xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	WITH_DF_BLOCK_ALLOCATOR
44 
45 #define	GANG_ALLOCATION(flags) \
46 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 
48 /*
49  * Metaslab granularity, in bytes. This is roughly similar to what would be
50  * referred to as the "stripe size" in traditional RAID arrays. In normal
51  * operation, we will try to write this amount of data to each disk before
52  * moving on to the next top-level vdev.
53  */
54 static uint64_t metaslab_aliquot = 1024 * 1024;
55 
56 /*
57  * For testing, make some blocks above a certain size be gang blocks.
58  */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 
61 /*
62  * In pools where the log space map feature is not enabled we touch
63  * multiple metaslabs (and their respective space maps) with each
64  * transaction group. Thus, we benefit from having a small space map
65  * block size since it allows us to issue more I/O operations scattered
66  * around the disk. So a sane default for the space map block size
67  * is 8~16K.
68  */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70 
71 /*
72  * When the log space map feature is enabled, we accumulate a lot of
73  * changes per metaslab that are flushed once in a while so we benefit
74  * from a bigger block size like 128K for the metaslab space maps.
75  */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77 
78 /*
79  * The in-core space map representation is more compact than its on-disk form.
80  * The zfs_condense_pct determines how much more compact the in-core
81  * space map representation must be before we compact it on-disk.
82  * Values should be greater than or equal to 100.
83  */
84 uint_t zfs_condense_pct = 200;
85 
86 /*
87  * Condensing a metaslab is not guaranteed to actually reduce the amount of
88  * space used on disk. In particular, a space map uses data in increments of
89  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90  * same number of blocks after condensing. Since the goal of condensing is to
91  * reduce the number of IOPs required to read the space map, we only want to
92  * condense when we can be sure we will reduce the number of blocks used by the
93  * space map. Unfortunately, we cannot precisely compute whether or not this is
94  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95  * we apply the following heuristic: do not condense a spacemap unless the
96  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97  * blocks.
98  */
99 static const int zfs_metaslab_condense_block_threshold = 4;
100 
101 /*
102  * The zfs_mg_noalloc_threshold defines which metaslab groups should
103  * be eligible for allocation. The value is defined as a percentage of
104  * free space. Metaslab groups that have more free space than
105  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106  * a metaslab group's free space is less than or equal to the
107  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110  * groups are allowed to accept allocations. Gang blocks are always
111  * eligible to allocate on any metaslab group. The default value of 0 means
112  * no metaslab group will be excluded based on this criterion.
113  */
114 static uint_t zfs_mg_noalloc_threshold = 0;
115 
116 /*
117  * Metaslab groups are considered eligible for allocations if their
118  * fragmentation metric (measured as a percentage) is less than or
119  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120  * exceeds this threshold then it will be skipped unless all metaslab
121  * groups within the metaslab class have also crossed this threshold.
122  *
123  * This tunable was introduced to avoid edge cases where we continue
124  * allocating from very fragmented disks in our pool while other, less
125  * fragmented disks, exists. On the other hand, if all disks in the
126  * pool are uniformly approaching the threshold, the threshold can
127  * be a speed bump in performance, where we keep switching the disks
128  * that we allocate from (e.g. we allocate some segments from disk A
129  * making it bypassing the threshold while freeing segments from disk
130  * B getting its fragmentation below the threshold).
131  *
132  * Empirically, we've seen that our vdev selection for allocations is
133  * good enough that fragmentation increases uniformly across all vdevs
134  * the majority of the time. Thus we set the threshold percentage high
135  * enough to avoid hitting the speed bump on pools that are being pushed
136  * to the edge.
137  */
138 static uint_t zfs_mg_fragmentation_threshold = 95;
139 
140 /*
141  * Allow metaslabs to keep their active state as long as their fragmentation
142  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143  * active metaslab that exceeds this threshold will no longer keep its active
144  * status allowing better metaslabs to be selected.
145  */
146 static uint_t zfs_metaslab_fragmentation_threshold = 70;
147 
148 /*
149  * When set will load all metaslabs when pool is first opened.
150  */
151 int metaslab_debug_load = B_FALSE;
152 
153 /*
154  * When set will prevent metaslabs from being unloaded.
155  */
156 static int metaslab_debug_unload = B_FALSE;
157 
158 /*
159  * Minimum size which forces the dynamic allocator to change
160  * it's allocation strategy.  Once the space map cannot satisfy
161  * an allocation of this size then it switches to using more
162  * aggressive strategy (i.e search by size rather than offset).
163  */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165 
166 /*
167  * The minimum free space, in percent, which must be available
168  * in a space map to continue allocations in a first-fit fashion.
169  * Once the space map's free space drops below this level we dynamically
170  * switch to using best-fit allocations.
171  */
172 uint_t metaslab_df_free_pct = 4;
173 
174 /*
175  * Maximum distance to search forward from the last offset. Without this
176  * limit, fragmented pools can see >100,000 iterations and
177  * metaslab_block_picker() becomes the performance limiting factor on
178  * high-performance storage.
179  *
180  * With the default setting of 16MB, we typically see less than 500
181  * iterations, even with very fragmented, ashift=9 pools. The maximum number
182  * of iterations possible is:
183  *     metaslab_df_max_search / (2 * (1<<ashift))
184  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185  * 2048 (with ashift=12).
186  */
187 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
188 
189 /*
190  * Forces the metaslab_block_picker function to search for at least this many
191  * segments forwards until giving up on finding a segment that the allocation
192  * will fit into.
193  */
194 static const uint32_t metaslab_min_search_count = 100;
195 
196 /*
197  * If we are not searching forward (due to metaslab_df_max_search,
198  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199  * controls what segment is used.  If it is set, we will use the largest free
200  * segment.  If it is not set, we will use a segment of exactly the requested
201  * size (or larger).
202  */
203 static int metaslab_df_use_largest_segment = B_FALSE;
204 
205 /*
206  * Percentage of all cpus that can be used by the metaslab taskq.
207  */
208 int metaslab_load_pct = 50;
209 
210 /*
211  * These tunables control how long a metaslab will remain loaded after the
212  * last allocation from it.  A metaslab can't be unloaded until at least
213  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215  * unloaded sooner.  These settings are intended to be generous -- to keep
216  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217  */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 
221 /*
222  * Max number of metaslabs per group to preload.
223  */
224 uint_t metaslab_preload_limit = 10;
225 
226 /*
227  * Enable/disable preloading of metaslab.
228  */
229 static int metaslab_preload_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable fragmentation weighting on metaslabs.
233  */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235 
236 /*
237  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238  */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240 
241 /*
242  * Enable/disable metaslab group biasing.
243  */
244 static int metaslab_bias_enabled = B_TRUE;
245 
246 /*
247  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248  */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250 
251 /*
252  * Enable/disable segment-based metaslab selection.
253  */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255 
256 /*
257  * When using segment-based metaslab selection, we will continue
258  * allocating from the active metaslab until we have exhausted
259  * zfs_metaslab_switch_threshold of its buckets.
260  */
261 static int zfs_metaslab_switch_threshold = 2;
262 
263 /*
264  * Internal switch to enable/disable the metaslab allocation tracing
265  * facility.
266  */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268 
269 /*
270  * Maximum entries that the metaslab allocation tracing facility will keep
271  * in a given list when running in non-debug mode. We limit the number
272  * of entries in non-debug mode to prevent us from using up too much memory.
273  * The limit should be sufficiently large that we don't expect any allocation
274  * to every exceed this value. In debug mode, the system will panic if this
275  * limit is ever reached allowing for further investigation.
276  */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278 
279 /*
280  * Maximum number of metaslabs per group that can be disabled
281  * simultaneously.
282  */
283 static const int max_disabled_ms = 3;
284 
285 /*
286  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287  * To avoid 64-bit overflow, don't set above UINT32_MAX.
288  */
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290 
291 /*
292  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293  * a metaslab would take it over this percentage, the oldest selected metaslab
294  * is automatically unloaded.
295  */
296 static uint_t zfs_metaslab_mem_limit = 25;
297 
298 /*
299  * Force the per-metaslab range trees to use 64-bit integers to store
300  * segments. Used for debugging purposes.
301  */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303 
304 /*
305  * By default we only store segments over a certain size in the size-sorted
306  * metaslab trees (ms_allocatable_by_size and
307  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308  * improves load and unload times at the cost of causing us to use slightly
309  * larger segments than we would otherwise in some cases.
310  */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312 
313 /*
314  * If not set, we will first try normal allocation.  If that fails then
315  * we will do a gang allocation.  If that fails then we will do a "try hard"
316  * gang allocation.  If that fails then we will have a multi-layer gang
317  * block.
318  *
319  * If set, we will first try normal allocation.  If that fails then
320  * we will do a "try hard" allocation.  If that fails we will do a gang
321  * allocation.  If that fails we will do a "try hard" gang allocation.  If
322  * that fails then we will have a multi-layer gang block.
323  */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325 
326 /*
327  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328  * metaslabs.  This improves performance, especially when there are many
329  * metaslabs per vdev and the allocation can't actually be satisfied (so we
330  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
331  * worse weight but it can actually satisfy the allocation, we won't find it
332  * until trying hard.  This may happen if the worse metaslab is not loaded
333  * (and the true weight is better than we have calculated), or due to weight
334  * bucketization.  E.g. we are looking for a 60K segment, and the best
335  * metaslabs all have free segments in the 32-63K bucket, but the best
336  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338  * bucket, and therefore a lower weight).
339  */
340 static uint_t zfs_metaslab_find_max_tries = 100;
341 
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346 
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354 
355 typedef struct metaslab_stats {
356 	kstat_named_t metaslabstat_trace_over_limit;
357 	kstat_named_t metaslabstat_reload_tree;
358 	kstat_named_t metaslabstat_too_many_tries;
359 	kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361 
362 static metaslab_stats_t metaslab_stats = {
363 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
364 	{ "reload_tree",		KSTAT_DATA_UINT64 },
365 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
366 	{ "try_hard",			KSTAT_DATA_UINT64 },
367 };
368 
369 #define	METASLABSTAT_BUMP(stat) \
370 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
371 
372 
373 static kstat_t *metaslab_ksp;
374 
375 void
376 metaslab_stat_init(void)
377 {
378 	ASSERT(metaslab_alloc_trace_cache == NULL);
379 	metaslab_alloc_trace_cache = kmem_cache_create(
380 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 	    0, NULL, NULL, NULL, NULL, NULL, 0);
382 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 	if (metaslab_ksp != NULL) {
386 		metaslab_ksp->ks_data = &metaslab_stats;
387 		kstat_install(metaslab_ksp);
388 	}
389 }
390 
391 void
392 metaslab_stat_fini(void)
393 {
394 	if (metaslab_ksp != NULL) {
395 		kstat_delete(metaslab_ksp);
396 		metaslab_ksp = NULL;
397 	}
398 
399 	kmem_cache_destroy(metaslab_alloc_trace_cache);
400 	metaslab_alloc_trace_cache = NULL;
401 }
402 
403 /*
404  * ==========================================================================
405  * Metaslab classes
406  * ==========================================================================
407  */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 	metaslab_class_t *mc;
412 
413 	mc = kmem_zalloc(offsetof(metaslab_class_t,
414 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415 
416 	mc->mc_spa = spa;
417 	mc->mc_ops = ops;
418 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 	for (int i = 0; i < spa->spa_alloc_count; i++) {
422 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 		mca->mca_rotor = NULL;
424 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 	}
426 
427 	return (mc);
428 }
429 
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 	spa_t *spa = mc->mc_spa;
434 
435 	ASSERT(mc->mc_alloc == 0);
436 	ASSERT(mc->mc_deferred == 0);
437 	ASSERT(mc->mc_space == 0);
438 	ASSERT(mc->mc_dspace == 0);
439 
440 	for (int i = 0; i < spa->spa_alloc_count; i++) {
441 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 		ASSERT(mca->mca_rotor == NULL);
443 		zfs_refcount_destroy(&mca->mca_alloc_slots);
444 	}
445 	mutex_destroy(&mc->mc_lock);
446 	multilist_destroy(&mc->mc_metaslab_txg_list);
447 	kmem_free(mc, offsetof(metaslab_class_t,
448 	    mc_allocator[spa->spa_alloc_count]));
449 }
450 
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 	metaslab_group_t *mg;
455 	vdev_t *vd;
456 
457 	/*
458 	 * Must hold one of the spa_config locks.
459 	 */
460 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462 
463 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 		return (0);
465 
466 	do {
467 		vd = mg->mg_vd;
468 		ASSERT(vd->vdev_mg != NULL);
469 		ASSERT3P(vd->vdev_top, ==, vd);
470 		ASSERT3P(mg->mg_class, ==, mc);
471 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473 
474 	return (0);
475 }
476 
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 	atomic_add_64(&mc->mc_alloc, alloc_delta);
482 	atomic_add_64(&mc->mc_deferred, defer_delta);
483 	atomic_add_64(&mc->mc_space, space_delta);
484 	atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486 
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 	return (mc->mc_alloc);
491 }
492 
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 	return (mc->mc_deferred);
497 }
498 
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 	return (mc->mc_space);
503 }
504 
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510 
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 	spa_t *spa = mc->mc_spa;
515 	vdev_t *rvd = spa->spa_root_vdev;
516 	uint64_t *mc_hist;
517 	int i;
518 
519 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 		return;
521 
522 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 	    KM_SLEEP);
524 
525 	mutex_enter(&mc->mc_lock);
526 	for (int c = 0; c < rvd->vdev_children; c++) {
527 		vdev_t *tvd = rvd->vdev_child[c];
528 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529 
530 		/*
531 		 * Skip any holes, uninitialized top-levels, or
532 		 * vdevs that are not in this metalab class.
533 		 */
534 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 		    mg->mg_class != mc) {
536 			continue;
537 		}
538 
539 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541 
542 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 			mc_hist[i] += mg->mg_histogram[i];
544 	}
545 
546 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 	}
549 
550 	mutex_exit(&mc->mc_lock);
551 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553 
554 /*
555  * Calculate the metaslab class's fragmentation metric. The metric
556  * is weighted based on the space contribution of each metaslab group.
557  * The return value will be a number between 0 and 100 (inclusive), or
558  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559  * zfs_frag_table for more information about the metric.
560  */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 	uint64_t fragmentation = 0;
566 
567 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568 
569 	for (int c = 0; c < rvd->vdev_children; c++) {
570 		vdev_t *tvd = rvd->vdev_child[c];
571 		metaslab_group_t *mg = tvd->vdev_mg;
572 
573 		/*
574 		 * Skip any holes, uninitialized top-levels,
575 		 * or vdevs that are not in this metalab class.
576 		 */
577 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 		    mg->mg_class != mc) {
579 			continue;
580 		}
581 
582 		/*
583 		 * If a metaslab group does not contain a fragmentation
584 		 * metric then just bail out.
585 		 */
586 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 			return (ZFS_FRAG_INVALID);
589 		}
590 
591 		/*
592 		 * Determine how much this metaslab_group is contributing
593 		 * to the overall pool fragmentation metric.
594 		 */
595 		fragmentation += mg->mg_fragmentation *
596 		    metaslab_group_get_space(mg);
597 	}
598 	fragmentation /= metaslab_class_get_space(mc);
599 
600 	ASSERT3U(fragmentation, <=, 100);
601 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 	return (fragmentation);
603 }
604 
605 /*
606  * Calculate the amount of expandable space that is available in
607  * this metaslab class. If a device is expanded then its expandable
608  * space will be the amount of allocatable space that is currently not
609  * part of this metaslab class.
610  */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 	uint64_t space = 0;
616 
617 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 	for (int c = 0; c < rvd->vdev_children; c++) {
619 		vdev_t *tvd = rvd->vdev_child[c];
620 		metaslab_group_t *mg = tvd->vdev_mg;
621 
622 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 		    mg->mg_class != mc) {
624 			continue;
625 		}
626 
627 		/*
628 		 * Calculate if we have enough space to add additional
629 		 * metaslabs. We report the expandable space in terms
630 		 * of the metaslab size since that's the unit of expansion.
631 		 */
632 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 		    1ULL << tvd->vdev_ms_shift);
634 	}
635 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 	return (space);
637 }
638 
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 	multilist_t *ml = &mc->mc_metaslab_txg_list;
643 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 		metaslab_t *msp = multilist_sublist_head(mls);
646 		multilist_sublist_unlock(mls);
647 		while (msp != NULL) {
648 			mutex_enter(&msp->ms_lock);
649 
650 			/*
651 			 * If the metaslab has been removed from the list
652 			 * (which could happen if we were at the memory limit
653 			 * and it was evicted during this loop), then we can't
654 			 * proceed and we should restart the sublist.
655 			 */
656 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 				mutex_exit(&msp->ms_lock);
658 				i--;
659 				break;
660 			}
661 			mls = multilist_sublist_lock(ml, i);
662 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 			multilist_sublist_unlock(mls);
664 			if (txg >
665 			    msp->ms_selected_txg + metaslab_unload_delay &&
666 			    gethrtime() > msp->ms_selected_time +
667 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 				metaslab_evict(msp, txg);
669 			} else {
670 				/*
671 				 * Once we've hit a metaslab selected too
672 				 * recently to evict, we're done evicting for
673 				 * now.
674 				 */
675 				mutex_exit(&msp->ms_lock);
676 				break;
677 			}
678 			mutex_exit(&msp->ms_lock);
679 			msp = next_msp;
680 		}
681 	}
682 }
683 
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 	const metaslab_t *m1 = (const metaslab_t *)x1;
688 	const metaslab_t *m2 = (const metaslab_t *)x2;
689 
690 	int sort1 = 0;
691 	int sort2 = 0;
692 	if (m1->ms_allocator != -1 && m1->ms_primary)
693 		sort1 = 1;
694 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 		sort1 = 2;
696 	if (m2->ms_allocator != -1 && m2->ms_primary)
697 		sort2 = 1;
698 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 		sort2 = 2;
700 
701 	/*
702 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 	 * selecting a metaslab to allocate from, an allocator first tries its
704 	 * primary, then secondary active metaslab. If it doesn't have active
705 	 * metaslabs, or can't allocate from them, it searches for an inactive
706 	 * metaslab to activate. If it can't find a suitable one, it will steal
707 	 * a primary or secondary metaslab from another allocator.
708 	 */
709 	if (sort1 < sort2)
710 		return (-1);
711 	if (sort1 > sort2)
712 		return (1);
713 
714 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 	if (likely(cmp))
716 		return (cmp);
717 
718 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719 
720 	return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722 
723 /*
724  * ==========================================================================
725  * Metaslab groups
726  * ==========================================================================
727  */
728 /*
729  * Update the allocatable flag and the metaslab group's capacity.
730  * The allocatable flag is set to true if the capacity is below
731  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733  * transitions from allocatable to non-allocatable or vice versa then the
734  * metaslab group's class is updated to reflect the transition.
735  */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 	vdev_t *vd = mg->mg_vd;
740 	metaslab_class_t *mc = mg->mg_class;
741 	vdev_stat_t *vs = &vd->vdev_stat;
742 	boolean_t was_allocatable;
743 	boolean_t was_initialized;
744 
745 	ASSERT(vd == vd->vdev_top);
746 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 	    SCL_ALLOC);
748 
749 	mutex_enter(&mg->mg_lock);
750 	was_allocatable = mg->mg_allocatable;
751 	was_initialized = mg->mg_initialized;
752 
753 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 	    (vs->vs_space + 1);
755 
756 	mutex_enter(&mc->mc_lock);
757 
758 	/*
759 	 * If the metaslab group was just added then it won't
760 	 * have any space until we finish syncing out this txg.
761 	 * At that point we will consider it initialized and available
762 	 * for allocations.  We also don't consider non-activated
763 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 	 * to be initialized, because they can't be used for allocation.
765 	 */
766 	mg->mg_initialized = metaslab_group_initialized(mg);
767 	if (!was_initialized && mg->mg_initialized) {
768 		mc->mc_groups++;
769 	} else if (was_initialized && !mg->mg_initialized) {
770 		ASSERT3U(mc->mc_groups, >, 0);
771 		mc->mc_groups--;
772 	}
773 	if (mg->mg_initialized)
774 		mg->mg_no_free_space = B_FALSE;
775 
776 	/*
777 	 * A metaslab group is considered allocatable if it has plenty
778 	 * of free space or is not heavily fragmented. We only take
779 	 * fragmentation into account if the metaslab group has a valid
780 	 * fragmentation metric (i.e. a value between 0 and 100).
781 	 */
782 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786 
787 	/*
788 	 * The mc_alloc_groups maintains a count of the number of
789 	 * groups in this metaslab class that are still above the
790 	 * zfs_mg_noalloc_threshold. This is used by the allocating
791 	 * threads to determine if they should avoid allocations to
792 	 * a given group. The allocator will avoid allocations to a group
793 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 	 * and there are still other groups that are above the threshold.
795 	 * When a group transitions from allocatable to non-allocatable or
796 	 * vice versa we update the metaslab class to reflect that change.
797 	 * When the mc_alloc_groups value drops to 0 that means that all
798 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 	 * eligible for allocations. This effectively means that all devices
800 	 * are balanced again.
801 	 */
802 	if (was_allocatable && !mg->mg_allocatable)
803 		mc->mc_alloc_groups--;
804 	else if (!was_allocatable && mg->mg_allocatable)
805 		mc->mc_alloc_groups++;
806 	mutex_exit(&mc->mc_lock);
807 
808 	mutex_exit(&mg->mg_lock);
809 }
810 
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 	const metaslab_t *a = va;
815 	const metaslab_t *b = vb;
816 
817 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 	if (likely(cmp))
819 		return (cmp);
820 
821 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 	if (cmp)
825 		return (cmp);
826 
827 	return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829 
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 	metaslab_group_t *mg;
834 
835 	mg = kmem_zalloc(offsetof(metaslab_group_t,
836 	    mg_allocator[allocators]), KM_SLEEP);
837 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 	mg->mg_vd = vd;
843 	mg->mg_class = mc;
844 	mg->mg_activation_count = 0;
845 	mg->mg_initialized = B_FALSE;
846 	mg->mg_no_free_space = B_TRUE;
847 	mg->mg_allocators = allocators;
848 
849 	for (int i = 0; i < allocators; i++) {
850 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 	}
853 
854 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856 
857 	return (mg);
858 }
859 
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 	ASSERT(mg->mg_prev == NULL);
864 	ASSERT(mg->mg_next == NULL);
865 	/*
866 	 * We may have gone below zero with the activation count
867 	 * either because we never activated in the first place or
868 	 * because we're done, and possibly removing the vdev.
869 	 */
870 	ASSERT(mg->mg_activation_count <= 0);
871 
872 	taskq_destroy(mg->mg_taskq);
873 	avl_destroy(&mg->mg_metaslab_tree);
874 	mutex_destroy(&mg->mg_lock);
875 	mutex_destroy(&mg->mg_ms_disabled_lock);
876 	cv_destroy(&mg->mg_ms_disabled_cv);
877 
878 	for (int i = 0; i < mg->mg_allocators; i++) {
879 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 	}
882 	kmem_free(mg, offsetof(metaslab_group_t,
883 	    mg_allocator[mg->mg_allocators]));
884 }
885 
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 	metaslab_class_t *mc = mg->mg_class;
890 	spa_t *spa = mc->mc_spa;
891 	metaslab_group_t *mgprev, *mgnext;
892 
893 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894 
895 	ASSERT(mg->mg_prev == NULL);
896 	ASSERT(mg->mg_next == NULL);
897 	ASSERT(mg->mg_activation_count <= 0);
898 
899 	if (++mg->mg_activation_count <= 0)
900 		return;
901 
902 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
903 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904 	metaslab_group_alloc_update(mg);
905 
906 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907 		mg->mg_prev = mg;
908 		mg->mg_next = mg;
909 	} else {
910 		mgnext = mgprev->mg_next;
911 		mg->mg_prev = mgprev;
912 		mg->mg_next = mgnext;
913 		mgprev->mg_next = mg;
914 		mgnext->mg_prev = mg;
915 	}
916 	for (int i = 0; i < spa->spa_alloc_count; i++) {
917 		mc->mc_allocator[i].mca_rotor = mg;
918 		mg = mg->mg_next;
919 	}
920 }
921 
922 /*
923  * Passivate a metaslab group and remove it from the allocation rotor.
924  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925  * a metaslab group. This function will momentarily drop spa_config_locks
926  * that are lower than the SCL_ALLOC lock (see comment below).
927  */
928 void
929 metaslab_group_passivate(metaslab_group_t *mg)
930 {
931 	metaslab_class_t *mc = mg->mg_class;
932 	spa_t *spa = mc->mc_spa;
933 	metaslab_group_t *mgprev, *mgnext;
934 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935 
936 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937 	    (SCL_ALLOC | SCL_ZIO));
938 
939 	if (--mg->mg_activation_count != 0) {
940 		for (int i = 0; i < spa->spa_alloc_count; i++)
941 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942 		ASSERT(mg->mg_prev == NULL);
943 		ASSERT(mg->mg_next == NULL);
944 		ASSERT(mg->mg_activation_count < 0);
945 		return;
946 	}
947 
948 	/*
949 	 * The spa_config_lock is an array of rwlocks, ordered as
950 	 * follows (from highest to lowest):
951 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
953 	 * (For more information about the spa_config_lock see spa_misc.c)
954 	 * The higher the lock, the broader its coverage. When we passivate
955 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956 	 * config locks. However, the metaslab group's taskq might be trying
957 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958 	 * lower locks to allow the I/O to complete. At a minimum,
959 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
960 	 * allocations from taking place and any changes to the vdev tree.
961 	 */
962 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963 	taskq_wait_outstanding(mg->mg_taskq, 0);
964 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965 	metaslab_group_alloc_update(mg);
966 	for (int i = 0; i < mg->mg_allocators; i++) {
967 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968 		metaslab_t *msp = mga->mga_primary;
969 		if (msp != NULL) {
970 			mutex_enter(&msp->ms_lock);
971 			metaslab_passivate(msp,
972 			    metaslab_weight_from_range_tree(msp));
973 			mutex_exit(&msp->ms_lock);
974 		}
975 		msp = mga->mga_secondary;
976 		if (msp != NULL) {
977 			mutex_enter(&msp->ms_lock);
978 			metaslab_passivate(msp,
979 			    metaslab_weight_from_range_tree(msp));
980 			mutex_exit(&msp->ms_lock);
981 		}
982 	}
983 
984 	mgprev = mg->mg_prev;
985 	mgnext = mg->mg_next;
986 
987 	if (mg == mgnext) {
988 		mgnext = NULL;
989 	} else {
990 		mgprev->mg_next = mgnext;
991 		mgnext->mg_prev = mgprev;
992 	}
993 	for (int i = 0; i < spa->spa_alloc_count; i++) {
994 		if (mc->mc_allocator[i].mca_rotor == mg)
995 			mc->mc_allocator[i].mca_rotor = mgnext;
996 	}
997 
998 	mg->mg_prev = NULL;
999 	mg->mg_next = NULL;
1000 }
1001 
1002 boolean_t
1003 metaslab_group_initialized(metaslab_group_t *mg)
1004 {
1005 	vdev_t *vd = mg->mg_vd;
1006 	vdev_stat_t *vs = &vd->vdev_stat;
1007 
1008 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009 }
1010 
1011 uint64_t
1012 metaslab_group_get_space(metaslab_group_t *mg)
1013 {
1014 	/*
1015 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1016 	 * than vdev_ms_count, due to the embedded log metaslab.
1017 	 */
1018 	mutex_enter(&mg->mg_lock);
1019 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020 	mutex_exit(&mg->mg_lock);
1021 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022 }
1023 
1024 void
1025 metaslab_group_histogram_verify(metaslab_group_t *mg)
1026 {
1027 	uint64_t *mg_hist;
1028 	avl_tree_t *t = &mg->mg_metaslab_tree;
1029 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1030 
1031 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032 		return;
1033 
1034 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035 	    KM_SLEEP);
1036 
1037 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039 
1040 	mutex_enter(&mg->mg_lock);
1041 	for (metaslab_t *msp = avl_first(t);
1042 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1043 		VERIFY3P(msp->ms_group, ==, mg);
1044 		/* skip if not active */
1045 		if (msp->ms_sm == NULL)
1046 			continue;
1047 
1048 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049 			mg_hist[i + ashift] +=
1050 			    msp->ms_sm->sm_phys->smp_histogram[i];
1051 		}
1052 	}
1053 
1054 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056 
1057 	mutex_exit(&mg->mg_lock);
1058 
1059 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060 }
1061 
1062 static void
1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064 {
1065 	metaslab_class_t *mc = mg->mg_class;
1066 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1067 
1068 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1069 	if (msp->ms_sm == NULL)
1070 		return;
1071 
1072 	mutex_enter(&mg->mg_lock);
1073 	mutex_enter(&mc->mc_lock);
1074 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077 		mg->mg_histogram[i + ashift] +=
1078 		    msp->ms_sm->sm_phys->smp_histogram[i];
1079 		mc->mc_histogram[i + ashift] +=
1080 		    msp->ms_sm->sm_phys->smp_histogram[i];
1081 	}
1082 	mutex_exit(&mc->mc_lock);
1083 	mutex_exit(&mg->mg_lock);
1084 }
1085 
1086 void
1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 	metaslab_class_t *mc = mg->mg_class;
1090 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1091 
1092 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1093 	if (msp->ms_sm == NULL)
1094 		return;
1095 
1096 	mutex_enter(&mg->mg_lock);
1097 	mutex_enter(&mc->mc_lock);
1098 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1101 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1103 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105 
1106 		mg->mg_histogram[i + ashift] -=
1107 		    msp->ms_sm->sm_phys->smp_histogram[i];
1108 		mc->mc_histogram[i + ashift] -=
1109 		    msp->ms_sm->sm_phys->smp_histogram[i];
1110 	}
1111 	mutex_exit(&mc->mc_lock);
1112 	mutex_exit(&mg->mg_lock);
1113 }
1114 
1115 static void
1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117 {
1118 	ASSERT(msp->ms_group == NULL);
1119 	mutex_enter(&mg->mg_lock);
1120 	msp->ms_group = mg;
1121 	msp->ms_weight = 0;
1122 	avl_add(&mg->mg_metaslab_tree, msp);
1123 	mutex_exit(&mg->mg_lock);
1124 
1125 	mutex_enter(&msp->ms_lock);
1126 	metaslab_group_histogram_add(mg, msp);
1127 	mutex_exit(&msp->ms_lock);
1128 }
1129 
1130 static void
1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132 {
1133 	mutex_enter(&msp->ms_lock);
1134 	metaslab_group_histogram_remove(mg, msp);
1135 	mutex_exit(&msp->ms_lock);
1136 
1137 	mutex_enter(&mg->mg_lock);
1138 	ASSERT(msp->ms_group == mg);
1139 	avl_remove(&mg->mg_metaslab_tree, msp);
1140 
1141 	metaslab_class_t *mc = msp->ms_group->mg_class;
1142 	multilist_sublist_t *mls =
1143 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144 	if (multilist_link_active(&msp->ms_class_txg_node))
1145 		multilist_sublist_remove(mls, msp);
1146 	multilist_sublist_unlock(mls);
1147 
1148 	msp->ms_group = NULL;
1149 	mutex_exit(&mg->mg_lock);
1150 }
1151 
1152 static void
1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154 {
1155 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1156 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1157 	ASSERT(msp->ms_group == mg);
1158 
1159 	avl_remove(&mg->mg_metaslab_tree, msp);
1160 	msp->ms_weight = weight;
1161 	avl_add(&mg->mg_metaslab_tree, msp);
1162 
1163 }
1164 
1165 static void
1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167 {
1168 	/*
1169 	 * Although in principle the weight can be any value, in
1170 	 * practice we do not use values in the range [1, 511].
1171 	 */
1172 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1174 
1175 	mutex_enter(&mg->mg_lock);
1176 	metaslab_group_sort_impl(mg, msp, weight);
1177 	mutex_exit(&mg->mg_lock);
1178 }
1179 
1180 /*
1181  * Calculate the fragmentation for a given metaslab group. We can use
1182  * a simple average here since all metaslabs within the group must have
1183  * the same size. The return value will be a value between 0 and 100
1184  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185  * group have a fragmentation metric.
1186  */
1187 uint64_t
1188 metaslab_group_fragmentation(metaslab_group_t *mg)
1189 {
1190 	vdev_t *vd = mg->mg_vd;
1191 	uint64_t fragmentation = 0;
1192 	uint64_t valid_ms = 0;
1193 
1194 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1195 		metaslab_t *msp = vd->vdev_ms[m];
1196 
1197 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198 			continue;
1199 		if (msp->ms_group != mg)
1200 			continue;
1201 
1202 		valid_ms++;
1203 		fragmentation += msp->ms_fragmentation;
1204 	}
1205 
1206 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207 		return (ZFS_FRAG_INVALID);
1208 
1209 	fragmentation /= valid_ms;
1210 	ASSERT3U(fragmentation, <=, 100);
1211 	return (fragmentation);
1212 }
1213 
1214 /*
1215  * Determine if a given metaslab group should skip allocations. A metaslab
1216  * group should avoid allocations if its free capacity is less than the
1217  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219  * that can still handle allocations. If the allocation throttle is enabled
1220  * then we skip allocations to devices that have reached their maximum
1221  * allocation queue depth unless the selected metaslab group is the only
1222  * eligible group remaining.
1223  */
1224 static boolean_t
1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226     int flags, uint64_t psize, int allocator, int d)
1227 {
1228 	spa_t *spa = mg->mg_vd->vdev_spa;
1229 	metaslab_class_t *mc = mg->mg_class;
1230 
1231 	/*
1232 	 * We can only consider skipping this metaslab group if it's
1233 	 * in the normal metaslab class and there are other metaslab
1234 	 * groups to select from. Otherwise, we always consider it eligible
1235 	 * for allocations.
1236 	 */
1237 	if ((mc != spa_normal_class(spa) &&
1238 	    mc != spa_special_class(spa) &&
1239 	    mc != spa_dedup_class(spa)) ||
1240 	    mc->mc_groups <= 1)
1241 		return (B_TRUE);
1242 
1243 	/*
1244 	 * If the metaslab group's mg_allocatable flag is set (see comments
1245 	 * in metaslab_group_alloc_update() for more information) and
1246 	 * the allocation throttle is disabled then allow allocations to this
1247 	 * device. However, if the allocation throttle is enabled then
1248 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249 	 * to determine if we should allow allocations to this metaslab group.
1250 	 * If all metaslab groups are no longer considered allocatable
1251 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252 	 * gang block size then we allow allocations on this metaslab group
1253 	 * regardless of the mg_allocatable or throttle settings.
1254 	 */
1255 	if (mg->mg_allocatable) {
1256 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257 		int64_t qdepth;
1258 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259 
1260 		if (!mc->mc_alloc_throttle_enabled)
1261 			return (B_TRUE);
1262 
1263 		/*
1264 		 * If this metaslab group does not have any free space, then
1265 		 * there is no point in looking further.
1266 		 */
1267 		if (mg->mg_no_free_space)
1268 			return (B_FALSE);
1269 
1270 		/*
1271 		 * Some allocations (e.g., those coming from device removal
1272 		 * where the * allocations are not even counted in the
1273 		 * metaslab * allocation queues) are allowed to bypass
1274 		 * the throttle.
1275 		 */
1276 		if (flags & METASLAB_DONT_THROTTLE)
1277 			return (B_TRUE);
1278 
1279 		/*
1280 		 * Relax allocation throttling for ditto blocks.  Due to
1281 		 * random imbalances in allocation it tends to push copies
1282 		 * to one vdev, that looks a bit better at the moment.
1283 		 */
1284 		qmax = qmax * (4 + d) / 4;
1285 
1286 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1287 
1288 		/*
1289 		 * If this metaslab group is below its qmax or it's
1290 		 * the only allocatable metasable group, then attempt
1291 		 * to allocate from it.
1292 		 */
1293 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1294 			return (B_TRUE);
1295 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1296 
1297 		/*
1298 		 * Since this metaslab group is at or over its qmax, we
1299 		 * need to determine if there are metaslab groups after this
1300 		 * one that might be able to handle this allocation. This is
1301 		 * racy since we can't hold the locks for all metaslab
1302 		 * groups at the same time when we make this check.
1303 		 */
1304 		for (metaslab_group_t *mgp = mg->mg_next;
1305 		    mgp != rotor; mgp = mgp->mg_next) {
1306 			metaslab_group_allocator_t *mgap =
1307 			    &mgp->mg_allocator[allocator];
1308 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1309 			qmax = qmax * (4 + d) / 4;
1310 			qdepth =
1311 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1312 
1313 			/*
1314 			 * If there is another metaslab group that
1315 			 * might be able to handle the allocation, then
1316 			 * we return false so that we skip this group.
1317 			 */
1318 			if (qdepth < qmax && !mgp->mg_no_free_space)
1319 				return (B_FALSE);
1320 		}
1321 
1322 		/*
1323 		 * We didn't find another group to handle the allocation
1324 		 * so we can't skip this metaslab group even though
1325 		 * we are at or over our qmax.
1326 		 */
1327 		return (B_TRUE);
1328 
1329 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1330 		return (B_TRUE);
1331 	}
1332 	return (B_FALSE);
1333 }
1334 
1335 /*
1336  * ==========================================================================
1337  * Range tree callbacks
1338  * ==========================================================================
1339  */
1340 
1341 /*
1342  * Comparison function for the private size-ordered tree using 32-bit
1343  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1344  */
1345 __attribute__((always_inline)) inline
1346 static int
1347 metaslab_rangesize32_compare(const void *x1, const void *x2)
1348 {
1349 	const range_seg32_t *r1 = x1;
1350 	const range_seg32_t *r2 = x2;
1351 
1352 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1353 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1354 
1355 	int cmp = TREE_CMP(rs_size1, rs_size2);
1356 
1357 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1358 }
1359 
1360 /*
1361  * Comparison function for the private size-ordered tree using 64-bit
1362  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1363  */
1364 __attribute__((always_inline)) inline
1365 static int
1366 metaslab_rangesize64_compare(const void *x1, const void *x2)
1367 {
1368 	const range_seg64_t *r1 = x1;
1369 	const range_seg64_t *r2 = x2;
1370 
1371 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1372 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1373 
1374 	int cmp = TREE_CMP(rs_size1, rs_size2);
1375 
1376 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1377 }
1378 
1379 typedef struct metaslab_rt_arg {
1380 	zfs_btree_t *mra_bt;
1381 	uint32_t mra_floor_shift;
1382 } metaslab_rt_arg_t;
1383 
1384 struct mssa_arg {
1385 	range_tree_t *rt;
1386 	metaslab_rt_arg_t *mra;
1387 };
1388 
1389 static void
1390 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1391 {
1392 	struct mssa_arg *mssap = arg;
1393 	range_tree_t *rt = mssap->rt;
1394 	metaslab_rt_arg_t *mrap = mssap->mra;
1395 	range_seg_max_t seg = {0};
1396 	rs_set_start(&seg, rt, start);
1397 	rs_set_end(&seg, rt, start + size);
1398 	metaslab_rt_add(rt, &seg, mrap);
1399 }
1400 
1401 static void
1402 metaslab_size_tree_full_load(range_tree_t *rt)
1403 {
1404 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1405 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1406 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1407 	mrap->mra_floor_shift = 0;
1408 	struct mssa_arg arg = {0};
1409 	arg.rt = rt;
1410 	arg.mra = mrap;
1411 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1412 }
1413 
1414 
1415 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1416     range_seg32_t, metaslab_rangesize32_compare)
1417 
1418 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1419     range_seg64_t, metaslab_rangesize64_compare)
1420 
1421 /*
1422  * Create any block allocator specific components. The current allocators
1423  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1424  */
1425 static void
1426 metaslab_rt_create(range_tree_t *rt, void *arg)
1427 {
1428 	metaslab_rt_arg_t *mrap = arg;
1429 	zfs_btree_t *size_tree = mrap->mra_bt;
1430 
1431 	size_t size;
1432 	int (*compare) (const void *, const void *);
1433 	bt_find_in_buf_f bt_find;
1434 	switch (rt->rt_type) {
1435 	case RANGE_SEG32:
1436 		size = sizeof (range_seg32_t);
1437 		compare = metaslab_rangesize32_compare;
1438 		bt_find = metaslab_rt_find_rangesize32_in_buf;
1439 		break;
1440 	case RANGE_SEG64:
1441 		size = sizeof (range_seg64_t);
1442 		compare = metaslab_rangesize64_compare;
1443 		bt_find = metaslab_rt_find_rangesize64_in_buf;
1444 		break;
1445 	default:
1446 		panic("Invalid range seg type %d", rt->rt_type);
1447 	}
1448 	zfs_btree_create(size_tree, compare, bt_find, size);
1449 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1450 }
1451 
1452 static void
1453 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1454 {
1455 	(void) rt;
1456 	metaslab_rt_arg_t *mrap = arg;
1457 	zfs_btree_t *size_tree = mrap->mra_bt;
1458 
1459 	zfs_btree_destroy(size_tree);
1460 	kmem_free(mrap, sizeof (*mrap));
1461 }
1462 
1463 static void
1464 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1465 {
1466 	metaslab_rt_arg_t *mrap = arg;
1467 	zfs_btree_t *size_tree = mrap->mra_bt;
1468 
1469 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1470 	    (1ULL << mrap->mra_floor_shift))
1471 		return;
1472 
1473 	zfs_btree_add(size_tree, rs);
1474 }
1475 
1476 static void
1477 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1478 {
1479 	metaslab_rt_arg_t *mrap = arg;
1480 	zfs_btree_t *size_tree = mrap->mra_bt;
1481 
1482 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1483 	    mrap->mra_floor_shift))
1484 		return;
1485 
1486 	zfs_btree_remove(size_tree, rs);
1487 }
1488 
1489 static void
1490 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1491 {
1492 	metaslab_rt_arg_t *mrap = arg;
1493 	zfs_btree_t *size_tree = mrap->mra_bt;
1494 	zfs_btree_clear(size_tree);
1495 	zfs_btree_destroy(size_tree);
1496 
1497 	metaslab_rt_create(rt, arg);
1498 }
1499 
1500 static const range_tree_ops_t metaslab_rt_ops = {
1501 	.rtop_create = metaslab_rt_create,
1502 	.rtop_destroy = metaslab_rt_destroy,
1503 	.rtop_add = metaslab_rt_add,
1504 	.rtop_remove = metaslab_rt_remove,
1505 	.rtop_vacate = metaslab_rt_vacate
1506 };
1507 
1508 /*
1509  * ==========================================================================
1510  * Common allocator routines
1511  * ==========================================================================
1512  */
1513 
1514 /*
1515  * Return the maximum contiguous segment within the metaslab.
1516  */
1517 uint64_t
1518 metaslab_largest_allocatable(metaslab_t *msp)
1519 {
1520 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1521 	range_seg_t *rs;
1522 
1523 	if (t == NULL)
1524 		return (0);
1525 	if (zfs_btree_numnodes(t) == 0)
1526 		metaslab_size_tree_full_load(msp->ms_allocatable);
1527 
1528 	rs = zfs_btree_last(t, NULL);
1529 	if (rs == NULL)
1530 		return (0);
1531 
1532 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1533 	    msp->ms_allocatable));
1534 }
1535 
1536 /*
1537  * Return the maximum contiguous segment within the unflushed frees of this
1538  * metaslab.
1539  */
1540 static uint64_t
1541 metaslab_largest_unflushed_free(metaslab_t *msp)
1542 {
1543 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1544 
1545 	if (msp->ms_unflushed_frees == NULL)
1546 		return (0);
1547 
1548 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1549 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1550 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1551 	    NULL);
1552 	if (rs == NULL)
1553 		return (0);
1554 
1555 	/*
1556 	 * When a range is freed from the metaslab, that range is added to
1557 	 * both the unflushed frees and the deferred frees. While the block
1558 	 * will eventually be usable, if the metaslab were loaded the range
1559 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1560 	 * txgs had passed.  As a result, when attempting to estimate an upper
1561 	 * bound for the largest currently-usable free segment in the
1562 	 * metaslab, we need to not consider any ranges currently in the defer
1563 	 * trees. This algorithm approximates the largest available chunk in
1564 	 * the largest range in the unflushed_frees tree by taking the first
1565 	 * chunk.  While this may be a poor estimate, it should only remain so
1566 	 * briefly and should eventually self-correct as frees are no longer
1567 	 * deferred. Similar logic applies to the ms_freed tree. See
1568 	 * metaslab_load() for more details.
1569 	 *
1570 	 * There are two primary sources of inaccuracy in this estimate. Both
1571 	 * are tolerated for performance reasons. The first source is that we
1572 	 * only check the largest segment for overlaps. Smaller segments may
1573 	 * have more favorable overlaps with the other trees, resulting in
1574 	 * larger usable chunks.  Second, we only look at the first chunk in
1575 	 * the largest segment; there may be other usable chunks in the
1576 	 * largest segment, but we ignore them.
1577 	 */
1578 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1579 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1580 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1581 		uint64_t start = 0;
1582 		uint64_t size = 0;
1583 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1584 		    rsize, &start, &size);
1585 		if (found) {
1586 			if (rstart == start)
1587 				return (0);
1588 			rsize = start - rstart;
1589 		}
1590 	}
1591 
1592 	uint64_t start = 0;
1593 	uint64_t size = 0;
1594 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1595 	    rsize, &start, &size);
1596 	if (found)
1597 		rsize = start - rstart;
1598 
1599 	return (rsize);
1600 }
1601 
1602 static range_seg_t *
1603 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1604     uint64_t size, zfs_btree_index_t *where)
1605 {
1606 	range_seg_t *rs;
1607 	range_seg_max_t rsearch;
1608 
1609 	rs_set_start(&rsearch, rt, start);
1610 	rs_set_end(&rsearch, rt, start + size);
1611 
1612 	rs = zfs_btree_find(t, &rsearch, where);
1613 	if (rs == NULL) {
1614 		rs = zfs_btree_next(t, where, where);
1615 	}
1616 
1617 	return (rs);
1618 }
1619 
1620 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1621     defined(WITH_CF_BLOCK_ALLOCATOR)
1622 
1623 /*
1624  * This is a helper function that can be used by the allocator to find a
1625  * suitable block to allocate. This will search the specified B-tree looking
1626  * for a block that matches the specified criteria.
1627  */
1628 static uint64_t
1629 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1630     uint64_t max_search)
1631 {
1632 	if (*cursor == 0)
1633 		*cursor = rt->rt_start;
1634 	zfs_btree_t *bt = &rt->rt_root;
1635 	zfs_btree_index_t where;
1636 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1637 	uint64_t first_found;
1638 	int count_searched = 0;
1639 
1640 	if (rs != NULL)
1641 		first_found = rs_get_start(rs, rt);
1642 
1643 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1644 	    max_search || count_searched < metaslab_min_search_count)) {
1645 		uint64_t offset = rs_get_start(rs, rt);
1646 		if (offset + size <= rs_get_end(rs, rt)) {
1647 			*cursor = offset + size;
1648 			return (offset);
1649 		}
1650 		rs = zfs_btree_next(bt, &where, &where);
1651 		count_searched++;
1652 	}
1653 
1654 	*cursor = 0;
1655 	return (-1ULL);
1656 }
1657 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1658 
1659 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1660 /*
1661  * ==========================================================================
1662  * Dynamic Fit (df) block allocator
1663  *
1664  * Search for a free chunk of at least this size, starting from the last
1665  * offset (for this alignment of block) looking for up to
1666  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1667  * found within 16MB, then return a free chunk of exactly the requested size (or
1668  * larger).
1669  *
1670  * If it seems like searching from the last offset will be unproductive, skip
1671  * that and just return a free chunk of exactly the requested size (or larger).
1672  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1673  * mechanism is probably not very useful and may be removed in the future.
1674  *
1675  * The behavior when not searching can be changed to return the largest free
1676  * chunk, instead of a free chunk of exactly the requested size, by setting
1677  * metaslab_df_use_largest_segment.
1678  * ==========================================================================
1679  */
1680 static uint64_t
1681 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1682 {
1683 	/*
1684 	 * Find the largest power of 2 block size that evenly divides the
1685 	 * requested size. This is used to try to allocate blocks with similar
1686 	 * alignment from the same area of the metaslab (i.e. same cursor
1687 	 * bucket) but it does not guarantee that other allocations sizes
1688 	 * may exist in the same region.
1689 	 */
1690 	uint64_t align = size & -size;
1691 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1692 	range_tree_t *rt = msp->ms_allocatable;
1693 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1694 	uint64_t offset;
1695 
1696 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1697 
1698 	/*
1699 	 * If we're running low on space, find a segment based on size,
1700 	 * rather than iterating based on offset.
1701 	 */
1702 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1703 	    free_pct < metaslab_df_free_pct) {
1704 		offset = -1;
1705 	} else {
1706 		offset = metaslab_block_picker(rt,
1707 		    cursor, size, metaslab_df_max_search);
1708 	}
1709 
1710 	if (offset == -1) {
1711 		range_seg_t *rs;
1712 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1713 			metaslab_size_tree_full_load(msp->ms_allocatable);
1714 
1715 		if (metaslab_df_use_largest_segment) {
1716 			/* use largest free segment */
1717 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1718 		} else {
1719 			zfs_btree_index_t where;
1720 			/* use segment of this size, or next largest */
1721 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1722 			    rt, msp->ms_start, size, &where);
1723 		}
1724 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1725 		    rt)) {
1726 			offset = rs_get_start(rs, rt);
1727 			*cursor = offset + size;
1728 		}
1729 	}
1730 
1731 	return (offset);
1732 }
1733 
1734 const metaslab_ops_t zfs_metaslab_ops = {
1735 	metaslab_df_alloc
1736 };
1737 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1738 
1739 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1740 /*
1741  * ==========================================================================
1742  * Cursor fit block allocator -
1743  * Select the largest region in the metaslab, set the cursor to the beginning
1744  * of the range and the cursor_end to the end of the range. As allocations
1745  * are made advance the cursor. Continue allocating from the cursor until
1746  * the range is exhausted and then find a new range.
1747  * ==========================================================================
1748  */
1749 static uint64_t
1750 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1751 {
1752 	range_tree_t *rt = msp->ms_allocatable;
1753 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1754 	uint64_t *cursor = &msp->ms_lbas[0];
1755 	uint64_t *cursor_end = &msp->ms_lbas[1];
1756 	uint64_t offset = 0;
1757 
1758 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1759 
1760 	ASSERT3U(*cursor_end, >=, *cursor);
1761 
1762 	if ((*cursor + size) > *cursor_end) {
1763 		range_seg_t *rs;
1764 
1765 		if (zfs_btree_numnodes(t) == 0)
1766 			metaslab_size_tree_full_load(msp->ms_allocatable);
1767 		rs = zfs_btree_last(t, NULL);
1768 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1769 		    size)
1770 			return (-1ULL);
1771 
1772 		*cursor = rs_get_start(rs, rt);
1773 		*cursor_end = rs_get_end(rs, rt);
1774 	}
1775 
1776 	offset = *cursor;
1777 	*cursor += size;
1778 
1779 	return (offset);
1780 }
1781 
1782 const metaslab_ops_t zfs_metaslab_ops = {
1783 	metaslab_cf_alloc
1784 };
1785 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1786 
1787 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1788 /*
1789  * ==========================================================================
1790  * New dynamic fit allocator -
1791  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1792  * contiguous blocks. If no region is found then just use the largest segment
1793  * that remains.
1794  * ==========================================================================
1795  */
1796 
1797 /*
1798  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1799  * to request from the allocator.
1800  */
1801 uint64_t metaslab_ndf_clump_shift = 4;
1802 
1803 static uint64_t
1804 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1805 {
1806 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1807 	range_tree_t *rt = msp->ms_allocatable;
1808 	zfs_btree_index_t where;
1809 	range_seg_t *rs;
1810 	range_seg_max_t rsearch;
1811 	uint64_t hbit = highbit64(size);
1812 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1813 	uint64_t max_size = metaslab_largest_allocatable(msp);
1814 
1815 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1816 
1817 	if (max_size < size)
1818 		return (-1ULL);
1819 
1820 	rs_set_start(&rsearch, rt, *cursor);
1821 	rs_set_end(&rsearch, rt, *cursor + size);
1822 
1823 	rs = zfs_btree_find(t, &rsearch, &where);
1824 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1825 		t = &msp->ms_allocatable_by_size;
1826 
1827 		rs_set_start(&rsearch, rt, 0);
1828 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1829 		    metaslab_ndf_clump_shift)));
1830 
1831 		rs = zfs_btree_find(t, &rsearch, &where);
1832 		if (rs == NULL)
1833 			rs = zfs_btree_next(t, &where, &where);
1834 		ASSERT(rs != NULL);
1835 	}
1836 
1837 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1838 		*cursor = rs_get_start(rs, rt) + size;
1839 		return (rs_get_start(rs, rt));
1840 	}
1841 	return (-1ULL);
1842 }
1843 
1844 const metaslab_ops_t zfs_metaslab_ops = {
1845 	metaslab_ndf_alloc
1846 };
1847 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1848 
1849 
1850 /*
1851  * ==========================================================================
1852  * Metaslabs
1853  * ==========================================================================
1854  */
1855 
1856 /*
1857  * Wait for any in-progress metaslab loads to complete.
1858  */
1859 static void
1860 metaslab_load_wait(metaslab_t *msp)
1861 {
1862 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1863 
1864 	while (msp->ms_loading) {
1865 		ASSERT(!msp->ms_loaded);
1866 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1867 	}
1868 }
1869 
1870 /*
1871  * Wait for any in-progress flushing to complete.
1872  */
1873 static void
1874 metaslab_flush_wait(metaslab_t *msp)
1875 {
1876 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1877 
1878 	while (msp->ms_flushing)
1879 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1880 }
1881 
1882 static unsigned int
1883 metaslab_idx_func(multilist_t *ml, void *arg)
1884 {
1885 	metaslab_t *msp = arg;
1886 
1887 	/*
1888 	 * ms_id values are allocated sequentially, so full 64bit
1889 	 * division would be a waste of time, so limit it to 32 bits.
1890 	 */
1891 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1892 }
1893 
1894 uint64_t
1895 metaslab_allocated_space(metaslab_t *msp)
1896 {
1897 	return (msp->ms_allocated_space);
1898 }
1899 
1900 /*
1901  * Verify that the space accounting on disk matches the in-core range_trees.
1902  */
1903 static void
1904 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1905 {
1906 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1907 	uint64_t allocating = 0;
1908 	uint64_t sm_free_space, msp_free_space;
1909 
1910 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1911 	ASSERT(!msp->ms_condensing);
1912 
1913 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1914 		return;
1915 
1916 	/*
1917 	 * We can only verify the metaslab space when we're called
1918 	 * from syncing context with a loaded metaslab that has an
1919 	 * allocated space map. Calling this in non-syncing context
1920 	 * does not provide a consistent view of the metaslab since
1921 	 * we're performing allocations in the future.
1922 	 */
1923 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1924 	    !msp->ms_loaded)
1925 		return;
1926 
1927 	/*
1928 	 * Even though the smp_alloc field can get negative,
1929 	 * when it comes to a metaslab's space map, that should
1930 	 * never be the case.
1931 	 */
1932 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1933 
1934 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1935 	    range_tree_space(msp->ms_unflushed_frees));
1936 
1937 	ASSERT3U(metaslab_allocated_space(msp), ==,
1938 	    space_map_allocated(msp->ms_sm) +
1939 	    range_tree_space(msp->ms_unflushed_allocs) -
1940 	    range_tree_space(msp->ms_unflushed_frees));
1941 
1942 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1943 
1944 	/*
1945 	 * Account for future allocations since we would have
1946 	 * already deducted that space from the ms_allocatable.
1947 	 */
1948 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1949 		allocating +=
1950 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1951 	}
1952 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1953 	    msp->ms_allocating_total);
1954 
1955 	ASSERT3U(msp->ms_deferspace, ==,
1956 	    range_tree_space(msp->ms_defer[0]) +
1957 	    range_tree_space(msp->ms_defer[1]));
1958 
1959 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1960 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1961 
1962 	VERIFY3U(sm_free_space, ==, msp_free_space);
1963 }
1964 
1965 static void
1966 metaslab_aux_histograms_clear(metaslab_t *msp)
1967 {
1968 	/*
1969 	 * Auxiliary histograms are only cleared when resetting them,
1970 	 * which can only happen while the metaslab is loaded.
1971 	 */
1972 	ASSERT(msp->ms_loaded);
1973 
1974 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1975 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1976 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1977 }
1978 
1979 static void
1980 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1981     range_tree_t *rt)
1982 {
1983 	/*
1984 	 * This is modeled after space_map_histogram_add(), so refer to that
1985 	 * function for implementation details. We want this to work like
1986 	 * the space map histogram, and not the range tree histogram, as we
1987 	 * are essentially constructing a delta that will be later subtracted
1988 	 * from the space map histogram.
1989 	 */
1990 	int idx = 0;
1991 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1992 		ASSERT3U(i, >=, idx + shift);
1993 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1994 
1995 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1996 			ASSERT3U(idx + shift, ==, i);
1997 			idx++;
1998 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1999 		}
2000 	}
2001 }
2002 
2003 /*
2004  * Called at every sync pass that the metaslab gets synced.
2005  *
2006  * The reason is that we want our auxiliary histograms to be updated
2007  * wherever the metaslab's space map histogram is updated. This way
2008  * we stay consistent on which parts of the metaslab space map's
2009  * histogram are currently not available for allocations (e.g because
2010  * they are in the defer, freed, and freeing trees).
2011  */
2012 static void
2013 metaslab_aux_histograms_update(metaslab_t *msp)
2014 {
2015 	space_map_t *sm = msp->ms_sm;
2016 	ASSERT(sm != NULL);
2017 
2018 	/*
2019 	 * This is similar to the metaslab's space map histogram updates
2020 	 * that take place in metaslab_sync(). The only difference is that
2021 	 * we only care about segments that haven't made it into the
2022 	 * ms_allocatable tree yet.
2023 	 */
2024 	if (msp->ms_loaded) {
2025 		metaslab_aux_histograms_clear(msp);
2026 
2027 		metaslab_aux_histogram_add(msp->ms_synchist,
2028 		    sm->sm_shift, msp->ms_freed);
2029 
2030 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2031 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2032 			    sm->sm_shift, msp->ms_defer[t]);
2033 		}
2034 	}
2035 
2036 	metaslab_aux_histogram_add(msp->ms_synchist,
2037 	    sm->sm_shift, msp->ms_freeing);
2038 }
2039 
2040 /*
2041  * Called every time we are done syncing (writing to) the metaslab,
2042  * i.e. at the end of each sync pass.
2043  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2044  */
2045 static void
2046 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2047 {
2048 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2049 	space_map_t *sm = msp->ms_sm;
2050 
2051 	if (sm == NULL) {
2052 		/*
2053 		 * We came here from metaslab_init() when creating/opening a
2054 		 * pool, looking at a metaslab that hasn't had any allocations
2055 		 * yet.
2056 		 */
2057 		return;
2058 	}
2059 
2060 	/*
2061 	 * This is similar to the actions that we take for the ms_freed
2062 	 * and ms_defer trees in metaslab_sync_done().
2063 	 */
2064 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2065 	if (defer_allowed) {
2066 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2067 		    sizeof (msp->ms_synchist));
2068 	} else {
2069 		memset(msp->ms_deferhist[hist_index], 0,
2070 		    sizeof (msp->ms_deferhist[hist_index]));
2071 	}
2072 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2073 }
2074 
2075 /*
2076  * Ensure that the metaslab's weight and fragmentation are consistent
2077  * with the contents of the histogram (either the range tree's histogram
2078  * or the space map's depending whether the metaslab is loaded).
2079  */
2080 static void
2081 metaslab_verify_weight_and_frag(metaslab_t *msp)
2082 {
2083 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2084 
2085 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2086 		return;
2087 
2088 	/*
2089 	 * We can end up here from vdev_remove_complete(), in which case we
2090 	 * cannot do these assertions because we hold spa config locks and
2091 	 * thus we are not allowed to read from the DMU.
2092 	 *
2093 	 * We check if the metaslab group has been removed and if that's
2094 	 * the case we return immediately as that would mean that we are
2095 	 * here from the aforementioned code path.
2096 	 */
2097 	if (msp->ms_group == NULL)
2098 		return;
2099 
2100 	/*
2101 	 * Devices being removed always return a weight of 0 and leave
2102 	 * fragmentation and ms_max_size as is - there is nothing for
2103 	 * us to verify here.
2104 	 */
2105 	vdev_t *vd = msp->ms_group->mg_vd;
2106 	if (vd->vdev_removing)
2107 		return;
2108 
2109 	/*
2110 	 * If the metaslab is dirty it probably means that we've done
2111 	 * some allocations or frees that have changed our histograms
2112 	 * and thus the weight.
2113 	 */
2114 	for (int t = 0; t < TXG_SIZE; t++) {
2115 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2116 			return;
2117 	}
2118 
2119 	/*
2120 	 * This verification checks that our in-memory state is consistent
2121 	 * with what's on disk. If the pool is read-only then there aren't
2122 	 * any changes and we just have the initially-loaded state.
2123 	 */
2124 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2125 		return;
2126 
2127 	/* some extra verification for in-core tree if you can */
2128 	if (msp->ms_loaded) {
2129 		range_tree_stat_verify(msp->ms_allocatable);
2130 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2131 		    msp->ms_allocatable));
2132 	}
2133 
2134 	uint64_t weight = msp->ms_weight;
2135 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2136 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2137 	uint64_t frag = msp->ms_fragmentation;
2138 	uint64_t max_segsize = msp->ms_max_size;
2139 
2140 	msp->ms_weight = 0;
2141 	msp->ms_fragmentation = 0;
2142 
2143 	/*
2144 	 * This function is used for verification purposes and thus should
2145 	 * not introduce any side-effects/mutations on the system's state.
2146 	 *
2147 	 * Regardless of whether metaslab_weight() thinks this metaslab
2148 	 * should be active or not, we want to ensure that the actual weight
2149 	 * (and therefore the value of ms_weight) would be the same if it
2150 	 * was to be recalculated at this point.
2151 	 *
2152 	 * In addition we set the nodirty flag so metaslab_weight() does
2153 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2154 	 * force condensing to upgrade the metaslab spacemaps).
2155 	 */
2156 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2157 
2158 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2159 
2160 	/*
2161 	 * If the weight type changed then there is no point in doing
2162 	 * verification. Revert fields to their original values.
2163 	 */
2164 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2165 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2166 		msp->ms_fragmentation = frag;
2167 		msp->ms_weight = weight;
2168 		return;
2169 	}
2170 
2171 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2172 	VERIFY3U(msp->ms_weight, ==, weight);
2173 }
2174 
2175 /*
2176  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2177  * this class that was used longest ago, and attempt to unload it.  We don't
2178  * want to spend too much time in this loop to prevent performance
2179  * degradation, and we expect that most of the time this operation will
2180  * succeed. Between that and the normal unloading processing during txg sync,
2181  * we expect this to keep the metaslab memory usage under control.
2182  */
2183 static void
2184 metaslab_potentially_evict(metaslab_class_t *mc)
2185 {
2186 #ifdef _KERNEL
2187 	uint64_t allmem = arc_all_memory();
2188 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2189 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2190 	uint_t tries = 0;
2191 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2192 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2193 	    tries++) {
2194 		unsigned int idx = multilist_get_random_index(
2195 		    &mc->mc_metaslab_txg_list);
2196 		multilist_sublist_t *mls =
2197 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2198 		metaslab_t *msp = multilist_sublist_head(mls);
2199 		multilist_sublist_unlock(mls);
2200 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2201 		    inuse * size) {
2202 			VERIFY3P(mls, ==, multilist_sublist_lock(
2203 			    &mc->mc_metaslab_txg_list, idx));
2204 			ASSERT3U(idx, ==,
2205 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2206 
2207 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2208 				multilist_sublist_unlock(mls);
2209 				break;
2210 			}
2211 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2212 			multilist_sublist_unlock(mls);
2213 			/*
2214 			 * If the metaslab is currently loading there are two
2215 			 * cases. If it's the metaslab we're evicting, we
2216 			 * can't continue on or we'll panic when we attempt to
2217 			 * recursively lock the mutex. If it's another
2218 			 * metaslab that's loading, it can be safely skipped,
2219 			 * since we know it's very new and therefore not a
2220 			 * good eviction candidate. We check later once the
2221 			 * lock is held that the metaslab is fully loaded
2222 			 * before actually unloading it.
2223 			 */
2224 			if (msp->ms_loading) {
2225 				msp = next_msp;
2226 				inuse =
2227 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2228 				continue;
2229 			}
2230 			/*
2231 			 * We can't unload metaslabs with no spacemap because
2232 			 * they're not ready to be unloaded yet. We can't
2233 			 * unload metaslabs with outstanding allocations
2234 			 * because doing so could cause the metaslab's weight
2235 			 * to decrease while it's unloaded, which violates an
2236 			 * invariant that we use to prevent unnecessary
2237 			 * loading. We also don't unload metaslabs that are
2238 			 * currently active because they are high-weight
2239 			 * metaslabs that are likely to be used in the near
2240 			 * future.
2241 			 */
2242 			mutex_enter(&msp->ms_lock);
2243 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2244 			    msp->ms_allocating_total == 0) {
2245 				metaslab_unload(msp);
2246 			}
2247 			mutex_exit(&msp->ms_lock);
2248 			msp = next_msp;
2249 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2250 		}
2251 	}
2252 #else
2253 	(void) mc, (void) zfs_metaslab_mem_limit;
2254 #endif
2255 }
2256 
2257 static int
2258 metaslab_load_impl(metaslab_t *msp)
2259 {
2260 	int error = 0;
2261 
2262 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2263 	ASSERT(msp->ms_loading);
2264 	ASSERT(!msp->ms_condensing);
2265 
2266 	/*
2267 	 * We temporarily drop the lock to unblock other operations while we
2268 	 * are reading the space map. Therefore, metaslab_sync() and
2269 	 * metaslab_sync_done() can run at the same time as we do.
2270 	 *
2271 	 * If we are using the log space maps, metaslab_sync() can't write to
2272 	 * the metaslab's space map while we are loading as we only write to
2273 	 * it when we are flushing the metaslab, and that can't happen while
2274 	 * we are loading it.
2275 	 *
2276 	 * If we are not using log space maps though, metaslab_sync() can
2277 	 * append to the space map while we are loading. Therefore we load
2278 	 * only entries that existed when we started the load. Additionally,
2279 	 * metaslab_sync_done() has to wait for the load to complete because
2280 	 * there are potential races like metaslab_load() loading parts of the
2281 	 * space map that are currently being appended by metaslab_sync(). If
2282 	 * we didn't, the ms_allocatable would have entries that
2283 	 * metaslab_sync_done() would try to re-add later.
2284 	 *
2285 	 * That's why before dropping the lock we remember the synced length
2286 	 * of the metaslab and read up to that point of the space map,
2287 	 * ignoring entries appended by metaslab_sync() that happen after we
2288 	 * drop the lock.
2289 	 */
2290 	uint64_t length = msp->ms_synced_length;
2291 	mutex_exit(&msp->ms_lock);
2292 
2293 	hrtime_t load_start = gethrtime();
2294 	metaslab_rt_arg_t *mrap;
2295 	if (msp->ms_allocatable->rt_arg == NULL) {
2296 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2297 	} else {
2298 		mrap = msp->ms_allocatable->rt_arg;
2299 		msp->ms_allocatable->rt_ops = NULL;
2300 		msp->ms_allocatable->rt_arg = NULL;
2301 	}
2302 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2303 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2304 
2305 	if (msp->ms_sm != NULL) {
2306 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2307 		    SM_FREE, length);
2308 
2309 		/* Now, populate the size-sorted tree. */
2310 		metaslab_rt_create(msp->ms_allocatable, mrap);
2311 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2312 		msp->ms_allocatable->rt_arg = mrap;
2313 
2314 		struct mssa_arg arg = {0};
2315 		arg.rt = msp->ms_allocatable;
2316 		arg.mra = mrap;
2317 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2318 		    &arg);
2319 	} else {
2320 		/*
2321 		 * Add the size-sorted tree first, since we don't need to load
2322 		 * the metaslab from the spacemap.
2323 		 */
2324 		metaslab_rt_create(msp->ms_allocatable, mrap);
2325 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2326 		msp->ms_allocatable->rt_arg = mrap;
2327 		/*
2328 		 * The space map has not been allocated yet, so treat
2329 		 * all the space in the metaslab as free and add it to the
2330 		 * ms_allocatable tree.
2331 		 */
2332 		range_tree_add(msp->ms_allocatable,
2333 		    msp->ms_start, msp->ms_size);
2334 
2335 		if (msp->ms_new) {
2336 			/*
2337 			 * If the ms_sm doesn't exist, this means that this
2338 			 * metaslab hasn't gone through metaslab_sync() and
2339 			 * thus has never been dirtied. So we shouldn't
2340 			 * expect any unflushed allocs or frees from previous
2341 			 * TXGs.
2342 			 */
2343 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2344 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2345 		}
2346 	}
2347 
2348 	/*
2349 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2350 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2351 	 * while we are about to use them and populate the ms_allocatable.
2352 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2353 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2354 	 */
2355 	mutex_enter(&msp->ms_sync_lock);
2356 	mutex_enter(&msp->ms_lock);
2357 
2358 	ASSERT(!msp->ms_condensing);
2359 	ASSERT(!msp->ms_flushing);
2360 
2361 	if (error != 0) {
2362 		mutex_exit(&msp->ms_sync_lock);
2363 		return (error);
2364 	}
2365 
2366 	ASSERT3P(msp->ms_group, !=, NULL);
2367 	msp->ms_loaded = B_TRUE;
2368 
2369 	/*
2370 	 * Apply all the unflushed changes to ms_allocatable right
2371 	 * away so any manipulations we do below have a clear view
2372 	 * of what is allocated and what is free.
2373 	 */
2374 	range_tree_walk(msp->ms_unflushed_allocs,
2375 	    range_tree_remove, msp->ms_allocatable);
2376 	range_tree_walk(msp->ms_unflushed_frees,
2377 	    range_tree_add, msp->ms_allocatable);
2378 
2379 	ASSERT3P(msp->ms_group, !=, NULL);
2380 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2381 	if (spa_syncing_log_sm(spa) != NULL) {
2382 		ASSERT(spa_feature_is_enabled(spa,
2383 		    SPA_FEATURE_LOG_SPACEMAP));
2384 
2385 		/*
2386 		 * If we use a log space map we add all the segments
2387 		 * that are in ms_unflushed_frees so they are available
2388 		 * for allocation.
2389 		 *
2390 		 * ms_allocatable needs to contain all free segments
2391 		 * that are ready for allocations (thus not segments
2392 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2393 		 * But if we grab the lock in this code path at a sync
2394 		 * pass later that 1, then it also contains the
2395 		 * segments of ms_freed (they were added to it earlier
2396 		 * in this path through ms_unflushed_frees). So we
2397 		 * need to remove all the segments that exist in
2398 		 * ms_freed from ms_allocatable as they will be added
2399 		 * later in metaslab_sync_done().
2400 		 *
2401 		 * When there's no log space map, the ms_allocatable
2402 		 * correctly doesn't contain any segments that exist
2403 		 * in ms_freed [see ms_synced_length].
2404 		 */
2405 		range_tree_walk(msp->ms_freed,
2406 		    range_tree_remove, msp->ms_allocatable);
2407 	}
2408 
2409 	/*
2410 	 * If we are not using the log space map, ms_allocatable
2411 	 * contains the segments that exist in the ms_defer trees
2412 	 * [see ms_synced_length]. Thus we need to remove them
2413 	 * from ms_allocatable as they will be added again in
2414 	 * metaslab_sync_done().
2415 	 *
2416 	 * If we are using the log space map, ms_allocatable still
2417 	 * contains the segments that exist in the ms_defer trees.
2418 	 * Not because it read them through the ms_sm though. But
2419 	 * because these segments are part of ms_unflushed_frees
2420 	 * whose segments we add to ms_allocatable earlier in this
2421 	 * code path.
2422 	 */
2423 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2424 		range_tree_walk(msp->ms_defer[t],
2425 		    range_tree_remove, msp->ms_allocatable);
2426 	}
2427 
2428 	/*
2429 	 * Call metaslab_recalculate_weight_and_sort() now that the
2430 	 * metaslab is loaded so we get the metaslab's real weight.
2431 	 *
2432 	 * Unless this metaslab was created with older software and
2433 	 * has not yet been converted to use segment-based weight, we
2434 	 * expect the new weight to be better or equal to the weight
2435 	 * that the metaslab had while it was not loaded. This is
2436 	 * because the old weight does not take into account the
2437 	 * consolidation of adjacent segments between TXGs. [see
2438 	 * comment for ms_synchist and ms_deferhist[] for more info]
2439 	 */
2440 	uint64_t weight = msp->ms_weight;
2441 	uint64_t max_size = msp->ms_max_size;
2442 	metaslab_recalculate_weight_and_sort(msp);
2443 	if (!WEIGHT_IS_SPACEBASED(weight))
2444 		ASSERT3U(weight, <=, msp->ms_weight);
2445 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2446 	ASSERT3U(max_size, <=, msp->ms_max_size);
2447 	hrtime_t load_end = gethrtime();
2448 	msp->ms_load_time = load_end;
2449 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2450 	    "ms_id %llu, smp_length %llu, "
2451 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2452 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2453 	    "loading_time %lld ms, ms_max_size %llu, "
2454 	    "max size error %lld, "
2455 	    "old_weight %llx, new_weight %llx",
2456 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2457 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2458 	    (u_longlong_t)msp->ms_id,
2459 	    (u_longlong_t)space_map_length(msp->ms_sm),
2460 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2461 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2462 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2463 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2464 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2465 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2466 	    (longlong_t)((load_end - load_start) / 1000000),
2467 	    (u_longlong_t)msp->ms_max_size,
2468 	    (u_longlong_t)msp->ms_max_size - max_size,
2469 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2470 
2471 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2472 	mutex_exit(&msp->ms_sync_lock);
2473 	return (0);
2474 }
2475 
2476 int
2477 metaslab_load(metaslab_t *msp)
2478 {
2479 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2480 
2481 	/*
2482 	 * There may be another thread loading the same metaslab, if that's
2483 	 * the case just wait until the other thread is done and return.
2484 	 */
2485 	metaslab_load_wait(msp);
2486 	if (msp->ms_loaded)
2487 		return (0);
2488 	VERIFY(!msp->ms_loading);
2489 	ASSERT(!msp->ms_condensing);
2490 
2491 	/*
2492 	 * We set the loading flag BEFORE potentially dropping the lock to
2493 	 * wait for an ongoing flush (see ms_flushing below). This way other
2494 	 * threads know that there is already a thread that is loading this
2495 	 * metaslab.
2496 	 */
2497 	msp->ms_loading = B_TRUE;
2498 
2499 	/*
2500 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2501 	 * both here (during space_map_load()) and in metaslab_flush() (when
2502 	 * we flush our changes to the ms_sm).
2503 	 */
2504 	if (msp->ms_flushing)
2505 		metaslab_flush_wait(msp);
2506 
2507 	/*
2508 	 * In the possibility that we were waiting for the metaslab to be
2509 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2510 	 * no one else loaded the metaslab somehow.
2511 	 */
2512 	ASSERT(!msp->ms_loaded);
2513 
2514 	/*
2515 	 * If we're loading a metaslab in the normal class, consider evicting
2516 	 * another one to keep our memory usage under the limit defined by the
2517 	 * zfs_metaslab_mem_limit tunable.
2518 	 */
2519 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2520 	    msp->ms_group->mg_class) {
2521 		metaslab_potentially_evict(msp->ms_group->mg_class);
2522 	}
2523 
2524 	int error = metaslab_load_impl(msp);
2525 
2526 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2527 	msp->ms_loading = B_FALSE;
2528 	cv_broadcast(&msp->ms_load_cv);
2529 
2530 	return (error);
2531 }
2532 
2533 void
2534 metaslab_unload(metaslab_t *msp)
2535 {
2536 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2537 
2538 	/*
2539 	 * This can happen if a metaslab is selected for eviction (in
2540 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2541 	 * metaslab_class_evict_old).
2542 	 */
2543 	if (!msp->ms_loaded)
2544 		return;
2545 
2546 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2547 	msp->ms_loaded = B_FALSE;
2548 	msp->ms_unload_time = gethrtime();
2549 
2550 	msp->ms_activation_weight = 0;
2551 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2552 
2553 	if (msp->ms_group != NULL) {
2554 		metaslab_class_t *mc = msp->ms_group->mg_class;
2555 		multilist_sublist_t *mls =
2556 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2557 		if (multilist_link_active(&msp->ms_class_txg_node))
2558 			multilist_sublist_remove(mls, msp);
2559 		multilist_sublist_unlock(mls);
2560 
2561 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2562 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2563 		    "ms_id %llu, weight %llx, "
2564 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2565 		    "loaded %llu ms ago, max_size %llu",
2566 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2567 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2568 		    (u_longlong_t)msp->ms_id,
2569 		    (u_longlong_t)msp->ms_weight,
2570 		    (u_longlong_t)msp->ms_selected_txg,
2571 		    (u_longlong_t)(msp->ms_unload_time -
2572 		    msp->ms_selected_time) / 1000 / 1000,
2573 		    (u_longlong_t)msp->ms_alloc_txg,
2574 		    (u_longlong_t)(msp->ms_unload_time -
2575 		    msp->ms_load_time) / 1000 / 1000,
2576 		    (u_longlong_t)msp->ms_max_size);
2577 	}
2578 
2579 	/*
2580 	 * We explicitly recalculate the metaslab's weight based on its space
2581 	 * map (as it is now not loaded). We want unload metaslabs to always
2582 	 * have their weights calculated from the space map histograms, while
2583 	 * loaded ones have it calculated from their in-core range tree
2584 	 * [see metaslab_load()]. This way, the weight reflects the information
2585 	 * available in-core, whether it is loaded or not.
2586 	 *
2587 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2588 	 * at which point it doesn't make sense for us to do the recalculation
2589 	 * and the sorting.
2590 	 */
2591 	if (msp->ms_group != NULL)
2592 		metaslab_recalculate_weight_and_sort(msp);
2593 }
2594 
2595 /*
2596  * We want to optimize the memory use of the per-metaslab range
2597  * trees. To do this, we store the segments in the range trees in
2598  * units of sectors, zero-indexing from the start of the metaslab. If
2599  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2600  * the ranges using two uint32_ts, rather than two uint64_ts.
2601  */
2602 range_seg_type_t
2603 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2604     uint64_t *start, uint64_t *shift)
2605 {
2606 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2607 	    !zfs_metaslab_force_large_segs) {
2608 		*shift = vdev->vdev_ashift;
2609 		*start = msp->ms_start;
2610 		return (RANGE_SEG32);
2611 	} else {
2612 		*shift = 0;
2613 		*start = 0;
2614 		return (RANGE_SEG64);
2615 	}
2616 }
2617 
2618 void
2619 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2620 {
2621 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2622 	metaslab_class_t *mc = msp->ms_group->mg_class;
2623 	multilist_sublist_t *mls =
2624 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2625 	if (multilist_link_active(&msp->ms_class_txg_node))
2626 		multilist_sublist_remove(mls, msp);
2627 	msp->ms_selected_txg = txg;
2628 	msp->ms_selected_time = gethrtime();
2629 	multilist_sublist_insert_tail(mls, msp);
2630 	multilist_sublist_unlock(mls);
2631 }
2632 
2633 void
2634 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2635     int64_t defer_delta, int64_t space_delta)
2636 {
2637 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2638 
2639 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2640 	ASSERT(vd->vdev_ms_count != 0);
2641 
2642 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2643 	    vdev_deflated_space(vd, space_delta));
2644 }
2645 
2646 int
2647 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2648     uint64_t txg, metaslab_t **msp)
2649 {
2650 	vdev_t *vd = mg->mg_vd;
2651 	spa_t *spa = vd->vdev_spa;
2652 	objset_t *mos = spa->spa_meta_objset;
2653 	metaslab_t *ms;
2654 	int error;
2655 
2656 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2657 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2658 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2659 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2660 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2661 	multilist_link_init(&ms->ms_class_txg_node);
2662 
2663 	ms->ms_id = id;
2664 	ms->ms_start = id << vd->vdev_ms_shift;
2665 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2666 	ms->ms_allocator = -1;
2667 	ms->ms_new = B_TRUE;
2668 
2669 	vdev_ops_t *ops = vd->vdev_ops;
2670 	if (ops->vdev_op_metaslab_init != NULL)
2671 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2672 
2673 	/*
2674 	 * We only open space map objects that already exist. All others
2675 	 * will be opened when we finally allocate an object for it. For
2676 	 * readonly pools there is no need to open the space map object.
2677 	 *
2678 	 * Note:
2679 	 * When called from vdev_expand(), we can't call into the DMU as
2680 	 * we are holding the spa_config_lock as a writer and we would
2681 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2682 	 * that case, the object parameter is zero though, so we won't
2683 	 * call into the DMU.
2684 	 */
2685 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2686 	    !spa->spa_read_spacemaps)) {
2687 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2688 		    ms->ms_size, vd->vdev_ashift);
2689 
2690 		if (error != 0) {
2691 			kmem_free(ms, sizeof (metaslab_t));
2692 			return (error);
2693 		}
2694 
2695 		ASSERT(ms->ms_sm != NULL);
2696 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2697 	}
2698 
2699 	uint64_t shift, start;
2700 	range_seg_type_t type =
2701 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2702 
2703 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2704 	for (int t = 0; t < TXG_SIZE; t++) {
2705 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2706 		    NULL, start, shift);
2707 	}
2708 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2709 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2710 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2711 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2712 		    start, shift);
2713 	}
2714 	ms->ms_checkpointing =
2715 	    range_tree_create(NULL, type, NULL, start, shift);
2716 	ms->ms_unflushed_allocs =
2717 	    range_tree_create(NULL, type, NULL, start, shift);
2718 
2719 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2720 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2721 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2722 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2723 	    type, mrap, start, shift);
2724 
2725 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2726 
2727 	metaslab_group_add(mg, ms);
2728 	metaslab_set_fragmentation(ms, B_FALSE);
2729 
2730 	/*
2731 	 * If we're opening an existing pool (txg == 0) or creating
2732 	 * a new one (txg == TXG_INITIAL), all space is available now.
2733 	 * If we're adding space to an existing pool, the new space
2734 	 * does not become available until after this txg has synced.
2735 	 * The metaslab's weight will also be initialized when we sync
2736 	 * out this txg. This ensures that we don't attempt to allocate
2737 	 * from it before we have initialized it completely.
2738 	 */
2739 	if (txg <= TXG_INITIAL) {
2740 		metaslab_sync_done(ms, 0);
2741 		metaslab_space_update(vd, mg->mg_class,
2742 		    metaslab_allocated_space(ms), 0, 0);
2743 	}
2744 
2745 	if (txg != 0) {
2746 		vdev_dirty(vd, 0, NULL, txg);
2747 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2748 	}
2749 
2750 	*msp = ms;
2751 
2752 	return (0);
2753 }
2754 
2755 static void
2756 metaslab_fini_flush_data(metaslab_t *msp)
2757 {
2758 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2759 
2760 	if (metaslab_unflushed_txg(msp) == 0) {
2761 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2762 		    ==, NULL);
2763 		return;
2764 	}
2765 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2766 
2767 	mutex_enter(&spa->spa_flushed_ms_lock);
2768 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2769 	mutex_exit(&spa->spa_flushed_ms_lock);
2770 
2771 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2772 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2773 	    metaslab_unflushed_dirty(msp));
2774 }
2775 
2776 uint64_t
2777 metaslab_unflushed_changes_memused(metaslab_t *ms)
2778 {
2779 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2780 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2781 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2782 }
2783 
2784 void
2785 metaslab_fini(metaslab_t *msp)
2786 {
2787 	metaslab_group_t *mg = msp->ms_group;
2788 	vdev_t *vd = mg->mg_vd;
2789 	spa_t *spa = vd->vdev_spa;
2790 
2791 	metaslab_fini_flush_data(msp);
2792 
2793 	metaslab_group_remove(mg, msp);
2794 
2795 	mutex_enter(&msp->ms_lock);
2796 	VERIFY(msp->ms_group == NULL);
2797 
2798 	/*
2799 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2800 	 * space hasn't been accounted for in its vdev and doesn't need to be
2801 	 * subtracted.
2802 	 */
2803 	if (!msp->ms_new) {
2804 		metaslab_space_update(vd, mg->mg_class,
2805 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2806 
2807 	}
2808 	space_map_close(msp->ms_sm);
2809 	msp->ms_sm = NULL;
2810 
2811 	metaslab_unload(msp);
2812 
2813 	range_tree_destroy(msp->ms_allocatable);
2814 	range_tree_destroy(msp->ms_freeing);
2815 	range_tree_destroy(msp->ms_freed);
2816 
2817 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2818 	    metaslab_unflushed_changes_memused(msp));
2819 	spa->spa_unflushed_stats.sus_memused -=
2820 	    metaslab_unflushed_changes_memused(msp);
2821 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2822 	range_tree_destroy(msp->ms_unflushed_allocs);
2823 	range_tree_destroy(msp->ms_checkpointing);
2824 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2825 	range_tree_destroy(msp->ms_unflushed_frees);
2826 
2827 	for (int t = 0; t < TXG_SIZE; t++) {
2828 		range_tree_destroy(msp->ms_allocating[t]);
2829 	}
2830 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2831 		range_tree_destroy(msp->ms_defer[t]);
2832 	}
2833 	ASSERT0(msp->ms_deferspace);
2834 
2835 	for (int t = 0; t < TXG_SIZE; t++)
2836 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2837 
2838 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2839 	range_tree_destroy(msp->ms_trim);
2840 
2841 	mutex_exit(&msp->ms_lock);
2842 	cv_destroy(&msp->ms_load_cv);
2843 	cv_destroy(&msp->ms_flush_cv);
2844 	mutex_destroy(&msp->ms_lock);
2845 	mutex_destroy(&msp->ms_sync_lock);
2846 	ASSERT3U(msp->ms_allocator, ==, -1);
2847 
2848 	kmem_free(msp, sizeof (metaslab_t));
2849 }
2850 
2851 #define	FRAGMENTATION_TABLE_SIZE	17
2852 
2853 /*
2854  * This table defines a segment size based fragmentation metric that will
2855  * allow each metaslab to derive its own fragmentation value. This is done
2856  * by calculating the space in each bucket of the spacemap histogram and
2857  * multiplying that by the fragmentation metric in this table. Doing
2858  * this for all buckets and dividing it by the total amount of free
2859  * space in this metaslab (i.e. the total free space in all buckets) gives
2860  * us the fragmentation metric. This means that a high fragmentation metric
2861  * equates to most of the free space being comprised of small segments.
2862  * Conversely, if the metric is low, then most of the free space is in
2863  * large segments. A 10% change in fragmentation equates to approximately
2864  * double the number of segments.
2865  *
2866  * This table defines 0% fragmented space using 16MB segments. Testing has
2867  * shown that segments that are greater than or equal to 16MB do not suffer
2868  * from drastic performance problems. Using this value, we derive the rest
2869  * of the table. Since the fragmentation value is never stored on disk, it
2870  * is possible to change these calculations in the future.
2871  */
2872 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2873 	100,	/* 512B	*/
2874 	100,	/* 1K	*/
2875 	98,	/* 2K	*/
2876 	95,	/* 4K	*/
2877 	90,	/* 8K	*/
2878 	80,	/* 16K	*/
2879 	70,	/* 32K	*/
2880 	60,	/* 64K	*/
2881 	50,	/* 128K	*/
2882 	40,	/* 256K	*/
2883 	30,	/* 512K	*/
2884 	20,	/* 1M	*/
2885 	15,	/* 2M	*/
2886 	10,	/* 4M	*/
2887 	5,	/* 8M	*/
2888 	0	/* 16M	*/
2889 };
2890 
2891 /*
2892  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2893  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2894  * been upgraded and does not support this metric. Otherwise, the return
2895  * value should be in the range [0, 100].
2896  */
2897 static void
2898 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2899 {
2900 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2901 	uint64_t fragmentation = 0;
2902 	uint64_t total = 0;
2903 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2904 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2905 
2906 	if (!feature_enabled) {
2907 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2908 		return;
2909 	}
2910 
2911 	/*
2912 	 * A null space map means that the entire metaslab is free
2913 	 * and thus is not fragmented.
2914 	 */
2915 	if (msp->ms_sm == NULL) {
2916 		msp->ms_fragmentation = 0;
2917 		return;
2918 	}
2919 
2920 	/*
2921 	 * If this metaslab's space map has not been upgraded, flag it
2922 	 * so that we upgrade next time we encounter it.
2923 	 */
2924 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2925 		uint64_t txg = spa_syncing_txg(spa);
2926 		vdev_t *vd = msp->ms_group->mg_vd;
2927 
2928 		/*
2929 		 * If we've reached the final dirty txg, then we must
2930 		 * be shutting down the pool. We don't want to dirty
2931 		 * any data past this point so skip setting the condense
2932 		 * flag. We can retry this action the next time the pool
2933 		 * is imported. We also skip marking this metaslab for
2934 		 * condensing if the caller has explicitly set nodirty.
2935 		 */
2936 		if (!nodirty &&
2937 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2938 			msp->ms_condense_wanted = B_TRUE;
2939 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2940 			zfs_dbgmsg("txg %llu, requesting force condense: "
2941 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2942 			    (u_longlong_t)msp->ms_id,
2943 			    (u_longlong_t)vd->vdev_id);
2944 		}
2945 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2946 		return;
2947 	}
2948 
2949 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2950 		uint64_t space = 0;
2951 		uint8_t shift = msp->ms_sm->sm_shift;
2952 
2953 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2954 		    FRAGMENTATION_TABLE_SIZE - 1);
2955 
2956 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2957 			continue;
2958 
2959 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2960 		total += space;
2961 
2962 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2963 		fragmentation += space * zfs_frag_table[idx];
2964 	}
2965 
2966 	if (total > 0)
2967 		fragmentation /= total;
2968 	ASSERT3U(fragmentation, <=, 100);
2969 
2970 	msp->ms_fragmentation = fragmentation;
2971 }
2972 
2973 /*
2974  * Compute a weight -- a selection preference value -- for the given metaslab.
2975  * This is based on the amount of free space, the level of fragmentation,
2976  * the LBA range, and whether the metaslab is loaded.
2977  */
2978 static uint64_t
2979 metaslab_space_weight(metaslab_t *msp)
2980 {
2981 	metaslab_group_t *mg = msp->ms_group;
2982 	vdev_t *vd = mg->mg_vd;
2983 	uint64_t weight, space;
2984 
2985 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2986 
2987 	/*
2988 	 * The baseline weight is the metaslab's free space.
2989 	 */
2990 	space = msp->ms_size - metaslab_allocated_space(msp);
2991 
2992 	if (metaslab_fragmentation_factor_enabled &&
2993 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2994 		/*
2995 		 * Use the fragmentation information to inversely scale
2996 		 * down the baseline weight. We need to ensure that we
2997 		 * don't exclude this metaslab completely when it's 100%
2998 		 * fragmented. To avoid this we reduce the fragmented value
2999 		 * by 1.
3000 		 */
3001 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3002 
3003 		/*
3004 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3005 		 * this metaslab again. The fragmentation metric may have
3006 		 * decreased the space to something smaller than
3007 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3008 		 * so that we can consume any remaining space.
3009 		 */
3010 		if (space > 0 && space < SPA_MINBLOCKSIZE)
3011 			space = SPA_MINBLOCKSIZE;
3012 	}
3013 	weight = space;
3014 
3015 	/*
3016 	 * Modern disks have uniform bit density and constant angular velocity.
3017 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3018 	 * than the inner zones by the ratio of outer to inner track diameter,
3019 	 * which is typically around 2:1.  We account for this by assigning
3020 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3021 	 * In effect, this means that we'll select the metaslab with the most
3022 	 * free bandwidth rather than simply the one with the most free space.
3023 	 */
3024 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3025 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3026 		ASSERT(weight >= space && weight <= 2 * space);
3027 	}
3028 
3029 	/*
3030 	 * If this metaslab is one we're actively using, adjust its
3031 	 * weight to make it preferable to any inactive metaslab so
3032 	 * we'll polish it off. If the fragmentation on this metaslab
3033 	 * has exceed our threshold, then don't mark it active.
3034 	 */
3035 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3036 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3037 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3038 	}
3039 
3040 	WEIGHT_SET_SPACEBASED(weight);
3041 	return (weight);
3042 }
3043 
3044 /*
3045  * Return the weight of the specified metaslab, according to the segment-based
3046  * weighting algorithm. The metaslab must be loaded. This function can
3047  * be called within a sync pass since it relies only on the metaslab's
3048  * range tree which is always accurate when the metaslab is loaded.
3049  */
3050 static uint64_t
3051 metaslab_weight_from_range_tree(metaslab_t *msp)
3052 {
3053 	uint64_t weight = 0;
3054 	uint32_t segments = 0;
3055 
3056 	ASSERT(msp->ms_loaded);
3057 
3058 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3059 	    i--) {
3060 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3061 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3062 
3063 		segments <<= 1;
3064 		segments += msp->ms_allocatable->rt_histogram[i];
3065 
3066 		/*
3067 		 * The range tree provides more precision than the space map
3068 		 * and must be downgraded so that all values fit within the
3069 		 * space map's histogram. This allows us to compare loaded
3070 		 * vs. unloaded metaslabs to determine which metaslab is
3071 		 * considered "best".
3072 		 */
3073 		if (i > max_idx)
3074 			continue;
3075 
3076 		if (segments != 0) {
3077 			WEIGHT_SET_COUNT(weight, segments);
3078 			WEIGHT_SET_INDEX(weight, i);
3079 			WEIGHT_SET_ACTIVE(weight, 0);
3080 			break;
3081 		}
3082 	}
3083 	return (weight);
3084 }
3085 
3086 /*
3087  * Calculate the weight based on the on-disk histogram. Should be applied
3088  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3089  * give results consistent with the on-disk state
3090  */
3091 static uint64_t
3092 metaslab_weight_from_spacemap(metaslab_t *msp)
3093 {
3094 	space_map_t *sm = msp->ms_sm;
3095 	ASSERT(!msp->ms_loaded);
3096 	ASSERT(sm != NULL);
3097 	ASSERT3U(space_map_object(sm), !=, 0);
3098 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3099 
3100 	/*
3101 	 * Create a joint histogram from all the segments that have made
3102 	 * it to the metaslab's space map histogram, that are not yet
3103 	 * available for allocation because they are still in the freeing
3104 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3105 	 * these segments from the space map's histogram to get a more
3106 	 * accurate weight.
3107 	 */
3108 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3109 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3110 		deferspace_histogram[i] += msp->ms_synchist[i];
3111 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3112 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3113 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3114 		}
3115 	}
3116 
3117 	uint64_t weight = 0;
3118 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3119 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3120 		    deferspace_histogram[i]);
3121 		uint64_t count =
3122 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3123 		if (count != 0) {
3124 			WEIGHT_SET_COUNT(weight, count);
3125 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3126 			WEIGHT_SET_ACTIVE(weight, 0);
3127 			break;
3128 		}
3129 	}
3130 	return (weight);
3131 }
3132 
3133 /*
3134  * Compute a segment-based weight for the specified metaslab. The weight
3135  * is determined by highest bucket in the histogram. The information
3136  * for the highest bucket is encoded into the weight value.
3137  */
3138 static uint64_t
3139 metaslab_segment_weight(metaslab_t *msp)
3140 {
3141 	metaslab_group_t *mg = msp->ms_group;
3142 	uint64_t weight = 0;
3143 	uint8_t shift = mg->mg_vd->vdev_ashift;
3144 
3145 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3146 
3147 	/*
3148 	 * The metaslab is completely free.
3149 	 */
3150 	if (metaslab_allocated_space(msp) == 0) {
3151 		int idx = highbit64(msp->ms_size) - 1;
3152 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3153 
3154 		if (idx < max_idx) {
3155 			WEIGHT_SET_COUNT(weight, 1ULL);
3156 			WEIGHT_SET_INDEX(weight, idx);
3157 		} else {
3158 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3159 			WEIGHT_SET_INDEX(weight, max_idx);
3160 		}
3161 		WEIGHT_SET_ACTIVE(weight, 0);
3162 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3163 		return (weight);
3164 	}
3165 
3166 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3167 
3168 	/*
3169 	 * If the metaslab is fully allocated then just make the weight 0.
3170 	 */
3171 	if (metaslab_allocated_space(msp) == msp->ms_size)
3172 		return (0);
3173 	/*
3174 	 * If the metaslab is already loaded, then use the range tree to
3175 	 * determine the weight. Otherwise, we rely on the space map information
3176 	 * to generate the weight.
3177 	 */
3178 	if (msp->ms_loaded) {
3179 		weight = metaslab_weight_from_range_tree(msp);
3180 	} else {
3181 		weight = metaslab_weight_from_spacemap(msp);
3182 	}
3183 
3184 	/*
3185 	 * If the metaslab was active the last time we calculated its weight
3186 	 * then keep it active. We want to consume the entire region that
3187 	 * is associated with this weight.
3188 	 */
3189 	if (msp->ms_activation_weight != 0 && weight != 0)
3190 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3191 	return (weight);
3192 }
3193 
3194 /*
3195  * Determine if we should attempt to allocate from this metaslab. If the
3196  * metaslab is loaded, then we can determine if the desired allocation
3197  * can be satisfied by looking at the size of the maximum free segment
3198  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3199  * weight. For segment-based weighting we can determine the maximum
3200  * allocation based on the index encoded in its value. For space-based
3201  * weights we rely on the entire weight (excluding the weight-type bit).
3202  */
3203 static boolean_t
3204 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3205 {
3206 	/*
3207 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3208 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3209 	 * set), and we should use the fast check as long as we're not in
3210 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3211 	 * seconds since the metaslab was unloaded.
3212 	 */
3213 	if (msp->ms_loaded ||
3214 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3215 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3216 		return (msp->ms_max_size >= asize);
3217 
3218 	boolean_t should_allocate;
3219 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3220 		/*
3221 		 * The metaslab segment weight indicates segments in the
3222 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3223 		 * Since the asize might be in the middle of the range, we
3224 		 * should attempt the allocation if asize < 2^(i+1).
3225 		 */
3226 		should_allocate = (asize <
3227 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3228 	} else {
3229 		should_allocate = (asize <=
3230 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3231 	}
3232 
3233 	return (should_allocate);
3234 }
3235 
3236 static uint64_t
3237 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3238 {
3239 	vdev_t *vd = msp->ms_group->mg_vd;
3240 	spa_t *spa = vd->vdev_spa;
3241 	uint64_t weight;
3242 
3243 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3244 
3245 	metaslab_set_fragmentation(msp, nodirty);
3246 
3247 	/*
3248 	 * Update the maximum size. If the metaslab is loaded, this will
3249 	 * ensure that we get an accurate maximum size if newly freed space
3250 	 * has been added back into the free tree. If the metaslab is
3251 	 * unloaded, we check if there's a larger free segment in the
3252 	 * unflushed frees. This is a lower bound on the largest allocatable
3253 	 * segment size. Coalescing of adjacent entries may reveal larger
3254 	 * allocatable segments, but we aren't aware of those until loading
3255 	 * the space map into a range tree.
3256 	 */
3257 	if (msp->ms_loaded) {
3258 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3259 	} else {
3260 		msp->ms_max_size = MAX(msp->ms_max_size,
3261 		    metaslab_largest_unflushed_free(msp));
3262 	}
3263 
3264 	/*
3265 	 * Segment-based weighting requires space map histogram support.
3266 	 */
3267 	if (zfs_metaslab_segment_weight_enabled &&
3268 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3269 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3270 	    sizeof (space_map_phys_t))) {
3271 		weight = metaslab_segment_weight(msp);
3272 	} else {
3273 		weight = metaslab_space_weight(msp);
3274 	}
3275 	return (weight);
3276 }
3277 
3278 void
3279 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3280 {
3281 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3282 
3283 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3284 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3285 	metaslab_group_sort(msp->ms_group, msp,
3286 	    metaslab_weight(msp, B_FALSE) | was_active);
3287 }
3288 
3289 static int
3290 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3291     int allocator, uint64_t activation_weight)
3292 {
3293 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3294 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3295 
3296 	/*
3297 	 * If we're activating for the claim code, we don't want to actually
3298 	 * set the metaslab up for a specific allocator.
3299 	 */
3300 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3301 		ASSERT0(msp->ms_activation_weight);
3302 		msp->ms_activation_weight = msp->ms_weight;
3303 		metaslab_group_sort(mg, msp, msp->ms_weight |
3304 		    activation_weight);
3305 		return (0);
3306 	}
3307 
3308 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3309 	    &mga->mga_primary : &mga->mga_secondary);
3310 
3311 	mutex_enter(&mg->mg_lock);
3312 	if (*mspp != NULL) {
3313 		mutex_exit(&mg->mg_lock);
3314 		return (EEXIST);
3315 	}
3316 
3317 	*mspp = msp;
3318 	ASSERT3S(msp->ms_allocator, ==, -1);
3319 	msp->ms_allocator = allocator;
3320 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3321 
3322 	ASSERT0(msp->ms_activation_weight);
3323 	msp->ms_activation_weight = msp->ms_weight;
3324 	metaslab_group_sort_impl(mg, msp,
3325 	    msp->ms_weight | activation_weight);
3326 	mutex_exit(&mg->mg_lock);
3327 
3328 	return (0);
3329 }
3330 
3331 static int
3332 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3333 {
3334 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3335 
3336 	/*
3337 	 * The current metaslab is already activated for us so there
3338 	 * is nothing to do. Already activated though, doesn't mean
3339 	 * that this metaslab is activated for our allocator nor our
3340 	 * requested activation weight. The metaslab could have started
3341 	 * as an active one for our allocator but changed allocators
3342 	 * while we were waiting to grab its ms_lock or we stole it
3343 	 * [see find_valid_metaslab()]. This means that there is a
3344 	 * possibility of passivating a metaslab of another allocator
3345 	 * or from a different activation mask, from this thread.
3346 	 */
3347 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3348 		ASSERT(msp->ms_loaded);
3349 		return (0);
3350 	}
3351 
3352 	int error = metaslab_load(msp);
3353 	if (error != 0) {
3354 		metaslab_group_sort(msp->ms_group, msp, 0);
3355 		return (error);
3356 	}
3357 
3358 	/*
3359 	 * When entering metaslab_load() we may have dropped the
3360 	 * ms_lock because we were loading this metaslab, or we
3361 	 * were waiting for another thread to load it for us. In
3362 	 * that scenario, we recheck the weight of the metaslab
3363 	 * to see if it was activated by another thread.
3364 	 *
3365 	 * If the metaslab was activated for another allocator or
3366 	 * it was activated with a different activation weight (e.g.
3367 	 * we wanted to make it a primary but it was activated as
3368 	 * secondary) we return error (EBUSY).
3369 	 *
3370 	 * If the metaslab was activated for the same allocator
3371 	 * and requested activation mask, skip activating it.
3372 	 */
3373 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3374 		if (msp->ms_allocator != allocator)
3375 			return (EBUSY);
3376 
3377 		if ((msp->ms_weight & activation_weight) == 0)
3378 			return (SET_ERROR(EBUSY));
3379 
3380 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3381 		    msp->ms_primary);
3382 		return (0);
3383 	}
3384 
3385 	/*
3386 	 * If the metaslab has literally 0 space, it will have weight 0. In
3387 	 * that case, don't bother activating it. This can happen if the
3388 	 * metaslab had space during find_valid_metaslab, but another thread
3389 	 * loaded it and used all that space while we were waiting to grab the
3390 	 * lock.
3391 	 */
3392 	if (msp->ms_weight == 0) {
3393 		ASSERT0(range_tree_space(msp->ms_allocatable));
3394 		return (SET_ERROR(ENOSPC));
3395 	}
3396 
3397 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3398 	    allocator, activation_weight)) != 0) {
3399 		return (error);
3400 	}
3401 
3402 	ASSERT(msp->ms_loaded);
3403 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3404 
3405 	return (0);
3406 }
3407 
3408 static void
3409 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3410     uint64_t weight)
3411 {
3412 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3413 	ASSERT(msp->ms_loaded);
3414 
3415 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3416 		metaslab_group_sort(mg, msp, weight);
3417 		return;
3418 	}
3419 
3420 	mutex_enter(&mg->mg_lock);
3421 	ASSERT3P(msp->ms_group, ==, mg);
3422 	ASSERT3S(0, <=, msp->ms_allocator);
3423 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3424 
3425 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3426 	if (msp->ms_primary) {
3427 		ASSERT3P(mga->mga_primary, ==, msp);
3428 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3429 		mga->mga_primary = NULL;
3430 	} else {
3431 		ASSERT3P(mga->mga_secondary, ==, msp);
3432 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3433 		mga->mga_secondary = NULL;
3434 	}
3435 	msp->ms_allocator = -1;
3436 	metaslab_group_sort_impl(mg, msp, weight);
3437 	mutex_exit(&mg->mg_lock);
3438 }
3439 
3440 static void
3441 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3442 {
3443 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3444 
3445 	/*
3446 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3447 	 * this metaslab again.  In that case, it had better be empty,
3448 	 * or we would be leaving space on the table.
3449 	 */
3450 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3451 	    size >= SPA_MINBLOCKSIZE ||
3452 	    range_tree_space(msp->ms_allocatable) == 0);
3453 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3454 
3455 	ASSERT(msp->ms_activation_weight != 0);
3456 	msp->ms_activation_weight = 0;
3457 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3458 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3459 }
3460 
3461 /*
3462  * Segment-based metaslabs are activated once and remain active until
3463  * we either fail an allocation attempt (similar to space-based metaslabs)
3464  * or have exhausted the free space in zfs_metaslab_switch_threshold
3465  * buckets since the metaslab was activated. This function checks to see
3466  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3467  * metaslab and passivates it proactively. This will allow us to select a
3468  * metaslab with a larger contiguous region, if any, remaining within this
3469  * metaslab group. If we're in sync pass > 1, then we continue using this
3470  * metaslab so that we don't dirty more block and cause more sync passes.
3471  */
3472 static void
3473 metaslab_segment_may_passivate(metaslab_t *msp)
3474 {
3475 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3476 
3477 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3478 		return;
3479 
3480 	/*
3481 	 * Since we are in the middle of a sync pass, the most accurate
3482 	 * information that is accessible to us is the in-core range tree
3483 	 * histogram; calculate the new weight based on that information.
3484 	 */
3485 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3486 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3487 	int current_idx = WEIGHT_GET_INDEX(weight);
3488 
3489 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3490 		metaslab_passivate(msp, weight);
3491 }
3492 
3493 static void
3494 metaslab_preload(void *arg)
3495 {
3496 	metaslab_t *msp = arg;
3497 	metaslab_class_t *mc = msp->ms_group->mg_class;
3498 	spa_t *spa = mc->mc_spa;
3499 	fstrans_cookie_t cookie = spl_fstrans_mark();
3500 
3501 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3502 
3503 	mutex_enter(&msp->ms_lock);
3504 	(void) metaslab_load(msp);
3505 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3506 	mutex_exit(&msp->ms_lock);
3507 	spl_fstrans_unmark(cookie);
3508 }
3509 
3510 static void
3511 metaslab_group_preload(metaslab_group_t *mg)
3512 {
3513 	spa_t *spa = mg->mg_vd->vdev_spa;
3514 	metaslab_t *msp;
3515 	avl_tree_t *t = &mg->mg_metaslab_tree;
3516 	int m = 0;
3517 
3518 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3519 		taskq_wait_outstanding(mg->mg_taskq, 0);
3520 		return;
3521 	}
3522 
3523 	mutex_enter(&mg->mg_lock);
3524 
3525 	/*
3526 	 * Load the next potential metaslabs
3527 	 */
3528 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3529 		ASSERT3P(msp->ms_group, ==, mg);
3530 
3531 		/*
3532 		 * We preload only the maximum number of metaslabs specified
3533 		 * by metaslab_preload_limit. If a metaslab is being forced
3534 		 * to condense then we preload it too. This will ensure
3535 		 * that force condensing happens in the next txg.
3536 		 */
3537 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3538 			continue;
3539 		}
3540 
3541 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3542 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3543 	}
3544 	mutex_exit(&mg->mg_lock);
3545 }
3546 
3547 /*
3548  * Determine if the space map's on-disk footprint is past our tolerance for
3549  * inefficiency. We would like to use the following criteria to make our
3550  * decision:
3551  *
3552  * 1. Do not condense if the size of the space map object would dramatically
3553  *    increase as a result of writing out the free space range tree.
3554  *
3555  * 2. Condense if the on on-disk space map representation is at least
3556  *    zfs_condense_pct/100 times the size of the optimal representation
3557  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3558  *
3559  * 3. Do not condense if the on-disk size of the space map does not actually
3560  *    decrease.
3561  *
3562  * Unfortunately, we cannot compute the on-disk size of the space map in this
3563  * context because we cannot accurately compute the effects of compression, etc.
3564  * Instead, we apply the heuristic described in the block comment for
3565  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3566  * is greater than a threshold number of blocks.
3567  */
3568 static boolean_t
3569 metaslab_should_condense(metaslab_t *msp)
3570 {
3571 	space_map_t *sm = msp->ms_sm;
3572 	vdev_t *vd = msp->ms_group->mg_vd;
3573 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3574 
3575 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3576 	ASSERT(msp->ms_loaded);
3577 	ASSERT(sm != NULL);
3578 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3579 
3580 	/*
3581 	 * We always condense metaslabs that are empty and metaslabs for
3582 	 * which a condense request has been made.
3583 	 */
3584 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3585 	    msp->ms_condense_wanted)
3586 		return (B_TRUE);
3587 
3588 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3589 	uint64_t object_size = space_map_length(sm);
3590 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3591 	    msp->ms_allocatable, SM_NO_VDEVID);
3592 
3593 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3594 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3595 }
3596 
3597 /*
3598  * Condense the on-disk space map representation to its minimized form.
3599  * The minimized form consists of a small number of allocations followed
3600  * by the entries of the free range tree (ms_allocatable). The condensed
3601  * spacemap contains all the entries of previous TXGs (including those in
3602  * the pool-wide log spacemaps; thus this is effectively a superset of
3603  * metaslab_flush()), but this TXG's entries still need to be written.
3604  */
3605 static void
3606 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3607 {
3608 	range_tree_t *condense_tree;
3609 	space_map_t *sm = msp->ms_sm;
3610 	uint64_t txg = dmu_tx_get_txg(tx);
3611 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3612 
3613 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3614 	ASSERT(msp->ms_loaded);
3615 	ASSERT(msp->ms_sm != NULL);
3616 
3617 	/*
3618 	 * In order to condense the space map, we need to change it so it
3619 	 * only describes which segments are currently allocated and free.
3620 	 *
3621 	 * All the current free space resides in the ms_allocatable, all
3622 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3623 	 * ms_freed because it is empty because we're in sync pass 1. We
3624 	 * ignore ms_freeing because these changes are not yet reflected
3625 	 * in the spacemap (they will be written later this txg).
3626 	 *
3627 	 * So to truncate the space map to represent all the entries of
3628 	 * previous TXGs we do the following:
3629 	 *
3630 	 * 1] We create a range tree (condense tree) that is 100% empty.
3631 	 * 2] We add to it all segments found in the ms_defer trees
3632 	 *    as those segments are marked as free in the original space
3633 	 *    map. We do the same with the ms_allocating trees for the same
3634 	 *    reason. Adding these segments should be a relatively
3635 	 *    inexpensive operation since we expect these trees to have a
3636 	 *    small number of nodes.
3637 	 * 3] We vacate any unflushed allocs, since they are not frees we
3638 	 *    need to add to the condense tree. Then we vacate any
3639 	 *    unflushed frees as they should already be part of ms_allocatable.
3640 	 * 4] At this point, we would ideally like to add all segments
3641 	 *    in the ms_allocatable tree from the condense tree. This way
3642 	 *    we would write all the entries of the condense tree as the
3643 	 *    condensed space map, which would only contain freed
3644 	 *    segments with everything else assumed to be allocated.
3645 	 *
3646 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3647 	 *    be large, and therefore computationally expensive to add to
3648 	 *    the condense_tree. Instead we first sync out an entry marking
3649 	 *    everything as allocated, then the condense_tree and then the
3650 	 *    ms_allocatable, in the condensed space map. While this is not
3651 	 *    optimal, it is typically close to optimal and more importantly
3652 	 *    much cheaper to compute.
3653 	 *
3654 	 * 5] Finally, as both of the unflushed trees were written to our
3655 	 *    new and condensed metaslab space map, we basically flushed
3656 	 *    all the unflushed changes to disk, thus we call
3657 	 *    metaslab_flush_update().
3658 	 */
3659 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3660 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3661 
3662 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3663 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3664 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3665 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3666 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3667 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3668 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3669 
3670 	msp->ms_condense_wanted = B_FALSE;
3671 
3672 	range_seg_type_t type;
3673 	uint64_t shift, start;
3674 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3675 	    &start, &shift);
3676 
3677 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3678 
3679 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3680 		range_tree_walk(msp->ms_defer[t],
3681 		    range_tree_add, condense_tree);
3682 	}
3683 
3684 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3685 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3686 		    range_tree_add, condense_tree);
3687 	}
3688 
3689 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3690 	    metaslab_unflushed_changes_memused(msp));
3691 	spa->spa_unflushed_stats.sus_memused -=
3692 	    metaslab_unflushed_changes_memused(msp);
3693 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3694 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3695 
3696 	/*
3697 	 * We're about to drop the metaslab's lock thus allowing other
3698 	 * consumers to change it's content. Set the metaslab's ms_condensing
3699 	 * flag to ensure that allocations on this metaslab do not occur
3700 	 * while we're in the middle of committing it to disk. This is only
3701 	 * critical for ms_allocatable as all other range trees use per TXG
3702 	 * views of their content.
3703 	 */
3704 	msp->ms_condensing = B_TRUE;
3705 
3706 	mutex_exit(&msp->ms_lock);
3707 	uint64_t object = space_map_object(msp->ms_sm);
3708 	space_map_truncate(sm,
3709 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3710 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3711 
3712 	/*
3713 	 * space_map_truncate() may have reallocated the spacemap object.
3714 	 * If so, update the vdev_ms_array.
3715 	 */
3716 	if (space_map_object(msp->ms_sm) != object) {
3717 		object = space_map_object(msp->ms_sm);
3718 		dmu_write(spa->spa_meta_objset,
3719 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3720 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3721 	}
3722 
3723 	/*
3724 	 * Note:
3725 	 * When the log space map feature is enabled, each space map will
3726 	 * always have ALLOCS followed by FREES for each sync pass. This is
3727 	 * typically true even when the log space map feature is disabled,
3728 	 * except from the case where a metaslab goes through metaslab_sync()
3729 	 * and gets condensed. In that case the metaslab's space map will have
3730 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3731 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3732 	 * sync pass 1.
3733 	 */
3734 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3735 	    shift);
3736 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3737 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3738 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3739 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3740 
3741 	range_tree_vacate(condense_tree, NULL, NULL);
3742 	range_tree_destroy(condense_tree);
3743 	range_tree_vacate(tmp_tree, NULL, NULL);
3744 	range_tree_destroy(tmp_tree);
3745 	mutex_enter(&msp->ms_lock);
3746 
3747 	msp->ms_condensing = B_FALSE;
3748 	metaslab_flush_update(msp, tx);
3749 }
3750 
3751 static void
3752 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3753 {
3754 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3755 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3756 	ASSERT(msp->ms_sm != NULL);
3757 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3758 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3759 
3760 	mutex_enter(&spa->spa_flushed_ms_lock);
3761 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3762 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3763 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3764 	mutex_exit(&spa->spa_flushed_ms_lock);
3765 
3766 	spa_log_sm_increment_current_mscount(spa);
3767 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3768 }
3769 
3770 void
3771 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3772 {
3773 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3774 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3775 	ASSERT(msp->ms_sm != NULL);
3776 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3777 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3778 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3779 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3780 
3781 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3782 
3783 	/* update metaslab's position in our flushing tree */
3784 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3785 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3786 	mutex_enter(&spa->spa_flushed_ms_lock);
3787 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3788 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3789 	metaslab_set_unflushed_dirty(msp, dirty);
3790 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3791 	mutex_exit(&spa->spa_flushed_ms_lock);
3792 
3793 	/* update metaslab counts of spa_log_sm_t nodes */
3794 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3795 	spa_log_sm_increment_current_mscount(spa);
3796 
3797 	/* update log space map summary */
3798 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3799 	    ms_prev_flushed_dirty);
3800 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3801 
3802 	/* cleanup obsolete logs if any */
3803 	spa_cleanup_old_sm_logs(spa, tx);
3804 }
3805 
3806 /*
3807  * Called when the metaslab has been flushed (its own spacemap now reflects
3808  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3809  * metadata and any pool-wide related log space map data (e.g. summary,
3810  * obsolete logs, etc..) to reflect that.
3811  */
3812 static void
3813 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3814 {
3815 	metaslab_group_t *mg = msp->ms_group;
3816 	spa_t *spa = mg->mg_vd->vdev_spa;
3817 
3818 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3819 
3820 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3821 
3822 	/*
3823 	 * Just because a metaslab got flushed, that doesn't mean that
3824 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3825 	 * update ms_synced_length here in case it doesn't.
3826 	 */
3827 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3828 
3829 	/*
3830 	 * We may end up here from metaslab_condense() without the
3831 	 * feature being active. In that case this is a no-op.
3832 	 */
3833 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3834 	    metaslab_unflushed_txg(msp) == 0)
3835 		return;
3836 
3837 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3838 }
3839 
3840 boolean_t
3841 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3842 {
3843 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3844 
3845 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3846 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3847 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3848 
3849 	ASSERT(msp->ms_sm != NULL);
3850 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3851 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3852 
3853 	/*
3854 	 * There is nothing wrong with flushing the same metaslab twice, as
3855 	 * this codepath should work on that case. However, the current
3856 	 * flushing scheme makes sure to avoid this situation as we would be
3857 	 * making all these calls without having anything meaningful to write
3858 	 * to disk. We assert this behavior here.
3859 	 */
3860 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3861 
3862 	/*
3863 	 * We can not flush while loading, because then we would
3864 	 * not load the ms_unflushed_{allocs,frees}.
3865 	 */
3866 	if (msp->ms_loading)
3867 		return (B_FALSE);
3868 
3869 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3870 	metaslab_verify_weight_and_frag(msp);
3871 
3872 	/*
3873 	 * Metaslab condensing is effectively flushing. Therefore if the
3874 	 * metaslab can be condensed we can just condense it instead of
3875 	 * flushing it.
3876 	 *
3877 	 * Note that metaslab_condense() does call metaslab_flush_update()
3878 	 * so we can just return immediately after condensing. We also
3879 	 * don't need to care about setting ms_flushing or broadcasting
3880 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3881 	 * metaslab_condense(), as the metaslab is already loaded.
3882 	 */
3883 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3884 		metaslab_group_t *mg = msp->ms_group;
3885 
3886 		/*
3887 		 * For all histogram operations below refer to the
3888 		 * comments of metaslab_sync() where we follow a
3889 		 * similar procedure.
3890 		 */
3891 		metaslab_group_histogram_verify(mg);
3892 		metaslab_class_histogram_verify(mg->mg_class);
3893 		metaslab_group_histogram_remove(mg, msp);
3894 
3895 		metaslab_condense(msp, tx);
3896 
3897 		space_map_histogram_clear(msp->ms_sm);
3898 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3899 		ASSERT(range_tree_is_empty(msp->ms_freed));
3900 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3901 			space_map_histogram_add(msp->ms_sm,
3902 			    msp->ms_defer[t], tx);
3903 		}
3904 		metaslab_aux_histograms_update(msp);
3905 
3906 		metaslab_group_histogram_add(mg, msp);
3907 		metaslab_group_histogram_verify(mg);
3908 		metaslab_class_histogram_verify(mg->mg_class);
3909 
3910 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3911 
3912 		/*
3913 		 * Since we recreated the histogram (and potentially
3914 		 * the ms_sm too while condensing) ensure that the
3915 		 * weight is updated too because we are not guaranteed
3916 		 * that this metaslab is dirty and will go through
3917 		 * metaslab_sync_done().
3918 		 */
3919 		metaslab_recalculate_weight_and_sort(msp);
3920 		return (B_TRUE);
3921 	}
3922 
3923 	msp->ms_flushing = B_TRUE;
3924 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3925 
3926 	mutex_exit(&msp->ms_lock);
3927 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3928 	    SM_NO_VDEVID, tx);
3929 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3930 	    SM_NO_VDEVID, tx);
3931 	mutex_enter(&msp->ms_lock);
3932 
3933 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3934 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3935 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3936 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3937 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3938 		    spa_name(spa),
3939 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3940 		    (u_longlong_t)msp->ms_id,
3941 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3942 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3943 		    (u_longlong_t)(sm_len_after - sm_len_before));
3944 	}
3945 
3946 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3947 	    metaslab_unflushed_changes_memused(msp));
3948 	spa->spa_unflushed_stats.sus_memused -=
3949 	    metaslab_unflushed_changes_memused(msp);
3950 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3951 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3952 
3953 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3954 	metaslab_verify_weight_and_frag(msp);
3955 
3956 	metaslab_flush_update(msp, tx);
3957 
3958 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3959 	metaslab_verify_weight_and_frag(msp);
3960 
3961 	msp->ms_flushing = B_FALSE;
3962 	cv_broadcast(&msp->ms_flush_cv);
3963 	return (B_TRUE);
3964 }
3965 
3966 /*
3967  * Write a metaslab to disk in the context of the specified transaction group.
3968  */
3969 void
3970 metaslab_sync(metaslab_t *msp, uint64_t txg)
3971 {
3972 	metaslab_group_t *mg = msp->ms_group;
3973 	vdev_t *vd = mg->mg_vd;
3974 	spa_t *spa = vd->vdev_spa;
3975 	objset_t *mos = spa_meta_objset(spa);
3976 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3977 	dmu_tx_t *tx;
3978 
3979 	ASSERT(!vd->vdev_ishole);
3980 
3981 	/*
3982 	 * This metaslab has just been added so there's no work to do now.
3983 	 */
3984 	if (msp->ms_new) {
3985 		ASSERT0(range_tree_space(alloctree));
3986 		ASSERT0(range_tree_space(msp->ms_freeing));
3987 		ASSERT0(range_tree_space(msp->ms_freed));
3988 		ASSERT0(range_tree_space(msp->ms_checkpointing));
3989 		ASSERT0(range_tree_space(msp->ms_trim));
3990 		return;
3991 	}
3992 
3993 	/*
3994 	 * Normally, we don't want to process a metaslab if there are no
3995 	 * allocations or frees to perform. However, if the metaslab is being
3996 	 * forced to condense, it's loaded and we're not beyond the final
3997 	 * dirty txg, we need to let it through. Not condensing beyond the
3998 	 * final dirty txg prevents an issue where metaslabs that need to be
3999 	 * condensed but were loaded for other reasons could cause a panic
4000 	 * here. By only checking the txg in that branch of the conditional,
4001 	 * we preserve the utility of the VERIFY statements in all other
4002 	 * cases.
4003 	 */
4004 	if (range_tree_is_empty(alloctree) &&
4005 	    range_tree_is_empty(msp->ms_freeing) &&
4006 	    range_tree_is_empty(msp->ms_checkpointing) &&
4007 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
4008 	    txg <= spa_final_dirty_txg(spa)))
4009 		return;
4010 
4011 
4012 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4013 
4014 	/*
4015 	 * The only state that can actually be changing concurrently
4016 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
4017 	 * other thread can be modifying this txg's alloc, freeing,
4018 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4019 	 * could call into the DMU, because the DMU can call down to
4020 	 * us (e.g. via zio_free()) at any time.
4021 	 *
4022 	 * The spa_vdev_remove_thread() can be reading metaslab state
4023 	 * concurrently, and it is locked out by the ms_sync_lock.
4024 	 * Note that the ms_lock is insufficient for this, because it
4025 	 * is dropped by space_map_write().
4026 	 */
4027 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4028 
4029 	/*
4030 	 * Generate a log space map if one doesn't exist already.
4031 	 */
4032 	spa_generate_syncing_log_sm(spa, tx);
4033 
4034 	if (msp->ms_sm == NULL) {
4035 		uint64_t new_object = space_map_alloc(mos,
4036 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4037 		    zfs_metaslab_sm_blksz_with_log :
4038 		    zfs_metaslab_sm_blksz_no_log, tx);
4039 		VERIFY3U(new_object, !=, 0);
4040 
4041 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4042 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4043 
4044 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4045 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4046 		ASSERT(msp->ms_sm != NULL);
4047 
4048 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4049 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4050 		ASSERT0(metaslab_allocated_space(msp));
4051 	}
4052 
4053 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4054 	    vd->vdev_checkpoint_sm == NULL) {
4055 		ASSERT(spa_has_checkpoint(spa));
4056 
4057 		uint64_t new_object = space_map_alloc(mos,
4058 		    zfs_vdev_standard_sm_blksz, tx);
4059 		VERIFY3U(new_object, !=, 0);
4060 
4061 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4062 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4063 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4064 
4065 		/*
4066 		 * We save the space map object as an entry in vdev_top_zap
4067 		 * so it can be retrieved when the pool is reopened after an
4068 		 * export or through zdb.
4069 		 */
4070 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4071 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4072 		    sizeof (new_object), 1, &new_object, tx));
4073 	}
4074 
4075 	mutex_enter(&msp->ms_sync_lock);
4076 	mutex_enter(&msp->ms_lock);
4077 
4078 	/*
4079 	 * Note: metaslab_condense() clears the space map's histogram.
4080 	 * Therefore we must verify and remove this histogram before
4081 	 * condensing.
4082 	 */
4083 	metaslab_group_histogram_verify(mg);
4084 	metaslab_class_histogram_verify(mg->mg_class);
4085 	metaslab_group_histogram_remove(mg, msp);
4086 
4087 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4088 	    metaslab_should_condense(msp))
4089 		metaslab_condense(msp, tx);
4090 
4091 	/*
4092 	 * We'll be going to disk to sync our space accounting, thus we
4093 	 * drop the ms_lock during that time so allocations coming from
4094 	 * open-context (ZIL) for future TXGs do not block.
4095 	 */
4096 	mutex_exit(&msp->ms_lock);
4097 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4098 	if (log_sm != NULL) {
4099 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4100 		if (metaslab_unflushed_txg(msp) == 0)
4101 			metaslab_unflushed_add(msp, tx);
4102 		else if (!metaslab_unflushed_dirty(msp))
4103 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4104 
4105 		space_map_write(log_sm, alloctree, SM_ALLOC,
4106 		    vd->vdev_id, tx);
4107 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4108 		    vd->vdev_id, tx);
4109 		mutex_enter(&msp->ms_lock);
4110 
4111 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4112 		    metaslab_unflushed_changes_memused(msp));
4113 		spa->spa_unflushed_stats.sus_memused -=
4114 		    metaslab_unflushed_changes_memused(msp);
4115 		range_tree_remove_xor_add(alloctree,
4116 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4117 		range_tree_remove_xor_add(msp->ms_freeing,
4118 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4119 		spa->spa_unflushed_stats.sus_memused +=
4120 		    metaslab_unflushed_changes_memused(msp);
4121 	} else {
4122 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4123 
4124 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4125 		    SM_NO_VDEVID, tx);
4126 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4127 		    SM_NO_VDEVID, tx);
4128 		mutex_enter(&msp->ms_lock);
4129 	}
4130 
4131 	msp->ms_allocated_space += range_tree_space(alloctree);
4132 	ASSERT3U(msp->ms_allocated_space, >=,
4133 	    range_tree_space(msp->ms_freeing));
4134 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4135 
4136 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4137 		ASSERT(spa_has_checkpoint(spa));
4138 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4139 
4140 		/*
4141 		 * Since we are doing writes to disk and the ms_checkpointing
4142 		 * tree won't be changing during that time, we drop the
4143 		 * ms_lock while writing to the checkpoint space map, for the
4144 		 * same reason mentioned above.
4145 		 */
4146 		mutex_exit(&msp->ms_lock);
4147 		space_map_write(vd->vdev_checkpoint_sm,
4148 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4149 		mutex_enter(&msp->ms_lock);
4150 
4151 		spa->spa_checkpoint_info.sci_dspace +=
4152 		    range_tree_space(msp->ms_checkpointing);
4153 		vd->vdev_stat.vs_checkpoint_space +=
4154 		    range_tree_space(msp->ms_checkpointing);
4155 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4156 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4157 
4158 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4159 	}
4160 
4161 	if (msp->ms_loaded) {
4162 		/*
4163 		 * When the space map is loaded, we have an accurate
4164 		 * histogram in the range tree. This gives us an opportunity
4165 		 * to bring the space map's histogram up-to-date so we clear
4166 		 * it first before updating it.
4167 		 */
4168 		space_map_histogram_clear(msp->ms_sm);
4169 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4170 
4171 		/*
4172 		 * Since we've cleared the histogram we need to add back
4173 		 * any free space that has already been processed, plus
4174 		 * any deferred space. This allows the on-disk histogram
4175 		 * to accurately reflect all free space even if some space
4176 		 * is not yet available for allocation (i.e. deferred).
4177 		 */
4178 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4179 
4180 		/*
4181 		 * Add back any deferred free space that has not been
4182 		 * added back into the in-core free tree yet. This will
4183 		 * ensure that we don't end up with a space map histogram
4184 		 * that is completely empty unless the metaslab is fully
4185 		 * allocated.
4186 		 */
4187 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4188 			space_map_histogram_add(msp->ms_sm,
4189 			    msp->ms_defer[t], tx);
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * Always add the free space from this sync pass to the space
4195 	 * map histogram. We want to make sure that the on-disk histogram
4196 	 * accounts for all free space. If the space map is not loaded,
4197 	 * then we will lose some accuracy but will correct it the next
4198 	 * time we load the space map.
4199 	 */
4200 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4201 	metaslab_aux_histograms_update(msp);
4202 
4203 	metaslab_group_histogram_add(mg, msp);
4204 	metaslab_group_histogram_verify(mg);
4205 	metaslab_class_histogram_verify(mg->mg_class);
4206 
4207 	/*
4208 	 * For sync pass 1, we avoid traversing this txg's free range tree
4209 	 * and instead will just swap the pointers for freeing and freed.
4210 	 * We can safely do this since the freed_tree is guaranteed to be
4211 	 * empty on the initial pass.
4212 	 *
4213 	 * Keep in mind that even if we are currently using a log spacemap
4214 	 * we want current frees to end up in the ms_allocatable (but not
4215 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4216 	 */
4217 	if (spa_sync_pass(spa) == 1) {
4218 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4219 		ASSERT0(msp->ms_allocated_this_txg);
4220 	} else {
4221 		range_tree_vacate(msp->ms_freeing,
4222 		    range_tree_add, msp->ms_freed);
4223 	}
4224 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4225 	range_tree_vacate(alloctree, NULL, NULL);
4226 
4227 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4228 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4229 	    & TXG_MASK]));
4230 	ASSERT0(range_tree_space(msp->ms_freeing));
4231 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4232 
4233 	mutex_exit(&msp->ms_lock);
4234 
4235 	/*
4236 	 * Verify that the space map object ID has been recorded in the
4237 	 * vdev_ms_array.
4238 	 */
4239 	uint64_t object;
4240 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4241 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4242 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4243 
4244 	mutex_exit(&msp->ms_sync_lock);
4245 	dmu_tx_commit(tx);
4246 }
4247 
4248 static void
4249 metaslab_evict(metaslab_t *msp, uint64_t txg)
4250 {
4251 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4252 		return;
4253 
4254 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4255 		VERIFY0(range_tree_space(
4256 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4257 	}
4258 	if (msp->ms_allocator != -1)
4259 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4260 
4261 	if (!metaslab_debug_unload)
4262 		metaslab_unload(msp);
4263 }
4264 
4265 /*
4266  * Called after a transaction group has completely synced to mark
4267  * all of the metaslab's free space as usable.
4268  */
4269 void
4270 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4271 {
4272 	metaslab_group_t *mg = msp->ms_group;
4273 	vdev_t *vd = mg->mg_vd;
4274 	spa_t *spa = vd->vdev_spa;
4275 	range_tree_t **defer_tree;
4276 	int64_t alloc_delta, defer_delta;
4277 	boolean_t defer_allowed = B_TRUE;
4278 
4279 	ASSERT(!vd->vdev_ishole);
4280 
4281 	mutex_enter(&msp->ms_lock);
4282 
4283 	if (msp->ms_new) {
4284 		/* this is a new metaslab, add its capacity to the vdev */
4285 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4286 
4287 		/* there should be no allocations nor frees at this point */
4288 		VERIFY0(msp->ms_allocated_this_txg);
4289 		VERIFY0(range_tree_space(msp->ms_freed));
4290 	}
4291 
4292 	ASSERT0(range_tree_space(msp->ms_freeing));
4293 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4294 
4295 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4296 
4297 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4298 	    metaslab_class_get_alloc(spa_normal_class(spa));
4299 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4300 		defer_allowed = B_FALSE;
4301 	}
4302 
4303 	defer_delta = 0;
4304 	alloc_delta = msp->ms_allocated_this_txg -
4305 	    range_tree_space(msp->ms_freed);
4306 
4307 	if (defer_allowed) {
4308 		defer_delta = range_tree_space(msp->ms_freed) -
4309 		    range_tree_space(*defer_tree);
4310 	} else {
4311 		defer_delta -= range_tree_space(*defer_tree);
4312 	}
4313 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4314 	    defer_delta, 0);
4315 
4316 	if (spa_syncing_log_sm(spa) == NULL) {
4317 		/*
4318 		 * If there's a metaslab_load() in progress and we don't have
4319 		 * a log space map, it means that we probably wrote to the
4320 		 * metaslab's space map. If this is the case, we need to
4321 		 * make sure that we wait for the load to complete so that we
4322 		 * have a consistent view at the in-core side of the metaslab.
4323 		 */
4324 		metaslab_load_wait(msp);
4325 	} else {
4326 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4327 	}
4328 
4329 	/*
4330 	 * When auto-trimming is enabled, free ranges which are added to
4331 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4332 	 * periodically consumed by the vdev_autotrim_thread() which issues
4333 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4334 	 * can be discarded at any time with the sole consequence of recent
4335 	 * frees not being trimmed.
4336 	 */
4337 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4338 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4339 		if (!defer_allowed) {
4340 			range_tree_walk(msp->ms_freed, range_tree_add,
4341 			    msp->ms_trim);
4342 		}
4343 	} else {
4344 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4345 	}
4346 
4347 	/*
4348 	 * Move the frees from the defer_tree back to the free
4349 	 * range tree (if it's loaded). Swap the freed_tree and
4350 	 * the defer_tree -- this is safe to do because we've
4351 	 * just emptied out the defer_tree.
4352 	 */
4353 	range_tree_vacate(*defer_tree,
4354 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4355 	if (defer_allowed) {
4356 		range_tree_swap(&msp->ms_freed, defer_tree);
4357 	} else {
4358 		range_tree_vacate(msp->ms_freed,
4359 		    msp->ms_loaded ? range_tree_add : NULL,
4360 		    msp->ms_allocatable);
4361 	}
4362 
4363 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4364 
4365 	msp->ms_deferspace += defer_delta;
4366 	ASSERT3S(msp->ms_deferspace, >=, 0);
4367 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4368 	if (msp->ms_deferspace != 0) {
4369 		/*
4370 		 * Keep syncing this metaslab until all deferred frees
4371 		 * are back in circulation.
4372 		 */
4373 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4374 	}
4375 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4376 
4377 	if (msp->ms_new) {
4378 		msp->ms_new = B_FALSE;
4379 		mutex_enter(&mg->mg_lock);
4380 		mg->mg_ms_ready++;
4381 		mutex_exit(&mg->mg_lock);
4382 	}
4383 
4384 	/*
4385 	 * Re-sort metaslab within its group now that we've adjusted
4386 	 * its allocatable space.
4387 	 */
4388 	metaslab_recalculate_weight_and_sort(msp);
4389 
4390 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4391 	ASSERT0(range_tree_space(msp->ms_freeing));
4392 	ASSERT0(range_tree_space(msp->ms_freed));
4393 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4394 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4395 	msp->ms_allocated_this_txg = 0;
4396 	mutex_exit(&msp->ms_lock);
4397 }
4398 
4399 void
4400 metaslab_sync_reassess(metaslab_group_t *mg)
4401 {
4402 	spa_t *spa = mg->mg_class->mc_spa;
4403 
4404 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4405 	metaslab_group_alloc_update(mg);
4406 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4407 
4408 	/*
4409 	 * Preload the next potential metaslabs but only on active
4410 	 * metaslab groups. We can get into a state where the metaslab
4411 	 * is no longer active since we dirty metaslabs as we remove a
4412 	 * a device, thus potentially making the metaslab group eligible
4413 	 * for preloading.
4414 	 */
4415 	if (mg->mg_activation_count > 0) {
4416 		metaslab_group_preload(mg);
4417 	}
4418 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4419 }
4420 
4421 /*
4422  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4423  * the same vdev as an existing DVA of this BP, then try to allocate it
4424  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4425  */
4426 static boolean_t
4427 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4428 {
4429 	uint64_t dva_ms_id;
4430 
4431 	if (DVA_GET_ASIZE(dva) == 0)
4432 		return (B_TRUE);
4433 
4434 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4435 		return (B_TRUE);
4436 
4437 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4438 
4439 	return (msp->ms_id != dva_ms_id);
4440 }
4441 
4442 /*
4443  * ==========================================================================
4444  * Metaslab allocation tracing facility
4445  * ==========================================================================
4446  */
4447 
4448 /*
4449  * Add an allocation trace element to the allocation tracing list.
4450  */
4451 static void
4452 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4453     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4454     int allocator)
4455 {
4456 	metaslab_alloc_trace_t *mat;
4457 
4458 	if (!metaslab_trace_enabled)
4459 		return;
4460 
4461 	/*
4462 	 * When the tracing list reaches its maximum we remove
4463 	 * the second element in the list before adding a new one.
4464 	 * By removing the second element we preserve the original
4465 	 * entry as a clue to what allocations steps have already been
4466 	 * performed.
4467 	 */
4468 	if (zal->zal_size == metaslab_trace_max_entries) {
4469 		metaslab_alloc_trace_t *mat_next;
4470 #ifdef ZFS_DEBUG
4471 		panic("too many entries in allocation list");
4472 #endif
4473 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4474 		zal->zal_size--;
4475 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4476 		list_remove(&zal->zal_list, mat_next);
4477 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4478 	}
4479 
4480 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4481 	list_link_init(&mat->mat_list_node);
4482 	mat->mat_mg = mg;
4483 	mat->mat_msp = msp;
4484 	mat->mat_size = psize;
4485 	mat->mat_dva_id = dva_id;
4486 	mat->mat_offset = offset;
4487 	mat->mat_weight = 0;
4488 	mat->mat_allocator = allocator;
4489 
4490 	if (msp != NULL)
4491 		mat->mat_weight = msp->ms_weight;
4492 
4493 	/*
4494 	 * The list is part of the zio so locking is not required. Only
4495 	 * a single thread will perform allocations for a given zio.
4496 	 */
4497 	list_insert_tail(&zal->zal_list, mat);
4498 	zal->zal_size++;
4499 
4500 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4501 }
4502 
4503 void
4504 metaslab_trace_init(zio_alloc_list_t *zal)
4505 {
4506 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4507 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4508 	zal->zal_size = 0;
4509 }
4510 
4511 void
4512 metaslab_trace_fini(zio_alloc_list_t *zal)
4513 {
4514 	metaslab_alloc_trace_t *mat;
4515 
4516 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4517 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4518 	list_destroy(&zal->zal_list);
4519 	zal->zal_size = 0;
4520 }
4521 
4522 /*
4523  * ==========================================================================
4524  * Metaslab block operations
4525  * ==========================================================================
4526  */
4527 
4528 static void
4529 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4530     int flags, int allocator)
4531 {
4532 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4533 	    (flags & METASLAB_DONT_THROTTLE))
4534 		return;
4535 
4536 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4537 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4538 		return;
4539 
4540 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4541 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4542 }
4543 
4544 static void
4545 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4546 {
4547 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4548 	metaslab_class_allocator_t *mca =
4549 	    &mg->mg_class->mc_allocator[allocator];
4550 	uint64_t max = mg->mg_max_alloc_queue_depth;
4551 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4552 	while (cur < max) {
4553 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4554 		    cur, cur + 1) == cur) {
4555 			atomic_inc_64(&mca->mca_alloc_max_slots);
4556 			return;
4557 		}
4558 		cur = mga->mga_cur_max_alloc_queue_depth;
4559 	}
4560 }
4561 
4562 void
4563 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4564     int flags, int allocator, boolean_t io_complete)
4565 {
4566 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4567 	    (flags & METASLAB_DONT_THROTTLE))
4568 		return;
4569 
4570 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4571 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4572 		return;
4573 
4574 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4575 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4576 	if (io_complete)
4577 		metaslab_group_increment_qdepth(mg, allocator);
4578 }
4579 
4580 void
4581 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4582     int allocator)
4583 {
4584 #ifdef ZFS_DEBUG
4585 	const dva_t *dva = bp->blk_dva;
4586 	int ndvas = BP_GET_NDVAS(bp);
4587 
4588 	for (int d = 0; d < ndvas; d++) {
4589 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4590 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4591 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4592 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4593 	}
4594 #endif
4595 }
4596 
4597 static uint64_t
4598 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4599 {
4600 	uint64_t start;
4601 	range_tree_t *rt = msp->ms_allocatable;
4602 	metaslab_class_t *mc = msp->ms_group->mg_class;
4603 
4604 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4605 	VERIFY(!msp->ms_condensing);
4606 	VERIFY0(msp->ms_disabled);
4607 
4608 	start = mc->mc_ops->msop_alloc(msp, size);
4609 	if (start != -1ULL) {
4610 		metaslab_group_t *mg = msp->ms_group;
4611 		vdev_t *vd = mg->mg_vd;
4612 
4613 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4614 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4615 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4616 		range_tree_remove(rt, start, size);
4617 		range_tree_clear(msp->ms_trim, start, size);
4618 
4619 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4620 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4621 
4622 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4623 		msp->ms_allocating_total += size;
4624 
4625 		/* Track the last successful allocation */
4626 		msp->ms_alloc_txg = txg;
4627 		metaslab_verify_space(msp, txg);
4628 	}
4629 
4630 	/*
4631 	 * Now that we've attempted the allocation we need to update the
4632 	 * metaslab's maximum block size since it may have changed.
4633 	 */
4634 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4635 	return (start);
4636 }
4637 
4638 /*
4639  * Find the metaslab with the highest weight that is less than what we've
4640  * already tried.  In the common case, this means that we will examine each
4641  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4642  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4643  * activated by another thread, and we fail to allocate from the metaslab we
4644  * have selected, we may not try the newly-activated metaslab, and instead
4645  * activate another metaslab.  This is not optimal, but generally does not cause
4646  * any problems (a possible exception being if every metaslab is completely full
4647  * except for the newly-activated metaslab which we fail to examine).
4648  */
4649 static metaslab_t *
4650 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4651     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4652     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4653     boolean_t *was_active)
4654 {
4655 	avl_index_t idx;
4656 	avl_tree_t *t = &mg->mg_metaslab_tree;
4657 	metaslab_t *msp = avl_find(t, search, &idx);
4658 	if (msp == NULL)
4659 		msp = avl_nearest(t, idx, AVL_AFTER);
4660 
4661 	uint_t tries = 0;
4662 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4663 		int i;
4664 
4665 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4666 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4667 			return (NULL);
4668 		}
4669 		tries++;
4670 
4671 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4672 			metaslab_trace_add(zal, mg, msp, asize, d,
4673 			    TRACE_TOO_SMALL, allocator);
4674 			continue;
4675 		}
4676 
4677 		/*
4678 		 * If the selected metaslab is condensing or disabled,
4679 		 * skip it.
4680 		 */
4681 		if (msp->ms_condensing || msp->ms_disabled > 0)
4682 			continue;
4683 
4684 		*was_active = msp->ms_allocator != -1;
4685 		/*
4686 		 * If we're activating as primary, this is our first allocation
4687 		 * from this disk, so we don't need to check how close we are.
4688 		 * If the metaslab under consideration was already active,
4689 		 * we're getting desperate enough to steal another allocator's
4690 		 * metaslab, so we still don't care about distances.
4691 		 */
4692 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4693 			break;
4694 
4695 		for (i = 0; i < d; i++) {
4696 			if (want_unique &&
4697 			    !metaslab_is_unique(msp, &dva[i]))
4698 				break;  /* try another metaslab */
4699 		}
4700 		if (i == d)
4701 			break;
4702 	}
4703 
4704 	if (msp != NULL) {
4705 		search->ms_weight = msp->ms_weight;
4706 		search->ms_start = msp->ms_start + 1;
4707 		search->ms_allocator = msp->ms_allocator;
4708 		search->ms_primary = msp->ms_primary;
4709 	}
4710 	return (msp);
4711 }
4712 
4713 static void
4714 metaslab_active_mask_verify(metaslab_t *msp)
4715 {
4716 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4717 
4718 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4719 		return;
4720 
4721 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4722 		return;
4723 
4724 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4725 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4726 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4727 		VERIFY3S(msp->ms_allocator, !=, -1);
4728 		VERIFY(msp->ms_primary);
4729 		return;
4730 	}
4731 
4732 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4733 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4734 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4735 		VERIFY3S(msp->ms_allocator, !=, -1);
4736 		VERIFY(!msp->ms_primary);
4737 		return;
4738 	}
4739 
4740 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4741 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4742 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4743 		VERIFY3S(msp->ms_allocator, ==, -1);
4744 		return;
4745 	}
4746 }
4747 
4748 static uint64_t
4749 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4750     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4751     int allocator, boolean_t try_hard)
4752 {
4753 	metaslab_t *msp = NULL;
4754 	uint64_t offset = -1ULL;
4755 
4756 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4757 	for (int i = 0; i < d; i++) {
4758 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4759 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4760 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4761 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4762 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4763 			activation_weight = METASLAB_WEIGHT_CLAIM;
4764 			break;
4765 		}
4766 	}
4767 
4768 	/*
4769 	 * If we don't have enough metaslabs active to fill the entire array, we
4770 	 * just use the 0th slot.
4771 	 */
4772 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4773 		allocator = 0;
4774 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4775 
4776 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4777 
4778 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4779 	search->ms_weight = UINT64_MAX;
4780 	search->ms_start = 0;
4781 	/*
4782 	 * At the end of the metaslab tree are the already-active metaslabs,
4783 	 * first the primaries, then the secondaries. When we resume searching
4784 	 * through the tree, we need to consider ms_allocator and ms_primary so
4785 	 * we start in the location right after where we left off, and don't
4786 	 * accidentally loop forever considering the same metaslabs.
4787 	 */
4788 	search->ms_allocator = -1;
4789 	search->ms_primary = B_TRUE;
4790 	for (;;) {
4791 		boolean_t was_active = B_FALSE;
4792 
4793 		mutex_enter(&mg->mg_lock);
4794 
4795 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4796 		    mga->mga_primary != NULL) {
4797 			msp = mga->mga_primary;
4798 
4799 			/*
4800 			 * Even though we don't hold the ms_lock for the
4801 			 * primary metaslab, those fields should not
4802 			 * change while we hold the mg_lock. Thus it is
4803 			 * safe to make assertions on them.
4804 			 */
4805 			ASSERT(msp->ms_primary);
4806 			ASSERT3S(msp->ms_allocator, ==, allocator);
4807 			ASSERT(msp->ms_loaded);
4808 
4809 			was_active = B_TRUE;
4810 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4811 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4812 		    mga->mga_secondary != NULL) {
4813 			msp = mga->mga_secondary;
4814 
4815 			/*
4816 			 * See comment above about the similar assertions
4817 			 * for the primary metaslab.
4818 			 */
4819 			ASSERT(!msp->ms_primary);
4820 			ASSERT3S(msp->ms_allocator, ==, allocator);
4821 			ASSERT(msp->ms_loaded);
4822 
4823 			was_active = B_TRUE;
4824 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4825 		} else {
4826 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4827 			    want_unique, asize, allocator, try_hard, zal,
4828 			    search, &was_active);
4829 		}
4830 
4831 		mutex_exit(&mg->mg_lock);
4832 		if (msp == NULL) {
4833 			kmem_free(search, sizeof (*search));
4834 			return (-1ULL);
4835 		}
4836 		mutex_enter(&msp->ms_lock);
4837 
4838 		metaslab_active_mask_verify(msp);
4839 
4840 		/*
4841 		 * This code is disabled out because of issues with
4842 		 * tracepoints in non-gpl kernel modules.
4843 		 */
4844 #if 0
4845 		DTRACE_PROBE3(ms__activation__attempt,
4846 		    metaslab_t *, msp, uint64_t, activation_weight,
4847 		    boolean_t, was_active);
4848 #endif
4849 
4850 		/*
4851 		 * Ensure that the metaslab we have selected is still
4852 		 * capable of handling our request. It's possible that
4853 		 * another thread may have changed the weight while we
4854 		 * were blocked on the metaslab lock. We check the
4855 		 * active status first to see if we need to set_selected_txg
4856 		 * a new metaslab.
4857 		 */
4858 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4859 			ASSERT3S(msp->ms_allocator, ==, -1);
4860 			mutex_exit(&msp->ms_lock);
4861 			continue;
4862 		}
4863 
4864 		/*
4865 		 * If the metaslab was activated for another allocator
4866 		 * while we were waiting in the ms_lock above, or it's
4867 		 * a primary and we're seeking a secondary (or vice versa),
4868 		 * we go back and select a new metaslab.
4869 		 */
4870 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4871 		    (msp->ms_allocator != -1) &&
4872 		    (msp->ms_allocator != allocator || ((activation_weight ==
4873 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4874 			ASSERT(msp->ms_loaded);
4875 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4876 			    msp->ms_allocator != -1);
4877 			mutex_exit(&msp->ms_lock);
4878 			continue;
4879 		}
4880 
4881 		/*
4882 		 * This metaslab was used for claiming regions allocated
4883 		 * by the ZIL during pool import. Once these regions are
4884 		 * claimed we don't need to keep the CLAIM bit set
4885 		 * anymore. Passivate this metaslab to zero its activation
4886 		 * mask.
4887 		 */
4888 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4889 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4890 			ASSERT(msp->ms_loaded);
4891 			ASSERT3S(msp->ms_allocator, ==, -1);
4892 			metaslab_passivate(msp, msp->ms_weight &
4893 			    ~METASLAB_WEIGHT_CLAIM);
4894 			mutex_exit(&msp->ms_lock);
4895 			continue;
4896 		}
4897 
4898 		metaslab_set_selected_txg(msp, txg);
4899 
4900 		int activation_error =
4901 		    metaslab_activate(msp, allocator, activation_weight);
4902 		metaslab_active_mask_verify(msp);
4903 
4904 		/*
4905 		 * If the metaslab was activated by another thread for
4906 		 * another allocator or activation_weight (EBUSY), or it
4907 		 * failed because another metaslab was assigned as primary
4908 		 * for this allocator (EEXIST) we continue using this
4909 		 * metaslab for our allocation, rather than going on to a
4910 		 * worse metaslab (we waited for that metaslab to be loaded
4911 		 * after all).
4912 		 *
4913 		 * If the activation failed due to an I/O error or ENOSPC we
4914 		 * skip to the next metaslab.
4915 		 */
4916 		boolean_t activated;
4917 		if (activation_error == 0) {
4918 			activated = B_TRUE;
4919 		} else if (activation_error == EBUSY ||
4920 		    activation_error == EEXIST) {
4921 			activated = B_FALSE;
4922 		} else {
4923 			mutex_exit(&msp->ms_lock);
4924 			continue;
4925 		}
4926 		ASSERT(msp->ms_loaded);
4927 
4928 		/*
4929 		 * Now that we have the lock, recheck to see if we should
4930 		 * continue to use this metaslab for this allocation. The
4931 		 * the metaslab is now loaded so metaslab_should_allocate()
4932 		 * can accurately determine if the allocation attempt should
4933 		 * proceed.
4934 		 */
4935 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4936 			/* Passivate this metaslab and select a new one. */
4937 			metaslab_trace_add(zal, mg, msp, asize, d,
4938 			    TRACE_TOO_SMALL, allocator);
4939 			goto next;
4940 		}
4941 
4942 		/*
4943 		 * If this metaslab is currently condensing then pick again
4944 		 * as we can't manipulate this metaslab until it's committed
4945 		 * to disk. If this metaslab is being initialized, we shouldn't
4946 		 * allocate from it since the allocated region might be
4947 		 * overwritten after allocation.
4948 		 */
4949 		if (msp->ms_condensing) {
4950 			metaslab_trace_add(zal, mg, msp, asize, d,
4951 			    TRACE_CONDENSING, allocator);
4952 			if (activated) {
4953 				metaslab_passivate(msp, msp->ms_weight &
4954 				    ~METASLAB_ACTIVE_MASK);
4955 			}
4956 			mutex_exit(&msp->ms_lock);
4957 			continue;
4958 		} else if (msp->ms_disabled > 0) {
4959 			metaslab_trace_add(zal, mg, msp, asize, d,
4960 			    TRACE_DISABLED, allocator);
4961 			if (activated) {
4962 				metaslab_passivate(msp, msp->ms_weight &
4963 				    ~METASLAB_ACTIVE_MASK);
4964 			}
4965 			mutex_exit(&msp->ms_lock);
4966 			continue;
4967 		}
4968 
4969 		offset = metaslab_block_alloc(msp, asize, txg);
4970 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4971 
4972 		if (offset != -1ULL) {
4973 			/* Proactively passivate the metaslab, if needed */
4974 			if (activated)
4975 				metaslab_segment_may_passivate(msp);
4976 			break;
4977 		}
4978 next:
4979 		ASSERT(msp->ms_loaded);
4980 
4981 		/*
4982 		 * This code is disabled out because of issues with
4983 		 * tracepoints in non-gpl kernel modules.
4984 		 */
4985 #if 0
4986 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4987 		    uint64_t, asize);
4988 #endif
4989 
4990 		/*
4991 		 * We were unable to allocate from this metaslab so determine
4992 		 * a new weight for this metaslab. Now that we have loaded
4993 		 * the metaslab we can provide a better hint to the metaslab
4994 		 * selector.
4995 		 *
4996 		 * For space-based metaslabs, we use the maximum block size.
4997 		 * This information is only available when the metaslab
4998 		 * is loaded and is more accurate than the generic free
4999 		 * space weight that was calculated by metaslab_weight().
5000 		 * This information allows us to quickly compare the maximum
5001 		 * available allocation in the metaslab to the allocation
5002 		 * size being requested.
5003 		 *
5004 		 * For segment-based metaslabs, determine the new weight
5005 		 * based on the highest bucket in the range tree. We
5006 		 * explicitly use the loaded segment weight (i.e. the range
5007 		 * tree histogram) since it contains the space that is
5008 		 * currently available for allocation and is accurate
5009 		 * even within a sync pass.
5010 		 */
5011 		uint64_t weight;
5012 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5013 			weight = metaslab_largest_allocatable(msp);
5014 			WEIGHT_SET_SPACEBASED(weight);
5015 		} else {
5016 			weight = metaslab_weight_from_range_tree(msp);
5017 		}
5018 
5019 		if (activated) {
5020 			metaslab_passivate(msp, weight);
5021 		} else {
5022 			/*
5023 			 * For the case where we use the metaslab that is
5024 			 * active for another allocator we want to make
5025 			 * sure that we retain the activation mask.
5026 			 *
5027 			 * Note that we could attempt to use something like
5028 			 * metaslab_recalculate_weight_and_sort() that
5029 			 * retains the activation mask here. That function
5030 			 * uses metaslab_weight() to set the weight though
5031 			 * which is not as accurate as the calculations
5032 			 * above.
5033 			 */
5034 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5035 			metaslab_group_sort(mg, msp, weight);
5036 		}
5037 		metaslab_active_mask_verify(msp);
5038 
5039 		/*
5040 		 * We have just failed an allocation attempt, check
5041 		 * that metaslab_should_allocate() agrees. Otherwise,
5042 		 * we may end up in an infinite loop retrying the same
5043 		 * metaslab.
5044 		 */
5045 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5046 
5047 		mutex_exit(&msp->ms_lock);
5048 	}
5049 	mutex_exit(&msp->ms_lock);
5050 	kmem_free(search, sizeof (*search));
5051 	return (offset);
5052 }
5053 
5054 static uint64_t
5055 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5056     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5057     int allocator, boolean_t try_hard)
5058 {
5059 	uint64_t offset;
5060 	ASSERT(mg->mg_initialized);
5061 
5062 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5063 	    dva, d, allocator, try_hard);
5064 
5065 	mutex_enter(&mg->mg_lock);
5066 	if (offset == -1ULL) {
5067 		mg->mg_failed_allocations++;
5068 		metaslab_trace_add(zal, mg, NULL, asize, d,
5069 		    TRACE_GROUP_FAILURE, allocator);
5070 		if (asize == SPA_GANGBLOCKSIZE) {
5071 			/*
5072 			 * This metaslab group was unable to allocate
5073 			 * the minimum gang block size so it must be out of
5074 			 * space. We must notify the allocation throttle
5075 			 * to start skipping allocation attempts to this
5076 			 * metaslab group until more space becomes available.
5077 			 * Note: this failure cannot be caused by the
5078 			 * allocation throttle since the allocation throttle
5079 			 * is only responsible for skipping devices and
5080 			 * not failing block allocations.
5081 			 */
5082 			mg->mg_no_free_space = B_TRUE;
5083 		}
5084 	}
5085 	mg->mg_allocations++;
5086 	mutex_exit(&mg->mg_lock);
5087 	return (offset);
5088 }
5089 
5090 /*
5091  * Allocate a block for the specified i/o.
5092  */
5093 int
5094 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5095     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5096     zio_alloc_list_t *zal, int allocator)
5097 {
5098 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5099 	metaslab_group_t *mg, *fast_mg, *rotor;
5100 	vdev_t *vd;
5101 	boolean_t try_hard = B_FALSE;
5102 
5103 	ASSERT(!DVA_IS_VALID(&dva[d]));
5104 
5105 	/*
5106 	 * For testing, make some blocks above a certain size be gang blocks.
5107 	 * This will result in more split blocks when using device removal,
5108 	 * and a large number of split blocks coupled with ztest-induced
5109 	 * damage can result in extremely long reconstruction times.  This
5110 	 * will also test spilling from special to normal.
5111 	 */
5112 	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5113 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5114 		    allocator);
5115 		return (SET_ERROR(ENOSPC));
5116 	}
5117 
5118 	/*
5119 	 * Start at the rotor and loop through all mgs until we find something.
5120 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5121 	 * nothing actually breaks if we miss a few updates -- we just won't
5122 	 * allocate quite as evenly.  It all balances out over time.
5123 	 *
5124 	 * If we are doing ditto or log blocks, try to spread them across
5125 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5126 	 * allocated all of our ditto blocks, then try and spread them out on
5127 	 * that vdev as much as possible.  If it turns out to not be possible,
5128 	 * gradually lower our standards until anything becomes acceptable.
5129 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5130 	 * gives us hope of containing our fault domains to something we're
5131 	 * able to reason about.  Otherwise, any two top-level vdev failures
5132 	 * will guarantee the loss of data.  With consecutive allocation,
5133 	 * only two adjacent top-level vdev failures will result in data loss.
5134 	 *
5135 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5136 	 * ourselves on the same vdev as our gang block header.  That
5137 	 * way, we can hope for locality in vdev_cache, plus it makes our
5138 	 * fault domains something tractable.
5139 	 */
5140 	if (hintdva) {
5141 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5142 
5143 		/*
5144 		 * It's possible the vdev we're using as the hint no
5145 		 * longer exists or its mg has been closed (e.g. by
5146 		 * device removal).  Consult the rotor when
5147 		 * all else fails.
5148 		 */
5149 		if (vd != NULL && vd->vdev_mg != NULL) {
5150 			mg = vdev_get_mg(vd, mc);
5151 
5152 			if (flags & METASLAB_HINTBP_AVOID)
5153 				mg = mg->mg_next;
5154 		} else {
5155 			mg = mca->mca_rotor;
5156 		}
5157 	} else if (d != 0) {
5158 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5159 		mg = vd->vdev_mg->mg_next;
5160 	} else if (flags & METASLAB_FASTWRITE) {
5161 		mg = fast_mg = mca->mca_rotor;
5162 
5163 		do {
5164 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5165 			    mg->mg_vd->vdev_pending_fastwrite)
5166 				mg = fast_mg;
5167 		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5168 
5169 	} else {
5170 		ASSERT(mca->mca_rotor != NULL);
5171 		mg = mca->mca_rotor;
5172 	}
5173 
5174 	/*
5175 	 * If the hint put us into the wrong metaslab class, or into a
5176 	 * metaslab group that has been passivated, just follow the rotor.
5177 	 */
5178 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5179 		mg = mca->mca_rotor;
5180 
5181 	rotor = mg;
5182 top:
5183 	do {
5184 		boolean_t allocatable;
5185 
5186 		ASSERT(mg->mg_activation_count == 1);
5187 		vd = mg->mg_vd;
5188 
5189 		/*
5190 		 * Don't allocate from faulted devices.
5191 		 */
5192 		if (try_hard) {
5193 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5194 			allocatable = vdev_allocatable(vd);
5195 			spa_config_exit(spa, SCL_ZIO, FTAG);
5196 		} else {
5197 			allocatable = vdev_allocatable(vd);
5198 		}
5199 
5200 		/*
5201 		 * Determine if the selected metaslab group is eligible
5202 		 * for allocations. If we're ganging then don't allow
5203 		 * this metaslab group to skip allocations since that would
5204 		 * inadvertently return ENOSPC and suspend the pool
5205 		 * even though space is still available.
5206 		 */
5207 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5208 			allocatable = metaslab_group_allocatable(mg, rotor,
5209 			    flags, psize, allocator, d);
5210 		}
5211 
5212 		if (!allocatable) {
5213 			metaslab_trace_add(zal, mg, NULL, psize, d,
5214 			    TRACE_NOT_ALLOCATABLE, allocator);
5215 			goto next;
5216 		}
5217 
5218 		ASSERT(mg->mg_initialized);
5219 
5220 		/*
5221 		 * Avoid writing single-copy data to an unhealthy,
5222 		 * non-redundant vdev, unless we've already tried all
5223 		 * other vdevs.
5224 		 */
5225 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5226 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5227 			metaslab_trace_add(zal, mg, NULL, psize, d,
5228 			    TRACE_VDEV_ERROR, allocator);
5229 			goto next;
5230 		}
5231 
5232 		ASSERT(mg->mg_class == mc);
5233 
5234 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5235 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5236 
5237 		/*
5238 		 * If we don't need to try hard, then require that the
5239 		 * block be on a different metaslab from any other DVAs
5240 		 * in this BP (unique=true).  If we are trying hard, then
5241 		 * allow any metaslab to be used (unique=false).
5242 		 */
5243 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5244 		    !try_hard, dva, d, allocator, try_hard);
5245 
5246 		if (offset != -1ULL) {
5247 			/*
5248 			 * If we've just selected this metaslab group,
5249 			 * figure out whether the corresponding vdev is
5250 			 * over- or under-used relative to the pool,
5251 			 * and set an allocation bias to even it out.
5252 			 *
5253 			 * Bias is also used to compensate for unequally
5254 			 * sized vdevs so that space is allocated fairly.
5255 			 */
5256 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5257 				vdev_stat_t *vs = &vd->vdev_stat;
5258 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5259 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5260 				int64_t ratio;
5261 
5262 				/*
5263 				 * Calculate how much more or less we should
5264 				 * try to allocate from this device during
5265 				 * this iteration around the rotor.
5266 				 *
5267 				 * This basically introduces a zero-centered
5268 				 * bias towards the devices with the most
5269 				 * free space, while compensating for vdev
5270 				 * size differences.
5271 				 *
5272 				 * Examples:
5273 				 *  vdev V1 = 16M/128M
5274 				 *  vdev V2 = 16M/128M
5275 				 *  ratio(V1) = 100% ratio(V2) = 100%
5276 				 *
5277 				 *  vdev V1 = 16M/128M
5278 				 *  vdev V2 = 64M/128M
5279 				 *  ratio(V1) = 127% ratio(V2) =  72%
5280 				 *
5281 				 *  vdev V1 = 16M/128M
5282 				 *  vdev V2 = 64M/512M
5283 				 *  ratio(V1) =  40% ratio(V2) = 160%
5284 				 */
5285 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5286 				    (mc_free + 1);
5287 				mg->mg_bias = ((ratio - 100) *
5288 				    (int64_t)mg->mg_aliquot) / 100;
5289 			} else if (!metaslab_bias_enabled) {
5290 				mg->mg_bias = 0;
5291 			}
5292 
5293 			if ((flags & METASLAB_FASTWRITE) ||
5294 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5295 			    mg->mg_aliquot + mg->mg_bias) {
5296 				mca->mca_rotor = mg->mg_next;
5297 				mca->mca_aliquot = 0;
5298 			}
5299 
5300 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5301 			DVA_SET_OFFSET(&dva[d], offset);
5302 			DVA_SET_GANG(&dva[d],
5303 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5304 			DVA_SET_ASIZE(&dva[d], asize);
5305 
5306 			if (flags & METASLAB_FASTWRITE) {
5307 				atomic_add_64(&vd->vdev_pending_fastwrite,
5308 				    psize);
5309 			}
5310 
5311 			return (0);
5312 		}
5313 next:
5314 		mca->mca_rotor = mg->mg_next;
5315 		mca->mca_aliquot = 0;
5316 	} while ((mg = mg->mg_next) != rotor);
5317 
5318 	/*
5319 	 * If we haven't tried hard, perhaps do so now.
5320 	 */
5321 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5322 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5323 	    psize <= 1 << spa->spa_min_ashift)) {
5324 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5325 		try_hard = B_TRUE;
5326 		goto top;
5327 	}
5328 
5329 	memset(&dva[d], 0, sizeof (dva_t));
5330 
5331 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5332 	return (SET_ERROR(ENOSPC));
5333 }
5334 
5335 void
5336 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5337     boolean_t checkpoint)
5338 {
5339 	metaslab_t *msp;
5340 	spa_t *spa = vd->vdev_spa;
5341 
5342 	ASSERT(vdev_is_concrete(vd));
5343 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5344 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5345 
5346 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5347 
5348 	VERIFY(!msp->ms_condensing);
5349 	VERIFY3U(offset, >=, msp->ms_start);
5350 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5351 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5352 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5353 
5354 	metaslab_check_free_impl(vd, offset, asize);
5355 
5356 	mutex_enter(&msp->ms_lock);
5357 	if (range_tree_is_empty(msp->ms_freeing) &&
5358 	    range_tree_is_empty(msp->ms_checkpointing)) {
5359 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5360 	}
5361 
5362 	if (checkpoint) {
5363 		ASSERT(spa_has_checkpoint(spa));
5364 		range_tree_add(msp->ms_checkpointing, offset, asize);
5365 	} else {
5366 		range_tree_add(msp->ms_freeing, offset, asize);
5367 	}
5368 	mutex_exit(&msp->ms_lock);
5369 }
5370 
5371 void
5372 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5373     uint64_t size, void *arg)
5374 {
5375 	(void) inner_offset;
5376 	boolean_t *checkpoint = arg;
5377 
5378 	ASSERT3P(checkpoint, !=, NULL);
5379 
5380 	if (vd->vdev_ops->vdev_op_remap != NULL)
5381 		vdev_indirect_mark_obsolete(vd, offset, size);
5382 	else
5383 		metaslab_free_impl(vd, offset, size, *checkpoint);
5384 }
5385 
5386 static void
5387 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5388     boolean_t checkpoint)
5389 {
5390 	spa_t *spa = vd->vdev_spa;
5391 
5392 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5393 
5394 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5395 		return;
5396 
5397 	if (spa->spa_vdev_removal != NULL &&
5398 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5399 	    vdev_is_concrete(vd)) {
5400 		/*
5401 		 * Note: we check if the vdev is concrete because when
5402 		 * we complete the removal, we first change the vdev to be
5403 		 * an indirect vdev (in open context), and then (in syncing
5404 		 * context) clear spa_vdev_removal.
5405 		 */
5406 		free_from_removing_vdev(vd, offset, size);
5407 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5408 		vdev_indirect_mark_obsolete(vd, offset, size);
5409 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5410 		    metaslab_free_impl_cb, &checkpoint);
5411 	} else {
5412 		metaslab_free_concrete(vd, offset, size, checkpoint);
5413 	}
5414 }
5415 
5416 typedef struct remap_blkptr_cb_arg {
5417 	blkptr_t *rbca_bp;
5418 	spa_remap_cb_t rbca_cb;
5419 	vdev_t *rbca_remap_vd;
5420 	uint64_t rbca_remap_offset;
5421 	void *rbca_cb_arg;
5422 } remap_blkptr_cb_arg_t;
5423 
5424 static void
5425 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5426     uint64_t size, void *arg)
5427 {
5428 	remap_blkptr_cb_arg_t *rbca = arg;
5429 	blkptr_t *bp = rbca->rbca_bp;
5430 
5431 	/* We can not remap split blocks. */
5432 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5433 		return;
5434 	ASSERT0(inner_offset);
5435 
5436 	if (rbca->rbca_cb != NULL) {
5437 		/*
5438 		 * At this point we know that we are not handling split
5439 		 * blocks and we invoke the callback on the previous
5440 		 * vdev which must be indirect.
5441 		 */
5442 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5443 
5444 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5445 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5446 
5447 		/* set up remap_blkptr_cb_arg for the next call */
5448 		rbca->rbca_remap_vd = vd;
5449 		rbca->rbca_remap_offset = offset;
5450 	}
5451 
5452 	/*
5453 	 * The phys birth time is that of dva[0].  This ensures that we know
5454 	 * when each dva was written, so that resilver can determine which
5455 	 * blocks need to be scrubbed (i.e. those written during the time
5456 	 * the vdev was offline).  It also ensures that the key used in
5457 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5458 	 * we didn't change the phys_birth, a lookup in the ARC for a
5459 	 * remapped BP could find the data that was previously stored at
5460 	 * this vdev + offset.
5461 	 */
5462 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5463 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5464 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5465 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5466 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5467 
5468 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5469 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5470 }
5471 
5472 /*
5473  * If the block pointer contains any indirect DVAs, modify them to refer to
5474  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5475  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5476  * segments in the mapping (i.e. it is a "split block").
5477  *
5478  * If the BP was remapped, calls the callback on the original dva (note the
5479  * callback can be called multiple times if the original indirect DVA refers
5480  * to another indirect DVA, etc).
5481  *
5482  * Returns TRUE if the BP was remapped.
5483  */
5484 boolean_t
5485 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5486 {
5487 	remap_blkptr_cb_arg_t rbca;
5488 
5489 	if (!zfs_remap_blkptr_enable)
5490 		return (B_FALSE);
5491 
5492 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5493 		return (B_FALSE);
5494 
5495 	/*
5496 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5497 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5498 	 */
5499 	if (BP_GET_DEDUP(bp))
5500 		return (B_FALSE);
5501 
5502 	/*
5503 	 * Gang blocks can not be remapped, because
5504 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5505 	 * the BP used to read the gang block header (GBH) being the same
5506 	 * as the DVA[0] that we allocated for the GBH.
5507 	 */
5508 	if (BP_IS_GANG(bp))
5509 		return (B_FALSE);
5510 
5511 	/*
5512 	 * Embedded BP's have no DVA to remap.
5513 	 */
5514 	if (BP_GET_NDVAS(bp) < 1)
5515 		return (B_FALSE);
5516 
5517 	/*
5518 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5519 	 * would no longer know what their phys birth txg is.
5520 	 */
5521 	dva_t *dva = &bp->blk_dva[0];
5522 
5523 	uint64_t offset = DVA_GET_OFFSET(dva);
5524 	uint64_t size = DVA_GET_ASIZE(dva);
5525 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5526 
5527 	if (vd->vdev_ops->vdev_op_remap == NULL)
5528 		return (B_FALSE);
5529 
5530 	rbca.rbca_bp = bp;
5531 	rbca.rbca_cb = callback;
5532 	rbca.rbca_remap_vd = vd;
5533 	rbca.rbca_remap_offset = offset;
5534 	rbca.rbca_cb_arg = arg;
5535 
5536 	/*
5537 	 * remap_blkptr_cb() will be called in order for each level of
5538 	 * indirection, until a concrete vdev is reached or a split block is
5539 	 * encountered. old_vd and old_offset are updated within the callback
5540 	 * as we go from the one indirect vdev to the next one (either concrete
5541 	 * or indirect again) in that order.
5542 	 */
5543 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5544 
5545 	/* Check if the DVA wasn't remapped because it is a split block */
5546 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5547 		return (B_FALSE);
5548 
5549 	return (B_TRUE);
5550 }
5551 
5552 /*
5553  * Undo the allocation of a DVA which happened in the given transaction group.
5554  */
5555 void
5556 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5557 {
5558 	metaslab_t *msp;
5559 	vdev_t *vd;
5560 	uint64_t vdev = DVA_GET_VDEV(dva);
5561 	uint64_t offset = DVA_GET_OFFSET(dva);
5562 	uint64_t size = DVA_GET_ASIZE(dva);
5563 
5564 	ASSERT(DVA_IS_VALID(dva));
5565 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5566 
5567 	if (txg > spa_freeze_txg(spa))
5568 		return;
5569 
5570 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5571 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5572 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5573 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5574 		    (u_longlong_t)size);
5575 		return;
5576 	}
5577 
5578 	ASSERT(!vd->vdev_removing);
5579 	ASSERT(vdev_is_concrete(vd));
5580 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5581 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5582 
5583 	if (DVA_GET_GANG(dva))
5584 		size = vdev_gang_header_asize(vd);
5585 
5586 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5587 
5588 	mutex_enter(&msp->ms_lock);
5589 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5590 	    offset, size);
5591 	msp->ms_allocating_total -= size;
5592 
5593 	VERIFY(!msp->ms_condensing);
5594 	VERIFY3U(offset, >=, msp->ms_start);
5595 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5596 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5597 	    msp->ms_size);
5598 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5599 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5600 	range_tree_add(msp->ms_allocatable, offset, size);
5601 	mutex_exit(&msp->ms_lock);
5602 }
5603 
5604 /*
5605  * Free the block represented by the given DVA.
5606  */
5607 void
5608 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5609 {
5610 	uint64_t vdev = DVA_GET_VDEV(dva);
5611 	uint64_t offset = DVA_GET_OFFSET(dva);
5612 	uint64_t size = DVA_GET_ASIZE(dva);
5613 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5614 
5615 	ASSERT(DVA_IS_VALID(dva));
5616 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5617 
5618 	if (DVA_GET_GANG(dva)) {
5619 		size = vdev_gang_header_asize(vd);
5620 	}
5621 
5622 	metaslab_free_impl(vd, offset, size, checkpoint);
5623 }
5624 
5625 /*
5626  * Reserve some allocation slots. The reservation system must be called
5627  * before we call into the allocator. If there aren't any available slots
5628  * then the I/O will be throttled until an I/O completes and its slots are
5629  * freed up. The function returns true if it was successful in placing
5630  * the reservation.
5631  */
5632 boolean_t
5633 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5634     zio_t *zio, int flags)
5635 {
5636 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5637 	uint64_t max = mca->mca_alloc_max_slots;
5638 
5639 	ASSERT(mc->mc_alloc_throttle_enabled);
5640 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5641 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5642 		/*
5643 		 * The potential race between _count() and _add() is covered
5644 		 * by the allocator lock in most cases, or irrelevant due to
5645 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5646 		 * But even if we assume some other non-existing scenario, the
5647 		 * worst that can happen is few more I/Os get to allocation
5648 		 * earlier, that is not a problem.
5649 		 *
5650 		 * We reserve the slots individually so that we can unreserve
5651 		 * them individually when an I/O completes.
5652 		 */
5653 		zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5654 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5655 		return (B_TRUE);
5656 	}
5657 	return (B_FALSE);
5658 }
5659 
5660 void
5661 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5662     int allocator, zio_t *zio)
5663 {
5664 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5665 
5666 	ASSERT(mc->mc_alloc_throttle_enabled);
5667 	zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5668 }
5669 
5670 static int
5671 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5672     uint64_t txg)
5673 {
5674 	metaslab_t *msp;
5675 	spa_t *spa = vd->vdev_spa;
5676 	int error = 0;
5677 
5678 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5679 		return (SET_ERROR(ENXIO));
5680 
5681 	ASSERT3P(vd->vdev_ms, !=, NULL);
5682 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5683 
5684 	mutex_enter(&msp->ms_lock);
5685 
5686 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5687 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5688 		if (error == EBUSY) {
5689 			ASSERT(msp->ms_loaded);
5690 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5691 			error = 0;
5692 		}
5693 	}
5694 
5695 	if (error == 0 &&
5696 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5697 		error = SET_ERROR(ENOENT);
5698 
5699 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5700 		mutex_exit(&msp->ms_lock);
5701 		return (error);
5702 	}
5703 
5704 	VERIFY(!msp->ms_condensing);
5705 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5706 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5707 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5708 	    msp->ms_size);
5709 	range_tree_remove(msp->ms_allocatable, offset, size);
5710 	range_tree_clear(msp->ms_trim, offset, size);
5711 
5712 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5713 		metaslab_class_t *mc = msp->ms_group->mg_class;
5714 		multilist_sublist_t *mls =
5715 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5716 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5717 			msp->ms_selected_txg = txg;
5718 			multilist_sublist_insert_head(mls, msp);
5719 		}
5720 		multilist_sublist_unlock(mls);
5721 
5722 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5723 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5724 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5725 		    offset, size);
5726 		msp->ms_allocating_total += size;
5727 	}
5728 
5729 	mutex_exit(&msp->ms_lock);
5730 
5731 	return (0);
5732 }
5733 
5734 typedef struct metaslab_claim_cb_arg_t {
5735 	uint64_t	mcca_txg;
5736 	int		mcca_error;
5737 } metaslab_claim_cb_arg_t;
5738 
5739 static void
5740 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5741     uint64_t size, void *arg)
5742 {
5743 	(void) inner_offset;
5744 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5745 
5746 	if (mcca_arg->mcca_error == 0) {
5747 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5748 		    size, mcca_arg->mcca_txg);
5749 	}
5750 }
5751 
5752 int
5753 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5754 {
5755 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5756 		metaslab_claim_cb_arg_t arg;
5757 
5758 		/*
5759 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5760 		 * to detect leaks of mapped space (that are not accounted
5761 		 * for in the obsolete counts, spacemap, or bpobj).
5762 		 */
5763 		ASSERT(!spa_writeable(vd->vdev_spa));
5764 		arg.mcca_error = 0;
5765 		arg.mcca_txg = txg;
5766 
5767 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5768 		    metaslab_claim_impl_cb, &arg);
5769 
5770 		if (arg.mcca_error == 0) {
5771 			arg.mcca_error = metaslab_claim_concrete(vd,
5772 			    offset, size, txg);
5773 		}
5774 		return (arg.mcca_error);
5775 	} else {
5776 		return (metaslab_claim_concrete(vd, offset, size, txg));
5777 	}
5778 }
5779 
5780 /*
5781  * Intent log support: upon opening the pool after a crash, notify the SPA
5782  * of blocks that the intent log has allocated for immediate write, but
5783  * which are still considered free by the SPA because the last transaction
5784  * group didn't commit yet.
5785  */
5786 static int
5787 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5788 {
5789 	uint64_t vdev = DVA_GET_VDEV(dva);
5790 	uint64_t offset = DVA_GET_OFFSET(dva);
5791 	uint64_t size = DVA_GET_ASIZE(dva);
5792 	vdev_t *vd;
5793 
5794 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5795 		return (SET_ERROR(ENXIO));
5796 	}
5797 
5798 	ASSERT(DVA_IS_VALID(dva));
5799 
5800 	if (DVA_GET_GANG(dva))
5801 		size = vdev_gang_header_asize(vd);
5802 
5803 	return (metaslab_claim_impl(vd, offset, size, txg));
5804 }
5805 
5806 int
5807 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5808     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5809     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5810 {
5811 	dva_t *dva = bp->blk_dva;
5812 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5813 	int error = 0;
5814 
5815 	ASSERT(bp->blk_birth == 0);
5816 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5817 
5818 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5819 
5820 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5821 		/* no vdevs in this class */
5822 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5823 		return (SET_ERROR(ENOSPC));
5824 	}
5825 
5826 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5827 	ASSERT(BP_GET_NDVAS(bp) == 0);
5828 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5829 	ASSERT3P(zal, !=, NULL);
5830 
5831 	for (int d = 0; d < ndvas; d++) {
5832 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5833 		    txg, flags, zal, allocator);
5834 		if (error != 0) {
5835 			for (d--; d >= 0; d--) {
5836 				metaslab_unalloc_dva(spa, &dva[d], txg);
5837 				metaslab_group_alloc_decrement(spa,
5838 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5839 				    allocator, B_FALSE);
5840 				memset(&dva[d], 0, sizeof (dva_t));
5841 			}
5842 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5843 			return (error);
5844 		} else {
5845 			/*
5846 			 * Update the metaslab group's queue depth
5847 			 * based on the newly allocated dva.
5848 			 */
5849 			metaslab_group_alloc_increment(spa,
5850 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5851 		}
5852 	}
5853 	ASSERT(error == 0);
5854 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5855 
5856 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5857 
5858 	BP_SET_BIRTH(bp, txg, 0);
5859 
5860 	return (0);
5861 }
5862 
5863 void
5864 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5865 {
5866 	const dva_t *dva = bp->blk_dva;
5867 	int ndvas = BP_GET_NDVAS(bp);
5868 
5869 	ASSERT(!BP_IS_HOLE(bp));
5870 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5871 
5872 	/*
5873 	 * If we have a checkpoint for the pool we need to make sure that
5874 	 * the blocks that we free that are part of the checkpoint won't be
5875 	 * reused until the checkpoint is discarded or we revert to it.
5876 	 *
5877 	 * The checkpoint flag is passed down the metaslab_free code path
5878 	 * and is set whenever we want to add a block to the checkpoint's
5879 	 * accounting. That is, we "checkpoint" blocks that existed at the
5880 	 * time the checkpoint was created and are therefore referenced by
5881 	 * the checkpointed uberblock.
5882 	 *
5883 	 * Note that, we don't checkpoint any blocks if the current
5884 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5885 	 * normally as they will be referenced by the checkpointed uberblock.
5886 	 */
5887 	boolean_t checkpoint = B_FALSE;
5888 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5889 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5890 		/*
5891 		 * At this point, if the block is part of the checkpoint
5892 		 * there is no way it was created in the current txg.
5893 		 */
5894 		ASSERT(!now);
5895 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5896 		checkpoint = B_TRUE;
5897 	}
5898 
5899 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5900 
5901 	for (int d = 0; d < ndvas; d++) {
5902 		if (now) {
5903 			metaslab_unalloc_dva(spa, &dva[d], txg);
5904 		} else {
5905 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5906 			metaslab_free_dva(spa, &dva[d], checkpoint);
5907 		}
5908 	}
5909 
5910 	spa_config_exit(spa, SCL_FREE, FTAG);
5911 }
5912 
5913 int
5914 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5915 {
5916 	const dva_t *dva = bp->blk_dva;
5917 	int ndvas = BP_GET_NDVAS(bp);
5918 	int error = 0;
5919 
5920 	ASSERT(!BP_IS_HOLE(bp));
5921 
5922 	if (txg != 0) {
5923 		/*
5924 		 * First do a dry run to make sure all DVAs are claimable,
5925 		 * so we don't have to unwind from partial failures below.
5926 		 */
5927 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5928 			return (error);
5929 	}
5930 
5931 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5932 
5933 	for (int d = 0; d < ndvas; d++) {
5934 		error = metaslab_claim_dva(spa, &dva[d], txg);
5935 		if (error != 0)
5936 			break;
5937 	}
5938 
5939 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5940 
5941 	ASSERT(error == 0 || txg == 0);
5942 
5943 	return (error);
5944 }
5945 
5946 void
5947 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5948 {
5949 	const dva_t *dva = bp->blk_dva;
5950 	int ndvas = BP_GET_NDVAS(bp);
5951 	uint64_t psize = BP_GET_PSIZE(bp);
5952 	int d;
5953 	vdev_t *vd;
5954 
5955 	ASSERT(!BP_IS_HOLE(bp));
5956 	ASSERT(!BP_IS_EMBEDDED(bp));
5957 	ASSERT(psize > 0);
5958 
5959 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5960 
5961 	for (d = 0; d < ndvas; d++) {
5962 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5963 			continue;
5964 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5965 	}
5966 
5967 	spa_config_exit(spa, SCL_VDEV, FTAG);
5968 }
5969 
5970 void
5971 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5972 {
5973 	const dva_t *dva = bp->blk_dva;
5974 	int ndvas = BP_GET_NDVAS(bp);
5975 	uint64_t psize = BP_GET_PSIZE(bp);
5976 	int d;
5977 	vdev_t *vd;
5978 
5979 	ASSERT(!BP_IS_HOLE(bp));
5980 	ASSERT(!BP_IS_EMBEDDED(bp));
5981 	ASSERT(psize > 0);
5982 
5983 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5984 
5985 	for (d = 0; d < ndvas; d++) {
5986 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5987 			continue;
5988 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5989 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5990 	}
5991 
5992 	spa_config_exit(spa, SCL_VDEV, FTAG);
5993 }
5994 
5995 static void
5996 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5997     uint64_t size, void *arg)
5998 {
5999 	(void) inner, (void) arg;
6000 
6001 	if (vd->vdev_ops == &vdev_indirect_ops)
6002 		return;
6003 
6004 	metaslab_check_free_impl(vd, offset, size);
6005 }
6006 
6007 static void
6008 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6009 {
6010 	metaslab_t *msp;
6011 	spa_t *spa __maybe_unused = vd->vdev_spa;
6012 
6013 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6014 		return;
6015 
6016 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6017 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6018 		    metaslab_check_free_impl_cb, NULL);
6019 		return;
6020 	}
6021 
6022 	ASSERT(vdev_is_concrete(vd));
6023 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6024 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6025 
6026 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6027 
6028 	mutex_enter(&msp->ms_lock);
6029 	if (msp->ms_loaded) {
6030 		range_tree_verify_not_present(msp->ms_allocatable,
6031 		    offset, size);
6032 	}
6033 
6034 	/*
6035 	 * Check all segments that currently exist in the freeing pipeline.
6036 	 *
6037 	 * It would intuitively make sense to also check the current allocating
6038 	 * tree since metaslab_unalloc_dva() exists for extents that are
6039 	 * allocated and freed in the same sync pass within the same txg.
6040 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6041 	 * segment but then we free part of it within the same txg
6042 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6043 	 * current allocating tree.
6044 	 */
6045 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6046 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6047 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6048 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6049 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6050 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6051 	mutex_exit(&msp->ms_lock);
6052 }
6053 
6054 void
6055 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6056 {
6057 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6058 		return;
6059 
6060 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6061 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6062 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6063 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6064 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6065 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6066 
6067 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6068 			size = vdev_gang_header_asize(vd);
6069 
6070 		ASSERT3P(vd, !=, NULL);
6071 
6072 		metaslab_check_free_impl(vd, offset, size);
6073 	}
6074 	spa_config_exit(spa, SCL_VDEV, FTAG);
6075 }
6076 
6077 static void
6078 metaslab_group_disable_wait(metaslab_group_t *mg)
6079 {
6080 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6081 	while (mg->mg_disabled_updating) {
6082 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6083 	}
6084 }
6085 
6086 static void
6087 metaslab_group_disabled_increment(metaslab_group_t *mg)
6088 {
6089 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6090 	ASSERT(mg->mg_disabled_updating);
6091 
6092 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6093 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6094 	}
6095 	mg->mg_ms_disabled++;
6096 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6097 }
6098 
6099 /*
6100  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6101  * We must also track how many metaslabs are currently disabled within a
6102  * metaslab group and limit them to prevent allocation failures from
6103  * occurring because all metaslabs are disabled.
6104  */
6105 void
6106 metaslab_disable(metaslab_t *msp)
6107 {
6108 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6109 	metaslab_group_t *mg = msp->ms_group;
6110 
6111 	mutex_enter(&mg->mg_ms_disabled_lock);
6112 
6113 	/*
6114 	 * To keep an accurate count of how many threads have disabled
6115 	 * a specific metaslab group, we only allow one thread to mark
6116 	 * the metaslab group at a time. This ensures that the value of
6117 	 * ms_disabled will be accurate when we decide to mark a metaslab
6118 	 * group as disabled. To do this we force all other threads
6119 	 * to wait till the metaslab's mg_disabled_updating flag is no
6120 	 * longer set.
6121 	 */
6122 	metaslab_group_disable_wait(mg);
6123 	mg->mg_disabled_updating = B_TRUE;
6124 	if (msp->ms_disabled == 0) {
6125 		metaslab_group_disabled_increment(mg);
6126 	}
6127 	mutex_enter(&msp->ms_lock);
6128 	msp->ms_disabled++;
6129 	mutex_exit(&msp->ms_lock);
6130 
6131 	mg->mg_disabled_updating = B_FALSE;
6132 	cv_broadcast(&mg->mg_ms_disabled_cv);
6133 	mutex_exit(&mg->mg_ms_disabled_lock);
6134 }
6135 
6136 void
6137 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6138 {
6139 	metaslab_group_t *mg = msp->ms_group;
6140 	spa_t *spa = mg->mg_vd->vdev_spa;
6141 
6142 	/*
6143 	 * Wait for the outstanding IO to be synced to prevent newly
6144 	 * allocated blocks from being overwritten.  This used by
6145 	 * initialize and TRIM which are modifying unallocated space.
6146 	 */
6147 	if (sync)
6148 		txg_wait_synced(spa_get_dsl(spa), 0);
6149 
6150 	mutex_enter(&mg->mg_ms_disabled_lock);
6151 	mutex_enter(&msp->ms_lock);
6152 	if (--msp->ms_disabled == 0) {
6153 		mg->mg_ms_disabled--;
6154 		cv_broadcast(&mg->mg_ms_disabled_cv);
6155 		if (unload)
6156 			metaslab_unload(msp);
6157 	}
6158 	mutex_exit(&msp->ms_lock);
6159 	mutex_exit(&mg->mg_ms_disabled_lock);
6160 }
6161 
6162 void
6163 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6164 {
6165 	ms->ms_unflushed_dirty = dirty;
6166 }
6167 
6168 static void
6169 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6170 {
6171 	vdev_t *vd = ms->ms_group->mg_vd;
6172 	spa_t *spa = vd->vdev_spa;
6173 	objset_t *mos = spa_meta_objset(spa);
6174 
6175 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6176 
6177 	metaslab_unflushed_phys_t entry = {
6178 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6179 	};
6180 	uint64_t entry_size = sizeof (entry);
6181 	uint64_t entry_offset = ms->ms_id * entry_size;
6182 
6183 	uint64_t object = 0;
6184 	int err = zap_lookup(mos, vd->vdev_top_zap,
6185 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6186 	    &object);
6187 	if (err == ENOENT) {
6188 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6189 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6190 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6191 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6192 		    &object, tx));
6193 	} else {
6194 		VERIFY0(err);
6195 	}
6196 
6197 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6198 	    &entry, tx);
6199 }
6200 
6201 void
6202 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6203 {
6204 	ms->ms_unflushed_txg = txg;
6205 	metaslab_update_ondisk_flush_data(ms, tx);
6206 }
6207 
6208 boolean_t
6209 metaslab_unflushed_dirty(metaslab_t *ms)
6210 {
6211 	return (ms->ms_unflushed_dirty);
6212 }
6213 
6214 uint64_t
6215 metaslab_unflushed_txg(metaslab_t *ms)
6216 {
6217 	return (ms->ms_unflushed_txg);
6218 }
6219 
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6221 	"Allocation granularity (a.k.a. stripe size)");
6222 
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6224 	"Load all metaslabs when pool is first opened");
6225 
6226 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6227 	"Prevent metaslabs from being unloaded");
6228 
6229 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6230 	"Preload potential metaslabs during reassessment");
6231 
6232 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6233 	"Delay in txgs after metaslab was last used before unloading");
6234 
6235 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6236 	"Delay in milliseconds after metaslab was last used before unloading");
6237 
6238 /* BEGIN CSTYLED */
6239 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6240 	"Percentage of metaslab group size that should be free to make it "
6241 	"eligible for allocation");
6242 
6243 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6244 	"Percentage of metaslab group size that should be considered eligible "
6245 	"for allocations unless all metaslab groups within the metaslab class "
6246 	"have also crossed this threshold");
6247 
6248 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6249 	ZMOD_RW,
6250 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6251 /* END CSTYLED */
6252 
6253 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6254 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6255 
6256 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6257 	"Prefer metaslabs with lower LBAs");
6258 
6259 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6260 	"Enable metaslab group biasing");
6261 
6262 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6263 	ZMOD_RW, "Enable segment-based metaslab selection");
6264 
6265 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6266 	"Segment-based metaslab selection maximum buckets before switching");
6267 
6268 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6269 	"Blocks larger than this size are forced to be gang blocks");
6270 
6271 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6272 	"Max distance (bytes) to search forward before using size tree");
6273 
6274 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6275 	"When looking in size tree, use largest segment instead of exact fit");
6276 
6277 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6278 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6279 
6280 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6281 	"Percentage of memory that can be used to store metaslab range trees");
6282 
6283 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6284 	ZMOD_RW, "Try hard to allocate before ganging");
6285 
6286 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6287 	"Normally only consider this many of the best metaslabs in each vdev");
6288