); 2896 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2897 ms->ms_defer[t] = zfs_range_tree_create(NULL, type, NULL, 2898 start, shift); 2899 } 2900 ms->ms_checkpointing = 2901 zfs_range_tree_create(NULL, type, NULL, start, shift); 2902 ms->ms_unflushed_allocs = 2903 zfs_range_tree_create(NULL, type, NULL, start, shift); 2904 2905 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2906 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2907 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2908 ms->ms_unflushed_frees = zfs_range_tree_create(&metaslab_rt_ops, 2909 type, mrap, start, shift); 2910 2911 ms->ms_trim = zfs_range_tree_create(NULL, type, NULL, start, shift); 2912 2913 metaslab_group_add(mg, ms); 2914 metaslab_set_fragmentation(ms, B_FALSE); 2915 2916 /* 2917 * If we're opening an existing pool (txg == 0) or creating 2918 * a new one (txg == TXG_INITIAL), all space is available now. 2919 * If we're adding space to an existing pool, the new space 2920 * does not become available until after this txg has synced. 2921 * The metaslab's weight will also be initialized when we sync 2922 * out this txg. This ensures that we don't attempt to allocate 2923 * from it before we have initialized it completely. 2924 */ 2925 if (txg <= TXG_INITIAL) { 2926 metaslab_sync_done(ms, 0); 2927 metaslab_space_update(vd, mg->mg_class, 2928 metaslab_allocated_space(ms), 0, 0); 2929 } 2930 2931 if (txg != 0) { 2932 vdev_dirty(vd, 0, NULL, txg); 2933 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2934 } 2935 2936 *msp = ms; 2937 2938 return (0); 2939 } 2940 2941 static void 2942 metaslab_fini_flush_data(metaslab_t *msp) 2943 { 2944 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2945 2946 if (metaslab_unflushed_txg(msp) == 0) { 2947 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2948 ==, NULL); 2949 return; 2950 } 2951 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2952 2953 mutex_enter(&spa->spa_flushed_ms_lock); 2954 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2955 mutex_exit(&spa->spa_flushed_ms_lock); 2956 2957 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2958 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2959 metaslab_unflushed_dirty(msp)); 2960 } 2961 2962 uint64_t 2963 metaslab_unflushed_changes_memused(metaslab_t *ms) 2964 { 2965 return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) + 2966 zfs_range_tree_numsegs(ms->ms_unflushed_frees)) * 2967 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2968 } 2969 2970 void 2971 metaslab_fini(metaslab_t *msp) 2972 { 2973 metaslab_group_t *mg = msp->ms_group; 2974 vdev_t *vd = mg->mg_vd; 2975 spa_t *spa = vd->vdev_spa; 2976 2977 metaslab_fini_flush_data(msp); 2978 2979 metaslab_group_remove(mg, msp); 2980 2981 mutex_enter(&msp->ms_lock); 2982 VERIFY(msp->ms_group == NULL); 2983 2984 /* 2985 * If this metaslab hasn't been through metaslab_sync_done() yet its 2986 * space hasn't been accounted for in its vdev and doesn't need to be 2987 * subtracted. 2988 */ 2989 if (!msp->ms_new) { 2990 metaslab_space_update(vd, mg->mg_class, 2991 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2992 2993 } 2994 space_map_close(msp->ms_sm); 2995 msp->ms_sm = NULL; 2996 2997 metaslab_unload(msp); 2998 2999 zfs_range_tree_destroy(msp->ms_allocatable); 3000 zfs_range_tree_destroy(msp->ms_freeing); 3001 zfs_range_tree_destroy(msp->ms_freed); 3002 3003 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3004 metaslab_unflushed_changes_memused(msp)); 3005 spa->spa_unflushed_stats.sus_memused -= 3006 metaslab_unflushed_changes_memused(msp); 3007 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3008 zfs_range_tree_destroy(msp->ms_unflushed_allocs); 3009 zfs_range_tree_destroy(msp->ms_checkpointing); 3010 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3011 zfs_range_tree_destroy(msp->ms_unflushed_frees); 3012 3013 for (int t = 0; t < TXG_SIZE; t++) { 3014 zfs_range_tree_destroy(msp->ms_allocating[t]); 3015 } 3016 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3017 zfs_range_tree_destroy(msp->ms_defer[t]); 3018 } 3019 ASSERT0(msp->ms_deferspace); 3020 3021 for (int t = 0; t < TXG_SIZE; t++) 3022 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 3023 3024 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL); 3025 zfs_range_tree_destroy(msp->ms_trim); 3026 3027 mutex_exit(&msp->ms_lock); 3028 cv_destroy(&msp->ms_load_cv); 3029 cv_destroy(&msp->ms_flush_cv); 3030 mutex_destroy(&msp->ms_lock); 3031 mutex_destroy(&msp->ms_sync_lock); 3032 ASSERT3U(msp->ms_allocator, ==, -1); 3033 3034 kmem_free(msp, sizeof (metaslab_t)); 3035 } 3036 3037 /* 3038 * This table defines a segment size based fragmentation metric that will 3039 * allow each metaslab to derive its own fragmentation value. This is done 3040 * by calculating the space in each bucket of the spacemap histogram and 3041 * multiplying that by the fragmentation metric in this table. Doing 3042 * this for all buckets and dividing it by the total amount of free 3043 * space in this metaslab (i.e. the total free space in all buckets) gives 3044 * us the fragmentation metric. This means that a high fragmentation metric 3045 * equates to most of the free space being comprised of small segments. 3046 * Conversely, if the metric is low, then most of the free space is in 3047 * large segments. 3048 * 3049 * This table defines 0% fragmented space using 512M segments. Using this value, 3050 * we derive the rest of the table. This table originally went up to 16MB, but 3051 * with larger recordsizes, larger ashifts, and use of raidz3, it is possible 3052 * to have significantly larger allocations than were previously possible. 3053 * Since the fragmentation value is never stored on disk, it is possible to 3054 * change these calculations in the future. 3055 */ 3056 static const int zfs_frag_table[] = { 3057 100, /* 512B */ 3058 99, /* 1K */ 3059 97, /* 2K */ 3060 93, /* 4K */ 3061 88, /* 8K */ 3062 83, /* 16K */ 3063 77, /* 32K */ 3064 71, /* 64K */ 3065 64, /* 128K */ 3066 57, /* 256K */ 3067 50, /* 512K */ 3068 43, /* 1M */ 3069 36, /* 2M */ 3070 29, /* 4M */ 3071 23, /* 8M */ 3072 17, /* 16M */ 3073 12, /* 32M */ 3074 7, /* 64M */ 3075 3, /* 128M */ 3076 1, /* 256M */ 3077 0, /* 512M */ 3078 }; 3079 #define FRAGMENTATION_TABLE_SIZE \ 3080 (sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0]))) 3081 3082 /* 3083 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 3084 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 3085 * been upgraded and does not support this metric. Otherwise, the return 3086 * value should be in the range [0, 100]. 3087 */ 3088 static void 3089 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 3090 { 3091 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3092 uint64_t fragmentation = 0; 3093 uint64_t total = 0; 3094 boolean_t feature_enabled = spa_feature_is_enabled(spa, 3095 SPA_FEATURE_SPACEMAP_HISTOGRAM); 3096 3097 if (!feature_enabled) { 3098 msp->ms_fragmentation = ZFS_FRAG_INVALID; 3099 return; 3100 } 3101 3102 /* 3103 * A null space map means that the entire metaslab is free 3104 * and thus is not fragmented. 3105 */ 3106 if (msp->ms_sm == NULL) { 3107 msp->ms_fragmentation = 0; 3108 return; 3109 } 3110 3111 /* 3112 * If this metaslab's space map has not been upgraded, flag it 3113 * so that we upgrade next time we encounter it. 3114 */ 3115 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 3116 uint64_t txg = spa_syncing_txg(spa); 3117 vdev_t *vd = msp->ms_group->mg_vd; 3118 3119 /* 3120 * If we've reached the final dirty txg, then we must 3121 * be shutting down the pool. We don't want to dirty 3122 * any data past this point so skip setting the condense 3123 * flag. We can retry this action the next time the pool 3124 * is imported. We also skip marking this metaslab for 3125 * condensing if the caller has explicitly set nodirty. 3126 */ 3127 if (!nodirty && 3128 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 3129 msp->ms_condense_wanted = B_TRUE; 3130 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 3131 zfs_dbgmsg("txg %llu, requesting force condense: " 3132 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 3133 (u_longlong_t)msp->ms_id, 3134 (u_longlong_t)vd->vdev_id); 3135 } 3136 msp->ms_fragmentation = ZFS_FRAG_INVALID; 3137 return; 3138 } 3139 3140 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3141 uint64_t space = 0; 3142 uint8_t shift = msp->ms_sm->sm_shift; 3143 3144 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 3145 FRAGMENTATION_TABLE_SIZE - 1); 3146 3147 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 3148 continue; 3149 3150 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 3151 total += space; 3152 3153 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 3154 fragmentation += space * zfs_frag_table[idx]; 3155 } 3156 3157 if (total > 0) 3158 fragmentation /= total; 3159 ASSERT3U(fragmentation, <=, 100); 3160 3161 msp->ms_fragmentation = fragmentation; 3162 } 3163 3164 /* 3165 * Compute a weight -- a selection preference value -- for the given metaslab. 3166 * This is based on the amount of free space, the level of fragmentation, 3167 * the LBA range, and whether the metaslab is loaded. 3168 */ 3169 static uint64_t 3170 metaslab_space_weight(metaslab_t *msp) 3171 { 3172 metaslab_group_t *mg = msp->ms_group; 3173 vdev_t *vd = mg->mg_vd; 3174 uint64_t weight, space; 3175 3176 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3177 3178 /* 3179 * The baseline weight is the metaslab's free space. 3180 */ 3181 space = msp->ms_size - metaslab_allocated_space(msp); 3182 3183 if (metaslab_fragmentation_factor_enabled && 3184 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 3185 /* 3186 * Use the fragmentation information to inversely scale 3187 * down the baseline weight. We need to ensure that we 3188 * don't exclude this metaslab completely when it's 100% 3189 * fragmented. To avoid this we reduce the fragmented value 3190 * by 1. 3191 */ 3192 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 3193 3194 /* 3195 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 3196 * this metaslab again. The fragmentation metric may have 3197 * decreased the space to something smaller than 3198 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 3199 * so that we can consume any remaining space. 3200 */ 3201 if (space > 0 && space < SPA_MINBLOCKSIZE) 3202 space = SPA_MINBLOCKSIZE; 3203 } 3204 weight = space; 3205 3206 /* 3207 * Modern disks have uniform bit density and constant angular velocity. 3208 * Therefore, the outer recording zones are faster (higher bandwidth) 3209 * than the inner zones by the ratio of outer to inner track diameter, 3210 * which is typically around 2:1. We account for this by assigning 3211 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3212 * In effect, this means that we'll select the metaslab with the most 3213 * free bandwidth rather than simply the one with the most free space. 3214 */ 3215 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3216 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3217 ASSERT(weight >= space && weight <= 2 * space); 3218 } 3219 3220 /* 3221 * If this metaslab is one we're actively using, adjust its 3222 * weight to make it preferable to any inactive metaslab so 3223 * we'll polish it off. If the fragmentation on this metaslab 3224 * has exceed our threshold, then don't mark it active. 3225 */ 3226 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3227 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3228 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3229 } 3230 3231 WEIGHT_SET_SPACEBASED(weight); 3232 return (weight); 3233 } 3234 3235 /* 3236 * Return the weight of the specified metaslab, according to the segment-based 3237 * weighting algorithm. The metaslab must be loaded. This function can 3238 * be called within a sync pass since it relies only on the metaslab's 3239 * range tree which is always accurate when the metaslab is loaded. 3240 */ 3241 static uint64_t 3242 metaslab_weight_from_range_tree(metaslab_t *msp) 3243 { 3244 uint64_t weight = 0; 3245 uint32_t segments = 0; 3246 3247 ASSERT(msp->ms_loaded); 3248 3249 for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3250 i--) { 3251 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3252 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3253 3254 segments <<= 1; 3255 segments += msp->ms_allocatable->rt_histogram[i]; 3256 3257 /* 3258 * The range tree provides more precision than the space map 3259 * and must be downgraded so that all values fit within the 3260 * space map's histogram. This allows us to compare loaded 3261 * vs. unloaded metaslabs to determine which metaslab is 3262 * considered "best". 3263 */ 3264 if (i > max_idx) 3265 continue; 3266 3267 if (segments != 0) { 3268 WEIGHT_SET_COUNT(weight, segments); 3269 WEIGHT_SET_INDEX(weight, i); 3270 WEIGHT_SET_ACTIVE(weight, 0); 3271 break; 3272 } 3273 } 3274 return (weight); 3275 } 3276 3277 /* 3278 * Calculate the weight based on the on-disk histogram. Should be applied 3279 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3280 * give results consistent with the on-disk state 3281 */ 3282 static uint64_t 3283 metaslab_weight_from_spacemap(metaslab_t *msp) 3284 { 3285 space_map_t *sm = msp->ms_sm; 3286 ASSERT(!msp->ms_loaded); 3287 ASSERT(sm != NULL); 3288 ASSERT3U(space_map_object(sm), !=, 0); 3289 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3290 3291 /* 3292 * Create a joint histogram from all the segments that have made 3293 * it to the metaslab's space map histogram, that are not yet 3294 * available for allocation because they are still in the freeing 3295 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3296 * these segments from the space map's histogram to get a more 3297 * accurate weight. 3298 */ 3299 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3300 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3301 deferspace_histogram[i] += msp->ms_synchist[i]; 3302 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3303 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3304 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3305 } 3306 } 3307 3308 uint64_t weight = 0; 3309 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3310 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3311 deferspace_histogram[i]); 3312 uint64_t count = 3313 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3314 if (count != 0) { 3315 WEIGHT_SET_COUNT(weight, count); 3316 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3317 WEIGHT_SET_ACTIVE(weight, 0); 3318 break; 3319 } 3320 } 3321 return (weight); 3322 } 3323 3324 /* 3325 * Compute a segment-based weight for the specified metaslab. The weight 3326 * is determined by highest bucket in the histogram. The information 3327 * for the highest bucket is encoded into the weight value. 3328 */ 3329 static uint64_t 3330 metaslab_segment_weight(metaslab_t *msp) 3331 { 3332 metaslab_group_t *mg = msp->ms_group; 3333 uint64_t weight = 0; 3334 uint8_t shift = mg->mg_vd->vdev_ashift; 3335 3336 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3337 3338 /* 3339 * The metaslab is completely free. 3340 */ 3341 if (metaslab_allocated_space(msp) == 0) { 3342 int idx = highbit64(msp->ms_size) - 1; 3343 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3344 3345 if (idx < max_idx) { 3346 WEIGHT_SET_COUNT(weight, 1ULL); 3347 WEIGHT_SET_INDEX(weight, idx); 3348 } else { 3349 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3350 WEIGHT_SET_INDEX(weight, max_idx); 3351 } 3352 WEIGHT_SET_ACTIVE(weight, 0); 3353 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3354 return (weight); 3355 } 3356 3357 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3358 3359 /* 3360 * If the metaslab is fully allocated then just make the weight 0. 3361 */ 3362 if (metaslab_allocated_space(msp) == msp->ms_size) 3363 return (0); 3364 /* 3365 * If the metaslab is already loaded, then use the range tree to 3366 * determine the weight. Otherwise, we rely on the space map information 3367 * to generate the weight. 3368 */ 3369 if (msp->ms_loaded) { 3370 weight = metaslab_weight_from_range_tree(msp); 3371 } else { 3372 weight = metaslab_weight_from_spacemap(msp); 3373 } 3374 3375 /* 3376 * If the metaslab was active the last time we calculated its weight 3377 * then keep it active. We want to consume the entire region that 3378 * is associated with this weight. 3379 */ 3380 if (msp->ms_activation_weight != 0 && weight != 0) 3381 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3382 return (weight); 3383 } 3384 3385 /* 3386 * Determine if we should attempt to allocate from this metaslab. If the 3387 * metaslab is loaded, then we can determine if the desired allocation 3388 * can be satisfied by looking at the size of the maximum free segment 3389 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3390 * weight. For segment-based weighting we can determine the maximum 3391 * allocation based on the index encoded in its value. For space-based 3392 * weights we rely on the entire weight (excluding the weight-type bit). 3393 */ 3394 static boolean_t 3395 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3396 { 3397 /* 3398 * This case will usually but not always get caught by the checks below; 3399 * metaslabs can be loaded by various means, including the trim and 3400 * initialize code. Once that happens, without this check they are 3401 * allocatable even before they finish their first txg sync. 3402 */ 3403 if (unlikely(msp->ms_new)) 3404 return (B_FALSE); 3405 3406 /* 3407 * If the metaslab is loaded, ms_max_size is definitive and we can use 3408 * the fast check. If it's not, the ms_max_size is a lower bound (once 3409 * set), and we should use the fast check as long as we're not in 3410 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3411 * seconds since the metaslab was unloaded. 3412 */ 3413 if (msp->ms_loaded || 3414 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3415 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3416 return (msp->ms_max_size >= asize); 3417 3418 boolean_t should_allocate; 3419 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3420 /* 3421 * The metaslab segment weight indicates segments in the 3422 * range [2^i, 2^(i+1)), where i is the index in the weight. 3423 * Since the asize might be in the middle of the range, we 3424 * should attempt the allocation if asize < 2^(i+1). 3425 */ 3426 should_allocate = (asize < 3427 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3428 } else { 3429 should_allocate = (asize <= 3430 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3431 } 3432 3433 return (should_allocate); 3434 } 3435 3436 static uint64_t 3437 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3438 { 3439 vdev_t *vd = msp->ms_group->mg_vd; 3440 spa_t *spa = vd->vdev_spa; 3441 uint64_t weight; 3442 3443 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3444 3445 metaslab_set_fragmentation(msp, nodirty); 3446 3447 /* 3448 * Update the maximum size. If the metaslab is loaded, this will 3449 * ensure that we get an accurate maximum size if newly freed space 3450 * has been added back into the free tree. If the metaslab is 3451 * unloaded, we check if there's a larger free segment in the 3452 * unflushed frees. This is a lower bound on the largest allocatable 3453 * segment size. Coalescing of adjacent entries may reveal larger 3454 * allocatable segments, but we aren't aware of those until loading 3455 * the space map into a range tree. 3456 */ 3457 if (msp->ms_loaded) { 3458 msp->ms_max_size = metaslab_largest_allocatable(msp); 3459 } else { 3460 msp->ms_max_size = MAX(msp->ms_max_size, 3461 metaslab_largest_unflushed_free(msp)); 3462 } 3463 3464 /* 3465 * Segment-based weighting requires space map histogram support. 3466 */ 3467 if (zfs_metaslab_segment_weight_enabled && 3468 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3469 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3470 sizeof (space_map_phys_t))) { 3471 weight = metaslab_segment_weight(msp); 3472 } else { 3473 weight = metaslab_space_weight(msp); 3474 } 3475 return (weight); 3476 } 3477 3478 void 3479 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3480 { 3481 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3482 3483 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3484 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3485 metaslab_group_sort(msp->ms_group, msp, 3486 metaslab_weight(msp, B_FALSE) | was_active); 3487 } 3488 3489 static int 3490 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3491 int allocator, uint64_t activation_weight) 3492 { 3493 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3494 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3495 3496 /* 3497 * If we're activating for the claim code, we don't want to actually 3498 * set the metaslab up for a specific allocator. 3499 */ 3500 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3501 ASSERT0(msp->ms_activation_weight); 3502 msp->ms_activation_weight = msp->ms_weight; 3503 metaslab_group_sort(mg, msp, msp->ms_weight | 3504 activation_weight); 3505 return (0); 3506 } 3507 3508 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3509 &mga->mga_primary : &mga->mga_secondary); 3510 3511 mutex_enter(&mg->mg_lock); 3512 if (*mspp != NULL) { 3513 mutex_exit(&mg->mg_lock); 3514 return (EEXIST); 3515 } 3516 3517 *mspp = msp; 3518 ASSERT3S(msp->ms_allocator, ==, -1); 3519 msp->ms_allocator = allocator; 3520 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3521 3522 ASSERT0(msp->ms_activation_weight); 3523 msp->ms_activation_weight = msp->ms_weight; 3524 metaslab_group_sort_impl(mg, msp, 3525 msp->ms_weight | activation_weight); 3526 mutex_exit(&mg->mg_lock); 3527 3528 return (0); 3529 } 3530 3531 static int 3532 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3533 { 3534 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3535 3536 /* 3537 * The current metaslab is already activated for us so there 3538 * is nothing to do. Already activated though, doesn't mean 3539 * that this metaslab is activated for our allocator nor our 3540 * requested activation weight. The metaslab could have started 3541 * as an active one for our allocator but changed allocators 3542 * while we were waiting to grab its ms_lock or we stole it 3543 * [see find_valid_metaslab()]. This means that there is a 3544 * possibility of passivating a metaslab of another allocator 3545 * or from a different activation mask, from this thread. 3546 */ 3547 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3548 ASSERT(msp->ms_loaded); 3549 return (0); 3550 } 3551 3552 int error = metaslab_load(msp); 3553 if (error != 0) { 3554 metaslab_group_sort(msp->ms_group, msp, 0); 3555 return (error); 3556 } 3557 3558 /* 3559 * When entering metaslab_load() we may have dropped the 3560 * ms_lock because we were loading this metaslab, or we 3561 * were waiting for another thread to load it for us. In 3562 * that scenario, we recheck the weight of the metaslab 3563 * to see if it was activated by another thread. 3564 * 3565 * If the metaslab was activated for another allocator or 3566 * it was activated with a different activation weight (e.g. 3567 * we wanted to make it a primary but it was activated as 3568 * secondary) we return error (EBUSY). 3569 * 3570 * If the metaslab was activated for the same allocator 3571 * and requested activation mask, skip activating it. 3572 */ 3573 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3574 if (msp->ms_allocator != allocator) 3575 return (EBUSY); 3576 3577 if ((msp->ms_weight & activation_weight) == 0) 3578 return (SET_ERROR(EBUSY)); 3579 3580 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3581 msp->ms_primary); 3582 return (0); 3583 } 3584 3585 /* 3586 * If the metaslab has literally 0 space, it will have weight 0. In 3587 * that case, don't bother activating it. This can happen if the 3588 * metaslab had space during find_valid_metaslab, but another thread 3589 * loaded it and used all that space while we were waiting to grab the 3590 * lock. 3591 */ 3592 if (msp->ms_weight == 0) { 3593 ASSERT0(zfs_range_tree_space(msp->ms_allocatable)); 3594 return (SET_ERROR(ENOSPC)); 3595 } 3596 3597 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3598 allocator, activation_weight)) != 0) { 3599 return (error); 3600 } 3601 3602 ASSERT(msp->ms_loaded); 3603 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3604 3605 return (0); 3606 } 3607 3608 static void 3609 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3610 uint64_t weight) 3611 { 3612 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3613 ASSERT(msp->ms_loaded); 3614 3615 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3616 metaslab_group_sort(mg, msp, weight); 3617 return; 3618 } 3619 3620 mutex_enter(&mg->mg_lock); 3621 ASSERT3P(msp->ms_group, ==, mg); 3622 ASSERT3S(0, <=, msp->ms_allocator); 3623 ASSERT3U(msp->ms_allocator, <, mg->mg_class->mc_spa->spa_alloc_count); 3624 3625 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3626 if (msp->ms_primary) { 3627 ASSERT3P(mga->mga_primary, ==, msp); 3628 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3629 mga->mga_primary = NULL; 3630 } else { 3631 ASSERT3P(mga->mga_secondary, ==, msp); 3632 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3633 mga->mga_secondary = NULL; 3634 } 3635 msp->ms_allocator = -1; 3636 metaslab_group_sort_impl(mg, msp, weight); 3637 mutex_exit(&mg->mg_lock); 3638 } 3639 3640 static void 3641 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3642 { 3643 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3644 3645 /* 3646 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3647 * this metaslab again. In that case, it had better be empty, 3648 * or we would be leaving space on the table. 3649 */ 3650 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3651 size >= SPA_MINBLOCKSIZE || 3652 zfs_range_tree_space(msp->ms_allocatable) == 0); 3653 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3654 3655 ASSERT(msp->ms_activation_weight != 0); 3656 msp->ms_activation_weight = 0; 3657 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3658 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3659 } 3660 3661 /* 3662 * Segment-based metaslabs are activated once and remain active until 3663 * we either fail an allocation attempt (similar to space-based metaslabs) 3664 * or have exhausted the free space in zfs_metaslab_switch_threshold 3665 * buckets since the metaslab was activated. This function checks to see 3666 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3667 * metaslab and passivates it proactively. This will allow us to select a 3668 * metaslab with a larger contiguous region, if any, remaining within this 3669 * metaslab group. If we're in sync pass > 1, then we continue using this 3670 * metaslab so that we don't dirty more block and cause more sync passes. 3671 */ 3672 static void 3673 metaslab_segment_may_passivate(metaslab_t *msp) 3674 { 3675 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3676 3677 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3678 return; 3679 3680 /* 3681 * As long as a single largest free segment covers majorioty of free 3682 * space, don't consider the metaslab fragmented. It should allow 3683 * us to fill new unfragmented metaslabs full before switching. 3684 */ 3685 if (metaslab_largest_allocatable(msp) > 3686 zfs_range_tree_space(msp->ms_allocatable) * 15 / 16) 3687 return; 3688 3689 /* 3690 * Since we are in the middle of a sync pass, the most accurate 3691 * information that is accessible to us is the in-core range tree 3692 * histogram; calculate the new weight based on that information. 3693 */ 3694 uint64_t weight = metaslab_weight_from_range_tree(msp); 3695 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3696 int current_idx = WEIGHT_GET_INDEX(weight); 3697 3698 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3699 metaslab_passivate(msp, weight); 3700 } 3701 3702 static void 3703 metaslab_preload(void *arg) 3704 { 3705 metaslab_t *msp = arg; 3706 metaslab_class_t *mc = msp->ms_group->mg_class; 3707 spa_t *spa = mc->mc_spa; 3708 fstrans_cookie_t cookie = spl_fstrans_mark(); 3709 3710 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3711 3712 mutex_enter(&msp->ms_lock); 3713 (void) metaslab_load(msp); 3714 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3715 mutex_exit(&msp->ms_lock); 3716 spl_fstrans_unmark(cookie); 3717 } 3718 3719 static void 3720 metaslab_group_preload(metaslab_group_t *mg) 3721 { 3722 spa_t *spa = mg->mg_vd->vdev_spa; 3723 metaslab_t *msp; 3724 avl_tree_t *t = &mg->mg_metaslab_tree; 3725 int m = 0; 3726 3727 if (spa_shutting_down(spa) || !metaslab_preload_enabled) 3728 return; 3729 3730 mutex_enter(&mg->mg_lock); 3731 3732 /* 3733 * Load the next potential metaslabs 3734 */ 3735 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3736 ASSERT3P(msp->ms_group, ==, mg); 3737 3738 /* 3739 * We preload only the maximum number of metaslabs specified 3740 * by metaslab_preload_limit. If a metaslab is being forced 3741 * to condense then we preload it too. This will ensure 3742 * that force condensing happens in the next txg. 3743 */ 3744 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3745 continue; 3746 } 3747 3748 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload, 3749 msp, TQ_SLEEP | (m <= spa->spa_alloc_count ? TQ_FRONT : 0)) 3750 != TASKQID_INVALID); 3751 } 3752 mutex_exit(&mg->mg_lock); 3753 } 3754 3755 /* 3756 * Determine if the space map's on-disk footprint is past our tolerance for 3757 * inefficiency. We would like to use the following criteria to make our 3758 * decision: 3759 * 3760 * 1. Do not condense if the size of the space map object would dramatically 3761 * increase as a result of writing out the free space range tree. 3762 * 3763 * 2. Condense if the on on-disk space map representation is at least 3764 * zfs_condense_pct/100 times the size of the optimal representation 3765 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3766 * 3767 * 3. Do not condense if the on-disk size of the space map does not actually 3768 * decrease. 3769 * 3770 * Unfortunately, we cannot compute the on-disk size of the space map in this 3771 * context because we cannot accurately compute the effects of compression, etc. 3772 * Instead, we apply the heuristic described in the block comment for 3773 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3774 * is greater than a threshold number of blocks. 3775 */ 3776 static boolean_t 3777 metaslab_should_condense(metaslab_t *msp) 3778 { 3779 space_map_t *sm = msp->ms_sm; 3780 vdev_t *vd = msp->ms_group->mg_vd; 3781 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3782 3783 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3784 ASSERT(msp->ms_loaded); 3785 ASSERT(sm != NULL); 3786 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3787 3788 /* 3789 * We always condense metaslabs that are empty and metaslabs for 3790 * which a condense request has been made. 3791 */ 3792 if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 || 3793 msp->ms_condense_wanted) 3794 return (B_TRUE); 3795 3796 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3797 uint64_t object_size = space_map_length(sm); 3798 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3799 msp->ms_allocatable, SM_NO_VDEVID); 3800 3801 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3802 object_size > zfs_metaslab_condense_block_threshold * record_size); 3803 } 3804 3805 /* 3806 * Condense the on-disk space map representation to its minimized form. 3807 * The minimized form consists of a small number of allocations followed 3808 * by the entries of the free range tree (ms_allocatable). The condensed 3809 * spacemap contains all the entries of previous TXGs (including those in 3810 * the pool-wide log spacemaps; thus this is effectively a superset of 3811 * metaslab_flush()), but this TXG's entries still need to be written. 3812 */ 3813 static void 3814 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3815 { 3816 zfs_range_tree_t *condense_tree; 3817 space_map_t *sm = msp->ms_sm; 3818 uint64_t txg = dmu_tx_get_txg(tx); 3819 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3820 3821 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3822 ASSERT(msp->ms_loaded); 3823 ASSERT(msp->ms_sm != NULL); 3824 3825 /* 3826 * In order to condense the space map, we need to change it so it 3827 * only describes which segments are currently allocated and free. 3828 * 3829 * All the current free space resides in the ms_allocatable, all 3830 * the ms_defer trees, and all the ms_allocating trees. We ignore 3831 * ms_freed because it is empty because we're in sync pass 1. We 3832 * ignore ms_freeing because these changes are not yet reflected 3833 * in the spacemap (they will be written later this txg). 3834 * 3835 * So to truncate the space map to represent all the entries of 3836 * previous TXGs we do the following: 3837 * 3838 * 1] We create a range tree (condense tree) that is 100% empty. 3839 * 2] We add to it all segments found in the ms_defer trees 3840 * as those segments are marked as free in the original space 3841 * map. We do the same with the ms_allocating trees for the same 3842 * reason. Adding these segments should be a relatively 3843 * inexpensive operation since we expect these trees to have a 3844 * small number of nodes. 3845 * 3] We vacate any unflushed allocs, since they are not frees we 3846 * need to add to the condense tree. Then we vacate any 3847 * unflushed frees as they should already be part of ms_allocatable. 3848 * 4] At this point, we would ideally like to add all segments 3849 * in the ms_allocatable tree from the condense tree. This way 3850 * we would write all the entries of the condense tree as the 3851 * condensed space map, which would only contain freed 3852 * segments with everything else assumed to be allocated. 3853 * 3854 * Doing so can be prohibitively expensive as ms_allocatable can 3855 * be large, and therefore computationally expensive to add to 3856 * the condense_tree. Instead we first sync out an entry marking 3857 * everything as allocated, then the condense_tree and then the 3858 * ms_allocatable, in the condensed space map. While this is not 3859 * optimal, it is typically close to optimal and more importantly 3860 * much cheaper to compute. 3861 * 3862 * 5] Finally, as both of the unflushed trees were written to our 3863 * new and condensed metaslab space map, we basically flushed 3864 * all the unflushed changes to disk, thus we call 3865 * metaslab_flush_update(). 3866 */ 3867 ASSERT3U(spa_sync_pass(spa), ==, 1); 3868 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3869 3870 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3871 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3872 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3873 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3874 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3875 (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable), 3876 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3877 3878 msp->ms_condense_wanted = B_FALSE; 3879 3880 zfs_range_seg_type_t type; 3881 uint64_t shift, start; 3882 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3883 &start, &shift); 3884 3885 condense_tree = zfs_range_tree_create(NULL, type, NULL, start, shift); 3886 3887 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3888 zfs_range_tree_walk(msp->ms_defer[t], 3889 zfs_range_tree_add, condense_tree); 3890 } 3891 3892 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3893 zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3894 zfs_range_tree_add, condense_tree); 3895 } 3896 3897 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3898 metaslab_unflushed_changes_memused(msp)); 3899 spa->spa_unflushed_stats.sus_memused -= 3900 metaslab_unflushed_changes_memused(msp); 3901 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3902 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3903 3904 /* 3905 * We're about to drop the metaslab's lock thus allowing other 3906 * consumers to change it's content. Set the metaslab's ms_condensing 3907 * flag to ensure that allocations on this metaslab do not occur 3908 * while we're in the middle of committing it to disk. This is only 3909 * critical for ms_allocatable as all other range trees use per TXG 3910 * views of their content. 3911 */ 3912 msp->ms_condensing = B_TRUE; 3913 3914 mutex_exit(&msp->ms_lock); 3915 uint64_t object = space_map_object(msp->ms_sm); 3916 space_map_truncate(sm, 3917 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3918 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3919 3920 /* 3921 * space_map_truncate() may have reallocated the spacemap object. 3922 * If so, update the vdev_ms_array. 3923 */ 3924 if (space_map_object(msp->ms_sm) != object) { 3925 object = space_map_object(msp->ms_sm); 3926 dmu_write(spa->spa_meta_objset, 3927 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3928 msp->ms_id, sizeof (uint64_t), &object, tx); 3929 } 3930 3931 /* 3932 * Note: 3933 * When the log space map feature is enabled, each space map will 3934 * always have ALLOCS followed by FREES for each sync pass. This is 3935 * typically true even when the log space map feature is disabled, 3936 * except from the case where a metaslab goes through metaslab_sync() 3937 * and gets condensed. In that case the metaslab's space map will have 3938 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3939 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3940 * sync pass 1. 3941 */ 3942 zfs_range_tree_t *tmp_tree = zfs_range_tree_create(NULL, type, NULL, 3943 start, shift); 3944 zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3945 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3946 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3947 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3948 3949 zfs_range_tree_vacate(condense_tree, NULL, NULL); 3950 zfs_range_tree_destroy(condense_tree); 3951 zfs_range_tree_vacate(tmp_tree, NULL, NULL); 3952 zfs_range_tree_destroy(tmp_tree); 3953 mutex_enter(&msp->ms_lock); 3954 3955 msp->ms_condensing = B_FALSE; 3956 metaslab_flush_update(msp, tx); 3957 } 3958 3959 static void 3960 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3961 { 3962 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3963 ASSERT(spa_syncing_log_sm(spa) != NULL); 3964 ASSERT(msp->ms_sm != NULL); 3965 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 3966 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 3967 3968 mutex_enter(&spa->spa_flushed_ms_lock); 3969 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3970 metaslab_set_unflushed_dirty(msp, B_TRUE); 3971 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3972 mutex_exit(&spa->spa_flushed_ms_lock); 3973 3974 spa_log_sm_increment_current_mscount(spa); 3975 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3976 } 3977 3978 void 3979 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3980 { 3981 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3982 ASSERT(spa_syncing_log_sm(spa) != NULL); 3983 ASSERT(msp->ms_sm != NULL); 3984 ASSERT(metaslab_unflushed_txg(msp) != 0); 3985 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3986 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 3987 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 3988 3989 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3990 3991 /* update metaslab's position in our flushing tree */ 3992 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3993 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3994 mutex_enter(&spa->spa_flushed_ms_lock); 3995 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3996 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3997 metaslab_set_unflushed_dirty(msp, dirty); 3998 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3999 mutex_exit(&spa->spa_flushed_ms_lock); 4000 4001 /* update metaslab counts of spa_log_sm_t nodes */ 4002 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 4003 spa_log_sm_increment_current_mscount(spa); 4004 4005 /* update log space map summary */ 4006 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 4007 ms_prev_flushed_dirty); 4008 spa_log_summary_add_flushed_metaslab(spa, dirty); 4009 4010 /* cleanup obsolete logs if any */ 4011 spa_cleanup_old_sm_logs(spa, tx); 4012 } 4013 4014 /* 4015 * Called when the metaslab has been flushed (its own spacemap now reflects 4016 * all the contents of the pool-wide spacemap log). Updates the metaslab's 4017 * metadata and any pool-wide related log space map data (e.g. summary, 4018 * obsolete logs, etc..) to reflect that. 4019 */ 4020 static void 4021 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 4022 { 4023 metaslab_group_t *mg = msp->ms_group; 4024 spa_t *spa = mg->mg_vd->vdev_spa; 4025 4026 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4027 4028 ASSERT3U(spa_sync_pass(spa), ==, 1); 4029 4030 /* 4031 * Just because a metaslab got flushed, that doesn't mean that 4032 * it will pass through metaslab_sync_done(). Thus, make sure to 4033 * update ms_synced_length here in case it doesn't. 4034 */ 4035 msp->ms_synced_length = space_map_length(msp->ms_sm); 4036 4037 /* 4038 * We may end up here from metaslab_condense() without the 4039 * feature being active. In that case this is a no-op. 4040 */ 4041 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 4042 metaslab_unflushed_txg(msp) == 0) 4043 return; 4044 4045 metaslab_unflushed_bump(msp, tx, B_FALSE); 4046 } 4047 4048 boolean_t 4049 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 4050 { 4051 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 4052 4053 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4054 ASSERT3U(spa_sync_pass(spa), ==, 1); 4055 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4056 4057 ASSERT(msp->ms_sm != NULL); 4058 ASSERT(metaslab_unflushed_txg(msp) != 0); 4059 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 4060 4061 /* 4062 * There is nothing wrong with flushing the same metaslab twice, as 4063 * this codepath should work on that case. However, the current 4064 * flushing scheme makes sure to avoid this situation as we would be 4065 * making all these calls without having anything meaningful to write 4066 * to disk. We assert this behavior here. 4067 */ 4068 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 4069 4070 /* 4071 * We can not flush while loading, because then we would 4072 * not load the ms_unflushed_{allocs,frees}. 4073 */ 4074 if (msp->ms_loading) 4075 return (B_FALSE); 4076 4077 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4078 metaslab_verify_weight_and_frag(msp); 4079 4080 /* 4081 * Metaslab condensing is effectively flushing. Therefore if the 4082 * metaslab can be condensed we can just condense it instead of 4083 * flushing it. 4084 * 4085 * Note that metaslab_condense() does call metaslab_flush_update() 4086 * so we can just return immediately after condensing. We also 4087 * don't need to care about setting ms_flushing or broadcasting 4088 * ms_flush_cv, even if we temporarily drop the ms_lock in 4089 * metaslab_condense(), as the metaslab is already loaded. 4090 */ 4091 if (msp->ms_loaded && metaslab_should_condense(msp)) { 4092 metaslab_group_t *mg = msp->ms_group; 4093 4094 /* 4095 * For all histogram operations below refer to the 4096 * comments of metaslab_sync() where we follow a 4097 * similar procedure. 4098 */ 4099 metaslab_group_histogram_verify(mg); 4100 metaslab_class_histogram_verify(mg->mg_class); 4101 metaslab_group_histogram_remove(mg, msp); 4102 4103 metaslab_condense(msp, tx); 4104 4105 space_map_histogram_clear(msp->ms_sm); 4106 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4107 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); 4108 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4109 space_map_histogram_add(msp->ms_sm, 4110 msp->ms_defer[t], tx); 4111 } 4112 metaslab_aux_histograms_update(msp); 4113 4114 metaslab_group_histogram_add(mg, msp); 4115 metaslab_group_histogram_verify(mg); 4116 metaslab_class_histogram_verify(mg->mg_class); 4117 4118 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4119 4120 /* 4121 * Since we recreated the histogram (and potentially 4122 * the ms_sm too while condensing) ensure that the 4123 * weight is updated too because we are not guaranteed 4124 * that this metaslab is dirty and will go through 4125 * metaslab_sync_done(). 4126 */ 4127 metaslab_recalculate_weight_and_sort(msp); 4128 return (B_TRUE); 4129 } 4130 4131 msp->ms_flushing = B_TRUE; 4132 uint64_t sm_len_before = space_map_length(msp->ms_sm); 4133 4134 mutex_exit(&msp->ms_lock); 4135 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 4136 SM_NO_VDEVID, tx); 4137 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 4138 SM_NO_VDEVID, tx); 4139 mutex_enter(&msp->ms_lock); 4140 4141 uint64_t sm_len_after = space_map_length(msp->ms_sm); 4142 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 4143 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 4144 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 4145 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 4146 spa_name(spa), 4147 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 4148 (u_longlong_t)msp->ms_id, 4149 (u_longlong_t)zfs_range_tree_space( 4150 msp->ms_unflushed_allocs), 4151 (u_longlong_t)zfs_range_tree_space( 4152 msp->ms_unflushed_frees), 4153 (u_longlong_t)(sm_len_after - sm_len_before)); 4154 } 4155 4156 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4157 metaslab_unflushed_changes_memused(msp)); 4158 spa->spa_unflushed_stats.sus_memused -= 4159 metaslab_unflushed_changes_memused(msp); 4160 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 4161 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 4162 4163 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4164 metaslab_verify_weight_and_frag(msp); 4165 4166 metaslab_flush_update(msp, tx); 4167 4168 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4169 metaslab_verify_weight_and_frag(msp); 4170 4171 msp->ms_flushing = B_FALSE; 4172 cv_broadcast(&msp->ms_flush_cv); 4173 return (B_TRUE); 4174 } 4175 4176 /* 4177 * Write a metaslab to disk in the context of the specified transaction group. 4178 */ 4179 void 4180 metaslab_sync(metaslab_t *msp, uint64_t txg) 4181 { 4182 metaslab_group_t *mg = msp->ms_group; 4183 vdev_t *vd = mg->mg_vd; 4184 spa_t *spa = vd->vdev_spa; 4185 objset_t *mos = spa_meta_objset(spa); 4186 zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 4187 dmu_tx_t *tx; 4188 4189 ASSERT(!vd->vdev_ishole); 4190 4191 /* 4192 * This metaslab has just been added so there's no work to do now. 4193 */ 4194 if (msp->ms_new) { 4195 ASSERT0(zfs_range_tree_space(alloctree)); 4196 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4197 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 4198 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4199 ASSERT0(zfs_range_tree_space(msp->ms_trim)); 4200 return; 4201 } 4202 4203 /* 4204 * Normally, we don't want to process a metaslab if there are no 4205 * allocations or frees to perform. However, if the metaslab is being 4206 * forced to condense, it's loaded and we're not beyond the final 4207 * dirty txg, we need to let it through. Not condensing beyond the 4208 * final dirty txg prevents an issue where metaslabs that need to be 4209 * condensed but were loaded for other reasons could cause a panic 4210 * here. By only checking the txg in that branch of the conditional, 4211 * we preserve the utility of the VERIFY statements in all other 4212 * cases. 4213 */ 4214 if (zfs_range_tree_is_empty(alloctree) && 4215 zfs_range_tree_is_empty(msp->ms_freeing) && 4216 zfs_range_tree_is_empty(msp->ms_checkpointing) && 4217 !(msp->ms_loaded && msp->ms_condense_wanted && 4218 txg <= spa_final_dirty_txg(spa))) 4219 return; 4220 4221 4222 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4223 4224 /* 4225 * The only state that can actually be changing concurrently 4226 * with metaslab_sync() is the metaslab's ms_allocatable. No 4227 * other thread can be modifying this txg's alloc, freeing, 4228 * freed, or space_map_phys_t. We drop ms_lock whenever we 4229 * could call into the DMU, because the DMU can call down to 4230 * us (e.g. via zio_free()) at any time. 4231 * 4232 * The spa_vdev_remove_thread() can be reading metaslab state 4233 * concurrently, and it is locked out by the ms_sync_lock. 4234 * Note that the ms_lock is insufficient for this, because it 4235 * is dropped by space_map_write(). 4236 */ 4237 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4238 4239 /* 4240 * Generate a log space map if one doesn't exist already. 4241 */ 4242 spa_generate_syncing_log_sm(spa, tx); 4243 4244 if (msp->ms_sm == NULL) { 4245 uint64_t new_object = space_map_alloc(mos, 4246 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4247 zfs_metaslab_sm_blksz_with_log : 4248 zfs_metaslab_sm_blksz_no_log, tx); 4249 VERIFY3U(new_object, !=, 0); 4250 4251 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4252 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4253 4254 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4255 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4256 ASSERT(msp->ms_sm != NULL); 4257 4258 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 4259 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 4260 ASSERT0(metaslab_allocated_space(msp)); 4261 } 4262 4263 if (!zfs_range_tree_is_empty(msp->ms_checkpointing) && 4264 vd->vdev_checkpoint_sm == NULL) { 4265 ASSERT(spa_has_checkpoint(spa)); 4266 4267 uint64_t new_object = space_map_alloc(mos, 4268 zfs_vdev_standard_sm_blksz, tx); 4269 VERIFY3U(new_object, !=, 0); 4270 4271 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4272 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4273 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4274 4275 /* 4276 * We save the space map object as an entry in vdev_top_zap 4277 * so it can be retrieved when the pool is reopened after an 4278 * export or through zdb. 4279 */ 4280 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4281 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4282 sizeof (new_object), 1, &new_object, tx)); 4283 } 4284 4285 mutex_enter(&msp->ms_sync_lock); 4286 mutex_enter(&msp->ms_lock); 4287 4288 /* 4289 * Note: metaslab_condense() clears the space map's histogram. 4290 * Therefore we must verify and remove this histogram before 4291 * condensing. 4292 */ 4293 metaslab_group_histogram_verify(mg); 4294 metaslab_class_histogram_verify(mg->mg_class); 4295 metaslab_group_histogram_remove(mg, msp); 4296 4297 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4298 metaslab_should_condense(msp)) 4299 metaslab_condense(msp, tx); 4300 4301 /* 4302 * We'll be going to disk to sync our space accounting, thus we 4303 * drop the ms_lock during that time so allocations coming from 4304 * open-context (ZIL) for future TXGs do not block. 4305 */ 4306 mutex_exit(&msp->ms_lock); 4307 space_map_t *log_sm = spa_syncing_log_sm(spa); 4308 if (log_sm != NULL) { 4309 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4310 if (metaslab_unflushed_txg(msp) == 0) 4311 metaslab_unflushed_add(msp, tx); 4312 else if (!metaslab_unflushed_dirty(msp)) 4313 metaslab_unflushed_bump(msp, tx, B_TRUE); 4314 4315 space_map_write(log_sm, alloctree, SM_ALLOC, 4316 vd->vdev_id, tx); 4317 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4318 vd->vdev_id, tx); 4319 mutex_enter(&msp->ms_lock); 4320 4321 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4322 metaslab_unflushed_changes_memused(msp)); 4323 spa->spa_unflushed_stats.sus_memused -= 4324 metaslab_unflushed_changes_memused(msp); 4325 zfs_range_tree_remove_xor_add(alloctree, 4326 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4327 zfs_range_tree_remove_xor_add(msp->ms_freeing, 4328 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4329 spa->spa_unflushed_stats.sus_memused += 4330 metaslab_unflushed_changes_memused(msp); 4331 } else { 4332 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4333 4334 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4335 SM_NO_VDEVID, tx); 4336 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4337 SM_NO_VDEVID, tx); 4338 mutex_enter(&msp->ms_lock); 4339 } 4340 4341 msp->ms_allocated_space += zfs_range_tree_space(alloctree); 4342 ASSERT3U(msp->ms_allocated_space, >=, 4343 zfs_range_tree_space(msp->ms_freeing)); 4344 msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing); 4345 4346 if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) { 4347 ASSERT(spa_has_checkpoint(spa)); 4348 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4349 4350 /* 4351 * Since we are doing writes to disk and the ms_checkpointing 4352 * tree won't be changing during that time, we drop the 4353 * ms_lock while writing to the checkpoint space map, for the 4354 * same reason mentioned above. 4355 */ 4356 mutex_exit(&msp->ms_lock); 4357 space_map_write(vd->vdev_checkpoint_sm, 4358 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4359 mutex_enter(&msp->ms_lock); 4360 4361 spa->spa_checkpoint_info.sci_dspace += 4362 zfs_range_tree_space(msp->ms_checkpointing); 4363 vd->vdev_stat.vs_checkpoint_space += 4364 zfs_range_tree_space(msp->ms_checkpointing); 4365 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4366 -space_map_allocated(vd->vdev_checkpoint_sm)); 4367 4368 zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4369 } 4370 4371 if (msp->ms_loaded) { 4372 /* 4373 * When the space map is loaded, we have an accurate 4374 * histogram in the range tree. This gives us an opportunity 4375 * to bring the space map's histogram up-to-date so we clear 4376 * it first before updating it. 4377 */ 4378 space_map_histogram_clear(msp->ms_sm); 4379 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4380 4381 /* 4382 * Since we've cleared the histogram we need to add back 4383 * any free space that has already been processed, plus 4384 * any deferred space. This allows the on-disk histogram 4385 * to accurately reflect all free space even if some space 4386 * is not yet available for allocation (i.e. deferred). 4387 */ 4388 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4389 4390 /* 4391 * Add back any deferred free space that has not been 4392 * added back into the in-core free tree yet. This will 4393 * ensure that we don't end up with a space map histogram 4394 * that is completely empty unless the metaslab is fully 4395 * allocated. 4396 */ 4397 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4398 space_map_histogram_add(msp->ms_sm, 4399 msp->ms_defer[t], tx); 4400 } 4401 } 4402 4403 /* 4404 * Always add the free space from this sync pass to the space 4405 * map histogram. We want to make sure that the on-disk histogram 4406 * accounts for all free space. If the space map is not loaded, 4407 * then we will lose some accuracy but will correct it the next 4408 * time we load the space map. 4409 */ 4410 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4411 metaslab_aux_histograms_update(msp); 4412 4413 metaslab_group_histogram_add(mg, msp); 4414 metaslab_group_histogram_verify(mg); 4415 metaslab_class_histogram_verify(mg->mg_class); 4416 4417 /* 4418 * For sync pass 1, we avoid traversing this txg's free range tree 4419 * and instead will just swap the pointers for freeing and freed. 4420 * We can safely do this since the freed_tree is guaranteed to be 4421 * empty on the initial pass. 4422 * 4423 * Keep in mind that even if we are currently using a log spacemap 4424 * we want current frees to end up in the ms_allocatable (but not 4425 * get appended to the ms_sm) so their ranges can be reused as usual. 4426 */ 4427 if (spa_sync_pass(spa) == 1) { 4428 zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4429 ASSERT0(msp->ms_allocated_this_txg); 4430 } else { 4431 zfs_range_tree_vacate(msp->ms_freeing, 4432 zfs_range_tree_add, msp->ms_freed); 4433 } 4434 msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree); 4435 zfs_range_tree_vacate(alloctree, NULL, NULL); 4436 4437 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4438 ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4439 & TXG_MASK])); 4440 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4441 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4442 4443 mutex_exit(&msp->ms_lock); 4444 4445 /* 4446 * Verify that the space map object ID has been recorded in the 4447 * vdev_ms_array. 4448 */ 4449 uint64_t object; 4450 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4451 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4452 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4453 4454 mutex_exit(&msp->ms_sync_lock); 4455 dmu_tx_commit(tx); 4456 } 4457 4458 static void 4459 metaslab_evict(metaslab_t *msp, uint64_t txg) 4460 { 4461 if (!msp->ms_loaded || msp->ms_disabled != 0) 4462 return; 4463 4464 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4465 VERIFY0(zfs_range_tree_space( 4466 msp->ms_allocating[(txg + t) & TXG_MASK])); 4467 } 4468 if (msp->ms_allocator != -1) 4469 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4470 4471 if (!metaslab_debug_unload) 4472 metaslab_unload(msp); 4473 } 4474 4475 /* 4476 * Called after a transaction group has completely synced to mark 4477 * all of the metaslab's free space as usable. 4478 */ 4479 void 4480 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4481 { 4482 metaslab_group_t *mg = msp->ms_group; 4483 vdev_t *vd = mg->mg_vd; 4484 spa_t *spa = vd->vdev_spa; 4485 zfs_range_tree_t **defer_tree; 4486 int64_t alloc_delta, defer_delta; 4487 boolean_t defer_allowed = B_TRUE; 4488 4489 ASSERT(!vd->vdev_ishole); 4490 4491 mutex_enter(&msp->ms_lock); 4492 4493 if (msp->ms_new) { 4494 /* this is a new metaslab, add its capacity to the vdev */ 4495 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4496 4497 /* there should be no allocations nor frees at this point */ 4498 VERIFY0(msp->ms_allocated_this_txg); 4499 VERIFY0(zfs_range_tree_space(msp->ms_freed)); 4500 } 4501 4502 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4503 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4504 4505 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4506 4507 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4508 metaslab_class_get_alloc(spa_normal_class(spa)); 4509 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing || 4510 vd->vdev_rz_expanding) { 4511 defer_allowed = B_FALSE; 4512 } 4513 4514 defer_delta = 0; 4515 alloc_delta = msp->ms_allocated_this_txg - 4516 zfs_range_tree_space(msp->ms_freed); 4517 4518 if (defer_allowed) { 4519 defer_delta = zfs_range_tree_space(msp->ms_freed) - 4520 zfs_range_tree_space(*defer_tree); 4521 } else { 4522 defer_delta -= zfs_range_tree_space(*defer_tree); 4523 } 4524 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4525 defer_delta, 0); 4526 4527 if (spa_syncing_log_sm(spa) == NULL) { 4528 /* 4529 * If there's a metaslab_load() in progress and we don't have 4530 * a log space map, it means that we probably wrote to the 4531 * metaslab's space map. If this is the case, we need to 4532 * make sure that we wait for the load to complete so that we 4533 * have a consistent view at the in-core side of the metaslab. 4534 */ 4535 metaslab_load_wait(msp); 4536 } else { 4537 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4538 } 4539 4540 /* 4541 * When auto-trimming is enabled, free ranges which are added to 4542 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4543 * periodically consumed by the vdev_autotrim_thread() which issues 4544 * trims for all ranges and then vacates the tree. The ms_trim tree 4545 * can be discarded at any time with the sole consequence of recent 4546 * frees not being trimmed. 4547 */ 4548 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4549 zfs_range_tree_walk(*defer_tree, zfs_range_tree_add, 4550 msp->ms_trim); 4551 if (!defer_allowed) { 4552 zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add, 4553 msp->ms_trim); 4554 } 4555 } else { 4556 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL); 4557 } 4558 4559 /* 4560 * Move the frees from the defer_tree back to the free 4561 * range tree (if it's loaded). Swap the freed_tree and 4562 * the defer_tree -- this is safe to do because we've 4563 * just emptied out the defer_tree. 4564 */ 4565 zfs_range_tree_vacate(*defer_tree, 4566 msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable); 4567 if (defer_allowed) { 4568 zfs_range_tree_swap(&msp->ms_freed, defer_tree); 4569 } else { 4570 zfs_range_tree_vacate(msp->ms_freed, 4571 msp->ms_loaded ? zfs_range_tree_add : NULL, 4572 msp->ms_allocatable); 4573 } 4574 4575 msp->ms_synced_length = space_map_length(msp->ms_sm); 4576 4577 msp->ms_deferspace += defer_delta; 4578 ASSERT3S(msp->ms_deferspace, >=, 0); 4579 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4580 if (msp->ms_deferspace != 0) { 4581 /* 4582 * Keep syncing this metaslab until all deferred frees 4583 * are back in circulation. 4584 */ 4585 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4586 } 4587 metaslab_aux_histograms_update_done(msp, defer_allowed); 4588 4589 if (msp->ms_new) { 4590 msp->ms_new = B_FALSE; 4591 mutex_enter(&mg->mg_lock); 4592 mg->mg_ms_ready++; 4593 mutex_exit(&mg->mg_lock); 4594 } 4595 4596 /* 4597 * Re-sort metaslab within its group now that we've adjusted 4598 * its allocatable space. 4599 */ 4600 metaslab_recalculate_weight_and_sort(msp); 4601 4602 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4603 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4604 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 4605 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4606 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4607 msp->ms_allocated_this_txg = 0; 4608 mutex_exit(&msp->ms_lock); 4609 } 4610 4611 void 4612 metaslab_sync_reassess(metaslab_group_t *mg) 4613 { 4614 spa_t *spa = mg->mg_class->mc_spa; 4615 4616 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4617 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4618 metaslab_group_alloc_update(mg); 4619 4620 /* 4621 * Preload the next potential metaslabs but only on active 4622 * metaslab groups. We can get into a state where the metaslab 4623 * is no longer active since we dirty metaslabs as we remove a 4624 * a device, thus potentially making the metaslab group eligible 4625 * for preloading. 4626 */ 4627 if (mg->mg_activation_count > 0) { 4628 metaslab_group_preload(mg); 4629 } 4630 spa_config_exit(spa, SCL_ALLOC, FTAG); 4631 } 4632 4633 /* 4634 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4635 * the same vdev as an existing DVA of this BP, then try to allocate it 4636 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4637 */ 4638 static boolean_t 4639 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4640 { 4641 uint64_t dva_ms_id; 4642 4643 if (DVA_GET_ASIZE(dva) == 0) 4644 return (B_TRUE); 4645 4646 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4647 return (B_TRUE); 4648 4649 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4650 4651 return (msp->ms_id != dva_ms_id); 4652 } 4653 4654 /* 4655 * ========================================================================== 4656 * Metaslab allocation tracing facility 4657 * ========================================================================== 4658 */ 4659 4660 /* 4661 * Add an allocation trace element to the allocation tracing list. 4662 */ 4663 static void 4664 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4665 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4666 int allocator) 4667 { 4668 metaslab_alloc_trace_t *mat; 4669 4670 if (!metaslab_trace_enabled) 4671 return; 4672 4673 /* 4674 * When the tracing list reaches its maximum we remove 4675 * the second element in the list before adding a new one. 4676 * By removing the second element we preserve the original 4677 * entry as a clue to what allocations steps have already been 4678 * performed. 4679 */ 4680 if (zal->zal_size == metaslab_trace_max_entries) { 4681 metaslab_alloc_trace_t *mat_next; 4682 #ifdef ZFS_DEBUG 4683 panic("too many entries in allocation list"); 4684 #endif 4685 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4686 zal->zal_size--; 4687 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4688 list_remove(&zal->zal_list, mat_next); 4689 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4690 } 4691 4692 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4693 list_link_init(&mat->mat_list_node); 4694 mat->mat_mg = mg; 4695 mat->mat_msp = msp; 4696 mat->mat_size = psize; 4697 mat->mat_dva_id = dva_id; 4698 mat->mat_offset = offset; 4699 mat->mat_weight = 0; 4700 mat->mat_allocator = allocator; 4701 4702 if (msp != NULL) 4703 mat->mat_weight = msp->ms_weight; 4704 4705 /* 4706 * The list is part of the zio so locking is not required. Only 4707 * a single thread will perform allocations for a given zio. 4708 */ 4709 list_insert_tail(&zal->zal_list, mat); 4710 zal->zal_size++; 4711 4712 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4713 } 4714 4715 void 4716 metaslab_trace_move(zio_alloc_list_t *old, zio_alloc_list_t *new) 4717 { 4718 ASSERT0(new->zal_size); 4719 list_move_tail(&new->zal_list, &old->zal_list); 4720 new->zal_size = old->zal_size; 4721 list_destroy(&old->zal_list); 4722 } 4723 4724 void 4725 metaslab_trace_init(zio_alloc_list_t *zal) 4726 { 4727 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4728 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4729 zal->zal_size = 0; 4730 } 4731 4732 void 4733 metaslab_trace_fini(zio_alloc_list_t *zal) 4734 { 4735 metaslab_alloc_trace_t *mat; 4736 4737 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4738 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4739 list_destroy(&zal->zal_list); 4740 zal->zal_size = 0; 4741 } 4742 4743 /* 4744 * ========================================================================== 4745 * Metaslab block operations 4746 * ========================================================================== 4747 */ 4748 4749 static void 4750 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, int allocator, 4751 int flags, uint64_t psize, const void *tag) 4752 { 4753 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL) 4754 return; 4755 4756 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4757 if (!mg->mg_class->mc_alloc_throttle_enabled) 4758 return; 4759 4760 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4761 (void) zfs_refcount_add_many(&mga->mga_queue_depth, psize, tag); 4762 } 4763 4764 void 4765 metaslab_group_alloc_increment_all(spa_t *spa, blkptr_t *bp, int allocator, 4766 int flags, uint64_t psize, const void *tag) 4767 { 4768 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4769 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[d]); 4770 metaslab_group_alloc_increment(spa, vdev, allocator, flags, 4771 psize, tag); 4772 } 4773 } 4774 4775 void 4776 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, int allocator, 4777 int flags, uint64_t psize, const void *tag) 4778 { 4779 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL) 4780 return; 4781 4782 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4783 if (!mg->mg_class->mc_alloc_throttle_enabled) 4784 return; 4785 4786 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4787 (void) zfs_refcount_remove_many(&mga->mga_queue_depth, psize, tag); 4788 } 4789 4790 static uint64_t 4791 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 4792 uint64_t txg, uint64_t *actual_size) 4793 { 4794 uint64_t start; 4795 zfs_range_tree_t *rt = msp->ms_allocatable; 4796 metaslab_class_t *mc = msp->ms_group->mg_class; 4797 4798 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4799 VERIFY(!msp->ms_condensing); 4800 VERIFY0(msp->ms_disabled); 4801 VERIFY0(msp->ms_new); 4802 4803 start = mc->mc_ops->msop_alloc(msp, size, max_size, actual_size); 4804 if (start != -1ULL) { 4805 size = *actual_size; 4806 metaslab_group_t *mg = msp->ms_group; 4807 vdev_t *vd = mg->mg_vd; 4808 4809 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4810 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4811 VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size); 4812 zfs_range_tree_remove(rt, start, size); 4813 zfs_range_tree_clear(msp->ms_trim, start, size); 4814 4815 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4816 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4817 4818 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, 4819 size); 4820 msp->ms_allocating_total += size; 4821 4822 /* Track the last successful allocation */ 4823 msp->ms_alloc_txg = txg; 4824 metaslab_verify_space(msp, txg); 4825 } 4826 4827 /* 4828 * Now that we've attempted the allocation we need to update the 4829 * metaslab's maximum block size since it may have changed. 4830 */ 4831 msp->ms_max_size = metaslab_largest_allocatable(msp); 4832 return (start); 4833 } 4834 4835 /* 4836 * Find the metaslab with the highest weight that is less than what we've 4837 * already tried. In the common case, this means that we will examine each 4838 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4839 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4840 * activated by another thread, and we fail to allocate from the metaslab we 4841 * have selected, we may not try the newly-activated metaslab, and instead 4842 * activate another metaslab. This is not optimal, but generally does not cause 4843 * any problems (a possible exception being if every metaslab is completely full 4844 * except for the newly-activated metaslab which we fail to examine). 4845 */ 4846 static metaslab_t * 4847 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4848 dva_t *dva, int d, uint64_t asize, int allocator, 4849 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4850 boolean_t *was_active) 4851 { 4852 avl_index_t idx; 4853 avl_tree_t *t = &mg->mg_metaslab_tree; 4854 metaslab_t *msp = avl_find(t, search, &idx); 4855 if (msp == NULL) 4856 msp = avl_nearest(t, idx, AVL_AFTER); 4857 4858 uint_t tries = 0; 4859 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4860 int i; 4861 4862 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4863 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4864 return (NULL); 4865 } 4866 tries++; 4867 4868 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4869 metaslab_trace_add(zal, mg, msp, asize, d, 4870 TRACE_TOO_SMALL, allocator); 4871 continue; 4872 } 4873 4874 /* 4875 * If the selected metaslab is condensing or disabled, or 4876 * hasn't gone through a metaslab_sync_done(), then skip it. 4877 */ 4878 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new) 4879 continue; 4880 4881 *was_active = msp->ms_allocator != -1; 4882 /* 4883 * If we're activating as primary, this is our first allocation 4884 * from this disk, so we don't need to check how close we are. 4885 * If the metaslab under consideration was already active, 4886 * we're getting desperate enough to steal another allocator's 4887 * metaslab, so we still don't care about distances. 4888 */ 4889 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4890 break; 4891 4892 if (!try_hard) { 4893 for (i = 0; i < d; i++) { 4894 if (!metaslab_is_unique(msp, &dva[i])) 4895 break; /* try another metaslab */ 4896 } 4897 if (i == d) 4898 break; 4899 } 4900 } 4901 4902 if (msp != NULL) { 4903 search->ms_weight = msp->ms_weight; 4904 search->ms_start = msp->ms_start + 1; 4905 search->ms_allocator = msp->ms_allocator; 4906 search->ms_primary = msp->ms_primary; 4907 } 4908 return (msp); 4909 } 4910 4911 static void 4912 metaslab_active_mask_verify(metaslab_t *msp) 4913 { 4914 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4915 4916 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4917 return; 4918 4919 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4920 return; 4921 4922 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4923 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4924 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4925 VERIFY3S(msp->ms_allocator, !=, -1); 4926 VERIFY(msp->ms_primary); 4927 return; 4928 } 4929 4930 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4931 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4932 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4933 VERIFY3S(msp->ms_allocator, !=, -1); 4934 VERIFY(!msp->ms_primary); 4935 return; 4936 } 4937 4938 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4939 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4940 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4941 VERIFY3S(msp->ms_allocator, ==, -1); 4942 return; 4943 } 4944 } 4945 4946 static uint64_t 4947 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 4948 uint64_t asize, uint64_t max_asize, uint64_t txg, 4949 dva_t *dva, int d, int allocator, boolean_t try_hard, 4950 uint64_t *actual_asize) 4951 { 4952 metaslab_t *msp = NULL; 4953 uint64_t offset = -1ULL; 4954 4955 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4956 for (int i = 0; i < d; i++) { 4957 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4958 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4959 activation_weight = METASLAB_WEIGHT_SECONDARY; 4960 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4961 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4962 activation_weight = METASLAB_WEIGHT_CLAIM; 4963 break; 4964 } 4965 } 4966 4967 /* 4968 * If we don't have enough metaslabs active, we just use the 0th slot. 4969 */ 4970 if (allocator >= mg->mg_ms_ready / 3) 4971 allocator = 0; 4972 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4973 4974 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4975 4976 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4977 search->ms_weight = UINT64_MAX; 4978 search->ms_start = 0; 4979 /* 4980 * At the end of the metaslab tree are the already-active metaslabs, 4981 * first the primaries, then the secondaries. When we resume searching 4982 * through the tree, we need to consider ms_allocator and ms_primary so 4983 * we start in the location right after where we left off, and don't 4984 * accidentally loop forever considering the same metaslabs. 4985 */ 4986 search->ms_allocator = -1; 4987 search->ms_primary = B_TRUE; 4988 for (;;) { 4989 boolean_t was_active = B_FALSE; 4990 4991 mutex_enter(&mg->mg_lock); 4992 4993 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4994 mga->mga_primary != NULL) { 4995 msp = mga->mga_primary; 4996 4997 /* 4998 * Even though we don't hold the ms_lock for the 4999 * primary metaslab, those fields should not 5000 * change while we hold the mg_lock. Thus it is 5001 * safe to make assertions on them. 5002 */ 5003 ASSERT(msp->ms_primary); 5004 ASSERT3S(msp->ms_allocator, ==, allocator); 5005 ASSERT(msp->ms_loaded); 5006 5007 was_active = B_TRUE; 5008 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5009 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 5010 mga->mga_secondary != NULL) { 5011 msp = mga->mga_secondary; 5012 5013 /* 5014 * See comment above about the similar assertions 5015 * for the primary metaslab. 5016 */ 5017 ASSERT(!msp->ms_primary); 5018 ASSERT3S(msp->ms_allocator, ==, allocator); 5019 ASSERT(msp->ms_loaded); 5020 5021 was_active = B_TRUE; 5022 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5023 } else { 5024 msp = find_valid_metaslab(mg, activation_weight, dva, d, 5025 asize, allocator, try_hard, zal, search, 5026 &was_active); 5027 } 5028 5029 mutex_exit(&mg->mg_lock); 5030 if (msp == NULL) 5031 break; 5032 mutex_enter(&msp->ms_lock); 5033 5034 metaslab_active_mask_verify(msp); 5035 5036 /* 5037 * This code is disabled out because of issues with 5038 * tracepoints in non-gpl kernel modules. 5039 */ 5040 #if 0 5041 DTRACE_PROBE3(ms__activation__attempt, 5042 metaslab_t *, msp, uint64_t, activation_weight, 5043 boolean_t, was_active); 5044 #endif 5045 5046 /* 5047 * Ensure that the metaslab we have selected is still 5048 * capable of handling our request. It's possible that 5049 * another thread may have changed the weight while we 5050 * were blocked on the metaslab lock. We check the 5051 * active status first to see if we need to set_selected_txg 5052 * a new metaslab. 5053 */ 5054 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 5055 ASSERT3S(msp->ms_allocator, ==, -1); 5056 mutex_exit(&msp->ms_lock); 5057 continue; 5058 } 5059 5060 /* 5061 * If the metaslab was activated for another allocator 5062 * while we were waiting in the ms_lock above, or it's 5063 * a primary and we're seeking a secondary (or vice versa), 5064 * we go back and select a new metaslab. 5065 */ 5066 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 5067 (msp->ms_allocator != -1) && 5068 (msp->ms_allocator != allocator || ((activation_weight == 5069 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 5070 ASSERT(msp->ms_loaded); 5071 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 5072 msp->ms_allocator != -1); 5073 mutex_exit(&msp->ms_lock); 5074 continue; 5075 } 5076 5077 /* 5078 * This metaslab was used for claiming regions allocated 5079 * by the ZIL during pool import. Once these regions are 5080 * claimed we don't need to keep the CLAIM bit set 5081 * anymore. Passivate this metaslab to zero its activation 5082 * mask. 5083 */ 5084 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 5085 activation_weight != METASLAB_WEIGHT_CLAIM) { 5086 ASSERT(msp->ms_loaded); 5087 ASSERT3S(msp->ms_allocator, ==, -1); 5088 metaslab_passivate(msp, msp->ms_weight & 5089 ~METASLAB_WEIGHT_CLAIM); 5090 mutex_exit(&msp->ms_lock); 5091 continue; 5092 } 5093 5094 metaslab_set_selected_txg(msp, txg); 5095 5096 int activation_error = 5097 metaslab_activate(msp, allocator, activation_weight); 5098 metaslab_active_mask_verify(msp); 5099 5100 /* 5101 * If the metaslab was activated by another thread for 5102 * another allocator or activation_weight (EBUSY), or it 5103 * failed because another metaslab was assigned as primary 5104 * for this allocator (EEXIST) we continue using this 5105 * metaslab for our allocation, rather than going on to a 5106 * worse metaslab (we waited for that metaslab to be loaded 5107 * after all). 5108 * 5109 * If the activation failed due to an I/O error or ENOSPC we 5110 * skip to the next metaslab. 5111 */ 5112 boolean_t activated; 5113 if (activation_error == 0) { 5114 activated = B_TRUE; 5115 } else if (activation_error == EBUSY || 5116 activation_error == EEXIST) { 5117 activated = B_FALSE; 5118 } else { 5119 mutex_exit(&msp->ms_lock); 5120 continue; 5121 } 5122 ASSERT(msp->ms_loaded); 5123 5124 /* 5125 * Now that we have the lock, recheck to see if we should 5126 * continue to use this metaslab for this allocation. The 5127 * the metaslab is now loaded so metaslab_should_allocate() 5128 * can accurately determine if the allocation attempt should 5129 * proceed. 5130 */ 5131 if (!metaslab_should_allocate(msp, asize, try_hard)) { 5132 /* Passivate this metaslab and select a new one. */ 5133 metaslab_trace_add(zal, mg, msp, asize, d, 5134 TRACE_TOO_SMALL, allocator); 5135 goto next; 5136 } 5137 5138 /* 5139 * If this metaslab is currently condensing then pick again 5140 * as we can't manipulate this metaslab until it's committed 5141 * to disk. If this metaslab is being initialized, we shouldn't 5142 * allocate from it since the allocated region might be 5143 * overwritten after allocation. 5144 */ 5145 if (msp->ms_condensing) { 5146 metaslab_trace_add(zal, mg, msp, asize, d, 5147 TRACE_CONDENSING, allocator); 5148 if (activated) { 5149 metaslab_passivate(msp, msp->ms_weight & 5150 ~METASLAB_ACTIVE_MASK); 5151 } 5152 mutex_exit(&msp->ms_lock); 5153 continue; 5154 } else if (msp->ms_disabled > 0) { 5155 metaslab_trace_add(zal, mg, msp, asize, d, 5156 TRACE_DISABLED, allocator); 5157 if (activated) { 5158 metaslab_passivate(msp, msp->ms_weight & 5159 ~METASLAB_ACTIVE_MASK); 5160 } 5161 mutex_exit(&msp->ms_lock); 5162 continue; 5163 } 5164 5165 offset = metaslab_block_alloc(msp, asize, max_asize, txg, 5166 actual_asize); 5167 5168 if (offset != -1ULL) { 5169 metaslab_trace_add(zal, mg, msp, *actual_asize, d, 5170 offset, allocator); 5171 /* Proactively passivate the metaslab, if needed */ 5172 if (activated) 5173 metaslab_segment_may_passivate(msp); 5174 mutex_exit(&msp->ms_lock); 5175 break; 5176 } 5177 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 5178 next: 5179 ASSERT(msp->ms_loaded); 5180 5181 /* 5182 * This code is disabled out because of issues with 5183 * tracepoints in non-gpl kernel modules. 5184 */ 5185 #if 0 5186 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 5187 uint64_t, asize); 5188 #endif 5189 5190 /* 5191 * We were unable to allocate from this metaslab so determine 5192 * a new weight for this metaslab. Now that we have loaded 5193 * the metaslab we can provide a better hint to the metaslab 5194 * selector. 5195 * 5196 * For space-based metaslabs, we use the maximum block size. 5197 * This information is only available when the metaslab 5198 * is loaded and is more accurate than the generic free 5199 * space weight that was calculated by metaslab_weight(). 5200 * This information allows us to quickly compare the maximum 5201 * available allocation in the metaslab to the allocation 5202 * size being requested. 5203 * 5204 * For segment-based metaslabs, determine the new weight 5205 * based on the highest bucket in the range tree. We 5206 * explicitly use the loaded segment weight (i.e. the range 5207 * tree histogram) since it contains the space that is 5208 * currently available for allocation and is accurate 5209 * even within a sync pass. 5210 */ 5211 uint64_t weight; 5212 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5213 weight = metaslab_largest_allocatable(msp); 5214 WEIGHT_SET_SPACEBASED(weight); 5215 } else { 5216 weight = metaslab_weight_from_range_tree(msp); 5217 } 5218 5219 if (activated) { 5220 metaslab_passivate(msp, weight); 5221 } else { 5222 /* 5223 * For the case where we use the metaslab that is 5224 * active for another allocator we want to make 5225 * sure that we retain the activation mask. 5226 * 5227 * Note that we could attempt to use something like 5228 * metaslab_recalculate_weight_and_sort() that 5229 * retains the activation mask here. That function 5230 * uses metaslab_weight() to set the weight though 5231 * which is not as accurate as the calculations 5232 * above. 5233 */ 5234 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5235 metaslab_group_sort(mg, msp, weight); 5236 } 5237 metaslab_active_mask_verify(msp); 5238 5239 /* 5240 * We have just failed an allocation attempt, check 5241 * that metaslab_should_allocate() agrees. Otherwise, 5242 * we may end up in an infinite loop retrying the same 5243 * metaslab. 5244 */ 5245 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5246 5247 mutex_exit(&msp->ms_lock); 5248 } 5249 kmem_free(search, sizeof (*search)); 5250 5251 if (offset == -1ULL) { 5252 metaslab_trace_add(zal, mg, NULL, asize, d, 5253 TRACE_GROUP_FAILURE, allocator); 5254 if (asize <= vdev_get_min_alloc(mg->mg_vd)) { 5255 /* 5256 * This metaslab group was unable to allocate 5257 * the minimum block size so it must be out of 5258 * space. Notify the allocation throttle to 5259 * skip allocation attempts to this group until 5260 * more space becomes available. 5261 */ 5262 mg->mg_no_free_space = B_TRUE; 5263 } 5264 } 5265 return (offset); 5266 } 5267 5268 static boolean_t 5269 metaslab_group_allocatable(spa_t *spa, metaslab_group_t *mg, uint64_t psize, 5270 int d, int flags, boolean_t try_hard, zio_alloc_list_t *zal, int allocator) 5271 { 5272 metaslab_class_t *mc = mg->mg_class; 5273 vdev_t *vd = mg->mg_vd; 5274 boolean_t allocatable; 5275 5276 /* 5277 * Don't allocate from faulted devices. 5278 */ 5279 if (try_hard) 5280 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5281 allocatable = vdev_allocatable(vd); 5282 if (try_hard) 5283 spa_config_exit(spa, SCL_ZIO, FTAG); 5284 if (!allocatable) { 5285 metaslab_trace_add(zal, mg, NULL, psize, d, 5286 TRACE_NOT_ALLOCATABLE, allocator); 5287 return (B_FALSE); 5288 } 5289 5290 if (!try_hard) { 5291 /* 5292 * Avoid vdevs with too little space or too fragmented. 5293 */ 5294 if (!GANG_ALLOCATION(flags) && (mg->mg_no_free_space || 5295 (!mg->mg_allocatable && mc->mc_alloc_groups > 0))) { 5296 metaslab_trace_add(zal, mg, NULL, psize, d, 5297 TRACE_NOT_ALLOCATABLE, allocator); 5298 return (B_FALSE); 5299 } 5300 5301 /* 5302 * Avoid writing single-copy data to an unhealthy, 5303 * non-redundant vdev. 5304 */ 5305 if (d == 0 && vd->vdev_state < VDEV_STATE_HEALTHY && 5306 vd->vdev_children == 0) { 5307 metaslab_trace_add(zal, mg, NULL, psize, d, 5308 TRACE_VDEV_ERROR, allocator); 5309 return (B_FALSE); 5310 } 5311 } 5312 5313 return (B_TRUE); 5314 } 5315 5316 static int 5317 metaslab_alloc_dva_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5318 uint64_t max_psize, dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, 5319 int flags, zio_alloc_list_t *zal, int allocator, uint64_t *actual_psize) 5320 { 5321 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5322 metaslab_group_t *mg = NULL, *rotor; 5323 vdev_t *vd; 5324 boolean_t try_hard = B_FALSE; 5325 5326 ASSERT(!DVA_IS_VALID(&dva[d])); 5327 5328 /* 5329 * For testing, make some blocks above a certain size be gang blocks. 5330 * This will result in more split blocks when using device removal, 5331 * and a large number of split blocks coupled with ztest-induced 5332 * damage can result in extremely long reconstruction times. This 5333 * will also test spilling from special to normal. 5334 */ 5335 if (psize >= metaslab_force_ganging && 5336 metaslab_force_ganging_pct > 0 && 5337 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5338 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5339 allocator); 5340 return (SET_ERROR(ENOSPC)); 5341 } 5342 if (max_psize > psize && max_psize >= metaslab_force_ganging && 5343 metaslab_force_ganging_pct > 0 && 5344 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5345 max_psize = MAX((psize + max_psize) / 2, 5346 metaslab_force_ganging); 5347 } 5348 ASSERT3U(psize, <=, max_psize); 5349 5350 /* 5351 * Start at the rotor and loop through all mgs until we find something. 5352 * Note that there's no locking on mca_rotor or mca_aliquot because 5353 * nothing actually breaks if we miss a few updates -- we just won't 5354 * allocate quite as evenly. It all balances out over time. 5355 * 5356 * If we are doing ditto or log blocks, try to spread them across 5357 * consecutive vdevs. If we're forced to reuse a vdev before we've 5358 * allocated all of our ditto blocks, then try and spread them out on 5359 * that vdev as much as possible. If it turns out to not be possible, 5360 * gradually lower our standards until anything becomes acceptable. 5361 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5362 * gives us hope of containing our fault domains to something we're 5363 * able to reason about. Otherwise, any two top-level vdev failures 5364 * will guarantee the loss of data. With consecutive allocation, 5365 * only two adjacent top-level vdev failures will result in data loss. 5366 * 5367 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5368 * ourselves on the same vdev as our gang block header. It makes our 5369 * fault domains something tractable. 5370 */ 5371 if (hintdva && DVA_IS_VALID(&hintdva[d])) { 5372 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5373 mg = vdev_get_mg(vd, mc); 5374 } 5375 if (mg == NULL && d != 0) { 5376 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5377 mg = vdev_get_mg(vd, mc)->mg_next; 5378 } 5379 if (mg == NULL || mg->mg_class != mc || mg->mg_activation_count <= 0) { 5380 ASSERT(mca->mca_rotor != NULL); 5381 mg = mca->mca_rotor; 5382 } 5383 5384 rotor = mg; 5385 top: 5386 do { 5387 ASSERT(mg->mg_activation_count == 1); 5388 ASSERT(mg->mg_class == mc); 5389 5390 if (!metaslab_group_allocatable(spa, mg, psize, d, flags, 5391 try_hard, zal, allocator)) 5392 goto next; 5393 5394 vd = mg->mg_vd; 5395 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg); 5396 ASSERT0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5397 uint64_t max_asize = vdev_psize_to_asize_txg(vd, max_psize, 5398 txg); 5399 ASSERT0(P2PHASE(max_asize, 1ULL << vd->vdev_ashift)); 5400 uint64_t offset = metaslab_group_alloc(mg, zal, asize, 5401 max_asize, txg, dva, d, allocator, try_hard, 5402 &asize); 5403 5404 if (offset != -1ULL) { 5405 if (actual_psize) 5406 *actual_psize = vdev_asize_to_psize_txg(vd, 5407 asize, txg); 5408 metaslab_class_rotate(mg, allocator, psize, B_TRUE); 5409 5410 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5411 DVA_SET_OFFSET(&dva[d], offset); 5412 DVA_SET_GANG(&dva[d], 5413 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5414 DVA_SET_ASIZE(&dva[d], asize); 5415 return (0); 5416 } 5417 next: 5418 metaslab_class_rotate(mg, allocator, psize, B_FALSE); 5419 } while ((mg = mg->mg_next) != rotor); 5420 5421 /* 5422 * If we haven't tried hard, perhaps do so now. 5423 */ 5424 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5425 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5426 psize <= spa->spa_min_alloc)) { 5427 METASLABSTAT_BUMP(metaslabstat_try_hard); 5428 try_hard = B_TRUE; 5429 goto top; 5430 } 5431 5432 memset(&dva[d], 0, sizeof (dva_t)); 5433 5434 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5435 return (SET_ERROR(ENOSPC)); 5436 } 5437 5438 /* 5439 * Allocate a block for the specified i/o. 5440 */ 5441 int 5442 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5443 dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, int flags, 5444 zio_alloc_list_t *zal, int allocator) 5445 { 5446 return (metaslab_alloc_dva_range(spa, mc, psize, psize, dva, d, hintdva, 5447 txg, flags, zal, allocator, NULL)); 5448 } 5449 5450 void 5451 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5452 boolean_t checkpoint) 5453 { 5454 metaslab_t *msp; 5455 spa_t *spa = vd->vdev_spa; 5456 int m = offset >> vd->vdev_ms_shift; 5457 5458 ASSERT(vdev_is_concrete(vd)); 5459 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5460 VERIFY3U(m, <, vd->vdev_ms_count); 5461 5462 msp = vd->vdev_ms[m]; 5463 5464 VERIFY(!msp->ms_condensing); 5465 VERIFY3U(offset, >=, msp->ms_start); 5466 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5467 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5468 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5469 5470 metaslab_check_free_impl(vd, offset, asize); 5471 5472 mutex_enter(&msp->ms_lock); 5473 if (zfs_range_tree_is_empty(msp->ms_freeing) && 5474 zfs_range_tree_is_empty(msp->ms_checkpointing)) { 5475 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5476 } 5477 5478 if (checkpoint) { 5479 ASSERT(spa_has_checkpoint(spa)); 5480 zfs_range_tree_add(msp->ms_checkpointing, offset, asize); 5481 } else { 5482 zfs_range_tree_add(msp->ms_freeing, offset, asize); 5483 } 5484 mutex_exit(&msp->ms_lock); 5485 } 5486 5487 void 5488 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5489 uint64_t size, void *arg) 5490 { 5491 (void) inner_offset; 5492 boolean_t *checkpoint = arg; 5493 5494 ASSERT3P(checkpoint, !=, NULL); 5495 5496 if (vd->vdev_ops->vdev_op_remap != NULL) 5497 vdev_indirect_mark_obsolete(vd, offset, size); 5498 else 5499 metaslab_free_impl(vd, offset, size, *checkpoint); 5500 } 5501 5502 static void 5503 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5504 boolean_t checkpoint) 5505 { 5506 spa_t *spa = vd->vdev_spa; 5507 5508 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5509 5510 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5511 return; 5512 5513 if (spa->spa_vdev_removal != NULL && 5514 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5515 vdev_is_concrete(vd)) { 5516 /* 5517 * Note: we check if the vdev is concrete because when 5518 * we complete the removal, we first change the vdev to be 5519 * an indirect vdev (in open context), and then (in syncing 5520 * context) clear spa_vdev_removal. 5521 */ 5522 free_from_removing_vdev(vd, offset, size); 5523 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5524 vdev_indirect_mark_obsolete(vd, offset, size); 5525 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5526 metaslab_free_impl_cb, &checkpoint); 5527 } else { 5528 metaslab_free_concrete(vd, offset, size, checkpoint); 5529 } 5530 } 5531 5532 typedef struct remap_blkptr_cb_arg { 5533 blkptr_t *rbca_bp; 5534 spa_remap_cb_t rbca_cb; 5535 vdev_t *rbca_remap_vd; 5536 uint64_t rbca_remap_offset; 5537 void *rbca_cb_arg; 5538 } remap_blkptr_cb_arg_t; 5539 5540 static void 5541 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5542 uint64_t size, void *arg) 5543 { 5544 remap_blkptr_cb_arg_t *rbca = arg; 5545 blkptr_t *bp = rbca->rbca_bp; 5546 5547 /* We can not remap split blocks. */ 5548 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5549 return; 5550 ASSERT0(inner_offset); 5551 5552 if (rbca->rbca_cb != NULL) { 5553 /* 5554 * At this point we know that we are not handling split 5555 * blocks and we invoke the callback on the previous 5556 * vdev which must be indirect. 5557 */ 5558 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5559 5560 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5561 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5562 5563 /* set up remap_blkptr_cb_arg for the next call */ 5564 rbca->rbca_remap_vd = vd; 5565 rbca->rbca_remap_offset = offset; 5566 } 5567 5568 /* 5569 * The phys birth time is that of dva[0]. This ensures that we know 5570 * when each dva was written, so that resilver can determine which 5571 * blocks need to be scrubbed (i.e. those written during the time 5572 * the vdev was offline). It also ensures that the key used in 5573 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5574 * we didn't change the phys_birth, a lookup in the ARC for a 5575 * remapped BP could find the data that was previously stored at 5576 * this vdev + offset. 5577 */ 5578 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5579 DVA_GET_VDEV(&bp->blk_dva[0])); 5580 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5581 uint64_t physical_birth = vdev_indirect_births_physbirth(vib, 5582 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5583 BP_SET_PHYSICAL_BIRTH(bp, physical_birth); 5584 5585 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5586 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5587 } 5588 5589 /* 5590 * If the block pointer contains any indirect DVAs, modify them to refer to 5591 * concrete DVAs. Note that this will sometimes not be possible, leaving 5592 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5593 * segments in the mapping (i.e. it is a "split block"). 5594 * 5595 * If the BP was remapped, calls the callback on the original dva (note the 5596 * callback can be called multiple times if the original indirect DVA refers 5597 * to another indirect DVA, etc). 5598 * 5599 * Returns TRUE if the BP was remapped. 5600 */ 5601 boolean_t 5602 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5603 { 5604 remap_blkptr_cb_arg_t rbca; 5605 5606 if (!zfs_remap_blkptr_enable) 5607 return (B_FALSE); 5608 5609 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5610 return (B_FALSE); 5611 5612 /* 5613 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5614 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5615 */ 5616 if (BP_GET_DEDUP(bp)) 5617 return (B_FALSE); 5618 5619 /* 5620 * Gang blocks can not be remapped, because 5621 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5622 * the BP used to read the gang block header (GBH) being the same 5623 * as the DVA[0] that we allocated for the GBH. 5624 */ 5625 if (BP_IS_GANG(bp)) 5626 return (B_FALSE); 5627 5628 /* 5629 * Embedded BP's have no DVA to remap. 5630 */ 5631 if (BP_GET_NDVAS(bp) < 1) 5632 return (B_FALSE); 5633 5634 /* 5635 * Cloned blocks can not be remapped since BRT depends on specific 5636 * vdev id and offset in the DVA[0] for its reference counting. 5637 */ 5638 if (!BP_IS_METADATA(bp) && brt_maybe_exists(spa, bp)) 5639 return (B_FALSE); 5640 5641 /* 5642 * Note: we only remap dva[0]. If we remapped other dvas, we 5643 * would no longer know what their phys birth txg is. 5644 */ 5645 dva_t *dva = &bp->blk_dva[0]; 5646 5647 uint64_t offset = DVA_GET_OFFSET(dva); 5648 uint64_t size = DVA_GET_ASIZE(dva); 5649 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5650 5651 if (vd->vdev_ops->vdev_op_remap == NULL) 5652 return (B_FALSE); 5653 5654 rbca.rbca_bp = bp; 5655 rbca.rbca_cb = callback; 5656 rbca.rbca_remap_vd = vd; 5657 rbca.rbca_remap_offset = offset; 5658 rbca.rbca_cb_arg = arg; 5659 5660 /* 5661 * remap_blkptr_cb() will be called in order for each level of 5662 * indirection, until a concrete vdev is reached or a split block is 5663 * encountered. old_vd and old_offset are updated within the callback 5664 * as we go from the one indirect vdev to the next one (either concrete 5665 * or indirect again) in that order. 5666 */ 5667 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5668 5669 /* Check if the DVA wasn't remapped because it is a split block */ 5670 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5671 return (B_FALSE); 5672 5673 return (B_TRUE); 5674 } 5675 5676 /* 5677 * Undo the allocation of a DVA which happened in the given transaction group. 5678 */ 5679 void 5680 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5681 { 5682 metaslab_t *msp; 5683 vdev_t *vd; 5684 uint64_t vdev = DVA_GET_VDEV(dva); 5685 uint64_t offset = DVA_GET_OFFSET(dva); 5686 uint64_t size = DVA_GET_ASIZE(dva); 5687 5688 ASSERT(DVA_IS_VALID(dva)); 5689 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5690 5691 if (txg > spa_freeze_txg(spa)) 5692 return; 5693 5694 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5695 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5696 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5697 (u_longlong_t)vdev, (u_longlong_t)offset, 5698 (u_longlong_t)size); 5699 return; 5700 } 5701 5702 ASSERT(!vd->vdev_removing); 5703 ASSERT(vdev_is_concrete(vd)); 5704 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5705 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5706 5707 if (DVA_GET_GANG(dva)) 5708 size = vdev_gang_header_asize(vd); 5709 5710 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5711 5712 mutex_enter(&msp->ms_lock); 5713 zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5714 offset, size); 5715 msp->ms_allocating_total -= size; 5716 5717 VERIFY(!msp->ms_condensing); 5718 VERIFY3U(offset, >=, msp->ms_start); 5719 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5720 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=, 5721 msp->ms_size); 5722 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5723 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5724 zfs_range_tree_add(msp->ms_allocatable, offset, size); 5725 mutex_exit(&msp->ms_lock); 5726 } 5727 5728 /* 5729 * Free the block represented by the given DVA. 5730 */ 5731 void 5732 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5733 { 5734 uint64_t vdev = DVA_GET_VDEV(dva); 5735 uint64_t offset = DVA_GET_OFFSET(dva); 5736 uint64_t size = DVA_GET_ASIZE(dva); 5737 vdev_t *vd = vdev_lookup_top(spa, vdev); 5738 5739 ASSERT(DVA_IS_VALID(dva)); 5740 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5741 5742 if (DVA_GET_GANG(dva)) { 5743 size = vdev_gang_header_asize(vd); 5744 } 5745 5746 metaslab_free_impl(vd, offset, size, checkpoint); 5747 } 5748 5749 /* 5750 * Reserve some allocation slots. The reservation system must be called 5751 * before we call into the allocator. If there aren't any available slots 5752 * then the I/O will be throttled until an I/O completes and its slots are 5753 * freed up. The function returns true if it was successful in placing 5754 * the reservation. 5755 */ 5756 boolean_t 5757 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio, 5758 boolean_t must, boolean_t *more) 5759 { 5760 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 5761 5762 ASSERT(mc->mc_alloc_throttle_enabled); 5763 if (mc->mc_alloc_io_size < zio->io_size) { 5764 mc->mc_alloc_io_size = zio->io_size; 5765 metaslab_class_balance(mc, B_FALSE); 5766 } 5767 if (must || mca->mca_reserved <= mc->mc_alloc_max) { 5768 /* 5769 * The potential race between compare and add is covered by the 5770 * allocator lock in most cases, or irrelevant due to must set. 5771 * But even if we assume some other non-existing scenario, the 5772 * worst that can happen is few more I/Os get to allocation 5773 * earlier, that is not a problem. 5774 */ 5775 int64_t delta = slots * zio->io_size; 5776 *more = (atomic_add_64_nv(&mca->mca_reserved, delta) <= 5777 mc->mc_alloc_max); 5778 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5779 return (B_TRUE); 5780 } 5781 *more = B_FALSE; 5782 return (B_FALSE); 5783 } 5784 5785 boolean_t 5786 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5787 zio_t *zio) 5788 { 5789 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 5790 5791 ASSERT(mc->mc_alloc_throttle_enabled); 5792 int64_t delta = slots * zio->io_size; 5793 return (atomic_add_64_nv(&mca->mca_reserved, -delta) <= 5794 mc->mc_alloc_max); 5795 } 5796 5797 static int 5798 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5799 uint64_t txg) 5800 { 5801 metaslab_t *msp; 5802 spa_t *spa = vd->vdev_spa; 5803 int error = 0; 5804 5805 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5806 return (SET_ERROR(ENXIO)); 5807 5808 ASSERT3P(vd->vdev_ms, !=, NULL); 5809 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5810 5811 mutex_enter(&msp->ms_lock); 5812 5813 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5814 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5815 if (error == EBUSY) { 5816 ASSERT(msp->ms_loaded); 5817 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5818 error = 0; 5819 } 5820 } 5821 5822 if (error == 0 && 5823 !zfs_range_tree_contains(msp->ms_allocatable, offset, size)) 5824 error = SET_ERROR(ENOENT); 5825 5826 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5827 mutex_exit(&msp->ms_lock); 5828 return (error); 5829 } 5830 5831 VERIFY(!msp->ms_condensing); 5832 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5833 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5834 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=, 5835 msp->ms_size); 5836 zfs_range_tree_remove(msp->ms_allocatable, offset, size); 5837 zfs_range_tree_clear(msp->ms_trim, offset, size); 5838 5839 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5840 metaslab_class_t *mc = msp->ms_group->mg_class; 5841 multilist_sublist_t *mls = 5842 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5843 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5844 msp->ms_selected_txg = txg; 5845 multilist_sublist_insert_head(mls, msp); 5846 } 5847 multilist_sublist_unlock(mls); 5848 5849 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5850 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5851 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5852 offset, size); 5853 msp->ms_allocating_total += size; 5854 } 5855 5856 mutex_exit(&msp->ms_lock); 5857 5858 return (0); 5859 } 5860 5861 typedef struct metaslab_claim_cb_arg_t { 5862 uint64_t mcca_txg; 5863 int mcca_error; 5864 } metaslab_claim_cb_arg_t; 5865 5866 static void 5867 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5868 uint64_t size, void *arg) 5869 { 5870 (void) inner_offset; 5871 metaslab_claim_cb_arg_t *mcca_arg = arg; 5872 5873 if (mcca_arg->mcca_error == 0) { 5874 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5875 size, mcca_arg->mcca_txg); 5876 } 5877 } 5878 5879 int 5880 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5881 { 5882 if (vd->vdev_ops->vdev_op_remap != NULL) { 5883 metaslab_claim_cb_arg_t arg; 5884 5885 /* 5886 * Only zdb(8) can claim on indirect vdevs. This is used 5887 * to detect leaks of mapped space (that are not accounted 5888 * for in the obsolete counts, spacemap, or bpobj). 5889 */ 5890 ASSERT(!spa_writeable(vd->vdev_spa)); 5891 arg.mcca_error = 0; 5892 arg.mcca_txg = txg; 5893 5894 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5895 metaslab_claim_impl_cb, &arg); 5896 5897 if (arg.mcca_error == 0) { 5898 arg.mcca_error = metaslab_claim_concrete(vd, 5899 offset, size, txg); 5900 } 5901 return (arg.mcca_error); 5902 } else { 5903 return (metaslab_claim_concrete(vd, offset, size, txg)); 5904 } 5905 } 5906 5907 /* 5908 * Intent log support: upon opening the pool after a crash, notify the SPA 5909 * of blocks that the intent log has allocated for immediate write, but 5910 * which are still considered free by the SPA because the last transaction 5911 * group didn't commit yet. 5912 */ 5913 static int 5914 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5915 { 5916 uint64_t vdev = DVA_GET_VDEV(dva); 5917 uint64_t offset = DVA_GET_OFFSET(dva); 5918 uint64_t size = DVA_GET_ASIZE(dva); 5919 vdev_t *vd; 5920 5921 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5922 return (SET_ERROR(ENXIO)); 5923 } 5924 5925 ASSERT(DVA_IS_VALID(dva)); 5926 5927 if (DVA_GET_GANG(dva)) 5928 size = vdev_gang_header_asize(vd); 5929 5930 return (metaslab_claim_impl(vd, offset, size, txg)); 5931 } 5932 5933 int 5934 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5935 int ndvas, uint64_t txg, const blkptr_t *hintbp, int flags, 5936 zio_alloc_list_t *zal, int allocator, const void *tag) 5937 { 5938 return (metaslab_alloc_range(spa, mc, psize, psize, bp, ndvas, txg, 5939 hintbp, flags, zal, allocator, tag, NULL)); 5940 } 5941 5942 int 5943 metaslab_alloc_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5944 uint64_t max_psize, blkptr_t *bp, int ndvas, uint64_t txg, 5945 const blkptr_t *hintbp, int flags, zio_alloc_list_t *zal, int allocator, 5946 const void *tag, uint64_t *actual_psize) 5947 { 5948 dva_t *dva = bp->blk_dva; 5949 const dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5950 int error = 0; 5951 5952 ASSERT0(BP_GET_LOGICAL_BIRTH(bp)); 5953 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 5954 5955 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5956 5957 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5958 /* no vdevs in this class */ 5959 spa_config_exit(spa, SCL_ALLOC, FTAG); 5960 return (SET_ERROR(ENOSPC)); 5961 } 5962 5963 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5964 ASSERT(BP_GET_NDVAS(bp) == 0); 5965 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5966 ASSERT3P(zal, !=, NULL); 5967 5968 uint64_t cur_psize = 0; 5969 5970 for (int d = 0; d < ndvas; d++) { 5971 error = metaslab_alloc_dva_range(spa, mc, psize, max_psize, 5972 dva, d, hintdva, txg, flags, zal, allocator, 5973 actual_psize ? &cur_psize : NULL); 5974 if (error != 0) { 5975 for (d--; d >= 0; d--) { 5976 metaslab_unalloc_dva(spa, &dva[d], txg); 5977 metaslab_group_alloc_decrement(spa, 5978 DVA_GET_VDEV(&dva[d]), allocator, flags, 5979 psize, tag); 5980 memset(&dva[d], 0, sizeof (dva_t)); 5981 } 5982 spa_config_exit(spa, SCL_ALLOC, FTAG); 5983 return (error); 5984 } else { 5985 /* 5986 * Update the metaslab group's queue depth 5987 * based on the newly allocated dva. 5988 */ 5989 metaslab_group_alloc_increment(spa, 5990 DVA_GET_VDEV(&dva[d]), allocator, flags, psize, 5991 tag); 5992 if (actual_psize) 5993 max_psize = MIN(cur_psize, max_psize); 5994 } 5995 } 5996 ASSERT(error == 0); 5997 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5998 if (actual_psize) 5999 *actual_psize = max_psize; 6000 6001 spa_config_exit(spa, SCL_ALLOC, FTAG); 6002 6003 BP_SET_BIRTH(bp, txg, 0); 6004 6005 return (0); 6006 } 6007 6008 void 6009 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 6010 { 6011 const dva_t *dva = bp->blk_dva; 6012 int ndvas = BP_GET_NDVAS(bp); 6013 6014 ASSERT(!BP_IS_HOLE(bp)); 6015 ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa)); 6016 6017 /* 6018 * If we have a checkpoint for the pool we need to make sure that 6019 * the blocks that we free that are part of the checkpoint won't be 6020 * reused until the checkpoint is discarded or we revert to it. 6021 * 6022 * The checkpoint flag is passed down the metaslab_free code path 6023 * and is set whenever we want to add a block to the checkpoint's 6024 * accounting. That is, we "checkpoint" blocks that existed at the 6025 * time the checkpoint was created and are therefore referenced by 6026 * the checkpointed uberblock. 6027 * 6028 * Note that, we don't checkpoint any blocks if the current 6029 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 6030 * normally as they will be referenced by the checkpointed uberblock. 6031 */ 6032 boolean_t checkpoint = B_FALSE; 6033 if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg && 6034 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 6035 /* 6036 * At this point, if the block is part of the checkpoint 6037 * there is no way it was created in the current txg. 6038 */ 6039 ASSERT(!now); 6040 ASSERT3U(spa_syncing_txg(spa), ==, txg); 6041 checkpoint = B_TRUE; 6042 } 6043 6044 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 6045 6046 for (int d = 0; d < ndvas; d++) { 6047 if (now) { 6048 metaslab_unalloc_dva(spa, &dva[d], txg); 6049 } else { 6050 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 6051 metaslab_free_dva(spa, &dva[d], checkpoint); 6052 } 6053 } 6054 6055 spa_config_exit(spa, SCL_FREE, FTAG); 6056 } 6057 6058 int 6059 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 6060 { 6061 const dva_t *dva = bp->blk_dva; 6062 int ndvas = BP_GET_NDVAS(bp); 6063 int error = 0; 6064 6065 ASSERT(!BP_IS_HOLE(bp)); 6066 6067 if (txg != 0) { 6068 /* 6069 * First do a dry run to make sure all DVAs are claimable, 6070 * so we don't have to unwind from partial failures below. 6071 */ 6072 if ((error = metaslab_claim(spa, bp, 0)) != 0) 6073 return (error); 6074 } 6075 6076 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 6077 6078 for (int d = 0; d < ndvas; d++) { 6079 error = metaslab_claim_dva(spa, &dva[d], txg); 6080 if (error != 0) 6081 break; 6082 } 6083 6084 spa_config_exit(spa, SCL_ALLOC, FTAG); 6085 6086 ASSERT(error == 0 || txg == 0); 6087 6088 return (error); 6089 } 6090 6091 static void 6092 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 6093 uint64_t size, void *arg) 6094 { 6095 (void) inner, (void) arg; 6096 6097 if (vd->vdev_ops == &vdev_indirect_ops) 6098 return; 6099 6100 metaslab_check_free_impl(vd, offset, size); 6101 } 6102 6103 static void 6104 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 6105 { 6106 metaslab_t *msp; 6107 spa_t *spa __maybe_unused = vd->vdev_spa; 6108 6109 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6110 return; 6111 6112 if (vd->vdev_ops->vdev_op_remap != NULL) { 6113 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6114 metaslab_check_free_impl_cb, NULL); 6115 return; 6116 } 6117 6118 ASSERT(vdev_is_concrete(vd)); 6119 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6120 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6121 6122 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6123 6124 mutex_enter(&msp->ms_lock); 6125 if (msp->ms_loaded) { 6126 zfs_range_tree_verify_not_present(msp->ms_allocatable, 6127 offset, size); 6128 } 6129 6130 /* 6131 * Check all segments that currently exist in the freeing pipeline. 6132 * 6133 * It would intuitively make sense to also check the current allocating 6134 * tree since metaslab_unalloc_dva() exists for extents that are 6135 * allocated and freed in the same sync pass within the same txg. 6136 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6137 * segment but then we free part of it within the same txg 6138 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the 6139 * current allocating tree. 6140 */ 6141 zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size); 6142 zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6143 zfs_range_tree_verify_not_present(msp->ms_freed, offset, size); 6144 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6145 zfs_range_tree_verify_not_present(msp->ms_defer[j], offset, 6146 size); 6147 zfs_range_tree_verify_not_present(msp->ms_trim, offset, size); 6148 mutex_exit(&msp->ms_lock); 6149 } 6150 6151 void 6152 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6153 { 6154 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6155 return; 6156 6157 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6158 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6159 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6160 vdev_t *vd = vdev_lookup_top(spa, vdev); 6161 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6162 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6163 6164 if (DVA_GET_GANG(&bp->blk_dva[i])) 6165 size = vdev_gang_header_asize(vd); 6166 6167 ASSERT3P(vd, !=, NULL); 6168 6169 metaslab_check_free_impl(vd, offset, size); 6170 } 6171 spa_config_exit(spa, SCL_VDEV, FTAG); 6172 } 6173 6174 static void 6175 metaslab_group_disable_wait(metaslab_group_t *mg) 6176 { 6177 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6178 while (mg->mg_disabled_updating) { 6179 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6180 } 6181 } 6182 6183 static void 6184 metaslab_group_disabled_increment(metaslab_group_t *mg) 6185 { 6186 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6187 ASSERT(mg->mg_disabled_updating); 6188 6189 while (mg->mg_ms_disabled >= max_disabled_ms) { 6190 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6191 } 6192 mg->mg_ms_disabled++; 6193 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6194 } 6195 6196 /* 6197 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6198 * We must also track how many metaslabs are currently disabled within a 6199 * metaslab group and limit them to prevent allocation failures from 6200 * occurring because all metaslabs are disabled. 6201 */ 6202 void 6203 metaslab_disable(metaslab_t *msp) 6204 { 6205 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6206 metaslab_group_t *mg = msp->ms_group; 6207 6208 mutex_enter(&mg->mg_ms_disabled_lock); 6209 6210 /* 6211 * To keep an accurate count of how many threads have disabled 6212 * a specific metaslab group, we only allow one thread to mark 6213 * the metaslab group at a time. This ensures that the value of 6214 * ms_disabled will be accurate when we decide to mark a metaslab 6215 * group as disabled. To do this we force all other threads 6216 * to wait till the metaslab's mg_disabled_updating flag is no 6217 * longer set. 6218 */ 6219 metaslab_group_disable_wait(mg); 6220 mg->mg_disabled_updating = B_TRUE; 6221 if (msp->ms_disabled == 0) { 6222 metaslab_group_disabled_increment(mg); 6223 } 6224 mutex_enter(&msp->ms_lock); 6225 msp->ms_disabled++; 6226 mutex_exit(&msp->ms_lock); 6227 6228 mg->mg_disabled_updating = B_FALSE; 6229 cv_broadcast(&mg->mg_ms_disabled_cv); 6230 mutex_exit(&mg->mg_ms_disabled_lock); 6231 } 6232 6233 void 6234 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6235 { 6236 metaslab_group_t *mg = msp->ms_group; 6237 spa_t *spa = mg->mg_vd->vdev_spa; 6238 6239 /* 6240 * Wait for the outstanding IO to be synced to prevent newly 6241 * allocated blocks from being overwritten. This used by 6242 * initialize and TRIM which are modifying unallocated space. 6243 */ 6244 if (sync) 6245 txg_wait_synced(spa_get_dsl(spa), 0); 6246 6247 mutex_enter(&mg->mg_ms_disabled_lock); 6248 mutex_enter(&msp->ms_lock); 6249 if (--msp->ms_disabled == 0) { 6250 mg->mg_ms_disabled--; 6251 cv_broadcast(&mg->mg_ms_disabled_cv); 6252 if (unload) 6253 metaslab_unload(msp); 6254 } 6255 mutex_exit(&msp->ms_lock); 6256 mutex_exit(&mg->mg_ms_disabled_lock); 6257 } 6258 6259 void 6260 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6261 { 6262 ms->ms_unflushed_dirty = dirty; 6263 } 6264 6265 static void 6266 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6267 { 6268 vdev_t *vd = ms->ms_group->mg_vd; 6269 spa_t *spa = vd->vdev_spa; 6270 objset_t *mos = spa_meta_objset(spa); 6271 6272 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6273 6274 metaslab_unflushed_phys_t entry = { 6275 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6276 }; 6277 uint64_t entry_size = sizeof (entry); 6278 uint64_t entry_offset = ms->ms_id * entry_size; 6279 6280 uint64_t object = 0; 6281 int err = zap_lookup(mos, vd->vdev_top_zap, 6282 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6283 &object); 6284 if (err == ENOENT) { 6285 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6286 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6287 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6288 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6289 &object, tx)); 6290 } else { 6291 VERIFY0(err); 6292 } 6293 6294 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6295 &entry, tx); 6296 } 6297 6298 void 6299 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6300 { 6301 ms->ms_unflushed_txg = txg; 6302 metaslab_update_ondisk_flush_data(ms, tx); 6303 } 6304 6305 boolean_t 6306 metaslab_unflushed_dirty(metaslab_t *ms) 6307 { 6308 return (ms->ms_unflushed_dirty); 6309 } 6310 6311 uint64_t 6312 metaslab_unflushed_txg(metaslab_t *ms) 6313 { 6314 return (ms->ms_unflushed_txg); 6315 } 6316 6317 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6318 "Allocation granularity (a.k.a. stripe size)"); 6319 6320 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6321 "Load all metaslabs when pool is first opened"); 6322 6323 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6324 "Prevent metaslabs from being unloaded"); 6325 6326 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6327 "Preload potential metaslabs during reassessment"); 6328 6329 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW, 6330 "Max number of metaslabs per group to preload"); 6331 6332 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6333 "Delay in txgs after metaslab was last used before unloading"); 6334 6335 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6336 "Delay in milliseconds after metaslab was last used before unloading"); 6337 6338 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6339 "Percentage of metaslab group size that should be free to make it " 6340 "eligible for allocation"); 6341 6342 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6343 "Percentage of metaslab group size that should be considered eligible " 6344 "for allocations unless all metaslab groups within the metaslab class " 6345 "have also crossed this threshold"); 6346 6347 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6348 ZMOD_RW, 6349 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6350 6351 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6352 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6353 6354 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6355 "Prefer metaslabs with lower LBAs"); 6356 6357 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6358 "Enable space-based metaslab group biasing"); 6359 6360 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, perf_bias, INT, ZMOD_RW, 6361 "Enable performance-based metaslab group biasing"); 6362 6363 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6364 ZMOD_RW, "Enable segment-based metaslab selection"); 6365 6366 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6367 "Segment-based metaslab selection maximum buckets before switching"); 6368 6369 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6370 "Blocks larger than this size are sometimes forced to be gang blocks"); 6371 6372 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW, 6373 "Percentage of large blocks that will be forced to be gang blocks"); 6374 6375 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6376 "Max distance (bytes) to search forward before using size tree"); 6377 6378 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6379 "When looking in size tree, use largest segment instead of exact fit"); 6380 6381 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6382 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6383 6384 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6385 "Percentage of memory that can be used to store metaslab range trees"); 6386 6387 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6388 ZMOD_RW, "Try hard to allocate before ganging"); 6389 6390 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 6391 "Normally only consider this many of the best metaslabs in each vdev"); 6392 6393 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator, 6394 param_set_active_allocator, param_get_charp, ZMOD_RW, 6395 "SPA active allocator"); 6396