1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define GANG_ALLOCATION(flags) \ 44 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 45 46 /* 47 * Metaslab granularity, in bytes. This is roughly similar to what would be 48 * referred to as the "stripe size" in traditional RAID arrays. In normal 49 * operation, we will try to write this amount of data to each disk before 50 * moving on to the next top-level vdev. 51 */ 52 static uint64_t metaslab_aliquot = 1024 * 1024; 53 54 /* 55 * For testing, make some blocks above a certain size be gang blocks. 56 */ 57 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 58 59 /* 60 * Of blocks of size >= metaslab_force_ganging, actually gang them this often. 61 */ 62 uint_t metaslab_force_ganging_pct = 3; 63 64 /* 65 * In pools where the log space map feature is not enabled we touch 66 * multiple metaslabs (and their respective space maps) with each 67 * transaction group. Thus, we benefit from having a small space map 68 * block size since it allows us to issue more I/O operations scattered 69 * around the disk. So a sane default for the space map block size 70 * is 8~16K. 71 */ 72 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 73 74 /* 75 * When the log space map feature is enabled, we accumulate a lot of 76 * changes per metaslab that are flushed once in a while so we benefit 77 * from a bigger block size like 128K for the metaslab space maps. 78 */ 79 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 80 81 /* 82 * The in-core space map representation is more compact than its on-disk form. 83 * The zfs_condense_pct determines how much more compact the in-core 84 * space map representation must be before we compact it on-disk. 85 * Values should be greater than or equal to 100. 86 */ 87 uint_t zfs_condense_pct = 200; 88 89 /* 90 * Condensing a metaslab is not guaranteed to actually reduce the amount of 91 * space used on disk. In particular, a space map uses data in increments of 92 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 93 * same number of blocks after condensing. Since the goal of condensing is to 94 * reduce the number of IOPs required to read the space map, we only want to 95 * condense when we can be sure we will reduce the number of blocks used by the 96 * space map. Unfortunately, we cannot precisely compute whether or not this is 97 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 98 * we apply the following heuristic: do not condense a spacemap unless the 99 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 100 * blocks. 101 */ 102 static const int zfs_metaslab_condense_block_threshold = 4; 103 104 /* 105 * The zfs_mg_noalloc_threshold defines which metaslab groups should 106 * be eligible for allocation. The value is defined as a percentage of 107 * free space. Metaslab groups that have more free space than 108 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 109 * a metaslab group's free space is less than or equal to the 110 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 111 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 112 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 113 * groups are allowed to accept allocations. Gang blocks are always 114 * eligible to allocate on any metaslab group. The default value of 0 means 115 * no metaslab group will be excluded based on this criterion. 116 */ 117 static uint_t zfs_mg_noalloc_threshold = 0; 118 119 /* 120 * Metaslab groups are considered eligible for allocations if their 121 * fragmentation metric (measured as a percentage) is less than or 122 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 123 * exceeds this threshold then it will be skipped unless all metaslab 124 * groups within the metaslab class have also crossed this threshold. 125 * 126 * This tunable was introduced to avoid edge cases where we continue 127 * allocating from very fragmented disks in our pool while other, less 128 * fragmented disks, exists. On the other hand, if all disks in the 129 * pool are uniformly approaching the threshold, the threshold can 130 * be a speed bump in performance, where we keep switching the disks 131 * that we allocate from (e.g. we allocate some segments from disk A 132 * making it bypassing the threshold while freeing segments from disk 133 * B getting its fragmentation below the threshold). 134 * 135 * Empirically, we've seen that our vdev selection for allocations is 136 * good enough that fragmentation increases uniformly across all vdevs 137 * the majority of the time. Thus we set the threshold percentage high 138 * enough to avoid hitting the speed bump on pools that are being pushed 139 * to the edge. 140 */ 141 static uint_t zfs_mg_fragmentation_threshold = 95; 142 143 /* 144 * Allow metaslabs to keep their active state as long as their fragmentation 145 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 146 * active metaslab that exceeds this threshold will no longer keep its active 147 * status allowing better metaslabs to be selected. 148 */ 149 static uint_t zfs_metaslab_fragmentation_threshold = 70; 150 151 /* 152 * When set will load all metaslabs when pool is first opened. 153 */ 154 int metaslab_debug_load = B_FALSE; 155 156 /* 157 * When set will prevent metaslabs from being unloaded. 158 */ 159 static int metaslab_debug_unload = B_FALSE; 160 161 /* 162 * Minimum size which forces the dynamic allocator to change 163 * it's allocation strategy. Once the space map cannot satisfy 164 * an allocation of this size then it switches to using more 165 * aggressive strategy (i.e search by size rather than offset). 166 */ 167 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 168 169 /* 170 * The minimum free space, in percent, which must be available 171 * in a space map to continue allocations in a first-fit fashion. 172 * Once the space map's free space drops below this level we dynamically 173 * switch to using best-fit allocations. 174 */ 175 uint_t metaslab_df_free_pct = 4; 176 177 /* 178 * Maximum distance to search forward from the last offset. Without this 179 * limit, fragmented pools can see >100,000 iterations and 180 * metaslab_block_picker() becomes the performance limiting factor on 181 * high-performance storage. 182 * 183 * With the default setting of 16MB, we typically see less than 500 184 * iterations, even with very fragmented, ashift=9 pools. The maximum number 185 * of iterations possible is: 186 * metaslab_df_max_search / (2 * (1<<ashift)) 187 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 188 * 2048 (with ashift=12). 189 */ 190 static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 191 192 /* 193 * Forces the metaslab_block_picker function to search for at least this many 194 * segments forwards until giving up on finding a segment that the allocation 195 * will fit into. 196 */ 197 static const uint32_t metaslab_min_search_count = 100; 198 199 /* 200 * If we are not searching forward (due to metaslab_df_max_search, 201 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 202 * controls what segment is used. If it is set, we will use the largest free 203 * segment. If it is not set, we will use a segment of exactly the requested 204 * size (or larger). 205 */ 206 static int metaslab_df_use_largest_segment = B_FALSE; 207 208 /* 209 * These tunables control how long a metaslab will remain loaded after the 210 * last allocation from it. A metaslab can't be unloaded until at least 211 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 212 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 213 * unloaded sooner. These settings are intended to be generous -- to keep 214 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 215 */ 216 static uint_t metaslab_unload_delay = 32; 217 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 218 219 /* 220 * Max number of metaslabs per group to preload. 221 */ 222 uint_t metaslab_preload_limit = 10; 223 224 /* 225 * Enable/disable preloading of metaslab. 226 */ 227 static int metaslab_preload_enabled = B_TRUE; 228 229 /* 230 * Enable/disable fragmentation weighting on metaslabs. 231 */ 232 static int metaslab_fragmentation_factor_enabled = B_TRUE; 233 234 /* 235 * Enable/disable lba weighting (i.e. outer tracks are given preference). 236 */ 237 static int metaslab_lba_weighting_enabled = B_TRUE; 238 239 /* 240 * Enable/disable metaslab group biasing. 241 */ 242 static int metaslab_bias_enabled = B_TRUE; 243 244 /* 245 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 246 */ 247 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 248 249 /* 250 * Enable/disable segment-based metaslab selection. 251 */ 252 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 253 254 /* 255 * When using segment-based metaslab selection, we will continue 256 * allocating from the active metaslab until we have exhausted 257 * zfs_metaslab_switch_threshold of its buckets. 258 */ 259 static int zfs_metaslab_switch_threshold = 2; 260 261 /* 262 * Internal switch to enable/disable the metaslab allocation tracing 263 * facility. 264 */ 265 static const boolean_t metaslab_trace_enabled = B_FALSE; 266 267 /* 268 * Maximum entries that the metaslab allocation tracing facility will keep 269 * in a given list when running in non-debug mode. We limit the number 270 * of entries in non-debug mode to prevent us from using up too much memory. 271 * The limit should be sufficiently large that we don't expect any allocation 272 * to every exceed this value. In debug mode, the system will panic if this 273 * limit is ever reached allowing for further investigation. 274 */ 275 static const uint64_t metaslab_trace_max_entries = 5000; 276 277 /* 278 * Maximum number of metaslabs per group that can be disabled 279 * simultaneously. 280 */ 281 static const int max_disabled_ms = 3; 282 283 /* 284 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 285 * To avoid 64-bit overflow, don't set above UINT32_MAX. 286 */ 287 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 288 289 /* 290 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 291 * a metaslab would take it over this percentage, the oldest selected metaslab 292 * is automatically unloaded. 293 */ 294 static uint_t zfs_metaslab_mem_limit = 25; 295 296 /* 297 * Force the per-metaslab range trees to use 64-bit integers to store 298 * segments. Used for debugging purposes. 299 */ 300 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 301 302 /* 303 * By default we only store segments over a certain size in the size-sorted 304 * metaslab trees (ms_allocatable_by_size and 305 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 306 * improves load and unload times at the cost of causing us to use slightly 307 * larger segments than we would otherwise in some cases. 308 */ 309 static const uint32_t metaslab_by_size_min_shift = 14; 310 311 /* 312 * If not set, we will first try normal allocation. If that fails then 313 * we will do a gang allocation. If that fails then we will do a "try hard" 314 * gang allocation. If that fails then we will have a multi-layer gang 315 * block. 316 * 317 * If set, we will first try normal allocation. If that fails then 318 * we will do a "try hard" allocation. If that fails we will do a gang 319 * allocation. If that fails we will do a "try hard" gang allocation. If 320 * that fails then we will have a multi-layer gang block. 321 */ 322 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 323 324 /* 325 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 326 * metaslabs. This improves performance, especially when there are many 327 * metaslabs per vdev and the allocation can't actually be satisfied (so we 328 * would otherwise iterate all the metaslabs). If there is a metaslab with a 329 * worse weight but it can actually satisfy the allocation, we won't find it 330 * until trying hard. This may happen if the worse metaslab is not loaded 331 * (and the true weight is better than we have calculated), or due to weight 332 * bucketization. E.g. we are looking for a 60K segment, and the best 333 * metaslabs all have free segments in the 32-63K bucket, but the best 334 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 335 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 336 * bucket, and therefore a lower weight). 337 */ 338 static uint_t zfs_metaslab_find_max_tries = 100; 339 340 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 341 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 342 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 343 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 344 345 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 346 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 347 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 348 static unsigned int metaslab_idx_func(multilist_t *, void *); 349 static void metaslab_evict(metaslab_t *, uint64_t); 350 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 351 kmem_cache_t *metaslab_alloc_trace_cache; 352 353 typedef struct metaslab_stats { 354 kstat_named_t metaslabstat_trace_over_limit; 355 kstat_named_t metaslabstat_reload_tree; 356 kstat_named_t metaslabstat_too_many_tries; 357 kstat_named_t metaslabstat_try_hard; 358 } metaslab_stats_t; 359 360 static metaslab_stats_t metaslab_stats = { 361 { "trace_over_limit", KSTAT_DATA_UINT64 }, 362 { "reload_tree", KSTAT_DATA_UINT64 }, 363 { "too_many_tries", KSTAT_DATA_UINT64 }, 364 { "try_hard", KSTAT_DATA_UINT64 }, 365 }; 366 367 #define METASLABSTAT_BUMP(stat) \ 368 atomic_inc_64(&metaslab_stats.stat.value.ui64); 369 370 371 static kstat_t *metaslab_ksp; 372 373 void 374 metaslab_stat_init(void) 375 { 376 ASSERT(metaslab_alloc_trace_cache == NULL); 377 metaslab_alloc_trace_cache = kmem_cache_create( 378 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 379 0, NULL, NULL, NULL, NULL, NULL, 0); 380 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 381 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 382 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 383 if (metaslab_ksp != NULL) { 384 metaslab_ksp->ks_data = &metaslab_stats; 385 kstat_install(metaslab_ksp); 386 } 387 } 388 389 void 390 metaslab_stat_fini(void) 391 { 392 if (metaslab_ksp != NULL) { 393 kstat_delete(metaslab_ksp); 394 metaslab_ksp = NULL; 395 } 396 397 kmem_cache_destroy(metaslab_alloc_trace_cache); 398 metaslab_alloc_trace_cache = NULL; 399 } 400 401 /* 402 * ========================================================================== 403 * Metaslab classes 404 * ========================================================================== 405 */ 406 metaslab_class_t * 407 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 408 { 409 metaslab_class_t *mc; 410 411 mc = kmem_zalloc(offsetof(metaslab_class_t, 412 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 413 414 mc->mc_spa = spa; 415 mc->mc_ops = ops; 416 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 417 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 418 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 419 for (int i = 0; i < spa->spa_alloc_count; i++) { 420 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 421 mca->mca_rotor = NULL; 422 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 423 } 424 425 return (mc); 426 } 427 428 void 429 metaslab_class_destroy(metaslab_class_t *mc) 430 { 431 spa_t *spa = mc->mc_spa; 432 433 ASSERT(mc->mc_alloc == 0); 434 ASSERT(mc->mc_deferred == 0); 435 ASSERT(mc->mc_space == 0); 436 ASSERT(mc->mc_dspace == 0); 437 438 for (int i = 0; i < spa->spa_alloc_count; i++) { 439 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 440 ASSERT(mca->mca_rotor == NULL); 441 zfs_refcount_destroy(&mca->mca_alloc_slots); 442 } 443 mutex_destroy(&mc->mc_lock); 444 multilist_destroy(&mc->mc_metaslab_txg_list); 445 kmem_free(mc, offsetof(metaslab_class_t, 446 mc_allocator[spa->spa_alloc_count])); 447 } 448 449 int 450 metaslab_class_validate(metaslab_class_t *mc) 451 { 452 metaslab_group_t *mg; 453 vdev_t *vd; 454 455 /* 456 * Must hold one of the spa_config locks. 457 */ 458 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 459 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 460 461 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 462 return (0); 463 464 do { 465 vd = mg->mg_vd; 466 ASSERT(vd->vdev_mg != NULL); 467 ASSERT3P(vd->vdev_top, ==, vd); 468 ASSERT3P(mg->mg_class, ==, mc); 469 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 470 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 471 472 return (0); 473 } 474 475 static void 476 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 477 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 478 { 479 atomic_add_64(&mc->mc_alloc, alloc_delta); 480 atomic_add_64(&mc->mc_deferred, defer_delta); 481 atomic_add_64(&mc->mc_space, space_delta); 482 atomic_add_64(&mc->mc_dspace, dspace_delta); 483 } 484 485 uint64_t 486 metaslab_class_get_alloc(metaslab_class_t *mc) 487 { 488 return (mc->mc_alloc); 489 } 490 491 uint64_t 492 metaslab_class_get_deferred(metaslab_class_t *mc) 493 { 494 return (mc->mc_deferred); 495 } 496 497 uint64_t 498 metaslab_class_get_space(metaslab_class_t *mc) 499 { 500 return (mc->mc_space); 501 } 502 503 uint64_t 504 metaslab_class_get_dspace(metaslab_class_t *mc) 505 { 506 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 507 } 508 509 void 510 metaslab_class_histogram_verify(metaslab_class_t *mc) 511 { 512 spa_t *spa = mc->mc_spa; 513 vdev_t *rvd = spa->spa_root_vdev; 514 uint64_t *mc_hist; 515 int i; 516 517 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 518 return; 519 520 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 521 KM_SLEEP); 522 523 mutex_enter(&mc->mc_lock); 524 for (int c = 0; c < rvd->vdev_children; c++) { 525 vdev_t *tvd = rvd->vdev_child[c]; 526 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 527 528 /* 529 * Skip any holes, uninitialized top-levels, or 530 * vdevs that are not in this metalab class. 531 */ 532 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 533 mg->mg_class != mc) { 534 continue; 535 } 536 537 IMPLY(mg == mg->mg_vd->vdev_log_mg, 538 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 539 540 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 541 mc_hist[i] += mg->mg_histogram[i]; 542 } 543 544 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 545 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 546 } 547 548 mutex_exit(&mc->mc_lock); 549 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 550 } 551 552 /* 553 * Calculate the metaslab class's fragmentation metric. The metric 554 * is weighted based on the space contribution of each metaslab group. 555 * The return value will be a number between 0 and 100 (inclusive), or 556 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 557 * zfs_frag_table for more information about the metric. 558 */ 559 uint64_t 560 metaslab_class_fragmentation(metaslab_class_t *mc) 561 { 562 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 563 uint64_t fragmentation = 0; 564 565 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 566 567 for (int c = 0; c < rvd->vdev_children; c++) { 568 vdev_t *tvd = rvd->vdev_child[c]; 569 metaslab_group_t *mg = tvd->vdev_mg; 570 571 /* 572 * Skip any holes, uninitialized top-levels, 573 * or vdevs that are not in this metalab class. 574 */ 575 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 576 mg->mg_class != mc) { 577 continue; 578 } 579 580 /* 581 * If a metaslab group does not contain a fragmentation 582 * metric then just bail out. 583 */ 584 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 585 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 586 return (ZFS_FRAG_INVALID); 587 } 588 589 /* 590 * Determine how much this metaslab_group is contributing 591 * to the overall pool fragmentation metric. 592 */ 593 fragmentation += mg->mg_fragmentation * 594 metaslab_group_get_space(mg); 595 } 596 fragmentation /= metaslab_class_get_space(mc); 597 598 ASSERT3U(fragmentation, <=, 100); 599 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 600 return (fragmentation); 601 } 602 603 /* 604 * Calculate the amount of expandable space that is available in 605 * this metaslab class. If a device is expanded then its expandable 606 * space will be the amount of allocatable space that is currently not 607 * part of this metaslab class. 608 */ 609 uint64_t 610 metaslab_class_expandable_space(metaslab_class_t *mc) 611 { 612 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 613 uint64_t space = 0; 614 615 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 616 for (int c = 0; c < rvd->vdev_children; c++) { 617 vdev_t *tvd = rvd->vdev_child[c]; 618 metaslab_group_t *mg = tvd->vdev_mg; 619 620 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 621 mg->mg_class != mc) { 622 continue; 623 } 624 625 /* 626 * Calculate if we have enough space to add additional 627 * metaslabs. We report the expandable space in terms 628 * of the metaslab size since that's the unit of expansion. 629 */ 630 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 631 1ULL << tvd->vdev_ms_shift); 632 } 633 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 634 return (space); 635 } 636 637 void 638 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 639 { 640 multilist_t *ml = &mc->mc_metaslab_txg_list; 641 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 642 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 643 metaslab_t *msp = multilist_sublist_head(mls); 644 multilist_sublist_unlock(mls); 645 while (msp != NULL) { 646 mutex_enter(&msp->ms_lock); 647 648 /* 649 * If the metaslab has been removed from the list 650 * (which could happen if we were at the memory limit 651 * and it was evicted during this loop), then we can't 652 * proceed and we should restart the sublist. 653 */ 654 if (!multilist_link_active(&msp->ms_class_txg_node)) { 655 mutex_exit(&msp->ms_lock); 656 i--; 657 break; 658 } 659 mls = multilist_sublist_lock(ml, i); 660 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 661 multilist_sublist_unlock(mls); 662 if (txg > 663 msp->ms_selected_txg + metaslab_unload_delay && 664 gethrtime() > msp->ms_selected_time + 665 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 666 metaslab_evict(msp, txg); 667 } else { 668 /* 669 * Once we've hit a metaslab selected too 670 * recently to evict, we're done evicting for 671 * now. 672 */ 673 mutex_exit(&msp->ms_lock); 674 break; 675 } 676 mutex_exit(&msp->ms_lock); 677 msp = next_msp; 678 } 679 } 680 } 681 682 static int 683 metaslab_compare(const void *x1, const void *x2) 684 { 685 const metaslab_t *m1 = (const metaslab_t *)x1; 686 const metaslab_t *m2 = (const metaslab_t *)x2; 687 688 int sort1 = 0; 689 int sort2 = 0; 690 if (m1->ms_allocator != -1 && m1->ms_primary) 691 sort1 = 1; 692 else if (m1->ms_allocator != -1 && !m1->ms_primary) 693 sort1 = 2; 694 if (m2->ms_allocator != -1 && m2->ms_primary) 695 sort2 = 1; 696 else if (m2->ms_allocator != -1 && !m2->ms_primary) 697 sort2 = 2; 698 699 /* 700 * Sort inactive metaslabs first, then primaries, then secondaries. When 701 * selecting a metaslab to allocate from, an allocator first tries its 702 * primary, then secondary active metaslab. If it doesn't have active 703 * metaslabs, or can't allocate from them, it searches for an inactive 704 * metaslab to activate. If it can't find a suitable one, it will steal 705 * a primary or secondary metaslab from another allocator. 706 */ 707 if (sort1 < sort2) 708 return (-1); 709 if (sort1 > sort2) 710 return (1); 711 712 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 713 if (likely(cmp)) 714 return (cmp); 715 716 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 717 718 return (TREE_CMP(m1->ms_start, m2->ms_start)); 719 } 720 721 /* 722 * ========================================================================== 723 * Metaslab groups 724 * ========================================================================== 725 */ 726 /* 727 * Update the allocatable flag and the metaslab group's capacity. 728 * The allocatable flag is set to true if the capacity is below 729 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 730 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 731 * transitions from allocatable to non-allocatable or vice versa then the 732 * metaslab group's class is updated to reflect the transition. 733 */ 734 static void 735 metaslab_group_alloc_update(metaslab_group_t *mg) 736 { 737 vdev_t *vd = mg->mg_vd; 738 metaslab_class_t *mc = mg->mg_class; 739 vdev_stat_t *vs = &vd->vdev_stat; 740 boolean_t was_allocatable; 741 boolean_t was_initialized; 742 743 ASSERT(vd == vd->vdev_top); 744 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 745 SCL_ALLOC); 746 747 mutex_enter(&mg->mg_lock); 748 was_allocatable = mg->mg_allocatable; 749 was_initialized = mg->mg_initialized; 750 751 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 752 (vs->vs_space + 1); 753 754 mutex_enter(&mc->mc_lock); 755 756 /* 757 * If the metaslab group was just added then it won't 758 * have any space until we finish syncing out this txg. 759 * At that point we will consider it initialized and available 760 * for allocations. We also don't consider non-activated 761 * metaslab groups (e.g. vdevs that are in the middle of being removed) 762 * to be initialized, because they can't be used for allocation. 763 */ 764 mg->mg_initialized = metaslab_group_initialized(mg); 765 if (!was_initialized && mg->mg_initialized) { 766 mc->mc_groups++; 767 } else if (was_initialized && !mg->mg_initialized) { 768 ASSERT3U(mc->mc_groups, >, 0); 769 mc->mc_groups--; 770 } 771 if (mg->mg_initialized) 772 mg->mg_no_free_space = B_FALSE; 773 774 /* 775 * A metaslab group is considered allocatable if it has plenty 776 * of free space or is not heavily fragmented. We only take 777 * fragmentation into account if the metaslab group has a valid 778 * fragmentation metric (i.e. a value between 0 and 100). 779 */ 780 mg->mg_allocatable = (mg->mg_activation_count > 0 && 781 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 782 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 783 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 784 785 /* 786 * The mc_alloc_groups maintains a count of the number of 787 * groups in this metaslab class that are still above the 788 * zfs_mg_noalloc_threshold. This is used by the allocating 789 * threads to determine if they should avoid allocations to 790 * a given group. The allocator will avoid allocations to a group 791 * if that group has reached or is below the zfs_mg_noalloc_threshold 792 * and there are still other groups that are above the threshold. 793 * When a group transitions from allocatable to non-allocatable or 794 * vice versa we update the metaslab class to reflect that change. 795 * When the mc_alloc_groups value drops to 0 that means that all 796 * groups have reached the zfs_mg_noalloc_threshold making all groups 797 * eligible for allocations. This effectively means that all devices 798 * are balanced again. 799 */ 800 if (was_allocatable && !mg->mg_allocatable) 801 mc->mc_alloc_groups--; 802 else if (!was_allocatable && mg->mg_allocatable) 803 mc->mc_alloc_groups++; 804 mutex_exit(&mc->mc_lock); 805 806 mutex_exit(&mg->mg_lock); 807 } 808 809 int 810 metaslab_sort_by_flushed(const void *va, const void *vb) 811 { 812 const metaslab_t *a = va; 813 const metaslab_t *b = vb; 814 815 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 816 if (likely(cmp)) 817 return (cmp); 818 819 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 820 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 821 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 822 if (cmp) 823 return (cmp); 824 825 return (TREE_CMP(a->ms_id, b->ms_id)); 826 } 827 828 metaslab_group_t * 829 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 830 { 831 metaslab_group_t *mg; 832 833 mg = kmem_zalloc(offsetof(metaslab_group_t, 834 mg_allocator[allocators]), KM_SLEEP); 835 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 836 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 837 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 838 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 839 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 840 mg->mg_vd = vd; 841 mg->mg_class = mc; 842 mg->mg_activation_count = 0; 843 mg->mg_initialized = B_FALSE; 844 mg->mg_no_free_space = B_TRUE; 845 mg->mg_allocators = allocators; 846 847 for (int i = 0; i < allocators; i++) { 848 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 849 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 850 } 851 852 return (mg); 853 } 854 855 void 856 metaslab_group_destroy(metaslab_group_t *mg) 857 { 858 ASSERT(mg->mg_prev == NULL); 859 ASSERT(mg->mg_next == NULL); 860 /* 861 * We may have gone below zero with the activation count 862 * either because we never activated in the first place or 863 * because we're done, and possibly removing the vdev. 864 */ 865 ASSERT(mg->mg_activation_count <= 0); 866 867 avl_destroy(&mg->mg_metaslab_tree); 868 mutex_destroy(&mg->mg_lock); 869 mutex_destroy(&mg->mg_ms_disabled_lock); 870 cv_destroy(&mg->mg_ms_disabled_cv); 871 872 for (int i = 0; i < mg->mg_allocators; i++) { 873 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 874 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 875 } 876 kmem_free(mg, offsetof(metaslab_group_t, 877 mg_allocator[mg->mg_allocators])); 878 } 879 880 void 881 metaslab_group_activate(metaslab_group_t *mg) 882 { 883 metaslab_class_t *mc = mg->mg_class; 884 spa_t *spa = mc->mc_spa; 885 metaslab_group_t *mgprev, *mgnext; 886 887 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 888 889 ASSERT(mg->mg_prev == NULL); 890 ASSERT(mg->mg_next == NULL); 891 ASSERT(mg->mg_activation_count <= 0); 892 893 if (++mg->mg_activation_count <= 0) 894 return; 895 896 mg->mg_aliquot = metaslab_aliquot * MAX(1, 897 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd)); 898 metaslab_group_alloc_update(mg); 899 900 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 901 mg->mg_prev = mg; 902 mg->mg_next = mg; 903 } else { 904 mgnext = mgprev->mg_next; 905 mg->mg_prev = mgprev; 906 mg->mg_next = mgnext; 907 mgprev->mg_next = mg; 908 mgnext->mg_prev = mg; 909 } 910 for (int i = 0; i < spa->spa_alloc_count; i++) { 911 mc->mc_allocator[i].mca_rotor = mg; 912 mg = mg->mg_next; 913 } 914 } 915 916 /* 917 * Passivate a metaslab group and remove it from the allocation rotor. 918 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 919 * a metaslab group. This function will momentarily drop spa_config_locks 920 * that are lower than the SCL_ALLOC lock (see comment below). 921 */ 922 void 923 metaslab_group_passivate(metaslab_group_t *mg) 924 { 925 metaslab_class_t *mc = mg->mg_class; 926 spa_t *spa = mc->mc_spa; 927 metaslab_group_t *mgprev, *mgnext; 928 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 929 930 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 931 (SCL_ALLOC | SCL_ZIO)); 932 933 if (--mg->mg_activation_count != 0) { 934 for (int i = 0; i < spa->spa_alloc_count; i++) 935 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 936 ASSERT(mg->mg_prev == NULL); 937 ASSERT(mg->mg_next == NULL); 938 ASSERT(mg->mg_activation_count < 0); 939 return; 940 } 941 942 /* 943 * The spa_config_lock is an array of rwlocks, ordered as 944 * follows (from highest to lowest): 945 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 946 * SCL_ZIO > SCL_FREE > SCL_VDEV 947 * (For more information about the spa_config_lock see spa_misc.c) 948 * The higher the lock, the broader its coverage. When we passivate 949 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 950 * config locks. However, the metaslab group's taskq might be trying 951 * to preload metaslabs so we must drop the SCL_ZIO lock and any 952 * lower locks to allow the I/O to complete. At a minimum, 953 * we continue to hold the SCL_ALLOC lock, which prevents any future 954 * allocations from taking place and any changes to the vdev tree. 955 */ 956 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 957 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0); 958 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 959 metaslab_group_alloc_update(mg); 960 for (int i = 0; i < mg->mg_allocators; i++) { 961 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 962 metaslab_t *msp = mga->mga_primary; 963 if (msp != NULL) { 964 mutex_enter(&msp->ms_lock); 965 metaslab_passivate(msp, 966 metaslab_weight_from_range_tree(msp)); 967 mutex_exit(&msp->ms_lock); 968 } 969 msp = mga->mga_secondary; 970 if (msp != NULL) { 971 mutex_enter(&msp->ms_lock); 972 metaslab_passivate(msp, 973 metaslab_weight_from_range_tree(msp)); 974 mutex_exit(&msp->ms_lock); 975 } 976 } 977 978 mgprev = mg->mg_prev; 979 mgnext = mg->mg_next; 980 981 if (mg == mgnext) { 982 mgnext = NULL; 983 } else { 984 mgprev->mg_next = mgnext; 985 mgnext->mg_prev = mgprev; 986 } 987 for (int i = 0; i < spa->spa_alloc_count; i++) { 988 if (mc->mc_allocator[i].mca_rotor == mg) 989 mc->mc_allocator[i].mca_rotor = mgnext; 990 } 991 992 mg->mg_prev = NULL; 993 mg->mg_next = NULL; 994 } 995 996 boolean_t 997 metaslab_group_initialized(metaslab_group_t *mg) 998 { 999 vdev_t *vd = mg->mg_vd; 1000 vdev_stat_t *vs = &vd->vdev_stat; 1001 1002 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1003 } 1004 1005 uint64_t 1006 metaslab_group_get_space(metaslab_group_t *mg) 1007 { 1008 /* 1009 * Note that the number of nodes in mg_metaslab_tree may be one less 1010 * than vdev_ms_count, due to the embedded log metaslab. 1011 */ 1012 mutex_enter(&mg->mg_lock); 1013 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1014 mutex_exit(&mg->mg_lock); 1015 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1016 } 1017 1018 void 1019 metaslab_group_histogram_verify(metaslab_group_t *mg) 1020 { 1021 uint64_t *mg_hist; 1022 avl_tree_t *t = &mg->mg_metaslab_tree; 1023 uint64_t ashift = mg->mg_vd->vdev_ashift; 1024 1025 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1026 return; 1027 1028 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1029 KM_SLEEP); 1030 1031 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1032 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1033 1034 mutex_enter(&mg->mg_lock); 1035 for (metaslab_t *msp = avl_first(t); 1036 msp != NULL; msp = AVL_NEXT(t, msp)) { 1037 VERIFY3P(msp->ms_group, ==, mg); 1038 /* skip if not active */ 1039 if (msp->ms_sm == NULL) 1040 continue; 1041 1042 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1043 mg_hist[i + ashift] += 1044 msp->ms_sm->sm_phys->smp_histogram[i]; 1045 } 1046 } 1047 1048 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1049 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1050 1051 mutex_exit(&mg->mg_lock); 1052 1053 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1054 } 1055 1056 static void 1057 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1058 { 1059 metaslab_class_t *mc = mg->mg_class; 1060 uint64_t ashift = mg->mg_vd->vdev_ashift; 1061 1062 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1063 if (msp->ms_sm == NULL) 1064 return; 1065 1066 mutex_enter(&mg->mg_lock); 1067 mutex_enter(&mc->mc_lock); 1068 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1069 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1070 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1071 mg->mg_histogram[i + ashift] += 1072 msp->ms_sm->sm_phys->smp_histogram[i]; 1073 mc->mc_histogram[i + ashift] += 1074 msp->ms_sm->sm_phys->smp_histogram[i]; 1075 } 1076 mutex_exit(&mc->mc_lock); 1077 mutex_exit(&mg->mg_lock); 1078 } 1079 1080 void 1081 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1082 { 1083 metaslab_class_t *mc = mg->mg_class; 1084 uint64_t ashift = mg->mg_vd->vdev_ashift; 1085 1086 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1087 if (msp->ms_sm == NULL) 1088 return; 1089 1090 mutex_enter(&mg->mg_lock); 1091 mutex_enter(&mc->mc_lock); 1092 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1093 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1094 msp->ms_sm->sm_phys->smp_histogram[i]); 1095 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1096 msp->ms_sm->sm_phys->smp_histogram[i]); 1097 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1098 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1099 1100 mg->mg_histogram[i + ashift] -= 1101 msp->ms_sm->sm_phys->smp_histogram[i]; 1102 mc->mc_histogram[i + ashift] -= 1103 msp->ms_sm->sm_phys->smp_histogram[i]; 1104 } 1105 mutex_exit(&mc->mc_lock); 1106 mutex_exit(&mg->mg_lock); 1107 } 1108 1109 static void 1110 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1111 { 1112 ASSERT(msp->ms_group == NULL); 1113 mutex_enter(&mg->mg_lock); 1114 msp->ms_group = mg; 1115 msp->ms_weight = 0; 1116 avl_add(&mg->mg_metaslab_tree, msp); 1117 mutex_exit(&mg->mg_lock); 1118 1119 mutex_enter(&msp->ms_lock); 1120 metaslab_group_histogram_add(mg, msp); 1121 mutex_exit(&msp->ms_lock); 1122 } 1123 1124 static void 1125 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1126 { 1127 mutex_enter(&msp->ms_lock); 1128 metaslab_group_histogram_remove(mg, msp); 1129 mutex_exit(&msp->ms_lock); 1130 1131 mutex_enter(&mg->mg_lock); 1132 ASSERT(msp->ms_group == mg); 1133 avl_remove(&mg->mg_metaslab_tree, msp); 1134 1135 metaslab_class_t *mc = msp->ms_group->mg_class; 1136 multilist_sublist_t *mls = 1137 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1138 if (multilist_link_active(&msp->ms_class_txg_node)) 1139 multilist_sublist_remove(mls, msp); 1140 multilist_sublist_unlock(mls); 1141 1142 msp->ms_group = NULL; 1143 mutex_exit(&mg->mg_lock); 1144 } 1145 1146 static void 1147 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1148 { 1149 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1150 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1151 ASSERT(msp->ms_group == mg); 1152 1153 avl_remove(&mg->mg_metaslab_tree, msp); 1154 msp->ms_weight = weight; 1155 avl_add(&mg->mg_metaslab_tree, msp); 1156 1157 } 1158 1159 static void 1160 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1161 { 1162 /* 1163 * Although in principle the weight can be any value, in 1164 * practice we do not use values in the range [1, 511]. 1165 */ 1166 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1167 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1168 1169 mutex_enter(&mg->mg_lock); 1170 metaslab_group_sort_impl(mg, msp, weight); 1171 mutex_exit(&mg->mg_lock); 1172 } 1173 1174 /* 1175 * Calculate the fragmentation for a given metaslab group. We can use 1176 * a simple average here since all metaslabs within the group must have 1177 * the same size. The return value will be a value between 0 and 100 1178 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1179 * group have a fragmentation metric. 1180 */ 1181 uint64_t 1182 metaslab_group_fragmentation(metaslab_group_t *mg) 1183 { 1184 vdev_t *vd = mg->mg_vd; 1185 uint64_t fragmentation = 0; 1186 uint64_t valid_ms = 0; 1187 1188 for (int m = 0; m < vd->vdev_ms_count; m++) { 1189 metaslab_t *msp = vd->vdev_ms[m]; 1190 1191 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1192 continue; 1193 if (msp->ms_group != mg) 1194 continue; 1195 1196 valid_ms++; 1197 fragmentation += msp->ms_fragmentation; 1198 } 1199 1200 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1201 return (ZFS_FRAG_INVALID); 1202 1203 fragmentation /= valid_ms; 1204 ASSERT3U(fragmentation, <=, 100); 1205 return (fragmentation); 1206 } 1207 1208 /* 1209 * Determine if a given metaslab group should skip allocations. A metaslab 1210 * group should avoid allocations if its free capacity is less than the 1211 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1212 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1213 * that can still handle allocations. If the allocation throttle is enabled 1214 * then we skip allocations to devices that have reached their maximum 1215 * allocation queue depth unless the selected metaslab group is the only 1216 * eligible group remaining. 1217 */ 1218 static boolean_t 1219 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1220 int flags, uint64_t psize, int allocator, int d) 1221 { 1222 spa_t *spa = mg->mg_vd->vdev_spa; 1223 metaslab_class_t *mc = mg->mg_class; 1224 1225 /* 1226 * We can only consider skipping this metaslab group if it's 1227 * in the normal metaslab class and there are other metaslab 1228 * groups to select from. Otherwise, we always consider it eligible 1229 * for allocations. 1230 */ 1231 if ((mc != spa_normal_class(spa) && 1232 mc != spa_special_class(spa) && 1233 mc != spa_dedup_class(spa)) || 1234 mc->mc_groups <= 1) 1235 return (B_TRUE); 1236 1237 /* 1238 * If the metaslab group's mg_allocatable flag is set (see comments 1239 * in metaslab_group_alloc_update() for more information) and 1240 * the allocation throttle is disabled then allow allocations to this 1241 * device. However, if the allocation throttle is enabled then 1242 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1243 * to determine if we should allow allocations to this metaslab group. 1244 * If all metaslab groups are no longer considered allocatable 1245 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1246 * gang block size then we allow allocations on this metaslab group 1247 * regardless of the mg_allocatable or throttle settings. 1248 */ 1249 if (mg->mg_allocatable) { 1250 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1251 int64_t qdepth; 1252 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1253 1254 if (!mc->mc_alloc_throttle_enabled) 1255 return (B_TRUE); 1256 1257 /* 1258 * If this metaslab group does not have any free space, then 1259 * there is no point in looking further. 1260 */ 1261 if (mg->mg_no_free_space) 1262 return (B_FALSE); 1263 1264 /* 1265 * Some allocations (e.g., those coming from device removal 1266 * where the * allocations are not even counted in the 1267 * metaslab * allocation queues) are allowed to bypass 1268 * the throttle. 1269 */ 1270 if (flags & METASLAB_DONT_THROTTLE) 1271 return (B_TRUE); 1272 1273 /* 1274 * Relax allocation throttling for ditto blocks. Due to 1275 * random imbalances in allocation it tends to push copies 1276 * to one vdev, that looks a bit better at the moment. 1277 */ 1278 qmax = qmax * (4 + d) / 4; 1279 1280 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1281 1282 /* 1283 * If this metaslab group is below its qmax or it's 1284 * the only allocatable metaslab group, then attempt 1285 * to allocate from it. 1286 */ 1287 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1288 return (B_TRUE); 1289 ASSERT3U(mc->mc_alloc_groups, >, 1); 1290 1291 /* 1292 * Since this metaslab group is at or over its qmax, we 1293 * need to determine if there are metaslab groups after this 1294 * one that might be able to handle this allocation. This is 1295 * racy since we can't hold the locks for all metaslab 1296 * groups at the same time when we make this check. 1297 */ 1298 for (metaslab_group_t *mgp = mg->mg_next; 1299 mgp != rotor; mgp = mgp->mg_next) { 1300 metaslab_group_allocator_t *mgap = 1301 &mgp->mg_allocator[allocator]; 1302 qmax = mgap->mga_cur_max_alloc_queue_depth; 1303 qmax = qmax * (4 + d) / 4; 1304 qdepth = 1305 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1306 1307 /* 1308 * If there is another metaslab group that 1309 * might be able to handle the allocation, then 1310 * we return false so that we skip this group. 1311 */ 1312 if (qdepth < qmax && !mgp->mg_no_free_space) 1313 return (B_FALSE); 1314 } 1315 1316 /* 1317 * We didn't find another group to handle the allocation 1318 * so we can't skip this metaslab group even though 1319 * we are at or over our qmax. 1320 */ 1321 return (B_TRUE); 1322 1323 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1324 return (B_TRUE); 1325 } 1326 return (B_FALSE); 1327 } 1328 1329 /* 1330 * ========================================================================== 1331 * Range tree callbacks 1332 * ========================================================================== 1333 */ 1334 1335 /* 1336 * Comparison function for the private size-ordered tree using 32-bit 1337 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1338 */ 1339 __attribute__((always_inline)) inline 1340 static int 1341 metaslab_rangesize32_compare(const void *x1, const void *x2) 1342 { 1343 const range_seg32_t *r1 = x1; 1344 const range_seg32_t *r2 = x2; 1345 1346 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1347 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1348 1349 int cmp = TREE_CMP(rs_size1, rs_size2); 1350 1351 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1352 } 1353 1354 /* 1355 * Comparison function for the private size-ordered tree using 64-bit 1356 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1357 */ 1358 __attribute__((always_inline)) inline 1359 static int 1360 metaslab_rangesize64_compare(const void *x1, const void *x2) 1361 { 1362 const range_seg64_t *r1 = x1; 1363 const range_seg64_t *r2 = x2; 1364 1365 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1366 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1367 1368 int cmp = TREE_CMP(rs_size1, rs_size2); 1369 1370 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1371 } 1372 1373 typedef struct metaslab_rt_arg { 1374 zfs_btree_t *mra_bt; 1375 uint32_t mra_floor_shift; 1376 } metaslab_rt_arg_t; 1377 1378 struct mssa_arg { 1379 range_tree_t *rt; 1380 metaslab_rt_arg_t *mra; 1381 }; 1382 1383 static void 1384 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1385 { 1386 struct mssa_arg *mssap = arg; 1387 range_tree_t *rt = mssap->rt; 1388 metaslab_rt_arg_t *mrap = mssap->mra; 1389 range_seg_max_t seg = {0}; 1390 rs_set_start(&seg, rt, start); 1391 rs_set_end(&seg, rt, start + size); 1392 metaslab_rt_add(rt, &seg, mrap); 1393 } 1394 1395 static void 1396 metaslab_size_tree_full_load(range_tree_t *rt) 1397 { 1398 metaslab_rt_arg_t *mrap = rt->rt_arg; 1399 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1400 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1401 mrap->mra_floor_shift = 0; 1402 struct mssa_arg arg = {0}; 1403 arg.rt = rt; 1404 arg.mra = mrap; 1405 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1406 } 1407 1408 1409 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf, 1410 range_seg32_t, metaslab_rangesize32_compare) 1411 1412 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf, 1413 range_seg64_t, metaslab_rangesize64_compare) 1414 1415 /* 1416 * Create any block allocator specific components. The current allocators 1417 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1418 */ 1419 static void 1420 metaslab_rt_create(range_tree_t *rt, void *arg) 1421 { 1422 metaslab_rt_arg_t *mrap = arg; 1423 zfs_btree_t *size_tree = mrap->mra_bt; 1424 1425 size_t size; 1426 int (*compare) (const void *, const void *); 1427 bt_find_in_buf_f bt_find; 1428 switch (rt->rt_type) { 1429 case RANGE_SEG32: 1430 size = sizeof (range_seg32_t); 1431 compare = metaslab_rangesize32_compare; 1432 bt_find = metaslab_rt_find_rangesize32_in_buf; 1433 break; 1434 case RANGE_SEG64: 1435 size = sizeof (range_seg64_t); 1436 compare = metaslab_rangesize64_compare; 1437 bt_find = metaslab_rt_find_rangesize64_in_buf; 1438 break; 1439 default: 1440 panic("Invalid range seg type %d", rt->rt_type); 1441 } 1442 zfs_btree_create(size_tree, compare, bt_find, size); 1443 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1444 } 1445 1446 static void 1447 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1448 { 1449 (void) rt; 1450 metaslab_rt_arg_t *mrap = arg; 1451 zfs_btree_t *size_tree = mrap->mra_bt; 1452 1453 zfs_btree_destroy(size_tree); 1454 kmem_free(mrap, sizeof (*mrap)); 1455 } 1456 1457 static void 1458 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1459 { 1460 metaslab_rt_arg_t *mrap = arg; 1461 zfs_btree_t *size_tree = mrap->mra_bt; 1462 1463 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1464 (1ULL << mrap->mra_floor_shift)) 1465 return; 1466 1467 zfs_btree_add(size_tree, rs); 1468 } 1469 1470 static void 1471 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1472 { 1473 metaslab_rt_arg_t *mrap = arg; 1474 zfs_btree_t *size_tree = mrap->mra_bt; 1475 1476 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL << 1477 mrap->mra_floor_shift)) 1478 return; 1479 1480 zfs_btree_remove(size_tree, rs); 1481 } 1482 1483 static void 1484 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1485 { 1486 metaslab_rt_arg_t *mrap = arg; 1487 zfs_btree_t *size_tree = mrap->mra_bt; 1488 zfs_btree_clear(size_tree); 1489 zfs_btree_destroy(size_tree); 1490 1491 metaslab_rt_create(rt, arg); 1492 } 1493 1494 static const range_tree_ops_t metaslab_rt_ops = { 1495 .rtop_create = metaslab_rt_create, 1496 .rtop_destroy = metaslab_rt_destroy, 1497 .rtop_add = metaslab_rt_add, 1498 .rtop_remove = metaslab_rt_remove, 1499 .rtop_vacate = metaslab_rt_vacate 1500 }; 1501 1502 /* 1503 * ========================================================================== 1504 * Common allocator routines 1505 * ========================================================================== 1506 */ 1507 1508 /* 1509 * Return the maximum contiguous segment within the metaslab. 1510 */ 1511 uint64_t 1512 metaslab_largest_allocatable(metaslab_t *msp) 1513 { 1514 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1515 range_seg_t *rs; 1516 1517 if (t == NULL) 1518 return (0); 1519 if (zfs_btree_numnodes(t) == 0) 1520 metaslab_size_tree_full_load(msp->ms_allocatable); 1521 1522 rs = zfs_btree_last(t, NULL); 1523 if (rs == NULL) 1524 return (0); 1525 1526 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1527 msp->ms_allocatable)); 1528 } 1529 1530 /* 1531 * Return the maximum contiguous segment within the unflushed frees of this 1532 * metaslab. 1533 */ 1534 static uint64_t 1535 metaslab_largest_unflushed_free(metaslab_t *msp) 1536 { 1537 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1538 1539 if (msp->ms_unflushed_frees == NULL) 1540 return (0); 1541 1542 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1543 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1544 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1545 NULL); 1546 if (rs == NULL) 1547 return (0); 1548 1549 /* 1550 * When a range is freed from the metaslab, that range is added to 1551 * both the unflushed frees and the deferred frees. While the block 1552 * will eventually be usable, if the metaslab were loaded the range 1553 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1554 * txgs had passed. As a result, when attempting to estimate an upper 1555 * bound for the largest currently-usable free segment in the 1556 * metaslab, we need to not consider any ranges currently in the defer 1557 * trees. This algorithm approximates the largest available chunk in 1558 * the largest range in the unflushed_frees tree by taking the first 1559 * chunk. While this may be a poor estimate, it should only remain so 1560 * briefly and should eventually self-correct as frees are no longer 1561 * deferred. Similar logic applies to the ms_freed tree. See 1562 * metaslab_load() for more details. 1563 * 1564 * There are two primary sources of inaccuracy in this estimate. Both 1565 * are tolerated for performance reasons. The first source is that we 1566 * only check the largest segment for overlaps. Smaller segments may 1567 * have more favorable overlaps with the other trees, resulting in 1568 * larger usable chunks. Second, we only look at the first chunk in 1569 * the largest segment; there may be other usable chunks in the 1570 * largest segment, but we ignore them. 1571 */ 1572 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1573 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1574 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1575 uint64_t start = 0; 1576 uint64_t size = 0; 1577 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1578 rsize, &start, &size); 1579 if (found) { 1580 if (rstart == start) 1581 return (0); 1582 rsize = start - rstart; 1583 } 1584 } 1585 1586 uint64_t start = 0; 1587 uint64_t size = 0; 1588 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1589 rsize, &start, &size); 1590 if (found) 1591 rsize = start - rstart; 1592 1593 return (rsize); 1594 } 1595 1596 static range_seg_t * 1597 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1598 uint64_t size, zfs_btree_index_t *where) 1599 { 1600 range_seg_t *rs; 1601 range_seg_max_t rsearch; 1602 1603 rs_set_start(&rsearch, rt, start); 1604 rs_set_end(&rsearch, rt, start + size); 1605 1606 rs = zfs_btree_find(t, &rsearch, where); 1607 if (rs == NULL) { 1608 rs = zfs_btree_next(t, where, where); 1609 } 1610 1611 return (rs); 1612 } 1613 1614 /* 1615 * This is a helper function that can be used by the allocator to find a 1616 * suitable block to allocate. This will search the specified B-tree looking 1617 * for a block that matches the specified criteria. 1618 */ 1619 static uint64_t 1620 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1621 uint64_t max_search) 1622 { 1623 if (*cursor == 0) 1624 *cursor = rt->rt_start; 1625 zfs_btree_t *bt = &rt->rt_root; 1626 zfs_btree_index_t where; 1627 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1628 uint64_t first_found; 1629 int count_searched = 0; 1630 1631 if (rs != NULL) 1632 first_found = rs_get_start(rs, rt); 1633 1634 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1635 max_search || count_searched < metaslab_min_search_count)) { 1636 uint64_t offset = rs_get_start(rs, rt); 1637 if (offset + size <= rs_get_end(rs, rt)) { 1638 *cursor = offset + size; 1639 return (offset); 1640 } 1641 rs = zfs_btree_next(bt, &where, &where); 1642 count_searched++; 1643 } 1644 1645 *cursor = 0; 1646 return (-1ULL); 1647 } 1648 1649 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size); 1650 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size); 1651 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size); 1652 metaslab_ops_t *metaslab_allocator(spa_t *spa); 1653 1654 static metaslab_ops_t metaslab_allocators[] = { 1655 { "dynamic", metaslab_df_alloc }, 1656 { "cursor", metaslab_cf_alloc }, 1657 { "new-dynamic", metaslab_ndf_alloc }, 1658 }; 1659 1660 static int 1661 spa_find_allocator_byname(const char *val) 1662 { 1663 int a = ARRAY_SIZE(metaslab_allocators) - 1; 1664 if (strcmp("new-dynamic", val) == 0) 1665 return (-1); /* remove when ndf is working */ 1666 for (; a >= 0; a--) { 1667 if (strcmp(val, metaslab_allocators[a].msop_name) == 0) 1668 return (a); 1669 } 1670 return (-1); 1671 } 1672 1673 void 1674 spa_set_allocator(spa_t *spa, const char *allocator) 1675 { 1676 int a = spa_find_allocator_byname(allocator); 1677 if (a < 0) a = 0; 1678 spa->spa_active_allocator = a; 1679 zfs_dbgmsg("spa allocator: %s\n", metaslab_allocators[a].msop_name); 1680 } 1681 1682 int 1683 spa_get_allocator(spa_t *spa) 1684 { 1685 return (spa->spa_active_allocator); 1686 } 1687 1688 #if defined(_KERNEL) 1689 int 1690 param_set_active_allocator_common(const char *val) 1691 { 1692 char *p; 1693 1694 if (val == NULL) 1695 return (SET_ERROR(EINVAL)); 1696 1697 if ((p = strchr(val, '\n')) != NULL) 1698 *p = '\0'; 1699 1700 int a = spa_find_allocator_byname(val); 1701 if (a < 0) 1702 return (SET_ERROR(EINVAL)); 1703 1704 zfs_active_allocator = metaslab_allocators[a].msop_name; 1705 return (0); 1706 } 1707 #endif 1708 1709 metaslab_ops_t * 1710 metaslab_allocator(spa_t *spa) 1711 { 1712 int allocator = spa_get_allocator(spa); 1713 return (&metaslab_allocators[allocator]); 1714 } 1715 1716 /* 1717 * ========================================================================== 1718 * Dynamic Fit (df) block allocator 1719 * 1720 * Search for a free chunk of at least this size, starting from the last 1721 * offset (for this alignment of block) looking for up to 1722 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1723 * found within 16MB, then return a free chunk of exactly the requested size (or 1724 * larger). 1725 * 1726 * If it seems like searching from the last offset will be unproductive, skip 1727 * that and just return a free chunk of exactly the requested size (or larger). 1728 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1729 * mechanism is probably not very useful and may be removed in the future. 1730 * 1731 * The behavior when not searching can be changed to return the largest free 1732 * chunk, instead of a free chunk of exactly the requested size, by setting 1733 * metaslab_df_use_largest_segment. 1734 * ========================================================================== 1735 */ 1736 static uint64_t 1737 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1738 { 1739 /* 1740 * Find the largest power of 2 block size that evenly divides the 1741 * requested size. This is used to try to allocate blocks with similar 1742 * alignment from the same area of the metaslab (i.e. same cursor 1743 * bucket) but it does not guarantee that other allocations sizes 1744 * may exist in the same region. 1745 */ 1746 uint64_t align = size & -size; 1747 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1748 range_tree_t *rt = msp->ms_allocatable; 1749 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1750 uint64_t offset; 1751 1752 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1753 1754 /* 1755 * If we're running low on space, find a segment based on size, 1756 * rather than iterating based on offset. 1757 */ 1758 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1759 free_pct < metaslab_df_free_pct) { 1760 offset = -1; 1761 } else { 1762 offset = metaslab_block_picker(rt, 1763 cursor, size, metaslab_df_max_search); 1764 } 1765 1766 if (offset == -1) { 1767 range_seg_t *rs; 1768 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1769 metaslab_size_tree_full_load(msp->ms_allocatable); 1770 1771 if (metaslab_df_use_largest_segment) { 1772 /* use largest free segment */ 1773 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1774 } else { 1775 zfs_btree_index_t where; 1776 /* use segment of this size, or next largest */ 1777 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1778 rt, msp->ms_start, size, &where); 1779 } 1780 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1781 rt)) { 1782 offset = rs_get_start(rs, rt); 1783 *cursor = offset + size; 1784 } 1785 } 1786 1787 return (offset); 1788 } 1789 1790 /* 1791 * ========================================================================== 1792 * Cursor fit block allocator - 1793 * Select the largest region in the metaslab, set the cursor to the beginning 1794 * of the range and the cursor_end to the end of the range. As allocations 1795 * are made advance the cursor. Continue allocating from the cursor until 1796 * the range is exhausted and then find a new range. 1797 * ========================================================================== 1798 */ 1799 static uint64_t 1800 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1801 { 1802 range_tree_t *rt = msp->ms_allocatable; 1803 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1804 uint64_t *cursor = &msp->ms_lbas[0]; 1805 uint64_t *cursor_end = &msp->ms_lbas[1]; 1806 uint64_t offset = 0; 1807 1808 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1809 1810 ASSERT3U(*cursor_end, >=, *cursor); 1811 1812 if ((*cursor + size) > *cursor_end) { 1813 range_seg_t *rs; 1814 1815 if (zfs_btree_numnodes(t) == 0) 1816 metaslab_size_tree_full_load(msp->ms_allocatable); 1817 rs = zfs_btree_last(t, NULL); 1818 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1819 size) 1820 return (-1ULL); 1821 1822 *cursor = rs_get_start(rs, rt); 1823 *cursor_end = rs_get_end(rs, rt); 1824 } 1825 1826 offset = *cursor; 1827 *cursor += size; 1828 1829 return (offset); 1830 } 1831 1832 /* 1833 * ========================================================================== 1834 * New dynamic fit allocator - 1835 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1836 * contiguous blocks. If no region is found then just use the largest segment 1837 * that remains. 1838 * ========================================================================== 1839 */ 1840 1841 /* 1842 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1843 * to request from the allocator. 1844 */ 1845 uint64_t metaslab_ndf_clump_shift = 4; 1846 1847 static uint64_t 1848 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1849 { 1850 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1851 range_tree_t *rt = msp->ms_allocatable; 1852 zfs_btree_index_t where; 1853 range_seg_t *rs; 1854 range_seg_max_t rsearch; 1855 uint64_t hbit = highbit64(size); 1856 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1857 uint64_t max_size = metaslab_largest_allocatable(msp); 1858 1859 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1860 1861 if (max_size < size) 1862 return (-1ULL); 1863 1864 rs_set_start(&rsearch, rt, *cursor); 1865 rs_set_end(&rsearch, rt, *cursor + size); 1866 1867 rs = zfs_btree_find(t, &rsearch, &where); 1868 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1869 t = &msp->ms_allocatable_by_size; 1870 1871 rs_set_start(&rsearch, rt, 0); 1872 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1873 metaslab_ndf_clump_shift))); 1874 1875 rs = zfs_btree_find(t, &rsearch, &where); 1876 if (rs == NULL) 1877 rs = zfs_btree_next(t, &where, &where); 1878 ASSERT(rs != NULL); 1879 } 1880 1881 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1882 *cursor = rs_get_start(rs, rt) + size; 1883 return (rs_get_start(rs, rt)); 1884 } 1885 return (-1ULL); 1886 } 1887 1888 /* 1889 * ========================================================================== 1890 * Metaslabs 1891 * ========================================================================== 1892 */ 1893 1894 /* 1895 * Wait for any in-progress metaslab loads to complete. 1896 */ 1897 static void 1898 metaslab_load_wait(metaslab_t *msp) 1899 { 1900 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1901 1902 while (msp->ms_loading) { 1903 ASSERT(!msp->ms_loaded); 1904 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1905 } 1906 } 1907 1908 /* 1909 * Wait for any in-progress flushing to complete. 1910 */ 1911 static void 1912 metaslab_flush_wait(metaslab_t *msp) 1913 { 1914 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1915 1916 while (msp->ms_flushing) 1917 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1918 } 1919 1920 static unsigned int 1921 metaslab_idx_func(multilist_t *ml, void *arg) 1922 { 1923 metaslab_t *msp = arg; 1924 1925 /* 1926 * ms_id values are allocated sequentially, so full 64bit 1927 * division would be a waste of time, so limit it to 32 bits. 1928 */ 1929 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1930 } 1931 1932 uint64_t 1933 metaslab_allocated_space(metaslab_t *msp) 1934 { 1935 return (msp->ms_allocated_space); 1936 } 1937 1938 /* 1939 * Verify that the space accounting on disk matches the in-core range_trees. 1940 */ 1941 static void 1942 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1943 { 1944 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1945 uint64_t allocating = 0; 1946 uint64_t sm_free_space, msp_free_space; 1947 1948 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1949 ASSERT(!msp->ms_condensing); 1950 1951 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1952 return; 1953 1954 /* 1955 * We can only verify the metaslab space when we're called 1956 * from syncing context with a loaded metaslab that has an 1957 * allocated space map. Calling this in non-syncing context 1958 * does not provide a consistent view of the metaslab since 1959 * we're performing allocations in the future. 1960 */ 1961 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1962 !msp->ms_loaded) 1963 return; 1964 1965 /* 1966 * Even though the smp_alloc field can get negative, 1967 * when it comes to a metaslab's space map, that should 1968 * never be the case. 1969 */ 1970 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1971 1972 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1973 range_tree_space(msp->ms_unflushed_frees)); 1974 1975 ASSERT3U(metaslab_allocated_space(msp), ==, 1976 space_map_allocated(msp->ms_sm) + 1977 range_tree_space(msp->ms_unflushed_allocs) - 1978 range_tree_space(msp->ms_unflushed_frees)); 1979 1980 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1981 1982 /* 1983 * Account for future allocations since we would have 1984 * already deducted that space from the ms_allocatable. 1985 */ 1986 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1987 allocating += 1988 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1989 } 1990 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1991 msp->ms_allocating_total); 1992 1993 ASSERT3U(msp->ms_deferspace, ==, 1994 range_tree_space(msp->ms_defer[0]) + 1995 range_tree_space(msp->ms_defer[1])); 1996 1997 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1998 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1999 2000 VERIFY3U(sm_free_space, ==, msp_free_space); 2001 } 2002 2003 static void 2004 metaslab_aux_histograms_clear(metaslab_t *msp) 2005 { 2006 /* 2007 * Auxiliary histograms are only cleared when resetting them, 2008 * which can only happen while the metaslab is loaded. 2009 */ 2010 ASSERT(msp->ms_loaded); 2011 2012 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2013 for (int t = 0; t < TXG_DEFER_SIZE; t++) 2014 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 2015 } 2016 2017 static void 2018 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 2019 range_tree_t *rt) 2020 { 2021 /* 2022 * This is modeled after space_map_histogram_add(), so refer to that 2023 * function for implementation details. We want this to work like 2024 * the space map histogram, and not the range tree histogram, as we 2025 * are essentially constructing a delta that will be later subtracted 2026 * from the space map histogram. 2027 */ 2028 int idx = 0; 2029 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 2030 ASSERT3U(i, >=, idx + shift); 2031 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 2032 2033 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 2034 ASSERT3U(idx + shift, ==, i); 2035 idx++; 2036 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 2037 } 2038 } 2039 } 2040 2041 /* 2042 * Called at every sync pass that the metaslab gets synced. 2043 * 2044 * The reason is that we want our auxiliary histograms to be updated 2045 * wherever the metaslab's space map histogram is updated. This way 2046 * we stay consistent on which parts of the metaslab space map's 2047 * histogram are currently not available for allocations (e.g because 2048 * they are in the defer, freed, and freeing trees). 2049 */ 2050 static void 2051 metaslab_aux_histograms_update(metaslab_t *msp) 2052 { 2053 space_map_t *sm = msp->ms_sm; 2054 ASSERT(sm != NULL); 2055 2056 /* 2057 * This is similar to the metaslab's space map histogram updates 2058 * that take place in metaslab_sync(). The only difference is that 2059 * we only care about segments that haven't made it into the 2060 * ms_allocatable tree yet. 2061 */ 2062 if (msp->ms_loaded) { 2063 metaslab_aux_histograms_clear(msp); 2064 2065 metaslab_aux_histogram_add(msp->ms_synchist, 2066 sm->sm_shift, msp->ms_freed); 2067 2068 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2069 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2070 sm->sm_shift, msp->ms_defer[t]); 2071 } 2072 } 2073 2074 metaslab_aux_histogram_add(msp->ms_synchist, 2075 sm->sm_shift, msp->ms_freeing); 2076 } 2077 2078 /* 2079 * Called every time we are done syncing (writing to) the metaslab, 2080 * i.e. at the end of each sync pass. 2081 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2082 */ 2083 static void 2084 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2085 { 2086 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2087 space_map_t *sm = msp->ms_sm; 2088 2089 if (sm == NULL) { 2090 /* 2091 * We came here from metaslab_init() when creating/opening a 2092 * pool, looking at a metaslab that hasn't had any allocations 2093 * yet. 2094 */ 2095 return; 2096 } 2097 2098 /* 2099 * This is similar to the actions that we take for the ms_freed 2100 * and ms_defer trees in metaslab_sync_done(). 2101 */ 2102 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2103 if (defer_allowed) { 2104 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2105 sizeof (msp->ms_synchist)); 2106 } else { 2107 memset(msp->ms_deferhist[hist_index], 0, 2108 sizeof (msp->ms_deferhist[hist_index])); 2109 } 2110 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2111 } 2112 2113 /* 2114 * Ensure that the metaslab's weight and fragmentation are consistent 2115 * with the contents of the histogram (either the range tree's histogram 2116 * or the space map's depending whether the metaslab is loaded). 2117 */ 2118 static void 2119 metaslab_verify_weight_and_frag(metaslab_t *msp) 2120 { 2121 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2122 2123 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2124 return; 2125 2126 /* 2127 * We can end up here from vdev_remove_complete(), in which case we 2128 * cannot do these assertions because we hold spa config locks and 2129 * thus we are not allowed to read from the DMU. 2130 * 2131 * We check if the metaslab group has been removed and if that's 2132 * the case we return immediately as that would mean that we are 2133 * here from the aforementioned code path. 2134 */ 2135 if (msp->ms_group == NULL) 2136 return; 2137 2138 /* 2139 * Devices being removed always return a weight of 0 and leave 2140 * fragmentation and ms_max_size as is - there is nothing for 2141 * us to verify here. 2142 */ 2143 vdev_t *vd = msp->ms_group->mg_vd; 2144 if (vd->vdev_removing) 2145 return; 2146 2147 /* 2148 * If the metaslab is dirty it probably means that we've done 2149 * some allocations or frees that have changed our histograms 2150 * and thus the weight. 2151 */ 2152 for (int t = 0; t < TXG_SIZE; t++) { 2153 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2154 return; 2155 } 2156 2157 /* 2158 * This verification checks that our in-memory state is consistent 2159 * with what's on disk. If the pool is read-only then there aren't 2160 * any changes and we just have the initially-loaded state. 2161 */ 2162 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2163 return; 2164 2165 /* some extra verification for in-core tree if you can */ 2166 if (msp->ms_loaded) { 2167 range_tree_stat_verify(msp->ms_allocatable); 2168 VERIFY(space_map_histogram_verify(msp->ms_sm, 2169 msp->ms_allocatable)); 2170 } 2171 2172 uint64_t weight = msp->ms_weight; 2173 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2174 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2175 uint64_t frag = msp->ms_fragmentation; 2176 uint64_t max_segsize = msp->ms_max_size; 2177 2178 msp->ms_weight = 0; 2179 msp->ms_fragmentation = 0; 2180 2181 /* 2182 * This function is used for verification purposes and thus should 2183 * not introduce any side-effects/mutations on the system's state. 2184 * 2185 * Regardless of whether metaslab_weight() thinks this metaslab 2186 * should be active or not, we want to ensure that the actual weight 2187 * (and therefore the value of ms_weight) would be the same if it 2188 * was to be recalculated at this point. 2189 * 2190 * In addition we set the nodirty flag so metaslab_weight() does 2191 * not dirty the metaslab for future TXGs (e.g. when trying to 2192 * force condensing to upgrade the metaslab spacemaps). 2193 */ 2194 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2195 2196 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2197 2198 /* 2199 * If the weight type changed then there is no point in doing 2200 * verification. Revert fields to their original values. 2201 */ 2202 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2203 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2204 msp->ms_fragmentation = frag; 2205 msp->ms_weight = weight; 2206 return; 2207 } 2208 2209 VERIFY3U(msp->ms_fragmentation, ==, frag); 2210 VERIFY3U(msp->ms_weight, ==, weight); 2211 } 2212 2213 /* 2214 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2215 * this class that was used longest ago, and attempt to unload it. We don't 2216 * want to spend too much time in this loop to prevent performance 2217 * degradation, and we expect that most of the time this operation will 2218 * succeed. Between that and the normal unloading processing during txg sync, 2219 * we expect this to keep the metaslab memory usage under control. 2220 */ 2221 static void 2222 metaslab_potentially_evict(metaslab_class_t *mc) 2223 { 2224 #ifdef _KERNEL 2225 uint64_t allmem = arc_all_memory(); 2226 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2227 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2228 uint_t tries = 0; 2229 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2230 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2231 tries++) { 2232 unsigned int idx = multilist_get_random_index( 2233 &mc->mc_metaslab_txg_list); 2234 multilist_sublist_t *mls = 2235 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2236 metaslab_t *msp = multilist_sublist_head(mls); 2237 multilist_sublist_unlock(mls); 2238 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2239 inuse * size) { 2240 VERIFY3P(mls, ==, multilist_sublist_lock( 2241 &mc->mc_metaslab_txg_list, idx)); 2242 ASSERT3U(idx, ==, 2243 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2244 2245 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2246 multilist_sublist_unlock(mls); 2247 break; 2248 } 2249 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2250 multilist_sublist_unlock(mls); 2251 /* 2252 * If the metaslab is currently loading there are two 2253 * cases. If it's the metaslab we're evicting, we 2254 * can't continue on or we'll panic when we attempt to 2255 * recursively lock the mutex. If it's another 2256 * metaslab that's loading, it can be safely skipped, 2257 * since we know it's very new and therefore not a 2258 * good eviction candidate. We check later once the 2259 * lock is held that the metaslab is fully loaded 2260 * before actually unloading it. 2261 */ 2262 if (msp->ms_loading) { 2263 msp = next_msp; 2264 inuse = 2265 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2266 continue; 2267 } 2268 /* 2269 * We can't unload metaslabs with no spacemap because 2270 * they're not ready to be unloaded yet. We can't 2271 * unload metaslabs with outstanding allocations 2272 * because doing so could cause the metaslab's weight 2273 * to decrease while it's unloaded, which violates an 2274 * invariant that we use to prevent unnecessary 2275 * loading. We also don't unload metaslabs that are 2276 * currently active because they are high-weight 2277 * metaslabs that are likely to be used in the near 2278 * future. 2279 */ 2280 mutex_enter(&msp->ms_lock); 2281 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2282 msp->ms_allocating_total == 0) { 2283 metaslab_unload(msp); 2284 } 2285 mutex_exit(&msp->ms_lock); 2286 msp = next_msp; 2287 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2288 } 2289 } 2290 #else 2291 (void) mc, (void) zfs_metaslab_mem_limit; 2292 #endif 2293 } 2294 2295 static int 2296 metaslab_load_impl(metaslab_t *msp) 2297 { 2298 int error = 0; 2299 2300 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2301 ASSERT(msp->ms_loading); 2302 ASSERT(!msp->ms_condensing); 2303 2304 /* 2305 * We temporarily drop the lock to unblock other operations while we 2306 * are reading the space map. Therefore, metaslab_sync() and 2307 * metaslab_sync_done() can run at the same time as we do. 2308 * 2309 * If we are using the log space maps, metaslab_sync() can't write to 2310 * the metaslab's space map while we are loading as we only write to 2311 * it when we are flushing the metaslab, and that can't happen while 2312 * we are loading it. 2313 * 2314 * If we are not using log space maps though, metaslab_sync() can 2315 * append to the space map while we are loading. Therefore we load 2316 * only entries that existed when we started the load. Additionally, 2317 * metaslab_sync_done() has to wait for the load to complete because 2318 * there are potential races like metaslab_load() loading parts of the 2319 * space map that are currently being appended by metaslab_sync(). If 2320 * we didn't, the ms_allocatable would have entries that 2321 * metaslab_sync_done() would try to re-add later. 2322 * 2323 * That's why before dropping the lock we remember the synced length 2324 * of the metaslab and read up to that point of the space map, 2325 * ignoring entries appended by metaslab_sync() that happen after we 2326 * drop the lock. 2327 */ 2328 uint64_t length = msp->ms_synced_length; 2329 mutex_exit(&msp->ms_lock); 2330 2331 hrtime_t load_start = gethrtime(); 2332 metaslab_rt_arg_t *mrap; 2333 if (msp->ms_allocatable->rt_arg == NULL) { 2334 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2335 } else { 2336 mrap = msp->ms_allocatable->rt_arg; 2337 msp->ms_allocatable->rt_ops = NULL; 2338 msp->ms_allocatable->rt_arg = NULL; 2339 } 2340 mrap->mra_bt = &msp->ms_allocatable_by_size; 2341 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2342 2343 if (msp->ms_sm != NULL) { 2344 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2345 SM_FREE, length); 2346 2347 /* Now, populate the size-sorted tree. */ 2348 metaslab_rt_create(msp->ms_allocatable, mrap); 2349 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2350 msp->ms_allocatable->rt_arg = mrap; 2351 2352 struct mssa_arg arg = {0}; 2353 arg.rt = msp->ms_allocatable; 2354 arg.mra = mrap; 2355 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2356 &arg); 2357 } else { 2358 /* 2359 * Add the size-sorted tree first, since we don't need to load 2360 * the metaslab from the spacemap. 2361 */ 2362 metaslab_rt_create(msp->ms_allocatable, mrap); 2363 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2364 msp->ms_allocatable->rt_arg = mrap; 2365 /* 2366 * The space map has not been allocated yet, so treat 2367 * all the space in the metaslab as free and add it to the 2368 * ms_allocatable tree. 2369 */ 2370 range_tree_add(msp->ms_allocatable, 2371 msp->ms_start, msp->ms_size); 2372 2373 if (msp->ms_new) { 2374 /* 2375 * If the ms_sm doesn't exist, this means that this 2376 * metaslab hasn't gone through metaslab_sync() and 2377 * thus has never been dirtied. So we shouldn't 2378 * expect any unflushed allocs or frees from previous 2379 * TXGs. 2380 */ 2381 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2382 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2383 } 2384 } 2385 2386 /* 2387 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2388 * changing the ms_sm (or log_sm) and the metaslab's range trees 2389 * while we are about to use them and populate the ms_allocatable. 2390 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2391 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2392 */ 2393 mutex_enter(&msp->ms_sync_lock); 2394 mutex_enter(&msp->ms_lock); 2395 2396 ASSERT(!msp->ms_condensing); 2397 ASSERT(!msp->ms_flushing); 2398 2399 if (error != 0) { 2400 mutex_exit(&msp->ms_sync_lock); 2401 return (error); 2402 } 2403 2404 ASSERT3P(msp->ms_group, !=, NULL); 2405 msp->ms_loaded = B_TRUE; 2406 2407 /* 2408 * Apply all the unflushed changes to ms_allocatable right 2409 * away so any manipulations we do below have a clear view 2410 * of what is allocated and what is free. 2411 */ 2412 range_tree_walk(msp->ms_unflushed_allocs, 2413 range_tree_remove, msp->ms_allocatable); 2414 range_tree_walk(msp->ms_unflushed_frees, 2415 range_tree_add, msp->ms_allocatable); 2416 2417 ASSERT3P(msp->ms_group, !=, NULL); 2418 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2419 if (spa_syncing_log_sm(spa) != NULL) { 2420 ASSERT(spa_feature_is_enabled(spa, 2421 SPA_FEATURE_LOG_SPACEMAP)); 2422 2423 /* 2424 * If we use a log space map we add all the segments 2425 * that are in ms_unflushed_frees so they are available 2426 * for allocation. 2427 * 2428 * ms_allocatable needs to contain all free segments 2429 * that are ready for allocations (thus not segments 2430 * from ms_freeing, ms_freed, and the ms_defer trees). 2431 * But if we grab the lock in this code path at a sync 2432 * pass later that 1, then it also contains the 2433 * segments of ms_freed (they were added to it earlier 2434 * in this path through ms_unflushed_frees). So we 2435 * need to remove all the segments that exist in 2436 * ms_freed from ms_allocatable as they will be added 2437 * later in metaslab_sync_done(). 2438 * 2439 * When there's no log space map, the ms_allocatable 2440 * correctly doesn't contain any segments that exist 2441 * in ms_freed [see ms_synced_length]. 2442 */ 2443 range_tree_walk(msp->ms_freed, 2444 range_tree_remove, msp->ms_allocatable); 2445 } 2446 2447 /* 2448 * If we are not using the log space map, ms_allocatable 2449 * contains the segments that exist in the ms_defer trees 2450 * [see ms_synced_length]. Thus we need to remove them 2451 * from ms_allocatable as they will be added again in 2452 * metaslab_sync_done(). 2453 * 2454 * If we are using the log space map, ms_allocatable still 2455 * contains the segments that exist in the ms_defer trees. 2456 * Not because it read them through the ms_sm though. But 2457 * because these segments are part of ms_unflushed_frees 2458 * whose segments we add to ms_allocatable earlier in this 2459 * code path. 2460 */ 2461 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2462 range_tree_walk(msp->ms_defer[t], 2463 range_tree_remove, msp->ms_allocatable); 2464 } 2465 2466 /* 2467 * Call metaslab_recalculate_weight_and_sort() now that the 2468 * metaslab is loaded so we get the metaslab's real weight. 2469 * 2470 * Unless this metaslab was created with older software and 2471 * has not yet been converted to use segment-based weight, we 2472 * expect the new weight to be better or equal to the weight 2473 * that the metaslab had while it was not loaded. This is 2474 * because the old weight does not take into account the 2475 * consolidation of adjacent segments between TXGs. [see 2476 * comment for ms_synchist and ms_deferhist[] for more info] 2477 */ 2478 uint64_t weight = msp->ms_weight; 2479 uint64_t max_size = msp->ms_max_size; 2480 metaslab_recalculate_weight_and_sort(msp); 2481 if (!WEIGHT_IS_SPACEBASED(weight)) 2482 ASSERT3U(weight, <=, msp->ms_weight); 2483 msp->ms_max_size = metaslab_largest_allocatable(msp); 2484 ASSERT3U(max_size, <=, msp->ms_max_size); 2485 hrtime_t load_end = gethrtime(); 2486 msp->ms_load_time = load_end; 2487 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2488 "ms_id %llu, smp_length %llu, " 2489 "unflushed_allocs %llu, unflushed_frees %llu, " 2490 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2491 "loading_time %lld ms, ms_max_size %llu, " 2492 "max size error %lld, " 2493 "old_weight %llx, new_weight %llx", 2494 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2495 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2496 (u_longlong_t)msp->ms_id, 2497 (u_longlong_t)space_map_length(msp->ms_sm), 2498 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2499 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2500 (u_longlong_t)range_tree_space(msp->ms_freed), 2501 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2502 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2503 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2504 (longlong_t)((load_end - load_start) / 1000000), 2505 (u_longlong_t)msp->ms_max_size, 2506 (u_longlong_t)msp->ms_max_size - max_size, 2507 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2508 2509 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2510 mutex_exit(&msp->ms_sync_lock); 2511 return (0); 2512 } 2513 2514 int 2515 metaslab_load(metaslab_t *msp) 2516 { 2517 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2518 2519 /* 2520 * There may be another thread loading the same metaslab, if that's 2521 * the case just wait until the other thread is done and return. 2522 */ 2523 metaslab_load_wait(msp); 2524 if (msp->ms_loaded) 2525 return (0); 2526 VERIFY(!msp->ms_loading); 2527 ASSERT(!msp->ms_condensing); 2528 2529 /* 2530 * We set the loading flag BEFORE potentially dropping the lock to 2531 * wait for an ongoing flush (see ms_flushing below). This way other 2532 * threads know that there is already a thread that is loading this 2533 * metaslab. 2534 */ 2535 msp->ms_loading = B_TRUE; 2536 2537 /* 2538 * Wait for any in-progress flushing to finish as we drop the ms_lock 2539 * both here (during space_map_load()) and in metaslab_flush() (when 2540 * we flush our changes to the ms_sm). 2541 */ 2542 if (msp->ms_flushing) 2543 metaslab_flush_wait(msp); 2544 2545 /* 2546 * In the possibility that we were waiting for the metaslab to be 2547 * flushed (where we temporarily dropped the ms_lock), ensure that 2548 * no one else loaded the metaslab somehow. 2549 */ 2550 ASSERT(!msp->ms_loaded); 2551 2552 /* 2553 * If we're loading a metaslab in the normal class, consider evicting 2554 * another one to keep our memory usage under the limit defined by the 2555 * zfs_metaslab_mem_limit tunable. 2556 */ 2557 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2558 msp->ms_group->mg_class) { 2559 metaslab_potentially_evict(msp->ms_group->mg_class); 2560 } 2561 2562 int error = metaslab_load_impl(msp); 2563 2564 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2565 msp->ms_loading = B_FALSE; 2566 cv_broadcast(&msp->ms_load_cv); 2567 2568 return (error); 2569 } 2570 2571 void 2572 metaslab_unload(metaslab_t *msp) 2573 { 2574 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2575 2576 /* 2577 * This can happen if a metaslab is selected for eviction (in 2578 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2579 * metaslab_class_evict_old). 2580 */ 2581 if (!msp->ms_loaded) 2582 return; 2583 2584 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2585 msp->ms_loaded = B_FALSE; 2586 msp->ms_unload_time = gethrtime(); 2587 2588 msp->ms_activation_weight = 0; 2589 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2590 2591 if (msp->ms_group != NULL) { 2592 metaslab_class_t *mc = msp->ms_group->mg_class; 2593 multilist_sublist_t *mls = 2594 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2595 if (multilist_link_active(&msp->ms_class_txg_node)) 2596 multilist_sublist_remove(mls, msp); 2597 multilist_sublist_unlock(mls); 2598 2599 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2600 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2601 "ms_id %llu, weight %llx, " 2602 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2603 "loaded %llu ms ago, max_size %llu", 2604 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2605 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2606 (u_longlong_t)msp->ms_id, 2607 (u_longlong_t)msp->ms_weight, 2608 (u_longlong_t)msp->ms_selected_txg, 2609 (u_longlong_t)(msp->ms_unload_time - 2610 msp->ms_selected_time) / 1000 / 1000, 2611 (u_longlong_t)msp->ms_alloc_txg, 2612 (u_longlong_t)(msp->ms_unload_time - 2613 msp->ms_load_time) / 1000 / 1000, 2614 (u_longlong_t)msp->ms_max_size); 2615 } 2616 2617 /* 2618 * We explicitly recalculate the metaslab's weight based on its space 2619 * map (as it is now not loaded). We want unload metaslabs to always 2620 * have their weights calculated from the space map histograms, while 2621 * loaded ones have it calculated from their in-core range tree 2622 * [see metaslab_load()]. This way, the weight reflects the information 2623 * available in-core, whether it is loaded or not. 2624 * 2625 * If ms_group == NULL means that we came here from metaslab_fini(), 2626 * at which point it doesn't make sense for us to do the recalculation 2627 * and the sorting. 2628 */ 2629 if (msp->ms_group != NULL) 2630 metaslab_recalculate_weight_and_sort(msp); 2631 } 2632 2633 /* 2634 * We want to optimize the memory use of the per-metaslab range 2635 * trees. To do this, we store the segments in the range trees in 2636 * units of sectors, zero-indexing from the start of the metaslab. If 2637 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2638 * the ranges using two uint32_ts, rather than two uint64_ts. 2639 */ 2640 range_seg_type_t 2641 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2642 uint64_t *start, uint64_t *shift) 2643 { 2644 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2645 !zfs_metaslab_force_large_segs) { 2646 *shift = vdev->vdev_ashift; 2647 *start = msp->ms_start; 2648 return (RANGE_SEG32); 2649 } else { 2650 *shift = 0; 2651 *start = 0; 2652 return (RANGE_SEG64); 2653 } 2654 } 2655 2656 void 2657 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2658 { 2659 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2660 metaslab_class_t *mc = msp->ms_group->mg_class; 2661 multilist_sublist_t *mls = 2662 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2663 if (multilist_link_active(&msp->ms_class_txg_node)) 2664 multilist_sublist_remove(mls, msp); 2665 msp->ms_selected_txg = txg; 2666 msp->ms_selected_time = gethrtime(); 2667 multilist_sublist_insert_tail(mls, msp); 2668 multilist_sublist_unlock(mls); 2669 } 2670 2671 void 2672 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2673 int64_t defer_delta, int64_t space_delta) 2674 { 2675 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2676 2677 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2678 ASSERT(vd->vdev_ms_count != 0); 2679 2680 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2681 vdev_deflated_space(vd, space_delta)); 2682 } 2683 2684 int 2685 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2686 uint64_t txg, metaslab_t **msp) 2687 { 2688 vdev_t *vd = mg->mg_vd; 2689 spa_t *spa = vd->vdev_spa; 2690 objset_t *mos = spa->spa_meta_objset; 2691 metaslab_t *ms; 2692 int error; 2693 2694 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2695 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2696 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2697 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2698 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2699 multilist_link_init(&ms->ms_class_txg_node); 2700 2701 ms->ms_id = id; 2702 ms->ms_start = id << vd->vdev_ms_shift; 2703 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2704 ms->ms_allocator = -1; 2705 ms->ms_new = B_TRUE; 2706 2707 vdev_ops_t *ops = vd->vdev_ops; 2708 if (ops->vdev_op_metaslab_init != NULL) 2709 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2710 2711 /* 2712 * We only open space map objects that already exist. All others 2713 * will be opened when we finally allocate an object for it. For 2714 * readonly pools there is no need to open the space map object. 2715 * 2716 * Note: 2717 * When called from vdev_expand(), we can't call into the DMU as 2718 * we are holding the spa_config_lock as a writer and we would 2719 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2720 * that case, the object parameter is zero though, so we won't 2721 * call into the DMU. 2722 */ 2723 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2724 !spa->spa_read_spacemaps)) { 2725 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2726 ms->ms_size, vd->vdev_ashift); 2727 2728 if (error != 0) { 2729 kmem_free(ms, sizeof (metaslab_t)); 2730 return (error); 2731 } 2732 2733 ASSERT(ms->ms_sm != NULL); 2734 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2735 } 2736 2737 uint64_t shift, start; 2738 range_seg_type_t type = 2739 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2740 2741 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2742 for (int t = 0; t < TXG_SIZE; t++) { 2743 ms->ms_allocating[t] = range_tree_create(NULL, type, 2744 NULL, start, shift); 2745 } 2746 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2747 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2748 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2749 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2750 start, shift); 2751 } 2752 ms->ms_checkpointing = 2753 range_tree_create(NULL, type, NULL, start, shift); 2754 ms->ms_unflushed_allocs = 2755 range_tree_create(NULL, type, NULL, start, shift); 2756 2757 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2758 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2759 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2760 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2761 type, mrap, start, shift); 2762 2763 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2764 2765 metaslab_group_add(mg, ms); 2766 metaslab_set_fragmentation(ms, B_FALSE); 2767 2768 /* 2769 * If we're opening an existing pool (txg == 0) or creating 2770 * a new one (txg == TXG_INITIAL), all space is available now. 2771 * If we're adding space to an existing pool, the new space 2772 * does not become available until after this txg has synced. 2773 * The metaslab's weight will also be initialized when we sync 2774 * out this txg. This ensures that we don't attempt to allocate 2775 * from it before we have initialized it completely. 2776 */ 2777 if (txg <= TXG_INITIAL) { 2778 metaslab_sync_done(ms, 0); 2779 metaslab_space_update(vd, mg->mg_class, 2780 metaslab_allocated_space(ms), 0, 0); 2781 } 2782 2783 if (txg != 0) { 2784 vdev_dirty(vd, 0, NULL, txg); 2785 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2786 } 2787 2788 *msp = ms; 2789 2790 return (0); 2791 } 2792 2793 static void 2794 metaslab_fini_flush_data(metaslab_t *msp) 2795 { 2796 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2797 2798 if (metaslab_unflushed_txg(msp) == 0) { 2799 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2800 ==, NULL); 2801 return; 2802 } 2803 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2804 2805 mutex_enter(&spa->spa_flushed_ms_lock); 2806 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2807 mutex_exit(&spa->spa_flushed_ms_lock); 2808 2809 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2810 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2811 metaslab_unflushed_dirty(msp)); 2812 } 2813 2814 uint64_t 2815 metaslab_unflushed_changes_memused(metaslab_t *ms) 2816 { 2817 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2818 range_tree_numsegs(ms->ms_unflushed_frees)) * 2819 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2820 } 2821 2822 void 2823 metaslab_fini(metaslab_t *msp) 2824 { 2825 metaslab_group_t *mg = msp->ms_group; 2826 vdev_t *vd = mg->mg_vd; 2827 spa_t *spa = vd->vdev_spa; 2828 2829 metaslab_fini_flush_data(msp); 2830 2831 metaslab_group_remove(mg, msp); 2832 2833 mutex_enter(&msp->ms_lock); 2834 VERIFY(msp->ms_group == NULL); 2835 2836 /* 2837 * If this metaslab hasn't been through metaslab_sync_done() yet its 2838 * space hasn't been accounted for in its vdev and doesn't need to be 2839 * subtracted. 2840 */ 2841 if (!msp->ms_new) { 2842 metaslab_space_update(vd, mg->mg_class, 2843 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2844 2845 } 2846 space_map_close(msp->ms_sm); 2847 msp->ms_sm = NULL; 2848 2849 metaslab_unload(msp); 2850 2851 range_tree_destroy(msp->ms_allocatable); 2852 range_tree_destroy(msp->ms_freeing); 2853 range_tree_destroy(msp->ms_freed); 2854 2855 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2856 metaslab_unflushed_changes_memused(msp)); 2857 spa->spa_unflushed_stats.sus_memused -= 2858 metaslab_unflushed_changes_memused(msp); 2859 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2860 range_tree_destroy(msp->ms_unflushed_allocs); 2861 range_tree_destroy(msp->ms_checkpointing); 2862 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2863 range_tree_destroy(msp->ms_unflushed_frees); 2864 2865 for (int t = 0; t < TXG_SIZE; t++) { 2866 range_tree_destroy(msp->ms_allocating[t]); 2867 } 2868 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2869 range_tree_destroy(msp->ms_defer[t]); 2870 } 2871 ASSERT0(msp->ms_deferspace); 2872 2873 for (int t = 0; t < TXG_SIZE; t++) 2874 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2875 2876 range_tree_vacate(msp->ms_trim, NULL, NULL); 2877 range_tree_destroy(msp->ms_trim); 2878 2879 mutex_exit(&msp->ms_lock); 2880 cv_destroy(&msp->ms_load_cv); 2881 cv_destroy(&msp->ms_flush_cv); 2882 mutex_destroy(&msp->ms_lock); 2883 mutex_destroy(&msp->ms_sync_lock); 2884 ASSERT3U(msp->ms_allocator, ==, -1); 2885 2886 kmem_free(msp, sizeof (metaslab_t)); 2887 } 2888 2889 #define FRAGMENTATION_TABLE_SIZE 17 2890 2891 /* 2892 * This table defines a segment size based fragmentation metric that will 2893 * allow each metaslab to derive its own fragmentation value. This is done 2894 * by calculating the space in each bucket of the spacemap histogram and 2895 * multiplying that by the fragmentation metric in this table. Doing 2896 * this for all buckets and dividing it by the total amount of free 2897 * space in this metaslab (i.e. the total free space in all buckets) gives 2898 * us the fragmentation metric. This means that a high fragmentation metric 2899 * equates to most of the free space being comprised of small segments. 2900 * Conversely, if the metric is low, then most of the free space is in 2901 * large segments. A 10% change in fragmentation equates to approximately 2902 * double the number of segments. 2903 * 2904 * This table defines 0% fragmented space using 16MB segments. Testing has 2905 * shown that segments that are greater than or equal to 16MB do not suffer 2906 * from drastic performance problems. Using this value, we derive the rest 2907 * of the table. Since the fragmentation value is never stored on disk, it 2908 * is possible to change these calculations in the future. 2909 */ 2910 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2911 100, /* 512B */ 2912 100, /* 1K */ 2913 98, /* 2K */ 2914 95, /* 4K */ 2915 90, /* 8K */ 2916 80, /* 16K */ 2917 70, /* 32K */ 2918 60, /* 64K */ 2919 50, /* 128K */ 2920 40, /* 256K */ 2921 30, /* 512K */ 2922 20, /* 1M */ 2923 15, /* 2M */ 2924 10, /* 4M */ 2925 5, /* 8M */ 2926 0 /* 16M */ 2927 }; 2928 2929 /* 2930 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2931 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2932 * been upgraded and does not support this metric. Otherwise, the return 2933 * value should be in the range [0, 100]. 2934 */ 2935 static void 2936 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2937 { 2938 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2939 uint64_t fragmentation = 0; 2940 uint64_t total = 0; 2941 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2942 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2943 2944 if (!feature_enabled) { 2945 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2946 return; 2947 } 2948 2949 /* 2950 * A null space map means that the entire metaslab is free 2951 * and thus is not fragmented. 2952 */ 2953 if (msp->ms_sm == NULL) { 2954 msp->ms_fragmentation = 0; 2955 return; 2956 } 2957 2958 /* 2959 * If this metaslab's space map has not been upgraded, flag it 2960 * so that we upgrade next time we encounter it. 2961 */ 2962 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2963 uint64_t txg = spa_syncing_txg(spa); 2964 vdev_t *vd = msp->ms_group->mg_vd; 2965 2966 /* 2967 * If we've reached the final dirty txg, then we must 2968 * be shutting down the pool. We don't want to dirty 2969 * any data past this point so skip setting the condense 2970 * flag. We can retry this action the next time the pool 2971 * is imported. We also skip marking this metaslab for 2972 * condensing if the caller has explicitly set nodirty. 2973 */ 2974 if (!nodirty && 2975 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2976 msp->ms_condense_wanted = B_TRUE; 2977 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2978 zfs_dbgmsg("txg %llu, requesting force condense: " 2979 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2980 (u_longlong_t)msp->ms_id, 2981 (u_longlong_t)vd->vdev_id); 2982 } 2983 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2984 return; 2985 } 2986 2987 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2988 uint64_t space = 0; 2989 uint8_t shift = msp->ms_sm->sm_shift; 2990 2991 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2992 FRAGMENTATION_TABLE_SIZE - 1); 2993 2994 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2995 continue; 2996 2997 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2998 total += space; 2999 3000 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 3001 fragmentation += space * zfs_frag_table[idx]; 3002 } 3003 3004 if (total > 0) 3005 fragmentation /= total; 3006 ASSERT3U(fragmentation, <=, 100); 3007 3008 msp->ms_fragmentation = fragmentation; 3009 } 3010 3011 /* 3012 * Compute a weight -- a selection preference value -- for the given metaslab. 3013 * This is based on the amount of free space, the level of fragmentation, 3014 * the LBA range, and whether the metaslab is loaded. 3015 */ 3016 static uint64_t 3017 metaslab_space_weight(metaslab_t *msp) 3018 { 3019 metaslab_group_t *mg = msp->ms_group; 3020 vdev_t *vd = mg->mg_vd; 3021 uint64_t weight, space; 3022 3023 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3024 3025 /* 3026 * The baseline weight is the metaslab's free space. 3027 */ 3028 space = msp->ms_size - metaslab_allocated_space(msp); 3029 3030 if (metaslab_fragmentation_factor_enabled && 3031 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 3032 /* 3033 * Use the fragmentation information to inversely scale 3034 * down the baseline weight. We need to ensure that we 3035 * don't exclude this metaslab completely when it's 100% 3036 * fragmented. To avoid this we reduce the fragmented value 3037 * by 1. 3038 */ 3039 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 3040 3041 /* 3042 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 3043 * this metaslab again. The fragmentation metric may have 3044 * decreased the space to something smaller than 3045 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 3046 * so that we can consume any remaining space. 3047 */ 3048 if (space > 0 && space < SPA_MINBLOCKSIZE) 3049 space = SPA_MINBLOCKSIZE; 3050 } 3051 weight = space; 3052 3053 /* 3054 * Modern disks have uniform bit density and constant angular velocity. 3055 * Therefore, the outer recording zones are faster (higher bandwidth) 3056 * than the inner zones by the ratio of outer to inner track diameter, 3057 * which is typically around 2:1. We account for this by assigning 3058 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3059 * In effect, this means that we'll select the metaslab with the most 3060 * free bandwidth rather than simply the one with the most free space. 3061 */ 3062 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3063 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3064 ASSERT(weight >= space && weight <= 2 * space); 3065 } 3066 3067 /* 3068 * If this metaslab is one we're actively using, adjust its 3069 * weight to make it preferable to any inactive metaslab so 3070 * we'll polish it off. If the fragmentation on this metaslab 3071 * has exceed our threshold, then don't mark it active. 3072 */ 3073 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3074 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3075 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3076 } 3077 3078 WEIGHT_SET_SPACEBASED(weight); 3079 return (weight); 3080 } 3081 3082 /* 3083 * Return the weight of the specified metaslab, according to the segment-based 3084 * weighting algorithm. The metaslab must be loaded. This function can 3085 * be called within a sync pass since it relies only on the metaslab's 3086 * range tree which is always accurate when the metaslab is loaded. 3087 */ 3088 static uint64_t 3089 metaslab_weight_from_range_tree(metaslab_t *msp) 3090 { 3091 uint64_t weight = 0; 3092 uint32_t segments = 0; 3093 3094 ASSERT(msp->ms_loaded); 3095 3096 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3097 i--) { 3098 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3099 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3100 3101 segments <<= 1; 3102 segments += msp->ms_allocatable->rt_histogram[i]; 3103 3104 /* 3105 * The range tree provides more precision than the space map 3106 * and must be downgraded so that all values fit within the 3107 * space map's histogram. This allows us to compare loaded 3108 * vs. unloaded metaslabs to determine which metaslab is 3109 * considered "best". 3110 */ 3111 if (i > max_idx) 3112 continue; 3113 3114 if (segments != 0) { 3115 WEIGHT_SET_COUNT(weight, segments); 3116 WEIGHT_SET_INDEX(weight, i); 3117 WEIGHT_SET_ACTIVE(weight, 0); 3118 break; 3119 } 3120 } 3121 return (weight); 3122 } 3123 3124 /* 3125 * Calculate the weight based on the on-disk histogram. Should be applied 3126 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3127 * give results consistent with the on-disk state 3128 */ 3129 static uint64_t 3130 metaslab_weight_from_spacemap(metaslab_t *msp) 3131 { 3132 space_map_t *sm = msp->ms_sm; 3133 ASSERT(!msp->ms_loaded); 3134 ASSERT(sm != NULL); 3135 ASSERT3U(space_map_object(sm), !=, 0); 3136 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3137 3138 /* 3139 * Create a joint histogram from all the segments that have made 3140 * it to the metaslab's space map histogram, that are not yet 3141 * available for allocation because they are still in the freeing 3142 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3143 * these segments from the space map's histogram to get a more 3144 * accurate weight. 3145 */ 3146 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3147 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3148 deferspace_histogram[i] += msp->ms_synchist[i]; 3149 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3150 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3151 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3152 } 3153 } 3154 3155 uint64_t weight = 0; 3156 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3157 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3158 deferspace_histogram[i]); 3159 uint64_t count = 3160 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3161 if (count != 0) { 3162 WEIGHT_SET_COUNT(weight, count); 3163 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3164 WEIGHT_SET_ACTIVE(weight, 0); 3165 break; 3166 } 3167 } 3168 return (weight); 3169 } 3170 3171 /* 3172 * Compute a segment-based weight for the specified metaslab. The weight 3173 * is determined by highest bucket in the histogram. The information 3174 * for the highest bucket is encoded into the weight value. 3175 */ 3176 static uint64_t 3177 metaslab_segment_weight(metaslab_t *msp) 3178 { 3179 metaslab_group_t *mg = msp->ms_group; 3180 uint64_t weight = 0; 3181 uint8_t shift = mg->mg_vd->vdev_ashift; 3182 3183 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3184 3185 /* 3186 * The metaslab is completely free. 3187 */ 3188 if (metaslab_allocated_space(msp) == 0) { 3189 int idx = highbit64(msp->ms_size) - 1; 3190 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3191 3192 if (idx < max_idx) { 3193 WEIGHT_SET_COUNT(weight, 1ULL); 3194 WEIGHT_SET_INDEX(weight, idx); 3195 } else { 3196 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3197 WEIGHT_SET_INDEX(weight, max_idx); 3198 } 3199 WEIGHT_SET_ACTIVE(weight, 0); 3200 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3201 return (weight); 3202 } 3203 3204 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3205 3206 /* 3207 * If the metaslab is fully allocated then just make the weight 0. 3208 */ 3209 if (metaslab_allocated_space(msp) == msp->ms_size) 3210 return (0); 3211 /* 3212 * If the metaslab is already loaded, then use the range tree to 3213 * determine the weight. Otherwise, we rely on the space map information 3214 * to generate the weight. 3215 */ 3216 if (msp->ms_loaded) { 3217 weight = metaslab_weight_from_range_tree(msp); 3218 } else { 3219 weight = metaslab_weight_from_spacemap(msp); 3220 } 3221 3222 /* 3223 * If the metaslab was active the last time we calculated its weight 3224 * then keep it active. We want to consume the entire region that 3225 * is associated with this weight. 3226 */ 3227 if (msp->ms_activation_weight != 0 && weight != 0) 3228 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3229 return (weight); 3230 } 3231 3232 /* 3233 * Determine if we should attempt to allocate from this metaslab. If the 3234 * metaslab is loaded, then we can determine if the desired allocation 3235 * can be satisfied by looking at the size of the maximum free segment 3236 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3237 * weight. For segment-based weighting we can determine the maximum 3238 * allocation based on the index encoded in its value. For space-based 3239 * weights we rely on the entire weight (excluding the weight-type bit). 3240 */ 3241 static boolean_t 3242 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3243 { 3244 /* 3245 * This case will usually but not always get caught by the checks below; 3246 * metaslabs can be loaded by various means, including the trim and 3247 * initialize code. Once that happens, without this check they are 3248 * allocatable even before they finish their first txg sync. 3249 */ 3250 if (unlikely(msp->ms_new)) 3251 return (B_FALSE); 3252 3253 /* 3254 * If the metaslab is loaded, ms_max_size is definitive and we can use 3255 * the fast check. If it's not, the ms_max_size is a lower bound (once 3256 * set), and we should use the fast check as long as we're not in 3257 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3258 * seconds since the metaslab was unloaded. 3259 */ 3260 if (msp->ms_loaded || 3261 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3262 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3263 return (msp->ms_max_size >= asize); 3264 3265 boolean_t should_allocate; 3266 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3267 /* 3268 * The metaslab segment weight indicates segments in the 3269 * range [2^i, 2^(i+1)), where i is the index in the weight. 3270 * Since the asize might be in the middle of the range, we 3271 * should attempt the allocation if asize < 2^(i+1). 3272 */ 3273 should_allocate = (asize < 3274 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3275 } else { 3276 should_allocate = (asize <= 3277 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3278 } 3279 3280 return (should_allocate); 3281 } 3282 3283 static uint64_t 3284 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3285 { 3286 vdev_t *vd = msp->ms_group->mg_vd; 3287 spa_t *spa = vd->vdev_spa; 3288 uint64_t weight; 3289 3290 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3291 3292 metaslab_set_fragmentation(msp, nodirty); 3293 3294 /* 3295 * Update the maximum size. If the metaslab is loaded, this will 3296 * ensure that we get an accurate maximum size if newly freed space 3297 * has been added back into the free tree. If the metaslab is 3298 * unloaded, we check if there's a larger free segment in the 3299 * unflushed frees. This is a lower bound on the largest allocatable 3300 * segment size. Coalescing of adjacent entries may reveal larger 3301 * allocatable segments, but we aren't aware of those until loading 3302 * the space map into a range tree. 3303 */ 3304 if (msp->ms_loaded) { 3305 msp->ms_max_size = metaslab_largest_allocatable(msp); 3306 } else { 3307 msp->ms_max_size = MAX(msp->ms_max_size, 3308 metaslab_largest_unflushed_free(msp)); 3309 } 3310 3311 /* 3312 * Segment-based weighting requires space map histogram support. 3313 */ 3314 if (zfs_metaslab_segment_weight_enabled && 3315 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3316 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3317 sizeof (space_map_phys_t))) { 3318 weight = metaslab_segment_weight(msp); 3319 } else { 3320 weight = metaslab_space_weight(msp); 3321 } 3322 return (weight); 3323 } 3324 3325 void 3326 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3327 { 3328 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3329 3330 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3331 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3332 metaslab_group_sort(msp->ms_group, msp, 3333 metaslab_weight(msp, B_FALSE) | was_active); 3334 } 3335 3336 static int 3337 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3338 int allocator, uint64_t activation_weight) 3339 { 3340 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3341 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3342 3343 /* 3344 * If we're activating for the claim code, we don't want to actually 3345 * set the metaslab up for a specific allocator. 3346 */ 3347 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3348 ASSERT0(msp->ms_activation_weight); 3349 msp->ms_activation_weight = msp->ms_weight; 3350 metaslab_group_sort(mg, msp, msp->ms_weight | 3351 activation_weight); 3352 return (0); 3353 } 3354 3355 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3356 &mga->mga_primary : &mga->mga_secondary); 3357 3358 mutex_enter(&mg->mg_lock); 3359 if (*mspp != NULL) { 3360 mutex_exit(&mg->mg_lock); 3361 return (EEXIST); 3362 } 3363 3364 *mspp = msp; 3365 ASSERT3S(msp->ms_allocator, ==, -1); 3366 msp->ms_allocator = allocator; 3367 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3368 3369 ASSERT0(msp->ms_activation_weight); 3370 msp->ms_activation_weight = msp->ms_weight; 3371 metaslab_group_sort_impl(mg, msp, 3372 msp->ms_weight | activation_weight); 3373 mutex_exit(&mg->mg_lock); 3374 3375 return (0); 3376 } 3377 3378 static int 3379 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3380 { 3381 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3382 3383 /* 3384 * The current metaslab is already activated for us so there 3385 * is nothing to do. Already activated though, doesn't mean 3386 * that this metaslab is activated for our allocator nor our 3387 * requested activation weight. The metaslab could have started 3388 * as an active one for our allocator but changed allocators 3389 * while we were waiting to grab its ms_lock or we stole it 3390 * [see find_valid_metaslab()]. This means that there is a 3391 * possibility of passivating a metaslab of another allocator 3392 * or from a different activation mask, from this thread. 3393 */ 3394 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3395 ASSERT(msp->ms_loaded); 3396 return (0); 3397 } 3398 3399 int error = metaslab_load(msp); 3400 if (error != 0) { 3401 metaslab_group_sort(msp->ms_group, msp, 0); 3402 return (error); 3403 } 3404 3405 /* 3406 * When entering metaslab_load() we may have dropped the 3407 * ms_lock because we were loading this metaslab, or we 3408 * were waiting for another thread to load it for us. In 3409 * that scenario, we recheck the weight of the metaslab 3410 * to see if it was activated by another thread. 3411 * 3412 * If the metaslab was activated for another allocator or 3413 * it was activated with a different activation weight (e.g. 3414 * we wanted to make it a primary but it was activated as 3415 * secondary) we return error (EBUSY). 3416 * 3417 * If the metaslab was activated for the same allocator 3418 * and requested activation mask, skip activating it. 3419 */ 3420 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3421 if (msp->ms_allocator != allocator) 3422 return (EBUSY); 3423 3424 if ((msp->ms_weight & activation_weight) == 0) 3425 return (SET_ERROR(EBUSY)); 3426 3427 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3428 msp->ms_primary); 3429 return (0); 3430 } 3431 3432 /* 3433 * If the metaslab has literally 0 space, it will have weight 0. In 3434 * that case, don't bother activating it. This can happen if the 3435 * metaslab had space during find_valid_metaslab, but another thread 3436 * loaded it and used all that space while we were waiting to grab the 3437 * lock. 3438 */ 3439 if (msp->ms_weight == 0) { 3440 ASSERT0(range_tree_space(msp->ms_allocatable)); 3441 return (SET_ERROR(ENOSPC)); 3442 } 3443 3444 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3445 allocator, activation_weight)) != 0) { 3446 return (error); 3447 } 3448 3449 ASSERT(msp->ms_loaded); 3450 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3451 3452 return (0); 3453 } 3454 3455 static void 3456 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3457 uint64_t weight) 3458 { 3459 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3460 ASSERT(msp->ms_loaded); 3461 3462 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3463 metaslab_group_sort(mg, msp, weight); 3464 return; 3465 } 3466 3467 mutex_enter(&mg->mg_lock); 3468 ASSERT3P(msp->ms_group, ==, mg); 3469 ASSERT3S(0, <=, msp->ms_allocator); 3470 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3471 3472 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3473 if (msp->ms_primary) { 3474 ASSERT3P(mga->mga_primary, ==, msp); 3475 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3476 mga->mga_primary = NULL; 3477 } else { 3478 ASSERT3P(mga->mga_secondary, ==, msp); 3479 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3480 mga->mga_secondary = NULL; 3481 } 3482 msp->ms_allocator = -1; 3483 metaslab_group_sort_impl(mg, msp, weight); 3484 mutex_exit(&mg->mg_lock); 3485 } 3486 3487 static void 3488 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3489 { 3490 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3491 3492 /* 3493 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3494 * this metaslab again. In that case, it had better be empty, 3495 * or we would be leaving space on the table. 3496 */ 3497 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3498 size >= SPA_MINBLOCKSIZE || 3499 range_tree_space(msp->ms_allocatable) == 0); 3500 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3501 3502 ASSERT(msp->ms_activation_weight != 0); 3503 msp->ms_activation_weight = 0; 3504 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3505 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3506 } 3507 3508 /* 3509 * Segment-based metaslabs are activated once and remain active until 3510 * we either fail an allocation attempt (similar to space-based metaslabs) 3511 * or have exhausted the free space in zfs_metaslab_switch_threshold 3512 * buckets since the metaslab was activated. This function checks to see 3513 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3514 * metaslab and passivates it proactively. This will allow us to select a 3515 * metaslab with a larger contiguous region, if any, remaining within this 3516 * metaslab group. If we're in sync pass > 1, then we continue using this 3517 * metaslab so that we don't dirty more block and cause more sync passes. 3518 */ 3519 static void 3520 metaslab_segment_may_passivate(metaslab_t *msp) 3521 { 3522 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3523 3524 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3525 return; 3526 3527 /* 3528 * Since we are in the middle of a sync pass, the most accurate 3529 * information that is accessible to us is the in-core range tree 3530 * histogram; calculate the new weight based on that information. 3531 */ 3532 uint64_t weight = metaslab_weight_from_range_tree(msp); 3533 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3534 int current_idx = WEIGHT_GET_INDEX(weight); 3535 3536 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3537 metaslab_passivate(msp, weight); 3538 } 3539 3540 static void 3541 metaslab_preload(void *arg) 3542 { 3543 metaslab_t *msp = arg; 3544 metaslab_class_t *mc = msp->ms_group->mg_class; 3545 spa_t *spa = mc->mc_spa; 3546 fstrans_cookie_t cookie = spl_fstrans_mark(); 3547 3548 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3549 3550 mutex_enter(&msp->ms_lock); 3551 (void) metaslab_load(msp); 3552 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3553 mutex_exit(&msp->ms_lock); 3554 spl_fstrans_unmark(cookie); 3555 } 3556 3557 static void 3558 metaslab_group_preload(metaslab_group_t *mg) 3559 { 3560 spa_t *spa = mg->mg_vd->vdev_spa; 3561 metaslab_t *msp; 3562 avl_tree_t *t = &mg->mg_metaslab_tree; 3563 int m = 0; 3564 3565 if (spa_shutting_down(spa) || !metaslab_preload_enabled) 3566 return; 3567 3568 mutex_enter(&mg->mg_lock); 3569 3570 /* 3571 * Load the next potential metaslabs 3572 */ 3573 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3574 ASSERT3P(msp->ms_group, ==, mg); 3575 3576 /* 3577 * We preload only the maximum number of metaslabs specified 3578 * by metaslab_preload_limit. If a metaslab is being forced 3579 * to condense then we preload it too. This will ensure 3580 * that force condensing happens in the next txg. 3581 */ 3582 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3583 continue; 3584 } 3585 3586 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload, 3587 msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0)) 3588 != TASKQID_INVALID); 3589 } 3590 mutex_exit(&mg->mg_lock); 3591 } 3592 3593 /* 3594 * Determine if the space map's on-disk footprint is past our tolerance for 3595 * inefficiency. We would like to use the following criteria to make our 3596 * decision: 3597 * 3598 * 1. Do not condense if the size of the space map object would dramatically 3599 * increase as a result of writing out the free space range tree. 3600 * 3601 * 2. Condense if the on on-disk space map representation is at least 3602 * zfs_condense_pct/100 times the size of the optimal representation 3603 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3604 * 3605 * 3. Do not condense if the on-disk size of the space map does not actually 3606 * decrease. 3607 * 3608 * Unfortunately, we cannot compute the on-disk size of the space map in this 3609 * context because we cannot accurately compute the effects of compression, etc. 3610 * Instead, we apply the heuristic described in the block comment for 3611 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3612 * is greater than a threshold number of blocks. 3613 */ 3614 static boolean_t 3615 metaslab_should_condense(metaslab_t *msp) 3616 { 3617 space_map_t *sm = msp->ms_sm; 3618 vdev_t *vd = msp->ms_group->mg_vd; 3619 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3620 3621 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3622 ASSERT(msp->ms_loaded); 3623 ASSERT(sm != NULL); 3624 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3625 3626 /* 3627 * We always condense metaslabs that are empty and metaslabs for 3628 * which a condense request has been made. 3629 */ 3630 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3631 msp->ms_condense_wanted) 3632 return (B_TRUE); 3633 3634 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3635 uint64_t object_size = space_map_length(sm); 3636 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3637 msp->ms_allocatable, SM_NO_VDEVID); 3638 3639 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3640 object_size > zfs_metaslab_condense_block_threshold * record_size); 3641 } 3642 3643 /* 3644 * Condense the on-disk space map representation to its minimized form. 3645 * The minimized form consists of a small number of allocations followed 3646 * by the entries of the free range tree (ms_allocatable). The condensed 3647 * spacemap contains all the entries of previous TXGs (including those in 3648 * the pool-wide log spacemaps; thus this is effectively a superset of 3649 * metaslab_flush()), but this TXG's entries still need to be written. 3650 */ 3651 static void 3652 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3653 { 3654 range_tree_t *condense_tree; 3655 space_map_t *sm = msp->ms_sm; 3656 uint64_t txg = dmu_tx_get_txg(tx); 3657 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3658 3659 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3660 ASSERT(msp->ms_loaded); 3661 ASSERT(msp->ms_sm != NULL); 3662 3663 /* 3664 * In order to condense the space map, we need to change it so it 3665 * only describes which segments are currently allocated and free. 3666 * 3667 * All the current free space resides in the ms_allocatable, all 3668 * the ms_defer trees, and all the ms_allocating trees. We ignore 3669 * ms_freed because it is empty because we're in sync pass 1. We 3670 * ignore ms_freeing because these changes are not yet reflected 3671 * in the spacemap (they will be written later this txg). 3672 * 3673 * So to truncate the space map to represent all the entries of 3674 * previous TXGs we do the following: 3675 * 3676 * 1] We create a range tree (condense tree) that is 100% empty. 3677 * 2] We add to it all segments found in the ms_defer trees 3678 * as those segments are marked as free in the original space 3679 * map. We do the same with the ms_allocating trees for the same 3680 * reason. Adding these segments should be a relatively 3681 * inexpensive operation since we expect these trees to have a 3682 * small number of nodes. 3683 * 3] We vacate any unflushed allocs, since they are not frees we 3684 * need to add to the condense tree. Then we vacate any 3685 * unflushed frees as they should already be part of ms_allocatable. 3686 * 4] At this point, we would ideally like to add all segments 3687 * in the ms_allocatable tree from the condense tree. This way 3688 * we would write all the entries of the condense tree as the 3689 * condensed space map, which would only contain freed 3690 * segments with everything else assumed to be allocated. 3691 * 3692 * Doing so can be prohibitively expensive as ms_allocatable can 3693 * be large, and therefore computationally expensive to add to 3694 * the condense_tree. Instead we first sync out an entry marking 3695 * everything as allocated, then the condense_tree and then the 3696 * ms_allocatable, in the condensed space map. While this is not 3697 * optimal, it is typically close to optimal and more importantly 3698 * much cheaper to compute. 3699 * 3700 * 5] Finally, as both of the unflushed trees were written to our 3701 * new and condensed metaslab space map, we basically flushed 3702 * all the unflushed changes to disk, thus we call 3703 * metaslab_flush_update(). 3704 */ 3705 ASSERT3U(spa_sync_pass(spa), ==, 1); 3706 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3707 3708 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3709 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3710 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3711 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3712 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3713 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3714 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3715 3716 msp->ms_condense_wanted = B_FALSE; 3717 3718 range_seg_type_t type; 3719 uint64_t shift, start; 3720 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3721 &start, &shift); 3722 3723 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3724 3725 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3726 range_tree_walk(msp->ms_defer[t], 3727 range_tree_add, condense_tree); 3728 } 3729 3730 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3731 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3732 range_tree_add, condense_tree); 3733 } 3734 3735 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3736 metaslab_unflushed_changes_memused(msp)); 3737 spa->spa_unflushed_stats.sus_memused -= 3738 metaslab_unflushed_changes_memused(msp); 3739 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3740 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3741 3742 /* 3743 * We're about to drop the metaslab's lock thus allowing other 3744 * consumers to change it's content. Set the metaslab's ms_condensing 3745 * flag to ensure that allocations on this metaslab do not occur 3746 * while we're in the middle of committing it to disk. This is only 3747 * critical for ms_allocatable as all other range trees use per TXG 3748 * views of their content. 3749 */ 3750 msp->ms_condensing = B_TRUE; 3751 3752 mutex_exit(&msp->ms_lock); 3753 uint64_t object = space_map_object(msp->ms_sm); 3754 space_map_truncate(sm, 3755 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3756 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3757 3758 /* 3759 * space_map_truncate() may have reallocated the spacemap object. 3760 * If so, update the vdev_ms_array. 3761 */ 3762 if (space_map_object(msp->ms_sm) != object) { 3763 object = space_map_object(msp->ms_sm); 3764 dmu_write(spa->spa_meta_objset, 3765 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3766 msp->ms_id, sizeof (uint64_t), &object, tx); 3767 } 3768 3769 /* 3770 * Note: 3771 * When the log space map feature is enabled, each space map will 3772 * always have ALLOCS followed by FREES for each sync pass. This is 3773 * typically true even when the log space map feature is disabled, 3774 * except from the case where a metaslab goes through metaslab_sync() 3775 * and gets condensed. In that case the metaslab's space map will have 3776 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3777 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3778 * sync pass 1. 3779 */ 3780 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3781 shift); 3782 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3783 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3784 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3785 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3786 3787 range_tree_vacate(condense_tree, NULL, NULL); 3788 range_tree_destroy(condense_tree); 3789 range_tree_vacate(tmp_tree, NULL, NULL); 3790 range_tree_destroy(tmp_tree); 3791 mutex_enter(&msp->ms_lock); 3792 3793 msp->ms_condensing = B_FALSE; 3794 metaslab_flush_update(msp, tx); 3795 } 3796 3797 static void 3798 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3799 { 3800 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3801 ASSERT(spa_syncing_log_sm(spa) != NULL); 3802 ASSERT(msp->ms_sm != NULL); 3803 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3804 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3805 3806 mutex_enter(&spa->spa_flushed_ms_lock); 3807 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3808 metaslab_set_unflushed_dirty(msp, B_TRUE); 3809 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3810 mutex_exit(&spa->spa_flushed_ms_lock); 3811 3812 spa_log_sm_increment_current_mscount(spa); 3813 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3814 } 3815 3816 void 3817 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3818 { 3819 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3820 ASSERT(spa_syncing_log_sm(spa) != NULL); 3821 ASSERT(msp->ms_sm != NULL); 3822 ASSERT(metaslab_unflushed_txg(msp) != 0); 3823 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3824 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3825 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3826 3827 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3828 3829 /* update metaslab's position in our flushing tree */ 3830 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3831 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3832 mutex_enter(&spa->spa_flushed_ms_lock); 3833 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3834 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3835 metaslab_set_unflushed_dirty(msp, dirty); 3836 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3837 mutex_exit(&spa->spa_flushed_ms_lock); 3838 3839 /* update metaslab counts of spa_log_sm_t nodes */ 3840 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3841 spa_log_sm_increment_current_mscount(spa); 3842 3843 /* update log space map summary */ 3844 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 3845 ms_prev_flushed_dirty); 3846 spa_log_summary_add_flushed_metaslab(spa, dirty); 3847 3848 /* cleanup obsolete logs if any */ 3849 spa_cleanup_old_sm_logs(spa, tx); 3850 } 3851 3852 /* 3853 * Called when the metaslab has been flushed (its own spacemap now reflects 3854 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3855 * metadata and any pool-wide related log space map data (e.g. summary, 3856 * obsolete logs, etc..) to reflect that. 3857 */ 3858 static void 3859 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3860 { 3861 metaslab_group_t *mg = msp->ms_group; 3862 spa_t *spa = mg->mg_vd->vdev_spa; 3863 3864 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3865 3866 ASSERT3U(spa_sync_pass(spa), ==, 1); 3867 3868 /* 3869 * Just because a metaslab got flushed, that doesn't mean that 3870 * it will pass through metaslab_sync_done(). Thus, make sure to 3871 * update ms_synced_length here in case it doesn't. 3872 */ 3873 msp->ms_synced_length = space_map_length(msp->ms_sm); 3874 3875 /* 3876 * We may end up here from metaslab_condense() without the 3877 * feature being active. In that case this is a no-op. 3878 */ 3879 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 3880 metaslab_unflushed_txg(msp) == 0) 3881 return; 3882 3883 metaslab_unflushed_bump(msp, tx, B_FALSE); 3884 } 3885 3886 boolean_t 3887 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3888 { 3889 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3890 3891 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3892 ASSERT3U(spa_sync_pass(spa), ==, 1); 3893 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3894 3895 ASSERT(msp->ms_sm != NULL); 3896 ASSERT(metaslab_unflushed_txg(msp) != 0); 3897 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3898 3899 /* 3900 * There is nothing wrong with flushing the same metaslab twice, as 3901 * this codepath should work on that case. However, the current 3902 * flushing scheme makes sure to avoid this situation as we would be 3903 * making all these calls without having anything meaningful to write 3904 * to disk. We assert this behavior here. 3905 */ 3906 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3907 3908 /* 3909 * We can not flush while loading, because then we would 3910 * not load the ms_unflushed_{allocs,frees}. 3911 */ 3912 if (msp->ms_loading) 3913 return (B_FALSE); 3914 3915 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3916 metaslab_verify_weight_and_frag(msp); 3917 3918 /* 3919 * Metaslab condensing is effectively flushing. Therefore if the 3920 * metaslab can be condensed we can just condense it instead of 3921 * flushing it. 3922 * 3923 * Note that metaslab_condense() does call metaslab_flush_update() 3924 * so we can just return immediately after condensing. We also 3925 * don't need to care about setting ms_flushing or broadcasting 3926 * ms_flush_cv, even if we temporarily drop the ms_lock in 3927 * metaslab_condense(), as the metaslab is already loaded. 3928 */ 3929 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3930 metaslab_group_t *mg = msp->ms_group; 3931 3932 /* 3933 * For all histogram operations below refer to the 3934 * comments of metaslab_sync() where we follow a 3935 * similar procedure. 3936 */ 3937 metaslab_group_histogram_verify(mg); 3938 metaslab_class_histogram_verify(mg->mg_class); 3939 metaslab_group_histogram_remove(mg, msp); 3940 3941 metaslab_condense(msp, tx); 3942 3943 space_map_histogram_clear(msp->ms_sm); 3944 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3945 ASSERT(range_tree_is_empty(msp->ms_freed)); 3946 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3947 space_map_histogram_add(msp->ms_sm, 3948 msp->ms_defer[t], tx); 3949 } 3950 metaslab_aux_histograms_update(msp); 3951 3952 metaslab_group_histogram_add(mg, msp); 3953 metaslab_group_histogram_verify(mg); 3954 metaslab_class_histogram_verify(mg->mg_class); 3955 3956 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3957 3958 /* 3959 * Since we recreated the histogram (and potentially 3960 * the ms_sm too while condensing) ensure that the 3961 * weight is updated too because we are not guaranteed 3962 * that this metaslab is dirty and will go through 3963 * metaslab_sync_done(). 3964 */ 3965 metaslab_recalculate_weight_and_sort(msp); 3966 return (B_TRUE); 3967 } 3968 3969 msp->ms_flushing = B_TRUE; 3970 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3971 3972 mutex_exit(&msp->ms_lock); 3973 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3974 SM_NO_VDEVID, tx); 3975 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3976 SM_NO_VDEVID, tx); 3977 mutex_enter(&msp->ms_lock); 3978 3979 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3980 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3981 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3982 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3983 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3984 spa_name(spa), 3985 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3986 (u_longlong_t)msp->ms_id, 3987 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3988 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3989 (u_longlong_t)(sm_len_after - sm_len_before)); 3990 } 3991 3992 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3993 metaslab_unflushed_changes_memused(msp)); 3994 spa->spa_unflushed_stats.sus_memused -= 3995 metaslab_unflushed_changes_memused(msp); 3996 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3997 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3998 3999 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4000 metaslab_verify_weight_and_frag(msp); 4001 4002 metaslab_flush_update(msp, tx); 4003 4004 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4005 metaslab_verify_weight_and_frag(msp); 4006 4007 msp->ms_flushing = B_FALSE; 4008 cv_broadcast(&msp->ms_flush_cv); 4009 return (B_TRUE); 4010 } 4011 4012 /* 4013 * Write a metaslab to disk in the context of the specified transaction group. 4014 */ 4015 void 4016 metaslab_sync(metaslab_t *msp, uint64_t txg) 4017 { 4018 metaslab_group_t *mg = msp->ms_group; 4019 vdev_t *vd = mg->mg_vd; 4020 spa_t *spa = vd->vdev_spa; 4021 objset_t *mos = spa_meta_objset(spa); 4022 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 4023 dmu_tx_t *tx; 4024 4025 ASSERT(!vd->vdev_ishole); 4026 4027 /* 4028 * This metaslab has just been added so there's no work to do now. 4029 */ 4030 if (msp->ms_new) { 4031 ASSERT0(range_tree_space(alloctree)); 4032 ASSERT0(range_tree_space(msp->ms_freeing)); 4033 ASSERT0(range_tree_space(msp->ms_freed)); 4034 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4035 ASSERT0(range_tree_space(msp->ms_trim)); 4036 return; 4037 } 4038 4039 /* 4040 * Normally, we don't want to process a metaslab if there are no 4041 * allocations or frees to perform. However, if the metaslab is being 4042 * forced to condense, it's loaded and we're not beyond the final 4043 * dirty txg, we need to let it through. Not condensing beyond the 4044 * final dirty txg prevents an issue where metaslabs that need to be 4045 * condensed but were loaded for other reasons could cause a panic 4046 * here. By only checking the txg in that branch of the conditional, 4047 * we preserve the utility of the VERIFY statements in all other 4048 * cases. 4049 */ 4050 if (range_tree_is_empty(alloctree) && 4051 range_tree_is_empty(msp->ms_freeing) && 4052 range_tree_is_empty(msp->ms_checkpointing) && 4053 !(msp->ms_loaded && msp->ms_condense_wanted && 4054 txg <= spa_final_dirty_txg(spa))) 4055 return; 4056 4057 4058 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4059 4060 /* 4061 * The only state that can actually be changing concurrently 4062 * with metaslab_sync() is the metaslab's ms_allocatable. No 4063 * other thread can be modifying this txg's alloc, freeing, 4064 * freed, or space_map_phys_t. We drop ms_lock whenever we 4065 * could call into the DMU, because the DMU can call down to 4066 * us (e.g. via zio_free()) at any time. 4067 * 4068 * The spa_vdev_remove_thread() can be reading metaslab state 4069 * concurrently, and it is locked out by the ms_sync_lock. 4070 * Note that the ms_lock is insufficient for this, because it 4071 * is dropped by space_map_write(). 4072 */ 4073 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4074 4075 /* 4076 * Generate a log space map if one doesn't exist already. 4077 */ 4078 spa_generate_syncing_log_sm(spa, tx); 4079 4080 if (msp->ms_sm == NULL) { 4081 uint64_t new_object = space_map_alloc(mos, 4082 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4083 zfs_metaslab_sm_blksz_with_log : 4084 zfs_metaslab_sm_blksz_no_log, tx); 4085 VERIFY3U(new_object, !=, 0); 4086 4087 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4088 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4089 4090 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4091 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4092 ASSERT(msp->ms_sm != NULL); 4093 4094 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4095 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4096 ASSERT0(metaslab_allocated_space(msp)); 4097 } 4098 4099 if (!range_tree_is_empty(msp->ms_checkpointing) && 4100 vd->vdev_checkpoint_sm == NULL) { 4101 ASSERT(spa_has_checkpoint(spa)); 4102 4103 uint64_t new_object = space_map_alloc(mos, 4104 zfs_vdev_standard_sm_blksz, tx); 4105 VERIFY3U(new_object, !=, 0); 4106 4107 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4108 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4109 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4110 4111 /* 4112 * We save the space map object as an entry in vdev_top_zap 4113 * so it can be retrieved when the pool is reopened after an 4114 * export or through zdb. 4115 */ 4116 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4117 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4118 sizeof (new_object), 1, &new_object, tx)); 4119 } 4120 4121 mutex_enter(&msp->ms_sync_lock); 4122 mutex_enter(&msp->ms_lock); 4123 4124 /* 4125 * Note: metaslab_condense() clears the space map's histogram. 4126 * Therefore we must verify and remove this histogram before 4127 * condensing. 4128 */ 4129 metaslab_group_histogram_verify(mg); 4130 metaslab_class_histogram_verify(mg->mg_class); 4131 metaslab_group_histogram_remove(mg, msp); 4132 4133 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4134 metaslab_should_condense(msp)) 4135 metaslab_condense(msp, tx); 4136 4137 /* 4138 * We'll be going to disk to sync our space accounting, thus we 4139 * drop the ms_lock during that time so allocations coming from 4140 * open-context (ZIL) for future TXGs do not block. 4141 */ 4142 mutex_exit(&msp->ms_lock); 4143 space_map_t *log_sm = spa_syncing_log_sm(spa); 4144 if (log_sm != NULL) { 4145 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4146 if (metaslab_unflushed_txg(msp) == 0) 4147 metaslab_unflushed_add(msp, tx); 4148 else if (!metaslab_unflushed_dirty(msp)) 4149 metaslab_unflushed_bump(msp, tx, B_TRUE); 4150 4151 space_map_write(log_sm, alloctree, SM_ALLOC, 4152 vd->vdev_id, tx); 4153 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4154 vd->vdev_id, tx); 4155 mutex_enter(&msp->ms_lock); 4156 4157 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4158 metaslab_unflushed_changes_memused(msp)); 4159 spa->spa_unflushed_stats.sus_memused -= 4160 metaslab_unflushed_changes_memused(msp); 4161 range_tree_remove_xor_add(alloctree, 4162 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4163 range_tree_remove_xor_add(msp->ms_freeing, 4164 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4165 spa->spa_unflushed_stats.sus_memused += 4166 metaslab_unflushed_changes_memused(msp); 4167 } else { 4168 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4169 4170 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4171 SM_NO_VDEVID, tx); 4172 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4173 SM_NO_VDEVID, tx); 4174 mutex_enter(&msp->ms_lock); 4175 } 4176 4177 msp->ms_allocated_space += range_tree_space(alloctree); 4178 ASSERT3U(msp->ms_allocated_space, >=, 4179 range_tree_space(msp->ms_freeing)); 4180 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4181 4182 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4183 ASSERT(spa_has_checkpoint(spa)); 4184 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4185 4186 /* 4187 * Since we are doing writes to disk and the ms_checkpointing 4188 * tree won't be changing during that time, we drop the 4189 * ms_lock while writing to the checkpoint space map, for the 4190 * same reason mentioned above. 4191 */ 4192 mutex_exit(&msp->ms_lock); 4193 space_map_write(vd->vdev_checkpoint_sm, 4194 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4195 mutex_enter(&msp->ms_lock); 4196 4197 spa->spa_checkpoint_info.sci_dspace += 4198 range_tree_space(msp->ms_checkpointing); 4199 vd->vdev_stat.vs_checkpoint_space += 4200 range_tree_space(msp->ms_checkpointing); 4201 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4202 -space_map_allocated(vd->vdev_checkpoint_sm)); 4203 4204 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4205 } 4206 4207 if (msp->ms_loaded) { 4208 /* 4209 * When the space map is loaded, we have an accurate 4210 * histogram in the range tree. This gives us an opportunity 4211 * to bring the space map's histogram up-to-date so we clear 4212 * it first before updating it. 4213 */ 4214 space_map_histogram_clear(msp->ms_sm); 4215 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4216 4217 /* 4218 * Since we've cleared the histogram we need to add back 4219 * any free space that has already been processed, plus 4220 * any deferred space. This allows the on-disk histogram 4221 * to accurately reflect all free space even if some space 4222 * is not yet available for allocation (i.e. deferred). 4223 */ 4224 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4225 4226 /* 4227 * Add back any deferred free space that has not been 4228 * added back into the in-core free tree yet. This will 4229 * ensure that we don't end up with a space map histogram 4230 * that is completely empty unless the metaslab is fully 4231 * allocated. 4232 */ 4233 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4234 space_map_histogram_add(msp->ms_sm, 4235 msp->ms_defer[t], tx); 4236 } 4237 } 4238 4239 /* 4240 * Always add the free space from this sync pass to the space 4241 * map histogram. We want to make sure that the on-disk histogram 4242 * accounts for all free space. If the space map is not loaded, 4243 * then we will lose some accuracy but will correct it the next 4244 * time we load the space map. 4245 */ 4246 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4247 metaslab_aux_histograms_update(msp); 4248 4249 metaslab_group_histogram_add(mg, msp); 4250 metaslab_group_histogram_verify(mg); 4251 metaslab_class_histogram_verify(mg->mg_class); 4252 4253 /* 4254 * For sync pass 1, we avoid traversing this txg's free range tree 4255 * and instead will just swap the pointers for freeing and freed. 4256 * We can safely do this since the freed_tree is guaranteed to be 4257 * empty on the initial pass. 4258 * 4259 * Keep in mind that even if we are currently using a log spacemap 4260 * we want current frees to end up in the ms_allocatable (but not 4261 * get appended to the ms_sm) so their ranges can be reused as usual. 4262 */ 4263 if (spa_sync_pass(spa) == 1) { 4264 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4265 ASSERT0(msp->ms_allocated_this_txg); 4266 } else { 4267 range_tree_vacate(msp->ms_freeing, 4268 range_tree_add, msp->ms_freed); 4269 } 4270 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4271 range_tree_vacate(alloctree, NULL, NULL); 4272 4273 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4274 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4275 & TXG_MASK])); 4276 ASSERT0(range_tree_space(msp->ms_freeing)); 4277 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4278 4279 mutex_exit(&msp->ms_lock); 4280 4281 /* 4282 * Verify that the space map object ID has been recorded in the 4283 * vdev_ms_array. 4284 */ 4285 uint64_t object; 4286 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4287 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4288 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4289 4290 mutex_exit(&msp->ms_sync_lock); 4291 dmu_tx_commit(tx); 4292 } 4293 4294 static void 4295 metaslab_evict(metaslab_t *msp, uint64_t txg) 4296 { 4297 if (!msp->ms_loaded || msp->ms_disabled != 0) 4298 return; 4299 4300 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4301 VERIFY0(range_tree_space( 4302 msp->ms_allocating[(txg + t) & TXG_MASK])); 4303 } 4304 if (msp->ms_allocator != -1) 4305 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4306 4307 if (!metaslab_debug_unload) 4308 metaslab_unload(msp); 4309 } 4310 4311 /* 4312 * Called after a transaction group has completely synced to mark 4313 * all of the metaslab's free space as usable. 4314 */ 4315 void 4316 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4317 { 4318 metaslab_group_t *mg = msp->ms_group; 4319 vdev_t *vd = mg->mg_vd; 4320 spa_t *spa = vd->vdev_spa; 4321 range_tree_t **defer_tree; 4322 int64_t alloc_delta, defer_delta; 4323 boolean_t defer_allowed = B_TRUE; 4324 4325 ASSERT(!vd->vdev_ishole); 4326 4327 mutex_enter(&msp->ms_lock); 4328 4329 if (msp->ms_new) { 4330 /* this is a new metaslab, add its capacity to the vdev */ 4331 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4332 4333 /* there should be no allocations nor frees at this point */ 4334 VERIFY0(msp->ms_allocated_this_txg); 4335 VERIFY0(range_tree_space(msp->ms_freed)); 4336 } 4337 4338 ASSERT0(range_tree_space(msp->ms_freeing)); 4339 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4340 4341 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4342 4343 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4344 metaslab_class_get_alloc(spa_normal_class(spa)); 4345 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4346 defer_allowed = B_FALSE; 4347 } 4348 4349 defer_delta = 0; 4350 alloc_delta = msp->ms_allocated_this_txg - 4351 range_tree_space(msp->ms_freed); 4352 4353 if (defer_allowed) { 4354 defer_delta = range_tree_space(msp->ms_freed) - 4355 range_tree_space(*defer_tree); 4356 } else { 4357 defer_delta -= range_tree_space(*defer_tree); 4358 } 4359 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4360 defer_delta, 0); 4361 4362 if (spa_syncing_log_sm(spa) == NULL) { 4363 /* 4364 * If there's a metaslab_load() in progress and we don't have 4365 * a log space map, it means that we probably wrote to the 4366 * metaslab's space map. If this is the case, we need to 4367 * make sure that we wait for the load to complete so that we 4368 * have a consistent view at the in-core side of the metaslab. 4369 */ 4370 metaslab_load_wait(msp); 4371 } else { 4372 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4373 } 4374 4375 /* 4376 * When auto-trimming is enabled, free ranges which are added to 4377 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4378 * periodically consumed by the vdev_autotrim_thread() which issues 4379 * trims for all ranges and then vacates the tree. The ms_trim tree 4380 * can be discarded at any time with the sole consequence of recent 4381 * frees not being trimmed. 4382 */ 4383 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4384 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4385 if (!defer_allowed) { 4386 range_tree_walk(msp->ms_freed, range_tree_add, 4387 msp->ms_trim); 4388 } 4389 } else { 4390 range_tree_vacate(msp->ms_trim, NULL, NULL); 4391 } 4392 4393 /* 4394 * Move the frees from the defer_tree back to the free 4395 * range tree (if it's loaded). Swap the freed_tree and 4396 * the defer_tree -- this is safe to do because we've 4397 * just emptied out the defer_tree. 4398 */ 4399 range_tree_vacate(*defer_tree, 4400 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4401 if (defer_allowed) { 4402 range_tree_swap(&msp->ms_freed, defer_tree); 4403 } else { 4404 range_tree_vacate(msp->ms_freed, 4405 msp->ms_loaded ? range_tree_add : NULL, 4406 msp->ms_allocatable); 4407 } 4408 4409 msp->ms_synced_length = space_map_length(msp->ms_sm); 4410 4411 msp->ms_deferspace += defer_delta; 4412 ASSERT3S(msp->ms_deferspace, >=, 0); 4413 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4414 if (msp->ms_deferspace != 0) { 4415 /* 4416 * Keep syncing this metaslab until all deferred frees 4417 * are back in circulation. 4418 */ 4419 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4420 } 4421 metaslab_aux_histograms_update_done(msp, defer_allowed); 4422 4423 if (msp->ms_new) { 4424 msp->ms_new = B_FALSE; 4425 mutex_enter(&mg->mg_lock); 4426 mg->mg_ms_ready++; 4427 mutex_exit(&mg->mg_lock); 4428 } 4429 4430 /* 4431 * Re-sort metaslab within its group now that we've adjusted 4432 * its allocatable space. 4433 */ 4434 metaslab_recalculate_weight_and_sort(msp); 4435 4436 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4437 ASSERT0(range_tree_space(msp->ms_freeing)); 4438 ASSERT0(range_tree_space(msp->ms_freed)); 4439 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4440 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4441 msp->ms_allocated_this_txg = 0; 4442 mutex_exit(&msp->ms_lock); 4443 } 4444 4445 void 4446 metaslab_sync_reassess(metaslab_group_t *mg) 4447 { 4448 spa_t *spa = mg->mg_class->mc_spa; 4449 4450 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4451 metaslab_group_alloc_update(mg); 4452 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4453 4454 /* 4455 * Preload the next potential metaslabs but only on active 4456 * metaslab groups. We can get into a state where the metaslab 4457 * is no longer active since we dirty metaslabs as we remove a 4458 * a device, thus potentially making the metaslab group eligible 4459 * for preloading. 4460 */ 4461 if (mg->mg_activation_count > 0) { 4462 metaslab_group_preload(mg); 4463 } 4464 spa_config_exit(spa, SCL_ALLOC, FTAG); 4465 } 4466 4467 /* 4468 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4469 * the same vdev as an existing DVA of this BP, then try to allocate it 4470 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4471 */ 4472 static boolean_t 4473 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4474 { 4475 uint64_t dva_ms_id; 4476 4477 if (DVA_GET_ASIZE(dva) == 0) 4478 return (B_TRUE); 4479 4480 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4481 return (B_TRUE); 4482 4483 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4484 4485 return (msp->ms_id != dva_ms_id); 4486 } 4487 4488 /* 4489 * ========================================================================== 4490 * Metaslab allocation tracing facility 4491 * ========================================================================== 4492 */ 4493 4494 /* 4495 * Add an allocation trace element to the allocation tracing list. 4496 */ 4497 static void 4498 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4499 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4500 int allocator) 4501 { 4502 metaslab_alloc_trace_t *mat; 4503 4504 if (!metaslab_trace_enabled) 4505 return; 4506 4507 /* 4508 * When the tracing list reaches its maximum we remove 4509 * the second element in the list before adding a new one. 4510 * By removing the second element we preserve the original 4511 * entry as a clue to what allocations steps have already been 4512 * performed. 4513 */ 4514 if (zal->zal_size == metaslab_trace_max_entries) { 4515 metaslab_alloc_trace_t *mat_next; 4516 #ifdef ZFS_DEBUG 4517 panic("too many entries in allocation list"); 4518 #endif 4519 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4520 zal->zal_size--; 4521 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4522 list_remove(&zal->zal_list, mat_next); 4523 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4524 } 4525 4526 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4527 list_link_init(&mat->mat_list_node); 4528 mat->mat_mg = mg; 4529 mat->mat_msp = msp; 4530 mat->mat_size = psize; 4531 mat->mat_dva_id = dva_id; 4532 mat->mat_offset = offset; 4533 mat->mat_weight = 0; 4534 mat->mat_allocator = allocator; 4535 4536 if (msp != NULL) 4537 mat->mat_weight = msp->ms_weight; 4538 4539 /* 4540 * The list is part of the zio so locking is not required. Only 4541 * a single thread will perform allocations for a given zio. 4542 */ 4543 list_insert_tail(&zal->zal_list, mat); 4544 zal->zal_size++; 4545 4546 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4547 } 4548 4549 void 4550 metaslab_trace_init(zio_alloc_list_t *zal) 4551 { 4552 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4553 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4554 zal->zal_size = 0; 4555 } 4556 4557 void 4558 metaslab_trace_fini(zio_alloc_list_t *zal) 4559 { 4560 metaslab_alloc_trace_t *mat; 4561 4562 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4563 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4564 list_destroy(&zal->zal_list); 4565 zal->zal_size = 0; 4566 } 4567 4568 /* 4569 * ========================================================================== 4570 * Metaslab block operations 4571 * ========================================================================== 4572 */ 4573 4574 static void 4575 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag, 4576 int flags, int allocator) 4577 { 4578 if (!(flags & METASLAB_ASYNC_ALLOC) || 4579 (flags & METASLAB_DONT_THROTTLE)) 4580 return; 4581 4582 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4583 if (!mg->mg_class->mc_alloc_throttle_enabled) 4584 return; 4585 4586 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4587 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4588 } 4589 4590 static void 4591 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4592 { 4593 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4594 metaslab_class_allocator_t *mca = 4595 &mg->mg_class->mc_allocator[allocator]; 4596 uint64_t max = mg->mg_max_alloc_queue_depth; 4597 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4598 while (cur < max) { 4599 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4600 cur, cur + 1) == cur) { 4601 atomic_inc_64(&mca->mca_alloc_max_slots); 4602 return; 4603 } 4604 cur = mga->mga_cur_max_alloc_queue_depth; 4605 } 4606 } 4607 4608 void 4609 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag, 4610 int flags, int allocator, boolean_t io_complete) 4611 { 4612 if (!(flags & METASLAB_ASYNC_ALLOC) || 4613 (flags & METASLAB_DONT_THROTTLE)) 4614 return; 4615 4616 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4617 if (!mg->mg_class->mc_alloc_throttle_enabled) 4618 return; 4619 4620 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4621 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4622 if (io_complete) 4623 metaslab_group_increment_qdepth(mg, allocator); 4624 } 4625 4626 void 4627 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag, 4628 int allocator) 4629 { 4630 #ifdef ZFS_DEBUG 4631 const dva_t *dva = bp->blk_dva; 4632 int ndvas = BP_GET_NDVAS(bp); 4633 4634 for (int d = 0; d < ndvas; d++) { 4635 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4636 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4637 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4638 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4639 } 4640 #endif 4641 } 4642 4643 static uint64_t 4644 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4645 { 4646 uint64_t start; 4647 range_tree_t *rt = msp->ms_allocatable; 4648 metaslab_class_t *mc = msp->ms_group->mg_class; 4649 4650 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4651 VERIFY(!msp->ms_condensing); 4652 VERIFY0(msp->ms_disabled); 4653 4654 start = mc->mc_ops->msop_alloc(msp, size); 4655 if (start != -1ULL) { 4656 metaslab_group_t *mg = msp->ms_group; 4657 vdev_t *vd = mg->mg_vd; 4658 4659 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4660 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4661 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4662 range_tree_remove(rt, start, size); 4663 range_tree_clear(msp->ms_trim, start, size); 4664 4665 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4666 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4667 4668 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4669 msp->ms_allocating_total += size; 4670 4671 /* Track the last successful allocation */ 4672 msp->ms_alloc_txg = txg; 4673 metaslab_verify_space(msp, txg); 4674 } 4675 4676 /* 4677 * Now that we've attempted the allocation we need to update the 4678 * metaslab's maximum block size since it may have changed. 4679 */ 4680 msp->ms_max_size = metaslab_largest_allocatable(msp); 4681 return (start); 4682 } 4683 4684 /* 4685 * Find the metaslab with the highest weight that is less than what we've 4686 * already tried. In the common case, this means that we will examine each 4687 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4688 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4689 * activated by another thread, and we fail to allocate from the metaslab we 4690 * have selected, we may not try the newly-activated metaslab, and instead 4691 * activate another metaslab. This is not optimal, but generally does not cause 4692 * any problems (a possible exception being if every metaslab is completely full 4693 * except for the newly-activated metaslab which we fail to examine). 4694 */ 4695 static metaslab_t * 4696 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4697 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4698 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4699 boolean_t *was_active) 4700 { 4701 avl_index_t idx; 4702 avl_tree_t *t = &mg->mg_metaslab_tree; 4703 metaslab_t *msp = avl_find(t, search, &idx); 4704 if (msp == NULL) 4705 msp = avl_nearest(t, idx, AVL_AFTER); 4706 4707 uint_t tries = 0; 4708 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4709 int i; 4710 4711 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4712 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4713 return (NULL); 4714 } 4715 tries++; 4716 4717 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4718 metaslab_trace_add(zal, mg, msp, asize, d, 4719 TRACE_TOO_SMALL, allocator); 4720 continue; 4721 } 4722 4723 /* 4724 * If the selected metaslab is condensing or disabled, 4725 * skip it. 4726 */ 4727 if (msp->ms_condensing || msp->ms_disabled > 0) 4728 continue; 4729 4730 *was_active = msp->ms_allocator != -1; 4731 /* 4732 * If we're activating as primary, this is our first allocation 4733 * from this disk, so we don't need to check how close we are. 4734 * If the metaslab under consideration was already active, 4735 * we're getting desperate enough to steal another allocator's 4736 * metaslab, so we still don't care about distances. 4737 */ 4738 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4739 break; 4740 4741 for (i = 0; i < d; i++) { 4742 if (want_unique && 4743 !metaslab_is_unique(msp, &dva[i])) 4744 break; /* try another metaslab */ 4745 } 4746 if (i == d) 4747 break; 4748 } 4749 4750 if (msp != NULL) { 4751 search->ms_weight = msp->ms_weight; 4752 search->ms_start = msp->ms_start + 1; 4753 search->ms_allocator = msp->ms_allocator; 4754 search->ms_primary = msp->ms_primary; 4755 } 4756 return (msp); 4757 } 4758 4759 static void 4760 metaslab_active_mask_verify(metaslab_t *msp) 4761 { 4762 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4763 4764 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4765 return; 4766 4767 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4768 return; 4769 4770 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4771 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4772 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4773 VERIFY3S(msp->ms_allocator, !=, -1); 4774 VERIFY(msp->ms_primary); 4775 return; 4776 } 4777 4778 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4779 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4780 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4781 VERIFY3S(msp->ms_allocator, !=, -1); 4782 VERIFY(!msp->ms_primary); 4783 return; 4784 } 4785 4786 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4787 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4788 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4789 VERIFY3S(msp->ms_allocator, ==, -1); 4790 return; 4791 } 4792 } 4793 4794 static uint64_t 4795 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4796 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4797 int allocator, boolean_t try_hard) 4798 { 4799 metaslab_t *msp = NULL; 4800 uint64_t offset = -1ULL; 4801 4802 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4803 for (int i = 0; i < d; i++) { 4804 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4805 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4806 activation_weight = METASLAB_WEIGHT_SECONDARY; 4807 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4808 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4809 activation_weight = METASLAB_WEIGHT_CLAIM; 4810 break; 4811 } 4812 } 4813 4814 /* 4815 * If we don't have enough metaslabs active to fill the entire array, we 4816 * just use the 0th slot. 4817 */ 4818 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4819 allocator = 0; 4820 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4821 4822 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4823 4824 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4825 search->ms_weight = UINT64_MAX; 4826 search->ms_start = 0; 4827 /* 4828 * At the end of the metaslab tree are the already-active metaslabs, 4829 * first the primaries, then the secondaries. When we resume searching 4830 * through the tree, we need to consider ms_allocator and ms_primary so 4831 * we start in the location right after where we left off, and don't 4832 * accidentally loop forever considering the same metaslabs. 4833 */ 4834 search->ms_allocator = -1; 4835 search->ms_primary = B_TRUE; 4836 for (;;) { 4837 boolean_t was_active = B_FALSE; 4838 4839 mutex_enter(&mg->mg_lock); 4840 4841 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4842 mga->mga_primary != NULL) { 4843 msp = mga->mga_primary; 4844 4845 /* 4846 * Even though we don't hold the ms_lock for the 4847 * primary metaslab, those fields should not 4848 * change while we hold the mg_lock. Thus it is 4849 * safe to make assertions on them. 4850 */ 4851 ASSERT(msp->ms_primary); 4852 ASSERT3S(msp->ms_allocator, ==, allocator); 4853 ASSERT(msp->ms_loaded); 4854 4855 was_active = B_TRUE; 4856 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4857 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4858 mga->mga_secondary != NULL) { 4859 msp = mga->mga_secondary; 4860 4861 /* 4862 * See comment above about the similar assertions 4863 * for the primary metaslab. 4864 */ 4865 ASSERT(!msp->ms_primary); 4866 ASSERT3S(msp->ms_allocator, ==, allocator); 4867 ASSERT(msp->ms_loaded); 4868 4869 was_active = B_TRUE; 4870 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4871 } else { 4872 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4873 want_unique, asize, allocator, try_hard, zal, 4874 search, &was_active); 4875 } 4876 4877 mutex_exit(&mg->mg_lock); 4878 if (msp == NULL) { 4879 kmem_free(search, sizeof (*search)); 4880 return (-1ULL); 4881 } 4882 mutex_enter(&msp->ms_lock); 4883 4884 metaslab_active_mask_verify(msp); 4885 4886 /* 4887 * This code is disabled out because of issues with 4888 * tracepoints in non-gpl kernel modules. 4889 */ 4890 #if 0 4891 DTRACE_PROBE3(ms__activation__attempt, 4892 metaslab_t *, msp, uint64_t, activation_weight, 4893 boolean_t, was_active); 4894 #endif 4895 4896 /* 4897 * Ensure that the metaslab we have selected is still 4898 * capable of handling our request. It's possible that 4899 * another thread may have changed the weight while we 4900 * were blocked on the metaslab lock. We check the 4901 * active status first to see if we need to set_selected_txg 4902 * a new metaslab. 4903 */ 4904 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4905 ASSERT3S(msp->ms_allocator, ==, -1); 4906 mutex_exit(&msp->ms_lock); 4907 continue; 4908 } 4909 4910 /* 4911 * If the metaslab was activated for another allocator 4912 * while we were waiting in the ms_lock above, or it's 4913 * a primary and we're seeking a secondary (or vice versa), 4914 * we go back and select a new metaslab. 4915 */ 4916 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4917 (msp->ms_allocator != -1) && 4918 (msp->ms_allocator != allocator || ((activation_weight == 4919 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4920 ASSERT(msp->ms_loaded); 4921 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4922 msp->ms_allocator != -1); 4923 mutex_exit(&msp->ms_lock); 4924 continue; 4925 } 4926 4927 /* 4928 * This metaslab was used for claiming regions allocated 4929 * by the ZIL during pool import. Once these regions are 4930 * claimed we don't need to keep the CLAIM bit set 4931 * anymore. Passivate this metaslab to zero its activation 4932 * mask. 4933 */ 4934 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4935 activation_weight != METASLAB_WEIGHT_CLAIM) { 4936 ASSERT(msp->ms_loaded); 4937 ASSERT3S(msp->ms_allocator, ==, -1); 4938 metaslab_passivate(msp, msp->ms_weight & 4939 ~METASLAB_WEIGHT_CLAIM); 4940 mutex_exit(&msp->ms_lock); 4941 continue; 4942 } 4943 4944 metaslab_set_selected_txg(msp, txg); 4945 4946 int activation_error = 4947 metaslab_activate(msp, allocator, activation_weight); 4948 metaslab_active_mask_verify(msp); 4949 4950 /* 4951 * If the metaslab was activated by another thread for 4952 * another allocator or activation_weight (EBUSY), or it 4953 * failed because another metaslab was assigned as primary 4954 * for this allocator (EEXIST) we continue using this 4955 * metaslab for our allocation, rather than going on to a 4956 * worse metaslab (we waited for that metaslab to be loaded 4957 * after all). 4958 * 4959 * If the activation failed due to an I/O error or ENOSPC we 4960 * skip to the next metaslab. 4961 */ 4962 boolean_t activated; 4963 if (activation_error == 0) { 4964 activated = B_TRUE; 4965 } else if (activation_error == EBUSY || 4966 activation_error == EEXIST) { 4967 activated = B_FALSE; 4968 } else { 4969 mutex_exit(&msp->ms_lock); 4970 continue; 4971 } 4972 ASSERT(msp->ms_loaded); 4973 4974 /* 4975 * Now that we have the lock, recheck to see if we should 4976 * continue to use this metaslab for this allocation. The 4977 * the metaslab is now loaded so metaslab_should_allocate() 4978 * can accurately determine if the allocation attempt should 4979 * proceed. 4980 */ 4981 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4982 /* Passivate this metaslab and select a new one. */ 4983 metaslab_trace_add(zal, mg, msp, asize, d, 4984 TRACE_TOO_SMALL, allocator); 4985 goto next; 4986 } 4987 4988 /* 4989 * If this metaslab is currently condensing then pick again 4990 * as we can't manipulate this metaslab until it's committed 4991 * to disk. If this metaslab is being initialized, we shouldn't 4992 * allocate from it since the allocated region might be 4993 * overwritten after allocation. 4994 */ 4995 if (msp->ms_condensing) { 4996 metaslab_trace_add(zal, mg, msp, asize, d, 4997 TRACE_CONDENSING, allocator); 4998 if (activated) { 4999 metaslab_passivate(msp, msp->ms_weight & 5000 ~METASLAB_ACTIVE_MASK); 5001 } 5002 mutex_exit(&msp->ms_lock); 5003 continue; 5004 } else if (msp->ms_disabled > 0) { 5005 metaslab_trace_add(zal, mg, msp, asize, d, 5006 TRACE_DISABLED, allocator); 5007 if (activated) { 5008 metaslab_passivate(msp, msp->ms_weight & 5009 ~METASLAB_ACTIVE_MASK); 5010 } 5011 mutex_exit(&msp->ms_lock); 5012 continue; 5013 } 5014 5015 offset = metaslab_block_alloc(msp, asize, txg); 5016 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 5017 5018 if (offset != -1ULL) { 5019 /* Proactively passivate the metaslab, if needed */ 5020 if (activated) 5021 metaslab_segment_may_passivate(msp); 5022 break; 5023 } 5024 next: 5025 ASSERT(msp->ms_loaded); 5026 5027 /* 5028 * This code is disabled out because of issues with 5029 * tracepoints in non-gpl kernel modules. 5030 */ 5031 #if 0 5032 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 5033 uint64_t, asize); 5034 #endif 5035 5036 /* 5037 * We were unable to allocate from this metaslab so determine 5038 * a new weight for this metaslab. Now that we have loaded 5039 * the metaslab we can provide a better hint to the metaslab 5040 * selector. 5041 * 5042 * For space-based metaslabs, we use the maximum block size. 5043 * This information is only available when the metaslab 5044 * is loaded and is more accurate than the generic free 5045 * space weight that was calculated by metaslab_weight(). 5046 * This information allows us to quickly compare the maximum 5047 * available allocation in the metaslab to the allocation 5048 * size being requested. 5049 * 5050 * For segment-based metaslabs, determine the new weight 5051 * based on the highest bucket in the range tree. We 5052 * explicitly use the loaded segment weight (i.e. the range 5053 * tree histogram) since it contains the space that is 5054 * currently available for allocation and is accurate 5055 * even within a sync pass. 5056 */ 5057 uint64_t weight; 5058 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5059 weight = metaslab_largest_allocatable(msp); 5060 WEIGHT_SET_SPACEBASED(weight); 5061 } else { 5062 weight = metaslab_weight_from_range_tree(msp); 5063 } 5064 5065 if (activated) { 5066 metaslab_passivate(msp, weight); 5067 } else { 5068 /* 5069 * For the case where we use the metaslab that is 5070 * active for another allocator we want to make 5071 * sure that we retain the activation mask. 5072 * 5073 * Note that we could attempt to use something like 5074 * metaslab_recalculate_weight_and_sort() that 5075 * retains the activation mask here. That function 5076 * uses metaslab_weight() to set the weight though 5077 * which is not as accurate as the calculations 5078 * above. 5079 */ 5080 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5081 metaslab_group_sort(mg, msp, weight); 5082 } 5083 metaslab_active_mask_verify(msp); 5084 5085 /* 5086 * We have just failed an allocation attempt, check 5087 * that metaslab_should_allocate() agrees. Otherwise, 5088 * we may end up in an infinite loop retrying the same 5089 * metaslab. 5090 */ 5091 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5092 5093 mutex_exit(&msp->ms_lock); 5094 } 5095 mutex_exit(&msp->ms_lock); 5096 kmem_free(search, sizeof (*search)); 5097 return (offset); 5098 } 5099 5100 static uint64_t 5101 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5102 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5103 int allocator, boolean_t try_hard) 5104 { 5105 uint64_t offset; 5106 ASSERT(mg->mg_initialized); 5107 5108 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5109 dva, d, allocator, try_hard); 5110 5111 mutex_enter(&mg->mg_lock); 5112 if (offset == -1ULL) { 5113 mg->mg_failed_allocations++; 5114 metaslab_trace_add(zal, mg, NULL, asize, d, 5115 TRACE_GROUP_FAILURE, allocator); 5116 if (asize == SPA_GANGBLOCKSIZE) { 5117 /* 5118 * This metaslab group was unable to allocate 5119 * the minimum gang block size so it must be out of 5120 * space. We must notify the allocation throttle 5121 * to start skipping allocation attempts to this 5122 * metaslab group until more space becomes available. 5123 * Note: this failure cannot be caused by the 5124 * allocation throttle since the allocation throttle 5125 * is only responsible for skipping devices and 5126 * not failing block allocations. 5127 */ 5128 mg->mg_no_free_space = B_TRUE; 5129 } 5130 } 5131 mg->mg_allocations++; 5132 mutex_exit(&mg->mg_lock); 5133 return (offset); 5134 } 5135 5136 /* 5137 * Allocate a block for the specified i/o. 5138 */ 5139 int 5140 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5141 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5142 zio_alloc_list_t *zal, int allocator) 5143 { 5144 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5145 metaslab_group_t *mg, *rotor; 5146 vdev_t *vd; 5147 boolean_t try_hard = B_FALSE; 5148 5149 ASSERT(!DVA_IS_VALID(&dva[d])); 5150 5151 /* 5152 * For testing, make some blocks above a certain size be gang blocks. 5153 * This will result in more split blocks when using device removal, 5154 * and a large number of split blocks coupled with ztest-induced 5155 * damage can result in extremely long reconstruction times. This 5156 * will also test spilling from special to normal. 5157 */ 5158 if (psize >= metaslab_force_ganging && 5159 metaslab_force_ganging_pct > 0 && 5160 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5161 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5162 allocator); 5163 return (SET_ERROR(ENOSPC)); 5164 } 5165 5166 /* 5167 * Start at the rotor and loop through all mgs until we find something. 5168 * Note that there's no locking on mca_rotor or mca_aliquot because 5169 * nothing actually breaks if we miss a few updates -- we just won't 5170 * allocate quite as evenly. It all balances out over time. 5171 * 5172 * If we are doing ditto or log blocks, try to spread them across 5173 * consecutive vdevs. If we're forced to reuse a vdev before we've 5174 * allocated all of our ditto blocks, then try and spread them out on 5175 * that vdev as much as possible. If it turns out to not be possible, 5176 * gradually lower our standards until anything becomes acceptable. 5177 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5178 * gives us hope of containing our fault domains to something we're 5179 * able to reason about. Otherwise, any two top-level vdev failures 5180 * will guarantee the loss of data. With consecutive allocation, 5181 * only two adjacent top-level vdev failures will result in data loss. 5182 * 5183 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5184 * ourselves on the same vdev as our gang block header. That 5185 * way, we can hope for locality in vdev_cache, plus it makes our 5186 * fault domains something tractable. 5187 */ 5188 if (hintdva) { 5189 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5190 5191 /* 5192 * It's possible the vdev we're using as the hint no 5193 * longer exists or its mg has been closed (e.g. by 5194 * device removal). Consult the rotor when 5195 * all else fails. 5196 */ 5197 if (vd != NULL && vd->vdev_mg != NULL) { 5198 mg = vdev_get_mg(vd, mc); 5199 5200 if (flags & METASLAB_HINTBP_AVOID) 5201 mg = mg->mg_next; 5202 } else { 5203 mg = mca->mca_rotor; 5204 } 5205 } else if (d != 0) { 5206 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5207 mg = vd->vdev_mg->mg_next; 5208 } else { 5209 ASSERT(mca->mca_rotor != NULL); 5210 mg = mca->mca_rotor; 5211 } 5212 5213 /* 5214 * If the hint put us into the wrong metaslab class, or into a 5215 * metaslab group that has been passivated, just follow the rotor. 5216 */ 5217 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5218 mg = mca->mca_rotor; 5219 5220 rotor = mg; 5221 top: 5222 do { 5223 boolean_t allocatable; 5224 5225 ASSERT(mg->mg_activation_count == 1); 5226 vd = mg->mg_vd; 5227 5228 /* 5229 * Don't allocate from faulted devices. 5230 */ 5231 if (try_hard) { 5232 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5233 allocatable = vdev_allocatable(vd); 5234 spa_config_exit(spa, SCL_ZIO, FTAG); 5235 } else { 5236 allocatable = vdev_allocatable(vd); 5237 } 5238 5239 /* 5240 * Determine if the selected metaslab group is eligible 5241 * for allocations. If we're ganging then don't allow 5242 * this metaslab group to skip allocations since that would 5243 * inadvertently return ENOSPC and suspend the pool 5244 * even though space is still available. 5245 */ 5246 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5247 allocatable = metaslab_group_allocatable(mg, rotor, 5248 flags, psize, allocator, d); 5249 } 5250 5251 if (!allocatable) { 5252 metaslab_trace_add(zal, mg, NULL, psize, d, 5253 TRACE_NOT_ALLOCATABLE, allocator); 5254 goto next; 5255 } 5256 5257 ASSERT(mg->mg_initialized); 5258 5259 /* 5260 * Avoid writing single-copy data to an unhealthy, 5261 * non-redundant vdev, unless we've already tried all 5262 * other vdevs. 5263 */ 5264 if (vd->vdev_state < VDEV_STATE_HEALTHY && 5265 d == 0 && !try_hard && vd->vdev_children == 0) { 5266 metaslab_trace_add(zal, mg, NULL, psize, d, 5267 TRACE_VDEV_ERROR, allocator); 5268 goto next; 5269 } 5270 5271 ASSERT(mg->mg_class == mc); 5272 5273 uint64_t asize = vdev_psize_to_asize(vd, psize); 5274 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5275 5276 /* 5277 * If we don't need to try hard, then require that the 5278 * block be on a different metaslab from any other DVAs 5279 * in this BP (unique=true). If we are trying hard, then 5280 * allow any metaslab to be used (unique=false). 5281 */ 5282 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5283 !try_hard, dva, d, allocator, try_hard); 5284 5285 if (offset != -1ULL) { 5286 /* 5287 * If we've just selected this metaslab group, 5288 * figure out whether the corresponding vdev is 5289 * over- or under-used relative to the pool, 5290 * and set an allocation bias to even it out. 5291 * 5292 * Bias is also used to compensate for unequally 5293 * sized vdevs so that space is allocated fairly. 5294 */ 5295 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5296 vdev_stat_t *vs = &vd->vdev_stat; 5297 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5298 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5299 int64_t ratio; 5300 5301 /* 5302 * Calculate how much more or less we should 5303 * try to allocate from this device during 5304 * this iteration around the rotor. 5305 * 5306 * This basically introduces a zero-centered 5307 * bias towards the devices with the most 5308 * free space, while compensating for vdev 5309 * size differences. 5310 * 5311 * Examples: 5312 * vdev V1 = 16M/128M 5313 * vdev V2 = 16M/128M 5314 * ratio(V1) = 100% ratio(V2) = 100% 5315 * 5316 * vdev V1 = 16M/128M 5317 * vdev V2 = 64M/128M 5318 * ratio(V1) = 127% ratio(V2) = 72% 5319 * 5320 * vdev V1 = 16M/128M 5321 * vdev V2 = 64M/512M 5322 * ratio(V1) = 40% ratio(V2) = 160% 5323 */ 5324 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5325 (mc_free + 1); 5326 mg->mg_bias = ((ratio - 100) * 5327 (int64_t)mg->mg_aliquot) / 100; 5328 } else if (!metaslab_bias_enabled) { 5329 mg->mg_bias = 0; 5330 } 5331 5332 if ((flags & METASLAB_ZIL) || 5333 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5334 mg->mg_aliquot + mg->mg_bias) { 5335 mca->mca_rotor = mg->mg_next; 5336 mca->mca_aliquot = 0; 5337 } 5338 5339 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5340 DVA_SET_OFFSET(&dva[d], offset); 5341 DVA_SET_GANG(&dva[d], 5342 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5343 DVA_SET_ASIZE(&dva[d], asize); 5344 5345 return (0); 5346 } 5347 next: 5348 mca->mca_rotor = mg->mg_next; 5349 mca->mca_aliquot = 0; 5350 } while ((mg = mg->mg_next) != rotor); 5351 5352 /* 5353 * If we haven't tried hard, perhaps do so now. 5354 */ 5355 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5356 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5357 psize <= 1 << spa->spa_min_ashift)) { 5358 METASLABSTAT_BUMP(metaslabstat_try_hard); 5359 try_hard = B_TRUE; 5360 goto top; 5361 } 5362 5363 memset(&dva[d], 0, sizeof (dva_t)); 5364 5365 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5366 return (SET_ERROR(ENOSPC)); 5367 } 5368 5369 void 5370 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5371 boolean_t checkpoint) 5372 { 5373 metaslab_t *msp; 5374 spa_t *spa = vd->vdev_spa; 5375 5376 ASSERT(vdev_is_concrete(vd)); 5377 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5378 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5379 5380 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5381 5382 VERIFY(!msp->ms_condensing); 5383 VERIFY3U(offset, >=, msp->ms_start); 5384 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5385 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5386 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5387 5388 metaslab_check_free_impl(vd, offset, asize); 5389 5390 mutex_enter(&msp->ms_lock); 5391 if (range_tree_is_empty(msp->ms_freeing) && 5392 range_tree_is_empty(msp->ms_checkpointing)) { 5393 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5394 } 5395 5396 if (checkpoint) { 5397 ASSERT(spa_has_checkpoint(spa)); 5398 range_tree_add(msp->ms_checkpointing, offset, asize); 5399 } else { 5400 range_tree_add(msp->ms_freeing, offset, asize); 5401 } 5402 mutex_exit(&msp->ms_lock); 5403 } 5404 5405 void 5406 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5407 uint64_t size, void *arg) 5408 { 5409 (void) inner_offset; 5410 boolean_t *checkpoint = arg; 5411 5412 ASSERT3P(checkpoint, !=, NULL); 5413 5414 if (vd->vdev_ops->vdev_op_remap != NULL) 5415 vdev_indirect_mark_obsolete(vd, offset, size); 5416 else 5417 metaslab_free_impl(vd, offset, size, *checkpoint); 5418 } 5419 5420 static void 5421 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5422 boolean_t checkpoint) 5423 { 5424 spa_t *spa = vd->vdev_spa; 5425 5426 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5427 5428 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5429 return; 5430 5431 if (spa->spa_vdev_removal != NULL && 5432 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5433 vdev_is_concrete(vd)) { 5434 /* 5435 * Note: we check if the vdev is concrete because when 5436 * we complete the removal, we first change the vdev to be 5437 * an indirect vdev (in open context), and then (in syncing 5438 * context) clear spa_vdev_removal. 5439 */ 5440 free_from_removing_vdev(vd, offset, size); 5441 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5442 vdev_indirect_mark_obsolete(vd, offset, size); 5443 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5444 metaslab_free_impl_cb, &checkpoint); 5445 } else { 5446 metaslab_free_concrete(vd, offset, size, checkpoint); 5447 } 5448 } 5449 5450 typedef struct remap_blkptr_cb_arg { 5451 blkptr_t *rbca_bp; 5452 spa_remap_cb_t rbca_cb; 5453 vdev_t *rbca_remap_vd; 5454 uint64_t rbca_remap_offset; 5455 void *rbca_cb_arg; 5456 } remap_blkptr_cb_arg_t; 5457 5458 static void 5459 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5460 uint64_t size, void *arg) 5461 { 5462 remap_blkptr_cb_arg_t *rbca = arg; 5463 blkptr_t *bp = rbca->rbca_bp; 5464 5465 /* We can not remap split blocks. */ 5466 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5467 return; 5468 ASSERT0(inner_offset); 5469 5470 if (rbca->rbca_cb != NULL) { 5471 /* 5472 * At this point we know that we are not handling split 5473 * blocks and we invoke the callback on the previous 5474 * vdev which must be indirect. 5475 */ 5476 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5477 5478 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5479 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5480 5481 /* set up remap_blkptr_cb_arg for the next call */ 5482 rbca->rbca_remap_vd = vd; 5483 rbca->rbca_remap_offset = offset; 5484 } 5485 5486 /* 5487 * The phys birth time is that of dva[0]. This ensures that we know 5488 * when each dva was written, so that resilver can determine which 5489 * blocks need to be scrubbed (i.e. those written during the time 5490 * the vdev was offline). It also ensures that the key used in 5491 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5492 * we didn't change the phys_birth, a lookup in the ARC for a 5493 * remapped BP could find the data that was previously stored at 5494 * this vdev + offset. 5495 */ 5496 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5497 DVA_GET_VDEV(&bp->blk_dva[0])); 5498 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5499 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5500 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5501 5502 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5503 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5504 } 5505 5506 /* 5507 * If the block pointer contains any indirect DVAs, modify them to refer to 5508 * concrete DVAs. Note that this will sometimes not be possible, leaving 5509 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5510 * segments in the mapping (i.e. it is a "split block"). 5511 * 5512 * If the BP was remapped, calls the callback on the original dva (note the 5513 * callback can be called multiple times if the original indirect DVA refers 5514 * to another indirect DVA, etc). 5515 * 5516 * Returns TRUE if the BP was remapped. 5517 */ 5518 boolean_t 5519 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5520 { 5521 remap_blkptr_cb_arg_t rbca; 5522 5523 if (!zfs_remap_blkptr_enable) 5524 return (B_FALSE); 5525 5526 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5527 return (B_FALSE); 5528 5529 /* 5530 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5531 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5532 */ 5533 if (BP_GET_DEDUP(bp)) 5534 return (B_FALSE); 5535 5536 /* 5537 * Gang blocks can not be remapped, because 5538 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5539 * the BP used to read the gang block header (GBH) being the same 5540 * as the DVA[0] that we allocated for the GBH. 5541 */ 5542 if (BP_IS_GANG(bp)) 5543 return (B_FALSE); 5544 5545 /* 5546 * Embedded BP's have no DVA to remap. 5547 */ 5548 if (BP_GET_NDVAS(bp) < 1) 5549 return (B_FALSE); 5550 5551 /* 5552 * Note: we only remap dva[0]. If we remapped other dvas, we 5553 * would no longer know what their phys birth txg is. 5554 */ 5555 dva_t *dva = &bp->blk_dva[0]; 5556 5557 uint64_t offset = DVA_GET_OFFSET(dva); 5558 uint64_t size = DVA_GET_ASIZE(dva); 5559 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5560 5561 if (vd->vdev_ops->vdev_op_remap == NULL) 5562 return (B_FALSE); 5563 5564 rbca.rbca_bp = bp; 5565 rbca.rbca_cb = callback; 5566 rbca.rbca_remap_vd = vd; 5567 rbca.rbca_remap_offset = offset; 5568 rbca.rbca_cb_arg = arg; 5569 5570 /* 5571 * remap_blkptr_cb() will be called in order for each level of 5572 * indirection, until a concrete vdev is reached or a split block is 5573 * encountered. old_vd and old_offset are updated within the callback 5574 * as we go from the one indirect vdev to the next one (either concrete 5575 * or indirect again) in that order. 5576 */ 5577 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5578 5579 /* Check if the DVA wasn't remapped because it is a split block */ 5580 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5581 return (B_FALSE); 5582 5583 return (B_TRUE); 5584 } 5585 5586 /* 5587 * Undo the allocation of a DVA which happened in the given transaction group. 5588 */ 5589 void 5590 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5591 { 5592 metaslab_t *msp; 5593 vdev_t *vd; 5594 uint64_t vdev = DVA_GET_VDEV(dva); 5595 uint64_t offset = DVA_GET_OFFSET(dva); 5596 uint64_t size = DVA_GET_ASIZE(dva); 5597 5598 ASSERT(DVA_IS_VALID(dva)); 5599 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5600 5601 if (txg > spa_freeze_txg(spa)) 5602 return; 5603 5604 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5605 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5606 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5607 (u_longlong_t)vdev, (u_longlong_t)offset, 5608 (u_longlong_t)size); 5609 return; 5610 } 5611 5612 ASSERT(!vd->vdev_removing); 5613 ASSERT(vdev_is_concrete(vd)); 5614 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5615 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5616 5617 if (DVA_GET_GANG(dva)) 5618 size = vdev_gang_header_asize(vd); 5619 5620 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5621 5622 mutex_enter(&msp->ms_lock); 5623 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5624 offset, size); 5625 msp->ms_allocating_total -= size; 5626 5627 VERIFY(!msp->ms_condensing); 5628 VERIFY3U(offset, >=, msp->ms_start); 5629 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5630 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5631 msp->ms_size); 5632 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5633 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5634 range_tree_add(msp->ms_allocatable, offset, size); 5635 mutex_exit(&msp->ms_lock); 5636 } 5637 5638 /* 5639 * Free the block represented by the given DVA. 5640 */ 5641 void 5642 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5643 { 5644 uint64_t vdev = DVA_GET_VDEV(dva); 5645 uint64_t offset = DVA_GET_OFFSET(dva); 5646 uint64_t size = DVA_GET_ASIZE(dva); 5647 vdev_t *vd = vdev_lookup_top(spa, vdev); 5648 5649 ASSERT(DVA_IS_VALID(dva)); 5650 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5651 5652 if (DVA_GET_GANG(dva)) { 5653 size = vdev_gang_header_asize(vd); 5654 } 5655 5656 metaslab_free_impl(vd, offset, size, checkpoint); 5657 } 5658 5659 /* 5660 * Reserve some allocation slots. The reservation system must be called 5661 * before we call into the allocator. If there aren't any available slots 5662 * then the I/O will be throttled until an I/O completes and its slots are 5663 * freed up. The function returns true if it was successful in placing 5664 * the reservation. 5665 */ 5666 boolean_t 5667 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5668 zio_t *zio, int flags) 5669 { 5670 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5671 uint64_t max = mca->mca_alloc_max_slots; 5672 5673 ASSERT(mc->mc_alloc_throttle_enabled); 5674 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5675 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5676 /* 5677 * The potential race between _count() and _add() is covered 5678 * by the allocator lock in most cases, or irrelevant due to 5679 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5680 * But even if we assume some other non-existing scenario, the 5681 * worst that can happen is few more I/Os get to allocation 5682 * earlier, that is not a problem. 5683 * 5684 * We reserve the slots individually so that we can unreserve 5685 * them individually when an I/O completes. 5686 */ 5687 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio); 5688 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5689 return (B_TRUE); 5690 } 5691 return (B_FALSE); 5692 } 5693 5694 void 5695 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5696 int allocator, zio_t *zio) 5697 { 5698 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5699 5700 ASSERT(mc->mc_alloc_throttle_enabled); 5701 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio); 5702 } 5703 5704 static int 5705 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5706 uint64_t txg) 5707 { 5708 metaslab_t *msp; 5709 spa_t *spa = vd->vdev_spa; 5710 int error = 0; 5711 5712 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5713 return (SET_ERROR(ENXIO)); 5714 5715 ASSERT3P(vd->vdev_ms, !=, NULL); 5716 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5717 5718 mutex_enter(&msp->ms_lock); 5719 5720 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5721 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5722 if (error == EBUSY) { 5723 ASSERT(msp->ms_loaded); 5724 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5725 error = 0; 5726 } 5727 } 5728 5729 if (error == 0 && 5730 !range_tree_contains(msp->ms_allocatable, offset, size)) 5731 error = SET_ERROR(ENOENT); 5732 5733 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5734 mutex_exit(&msp->ms_lock); 5735 return (error); 5736 } 5737 5738 VERIFY(!msp->ms_condensing); 5739 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5740 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5741 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5742 msp->ms_size); 5743 range_tree_remove(msp->ms_allocatable, offset, size); 5744 range_tree_clear(msp->ms_trim, offset, size); 5745 5746 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5747 metaslab_class_t *mc = msp->ms_group->mg_class; 5748 multilist_sublist_t *mls = 5749 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5750 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5751 msp->ms_selected_txg = txg; 5752 multilist_sublist_insert_head(mls, msp); 5753 } 5754 multilist_sublist_unlock(mls); 5755 5756 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5757 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5758 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5759 offset, size); 5760 msp->ms_allocating_total += size; 5761 } 5762 5763 mutex_exit(&msp->ms_lock); 5764 5765 return (0); 5766 } 5767 5768 typedef struct metaslab_claim_cb_arg_t { 5769 uint64_t mcca_txg; 5770 int mcca_error; 5771 } metaslab_claim_cb_arg_t; 5772 5773 static void 5774 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5775 uint64_t size, void *arg) 5776 { 5777 (void) inner_offset; 5778 metaslab_claim_cb_arg_t *mcca_arg = arg; 5779 5780 if (mcca_arg->mcca_error == 0) { 5781 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5782 size, mcca_arg->mcca_txg); 5783 } 5784 } 5785 5786 int 5787 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5788 { 5789 if (vd->vdev_ops->vdev_op_remap != NULL) { 5790 metaslab_claim_cb_arg_t arg; 5791 5792 /* 5793 * Only zdb(8) can claim on indirect vdevs. This is used 5794 * to detect leaks of mapped space (that are not accounted 5795 * for in the obsolete counts, spacemap, or bpobj). 5796 */ 5797 ASSERT(!spa_writeable(vd->vdev_spa)); 5798 arg.mcca_error = 0; 5799 arg.mcca_txg = txg; 5800 5801 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5802 metaslab_claim_impl_cb, &arg); 5803 5804 if (arg.mcca_error == 0) { 5805 arg.mcca_error = metaslab_claim_concrete(vd, 5806 offset, size, txg); 5807 } 5808 return (arg.mcca_error); 5809 } else { 5810 return (metaslab_claim_concrete(vd, offset, size, txg)); 5811 } 5812 } 5813 5814 /* 5815 * Intent log support: upon opening the pool after a crash, notify the SPA 5816 * of blocks that the intent log has allocated for immediate write, but 5817 * which are still considered free by the SPA because the last transaction 5818 * group didn't commit yet. 5819 */ 5820 static int 5821 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5822 { 5823 uint64_t vdev = DVA_GET_VDEV(dva); 5824 uint64_t offset = DVA_GET_OFFSET(dva); 5825 uint64_t size = DVA_GET_ASIZE(dva); 5826 vdev_t *vd; 5827 5828 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5829 return (SET_ERROR(ENXIO)); 5830 } 5831 5832 ASSERT(DVA_IS_VALID(dva)); 5833 5834 if (DVA_GET_GANG(dva)) 5835 size = vdev_gang_header_asize(vd); 5836 5837 return (metaslab_claim_impl(vd, offset, size, txg)); 5838 } 5839 5840 int 5841 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5842 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5843 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5844 { 5845 dva_t *dva = bp->blk_dva; 5846 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5847 int error = 0; 5848 5849 ASSERT(bp->blk_birth == 0); 5850 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5851 5852 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5853 5854 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5855 /* no vdevs in this class */ 5856 spa_config_exit(spa, SCL_ALLOC, FTAG); 5857 return (SET_ERROR(ENOSPC)); 5858 } 5859 5860 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5861 ASSERT(BP_GET_NDVAS(bp) == 0); 5862 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5863 ASSERT3P(zal, !=, NULL); 5864 5865 for (int d = 0; d < ndvas; d++) { 5866 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5867 txg, flags, zal, allocator); 5868 if (error != 0) { 5869 for (d--; d >= 0; d--) { 5870 metaslab_unalloc_dva(spa, &dva[d], txg); 5871 metaslab_group_alloc_decrement(spa, 5872 DVA_GET_VDEV(&dva[d]), zio, flags, 5873 allocator, B_FALSE); 5874 memset(&dva[d], 0, sizeof (dva_t)); 5875 } 5876 spa_config_exit(spa, SCL_ALLOC, FTAG); 5877 return (error); 5878 } else { 5879 /* 5880 * Update the metaslab group's queue depth 5881 * based on the newly allocated dva. 5882 */ 5883 metaslab_group_alloc_increment(spa, 5884 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5885 } 5886 } 5887 ASSERT(error == 0); 5888 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5889 5890 spa_config_exit(spa, SCL_ALLOC, FTAG); 5891 5892 BP_SET_BIRTH(bp, txg, 0); 5893 5894 return (0); 5895 } 5896 5897 void 5898 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5899 { 5900 const dva_t *dva = bp->blk_dva; 5901 int ndvas = BP_GET_NDVAS(bp); 5902 5903 ASSERT(!BP_IS_HOLE(bp)); 5904 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5905 5906 /* 5907 * If we have a checkpoint for the pool we need to make sure that 5908 * the blocks that we free that are part of the checkpoint won't be 5909 * reused until the checkpoint is discarded or we revert to it. 5910 * 5911 * The checkpoint flag is passed down the metaslab_free code path 5912 * and is set whenever we want to add a block to the checkpoint's 5913 * accounting. That is, we "checkpoint" blocks that existed at the 5914 * time the checkpoint was created and are therefore referenced by 5915 * the checkpointed uberblock. 5916 * 5917 * Note that, we don't checkpoint any blocks if the current 5918 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5919 * normally as they will be referenced by the checkpointed uberblock. 5920 */ 5921 boolean_t checkpoint = B_FALSE; 5922 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5923 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5924 /* 5925 * At this point, if the block is part of the checkpoint 5926 * there is no way it was created in the current txg. 5927 */ 5928 ASSERT(!now); 5929 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5930 checkpoint = B_TRUE; 5931 } 5932 5933 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5934 5935 for (int d = 0; d < ndvas; d++) { 5936 if (now) { 5937 metaslab_unalloc_dva(spa, &dva[d], txg); 5938 } else { 5939 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5940 metaslab_free_dva(spa, &dva[d], checkpoint); 5941 } 5942 } 5943 5944 spa_config_exit(spa, SCL_FREE, FTAG); 5945 } 5946 5947 int 5948 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5949 { 5950 const dva_t *dva = bp->blk_dva; 5951 int ndvas = BP_GET_NDVAS(bp); 5952 int error = 0; 5953 5954 ASSERT(!BP_IS_HOLE(bp)); 5955 5956 if (txg != 0) { 5957 /* 5958 * First do a dry run to make sure all DVAs are claimable, 5959 * so we don't have to unwind from partial failures below. 5960 */ 5961 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5962 return (error); 5963 } 5964 5965 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5966 5967 for (int d = 0; d < ndvas; d++) { 5968 error = metaslab_claim_dva(spa, &dva[d], txg); 5969 if (error != 0) 5970 break; 5971 } 5972 5973 spa_config_exit(spa, SCL_ALLOC, FTAG); 5974 5975 ASSERT(error == 0 || txg == 0); 5976 5977 return (error); 5978 } 5979 5980 static void 5981 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5982 uint64_t size, void *arg) 5983 { 5984 (void) inner, (void) arg; 5985 5986 if (vd->vdev_ops == &vdev_indirect_ops) 5987 return; 5988 5989 metaslab_check_free_impl(vd, offset, size); 5990 } 5991 5992 static void 5993 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5994 { 5995 metaslab_t *msp; 5996 spa_t *spa __maybe_unused = vd->vdev_spa; 5997 5998 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5999 return; 6000 6001 if (vd->vdev_ops->vdev_op_remap != NULL) { 6002 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6003 metaslab_check_free_impl_cb, NULL); 6004 return; 6005 } 6006 6007 ASSERT(vdev_is_concrete(vd)); 6008 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6009 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6010 6011 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6012 6013 mutex_enter(&msp->ms_lock); 6014 if (msp->ms_loaded) { 6015 range_tree_verify_not_present(msp->ms_allocatable, 6016 offset, size); 6017 } 6018 6019 /* 6020 * Check all segments that currently exist in the freeing pipeline. 6021 * 6022 * It would intuitively make sense to also check the current allocating 6023 * tree since metaslab_unalloc_dva() exists for extents that are 6024 * allocated and freed in the same sync pass within the same txg. 6025 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6026 * segment but then we free part of it within the same txg 6027 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6028 * current allocating tree. 6029 */ 6030 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6031 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6032 range_tree_verify_not_present(msp->ms_freed, offset, size); 6033 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6034 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6035 range_tree_verify_not_present(msp->ms_trim, offset, size); 6036 mutex_exit(&msp->ms_lock); 6037 } 6038 6039 void 6040 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6041 { 6042 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6043 return; 6044 6045 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6046 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6047 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6048 vdev_t *vd = vdev_lookup_top(spa, vdev); 6049 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6050 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6051 6052 if (DVA_GET_GANG(&bp->blk_dva[i])) 6053 size = vdev_gang_header_asize(vd); 6054 6055 ASSERT3P(vd, !=, NULL); 6056 6057 metaslab_check_free_impl(vd, offset, size); 6058 } 6059 spa_config_exit(spa, SCL_VDEV, FTAG); 6060 } 6061 6062 static void 6063 metaslab_group_disable_wait(metaslab_group_t *mg) 6064 { 6065 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6066 while (mg->mg_disabled_updating) { 6067 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6068 } 6069 } 6070 6071 static void 6072 metaslab_group_disabled_increment(metaslab_group_t *mg) 6073 { 6074 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6075 ASSERT(mg->mg_disabled_updating); 6076 6077 while (mg->mg_ms_disabled >= max_disabled_ms) { 6078 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6079 } 6080 mg->mg_ms_disabled++; 6081 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6082 } 6083 6084 /* 6085 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6086 * We must also track how many metaslabs are currently disabled within a 6087 * metaslab group and limit them to prevent allocation failures from 6088 * occurring because all metaslabs are disabled. 6089 */ 6090 void 6091 metaslab_disable(metaslab_t *msp) 6092 { 6093 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6094 metaslab_group_t *mg = msp->ms_group; 6095 6096 mutex_enter(&mg->mg_ms_disabled_lock); 6097 6098 /* 6099 * To keep an accurate count of how many threads have disabled 6100 * a specific metaslab group, we only allow one thread to mark 6101 * the metaslab group at a time. This ensures that the value of 6102 * ms_disabled will be accurate when we decide to mark a metaslab 6103 * group as disabled. To do this we force all other threads 6104 * to wait till the metaslab's mg_disabled_updating flag is no 6105 * longer set. 6106 */ 6107 metaslab_group_disable_wait(mg); 6108 mg->mg_disabled_updating = B_TRUE; 6109 if (msp->ms_disabled == 0) { 6110 metaslab_group_disabled_increment(mg); 6111 } 6112 mutex_enter(&msp->ms_lock); 6113 msp->ms_disabled++; 6114 mutex_exit(&msp->ms_lock); 6115 6116 mg->mg_disabled_updating = B_FALSE; 6117 cv_broadcast(&mg->mg_ms_disabled_cv); 6118 mutex_exit(&mg->mg_ms_disabled_lock); 6119 } 6120 6121 void 6122 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6123 { 6124 metaslab_group_t *mg = msp->ms_group; 6125 spa_t *spa = mg->mg_vd->vdev_spa; 6126 6127 /* 6128 * Wait for the outstanding IO to be synced to prevent newly 6129 * allocated blocks from being overwritten. This used by 6130 * initialize and TRIM which are modifying unallocated space. 6131 */ 6132 if (sync) 6133 txg_wait_synced(spa_get_dsl(spa), 0); 6134 6135 mutex_enter(&mg->mg_ms_disabled_lock); 6136 mutex_enter(&msp->ms_lock); 6137 if (--msp->ms_disabled == 0) { 6138 mg->mg_ms_disabled--; 6139 cv_broadcast(&mg->mg_ms_disabled_cv); 6140 if (unload) 6141 metaslab_unload(msp); 6142 } 6143 mutex_exit(&msp->ms_lock); 6144 mutex_exit(&mg->mg_ms_disabled_lock); 6145 } 6146 6147 void 6148 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6149 { 6150 ms->ms_unflushed_dirty = dirty; 6151 } 6152 6153 static void 6154 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6155 { 6156 vdev_t *vd = ms->ms_group->mg_vd; 6157 spa_t *spa = vd->vdev_spa; 6158 objset_t *mos = spa_meta_objset(spa); 6159 6160 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6161 6162 metaslab_unflushed_phys_t entry = { 6163 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6164 }; 6165 uint64_t entry_size = sizeof (entry); 6166 uint64_t entry_offset = ms->ms_id * entry_size; 6167 6168 uint64_t object = 0; 6169 int err = zap_lookup(mos, vd->vdev_top_zap, 6170 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6171 &object); 6172 if (err == ENOENT) { 6173 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6174 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6175 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6176 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6177 &object, tx)); 6178 } else { 6179 VERIFY0(err); 6180 } 6181 6182 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6183 &entry, tx); 6184 } 6185 6186 void 6187 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6188 { 6189 ms->ms_unflushed_txg = txg; 6190 metaslab_update_ondisk_flush_data(ms, tx); 6191 } 6192 6193 boolean_t 6194 metaslab_unflushed_dirty(metaslab_t *ms) 6195 { 6196 return (ms->ms_unflushed_dirty); 6197 } 6198 6199 uint64_t 6200 metaslab_unflushed_txg(metaslab_t *ms) 6201 { 6202 return (ms->ms_unflushed_txg); 6203 } 6204 6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6206 "Allocation granularity (a.k.a. stripe size)"); 6207 6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6209 "Load all metaslabs when pool is first opened"); 6210 6211 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6212 "Prevent metaslabs from being unloaded"); 6213 6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6215 "Preload potential metaslabs during reassessment"); 6216 6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW, 6218 "Max number of metaslabs per group to preload"); 6219 6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6221 "Delay in txgs after metaslab was last used before unloading"); 6222 6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6224 "Delay in milliseconds after metaslab was last used before unloading"); 6225 6226 /* BEGIN CSTYLED */ 6227 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6228 "Percentage of metaslab group size that should be free to make it " 6229 "eligible for allocation"); 6230 6231 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6232 "Percentage of metaslab group size that should be considered eligible " 6233 "for allocations unless all metaslab groups within the metaslab class " 6234 "have also crossed this threshold"); 6235 6236 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6237 ZMOD_RW, 6238 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6239 /* END CSTYLED */ 6240 6241 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6242 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6243 6244 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6245 "Prefer metaslabs with lower LBAs"); 6246 6247 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6248 "Enable metaslab group biasing"); 6249 6250 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6251 ZMOD_RW, "Enable segment-based metaslab selection"); 6252 6253 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6254 "Segment-based metaslab selection maximum buckets before switching"); 6255 6256 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6257 "Blocks larger than this size are sometimes forced to be gang blocks"); 6258 6259 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW, 6260 "Percentage of large blocks that will be forced to be gang blocks"); 6261 6262 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6263 "Max distance (bytes) to search forward before using size tree"); 6264 6265 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6266 "When looking in size tree, use largest segment instead of exact fit"); 6267 6268 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6269 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6270 6271 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6272 "Percentage of memory that can be used to store metaslab range trees"); 6273 6274 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6275 ZMOD_RW, "Try hard to allocate before ganging"); 6276 6277 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 6278 "Normally only consider this many of the best metaslabs in each vdev"); 6279 6280 /* BEGIN CSTYLED */ 6281 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator, 6282 param_set_active_allocator, param_get_charp, ZMOD_RW, 6283 "SPA active allocator"); 6284 /* END CSTYLED */ 6285