xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	GANG_ALLOCATION(flags) \
44 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
45 
46 /*
47  * Metaslab granularity, in bytes. This is roughly similar to what would be
48  * referred to as the "stripe size" in traditional RAID arrays. In normal
49  * operation, we will try to write this amount of data to each disk before
50  * moving on to the next top-level vdev.
51  */
52 static uint64_t metaslab_aliquot = 1024 * 1024;
53 
54 /*
55  * For testing, make some blocks above a certain size be gang blocks.
56  */
57 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
58 
59 /*
60  * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
61  */
62 uint_t metaslab_force_ganging_pct = 3;
63 
64 /*
65  * In pools where the log space map feature is not enabled we touch
66  * multiple metaslabs (and their respective space maps) with each
67  * transaction group. Thus, we benefit from having a small space map
68  * block size since it allows us to issue more I/O operations scattered
69  * around the disk. So a sane default for the space map block size
70  * is 8~16K.
71  */
72 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
73 
74 /*
75  * When the log space map feature is enabled, we accumulate a lot of
76  * changes per metaslab that are flushed once in a while so we benefit
77  * from a bigger block size like 128K for the metaslab space maps.
78  */
79 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
80 
81 /*
82  * The in-core space map representation is more compact than its on-disk form.
83  * The zfs_condense_pct determines how much more compact the in-core
84  * space map representation must be before we compact it on-disk.
85  * Values should be greater than or equal to 100.
86  */
87 uint_t zfs_condense_pct = 200;
88 
89 /*
90  * Condensing a metaslab is not guaranteed to actually reduce the amount of
91  * space used on disk. In particular, a space map uses data in increments of
92  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
93  * same number of blocks after condensing. Since the goal of condensing is to
94  * reduce the number of IOPs required to read the space map, we only want to
95  * condense when we can be sure we will reduce the number of blocks used by the
96  * space map. Unfortunately, we cannot precisely compute whether or not this is
97  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
98  * we apply the following heuristic: do not condense a spacemap unless the
99  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
100  * blocks.
101  */
102 static const int zfs_metaslab_condense_block_threshold = 4;
103 
104 /*
105  * The zfs_mg_noalloc_threshold defines which metaslab groups should
106  * be eligible for allocation. The value is defined as a percentage of
107  * free space. Metaslab groups that have more free space than
108  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
109  * a metaslab group's free space is less than or equal to the
110  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
111  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
112  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
113  * groups are allowed to accept allocations. Gang blocks are always
114  * eligible to allocate on any metaslab group. The default value of 0 means
115  * no metaslab group will be excluded based on this criterion.
116  */
117 static uint_t zfs_mg_noalloc_threshold = 0;
118 
119 /*
120  * Metaslab groups are considered eligible for allocations if their
121  * fragmentation metric (measured as a percentage) is less than or
122  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
123  * exceeds this threshold then it will be skipped unless all metaslab
124  * groups within the metaslab class have also crossed this threshold.
125  *
126  * This tunable was introduced to avoid edge cases where we continue
127  * allocating from very fragmented disks in our pool while other, less
128  * fragmented disks, exists. On the other hand, if all disks in the
129  * pool are uniformly approaching the threshold, the threshold can
130  * be a speed bump in performance, where we keep switching the disks
131  * that we allocate from (e.g. we allocate some segments from disk A
132  * making it bypassing the threshold while freeing segments from disk
133  * B getting its fragmentation below the threshold).
134  *
135  * Empirically, we've seen that our vdev selection for allocations is
136  * good enough that fragmentation increases uniformly across all vdevs
137  * the majority of the time. Thus we set the threshold percentage high
138  * enough to avoid hitting the speed bump on pools that are being pushed
139  * to the edge.
140  */
141 static uint_t zfs_mg_fragmentation_threshold = 95;
142 
143 /*
144  * Allow metaslabs to keep their active state as long as their fragmentation
145  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
146  * active metaslab that exceeds this threshold will no longer keep its active
147  * status allowing better metaslabs to be selected.
148  */
149 static uint_t zfs_metaslab_fragmentation_threshold = 70;
150 
151 /*
152  * When set will load all metaslabs when pool is first opened.
153  */
154 int metaslab_debug_load = B_FALSE;
155 
156 /*
157  * When set will prevent metaslabs from being unloaded.
158  */
159 static int metaslab_debug_unload = B_FALSE;
160 
161 /*
162  * Minimum size which forces the dynamic allocator to change
163  * it's allocation strategy.  Once the space map cannot satisfy
164  * an allocation of this size then it switches to using more
165  * aggressive strategy (i.e search by size rather than offset).
166  */
167 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
168 
169 /*
170  * The minimum free space, in percent, which must be available
171  * in a space map to continue allocations in a first-fit fashion.
172  * Once the space map's free space drops below this level we dynamically
173  * switch to using best-fit allocations.
174  */
175 uint_t metaslab_df_free_pct = 4;
176 
177 /*
178  * Maximum distance to search forward from the last offset. Without this
179  * limit, fragmented pools can see >100,000 iterations and
180  * metaslab_block_picker() becomes the performance limiting factor on
181  * high-performance storage.
182  *
183  * With the default setting of 16MB, we typically see less than 500
184  * iterations, even with very fragmented, ashift=9 pools. The maximum number
185  * of iterations possible is:
186  *     metaslab_df_max_search / (2 * (1<<ashift))
187  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
188  * 2048 (with ashift=12).
189  */
190 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
191 
192 /*
193  * Forces the metaslab_block_picker function to search for at least this many
194  * segments forwards until giving up on finding a segment that the allocation
195  * will fit into.
196  */
197 static const uint32_t metaslab_min_search_count = 100;
198 
199 /*
200  * If we are not searching forward (due to metaslab_df_max_search,
201  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
202  * controls what segment is used.  If it is set, we will use the largest free
203  * segment.  If it is not set, we will use a segment of exactly the requested
204  * size (or larger).
205  */
206 static int metaslab_df_use_largest_segment = B_FALSE;
207 
208 /*
209  * These tunables control how long a metaslab will remain loaded after the
210  * last allocation from it.  A metaslab can't be unloaded until at least
211  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
212  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
213  * unloaded sooner.  These settings are intended to be generous -- to keep
214  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
215  */
216 static uint_t metaslab_unload_delay = 32;
217 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
218 
219 /*
220  * Max number of metaslabs per group to preload.
221  */
222 uint_t metaslab_preload_limit = 10;
223 
224 /*
225  * Enable/disable preloading of metaslab.
226  */
227 static int metaslab_preload_enabled = B_TRUE;
228 
229 /*
230  * Enable/disable fragmentation weighting on metaslabs.
231  */
232 static int metaslab_fragmentation_factor_enabled = B_TRUE;
233 
234 /*
235  * Enable/disable lba weighting (i.e. outer tracks are given preference).
236  */
237 static int metaslab_lba_weighting_enabled = B_TRUE;
238 
239 /*
240  * Enable/disable metaslab group biasing.
241  */
242 static int metaslab_bias_enabled = B_TRUE;
243 
244 /*
245  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
246  */
247 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
248 
249 /*
250  * Enable/disable segment-based metaslab selection.
251  */
252 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
253 
254 /*
255  * When using segment-based metaslab selection, we will continue
256  * allocating from the active metaslab until we have exhausted
257  * zfs_metaslab_switch_threshold of its buckets.
258  */
259 static int zfs_metaslab_switch_threshold = 2;
260 
261 /*
262  * Internal switch to enable/disable the metaslab allocation tracing
263  * facility.
264  */
265 static const boolean_t metaslab_trace_enabled = B_FALSE;
266 
267 /*
268  * Maximum entries that the metaslab allocation tracing facility will keep
269  * in a given list when running in non-debug mode. We limit the number
270  * of entries in non-debug mode to prevent us from using up too much memory.
271  * The limit should be sufficiently large that we don't expect any allocation
272  * to every exceed this value. In debug mode, the system will panic if this
273  * limit is ever reached allowing for further investigation.
274  */
275 static const uint64_t metaslab_trace_max_entries = 5000;
276 
277 /*
278  * Maximum number of metaslabs per group that can be disabled
279  * simultaneously.
280  */
281 static const int max_disabled_ms = 3;
282 
283 /*
284  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
285  * To avoid 64-bit overflow, don't set above UINT32_MAX.
286  */
287 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
288 
289 /*
290  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
291  * a metaslab would take it over this percentage, the oldest selected metaslab
292  * is automatically unloaded.
293  */
294 static uint_t zfs_metaslab_mem_limit = 25;
295 
296 /*
297  * Force the per-metaslab range trees to use 64-bit integers to store
298  * segments. Used for debugging purposes.
299  */
300 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
301 
302 /*
303  * By default we only store segments over a certain size in the size-sorted
304  * metaslab trees (ms_allocatable_by_size and
305  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
306  * improves load and unload times at the cost of causing us to use slightly
307  * larger segments than we would otherwise in some cases.
308  */
309 static const uint32_t metaslab_by_size_min_shift = 14;
310 
311 /*
312  * If not set, we will first try normal allocation.  If that fails then
313  * we will do a gang allocation.  If that fails then we will do a "try hard"
314  * gang allocation.  If that fails then we will have a multi-layer gang
315  * block.
316  *
317  * If set, we will first try normal allocation.  If that fails then
318  * we will do a "try hard" allocation.  If that fails we will do a gang
319  * allocation.  If that fails we will do a "try hard" gang allocation.  If
320  * that fails then we will have a multi-layer gang block.
321  */
322 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
323 
324 /*
325  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
326  * metaslabs.  This improves performance, especially when there are many
327  * metaslabs per vdev and the allocation can't actually be satisfied (so we
328  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
329  * worse weight but it can actually satisfy the allocation, we won't find it
330  * until trying hard.  This may happen if the worse metaslab is not loaded
331  * (and the true weight is better than we have calculated), or due to weight
332  * bucketization.  E.g. we are looking for a 60K segment, and the best
333  * metaslabs all have free segments in the 32-63K bucket, but the best
334  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
335  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
336  * bucket, and therefore a lower weight).
337  */
338 static uint_t zfs_metaslab_find_max_tries = 100;
339 
340 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
341 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
342 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
343 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
344 
345 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
346 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
347 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
348 static unsigned int metaslab_idx_func(multilist_t *, void *);
349 static void metaslab_evict(metaslab_t *, uint64_t);
350 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
351 kmem_cache_t *metaslab_alloc_trace_cache;
352 
353 typedef struct metaslab_stats {
354 	kstat_named_t metaslabstat_trace_over_limit;
355 	kstat_named_t metaslabstat_reload_tree;
356 	kstat_named_t metaslabstat_too_many_tries;
357 	kstat_named_t metaslabstat_try_hard;
358 } metaslab_stats_t;
359 
360 static metaslab_stats_t metaslab_stats = {
361 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
362 	{ "reload_tree",		KSTAT_DATA_UINT64 },
363 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
364 	{ "try_hard",			KSTAT_DATA_UINT64 },
365 };
366 
367 #define	METASLABSTAT_BUMP(stat) \
368 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
369 
370 
371 static kstat_t *metaslab_ksp;
372 
373 void
374 metaslab_stat_init(void)
375 {
376 	ASSERT(metaslab_alloc_trace_cache == NULL);
377 	metaslab_alloc_trace_cache = kmem_cache_create(
378 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
379 	    0, NULL, NULL, NULL, NULL, NULL, 0);
380 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
381 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
382 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
383 	if (metaslab_ksp != NULL) {
384 		metaslab_ksp->ks_data = &metaslab_stats;
385 		kstat_install(metaslab_ksp);
386 	}
387 }
388 
389 void
390 metaslab_stat_fini(void)
391 {
392 	if (metaslab_ksp != NULL) {
393 		kstat_delete(metaslab_ksp);
394 		metaslab_ksp = NULL;
395 	}
396 
397 	kmem_cache_destroy(metaslab_alloc_trace_cache);
398 	metaslab_alloc_trace_cache = NULL;
399 }
400 
401 /*
402  * ==========================================================================
403  * Metaslab classes
404  * ==========================================================================
405  */
406 metaslab_class_t *
407 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
408 {
409 	metaslab_class_t *mc;
410 
411 	mc = kmem_zalloc(offsetof(metaslab_class_t,
412 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
413 
414 	mc->mc_spa = spa;
415 	mc->mc_ops = ops;
416 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
417 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
418 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
419 	for (int i = 0; i < spa->spa_alloc_count; i++) {
420 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
421 		mca->mca_rotor = NULL;
422 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
423 	}
424 
425 	return (mc);
426 }
427 
428 void
429 metaslab_class_destroy(metaslab_class_t *mc)
430 {
431 	spa_t *spa = mc->mc_spa;
432 
433 	ASSERT(mc->mc_alloc == 0);
434 	ASSERT(mc->mc_deferred == 0);
435 	ASSERT(mc->mc_space == 0);
436 	ASSERT(mc->mc_dspace == 0);
437 
438 	for (int i = 0; i < spa->spa_alloc_count; i++) {
439 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
440 		ASSERT(mca->mca_rotor == NULL);
441 		zfs_refcount_destroy(&mca->mca_alloc_slots);
442 	}
443 	mutex_destroy(&mc->mc_lock);
444 	multilist_destroy(&mc->mc_metaslab_txg_list);
445 	kmem_free(mc, offsetof(metaslab_class_t,
446 	    mc_allocator[spa->spa_alloc_count]));
447 }
448 
449 int
450 metaslab_class_validate(metaslab_class_t *mc)
451 {
452 	metaslab_group_t *mg;
453 	vdev_t *vd;
454 
455 	/*
456 	 * Must hold one of the spa_config locks.
457 	 */
458 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
459 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
460 
461 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
462 		return (0);
463 
464 	do {
465 		vd = mg->mg_vd;
466 		ASSERT(vd->vdev_mg != NULL);
467 		ASSERT3P(vd->vdev_top, ==, vd);
468 		ASSERT3P(mg->mg_class, ==, mc);
469 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
470 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
471 
472 	return (0);
473 }
474 
475 static void
476 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
477     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
478 {
479 	atomic_add_64(&mc->mc_alloc, alloc_delta);
480 	atomic_add_64(&mc->mc_deferred, defer_delta);
481 	atomic_add_64(&mc->mc_space, space_delta);
482 	atomic_add_64(&mc->mc_dspace, dspace_delta);
483 }
484 
485 uint64_t
486 metaslab_class_get_alloc(metaslab_class_t *mc)
487 {
488 	return (mc->mc_alloc);
489 }
490 
491 uint64_t
492 metaslab_class_get_deferred(metaslab_class_t *mc)
493 {
494 	return (mc->mc_deferred);
495 }
496 
497 uint64_t
498 metaslab_class_get_space(metaslab_class_t *mc)
499 {
500 	return (mc->mc_space);
501 }
502 
503 uint64_t
504 metaslab_class_get_dspace(metaslab_class_t *mc)
505 {
506 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
507 }
508 
509 void
510 metaslab_class_histogram_verify(metaslab_class_t *mc)
511 {
512 	spa_t *spa = mc->mc_spa;
513 	vdev_t *rvd = spa->spa_root_vdev;
514 	uint64_t *mc_hist;
515 	int i;
516 
517 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
518 		return;
519 
520 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
521 	    KM_SLEEP);
522 
523 	mutex_enter(&mc->mc_lock);
524 	for (int c = 0; c < rvd->vdev_children; c++) {
525 		vdev_t *tvd = rvd->vdev_child[c];
526 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
527 
528 		/*
529 		 * Skip any holes, uninitialized top-levels, or
530 		 * vdevs that are not in this metalab class.
531 		 */
532 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
533 		    mg->mg_class != mc) {
534 			continue;
535 		}
536 
537 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
538 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
539 
540 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
541 			mc_hist[i] += mg->mg_histogram[i];
542 	}
543 
544 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
545 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
546 	}
547 
548 	mutex_exit(&mc->mc_lock);
549 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
550 }
551 
552 /*
553  * Calculate the metaslab class's fragmentation metric. The metric
554  * is weighted based on the space contribution of each metaslab group.
555  * The return value will be a number between 0 and 100 (inclusive), or
556  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
557  * zfs_frag_table for more information about the metric.
558  */
559 uint64_t
560 metaslab_class_fragmentation(metaslab_class_t *mc)
561 {
562 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
563 	uint64_t fragmentation = 0;
564 
565 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
566 
567 	for (int c = 0; c < rvd->vdev_children; c++) {
568 		vdev_t *tvd = rvd->vdev_child[c];
569 		metaslab_group_t *mg = tvd->vdev_mg;
570 
571 		/*
572 		 * Skip any holes, uninitialized top-levels,
573 		 * or vdevs that are not in this metalab class.
574 		 */
575 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
576 		    mg->mg_class != mc) {
577 			continue;
578 		}
579 
580 		/*
581 		 * If a metaslab group does not contain a fragmentation
582 		 * metric then just bail out.
583 		 */
584 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
585 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
586 			return (ZFS_FRAG_INVALID);
587 		}
588 
589 		/*
590 		 * Determine how much this metaslab_group is contributing
591 		 * to the overall pool fragmentation metric.
592 		 */
593 		fragmentation += mg->mg_fragmentation *
594 		    metaslab_group_get_space(mg);
595 	}
596 	fragmentation /= metaslab_class_get_space(mc);
597 
598 	ASSERT3U(fragmentation, <=, 100);
599 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
600 	return (fragmentation);
601 }
602 
603 /*
604  * Calculate the amount of expandable space that is available in
605  * this metaslab class. If a device is expanded then its expandable
606  * space will be the amount of allocatable space that is currently not
607  * part of this metaslab class.
608  */
609 uint64_t
610 metaslab_class_expandable_space(metaslab_class_t *mc)
611 {
612 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
613 	uint64_t space = 0;
614 
615 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
616 	for (int c = 0; c < rvd->vdev_children; c++) {
617 		vdev_t *tvd = rvd->vdev_child[c];
618 		metaslab_group_t *mg = tvd->vdev_mg;
619 
620 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
621 		    mg->mg_class != mc) {
622 			continue;
623 		}
624 
625 		/*
626 		 * Calculate if we have enough space to add additional
627 		 * metaslabs. We report the expandable space in terms
628 		 * of the metaslab size since that's the unit of expansion.
629 		 */
630 		space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
631 		    1ULL << tvd->vdev_ms_shift, uint64_t);
632 	}
633 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
634 	return (space);
635 }
636 
637 void
638 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
639 {
640 	multilist_t *ml = &mc->mc_metaslab_txg_list;
641 	hrtime_t now = gethrtime();
642 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
643 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
644 		metaslab_t *msp = multilist_sublist_head(mls);
645 		multilist_sublist_unlock(mls);
646 		while (msp != NULL) {
647 			mutex_enter(&msp->ms_lock);
648 
649 			/*
650 			 * If the metaslab has been removed from the list
651 			 * (which could happen if we were at the memory limit
652 			 * and it was evicted during this loop), then we can't
653 			 * proceed and we should restart the sublist.
654 			 */
655 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
656 				mutex_exit(&msp->ms_lock);
657 				i--;
658 				break;
659 			}
660 			mls = multilist_sublist_lock_idx(ml, i);
661 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
662 			multilist_sublist_unlock(mls);
663 			if (txg >
664 			    msp->ms_selected_txg + metaslab_unload_delay &&
665 			    now > msp->ms_selected_time +
666 			    MSEC2NSEC(metaslab_unload_delay_ms) &&
667 			    (msp->ms_allocator == -1 ||
668 			    !metaslab_preload_enabled)) {
669 				metaslab_evict(msp, txg);
670 			} else {
671 				/*
672 				 * Once we've hit a metaslab selected too
673 				 * recently to evict, we're done evicting for
674 				 * now.
675 				 */
676 				mutex_exit(&msp->ms_lock);
677 				break;
678 			}
679 			mutex_exit(&msp->ms_lock);
680 			msp = next_msp;
681 		}
682 	}
683 }
684 
685 static int
686 metaslab_compare(const void *x1, const void *x2)
687 {
688 	const metaslab_t *m1 = (const metaslab_t *)x1;
689 	const metaslab_t *m2 = (const metaslab_t *)x2;
690 
691 	int sort1 = 0;
692 	int sort2 = 0;
693 	if (m1->ms_allocator != -1 && m1->ms_primary)
694 		sort1 = 1;
695 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
696 		sort1 = 2;
697 	if (m2->ms_allocator != -1 && m2->ms_primary)
698 		sort2 = 1;
699 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
700 		sort2 = 2;
701 
702 	/*
703 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
704 	 * selecting a metaslab to allocate from, an allocator first tries its
705 	 * primary, then secondary active metaslab. If it doesn't have active
706 	 * metaslabs, or can't allocate from them, it searches for an inactive
707 	 * metaslab to activate. If it can't find a suitable one, it will steal
708 	 * a primary or secondary metaslab from another allocator.
709 	 */
710 	if (sort1 < sort2)
711 		return (-1);
712 	if (sort1 > sort2)
713 		return (1);
714 
715 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
716 	if (likely(cmp))
717 		return (cmp);
718 
719 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
720 
721 	return (TREE_CMP(m1->ms_start, m2->ms_start));
722 }
723 
724 /*
725  * ==========================================================================
726  * Metaslab groups
727  * ==========================================================================
728  */
729 /*
730  * Update the allocatable flag and the metaslab group's capacity.
731  * The allocatable flag is set to true if the capacity is below
732  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
733  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
734  * transitions from allocatable to non-allocatable or vice versa then the
735  * metaslab group's class is updated to reflect the transition.
736  */
737 static void
738 metaslab_group_alloc_update(metaslab_group_t *mg)
739 {
740 	vdev_t *vd = mg->mg_vd;
741 	metaslab_class_t *mc = mg->mg_class;
742 	vdev_stat_t *vs = &vd->vdev_stat;
743 	boolean_t was_allocatable;
744 	boolean_t was_initialized;
745 
746 	ASSERT(vd == vd->vdev_top);
747 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
748 	    SCL_ALLOC);
749 
750 	mutex_enter(&mg->mg_lock);
751 	was_allocatable = mg->mg_allocatable;
752 	was_initialized = mg->mg_initialized;
753 
754 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
755 	    (vs->vs_space + 1);
756 
757 	mutex_enter(&mc->mc_lock);
758 
759 	/*
760 	 * If the metaslab group was just added then it won't
761 	 * have any space until we finish syncing out this txg.
762 	 * At that point we will consider it initialized and available
763 	 * for allocations.  We also don't consider non-activated
764 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
765 	 * to be initialized, because they can't be used for allocation.
766 	 */
767 	mg->mg_initialized = metaslab_group_initialized(mg);
768 	if (!was_initialized && mg->mg_initialized) {
769 		mc->mc_groups++;
770 	} else if (was_initialized && !mg->mg_initialized) {
771 		ASSERT3U(mc->mc_groups, >, 0);
772 		mc->mc_groups--;
773 	}
774 	if (mg->mg_initialized)
775 		mg->mg_no_free_space = B_FALSE;
776 
777 	/*
778 	 * A metaslab group is considered allocatable if it has plenty
779 	 * of free space or is not heavily fragmented. We only take
780 	 * fragmentation into account if the metaslab group has a valid
781 	 * fragmentation metric (i.e. a value between 0 and 100).
782 	 */
783 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
784 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
785 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
786 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
787 
788 	/*
789 	 * The mc_alloc_groups maintains a count of the number of
790 	 * groups in this metaslab class that are still above the
791 	 * zfs_mg_noalloc_threshold. This is used by the allocating
792 	 * threads to determine if they should avoid allocations to
793 	 * a given group. The allocator will avoid allocations to a group
794 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
795 	 * and there are still other groups that are above the threshold.
796 	 * When a group transitions from allocatable to non-allocatable or
797 	 * vice versa we update the metaslab class to reflect that change.
798 	 * When the mc_alloc_groups value drops to 0 that means that all
799 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
800 	 * eligible for allocations. This effectively means that all devices
801 	 * are balanced again.
802 	 */
803 	if (was_allocatable && !mg->mg_allocatable)
804 		mc->mc_alloc_groups--;
805 	else if (!was_allocatable && mg->mg_allocatable)
806 		mc->mc_alloc_groups++;
807 	mutex_exit(&mc->mc_lock);
808 
809 	mutex_exit(&mg->mg_lock);
810 }
811 
812 int
813 metaslab_sort_by_flushed(const void *va, const void *vb)
814 {
815 	const metaslab_t *a = va;
816 	const metaslab_t *b = vb;
817 
818 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
819 	if (likely(cmp))
820 		return (cmp);
821 
822 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
823 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
824 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
825 	if (cmp)
826 		return (cmp);
827 
828 	return (TREE_CMP(a->ms_id, b->ms_id));
829 }
830 
831 metaslab_group_t *
832 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
833 {
834 	metaslab_group_t *mg;
835 
836 	mg = kmem_zalloc(offsetof(metaslab_group_t,
837 	    mg_allocator[allocators]), KM_SLEEP);
838 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
839 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
840 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
841 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
842 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
843 	mg->mg_vd = vd;
844 	mg->mg_class = mc;
845 	mg->mg_activation_count = 0;
846 	mg->mg_initialized = B_FALSE;
847 	mg->mg_no_free_space = B_TRUE;
848 	mg->mg_allocators = allocators;
849 
850 	for (int i = 0; i < allocators; i++) {
851 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
852 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
853 	}
854 
855 	return (mg);
856 }
857 
858 void
859 metaslab_group_destroy(metaslab_group_t *mg)
860 {
861 	ASSERT(mg->mg_prev == NULL);
862 	ASSERT(mg->mg_next == NULL);
863 	/*
864 	 * We may have gone below zero with the activation count
865 	 * either because we never activated in the first place or
866 	 * because we're done, and possibly removing the vdev.
867 	 */
868 	ASSERT(mg->mg_activation_count <= 0);
869 
870 	avl_destroy(&mg->mg_metaslab_tree);
871 	mutex_destroy(&mg->mg_lock);
872 	mutex_destroy(&mg->mg_ms_disabled_lock);
873 	cv_destroy(&mg->mg_ms_disabled_cv);
874 
875 	for (int i = 0; i < mg->mg_allocators; i++) {
876 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
877 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
878 	}
879 	kmem_free(mg, offsetof(metaslab_group_t,
880 	    mg_allocator[mg->mg_allocators]));
881 }
882 
883 void
884 metaslab_group_activate(metaslab_group_t *mg)
885 {
886 	metaslab_class_t *mc = mg->mg_class;
887 	spa_t *spa = mc->mc_spa;
888 	metaslab_group_t *mgprev, *mgnext;
889 
890 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
891 
892 	ASSERT(mg->mg_prev == NULL);
893 	ASSERT(mg->mg_next == NULL);
894 	ASSERT(mg->mg_activation_count <= 0);
895 
896 	if (++mg->mg_activation_count <= 0)
897 		return;
898 
899 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
900 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
901 	metaslab_group_alloc_update(mg);
902 
903 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
904 		mg->mg_prev = mg;
905 		mg->mg_next = mg;
906 	} else {
907 		mgnext = mgprev->mg_next;
908 		mg->mg_prev = mgprev;
909 		mg->mg_next = mgnext;
910 		mgprev->mg_next = mg;
911 		mgnext->mg_prev = mg;
912 	}
913 	for (int i = 0; i < spa->spa_alloc_count; i++) {
914 		mc->mc_allocator[i].mca_rotor = mg;
915 		mg = mg->mg_next;
916 	}
917 }
918 
919 /*
920  * Passivate a metaslab group and remove it from the allocation rotor.
921  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
922  * a metaslab group. This function will momentarily drop spa_config_locks
923  * that are lower than the SCL_ALLOC lock (see comment below).
924  */
925 void
926 metaslab_group_passivate(metaslab_group_t *mg)
927 {
928 	metaslab_class_t *mc = mg->mg_class;
929 	spa_t *spa = mc->mc_spa;
930 	metaslab_group_t *mgprev, *mgnext;
931 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
932 
933 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
934 	    (SCL_ALLOC | SCL_ZIO));
935 
936 	if (--mg->mg_activation_count != 0) {
937 		for (int i = 0; i < spa->spa_alloc_count; i++)
938 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
939 		ASSERT(mg->mg_prev == NULL);
940 		ASSERT(mg->mg_next == NULL);
941 		ASSERT(mg->mg_activation_count < 0);
942 		return;
943 	}
944 
945 	/*
946 	 * The spa_config_lock is an array of rwlocks, ordered as
947 	 * follows (from highest to lowest):
948 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
949 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
950 	 * (For more information about the spa_config_lock see spa_misc.c)
951 	 * The higher the lock, the broader its coverage. When we passivate
952 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
953 	 * config locks. However, the metaslab group's taskq might be trying
954 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
955 	 * lower locks to allow the I/O to complete. At a minimum,
956 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
957 	 * allocations from taking place and any changes to the vdev tree.
958 	 */
959 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
960 	taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
961 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
962 	metaslab_group_alloc_update(mg);
963 	for (int i = 0; i < mg->mg_allocators; i++) {
964 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
965 		metaslab_t *msp = mga->mga_primary;
966 		if (msp != NULL) {
967 			mutex_enter(&msp->ms_lock);
968 			metaslab_passivate(msp,
969 			    metaslab_weight_from_range_tree(msp));
970 			mutex_exit(&msp->ms_lock);
971 		}
972 		msp = mga->mga_secondary;
973 		if (msp != NULL) {
974 			mutex_enter(&msp->ms_lock);
975 			metaslab_passivate(msp,
976 			    metaslab_weight_from_range_tree(msp));
977 			mutex_exit(&msp->ms_lock);
978 		}
979 	}
980 
981 	mgprev = mg->mg_prev;
982 	mgnext = mg->mg_next;
983 
984 	if (mg == mgnext) {
985 		mgnext = NULL;
986 	} else {
987 		mgprev->mg_next = mgnext;
988 		mgnext->mg_prev = mgprev;
989 	}
990 	for (int i = 0; i < spa->spa_alloc_count; i++) {
991 		if (mc->mc_allocator[i].mca_rotor == mg)
992 			mc->mc_allocator[i].mca_rotor = mgnext;
993 	}
994 
995 	mg->mg_prev = NULL;
996 	mg->mg_next = NULL;
997 }
998 
999 boolean_t
1000 metaslab_group_initialized(metaslab_group_t *mg)
1001 {
1002 	vdev_t *vd = mg->mg_vd;
1003 	vdev_stat_t *vs = &vd->vdev_stat;
1004 
1005 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1006 }
1007 
1008 uint64_t
1009 metaslab_group_get_space(metaslab_group_t *mg)
1010 {
1011 	/*
1012 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1013 	 * than vdev_ms_count, due to the embedded log metaslab.
1014 	 */
1015 	mutex_enter(&mg->mg_lock);
1016 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1017 	mutex_exit(&mg->mg_lock);
1018 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1019 }
1020 
1021 void
1022 metaslab_group_histogram_verify(metaslab_group_t *mg)
1023 {
1024 	uint64_t *mg_hist;
1025 	avl_tree_t *t = &mg->mg_metaslab_tree;
1026 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1027 
1028 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1029 		return;
1030 
1031 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1032 	    KM_SLEEP);
1033 
1034 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1035 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1036 
1037 	mutex_enter(&mg->mg_lock);
1038 	for (metaslab_t *msp = avl_first(t);
1039 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1040 		VERIFY3P(msp->ms_group, ==, mg);
1041 		/* skip if not active */
1042 		if (msp->ms_sm == NULL)
1043 			continue;
1044 
1045 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1046 			mg_hist[i + ashift] +=
1047 			    msp->ms_sm->sm_phys->smp_histogram[i];
1048 		}
1049 	}
1050 
1051 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1052 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1053 
1054 	mutex_exit(&mg->mg_lock);
1055 
1056 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1057 }
1058 
1059 static void
1060 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1061 {
1062 	metaslab_class_t *mc = mg->mg_class;
1063 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1064 
1065 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1066 	if (msp->ms_sm == NULL)
1067 		return;
1068 
1069 	mutex_enter(&mg->mg_lock);
1070 	mutex_enter(&mc->mc_lock);
1071 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1072 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1073 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1074 		mg->mg_histogram[i + ashift] +=
1075 		    msp->ms_sm->sm_phys->smp_histogram[i];
1076 		mc->mc_histogram[i + ashift] +=
1077 		    msp->ms_sm->sm_phys->smp_histogram[i];
1078 	}
1079 	mutex_exit(&mc->mc_lock);
1080 	mutex_exit(&mg->mg_lock);
1081 }
1082 
1083 void
1084 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1085 {
1086 	metaslab_class_t *mc = mg->mg_class;
1087 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1088 
1089 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1090 	if (msp->ms_sm == NULL)
1091 		return;
1092 
1093 	mutex_enter(&mg->mg_lock);
1094 	mutex_enter(&mc->mc_lock);
1095 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1096 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1097 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1098 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1099 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1100 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1101 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1102 
1103 		mg->mg_histogram[i + ashift] -=
1104 		    msp->ms_sm->sm_phys->smp_histogram[i];
1105 		mc->mc_histogram[i + ashift] -=
1106 		    msp->ms_sm->sm_phys->smp_histogram[i];
1107 	}
1108 	mutex_exit(&mc->mc_lock);
1109 	mutex_exit(&mg->mg_lock);
1110 }
1111 
1112 static void
1113 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1114 {
1115 	ASSERT(msp->ms_group == NULL);
1116 	mutex_enter(&mg->mg_lock);
1117 	msp->ms_group = mg;
1118 	msp->ms_weight = 0;
1119 	avl_add(&mg->mg_metaslab_tree, msp);
1120 	mutex_exit(&mg->mg_lock);
1121 
1122 	mutex_enter(&msp->ms_lock);
1123 	metaslab_group_histogram_add(mg, msp);
1124 	mutex_exit(&msp->ms_lock);
1125 }
1126 
1127 static void
1128 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1129 {
1130 	mutex_enter(&msp->ms_lock);
1131 	metaslab_group_histogram_remove(mg, msp);
1132 	mutex_exit(&msp->ms_lock);
1133 
1134 	mutex_enter(&mg->mg_lock);
1135 	ASSERT(msp->ms_group == mg);
1136 	avl_remove(&mg->mg_metaslab_tree, msp);
1137 
1138 	metaslab_class_t *mc = msp->ms_group->mg_class;
1139 	multilist_sublist_t *mls =
1140 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1141 	if (multilist_link_active(&msp->ms_class_txg_node))
1142 		multilist_sublist_remove(mls, msp);
1143 	multilist_sublist_unlock(mls);
1144 
1145 	msp->ms_group = NULL;
1146 	mutex_exit(&mg->mg_lock);
1147 }
1148 
1149 static void
1150 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1151 {
1152 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1153 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1154 	ASSERT(msp->ms_group == mg);
1155 
1156 	avl_remove(&mg->mg_metaslab_tree, msp);
1157 	msp->ms_weight = weight;
1158 	avl_add(&mg->mg_metaslab_tree, msp);
1159 
1160 }
1161 
1162 static void
1163 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1164 {
1165 	/*
1166 	 * Although in principle the weight can be any value, in
1167 	 * practice we do not use values in the range [1, 511].
1168 	 */
1169 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1170 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1171 
1172 	mutex_enter(&mg->mg_lock);
1173 	metaslab_group_sort_impl(mg, msp, weight);
1174 	mutex_exit(&mg->mg_lock);
1175 }
1176 
1177 /*
1178  * Calculate the fragmentation for a given metaslab group. We can use
1179  * a simple average here since all metaslabs within the group must have
1180  * the same size. The return value will be a value between 0 and 100
1181  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1182  * group have a fragmentation metric.
1183  */
1184 uint64_t
1185 metaslab_group_fragmentation(metaslab_group_t *mg)
1186 {
1187 	vdev_t *vd = mg->mg_vd;
1188 	uint64_t fragmentation = 0;
1189 	uint64_t valid_ms = 0;
1190 
1191 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1192 		metaslab_t *msp = vd->vdev_ms[m];
1193 
1194 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1195 			continue;
1196 		if (msp->ms_group != mg)
1197 			continue;
1198 
1199 		valid_ms++;
1200 		fragmentation += msp->ms_fragmentation;
1201 	}
1202 
1203 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1204 		return (ZFS_FRAG_INVALID);
1205 
1206 	fragmentation /= valid_ms;
1207 	ASSERT3U(fragmentation, <=, 100);
1208 	return (fragmentation);
1209 }
1210 
1211 /*
1212  * Determine if a given metaslab group should skip allocations. A metaslab
1213  * group should avoid allocations if its free capacity is less than the
1214  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1215  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1216  * that can still handle allocations. If the allocation throttle is enabled
1217  * then we skip allocations to devices that have reached their maximum
1218  * allocation queue depth unless the selected metaslab group is the only
1219  * eligible group remaining.
1220  */
1221 static boolean_t
1222 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1223     int flags, uint64_t psize, int allocator, int d)
1224 {
1225 	spa_t *spa = mg->mg_vd->vdev_spa;
1226 	metaslab_class_t *mc = mg->mg_class;
1227 
1228 	/*
1229 	 * We can only consider skipping this metaslab group if it's
1230 	 * in the normal metaslab class and there are other metaslab
1231 	 * groups to select from. Otherwise, we always consider it eligible
1232 	 * for allocations.
1233 	 */
1234 	if ((mc != spa_normal_class(spa) &&
1235 	    mc != spa_special_class(spa) &&
1236 	    mc != spa_dedup_class(spa)) ||
1237 	    mc->mc_groups <= 1)
1238 		return (B_TRUE);
1239 
1240 	/*
1241 	 * If the metaslab group's mg_allocatable flag is set (see comments
1242 	 * in metaslab_group_alloc_update() for more information) and
1243 	 * the allocation throttle is disabled then allow allocations to this
1244 	 * device. However, if the allocation throttle is enabled then
1245 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1246 	 * to determine if we should allow allocations to this metaslab group.
1247 	 * If all metaslab groups are no longer considered allocatable
1248 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1249 	 * gang block size then we allow allocations on this metaslab group
1250 	 * regardless of the mg_allocatable or throttle settings.
1251 	 */
1252 	if (mg->mg_allocatable) {
1253 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1254 		int64_t qdepth;
1255 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1256 
1257 		if (!mc->mc_alloc_throttle_enabled)
1258 			return (B_TRUE);
1259 
1260 		/*
1261 		 * If this metaslab group does not have any free space, then
1262 		 * there is no point in looking further.
1263 		 */
1264 		if (mg->mg_no_free_space)
1265 			return (B_FALSE);
1266 
1267 		/*
1268 		 * Some allocations (e.g., those coming from device removal
1269 		 * where the * allocations are not even counted in the
1270 		 * metaslab * allocation queues) are allowed to bypass
1271 		 * the throttle.
1272 		 */
1273 		if (flags & METASLAB_DONT_THROTTLE)
1274 			return (B_TRUE);
1275 
1276 		/*
1277 		 * Relax allocation throttling for ditto blocks.  Due to
1278 		 * random imbalances in allocation it tends to push copies
1279 		 * to one vdev, that looks a bit better at the moment.
1280 		 */
1281 		qmax = qmax * (4 + d) / 4;
1282 
1283 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1284 
1285 		/*
1286 		 * If this metaslab group is below its qmax or it's
1287 		 * the only allocatable metaslab group, then attempt
1288 		 * to allocate from it.
1289 		 */
1290 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1291 			return (B_TRUE);
1292 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1293 
1294 		/*
1295 		 * Since this metaslab group is at or over its qmax, we
1296 		 * need to determine if there are metaslab groups after this
1297 		 * one that might be able to handle this allocation. This is
1298 		 * racy since we can't hold the locks for all metaslab
1299 		 * groups at the same time when we make this check.
1300 		 */
1301 		for (metaslab_group_t *mgp = mg->mg_next;
1302 		    mgp != rotor; mgp = mgp->mg_next) {
1303 			metaslab_group_allocator_t *mgap =
1304 			    &mgp->mg_allocator[allocator];
1305 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1306 			qmax = qmax * (4 + d) / 4;
1307 			qdepth =
1308 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1309 
1310 			/*
1311 			 * If there is another metaslab group that
1312 			 * might be able to handle the allocation, then
1313 			 * we return false so that we skip this group.
1314 			 */
1315 			if (qdepth < qmax && !mgp->mg_no_free_space)
1316 				return (B_FALSE);
1317 		}
1318 
1319 		/*
1320 		 * We didn't find another group to handle the allocation
1321 		 * so we can't skip this metaslab group even though
1322 		 * we are at or over our qmax.
1323 		 */
1324 		return (B_TRUE);
1325 
1326 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1327 		return (B_TRUE);
1328 	}
1329 	return (B_FALSE);
1330 }
1331 
1332 /*
1333  * ==========================================================================
1334  * Range tree callbacks
1335  * ==========================================================================
1336  */
1337 
1338 /*
1339  * Comparison function for the private size-ordered tree using 32-bit
1340  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1341  */
1342 __attribute__((always_inline)) inline
1343 static int
1344 metaslab_rangesize32_compare(const void *x1, const void *x2)
1345 {
1346 	const range_seg32_t *r1 = x1;
1347 	const range_seg32_t *r2 = x2;
1348 
1349 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1350 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1351 
1352 	int cmp = TREE_CMP(rs_size1, rs_size2);
1353 
1354 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1355 }
1356 
1357 /*
1358  * Comparison function for the private size-ordered tree using 64-bit
1359  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1360  */
1361 __attribute__((always_inline)) inline
1362 static int
1363 metaslab_rangesize64_compare(const void *x1, const void *x2)
1364 {
1365 	const range_seg64_t *r1 = x1;
1366 	const range_seg64_t *r2 = x2;
1367 
1368 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1369 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1370 
1371 	int cmp = TREE_CMP(rs_size1, rs_size2);
1372 
1373 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1374 }
1375 
1376 typedef struct metaslab_rt_arg {
1377 	zfs_btree_t *mra_bt;
1378 	uint32_t mra_floor_shift;
1379 } metaslab_rt_arg_t;
1380 
1381 struct mssa_arg {
1382 	range_tree_t *rt;
1383 	metaslab_rt_arg_t *mra;
1384 };
1385 
1386 static void
1387 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1388 {
1389 	struct mssa_arg *mssap = arg;
1390 	range_tree_t *rt = mssap->rt;
1391 	metaslab_rt_arg_t *mrap = mssap->mra;
1392 	range_seg_max_t seg = {0};
1393 	rs_set_start(&seg, rt, start);
1394 	rs_set_end(&seg, rt, start + size);
1395 	metaslab_rt_add(rt, &seg, mrap);
1396 }
1397 
1398 static void
1399 metaslab_size_tree_full_load(range_tree_t *rt)
1400 {
1401 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1402 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1403 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1404 	mrap->mra_floor_shift = 0;
1405 	struct mssa_arg arg = {0};
1406 	arg.rt = rt;
1407 	arg.mra = mrap;
1408 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1409 }
1410 
1411 
1412 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1413     range_seg32_t, metaslab_rangesize32_compare)
1414 
1415 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1416     range_seg64_t, metaslab_rangesize64_compare)
1417 
1418 /*
1419  * Create any block allocator specific components. The current allocators
1420  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1421  */
1422 static void
1423 metaslab_rt_create(range_tree_t *rt, void *arg)
1424 {
1425 	metaslab_rt_arg_t *mrap = arg;
1426 	zfs_btree_t *size_tree = mrap->mra_bt;
1427 
1428 	size_t size;
1429 	int (*compare) (const void *, const void *);
1430 	bt_find_in_buf_f bt_find;
1431 	switch (rt->rt_type) {
1432 	case RANGE_SEG32:
1433 		size = sizeof (range_seg32_t);
1434 		compare = metaslab_rangesize32_compare;
1435 		bt_find = metaslab_rt_find_rangesize32_in_buf;
1436 		break;
1437 	case RANGE_SEG64:
1438 		size = sizeof (range_seg64_t);
1439 		compare = metaslab_rangesize64_compare;
1440 		bt_find = metaslab_rt_find_rangesize64_in_buf;
1441 		break;
1442 	default:
1443 		panic("Invalid range seg type %d", rt->rt_type);
1444 	}
1445 	zfs_btree_create(size_tree, compare, bt_find, size);
1446 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1447 }
1448 
1449 static void
1450 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1451 {
1452 	(void) rt;
1453 	metaslab_rt_arg_t *mrap = arg;
1454 	zfs_btree_t *size_tree = mrap->mra_bt;
1455 
1456 	zfs_btree_destroy(size_tree);
1457 	kmem_free(mrap, sizeof (*mrap));
1458 }
1459 
1460 static void
1461 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1462 {
1463 	metaslab_rt_arg_t *mrap = arg;
1464 	zfs_btree_t *size_tree = mrap->mra_bt;
1465 
1466 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1467 	    (1ULL << mrap->mra_floor_shift))
1468 		return;
1469 
1470 	zfs_btree_add(size_tree, rs);
1471 }
1472 
1473 static void
1474 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1475 {
1476 	metaslab_rt_arg_t *mrap = arg;
1477 	zfs_btree_t *size_tree = mrap->mra_bt;
1478 
1479 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1480 	    mrap->mra_floor_shift))
1481 		return;
1482 
1483 	zfs_btree_remove(size_tree, rs);
1484 }
1485 
1486 static void
1487 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1488 {
1489 	metaslab_rt_arg_t *mrap = arg;
1490 	zfs_btree_t *size_tree = mrap->mra_bt;
1491 	zfs_btree_clear(size_tree);
1492 	zfs_btree_destroy(size_tree);
1493 
1494 	metaslab_rt_create(rt, arg);
1495 }
1496 
1497 static const range_tree_ops_t metaslab_rt_ops = {
1498 	.rtop_create = metaslab_rt_create,
1499 	.rtop_destroy = metaslab_rt_destroy,
1500 	.rtop_add = metaslab_rt_add,
1501 	.rtop_remove = metaslab_rt_remove,
1502 	.rtop_vacate = metaslab_rt_vacate
1503 };
1504 
1505 /*
1506  * ==========================================================================
1507  * Common allocator routines
1508  * ==========================================================================
1509  */
1510 
1511 /*
1512  * Return the maximum contiguous segment within the metaslab.
1513  */
1514 uint64_t
1515 metaslab_largest_allocatable(metaslab_t *msp)
1516 {
1517 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1518 	range_seg_t *rs;
1519 
1520 	if (t == NULL)
1521 		return (0);
1522 	if (zfs_btree_numnodes(t) == 0)
1523 		metaslab_size_tree_full_load(msp->ms_allocatable);
1524 
1525 	rs = zfs_btree_last(t, NULL);
1526 	if (rs == NULL)
1527 		return (0);
1528 
1529 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1530 	    msp->ms_allocatable));
1531 }
1532 
1533 /*
1534  * Return the maximum contiguous segment within the unflushed frees of this
1535  * metaslab.
1536  */
1537 static uint64_t
1538 metaslab_largest_unflushed_free(metaslab_t *msp)
1539 {
1540 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1541 
1542 	if (msp->ms_unflushed_frees == NULL)
1543 		return (0);
1544 
1545 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1546 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1547 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1548 	    NULL);
1549 	if (rs == NULL)
1550 		return (0);
1551 
1552 	/*
1553 	 * When a range is freed from the metaslab, that range is added to
1554 	 * both the unflushed frees and the deferred frees. While the block
1555 	 * will eventually be usable, if the metaslab were loaded the range
1556 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1557 	 * txgs had passed.  As a result, when attempting to estimate an upper
1558 	 * bound for the largest currently-usable free segment in the
1559 	 * metaslab, we need to not consider any ranges currently in the defer
1560 	 * trees. This algorithm approximates the largest available chunk in
1561 	 * the largest range in the unflushed_frees tree by taking the first
1562 	 * chunk.  While this may be a poor estimate, it should only remain so
1563 	 * briefly and should eventually self-correct as frees are no longer
1564 	 * deferred. Similar logic applies to the ms_freed tree. See
1565 	 * metaslab_load() for more details.
1566 	 *
1567 	 * There are two primary sources of inaccuracy in this estimate. Both
1568 	 * are tolerated for performance reasons. The first source is that we
1569 	 * only check the largest segment for overlaps. Smaller segments may
1570 	 * have more favorable overlaps with the other trees, resulting in
1571 	 * larger usable chunks.  Second, we only look at the first chunk in
1572 	 * the largest segment; there may be other usable chunks in the
1573 	 * largest segment, but we ignore them.
1574 	 */
1575 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1576 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1577 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1578 		uint64_t start = 0;
1579 		uint64_t size = 0;
1580 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1581 		    rsize, &start, &size);
1582 		if (found) {
1583 			if (rstart == start)
1584 				return (0);
1585 			rsize = start - rstart;
1586 		}
1587 	}
1588 
1589 	uint64_t start = 0;
1590 	uint64_t size = 0;
1591 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1592 	    rsize, &start, &size);
1593 	if (found)
1594 		rsize = start - rstart;
1595 
1596 	return (rsize);
1597 }
1598 
1599 static range_seg_t *
1600 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1601     uint64_t size, zfs_btree_index_t *where)
1602 {
1603 	range_seg_t *rs;
1604 	range_seg_max_t rsearch;
1605 
1606 	rs_set_start(&rsearch, rt, start);
1607 	rs_set_end(&rsearch, rt, start + size);
1608 
1609 	rs = zfs_btree_find(t, &rsearch, where);
1610 	if (rs == NULL) {
1611 		rs = zfs_btree_next(t, where, where);
1612 	}
1613 
1614 	return (rs);
1615 }
1616 
1617 /*
1618  * This is a helper function that can be used by the allocator to find a
1619  * suitable block to allocate. This will search the specified B-tree looking
1620  * for a block that matches the specified criteria.
1621  */
1622 static uint64_t
1623 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1624     uint64_t max_search)
1625 {
1626 	if (*cursor == 0)
1627 		*cursor = rt->rt_start;
1628 	zfs_btree_t *bt = &rt->rt_root;
1629 	zfs_btree_index_t where;
1630 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1631 	uint64_t first_found;
1632 	int count_searched = 0;
1633 
1634 	if (rs != NULL)
1635 		first_found = rs_get_start(rs, rt);
1636 
1637 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1638 	    max_search || count_searched < metaslab_min_search_count)) {
1639 		uint64_t offset = rs_get_start(rs, rt);
1640 		if (offset + size <= rs_get_end(rs, rt)) {
1641 			*cursor = offset + size;
1642 			return (offset);
1643 		}
1644 		rs = zfs_btree_next(bt, &where, &where);
1645 		count_searched++;
1646 	}
1647 
1648 	*cursor = 0;
1649 	return (-1ULL);
1650 }
1651 
1652 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
1653 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
1654 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
1655 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1656 
1657 static metaslab_ops_t metaslab_allocators[] = {
1658 	{ "dynamic", metaslab_df_alloc },
1659 	{ "cursor", metaslab_cf_alloc },
1660 	{ "new-dynamic", metaslab_ndf_alloc },
1661 };
1662 
1663 static int
1664 spa_find_allocator_byname(const char *val)
1665 {
1666 	int a = ARRAY_SIZE(metaslab_allocators) - 1;
1667 	if (strcmp("new-dynamic", val) == 0)
1668 		return (-1); /* remove when ndf is working */
1669 	for (; a >= 0; a--) {
1670 		if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1671 			return (a);
1672 	}
1673 	return (-1);
1674 }
1675 
1676 void
1677 spa_set_allocator(spa_t *spa, const char *allocator)
1678 {
1679 	int a = spa_find_allocator_byname(allocator);
1680 	if (a < 0) a = 0;
1681 	spa->spa_active_allocator = a;
1682 	zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1683 }
1684 
1685 int
1686 spa_get_allocator(spa_t *spa)
1687 {
1688 	return (spa->spa_active_allocator);
1689 }
1690 
1691 #if defined(_KERNEL)
1692 int
1693 param_set_active_allocator_common(const char *val)
1694 {
1695 	char *p;
1696 
1697 	if (val == NULL)
1698 		return (SET_ERROR(EINVAL));
1699 
1700 	if ((p = strchr(val, '\n')) != NULL)
1701 		*p = '\0';
1702 
1703 	int a = spa_find_allocator_byname(val);
1704 	if (a < 0)
1705 		return (SET_ERROR(EINVAL));
1706 
1707 	zfs_active_allocator = metaslab_allocators[a].msop_name;
1708 	return (0);
1709 }
1710 #endif
1711 
1712 metaslab_ops_t *
1713 metaslab_allocator(spa_t *spa)
1714 {
1715 	int allocator = spa_get_allocator(spa);
1716 	return (&metaslab_allocators[allocator]);
1717 }
1718 
1719 /*
1720  * ==========================================================================
1721  * Dynamic Fit (df) block allocator
1722  *
1723  * Search for a free chunk of at least this size, starting from the last
1724  * offset (for this alignment of block) looking for up to
1725  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1726  * found within 16MB, then return a free chunk of exactly the requested size (or
1727  * larger).
1728  *
1729  * If it seems like searching from the last offset will be unproductive, skip
1730  * that and just return a free chunk of exactly the requested size (or larger).
1731  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1732  * mechanism is probably not very useful and may be removed in the future.
1733  *
1734  * The behavior when not searching can be changed to return the largest free
1735  * chunk, instead of a free chunk of exactly the requested size, by setting
1736  * metaslab_df_use_largest_segment.
1737  * ==========================================================================
1738  */
1739 static uint64_t
1740 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1741 {
1742 	/*
1743 	 * Find the largest power of 2 block size that evenly divides the
1744 	 * requested size. This is used to try to allocate blocks with similar
1745 	 * alignment from the same area of the metaslab (i.e. same cursor
1746 	 * bucket) but it does not guarantee that other allocations sizes
1747 	 * may exist in the same region.
1748 	 */
1749 	uint64_t align = size & -size;
1750 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1751 	range_tree_t *rt = msp->ms_allocatable;
1752 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1753 	uint64_t offset;
1754 
1755 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1756 
1757 	/*
1758 	 * If we're running low on space, find a segment based on size,
1759 	 * rather than iterating based on offset.
1760 	 */
1761 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1762 	    free_pct < metaslab_df_free_pct) {
1763 		offset = -1;
1764 	} else {
1765 		offset = metaslab_block_picker(rt,
1766 		    cursor, size, metaslab_df_max_search);
1767 	}
1768 
1769 	if (offset == -1) {
1770 		range_seg_t *rs;
1771 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1772 			metaslab_size_tree_full_load(msp->ms_allocatable);
1773 
1774 		if (metaslab_df_use_largest_segment) {
1775 			/* use largest free segment */
1776 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1777 		} else {
1778 			zfs_btree_index_t where;
1779 			/* use segment of this size, or next largest */
1780 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1781 			    rt, msp->ms_start, size, &where);
1782 		}
1783 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1784 		    rt)) {
1785 			offset = rs_get_start(rs, rt);
1786 			*cursor = offset + size;
1787 		}
1788 	}
1789 
1790 	return (offset);
1791 }
1792 
1793 /*
1794  * ==========================================================================
1795  * Cursor fit block allocator -
1796  * Select the largest region in the metaslab, set the cursor to the beginning
1797  * of the range and the cursor_end to the end of the range. As allocations
1798  * are made advance the cursor. Continue allocating from the cursor until
1799  * the range is exhausted and then find a new range.
1800  * ==========================================================================
1801  */
1802 static uint64_t
1803 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1804 {
1805 	range_tree_t *rt = msp->ms_allocatable;
1806 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1807 	uint64_t *cursor = &msp->ms_lbas[0];
1808 	uint64_t *cursor_end = &msp->ms_lbas[1];
1809 	uint64_t offset = 0;
1810 
1811 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1812 
1813 	ASSERT3U(*cursor_end, >=, *cursor);
1814 
1815 	if ((*cursor + size) > *cursor_end) {
1816 		range_seg_t *rs;
1817 
1818 		if (zfs_btree_numnodes(t) == 0)
1819 			metaslab_size_tree_full_load(msp->ms_allocatable);
1820 		rs = zfs_btree_last(t, NULL);
1821 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1822 		    size)
1823 			return (-1ULL);
1824 
1825 		*cursor = rs_get_start(rs, rt);
1826 		*cursor_end = rs_get_end(rs, rt);
1827 	}
1828 
1829 	offset = *cursor;
1830 	*cursor += size;
1831 
1832 	return (offset);
1833 }
1834 
1835 /*
1836  * ==========================================================================
1837  * New dynamic fit allocator -
1838  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1839  * contiguous blocks. If no region is found then just use the largest segment
1840  * that remains.
1841  * ==========================================================================
1842  */
1843 
1844 /*
1845  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1846  * to request from the allocator.
1847  */
1848 uint64_t metaslab_ndf_clump_shift = 4;
1849 
1850 static uint64_t
1851 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1852 {
1853 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1854 	range_tree_t *rt = msp->ms_allocatable;
1855 	zfs_btree_index_t where;
1856 	range_seg_t *rs;
1857 	range_seg_max_t rsearch;
1858 	uint64_t hbit = highbit64(size);
1859 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1860 	uint64_t max_size = metaslab_largest_allocatable(msp);
1861 
1862 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1863 
1864 	if (max_size < size)
1865 		return (-1ULL);
1866 
1867 	rs_set_start(&rsearch, rt, *cursor);
1868 	rs_set_end(&rsearch, rt, *cursor + size);
1869 
1870 	rs = zfs_btree_find(t, &rsearch, &where);
1871 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1872 		t = &msp->ms_allocatable_by_size;
1873 
1874 		rs_set_start(&rsearch, rt, 0);
1875 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1876 		    metaslab_ndf_clump_shift)));
1877 
1878 		rs = zfs_btree_find(t, &rsearch, &where);
1879 		if (rs == NULL)
1880 			rs = zfs_btree_next(t, &where, &where);
1881 		ASSERT(rs != NULL);
1882 	}
1883 
1884 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1885 		*cursor = rs_get_start(rs, rt) + size;
1886 		return (rs_get_start(rs, rt));
1887 	}
1888 	return (-1ULL);
1889 }
1890 
1891 /*
1892  * ==========================================================================
1893  * Metaslabs
1894  * ==========================================================================
1895  */
1896 
1897 /*
1898  * Wait for any in-progress metaslab loads to complete.
1899  */
1900 static void
1901 metaslab_load_wait(metaslab_t *msp)
1902 {
1903 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1904 
1905 	while (msp->ms_loading) {
1906 		ASSERT(!msp->ms_loaded);
1907 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1908 	}
1909 }
1910 
1911 /*
1912  * Wait for any in-progress flushing to complete.
1913  */
1914 static void
1915 metaslab_flush_wait(metaslab_t *msp)
1916 {
1917 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1918 
1919 	while (msp->ms_flushing)
1920 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1921 }
1922 
1923 static unsigned int
1924 metaslab_idx_func(multilist_t *ml, void *arg)
1925 {
1926 	metaslab_t *msp = arg;
1927 
1928 	/*
1929 	 * ms_id values are allocated sequentially, so full 64bit
1930 	 * division would be a waste of time, so limit it to 32 bits.
1931 	 */
1932 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1933 }
1934 
1935 uint64_t
1936 metaslab_allocated_space(metaslab_t *msp)
1937 {
1938 	return (msp->ms_allocated_space);
1939 }
1940 
1941 /*
1942  * Verify that the space accounting on disk matches the in-core range_trees.
1943  */
1944 static void
1945 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1946 {
1947 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1948 	uint64_t allocating = 0;
1949 	uint64_t sm_free_space, msp_free_space;
1950 
1951 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1952 	ASSERT(!msp->ms_condensing);
1953 
1954 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1955 		return;
1956 
1957 	/*
1958 	 * We can only verify the metaslab space when we're called
1959 	 * from syncing context with a loaded metaslab that has an
1960 	 * allocated space map. Calling this in non-syncing context
1961 	 * does not provide a consistent view of the metaslab since
1962 	 * we're performing allocations in the future.
1963 	 */
1964 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1965 	    !msp->ms_loaded)
1966 		return;
1967 
1968 	/*
1969 	 * Even though the smp_alloc field can get negative,
1970 	 * when it comes to a metaslab's space map, that should
1971 	 * never be the case.
1972 	 */
1973 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1974 
1975 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1976 	    range_tree_space(msp->ms_unflushed_frees));
1977 
1978 	ASSERT3U(metaslab_allocated_space(msp), ==,
1979 	    space_map_allocated(msp->ms_sm) +
1980 	    range_tree_space(msp->ms_unflushed_allocs) -
1981 	    range_tree_space(msp->ms_unflushed_frees));
1982 
1983 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1984 
1985 	/*
1986 	 * Account for future allocations since we would have
1987 	 * already deducted that space from the ms_allocatable.
1988 	 */
1989 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1990 		allocating +=
1991 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1992 	}
1993 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1994 	    msp->ms_allocating_total);
1995 
1996 	ASSERT3U(msp->ms_deferspace, ==,
1997 	    range_tree_space(msp->ms_defer[0]) +
1998 	    range_tree_space(msp->ms_defer[1]));
1999 
2000 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
2001 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
2002 
2003 	VERIFY3U(sm_free_space, ==, msp_free_space);
2004 }
2005 
2006 static void
2007 metaslab_aux_histograms_clear(metaslab_t *msp)
2008 {
2009 	/*
2010 	 * Auxiliary histograms are only cleared when resetting them,
2011 	 * which can only happen while the metaslab is loaded.
2012 	 */
2013 	ASSERT(msp->ms_loaded);
2014 
2015 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2016 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
2017 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2018 }
2019 
2020 static void
2021 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2022     range_tree_t *rt)
2023 {
2024 	/*
2025 	 * This is modeled after space_map_histogram_add(), so refer to that
2026 	 * function for implementation details. We want this to work like
2027 	 * the space map histogram, and not the range tree histogram, as we
2028 	 * are essentially constructing a delta that will be later subtracted
2029 	 * from the space map histogram.
2030 	 */
2031 	int idx = 0;
2032 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
2033 		ASSERT3U(i, >=, idx + shift);
2034 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2035 
2036 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2037 			ASSERT3U(idx + shift, ==, i);
2038 			idx++;
2039 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2040 		}
2041 	}
2042 }
2043 
2044 /*
2045  * Called at every sync pass that the metaslab gets synced.
2046  *
2047  * The reason is that we want our auxiliary histograms to be updated
2048  * wherever the metaslab's space map histogram is updated. This way
2049  * we stay consistent on which parts of the metaslab space map's
2050  * histogram are currently not available for allocations (e.g because
2051  * they are in the defer, freed, and freeing trees).
2052  */
2053 static void
2054 metaslab_aux_histograms_update(metaslab_t *msp)
2055 {
2056 	space_map_t *sm = msp->ms_sm;
2057 	ASSERT(sm != NULL);
2058 
2059 	/*
2060 	 * This is similar to the metaslab's space map histogram updates
2061 	 * that take place in metaslab_sync(). The only difference is that
2062 	 * we only care about segments that haven't made it into the
2063 	 * ms_allocatable tree yet.
2064 	 */
2065 	if (msp->ms_loaded) {
2066 		metaslab_aux_histograms_clear(msp);
2067 
2068 		metaslab_aux_histogram_add(msp->ms_synchist,
2069 		    sm->sm_shift, msp->ms_freed);
2070 
2071 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2072 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2073 			    sm->sm_shift, msp->ms_defer[t]);
2074 		}
2075 	}
2076 
2077 	metaslab_aux_histogram_add(msp->ms_synchist,
2078 	    sm->sm_shift, msp->ms_freeing);
2079 }
2080 
2081 /*
2082  * Called every time we are done syncing (writing to) the metaslab,
2083  * i.e. at the end of each sync pass.
2084  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2085  */
2086 static void
2087 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2088 {
2089 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2090 	space_map_t *sm = msp->ms_sm;
2091 
2092 	if (sm == NULL) {
2093 		/*
2094 		 * We came here from metaslab_init() when creating/opening a
2095 		 * pool, looking at a metaslab that hasn't had any allocations
2096 		 * yet.
2097 		 */
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * This is similar to the actions that we take for the ms_freed
2103 	 * and ms_defer trees in metaslab_sync_done().
2104 	 */
2105 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2106 	if (defer_allowed) {
2107 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2108 		    sizeof (msp->ms_synchist));
2109 	} else {
2110 		memset(msp->ms_deferhist[hist_index], 0,
2111 		    sizeof (msp->ms_deferhist[hist_index]));
2112 	}
2113 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2114 }
2115 
2116 /*
2117  * Ensure that the metaslab's weight and fragmentation are consistent
2118  * with the contents of the histogram (either the range tree's histogram
2119  * or the space map's depending whether the metaslab is loaded).
2120  */
2121 static void
2122 metaslab_verify_weight_and_frag(metaslab_t *msp)
2123 {
2124 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2125 
2126 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2127 		return;
2128 
2129 	/*
2130 	 * We can end up here from vdev_remove_complete(), in which case we
2131 	 * cannot do these assertions because we hold spa config locks and
2132 	 * thus we are not allowed to read from the DMU.
2133 	 *
2134 	 * We check if the metaslab group has been removed and if that's
2135 	 * the case we return immediately as that would mean that we are
2136 	 * here from the aforementioned code path.
2137 	 */
2138 	if (msp->ms_group == NULL)
2139 		return;
2140 
2141 	/*
2142 	 * Devices being removed always return a weight of 0 and leave
2143 	 * fragmentation and ms_max_size as is - there is nothing for
2144 	 * us to verify here.
2145 	 */
2146 	vdev_t *vd = msp->ms_group->mg_vd;
2147 	if (vd->vdev_removing)
2148 		return;
2149 
2150 	/*
2151 	 * If the metaslab is dirty it probably means that we've done
2152 	 * some allocations or frees that have changed our histograms
2153 	 * and thus the weight.
2154 	 */
2155 	for (int t = 0; t < TXG_SIZE; t++) {
2156 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2157 			return;
2158 	}
2159 
2160 	/*
2161 	 * This verification checks that our in-memory state is consistent
2162 	 * with what's on disk. If the pool is read-only then there aren't
2163 	 * any changes and we just have the initially-loaded state.
2164 	 */
2165 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2166 		return;
2167 
2168 	/* some extra verification for in-core tree if you can */
2169 	if (msp->ms_loaded) {
2170 		range_tree_stat_verify(msp->ms_allocatable);
2171 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2172 		    msp->ms_allocatable));
2173 	}
2174 
2175 	uint64_t weight = msp->ms_weight;
2176 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2177 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2178 	uint64_t frag = msp->ms_fragmentation;
2179 	uint64_t max_segsize = msp->ms_max_size;
2180 
2181 	msp->ms_weight = 0;
2182 	msp->ms_fragmentation = 0;
2183 
2184 	/*
2185 	 * This function is used for verification purposes and thus should
2186 	 * not introduce any side-effects/mutations on the system's state.
2187 	 *
2188 	 * Regardless of whether metaslab_weight() thinks this metaslab
2189 	 * should be active or not, we want to ensure that the actual weight
2190 	 * (and therefore the value of ms_weight) would be the same if it
2191 	 * was to be recalculated at this point.
2192 	 *
2193 	 * In addition we set the nodirty flag so metaslab_weight() does
2194 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2195 	 * force condensing to upgrade the metaslab spacemaps).
2196 	 */
2197 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2198 
2199 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2200 
2201 	/*
2202 	 * If the weight type changed then there is no point in doing
2203 	 * verification. Revert fields to their original values.
2204 	 */
2205 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2206 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2207 		msp->ms_fragmentation = frag;
2208 		msp->ms_weight = weight;
2209 		return;
2210 	}
2211 
2212 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2213 	VERIFY3U(msp->ms_weight, ==, weight);
2214 }
2215 
2216 /*
2217  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2218  * this class that was used longest ago, and attempt to unload it.  We don't
2219  * want to spend too much time in this loop to prevent performance
2220  * degradation, and we expect that most of the time this operation will
2221  * succeed. Between that and the normal unloading processing during txg sync,
2222  * we expect this to keep the metaslab memory usage under control.
2223  */
2224 static void
2225 metaslab_potentially_evict(metaslab_class_t *mc)
2226 {
2227 #ifdef _KERNEL
2228 	uint64_t allmem = arc_all_memory();
2229 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2230 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2231 	uint_t tries = 0;
2232 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2233 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2234 	    tries++) {
2235 		unsigned int idx = multilist_get_random_index(
2236 		    &mc->mc_metaslab_txg_list);
2237 		multilist_sublist_t *mls =
2238 		    multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2239 		metaslab_t *msp = multilist_sublist_head(mls);
2240 		multilist_sublist_unlock(mls);
2241 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2242 		    inuse * size) {
2243 			VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2244 			    &mc->mc_metaslab_txg_list, idx));
2245 			ASSERT3U(idx, ==,
2246 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2247 
2248 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2249 				multilist_sublist_unlock(mls);
2250 				break;
2251 			}
2252 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2253 			multilist_sublist_unlock(mls);
2254 			/*
2255 			 * If the metaslab is currently loading there are two
2256 			 * cases. If it's the metaslab we're evicting, we
2257 			 * can't continue on or we'll panic when we attempt to
2258 			 * recursively lock the mutex. If it's another
2259 			 * metaslab that's loading, it can be safely skipped,
2260 			 * since we know it's very new and therefore not a
2261 			 * good eviction candidate. We check later once the
2262 			 * lock is held that the metaslab is fully loaded
2263 			 * before actually unloading it.
2264 			 */
2265 			if (msp->ms_loading) {
2266 				msp = next_msp;
2267 				inuse =
2268 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2269 				continue;
2270 			}
2271 			/*
2272 			 * We can't unload metaslabs with no spacemap because
2273 			 * they're not ready to be unloaded yet. We can't
2274 			 * unload metaslabs with outstanding allocations
2275 			 * because doing so could cause the metaslab's weight
2276 			 * to decrease while it's unloaded, which violates an
2277 			 * invariant that we use to prevent unnecessary
2278 			 * loading. We also don't unload metaslabs that are
2279 			 * currently active because they are high-weight
2280 			 * metaslabs that are likely to be used in the near
2281 			 * future.
2282 			 */
2283 			mutex_enter(&msp->ms_lock);
2284 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2285 			    msp->ms_allocating_total == 0) {
2286 				metaslab_unload(msp);
2287 			}
2288 			mutex_exit(&msp->ms_lock);
2289 			msp = next_msp;
2290 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2291 		}
2292 	}
2293 #else
2294 	(void) mc, (void) zfs_metaslab_mem_limit;
2295 #endif
2296 }
2297 
2298 static int
2299 metaslab_load_impl(metaslab_t *msp)
2300 {
2301 	int error = 0;
2302 
2303 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2304 	ASSERT(msp->ms_loading);
2305 	ASSERT(!msp->ms_condensing);
2306 
2307 	/*
2308 	 * We temporarily drop the lock to unblock other operations while we
2309 	 * are reading the space map. Therefore, metaslab_sync() and
2310 	 * metaslab_sync_done() can run at the same time as we do.
2311 	 *
2312 	 * If we are using the log space maps, metaslab_sync() can't write to
2313 	 * the metaslab's space map while we are loading as we only write to
2314 	 * it when we are flushing the metaslab, and that can't happen while
2315 	 * we are loading it.
2316 	 *
2317 	 * If we are not using log space maps though, metaslab_sync() can
2318 	 * append to the space map while we are loading. Therefore we load
2319 	 * only entries that existed when we started the load. Additionally,
2320 	 * metaslab_sync_done() has to wait for the load to complete because
2321 	 * there are potential races like metaslab_load() loading parts of the
2322 	 * space map that are currently being appended by metaslab_sync(). If
2323 	 * we didn't, the ms_allocatable would have entries that
2324 	 * metaslab_sync_done() would try to re-add later.
2325 	 *
2326 	 * That's why before dropping the lock we remember the synced length
2327 	 * of the metaslab and read up to that point of the space map,
2328 	 * ignoring entries appended by metaslab_sync() that happen after we
2329 	 * drop the lock.
2330 	 */
2331 	uint64_t length = msp->ms_synced_length;
2332 	mutex_exit(&msp->ms_lock);
2333 
2334 	hrtime_t load_start = gethrtime();
2335 	metaslab_rt_arg_t *mrap;
2336 	if (msp->ms_allocatable->rt_arg == NULL) {
2337 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2338 	} else {
2339 		mrap = msp->ms_allocatable->rt_arg;
2340 		msp->ms_allocatable->rt_ops = NULL;
2341 		msp->ms_allocatable->rt_arg = NULL;
2342 	}
2343 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2344 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2345 
2346 	if (msp->ms_sm != NULL) {
2347 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2348 		    SM_FREE, length);
2349 
2350 		/* Now, populate the size-sorted tree. */
2351 		metaslab_rt_create(msp->ms_allocatable, mrap);
2352 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2353 		msp->ms_allocatable->rt_arg = mrap;
2354 
2355 		struct mssa_arg arg = {0};
2356 		arg.rt = msp->ms_allocatable;
2357 		arg.mra = mrap;
2358 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2359 		    &arg);
2360 	} else {
2361 		/*
2362 		 * Add the size-sorted tree first, since we don't need to load
2363 		 * the metaslab from the spacemap.
2364 		 */
2365 		metaslab_rt_create(msp->ms_allocatable, mrap);
2366 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2367 		msp->ms_allocatable->rt_arg = mrap;
2368 		/*
2369 		 * The space map has not been allocated yet, so treat
2370 		 * all the space in the metaslab as free and add it to the
2371 		 * ms_allocatable tree.
2372 		 */
2373 		range_tree_add(msp->ms_allocatable,
2374 		    msp->ms_start, msp->ms_size);
2375 
2376 		if (msp->ms_new) {
2377 			/*
2378 			 * If the ms_sm doesn't exist, this means that this
2379 			 * metaslab hasn't gone through metaslab_sync() and
2380 			 * thus has never been dirtied. So we shouldn't
2381 			 * expect any unflushed allocs or frees from previous
2382 			 * TXGs.
2383 			 */
2384 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2385 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2386 		}
2387 	}
2388 
2389 	/*
2390 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2391 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2392 	 * while we are about to use them and populate the ms_allocatable.
2393 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2394 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2395 	 */
2396 	mutex_enter(&msp->ms_sync_lock);
2397 	mutex_enter(&msp->ms_lock);
2398 
2399 	ASSERT(!msp->ms_condensing);
2400 	ASSERT(!msp->ms_flushing);
2401 
2402 	if (error != 0) {
2403 		mutex_exit(&msp->ms_sync_lock);
2404 		return (error);
2405 	}
2406 
2407 	ASSERT3P(msp->ms_group, !=, NULL);
2408 	msp->ms_loaded = B_TRUE;
2409 
2410 	/*
2411 	 * Apply all the unflushed changes to ms_allocatable right
2412 	 * away so any manipulations we do below have a clear view
2413 	 * of what is allocated and what is free.
2414 	 */
2415 	range_tree_walk(msp->ms_unflushed_allocs,
2416 	    range_tree_remove, msp->ms_allocatable);
2417 	range_tree_walk(msp->ms_unflushed_frees,
2418 	    range_tree_add, msp->ms_allocatable);
2419 
2420 	ASSERT3P(msp->ms_group, !=, NULL);
2421 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2422 	if (spa_syncing_log_sm(spa) != NULL) {
2423 		ASSERT(spa_feature_is_enabled(spa,
2424 		    SPA_FEATURE_LOG_SPACEMAP));
2425 
2426 		/*
2427 		 * If we use a log space map we add all the segments
2428 		 * that are in ms_unflushed_frees so they are available
2429 		 * for allocation.
2430 		 *
2431 		 * ms_allocatable needs to contain all free segments
2432 		 * that are ready for allocations (thus not segments
2433 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2434 		 * But if we grab the lock in this code path at a sync
2435 		 * pass later that 1, then it also contains the
2436 		 * segments of ms_freed (they were added to it earlier
2437 		 * in this path through ms_unflushed_frees). So we
2438 		 * need to remove all the segments that exist in
2439 		 * ms_freed from ms_allocatable as they will be added
2440 		 * later in metaslab_sync_done().
2441 		 *
2442 		 * When there's no log space map, the ms_allocatable
2443 		 * correctly doesn't contain any segments that exist
2444 		 * in ms_freed [see ms_synced_length].
2445 		 */
2446 		range_tree_walk(msp->ms_freed,
2447 		    range_tree_remove, msp->ms_allocatable);
2448 	}
2449 
2450 	/*
2451 	 * If we are not using the log space map, ms_allocatable
2452 	 * contains the segments that exist in the ms_defer trees
2453 	 * [see ms_synced_length]. Thus we need to remove them
2454 	 * from ms_allocatable as they will be added again in
2455 	 * metaslab_sync_done().
2456 	 *
2457 	 * If we are using the log space map, ms_allocatable still
2458 	 * contains the segments that exist in the ms_defer trees.
2459 	 * Not because it read them through the ms_sm though. But
2460 	 * because these segments are part of ms_unflushed_frees
2461 	 * whose segments we add to ms_allocatable earlier in this
2462 	 * code path.
2463 	 */
2464 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2465 		range_tree_walk(msp->ms_defer[t],
2466 		    range_tree_remove, msp->ms_allocatable);
2467 	}
2468 
2469 	/*
2470 	 * Call metaslab_recalculate_weight_and_sort() now that the
2471 	 * metaslab is loaded so we get the metaslab's real weight.
2472 	 *
2473 	 * Unless this metaslab was created with older software and
2474 	 * has not yet been converted to use segment-based weight, we
2475 	 * expect the new weight to be better or equal to the weight
2476 	 * that the metaslab had while it was not loaded. This is
2477 	 * because the old weight does not take into account the
2478 	 * consolidation of adjacent segments between TXGs. [see
2479 	 * comment for ms_synchist and ms_deferhist[] for more info]
2480 	 */
2481 	uint64_t weight = msp->ms_weight;
2482 	uint64_t max_size = msp->ms_max_size;
2483 	metaslab_recalculate_weight_and_sort(msp);
2484 	if (!WEIGHT_IS_SPACEBASED(weight))
2485 		ASSERT3U(weight, <=, msp->ms_weight);
2486 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2487 	ASSERT3U(max_size, <=, msp->ms_max_size);
2488 	hrtime_t load_end = gethrtime();
2489 	msp->ms_load_time = load_end;
2490 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2491 	    "ms_id %llu, smp_length %llu, "
2492 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2493 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2494 	    "loading_time %lld ms, ms_max_size %llu, "
2495 	    "max size error %lld, "
2496 	    "old_weight %llx, new_weight %llx",
2497 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2498 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2499 	    (u_longlong_t)msp->ms_id,
2500 	    (u_longlong_t)space_map_length(msp->ms_sm),
2501 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2502 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2503 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2504 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2505 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2506 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2507 	    (longlong_t)((load_end - load_start) / 1000000),
2508 	    (u_longlong_t)msp->ms_max_size,
2509 	    (u_longlong_t)msp->ms_max_size - max_size,
2510 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2511 
2512 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2513 	mutex_exit(&msp->ms_sync_lock);
2514 	return (0);
2515 }
2516 
2517 int
2518 metaslab_load(metaslab_t *msp)
2519 {
2520 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2521 
2522 	/*
2523 	 * There may be another thread loading the same metaslab, if that's
2524 	 * the case just wait until the other thread is done and return.
2525 	 */
2526 	metaslab_load_wait(msp);
2527 	if (msp->ms_loaded)
2528 		return (0);
2529 	VERIFY(!msp->ms_loading);
2530 	ASSERT(!msp->ms_condensing);
2531 
2532 	/*
2533 	 * We set the loading flag BEFORE potentially dropping the lock to
2534 	 * wait for an ongoing flush (see ms_flushing below). This way other
2535 	 * threads know that there is already a thread that is loading this
2536 	 * metaslab.
2537 	 */
2538 	msp->ms_loading = B_TRUE;
2539 
2540 	/*
2541 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2542 	 * both here (during space_map_load()) and in metaslab_flush() (when
2543 	 * we flush our changes to the ms_sm).
2544 	 */
2545 	if (msp->ms_flushing)
2546 		metaslab_flush_wait(msp);
2547 
2548 	/*
2549 	 * In the possibility that we were waiting for the metaslab to be
2550 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2551 	 * no one else loaded the metaslab somehow.
2552 	 */
2553 	ASSERT(!msp->ms_loaded);
2554 
2555 	/*
2556 	 * If we're loading a metaslab in the normal class, consider evicting
2557 	 * another one to keep our memory usage under the limit defined by the
2558 	 * zfs_metaslab_mem_limit tunable.
2559 	 */
2560 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2561 	    msp->ms_group->mg_class) {
2562 		metaslab_potentially_evict(msp->ms_group->mg_class);
2563 	}
2564 
2565 	int error = metaslab_load_impl(msp);
2566 
2567 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2568 	msp->ms_loading = B_FALSE;
2569 	cv_broadcast(&msp->ms_load_cv);
2570 
2571 	return (error);
2572 }
2573 
2574 void
2575 metaslab_unload(metaslab_t *msp)
2576 {
2577 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2578 
2579 	/*
2580 	 * This can happen if a metaslab is selected for eviction (in
2581 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2582 	 * metaslab_class_evict_old).
2583 	 */
2584 	if (!msp->ms_loaded)
2585 		return;
2586 
2587 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2588 	msp->ms_loaded = B_FALSE;
2589 	msp->ms_unload_time = gethrtime();
2590 
2591 	msp->ms_activation_weight = 0;
2592 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2593 
2594 	if (msp->ms_group != NULL) {
2595 		metaslab_class_t *mc = msp->ms_group->mg_class;
2596 		multilist_sublist_t *mls =
2597 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2598 		if (multilist_link_active(&msp->ms_class_txg_node))
2599 			multilist_sublist_remove(mls, msp);
2600 		multilist_sublist_unlock(mls);
2601 
2602 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2603 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2604 		    "ms_id %llu, weight %llx, "
2605 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2606 		    "loaded %llu ms ago, max_size %llu",
2607 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2608 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2609 		    (u_longlong_t)msp->ms_id,
2610 		    (u_longlong_t)msp->ms_weight,
2611 		    (u_longlong_t)msp->ms_selected_txg,
2612 		    (u_longlong_t)(msp->ms_unload_time -
2613 		    msp->ms_selected_time) / 1000 / 1000,
2614 		    (u_longlong_t)msp->ms_alloc_txg,
2615 		    (u_longlong_t)(msp->ms_unload_time -
2616 		    msp->ms_load_time) / 1000 / 1000,
2617 		    (u_longlong_t)msp->ms_max_size);
2618 	}
2619 
2620 	/*
2621 	 * We explicitly recalculate the metaslab's weight based on its space
2622 	 * map (as it is now not loaded). We want unload metaslabs to always
2623 	 * have their weights calculated from the space map histograms, while
2624 	 * loaded ones have it calculated from their in-core range tree
2625 	 * [see metaslab_load()]. This way, the weight reflects the information
2626 	 * available in-core, whether it is loaded or not.
2627 	 *
2628 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2629 	 * at which point it doesn't make sense for us to do the recalculation
2630 	 * and the sorting.
2631 	 */
2632 	if (msp->ms_group != NULL)
2633 		metaslab_recalculate_weight_and_sort(msp);
2634 }
2635 
2636 /*
2637  * We want to optimize the memory use of the per-metaslab range
2638  * trees. To do this, we store the segments in the range trees in
2639  * units of sectors, zero-indexing from the start of the metaslab. If
2640  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2641  * the ranges using two uint32_ts, rather than two uint64_ts.
2642  */
2643 range_seg_type_t
2644 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2645     uint64_t *start, uint64_t *shift)
2646 {
2647 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2648 	    !zfs_metaslab_force_large_segs) {
2649 		*shift = vdev->vdev_ashift;
2650 		*start = msp->ms_start;
2651 		return (RANGE_SEG32);
2652 	} else {
2653 		*shift = 0;
2654 		*start = 0;
2655 		return (RANGE_SEG64);
2656 	}
2657 }
2658 
2659 void
2660 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2661 {
2662 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2663 	metaslab_class_t *mc = msp->ms_group->mg_class;
2664 	multilist_sublist_t *mls =
2665 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2666 	if (multilist_link_active(&msp->ms_class_txg_node))
2667 		multilist_sublist_remove(mls, msp);
2668 	msp->ms_selected_txg = txg;
2669 	msp->ms_selected_time = gethrtime();
2670 	multilist_sublist_insert_tail(mls, msp);
2671 	multilist_sublist_unlock(mls);
2672 }
2673 
2674 void
2675 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2676     int64_t defer_delta, int64_t space_delta)
2677 {
2678 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2679 
2680 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2681 	ASSERT(vd->vdev_ms_count != 0);
2682 
2683 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2684 	    vdev_deflated_space(vd, space_delta));
2685 }
2686 
2687 int
2688 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2689     uint64_t txg, metaslab_t **msp)
2690 {
2691 	vdev_t *vd = mg->mg_vd;
2692 	spa_t *spa = vd->vdev_spa;
2693 	objset_t *mos = spa->spa_meta_objset;
2694 	metaslab_t *ms;
2695 	int error;
2696 
2697 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2698 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2699 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2700 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2701 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2702 	multilist_link_init(&ms->ms_class_txg_node);
2703 
2704 	ms->ms_id = id;
2705 	ms->ms_start = id << vd->vdev_ms_shift;
2706 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2707 	ms->ms_allocator = -1;
2708 	ms->ms_new = B_TRUE;
2709 
2710 	vdev_ops_t *ops = vd->vdev_ops;
2711 	if (ops->vdev_op_metaslab_init != NULL)
2712 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2713 
2714 	/*
2715 	 * We only open space map objects that already exist. All others
2716 	 * will be opened when we finally allocate an object for it. For
2717 	 * readonly pools there is no need to open the space map object.
2718 	 *
2719 	 * Note:
2720 	 * When called from vdev_expand(), we can't call into the DMU as
2721 	 * we are holding the spa_config_lock as a writer and we would
2722 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2723 	 * that case, the object parameter is zero though, so we won't
2724 	 * call into the DMU.
2725 	 */
2726 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2727 	    !spa->spa_read_spacemaps)) {
2728 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2729 		    ms->ms_size, vd->vdev_ashift);
2730 
2731 		if (error != 0) {
2732 			kmem_free(ms, sizeof (metaslab_t));
2733 			return (error);
2734 		}
2735 
2736 		ASSERT(ms->ms_sm != NULL);
2737 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2738 	}
2739 
2740 	uint64_t shift, start;
2741 	range_seg_type_t type =
2742 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2743 
2744 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2745 	for (int t = 0; t < TXG_SIZE; t++) {
2746 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2747 		    NULL, start, shift);
2748 	}
2749 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2750 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2751 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2752 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2753 		    start, shift);
2754 	}
2755 	ms->ms_checkpointing =
2756 	    range_tree_create(NULL, type, NULL, start, shift);
2757 	ms->ms_unflushed_allocs =
2758 	    range_tree_create(NULL, type, NULL, start, shift);
2759 
2760 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2761 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2762 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2763 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2764 	    type, mrap, start, shift);
2765 
2766 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2767 
2768 	metaslab_group_add(mg, ms);
2769 	metaslab_set_fragmentation(ms, B_FALSE);
2770 
2771 	/*
2772 	 * If we're opening an existing pool (txg == 0) or creating
2773 	 * a new one (txg == TXG_INITIAL), all space is available now.
2774 	 * If we're adding space to an existing pool, the new space
2775 	 * does not become available until after this txg has synced.
2776 	 * The metaslab's weight will also be initialized when we sync
2777 	 * out this txg. This ensures that we don't attempt to allocate
2778 	 * from it before we have initialized it completely.
2779 	 */
2780 	if (txg <= TXG_INITIAL) {
2781 		metaslab_sync_done(ms, 0);
2782 		metaslab_space_update(vd, mg->mg_class,
2783 		    metaslab_allocated_space(ms), 0, 0);
2784 	}
2785 
2786 	if (txg != 0) {
2787 		vdev_dirty(vd, 0, NULL, txg);
2788 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2789 	}
2790 
2791 	*msp = ms;
2792 
2793 	return (0);
2794 }
2795 
2796 static void
2797 metaslab_fini_flush_data(metaslab_t *msp)
2798 {
2799 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2800 
2801 	if (metaslab_unflushed_txg(msp) == 0) {
2802 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2803 		    ==, NULL);
2804 		return;
2805 	}
2806 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2807 
2808 	mutex_enter(&spa->spa_flushed_ms_lock);
2809 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2810 	mutex_exit(&spa->spa_flushed_ms_lock);
2811 
2812 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2813 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2814 	    metaslab_unflushed_dirty(msp));
2815 }
2816 
2817 uint64_t
2818 metaslab_unflushed_changes_memused(metaslab_t *ms)
2819 {
2820 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2821 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2822 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2823 }
2824 
2825 void
2826 metaslab_fini(metaslab_t *msp)
2827 {
2828 	metaslab_group_t *mg = msp->ms_group;
2829 	vdev_t *vd = mg->mg_vd;
2830 	spa_t *spa = vd->vdev_spa;
2831 
2832 	metaslab_fini_flush_data(msp);
2833 
2834 	metaslab_group_remove(mg, msp);
2835 
2836 	mutex_enter(&msp->ms_lock);
2837 	VERIFY(msp->ms_group == NULL);
2838 
2839 	/*
2840 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2841 	 * space hasn't been accounted for in its vdev and doesn't need to be
2842 	 * subtracted.
2843 	 */
2844 	if (!msp->ms_new) {
2845 		metaslab_space_update(vd, mg->mg_class,
2846 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2847 
2848 	}
2849 	space_map_close(msp->ms_sm);
2850 	msp->ms_sm = NULL;
2851 
2852 	metaslab_unload(msp);
2853 
2854 	range_tree_destroy(msp->ms_allocatable);
2855 	range_tree_destroy(msp->ms_freeing);
2856 	range_tree_destroy(msp->ms_freed);
2857 
2858 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2859 	    metaslab_unflushed_changes_memused(msp));
2860 	spa->spa_unflushed_stats.sus_memused -=
2861 	    metaslab_unflushed_changes_memused(msp);
2862 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2863 	range_tree_destroy(msp->ms_unflushed_allocs);
2864 	range_tree_destroy(msp->ms_checkpointing);
2865 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2866 	range_tree_destroy(msp->ms_unflushed_frees);
2867 
2868 	for (int t = 0; t < TXG_SIZE; t++) {
2869 		range_tree_destroy(msp->ms_allocating[t]);
2870 	}
2871 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2872 		range_tree_destroy(msp->ms_defer[t]);
2873 	}
2874 	ASSERT0(msp->ms_deferspace);
2875 
2876 	for (int t = 0; t < TXG_SIZE; t++)
2877 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2878 
2879 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2880 	range_tree_destroy(msp->ms_trim);
2881 
2882 	mutex_exit(&msp->ms_lock);
2883 	cv_destroy(&msp->ms_load_cv);
2884 	cv_destroy(&msp->ms_flush_cv);
2885 	mutex_destroy(&msp->ms_lock);
2886 	mutex_destroy(&msp->ms_sync_lock);
2887 	ASSERT3U(msp->ms_allocator, ==, -1);
2888 
2889 	kmem_free(msp, sizeof (metaslab_t));
2890 }
2891 
2892 #define	FRAGMENTATION_TABLE_SIZE	17
2893 
2894 /*
2895  * This table defines a segment size based fragmentation metric that will
2896  * allow each metaslab to derive its own fragmentation value. This is done
2897  * by calculating the space in each bucket of the spacemap histogram and
2898  * multiplying that by the fragmentation metric in this table. Doing
2899  * this for all buckets and dividing it by the total amount of free
2900  * space in this metaslab (i.e. the total free space in all buckets) gives
2901  * us the fragmentation metric. This means that a high fragmentation metric
2902  * equates to most of the free space being comprised of small segments.
2903  * Conversely, if the metric is low, then most of the free space is in
2904  * large segments. A 10% change in fragmentation equates to approximately
2905  * double the number of segments.
2906  *
2907  * This table defines 0% fragmented space using 16MB segments. Testing has
2908  * shown that segments that are greater than or equal to 16MB do not suffer
2909  * from drastic performance problems. Using this value, we derive the rest
2910  * of the table. Since the fragmentation value is never stored on disk, it
2911  * is possible to change these calculations in the future.
2912  */
2913 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2914 	100,	/* 512B	*/
2915 	100,	/* 1K	*/
2916 	98,	/* 2K	*/
2917 	95,	/* 4K	*/
2918 	90,	/* 8K	*/
2919 	80,	/* 16K	*/
2920 	70,	/* 32K	*/
2921 	60,	/* 64K	*/
2922 	50,	/* 128K	*/
2923 	40,	/* 256K	*/
2924 	30,	/* 512K	*/
2925 	20,	/* 1M	*/
2926 	15,	/* 2M	*/
2927 	10,	/* 4M	*/
2928 	5,	/* 8M	*/
2929 	0	/* 16M	*/
2930 };
2931 
2932 /*
2933  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2934  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2935  * been upgraded and does not support this metric. Otherwise, the return
2936  * value should be in the range [0, 100].
2937  */
2938 static void
2939 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2940 {
2941 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2942 	uint64_t fragmentation = 0;
2943 	uint64_t total = 0;
2944 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2945 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2946 
2947 	if (!feature_enabled) {
2948 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * A null space map means that the entire metaslab is free
2954 	 * and thus is not fragmented.
2955 	 */
2956 	if (msp->ms_sm == NULL) {
2957 		msp->ms_fragmentation = 0;
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * If this metaslab's space map has not been upgraded, flag it
2963 	 * so that we upgrade next time we encounter it.
2964 	 */
2965 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2966 		uint64_t txg = spa_syncing_txg(spa);
2967 		vdev_t *vd = msp->ms_group->mg_vd;
2968 
2969 		/*
2970 		 * If we've reached the final dirty txg, then we must
2971 		 * be shutting down the pool. We don't want to dirty
2972 		 * any data past this point so skip setting the condense
2973 		 * flag. We can retry this action the next time the pool
2974 		 * is imported. We also skip marking this metaslab for
2975 		 * condensing if the caller has explicitly set nodirty.
2976 		 */
2977 		if (!nodirty &&
2978 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2979 			msp->ms_condense_wanted = B_TRUE;
2980 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2981 			zfs_dbgmsg("txg %llu, requesting force condense: "
2982 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2983 			    (u_longlong_t)msp->ms_id,
2984 			    (u_longlong_t)vd->vdev_id);
2985 		}
2986 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2987 		return;
2988 	}
2989 
2990 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2991 		uint64_t space = 0;
2992 		uint8_t shift = msp->ms_sm->sm_shift;
2993 
2994 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2995 		    FRAGMENTATION_TABLE_SIZE - 1);
2996 
2997 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2998 			continue;
2999 
3000 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3001 		total += space;
3002 
3003 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3004 		fragmentation += space * zfs_frag_table[idx];
3005 	}
3006 
3007 	if (total > 0)
3008 		fragmentation /= total;
3009 	ASSERT3U(fragmentation, <=, 100);
3010 
3011 	msp->ms_fragmentation = fragmentation;
3012 }
3013 
3014 /*
3015  * Compute a weight -- a selection preference value -- for the given metaslab.
3016  * This is based on the amount of free space, the level of fragmentation,
3017  * the LBA range, and whether the metaslab is loaded.
3018  */
3019 static uint64_t
3020 metaslab_space_weight(metaslab_t *msp)
3021 {
3022 	metaslab_group_t *mg = msp->ms_group;
3023 	vdev_t *vd = mg->mg_vd;
3024 	uint64_t weight, space;
3025 
3026 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3027 
3028 	/*
3029 	 * The baseline weight is the metaslab's free space.
3030 	 */
3031 	space = msp->ms_size - metaslab_allocated_space(msp);
3032 
3033 	if (metaslab_fragmentation_factor_enabled &&
3034 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3035 		/*
3036 		 * Use the fragmentation information to inversely scale
3037 		 * down the baseline weight. We need to ensure that we
3038 		 * don't exclude this metaslab completely when it's 100%
3039 		 * fragmented. To avoid this we reduce the fragmented value
3040 		 * by 1.
3041 		 */
3042 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3043 
3044 		/*
3045 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3046 		 * this metaslab again. The fragmentation metric may have
3047 		 * decreased the space to something smaller than
3048 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3049 		 * so that we can consume any remaining space.
3050 		 */
3051 		if (space > 0 && space < SPA_MINBLOCKSIZE)
3052 			space = SPA_MINBLOCKSIZE;
3053 	}
3054 	weight = space;
3055 
3056 	/*
3057 	 * Modern disks have uniform bit density and constant angular velocity.
3058 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3059 	 * than the inner zones by the ratio of outer to inner track diameter,
3060 	 * which is typically around 2:1.  We account for this by assigning
3061 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3062 	 * In effect, this means that we'll select the metaslab with the most
3063 	 * free bandwidth rather than simply the one with the most free space.
3064 	 */
3065 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3066 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3067 		ASSERT(weight >= space && weight <= 2 * space);
3068 	}
3069 
3070 	/*
3071 	 * If this metaslab is one we're actively using, adjust its
3072 	 * weight to make it preferable to any inactive metaslab so
3073 	 * we'll polish it off. If the fragmentation on this metaslab
3074 	 * has exceed our threshold, then don't mark it active.
3075 	 */
3076 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3077 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3078 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3079 	}
3080 
3081 	WEIGHT_SET_SPACEBASED(weight);
3082 	return (weight);
3083 }
3084 
3085 /*
3086  * Return the weight of the specified metaslab, according to the segment-based
3087  * weighting algorithm. The metaslab must be loaded. This function can
3088  * be called within a sync pass since it relies only on the metaslab's
3089  * range tree which is always accurate when the metaslab is loaded.
3090  */
3091 static uint64_t
3092 metaslab_weight_from_range_tree(metaslab_t *msp)
3093 {
3094 	uint64_t weight = 0;
3095 	uint32_t segments = 0;
3096 
3097 	ASSERT(msp->ms_loaded);
3098 
3099 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3100 	    i--) {
3101 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3102 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3103 
3104 		segments <<= 1;
3105 		segments += msp->ms_allocatable->rt_histogram[i];
3106 
3107 		/*
3108 		 * The range tree provides more precision than the space map
3109 		 * and must be downgraded so that all values fit within the
3110 		 * space map's histogram. This allows us to compare loaded
3111 		 * vs. unloaded metaslabs to determine which metaslab is
3112 		 * considered "best".
3113 		 */
3114 		if (i > max_idx)
3115 			continue;
3116 
3117 		if (segments != 0) {
3118 			WEIGHT_SET_COUNT(weight, segments);
3119 			WEIGHT_SET_INDEX(weight, i);
3120 			WEIGHT_SET_ACTIVE(weight, 0);
3121 			break;
3122 		}
3123 	}
3124 	return (weight);
3125 }
3126 
3127 /*
3128  * Calculate the weight based on the on-disk histogram. Should be applied
3129  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3130  * give results consistent with the on-disk state
3131  */
3132 static uint64_t
3133 metaslab_weight_from_spacemap(metaslab_t *msp)
3134 {
3135 	space_map_t *sm = msp->ms_sm;
3136 	ASSERT(!msp->ms_loaded);
3137 	ASSERT(sm != NULL);
3138 	ASSERT3U(space_map_object(sm), !=, 0);
3139 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3140 
3141 	/*
3142 	 * Create a joint histogram from all the segments that have made
3143 	 * it to the metaslab's space map histogram, that are not yet
3144 	 * available for allocation because they are still in the freeing
3145 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3146 	 * these segments from the space map's histogram to get a more
3147 	 * accurate weight.
3148 	 */
3149 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3150 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3151 		deferspace_histogram[i] += msp->ms_synchist[i];
3152 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3153 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3154 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3155 		}
3156 	}
3157 
3158 	uint64_t weight = 0;
3159 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3160 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3161 		    deferspace_histogram[i]);
3162 		uint64_t count =
3163 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3164 		if (count != 0) {
3165 			WEIGHT_SET_COUNT(weight, count);
3166 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3167 			WEIGHT_SET_ACTIVE(weight, 0);
3168 			break;
3169 		}
3170 	}
3171 	return (weight);
3172 }
3173 
3174 /*
3175  * Compute a segment-based weight for the specified metaslab. The weight
3176  * is determined by highest bucket in the histogram. The information
3177  * for the highest bucket is encoded into the weight value.
3178  */
3179 static uint64_t
3180 metaslab_segment_weight(metaslab_t *msp)
3181 {
3182 	metaslab_group_t *mg = msp->ms_group;
3183 	uint64_t weight = 0;
3184 	uint8_t shift = mg->mg_vd->vdev_ashift;
3185 
3186 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3187 
3188 	/*
3189 	 * The metaslab is completely free.
3190 	 */
3191 	if (metaslab_allocated_space(msp) == 0) {
3192 		int idx = highbit64(msp->ms_size) - 1;
3193 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3194 
3195 		if (idx < max_idx) {
3196 			WEIGHT_SET_COUNT(weight, 1ULL);
3197 			WEIGHT_SET_INDEX(weight, idx);
3198 		} else {
3199 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3200 			WEIGHT_SET_INDEX(weight, max_idx);
3201 		}
3202 		WEIGHT_SET_ACTIVE(weight, 0);
3203 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3204 		return (weight);
3205 	}
3206 
3207 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3208 
3209 	/*
3210 	 * If the metaslab is fully allocated then just make the weight 0.
3211 	 */
3212 	if (metaslab_allocated_space(msp) == msp->ms_size)
3213 		return (0);
3214 	/*
3215 	 * If the metaslab is already loaded, then use the range tree to
3216 	 * determine the weight. Otherwise, we rely on the space map information
3217 	 * to generate the weight.
3218 	 */
3219 	if (msp->ms_loaded) {
3220 		weight = metaslab_weight_from_range_tree(msp);
3221 	} else {
3222 		weight = metaslab_weight_from_spacemap(msp);
3223 	}
3224 
3225 	/*
3226 	 * If the metaslab was active the last time we calculated its weight
3227 	 * then keep it active. We want to consume the entire region that
3228 	 * is associated with this weight.
3229 	 */
3230 	if (msp->ms_activation_weight != 0 && weight != 0)
3231 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3232 	return (weight);
3233 }
3234 
3235 /*
3236  * Determine if we should attempt to allocate from this metaslab. If the
3237  * metaslab is loaded, then we can determine if the desired allocation
3238  * can be satisfied by looking at the size of the maximum free segment
3239  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3240  * weight. For segment-based weighting we can determine the maximum
3241  * allocation based on the index encoded in its value. For space-based
3242  * weights we rely on the entire weight (excluding the weight-type bit).
3243  */
3244 static boolean_t
3245 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3246 {
3247 	/*
3248 	 * This case will usually but not always get caught by the checks below;
3249 	 * metaslabs can be loaded by various means, including the trim and
3250 	 * initialize code. Once that happens, without this check they are
3251 	 * allocatable even before they finish their first txg sync.
3252 	 */
3253 	if (unlikely(msp->ms_new))
3254 		return (B_FALSE);
3255 
3256 	/*
3257 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3258 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3259 	 * set), and we should use the fast check as long as we're not in
3260 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3261 	 * seconds since the metaslab was unloaded.
3262 	 */
3263 	if (msp->ms_loaded ||
3264 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3265 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3266 		return (msp->ms_max_size >= asize);
3267 
3268 	boolean_t should_allocate;
3269 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3270 		/*
3271 		 * The metaslab segment weight indicates segments in the
3272 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3273 		 * Since the asize might be in the middle of the range, we
3274 		 * should attempt the allocation if asize < 2^(i+1).
3275 		 */
3276 		should_allocate = (asize <
3277 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3278 	} else {
3279 		should_allocate = (asize <=
3280 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3281 	}
3282 
3283 	return (should_allocate);
3284 }
3285 
3286 static uint64_t
3287 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3288 {
3289 	vdev_t *vd = msp->ms_group->mg_vd;
3290 	spa_t *spa = vd->vdev_spa;
3291 	uint64_t weight;
3292 
3293 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3294 
3295 	metaslab_set_fragmentation(msp, nodirty);
3296 
3297 	/*
3298 	 * Update the maximum size. If the metaslab is loaded, this will
3299 	 * ensure that we get an accurate maximum size if newly freed space
3300 	 * has been added back into the free tree. If the metaslab is
3301 	 * unloaded, we check if there's a larger free segment in the
3302 	 * unflushed frees. This is a lower bound on the largest allocatable
3303 	 * segment size. Coalescing of adjacent entries may reveal larger
3304 	 * allocatable segments, but we aren't aware of those until loading
3305 	 * the space map into a range tree.
3306 	 */
3307 	if (msp->ms_loaded) {
3308 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3309 	} else {
3310 		msp->ms_max_size = MAX(msp->ms_max_size,
3311 		    metaslab_largest_unflushed_free(msp));
3312 	}
3313 
3314 	/*
3315 	 * Segment-based weighting requires space map histogram support.
3316 	 */
3317 	if (zfs_metaslab_segment_weight_enabled &&
3318 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3319 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3320 	    sizeof (space_map_phys_t))) {
3321 		weight = metaslab_segment_weight(msp);
3322 	} else {
3323 		weight = metaslab_space_weight(msp);
3324 	}
3325 	return (weight);
3326 }
3327 
3328 void
3329 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3330 {
3331 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3332 
3333 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3334 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3335 	metaslab_group_sort(msp->ms_group, msp,
3336 	    metaslab_weight(msp, B_FALSE) | was_active);
3337 }
3338 
3339 static int
3340 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3341     int allocator, uint64_t activation_weight)
3342 {
3343 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3344 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3345 
3346 	/*
3347 	 * If we're activating for the claim code, we don't want to actually
3348 	 * set the metaslab up for a specific allocator.
3349 	 */
3350 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3351 		ASSERT0(msp->ms_activation_weight);
3352 		msp->ms_activation_weight = msp->ms_weight;
3353 		metaslab_group_sort(mg, msp, msp->ms_weight |
3354 		    activation_weight);
3355 		return (0);
3356 	}
3357 
3358 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3359 	    &mga->mga_primary : &mga->mga_secondary);
3360 
3361 	mutex_enter(&mg->mg_lock);
3362 	if (*mspp != NULL) {
3363 		mutex_exit(&mg->mg_lock);
3364 		return (EEXIST);
3365 	}
3366 
3367 	*mspp = msp;
3368 	ASSERT3S(msp->ms_allocator, ==, -1);
3369 	msp->ms_allocator = allocator;
3370 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3371 
3372 	ASSERT0(msp->ms_activation_weight);
3373 	msp->ms_activation_weight = msp->ms_weight;
3374 	metaslab_group_sort_impl(mg, msp,
3375 	    msp->ms_weight | activation_weight);
3376 	mutex_exit(&mg->mg_lock);
3377 
3378 	return (0);
3379 }
3380 
3381 static int
3382 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3383 {
3384 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3385 
3386 	/*
3387 	 * The current metaslab is already activated for us so there
3388 	 * is nothing to do. Already activated though, doesn't mean
3389 	 * that this metaslab is activated for our allocator nor our
3390 	 * requested activation weight. The metaslab could have started
3391 	 * as an active one for our allocator but changed allocators
3392 	 * while we were waiting to grab its ms_lock or we stole it
3393 	 * [see find_valid_metaslab()]. This means that there is a
3394 	 * possibility of passivating a metaslab of another allocator
3395 	 * or from a different activation mask, from this thread.
3396 	 */
3397 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3398 		ASSERT(msp->ms_loaded);
3399 		return (0);
3400 	}
3401 
3402 	int error = metaslab_load(msp);
3403 	if (error != 0) {
3404 		metaslab_group_sort(msp->ms_group, msp, 0);
3405 		return (error);
3406 	}
3407 
3408 	/*
3409 	 * When entering metaslab_load() we may have dropped the
3410 	 * ms_lock because we were loading this metaslab, or we
3411 	 * were waiting for another thread to load it for us. In
3412 	 * that scenario, we recheck the weight of the metaslab
3413 	 * to see if it was activated by another thread.
3414 	 *
3415 	 * If the metaslab was activated for another allocator or
3416 	 * it was activated with a different activation weight (e.g.
3417 	 * we wanted to make it a primary but it was activated as
3418 	 * secondary) we return error (EBUSY).
3419 	 *
3420 	 * If the metaslab was activated for the same allocator
3421 	 * and requested activation mask, skip activating it.
3422 	 */
3423 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3424 		if (msp->ms_allocator != allocator)
3425 			return (EBUSY);
3426 
3427 		if ((msp->ms_weight & activation_weight) == 0)
3428 			return (SET_ERROR(EBUSY));
3429 
3430 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3431 		    msp->ms_primary);
3432 		return (0);
3433 	}
3434 
3435 	/*
3436 	 * If the metaslab has literally 0 space, it will have weight 0. In
3437 	 * that case, don't bother activating it. This can happen if the
3438 	 * metaslab had space during find_valid_metaslab, but another thread
3439 	 * loaded it and used all that space while we were waiting to grab the
3440 	 * lock.
3441 	 */
3442 	if (msp->ms_weight == 0) {
3443 		ASSERT0(range_tree_space(msp->ms_allocatable));
3444 		return (SET_ERROR(ENOSPC));
3445 	}
3446 
3447 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3448 	    allocator, activation_weight)) != 0) {
3449 		return (error);
3450 	}
3451 
3452 	ASSERT(msp->ms_loaded);
3453 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3454 
3455 	return (0);
3456 }
3457 
3458 static void
3459 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3460     uint64_t weight)
3461 {
3462 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3463 	ASSERT(msp->ms_loaded);
3464 
3465 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3466 		metaslab_group_sort(mg, msp, weight);
3467 		return;
3468 	}
3469 
3470 	mutex_enter(&mg->mg_lock);
3471 	ASSERT3P(msp->ms_group, ==, mg);
3472 	ASSERT3S(0, <=, msp->ms_allocator);
3473 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3474 
3475 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3476 	if (msp->ms_primary) {
3477 		ASSERT3P(mga->mga_primary, ==, msp);
3478 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3479 		mga->mga_primary = NULL;
3480 	} else {
3481 		ASSERT3P(mga->mga_secondary, ==, msp);
3482 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3483 		mga->mga_secondary = NULL;
3484 	}
3485 	msp->ms_allocator = -1;
3486 	metaslab_group_sort_impl(mg, msp, weight);
3487 	mutex_exit(&mg->mg_lock);
3488 }
3489 
3490 static void
3491 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3492 {
3493 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3494 
3495 	/*
3496 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3497 	 * this metaslab again.  In that case, it had better be empty,
3498 	 * or we would be leaving space on the table.
3499 	 */
3500 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3501 	    size >= SPA_MINBLOCKSIZE ||
3502 	    range_tree_space(msp->ms_allocatable) == 0);
3503 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3504 
3505 	ASSERT(msp->ms_activation_weight != 0);
3506 	msp->ms_activation_weight = 0;
3507 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3508 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3509 }
3510 
3511 /*
3512  * Segment-based metaslabs are activated once and remain active until
3513  * we either fail an allocation attempt (similar to space-based metaslabs)
3514  * or have exhausted the free space in zfs_metaslab_switch_threshold
3515  * buckets since the metaslab was activated. This function checks to see
3516  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3517  * metaslab and passivates it proactively. This will allow us to select a
3518  * metaslab with a larger contiguous region, if any, remaining within this
3519  * metaslab group. If we're in sync pass > 1, then we continue using this
3520  * metaslab so that we don't dirty more block and cause more sync passes.
3521  */
3522 static void
3523 metaslab_segment_may_passivate(metaslab_t *msp)
3524 {
3525 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3526 
3527 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3528 		return;
3529 
3530 	/*
3531 	 * Since we are in the middle of a sync pass, the most accurate
3532 	 * information that is accessible to us is the in-core range tree
3533 	 * histogram; calculate the new weight based on that information.
3534 	 */
3535 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3536 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3537 	int current_idx = WEIGHT_GET_INDEX(weight);
3538 
3539 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3540 		metaslab_passivate(msp, weight);
3541 }
3542 
3543 static void
3544 metaslab_preload(void *arg)
3545 {
3546 	metaslab_t *msp = arg;
3547 	metaslab_class_t *mc = msp->ms_group->mg_class;
3548 	spa_t *spa = mc->mc_spa;
3549 	fstrans_cookie_t cookie = spl_fstrans_mark();
3550 
3551 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3552 
3553 	mutex_enter(&msp->ms_lock);
3554 	(void) metaslab_load(msp);
3555 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3556 	mutex_exit(&msp->ms_lock);
3557 	spl_fstrans_unmark(cookie);
3558 }
3559 
3560 static void
3561 metaslab_group_preload(metaslab_group_t *mg)
3562 {
3563 	spa_t *spa = mg->mg_vd->vdev_spa;
3564 	metaslab_t *msp;
3565 	avl_tree_t *t = &mg->mg_metaslab_tree;
3566 	int m = 0;
3567 
3568 	if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3569 		return;
3570 
3571 	mutex_enter(&mg->mg_lock);
3572 
3573 	/*
3574 	 * Load the next potential metaslabs
3575 	 */
3576 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3577 		ASSERT3P(msp->ms_group, ==, mg);
3578 
3579 		/*
3580 		 * We preload only the maximum number of metaslabs specified
3581 		 * by metaslab_preload_limit. If a metaslab is being forced
3582 		 * to condense then we preload it too. This will ensure
3583 		 * that force condensing happens in the next txg.
3584 		 */
3585 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3586 			continue;
3587 		}
3588 
3589 		VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3590 		    msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3591 		    != TASKQID_INVALID);
3592 	}
3593 	mutex_exit(&mg->mg_lock);
3594 }
3595 
3596 /*
3597  * Determine if the space map's on-disk footprint is past our tolerance for
3598  * inefficiency. We would like to use the following criteria to make our
3599  * decision:
3600  *
3601  * 1. Do not condense if the size of the space map object would dramatically
3602  *    increase as a result of writing out the free space range tree.
3603  *
3604  * 2. Condense if the on on-disk space map representation is at least
3605  *    zfs_condense_pct/100 times the size of the optimal representation
3606  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3607  *
3608  * 3. Do not condense if the on-disk size of the space map does not actually
3609  *    decrease.
3610  *
3611  * Unfortunately, we cannot compute the on-disk size of the space map in this
3612  * context because we cannot accurately compute the effects of compression, etc.
3613  * Instead, we apply the heuristic described in the block comment for
3614  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3615  * is greater than a threshold number of blocks.
3616  */
3617 static boolean_t
3618 metaslab_should_condense(metaslab_t *msp)
3619 {
3620 	space_map_t *sm = msp->ms_sm;
3621 	vdev_t *vd = msp->ms_group->mg_vd;
3622 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3623 
3624 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3625 	ASSERT(msp->ms_loaded);
3626 	ASSERT(sm != NULL);
3627 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3628 
3629 	/*
3630 	 * We always condense metaslabs that are empty and metaslabs for
3631 	 * which a condense request has been made.
3632 	 */
3633 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3634 	    msp->ms_condense_wanted)
3635 		return (B_TRUE);
3636 
3637 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3638 	uint64_t object_size = space_map_length(sm);
3639 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3640 	    msp->ms_allocatable, SM_NO_VDEVID);
3641 
3642 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3643 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3644 }
3645 
3646 /*
3647  * Condense the on-disk space map representation to its minimized form.
3648  * The minimized form consists of a small number of allocations followed
3649  * by the entries of the free range tree (ms_allocatable). The condensed
3650  * spacemap contains all the entries of previous TXGs (including those in
3651  * the pool-wide log spacemaps; thus this is effectively a superset of
3652  * metaslab_flush()), but this TXG's entries still need to be written.
3653  */
3654 static void
3655 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3656 {
3657 	range_tree_t *condense_tree;
3658 	space_map_t *sm = msp->ms_sm;
3659 	uint64_t txg = dmu_tx_get_txg(tx);
3660 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3661 
3662 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3663 	ASSERT(msp->ms_loaded);
3664 	ASSERT(msp->ms_sm != NULL);
3665 
3666 	/*
3667 	 * In order to condense the space map, we need to change it so it
3668 	 * only describes which segments are currently allocated and free.
3669 	 *
3670 	 * All the current free space resides in the ms_allocatable, all
3671 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3672 	 * ms_freed because it is empty because we're in sync pass 1. We
3673 	 * ignore ms_freeing because these changes are not yet reflected
3674 	 * in the spacemap (they will be written later this txg).
3675 	 *
3676 	 * So to truncate the space map to represent all the entries of
3677 	 * previous TXGs we do the following:
3678 	 *
3679 	 * 1] We create a range tree (condense tree) that is 100% empty.
3680 	 * 2] We add to it all segments found in the ms_defer trees
3681 	 *    as those segments are marked as free in the original space
3682 	 *    map. We do the same with the ms_allocating trees for the same
3683 	 *    reason. Adding these segments should be a relatively
3684 	 *    inexpensive operation since we expect these trees to have a
3685 	 *    small number of nodes.
3686 	 * 3] We vacate any unflushed allocs, since they are not frees we
3687 	 *    need to add to the condense tree. Then we vacate any
3688 	 *    unflushed frees as they should already be part of ms_allocatable.
3689 	 * 4] At this point, we would ideally like to add all segments
3690 	 *    in the ms_allocatable tree from the condense tree. This way
3691 	 *    we would write all the entries of the condense tree as the
3692 	 *    condensed space map, which would only contain freed
3693 	 *    segments with everything else assumed to be allocated.
3694 	 *
3695 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3696 	 *    be large, and therefore computationally expensive to add to
3697 	 *    the condense_tree. Instead we first sync out an entry marking
3698 	 *    everything as allocated, then the condense_tree and then the
3699 	 *    ms_allocatable, in the condensed space map. While this is not
3700 	 *    optimal, it is typically close to optimal and more importantly
3701 	 *    much cheaper to compute.
3702 	 *
3703 	 * 5] Finally, as both of the unflushed trees were written to our
3704 	 *    new and condensed metaslab space map, we basically flushed
3705 	 *    all the unflushed changes to disk, thus we call
3706 	 *    metaslab_flush_update().
3707 	 */
3708 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3709 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3710 
3711 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3712 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3713 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3714 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3715 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3716 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3717 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3718 
3719 	msp->ms_condense_wanted = B_FALSE;
3720 
3721 	range_seg_type_t type;
3722 	uint64_t shift, start;
3723 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3724 	    &start, &shift);
3725 
3726 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3727 
3728 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3729 		range_tree_walk(msp->ms_defer[t],
3730 		    range_tree_add, condense_tree);
3731 	}
3732 
3733 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3734 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3735 		    range_tree_add, condense_tree);
3736 	}
3737 
3738 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3739 	    metaslab_unflushed_changes_memused(msp));
3740 	spa->spa_unflushed_stats.sus_memused -=
3741 	    metaslab_unflushed_changes_memused(msp);
3742 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3743 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3744 
3745 	/*
3746 	 * We're about to drop the metaslab's lock thus allowing other
3747 	 * consumers to change it's content. Set the metaslab's ms_condensing
3748 	 * flag to ensure that allocations on this metaslab do not occur
3749 	 * while we're in the middle of committing it to disk. This is only
3750 	 * critical for ms_allocatable as all other range trees use per TXG
3751 	 * views of their content.
3752 	 */
3753 	msp->ms_condensing = B_TRUE;
3754 
3755 	mutex_exit(&msp->ms_lock);
3756 	uint64_t object = space_map_object(msp->ms_sm);
3757 	space_map_truncate(sm,
3758 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3759 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3760 
3761 	/*
3762 	 * space_map_truncate() may have reallocated the spacemap object.
3763 	 * If so, update the vdev_ms_array.
3764 	 */
3765 	if (space_map_object(msp->ms_sm) != object) {
3766 		object = space_map_object(msp->ms_sm);
3767 		dmu_write(spa->spa_meta_objset,
3768 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3769 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3770 	}
3771 
3772 	/*
3773 	 * Note:
3774 	 * When the log space map feature is enabled, each space map will
3775 	 * always have ALLOCS followed by FREES for each sync pass. This is
3776 	 * typically true even when the log space map feature is disabled,
3777 	 * except from the case where a metaslab goes through metaslab_sync()
3778 	 * and gets condensed. In that case the metaslab's space map will have
3779 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3780 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3781 	 * sync pass 1.
3782 	 */
3783 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3784 	    shift);
3785 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3786 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3787 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3788 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3789 
3790 	range_tree_vacate(condense_tree, NULL, NULL);
3791 	range_tree_destroy(condense_tree);
3792 	range_tree_vacate(tmp_tree, NULL, NULL);
3793 	range_tree_destroy(tmp_tree);
3794 	mutex_enter(&msp->ms_lock);
3795 
3796 	msp->ms_condensing = B_FALSE;
3797 	metaslab_flush_update(msp, tx);
3798 }
3799 
3800 static void
3801 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3802 {
3803 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3804 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3805 	ASSERT(msp->ms_sm != NULL);
3806 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3807 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3808 
3809 	mutex_enter(&spa->spa_flushed_ms_lock);
3810 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3811 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3812 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3813 	mutex_exit(&spa->spa_flushed_ms_lock);
3814 
3815 	spa_log_sm_increment_current_mscount(spa);
3816 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3817 }
3818 
3819 void
3820 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3821 {
3822 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3823 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3824 	ASSERT(msp->ms_sm != NULL);
3825 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3826 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3827 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3828 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3829 
3830 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3831 
3832 	/* update metaslab's position in our flushing tree */
3833 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3834 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3835 	mutex_enter(&spa->spa_flushed_ms_lock);
3836 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3837 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3838 	metaslab_set_unflushed_dirty(msp, dirty);
3839 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3840 	mutex_exit(&spa->spa_flushed_ms_lock);
3841 
3842 	/* update metaslab counts of spa_log_sm_t nodes */
3843 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3844 	spa_log_sm_increment_current_mscount(spa);
3845 
3846 	/* update log space map summary */
3847 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3848 	    ms_prev_flushed_dirty);
3849 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3850 
3851 	/* cleanup obsolete logs if any */
3852 	spa_cleanup_old_sm_logs(spa, tx);
3853 }
3854 
3855 /*
3856  * Called when the metaslab has been flushed (its own spacemap now reflects
3857  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3858  * metadata and any pool-wide related log space map data (e.g. summary,
3859  * obsolete logs, etc..) to reflect that.
3860  */
3861 static void
3862 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3863 {
3864 	metaslab_group_t *mg = msp->ms_group;
3865 	spa_t *spa = mg->mg_vd->vdev_spa;
3866 
3867 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3868 
3869 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3870 
3871 	/*
3872 	 * Just because a metaslab got flushed, that doesn't mean that
3873 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3874 	 * update ms_synced_length here in case it doesn't.
3875 	 */
3876 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3877 
3878 	/*
3879 	 * We may end up here from metaslab_condense() without the
3880 	 * feature being active. In that case this is a no-op.
3881 	 */
3882 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3883 	    metaslab_unflushed_txg(msp) == 0)
3884 		return;
3885 
3886 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3887 }
3888 
3889 boolean_t
3890 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3891 {
3892 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3893 
3894 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3895 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3896 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3897 
3898 	ASSERT(msp->ms_sm != NULL);
3899 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3900 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3901 
3902 	/*
3903 	 * There is nothing wrong with flushing the same metaslab twice, as
3904 	 * this codepath should work on that case. However, the current
3905 	 * flushing scheme makes sure to avoid this situation as we would be
3906 	 * making all these calls without having anything meaningful to write
3907 	 * to disk. We assert this behavior here.
3908 	 */
3909 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3910 
3911 	/*
3912 	 * We can not flush while loading, because then we would
3913 	 * not load the ms_unflushed_{allocs,frees}.
3914 	 */
3915 	if (msp->ms_loading)
3916 		return (B_FALSE);
3917 
3918 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3919 	metaslab_verify_weight_and_frag(msp);
3920 
3921 	/*
3922 	 * Metaslab condensing is effectively flushing. Therefore if the
3923 	 * metaslab can be condensed we can just condense it instead of
3924 	 * flushing it.
3925 	 *
3926 	 * Note that metaslab_condense() does call metaslab_flush_update()
3927 	 * so we can just return immediately after condensing. We also
3928 	 * don't need to care about setting ms_flushing or broadcasting
3929 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3930 	 * metaslab_condense(), as the metaslab is already loaded.
3931 	 */
3932 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3933 		metaslab_group_t *mg = msp->ms_group;
3934 
3935 		/*
3936 		 * For all histogram operations below refer to the
3937 		 * comments of metaslab_sync() where we follow a
3938 		 * similar procedure.
3939 		 */
3940 		metaslab_group_histogram_verify(mg);
3941 		metaslab_class_histogram_verify(mg->mg_class);
3942 		metaslab_group_histogram_remove(mg, msp);
3943 
3944 		metaslab_condense(msp, tx);
3945 
3946 		space_map_histogram_clear(msp->ms_sm);
3947 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3948 		ASSERT(range_tree_is_empty(msp->ms_freed));
3949 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3950 			space_map_histogram_add(msp->ms_sm,
3951 			    msp->ms_defer[t], tx);
3952 		}
3953 		metaslab_aux_histograms_update(msp);
3954 
3955 		metaslab_group_histogram_add(mg, msp);
3956 		metaslab_group_histogram_verify(mg);
3957 		metaslab_class_histogram_verify(mg->mg_class);
3958 
3959 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3960 
3961 		/*
3962 		 * Since we recreated the histogram (and potentially
3963 		 * the ms_sm too while condensing) ensure that the
3964 		 * weight is updated too because we are not guaranteed
3965 		 * that this metaslab is dirty and will go through
3966 		 * metaslab_sync_done().
3967 		 */
3968 		metaslab_recalculate_weight_and_sort(msp);
3969 		return (B_TRUE);
3970 	}
3971 
3972 	msp->ms_flushing = B_TRUE;
3973 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3974 
3975 	mutex_exit(&msp->ms_lock);
3976 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3977 	    SM_NO_VDEVID, tx);
3978 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3979 	    SM_NO_VDEVID, tx);
3980 	mutex_enter(&msp->ms_lock);
3981 
3982 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3983 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3984 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3985 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3986 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3987 		    spa_name(spa),
3988 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3989 		    (u_longlong_t)msp->ms_id,
3990 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3991 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3992 		    (u_longlong_t)(sm_len_after - sm_len_before));
3993 	}
3994 
3995 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3996 	    metaslab_unflushed_changes_memused(msp));
3997 	spa->spa_unflushed_stats.sus_memused -=
3998 	    metaslab_unflushed_changes_memused(msp);
3999 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4000 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4001 
4002 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4003 	metaslab_verify_weight_and_frag(msp);
4004 
4005 	metaslab_flush_update(msp, tx);
4006 
4007 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4008 	metaslab_verify_weight_and_frag(msp);
4009 
4010 	msp->ms_flushing = B_FALSE;
4011 	cv_broadcast(&msp->ms_flush_cv);
4012 	return (B_TRUE);
4013 }
4014 
4015 /*
4016  * Write a metaslab to disk in the context of the specified transaction group.
4017  */
4018 void
4019 metaslab_sync(metaslab_t *msp, uint64_t txg)
4020 {
4021 	metaslab_group_t *mg = msp->ms_group;
4022 	vdev_t *vd = mg->mg_vd;
4023 	spa_t *spa = vd->vdev_spa;
4024 	objset_t *mos = spa_meta_objset(spa);
4025 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4026 	dmu_tx_t *tx;
4027 
4028 	ASSERT(!vd->vdev_ishole);
4029 
4030 	/*
4031 	 * This metaslab has just been added so there's no work to do now.
4032 	 */
4033 	if (msp->ms_new) {
4034 		ASSERT0(range_tree_space(alloctree));
4035 		ASSERT0(range_tree_space(msp->ms_freeing));
4036 		ASSERT0(range_tree_space(msp->ms_freed));
4037 		ASSERT0(range_tree_space(msp->ms_checkpointing));
4038 		ASSERT0(range_tree_space(msp->ms_trim));
4039 		return;
4040 	}
4041 
4042 	/*
4043 	 * Normally, we don't want to process a metaslab if there are no
4044 	 * allocations or frees to perform. However, if the metaslab is being
4045 	 * forced to condense, it's loaded and we're not beyond the final
4046 	 * dirty txg, we need to let it through. Not condensing beyond the
4047 	 * final dirty txg prevents an issue where metaslabs that need to be
4048 	 * condensed but were loaded for other reasons could cause a panic
4049 	 * here. By only checking the txg in that branch of the conditional,
4050 	 * we preserve the utility of the VERIFY statements in all other
4051 	 * cases.
4052 	 */
4053 	if (range_tree_is_empty(alloctree) &&
4054 	    range_tree_is_empty(msp->ms_freeing) &&
4055 	    range_tree_is_empty(msp->ms_checkpointing) &&
4056 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
4057 	    txg <= spa_final_dirty_txg(spa)))
4058 		return;
4059 
4060 
4061 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4062 
4063 	/*
4064 	 * The only state that can actually be changing concurrently
4065 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
4066 	 * other thread can be modifying this txg's alloc, freeing,
4067 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4068 	 * could call into the DMU, because the DMU can call down to
4069 	 * us (e.g. via zio_free()) at any time.
4070 	 *
4071 	 * The spa_vdev_remove_thread() can be reading metaslab state
4072 	 * concurrently, and it is locked out by the ms_sync_lock.
4073 	 * Note that the ms_lock is insufficient for this, because it
4074 	 * is dropped by space_map_write().
4075 	 */
4076 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4077 
4078 	/*
4079 	 * Generate a log space map if one doesn't exist already.
4080 	 */
4081 	spa_generate_syncing_log_sm(spa, tx);
4082 
4083 	if (msp->ms_sm == NULL) {
4084 		uint64_t new_object = space_map_alloc(mos,
4085 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4086 		    zfs_metaslab_sm_blksz_with_log :
4087 		    zfs_metaslab_sm_blksz_no_log, tx);
4088 		VERIFY3U(new_object, !=, 0);
4089 
4090 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4091 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4092 
4093 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4094 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4095 		ASSERT(msp->ms_sm != NULL);
4096 
4097 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4098 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4099 		ASSERT0(metaslab_allocated_space(msp));
4100 	}
4101 
4102 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4103 	    vd->vdev_checkpoint_sm == NULL) {
4104 		ASSERT(spa_has_checkpoint(spa));
4105 
4106 		uint64_t new_object = space_map_alloc(mos,
4107 		    zfs_vdev_standard_sm_blksz, tx);
4108 		VERIFY3U(new_object, !=, 0);
4109 
4110 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4111 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4112 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4113 
4114 		/*
4115 		 * We save the space map object as an entry in vdev_top_zap
4116 		 * so it can be retrieved when the pool is reopened after an
4117 		 * export or through zdb.
4118 		 */
4119 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4120 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4121 		    sizeof (new_object), 1, &new_object, tx));
4122 	}
4123 
4124 	mutex_enter(&msp->ms_sync_lock);
4125 	mutex_enter(&msp->ms_lock);
4126 
4127 	/*
4128 	 * Note: metaslab_condense() clears the space map's histogram.
4129 	 * Therefore we must verify and remove this histogram before
4130 	 * condensing.
4131 	 */
4132 	metaslab_group_histogram_verify(mg);
4133 	metaslab_class_histogram_verify(mg->mg_class);
4134 	metaslab_group_histogram_remove(mg, msp);
4135 
4136 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4137 	    metaslab_should_condense(msp))
4138 		metaslab_condense(msp, tx);
4139 
4140 	/*
4141 	 * We'll be going to disk to sync our space accounting, thus we
4142 	 * drop the ms_lock during that time so allocations coming from
4143 	 * open-context (ZIL) for future TXGs do not block.
4144 	 */
4145 	mutex_exit(&msp->ms_lock);
4146 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4147 	if (log_sm != NULL) {
4148 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4149 		if (metaslab_unflushed_txg(msp) == 0)
4150 			metaslab_unflushed_add(msp, tx);
4151 		else if (!metaslab_unflushed_dirty(msp))
4152 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4153 
4154 		space_map_write(log_sm, alloctree, SM_ALLOC,
4155 		    vd->vdev_id, tx);
4156 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4157 		    vd->vdev_id, tx);
4158 		mutex_enter(&msp->ms_lock);
4159 
4160 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4161 		    metaslab_unflushed_changes_memused(msp));
4162 		spa->spa_unflushed_stats.sus_memused -=
4163 		    metaslab_unflushed_changes_memused(msp);
4164 		range_tree_remove_xor_add(alloctree,
4165 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4166 		range_tree_remove_xor_add(msp->ms_freeing,
4167 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4168 		spa->spa_unflushed_stats.sus_memused +=
4169 		    metaslab_unflushed_changes_memused(msp);
4170 	} else {
4171 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4172 
4173 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4174 		    SM_NO_VDEVID, tx);
4175 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4176 		    SM_NO_VDEVID, tx);
4177 		mutex_enter(&msp->ms_lock);
4178 	}
4179 
4180 	msp->ms_allocated_space += range_tree_space(alloctree);
4181 	ASSERT3U(msp->ms_allocated_space, >=,
4182 	    range_tree_space(msp->ms_freeing));
4183 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4184 
4185 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4186 		ASSERT(spa_has_checkpoint(spa));
4187 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4188 
4189 		/*
4190 		 * Since we are doing writes to disk and the ms_checkpointing
4191 		 * tree won't be changing during that time, we drop the
4192 		 * ms_lock while writing to the checkpoint space map, for the
4193 		 * same reason mentioned above.
4194 		 */
4195 		mutex_exit(&msp->ms_lock);
4196 		space_map_write(vd->vdev_checkpoint_sm,
4197 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4198 		mutex_enter(&msp->ms_lock);
4199 
4200 		spa->spa_checkpoint_info.sci_dspace +=
4201 		    range_tree_space(msp->ms_checkpointing);
4202 		vd->vdev_stat.vs_checkpoint_space +=
4203 		    range_tree_space(msp->ms_checkpointing);
4204 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4205 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4206 
4207 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4208 	}
4209 
4210 	if (msp->ms_loaded) {
4211 		/*
4212 		 * When the space map is loaded, we have an accurate
4213 		 * histogram in the range tree. This gives us an opportunity
4214 		 * to bring the space map's histogram up-to-date so we clear
4215 		 * it first before updating it.
4216 		 */
4217 		space_map_histogram_clear(msp->ms_sm);
4218 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4219 
4220 		/*
4221 		 * Since we've cleared the histogram we need to add back
4222 		 * any free space that has already been processed, plus
4223 		 * any deferred space. This allows the on-disk histogram
4224 		 * to accurately reflect all free space even if some space
4225 		 * is not yet available for allocation (i.e. deferred).
4226 		 */
4227 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4228 
4229 		/*
4230 		 * Add back any deferred free space that has not been
4231 		 * added back into the in-core free tree yet. This will
4232 		 * ensure that we don't end up with a space map histogram
4233 		 * that is completely empty unless the metaslab is fully
4234 		 * allocated.
4235 		 */
4236 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4237 			space_map_histogram_add(msp->ms_sm,
4238 			    msp->ms_defer[t], tx);
4239 		}
4240 	}
4241 
4242 	/*
4243 	 * Always add the free space from this sync pass to the space
4244 	 * map histogram. We want to make sure that the on-disk histogram
4245 	 * accounts for all free space. If the space map is not loaded,
4246 	 * then we will lose some accuracy but will correct it the next
4247 	 * time we load the space map.
4248 	 */
4249 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4250 	metaslab_aux_histograms_update(msp);
4251 
4252 	metaslab_group_histogram_add(mg, msp);
4253 	metaslab_group_histogram_verify(mg);
4254 	metaslab_class_histogram_verify(mg->mg_class);
4255 
4256 	/*
4257 	 * For sync pass 1, we avoid traversing this txg's free range tree
4258 	 * and instead will just swap the pointers for freeing and freed.
4259 	 * We can safely do this since the freed_tree is guaranteed to be
4260 	 * empty on the initial pass.
4261 	 *
4262 	 * Keep in mind that even if we are currently using a log spacemap
4263 	 * we want current frees to end up in the ms_allocatable (but not
4264 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4265 	 */
4266 	if (spa_sync_pass(spa) == 1) {
4267 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4268 		ASSERT0(msp->ms_allocated_this_txg);
4269 	} else {
4270 		range_tree_vacate(msp->ms_freeing,
4271 		    range_tree_add, msp->ms_freed);
4272 	}
4273 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4274 	range_tree_vacate(alloctree, NULL, NULL);
4275 
4276 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4277 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4278 	    & TXG_MASK]));
4279 	ASSERT0(range_tree_space(msp->ms_freeing));
4280 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4281 
4282 	mutex_exit(&msp->ms_lock);
4283 
4284 	/*
4285 	 * Verify that the space map object ID has been recorded in the
4286 	 * vdev_ms_array.
4287 	 */
4288 	uint64_t object;
4289 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4290 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4291 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4292 
4293 	mutex_exit(&msp->ms_sync_lock);
4294 	dmu_tx_commit(tx);
4295 }
4296 
4297 static void
4298 metaslab_evict(metaslab_t *msp, uint64_t txg)
4299 {
4300 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4301 		return;
4302 
4303 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4304 		VERIFY0(range_tree_space(
4305 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4306 	}
4307 	if (msp->ms_allocator != -1)
4308 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4309 
4310 	if (!metaslab_debug_unload)
4311 		metaslab_unload(msp);
4312 }
4313 
4314 /*
4315  * Called after a transaction group has completely synced to mark
4316  * all of the metaslab's free space as usable.
4317  */
4318 void
4319 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4320 {
4321 	metaslab_group_t *mg = msp->ms_group;
4322 	vdev_t *vd = mg->mg_vd;
4323 	spa_t *spa = vd->vdev_spa;
4324 	range_tree_t **defer_tree;
4325 	int64_t alloc_delta, defer_delta;
4326 	boolean_t defer_allowed = B_TRUE;
4327 
4328 	ASSERT(!vd->vdev_ishole);
4329 
4330 	mutex_enter(&msp->ms_lock);
4331 
4332 	if (msp->ms_new) {
4333 		/* this is a new metaslab, add its capacity to the vdev */
4334 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4335 
4336 		/* there should be no allocations nor frees at this point */
4337 		VERIFY0(msp->ms_allocated_this_txg);
4338 		VERIFY0(range_tree_space(msp->ms_freed));
4339 	}
4340 
4341 	ASSERT0(range_tree_space(msp->ms_freeing));
4342 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4343 
4344 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4345 
4346 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4347 	    metaslab_class_get_alloc(spa_normal_class(spa));
4348 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4349 	    vd->vdev_rz_expanding) {
4350 		defer_allowed = B_FALSE;
4351 	}
4352 
4353 	defer_delta = 0;
4354 	alloc_delta = msp->ms_allocated_this_txg -
4355 	    range_tree_space(msp->ms_freed);
4356 
4357 	if (defer_allowed) {
4358 		defer_delta = range_tree_space(msp->ms_freed) -
4359 		    range_tree_space(*defer_tree);
4360 	} else {
4361 		defer_delta -= range_tree_space(*defer_tree);
4362 	}
4363 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4364 	    defer_delta, 0);
4365 
4366 	if (spa_syncing_log_sm(spa) == NULL) {
4367 		/*
4368 		 * If there's a metaslab_load() in progress and we don't have
4369 		 * a log space map, it means that we probably wrote to the
4370 		 * metaslab's space map. If this is the case, we need to
4371 		 * make sure that we wait for the load to complete so that we
4372 		 * have a consistent view at the in-core side of the metaslab.
4373 		 */
4374 		metaslab_load_wait(msp);
4375 	} else {
4376 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4377 	}
4378 
4379 	/*
4380 	 * When auto-trimming is enabled, free ranges which are added to
4381 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4382 	 * periodically consumed by the vdev_autotrim_thread() which issues
4383 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4384 	 * can be discarded at any time with the sole consequence of recent
4385 	 * frees not being trimmed.
4386 	 */
4387 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4388 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4389 		if (!defer_allowed) {
4390 			range_tree_walk(msp->ms_freed, range_tree_add,
4391 			    msp->ms_trim);
4392 		}
4393 	} else {
4394 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4395 	}
4396 
4397 	/*
4398 	 * Move the frees from the defer_tree back to the free
4399 	 * range tree (if it's loaded). Swap the freed_tree and
4400 	 * the defer_tree -- this is safe to do because we've
4401 	 * just emptied out the defer_tree.
4402 	 */
4403 	range_tree_vacate(*defer_tree,
4404 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4405 	if (defer_allowed) {
4406 		range_tree_swap(&msp->ms_freed, defer_tree);
4407 	} else {
4408 		range_tree_vacate(msp->ms_freed,
4409 		    msp->ms_loaded ? range_tree_add : NULL,
4410 		    msp->ms_allocatable);
4411 	}
4412 
4413 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4414 
4415 	msp->ms_deferspace += defer_delta;
4416 	ASSERT3S(msp->ms_deferspace, >=, 0);
4417 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4418 	if (msp->ms_deferspace != 0) {
4419 		/*
4420 		 * Keep syncing this metaslab until all deferred frees
4421 		 * are back in circulation.
4422 		 */
4423 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4424 	}
4425 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4426 
4427 	if (msp->ms_new) {
4428 		msp->ms_new = B_FALSE;
4429 		mutex_enter(&mg->mg_lock);
4430 		mg->mg_ms_ready++;
4431 		mutex_exit(&mg->mg_lock);
4432 	}
4433 
4434 	/*
4435 	 * Re-sort metaslab within its group now that we've adjusted
4436 	 * its allocatable space.
4437 	 */
4438 	metaslab_recalculate_weight_and_sort(msp);
4439 
4440 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4441 	ASSERT0(range_tree_space(msp->ms_freeing));
4442 	ASSERT0(range_tree_space(msp->ms_freed));
4443 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4444 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4445 	msp->ms_allocated_this_txg = 0;
4446 	mutex_exit(&msp->ms_lock);
4447 }
4448 
4449 void
4450 metaslab_sync_reassess(metaslab_group_t *mg)
4451 {
4452 	spa_t *spa = mg->mg_class->mc_spa;
4453 
4454 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4455 	metaslab_group_alloc_update(mg);
4456 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4457 
4458 	/*
4459 	 * Preload the next potential metaslabs but only on active
4460 	 * metaslab groups. We can get into a state where the metaslab
4461 	 * is no longer active since we dirty metaslabs as we remove a
4462 	 * a device, thus potentially making the metaslab group eligible
4463 	 * for preloading.
4464 	 */
4465 	if (mg->mg_activation_count > 0) {
4466 		metaslab_group_preload(mg);
4467 	}
4468 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4469 }
4470 
4471 /*
4472  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4473  * the same vdev as an existing DVA of this BP, then try to allocate it
4474  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4475  */
4476 static boolean_t
4477 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4478 {
4479 	uint64_t dva_ms_id;
4480 
4481 	if (DVA_GET_ASIZE(dva) == 0)
4482 		return (B_TRUE);
4483 
4484 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4485 		return (B_TRUE);
4486 
4487 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4488 
4489 	return (msp->ms_id != dva_ms_id);
4490 }
4491 
4492 /*
4493  * ==========================================================================
4494  * Metaslab allocation tracing facility
4495  * ==========================================================================
4496  */
4497 
4498 /*
4499  * Add an allocation trace element to the allocation tracing list.
4500  */
4501 static void
4502 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4503     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4504     int allocator)
4505 {
4506 	metaslab_alloc_trace_t *mat;
4507 
4508 	if (!metaslab_trace_enabled)
4509 		return;
4510 
4511 	/*
4512 	 * When the tracing list reaches its maximum we remove
4513 	 * the second element in the list before adding a new one.
4514 	 * By removing the second element we preserve the original
4515 	 * entry as a clue to what allocations steps have already been
4516 	 * performed.
4517 	 */
4518 	if (zal->zal_size == metaslab_trace_max_entries) {
4519 		metaslab_alloc_trace_t *mat_next;
4520 #ifdef ZFS_DEBUG
4521 		panic("too many entries in allocation list");
4522 #endif
4523 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4524 		zal->zal_size--;
4525 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4526 		list_remove(&zal->zal_list, mat_next);
4527 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4528 	}
4529 
4530 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4531 	list_link_init(&mat->mat_list_node);
4532 	mat->mat_mg = mg;
4533 	mat->mat_msp = msp;
4534 	mat->mat_size = psize;
4535 	mat->mat_dva_id = dva_id;
4536 	mat->mat_offset = offset;
4537 	mat->mat_weight = 0;
4538 	mat->mat_allocator = allocator;
4539 
4540 	if (msp != NULL)
4541 		mat->mat_weight = msp->ms_weight;
4542 
4543 	/*
4544 	 * The list is part of the zio so locking is not required. Only
4545 	 * a single thread will perform allocations for a given zio.
4546 	 */
4547 	list_insert_tail(&zal->zal_list, mat);
4548 	zal->zal_size++;
4549 
4550 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4551 }
4552 
4553 void
4554 metaslab_trace_init(zio_alloc_list_t *zal)
4555 {
4556 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4557 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4558 	zal->zal_size = 0;
4559 }
4560 
4561 void
4562 metaslab_trace_fini(zio_alloc_list_t *zal)
4563 {
4564 	metaslab_alloc_trace_t *mat;
4565 
4566 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4567 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4568 	list_destroy(&zal->zal_list);
4569 	zal->zal_size = 0;
4570 }
4571 
4572 /*
4573  * ==========================================================================
4574  * Metaslab block operations
4575  * ==========================================================================
4576  */
4577 
4578 static void
4579 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4580     int flags, int allocator)
4581 {
4582 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4583 	    (flags & METASLAB_DONT_THROTTLE))
4584 		return;
4585 
4586 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4587 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4588 		return;
4589 
4590 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4591 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4592 }
4593 
4594 static void
4595 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4596 {
4597 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4598 	metaslab_class_allocator_t *mca =
4599 	    &mg->mg_class->mc_allocator[allocator];
4600 	uint64_t max = mg->mg_max_alloc_queue_depth;
4601 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4602 	while (cur < max) {
4603 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4604 		    cur, cur + 1) == cur) {
4605 			atomic_inc_64(&mca->mca_alloc_max_slots);
4606 			return;
4607 		}
4608 		cur = mga->mga_cur_max_alloc_queue_depth;
4609 	}
4610 }
4611 
4612 void
4613 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4614     int flags, int allocator, boolean_t io_complete)
4615 {
4616 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4617 	    (flags & METASLAB_DONT_THROTTLE))
4618 		return;
4619 
4620 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4621 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4622 		return;
4623 
4624 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4625 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4626 	if (io_complete)
4627 		metaslab_group_increment_qdepth(mg, allocator);
4628 }
4629 
4630 void
4631 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4632     int allocator)
4633 {
4634 #ifdef ZFS_DEBUG
4635 	const dva_t *dva = bp->blk_dva;
4636 	int ndvas = BP_GET_NDVAS(bp);
4637 
4638 	for (int d = 0; d < ndvas; d++) {
4639 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4640 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4641 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4642 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4643 	}
4644 #endif
4645 }
4646 
4647 static uint64_t
4648 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4649 {
4650 	uint64_t start;
4651 	range_tree_t *rt = msp->ms_allocatable;
4652 	metaslab_class_t *mc = msp->ms_group->mg_class;
4653 
4654 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4655 	VERIFY(!msp->ms_condensing);
4656 	VERIFY0(msp->ms_disabled);
4657 	VERIFY0(msp->ms_new);
4658 
4659 	start = mc->mc_ops->msop_alloc(msp, size);
4660 	if (start != -1ULL) {
4661 		metaslab_group_t *mg = msp->ms_group;
4662 		vdev_t *vd = mg->mg_vd;
4663 
4664 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4665 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4666 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4667 		range_tree_remove(rt, start, size);
4668 		range_tree_clear(msp->ms_trim, start, size);
4669 
4670 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4671 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4672 
4673 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4674 		msp->ms_allocating_total += size;
4675 
4676 		/* Track the last successful allocation */
4677 		msp->ms_alloc_txg = txg;
4678 		metaslab_verify_space(msp, txg);
4679 	}
4680 
4681 	/*
4682 	 * Now that we've attempted the allocation we need to update the
4683 	 * metaslab's maximum block size since it may have changed.
4684 	 */
4685 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4686 	return (start);
4687 }
4688 
4689 /*
4690  * Find the metaslab with the highest weight that is less than what we've
4691  * already tried.  In the common case, this means that we will examine each
4692  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4693  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4694  * activated by another thread, and we fail to allocate from the metaslab we
4695  * have selected, we may not try the newly-activated metaslab, and instead
4696  * activate another metaslab.  This is not optimal, but generally does not cause
4697  * any problems (a possible exception being if every metaslab is completely full
4698  * except for the newly-activated metaslab which we fail to examine).
4699  */
4700 static metaslab_t *
4701 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4702     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4703     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4704     boolean_t *was_active)
4705 {
4706 	avl_index_t idx;
4707 	avl_tree_t *t = &mg->mg_metaslab_tree;
4708 	metaslab_t *msp = avl_find(t, search, &idx);
4709 	if (msp == NULL)
4710 		msp = avl_nearest(t, idx, AVL_AFTER);
4711 
4712 	uint_t tries = 0;
4713 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4714 		int i;
4715 
4716 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4717 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4718 			return (NULL);
4719 		}
4720 		tries++;
4721 
4722 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4723 			metaslab_trace_add(zal, mg, msp, asize, d,
4724 			    TRACE_TOO_SMALL, allocator);
4725 			continue;
4726 		}
4727 
4728 		/*
4729 		 * If the selected metaslab is condensing or disabled, or
4730 		 * hasn't gone through a metaslab_sync_done(), then skip it.
4731 		 */
4732 		if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4733 			continue;
4734 
4735 		*was_active = msp->ms_allocator != -1;
4736 		/*
4737 		 * If we're activating as primary, this is our first allocation
4738 		 * from this disk, so we don't need to check how close we are.
4739 		 * If the metaslab under consideration was already active,
4740 		 * we're getting desperate enough to steal another allocator's
4741 		 * metaslab, so we still don't care about distances.
4742 		 */
4743 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4744 			break;
4745 
4746 		for (i = 0; i < d; i++) {
4747 			if (want_unique &&
4748 			    !metaslab_is_unique(msp, &dva[i]))
4749 				break;  /* try another metaslab */
4750 		}
4751 		if (i == d)
4752 			break;
4753 	}
4754 
4755 	if (msp != NULL) {
4756 		search->ms_weight = msp->ms_weight;
4757 		search->ms_start = msp->ms_start + 1;
4758 		search->ms_allocator = msp->ms_allocator;
4759 		search->ms_primary = msp->ms_primary;
4760 	}
4761 	return (msp);
4762 }
4763 
4764 static void
4765 metaslab_active_mask_verify(metaslab_t *msp)
4766 {
4767 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4768 
4769 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4770 		return;
4771 
4772 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4773 		return;
4774 
4775 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4776 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4777 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4778 		VERIFY3S(msp->ms_allocator, !=, -1);
4779 		VERIFY(msp->ms_primary);
4780 		return;
4781 	}
4782 
4783 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4784 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4785 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4786 		VERIFY3S(msp->ms_allocator, !=, -1);
4787 		VERIFY(!msp->ms_primary);
4788 		return;
4789 	}
4790 
4791 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4792 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4793 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4794 		VERIFY3S(msp->ms_allocator, ==, -1);
4795 		return;
4796 	}
4797 }
4798 
4799 static uint64_t
4800 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4801     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4802     int allocator, boolean_t try_hard)
4803 {
4804 	metaslab_t *msp = NULL;
4805 	uint64_t offset = -1ULL;
4806 
4807 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4808 	for (int i = 0; i < d; i++) {
4809 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4810 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4811 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4812 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4813 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4814 			activation_weight = METASLAB_WEIGHT_CLAIM;
4815 			break;
4816 		}
4817 	}
4818 
4819 	/*
4820 	 * If we don't have enough metaslabs active to fill the entire array, we
4821 	 * just use the 0th slot.
4822 	 */
4823 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4824 		allocator = 0;
4825 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4826 
4827 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4828 
4829 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4830 	search->ms_weight = UINT64_MAX;
4831 	search->ms_start = 0;
4832 	/*
4833 	 * At the end of the metaslab tree are the already-active metaslabs,
4834 	 * first the primaries, then the secondaries. When we resume searching
4835 	 * through the tree, we need to consider ms_allocator and ms_primary so
4836 	 * we start in the location right after where we left off, and don't
4837 	 * accidentally loop forever considering the same metaslabs.
4838 	 */
4839 	search->ms_allocator = -1;
4840 	search->ms_primary = B_TRUE;
4841 	for (;;) {
4842 		boolean_t was_active = B_FALSE;
4843 
4844 		mutex_enter(&mg->mg_lock);
4845 
4846 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4847 		    mga->mga_primary != NULL) {
4848 			msp = mga->mga_primary;
4849 
4850 			/*
4851 			 * Even though we don't hold the ms_lock for the
4852 			 * primary metaslab, those fields should not
4853 			 * change while we hold the mg_lock. Thus it is
4854 			 * safe to make assertions on them.
4855 			 */
4856 			ASSERT(msp->ms_primary);
4857 			ASSERT3S(msp->ms_allocator, ==, allocator);
4858 			ASSERT(msp->ms_loaded);
4859 
4860 			was_active = B_TRUE;
4861 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4862 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4863 		    mga->mga_secondary != NULL) {
4864 			msp = mga->mga_secondary;
4865 
4866 			/*
4867 			 * See comment above about the similar assertions
4868 			 * for the primary metaslab.
4869 			 */
4870 			ASSERT(!msp->ms_primary);
4871 			ASSERT3S(msp->ms_allocator, ==, allocator);
4872 			ASSERT(msp->ms_loaded);
4873 
4874 			was_active = B_TRUE;
4875 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4876 		} else {
4877 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4878 			    want_unique, asize, allocator, try_hard, zal,
4879 			    search, &was_active);
4880 		}
4881 
4882 		mutex_exit(&mg->mg_lock);
4883 		if (msp == NULL) {
4884 			kmem_free(search, sizeof (*search));
4885 			return (-1ULL);
4886 		}
4887 		mutex_enter(&msp->ms_lock);
4888 
4889 		metaslab_active_mask_verify(msp);
4890 
4891 		/*
4892 		 * This code is disabled out because of issues with
4893 		 * tracepoints in non-gpl kernel modules.
4894 		 */
4895 #if 0
4896 		DTRACE_PROBE3(ms__activation__attempt,
4897 		    metaslab_t *, msp, uint64_t, activation_weight,
4898 		    boolean_t, was_active);
4899 #endif
4900 
4901 		/*
4902 		 * Ensure that the metaslab we have selected is still
4903 		 * capable of handling our request. It's possible that
4904 		 * another thread may have changed the weight while we
4905 		 * were blocked on the metaslab lock. We check the
4906 		 * active status first to see if we need to set_selected_txg
4907 		 * a new metaslab.
4908 		 */
4909 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4910 			ASSERT3S(msp->ms_allocator, ==, -1);
4911 			mutex_exit(&msp->ms_lock);
4912 			continue;
4913 		}
4914 
4915 		/*
4916 		 * If the metaslab was activated for another allocator
4917 		 * while we were waiting in the ms_lock above, or it's
4918 		 * a primary and we're seeking a secondary (or vice versa),
4919 		 * we go back and select a new metaslab.
4920 		 */
4921 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4922 		    (msp->ms_allocator != -1) &&
4923 		    (msp->ms_allocator != allocator || ((activation_weight ==
4924 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4925 			ASSERT(msp->ms_loaded);
4926 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4927 			    msp->ms_allocator != -1);
4928 			mutex_exit(&msp->ms_lock);
4929 			continue;
4930 		}
4931 
4932 		/*
4933 		 * This metaslab was used for claiming regions allocated
4934 		 * by the ZIL during pool import. Once these regions are
4935 		 * claimed we don't need to keep the CLAIM bit set
4936 		 * anymore. Passivate this metaslab to zero its activation
4937 		 * mask.
4938 		 */
4939 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4940 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4941 			ASSERT(msp->ms_loaded);
4942 			ASSERT3S(msp->ms_allocator, ==, -1);
4943 			metaslab_passivate(msp, msp->ms_weight &
4944 			    ~METASLAB_WEIGHT_CLAIM);
4945 			mutex_exit(&msp->ms_lock);
4946 			continue;
4947 		}
4948 
4949 		metaslab_set_selected_txg(msp, txg);
4950 
4951 		int activation_error =
4952 		    metaslab_activate(msp, allocator, activation_weight);
4953 		metaslab_active_mask_verify(msp);
4954 
4955 		/*
4956 		 * If the metaslab was activated by another thread for
4957 		 * another allocator or activation_weight (EBUSY), or it
4958 		 * failed because another metaslab was assigned as primary
4959 		 * for this allocator (EEXIST) we continue using this
4960 		 * metaslab for our allocation, rather than going on to a
4961 		 * worse metaslab (we waited for that metaslab to be loaded
4962 		 * after all).
4963 		 *
4964 		 * If the activation failed due to an I/O error or ENOSPC we
4965 		 * skip to the next metaslab.
4966 		 */
4967 		boolean_t activated;
4968 		if (activation_error == 0) {
4969 			activated = B_TRUE;
4970 		} else if (activation_error == EBUSY ||
4971 		    activation_error == EEXIST) {
4972 			activated = B_FALSE;
4973 		} else {
4974 			mutex_exit(&msp->ms_lock);
4975 			continue;
4976 		}
4977 		ASSERT(msp->ms_loaded);
4978 
4979 		/*
4980 		 * Now that we have the lock, recheck to see if we should
4981 		 * continue to use this metaslab for this allocation. The
4982 		 * the metaslab is now loaded so metaslab_should_allocate()
4983 		 * can accurately determine if the allocation attempt should
4984 		 * proceed.
4985 		 */
4986 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4987 			/* Passivate this metaslab and select a new one. */
4988 			metaslab_trace_add(zal, mg, msp, asize, d,
4989 			    TRACE_TOO_SMALL, allocator);
4990 			goto next;
4991 		}
4992 
4993 		/*
4994 		 * If this metaslab is currently condensing then pick again
4995 		 * as we can't manipulate this metaslab until it's committed
4996 		 * to disk. If this metaslab is being initialized, we shouldn't
4997 		 * allocate from it since the allocated region might be
4998 		 * overwritten after allocation.
4999 		 */
5000 		if (msp->ms_condensing) {
5001 			metaslab_trace_add(zal, mg, msp, asize, d,
5002 			    TRACE_CONDENSING, allocator);
5003 			if (activated) {
5004 				metaslab_passivate(msp, msp->ms_weight &
5005 				    ~METASLAB_ACTIVE_MASK);
5006 			}
5007 			mutex_exit(&msp->ms_lock);
5008 			continue;
5009 		} else if (msp->ms_disabled > 0) {
5010 			metaslab_trace_add(zal, mg, msp, asize, d,
5011 			    TRACE_DISABLED, allocator);
5012 			if (activated) {
5013 				metaslab_passivate(msp, msp->ms_weight &
5014 				    ~METASLAB_ACTIVE_MASK);
5015 			}
5016 			mutex_exit(&msp->ms_lock);
5017 			continue;
5018 		}
5019 
5020 		offset = metaslab_block_alloc(msp, asize, txg);
5021 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5022 
5023 		if (offset != -1ULL) {
5024 			/* Proactively passivate the metaslab, if needed */
5025 			if (activated)
5026 				metaslab_segment_may_passivate(msp);
5027 			break;
5028 		}
5029 next:
5030 		ASSERT(msp->ms_loaded);
5031 
5032 		/*
5033 		 * This code is disabled out because of issues with
5034 		 * tracepoints in non-gpl kernel modules.
5035 		 */
5036 #if 0
5037 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5038 		    uint64_t, asize);
5039 #endif
5040 
5041 		/*
5042 		 * We were unable to allocate from this metaslab so determine
5043 		 * a new weight for this metaslab. Now that we have loaded
5044 		 * the metaslab we can provide a better hint to the metaslab
5045 		 * selector.
5046 		 *
5047 		 * For space-based metaslabs, we use the maximum block size.
5048 		 * This information is only available when the metaslab
5049 		 * is loaded and is more accurate than the generic free
5050 		 * space weight that was calculated by metaslab_weight().
5051 		 * This information allows us to quickly compare the maximum
5052 		 * available allocation in the metaslab to the allocation
5053 		 * size being requested.
5054 		 *
5055 		 * For segment-based metaslabs, determine the new weight
5056 		 * based on the highest bucket in the range tree. We
5057 		 * explicitly use the loaded segment weight (i.e. the range
5058 		 * tree histogram) since it contains the space that is
5059 		 * currently available for allocation and is accurate
5060 		 * even within a sync pass.
5061 		 */
5062 		uint64_t weight;
5063 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5064 			weight = metaslab_largest_allocatable(msp);
5065 			WEIGHT_SET_SPACEBASED(weight);
5066 		} else {
5067 			weight = metaslab_weight_from_range_tree(msp);
5068 		}
5069 
5070 		if (activated) {
5071 			metaslab_passivate(msp, weight);
5072 		} else {
5073 			/*
5074 			 * For the case where we use the metaslab that is
5075 			 * active for another allocator we want to make
5076 			 * sure that we retain the activation mask.
5077 			 *
5078 			 * Note that we could attempt to use something like
5079 			 * metaslab_recalculate_weight_and_sort() that
5080 			 * retains the activation mask here. That function
5081 			 * uses metaslab_weight() to set the weight though
5082 			 * which is not as accurate as the calculations
5083 			 * above.
5084 			 */
5085 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5086 			metaslab_group_sort(mg, msp, weight);
5087 		}
5088 		metaslab_active_mask_verify(msp);
5089 
5090 		/*
5091 		 * We have just failed an allocation attempt, check
5092 		 * that metaslab_should_allocate() agrees. Otherwise,
5093 		 * we may end up in an infinite loop retrying the same
5094 		 * metaslab.
5095 		 */
5096 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5097 
5098 		mutex_exit(&msp->ms_lock);
5099 	}
5100 	mutex_exit(&msp->ms_lock);
5101 	kmem_free(search, sizeof (*search));
5102 	return (offset);
5103 }
5104 
5105 static uint64_t
5106 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5107     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5108     int allocator, boolean_t try_hard)
5109 {
5110 	uint64_t offset;
5111 
5112 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5113 	    dva, d, allocator, try_hard);
5114 
5115 	mutex_enter(&mg->mg_lock);
5116 	if (offset == -1ULL) {
5117 		mg->mg_failed_allocations++;
5118 		metaslab_trace_add(zal, mg, NULL, asize, d,
5119 		    TRACE_GROUP_FAILURE, allocator);
5120 		if (asize == SPA_GANGBLOCKSIZE) {
5121 			/*
5122 			 * This metaslab group was unable to allocate
5123 			 * the minimum gang block size so it must be out of
5124 			 * space. We must notify the allocation throttle
5125 			 * to start skipping allocation attempts to this
5126 			 * metaslab group until more space becomes available.
5127 			 * Note: this failure cannot be caused by the
5128 			 * allocation throttle since the allocation throttle
5129 			 * is only responsible for skipping devices and
5130 			 * not failing block allocations.
5131 			 */
5132 			mg->mg_no_free_space = B_TRUE;
5133 		}
5134 	}
5135 	mg->mg_allocations++;
5136 	mutex_exit(&mg->mg_lock);
5137 	return (offset);
5138 }
5139 
5140 /*
5141  * Allocate a block for the specified i/o.
5142  */
5143 int
5144 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5145     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5146     zio_alloc_list_t *zal, int allocator)
5147 {
5148 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5149 	metaslab_group_t *mg, *rotor;
5150 	vdev_t *vd;
5151 	boolean_t try_hard = B_FALSE;
5152 
5153 	ASSERT(!DVA_IS_VALID(&dva[d]));
5154 
5155 	/*
5156 	 * For testing, make some blocks above a certain size be gang blocks.
5157 	 * This will result in more split blocks when using device removal,
5158 	 * and a large number of split blocks coupled with ztest-induced
5159 	 * damage can result in extremely long reconstruction times.  This
5160 	 * will also test spilling from special to normal.
5161 	 */
5162 	if (psize >= metaslab_force_ganging &&
5163 	    metaslab_force_ganging_pct > 0 &&
5164 	    (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5165 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5166 		    allocator);
5167 		return (SET_ERROR(ENOSPC));
5168 	}
5169 
5170 	/*
5171 	 * Start at the rotor and loop through all mgs until we find something.
5172 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5173 	 * nothing actually breaks if we miss a few updates -- we just won't
5174 	 * allocate quite as evenly.  It all balances out over time.
5175 	 *
5176 	 * If we are doing ditto or log blocks, try to spread them across
5177 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5178 	 * allocated all of our ditto blocks, then try and spread them out on
5179 	 * that vdev as much as possible.  If it turns out to not be possible,
5180 	 * gradually lower our standards until anything becomes acceptable.
5181 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5182 	 * gives us hope of containing our fault domains to something we're
5183 	 * able to reason about.  Otherwise, any two top-level vdev failures
5184 	 * will guarantee the loss of data.  With consecutive allocation,
5185 	 * only two adjacent top-level vdev failures will result in data loss.
5186 	 *
5187 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5188 	 * ourselves on the same vdev as our gang block header.  That
5189 	 * way, we can hope for locality in vdev_cache, plus it makes our
5190 	 * fault domains something tractable.
5191 	 */
5192 	if (hintdva) {
5193 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5194 
5195 		/*
5196 		 * It's possible the vdev we're using as the hint no
5197 		 * longer exists or its mg has been closed (e.g. by
5198 		 * device removal).  Consult the rotor when
5199 		 * all else fails.
5200 		 */
5201 		if (vd != NULL && vd->vdev_mg != NULL) {
5202 			mg = vdev_get_mg(vd, mc);
5203 
5204 			if (flags & METASLAB_HINTBP_AVOID)
5205 				mg = mg->mg_next;
5206 		} else {
5207 			mg = mca->mca_rotor;
5208 		}
5209 	} else if (d != 0) {
5210 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5211 		mg = vd->vdev_mg->mg_next;
5212 	} else {
5213 		ASSERT(mca->mca_rotor != NULL);
5214 		mg = mca->mca_rotor;
5215 	}
5216 
5217 	/*
5218 	 * If the hint put us into the wrong metaslab class, or into a
5219 	 * metaslab group that has been passivated, just follow the rotor.
5220 	 */
5221 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5222 		mg = mca->mca_rotor;
5223 
5224 	rotor = mg;
5225 top:
5226 	do {
5227 		boolean_t allocatable;
5228 
5229 		ASSERT(mg->mg_activation_count == 1);
5230 		vd = mg->mg_vd;
5231 
5232 		/*
5233 		 * Don't allocate from faulted devices.
5234 		 */
5235 		if (try_hard) {
5236 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5237 			allocatable = vdev_allocatable(vd);
5238 			spa_config_exit(spa, SCL_ZIO, FTAG);
5239 		} else {
5240 			allocatable = vdev_allocatable(vd);
5241 		}
5242 
5243 		/*
5244 		 * Determine if the selected metaslab group is eligible
5245 		 * for allocations. If we're ganging then don't allow
5246 		 * this metaslab group to skip allocations since that would
5247 		 * inadvertently return ENOSPC and suspend the pool
5248 		 * even though space is still available.
5249 		 */
5250 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5251 			allocatable = metaslab_group_allocatable(mg, rotor,
5252 			    flags, psize, allocator, d);
5253 		}
5254 
5255 		if (!allocatable) {
5256 			metaslab_trace_add(zal, mg, NULL, psize, d,
5257 			    TRACE_NOT_ALLOCATABLE, allocator);
5258 			goto next;
5259 		}
5260 
5261 		/*
5262 		 * Avoid writing single-copy data to an unhealthy,
5263 		 * non-redundant vdev, unless we've already tried all
5264 		 * other vdevs.
5265 		 */
5266 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5267 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5268 			metaslab_trace_add(zal, mg, NULL, psize, d,
5269 			    TRACE_VDEV_ERROR, allocator);
5270 			goto next;
5271 		}
5272 
5273 		ASSERT(mg->mg_class == mc);
5274 
5275 		uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5276 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5277 
5278 		/*
5279 		 * If we don't need to try hard, then require that the
5280 		 * block be on a different metaslab from any other DVAs
5281 		 * in this BP (unique=true).  If we are trying hard, then
5282 		 * allow any metaslab to be used (unique=false).
5283 		 */
5284 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5285 		    !try_hard, dva, d, allocator, try_hard);
5286 
5287 		if (offset != -1ULL) {
5288 			/*
5289 			 * If we've just selected this metaslab group,
5290 			 * figure out whether the corresponding vdev is
5291 			 * over- or under-used relative to the pool,
5292 			 * and set an allocation bias to even it out.
5293 			 *
5294 			 * Bias is also used to compensate for unequally
5295 			 * sized vdevs so that space is allocated fairly.
5296 			 */
5297 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5298 				vdev_stat_t *vs = &vd->vdev_stat;
5299 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5300 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5301 				int64_t ratio;
5302 
5303 				/*
5304 				 * Calculate how much more or less we should
5305 				 * try to allocate from this device during
5306 				 * this iteration around the rotor.
5307 				 *
5308 				 * This basically introduces a zero-centered
5309 				 * bias towards the devices with the most
5310 				 * free space, while compensating for vdev
5311 				 * size differences.
5312 				 *
5313 				 * Examples:
5314 				 *  vdev V1 = 16M/128M
5315 				 *  vdev V2 = 16M/128M
5316 				 *  ratio(V1) = 100% ratio(V2) = 100%
5317 				 *
5318 				 *  vdev V1 = 16M/128M
5319 				 *  vdev V2 = 64M/128M
5320 				 *  ratio(V1) = 127% ratio(V2) =  72%
5321 				 *
5322 				 *  vdev V1 = 16M/128M
5323 				 *  vdev V2 = 64M/512M
5324 				 *  ratio(V1) =  40% ratio(V2) = 160%
5325 				 */
5326 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5327 				    (mc_free + 1);
5328 				mg->mg_bias = ((ratio - 100) *
5329 				    (int64_t)mg->mg_aliquot) / 100;
5330 			} else if (!metaslab_bias_enabled) {
5331 				mg->mg_bias = 0;
5332 			}
5333 
5334 			if ((flags & METASLAB_ZIL) ||
5335 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5336 			    mg->mg_aliquot + mg->mg_bias) {
5337 				mca->mca_rotor = mg->mg_next;
5338 				mca->mca_aliquot = 0;
5339 			}
5340 
5341 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5342 			DVA_SET_OFFSET(&dva[d], offset);
5343 			DVA_SET_GANG(&dva[d],
5344 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5345 			DVA_SET_ASIZE(&dva[d], asize);
5346 
5347 			return (0);
5348 		}
5349 next:
5350 		mca->mca_rotor = mg->mg_next;
5351 		mca->mca_aliquot = 0;
5352 	} while ((mg = mg->mg_next) != rotor);
5353 
5354 	/*
5355 	 * If we haven't tried hard, perhaps do so now.
5356 	 */
5357 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5358 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5359 	    psize <= 1 << spa->spa_min_ashift)) {
5360 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5361 		try_hard = B_TRUE;
5362 		goto top;
5363 	}
5364 
5365 	memset(&dva[d], 0, sizeof (dva_t));
5366 
5367 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5368 	return (SET_ERROR(ENOSPC));
5369 }
5370 
5371 void
5372 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5373     boolean_t checkpoint)
5374 {
5375 	metaslab_t *msp;
5376 	spa_t *spa = vd->vdev_spa;
5377 
5378 	ASSERT(vdev_is_concrete(vd));
5379 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5380 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5381 
5382 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5383 
5384 	VERIFY(!msp->ms_condensing);
5385 	VERIFY3U(offset, >=, msp->ms_start);
5386 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5387 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5388 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5389 
5390 	metaslab_check_free_impl(vd, offset, asize);
5391 
5392 	mutex_enter(&msp->ms_lock);
5393 	if (range_tree_is_empty(msp->ms_freeing) &&
5394 	    range_tree_is_empty(msp->ms_checkpointing)) {
5395 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5396 	}
5397 
5398 	if (checkpoint) {
5399 		ASSERT(spa_has_checkpoint(spa));
5400 		range_tree_add(msp->ms_checkpointing, offset, asize);
5401 	} else {
5402 		range_tree_add(msp->ms_freeing, offset, asize);
5403 	}
5404 	mutex_exit(&msp->ms_lock);
5405 }
5406 
5407 void
5408 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5409     uint64_t size, void *arg)
5410 {
5411 	(void) inner_offset;
5412 	boolean_t *checkpoint = arg;
5413 
5414 	ASSERT3P(checkpoint, !=, NULL);
5415 
5416 	if (vd->vdev_ops->vdev_op_remap != NULL)
5417 		vdev_indirect_mark_obsolete(vd, offset, size);
5418 	else
5419 		metaslab_free_impl(vd, offset, size, *checkpoint);
5420 }
5421 
5422 static void
5423 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5424     boolean_t checkpoint)
5425 {
5426 	spa_t *spa = vd->vdev_spa;
5427 
5428 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5429 
5430 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5431 		return;
5432 
5433 	if (spa->spa_vdev_removal != NULL &&
5434 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5435 	    vdev_is_concrete(vd)) {
5436 		/*
5437 		 * Note: we check if the vdev is concrete because when
5438 		 * we complete the removal, we first change the vdev to be
5439 		 * an indirect vdev (in open context), and then (in syncing
5440 		 * context) clear spa_vdev_removal.
5441 		 */
5442 		free_from_removing_vdev(vd, offset, size);
5443 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5444 		vdev_indirect_mark_obsolete(vd, offset, size);
5445 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5446 		    metaslab_free_impl_cb, &checkpoint);
5447 	} else {
5448 		metaslab_free_concrete(vd, offset, size, checkpoint);
5449 	}
5450 }
5451 
5452 typedef struct remap_blkptr_cb_arg {
5453 	blkptr_t *rbca_bp;
5454 	spa_remap_cb_t rbca_cb;
5455 	vdev_t *rbca_remap_vd;
5456 	uint64_t rbca_remap_offset;
5457 	void *rbca_cb_arg;
5458 } remap_blkptr_cb_arg_t;
5459 
5460 static void
5461 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5462     uint64_t size, void *arg)
5463 {
5464 	remap_blkptr_cb_arg_t *rbca = arg;
5465 	blkptr_t *bp = rbca->rbca_bp;
5466 
5467 	/* We can not remap split blocks. */
5468 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5469 		return;
5470 	ASSERT0(inner_offset);
5471 
5472 	if (rbca->rbca_cb != NULL) {
5473 		/*
5474 		 * At this point we know that we are not handling split
5475 		 * blocks and we invoke the callback on the previous
5476 		 * vdev which must be indirect.
5477 		 */
5478 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5479 
5480 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5481 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5482 
5483 		/* set up remap_blkptr_cb_arg for the next call */
5484 		rbca->rbca_remap_vd = vd;
5485 		rbca->rbca_remap_offset = offset;
5486 	}
5487 
5488 	/*
5489 	 * The phys birth time is that of dva[0].  This ensures that we know
5490 	 * when each dva was written, so that resilver can determine which
5491 	 * blocks need to be scrubbed (i.e. those written during the time
5492 	 * the vdev was offline).  It also ensures that the key used in
5493 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5494 	 * we didn't change the phys_birth, a lookup in the ARC for a
5495 	 * remapped BP could find the data that was previously stored at
5496 	 * this vdev + offset.
5497 	 */
5498 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5499 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5500 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5501 	uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5502 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5503 	BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5504 
5505 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5506 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5507 }
5508 
5509 /*
5510  * If the block pointer contains any indirect DVAs, modify them to refer to
5511  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5512  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5513  * segments in the mapping (i.e. it is a "split block").
5514  *
5515  * If the BP was remapped, calls the callback on the original dva (note the
5516  * callback can be called multiple times if the original indirect DVA refers
5517  * to another indirect DVA, etc).
5518  *
5519  * Returns TRUE if the BP was remapped.
5520  */
5521 boolean_t
5522 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5523 {
5524 	remap_blkptr_cb_arg_t rbca;
5525 
5526 	if (!zfs_remap_blkptr_enable)
5527 		return (B_FALSE);
5528 
5529 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5530 		return (B_FALSE);
5531 
5532 	/*
5533 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5534 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5535 	 */
5536 	if (BP_GET_DEDUP(bp))
5537 		return (B_FALSE);
5538 
5539 	/*
5540 	 * Gang blocks can not be remapped, because
5541 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5542 	 * the BP used to read the gang block header (GBH) being the same
5543 	 * as the DVA[0] that we allocated for the GBH.
5544 	 */
5545 	if (BP_IS_GANG(bp))
5546 		return (B_FALSE);
5547 
5548 	/*
5549 	 * Embedded BP's have no DVA to remap.
5550 	 */
5551 	if (BP_GET_NDVAS(bp) < 1)
5552 		return (B_FALSE);
5553 
5554 	/*
5555 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5556 	 * would no longer know what their phys birth txg is.
5557 	 */
5558 	dva_t *dva = &bp->blk_dva[0];
5559 
5560 	uint64_t offset = DVA_GET_OFFSET(dva);
5561 	uint64_t size = DVA_GET_ASIZE(dva);
5562 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5563 
5564 	if (vd->vdev_ops->vdev_op_remap == NULL)
5565 		return (B_FALSE);
5566 
5567 	rbca.rbca_bp = bp;
5568 	rbca.rbca_cb = callback;
5569 	rbca.rbca_remap_vd = vd;
5570 	rbca.rbca_remap_offset = offset;
5571 	rbca.rbca_cb_arg = arg;
5572 
5573 	/*
5574 	 * remap_blkptr_cb() will be called in order for each level of
5575 	 * indirection, until a concrete vdev is reached or a split block is
5576 	 * encountered. old_vd and old_offset are updated within the callback
5577 	 * as we go from the one indirect vdev to the next one (either concrete
5578 	 * or indirect again) in that order.
5579 	 */
5580 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5581 
5582 	/* Check if the DVA wasn't remapped because it is a split block */
5583 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5584 		return (B_FALSE);
5585 
5586 	return (B_TRUE);
5587 }
5588 
5589 /*
5590  * Undo the allocation of a DVA which happened in the given transaction group.
5591  */
5592 void
5593 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5594 {
5595 	metaslab_t *msp;
5596 	vdev_t *vd;
5597 	uint64_t vdev = DVA_GET_VDEV(dva);
5598 	uint64_t offset = DVA_GET_OFFSET(dva);
5599 	uint64_t size = DVA_GET_ASIZE(dva);
5600 
5601 	ASSERT(DVA_IS_VALID(dva));
5602 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5603 
5604 	if (txg > spa_freeze_txg(spa))
5605 		return;
5606 
5607 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5608 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5609 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5610 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5611 		    (u_longlong_t)size);
5612 		return;
5613 	}
5614 
5615 	ASSERT(!vd->vdev_removing);
5616 	ASSERT(vdev_is_concrete(vd));
5617 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5618 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5619 
5620 	if (DVA_GET_GANG(dva))
5621 		size = vdev_gang_header_asize(vd);
5622 
5623 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5624 
5625 	mutex_enter(&msp->ms_lock);
5626 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5627 	    offset, size);
5628 	msp->ms_allocating_total -= size;
5629 
5630 	VERIFY(!msp->ms_condensing);
5631 	VERIFY3U(offset, >=, msp->ms_start);
5632 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5633 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5634 	    msp->ms_size);
5635 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5636 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5637 	range_tree_add(msp->ms_allocatable, offset, size);
5638 	mutex_exit(&msp->ms_lock);
5639 }
5640 
5641 /*
5642  * Free the block represented by the given DVA.
5643  */
5644 void
5645 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5646 {
5647 	uint64_t vdev = DVA_GET_VDEV(dva);
5648 	uint64_t offset = DVA_GET_OFFSET(dva);
5649 	uint64_t size = DVA_GET_ASIZE(dva);
5650 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5651 
5652 	ASSERT(DVA_IS_VALID(dva));
5653 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5654 
5655 	if (DVA_GET_GANG(dva)) {
5656 		size = vdev_gang_header_asize(vd);
5657 	}
5658 
5659 	metaslab_free_impl(vd, offset, size, checkpoint);
5660 }
5661 
5662 /*
5663  * Reserve some allocation slots. The reservation system must be called
5664  * before we call into the allocator. If there aren't any available slots
5665  * then the I/O will be throttled until an I/O completes and its slots are
5666  * freed up. The function returns true if it was successful in placing
5667  * the reservation.
5668  */
5669 boolean_t
5670 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5671     zio_t *zio, int flags)
5672 {
5673 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5674 	uint64_t max = mca->mca_alloc_max_slots;
5675 
5676 	ASSERT(mc->mc_alloc_throttle_enabled);
5677 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5678 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5679 		/*
5680 		 * The potential race between _count() and _add() is covered
5681 		 * by the allocator lock in most cases, or irrelevant due to
5682 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5683 		 * But even if we assume some other non-existing scenario, the
5684 		 * worst that can happen is few more I/Os get to allocation
5685 		 * earlier, that is not a problem.
5686 		 *
5687 		 * We reserve the slots individually so that we can unreserve
5688 		 * them individually when an I/O completes.
5689 		 */
5690 		zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5691 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5692 		return (B_TRUE);
5693 	}
5694 	return (B_FALSE);
5695 }
5696 
5697 void
5698 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5699     int allocator, zio_t *zio)
5700 {
5701 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5702 
5703 	ASSERT(mc->mc_alloc_throttle_enabled);
5704 	zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5705 }
5706 
5707 static int
5708 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5709     uint64_t txg)
5710 {
5711 	metaslab_t *msp;
5712 	spa_t *spa = vd->vdev_spa;
5713 	int error = 0;
5714 
5715 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5716 		return (SET_ERROR(ENXIO));
5717 
5718 	ASSERT3P(vd->vdev_ms, !=, NULL);
5719 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5720 
5721 	mutex_enter(&msp->ms_lock);
5722 
5723 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5724 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5725 		if (error == EBUSY) {
5726 			ASSERT(msp->ms_loaded);
5727 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5728 			error = 0;
5729 		}
5730 	}
5731 
5732 	if (error == 0 &&
5733 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5734 		error = SET_ERROR(ENOENT);
5735 
5736 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5737 		mutex_exit(&msp->ms_lock);
5738 		return (error);
5739 	}
5740 
5741 	VERIFY(!msp->ms_condensing);
5742 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5743 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5744 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5745 	    msp->ms_size);
5746 	range_tree_remove(msp->ms_allocatable, offset, size);
5747 	range_tree_clear(msp->ms_trim, offset, size);
5748 
5749 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5750 		metaslab_class_t *mc = msp->ms_group->mg_class;
5751 		multilist_sublist_t *mls =
5752 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5753 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5754 			msp->ms_selected_txg = txg;
5755 			multilist_sublist_insert_head(mls, msp);
5756 		}
5757 		multilist_sublist_unlock(mls);
5758 
5759 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5760 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5761 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5762 		    offset, size);
5763 		msp->ms_allocating_total += size;
5764 	}
5765 
5766 	mutex_exit(&msp->ms_lock);
5767 
5768 	return (0);
5769 }
5770 
5771 typedef struct metaslab_claim_cb_arg_t {
5772 	uint64_t	mcca_txg;
5773 	int		mcca_error;
5774 } metaslab_claim_cb_arg_t;
5775 
5776 static void
5777 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5778     uint64_t size, void *arg)
5779 {
5780 	(void) inner_offset;
5781 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5782 
5783 	if (mcca_arg->mcca_error == 0) {
5784 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5785 		    size, mcca_arg->mcca_txg);
5786 	}
5787 }
5788 
5789 int
5790 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5791 {
5792 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5793 		metaslab_claim_cb_arg_t arg;
5794 
5795 		/*
5796 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5797 		 * to detect leaks of mapped space (that are not accounted
5798 		 * for in the obsolete counts, spacemap, or bpobj).
5799 		 */
5800 		ASSERT(!spa_writeable(vd->vdev_spa));
5801 		arg.mcca_error = 0;
5802 		arg.mcca_txg = txg;
5803 
5804 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5805 		    metaslab_claim_impl_cb, &arg);
5806 
5807 		if (arg.mcca_error == 0) {
5808 			arg.mcca_error = metaslab_claim_concrete(vd,
5809 			    offset, size, txg);
5810 		}
5811 		return (arg.mcca_error);
5812 	} else {
5813 		return (metaslab_claim_concrete(vd, offset, size, txg));
5814 	}
5815 }
5816 
5817 /*
5818  * Intent log support: upon opening the pool after a crash, notify the SPA
5819  * of blocks that the intent log has allocated for immediate write, but
5820  * which are still considered free by the SPA because the last transaction
5821  * group didn't commit yet.
5822  */
5823 static int
5824 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5825 {
5826 	uint64_t vdev = DVA_GET_VDEV(dva);
5827 	uint64_t offset = DVA_GET_OFFSET(dva);
5828 	uint64_t size = DVA_GET_ASIZE(dva);
5829 	vdev_t *vd;
5830 
5831 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5832 		return (SET_ERROR(ENXIO));
5833 	}
5834 
5835 	ASSERT(DVA_IS_VALID(dva));
5836 
5837 	if (DVA_GET_GANG(dva))
5838 		size = vdev_gang_header_asize(vd);
5839 
5840 	return (metaslab_claim_impl(vd, offset, size, txg));
5841 }
5842 
5843 int
5844 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5845     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5846     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5847 {
5848 	dva_t *dva = bp->blk_dva;
5849 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5850 	int error = 0;
5851 
5852 	ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5853 	ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
5854 
5855 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5856 
5857 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5858 		/* no vdevs in this class */
5859 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5860 		return (SET_ERROR(ENOSPC));
5861 	}
5862 
5863 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5864 	ASSERT(BP_GET_NDVAS(bp) == 0);
5865 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5866 	ASSERT3P(zal, !=, NULL);
5867 
5868 	for (int d = 0; d < ndvas; d++) {
5869 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5870 		    txg, flags, zal, allocator);
5871 		if (error != 0) {
5872 			for (d--; d >= 0; d--) {
5873 				metaslab_unalloc_dva(spa, &dva[d], txg);
5874 				metaslab_group_alloc_decrement(spa,
5875 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5876 				    allocator, B_FALSE);
5877 				memset(&dva[d], 0, sizeof (dva_t));
5878 			}
5879 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5880 			return (error);
5881 		} else {
5882 			/*
5883 			 * Update the metaslab group's queue depth
5884 			 * based on the newly allocated dva.
5885 			 */
5886 			metaslab_group_alloc_increment(spa,
5887 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5888 		}
5889 	}
5890 	ASSERT(error == 0);
5891 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5892 
5893 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5894 
5895 	BP_SET_BIRTH(bp, txg, 0);
5896 
5897 	return (0);
5898 }
5899 
5900 void
5901 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5902 {
5903 	const dva_t *dva = bp->blk_dva;
5904 	int ndvas = BP_GET_NDVAS(bp);
5905 
5906 	ASSERT(!BP_IS_HOLE(bp));
5907 	ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
5908 
5909 	/*
5910 	 * If we have a checkpoint for the pool we need to make sure that
5911 	 * the blocks that we free that are part of the checkpoint won't be
5912 	 * reused until the checkpoint is discarded or we revert to it.
5913 	 *
5914 	 * The checkpoint flag is passed down the metaslab_free code path
5915 	 * and is set whenever we want to add a block to the checkpoint's
5916 	 * accounting. That is, we "checkpoint" blocks that existed at the
5917 	 * time the checkpoint was created and are therefore referenced by
5918 	 * the checkpointed uberblock.
5919 	 *
5920 	 * Note that, we don't checkpoint any blocks if the current
5921 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5922 	 * normally as they will be referenced by the checkpointed uberblock.
5923 	 */
5924 	boolean_t checkpoint = B_FALSE;
5925 	if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
5926 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5927 		/*
5928 		 * At this point, if the block is part of the checkpoint
5929 		 * there is no way it was created in the current txg.
5930 		 */
5931 		ASSERT(!now);
5932 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5933 		checkpoint = B_TRUE;
5934 	}
5935 
5936 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5937 
5938 	for (int d = 0; d < ndvas; d++) {
5939 		if (now) {
5940 			metaslab_unalloc_dva(spa, &dva[d], txg);
5941 		} else {
5942 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5943 			metaslab_free_dva(spa, &dva[d], checkpoint);
5944 		}
5945 	}
5946 
5947 	spa_config_exit(spa, SCL_FREE, FTAG);
5948 }
5949 
5950 int
5951 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5952 {
5953 	const dva_t *dva = bp->blk_dva;
5954 	int ndvas = BP_GET_NDVAS(bp);
5955 	int error = 0;
5956 
5957 	ASSERT(!BP_IS_HOLE(bp));
5958 
5959 	if (txg != 0) {
5960 		/*
5961 		 * First do a dry run to make sure all DVAs are claimable,
5962 		 * so we don't have to unwind from partial failures below.
5963 		 */
5964 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5965 			return (error);
5966 	}
5967 
5968 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5969 
5970 	for (int d = 0; d < ndvas; d++) {
5971 		error = metaslab_claim_dva(spa, &dva[d], txg);
5972 		if (error != 0)
5973 			break;
5974 	}
5975 
5976 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5977 
5978 	ASSERT(error == 0 || txg == 0);
5979 
5980 	return (error);
5981 }
5982 
5983 static void
5984 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5985     uint64_t size, void *arg)
5986 {
5987 	(void) inner, (void) arg;
5988 
5989 	if (vd->vdev_ops == &vdev_indirect_ops)
5990 		return;
5991 
5992 	metaslab_check_free_impl(vd, offset, size);
5993 }
5994 
5995 static void
5996 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5997 {
5998 	metaslab_t *msp;
5999 	spa_t *spa __maybe_unused = vd->vdev_spa;
6000 
6001 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6002 		return;
6003 
6004 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6005 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6006 		    metaslab_check_free_impl_cb, NULL);
6007 		return;
6008 	}
6009 
6010 	ASSERT(vdev_is_concrete(vd));
6011 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6012 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6013 
6014 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6015 
6016 	mutex_enter(&msp->ms_lock);
6017 	if (msp->ms_loaded) {
6018 		range_tree_verify_not_present(msp->ms_allocatable,
6019 		    offset, size);
6020 	}
6021 
6022 	/*
6023 	 * Check all segments that currently exist in the freeing pipeline.
6024 	 *
6025 	 * It would intuitively make sense to also check the current allocating
6026 	 * tree since metaslab_unalloc_dva() exists for extents that are
6027 	 * allocated and freed in the same sync pass within the same txg.
6028 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6029 	 * segment but then we free part of it within the same txg
6030 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6031 	 * current allocating tree.
6032 	 */
6033 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6034 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6035 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6036 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6037 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6038 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6039 	mutex_exit(&msp->ms_lock);
6040 }
6041 
6042 void
6043 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6044 {
6045 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6046 		return;
6047 
6048 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6049 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6050 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6051 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6052 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6053 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6054 
6055 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6056 			size = vdev_gang_header_asize(vd);
6057 
6058 		ASSERT3P(vd, !=, NULL);
6059 
6060 		metaslab_check_free_impl(vd, offset, size);
6061 	}
6062 	spa_config_exit(spa, SCL_VDEV, FTAG);
6063 }
6064 
6065 static void
6066 metaslab_group_disable_wait(metaslab_group_t *mg)
6067 {
6068 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6069 	while (mg->mg_disabled_updating) {
6070 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6071 	}
6072 }
6073 
6074 static void
6075 metaslab_group_disabled_increment(metaslab_group_t *mg)
6076 {
6077 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6078 	ASSERT(mg->mg_disabled_updating);
6079 
6080 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6081 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6082 	}
6083 	mg->mg_ms_disabled++;
6084 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6085 }
6086 
6087 /*
6088  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6089  * We must also track how many metaslabs are currently disabled within a
6090  * metaslab group and limit them to prevent allocation failures from
6091  * occurring because all metaslabs are disabled.
6092  */
6093 void
6094 metaslab_disable(metaslab_t *msp)
6095 {
6096 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6097 	metaslab_group_t *mg = msp->ms_group;
6098 
6099 	mutex_enter(&mg->mg_ms_disabled_lock);
6100 
6101 	/*
6102 	 * To keep an accurate count of how many threads have disabled
6103 	 * a specific metaslab group, we only allow one thread to mark
6104 	 * the metaslab group at a time. This ensures that the value of
6105 	 * ms_disabled will be accurate when we decide to mark a metaslab
6106 	 * group as disabled. To do this we force all other threads
6107 	 * to wait till the metaslab's mg_disabled_updating flag is no
6108 	 * longer set.
6109 	 */
6110 	metaslab_group_disable_wait(mg);
6111 	mg->mg_disabled_updating = B_TRUE;
6112 	if (msp->ms_disabled == 0) {
6113 		metaslab_group_disabled_increment(mg);
6114 	}
6115 	mutex_enter(&msp->ms_lock);
6116 	msp->ms_disabled++;
6117 	mutex_exit(&msp->ms_lock);
6118 
6119 	mg->mg_disabled_updating = B_FALSE;
6120 	cv_broadcast(&mg->mg_ms_disabled_cv);
6121 	mutex_exit(&mg->mg_ms_disabled_lock);
6122 }
6123 
6124 void
6125 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6126 {
6127 	metaslab_group_t *mg = msp->ms_group;
6128 	spa_t *spa = mg->mg_vd->vdev_spa;
6129 
6130 	/*
6131 	 * Wait for the outstanding IO to be synced to prevent newly
6132 	 * allocated blocks from being overwritten.  This used by
6133 	 * initialize and TRIM which are modifying unallocated space.
6134 	 */
6135 	if (sync)
6136 		txg_wait_synced(spa_get_dsl(spa), 0);
6137 
6138 	mutex_enter(&mg->mg_ms_disabled_lock);
6139 	mutex_enter(&msp->ms_lock);
6140 	if (--msp->ms_disabled == 0) {
6141 		mg->mg_ms_disabled--;
6142 		cv_broadcast(&mg->mg_ms_disabled_cv);
6143 		if (unload)
6144 			metaslab_unload(msp);
6145 	}
6146 	mutex_exit(&msp->ms_lock);
6147 	mutex_exit(&mg->mg_ms_disabled_lock);
6148 }
6149 
6150 void
6151 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6152 {
6153 	ms->ms_unflushed_dirty = dirty;
6154 }
6155 
6156 static void
6157 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6158 {
6159 	vdev_t *vd = ms->ms_group->mg_vd;
6160 	spa_t *spa = vd->vdev_spa;
6161 	objset_t *mos = spa_meta_objset(spa);
6162 
6163 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6164 
6165 	metaslab_unflushed_phys_t entry = {
6166 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6167 	};
6168 	uint64_t entry_size = sizeof (entry);
6169 	uint64_t entry_offset = ms->ms_id * entry_size;
6170 
6171 	uint64_t object = 0;
6172 	int err = zap_lookup(mos, vd->vdev_top_zap,
6173 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6174 	    &object);
6175 	if (err == ENOENT) {
6176 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6177 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6178 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6179 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6180 		    &object, tx));
6181 	} else {
6182 		VERIFY0(err);
6183 	}
6184 
6185 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6186 	    &entry, tx);
6187 }
6188 
6189 void
6190 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6191 {
6192 	ms->ms_unflushed_txg = txg;
6193 	metaslab_update_ondisk_flush_data(ms, tx);
6194 }
6195 
6196 boolean_t
6197 metaslab_unflushed_dirty(metaslab_t *ms)
6198 {
6199 	return (ms->ms_unflushed_dirty);
6200 }
6201 
6202 uint64_t
6203 metaslab_unflushed_txg(metaslab_t *ms)
6204 {
6205 	return (ms->ms_unflushed_txg);
6206 }
6207 
6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6209 	"Allocation granularity (a.k.a. stripe size)");
6210 
6211 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6212 	"Load all metaslabs when pool is first opened");
6213 
6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6215 	"Prevent metaslabs from being unloaded");
6216 
6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6218 	"Preload potential metaslabs during reassessment");
6219 
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6221 	"Max number of metaslabs per group to preload");
6222 
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6224 	"Delay in txgs after metaslab was last used before unloading");
6225 
6226 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6227 	"Delay in milliseconds after metaslab was last used before unloading");
6228 
6229 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6230 	"Percentage of metaslab group size that should be free to make it "
6231 	"eligible for allocation");
6232 
6233 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6234 	"Percentage of metaslab group size that should be considered eligible "
6235 	"for allocations unless all metaslab groups within the metaslab class "
6236 	"have also crossed this threshold");
6237 
6238 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6239 	ZMOD_RW,
6240 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6241 
6242 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6243 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6244 
6245 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6246 	"Prefer metaslabs with lower LBAs");
6247 
6248 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6249 	"Enable metaslab group biasing");
6250 
6251 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6252 	ZMOD_RW, "Enable segment-based metaslab selection");
6253 
6254 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6255 	"Segment-based metaslab selection maximum buckets before switching");
6256 
6257 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6258 	"Blocks larger than this size are sometimes forced to be gang blocks");
6259 
6260 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6261 	"Percentage of large blocks that will be forced to be gang blocks");
6262 
6263 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6264 	"Max distance (bytes) to search forward before using size tree");
6265 
6266 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6267 	"When looking in size tree, use largest segment instead of exact fit");
6268 
6269 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6270 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6271 
6272 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6273 	"Percentage of memory that can be used to store metaslab range trees");
6274 
6275 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6276 	ZMOD_RW, "Try hard to allocate before ganging");
6277 
6278 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6279 	"Normally only consider this many of the best metaslabs in each vdev");
6280 
6281 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6282 	param_set_active_allocator, param_get_charp, ZMOD_RW,
6283 	"SPA active allocator");
6284