1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = 0; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 int metaslab_debug_unload = 0; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 int metaslab_unload_delay = 32; 219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 int zfs_metaslab_mem_limit = 25; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(&mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = &mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 903 metaslab_group_alloc_update(mg); 904 905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 906 mg->mg_prev = mg; 907 mg->mg_next = mg; 908 } else { 909 mgnext = mgprev->mg_next; 910 mg->mg_prev = mgprev; 911 mg->mg_next = mgnext; 912 mgprev->mg_next = mg; 913 mgnext->mg_prev = mg; 914 } 915 for (int i = 0; i < spa->spa_alloc_count; i++) { 916 mc->mc_allocator[i].mca_rotor = mg; 917 mg = mg->mg_next; 918 } 919 } 920 921 /* 922 * Passivate a metaslab group and remove it from the allocation rotor. 923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 924 * a metaslab group. This function will momentarily drop spa_config_locks 925 * that are lower than the SCL_ALLOC lock (see comment below). 926 */ 927 void 928 metaslab_group_passivate(metaslab_group_t *mg) 929 { 930 metaslab_class_t *mc = mg->mg_class; 931 spa_t *spa = mc->mc_spa; 932 metaslab_group_t *mgprev, *mgnext; 933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 934 935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 936 (SCL_ALLOC | SCL_ZIO)); 937 938 if (--mg->mg_activation_count != 0) { 939 for (int i = 0; i < spa->spa_alloc_count; i++) 940 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 941 ASSERT(mg->mg_prev == NULL); 942 ASSERT(mg->mg_next == NULL); 943 ASSERT(mg->mg_activation_count < 0); 944 return; 945 } 946 947 /* 948 * The spa_config_lock is an array of rwlocks, ordered as 949 * follows (from highest to lowest): 950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 951 * SCL_ZIO > SCL_FREE > SCL_VDEV 952 * (For more information about the spa_config_lock see spa_misc.c) 953 * The higher the lock, the broader its coverage. When we passivate 954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 955 * config locks. However, the metaslab group's taskq might be trying 956 * to preload metaslabs so we must drop the SCL_ZIO lock and any 957 * lower locks to allow the I/O to complete. At a minimum, 958 * we continue to hold the SCL_ALLOC lock, which prevents any future 959 * allocations from taking place and any changes to the vdev tree. 960 */ 961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 962 taskq_wait_outstanding(mg->mg_taskq, 0); 963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 964 metaslab_group_alloc_update(mg); 965 for (int i = 0; i < mg->mg_allocators; i++) { 966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 967 metaslab_t *msp = mga->mga_primary; 968 if (msp != NULL) { 969 mutex_enter(&msp->ms_lock); 970 metaslab_passivate(msp, 971 metaslab_weight_from_range_tree(msp)); 972 mutex_exit(&msp->ms_lock); 973 } 974 msp = mga->mga_secondary; 975 if (msp != NULL) { 976 mutex_enter(&msp->ms_lock); 977 metaslab_passivate(msp, 978 metaslab_weight_from_range_tree(msp)); 979 mutex_exit(&msp->ms_lock); 980 } 981 } 982 983 mgprev = mg->mg_prev; 984 mgnext = mg->mg_next; 985 986 if (mg == mgnext) { 987 mgnext = NULL; 988 } else { 989 mgprev->mg_next = mgnext; 990 mgnext->mg_prev = mgprev; 991 } 992 for (int i = 0; i < spa->spa_alloc_count; i++) { 993 if (mc->mc_allocator[i].mca_rotor == mg) 994 mc->mc_allocator[i].mca_rotor = mgnext; 995 } 996 997 mg->mg_prev = NULL; 998 mg->mg_next = NULL; 999 } 1000 1001 boolean_t 1002 metaslab_group_initialized(metaslab_group_t *mg) 1003 { 1004 vdev_t *vd = mg->mg_vd; 1005 vdev_stat_t *vs = &vd->vdev_stat; 1006 1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1008 } 1009 1010 uint64_t 1011 metaslab_group_get_space(metaslab_group_t *mg) 1012 { 1013 /* 1014 * Note that the number of nodes in mg_metaslab_tree may be one less 1015 * than vdev_ms_count, due to the embedded log metaslab. 1016 */ 1017 mutex_enter(&mg->mg_lock); 1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1019 mutex_exit(&mg->mg_lock); 1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1021 } 1022 1023 void 1024 metaslab_group_histogram_verify(metaslab_group_t *mg) 1025 { 1026 uint64_t *mg_hist; 1027 avl_tree_t *t = &mg->mg_metaslab_tree; 1028 uint64_t ashift = mg->mg_vd->vdev_ashift; 1029 1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1031 return; 1032 1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1034 KM_SLEEP); 1035 1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1037 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1038 1039 mutex_enter(&mg->mg_lock); 1040 for (metaslab_t *msp = avl_first(t); 1041 msp != NULL; msp = AVL_NEXT(t, msp)) { 1042 VERIFY3P(msp->ms_group, ==, mg); 1043 /* skip if not active */ 1044 if (msp->ms_sm == NULL) 1045 continue; 1046 1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1048 mg_hist[i + ashift] += 1049 msp->ms_sm->sm_phys->smp_histogram[i]; 1050 } 1051 } 1052 1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1055 1056 mutex_exit(&mg->mg_lock); 1057 1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1059 } 1060 1061 static void 1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1063 { 1064 metaslab_class_t *mc = mg->mg_class; 1065 uint64_t ashift = mg->mg_vd->vdev_ashift; 1066 1067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1068 if (msp->ms_sm == NULL) 1069 return; 1070 1071 mutex_enter(&mg->mg_lock); 1072 mutex_enter(&mc->mc_lock); 1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1074 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1076 mg->mg_histogram[i + ashift] += 1077 msp->ms_sm->sm_phys->smp_histogram[i]; 1078 mc->mc_histogram[i + ashift] += 1079 msp->ms_sm->sm_phys->smp_histogram[i]; 1080 } 1081 mutex_exit(&mc->mc_lock); 1082 mutex_exit(&mg->mg_lock); 1083 } 1084 1085 void 1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 metaslab_class_t *mc = mg->mg_class; 1089 uint64_t ashift = mg->mg_vd->vdev_ashift; 1090 1091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1092 if (msp->ms_sm == NULL) 1093 return; 1094 1095 mutex_enter(&mg->mg_lock); 1096 mutex_enter(&mc->mc_lock); 1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1098 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1099 msp->ms_sm->sm_phys->smp_histogram[i]); 1100 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1101 msp->ms_sm->sm_phys->smp_histogram[i]); 1102 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1104 1105 mg->mg_histogram[i + ashift] -= 1106 msp->ms_sm->sm_phys->smp_histogram[i]; 1107 mc->mc_histogram[i + ashift] -= 1108 msp->ms_sm->sm_phys->smp_histogram[i]; 1109 } 1110 mutex_exit(&mc->mc_lock); 1111 mutex_exit(&mg->mg_lock); 1112 } 1113 1114 static void 1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1116 { 1117 ASSERT(msp->ms_group == NULL); 1118 mutex_enter(&mg->mg_lock); 1119 msp->ms_group = mg; 1120 msp->ms_weight = 0; 1121 avl_add(&mg->mg_metaslab_tree, msp); 1122 mutex_exit(&mg->mg_lock); 1123 1124 mutex_enter(&msp->ms_lock); 1125 metaslab_group_histogram_add(mg, msp); 1126 mutex_exit(&msp->ms_lock); 1127 } 1128 1129 static void 1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1131 { 1132 mutex_enter(&msp->ms_lock); 1133 metaslab_group_histogram_remove(mg, msp); 1134 mutex_exit(&msp->ms_lock); 1135 1136 mutex_enter(&mg->mg_lock); 1137 ASSERT(msp->ms_group == mg); 1138 avl_remove(&mg->mg_metaslab_tree, msp); 1139 1140 metaslab_class_t *mc = msp->ms_group->mg_class; 1141 multilist_sublist_t *mls = 1142 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1143 if (multilist_link_active(&msp->ms_class_txg_node)) 1144 multilist_sublist_remove(mls, msp); 1145 multilist_sublist_unlock(mls); 1146 1147 msp->ms_group = NULL; 1148 mutex_exit(&mg->mg_lock); 1149 } 1150 1151 static void 1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1153 { 1154 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1155 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1156 ASSERT(msp->ms_group == mg); 1157 1158 avl_remove(&mg->mg_metaslab_tree, msp); 1159 msp->ms_weight = weight; 1160 avl_add(&mg->mg_metaslab_tree, msp); 1161 1162 } 1163 1164 static void 1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1166 { 1167 /* 1168 * Although in principle the weight can be any value, in 1169 * practice we do not use values in the range [1, 511]. 1170 */ 1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1172 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1173 1174 mutex_enter(&mg->mg_lock); 1175 metaslab_group_sort_impl(mg, msp, weight); 1176 mutex_exit(&mg->mg_lock); 1177 } 1178 1179 /* 1180 * Calculate the fragmentation for a given metaslab group. We can use 1181 * a simple average here since all metaslabs within the group must have 1182 * the same size. The return value will be a value between 0 and 100 1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1184 * group have a fragmentation metric. 1185 */ 1186 uint64_t 1187 metaslab_group_fragmentation(metaslab_group_t *mg) 1188 { 1189 vdev_t *vd = mg->mg_vd; 1190 uint64_t fragmentation = 0; 1191 uint64_t valid_ms = 0; 1192 1193 for (int m = 0; m < vd->vdev_ms_count; m++) { 1194 metaslab_t *msp = vd->vdev_ms[m]; 1195 1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1197 continue; 1198 if (msp->ms_group != mg) 1199 continue; 1200 1201 valid_ms++; 1202 fragmentation += msp->ms_fragmentation; 1203 } 1204 1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1206 return (ZFS_FRAG_INVALID); 1207 1208 fragmentation /= valid_ms; 1209 ASSERT3U(fragmentation, <=, 100); 1210 return (fragmentation); 1211 } 1212 1213 /* 1214 * Determine if a given metaslab group should skip allocations. A metaslab 1215 * group should avoid allocations if its free capacity is less than the 1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1218 * that can still handle allocations. If the allocation throttle is enabled 1219 * then we skip allocations to devices that have reached their maximum 1220 * allocation queue depth unless the selected metaslab group is the only 1221 * eligible group remaining. 1222 */ 1223 static boolean_t 1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1225 uint64_t psize, int allocator, int d) 1226 { 1227 spa_t *spa = mg->mg_vd->vdev_spa; 1228 metaslab_class_t *mc = mg->mg_class; 1229 1230 /* 1231 * We can only consider skipping this metaslab group if it's 1232 * in the normal metaslab class and there are other metaslab 1233 * groups to select from. Otherwise, we always consider it eligible 1234 * for allocations. 1235 */ 1236 if ((mc != spa_normal_class(spa) && 1237 mc != spa_special_class(spa) && 1238 mc != spa_dedup_class(spa)) || 1239 mc->mc_groups <= 1) 1240 return (B_TRUE); 1241 1242 /* 1243 * If the metaslab group's mg_allocatable flag is set (see comments 1244 * in metaslab_group_alloc_update() for more information) and 1245 * the allocation throttle is disabled then allow allocations to this 1246 * device. However, if the allocation throttle is enabled then 1247 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1248 * to determine if we should allow allocations to this metaslab group. 1249 * If all metaslab groups are no longer considered allocatable 1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1251 * gang block size then we allow allocations on this metaslab group 1252 * regardless of the mg_allocatable or throttle settings. 1253 */ 1254 if (mg->mg_allocatable) { 1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1256 int64_t qdepth; 1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1258 1259 if (!mc->mc_alloc_throttle_enabled) 1260 return (B_TRUE); 1261 1262 /* 1263 * If this metaslab group does not have any free space, then 1264 * there is no point in looking further. 1265 */ 1266 if (mg->mg_no_free_space) 1267 return (B_FALSE); 1268 1269 /* 1270 * Relax allocation throttling for ditto blocks. Due to 1271 * random imbalances in allocation it tends to push copies 1272 * to one vdev, that looks a bit better at the moment. 1273 */ 1274 qmax = qmax * (4 + d) / 4; 1275 1276 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1277 1278 /* 1279 * If this metaslab group is below its qmax or it's 1280 * the only allocatable metasable group, then attempt 1281 * to allocate from it. 1282 */ 1283 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1284 return (B_TRUE); 1285 ASSERT3U(mc->mc_alloc_groups, >, 1); 1286 1287 /* 1288 * Since this metaslab group is at or over its qmax, we 1289 * need to determine if there are metaslab groups after this 1290 * one that might be able to handle this allocation. This is 1291 * racy since we can't hold the locks for all metaslab 1292 * groups at the same time when we make this check. 1293 */ 1294 for (metaslab_group_t *mgp = mg->mg_next; 1295 mgp != rotor; mgp = mgp->mg_next) { 1296 metaslab_group_allocator_t *mgap = 1297 &mgp->mg_allocator[allocator]; 1298 qmax = mgap->mga_cur_max_alloc_queue_depth; 1299 qmax = qmax * (4 + d) / 4; 1300 qdepth = 1301 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1302 1303 /* 1304 * If there is another metaslab group that 1305 * might be able to handle the allocation, then 1306 * we return false so that we skip this group. 1307 */ 1308 if (qdepth < qmax && !mgp->mg_no_free_space) 1309 return (B_FALSE); 1310 } 1311 1312 /* 1313 * We didn't find another group to handle the allocation 1314 * so we can't skip this metaslab group even though 1315 * we are at or over our qmax. 1316 */ 1317 return (B_TRUE); 1318 1319 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1320 return (B_TRUE); 1321 } 1322 return (B_FALSE); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Range tree callbacks 1328 * ========================================================================== 1329 */ 1330 1331 /* 1332 * Comparison function for the private size-ordered tree using 32-bit 1333 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1334 */ 1335 static int 1336 metaslab_rangesize32_compare(const void *x1, const void *x2) 1337 { 1338 const range_seg32_t *r1 = x1; 1339 const range_seg32_t *r2 = x2; 1340 1341 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1342 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1343 1344 int cmp = TREE_CMP(rs_size1, rs_size2); 1345 if (likely(cmp)) 1346 return (cmp); 1347 1348 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1349 } 1350 1351 /* 1352 * Comparison function for the private size-ordered tree using 64-bit 1353 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1354 */ 1355 static int 1356 metaslab_rangesize64_compare(const void *x1, const void *x2) 1357 { 1358 const range_seg64_t *r1 = x1; 1359 const range_seg64_t *r2 = x2; 1360 1361 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1362 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1363 1364 int cmp = TREE_CMP(rs_size1, rs_size2); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1369 } 1370 typedef struct metaslab_rt_arg { 1371 zfs_btree_t *mra_bt; 1372 uint32_t mra_floor_shift; 1373 } metaslab_rt_arg_t; 1374 1375 struct mssa_arg { 1376 range_tree_t *rt; 1377 metaslab_rt_arg_t *mra; 1378 }; 1379 1380 static void 1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1382 { 1383 struct mssa_arg *mssap = arg; 1384 range_tree_t *rt = mssap->rt; 1385 metaslab_rt_arg_t *mrap = mssap->mra; 1386 range_seg_max_t seg = {0}; 1387 rs_set_start(&seg, rt, start); 1388 rs_set_end(&seg, rt, start + size); 1389 metaslab_rt_add(rt, &seg, mrap); 1390 } 1391 1392 static void 1393 metaslab_size_tree_full_load(range_tree_t *rt) 1394 { 1395 metaslab_rt_arg_t *mrap = rt->rt_arg; 1396 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1397 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1398 mrap->mra_floor_shift = 0; 1399 struct mssa_arg arg = {0}; 1400 arg.rt = rt; 1401 arg.mra = mrap; 1402 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1403 } 1404 1405 /* 1406 * Create any block allocator specific components. The current allocators 1407 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1408 */ 1409 /* ARGSUSED */ 1410 static void 1411 metaslab_rt_create(range_tree_t *rt, void *arg) 1412 { 1413 metaslab_rt_arg_t *mrap = arg; 1414 zfs_btree_t *size_tree = mrap->mra_bt; 1415 1416 size_t size; 1417 int (*compare) (const void *, const void *); 1418 switch (rt->rt_type) { 1419 case RANGE_SEG32: 1420 size = sizeof (range_seg32_t); 1421 compare = metaslab_rangesize32_compare; 1422 break; 1423 case RANGE_SEG64: 1424 size = sizeof (range_seg64_t); 1425 compare = metaslab_rangesize64_compare; 1426 break; 1427 default: 1428 panic("Invalid range seg type %d", rt->rt_type); 1429 } 1430 zfs_btree_create(size_tree, compare, size); 1431 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1432 } 1433 1434 /* ARGSUSED */ 1435 static void 1436 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1437 { 1438 metaslab_rt_arg_t *mrap = arg; 1439 zfs_btree_t *size_tree = mrap->mra_bt; 1440 1441 zfs_btree_destroy(size_tree); 1442 kmem_free(mrap, sizeof (*mrap)); 1443 } 1444 1445 /* ARGSUSED */ 1446 static void 1447 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1448 { 1449 metaslab_rt_arg_t *mrap = arg; 1450 zfs_btree_t *size_tree = mrap->mra_bt; 1451 1452 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1453 (1 << mrap->mra_floor_shift)) 1454 return; 1455 1456 zfs_btree_add(size_tree, rs); 1457 } 1458 1459 /* ARGSUSED */ 1460 static void 1461 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1462 { 1463 metaslab_rt_arg_t *mrap = arg; 1464 zfs_btree_t *size_tree = mrap->mra_bt; 1465 1466 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1467 mrap->mra_floor_shift)) 1468 return; 1469 1470 zfs_btree_remove(size_tree, rs); 1471 } 1472 1473 /* ARGSUSED */ 1474 static void 1475 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1476 { 1477 metaslab_rt_arg_t *mrap = arg; 1478 zfs_btree_t *size_tree = mrap->mra_bt; 1479 zfs_btree_clear(size_tree); 1480 zfs_btree_destroy(size_tree); 1481 1482 metaslab_rt_create(rt, arg); 1483 } 1484 1485 static range_tree_ops_t metaslab_rt_ops = { 1486 .rtop_create = metaslab_rt_create, 1487 .rtop_destroy = metaslab_rt_destroy, 1488 .rtop_add = metaslab_rt_add, 1489 .rtop_remove = metaslab_rt_remove, 1490 .rtop_vacate = metaslab_rt_vacate 1491 }; 1492 1493 /* 1494 * ========================================================================== 1495 * Common allocator routines 1496 * ========================================================================== 1497 */ 1498 1499 /* 1500 * Return the maximum contiguous segment within the metaslab. 1501 */ 1502 uint64_t 1503 metaslab_largest_allocatable(metaslab_t *msp) 1504 { 1505 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1506 range_seg_t *rs; 1507 1508 if (t == NULL) 1509 return (0); 1510 if (zfs_btree_numnodes(t) == 0) 1511 metaslab_size_tree_full_load(msp->ms_allocatable); 1512 1513 rs = zfs_btree_last(t, NULL); 1514 if (rs == NULL) 1515 return (0); 1516 1517 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1518 msp->ms_allocatable)); 1519 } 1520 1521 /* 1522 * Return the maximum contiguous segment within the unflushed frees of this 1523 * metaslab. 1524 */ 1525 static uint64_t 1526 metaslab_largest_unflushed_free(metaslab_t *msp) 1527 { 1528 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1529 1530 if (msp->ms_unflushed_frees == NULL) 1531 return (0); 1532 1533 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1534 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1535 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1536 NULL); 1537 if (rs == NULL) 1538 return (0); 1539 1540 /* 1541 * When a range is freed from the metaslab, that range is added to 1542 * both the unflushed frees and the deferred frees. While the block 1543 * will eventually be usable, if the metaslab were loaded the range 1544 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1545 * txgs had passed. As a result, when attempting to estimate an upper 1546 * bound for the largest currently-usable free segment in the 1547 * metaslab, we need to not consider any ranges currently in the defer 1548 * trees. This algorithm approximates the largest available chunk in 1549 * the largest range in the unflushed_frees tree by taking the first 1550 * chunk. While this may be a poor estimate, it should only remain so 1551 * briefly and should eventually self-correct as frees are no longer 1552 * deferred. Similar logic applies to the ms_freed tree. See 1553 * metaslab_load() for more details. 1554 * 1555 * There are two primary sources of inaccuracy in this estimate. Both 1556 * are tolerated for performance reasons. The first source is that we 1557 * only check the largest segment for overlaps. Smaller segments may 1558 * have more favorable overlaps with the other trees, resulting in 1559 * larger usable chunks. Second, we only look at the first chunk in 1560 * the largest segment; there may be other usable chunks in the 1561 * largest segment, but we ignore them. 1562 */ 1563 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1564 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1565 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1566 uint64_t start = 0; 1567 uint64_t size = 0; 1568 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1569 rsize, &start, &size); 1570 if (found) { 1571 if (rstart == start) 1572 return (0); 1573 rsize = start - rstart; 1574 } 1575 } 1576 1577 uint64_t start = 0; 1578 uint64_t size = 0; 1579 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1580 rsize, &start, &size); 1581 if (found) 1582 rsize = start - rstart; 1583 1584 return (rsize); 1585 } 1586 1587 static range_seg_t * 1588 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1589 uint64_t size, zfs_btree_index_t *where) 1590 { 1591 range_seg_t *rs; 1592 range_seg_max_t rsearch; 1593 1594 rs_set_start(&rsearch, rt, start); 1595 rs_set_end(&rsearch, rt, start + size); 1596 1597 rs = zfs_btree_find(t, &rsearch, where); 1598 if (rs == NULL) { 1599 rs = zfs_btree_next(t, where, where); 1600 } 1601 1602 return (rs); 1603 } 1604 1605 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1606 defined(WITH_CF_BLOCK_ALLOCATOR) 1607 1608 /* 1609 * This is a helper function that can be used by the allocator to find a 1610 * suitable block to allocate. This will search the specified B-tree looking 1611 * for a block that matches the specified criteria. 1612 */ 1613 static uint64_t 1614 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1615 uint64_t max_search) 1616 { 1617 if (*cursor == 0) 1618 *cursor = rt->rt_start; 1619 zfs_btree_t *bt = &rt->rt_root; 1620 zfs_btree_index_t where; 1621 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1622 uint64_t first_found; 1623 int count_searched = 0; 1624 1625 if (rs != NULL) 1626 first_found = rs_get_start(rs, rt); 1627 1628 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1629 max_search || count_searched < metaslab_min_search_count)) { 1630 uint64_t offset = rs_get_start(rs, rt); 1631 if (offset + size <= rs_get_end(rs, rt)) { 1632 *cursor = offset + size; 1633 return (offset); 1634 } 1635 rs = zfs_btree_next(bt, &where, &where); 1636 count_searched++; 1637 } 1638 1639 *cursor = 0; 1640 return (-1ULL); 1641 } 1642 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1643 1644 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1645 /* 1646 * ========================================================================== 1647 * Dynamic Fit (df) block allocator 1648 * 1649 * Search for a free chunk of at least this size, starting from the last 1650 * offset (for this alignment of block) looking for up to 1651 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1652 * found within 16MB, then return a free chunk of exactly the requested size (or 1653 * larger). 1654 * 1655 * If it seems like searching from the last offset will be unproductive, skip 1656 * that and just return a free chunk of exactly the requested size (or larger). 1657 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1658 * mechanism is probably not very useful and may be removed in the future. 1659 * 1660 * The behavior when not searching can be changed to return the largest free 1661 * chunk, instead of a free chunk of exactly the requested size, by setting 1662 * metaslab_df_use_largest_segment. 1663 * ========================================================================== 1664 */ 1665 static uint64_t 1666 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1667 { 1668 /* 1669 * Find the largest power of 2 block size that evenly divides the 1670 * requested size. This is used to try to allocate blocks with similar 1671 * alignment from the same area of the metaslab (i.e. same cursor 1672 * bucket) but it does not guarantee that other allocations sizes 1673 * may exist in the same region. 1674 */ 1675 uint64_t align = size & -size; 1676 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1677 range_tree_t *rt = msp->ms_allocatable; 1678 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1679 uint64_t offset; 1680 1681 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1682 1683 /* 1684 * If we're running low on space, find a segment based on size, 1685 * rather than iterating based on offset. 1686 */ 1687 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1688 free_pct < metaslab_df_free_pct) { 1689 offset = -1; 1690 } else { 1691 offset = metaslab_block_picker(rt, 1692 cursor, size, metaslab_df_max_search); 1693 } 1694 1695 if (offset == -1) { 1696 range_seg_t *rs; 1697 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1698 metaslab_size_tree_full_load(msp->ms_allocatable); 1699 1700 if (metaslab_df_use_largest_segment) { 1701 /* use largest free segment */ 1702 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1703 } else { 1704 zfs_btree_index_t where; 1705 /* use segment of this size, or next largest */ 1706 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1707 rt, msp->ms_start, size, &where); 1708 } 1709 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1710 rt)) { 1711 offset = rs_get_start(rs, rt); 1712 *cursor = offset + size; 1713 } 1714 } 1715 1716 return (offset); 1717 } 1718 1719 static metaslab_ops_t metaslab_df_ops = { 1720 metaslab_df_alloc 1721 }; 1722 1723 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1724 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1725 1726 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1727 /* 1728 * ========================================================================== 1729 * Cursor fit block allocator - 1730 * Select the largest region in the metaslab, set the cursor to the beginning 1731 * of the range and the cursor_end to the end of the range. As allocations 1732 * are made advance the cursor. Continue allocating from the cursor until 1733 * the range is exhausted and then find a new range. 1734 * ========================================================================== 1735 */ 1736 static uint64_t 1737 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1738 { 1739 range_tree_t *rt = msp->ms_allocatable; 1740 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1741 uint64_t *cursor = &msp->ms_lbas[0]; 1742 uint64_t *cursor_end = &msp->ms_lbas[1]; 1743 uint64_t offset = 0; 1744 1745 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1746 1747 ASSERT3U(*cursor_end, >=, *cursor); 1748 1749 if ((*cursor + size) > *cursor_end) { 1750 range_seg_t *rs; 1751 1752 if (zfs_btree_numnodes(t) == 0) 1753 metaslab_size_tree_full_load(msp->ms_allocatable); 1754 rs = zfs_btree_last(t, NULL); 1755 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1756 size) 1757 return (-1ULL); 1758 1759 *cursor = rs_get_start(rs, rt); 1760 *cursor_end = rs_get_end(rs, rt); 1761 } 1762 1763 offset = *cursor; 1764 *cursor += size; 1765 1766 return (offset); 1767 } 1768 1769 static metaslab_ops_t metaslab_cf_ops = { 1770 metaslab_cf_alloc 1771 }; 1772 1773 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1774 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1775 1776 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1777 /* 1778 * ========================================================================== 1779 * New dynamic fit allocator - 1780 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1781 * contiguous blocks. If no region is found then just use the largest segment 1782 * that remains. 1783 * ========================================================================== 1784 */ 1785 1786 /* 1787 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1788 * to request from the allocator. 1789 */ 1790 uint64_t metaslab_ndf_clump_shift = 4; 1791 1792 static uint64_t 1793 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1794 { 1795 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1796 range_tree_t *rt = msp->ms_allocatable; 1797 zfs_btree_index_t where; 1798 range_seg_t *rs; 1799 range_seg_max_t rsearch; 1800 uint64_t hbit = highbit64(size); 1801 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1802 uint64_t max_size = metaslab_largest_allocatable(msp); 1803 1804 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1805 1806 if (max_size < size) 1807 return (-1ULL); 1808 1809 rs_set_start(&rsearch, rt, *cursor); 1810 rs_set_end(&rsearch, rt, *cursor + size); 1811 1812 rs = zfs_btree_find(t, &rsearch, &where); 1813 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1814 t = &msp->ms_allocatable_by_size; 1815 1816 rs_set_start(&rsearch, rt, 0); 1817 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1818 metaslab_ndf_clump_shift))); 1819 1820 rs = zfs_btree_find(t, &rsearch, &where); 1821 if (rs == NULL) 1822 rs = zfs_btree_next(t, &where, &where); 1823 ASSERT(rs != NULL); 1824 } 1825 1826 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1827 *cursor = rs_get_start(rs, rt) + size; 1828 return (rs_get_start(rs, rt)); 1829 } 1830 return (-1ULL); 1831 } 1832 1833 static metaslab_ops_t metaslab_ndf_ops = { 1834 metaslab_ndf_alloc 1835 }; 1836 1837 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1839 1840 1841 /* 1842 * ========================================================================== 1843 * Metaslabs 1844 * ========================================================================== 1845 */ 1846 1847 /* 1848 * Wait for any in-progress metaslab loads to complete. 1849 */ 1850 static void 1851 metaslab_load_wait(metaslab_t *msp) 1852 { 1853 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1854 1855 while (msp->ms_loading) { 1856 ASSERT(!msp->ms_loaded); 1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1858 } 1859 } 1860 1861 /* 1862 * Wait for any in-progress flushing to complete. 1863 */ 1864 static void 1865 metaslab_flush_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_flushing) 1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1871 } 1872 1873 static unsigned int 1874 metaslab_idx_func(multilist_t *ml, void *arg) 1875 { 1876 metaslab_t *msp = arg; 1877 1878 /* 1879 * ms_id values are allocated sequentially, so full 64bit 1880 * division would be a waste of time, so limit it to 32 bits. 1881 */ 1882 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1883 } 1884 1885 uint64_t 1886 metaslab_allocated_space(metaslab_t *msp) 1887 { 1888 return (msp->ms_allocated_space); 1889 } 1890 1891 /* 1892 * Verify that the space accounting on disk matches the in-core range_trees. 1893 */ 1894 static void 1895 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1896 { 1897 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1898 uint64_t allocating = 0; 1899 uint64_t sm_free_space, msp_free_space; 1900 1901 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1902 ASSERT(!msp->ms_condensing); 1903 1904 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1905 return; 1906 1907 /* 1908 * We can only verify the metaslab space when we're called 1909 * from syncing context with a loaded metaslab that has an 1910 * allocated space map. Calling this in non-syncing context 1911 * does not provide a consistent view of the metaslab since 1912 * we're performing allocations in the future. 1913 */ 1914 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1915 !msp->ms_loaded) 1916 return; 1917 1918 /* 1919 * Even though the smp_alloc field can get negative, 1920 * when it comes to a metaslab's space map, that should 1921 * never be the case. 1922 */ 1923 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1924 1925 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1926 range_tree_space(msp->ms_unflushed_frees)); 1927 1928 ASSERT3U(metaslab_allocated_space(msp), ==, 1929 space_map_allocated(msp->ms_sm) + 1930 range_tree_space(msp->ms_unflushed_allocs) - 1931 range_tree_space(msp->ms_unflushed_frees)); 1932 1933 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1934 1935 /* 1936 * Account for future allocations since we would have 1937 * already deducted that space from the ms_allocatable. 1938 */ 1939 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1940 allocating += 1941 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1942 } 1943 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1944 msp->ms_allocating_total); 1945 1946 ASSERT3U(msp->ms_deferspace, ==, 1947 range_tree_space(msp->ms_defer[0]) + 1948 range_tree_space(msp->ms_defer[1])); 1949 1950 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1951 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1952 1953 VERIFY3U(sm_free_space, ==, msp_free_space); 1954 } 1955 1956 static void 1957 metaslab_aux_histograms_clear(metaslab_t *msp) 1958 { 1959 /* 1960 * Auxiliary histograms are only cleared when resetting them, 1961 * which can only happen while the metaslab is loaded. 1962 */ 1963 ASSERT(msp->ms_loaded); 1964 1965 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1966 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1967 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1968 } 1969 1970 static void 1971 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1972 range_tree_t *rt) 1973 { 1974 /* 1975 * This is modeled after space_map_histogram_add(), so refer to that 1976 * function for implementation details. We want this to work like 1977 * the space map histogram, and not the range tree histogram, as we 1978 * are essentially constructing a delta that will be later subtracted 1979 * from the space map histogram. 1980 */ 1981 int idx = 0; 1982 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1983 ASSERT3U(i, >=, idx + shift); 1984 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1985 1986 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1987 ASSERT3U(idx + shift, ==, i); 1988 idx++; 1989 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1990 } 1991 } 1992 } 1993 1994 /* 1995 * Called at every sync pass that the metaslab gets synced. 1996 * 1997 * The reason is that we want our auxiliary histograms to be updated 1998 * wherever the metaslab's space map histogram is updated. This way 1999 * we stay consistent on which parts of the metaslab space map's 2000 * histogram are currently not available for allocations (e.g because 2001 * they are in the defer, freed, and freeing trees). 2002 */ 2003 static void 2004 metaslab_aux_histograms_update(metaslab_t *msp) 2005 { 2006 space_map_t *sm = msp->ms_sm; 2007 ASSERT(sm != NULL); 2008 2009 /* 2010 * This is similar to the metaslab's space map histogram updates 2011 * that take place in metaslab_sync(). The only difference is that 2012 * we only care about segments that haven't made it into the 2013 * ms_allocatable tree yet. 2014 */ 2015 if (msp->ms_loaded) { 2016 metaslab_aux_histograms_clear(msp); 2017 2018 metaslab_aux_histogram_add(msp->ms_synchist, 2019 sm->sm_shift, msp->ms_freed); 2020 2021 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2022 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2023 sm->sm_shift, msp->ms_defer[t]); 2024 } 2025 } 2026 2027 metaslab_aux_histogram_add(msp->ms_synchist, 2028 sm->sm_shift, msp->ms_freeing); 2029 } 2030 2031 /* 2032 * Called every time we are done syncing (writing to) the metaslab, 2033 * i.e. at the end of each sync pass. 2034 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2035 */ 2036 static void 2037 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2038 { 2039 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2040 space_map_t *sm = msp->ms_sm; 2041 2042 if (sm == NULL) { 2043 /* 2044 * We came here from metaslab_init() when creating/opening a 2045 * pool, looking at a metaslab that hasn't had any allocations 2046 * yet. 2047 */ 2048 return; 2049 } 2050 2051 /* 2052 * This is similar to the actions that we take for the ms_freed 2053 * and ms_defer trees in metaslab_sync_done(). 2054 */ 2055 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2056 if (defer_allowed) { 2057 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2058 sizeof (msp->ms_synchist)); 2059 } else { 2060 bzero(msp->ms_deferhist[hist_index], 2061 sizeof (msp->ms_deferhist[hist_index])); 2062 } 2063 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2064 } 2065 2066 /* 2067 * Ensure that the metaslab's weight and fragmentation are consistent 2068 * with the contents of the histogram (either the range tree's histogram 2069 * or the space map's depending whether the metaslab is loaded). 2070 */ 2071 static void 2072 metaslab_verify_weight_and_frag(metaslab_t *msp) 2073 { 2074 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2075 2076 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2077 return; 2078 2079 /* 2080 * We can end up here from vdev_remove_complete(), in which case we 2081 * cannot do these assertions because we hold spa config locks and 2082 * thus we are not allowed to read from the DMU. 2083 * 2084 * We check if the metaslab group has been removed and if that's 2085 * the case we return immediately as that would mean that we are 2086 * here from the aforementioned code path. 2087 */ 2088 if (msp->ms_group == NULL) 2089 return; 2090 2091 /* 2092 * Devices being removed always return a weight of 0 and leave 2093 * fragmentation and ms_max_size as is - there is nothing for 2094 * us to verify here. 2095 */ 2096 vdev_t *vd = msp->ms_group->mg_vd; 2097 if (vd->vdev_removing) 2098 return; 2099 2100 /* 2101 * If the metaslab is dirty it probably means that we've done 2102 * some allocations or frees that have changed our histograms 2103 * and thus the weight. 2104 */ 2105 for (int t = 0; t < TXG_SIZE; t++) { 2106 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2107 return; 2108 } 2109 2110 /* 2111 * This verification checks that our in-memory state is consistent 2112 * with what's on disk. If the pool is read-only then there aren't 2113 * any changes and we just have the initially-loaded state. 2114 */ 2115 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2116 return; 2117 2118 /* some extra verification for in-core tree if you can */ 2119 if (msp->ms_loaded) { 2120 range_tree_stat_verify(msp->ms_allocatable); 2121 VERIFY(space_map_histogram_verify(msp->ms_sm, 2122 msp->ms_allocatable)); 2123 } 2124 2125 uint64_t weight = msp->ms_weight; 2126 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2127 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2128 uint64_t frag = msp->ms_fragmentation; 2129 uint64_t max_segsize = msp->ms_max_size; 2130 2131 msp->ms_weight = 0; 2132 msp->ms_fragmentation = 0; 2133 2134 /* 2135 * This function is used for verification purposes and thus should 2136 * not introduce any side-effects/mutations on the system's state. 2137 * 2138 * Regardless of whether metaslab_weight() thinks this metaslab 2139 * should be active or not, we want to ensure that the actual weight 2140 * (and therefore the value of ms_weight) would be the same if it 2141 * was to be recalculated at this point. 2142 * 2143 * In addition we set the nodirty flag so metaslab_weight() does 2144 * not dirty the metaslab for future TXGs (e.g. when trying to 2145 * force condensing to upgrade the metaslab spacemaps). 2146 */ 2147 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2148 2149 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2150 2151 /* 2152 * If the weight type changed then there is no point in doing 2153 * verification. Revert fields to their original values. 2154 */ 2155 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2156 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2157 msp->ms_fragmentation = frag; 2158 msp->ms_weight = weight; 2159 return; 2160 } 2161 2162 VERIFY3U(msp->ms_fragmentation, ==, frag); 2163 VERIFY3U(msp->ms_weight, ==, weight); 2164 } 2165 2166 /* 2167 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2168 * this class that was used longest ago, and attempt to unload it. We don't 2169 * want to spend too much time in this loop to prevent performance 2170 * degradation, and we expect that most of the time this operation will 2171 * succeed. Between that and the normal unloading processing during txg sync, 2172 * we expect this to keep the metaslab memory usage under control. 2173 */ 2174 static void 2175 metaslab_potentially_evict(metaslab_class_t *mc) 2176 { 2177 #ifdef _KERNEL 2178 uint64_t allmem = arc_all_memory(); 2179 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2180 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2181 int tries = 0; 2182 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2183 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2184 tries++) { 2185 unsigned int idx = multilist_get_random_index( 2186 &mc->mc_metaslab_txg_list); 2187 multilist_sublist_t *mls = 2188 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2189 metaslab_t *msp = multilist_sublist_head(mls); 2190 multilist_sublist_unlock(mls); 2191 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2192 inuse * size) { 2193 VERIFY3P(mls, ==, multilist_sublist_lock( 2194 &mc->mc_metaslab_txg_list, idx)); 2195 ASSERT3U(idx, ==, 2196 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2197 2198 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2199 multilist_sublist_unlock(mls); 2200 break; 2201 } 2202 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2203 multilist_sublist_unlock(mls); 2204 /* 2205 * If the metaslab is currently loading there are two 2206 * cases. If it's the metaslab we're evicting, we 2207 * can't continue on or we'll panic when we attempt to 2208 * recursively lock the mutex. If it's another 2209 * metaslab that's loading, it can be safely skipped, 2210 * since we know it's very new and therefore not a 2211 * good eviction candidate. We check later once the 2212 * lock is held that the metaslab is fully loaded 2213 * before actually unloading it. 2214 */ 2215 if (msp->ms_loading) { 2216 msp = next_msp; 2217 inuse = 2218 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2219 continue; 2220 } 2221 /* 2222 * We can't unload metaslabs with no spacemap because 2223 * they're not ready to be unloaded yet. We can't 2224 * unload metaslabs with outstanding allocations 2225 * because doing so could cause the metaslab's weight 2226 * to decrease while it's unloaded, which violates an 2227 * invariant that we use to prevent unnecessary 2228 * loading. We also don't unload metaslabs that are 2229 * currently active because they are high-weight 2230 * metaslabs that are likely to be used in the near 2231 * future. 2232 */ 2233 mutex_enter(&msp->ms_lock); 2234 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2235 msp->ms_allocating_total == 0) { 2236 metaslab_unload(msp); 2237 } 2238 mutex_exit(&msp->ms_lock); 2239 msp = next_msp; 2240 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2241 } 2242 } 2243 #endif 2244 } 2245 2246 static int 2247 metaslab_load_impl(metaslab_t *msp) 2248 { 2249 int error = 0; 2250 2251 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2252 ASSERT(msp->ms_loading); 2253 ASSERT(!msp->ms_condensing); 2254 2255 /* 2256 * We temporarily drop the lock to unblock other operations while we 2257 * are reading the space map. Therefore, metaslab_sync() and 2258 * metaslab_sync_done() can run at the same time as we do. 2259 * 2260 * If we are using the log space maps, metaslab_sync() can't write to 2261 * the metaslab's space map while we are loading as we only write to 2262 * it when we are flushing the metaslab, and that can't happen while 2263 * we are loading it. 2264 * 2265 * If we are not using log space maps though, metaslab_sync() can 2266 * append to the space map while we are loading. Therefore we load 2267 * only entries that existed when we started the load. Additionally, 2268 * metaslab_sync_done() has to wait for the load to complete because 2269 * there are potential races like metaslab_load() loading parts of the 2270 * space map that are currently being appended by metaslab_sync(). If 2271 * we didn't, the ms_allocatable would have entries that 2272 * metaslab_sync_done() would try to re-add later. 2273 * 2274 * That's why before dropping the lock we remember the synced length 2275 * of the metaslab and read up to that point of the space map, 2276 * ignoring entries appended by metaslab_sync() that happen after we 2277 * drop the lock. 2278 */ 2279 uint64_t length = msp->ms_synced_length; 2280 mutex_exit(&msp->ms_lock); 2281 2282 hrtime_t load_start = gethrtime(); 2283 metaslab_rt_arg_t *mrap; 2284 if (msp->ms_allocatable->rt_arg == NULL) { 2285 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2286 } else { 2287 mrap = msp->ms_allocatable->rt_arg; 2288 msp->ms_allocatable->rt_ops = NULL; 2289 msp->ms_allocatable->rt_arg = NULL; 2290 } 2291 mrap->mra_bt = &msp->ms_allocatable_by_size; 2292 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2293 2294 if (msp->ms_sm != NULL) { 2295 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2296 SM_FREE, length); 2297 2298 /* Now, populate the size-sorted tree. */ 2299 metaslab_rt_create(msp->ms_allocatable, mrap); 2300 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2301 msp->ms_allocatable->rt_arg = mrap; 2302 2303 struct mssa_arg arg = {0}; 2304 arg.rt = msp->ms_allocatable; 2305 arg.mra = mrap; 2306 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2307 &arg); 2308 } else { 2309 /* 2310 * Add the size-sorted tree first, since we don't need to load 2311 * the metaslab from the spacemap. 2312 */ 2313 metaslab_rt_create(msp->ms_allocatable, mrap); 2314 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2315 msp->ms_allocatable->rt_arg = mrap; 2316 /* 2317 * The space map has not been allocated yet, so treat 2318 * all the space in the metaslab as free and add it to the 2319 * ms_allocatable tree. 2320 */ 2321 range_tree_add(msp->ms_allocatable, 2322 msp->ms_start, msp->ms_size); 2323 2324 if (msp->ms_new) { 2325 /* 2326 * If the ms_sm doesn't exist, this means that this 2327 * metaslab hasn't gone through metaslab_sync() and 2328 * thus has never been dirtied. So we shouldn't 2329 * expect any unflushed allocs or frees from previous 2330 * TXGs. 2331 */ 2332 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2333 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2334 } 2335 } 2336 2337 /* 2338 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2339 * changing the ms_sm (or log_sm) and the metaslab's range trees 2340 * while we are about to use them and populate the ms_allocatable. 2341 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2342 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2343 */ 2344 mutex_enter(&msp->ms_sync_lock); 2345 mutex_enter(&msp->ms_lock); 2346 2347 ASSERT(!msp->ms_condensing); 2348 ASSERT(!msp->ms_flushing); 2349 2350 if (error != 0) { 2351 mutex_exit(&msp->ms_sync_lock); 2352 return (error); 2353 } 2354 2355 ASSERT3P(msp->ms_group, !=, NULL); 2356 msp->ms_loaded = B_TRUE; 2357 2358 /* 2359 * Apply all the unflushed changes to ms_allocatable right 2360 * away so any manipulations we do below have a clear view 2361 * of what is allocated and what is free. 2362 */ 2363 range_tree_walk(msp->ms_unflushed_allocs, 2364 range_tree_remove, msp->ms_allocatable); 2365 range_tree_walk(msp->ms_unflushed_frees, 2366 range_tree_add, msp->ms_allocatable); 2367 2368 ASSERT3P(msp->ms_group, !=, NULL); 2369 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2370 if (spa_syncing_log_sm(spa) != NULL) { 2371 ASSERT(spa_feature_is_enabled(spa, 2372 SPA_FEATURE_LOG_SPACEMAP)); 2373 2374 /* 2375 * If we use a log space map we add all the segments 2376 * that are in ms_unflushed_frees so they are available 2377 * for allocation. 2378 * 2379 * ms_allocatable needs to contain all free segments 2380 * that are ready for allocations (thus not segments 2381 * from ms_freeing, ms_freed, and the ms_defer trees). 2382 * But if we grab the lock in this code path at a sync 2383 * pass later that 1, then it also contains the 2384 * segments of ms_freed (they were added to it earlier 2385 * in this path through ms_unflushed_frees). So we 2386 * need to remove all the segments that exist in 2387 * ms_freed from ms_allocatable as they will be added 2388 * later in metaslab_sync_done(). 2389 * 2390 * When there's no log space map, the ms_allocatable 2391 * correctly doesn't contain any segments that exist 2392 * in ms_freed [see ms_synced_length]. 2393 */ 2394 range_tree_walk(msp->ms_freed, 2395 range_tree_remove, msp->ms_allocatable); 2396 } 2397 2398 /* 2399 * If we are not using the log space map, ms_allocatable 2400 * contains the segments that exist in the ms_defer trees 2401 * [see ms_synced_length]. Thus we need to remove them 2402 * from ms_allocatable as they will be added again in 2403 * metaslab_sync_done(). 2404 * 2405 * If we are using the log space map, ms_allocatable still 2406 * contains the segments that exist in the ms_defer trees. 2407 * Not because it read them through the ms_sm though. But 2408 * because these segments are part of ms_unflushed_frees 2409 * whose segments we add to ms_allocatable earlier in this 2410 * code path. 2411 */ 2412 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2413 range_tree_walk(msp->ms_defer[t], 2414 range_tree_remove, msp->ms_allocatable); 2415 } 2416 2417 /* 2418 * Call metaslab_recalculate_weight_and_sort() now that the 2419 * metaslab is loaded so we get the metaslab's real weight. 2420 * 2421 * Unless this metaslab was created with older software and 2422 * has not yet been converted to use segment-based weight, we 2423 * expect the new weight to be better or equal to the weight 2424 * that the metaslab had while it was not loaded. This is 2425 * because the old weight does not take into account the 2426 * consolidation of adjacent segments between TXGs. [see 2427 * comment for ms_synchist and ms_deferhist[] for more info] 2428 */ 2429 uint64_t weight = msp->ms_weight; 2430 uint64_t max_size = msp->ms_max_size; 2431 metaslab_recalculate_weight_and_sort(msp); 2432 if (!WEIGHT_IS_SPACEBASED(weight)) 2433 ASSERT3U(weight, <=, msp->ms_weight); 2434 msp->ms_max_size = metaslab_largest_allocatable(msp); 2435 ASSERT3U(max_size, <=, msp->ms_max_size); 2436 hrtime_t load_end = gethrtime(); 2437 msp->ms_load_time = load_end; 2438 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2439 "ms_id %llu, smp_length %llu, " 2440 "unflushed_allocs %llu, unflushed_frees %llu, " 2441 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2442 "loading_time %lld ms, ms_max_size %llu, " 2443 "max size error %lld, " 2444 "old_weight %llx, new_weight %llx", 2445 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2446 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2447 (u_longlong_t)msp->ms_id, 2448 (u_longlong_t)space_map_length(msp->ms_sm), 2449 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2450 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2451 (u_longlong_t)range_tree_space(msp->ms_freed), 2452 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2453 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2454 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2455 (longlong_t)((load_end - load_start) / 1000000), 2456 (u_longlong_t)msp->ms_max_size, 2457 (u_longlong_t)msp->ms_max_size - max_size, 2458 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2459 2460 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2461 mutex_exit(&msp->ms_sync_lock); 2462 return (0); 2463 } 2464 2465 int 2466 metaslab_load(metaslab_t *msp) 2467 { 2468 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2469 2470 /* 2471 * There may be another thread loading the same metaslab, if that's 2472 * the case just wait until the other thread is done and return. 2473 */ 2474 metaslab_load_wait(msp); 2475 if (msp->ms_loaded) 2476 return (0); 2477 VERIFY(!msp->ms_loading); 2478 ASSERT(!msp->ms_condensing); 2479 2480 /* 2481 * We set the loading flag BEFORE potentially dropping the lock to 2482 * wait for an ongoing flush (see ms_flushing below). This way other 2483 * threads know that there is already a thread that is loading this 2484 * metaslab. 2485 */ 2486 msp->ms_loading = B_TRUE; 2487 2488 /* 2489 * Wait for any in-progress flushing to finish as we drop the ms_lock 2490 * both here (during space_map_load()) and in metaslab_flush() (when 2491 * we flush our changes to the ms_sm). 2492 */ 2493 if (msp->ms_flushing) 2494 metaslab_flush_wait(msp); 2495 2496 /* 2497 * In the possibility that we were waiting for the metaslab to be 2498 * flushed (where we temporarily dropped the ms_lock), ensure that 2499 * no one else loaded the metaslab somehow. 2500 */ 2501 ASSERT(!msp->ms_loaded); 2502 2503 /* 2504 * If we're loading a metaslab in the normal class, consider evicting 2505 * another one to keep our memory usage under the limit defined by the 2506 * zfs_metaslab_mem_limit tunable. 2507 */ 2508 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2509 msp->ms_group->mg_class) { 2510 metaslab_potentially_evict(msp->ms_group->mg_class); 2511 } 2512 2513 int error = metaslab_load_impl(msp); 2514 2515 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2516 msp->ms_loading = B_FALSE; 2517 cv_broadcast(&msp->ms_load_cv); 2518 2519 return (error); 2520 } 2521 2522 void 2523 metaslab_unload(metaslab_t *msp) 2524 { 2525 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2526 2527 /* 2528 * This can happen if a metaslab is selected for eviction (in 2529 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2530 * metaslab_class_evict_old). 2531 */ 2532 if (!msp->ms_loaded) 2533 return; 2534 2535 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2536 msp->ms_loaded = B_FALSE; 2537 msp->ms_unload_time = gethrtime(); 2538 2539 msp->ms_activation_weight = 0; 2540 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2541 2542 if (msp->ms_group != NULL) { 2543 metaslab_class_t *mc = msp->ms_group->mg_class; 2544 multilist_sublist_t *mls = 2545 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2546 if (multilist_link_active(&msp->ms_class_txg_node)) 2547 multilist_sublist_remove(mls, msp); 2548 multilist_sublist_unlock(mls); 2549 2550 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2551 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2552 "ms_id %llu, weight %llx, " 2553 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2554 "loaded %llu ms ago, max_size %llu", 2555 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2556 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2557 (u_longlong_t)msp->ms_id, 2558 (u_longlong_t)msp->ms_weight, 2559 (u_longlong_t)msp->ms_selected_txg, 2560 (u_longlong_t)(msp->ms_unload_time - 2561 msp->ms_selected_time) / 1000 / 1000, 2562 (u_longlong_t)msp->ms_alloc_txg, 2563 (u_longlong_t)(msp->ms_unload_time - 2564 msp->ms_load_time) / 1000 / 1000, 2565 (u_longlong_t)msp->ms_max_size); 2566 } 2567 2568 /* 2569 * We explicitly recalculate the metaslab's weight based on its space 2570 * map (as it is now not loaded). We want unload metaslabs to always 2571 * have their weights calculated from the space map histograms, while 2572 * loaded ones have it calculated from their in-core range tree 2573 * [see metaslab_load()]. This way, the weight reflects the information 2574 * available in-core, whether it is loaded or not. 2575 * 2576 * If ms_group == NULL means that we came here from metaslab_fini(), 2577 * at which point it doesn't make sense for us to do the recalculation 2578 * and the sorting. 2579 */ 2580 if (msp->ms_group != NULL) 2581 metaslab_recalculate_weight_and_sort(msp); 2582 } 2583 2584 /* 2585 * We want to optimize the memory use of the per-metaslab range 2586 * trees. To do this, we store the segments in the range trees in 2587 * units of sectors, zero-indexing from the start of the metaslab. If 2588 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2589 * the ranges using two uint32_ts, rather than two uint64_ts. 2590 */ 2591 range_seg_type_t 2592 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2593 uint64_t *start, uint64_t *shift) 2594 { 2595 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2596 !zfs_metaslab_force_large_segs) { 2597 *shift = vdev->vdev_ashift; 2598 *start = msp->ms_start; 2599 return (RANGE_SEG32); 2600 } else { 2601 *shift = 0; 2602 *start = 0; 2603 return (RANGE_SEG64); 2604 } 2605 } 2606 2607 void 2608 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2609 { 2610 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2611 metaslab_class_t *mc = msp->ms_group->mg_class; 2612 multilist_sublist_t *mls = 2613 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2614 if (multilist_link_active(&msp->ms_class_txg_node)) 2615 multilist_sublist_remove(mls, msp); 2616 msp->ms_selected_txg = txg; 2617 msp->ms_selected_time = gethrtime(); 2618 multilist_sublist_insert_tail(mls, msp); 2619 multilist_sublist_unlock(mls); 2620 } 2621 2622 void 2623 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2624 int64_t defer_delta, int64_t space_delta) 2625 { 2626 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2627 2628 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2629 ASSERT(vd->vdev_ms_count != 0); 2630 2631 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2632 vdev_deflated_space(vd, space_delta)); 2633 } 2634 2635 int 2636 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2637 uint64_t txg, metaslab_t **msp) 2638 { 2639 vdev_t *vd = mg->mg_vd; 2640 spa_t *spa = vd->vdev_spa; 2641 objset_t *mos = spa->spa_meta_objset; 2642 metaslab_t *ms; 2643 int error; 2644 2645 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2646 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2647 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2648 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2649 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2650 multilist_link_init(&ms->ms_class_txg_node); 2651 2652 ms->ms_id = id; 2653 ms->ms_start = id << vd->vdev_ms_shift; 2654 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2655 ms->ms_allocator = -1; 2656 ms->ms_new = B_TRUE; 2657 2658 vdev_ops_t *ops = vd->vdev_ops; 2659 if (ops->vdev_op_metaslab_init != NULL) 2660 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2661 2662 /* 2663 * We only open space map objects that already exist. All others 2664 * will be opened when we finally allocate an object for it. For 2665 * readonly pools there is no need to open the space map object. 2666 * 2667 * Note: 2668 * When called from vdev_expand(), we can't call into the DMU as 2669 * we are holding the spa_config_lock as a writer and we would 2670 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2671 * that case, the object parameter is zero though, so we won't 2672 * call into the DMU. 2673 */ 2674 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2675 !spa->spa_read_spacemaps)) { 2676 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2677 ms->ms_size, vd->vdev_ashift); 2678 2679 if (error != 0) { 2680 kmem_free(ms, sizeof (metaslab_t)); 2681 return (error); 2682 } 2683 2684 ASSERT(ms->ms_sm != NULL); 2685 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2686 } 2687 2688 uint64_t shift, start; 2689 range_seg_type_t type = 2690 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2691 2692 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2693 for (int t = 0; t < TXG_SIZE; t++) { 2694 ms->ms_allocating[t] = range_tree_create(NULL, type, 2695 NULL, start, shift); 2696 } 2697 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2698 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2699 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2700 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2701 start, shift); 2702 } 2703 ms->ms_checkpointing = 2704 range_tree_create(NULL, type, NULL, start, shift); 2705 ms->ms_unflushed_allocs = 2706 range_tree_create(NULL, type, NULL, start, shift); 2707 2708 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2709 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2710 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2711 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2712 type, mrap, start, shift); 2713 2714 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2715 2716 metaslab_group_add(mg, ms); 2717 metaslab_set_fragmentation(ms, B_FALSE); 2718 2719 /* 2720 * If we're opening an existing pool (txg == 0) or creating 2721 * a new one (txg == TXG_INITIAL), all space is available now. 2722 * If we're adding space to an existing pool, the new space 2723 * does not become available until after this txg has synced. 2724 * The metaslab's weight will also be initialized when we sync 2725 * out this txg. This ensures that we don't attempt to allocate 2726 * from it before we have initialized it completely. 2727 */ 2728 if (txg <= TXG_INITIAL) { 2729 metaslab_sync_done(ms, 0); 2730 metaslab_space_update(vd, mg->mg_class, 2731 metaslab_allocated_space(ms), 0, 0); 2732 } 2733 2734 if (txg != 0) { 2735 vdev_dirty(vd, 0, NULL, txg); 2736 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2737 } 2738 2739 *msp = ms; 2740 2741 return (0); 2742 } 2743 2744 static void 2745 metaslab_fini_flush_data(metaslab_t *msp) 2746 { 2747 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2748 2749 if (metaslab_unflushed_txg(msp) == 0) { 2750 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2751 ==, NULL); 2752 return; 2753 } 2754 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2755 2756 mutex_enter(&spa->spa_flushed_ms_lock); 2757 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2758 mutex_exit(&spa->spa_flushed_ms_lock); 2759 2760 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2761 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2762 } 2763 2764 uint64_t 2765 metaslab_unflushed_changes_memused(metaslab_t *ms) 2766 { 2767 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2768 range_tree_numsegs(ms->ms_unflushed_frees)) * 2769 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2770 } 2771 2772 void 2773 metaslab_fini(metaslab_t *msp) 2774 { 2775 metaslab_group_t *mg = msp->ms_group; 2776 vdev_t *vd = mg->mg_vd; 2777 spa_t *spa = vd->vdev_spa; 2778 2779 metaslab_fini_flush_data(msp); 2780 2781 metaslab_group_remove(mg, msp); 2782 2783 mutex_enter(&msp->ms_lock); 2784 VERIFY(msp->ms_group == NULL); 2785 2786 /* 2787 * If this metaslab hasn't been through metaslab_sync_done() yet its 2788 * space hasn't been accounted for in its vdev and doesn't need to be 2789 * subtracted. 2790 */ 2791 if (!msp->ms_new) { 2792 metaslab_space_update(vd, mg->mg_class, 2793 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2794 2795 } 2796 space_map_close(msp->ms_sm); 2797 msp->ms_sm = NULL; 2798 2799 metaslab_unload(msp); 2800 2801 range_tree_destroy(msp->ms_allocatable); 2802 range_tree_destroy(msp->ms_freeing); 2803 range_tree_destroy(msp->ms_freed); 2804 2805 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2806 metaslab_unflushed_changes_memused(msp)); 2807 spa->spa_unflushed_stats.sus_memused -= 2808 metaslab_unflushed_changes_memused(msp); 2809 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2810 range_tree_destroy(msp->ms_unflushed_allocs); 2811 range_tree_destroy(msp->ms_checkpointing); 2812 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2813 range_tree_destroy(msp->ms_unflushed_frees); 2814 2815 for (int t = 0; t < TXG_SIZE; t++) { 2816 range_tree_destroy(msp->ms_allocating[t]); 2817 } 2818 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2819 range_tree_destroy(msp->ms_defer[t]); 2820 } 2821 ASSERT0(msp->ms_deferspace); 2822 2823 for (int t = 0; t < TXG_SIZE; t++) 2824 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2825 2826 range_tree_vacate(msp->ms_trim, NULL, NULL); 2827 range_tree_destroy(msp->ms_trim); 2828 2829 mutex_exit(&msp->ms_lock); 2830 cv_destroy(&msp->ms_load_cv); 2831 cv_destroy(&msp->ms_flush_cv); 2832 mutex_destroy(&msp->ms_lock); 2833 mutex_destroy(&msp->ms_sync_lock); 2834 ASSERT3U(msp->ms_allocator, ==, -1); 2835 2836 kmem_free(msp, sizeof (metaslab_t)); 2837 } 2838 2839 #define FRAGMENTATION_TABLE_SIZE 17 2840 2841 /* 2842 * This table defines a segment size based fragmentation metric that will 2843 * allow each metaslab to derive its own fragmentation value. This is done 2844 * by calculating the space in each bucket of the spacemap histogram and 2845 * multiplying that by the fragmentation metric in this table. Doing 2846 * this for all buckets and dividing it by the total amount of free 2847 * space in this metaslab (i.e. the total free space in all buckets) gives 2848 * us the fragmentation metric. This means that a high fragmentation metric 2849 * equates to most of the free space being comprised of small segments. 2850 * Conversely, if the metric is low, then most of the free space is in 2851 * large segments. A 10% change in fragmentation equates to approximately 2852 * double the number of segments. 2853 * 2854 * This table defines 0% fragmented space using 16MB segments. Testing has 2855 * shown that segments that are greater than or equal to 16MB do not suffer 2856 * from drastic performance problems. Using this value, we derive the rest 2857 * of the table. Since the fragmentation value is never stored on disk, it 2858 * is possible to change these calculations in the future. 2859 */ 2860 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2861 100, /* 512B */ 2862 100, /* 1K */ 2863 98, /* 2K */ 2864 95, /* 4K */ 2865 90, /* 8K */ 2866 80, /* 16K */ 2867 70, /* 32K */ 2868 60, /* 64K */ 2869 50, /* 128K */ 2870 40, /* 256K */ 2871 30, /* 512K */ 2872 20, /* 1M */ 2873 15, /* 2M */ 2874 10, /* 4M */ 2875 5, /* 8M */ 2876 0 /* 16M */ 2877 }; 2878 2879 /* 2880 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2881 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2882 * been upgraded and does not support this metric. Otherwise, the return 2883 * value should be in the range [0, 100]. 2884 */ 2885 static void 2886 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2887 { 2888 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2889 uint64_t fragmentation = 0; 2890 uint64_t total = 0; 2891 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2892 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2893 2894 if (!feature_enabled) { 2895 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2896 return; 2897 } 2898 2899 /* 2900 * A null space map means that the entire metaslab is free 2901 * and thus is not fragmented. 2902 */ 2903 if (msp->ms_sm == NULL) { 2904 msp->ms_fragmentation = 0; 2905 return; 2906 } 2907 2908 /* 2909 * If this metaslab's space map has not been upgraded, flag it 2910 * so that we upgrade next time we encounter it. 2911 */ 2912 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2913 uint64_t txg = spa_syncing_txg(spa); 2914 vdev_t *vd = msp->ms_group->mg_vd; 2915 2916 /* 2917 * If we've reached the final dirty txg, then we must 2918 * be shutting down the pool. We don't want to dirty 2919 * any data past this point so skip setting the condense 2920 * flag. We can retry this action the next time the pool 2921 * is imported. We also skip marking this metaslab for 2922 * condensing if the caller has explicitly set nodirty. 2923 */ 2924 if (!nodirty && 2925 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2926 msp->ms_condense_wanted = B_TRUE; 2927 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2928 zfs_dbgmsg("txg %llu, requesting force condense: " 2929 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2930 (u_longlong_t)msp->ms_id, 2931 (u_longlong_t)vd->vdev_id); 2932 } 2933 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2934 return; 2935 } 2936 2937 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2938 uint64_t space = 0; 2939 uint8_t shift = msp->ms_sm->sm_shift; 2940 2941 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2942 FRAGMENTATION_TABLE_SIZE - 1); 2943 2944 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2945 continue; 2946 2947 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2948 total += space; 2949 2950 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2951 fragmentation += space * zfs_frag_table[idx]; 2952 } 2953 2954 if (total > 0) 2955 fragmentation /= total; 2956 ASSERT3U(fragmentation, <=, 100); 2957 2958 msp->ms_fragmentation = fragmentation; 2959 } 2960 2961 /* 2962 * Compute a weight -- a selection preference value -- for the given metaslab. 2963 * This is based on the amount of free space, the level of fragmentation, 2964 * the LBA range, and whether the metaslab is loaded. 2965 */ 2966 static uint64_t 2967 metaslab_space_weight(metaslab_t *msp) 2968 { 2969 metaslab_group_t *mg = msp->ms_group; 2970 vdev_t *vd = mg->mg_vd; 2971 uint64_t weight, space; 2972 2973 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2974 2975 /* 2976 * The baseline weight is the metaslab's free space. 2977 */ 2978 space = msp->ms_size - metaslab_allocated_space(msp); 2979 2980 if (metaslab_fragmentation_factor_enabled && 2981 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2982 /* 2983 * Use the fragmentation information to inversely scale 2984 * down the baseline weight. We need to ensure that we 2985 * don't exclude this metaslab completely when it's 100% 2986 * fragmented. To avoid this we reduce the fragmented value 2987 * by 1. 2988 */ 2989 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2990 2991 /* 2992 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2993 * this metaslab again. The fragmentation metric may have 2994 * decreased the space to something smaller than 2995 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2996 * so that we can consume any remaining space. 2997 */ 2998 if (space > 0 && space < SPA_MINBLOCKSIZE) 2999 space = SPA_MINBLOCKSIZE; 3000 } 3001 weight = space; 3002 3003 /* 3004 * Modern disks have uniform bit density and constant angular velocity. 3005 * Therefore, the outer recording zones are faster (higher bandwidth) 3006 * than the inner zones by the ratio of outer to inner track diameter, 3007 * which is typically around 2:1. We account for this by assigning 3008 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3009 * In effect, this means that we'll select the metaslab with the most 3010 * free bandwidth rather than simply the one with the most free space. 3011 */ 3012 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3013 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3014 ASSERT(weight >= space && weight <= 2 * space); 3015 } 3016 3017 /* 3018 * If this metaslab is one we're actively using, adjust its 3019 * weight to make it preferable to any inactive metaslab so 3020 * we'll polish it off. If the fragmentation on this metaslab 3021 * has exceed our threshold, then don't mark it active. 3022 */ 3023 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3024 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3025 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3026 } 3027 3028 WEIGHT_SET_SPACEBASED(weight); 3029 return (weight); 3030 } 3031 3032 /* 3033 * Return the weight of the specified metaslab, according to the segment-based 3034 * weighting algorithm. The metaslab must be loaded. This function can 3035 * be called within a sync pass since it relies only on the metaslab's 3036 * range tree which is always accurate when the metaslab is loaded. 3037 */ 3038 static uint64_t 3039 metaslab_weight_from_range_tree(metaslab_t *msp) 3040 { 3041 uint64_t weight = 0; 3042 uint32_t segments = 0; 3043 3044 ASSERT(msp->ms_loaded); 3045 3046 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3047 i--) { 3048 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3049 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3050 3051 segments <<= 1; 3052 segments += msp->ms_allocatable->rt_histogram[i]; 3053 3054 /* 3055 * The range tree provides more precision than the space map 3056 * and must be downgraded so that all values fit within the 3057 * space map's histogram. This allows us to compare loaded 3058 * vs. unloaded metaslabs to determine which metaslab is 3059 * considered "best". 3060 */ 3061 if (i > max_idx) 3062 continue; 3063 3064 if (segments != 0) { 3065 WEIGHT_SET_COUNT(weight, segments); 3066 WEIGHT_SET_INDEX(weight, i); 3067 WEIGHT_SET_ACTIVE(weight, 0); 3068 break; 3069 } 3070 } 3071 return (weight); 3072 } 3073 3074 /* 3075 * Calculate the weight based on the on-disk histogram. Should be applied 3076 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3077 * give results consistent with the on-disk state 3078 */ 3079 static uint64_t 3080 metaslab_weight_from_spacemap(metaslab_t *msp) 3081 { 3082 space_map_t *sm = msp->ms_sm; 3083 ASSERT(!msp->ms_loaded); 3084 ASSERT(sm != NULL); 3085 ASSERT3U(space_map_object(sm), !=, 0); 3086 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3087 3088 /* 3089 * Create a joint histogram from all the segments that have made 3090 * it to the metaslab's space map histogram, that are not yet 3091 * available for allocation because they are still in the freeing 3092 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3093 * these segments from the space map's histogram to get a more 3094 * accurate weight. 3095 */ 3096 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3098 deferspace_histogram[i] += msp->ms_synchist[i]; 3099 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3100 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3101 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3102 } 3103 } 3104 3105 uint64_t weight = 0; 3106 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3107 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3108 deferspace_histogram[i]); 3109 uint64_t count = 3110 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3111 if (count != 0) { 3112 WEIGHT_SET_COUNT(weight, count); 3113 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3114 WEIGHT_SET_ACTIVE(weight, 0); 3115 break; 3116 } 3117 } 3118 return (weight); 3119 } 3120 3121 /* 3122 * Compute a segment-based weight for the specified metaslab. The weight 3123 * is determined by highest bucket in the histogram. The information 3124 * for the highest bucket is encoded into the weight value. 3125 */ 3126 static uint64_t 3127 metaslab_segment_weight(metaslab_t *msp) 3128 { 3129 metaslab_group_t *mg = msp->ms_group; 3130 uint64_t weight = 0; 3131 uint8_t shift = mg->mg_vd->vdev_ashift; 3132 3133 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3134 3135 /* 3136 * The metaslab is completely free. 3137 */ 3138 if (metaslab_allocated_space(msp) == 0) { 3139 int idx = highbit64(msp->ms_size) - 1; 3140 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3141 3142 if (idx < max_idx) { 3143 WEIGHT_SET_COUNT(weight, 1ULL); 3144 WEIGHT_SET_INDEX(weight, idx); 3145 } else { 3146 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3147 WEIGHT_SET_INDEX(weight, max_idx); 3148 } 3149 WEIGHT_SET_ACTIVE(weight, 0); 3150 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3151 return (weight); 3152 } 3153 3154 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3155 3156 /* 3157 * If the metaslab is fully allocated then just make the weight 0. 3158 */ 3159 if (metaslab_allocated_space(msp) == msp->ms_size) 3160 return (0); 3161 /* 3162 * If the metaslab is already loaded, then use the range tree to 3163 * determine the weight. Otherwise, we rely on the space map information 3164 * to generate the weight. 3165 */ 3166 if (msp->ms_loaded) { 3167 weight = metaslab_weight_from_range_tree(msp); 3168 } else { 3169 weight = metaslab_weight_from_spacemap(msp); 3170 } 3171 3172 /* 3173 * If the metaslab was active the last time we calculated its weight 3174 * then keep it active. We want to consume the entire region that 3175 * is associated with this weight. 3176 */ 3177 if (msp->ms_activation_weight != 0 && weight != 0) 3178 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3179 return (weight); 3180 } 3181 3182 /* 3183 * Determine if we should attempt to allocate from this metaslab. If the 3184 * metaslab is loaded, then we can determine if the desired allocation 3185 * can be satisfied by looking at the size of the maximum free segment 3186 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3187 * weight. For segment-based weighting we can determine the maximum 3188 * allocation based on the index encoded in its value. For space-based 3189 * weights we rely on the entire weight (excluding the weight-type bit). 3190 */ 3191 static boolean_t 3192 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3193 { 3194 /* 3195 * If the metaslab is loaded, ms_max_size is definitive and we can use 3196 * the fast check. If it's not, the ms_max_size is a lower bound (once 3197 * set), and we should use the fast check as long as we're not in 3198 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3199 * seconds since the metaslab was unloaded. 3200 */ 3201 if (msp->ms_loaded || 3202 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3203 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3204 return (msp->ms_max_size >= asize); 3205 3206 boolean_t should_allocate; 3207 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3208 /* 3209 * The metaslab segment weight indicates segments in the 3210 * range [2^i, 2^(i+1)), where i is the index in the weight. 3211 * Since the asize might be in the middle of the range, we 3212 * should attempt the allocation if asize < 2^(i+1). 3213 */ 3214 should_allocate = (asize < 3215 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3216 } else { 3217 should_allocate = (asize <= 3218 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3219 } 3220 3221 return (should_allocate); 3222 } 3223 3224 static uint64_t 3225 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3226 { 3227 vdev_t *vd = msp->ms_group->mg_vd; 3228 spa_t *spa = vd->vdev_spa; 3229 uint64_t weight; 3230 3231 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3232 3233 metaslab_set_fragmentation(msp, nodirty); 3234 3235 /* 3236 * Update the maximum size. If the metaslab is loaded, this will 3237 * ensure that we get an accurate maximum size if newly freed space 3238 * has been added back into the free tree. If the metaslab is 3239 * unloaded, we check if there's a larger free segment in the 3240 * unflushed frees. This is a lower bound on the largest allocatable 3241 * segment size. Coalescing of adjacent entries may reveal larger 3242 * allocatable segments, but we aren't aware of those until loading 3243 * the space map into a range tree. 3244 */ 3245 if (msp->ms_loaded) { 3246 msp->ms_max_size = metaslab_largest_allocatable(msp); 3247 } else { 3248 msp->ms_max_size = MAX(msp->ms_max_size, 3249 metaslab_largest_unflushed_free(msp)); 3250 } 3251 3252 /* 3253 * Segment-based weighting requires space map histogram support. 3254 */ 3255 if (zfs_metaslab_segment_weight_enabled && 3256 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3257 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3258 sizeof (space_map_phys_t))) { 3259 weight = metaslab_segment_weight(msp); 3260 } else { 3261 weight = metaslab_space_weight(msp); 3262 } 3263 return (weight); 3264 } 3265 3266 void 3267 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3268 { 3269 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3270 3271 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3272 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3273 metaslab_group_sort(msp->ms_group, msp, 3274 metaslab_weight(msp, B_FALSE) | was_active); 3275 } 3276 3277 static int 3278 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3279 int allocator, uint64_t activation_weight) 3280 { 3281 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3282 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3283 3284 /* 3285 * If we're activating for the claim code, we don't want to actually 3286 * set the metaslab up for a specific allocator. 3287 */ 3288 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3289 ASSERT0(msp->ms_activation_weight); 3290 msp->ms_activation_weight = msp->ms_weight; 3291 metaslab_group_sort(mg, msp, msp->ms_weight | 3292 activation_weight); 3293 return (0); 3294 } 3295 3296 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3297 &mga->mga_primary : &mga->mga_secondary); 3298 3299 mutex_enter(&mg->mg_lock); 3300 if (*mspp != NULL) { 3301 mutex_exit(&mg->mg_lock); 3302 return (EEXIST); 3303 } 3304 3305 *mspp = msp; 3306 ASSERT3S(msp->ms_allocator, ==, -1); 3307 msp->ms_allocator = allocator; 3308 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3309 3310 ASSERT0(msp->ms_activation_weight); 3311 msp->ms_activation_weight = msp->ms_weight; 3312 metaslab_group_sort_impl(mg, msp, 3313 msp->ms_weight | activation_weight); 3314 mutex_exit(&mg->mg_lock); 3315 3316 return (0); 3317 } 3318 3319 static int 3320 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3321 { 3322 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3323 3324 /* 3325 * The current metaslab is already activated for us so there 3326 * is nothing to do. Already activated though, doesn't mean 3327 * that this metaslab is activated for our allocator nor our 3328 * requested activation weight. The metaslab could have started 3329 * as an active one for our allocator but changed allocators 3330 * while we were waiting to grab its ms_lock or we stole it 3331 * [see find_valid_metaslab()]. This means that there is a 3332 * possibility of passivating a metaslab of another allocator 3333 * or from a different activation mask, from this thread. 3334 */ 3335 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3336 ASSERT(msp->ms_loaded); 3337 return (0); 3338 } 3339 3340 int error = metaslab_load(msp); 3341 if (error != 0) { 3342 metaslab_group_sort(msp->ms_group, msp, 0); 3343 return (error); 3344 } 3345 3346 /* 3347 * When entering metaslab_load() we may have dropped the 3348 * ms_lock because we were loading this metaslab, or we 3349 * were waiting for another thread to load it for us. In 3350 * that scenario, we recheck the weight of the metaslab 3351 * to see if it was activated by another thread. 3352 * 3353 * If the metaslab was activated for another allocator or 3354 * it was activated with a different activation weight (e.g. 3355 * we wanted to make it a primary but it was activated as 3356 * secondary) we return error (EBUSY). 3357 * 3358 * If the metaslab was activated for the same allocator 3359 * and requested activation mask, skip activating it. 3360 */ 3361 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3362 if (msp->ms_allocator != allocator) 3363 return (EBUSY); 3364 3365 if ((msp->ms_weight & activation_weight) == 0) 3366 return (SET_ERROR(EBUSY)); 3367 3368 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3369 msp->ms_primary); 3370 return (0); 3371 } 3372 3373 /* 3374 * If the metaslab has literally 0 space, it will have weight 0. In 3375 * that case, don't bother activating it. This can happen if the 3376 * metaslab had space during find_valid_metaslab, but another thread 3377 * loaded it and used all that space while we were waiting to grab the 3378 * lock. 3379 */ 3380 if (msp->ms_weight == 0) { 3381 ASSERT0(range_tree_space(msp->ms_allocatable)); 3382 return (SET_ERROR(ENOSPC)); 3383 } 3384 3385 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3386 allocator, activation_weight)) != 0) { 3387 return (error); 3388 } 3389 3390 ASSERT(msp->ms_loaded); 3391 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3392 3393 return (0); 3394 } 3395 3396 static void 3397 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3398 uint64_t weight) 3399 { 3400 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3401 ASSERT(msp->ms_loaded); 3402 3403 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3404 metaslab_group_sort(mg, msp, weight); 3405 return; 3406 } 3407 3408 mutex_enter(&mg->mg_lock); 3409 ASSERT3P(msp->ms_group, ==, mg); 3410 ASSERT3S(0, <=, msp->ms_allocator); 3411 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3412 3413 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3414 if (msp->ms_primary) { 3415 ASSERT3P(mga->mga_primary, ==, msp); 3416 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3417 mga->mga_primary = NULL; 3418 } else { 3419 ASSERT3P(mga->mga_secondary, ==, msp); 3420 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3421 mga->mga_secondary = NULL; 3422 } 3423 msp->ms_allocator = -1; 3424 metaslab_group_sort_impl(mg, msp, weight); 3425 mutex_exit(&mg->mg_lock); 3426 } 3427 3428 static void 3429 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3430 { 3431 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3432 3433 /* 3434 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3435 * this metaslab again. In that case, it had better be empty, 3436 * or we would be leaving space on the table. 3437 */ 3438 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3439 size >= SPA_MINBLOCKSIZE || 3440 range_tree_space(msp->ms_allocatable) == 0); 3441 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3442 3443 ASSERT(msp->ms_activation_weight != 0); 3444 msp->ms_activation_weight = 0; 3445 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3446 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3447 } 3448 3449 /* 3450 * Segment-based metaslabs are activated once and remain active until 3451 * we either fail an allocation attempt (similar to space-based metaslabs) 3452 * or have exhausted the free space in zfs_metaslab_switch_threshold 3453 * buckets since the metaslab was activated. This function checks to see 3454 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3455 * metaslab and passivates it proactively. This will allow us to select a 3456 * metaslab with a larger contiguous region, if any, remaining within this 3457 * metaslab group. If we're in sync pass > 1, then we continue using this 3458 * metaslab so that we don't dirty more block and cause more sync passes. 3459 */ 3460 static void 3461 metaslab_segment_may_passivate(metaslab_t *msp) 3462 { 3463 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3464 3465 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3466 return; 3467 3468 /* 3469 * Since we are in the middle of a sync pass, the most accurate 3470 * information that is accessible to us is the in-core range tree 3471 * histogram; calculate the new weight based on that information. 3472 */ 3473 uint64_t weight = metaslab_weight_from_range_tree(msp); 3474 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3475 int current_idx = WEIGHT_GET_INDEX(weight); 3476 3477 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3478 metaslab_passivate(msp, weight); 3479 } 3480 3481 static void 3482 metaslab_preload(void *arg) 3483 { 3484 metaslab_t *msp = arg; 3485 metaslab_class_t *mc = msp->ms_group->mg_class; 3486 spa_t *spa = mc->mc_spa; 3487 fstrans_cookie_t cookie = spl_fstrans_mark(); 3488 3489 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3490 3491 mutex_enter(&msp->ms_lock); 3492 (void) metaslab_load(msp); 3493 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3494 mutex_exit(&msp->ms_lock); 3495 spl_fstrans_unmark(cookie); 3496 } 3497 3498 static void 3499 metaslab_group_preload(metaslab_group_t *mg) 3500 { 3501 spa_t *spa = mg->mg_vd->vdev_spa; 3502 metaslab_t *msp; 3503 avl_tree_t *t = &mg->mg_metaslab_tree; 3504 int m = 0; 3505 3506 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3507 taskq_wait_outstanding(mg->mg_taskq, 0); 3508 return; 3509 } 3510 3511 mutex_enter(&mg->mg_lock); 3512 3513 /* 3514 * Load the next potential metaslabs 3515 */ 3516 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3517 ASSERT3P(msp->ms_group, ==, mg); 3518 3519 /* 3520 * We preload only the maximum number of metaslabs specified 3521 * by metaslab_preload_limit. If a metaslab is being forced 3522 * to condense then we preload it too. This will ensure 3523 * that force condensing happens in the next txg. 3524 */ 3525 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3526 continue; 3527 } 3528 3529 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3530 msp, TQ_SLEEP) != TASKQID_INVALID); 3531 } 3532 mutex_exit(&mg->mg_lock); 3533 } 3534 3535 /* 3536 * Determine if the space map's on-disk footprint is past our tolerance for 3537 * inefficiency. We would like to use the following criteria to make our 3538 * decision: 3539 * 3540 * 1. Do not condense if the size of the space map object would dramatically 3541 * increase as a result of writing out the free space range tree. 3542 * 3543 * 2. Condense if the on on-disk space map representation is at least 3544 * zfs_condense_pct/100 times the size of the optimal representation 3545 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3546 * 3547 * 3. Do not condense if the on-disk size of the space map does not actually 3548 * decrease. 3549 * 3550 * Unfortunately, we cannot compute the on-disk size of the space map in this 3551 * context because we cannot accurately compute the effects of compression, etc. 3552 * Instead, we apply the heuristic described in the block comment for 3553 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3554 * is greater than a threshold number of blocks. 3555 */ 3556 static boolean_t 3557 metaslab_should_condense(metaslab_t *msp) 3558 { 3559 space_map_t *sm = msp->ms_sm; 3560 vdev_t *vd = msp->ms_group->mg_vd; 3561 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3562 3563 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3564 ASSERT(msp->ms_loaded); 3565 ASSERT(sm != NULL); 3566 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3567 3568 /* 3569 * We always condense metaslabs that are empty and metaslabs for 3570 * which a condense request has been made. 3571 */ 3572 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3573 msp->ms_condense_wanted) 3574 return (B_TRUE); 3575 3576 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3577 uint64_t object_size = space_map_length(sm); 3578 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3579 msp->ms_allocatable, SM_NO_VDEVID); 3580 3581 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3582 object_size > zfs_metaslab_condense_block_threshold * record_size); 3583 } 3584 3585 /* 3586 * Condense the on-disk space map representation to its minimized form. 3587 * The minimized form consists of a small number of allocations followed 3588 * by the entries of the free range tree (ms_allocatable). The condensed 3589 * spacemap contains all the entries of previous TXGs (including those in 3590 * the pool-wide log spacemaps; thus this is effectively a superset of 3591 * metaslab_flush()), but this TXG's entries still need to be written. 3592 */ 3593 static void 3594 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3595 { 3596 range_tree_t *condense_tree; 3597 space_map_t *sm = msp->ms_sm; 3598 uint64_t txg = dmu_tx_get_txg(tx); 3599 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3600 3601 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3602 ASSERT(msp->ms_loaded); 3603 ASSERT(msp->ms_sm != NULL); 3604 3605 /* 3606 * In order to condense the space map, we need to change it so it 3607 * only describes which segments are currently allocated and free. 3608 * 3609 * All the current free space resides in the ms_allocatable, all 3610 * the ms_defer trees, and all the ms_allocating trees. We ignore 3611 * ms_freed because it is empty because we're in sync pass 1. We 3612 * ignore ms_freeing because these changes are not yet reflected 3613 * in the spacemap (they will be written later this txg). 3614 * 3615 * So to truncate the space map to represent all the entries of 3616 * previous TXGs we do the following: 3617 * 3618 * 1] We create a range tree (condense tree) that is 100% empty. 3619 * 2] We add to it all segments found in the ms_defer trees 3620 * as those segments are marked as free in the original space 3621 * map. We do the same with the ms_allocating trees for the same 3622 * reason. Adding these segments should be a relatively 3623 * inexpensive operation since we expect these trees to have a 3624 * small number of nodes. 3625 * 3] We vacate any unflushed allocs, since they are not frees we 3626 * need to add to the condense tree. Then we vacate any 3627 * unflushed frees as they should already be part of ms_allocatable. 3628 * 4] At this point, we would ideally like to add all segments 3629 * in the ms_allocatable tree from the condense tree. This way 3630 * we would write all the entries of the condense tree as the 3631 * condensed space map, which would only contain freed 3632 * segments with everything else assumed to be allocated. 3633 * 3634 * Doing so can be prohibitively expensive as ms_allocatable can 3635 * be large, and therefore computationally expensive to add to 3636 * the condense_tree. Instead we first sync out an entry marking 3637 * everything as allocated, then the condense_tree and then the 3638 * ms_allocatable, in the condensed space map. While this is not 3639 * optimal, it is typically close to optimal and more importantly 3640 * much cheaper to compute. 3641 * 3642 * 5] Finally, as both of the unflushed trees were written to our 3643 * new and condensed metaslab space map, we basically flushed 3644 * all the unflushed changes to disk, thus we call 3645 * metaslab_flush_update(). 3646 */ 3647 ASSERT3U(spa_sync_pass(spa), ==, 1); 3648 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3649 3650 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3651 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3652 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3653 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3654 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3655 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3656 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3657 3658 msp->ms_condense_wanted = B_FALSE; 3659 3660 range_seg_type_t type; 3661 uint64_t shift, start; 3662 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3663 &start, &shift); 3664 3665 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3666 3667 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3668 range_tree_walk(msp->ms_defer[t], 3669 range_tree_add, condense_tree); 3670 } 3671 3672 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3673 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3674 range_tree_add, condense_tree); 3675 } 3676 3677 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3678 metaslab_unflushed_changes_memused(msp)); 3679 spa->spa_unflushed_stats.sus_memused -= 3680 metaslab_unflushed_changes_memused(msp); 3681 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3682 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3683 3684 /* 3685 * We're about to drop the metaslab's lock thus allowing other 3686 * consumers to change it's content. Set the metaslab's ms_condensing 3687 * flag to ensure that allocations on this metaslab do not occur 3688 * while we're in the middle of committing it to disk. This is only 3689 * critical for ms_allocatable as all other range trees use per TXG 3690 * views of their content. 3691 */ 3692 msp->ms_condensing = B_TRUE; 3693 3694 mutex_exit(&msp->ms_lock); 3695 uint64_t object = space_map_object(msp->ms_sm); 3696 space_map_truncate(sm, 3697 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3698 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3699 3700 /* 3701 * space_map_truncate() may have reallocated the spacemap object. 3702 * If so, update the vdev_ms_array. 3703 */ 3704 if (space_map_object(msp->ms_sm) != object) { 3705 object = space_map_object(msp->ms_sm); 3706 dmu_write(spa->spa_meta_objset, 3707 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3708 msp->ms_id, sizeof (uint64_t), &object, tx); 3709 } 3710 3711 /* 3712 * Note: 3713 * When the log space map feature is enabled, each space map will 3714 * always have ALLOCS followed by FREES for each sync pass. This is 3715 * typically true even when the log space map feature is disabled, 3716 * except from the case where a metaslab goes through metaslab_sync() 3717 * and gets condensed. In that case the metaslab's space map will have 3718 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3719 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3720 * sync pass 1. 3721 */ 3722 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3723 shift); 3724 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3725 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3726 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3727 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3728 3729 range_tree_vacate(condense_tree, NULL, NULL); 3730 range_tree_destroy(condense_tree); 3731 range_tree_vacate(tmp_tree, NULL, NULL); 3732 range_tree_destroy(tmp_tree); 3733 mutex_enter(&msp->ms_lock); 3734 3735 msp->ms_condensing = B_FALSE; 3736 metaslab_flush_update(msp, tx); 3737 } 3738 3739 /* 3740 * Called when the metaslab has been flushed (its own spacemap now reflects 3741 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3742 * metadata and any pool-wide related log space map data (e.g. summary, 3743 * obsolete logs, etc..) to reflect that. 3744 */ 3745 static void 3746 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3747 { 3748 metaslab_group_t *mg = msp->ms_group; 3749 spa_t *spa = mg->mg_vd->vdev_spa; 3750 3751 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3752 3753 ASSERT3U(spa_sync_pass(spa), ==, 1); 3754 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3755 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3756 3757 /* 3758 * Just because a metaslab got flushed, that doesn't mean that 3759 * it will pass through metaslab_sync_done(). Thus, make sure to 3760 * update ms_synced_length here in case it doesn't. 3761 */ 3762 msp->ms_synced_length = space_map_length(msp->ms_sm); 3763 3764 /* 3765 * We may end up here from metaslab_condense() without the 3766 * feature being active. In that case this is a no-op. 3767 */ 3768 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3769 return; 3770 3771 ASSERT(spa_syncing_log_sm(spa) != NULL); 3772 ASSERT(msp->ms_sm != NULL); 3773 ASSERT(metaslab_unflushed_txg(msp) != 0); 3774 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3775 3776 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3777 3778 /* update metaslab's position in our flushing tree */ 3779 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3780 mutex_enter(&spa->spa_flushed_ms_lock); 3781 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3782 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3783 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3784 mutex_exit(&spa->spa_flushed_ms_lock); 3785 3786 /* update metaslab counts of spa_log_sm_t nodes */ 3787 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3788 spa_log_sm_increment_current_mscount(spa); 3789 3790 /* cleanup obsolete logs if any */ 3791 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3792 spa_cleanup_old_sm_logs(spa, tx); 3793 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3794 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3795 3796 /* update log space map summary */ 3797 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3798 spa_log_summary_add_flushed_metaslab(spa); 3799 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3800 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3801 } 3802 3803 boolean_t 3804 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3805 { 3806 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3807 3808 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3809 ASSERT3U(spa_sync_pass(spa), ==, 1); 3810 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3811 3812 ASSERT(msp->ms_sm != NULL); 3813 ASSERT(metaslab_unflushed_txg(msp) != 0); 3814 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3815 3816 /* 3817 * There is nothing wrong with flushing the same metaslab twice, as 3818 * this codepath should work on that case. However, the current 3819 * flushing scheme makes sure to avoid this situation as we would be 3820 * making all these calls without having anything meaningful to write 3821 * to disk. We assert this behavior here. 3822 */ 3823 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3824 3825 /* 3826 * We can not flush while loading, because then we would 3827 * not load the ms_unflushed_{allocs,frees}. 3828 */ 3829 if (msp->ms_loading) 3830 return (B_FALSE); 3831 3832 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3833 metaslab_verify_weight_and_frag(msp); 3834 3835 /* 3836 * Metaslab condensing is effectively flushing. Therefore if the 3837 * metaslab can be condensed we can just condense it instead of 3838 * flushing it. 3839 * 3840 * Note that metaslab_condense() does call metaslab_flush_update() 3841 * so we can just return immediately after condensing. We also 3842 * don't need to care about setting ms_flushing or broadcasting 3843 * ms_flush_cv, even if we temporarily drop the ms_lock in 3844 * metaslab_condense(), as the metaslab is already loaded. 3845 */ 3846 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3847 metaslab_group_t *mg = msp->ms_group; 3848 3849 /* 3850 * For all histogram operations below refer to the 3851 * comments of metaslab_sync() where we follow a 3852 * similar procedure. 3853 */ 3854 metaslab_group_histogram_verify(mg); 3855 metaslab_class_histogram_verify(mg->mg_class); 3856 metaslab_group_histogram_remove(mg, msp); 3857 3858 metaslab_condense(msp, tx); 3859 3860 space_map_histogram_clear(msp->ms_sm); 3861 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3862 ASSERT(range_tree_is_empty(msp->ms_freed)); 3863 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3864 space_map_histogram_add(msp->ms_sm, 3865 msp->ms_defer[t], tx); 3866 } 3867 metaslab_aux_histograms_update(msp); 3868 3869 metaslab_group_histogram_add(mg, msp); 3870 metaslab_group_histogram_verify(mg); 3871 metaslab_class_histogram_verify(mg->mg_class); 3872 3873 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3874 3875 /* 3876 * Since we recreated the histogram (and potentially 3877 * the ms_sm too while condensing) ensure that the 3878 * weight is updated too because we are not guaranteed 3879 * that this metaslab is dirty and will go through 3880 * metaslab_sync_done(). 3881 */ 3882 metaslab_recalculate_weight_and_sort(msp); 3883 return (B_TRUE); 3884 } 3885 3886 msp->ms_flushing = B_TRUE; 3887 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3888 3889 mutex_exit(&msp->ms_lock); 3890 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3891 SM_NO_VDEVID, tx); 3892 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3893 SM_NO_VDEVID, tx); 3894 mutex_enter(&msp->ms_lock); 3895 3896 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3897 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3898 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3899 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3900 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3901 spa_name(spa), 3902 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3903 (u_longlong_t)msp->ms_id, 3904 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3905 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3906 (u_longlong_t)(sm_len_after - sm_len_before)); 3907 } 3908 3909 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3910 metaslab_unflushed_changes_memused(msp)); 3911 spa->spa_unflushed_stats.sus_memused -= 3912 metaslab_unflushed_changes_memused(msp); 3913 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3914 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3915 3916 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3917 metaslab_verify_weight_and_frag(msp); 3918 3919 metaslab_flush_update(msp, tx); 3920 3921 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3922 metaslab_verify_weight_and_frag(msp); 3923 3924 msp->ms_flushing = B_FALSE; 3925 cv_broadcast(&msp->ms_flush_cv); 3926 return (B_TRUE); 3927 } 3928 3929 /* 3930 * Write a metaslab to disk in the context of the specified transaction group. 3931 */ 3932 void 3933 metaslab_sync(metaslab_t *msp, uint64_t txg) 3934 { 3935 metaslab_group_t *mg = msp->ms_group; 3936 vdev_t *vd = mg->mg_vd; 3937 spa_t *spa = vd->vdev_spa; 3938 objset_t *mos = spa_meta_objset(spa); 3939 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3940 dmu_tx_t *tx; 3941 3942 ASSERT(!vd->vdev_ishole); 3943 3944 /* 3945 * This metaslab has just been added so there's no work to do now. 3946 */ 3947 if (msp->ms_new) { 3948 ASSERT0(range_tree_space(alloctree)); 3949 ASSERT0(range_tree_space(msp->ms_freeing)); 3950 ASSERT0(range_tree_space(msp->ms_freed)); 3951 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3952 ASSERT0(range_tree_space(msp->ms_trim)); 3953 return; 3954 } 3955 3956 /* 3957 * Normally, we don't want to process a metaslab if there are no 3958 * allocations or frees to perform. However, if the metaslab is being 3959 * forced to condense, it's loaded and we're not beyond the final 3960 * dirty txg, we need to let it through. Not condensing beyond the 3961 * final dirty txg prevents an issue where metaslabs that need to be 3962 * condensed but were loaded for other reasons could cause a panic 3963 * here. By only checking the txg in that branch of the conditional, 3964 * we preserve the utility of the VERIFY statements in all other 3965 * cases. 3966 */ 3967 if (range_tree_is_empty(alloctree) && 3968 range_tree_is_empty(msp->ms_freeing) && 3969 range_tree_is_empty(msp->ms_checkpointing) && 3970 !(msp->ms_loaded && msp->ms_condense_wanted && 3971 txg <= spa_final_dirty_txg(spa))) 3972 return; 3973 3974 3975 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3976 3977 /* 3978 * The only state that can actually be changing concurrently 3979 * with metaslab_sync() is the metaslab's ms_allocatable. No 3980 * other thread can be modifying this txg's alloc, freeing, 3981 * freed, or space_map_phys_t. We drop ms_lock whenever we 3982 * could call into the DMU, because the DMU can call down to 3983 * us (e.g. via zio_free()) at any time. 3984 * 3985 * The spa_vdev_remove_thread() can be reading metaslab state 3986 * concurrently, and it is locked out by the ms_sync_lock. 3987 * Note that the ms_lock is insufficient for this, because it 3988 * is dropped by space_map_write(). 3989 */ 3990 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3991 3992 /* 3993 * Generate a log space map if one doesn't exist already. 3994 */ 3995 spa_generate_syncing_log_sm(spa, tx); 3996 3997 if (msp->ms_sm == NULL) { 3998 uint64_t new_object = space_map_alloc(mos, 3999 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4000 zfs_metaslab_sm_blksz_with_log : 4001 zfs_metaslab_sm_blksz_no_log, tx); 4002 VERIFY3U(new_object, !=, 0); 4003 4004 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4005 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4006 4007 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4008 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4009 ASSERT(msp->ms_sm != NULL); 4010 4011 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4012 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4013 ASSERT0(metaslab_allocated_space(msp)); 4014 } 4015 4016 if (metaslab_unflushed_txg(msp) == 0 && 4017 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 4018 ASSERT(spa_syncing_log_sm(spa) != NULL); 4019 4020 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4021 spa_log_sm_increment_current_mscount(spa); 4022 spa_log_summary_add_flushed_metaslab(spa); 4023 4024 ASSERT(msp->ms_sm != NULL); 4025 mutex_enter(&spa->spa_flushed_ms_lock); 4026 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4027 mutex_exit(&spa->spa_flushed_ms_lock); 4028 4029 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4030 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4031 } 4032 4033 if (!range_tree_is_empty(msp->ms_checkpointing) && 4034 vd->vdev_checkpoint_sm == NULL) { 4035 ASSERT(spa_has_checkpoint(spa)); 4036 4037 uint64_t new_object = space_map_alloc(mos, 4038 zfs_vdev_standard_sm_blksz, tx); 4039 VERIFY3U(new_object, !=, 0); 4040 4041 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4042 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4043 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4044 4045 /* 4046 * We save the space map object as an entry in vdev_top_zap 4047 * so it can be retrieved when the pool is reopened after an 4048 * export or through zdb. 4049 */ 4050 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4051 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4052 sizeof (new_object), 1, &new_object, tx)); 4053 } 4054 4055 mutex_enter(&msp->ms_sync_lock); 4056 mutex_enter(&msp->ms_lock); 4057 4058 /* 4059 * Note: metaslab_condense() clears the space map's histogram. 4060 * Therefore we must verify and remove this histogram before 4061 * condensing. 4062 */ 4063 metaslab_group_histogram_verify(mg); 4064 metaslab_class_histogram_verify(mg->mg_class); 4065 metaslab_group_histogram_remove(mg, msp); 4066 4067 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4068 metaslab_should_condense(msp)) 4069 metaslab_condense(msp, tx); 4070 4071 /* 4072 * We'll be going to disk to sync our space accounting, thus we 4073 * drop the ms_lock during that time so allocations coming from 4074 * open-context (ZIL) for future TXGs do not block. 4075 */ 4076 mutex_exit(&msp->ms_lock); 4077 space_map_t *log_sm = spa_syncing_log_sm(spa); 4078 if (log_sm != NULL) { 4079 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4080 4081 space_map_write(log_sm, alloctree, SM_ALLOC, 4082 vd->vdev_id, tx); 4083 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4084 vd->vdev_id, tx); 4085 mutex_enter(&msp->ms_lock); 4086 4087 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4088 metaslab_unflushed_changes_memused(msp)); 4089 spa->spa_unflushed_stats.sus_memused -= 4090 metaslab_unflushed_changes_memused(msp); 4091 range_tree_remove_xor_add(alloctree, 4092 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4093 range_tree_remove_xor_add(msp->ms_freeing, 4094 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4095 spa->spa_unflushed_stats.sus_memused += 4096 metaslab_unflushed_changes_memused(msp); 4097 } else { 4098 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4099 4100 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4101 SM_NO_VDEVID, tx); 4102 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4103 SM_NO_VDEVID, tx); 4104 mutex_enter(&msp->ms_lock); 4105 } 4106 4107 msp->ms_allocated_space += range_tree_space(alloctree); 4108 ASSERT3U(msp->ms_allocated_space, >=, 4109 range_tree_space(msp->ms_freeing)); 4110 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4111 4112 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4113 ASSERT(spa_has_checkpoint(spa)); 4114 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4115 4116 /* 4117 * Since we are doing writes to disk and the ms_checkpointing 4118 * tree won't be changing during that time, we drop the 4119 * ms_lock while writing to the checkpoint space map, for the 4120 * same reason mentioned above. 4121 */ 4122 mutex_exit(&msp->ms_lock); 4123 space_map_write(vd->vdev_checkpoint_sm, 4124 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4125 mutex_enter(&msp->ms_lock); 4126 4127 spa->spa_checkpoint_info.sci_dspace += 4128 range_tree_space(msp->ms_checkpointing); 4129 vd->vdev_stat.vs_checkpoint_space += 4130 range_tree_space(msp->ms_checkpointing); 4131 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4132 -space_map_allocated(vd->vdev_checkpoint_sm)); 4133 4134 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4135 } 4136 4137 if (msp->ms_loaded) { 4138 /* 4139 * When the space map is loaded, we have an accurate 4140 * histogram in the range tree. This gives us an opportunity 4141 * to bring the space map's histogram up-to-date so we clear 4142 * it first before updating it. 4143 */ 4144 space_map_histogram_clear(msp->ms_sm); 4145 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4146 4147 /* 4148 * Since we've cleared the histogram we need to add back 4149 * any free space that has already been processed, plus 4150 * any deferred space. This allows the on-disk histogram 4151 * to accurately reflect all free space even if some space 4152 * is not yet available for allocation (i.e. deferred). 4153 */ 4154 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4155 4156 /* 4157 * Add back any deferred free space that has not been 4158 * added back into the in-core free tree yet. This will 4159 * ensure that we don't end up with a space map histogram 4160 * that is completely empty unless the metaslab is fully 4161 * allocated. 4162 */ 4163 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4164 space_map_histogram_add(msp->ms_sm, 4165 msp->ms_defer[t], tx); 4166 } 4167 } 4168 4169 /* 4170 * Always add the free space from this sync pass to the space 4171 * map histogram. We want to make sure that the on-disk histogram 4172 * accounts for all free space. If the space map is not loaded, 4173 * then we will lose some accuracy but will correct it the next 4174 * time we load the space map. 4175 */ 4176 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4177 metaslab_aux_histograms_update(msp); 4178 4179 metaslab_group_histogram_add(mg, msp); 4180 metaslab_group_histogram_verify(mg); 4181 metaslab_class_histogram_verify(mg->mg_class); 4182 4183 /* 4184 * For sync pass 1, we avoid traversing this txg's free range tree 4185 * and instead will just swap the pointers for freeing and freed. 4186 * We can safely do this since the freed_tree is guaranteed to be 4187 * empty on the initial pass. 4188 * 4189 * Keep in mind that even if we are currently using a log spacemap 4190 * we want current frees to end up in the ms_allocatable (but not 4191 * get appended to the ms_sm) so their ranges can be reused as usual. 4192 */ 4193 if (spa_sync_pass(spa) == 1) { 4194 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4195 ASSERT0(msp->ms_allocated_this_txg); 4196 } else { 4197 range_tree_vacate(msp->ms_freeing, 4198 range_tree_add, msp->ms_freed); 4199 } 4200 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4201 range_tree_vacate(alloctree, NULL, NULL); 4202 4203 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4204 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4205 & TXG_MASK])); 4206 ASSERT0(range_tree_space(msp->ms_freeing)); 4207 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4208 4209 mutex_exit(&msp->ms_lock); 4210 4211 /* 4212 * Verify that the space map object ID has been recorded in the 4213 * vdev_ms_array. 4214 */ 4215 uint64_t object; 4216 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4217 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4218 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4219 4220 mutex_exit(&msp->ms_sync_lock); 4221 dmu_tx_commit(tx); 4222 } 4223 4224 static void 4225 metaslab_evict(metaslab_t *msp, uint64_t txg) 4226 { 4227 if (!msp->ms_loaded || msp->ms_disabled != 0) 4228 return; 4229 4230 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4231 VERIFY0(range_tree_space( 4232 msp->ms_allocating[(txg + t) & TXG_MASK])); 4233 } 4234 if (msp->ms_allocator != -1) 4235 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4236 4237 if (!metaslab_debug_unload) 4238 metaslab_unload(msp); 4239 } 4240 4241 /* 4242 * Called after a transaction group has completely synced to mark 4243 * all of the metaslab's free space as usable. 4244 */ 4245 void 4246 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4247 { 4248 metaslab_group_t *mg = msp->ms_group; 4249 vdev_t *vd = mg->mg_vd; 4250 spa_t *spa = vd->vdev_spa; 4251 range_tree_t **defer_tree; 4252 int64_t alloc_delta, defer_delta; 4253 boolean_t defer_allowed = B_TRUE; 4254 4255 ASSERT(!vd->vdev_ishole); 4256 4257 mutex_enter(&msp->ms_lock); 4258 4259 if (msp->ms_new) { 4260 /* this is a new metaslab, add its capacity to the vdev */ 4261 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4262 4263 /* there should be no allocations nor frees at this point */ 4264 VERIFY0(msp->ms_allocated_this_txg); 4265 VERIFY0(range_tree_space(msp->ms_freed)); 4266 } 4267 4268 ASSERT0(range_tree_space(msp->ms_freeing)); 4269 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4270 4271 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4272 4273 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4274 metaslab_class_get_alloc(spa_normal_class(spa)); 4275 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4276 defer_allowed = B_FALSE; 4277 } 4278 4279 defer_delta = 0; 4280 alloc_delta = msp->ms_allocated_this_txg - 4281 range_tree_space(msp->ms_freed); 4282 4283 if (defer_allowed) { 4284 defer_delta = range_tree_space(msp->ms_freed) - 4285 range_tree_space(*defer_tree); 4286 } else { 4287 defer_delta -= range_tree_space(*defer_tree); 4288 } 4289 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4290 defer_delta, 0); 4291 4292 if (spa_syncing_log_sm(spa) == NULL) { 4293 /* 4294 * If there's a metaslab_load() in progress and we don't have 4295 * a log space map, it means that we probably wrote to the 4296 * metaslab's space map. If this is the case, we need to 4297 * make sure that we wait for the load to complete so that we 4298 * have a consistent view at the in-core side of the metaslab. 4299 */ 4300 metaslab_load_wait(msp); 4301 } else { 4302 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4303 } 4304 4305 /* 4306 * When auto-trimming is enabled, free ranges which are added to 4307 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4308 * periodically consumed by the vdev_autotrim_thread() which issues 4309 * trims for all ranges and then vacates the tree. The ms_trim tree 4310 * can be discarded at any time with the sole consequence of recent 4311 * frees not being trimmed. 4312 */ 4313 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4314 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4315 if (!defer_allowed) { 4316 range_tree_walk(msp->ms_freed, range_tree_add, 4317 msp->ms_trim); 4318 } 4319 } else { 4320 range_tree_vacate(msp->ms_trim, NULL, NULL); 4321 } 4322 4323 /* 4324 * Move the frees from the defer_tree back to the free 4325 * range tree (if it's loaded). Swap the freed_tree and 4326 * the defer_tree -- this is safe to do because we've 4327 * just emptied out the defer_tree. 4328 */ 4329 range_tree_vacate(*defer_tree, 4330 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4331 if (defer_allowed) { 4332 range_tree_swap(&msp->ms_freed, defer_tree); 4333 } else { 4334 range_tree_vacate(msp->ms_freed, 4335 msp->ms_loaded ? range_tree_add : NULL, 4336 msp->ms_allocatable); 4337 } 4338 4339 msp->ms_synced_length = space_map_length(msp->ms_sm); 4340 4341 msp->ms_deferspace += defer_delta; 4342 ASSERT3S(msp->ms_deferspace, >=, 0); 4343 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4344 if (msp->ms_deferspace != 0) { 4345 /* 4346 * Keep syncing this metaslab until all deferred frees 4347 * are back in circulation. 4348 */ 4349 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4350 } 4351 metaslab_aux_histograms_update_done(msp, defer_allowed); 4352 4353 if (msp->ms_new) { 4354 msp->ms_new = B_FALSE; 4355 mutex_enter(&mg->mg_lock); 4356 mg->mg_ms_ready++; 4357 mutex_exit(&mg->mg_lock); 4358 } 4359 4360 /* 4361 * Re-sort metaslab within its group now that we've adjusted 4362 * its allocatable space. 4363 */ 4364 metaslab_recalculate_weight_and_sort(msp); 4365 4366 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4367 ASSERT0(range_tree_space(msp->ms_freeing)); 4368 ASSERT0(range_tree_space(msp->ms_freed)); 4369 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4370 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4371 msp->ms_allocated_this_txg = 0; 4372 mutex_exit(&msp->ms_lock); 4373 } 4374 4375 void 4376 metaslab_sync_reassess(metaslab_group_t *mg) 4377 { 4378 spa_t *spa = mg->mg_class->mc_spa; 4379 4380 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4381 metaslab_group_alloc_update(mg); 4382 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4383 4384 /* 4385 * Preload the next potential metaslabs but only on active 4386 * metaslab groups. We can get into a state where the metaslab 4387 * is no longer active since we dirty metaslabs as we remove a 4388 * a device, thus potentially making the metaslab group eligible 4389 * for preloading. 4390 */ 4391 if (mg->mg_activation_count > 0) { 4392 metaslab_group_preload(mg); 4393 } 4394 spa_config_exit(spa, SCL_ALLOC, FTAG); 4395 } 4396 4397 /* 4398 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4399 * the same vdev as an existing DVA of this BP, then try to allocate it 4400 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4401 */ 4402 static boolean_t 4403 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4404 { 4405 uint64_t dva_ms_id; 4406 4407 if (DVA_GET_ASIZE(dva) == 0) 4408 return (B_TRUE); 4409 4410 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4411 return (B_TRUE); 4412 4413 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4414 4415 return (msp->ms_id != dva_ms_id); 4416 } 4417 4418 /* 4419 * ========================================================================== 4420 * Metaslab allocation tracing facility 4421 * ========================================================================== 4422 */ 4423 4424 /* 4425 * Add an allocation trace element to the allocation tracing list. 4426 */ 4427 static void 4428 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4429 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4430 int allocator) 4431 { 4432 metaslab_alloc_trace_t *mat; 4433 4434 if (!metaslab_trace_enabled) 4435 return; 4436 4437 /* 4438 * When the tracing list reaches its maximum we remove 4439 * the second element in the list before adding a new one. 4440 * By removing the second element we preserve the original 4441 * entry as a clue to what allocations steps have already been 4442 * performed. 4443 */ 4444 if (zal->zal_size == metaslab_trace_max_entries) { 4445 metaslab_alloc_trace_t *mat_next; 4446 #ifdef ZFS_DEBUG 4447 panic("too many entries in allocation list"); 4448 #endif 4449 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4450 zal->zal_size--; 4451 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4452 list_remove(&zal->zal_list, mat_next); 4453 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4454 } 4455 4456 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4457 list_link_init(&mat->mat_list_node); 4458 mat->mat_mg = mg; 4459 mat->mat_msp = msp; 4460 mat->mat_size = psize; 4461 mat->mat_dva_id = dva_id; 4462 mat->mat_offset = offset; 4463 mat->mat_weight = 0; 4464 mat->mat_allocator = allocator; 4465 4466 if (msp != NULL) 4467 mat->mat_weight = msp->ms_weight; 4468 4469 /* 4470 * The list is part of the zio so locking is not required. Only 4471 * a single thread will perform allocations for a given zio. 4472 */ 4473 list_insert_tail(&zal->zal_list, mat); 4474 zal->zal_size++; 4475 4476 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4477 } 4478 4479 void 4480 metaslab_trace_init(zio_alloc_list_t *zal) 4481 { 4482 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4483 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4484 zal->zal_size = 0; 4485 } 4486 4487 void 4488 metaslab_trace_fini(zio_alloc_list_t *zal) 4489 { 4490 metaslab_alloc_trace_t *mat; 4491 4492 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4493 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4494 list_destroy(&zal->zal_list); 4495 zal->zal_size = 0; 4496 } 4497 4498 /* 4499 * ========================================================================== 4500 * Metaslab block operations 4501 * ========================================================================== 4502 */ 4503 4504 static void 4505 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4506 int allocator) 4507 { 4508 if (!(flags & METASLAB_ASYNC_ALLOC) || 4509 (flags & METASLAB_DONT_THROTTLE)) 4510 return; 4511 4512 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4513 if (!mg->mg_class->mc_alloc_throttle_enabled) 4514 return; 4515 4516 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4517 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4518 } 4519 4520 static void 4521 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4522 { 4523 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4524 metaslab_class_allocator_t *mca = 4525 &mg->mg_class->mc_allocator[allocator]; 4526 uint64_t max = mg->mg_max_alloc_queue_depth; 4527 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4528 while (cur < max) { 4529 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4530 cur, cur + 1) == cur) { 4531 atomic_inc_64(&mca->mca_alloc_max_slots); 4532 return; 4533 } 4534 cur = mga->mga_cur_max_alloc_queue_depth; 4535 } 4536 } 4537 4538 void 4539 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4540 int allocator, boolean_t io_complete) 4541 { 4542 if (!(flags & METASLAB_ASYNC_ALLOC) || 4543 (flags & METASLAB_DONT_THROTTLE)) 4544 return; 4545 4546 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4547 if (!mg->mg_class->mc_alloc_throttle_enabled) 4548 return; 4549 4550 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4551 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4552 if (io_complete) 4553 metaslab_group_increment_qdepth(mg, allocator); 4554 } 4555 4556 void 4557 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4558 int allocator) 4559 { 4560 #ifdef ZFS_DEBUG 4561 const dva_t *dva = bp->blk_dva; 4562 int ndvas = BP_GET_NDVAS(bp); 4563 4564 for (int d = 0; d < ndvas; d++) { 4565 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4566 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4567 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4568 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4569 } 4570 #endif 4571 } 4572 4573 static uint64_t 4574 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4575 { 4576 uint64_t start; 4577 range_tree_t *rt = msp->ms_allocatable; 4578 metaslab_class_t *mc = msp->ms_group->mg_class; 4579 4580 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4581 VERIFY(!msp->ms_condensing); 4582 VERIFY0(msp->ms_disabled); 4583 4584 start = mc->mc_ops->msop_alloc(msp, size); 4585 if (start != -1ULL) { 4586 metaslab_group_t *mg = msp->ms_group; 4587 vdev_t *vd = mg->mg_vd; 4588 4589 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4590 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4591 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4592 range_tree_remove(rt, start, size); 4593 range_tree_clear(msp->ms_trim, start, size); 4594 4595 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4596 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4597 4598 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4599 msp->ms_allocating_total += size; 4600 4601 /* Track the last successful allocation */ 4602 msp->ms_alloc_txg = txg; 4603 metaslab_verify_space(msp, txg); 4604 } 4605 4606 /* 4607 * Now that we've attempted the allocation we need to update the 4608 * metaslab's maximum block size since it may have changed. 4609 */ 4610 msp->ms_max_size = metaslab_largest_allocatable(msp); 4611 return (start); 4612 } 4613 4614 /* 4615 * Find the metaslab with the highest weight that is less than what we've 4616 * already tried. In the common case, this means that we will examine each 4617 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4618 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4619 * activated by another thread, and we fail to allocate from the metaslab we 4620 * have selected, we may not try the newly-activated metaslab, and instead 4621 * activate another metaslab. This is not optimal, but generally does not cause 4622 * any problems (a possible exception being if every metaslab is completely full 4623 * except for the newly-activated metaslab which we fail to examine). 4624 */ 4625 static metaslab_t * 4626 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4627 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4628 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4629 boolean_t *was_active) 4630 { 4631 avl_index_t idx; 4632 avl_tree_t *t = &mg->mg_metaslab_tree; 4633 metaslab_t *msp = avl_find(t, search, &idx); 4634 if (msp == NULL) 4635 msp = avl_nearest(t, idx, AVL_AFTER); 4636 4637 int tries = 0; 4638 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4639 int i; 4640 4641 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4642 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4643 return (NULL); 4644 } 4645 tries++; 4646 4647 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4648 metaslab_trace_add(zal, mg, msp, asize, d, 4649 TRACE_TOO_SMALL, allocator); 4650 continue; 4651 } 4652 4653 /* 4654 * If the selected metaslab is condensing or disabled, 4655 * skip it. 4656 */ 4657 if (msp->ms_condensing || msp->ms_disabled > 0) 4658 continue; 4659 4660 *was_active = msp->ms_allocator != -1; 4661 /* 4662 * If we're activating as primary, this is our first allocation 4663 * from this disk, so we don't need to check how close we are. 4664 * If the metaslab under consideration was already active, 4665 * we're getting desperate enough to steal another allocator's 4666 * metaslab, so we still don't care about distances. 4667 */ 4668 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4669 break; 4670 4671 for (i = 0; i < d; i++) { 4672 if (want_unique && 4673 !metaslab_is_unique(msp, &dva[i])) 4674 break; /* try another metaslab */ 4675 } 4676 if (i == d) 4677 break; 4678 } 4679 4680 if (msp != NULL) { 4681 search->ms_weight = msp->ms_weight; 4682 search->ms_start = msp->ms_start + 1; 4683 search->ms_allocator = msp->ms_allocator; 4684 search->ms_primary = msp->ms_primary; 4685 } 4686 return (msp); 4687 } 4688 4689 static void 4690 metaslab_active_mask_verify(metaslab_t *msp) 4691 { 4692 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4693 4694 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4695 return; 4696 4697 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4698 return; 4699 4700 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4701 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4702 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4703 VERIFY3S(msp->ms_allocator, !=, -1); 4704 VERIFY(msp->ms_primary); 4705 return; 4706 } 4707 4708 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4709 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4710 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4711 VERIFY3S(msp->ms_allocator, !=, -1); 4712 VERIFY(!msp->ms_primary); 4713 return; 4714 } 4715 4716 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4717 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4718 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4719 VERIFY3S(msp->ms_allocator, ==, -1); 4720 return; 4721 } 4722 } 4723 4724 /* ARGSUSED */ 4725 static uint64_t 4726 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4727 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4728 int allocator, boolean_t try_hard) 4729 { 4730 metaslab_t *msp = NULL; 4731 uint64_t offset = -1ULL; 4732 4733 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4734 for (int i = 0; i < d; i++) { 4735 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4736 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4737 activation_weight = METASLAB_WEIGHT_SECONDARY; 4738 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4739 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4740 activation_weight = METASLAB_WEIGHT_CLAIM; 4741 break; 4742 } 4743 } 4744 4745 /* 4746 * If we don't have enough metaslabs active to fill the entire array, we 4747 * just use the 0th slot. 4748 */ 4749 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4750 allocator = 0; 4751 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4752 4753 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4754 4755 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4756 search->ms_weight = UINT64_MAX; 4757 search->ms_start = 0; 4758 /* 4759 * At the end of the metaslab tree are the already-active metaslabs, 4760 * first the primaries, then the secondaries. When we resume searching 4761 * through the tree, we need to consider ms_allocator and ms_primary so 4762 * we start in the location right after where we left off, and don't 4763 * accidentally loop forever considering the same metaslabs. 4764 */ 4765 search->ms_allocator = -1; 4766 search->ms_primary = B_TRUE; 4767 for (;;) { 4768 boolean_t was_active = B_FALSE; 4769 4770 mutex_enter(&mg->mg_lock); 4771 4772 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4773 mga->mga_primary != NULL) { 4774 msp = mga->mga_primary; 4775 4776 /* 4777 * Even though we don't hold the ms_lock for the 4778 * primary metaslab, those fields should not 4779 * change while we hold the mg_lock. Thus it is 4780 * safe to make assertions on them. 4781 */ 4782 ASSERT(msp->ms_primary); 4783 ASSERT3S(msp->ms_allocator, ==, allocator); 4784 ASSERT(msp->ms_loaded); 4785 4786 was_active = B_TRUE; 4787 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4788 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4789 mga->mga_secondary != NULL) { 4790 msp = mga->mga_secondary; 4791 4792 /* 4793 * See comment above about the similar assertions 4794 * for the primary metaslab. 4795 */ 4796 ASSERT(!msp->ms_primary); 4797 ASSERT3S(msp->ms_allocator, ==, allocator); 4798 ASSERT(msp->ms_loaded); 4799 4800 was_active = B_TRUE; 4801 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4802 } else { 4803 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4804 want_unique, asize, allocator, try_hard, zal, 4805 search, &was_active); 4806 } 4807 4808 mutex_exit(&mg->mg_lock); 4809 if (msp == NULL) { 4810 kmem_free(search, sizeof (*search)); 4811 return (-1ULL); 4812 } 4813 mutex_enter(&msp->ms_lock); 4814 4815 metaslab_active_mask_verify(msp); 4816 4817 /* 4818 * This code is disabled out because of issues with 4819 * tracepoints in non-gpl kernel modules. 4820 */ 4821 #if 0 4822 DTRACE_PROBE3(ms__activation__attempt, 4823 metaslab_t *, msp, uint64_t, activation_weight, 4824 boolean_t, was_active); 4825 #endif 4826 4827 /* 4828 * Ensure that the metaslab we have selected is still 4829 * capable of handling our request. It's possible that 4830 * another thread may have changed the weight while we 4831 * were blocked on the metaslab lock. We check the 4832 * active status first to see if we need to set_selected_txg 4833 * a new metaslab. 4834 */ 4835 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4836 ASSERT3S(msp->ms_allocator, ==, -1); 4837 mutex_exit(&msp->ms_lock); 4838 continue; 4839 } 4840 4841 /* 4842 * If the metaslab was activated for another allocator 4843 * while we were waiting in the ms_lock above, or it's 4844 * a primary and we're seeking a secondary (or vice versa), 4845 * we go back and select a new metaslab. 4846 */ 4847 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4848 (msp->ms_allocator != -1) && 4849 (msp->ms_allocator != allocator || ((activation_weight == 4850 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4851 ASSERT(msp->ms_loaded); 4852 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4853 msp->ms_allocator != -1); 4854 mutex_exit(&msp->ms_lock); 4855 continue; 4856 } 4857 4858 /* 4859 * This metaslab was used for claiming regions allocated 4860 * by the ZIL during pool import. Once these regions are 4861 * claimed we don't need to keep the CLAIM bit set 4862 * anymore. Passivate this metaslab to zero its activation 4863 * mask. 4864 */ 4865 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4866 activation_weight != METASLAB_WEIGHT_CLAIM) { 4867 ASSERT(msp->ms_loaded); 4868 ASSERT3S(msp->ms_allocator, ==, -1); 4869 metaslab_passivate(msp, msp->ms_weight & 4870 ~METASLAB_WEIGHT_CLAIM); 4871 mutex_exit(&msp->ms_lock); 4872 continue; 4873 } 4874 4875 metaslab_set_selected_txg(msp, txg); 4876 4877 int activation_error = 4878 metaslab_activate(msp, allocator, activation_weight); 4879 metaslab_active_mask_verify(msp); 4880 4881 /* 4882 * If the metaslab was activated by another thread for 4883 * another allocator or activation_weight (EBUSY), or it 4884 * failed because another metaslab was assigned as primary 4885 * for this allocator (EEXIST) we continue using this 4886 * metaslab for our allocation, rather than going on to a 4887 * worse metaslab (we waited for that metaslab to be loaded 4888 * after all). 4889 * 4890 * If the activation failed due to an I/O error or ENOSPC we 4891 * skip to the next metaslab. 4892 */ 4893 boolean_t activated; 4894 if (activation_error == 0) { 4895 activated = B_TRUE; 4896 } else if (activation_error == EBUSY || 4897 activation_error == EEXIST) { 4898 activated = B_FALSE; 4899 } else { 4900 mutex_exit(&msp->ms_lock); 4901 continue; 4902 } 4903 ASSERT(msp->ms_loaded); 4904 4905 /* 4906 * Now that we have the lock, recheck to see if we should 4907 * continue to use this metaslab for this allocation. The 4908 * the metaslab is now loaded so metaslab_should_allocate() 4909 * can accurately determine if the allocation attempt should 4910 * proceed. 4911 */ 4912 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4913 /* Passivate this metaslab and select a new one. */ 4914 metaslab_trace_add(zal, mg, msp, asize, d, 4915 TRACE_TOO_SMALL, allocator); 4916 goto next; 4917 } 4918 4919 /* 4920 * If this metaslab is currently condensing then pick again 4921 * as we can't manipulate this metaslab until it's committed 4922 * to disk. If this metaslab is being initialized, we shouldn't 4923 * allocate from it since the allocated region might be 4924 * overwritten after allocation. 4925 */ 4926 if (msp->ms_condensing) { 4927 metaslab_trace_add(zal, mg, msp, asize, d, 4928 TRACE_CONDENSING, allocator); 4929 if (activated) { 4930 metaslab_passivate(msp, msp->ms_weight & 4931 ~METASLAB_ACTIVE_MASK); 4932 } 4933 mutex_exit(&msp->ms_lock); 4934 continue; 4935 } else if (msp->ms_disabled > 0) { 4936 metaslab_trace_add(zal, mg, msp, asize, d, 4937 TRACE_DISABLED, allocator); 4938 if (activated) { 4939 metaslab_passivate(msp, msp->ms_weight & 4940 ~METASLAB_ACTIVE_MASK); 4941 } 4942 mutex_exit(&msp->ms_lock); 4943 continue; 4944 } 4945 4946 offset = metaslab_block_alloc(msp, asize, txg); 4947 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4948 4949 if (offset != -1ULL) { 4950 /* Proactively passivate the metaslab, if needed */ 4951 if (activated) 4952 metaslab_segment_may_passivate(msp); 4953 break; 4954 } 4955 next: 4956 ASSERT(msp->ms_loaded); 4957 4958 /* 4959 * This code is disabled out because of issues with 4960 * tracepoints in non-gpl kernel modules. 4961 */ 4962 #if 0 4963 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4964 uint64_t, asize); 4965 #endif 4966 4967 /* 4968 * We were unable to allocate from this metaslab so determine 4969 * a new weight for this metaslab. Now that we have loaded 4970 * the metaslab we can provide a better hint to the metaslab 4971 * selector. 4972 * 4973 * For space-based metaslabs, we use the maximum block size. 4974 * This information is only available when the metaslab 4975 * is loaded and is more accurate than the generic free 4976 * space weight that was calculated by metaslab_weight(). 4977 * This information allows us to quickly compare the maximum 4978 * available allocation in the metaslab to the allocation 4979 * size being requested. 4980 * 4981 * For segment-based metaslabs, determine the new weight 4982 * based on the highest bucket in the range tree. We 4983 * explicitly use the loaded segment weight (i.e. the range 4984 * tree histogram) since it contains the space that is 4985 * currently available for allocation and is accurate 4986 * even within a sync pass. 4987 */ 4988 uint64_t weight; 4989 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4990 weight = metaslab_largest_allocatable(msp); 4991 WEIGHT_SET_SPACEBASED(weight); 4992 } else { 4993 weight = metaslab_weight_from_range_tree(msp); 4994 } 4995 4996 if (activated) { 4997 metaslab_passivate(msp, weight); 4998 } else { 4999 /* 5000 * For the case where we use the metaslab that is 5001 * active for another allocator we want to make 5002 * sure that we retain the activation mask. 5003 * 5004 * Note that we could attempt to use something like 5005 * metaslab_recalculate_weight_and_sort() that 5006 * retains the activation mask here. That function 5007 * uses metaslab_weight() to set the weight though 5008 * which is not as accurate as the calculations 5009 * above. 5010 */ 5011 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5012 metaslab_group_sort(mg, msp, weight); 5013 } 5014 metaslab_active_mask_verify(msp); 5015 5016 /* 5017 * We have just failed an allocation attempt, check 5018 * that metaslab_should_allocate() agrees. Otherwise, 5019 * we may end up in an infinite loop retrying the same 5020 * metaslab. 5021 */ 5022 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5023 5024 mutex_exit(&msp->ms_lock); 5025 } 5026 mutex_exit(&msp->ms_lock); 5027 kmem_free(search, sizeof (*search)); 5028 return (offset); 5029 } 5030 5031 static uint64_t 5032 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5033 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5034 int allocator, boolean_t try_hard) 5035 { 5036 uint64_t offset; 5037 ASSERT(mg->mg_initialized); 5038 5039 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5040 dva, d, allocator, try_hard); 5041 5042 mutex_enter(&mg->mg_lock); 5043 if (offset == -1ULL) { 5044 mg->mg_failed_allocations++; 5045 metaslab_trace_add(zal, mg, NULL, asize, d, 5046 TRACE_GROUP_FAILURE, allocator); 5047 if (asize == SPA_GANGBLOCKSIZE) { 5048 /* 5049 * This metaslab group was unable to allocate 5050 * the minimum gang block size so it must be out of 5051 * space. We must notify the allocation throttle 5052 * to start skipping allocation attempts to this 5053 * metaslab group until more space becomes available. 5054 * Note: this failure cannot be caused by the 5055 * allocation throttle since the allocation throttle 5056 * is only responsible for skipping devices and 5057 * not failing block allocations. 5058 */ 5059 mg->mg_no_free_space = B_TRUE; 5060 } 5061 } 5062 mg->mg_allocations++; 5063 mutex_exit(&mg->mg_lock); 5064 return (offset); 5065 } 5066 5067 /* 5068 * Allocate a block for the specified i/o. 5069 */ 5070 int 5071 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5072 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5073 zio_alloc_list_t *zal, int allocator) 5074 { 5075 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5076 metaslab_group_t *mg, *fast_mg, *rotor; 5077 vdev_t *vd; 5078 boolean_t try_hard = B_FALSE; 5079 5080 ASSERT(!DVA_IS_VALID(&dva[d])); 5081 5082 /* 5083 * For testing, make some blocks above a certain size be gang blocks. 5084 * This will result in more split blocks when using device removal, 5085 * and a large number of split blocks coupled with ztest-induced 5086 * damage can result in extremely long reconstruction times. This 5087 * will also test spilling from special to normal. 5088 */ 5089 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) { 5090 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5091 allocator); 5092 return (SET_ERROR(ENOSPC)); 5093 } 5094 5095 /* 5096 * Start at the rotor and loop through all mgs until we find something. 5097 * Note that there's no locking on mca_rotor or mca_aliquot because 5098 * nothing actually breaks if we miss a few updates -- we just won't 5099 * allocate quite as evenly. It all balances out over time. 5100 * 5101 * If we are doing ditto or log blocks, try to spread them across 5102 * consecutive vdevs. If we're forced to reuse a vdev before we've 5103 * allocated all of our ditto blocks, then try and spread them out on 5104 * that vdev as much as possible. If it turns out to not be possible, 5105 * gradually lower our standards until anything becomes acceptable. 5106 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5107 * gives us hope of containing our fault domains to something we're 5108 * able to reason about. Otherwise, any two top-level vdev failures 5109 * will guarantee the loss of data. With consecutive allocation, 5110 * only two adjacent top-level vdev failures will result in data loss. 5111 * 5112 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5113 * ourselves on the same vdev as our gang block header. That 5114 * way, we can hope for locality in vdev_cache, plus it makes our 5115 * fault domains something tractable. 5116 */ 5117 if (hintdva) { 5118 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5119 5120 /* 5121 * It's possible the vdev we're using as the hint no 5122 * longer exists or its mg has been closed (e.g. by 5123 * device removal). Consult the rotor when 5124 * all else fails. 5125 */ 5126 if (vd != NULL && vd->vdev_mg != NULL) { 5127 mg = vdev_get_mg(vd, mc); 5128 5129 if (flags & METASLAB_HINTBP_AVOID && 5130 mg->mg_next != NULL) 5131 mg = mg->mg_next; 5132 } else { 5133 mg = mca->mca_rotor; 5134 } 5135 } else if (d != 0) { 5136 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5137 mg = vd->vdev_mg->mg_next; 5138 } else if (flags & METASLAB_FASTWRITE) { 5139 mg = fast_mg = mca->mca_rotor; 5140 5141 do { 5142 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5143 mg->mg_vd->vdev_pending_fastwrite) 5144 mg = fast_mg; 5145 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5146 5147 } else { 5148 ASSERT(mca->mca_rotor != NULL); 5149 mg = mca->mca_rotor; 5150 } 5151 5152 /* 5153 * If the hint put us into the wrong metaslab class, or into a 5154 * metaslab group that has been passivated, just follow the rotor. 5155 */ 5156 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5157 mg = mca->mca_rotor; 5158 5159 rotor = mg; 5160 top: 5161 do { 5162 boolean_t allocatable; 5163 5164 ASSERT(mg->mg_activation_count == 1); 5165 vd = mg->mg_vd; 5166 5167 /* 5168 * Don't allocate from faulted devices. 5169 */ 5170 if (try_hard) { 5171 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5172 allocatable = vdev_allocatable(vd); 5173 spa_config_exit(spa, SCL_ZIO, FTAG); 5174 } else { 5175 allocatable = vdev_allocatable(vd); 5176 } 5177 5178 /* 5179 * Determine if the selected metaslab group is eligible 5180 * for allocations. If we're ganging then don't allow 5181 * this metaslab group to skip allocations since that would 5182 * inadvertently return ENOSPC and suspend the pool 5183 * even though space is still available. 5184 */ 5185 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5186 allocatable = metaslab_group_allocatable(mg, rotor, 5187 psize, allocator, d); 5188 } 5189 5190 if (!allocatable) { 5191 metaslab_trace_add(zal, mg, NULL, psize, d, 5192 TRACE_NOT_ALLOCATABLE, allocator); 5193 goto next; 5194 } 5195 5196 ASSERT(mg->mg_initialized); 5197 5198 /* 5199 * Avoid writing single-copy data to a failing, 5200 * non-redundant vdev, unless we've already tried all 5201 * other vdevs. 5202 */ 5203 if ((vd->vdev_stat.vs_write_errors > 0 || 5204 vd->vdev_state < VDEV_STATE_HEALTHY) && 5205 d == 0 && !try_hard && vd->vdev_children == 0) { 5206 metaslab_trace_add(zal, mg, NULL, psize, d, 5207 TRACE_VDEV_ERROR, allocator); 5208 goto next; 5209 } 5210 5211 ASSERT(mg->mg_class == mc); 5212 5213 uint64_t asize = vdev_psize_to_asize(vd, psize); 5214 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5215 5216 /* 5217 * If we don't need to try hard, then require that the 5218 * block be on a different metaslab from any other DVAs 5219 * in this BP (unique=true). If we are trying hard, then 5220 * allow any metaslab to be used (unique=false). 5221 */ 5222 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5223 !try_hard, dva, d, allocator, try_hard); 5224 5225 if (offset != -1ULL) { 5226 /* 5227 * If we've just selected this metaslab group, 5228 * figure out whether the corresponding vdev is 5229 * over- or under-used relative to the pool, 5230 * and set an allocation bias to even it out. 5231 * 5232 * Bias is also used to compensate for unequally 5233 * sized vdevs so that space is allocated fairly. 5234 */ 5235 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5236 vdev_stat_t *vs = &vd->vdev_stat; 5237 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5238 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5239 int64_t ratio; 5240 5241 /* 5242 * Calculate how much more or less we should 5243 * try to allocate from this device during 5244 * this iteration around the rotor. 5245 * 5246 * This basically introduces a zero-centered 5247 * bias towards the devices with the most 5248 * free space, while compensating for vdev 5249 * size differences. 5250 * 5251 * Examples: 5252 * vdev V1 = 16M/128M 5253 * vdev V2 = 16M/128M 5254 * ratio(V1) = 100% ratio(V2) = 100% 5255 * 5256 * vdev V1 = 16M/128M 5257 * vdev V2 = 64M/128M 5258 * ratio(V1) = 127% ratio(V2) = 72% 5259 * 5260 * vdev V1 = 16M/128M 5261 * vdev V2 = 64M/512M 5262 * ratio(V1) = 40% ratio(V2) = 160% 5263 */ 5264 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5265 (mc_free + 1); 5266 mg->mg_bias = ((ratio - 100) * 5267 (int64_t)mg->mg_aliquot) / 100; 5268 } else if (!metaslab_bias_enabled) { 5269 mg->mg_bias = 0; 5270 } 5271 5272 if ((flags & METASLAB_FASTWRITE) || 5273 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5274 mg->mg_aliquot + mg->mg_bias) { 5275 mca->mca_rotor = mg->mg_next; 5276 mca->mca_aliquot = 0; 5277 } 5278 5279 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5280 DVA_SET_OFFSET(&dva[d], offset); 5281 DVA_SET_GANG(&dva[d], 5282 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5283 DVA_SET_ASIZE(&dva[d], asize); 5284 5285 if (flags & METASLAB_FASTWRITE) { 5286 atomic_add_64(&vd->vdev_pending_fastwrite, 5287 psize); 5288 } 5289 5290 return (0); 5291 } 5292 next: 5293 mca->mca_rotor = mg->mg_next; 5294 mca->mca_aliquot = 0; 5295 } while ((mg = mg->mg_next) != rotor); 5296 5297 /* 5298 * If we haven't tried hard, perhaps do so now. 5299 */ 5300 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5301 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5302 psize <= 1 << spa->spa_min_ashift)) { 5303 METASLABSTAT_BUMP(metaslabstat_try_hard); 5304 try_hard = B_TRUE; 5305 goto top; 5306 } 5307 5308 bzero(&dva[d], sizeof (dva_t)); 5309 5310 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5311 return (SET_ERROR(ENOSPC)); 5312 } 5313 5314 void 5315 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5316 boolean_t checkpoint) 5317 { 5318 metaslab_t *msp; 5319 spa_t *spa = vd->vdev_spa; 5320 5321 ASSERT(vdev_is_concrete(vd)); 5322 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5323 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5324 5325 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5326 5327 VERIFY(!msp->ms_condensing); 5328 VERIFY3U(offset, >=, msp->ms_start); 5329 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5330 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5331 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5332 5333 metaslab_check_free_impl(vd, offset, asize); 5334 5335 mutex_enter(&msp->ms_lock); 5336 if (range_tree_is_empty(msp->ms_freeing) && 5337 range_tree_is_empty(msp->ms_checkpointing)) { 5338 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5339 } 5340 5341 if (checkpoint) { 5342 ASSERT(spa_has_checkpoint(spa)); 5343 range_tree_add(msp->ms_checkpointing, offset, asize); 5344 } else { 5345 range_tree_add(msp->ms_freeing, offset, asize); 5346 } 5347 mutex_exit(&msp->ms_lock); 5348 } 5349 5350 /* ARGSUSED */ 5351 void 5352 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5353 uint64_t size, void *arg) 5354 { 5355 boolean_t *checkpoint = arg; 5356 5357 ASSERT3P(checkpoint, !=, NULL); 5358 5359 if (vd->vdev_ops->vdev_op_remap != NULL) 5360 vdev_indirect_mark_obsolete(vd, offset, size); 5361 else 5362 metaslab_free_impl(vd, offset, size, *checkpoint); 5363 } 5364 5365 static void 5366 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5367 boolean_t checkpoint) 5368 { 5369 spa_t *spa = vd->vdev_spa; 5370 5371 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5372 5373 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5374 return; 5375 5376 if (spa->spa_vdev_removal != NULL && 5377 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5378 vdev_is_concrete(vd)) { 5379 /* 5380 * Note: we check if the vdev is concrete because when 5381 * we complete the removal, we first change the vdev to be 5382 * an indirect vdev (in open context), and then (in syncing 5383 * context) clear spa_vdev_removal. 5384 */ 5385 free_from_removing_vdev(vd, offset, size); 5386 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5387 vdev_indirect_mark_obsolete(vd, offset, size); 5388 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5389 metaslab_free_impl_cb, &checkpoint); 5390 } else { 5391 metaslab_free_concrete(vd, offset, size, checkpoint); 5392 } 5393 } 5394 5395 typedef struct remap_blkptr_cb_arg { 5396 blkptr_t *rbca_bp; 5397 spa_remap_cb_t rbca_cb; 5398 vdev_t *rbca_remap_vd; 5399 uint64_t rbca_remap_offset; 5400 void *rbca_cb_arg; 5401 } remap_blkptr_cb_arg_t; 5402 5403 static void 5404 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5405 uint64_t size, void *arg) 5406 { 5407 remap_blkptr_cb_arg_t *rbca = arg; 5408 blkptr_t *bp = rbca->rbca_bp; 5409 5410 /* We can not remap split blocks. */ 5411 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5412 return; 5413 ASSERT0(inner_offset); 5414 5415 if (rbca->rbca_cb != NULL) { 5416 /* 5417 * At this point we know that we are not handling split 5418 * blocks and we invoke the callback on the previous 5419 * vdev which must be indirect. 5420 */ 5421 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5422 5423 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5424 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5425 5426 /* set up remap_blkptr_cb_arg for the next call */ 5427 rbca->rbca_remap_vd = vd; 5428 rbca->rbca_remap_offset = offset; 5429 } 5430 5431 /* 5432 * The phys birth time is that of dva[0]. This ensures that we know 5433 * when each dva was written, so that resilver can determine which 5434 * blocks need to be scrubbed (i.e. those written during the time 5435 * the vdev was offline). It also ensures that the key used in 5436 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5437 * we didn't change the phys_birth, a lookup in the ARC for a 5438 * remapped BP could find the data that was previously stored at 5439 * this vdev + offset. 5440 */ 5441 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5442 DVA_GET_VDEV(&bp->blk_dva[0])); 5443 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5444 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5445 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5446 5447 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5448 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5449 } 5450 5451 /* 5452 * If the block pointer contains any indirect DVAs, modify them to refer to 5453 * concrete DVAs. Note that this will sometimes not be possible, leaving 5454 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5455 * segments in the mapping (i.e. it is a "split block"). 5456 * 5457 * If the BP was remapped, calls the callback on the original dva (note the 5458 * callback can be called multiple times if the original indirect DVA refers 5459 * to another indirect DVA, etc). 5460 * 5461 * Returns TRUE if the BP was remapped. 5462 */ 5463 boolean_t 5464 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5465 { 5466 remap_blkptr_cb_arg_t rbca; 5467 5468 if (!zfs_remap_blkptr_enable) 5469 return (B_FALSE); 5470 5471 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5472 return (B_FALSE); 5473 5474 /* 5475 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5476 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5477 */ 5478 if (BP_GET_DEDUP(bp)) 5479 return (B_FALSE); 5480 5481 /* 5482 * Gang blocks can not be remapped, because 5483 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5484 * the BP used to read the gang block header (GBH) being the same 5485 * as the DVA[0] that we allocated for the GBH. 5486 */ 5487 if (BP_IS_GANG(bp)) 5488 return (B_FALSE); 5489 5490 /* 5491 * Embedded BP's have no DVA to remap. 5492 */ 5493 if (BP_GET_NDVAS(bp) < 1) 5494 return (B_FALSE); 5495 5496 /* 5497 * Note: we only remap dva[0]. If we remapped other dvas, we 5498 * would no longer know what their phys birth txg is. 5499 */ 5500 dva_t *dva = &bp->blk_dva[0]; 5501 5502 uint64_t offset = DVA_GET_OFFSET(dva); 5503 uint64_t size = DVA_GET_ASIZE(dva); 5504 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5505 5506 if (vd->vdev_ops->vdev_op_remap == NULL) 5507 return (B_FALSE); 5508 5509 rbca.rbca_bp = bp; 5510 rbca.rbca_cb = callback; 5511 rbca.rbca_remap_vd = vd; 5512 rbca.rbca_remap_offset = offset; 5513 rbca.rbca_cb_arg = arg; 5514 5515 /* 5516 * remap_blkptr_cb() will be called in order for each level of 5517 * indirection, until a concrete vdev is reached or a split block is 5518 * encountered. old_vd and old_offset are updated within the callback 5519 * as we go from the one indirect vdev to the next one (either concrete 5520 * or indirect again) in that order. 5521 */ 5522 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5523 5524 /* Check if the DVA wasn't remapped because it is a split block */ 5525 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5526 return (B_FALSE); 5527 5528 return (B_TRUE); 5529 } 5530 5531 /* 5532 * Undo the allocation of a DVA which happened in the given transaction group. 5533 */ 5534 void 5535 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5536 { 5537 metaslab_t *msp; 5538 vdev_t *vd; 5539 uint64_t vdev = DVA_GET_VDEV(dva); 5540 uint64_t offset = DVA_GET_OFFSET(dva); 5541 uint64_t size = DVA_GET_ASIZE(dva); 5542 5543 ASSERT(DVA_IS_VALID(dva)); 5544 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5545 5546 if (txg > spa_freeze_txg(spa)) 5547 return; 5548 5549 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5550 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5551 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5552 (u_longlong_t)vdev, (u_longlong_t)offset, 5553 (u_longlong_t)size); 5554 return; 5555 } 5556 5557 ASSERT(!vd->vdev_removing); 5558 ASSERT(vdev_is_concrete(vd)); 5559 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5560 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5561 5562 if (DVA_GET_GANG(dva)) 5563 size = vdev_gang_header_asize(vd); 5564 5565 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5566 5567 mutex_enter(&msp->ms_lock); 5568 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5569 offset, size); 5570 msp->ms_allocating_total -= size; 5571 5572 VERIFY(!msp->ms_condensing); 5573 VERIFY3U(offset, >=, msp->ms_start); 5574 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5575 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5576 msp->ms_size); 5577 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5578 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5579 range_tree_add(msp->ms_allocatable, offset, size); 5580 mutex_exit(&msp->ms_lock); 5581 } 5582 5583 /* 5584 * Free the block represented by the given DVA. 5585 */ 5586 void 5587 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5588 { 5589 uint64_t vdev = DVA_GET_VDEV(dva); 5590 uint64_t offset = DVA_GET_OFFSET(dva); 5591 uint64_t size = DVA_GET_ASIZE(dva); 5592 vdev_t *vd = vdev_lookup_top(spa, vdev); 5593 5594 ASSERT(DVA_IS_VALID(dva)); 5595 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5596 5597 if (DVA_GET_GANG(dva)) { 5598 size = vdev_gang_header_asize(vd); 5599 } 5600 5601 metaslab_free_impl(vd, offset, size, checkpoint); 5602 } 5603 5604 /* 5605 * Reserve some allocation slots. The reservation system must be called 5606 * before we call into the allocator. If there aren't any available slots 5607 * then the I/O will be throttled until an I/O completes and its slots are 5608 * freed up. The function returns true if it was successful in placing 5609 * the reservation. 5610 */ 5611 boolean_t 5612 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5613 zio_t *zio, int flags) 5614 { 5615 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5616 uint64_t max = mca->mca_alloc_max_slots; 5617 5618 ASSERT(mc->mc_alloc_throttle_enabled); 5619 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5620 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5621 /* 5622 * The potential race between _count() and _add() is covered 5623 * by the allocator lock in most cases, or irrelevant due to 5624 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5625 * But even if we assume some other non-existing scenario, the 5626 * worst that can happen is few more I/Os get to allocation 5627 * earlier, that is not a problem. 5628 * 5629 * We reserve the slots individually so that we can unreserve 5630 * them individually when an I/O completes. 5631 */ 5632 for (int d = 0; d < slots; d++) 5633 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5634 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5635 return (B_TRUE); 5636 } 5637 return (B_FALSE); 5638 } 5639 5640 void 5641 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5642 int allocator, zio_t *zio) 5643 { 5644 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5645 5646 ASSERT(mc->mc_alloc_throttle_enabled); 5647 for (int d = 0; d < slots; d++) 5648 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5649 } 5650 5651 static int 5652 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5653 uint64_t txg) 5654 { 5655 metaslab_t *msp; 5656 spa_t *spa = vd->vdev_spa; 5657 int error = 0; 5658 5659 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5660 return (SET_ERROR(ENXIO)); 5661 5662 ASSERT3P(vd->vdev_ms, !=, NULL); 5663 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5664 5665 mutex_enter(&msp->ms_lock); 5666 5667 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5668 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5669 if (error == EBUSY) { 5670 ASSERT(msp->ms_loaded); 5671 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5672 error = 0; 5673 } 5674 } 5675 5676 if (error == 0 && 5677 !range_tree_contains(msp->ms_allocatable, offset, size)) 5678 error = SET_ERROR(ENOENT); 5679 5680 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5681 mutex_exit(&msp->ms_lock); 5682 return (error); 5683 } 5684 5685 VERIFY(!msp->ms_condensing); 5686 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5687 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5688 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5689 msp->ms_size); 5690 range_tree_remove(msp->ms_allocatable, offset, size); 5691 range_tree_clear(msp->ms_trim, offset, size); 5692 5693 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5694 metaslab_class_t *mc = msp->ms_group->mg_class; 5695 multilist_sublist_t *mls = 5696 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5697 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5698 msp->ms_selected_txg = txg; 5699 multilist_sublist_insert_head(mls, msp); 5700 } 5701 multilist_sublist_unlock(mls); 5702 5703 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5704 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5705 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5706 offset, size); 5707 msp->ms_allocating_total += size; 5708 } 5709 5710 mutex_exit(&msp->ms_lock); 5711 5712 return (0); 5713 } 5714 5715 typedef struct metaslab_claim_cb_arg_t { 5716 uint64_t mcca_txg; 5717 int mcca_error; 5718 } metaslab_claim_cb_arg_t; 5719 5720 /* ARGSUSED */ 5721 static void 5722 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5723 uint64_t size, void *arg) 5724 { 5725 metaslab_claim_cb_arg_t *mcca_arg = arg; 5726 5727 if (mcca_arg->mcca_error == 0) { 5728 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5729 size, mcca_arg->mcca_txg); 5730 } 5731 } 5732 5733 int 5734 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5735 { 5736 if (vd->vdev_ops->vdev_op_remap != NULL) { 5737 metaslab_claim_cb_arg_t arg; 5738 5739 /* 5740 * Only zdb(8) can claim on indirect vdevs. This is used 5741 * to detect leaks of mapped space (that are not accounted 5742 * for in the obsolete counts, spacemap, or bpobj). 5743 */ 5744 ASSERT(!spa_writeable(vd->vdev_spa)); 5745 arg.mcca_error = 0; 5746 arg.mcca_txg = txg; 5747 5748 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5749 metaslab_claim_impl_cb, &arg); 5750 5751 if (arg.mcca_error == 0) { 5752 arg.mcca_error = metaslab_claim_concrete(vd, 5753 offset, size, txg); 5754 } 5755 return (arg.mcca_error); 5756 } else { 5757 return (metaslab_claim_concrete(vd, offset, size, txg)); 5758 } 5759 } 5760 5761 /* 5762 * Intent log support: upon opening the pool after a crash, notify the SPA 5763 * of blocks that the intent log has allocated for immediate write, but 5764 * which are still considered free by the SPA because the last transaction 5765 * group didn't commit yet. 5766 */ 5767 static int 5768 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5769 { 5770 uint64_t vdev = DVA_GET_VDEV(dva); 5771 uint64_t offset = DVA_GET_OFFSET(dva); 5772 uint64_t size = DVA_GET_ASIZE(dva); 5773 vdev_t *vd; 5774 5775 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5776 return (SET_ERROR(ENXIO)); 5777 } 5778 5779 ASSERT(DVA_IS_VALID(dva)); 5780 5781 if (DVA_GET_GANG(dva)) 5782 size = vdev_gang_header_asize(vd); 5783 5784 return (metaslab_claim_impl(vd, offset, size, txg)); 5785 } 5786 5787 int 5788 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5789 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5790 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5791 { 5792 dva_t *dva = bp->blk_dva; 5793 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5794 int error = 0; 5795 5796 ASSERT(bp->blk_birth == 0); 5797 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5798 5799 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5800 5801 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5802 /* no vdevs in this class */ 5803 spa_config_exit(spa, SCL_ALLOC, FTAG); 5804 return (SET_ERROR(ENOSPC)); 5805 } 5806 5807 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5808 ASSERT(BP_GET_NDVAS(bp) == 0); 5809 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5810 ASSERT3P(zal, !=, NULL); 5811 5812 for (int d = 0; d < ndvas; d++) { 5813 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5814 txg, flags, zal, allocator); 5815 if (error != 0) { 5816 for (d--; d >= 0; d--) { 5817 metaslab_unalloc_dva(spa, &dva[d], txg); 5818 metaslab_group_alloc_decrement(spa, 5819 DVA_GET_VDEV(&dva[d]), zio, flags, 5820 allocator, B_FALSE); 5821 bzero(&dva[d], sizeof (dva_t)); 5822 } 5823 spa_config_exit(spa, SCL_ALLOC, FTAG); 5824 return (error); 5825 } else { 5826 /* 5827 * Update the metaslab group's queue depth 5828 * based on the newly allocated dva. 5829 */ 5830 metaslab_group_alloc_increment(spa, 5831 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5832 } 5833 } 5834 ASSERT(error == 0); 5835 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5836 5837 spa_config_exit(spa, SCL_ALLOC, FTAG); 5838 5839 BP_SET_BIRTH(bp, txg, 0); 5840 5841 return (0); 5842 } 5843 5844 void 5845 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5846 { 5847 const dva_t *dva = bp->blk_dva; 5848 int ndvas = BP_GET_NDVAS(bp); 5849 5850 ASSERT(!BP_IS_HOLE(bp)); 5851 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5852 5853 /* 5854 * If we have a checkpoint for the pool we need to make sure that 5855 * the blocks that we free that are part of the checkpoint won't be 5856 * reused until the checkpoint is discarded or we revert to it. 5857 * 5858 * The checkpoint flag is passed down the metaslab_free code path 5859 * and is set whenever we want to add a block to the checkpoint's 5860 * accounting. That is, we "checkpoint" blocks that existed at the 5861 * time the checkpoint was created and are therefore referenced by 5862 * the checkpointed uberblock. 5863 * 5864 * Note that, we don't checkpoint any blocks if the current 5865 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5866 * normally as they will be referenced by the checkpointed uberblock. 5867 */ 5868 boolean_t checkpoint = B_FALSE; 5869 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5870 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5871 /* 5872 * At this point, if the block is part of the checkpoint 5873 * there is no way it was created in the current txg. 5874 */ 5875 ASSERT(!now); 5876 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5877 checkpoint = B_TRUE; 5878 } 5879 5880 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5881 5882 for (int d = 0; d < ndvas; d++) { 5883 if (now) { 5884 metaslab_unalloc_dva(spa, &dva[d], txg); 5885 } else { 5886 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5887 metaslab_free_dva(spa, &dva[d], checkpoint); 5888 } 5889 } 5890 5891 spa_config_exit(spa, SCL_FREE, FTAG); 5892 } 5893 5894 int 5895 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5896 { 5897 const dva_t *dva = bp->blk_dva; 5898 int ndvas = BP_GET_NDVAS(bp); 5899 int error = 0; 5900 5901 ASSERT(!BP_IS_HOLE(bp)); 5902 5903 if (txg != 0) { 5904 /* 5905 * First do a dry run to make sure all DVAs are claimable, 5906 * so we don't have to unwind from partial failures below. 5907 */ 5908 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5909 return (error); 5910 } 5911 5912 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5913 5914 for (int d = 0; d < ndvas; d++) { 5915 error = metaslab_claim_dva(spa, &dva[d], txg); 5916 if (error != 0) 5917 break; 5918 } 5919 5920 spa_config_exit(spa, SCL_ALLOC, FTAG); 5921 5922 ASSERT(error == 0 || txg == 0); 5923 5924 return (error); 5925 } 5926 5927 void 5928 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5929 { 5930 const dva_t *dva = bp->blk_dva; 5931 int ndvas = BP_GET_NDVAS(bp); 5932 uint64_t psize = BP_GET_PSIZE(bp); 5933 int d; 5934 vdev_t *vd; 5935 5936 ASSERT(!BP_IS_HOLE(bp)); 5937 ASSERT(!BP_IS_EMBEDDED(bp)); 5938 ASSERT(psize > 0); 5939 5940 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5941 5942 for (d = 0; d < ndvas; d++) { 5943 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5944 continue; 5945 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5946 } 5947 5948 spa_config_exit(spa, SCL_VDEV, FTAG); 5949 } 5950 5951 void 5952 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5953 { 5954 const dva_t *dva = bp->blk_dva; 5955 int ndvas = BP_GET_NDVAS(bp); 5956 uint64_t psize = BP_GET_PSIZE(bp); 5957 int d; 5958 vdev_t *vd; 5959 5960 ASSERT(!BP_IS_HOLE(bp)); 5961 ASSERT(!BP_IS_EMBEDDED(bp)); 5962 ASSERT(psize > 0); 5963 5964 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5965 5966 for (d = 0; d < ndvas; d++) { 5967 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5968 continue; 5969 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5970 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5971 } 5972 5973 spa_config_exit(spa, SCL_VDEV, FTAG); 5974 } 5975 5976 /* ARGSUSED */ 5977 static void 5978 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5979 uint64_t size, void *arg) 5980 { 5981 if (vd->vdev_ops == &vdev_indirect_ops) 5982 return; 5983 5984 metaslab_check_free_impl(vd, offset, size); 5985 } 5986 5987 static void 5988 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5989 { 5990 metaslab_t *msp; 5991 spa_t *spa __maybe_unused = vd->vdev_spa; 5992 5993 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5994 return; 5995 5996 if (vd->vdev_ops->vdev_op_remap != NULL) { 5997 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5998 metaslab_check_free_impl_cb, NULL); 5999 return; 6000 } 6001 6002 ASSERT(vdev_is_concrete(vd)); 6003 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6004 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6005 6006 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6007 6008 mutex_enter(&msp->ms_lock); 6009 if (msp->ms_loaded) { 6010 range_tree_verify_not_present(msp->ms_allocatable, 6011 offset, size); 6012 } 6013 6014 /* 6015 * Check all segments that currently exist in the freeing pipeline. 6016 * 6017 * It would intuitively make sense to also check the current allocating 6018 * tree since metaslab_unalloc_dva() exists for extents that are 6019 * allocated and freed in the same sync pass within the same txg. 6020 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6021 * segment but then we free part of it within the same txg 6022 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6023 * current allocating tree. 6024 */ 6025 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6026 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6027 range_tree_verify_not_present(msp->ms_freed, offset, size); 6028 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6029 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6030 range_tree_verify_not_present(msp->ms_trim, offset, size); 6031 mutex_exit(&msp->ms_lock); 6032 } 6033 6034 void 6035 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6036 { 6037 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6038 return; 6039 6040 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6041 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6042 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6043 vdev_t *vd = vdev_lookup_top(spa, vdev); 6044 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6045 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6046 6047 if (DVA_GET_GANG(&bp->blk_dva[i])) 6048 size = vdev_gang_header_asize(vd); 6049 6050 ASSERT3P(vd, !=, NULL); 6051 6052 metaslab_check_free_impl(vd, offset, size); 6053 } 6054 spa_config_exit(spa, SCL_VDEV, FTAG); 6055 } 6056 6057 static void 6058 metaslab_group_disable_wait(metaslab_group_t *mg) 6059 { 6060 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6061 while (mg->mg_disabled_updating) { 6062 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6063 } 6064 } 6065 6066 static void 6067 metaslab_group_disabled_increment(metaslab_group_t *mg) 6068 { 6069 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6070 ASSERT(mg->mg_disabled_updating); 6071 6072 while (mg->mg_ms_disabled >= max_disabled_ms) { 6073 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6074 } 6075 mg->mg_ms_disabled++; 6076 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6077 } 6078 6079 /* 6080 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6081 * We must also track how many metaslabs are currently disabled within a 6082 * metaslab group and limit them to prevent allocation failures from 6083 * occurring because all metaslabs are disabled. 6084 */ 6085 void 6086 metaslab_disable(metaslab_t *msp) 6087 { 6088 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6089 metaslab_group_t *mg = msp->ms_group; 6090 6091 mutex_enter(&mg->mg_ms_disabled_lock); 6092 6093 /* 6094 * To keep an accurate count of how many threads have disabled 6095 * a specific metaslab group, we only allow one thread to mark 6096 * the metaslab group at a time. This ensures that the value of 6097 * ms_disabled will be accurate when we decide to mark a metaslab 6098 * group as disabled. To do this we force all other threads 6099 * to wait till the metaslab's mg_disabled_updating flag is no 6100 * longer set. 6101 */ 6102 metaslab_group_disable_wait(mg); 6103 mg->mg_disabled_updating = B_TRUE; 6104 if (msp->ms_disabled == 0) { 6105 metaslab_group_disabled_increment(mg); 6106 } 6107 mutex_enter(&msp->ms_lock); 6108 msp->ms_disabled++; 6109 mutex_exit(&msp->ms_lock); 6110 6111 mg->mg_disabled_updating = B_FALSE; 6112 cv_broadcast(&mg->mg_ms_disabled_cv); 6113 mutex_exit(&mg->mg_ms_disabled_lock); 6114 } 6115 6116 void 6117 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6118 { 6119 metaslab_group_t *mg = msp->ms_group; 6120 spa_t *spa = mg->mg_vd->vdev_spa; 6121 6122 /* 6123 * Wait for the outstanding IO to be synced to prevent newly 6124 * allocated blocks from being overwritten. This used by 6125 * initialize and TRIM which are modifying unallocated space. 6126 */ 6127 if (sync) 6128 txg_wait_synced(spa_get_dsl(spa), 0); 6129 6130 mutex_enter(&mg->mg_ms_disabled_lock); 6131 mutex_enter(&msp->ms_lock); 6132 if (--msp->ms_disabled == 0) { 6133 mg->mg_ms_disabled--; 6134 cv_broadcast(&mg->mg_ms_disabled_cv); 6135 if (unload) 6136 metaslab_unload(msp); 6137 } 6138 mutex_exit(&msp->ms_lock); 6139 mutex_exit(&mg->mg_ms_disabled_lock); 6140 } 6141 6142 static void 6143 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6144 { 6145 vdev_t *vd = ms->ms_group->mg_vd; 6146 spa_t *spa = vd->vdev_spa; 6147 objset_t *mos = spa_meta_objset(spa); 6148 6149 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6150 6151 metaslab_unflushed_phys_t entry = { 6152 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6153 }; 6154 uint64_t entry_size = sizeof (entry); 6155 uint64_t entry_offset = ms->ms_id * entry_size; 6156 6157 uint64_t object = 0; 6158 int err = zap_lookup(mos, vd->vdev_top_zap, 6159 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6160 &object); 6161 if (err == ENOENT) { 6162 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6163 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6164 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6165 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6166 &object, tx)); 6167 } else { 6168 VERIFY0(err); 6169 } 6170 6171 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6172 &entry, tx); 6173 } 6174 6175 void 6176 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6177 { 6178 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6179 6180 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6181 return; 6182 6183 ms->ms_unflushed_txg = txg; 6184 metaslab_update_ondisk_flush_data(ms, tx); 6185 } 6186 6187 uint64_t 6188 metaslab_unflushed_txg(metaslab_t *ms) 6189 { 6190 return (ms->ms_unflushed_txg); 6191 } 6192 6193 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6194 "Allocation granularity (a.k.a. stripe size)"); 6195 6196 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6197 "Load all metaslabs when pool is first opened"); 6198 6199 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6200 "Prevent metaslabs from being unloaded"); 6201 6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6203 "Preload potential metaslabs during reassessment"); 6204 6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6206 "Delay in txgs after metaslab was last used before unloading"); 6207 6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6209 "Delay in milliseconds after metaslab was last used before unloading"); 6210 6211 /* BEGIN CSTYLED */ 6212 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6213 "Percentage of metaslab group size that should be free to make it " 6214 "eligible for allocation"); 6215 6216 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6217 "Percentage of metaslab group size that should be considered eligible " 6218 "for allocations unless all metaslab groups within the metaslab class " 6219 "have also crossed this threshold"); 6220 6221 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6222 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6223 6224 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6225 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6226 /* END CSTYLED */ 6227 6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6229 "Prefer metaslabs with lower LBAs"); 6230 6231 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6232 "Enable metaslab group biasing"); 6233 6234 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6235 ZMOD_RW, "Enable segment-based metaslab selection"); 6236 6237 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6238 "Segment-based metaslab selection maximum buckets before switching"); 6239 6240 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6241 "Blocks larger than this size are forced to be gang blocks"); 6242 6243 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6244 "Max distance (bytes) to search forward before using size tree"); 6245 6246 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6247 "When looking in size tree, use largest segment instead of exact fit"); 6248 6249 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6250 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6251 6252 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6253 "Percentage of memory that can be used to store metaslab range trees"); 6254 6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6256 ZMOD_RW, "Try hard to allocate before ganging"); 6257 6258 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6259 "Normally only consider this many of the best metaslabs in each vdev"); 6260