xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 7d8e1e8dd9042f802a67adefabd28fcd9b1e4051)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	WITH_DF_BLOCK_ALLOCATOR
44 
45 #define	GANG_ALLOCATION(flags) \
46 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 
48 /*
49  * Metaslab granularity, in bytes. This is roughly similar to what would be
50  * referred to as the "stripe size" in traditional RAID arrays. In normal
51  * operation, we will try to write this amount of data to each disk before
52  * moving on to the next top-level vdev.
53  */
54 static uint64_t metaslab_aliquot = 1024 * 1024;
55 
56 /*
57  * For testing, make some blocks above a certain size be gang blocks.
58  */
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 
61 /*
62  * In pools where the log space map feature is not enabled we touch
63  * multiple metaslabs (and their respective space maps) with each
64  * transaction group. Thus, we benefit from having a small space map
65  * block size since it allows us to issue more I/O operations scattered
66  * around the disk. So a sane default for the space map block size
67  * is 8~16K.
68  */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70 
71 /*
72  * When the log space map feature is enabled, we accumulate a lot of
73  * changes per metaslab that are flushed once in a while so we benefit
74  * from a bigger block size like 128K for the metaslab space maps.
75  */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77 
78 /*
79  * The in-core space map representation is more compact than its on-disk form.
80  * The zfs_condense_pct determines how much more compact the in-core
81  * space map representation must be before we compact it on-disk.
82  * Values should be greater than or equal to 100.
83  */
84 uint_t zfs_condense_pct = 200;
85 
86 /*
87  * Condensing a metaslab is not guaranteed to actually reduce the amount of
88  * space used on disk. In particular, a space map uses data in increments of
89  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90  * same number of blocks after condensing. Since the goal of condensing is to
91  * reduce the number of IOPs required to read the space map, we only want to
92  * condense when we can be sure we will reduce the number of blocks used by the
93  * space map. Unfortunately, we cannot precisely compute whether or not this is
94  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95  * we apply the following heuristic: do not condense a spacemap unless the
96  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97  * blocks.
98  */
99 static const int zfs_metaslab_condense_block_threshold = 4;
100 
101 /*
102  * The zfs_mg_noalloc_threshold defines which metaslab groups should
103  * be eligible for allocation. The value is defined as a percentage of
104  * free space. Metaslab groups that have more free space than
105  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106  * a metaslab group's free space is less than or equal to the
107  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110  * groups are allowed to accept allocations. Gang blocks are always
111  * eligible to allocate on any metaslab group. The default value of 0 means
112  * no metaslab group will be excluded based on this criterion.
113  */
114 static uint_t zfs_mg_noalloc_threshold = 0;
115 
116 /*
117  * Metaslab groups are considered eligible for allocations if their
118  * fragmentation metric (measured as a percentage) is less than or
119  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120  * exceeds this threshold then it will be skipped unless all metaslab
121  * groups within the metaslab class have also crossed this threshold.
122  *
123  * This tunable was introduced to avoid edge cases where we continue
124  * allocating from very fragmented disks in our pool while other, less
125  * fragmented disks, exists. On the other hand, if all disks in the
126  * pool are uniformly approaching the threshold, the threshold can
127  * be a speed bump in performance, where we keep switching the disks
128  * that we allocate from (e.g. we allocate some segments from disk A
129  * making it bypassing the threshold while freeing segments from disk
130  * B getting its fragmentation below the threshold).
131  *
132  * Empirically, we've seen that our vdev selection for allocations is
133  * good enough that fragmentation increases uniformly across all vdevs
134  * the majority of the time. Thus we set the threshold percentage high
135  * enough to avoid hitting the speed bump on pools that are being pushed
136  * to the edge.
137  */
138 static uint_t zfs_mg_fragmentation_threshold = 95;
139 
140 /*
141  * Allow metaslabs to keep their active state as long as their fragmentation
142  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143  * active metaslab that exceeds this threshold will no longer keep its active
144  * status allowing better metaslabs to be selected.
145  */
146 static uint_t zfs_metaslab_fragmentation_threshold = 70;
147 
148 /*
149  * When set will load all metaslabs when pool is first opened.
150  */
151 int metaslab_debug_load = B_FALSE;
152 
153 /*
154  * When set will prevent metaslabs from being unloaded.
155  */
156 static int metaslab_debug_unload = B_FALSE;
157 
158 /*
159  * Minimum size which forces the dynamic allocator to change
160  * it's allocation strategy.  Once the space map cannot satisfy
161  * an allocation of this size then it switches to using more
162  * aggressive strategy (i.e search by size rather than offset).
163  */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165 
166 /*
167  * The minimum free space, in percent, which must be available
168  * in a space map to continue allocations in a first-fit fashion.
169  * Once the space map's free space drops below this level we dynamically
170  * switch to using best-fit allocations.
171  */
172 uint_t metaslab_df_free_pct = 4;
173 
174 /*
175  * Maximum distance to search forward from the last offset. Without this
176  * limit, fragmented pools can see >100,000 iterations and
177  * metaslab_block_picker() becomes the performance limiting factor on
178  * high-performance storage.
179  *
180  * With the default setting of 16MB, we typically see less than 500
181  * iterations, even with very fragmented, ashift=9 pools. The maximum number
182  * of iterations possible is:
183  *     metaslab_df_max_search / (2 * (1<<ashift))
184  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185  * 2048 (with ashift=12).
186  */
187 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
188 
189 /*
190  * Forces the metaslab_block_picker function to search for at least this many
191  * segments forwards until giving up on finding a segment that the allocation
192  * will fit into.
193  */
194 static const uint32_t metaslab_min_search_count = 100;
195 
196 /*
197  * If we are not searching forward (due to metaslab_df_max_search,
198  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199  * controls what segment is used.  If it is set, we will use the largest free
200  * segment.  If it is not set, we will use a segment of exactly the requested
201  * size (or larger).
202  */
203 static int metaslab_df_use_largest_segment = B_FALSE;
204 
205 /*
206  * Percentage of all cpus that can be used by the metaslab taskq.
207  */
208 int metaslab_load_pct = 50;
209 
210 /*
211  * These tunables control how long a metaslab will remain loaded after the
212  * last allocation from it.  A metaslab can't be unloaded until at least
213  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215  * unloaded sooner.  These settings are intended to be generous -- to keep
216  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217  */
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 
221 /*
222  * Max number of metaslabs per group to preload.
223  */
224 uint_t metaslab_preload_limit = 10;
225 
226 /*
227  * Enable/disable preloading of metaslab.
228  */
229 static int metaslab_preload_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable fragmentation weighting on metaslabs.
233  */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235 
236 /*
237  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238  */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240 
241 /*
242  * Enable/disable metaslab group biasing.
243  */
244 static int metaslab_bias_enabled = B_TRUE;
245 
246 /*
247  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248  */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250 
251 /*
252  * Enable/disable segment-based metaslab selection.
253  */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255 
256 /*
257  * When using segment-based metaslab selection, we will continue
258  * allocating from the active metaslab until we have exhausted
259  * zfs_metaslab_switch_threshold of its buckets.
260  */
261 static int zfs_metaslab_switch_threshold = 2;
262 
263 /*
264  * Internal switch to enable/disable the metaslab allocation tracing
265  * facility.
266  */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268 
269 /*
270  * Maximum entries that the metaslab allocation tracing facility will keep
271  * in a given list when running in non-debug mode. We limit the number
272  * of entries in non-debug mode to prevent us from using up too much memory.
273  * The limit should be sufficiently large that we don't expect any allocation
274  * to every exceed this value. In debug mode, the system will panic if this
275  * limit is ever reached allowing for further investigation.
276  */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278 
279 /*
280  * Maximum number of metaslabs per group that can be disabled
281  * simultaneously.
282  */
283 static const int max_disabled_ms = 3;
284 
285 /*
286  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287  * To avoid 64-bit overflow, don't set above UINT32_MAX.
288  */
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290 
291 /*
292  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293  * a metaslab would take it over this percentage, the oldest selected metaslab
294  * is automatically unloaded.
295  */
296 static uint_t zfs_metaslab_mem_limit = 25;
297 
298 /*
299  * Force the per-metaslab range trees to use 64-bit integers to store
300  * segments. Used for debugging purposes.
301  */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303 
304 /*
305  * By default we only store segments over a certain size in the size-sorted
306  * metaslab trees (ms_allocatable_by_size and
307  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308  * improves load and unload times at the cost of causing us to use slightly
309  * larger segments than we would otherwise in some cases.
310  */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312 
313 /*
314  * If not set, we will first try normal allocation.  If that fails then
315  * we will do a gang allocation.  If that fails then we will do a "try hard"
316  * gang allocation.  If that fails then we will have a multi-layer gang
317  * block.
318  *
319  * If set, we will first try normal allocation.  If that fails then
320  * we will do a "try hard" allocation.  If that fails we will do a gang
321  * allocation.  If that fails we will do a "try hard" gang allocation.  If
322  * that fails then we will have a multi-layer gang block.
323  */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325 
326 /*
327  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328  * metaslabs.  This improves performance, especially when there are many
329  * metaslabs per vdev and the allocation can't actually be satisfied (so we
330  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
331  * worse weight but it can actually satisfy the allocation, we won't find it
332  * until trying hard.  This may happen if the worse metaslab is not loaded
333  * (and the true weight is better than we have calculated), or due to weight
334  * bucketization.  E.g. we are looking for a 60K segment, and the best
335  * metaslabs all have free segments in the 32-63K bucket, but the best
336  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338  * bucket, and therefore a lower weight).
339  */
340 static uint_t zfs_metaslab_find_max_tries = 100;
341 
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346 
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354 
355 typedef struct metaslab_stats {
356 	kstat_named_t metaslabstat_trace_over_limit;
357 	kstat_named_t metaslabstat_reload_tree;
358 	kstat_named_t metaslabstat_too_many_tries;
359 	kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361 
362 static metaslab_stats_t metaslab_stats = {
363 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
364 	{ "reload_tree",		KSTAT_DATA_UINT64 },
365 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
366 	{ "try_hard",			KSTAT_DATA_UINT64 },
367 };
368 
369 #define	METASLABSTAT_BUMP(stat) \
370 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
371 
372 
373 static kstat_t *metaslab_ksp;
374 
375 void
376 metaslab_stat_init(void)
377 {
378 	ASSERT(metaslab_alloc_trace_cache == NULL);
379 	metaslab_alloc_trace_cache = kmem_cache_create(
380 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 	    0, NULL, NULL, NULL, NULL, NULL, 0);
382 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 	if (metaslab_ksp != NULL) {
386 		metaslab_ksp->ks_data = &metaslab_stats;
387 		kstat_install(metaslab_ksp);
388 	}
389 }
390 
391 void
392 metaslab_stat_fini(void)
393 {
394 	if (metaslab_ksp != NULL) {
395 		kstat_delete(metaslab_ksp);
396 		metaslab_ksp = NULL;
397 	}
398 
399 	kmem_cache_destroy(metaslab_alloc_trace_cache);
400 	metaslab_alloc_trace_cache = NULL;
401 }
402 
403 /*
404  * ==========================================================================
405  * Metaslab classes
406  * ==========================================================================
407  */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 	metaslab_class_t *mc;
412 
413 	mc = kmem_zalloc(offsetof(metaslab_class_t,
414 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415 
416 	mc->mc_spa = spa;
417 	mc->mc_ops = ops;
418 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 	for (int i = 0; i < spa->spa_alloc_count; i++) {
422 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 		mca->mca_rotor = NULL;
424 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 	}
426 
427 	return (mc);
428 }
429 
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 	spa_t *spa = mc->mc_spa;
434 
435 	ASSERT(mc->mc_alloc == 0);
436 	ASSERT(mc->mc_deferred == 0);
437 	ASSERT(mc->mc_space == 0);
438 	ASSERT(mc->mc_dspace == 0);
439 
440 	for (int i = 0; i < spa->spa_alloc_count; i++) {
441 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 		ASSERT(mca->mca_rotor == NULL);
443 		zfs_refcount_destroy(&mca->mca_alloc_slots);
444 	}
445 	mutex_destroy(&mc->mc_lock);
446 	multilist_destroy(&mc->mc_metaslab_txg_list);
447 	kmem_free(mc, offsetof(metaslab_class_t,
448 	    mc_allocator[spa->spa_alloc_count]));
449 }
450 
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 	metaslab_group_t *mg;
455 	vdev_t *vd;
456 
457 	/*
458 	 * Must hold one of the spa_config locks.
459 	 */
460 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462 
463 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 		return (0);
465 
466 	do {
467 		vd = mg->mg_vd;
468 		ASSERT(vd->vdev_mg != NULL);
469 		ASSERT3P(vd->vdev_top, ==, vd);
470 		ASSERT3P(mg->mg_class, ==, mc);
471 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473 
474 	return (0);
475 }
476 
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 	atomic_add_64(&mc->mc_alloc, alloc_delta);
482 	atomic_add_64(&mc->mc_deferred, defer_delta);
483 	atomic_add_64(&mc->mc_space, space_delta);
484 	atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486 
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 	return (mc->mc_alloc);
491 }
492 
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 	return (mc->mc_deferred);
497 }
498 
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 	return (mc->mc_space);
503 }
504 
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510 
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 	spa_t *spa = mc->mc_spa;
515 	vdev_t *rvd = spa->spa_root_vdev;
516 	uint64_t *mc_hist;
517 	int i;
518 
519 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 		return;
521 
522 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 	    KM_SLEEP);
524 
525 	mutex_enter(&mc->mc_lock);
526 	for (int c = 0; c < rvd->vdev_children; c++) {
527 		vdev_t *tvd = rvd->vdev_child[c];
528 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529 
530 		/*
531 		 * Skip any holes, uninitialized top-levels, or
532 		 * vdevs that are not in this metalab class.
533 		 */
534 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 		    mg->mg_class != mc) {
536 			continue;
537 		}
538 
539 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541 
542 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 			mc_hist[i] += mg->mg_histogram[i];
544 	}
545 
546 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 	}
549 
550 	mutex_exit(&mc->mc_lock);
551 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553 
554 /*
555  * Calculate the metaslab class's fragmentation metric. The metric
556  * is weighted based on the space contribution of each metaslab group.
557  * The return value will be a number between 0 and 100 (inclusive), or
558  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559  * zfs_frag_table for more information about the metric.
560  */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 	uint64_t fragmentation = 0;
566 
567 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568 
569 	for (int c = 0; c < rvd->vdev_children; c++) {
570 		vdev_t *tvd = rvd->vdev_child[c];
571 		metaslab_group_t *mg = tvd->vdev_mg;
572 
573 		/*
574 		 * Skip any holes, uninitialized top-levels,
575 		 * or vdevs that are not in this metalab class.
576 		 */
577 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 		    mg->mg_class != mc) {
579 			continue;
580 		}
581 
582 		/*
583 		 * If a metaslab group does not contain a fragmentation
584 		 * metric then just bail out.
585 		 */
586 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 			return (ZFS_FRAG_INVALID);
589 		}
590 
591 		/*
592 		 * Determine how much this metaslab_group is contributing
593 		 * to the overall pool fragmentation metric.
594 		 */
595 		fragmentation += mg->mg_fragmentation *
596 		    metaslab_group_get_space(mg);
597 	}
598 	fragmentation /= metaslab_class_get_space(mc);
599 
600 	ASSERT3U(fragmentation, <=, 100);
601 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 	return (fragmentation);
603 }
604 
605 /*
606  * Calculate the amount of expandable space that is available in
607  * this metaslab class. If a device is expanded then its expandable
608  * space will be the amount of allocatable space that is currently not
609  * part of this metaslab class.
610  */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 	uint64_t space = 0;
616 
617 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 	for (int c = 0; c < rvd->vdev_children; c++) {
619 		vdev_t *tvd = rvd->vdev_child[c];
620 		metaslab_group_t *mg = tvd->vdev_mg;
621 
622 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 		    mg->mg_class != mc) {
624 			continue;
625 		}
626 
627 		/*
628 		 * Calculate if we have enough space to add additional
629 		 * metaslabs. We report the expandable space in terms
630 		 * of the metaslab size since that's the unit of expansion.
631 		 */
632 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 		    1ULL << tvd->vdev_ms_shift);
634 	}
635 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 	return (space);
637 }
638 
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 	multilist_t *ml = &mc->mc_metaslab_txg_list;
643 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 		metaslab_t *msp = multilist_sublist_head(mls);
646 		multilist_sublist_unlock(mls);
647 		while (msp != NULL) {
648 			mutex_enter(&msp->ms_lock);
649 
650 			/*
651 			 * If the metaslab has been removed from the list
652 			 * (which could happen if we were at the memory limit
653 			 * and it was evicted during this loop), then we can't
654 			 * proceed and we should restart the sublist.
655 			 */
656 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 				mutex_exit(&msp->ms_lock);
658 				i--;
659 				break;
660 			}
661 			mls = multilist_sublist_lock(ml, i);
662 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 			multilist_sublist_unlock(mls);
664 			if (txg >
665 			    msp->ms_selected_txg + metaslab_unload_delay &&
666 			    gethrtime() > msp->ms_selected_time +
667 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 				metaslab_evict(msp, txg);
669 			} else {
670 				/*
671 				 * Once we've hit a metaslab selected too
672 				 * recently to evict, we're done evicting for
673 				 * now.
674 				 */
675 				mutex_exit(&msp->ms_lock);
676 				break;
677 			}
678 			mutex_exit(&msp->ms_lock);
679 			msp = next_msp;
680 		}
681 	}
682 }
683 
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 	const metaslab_t *m1 = (const metaslab_t *)x1;
688 	const metaslab_t *m2 = (const metaslab_t *)x2;
689 
690 	int sort1 = 0;
691 	int sort2 = 0;
692 	if (m1->ms_allocator != -1 && m1->ms_primary)
693 		sort1 = 1;
694 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 		sort1 = 2;
696 	if (m2->ms_allocator != -1 && m2->ms_primary)
697 		sort2 = 1;
698 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 		sort2 = 2;
700 
701 	/*
702 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 	 * selecting a metaslab to allocate from, an allocator first tries its
704 	 * primary, then secondary active metaslab. If it doesn't have active
705 	 * metaslabs, or can't allocate from them, it searches for an inactive
706 	 * metaslab to activate. If it can't find a suitable one, it will steal
707 	 * a primary or secondary metaslab from another allocator.
708 	 */
709 	if (sort1 < sort2)
710 		return (-1);
711 	if (sort1 > sort2)
712 		return (1);
713 
714 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 	if (likely(cmp))
716 		return (cmp);
717 
718 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719 
720 	return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722 
723 /*
724  * ==========================================================================
725  * Metaslab groups
726  * ==========================================================================
727  */
728 /*
729  * Update the allocatable flag and the metaslab group's capacity.
730  * The allocatable flag is set to true if the capacity is below
731  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733  * transitions from allocatable to non-allocatable or vice versa then the
734  * metaslab group's class is updated to reflect the transition.
735  */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 	vdev_t *vd = mg->mg_vd;
740 	metaslab_class_t *mc = mg->mg_class;
741 	vdev_stat_t *vs = &vd->vdev_stat;
742 	boolean_t was_allocatable;
743 	boolean_t was_initialized;
744 
745 	ASSERT(vd == vd->vdev_top);
746 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 	    SCL_ALLOC);
748 
749 	mutex_enter(&mg->mg_lock);
750 	was_allocatable = mg->mg_allocatable;
751 	was_initialized = mg->mg_initialized;
752 
753 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 	    (vs->vs_space + 1);
755 
756 	mutex_enter(&mc->mc_lock);
757 
758 	/*
759 	 * If the metaslab group was just added then it won't
760 	 * have any space until we finish syncing out this txg.
761 	 * At that point we will consider it initialized and available
762 	 * for allocations.  We also don't consider non-activated
763 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 	 * to be initialized, because they can't be used for allocation.
765 	 */
766 	mg->mg_initialized = metaslab_group_initialized(mg);
767 	if (!was_initialized && mg->mg_initialized) {
768 		mc->mc_groups++;
769 	} else if (was_initialized && !mg->mg_initialized) {
770 		ASSERT3U(mc->mc_groups, >, 0);
771 		mc->mc_groups--;
772 	}
773 	if (mg->mg_initialized)
774 		mg->mg_no_free_space = B_FALSE;
775 
776 	/*
777 	 * A metaslab group is considered allocatable if it has plenty
778 	 * of free space or is not heavily fragmented. We only take
779 	 * fragmentation into account if the metaslab group has a valid
780 	 * fragmentation metric (i.e. a value between 0 and 100).
781 	 */
782 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786 
787 	/*
788 	 * The mc_alloc_groups maintains a count of the number of
789 	 * groups in this metaslab class that are still above the
790 	 * zfs_mg_noalloc_threshold. This is used by the allocating
791 	 * threads to determine if they should avoid allocations to
792 	 * a given group. The allocator will avoid allocations to a group
793 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 	 * and there are still other groups that are above the threshold.
795 	 * When a group transitions from allocatable to non-allocatable or
796 	 * vice versa we update the metaslab class to reflect that change.
797 	 * When the mc_alloc_groups value drops to 0 that means that all
798 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 	 * eligible for allocations. This effectively means that all devices
800 	 * are balanced again.
801 	 */
802 	if (was_allocatable && !mg->mg_allocatable)
803 		mc->mc_alloc_groups--;
804 	else if (!was_allocatable && mg->mg_allocatable)
805 		mc->mc_alloc_groups++;
806 	mutex_exit(&mc->mc_lock);
807 
808 	mutex_exit(&mg->mg_lock);
809 }
810 
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 	const metaslab_t *a = va;
815 	const metaslab_t *b = vb;
816 
817 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 	if (likely(cmp))
819 		return (cmp);
820 
821 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 	if (cmp)
825 		return (cmp);
826 
827 	return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829 
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 	metaslab_group_t *mg;
834 
835 	mg = kmem_zalloc(offsetof(metaslab_group_t,
836 	    mg_allocator[allocators]), KM_SLEEP);
837 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 	mg->mg_vd = vd;
843 	mg->mg_class = mc;
844 	mg->mg_activation_count = 0;
845 	mg->mg_initialized = B_FALSE;
846 	mg->mg_no_free_space = B_TRUE;
847 	mg->mg_allocators = allocators;
848 
849 	for (int i = 0; i < allocators; i++) {
850 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 	}
853 
854 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856 
857 	return (mg);
858 }
859 
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 	ASSERT(mg->mg_prev == NULL);
864 	ASSERT(mg->mg_next == NULL);
865 	/*
866 	 * We may have gone below zero with the activation count
867 	 * either because we never activated in the first place or
868 	 * because we're done, and possibly removing the vdev.
869 	 */
870 	ASSERT(mg->mg_activation_count <= 0);
871 
872 	taskq_destroy(mg->mg_taskq);
873 	avl_destroy(&mg->mg_metaslab_tree);
874 	mutex_destroy(&mg->mg_lock);
875 	mutex_destroy(&mg->mg_ms_disabled_lock);
876 	cv_destroy(&mg->mg_ms_disabled_cv);
877 
878 	for (int i = 0; i < mg->mg_allocators; i++) {
879 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 	}
882 	kmem_free(mg, offsetof(metaslab_group_t,
883 	    mg_allocator[mg->mg_allocators]));
884 }
885 
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 	metaslab_class_t *mc = mg->mg_class;
890 	spa_t *spa = mc->mc_spa;
891 	metaslab_group_t *mgprev, *mgnext;
892 
893 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894 
895 	ASSERT(mg->mg_prev == NULL);
896 	ASSERT(mg->mg_next == NULL);
897 	ASSERT(mg->mg_activation_count <= 0);
898 
899 	if (++mg->mg_activation_count <= 0)
900 		return;
901 
902 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
903 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904 	metaslab_group_alloc_update(mg);
905 
906 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907 		mg->mg_prev = mg;
908 		mg->mg_next = mg;
909 	} else {
910 		mgnext = mgprev->mg_next;
911 		mg->mg_prev = mgprev;
912 		mg->mg_next = mgnext;
913 		mgprev->mg_next = mg;
914 		mgnext->mg_prev = mg;
915 	}
916 	for (int i = 0; i < spa->spa_alloc_count; i++) {
917 		mc->mc_allocator[i].mca_rotor = mg;
918 		mg = mg->mg_next;
919 	}
920 }
921 
922 /*
923  * Passivate a metaslab group and remove it from the allocation rotor.
924  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925  * a metaslab group. This function will momentarily drop spa_config_locks
926  * that are lower than the SCL_ALLOC lock (see comment below).
927  */
928 void
929 metaslab_group_passivate(metaslab_group_t *mg)
930 {
931 	metaslab_class_t *mc = mg->mg_class;
932 	spa_t *spa = mc->mc_spa;
933 	metaslab_group_t *mgprev, *mgnext;
934 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935 
936 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937 	    (SCL_ALLOC | SCL_ZIO));
938 
939 	if (--mg->mg_activation_count != 0) {
940 		for (int i = 0; i < spa->spa_alloc_count; i++)
941 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942 		ASSERT(mg->mg_prev == NULL);
943 		ASSERT(mg->mg_next == NULL);
944 		ASSERT(mg->mg_activation_count < 0);
945 		return;
946 	}
947 
948 	/*
949 	 * The spa_config_lock is an array of rwlocks, ordered as
950 	 * follows (from highest to lowest):
951 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
953 	 * (For more information about the spa_config_lock see spa_misc.c)
954 	 * The higher the lock, the broader its coverage. When we passivate
955 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956 	 * config locks. However, the metaslab group's taskq might be trying
957 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958 	 * lower locks to allow the I/O to complete. At a minimum,
959 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
960 	 * allocations from taking place and any changes to the vdev tree.
961 	 */
962 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963 	taskq_wait_outstanding(mg->mg_taskq, 0);
964 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965 	metaslab_group_alloc_update(mg);
966 	for (int i = 0; i < mg->mg_allocators; i++) {
967 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968 		metaslab_t *msp = mga->mga_primary;
969 		if (msp != NULL) {
970 			mutex_enter(&msp->ms_lock);
971 			metaslab_passivate(msp,
972 			    metaslab_weight_from_range_tree(msp));
973 			mutex_exit(&msp->ms_lock);
974 		}
975 		msp = mga->mga_secondary;
976 		if (msp != NULL) {
977 			mutex_enter(&msp->ms_lock);
978 			metaslab_passivate(msp,
979 			    metaslab_weight_from_range_tree(msp));
980 			mutex_exit(&msp->ms_lock);
981 		}
982 	}
983 
984 	mgprev = mg->mg_prev;
985 	mgnext = mg->mg_next;
986 
987 	if (mg == mgnext) {
988 		mgnext = NULL;
989 	} else {
990 		mgprev->mg_next = mgnext;
991 		mgnext->mg_prev = mgprev;
992 	}
993 	for (int i = 0; i < spa->spa_alloc_count; i++) {
994 		if (mc->mc_allocator[i].mca_rotor == mg)
995 			mc->mc_allocator[i].mca_rotor = mgnext;
996 	}
997 
998 	mg->mg_prev = NULL;
999 	mg->mg_next = NULL;
1000 }
1001 
1002 boolean_t
1003 metaslab_group_initialized(metaslab_group_t *mg)
1004 {
1005 	vdev_t *vd = mg->mg_vd;
1006 	vdev_stat_t *vs = &vd->vdev_stat;
1007 
1008 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009 }
1010 
1011 uint64_t
1012 metaslab_group_get_space(metaslab_group_t *mg)
1013 {
1014 	/*
1015 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1016 	 * than vdev_ms_count, due to the embedded log metaslab.
1017 	 */
1018 	mutex_enter(&mg->mg_lock);
1019 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020 	mutex_exit(&mg->mg_lock);
1021 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022 }
1023 
1024 void
1025 metaslab_group_histogram_verify(metaslab_group_t *mg)
1026 {
1027 	uint64_t *mg_hist;
1028 	avl_tree_t *t = &mg->mg_metaslab_tree;
1029 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1030 
1031 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032 		return;
1033 
1034 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035 	    KM_SLEEP);
1036 
1037 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039 
1040 	mutex_enter(&mg->mg_lock);
1041 	for (metaslab_t *msp = avl_first(t);
1042 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1043 		VERIFY3P(msp->ms_group, ==, mg);
1044 		/* skip if not active */
1045 		if (msp->ms_sm == NULL)
1046 			continue;
1047 
1048 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049 			mg_hist[i + ashift] +=
1050 			    msp->ms_sm->sm_phys->smp_histogram[i];
1051 		}
1052 	}
1053 
1054 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056 
1057 	mutex_exit(&mg->mg_lock);
1058 
1059 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060 }
1061 
1062 static void
1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064 {
1065 	metaslab_class_t *mc = mg->mg_class;
1066 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1067 
1068 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1069 	if (msp->ms_sm == NULL)
1070 		return;
1071 
1072 	mutex_enter(&mg->mg_lock);
1073 	mutex_enter(&mc->mc_lock);
1074 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077 		mg->mg_histogram[i + ashift] +=
1078 		    msp->ms_sm->sm_phys->smp_histogram[i];
1079 		mc->mc_histogram[i + ashift] +=
1080 		    msp->ms_sm->sm_phys->smp_histogram[i];
1081 	}
1082 	mutex_exit(&mc->mc_lock);
1083 	mutex_exit(&mg->mg_lock);
1084 }
1085 
1086 void
1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 	metaslab_class_t *mc = mg->mg_class;
1090 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1091 
1092 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1093 	if (msp->ms_sm == NULL)
1094 		return;
1095 
1096 	mutex_enter(&mg->mg_lock);
1097 	mutex_enter(&mc->mc_lock);
1098 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1101 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1103 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105 
1106 		mg->mg_histogram[i + ashift] -=
1107 		    msp->ms_sm->sm_phys->smp_histogram[i];
1108 		mc->mc_histogram[i + ashift] -=
1109 		    msp->ms_sm->sm_phys->smp_histogram[i];
1110 	}
1111 	mutex_exit(&mc->mc_lock);
1112 	mutex_exit(&mg->mg_lock);
1113 }
1114 
1115 static void
1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117 {
1118 	ASSERT(msp->ms_group == NULL);
1119 	mutex_enter(&mg->mg_lock);
1120 	msp->ms_group = mg;
1121 	msp->ms_weight = 0;
1122 	avl_add(&mg->mg_metaslab_tree, msp);
1123 	mutex_exit(&mg->mg_lock);
1124 
1125 	mutex_enter(&msp->ms_lock);
1126 	metaslab_group_histogram_add(mg, msp);
1127 	mutex_exit(&msp->ms_lock);
1128 }
1129 
1130 static void
1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132 {
1133 	mutex_enter(&msp->ms_lock);
1134 	metaslab_group_histogram_remove(mg, msp);
1135 	mutex_exit(&msp->ms_lock);
1136 
1137 	mutex_enter(&mg->mg_lock);
1138 	ASSERT(msp->ms_group == mg);
1139 	avl_remove(&mg->mg_metaslab_tree, msp);
1140 
1141 	metaslab_class_t *mc = msp->ms_group->mg_class;
1142 	multilist_sublist_t *mls =
1143 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144 	if (multilist_link_active(&msp->ms_class_txg_node))
1145 		multilist_sublist_remove(mls, msp);
1146 	multilist_sublist_unlock(mls);
1147 
1148 	msp->ms_group = NULL;
1149 	mutex_exit(&mg->mg_lock);
1150 }
1151 
1152 static void
1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154 {
1155 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1156 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1157 	ASSERT(msp->ms_group == mg);
1158 
1159 	avl_remove(&mg->mg_metaslab_tree, msp);
1160 	msp->ms_weight = weight;
1161 	avl_add(&mg->mg_metaslab_tree, msp);
1162 
1163 }
1164 
1165 static void
1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167 {
1168 	/*
1169 	 * Although in principle the weight can be any value, in
1170 	 * practice we do not use values in the range [1, 511].
1171 	 */
1172 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1174 
1175 	mutex_enter(&mg->mg_lock);
1176 	metaslab_group_sort_impl(mg, msp, weight);
1177 	mutex_exit(&mg->mg_lock);
1178 }
1179 
1180 /*
1181  * Calculate the fragmentation for a given metaslab group. We can use
1182  * a simple average here since all metaslabs within the group must have
1183  * the same size. The return value will be a value between 0 and 100
1184  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185  * group have a fragmentation metric.
1186  */
1187 uint64_t
1188 metaslab_group_fragmentation(metaslab_group_t *mg)
1189 {
1190 	vdev_t *vd = mg->mg_vd;
1191 	uint64_t fragmentation = 0;
1192 	uint64_t valid_ms = 0;
1193 
1194 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1195 		metaslab_t *msp = vd->vdev_ms[m];
1196 
1197 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198 			continue;
1199 		if (msp->ms_group != mg)
1200 			continue;
1201 
1202 		valid_ms++;
1203 		fragmentation += msp->ms_fragmentation;
1204 	}
1205 
1206 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207 		return (ZFS_FRAG_INVALID);
1208 
1209 	fragmentation /= valid_ms;
1210 	ASSERT3U(fragmentation, <=, 100);
1211 	return (fragmentation);
1212 }
1213 
1214 /*
1215  * Determine if a given metaslab group should skip allocations. A metaslab
1216  * group should avoid allocations if its free capacity is less than the
1217  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219  * that can still handle allocations. If the allocation throttle is enabled
1220  * then we skip allocations to devices that have reached their maximum
1221  * allocation queue depth unless the selected metaslab group is the only
1222  * eligible group remaining.
1223  */
1224 static boolean_t
1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226     int flags, uint64_t psize, int allocator, int d)
1227 {
1228 	spa_t *spa = mg->mg_vd->vdev_spa;
1229 	metaslab_class_t *mc = mg->mg_class;
1230 
1231 	/*
1232 	 * We can only consider skipping this metaslab group if it's
1233 	 * in the normal metaslab class and there are other metaslab
1234 	 * groups to select from. Otherwise, we always consider it eligible
1235 	 * for allocations.
1236 	 */
1237 	if ((mc != spa_normal_class(spa) &&
1238 	    mc != spa_special_class(spa) &&
1239 	    mc != spa_dedup_class(spa)) ||
1240 	    mc->mc_groups <= 1)
1241 		return (B_TRUE);
1242 
1243 	/*
1244 	 * If the metaslab group's mg_allocatable flag is set (see comments
1245 	 * in metaslab_group_alloc_update() for more information) and
1246 	 * the allocation throttle is disabled then allow allocations to this
1247 	 * device. However, if the allocation throttle is enabled then
1248 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249 	 * to determine if we should allow allocations to this metaslab group.
1250 	 * If all metaslab groups are no longer considered allocatable
1251 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252 	 * gang block size then we allow allocations on this metaslab group
1253 	 * regardless of the mg_allocatable or throttle settings.
1254 	 */
1255 	if (mg->mg_allocatable) {
1256 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257 		int64_t qdepth;
1258 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259 
1260 		if (!mc->mc_alloc_throttle_enabled)
1261 			return (B_TRUE);
1262 
1263 		/*
1264 		 * If this metaslab group does not have any free space, then
1265 		 * there is no point in looking further.
1266 		 */
1267 		if (mg->mg_no_free_space)
1268 			return (B_FALSE);
1269 
1270 		/*
1271 		 * Some allocations (e.g., those coming from device removal
1272 		 * where the * allocations are not even counted in the
1273 		 * metaslab * allocation queues) are allowed to bypass
1274 		 * the throttle.
1275 		 */
1276 		if (flags & METASLAB_DONT_THROTTLE)
1277 			return (B_TRUE);
1278 
1279 		/*
1280 		 * Relax allocation throttling for ditto blocks.  Due to
1281 		 * random imbalances in allocation it tends to push copies
1282 		 * to one vdev, that looks a bit better at the moment.
1283 		 */
1284 		qmax = qmax * (4 + d) / 4;
1285 
1286 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1287 
1288 		/*
1289 		 * If this metaslab group is below its qmax or it's
1290 		 * the only allocatable metasable group, then attempt
1291 		 * to allocate from it.
1292 		 */
1293 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1294 			return (B_TRUE);
1295 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1296 
1297 		/*
1298 		 * Since this metaslab group is at or over its qmax, we
1299 		 * need to determine if there are metaslab groups after this
1300 		 * one that might be able to handle this allocation. This is
1301 		 * racy since we can't hold the locks for all metaslab
1302 		 * groups at the same time when we make this check.
1303 		 */
1304 		for (metaslab_group_t *mgp = mg->mg_next;
1305 		    mgp != rotor; mgp = mgp->mg_next) {
1306 			metaslab_group_allocator_t *mgap =
1307 			    &mgp->mg_allocator[allocator];
1308 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1309 			qmax = qmax * (4 + d) / 4;
1310 			qdepth =
1311 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1312 
1313 			/*
1314 			 * If there is another metaslab group that
1315 			 * might be able to handle the allocation, then
1316 			 * we return false so that we skip this group.
1317 			 */
1318 			if (qdepth < qmax && !mgp->mg_no_free_space)
1319 				return (B_FALSE);
1320 		}
1321 
1322 		/*
1323 		 * We didn't find another group to handle the allocation
1324 		 * so we can't skip this metaslab group even though
1325 		 * we are at or over our qmax.
1326 		 */
1327 		return (B_TRUE);
1328 
1329 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1330 		return (B_TRUE);
1331 	}
1332 	return (B_FALSE);
1333 }
1334 
1335 /*
1336  * ==========================================================================
1337  * Range tree callbacks
1338  * ==========================================================================
1339  */
1340 
1341 /*
1342  * Comparison function for the private size-ordered tree using 32-bit
1343  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1344  */
1345 static int
1346 metaslab_rangesize32_compare(const void *x1, const void *x2)
1347 {
1348 	const range_seg32_t *r1 = x1;
1349 	const range_seg32_t *r2 = x2;
1350 
1351 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1352 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1353 
1354 	int cmp = TREE_CMP(rs_size1, rs_size2);
1355 	if (likely(cmp))
1356 		return (cmp);
1357 
1358 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1359 }
1360 
1361 /*
1362  * Comparison function for the private size-ordered tree using 64-bit
1363  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1364  */
1365 static int
1366 metaslab_rangesize64_compare(const void *x1, const void *x2)
1367 {
1368 	const range_seg64_t *r1 = x1;
1369 	const range_seg64_t *r2 = x2;
1370 
1371 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1372 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1373 
1374 	int cmp = TREE_CMP(rs_size1, rs_size2);
1375 	if (likely(cmp))
1376 		return (cmp);
1377 
1378 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1379 }
1380 typedef struct metaslab_rt_arg {
1381 	zfs_btree_t *mra_bt;
1382 	uint32_t mra_floor_shift;
1383 } metaslab_rt_arg_t;
1384 
1385 struct mssa_arg {
1386 	range_tree_t *rt;
1387 	metaslab_rt_arg_t *mra;
1388 };
1389 
1390 static void
1391 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1392 {
1393 	struct mssa_arg *mssap = arg;
1394 	range_tree_t *rt = mssap->rt;
1395 	metaslab_rt_arg_t *mrap = mssap->mra;
1396 	range_seg_max_t seg = {0};
1397 	rs_set_start(&seg, rt, start);
1398 	rs_set_end(&seg, rt, start + size);
1399 	metaslab_rt_add(rt, &seg, mrap);
1400 }
1401 
1402 static void
1403 metaslab_size_tree_full_load(range_tree_t *rt)
1404 {
1405 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1406 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1407 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1408 	mrap->mra_floor_shift = 0;
1409 	struct mssa_arg arg = {0};
1410 	arg.rt = rt;
1411 	arg.mra = mrap;
1412 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1413 }
1414 
1415 /*
1416  * Create any block allocator specific components. The current allocators
1417  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1418  */
1419 static void
1420 metaslab_rt_create(range_tree_t *rt, void *arg)
1421 {
1422 	metaslab_rt_arg_t *mrap = arg;
1423 	zfs_btree_t *size_tree = mrap->mra_bt;
1424 
1425 	size_t size;
1426 	int (*compare) (const void *, const void *);
1427 	switch (rt->rt_type) {
1428 	case RANGE_SEG32:
1429 		size = sizeof (range_seg32_t);
1430 		compare = metaslab_rangesize32_compare;
1431 		break;
1432 	case RANGE_SEG64:
1433 		size = sizeof (range_seg64_t);
1434 		compare = metaslab_rangesize64_compare;
1435 		break;
1436 	default:
1437 		panic("Invalid range seg type %d", rt->rt_type);
1438 	}
1439 	zfs_btree_create(size_tree, compare, size);
1440 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1441 }
1442 
1443 static void
1444 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1445 {
1446 	(void) rt;
1447 	metaslab_rt_arg_t *mrap = arg;
1448 	zfs_btree_t *size_tree = mrap->mra_bt;
1449 
1450 	zfs_btree_destroy(size_tree);
1451 	kmem_free(mrap, sizeof (*mrap));
1452 }
1453 
1454 static void
1455 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1456 {
1457 	metaslab_rt_arg_t *mrap = arg;
1458 	zfs_btree_t *size_tree = mrap->mra_bt;
1459 
1460 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1461 	    (1ULL << mrap->mra_floor_shift))
1462 		return;
1463 
1464 	zfs_btree_add(size_tree, rs);
1465 }
1466 
1467 static void
1468 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1469 {
1470 	metaslab_rt_arg_t *mrap = arg;
1471 	zfs_btree_t *size_tree = mrap->mra_bt;
1472 
1473 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1474 	    mrap->mra_floor_shift))
1475 		return;
1476 
1477 	zfs_btree_remove(size_tree, rs);
1478 }
1479 
1480 static void
1481 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1482 {
1483 	metaslab_rt_arg_t *mrap = arg;
1484 	zfs_btree_t *size_tree = mrap->mra_bt;
1485 	zfs_btree_clear(size_tree);
1486 	zfs_btree_destroy(size_tree);
1487 
1488 	metaslab_rt_create(rt, arg);
1489 }
1490 
1491 static const range_tree_ops_t metaslab_rt_ops = {
1492 	.rtop_create = metaslab_rt_create,
1493 	.rtop_destroy = metaslab_rt_destroy,
1494 	.rtop_add = metaslab_rt_add,
1495 	.rtop_remove = metaslab_rt_remove,
1496 	.rtop_vacate = metaslab_rt_vacate
1497 };
1498 
1499 /*
1500  * ==========================================================================
1501  * Common allocator routines
1502  * ==========================================================================
1503  */
1504 
1505 /*
1506  * Return the maximum contiguous segment within the metaslab.
1507  */
1508 uint64_t
1509 metaslab_largest_allocatable(metaslab_t *msp)
1510 {
1511 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1512 	range_seg_t *rs;
1513 
1514 	if (t == NULL)
1515 		return (0);
1516 	if (zfs_btree_numnodes(t) == 0)
1517 		metaslab_size_tree_full_load(msp->ms_allocatable);
1518 
1519 	rs = zfs_btree_last(t, NULL);
1520 	if (rs == NULL)
1521 		return (0);
1522 
1523 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1524 	    msp->ms_allocatable));
1525 }
1526 
1527 /*
1528  * Return the maximum contiguous segment within the unflushed frees of this
1529  * metaslab.
1530  */
1531 static uint64_t
1532 metaslab_largest_unflushed_free(metaslab_t *msp)
1533 {
1534 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1535 
1536 	if (msp->ms_unflushed_frees == NULL)
1537 		return (0);
1538 
1539 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1540 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1541 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1542 	    NULL);
1543 	if (rs == NULL)
1544 		return (0);
1545 
1546 	/*
1547 	 * When a range is freed from the metaslab, that range is added to
1548 	 * both the unflushed frees and the deferred frees. While the block
1549 	 * will eventually be usable, if the metaslab were loaded the range
1550 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1551 	 * txgs had passed.  As a result, when attempting to estimate an upper
1552 	 * bound for the largest currently-usable free segment in the
1553 	 * metaslab, we need to not consider any ranges currently in the defer
1554 	 * trees. This algorithm approximates the largest available chunk in
1555 	 * the largest range in the unflushed_frees tree by taking the first
1556 	 * chunk.  While this may be a poor estimate, it should only remain so
1557 	 * briefly and should eventually self-correct as frees are no longer
1558 	 * deferred. Similar logic applies to the ms_freed tree. See
1559 	 * metaslab_load() for more details.
1560 	 *
1561 	 * There are two primary sources of inaccuracy in this estimate. Both
1562 	 * are tolerated for performance reasons. The first source is that we
1563 	 * only check the largest segment for overlaps. Smaller segments may
1564 	 * have more favorable overlaps with the other trees, resulting in
1565 	 * larger usable chunks.  Second, we only look at the first chunk in
1566 	 * the largest segment; there may be other usable chunks in the
1567 	 * largest segment, but we ignore them.
1568 	 */
1569 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1570 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1571 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1572 		uint64_t start = 0;
1573 		uint64_t size = 0;
1574 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1575 		    rsize, &start, &size);
1576 		if (found) {
1577 			if (rstart == start)
1578 				return (0);
1579 			rsize = start - rstart;
1580 		}
1581 	}
1582 
1583 	uint64_t start = 0;
1584 	uint64_t size = 0;
1585 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1586 	    rsize, &start, &size);
1587 	if (found)
1588 		rsize = start - rstart;
1589 
1590 	return (rsize);
1591 }
1592 
1593 static range_seg_t *
1594 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1595     uint64_t size, zfs_btree_index_t *where)
1596 {
1597 	range_seg_t *rs;
1598 	range_seg_max_t rsearch;
1599 
1600 	rs_set_start(&rsearch, rt, start);
1601 	rs_set_end(&rsearch, rt, start + size);
1602 
1603 	rs = zfs_btree_find(t, &rsearch, where);
1604 	if (rs == NULL) {
1605 		rs = zfs_btree_next(t, where, where);
1606 	}
1607 
1608 	return (rs);
1609 }
1610 
1611 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1612     defined(WITH_CF_BLOCK_ALLOCATOR)
1613 
1614 /*
1615  * This is a helper function that can be used by the allocator to find a
1616  * suitable block to allocate. This will search the specified B-tree looking
1617  * for a block that matches the specified criteria.
1618  */
1619 static uint64_t
1620 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1621     uint64_t max_search)
1622 {
1623 	if (*cursor == 0)
1624 		*cursor = rt->rt_start;
1625 	zfs_btree_t *bt = &rt->rt_root;
1626 	zfs_btree_index_t where;
1627 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1628 	uint64_t first_found;
1629 	int count_searched = 0;
1630 
1631 	if (rs != NULL)
1632 		first_found = rs_get_start(rs, rt);
1633 
1634 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1635 	    max_search || count_searched < metaslab_min_search_count)) {
1636 		uint64_t offset = rs_get_start(rs, rt);
1637 		if (offset + size <= rs_get_end(rs, rt)) {
1638 			*cursor = offset + size;
1639 			return (offset);
1640 		}
1641 		rs = zfs_btree_next(bt, &where, &where);
1642 		count_searched++;
1643 	}
1644 
1645 	*cursor = 0;
1646 	return (-1ULL);
1647 }
1648 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1649 
1650 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1651 /*
1652  * ==========================================================================
1653  * Dynamic Fit (df) block allocator
1654  *
1655  * Search for a free chunk of at least this size, starting from the last
1656  * offset (for this alignment of block) looking for up to
1657  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1658  * found within 16MB, then return a free chunk of exactly the requested size (or
1659  * larger).
1660  *
1661  * If it seems like searching from the last offset will be unproductive, skip
1662  * that and just return a free chunk of exactly the requested size (or larger).
1663  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1664  * mechanism is probably not very useful and may be removed in the future.
1665  *
1666  * The behavior when not searching can be changed to return the largest free
1667  * chunk, instead of a free chunk of exactly the requested size, by setting
1668  * metaslab_df_use_largest_segment.
1669  * ==========================================================================
1670  */
1671 static uint64_t
1672 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1673 {
1674 	/*
1675 	 * Find the largest power of 2 block size that evenly divides the
1676 	 * requested size. This is used to try to allocate blocks with similar
1677 	 * alignment from the same area of the metaslab (i.e. same cursor
1678 	 * bucket) but it does not guarantee that other allocations sizes
1679 	 * may exist in the same region.
1680 	 */
1681 	uint64_t align = size & -size;
1682 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1683 	range_tree_t *rt = msp->ms_allocatable;
1684 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1685 	uint64_t offset;
1686 
1687 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1688 
1689 	/*
1690 	 * If we're running low on space, find a segment based on size,
1691 	 * rather than iterating based on offset.
1692 	 */
1693 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1694 	    free_pct < metaslab_df_free_pct) {
1695 		offset = -1;
1696 	} else {
1697 		offset = metaslab_block_picker(rt,
1698 		    cursor, size, metaslab_df_max_search);
1699 	}
1700 
1701 	if (offset == -1) {
1702 		range_seg_t *rs;
1703 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1704 			metaslab_size_tree_full_load(msp->ms_allocatable);
1705 
1706 		if (metaslab_df_use_largest_segment) {
1707 			/* use largest free segment */
1708 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1709 		} else {
1710 			zfs_btree_index_t where;
1711 			/* use segment of this size, or next largest */
1712 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1713 			    rt, msp->ms_start, size, &where);
1714 		}
1715 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1716 		    rt)) {
1717 			offset = rs_get_start(rs, rt);
1718 			*cursor = offset + size;
1719 		}
1720 	}
1721 
1722 	return (offset);
1723 }
1724 
1725 const metaslab_ops_t zfs_metaslab_ops = {
1726 	metaslab_df_alloc
1727 };
1728 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1729 
1730 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1731 /*
1732  * ==========================================================================
1733  * Cursor fit block allocator -
1734  * Select the largest region in the metaslab, set the cursor to the beginning
1735  * of the range and the cursor_end to the end of the range. As allocations
1736  * are made advance the cursor. Continue allocating from the cursor until
1737  * the range is exhausted and then find a new range.
1738  * ==========================================================================
1739  */
1740 static uint64_t
1741 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1742 {
1743 	range_tree_t *rt = msp->ms_allocatable;
1744 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1745 	uint64_t *cursor = &msp->ms_lbas[0];
1746 	uint64_t *cursor_end = &msp->ms_lbas[1];
1747 	uint64_t offset = 0;
1748 
1749 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1750 
1751 	ASSERT3U(*cursor_end, >=, *cursor);
1752 
1753 	if ((*cursor + size) > *cursor_end) {
1754 		range_seg_t *rs;
1755 
1756 		if (zfs_btree_numnodes(t) == 0)
1757 			metaslab_size_tree_full_load(msp->ms_allocatable);
1758 		rs = zfs_btree_last(t, NULL);
1759 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1760 		    size)
1761 			return (-1ULL);
1762 
1763 		*cursor = rs_get_start(rs, rt);
1764 		*cursor_end = rs_get_end(rs, rt);
1765 	}
1766 
1767 	offset = *cursor;
1768 	*cursor += size;
1769 
1770 	return (offset);
1771 }
1772 
1773 const metaslab_ops_t zfs_metaslab_ops = {
1774 	metaslab_cf_alloc
1775 };
1776 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1777 
1778 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1779 /*
1780  * ==========================================================================
1781  * New dynamic fit allocator -
1782  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1783  * contiguous blocks. If no region is found then just use the largest segment
1784  * that remains.
1785  * ==========================================================================
1786  */
1787 
1788 /*
1789  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1790  * to request from the allocator.
1791  */
1792 uint64_t metaslab_ndf_clump_shift = 4;
1793 
1794 static uint64_t
1795 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1796 {
1797 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1798 	range_tree_t *rt = msp->ms_allocatable;
1799 	zfs_btree_index_t where;
1800 	range_seg_t *rs;
1801 	range_seg_max_t rsearch;
1802 	uint64_t hbit = highbit64(size);
1803 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1804 	uint64_t max_size = metaslab_largest_allocatable(msp);
1805 
1806 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1807 
1808 	if (max_size < size)
1809 		return (-1ULL);
1810 
1811 	rs_set_start(&rsearch, rt, *cursor);
1812 	rs_set_end(&rsearch, rt, *cursor + size);
1813 
1814 	rs = zfs_btree_find(t, &rsearch, &where);
1815 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1816 		t = &msp->ms_allocatable_by_size;
1817 
1818 		rs_set_start(&rsearch, rt, 0);
1819 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1820 		    metaslab_ndf_clump_shift)));
1821 
1822 		rs = zfs_btree_find(t, &rsearch, &where);
1823 		if (rs == NULL)
1824 			rs = zfs_btree_next(t, &where, &where);
1825 		ASSERT(rs != NULL);
1826 	}
1827 
1828 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1829 		*cursor = rs_get_start(rs, rt) + size;
1830 		return (rs_get_start(rs, rt));
1831 	}
1832 	return (-1ULL);
1833 }
1834 
1835 const metaslab_ops_t zfs_metaslab_ops = {
1836 	metaslab_ndf_alloc
1837 };
1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1839 
1840 
1841 /*
1842  * ==========================================================================
1843  * Metaslabs
1844  * ==========================================================================
1845  */
1846 
1847 /*
1848  * Wait for any in-progress metaslab loads to complete.
1849  */
1850 static void
1851 metaslab_load_wait(metaslab_t *msp)
1852 {
1853 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1854 
1855 	while (msp->ms_loading) {
1856 		ASSERT(!msp->ms_loaded);
1857 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1858 	}
1859 }
1860 
1861 /*
1862  * Wait for any in-progress flushing to complete.
1863  */
1864 static void
1865 metaslab_flush_wait(metaslab_t *msp)
1866 {
1867 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1868 
1869 	while (msp->ms_flushing)
1870 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1871 }
1872 
1873 static unsigned int
1874 metaslab_idx_func(multilist_t *ml, void *arg)
1875 {
1876 	metaslab_t *msp = arg;
1877 
1878 	/*
1879 	 * ms_id values are allocated sequentially, so full 64bit
1880 	 * division would be a waste of time, so limit it to 32 bits.
1881 	 */
1882 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1883 }
1884 
1885 uint64_t
1886 metaslab_allocated_space(metaslab_t *msp)
1887 {
1888 	return (msp->ms_allocated_space);
1889 }
1890 
1891 /*
1892  * Verify that the space accounting on disk matches the in-core range_trees.
1893  */
1894 static void
1895 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1896 {
1897 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1898 	uint64_t allocating = 0;
1899 	uint64_t sm_free_space, msp_free_space;
1900 
1901 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1902 	ASSERT(!msp->ms_condensing);
1903 
1904 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1905 		return;
1906 
1907 	/*
1908 	 * We can only verify the metaslab space when we're called
1909 	 * from syncing context with a loaded metaslab that has an
1910 	 * allocated space map. Calling this in non-syncing context
1911 	 * does not provide a consistent view of the metaslab since
1912 	 * we're performing allocations in the future.
1913 	 */
1914 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1915 	    !msp->ms_loaded)
1916 		return;
1917 
1918 	/*
1919 	 * Even though the smp_alloc field can get negative,
1920 	 * when it comes to a metaslab's space map, that should
1921 	 * never be the case.
1922 	 */
1923 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1924 
1925 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1926 	    range_tree_space(msp->ms_unflushed_frees));
1927 
1928 	ASSERT3U(metaslab_allocated_space(msp), ==,
1929 	    space_map_allocated(msp->ms_sm) +
1930 	    range_tree_space(msp->ms_unflushed_allocs) -
1931 	    range_tree_space(msp->ms_unflushed_frees));
1932 
1933 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1934 
1935 	/*
1936 	 * Account for future allocations since we would have
1937 	 * already deducted that space from the ms_allocatable.
1938 	 */
1939 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1940 		allocating +=
1941 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1942 	}
1943 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1944 	    msp->ms_allocating_total);
1945 
1946 	ASSERT3U(msp->ms_deferspace, ==,
1947 	    range_tree_space(msp->ms_defer[0]) +
1948 	    range_tree_space(msp->ms_defer[1]));
1949 
1950 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1951 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1952 
1953 	VERIFY3U(sm_free_space, ==, msp_free_space);
1954 }
1955 
1956 static void
1957 metaslab_aux_histograms_clear(metaslab_t *msp)
1958 {
1959 	/*
1960 	 * Auxiliary histograms are only cleared when resetting them,
1961 	 * which can only happen while the metaslab is loaded.
1962 	 */
1963 	ASSERT(msp->ms_loaded);
1964 
1965 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1966 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1967 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1968 }
1969 
1970 static void
1971 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1972     range_tree_t *rt)
1973 {
1974 	/*
1975 	 * This is modeled after space_map_histogram_add(), so refer to that
1976 	 * function for implementation details. We want this to work like
1977 	 * the space map histogram, and not the range tree histogram, as we
1978 	 * are essentially constructing a delta that will be later subtracted
1979 	 * from the space map histogram.
1980 	 */
1981 	int idx = 0;
1982 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1983 		ASSERT3U(i, >=, idx + shift);
1984 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1985 
1986 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1987 			ASSERT3U(idx + shift, ==, i);
1988 			idx++;
1989 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1990 		}
1991 	}
1992 }
1993 
1994 /*
1995  * Called at every sync pass that the metaslab gets synced.
1996  *
1997  * The reason is that we want our auxiliary histograms to be updated
1998  * wherever the metaslab's space map histogram is updated. This way
1999  * we stay consistent on which parts of the metaslab space map's
2000  * histogram are currently not available for allocations (e.g because
2001  * they are in the defer, freed, and freeing trees).
2002  */
2003 static void
2004 metaslab_aux_histograms_update(metaslab_t *msp)
2005 {
2006 	space_map_t *sm = msp->ms_sm;
2007 	ASSERT(sm != NULL);
2008 
2009 	/*
2010 	 * This is similar to the metaslab's space map histogram updates
2011 	 * that take place in metaslab_sync(). The only difference is that
2012 	 * we only care about segments that haven't made it into the
2013 	 * ms_allocatable tree yet.
2014 	 */
2015 	if (msp->ms_loaded) {
2016 		metaslab_aux_histograms_clear(msp);
2017 
2018 		metaslab_aux_histogram_add(msp->ms_synchist,
2019 		    sm->sm_shift, msp->ms_freed);
2020 
2021 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2022 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2023 			    sm->sm_shift, msp->ms_defer[t]);
2024 		}
2025 	}
2026 
2027 	metaslab_aux_histogram_add(msp->ms_synchist,
2028 	    sm->sm_shift, msp->ms_freeing);
2029 }
2030 
2031 /*
2032  * Called every time we are done syncing (writing to) the metaslab,
2033  * i.e. at the end of each sync pass.
2034  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2035  */
2036 static void
2037 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2038 {
2039 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2040 	space_map_t *sm = msp->ms_sm;
2041 
2042 	if (sm == NULL) {
2043 		/*
2044 		 * We came here from metaslab_init() when creating/opening a
2045 		 * pool, looking at a metaslab that hasn't had any allocations
2046 		 * yet.
2047 		 */
2048 		return;
2049 	}
2050 
2051 	/*
2052 	 * This is similar to the actions that we take for the ms_freed
2053 	 * and ms_defer trees in metaslab_sync_done().
2054 	 */
2055 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2056 	if (defer_allowed) {
2057 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2058 		    sizeof (msp->ms_synchist));
2059 	} else {
2060 		memset(msp->ms_deferhist[hist_index], 0,
2061 		    sizeof (msp->ms_deferhist[hist_index]));
2062 	}
2063 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2064 }
2065 
2066 /*
2067  * Ensure that the metaslab's weight and fragmentation are consistent
2068  * with the contents of the histogram (either the range tree's histogram
2069  * or the space map's depending whether the metaslab is loaded).
2070  */
2071 static void
2072 metaslab_verify_weight_and_frag(metaslab_t *msp)
2073 {
2074 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2075 
2076 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2077 		return;
2078 
2079 	/*
2080 	 * We can end up here from vdev_remove_complete(), in which case we
2081 	 * cannot do these assertions because we hold spa config locks and
2082 	 * thus we are not allowed to read from the DMU.
2083 	 *
2084 	 * We check if the metaslab group has been removed and if that's
2085 	 * the case we return immediately as that would mean that we are
2086 	 * here from the aforementioned code path.
2087 	 */
2088 	if (msp->ms_group == NULL)
2089 		return;
2090 
2091 	/*
2092 	 * Devices being removed always return a weight of 0 and leave
2093 	 * fragmentation and ms_max_size as is - there is nothing for
2094 	 * us to verify here.
2095 	 */
2096 	vdev_t *vd = msp->ms_group->mg_vd;
2097 	if (vd->vdev_removing)
2098 		return;
2099 
2100 	/*
2101 	 * If the metaslab is dirty it probably means that we've done
2102 	 * some allocations or frees that have changed our histograms
2103 	 * and thus the weight.
2104 	 */
2105 	for (int t = 0; t < TXG_SIZE; t++) {
2106 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2107 			return;
2108 	}
2109 
2110 	/*
2111 	 * This verification checks that our in-memory state is consistent
2112 	 * with what's on disk. If the pool is read-only then there aren't
2113 	 * any changes and we just have the initially-loaded state.
2114 	 */
2115 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2116 		return;
2117 
2118 	/* some extra verification for in-core tree if you can */
2119 	if (msp->ms_loaded) {
2120 		range_tree_stat_verify(msp->ms_allocatable);
2121 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2122 		    msp->ms_allocatable));
2123 	}
2124 
2125 	uint64_t weight = msp->ms_weight;
2126 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2127 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2128 	uint64_t frag = msp->ms_fragmentation;
2129 	uint64_t max_segsize = msp->ms_max_size;
2130 
2131 	msp->ms_weight = 0;
2132 	msp->ms_fragmentation = 0;
2133 
2134 	/*
2135 	 * This function is used for verification purposes and thus should
2136 	 * not introduce any side-effects/mutations on the system's state.
2137 	 *
2138 	 * Regardless of whether metaslab_weight() thinks this metaslab
2139 	 * should be active or not, we want to ensure that the actual weight
2140 	 * (and therefore the value of ms_weight) would be the same if it
2141 	 * was to be recalculated at this point.
2142 	 *
2143 	 * In addition we set the nodirty flag so metaslab_weight() does
2144 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2145 	 * force condensing to upgrade the metaslab spacemaps).
2146 	 */
2147 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2148 
2149 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2150 
2151 	/*
2152 	 * If the weight type changed then there is no point in doing
2153 	 * verification. Revert fields to their original values.
2154 	 */
2155 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2156 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2157 		msp->ms_fragmentation = frag;
2158 		msp->ms_weight = weight;
2159 		return;
2160 	}
2161 
2162 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2163 	VERIFY3U(msp->ms_weight, ==, weight);
2164 }
2165 
2166 /*
2167  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2168  * this class that was used longest ago, and attempt to unload it.  We don't
2169  * want to spend too much time in this loop to prevent performance
2170  * degradation, and we expect that most of the time this operation will
2171  * succeed. Between that and the normal unloading processing during txg sync,
2172  * we expect this to keep the metaslab memory usage under control.
2173  */
2174 static void
2175 metaslab_potentially_evict(metaslab_class_t *mc)
2176 {
2177 #ifdef _KERNEL
2178 	uint64_t allmem = arc_all_memory();
2179 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2180 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2181 	uint_t tries = 0;
2182 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2183 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2184 	    tries++) {
2185 		unsigned int idx = multilist_get_random_index(
2186 		    &mc->mc_metaslab_txg_list);
2187 		multilist_sublist_t *mls =
2188 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2189 		metaslab_t *msp = multilist_sublist_head(mls);
2190 		multilist_sublist_unlock(mls);
2191 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2192 		    inuse * size) {
2193 			VERIFY3P(mls, ==, multilist_sublist_lock(
2194 			    &mc->mc_metaslab_txg_list, idx));
2195 			ASSERT3U(idx, ==,
2196 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2197 
2198 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2199 				multilist_sublist_unlock(mls);
2200 				break;
2201 			}
2202 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2203 			multilist_sublist_unlock(mls);
2204 			/*
2205 			 * If the metaslab is currently loading there are two
2206 			 * cases. If it's the metaslab we're evicting, we
2207 			 * can't continue on or we'll panic when we attempt to
2208 			 * recursively lock the mutex. If it's another
2209 			 * metaslab that's loading, it can be safely skipped,
2210 			 * since we know it's very new and therefore not a
2211 			 * good eviction candidate. We check later once the
2212 			 * lock is held that the metaslab is fully loaded
2213 			 * before actually unloading it.
2214 			 */
2215 			if (msp->ms_loading) {
2216 				msp = next_msp;
2217 				inuse =
2218 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2219 				continue;
2220 			}
2221 			/*
2222 			 * We can't unload metaslabs with no spacemap because
2223 			 * they're not ready to be unloaded yet. We can't
2224 			 * unload metaslabs with outstanding allocations
2225 			 * because doing so could cause the metaslab's weight
2226 			 * to decrease while it's unloaded, which violates an
2227 			 * invariant that we use to prevent unnecessary
2228 			 * loading. We also don't unload metaslabs that are
2229 			 * currently active because they are high-weight
2230 			 * metaslabs that are likely to be used in the near
2231 			 * future.
2232 			 */
2233 			mutex_enter(&msp->ms_lock);
2234 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2235 			    msp->ms_allocating_total == 0) {
2236 				metaslab_unload(msp);
2237 			}
2238 			mutex_exit(&msp->ms_lock);
2239 			msp = next_msp;
2240 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2241 		}
2242 	}
2243 #else
2244 	(void) mc, (void) zfs_metaslab_mem_limit;
2245 #endif
2246 }
2247 
2248 static int
2249 metaslab_load_impl(metaslab_t *msp)
2250 {
2251 	int error = 0;
2252 
2253 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2254 	ASSERT(msp->ms_loading);
2255 	ASSERT(!msp->ms_condensing);
2256 
2257 	/*
2258 	 * We temporarily drop the lock to unblock other operations while we
2259 	 * are reading the space map. Therefore, metaslab_sync() and
2260 	 * metaslab_sync_done() can run at the same time as we do.
2261 	 *
2262 	 * If we are using the log space maps, metaslab_sync() can't write to
2263 	 * the metaslab's space map while we are loading as we only write to
2264 	 * it when we are flushing the metaslab, and that can't happen while
2265 	 * we are loading it.
2266 	 *
2267 	 * If we are not using log space maps though, metaslab_sync() can
2268 	 * append to the space map while we are loading. Therefore we load
2269 	 * only entries that existed when we started the load. Additionally,
2270 	 * metaslab_sync_done() has to wait for the load to complete because
2271 	 * there are potential races like metaslab_load() loading parts of the
2272 	 * space map that are currently being appended by metaslab_sync(). If
2273 	 * we didn't, the ms_allocatable would have entries that
2274 	 * metaslab_sync_done() would try to re-add later.
2275 	 *
2276 	 * That's why before dropping the lock we remember the synced length
2277 	 * of the metaslab and read up to that point of the space map,
2278 	 * ignoring entries appended by metaslab_sync() that happen after we
2279 	 * drop the lock.
2280 	 */
2281 	uint64_t length = msp->ms_synced_length;
2282 	mutex_exit(&msp->ms_lock);
2283 
2284 	hrtime_t load_start = gethrtime();
2285 	metaslab_rt_arg_t *mrap;
2286 	if (msp->ms_allocatable->rt_arg == NULL) {
2287 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2288 	} else {
2289 		mrap = msp->ms_allocatable->rt_arg;
2290 		msp->ms_allocatable->rt_ops = NULL;
2291 		msp->ms_allocatable->rt_arg = NULL;
2292 	}
2293 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2294 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2295 
2296 	if (msp->ms_sm != NULL) {
2297 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2298 		    SM_FREE, length);
2299 
2300 		/* Now, populate the size-sorted tree. */
2301 		metaslab_rt_create(msp->ms_allocatable, mrap);
2302 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2303 		msp->ms_allocatable->rt_arg = mrap;
2304 
2305 		struct mssa_arg arg = {0};
2306 		arg.rt = msp->ms_allocatable;
2307 		arg.mra = mrap;
2308 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2309 		    &arg);
2310 	} else {
2311 		/*
2312 		 * Add the size-sorted tree first, since we don't need to load
2313 		 * the metaslab from the spacemap.
2314 		 */
2315 		metaslab_rt_create(msp->ms_allocatable, mrap);
2316 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2317 		msp->ms_allocatable->rt_arg = mrap;
2318 		/*
2319 		 * The space map has not been allocated yet, so treat
2320 		 * all the space in the metaslab as free and add it to the
2321 		 * ms_allocatable tree.
2322 		 */
2323 		range_tree_add(msp->ms_allocatable,
2324 		    msp->ms_start, msp->ms_size);
2325 
2326 		if (msp->ms_new) {
2327 			/*
2328 			 * If the ms_sm doesn't exist, this means that this
2329 			 * metaslab hasn't gone through metaslab_sync() and
2330 			 * thus has never been dirtied. So we shouldn't
2331 			 * expect any unflushed allocs or frees from previous
2332 			 * TXGs.
2333 			 */
2334 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2335 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2336 		}
2337 	}
2338 
2339 	/*
2340 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2341 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2342 	 * while we are about to use them and populate the ms_allocatable.
2343 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2344 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2345 	 */
2346 	mutex_enter(&msp->ms_sync_lock);
2347 	mutex_enter(&msp->ms_lock);
2348 
2349 	ASSERT(!msp->ms_condensing);
2350 	ASSERT(!msp->ms_flushing);
2351 
2352 	if (error != 0) {
2353 		mutex_exit(&msp->ms_sync_lock);
2354 		return (error);
2355 	}
2356 
2357 	ASSERT3P(msp->ms_group, !=, NULL);
2358 	msp->ms_loaded = B_TRUE;
2359 
2360 	/*
2361 	 * Apply all the unflushed changes to ms_allocatable right
2362 	 * away so any manipulations we do below have a clear view
2363 	 * of what is allocated and what is free.
2364 	 */
2365 	range_tree_walk(msp->ms_unflushed_allocs,
2366 	    range_tree_remove, msp->ms_allocatable);
2367 	range_tree_walk(msp->ms_unflushed_frees,
2368 	    range_tree_add, msp->ms_allocatable);
2369 
2370 	ASSERT3P(msp->ms_group, !=, NULL);
2371 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2372 	if (spa_syncing_log_sm(spa) != NULL) {
2373 		ASSERT(spa_feature_is_enabled(spa,
2374 		    SPA_FEATURE_LOG_SPACEMAP));
2375 
2376 		/*
2377 		 * If we use a log space map we add all the segments
2378 		 * that are in ms_unflushed_frees so they are available
2379 		 * for allocation.
2380 		 *
2381 		 * ms_allocatable needs to contain all free segments
2382 		 * that are ready for allocations (thus not segments
2383 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2384 		 * But if we grab the lock in this code path at a sync
2385 		 * pass later that 1, then it also contains the
2386 		 * segments of ms_freed (they were added to it earlier
2387 		 * in this path through ms_unflushed_frees). So we
2388 		 * need to remove all the segments that exist in
2389 		 * ms_freed from ms_allocatable as they will be added
2390 		 * later in metaslab_sync_done().
2391 		 *
2392 		 * When there's no log space map, the ms_allocatable
2393 		 * correctly doesn't contain any segments that exist
2394 		 * in ms_freed [see ms_synced_length].
2395 		 */
2396 		range_tree_walk(msp->ms_freed,
2397 		    range_tree_remove, msp->ms_allocatable);
2398 	}
2399 
2400 	/*
2401 	 * If we are not using the log space map, ms_allocatable
2402 	 * contains the segments that exist in the ms_defer trees
2403 	 * [see ms_synced_length]. Thus we need to remove them
2404 	 * from ms_allocatable as they will be added again in
2405 	 * metaslab_sync_done().
2406 	 *
2407 	 * If we are using the log space map, ms_allocatable still
2408 	 * contains the segments that exist in the ms_defer trees.
2409 	 * Not because it read them through the ms_sm though. But
2410 	 * because these segments are part of ms_unflushed_frees
2411 	 * whose segments we add to ms_allocatable earlier in this
2412 	 * code path.
2413 	 */
2414 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2415 		range_tree_walk(msp->ms_defer[t],
2416 		    range_tree_remove, msp->ms_allocatable);
2417 	}
2418 
2419 	/*
2420 	 * Call metaslab_recalculate_weight_and_sort() now that the
2421 	 * metaslab is loaded so we get the metaslab's real weight.
2422 	 *
2423 	 * Unless this metaslab was created with older software and
2424 	 * has not yet been converted to use segment-based weight, we
2425 	 * expect the new weight to be better or equal to the weight
2426 	 * that the metaslab had while it was not loaded. This is
2427 	 * because the old weight does not take into account the
2428 	 * consolidation of adjacent segments between TXGs. [see
2429 	 * comment for ms_synchist and ms_deferhist[] for more info]
2430 	 */
2431 	uint64_t weight = msp->ms_weight;
2432 	uint64_t max_size = msp->ms_max_size;
2433 	metaslab_recalculate_weight_and_sort(msp);
2434 	if (!WEIGHT_IS_SPACEBASED(weight))
2435 		ASSERT3U(weight, <=, msp->ms_weight);
2436 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2437 	ASSERT3U(max_size, <=, msp->ms_max_size);
2438 	hrtime_t load_end = gethrtime();
2439 	msp->ms_load_time = load_end;
2440 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2441 	    "ms_id %llu, smp_length %llu, "
2442 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2443 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2444 	    "loading_time %lld ms, ms_max_size %llu, "
2445 	    "max size error %lld, "
2446 	    "old_weight %llx, new_weight %llx",
2447 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2448 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2449 	    (u_longlong_t)msp->ms_id,
2450 	    (u_longlong_t)space_map_length(msp->ms_sm),
2451 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2452 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2453 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2454 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2455 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2456 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2457 	    (longlong_t)((load_end - load_start) / 1000000),
2458 	    (u_longlong_t)msp->ms_max_size,
2459 	    (u_longlong_t)msp->ms_max_size - max_size,
2460 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2461 
2462 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2463 	mutex_exit(&msp->ms_sync_lock);
2464 	return (0);
2465 }
2466 
2467 int
2468 metaslab_load(metaslab_t *msp)
2469 {
2470 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2471 
2472 	/*
2473 	 * There may be another thread loading the same metaslab, if that's
2474 	 * the case just wait until the other thread is done and return.
2475 	 */
2476 	metaslab_load_wait(msp);
2477 	if (msp->ms_loaded)
2478 		return (0);
2479 	VERIFY(!msp->ms_loading);
2480 	ASSERT(!msp->ms_condensing);
2481 
2482 	/*
2483 	 * We set the loading flag BEFORE potentially dropping the lock to
2484 	 * wait for an ongoing flush (see ms_flushing below). This way other
2485 	 * threads know that there is already a thread that is loading this
2486 	 * metaslab.
2487 	 */
2488 	msp->ms_loading = B_TRUE;
2489 
2490 	/*
2491 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2492 	 * both here (during space_map_load()) and in metaslab_flush() (when
2493 	 * we flush our changes to the ms_sm).
2494 	 */
2495 	if (msp->ms_flushing)
2496 		metaslab_flush_wait(msp);
2497 
2498 	/*
2499 	 * In the possibility that we were waiting for the metaslab to be
2500 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2501 	 * no one else loaded the metaslab somehow.
2502 	 */
2503 	ASSERT(!msp->ms_loaded);
2504 
2505 	/*
2506 	 * If we're loading a metaslab in the normal class, consider evicting
2507 	 * another one to keep our memory usage under the limit defined by the
2508 	 * zfs_metaslab_mem_limit tunable.
2509 	 */
2510 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2511 	    msp->ms_group->mg_class) {
2512 		metaslab_potentially_evict(msp->ms_group->mg_class);
2513 	}
2514 
2515 	int error = metaslab_load_impl(msp);
2516 
2517 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2518 	msp->ms_loading = B_FALSE;
2519 	cv_broadcast(&msp->ms_load_cv);
2520 
2521 	return (error);
2522 }
2523 
2524 void
2525 metaslab_unload(metaslab_t *msp)
2526 {
2527 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2528 
2529 	/*
2530 	 * This can happen if a metaslab is selected for eviction (in
2531 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2532 	 * metaslab_class_evict_old).
2533 	 */
2534 	if (!msp->ms_loaded)
2535 		return;
2536 
2537 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2538 	msp->ms_loaded = B_FALSE;
2539 	msp->ms_unload_time = gethrtime();
2540 
2541 	msp->ms_activation_weight = 0;
2542 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2543 
2544 	if (msp->ms_group != NULL) {
2545 		metaslab_class_t *mc = msp->ms_group->mg_class;
2546 		multilist_sublist_t *mls =
2547 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2548 		if (multilist_link_active(&msp->ms_class_txg_node))
2549 			multilist_sublist_remove(mls, msp);
2550 		multilist_sublist_unlock(mls);
2551 
2552 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2553 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2554 		    "ms_id %llu, weight %llx, "
2555 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2556 		    "loaded %llu ms ago, max_size %llu",
2557 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2558 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2559 		    (u_longlong_t)msp->ms_id,
2560 		    (u_longlong_t)msp->ms_weight,
2561 		    (u_longlong_t)msp->ms_selected_txg,
2562 		    (u_longlong_t)(msp->ms_unload_time -
2563 		    msp->ms_selected_time) / 1000 / 1000,
2564 		    (u_longlong_t)msp->ms_alloc_txg,
2565 		    (u_longlong_t)(msp->ms_unload_time -
2566 		    msp->ms_load_time) / 1000 / 1000,
2567 		    (u_longlong_t)msp->ms_max_size);
2568 	}
2569 
2570 	/*
2571 	 * We explicitly recalculate the metaslab's weight based on its space
2572 	 * map (as it is now not loaded). We want unload metaslabs to always
2573 	 * have their weights calculated from the space map histograms, while
2574 	 * loaded ones have it calculated from their in-core range tree
2575 	 * [see metaslab_load()]. This way, the weight reflects the information
2576 	 * available in-core, whether it is loaded or not.
2577 	 *
2578 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2579 	 * at which point it doesn't make sense for us to do the recalculation
2580 	 * and the sorting.
2581 	 */
2582 	if (msp->ms_group != NULL)
2583 		metaslab_recalculate_weight_and_sort(msp);
2584 }
2585 
2586 /*
2587  * We want to optimize the memory use of the per-metaslab range
2588  * trees. To do this, we store the segments in the range trees in
2589  * units of sectors, zero-indexing from the start of the metaslab. If
2590  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2591  * the ranges using two uint32_ts, rather than two uint64_ts.
2592  */
2593 range_seg_type_t
2594 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2595     uint64_t *start, uint64_t *shift)
2596 {
2597 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2598 	    !zfs_metaslab_force_large_segs) {
2599 		*shift = vdev->vdev_ashift;
2600 		*start = msp->ms_start;
2601 		return (RANGE_SEG32);
2602 	} else {
2603 		*shift = 0;
2604 		*start = 0;
2605 		return (RANGE_SEG64);
2606 	}
2607 }
2608 
2609 void
2610 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2611 {
2612 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2613 	metaslab_class_t *mc = msp->ms_group->mg_class;
2614 	multilist_sublist_t *mls =
2615 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2616 	if (multilist_link_active(&msp->ms_class_txg_node))
2617 		multilist_sublist_remove(mls, msp);
2618 	msp->ms_selected_txg = txg;
2619 	msp->ms_selected_time = gethrtime();
2620 	multilist_sublist_insert_tail(mls, msp);
2621 	multilist_sublist_unlock(mls);
2622 }
2623 
2624 void
2625 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2626     int64_t defer_delta, int64_t space_delta)
2627 {
2628 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2629 
2630 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2631 	ASSERT(vd->vdev_ms_count != 0);
2632 
2633 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2634 	    vdev_deflated_space(vd, space_delta));
2635 }
2636 
2637 int
2638 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2639     uint64_t txg, metaslab_t **msp)
2640 {
2641 	vdev_t *vd = mg->mg_vd;
2642 	spa_t *spa = vd->vdev_spa;
2643 	objset_t *mos = spa->spa_meta_objset;
2644 	metaslab_t *ms;
2645 	int error;
2646 
2647 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2648 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2649 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2650 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2651 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2652 	multilist_link_init(&ms->ms_class_txg_node);
2653 
2654 	ms->ms_id = id;
2655 	ms->ms_start = id << vd->vdev_ms_shift;
2656 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2657 	ms->ms_allocator = -1;
2658 	ms->ms_new = B_TRUE;
2659 
2660 	vdev_ops_t *ops = vd->vdev_ops;
2661 	if (ops->vdev_op_metaslab_init != NULL)
2662 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2663 
2664 	/*
2665 	 * We only open space map objects that already exist. All others
2666 	 * will be opened when we finally allocate an object for it. For
2667 	 * readonly pools there is no need to open the space map object.
2668 	 *
2669 	 * Note:
2670 	 * When called from vdev_expand(), we can't call into the DMU as
2671 	 * we are holding the spa_config_lock as a writer and we would
2672 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2673 	 * that case, the object parameter is zero though, so we won't
2674 	 * call into the DMU.
2675 	 */
2676 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2677 	    !spa->spa_read_spacemaps)) {
2678 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2679 		    ms->ms_size, vd->vdev_ashift);
2680 
2681 		if (error != 0) {
2682 			kmem_free(ms, sizeof (metaslab_t));
2683 			return (error);
2684 		}
2685 
2686 		ASSERT(ms->ms_sm != NULL);
2687 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2688 	}
2689 
2690 	uint64_t shift, start;
2691 	range_seg_type_t type =
2692 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2693 
2694 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2695 	for (int t = 0; t < TXG_SIZE; t++) {
2696 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2697 		    NULL, start, shift);
2698 	}
2699 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2700 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2701 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2702 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2703 		    start, shift);
2704 	}
2705 	ms->ms_checkpointing =
2706 	    range_tree_create(NULL, type, NULL, start, shift);
2707 	ms->ms_unflushed_allocs =
2708 	    range_tree_create(NULL, type, NULL, start, shift);
2709 
2710 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2711 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2712 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2713 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2714 	    type, mrap, start, shift);
2715 
2716 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2717 
2718 	metaslab_group_add(mg, ms);
2719 	metaslab_set_fragmentation(ms, B_FALSE);
2720 
2721 	/*
2722 	 * If we're opening an existing pool (txg == 0) or creating
2723 	 * a new one (txg == TXG_INITIAL), all space is available now.
2724 	 * If we're adding space to an existing pool, the new space
2725 	 * does not become available until after this txg has synced.
2726 	 * The metaslab's weight will also be initialized when we sync
2727 	 * out this txg. This ensures that we don't attempt to allocate
2728 	 * from it before we have initialized it completely.
2729 	 */
2730 	if (txg <= TXG_INITIAL) {
2731 		metaslab_sync_done(ms, 0);
2732 		metaslab_space_update(vd, mg->mg_class,
2733 		    metaslab_allocated_space(ms), 0, 0);
2734 	}
2735 
2736 	if (txg != 0) {
2737 		vdev_dirty(vd, 0, NULL, txg);
2738 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2739 	}
2740 
2741 	*msp = ms;
2742 
2743 	return (0);
2744 }
2745 
2746 static void
2747 metaslab_fini_flush_data(metaslab_t *msp)
2748 {
2749 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2750 
2751 	if (metaslab_unflushed_txg(msp) == 0) {
2752 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2753 		    ==, NULL);
2754 		return;
2755 	}
2756 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2757 
2758 	mutex_enter(&spa->spa_flushed_ms_lock);
2759 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2760 	mutex_exit(&spa->spa_flushed_ms_lock);
2761 
2762 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2763 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2764 	    metaslab_unflushed_dirty(msp));
2765 }
2766 
2767 uint64_t
2768 metaslab_unflushed_changes_memused(metaslab_t *ms)
2769 {
2770 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2771 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2772 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2773 }
2774 
2775 void
2776 metaslab_fini(metaslab_t *msp)
2777 {
2778 	metaslab_group_t *mg = msp->ms_group;
2779 	vdev_t *vd = mg->mg_vd;
2780 	spa_t *spa = vd->vdev_spa;
2781 
2782 	metaslab_fini_flush_data(msp);
2783 
2784 	metaslab_group_remove(mg, msp);
2785 
2786 	mutex_enter(&msp->ms_lock);
2787 	VERIFY(msp->ms_group == NULL);
2788 
2789 	/*
2790 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2791 	 * space hasn't been accounted for in its vdev and doesn't need to be
2792 	 * subtracted.
2793 	 */
2794 	if (!msp->ms_new) {
2795 		metaslab_space_update(vd, mg->mg_class,
2796 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2797 
2798 	}
2799 	space_map_close(msp->ms_sm);
2800 	msp->ms_sm = NULL;
2801 
2802 	metaslab_unload(msp);
2803 
2804 	range_tree_destroy(msp->ms_allocatable);
2805 	range_tree_destroy(msp->ms_freeing);
2806 	range_tree_destroy(msp->ms_freed);
2807 
2808 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2809 	    metaslab_unflushed_changes_memused(msp));
2810 	spa->spa_unflushed_stats.sus_memused -=
2811 	    metaslab_unflushed_changes_memused(msp);
2812 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2813 	range_tree_destroy(msp->ms_unflushed_allocs);
2814 	range_tree_destroy(msp->ms_checkpointing);
2815 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2816 	range_tree_destroy(msp->ms_unflushed_frees);
2817 
2818 	for (int t = 0; t < TXG_SIZE; t++) {
2819 		range_tree_destroy(msp->ms_allocating[t]);
2820 	}
2821 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2822 		range_tree_destroy(msp->ms_defer[t]);
2823 	}
2824 	ASSERT0(msp->ms_deferspace);
2825 
2826 	for (int t = 0; t < TXG_SIZE; t++)
2827 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2828 
2829 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2830 	range_tree_destroy(msp->ms_trim);
2831 
2832 	mutex_exit(&msp->ms_lock);
2833 	cv_destroy(&msp->ms_load_cv);
2834 	cv_destroy(&msp->ms_flush_cv);
2835 	mutex_destroy(&msp->ms_lock);
2836 	mutex_destroy(&msp->ms_sync_lock);
2837 	ASSERT3U(msp->ms_allocator, ==, -1);
2838 
2839 	kmem_free(msp, sizeof (metaslab_t));
2840 }
2841 
2842 #define	FRAGMENTATION_TABLE_SIZE	17
2843 
2844 /*
2845  * This table defines a segment size based fragmentation metric that will
2846  * allow each metaslab to derive its own fragmentation value. This is done
2847  * by calculating the space in each bucket of the spacemap histogram and
2848  * multiplying that by the fragmentation metric in this table. Doing
2849  * this for all buckets and dividing it by the total amount of free
2850  * space in this metaslab (i.e. the total free space in all buckets) gives
2851  * us the fragmentation metric. This means that a high fragmentation metric
2852  * equates to most of the free space being comprised of small segments.
2853  * Conversely, if the metric is low, then most of the free space is in
2854  * large segments. A 10% change in fragmentation equates to approximately
2855  * double the number of segments.
2856  *
2857  * This table defines 0% fragmented space using 16MB segments. Testing has
2858  * shown that segments that are greater than or equal to 16MB do not suffer
2859  * from drastic performance problems. Using this value, we derive the rest
2860  * of the table. Since the fragmentation value is never stored on disk, it
2861  * is possible to change these calculations in the future.
2862  */
2863 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2864 	100,	/* 512B	*/
2865 	100,	/* 1K	*/
2866 	98,	/* 2K	*/
2867 	95,	/* 4K	*/
2868 	90,	/* 8K	*/
2869 	80,	/* 16K	*/
2870 	70,	/* 32K	*/
2871 	60,	/* 64K	*/
2872 	50,	/* 128K	*/
2873 	40,	/* 256K	*/
2874 	30,	/* 512K	*/
2875 	20,	/* 1M	*/
2876 	15,	/* 2M	*/
2877 	10,	/* 4M	*/
2878 	5,	/* 8M	*/
2879 	0	/* 16M	*/
2880 };
2881 
2882 /*
2883  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2884  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2885  * been upgraded and does not support this metric. Otherwise, the return
2886  * value should be in the range [0, 100].
2887  */
2888 static void
2889 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2890 {
2891 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2892 	uint64_t fragmentation = 0;
2893 	uint64_t total = 0;
2894 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2895 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2896 
2897 	if (!feature_enabled) {
2898 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2899 		return;
2900 	}
2901 
2902 	/*
2903 	 * A null space map means that the entire metaslab is free
2904 	 * and thus is not fragmented.
2905 	 */
2906 	if (msp->ms_sm == NULL) {
2907 		msp->ms_fragmentation = 0;
2908 		return;
2909 	}
2910 
2911 	/*
2912 	 * If this metaslab's space map has not been upgraded, flag it
2913 	 * so that we upgrade next time we encounter it.
2914 	 */
2915 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2916 		uint64_t txg = spa_syncing_txg(spa);
2917 		vdev_t *vd = msp->ms_group->mg_vd;
2918 
2919 		/*
2920 		 * If we've reached the final dirty txg, then we must
2921 		 * be shutting down the pool. We don't want to dirty
2922 		 * any data past this point so skip setting the condense
2923 		 * flag. We can retry this action the next time the pool
2924 		 * is imported. We also skip marking this metaslab for
2925 		 * condensing if the caller has explicitly set nodirty.
2926 		 */
2927 		if (!nodirty &&
2928 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2929 			msp->ms_condense_wanted = B_TRUE;
2930 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2931 			zfs_dbgmsg("txg %llu, requesting force condense: "
2932 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2933 			    (u_longlong_t)msp->ms_id,
2934 			    (u_longlong_t)vd->vdev_id);
2935 		}
2936 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2937 		return;
2938 	}
2939 
2940 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2941 		uint64_t space = 0;
2942 		uint8_t shift = msp->ms_sm->sm_shift;
2943 
2944 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2945 		    FRAGMENTATION_TABLE_SIZE - 1);
2946 
2947 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2948 			continue;
2949 
2950 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2951 		total += space;
2952 
2953 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2954 		fragmentation += space * zfs_frag_table[idx];
2955 	}
2956 
2957 	if (total > 0)
2958 		fragmentation /= total;
2959 	ASSERT3U(fragmentation, <=, 100);
2960 
2961 	msp->ms_fragmentation = fragmentation;
2962 }
2963 
2964 /*
2965  * Compute a weight -- a selection preference value -- for the given metaslab.
2966  * This is based on the amount of free space, the level of fragmentation,
2967  * the LBA range, and whether the metaslab is loaded.
2968  */
2969 static uint64_t
2970 metaslab_space_weight(metaslab_t *msp)
2971 {
2972 	metaslab_group_t *mg = msp->ms_group;
2973 	vdev_t *vd = mg->mg_vd;
2974 	uint64_t weight, space;
2975 
2976 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2977 
2978 	/*
2979 	 * The baseline weight is the metaslab's free space.
2980 	 */
2981 	space = msp->ms_size - metaslab_allocated_space(msp);
2982 
2983 	if (metaslab_fragmentation_factor_enabled &&
2984 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2985 		/*
2986 		 * Use the fragmentation information to inversely scale
2987 		 * down the baseline weight. We need to ensure that we
2988 		 * don't exclude this metaslab completely when it's 100%
2989 		 * fragmented. To avoid this we reduce the fragmented value
2990 		 * by 1.
2991 		 */
2992 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2993 
2994 		/*
2995 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2996 		 * this metaslab again. The fragmentation metric may have
2997 		 * decreased the space to something smaller than
2998 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2999 		 * so that we can consume any remaining space.
3000 		 */
3001 		if (space > 0 && space < SPA_MINBLOCKSIZE)
3002 			space = SPA_MINBLOCKSIZE;
3003 	}
3004 	weight = space;
3005 
3006 	/*
3007 	 * Modern disks have uniform bit density and constant angular velocity.
3008 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3009 	 * than the inner zones by the ratio of outer to inner track diameter,
3010 	 * which is typically around 2:1.  We account for this by assigning
3011 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3012 	 * In effect, this means that we'll select the metaslab with the most
3013 	 * free bandwidth rather than simply the one with the most free space.
3014 	 */
3015 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3016 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3017 		ASSERT(weight >= space && weight <= 2 * space);
3018 	}
3019 
3020 	/*
3021 	 * If this metaslab is one we're actively using, adjust its
3022 	 * weight to make it preferable to any inactive metaslab so
3023 	 * we'll polish it off. If the fragmentation on this metaslab
3024 	 * has exceed our threshold, then don't mark it active.
3025 	 */
3026 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3027 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3028 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3029 	}
3030 
3031 	WEIGHT_SET_SPACEBASED(weight);
3032 	return (weight);
3033 }
3034 
3035 /*
3036  * Return the weight of the specified metaslab, according to the segment-based
3037  * weighting algorithm. The metaslab must be loaded. This function can
3038  * be called within a sync pass since it relies only on the metaslab's
3039  * range tree which is always accurate when the metaslab is loaded.
3040  */
3041 static uint64_t
3042 metaslab_weight_from_range_tree(metaslab_t *msp)
3043 {
3044 	uint64_t weight = 0;
3045 	uint32_t segments = 0;
3046 
3047 	ASSERT(msp->ms_loaded);
3048 
3049 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3050 	    i--) {
3051 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3052 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3053 
3054 		segments <<= 1;
3055 		segments += msp->ms_allocatable->rt_histogram[i];
3056 
3057 		/*
3058 		 * The range tree provides more precision than the space map
3059 		 * and must be downgraded so that all values fit within the
3060 		 * space map's histogram. This allows us to compare loaded
3061 		 * vs. unloaded metaslabs to determine which metaslab is
3062 		 * considered "best".
3063 		 */
3064 		if (i > max_idx)
3065 			continue;
3066 
3067 		if (segments != 0) {
3068 			WEIGHT_SET_COUNT(weight, segments);
3069 			WEIGHT_SET_INDEX(weight, i);
3070 			WEIGHT_SET_ACTIVE(weight, 0);
3071 			break;
3072 		}
3073 	}
3074 	return (weight);
3075 }
3076 
3077 /*
3078  * Calculate the weight based on the on-disk histogram. Should be applied
3079  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3080  * give results consistent with the on-disk state
3081  */
3082 static uint64_t
3083 metaslab_weight_from_spacemap(metaslab_t *msp)
3084 {
3085 	space_map_t *sm = msp->ms_sm;
3086 	ASSERT(!msp->ms_loaded);
3087 	ASSERT(sm != NULL);
3088 	ASSERT3U(space_map_object(sm), !=, 0);
3089 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3090 
3091 	/*
3092 	 * Create a joint histogram from all the segments that have made
3093 	 * it to the metaslab's space map histogram, that are not yet
3094 	 * available for allocation because they are still in the freeing
3095 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3096 	 * these segments from the space map's histogram to get a more
3097 	 * accurate weight.
3098 	 */
3099 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3100 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3101 		deferspace_histogram[i] += msp->ms_synchist[i];
3102 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3103 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3104 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3105 		}
3106 	}
3107 
3108 	uint64_t weight = 0;
3109 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3110 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3111 		    deferspace_histogram[i]);
3112 		uint64_t count =
3113 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3114 		if (count != 0) {
3115 			WEIGHT_SET_COUNT(weight, count);
3116 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3117 			WEIGHT_SET_ACTIVE(weight, 0);
3118 			break;
3119 		}
3120 	}
3121 	return (weight);
3122 }
3123 
3124 /*
3125  * Compute a segment-based weight for the specified metaslab. The weight
3126  * is determined by highest bucket in the histogram. The information
3127  * for the highest bucket is encoded into the weight value.
3128  */
3129 static uint64_t
3130 metaslab_segment_weight(metaslab_t *msp)
3131 {
3132 	metaslab_group_t *mg = msp->ms_group;
3133 	uint64_t weight = 0;
3134 	uint8_t shift = mg->mg_vd->vdev_ashift;
3135 
3136 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3137 
3138 	/*
3139 	 * The metaslab is completely free.
3140 	 */
3141 	if (metaslab_allocated_space(msp) == 0) {
3142 		int idx = highbit64(msp->ms_size) - 1;
3143 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3144 
3145 		if (idx < max_idx) {
3146 			WEIGHT_SET_COUNT(weight, 1ULL);
3147 			WEIGHT_SET_INDEX(weight, idx);
3148 		} else {
3149 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3150 			WEIGHT_SET_INDEX(weight, max_idx);
3151 		}
3152 		WEIGHT_SET_ACTIVE(weight, 0);
3153 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3154 		return (weight);
3155 	}
3156 
3157 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3158 
3159 	/*
3160 	 * If the metaslab is fully allocated then just make the weight 0.
3161 	 */
3162 	if (metaslab_allocated_space(msp) == msp->ms_size)
3163 		return (0);
3164 	/*
3165 	 * If the metaslab is already loaded, then use the range tree to
3166 	 * determine the weight. Otherwise, we rely on the space map information
3167 	 * to generate the weight.
3168 	 */
3169 	if (msp->ms_loaded) {
3170 		weight = metaslab_weight_from_range_tree(msp);
3171 	} else {
3172 		weight = metaslab_weight_from_spacemap(msp);
3173 	}
3174 
3175 	/*
3176 	 * If the metaslab was active the last time we calculated its weight
3177 	 * then keep it active. We want to consume the entire region that
3178 	 * is associated with this weight.
3179 	 */
3180 	if (msp->ms_activation_weight != 0 && weight != 0)
3181 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3182 	return (weight);
3183 }
3184 
3185 /*
3186  * Determine if we should attempt to allocate from this metaslab. If the
3187  * metaslab is loaded, then we can determine if the desired allocation
3188  * can be satisfied by looking at the size of the maximum free segment
3189  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3190  * weight. For segment-based weighting we can determine the maximum
3191  * allocation based on the index encoded in its value. For space-based
3192  * weights we rely on the entire weight (excluding the weight-type bit).
3193  */
3194 static boolean_t
3195 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3196 {
3197 	/*
3198 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3199 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3200 	 * set), and we should use the fast check as long as we're not in
3201 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3202 	 * seconds since the metaslab was unloaded.
3203 	 */
3204 	if (msp->ms_loaded ||
3205 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3206 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3207 		return (msp->ms_max_size >= asize);
3208 
3209 	boolean_t should_allocate;
3210 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3211 		/*
3212 		 * The metaslab segment weight indicates segments in the
3213 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3214 		 * Since the asize might be in the middle of the range, we
3215 		 * should attempt the allocation if asize < 2^(i+1).
3216 		 */
3217 		should_allocate = (asize <
3218 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3219 	} else {
3220 		should_allocate = (asize <=
3221 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3222 	}
3223 
3224 	return (should_allocate);
3225 }
3226 
3227 static uint64_t
3228 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3229 {
3230 	vdev_t *vd = msp->ms_group->mg_vd;
3231 	spa_t *spa = vd->vdev_spa;
3232 	uint64_t weight;
3233 
3234 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3235 
3236 	metaslab_set_fragmentation(msp, nodirty);
3237 
3238 	/*
3239 	 * Update the maximum size. If the metaslab is loaded, this will
3240 	 * ensure that we get an accurate maximum size if newly freed space
3241 	 * has been added back into the free tree. If the metaslab is
3242 	 * unloaded, we check if there's a larger free segment in the
3243 	 * unflushed frees. This is a lower bound on the largest allocatable
3244 	 * segment size. Coalescing of adjacent entries may reveal larger
3245 	 * allocatable segments, but we aren't aware of those until loading
3246 	 * the space map into a range tree.
3247 	 */
3248 	if (msp->ms_loaded) {
3249 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3250 	} else {
3251 		msp->ms_max_size = MAX(msp->ms_max_size,
3252 		    metaslab_largest_unflushed_free(msp));
3253 	}
3254 
3255 	/*
3256 	 * Segment-based weighting requires space map histogram support.
3257 	 */
3258 	if (zfs_metaslab_segment_weight_enabled &&
3259 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3260 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3261 	    sizeof (space_map_phys_t))) {
3262 		weight = metaslab_segment_weight(msp);
3263 	} else {
3264 		weight = metaslab_space_weight(msp);
3265 	}
3266 	return (weight);
3267 }
3268 
3269 void
3270 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3271 {
3272 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3273 
3274 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3275 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3276 	metaslab_group_sort(msp->ms_group, msp,
3277 	    metaslab_weight(msp, B_FALSE) | was_active);
3278 }
3279 
3280 static int
3281 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3282     int allocator, uint64_t activation_weight)
3283 {
3284 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3285 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3286 
3287 	/*
3288 	 * If we're activating for the claim code, we don't want to actually
3289 	 * set the metaslab up for a specific allocator.
3290 	 */
3291 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3292 		ASSERT0(msp->ms_activation_weight);
3293 		msp->ms_activation_weight = msp->ms_weight;
3294 		metaslab_group_sort(mg, msp, msp->ms_weight |
3295 		    activation_weight);
3296 		return (0);
3297 	}
3298 
3299 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3300 	    &mga->mga_primary : &mga->mga_secondary);
3301 
3302 	mutex_enter(&mg->mg_lock);
3303 	if (*mspp != NULL) {
3304 		mutex_exit(&mg->mg_lock);
3305 		return (EEXIST);
3306 	}
3307 
3308 	*mspp = msp;
3309 	ASSERT3S(msp->ms_allocator, ==, -1);
3310 	msp->ms_allocator = allocator;
3311 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3312 
3313 	ASSERT0(msp->ms_activation_weight);
3314 	msp->ms_activation_weight = msp->ms_weight;
3315 	metaslab_group_sort_impl(mg, msp,
3316 	    msp->ms_weight | activation_weight);
3317 	mutex_exit(&mg->mg_lock);
3318 
3319 	return (0);
3320 }
3321 
3322 static int
3323 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3324 {
3325 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3326 
3327 	/*
3328 	 * The current metaslab is already activated for us so there
3329 	 * is nothing to do. Already activated though, doesn't mean
3330 	 * that this metaslab is activated for our allocator nor our
3331 	 * requested activation weight. The metaslab could have started
3332 	 * as an active one for our allocator but changed allocators
3333 	 * while we were waiting to grab its ms_lock or we stole it
3334 	 * [see find_valid_metaslab()]. This means that there is a
3335 	 * possibility of passivating a metaslab of another allocator
3336 	 * or from a different activation mask, from this thread.
3337 	 */
3338 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3339 		ASSERT(msp->ms_loaded);
3340 		return (0);
3341 	}
3342 
3343 	int error = metaslab_load(msp);
3344 	if (error != 0) {
3345 		metaslab_group_sort(msp->ms_group, msp, 0);
3346 		return (error);
3347 	}
3348 
3349 	/*
3350 	 * When entering metaslab_load() we may have dropped the
3351 	 * ms_lock because we were loading this metaslab, or we
3352 	 * were waiting for another thread to load it for us. In
3353 	 * that scenario, we recheck the weight of the metaslab
3354 	 * to see if it was activated by another thread.
3355 	 *
3356 	 * If the metaslab was activated for another allocator or
3357 	 * it was activated with a different activation weight (e.g.
3358 	 * we wanted to make it a primary but it was activated as
3359 	 * secondary) we return error (EBUSY).
3360 	 *
3361 	 * If the metaslab was activated for the same allocator
3362 	 * and requested activation mask, skip activating it.
3363 	 */
3364 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3365 		if (msp->ms_allocator != allocator)
3366 			return (EBUSY);
3367 
3368 		if ((msp->ms_weight & activation_weight) == 0)
3369 			return (SET_ERROR(EBUSY));
3370 
3371 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3372 		    msp->ms_primary);
3373 		return (0);
3374 	}
3375 
3376 	/*
3377 	 * If the metaslab has literally 0 space, it will have weight 0. In
3378 	 * that case, don't bother activating it. This can happen if the
3379 	 * metaslab had space during find_valid_metaslab, but another thread
3380 	 * loaded it and used all that space while we were waiting to grab the
3381 	 * lock.
3382 	 */
3383 	if (msp->ms_weight == 0) {
3384 		ASSERT0(range_tree_space(msp->ms_allocatable));
3385 		return (SET_ERROR(ENOSPC));
3386 	}
3387 
3388 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3389 	    allocator, activation_weight)) != 0) {
3390 		return (error);
3391 	}
3392 
3393 	ASSERT(msp->ms_loaded);
3394 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3395 
3396 	return (0);
3397 }
3398 
3399 static void
3400 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3401     uint64_t weight)
3402 {
3403 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3404 	ASSERT(msp->ms_loaded);
3405 
3406 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3407 		metaslab_group_sort(mg, msp, weight);
3408 		return;
3409 	}
3410 
3411 	mutex_enter(&mg->mg_lock);
3412 	ASSERT3P(msp->ms_group, ==, mg);
3413 	ASSERT3S(0, <=, msp->ms_allocator);
3414 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3415 
3416 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3417 	if (msp->ms_primary) {
3418 		ASSERT3P(mga->mga_primary, ==, msp);
3419 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3420 		mga->mga_primary = NULL;
3421 	} else {
3422 		ASSERT3P(mga->mga_secondary, ==, msp);
3423 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3424 		mga->mga_secondary = NULL;
3425 	}
3426 	msp->ms_allocator = -1;
3427 	metaslab_group_sort_impl(mg, msp, weight);
3428 	mutex_exit(&mg->mg_lock);
3429 }
3430 
3431 static void
3432 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3433 {
3434 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3435 
3436 	/*
3437 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3438 	 * this metaslab again.  In that case, it had better be empty,
3439 	 * or we would be leaving space on the table.
3440 	 */
3441 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3442 	    size >= SPA_MINBLOCKSIZE ||
3443 	    range_tree_space(msp->ms_allocatable) == 0);
3444 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3445 
3446 	ASSERT(msp->ms_activation_weight != 0);
3447 	msp->ms_activation_weight = 0;
3448 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3449 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3450 }
3451 
3452 /*
3453  * Segment-based metaslabs are activated once and remain active until
3454  * we either fail an allocation attempt (similar to space-based metaslabs)
3455  * or have exhausted the free space in zfs_metaslab_switch_threshold
3456  * buckets since the metaslab was activated. This function checks to see
3457  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3458  * metaslab and passivates it proactively. This will allow us to select a
3459  * metaslab with a larger contiguous region, if any, remaining within this
3460  * metaslab group. If we're in sync pass > 1, then we continue using this
3461  * metaslab so that we don't dirty more block and cause more sync passes.
3462  */
3463 static void
3464 metaslab_segment_may_passivate(metaslab_t *msp)
3465 {
3466 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3467 
3468 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3469 		return;
3470 
3471 	/*
3472 	 * Since we are in the middle of a sync pass, the most accurate
3473 	 * information that is accessible to us is the in-core range tree
3474 	 * histogram; calculate the new weight based on that information.
3475 	 */
3476 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3477 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3478 	int current_idx = WEIGHT_GET_INDEX(weight);
3479 
3480 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3481 		metaslab_passivate(msp, weight);
3482 }
3483 
3484 static void
3485 metaslab_preload(void *arg)
3486 {
3487 	metaslab_t *msp = arg;
3488 	metaslab_class_t *mc = msp->ms_group->mg_class;
3489 	spa_t *spa = mc->mc_spa;
3490 	fstrans_cookie_t cookie = spl_fstrans_mark();
3491 
3492 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3493 
3494 	mutex_enter(&msp->ms_lock);
3495 	(void) metaslab_load(msp);
3496 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3497 	mutex_exit(&msp->ms_lock);
3498 	spl_fstrans_unmark(cookie);
3499 }
3500 
3501 static void
3502 metaslab_group_preload(metaslab_group_t *mg)
3503 {
3504 	spa_t *spa = mg->mg_vd->vdev_spa;
3505 	metaslab_t *msp;
3506 	avl_tree_t *t = &mg->mg_metaslab_tree;
3507 	int m = 0;
3508 
3509 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3510 		taskq_wait_outstanding(mg->mg_taskq, 0);
3511 		return;
3512 	}
3513 
3514 	mutex_enter(&mg->mg_lock);
3515 
3516 	/*
3517 	 * Load the next potential metaslabs
3518 	 */
3519 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3520 		ASSERT3P(msp->ms_group, ==, mg);
3521 
3522 		/*
3523 		 * We preload only the maximum number of metaslabs specified
3524 		 * by metaslab_preload_limit. If a metaslab is being forced
3525 		 * to condense then we preload it too. This will ensure
3526 		 * that force condensing happens in the next txg.
3527 		 */
3528 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3529 			continue;
3530 		}
3531 
3532 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3533 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3534 	}
3535 	mutex_exit(&mg->mg_lock);
3536 }
3537 
3538 /*
3539  * Determine if the space map's on-disk footprint is past our tolerance for
3540  * inefficiency. We would like to use the following criteria to make our
3541  * decision:
3542  *
3543  * 1. Do not condense if the size of the space map object would dramatically
3544  *    increase as a result of writing out the free space range tree.
3545  *
3546  * 2. Condense if the on on-disk space map representation is at least
3547  *    zfs_condense_pct/100 times the size of the optimal representation
3548  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3549  *
3550  * 3. Do not condense if the on-disk size of the space map does not actually
3551  *    decrease.
3552  *
3553  * Unfortunately, we cannot compute the on-disk size of the space map in this
3554  * context because we cannot accurately compute the effects of compression, etc.
3555  * Instead, we apply the heuristic described in the block comment for
3556  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3557  * is greater than a threshold number of blocks.
3558  */
3559 static boolean_t
3560 metaslab_should_condense(metaslab_t *msp)
3561 {
3562 	space_map_t *sm = msp->ms_sm;
3563 	vdev_t *vd = msp->ms_group->mg_vd;
3564 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3565 
3566 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3567 	ASSERT(msp->ms_loaded);
3568 	ASSERT(sm != NULL);
3569 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3570 
3571 	/*
3572 	 * We always condense metaslabs that are empty and metaslabs for
3573 	 * which a condense request has been made.
3574 	 */
3575 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3576 	    msp->ms_condense_wanted)
3577 		return (B_TRUE);
3578 
3579 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3580 	uint64_t object_size = space_map_length(sm);
3581 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3582 	    msp->ms_allocatable, SM_NO_VDEVID);
3583 
3584 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3585 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3586 }
3587 
3588 /*
3589  * Condense the on-disk space map representation to its minimized form.
3590  * The minimized form consists of a small number of allocations followed
3591  * by the entries of the free range tree (ms_allocatable). The condensed
3592  * spacemap contains all the entries of previous TXGs (including those in
3593  * the pool-wide log spacemaps; thus this is effectively a superset of
3594  * metaslab_flush()), but this TXG's entries still need to be written.
3595  */
3596 static void
3597 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3598 {
3599 	range_tree_t *condense_tree;
3600 	space_map_t *sm = msp->ms_sm;
3601 	uint64_t txg = dmu_tx_get_txg(tx);
3602 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3603 
3604 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3605 	ASSERT(msp->ms_loaded);
3606 	ASSERT(msp->ms_sm != NULL);
3607 
3608 	/*
3609 	 * In order to condense the space map, we need to change it so it
3610 	 * only describes which segments are currently allocated and free.
3611 	 *
3612 	 * All the current free space resides in the ms_allocatable, all
3613 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3614 	 * ms_freed because it is empty because we're in sync pass 1. We
3615 	 * ignore ms_freeing because these changes are not yet reflected
3616 	 * in the spacemap (they will be written later this txg).
3617 	 *
3618 	 * So to truncate the space map to represent all the entries of
3619 	 * previous TXGs we do the following:
3620 	 *
3621 	 * 1] We create a range tree (condense tree) that is 100% empty.
3622 	 * 2] We add to it all segments found in the ms_defer trees
3623 	 *    as those segments are marked as free in the original space
3624 	 *    map. We do the same with the ms_allocating trees for the same
3625 	 *    reason. Adding these segments should be a relatively
3626 	 *    inexpensive operation since we expect these trees to have a
3627 	 *    small number of nodes.
3628 	 * 3] We vacate any unflushed allocs, since they are not frees we
3629 	 *    need to add to the condense tree. Then we vacate any
3630 	 *    unflushed frees as they should already be part of ms_allocatable.
3631 	 * 4] At this point, we would ideally like to add all segments
3632 	 *    in the ms_allocatable tree from the condense tree. This way
3633 	 *    we would write all the entries of the condense tree as the
3634 	 *    condensed space map, which would only contain freed
3635 	 *    segments with everything else assumed to be allocated.
3636 	 *
3637 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3638 	 *    be large, and therefore computationally expensive to add to
3639 	 *    the condense_tree. Instead we first sync out an entry marking
3640 	 *    everything as allocated, then the condense_tree and then the
3641 	 *    ms_allocatable, in the condensed space map. While this is not
3642 	 *    optimal, it is typically close to optimal and more importantly
3643 	 *    much cheaper to compute.
3644 	 *
3645 	 * 5] Finally, as both of the unflushed trees were written to our
3646 	 *    new and condensed metaslab space map, we basically flushed
3647 	 *    all the unflushed changes to disk, thus we call
3648 	 *    metaslab_flush_update().
3649 	 */
3650 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3651 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3652 
3653 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3654 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3655 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3656 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3657 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3658 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3659 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3660 
3661 	msp->ms_condense_wanted = B_FALSE;
3662 
3663 	range_seg_type_t type;
3664 	uint64_t shift, start;
3665 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3666 	    &start, &shift);
3667 
3668 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3669 
3670 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3671 		range_tree_walk(msp->ms_defer[t],
3672 		    range_tree_add, condense_tree);
3673 	}
3674 
3675 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3676 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3677 		    range_tree_add, condense_tree);
3678 	}
3679 
3680 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3681 	    metaslab_unflushed_changes_memused(msp));
3682 	spa->spa_unflushed_stats.sus_memused -=
3683 	    metaslab_unflushed_changes_memused(msp);
3684 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3685 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3686 
3687 	/*
3688 	 * We're about to drop the metaslab's lock thus allowing other
3689 	 * consumers to change it's content. Set the metaslab's ms_condensing
3690 	 * flag to ensure that allocations on this metaslab do not occur
3691 	 * while we're in the middle of committing it to disk. This is only
3692 	 * critical for ms_allocatable as all other range trees use per TXG
3693 	 * views of their content.
3694 	 */
3695 	msp->ms_condensing = B_TRUE;
3696 
3697 	mutex_exit(&msp->ms_lock);
3698 	uint64_t object = space_map_object(msp->ms_sm);
3699 	space_map_truncate(sm,
3700 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3701 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3702 
3703 	/*
3704 	 * space_map_truncate() may have reallocated the spacemap object.
3705 	 * If so, update the vdev_ms_array.
3706 	 */
3707 	if (space_map_object(msp->ms_sm) != object) {
3708 		object = space_map_object(msp->ms_sm);
3709 		dmu_write(spa->spa_meta_objset,
3710 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3711 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3712 	}
3713 
3714 	/*
3715 	 * Note:
3716 	 * When the log space map feature is enabled, each space map will
3717 	 * always have ALLOCS followed by FREES for each sync pass. This is
3718 	 * typically true even when the log space map feature is disabled,
3719 	 * except from the case where a metaslab goes through metaslab_sync()
3720 	 * and gets condensed. In that case the metaslab's space map will have
3721 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3722 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3723 	 * sync pass 1.
3724 	 */
3725 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3726 	    shift);
3727 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3728 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3729 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3730 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3731 
3732 	range_tree_vacate(condense_tree, NULL, NULL);
3733 	range_tree_destroy(condense_tree);
3734 	range_tree_vacate(tmp_tree, NULL, NULL);
3735 	range_tree_destroy(tmp_tree);
3736 	mutex_enter(&msp->ms_lock);
3737 
3738 	msp->ms_condensing = B_FALSE;
3739 	metaslab_flush_update(msp, tx);
3740 }
3741 
3742 static void
3743 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3744 {
3745 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3746 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3747 	ASSERT(msp->ms_sm != NULL);
3748 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3749 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3750 
3751 	mutex_enter(&spa->spa_flushed_ms_lock);
3752 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3753 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3754 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3755 	mutex_exit(&spa->spa_flushed_ms_lock);
3756 
3757 	spa_log_sm_increment_current_mscount(spa);
3758 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3759 }
3760 
3761 void
3762 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3763 {
3764 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3765 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3766 	ASSERT(msp->ms_sm != NULL);
3767 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3768 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3769 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3770 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3771 
3772 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3773 
3774 	/* update metaslab's position in our flushing tree */
3775 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3776 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3777 	mutex_enter(&spa->spa_flushed_ms_lock);
3778 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3779 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3780 	metaslab_set_unflushed_dirty(msp, dirty);
3781 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3782 	mutex_exit(&spa->spa_flushed_ms_lock);
3783 
3784 	/* update metaslab counts of spa_log_sm_t nodes */
3785 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3786 	spa_log_sm_increment_current_mscount(spa);
3787 
3788 	/* update log space map summary */
3789 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3790 	    ms_prev_flushed_dirty);
3791 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3792 
3793 	/* cleanup obsolete logs if any */
3794 	spa_cleanup_old_sm_logs(spa, tx);
3795 }
3796 
3797 /*
3798  * Called when the metaslab has been flushed (its own spacemap now reflects
3799  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3800  * metadata and any pool-wide related log space map data (e.g. summary,
3801  * obsolete logs, etc..) to reflect that.
3802  */
3803 static void
3804 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3805 {
3806 	metaslab_group_t *mg = msp->ms_group;
3807 	spa_t *spa = mg->mg_vd->vdev_spa;
3808 
3809 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3810 
3811 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3812 
3813 	/*
3814 	 * Just because a metaslab got flushed, that doesn't mean that
3815 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3816 	 * update ms_synced_length here in case it doesn't.
3817 	 */
3818 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3819 
3820 	/*
3821 	 * We may end up here from metaslab_condense() without the
3822 	 * feature being active. In that case this is a no-op.
3823 	 */
3824 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3825 	    metaslab_unflushed_txg(msp) == 0)
3826 		return;
3827 
3828 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3829 }
3830 
3831 boolean_t
3832 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3833 {
3834 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3835 
3836 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3837 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3838 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3839 
3840 	ASSERT(msp->ms_sm != NULL);
3841 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3842 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3843 
3844 	/*
3845 	 * There is nothing wrong with flushing the same metaslab twice, as
3846 	 * this codepath should work on that case. However, the current
3847 	 * flushing scheme makes sure to avoid this situation as we would be
3848 	 * making all these calls without having anything meaningful to write
3849 	 * to disk. We assert this behavior here.
3850 	 */
3851 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3852 
3853 	/*
3854 	 * We can not flush while loading, because then we would
3855 	 * not load the ms_unflushed_{allocs,frees}.
3856 	 */
3857 	if (msp->ms_loading)
3858 		return (B_FALSE);
3859 
3860 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3861 	metaslab_verify_weight_and_frag(msp);
3862 
3863 	/*
3864 	 * Metaslab condensing is effectively flushing. Therefore if the
3865 	 * metaslab can be condensed we can just condense it instead of
3866 	 * flushing it.
3867 	 *
3868 	 * Note that metaslab_condense() does call metaslab_flush_update()
3869 	 * so we can just return immediately after condensing. We also
3870 	 * don't need to care about setting ms_flushing or broadcasting
3871 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3872 	 * metaslab_condense(), as the metaslab is already loaded.
3873 	 */
3874 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3875 		metaslab_group_t *mg = msp->ms_group;
3876 
3877 		/*
3878 		 * For all histogram operations below refer to the
3879 		 * comments of metaslab_sync() where we follow a
3880 		 * similar procedure.
3881 		 */
3882 		metaslab_group_histogram_verify(mg);
3883 		metaslab_class_histogram_verify(mg->mg_class);
3884 		metaslab_group_histogram_remove(mg, msp);
3885 
3886 		metaslab_condense(msp, tx);
3887 
3888 		space_map_histogram_clear(msp->ms_sm);
3889 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3890 		ASSERT(range_tree_is_empty(msp->ms_freed));
3891 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3892 			space_map_histogram_add(msp->ms_sm,
3893 			    msp->ms_defer[t], tx);
3894 		}
3895 		metaslab_aux_histograms_update(msp);
3896 
3897 		metaslab_group_histogram_add(mg, msp);
3898 		metaslab_group_histogram_verify(mg);
3899 		metaslab_class_histogram_verify(mg->mg_class);
3900 
3901 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3902 
3903 		/*
3904 		 * Since we recreated the histogram (and potentially
3905 		 * the ms_sm too while condensing) ensure that the
3906 		 * weight is updated too because we are not guaranteed
3907 		 * that this metaslab is dirty and will go through
3908 		 * metaslab_sync_done().
3909 		 */
3910 		metaslab_recalculate_weight_and_sort(msp);
3911 		return (B_TRUE);
3912 	}
3913 
3914 	msp->ms_flushing = B_TRUE;
3915 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3916 
3917 	mutex_exit(&msp->ms_lock);
3918 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3919 	    SM_NO_VDEVID, tx);
3920 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3921 	    SM_NO_VDEVID, tx);
3922 	mutex_enter(&msp->ms_lock);
3923 
3924 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3925 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3926 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3927 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3928 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3929 		    spa_name(spa),
3930 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3931 		    (u_longlong_t)msp->ms_id,
3932 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3933 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3934 		    (u_longlong_t)(sm_len_after - sm_len_before));
3935 	}
3936 
3937 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3938 	    metaslab_unflushed_changes_memused(msp));
3939 	spa->spa_unflushed_stats.sus_memused -=
3940 	    metaslab_unflushed_changes_memused(msp);
3941 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3942 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3943 
3944 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3945 	metaslab_verify_weight_and_frag(msp);
3946 
3947 	metaslab_flush_update(msp, tx);
3948 
3949 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3950 	metaslab_verify_weight_and_frag(msp);
3951 
3952 	msp->ms_flushing = B_FALSE;
3953 	cv_broadcast(&msp->ms_flush_cv);
3954 	return (B_TRUE);
3955 }
3956 
3957 /*
3958  * Write a metaslab to disk in the context of the specified transaction group.
3959  */
3960 void
3961 metaslab_sync(metaslab_t *msp, uint64_t txg)
3962 {
3963 	metaslab_group_t *mg = msp->ms_group;
3964 	vdev_t *vd = mg->mg_vd;
3965 	spa_t *spa = vd->vdev_spa;
3966 	objset_t *mos = spa_meta_objset(spa);
3967 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3968 	dmu_tx_t *tx;
3969 
3970 	ASSERT(!vd->vdev_ishole);
3971 
3972 	/*
3973 	 * This metaslab has just been added so there's no work to do now.
3974 	 */
3975 	if (msp->ms_new) {
3976 		ASSERT0(range_tree_space(alloctree));
3977 		ASSERT0(range_tree_space(msp->ms_freeing));
3978 		ASSERT0(range_tree_space(msp->ms_freed));
3979 		ASSERT0(range_tree_space(msp->ms_checkpointing));
3980 		ASSERT0(range_tree_space(msp->ms_trim));
3981 		return;
3982 	}
3983 
3984 	/*
3985 	 * Normally, we don't want to process a metaslab if there are no
3986 	 * allocations or frees to perform. However, if the metaslab is being
3987 	 * forced to condense, it's loaded and we're not beyond the final
3988 	 * dirty txg, we need to let it through. Not condensing beyond the
3989 	 * final dirty txg prevents an issue where metaslabs that need to be
3990 	 * condensed but were loaded for other reasons could cause a panic
3991 	 * here. By only checking the txg in that branch of the conditional,
3992 	 * we preserve the utility of the VERIFY statements in all other
3993 	 * cases.
3994 	 */
3995 	if (range_tree_is_empty(alloctree) &&
3996 	    range_tree_is_empty(msp->ms_freeing) &&
3997 	    range_tree_is_empty(msp->ms_checkpointing) &&
3998 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3999 	    txg <= spa_final_dirty_txg(spa)))
4000 		return;
4001 
4002 
4003 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4004 
4005 	/*
4006 	 * The only state that can actually be changing concurrently
4007 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
4008 	 * other thread can be modifying this txg's alloc, freeing,
4009 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4010 	 * could call into the DMU, because the DMU can call down to
4011 	 * us (e.g. via zio_free()) at any time.
4012 	 *
4013 	 * The spa_vdev_remove_thread() can be reading metaslab state
4014 	 * concurrently, and it is locked out by the ms_sync_lock.
4015 	 * Note that the ms_lock is insufficient for this, because it
4016 	 * is dropped by space_map_write().
4017 	 */
4018 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4019 
4020 	/*
4021 	 * Generate a log space map if one doesn't exist already.
4022 	 */
4023 	spa_generate_syncing_log_sm(spa, tx);
4024 
4025 	if (msp->ms_sm == NULL) {
4026 		uint64_t new_object = space_map_alloc(mos,
4027 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4028 		    zfs_metaslab_sm_blksz_with_log :
4029 		    zfs_metaslab_sm_blksz_no_log, tx);
4030 		VERIFY3U(new_object, !=, 0);
4031 
4032 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4033 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4034 
4035 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4036 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4037 		ASSERT(msp->ms_sm != NULL);
4038 
4039 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4040 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4041 		ASSERT0(metaslab_allocated_space(msp));
4042 	}
4043 
4044 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4045 	    vd->vdev_checkpoint_sm == NULL) {
4046 		ASSERT(spa_has_checkpoint(spa));
4047 
4048 		uint64_t new_object = space_map_alloc(mos,
4049 		    zfs_vdev_standard_sm_blksz, tx);
4050 		VERIFY3U(new_object, !=, 0);
4051 
4052 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4053 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4054 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4055 
4056 		/*
4057 		 * We save the space map object as an entry in vdev_top_zap
4058 		 * so it can be retrieved when the pool is reopened after an
4059 		 * export or through zdb.
4060 		 */
4061 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4062 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4063 		    sizeof (new_object), 1, &new_object, tx));
4064 	}
4065 
4066 	mutex_enter(&msp->ms_sync_lock);
4067 	mutex_enter(&msp->ms_lock);
4068 
4069 	/*
4070 	 * Note: metaslab_condense() clears the space map's histogram.
4071 	 * Therefore we must verify and remove this histogram before
4072 	 * condensing.
4073 	 */
4074 	metaslab_group_histogram_verify(mg);
4075 	metaslab_class_histogram_verify(mg->mg_class);
4076 	metaslab_group_histogram_remove(mg, msp);
4077 
4078 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4079 	    metaslab_should_condense(msp))
4080 		metaslab_condense(msp, tx);
4081 
4082 	/*
4083 	 * We'll be going to disk to sync our space accounting, thus we
4084 	 * drop the ms_lock during that time so allocations coming from
4085 	 * open-context (ZIL) for future TXGs do not block.
4086 	 */
4087 	mutex_exit(&msp->ms_lock);
4088 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4089 	if (log_sm != NULL) {
4090 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4091 		if (metaslab_unflushed_txg(msp) == 0)
4092 			metaslab_unflushed_add(msp, tx);
4093 		else if (!metaslab_unflushed_dirty(msp))
4094 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4095 
4096 		space_map_write(log_sm, alloctree, SM_ALLOC,
4097 		    vd->vdev_id, tx);
4098 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4099 		    vd->vdev_id, tx);
4100 		mutex_enter(&msp->ms_lock);
4101 
4102 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4103 		    metaslab_unflushed_changes_memused(msp));
4104 		spa->spa_unflushed_stats.sus_memused -=
4105 		    metaslab_unflushed_changes_memused(msp);
4106 		range_tree_remove_xor_add(alloctree,
4107 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4108 		range_tree_remove_xor_add(msp->ms_freeing,
4109 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4110 		spa->spa_unflushed_stats.sus_memused +=
4111 		    metaslab_unflushed_changes_memused(msp);
4112 	} else {
4113 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4114 
4115 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4116 		    SM_NO_VDEVID, tx);
4117 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4118 		    SM_NO_VDEVID, tx);
4119 		mutex_enter(&msp->ms_lock);
4120 	}
4121 
4122 	msp->ms_allocated_space += range_tree_space(alloctree);
4123 	ASSERT3U(msp->ms_allocated_space, >=,
4124 	    range_tree_space(msp->ms_freeing));
4125 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4126 
4127 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4128 		ASSERT(spa_has_checkpoint(spa));
4129 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4130 
4131 		/*
4132 		 * Since we are doing writes to disk and the ms_checkpointing
4133 		 * tree won't be changing during that time, we drop the
4134 		 * ms_lock while writing to the checkpoint space map, for the
4135 		 * same reason mentioned above.
4136 		 */
4137 		mutex_exit(&msp->ms_lock);
4138 		space_map_write(vd->vdev_checkpoint_sm,
4139 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4140 		mutex_enter(&msp->ms_lock);
4141 
4142 		spa->spa_checkpoint_info.sci_dspace +=
4143 		    range_tree_space(msp->ms_checkpointing);
4144 		vd->vdev_stat.vs_checkpoint_space +=
4145 		    range_tree_space(msp->ms_checkpointing);
4146 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4147 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4148 
4149 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4150 	}
4151 
4152 	if (msp->ms_loaded) {
4153 		/*
4154 		 * When the space map is loaded, we have an accurate
4155 		 * histogram in the range tree. This gives us an opportunity
4156 		 * to bring the space map's histogram up-to-date so we clear
4157 		 * it first before updating it.
4158 		 */
4159 		space_map_histogram_clear(msp->ms_sm);
4160 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4161 
4162 		/*
4163 		 * Since we've cleared the histogram we need to add back
4164 		 * any free space that has already been processed, plus
4165 		 * any deferred space. This allows the on-disk histogram
4166 		 * to accurately reflect all free space even if some space
4167 		 * is not yet available for allocation (i.e. deferred).
4168 		 */
4169 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4170 
4171 		/*
4172 		 * Add back any deferred free space that has not been
4173 		 * added back into the in-core free tree yet. This will
4174 		 * ensure that we don't end up with a space map histogram
4175 		 * that is completely empty unless the metaslab is fully
4176 		 * allocated.
4177 		 */
4178 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4179 			space_map_histogram_add(msp->ms_sm,
4180 			    msp->ms_defer[t], tx);
4181 		}
4182 	}
4183 
4184 	/*
4185 	 * Always add the free space from this sync pass to the space
4186 	 * map histogram. We want to make sure that the on-disk histogram
4187 	 * accounts for all free space. If the space map is not loaded,
4188 	 * then we will lose some accuracy but will correct it the next
4189 	 * time we load the space map.
4190 	 */
4191 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4192 	metaslab_aux_histograms_update(msp);
4193 
4194 	metaslab_group_histogram_add(mg, msp);
4195 	metaslab_group_histogram_verify(mg);
4196 	metaslab_class_histogram_verify(mg->mg_class);
4197 
4198 	/*
4199 	 * For sync pass 1, we avoid traversing this txg's free range tree
4200 	 * and instead will just swap the pointers for freeing and freed.
4201 	 * We can safely do this since the freed_tree is guaranteed to be
4202 	 * empty on the initial pass.
4203 	 *
4204 	 * Keep in mind that even if we are currently using a log spacemap
4205 	 * we want current frees to end up in the ms_allocatable (but not
4206 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4207 	 */
4208 	if (spa_sync_pass(spa) == 1) {
4209 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4210 		ASSERT0(msp->ms_allocated_this_txg);
4211 	} else {
4212 		range_tree_vacate(msp->ms_freeing,
4213 		    range_tree_add, msp->ms_freed);
4214 	}
4215 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4216 	range_tree_vacate(alloctree, NULL, NULL);
4217 
4218 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4219 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4220 	    & TXG_MASK]));
4221 	ASSERT0(range_tree_space(msp->ms_freeing));
4222 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4223 
4224 	mutex_exit(&msp->ms_lock);
4225 
4226 	/*
4227 	 * Verify that the space map object ID has been recorded in the
4228 	 * vdev_ms_array.
4229 	 */
4230 	uint64_t object;
4231 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4232 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4233 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4234 
4235 	mutex_exit(&msp->ms_sync_lock);
4236 	dmu_tx_commit(tx);
4237 }
4238 
4239 static void
4240 metaslab_evict(metaslab_t *msp, uint64_t txg)
4241 {
4242 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4243 		return;
4244 
4245 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4246 		VERIFY0(range_tree_space(
4247 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4248 	}
4249 	if (msp->ms_allocator != -1)
4250 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4251 
4252 	if (!metaslab_debug_unload)
4253 		metaslab_unload(msp);
4254 }
4255 
4256 /*
4257  * Called after a transaction group has completely synced to mark
4258  * all of the metaslab's free space as usable.
4259  */
4260 void
4261 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4262 {
4263 	metaslab_group_t *mg = msp->ms_group;
4264 	vdev_t *vd = mg->mg_vd;
4265 	spa_t *spa = vd->vdev_spa;
4266 	range_tree_t **defer_tree;
4267 	int64_t alloc_delta, defer_delta;
4268 	boolean_t defer_allowed = B_TRUE;
4269 
4270 	ASSERT(!vd->vdev_ishole);
4271 
4272 	mutex_enter(&msp->ms_lock);
4273 
4274 	if (msp->ms_new) {
4275 		/* this is a new metaslab, add its capacity to the vdev */
4276 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4277 
4278 		/* there should be no allocations nor frees at this point */
4279 		VERIFY0(msp->ms_allocated_this_txg);
4280 		VERIFY0(range_tree_space(msp->ms_freed));
4281 	}
4282 
4283 	ASSERT0(range_tree_space(msp->ms_freeing));
4284 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4285 
4286 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4287 
4288 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4289 	    metaslab_class_get_alloc(spa_normal_class(spa));
4290 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4291 		defer_allowed = B_FALSE;
4292 	}
4293 
4294 	defer_delta = 0;
4295 	alloc_delta = msp->ms_allocated_this_txg -
4296 	    range_tree_space(msp->ms_freed);
4297 
4298 	if (defer_allowed) {
4299 		defer_delta = range_tree_space(msp->ms_freed) -
4300 		    range_tree_space(*defer_tree);
4301 	} else {
4302 		defer_delta -= range_tree_space(*defer_tree);
4303 	}
4304 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4305 	    defer_delta, 0);
4306 
4307 	if (spa_syncing_log_sm(spa) == NULL) {
4308 		/*
4309 		 * If there's a metaslab_load() in progress and we don't have
4310 		 * a log space map, it means that we probably wrote to the
4311 		 * metaslab's space map. If this is the case, we need to
4312 		 * make sure that we wait for the load to complete so that we
4313 		 * have a consistent view at the in-core side of the metaslab.
4314 		 */
4315 		metaslab_load_wait(msp);
4316 	} else {
4317 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4318 	}
4319 
4320 	/*
4321 	 * When auto-trimming is enabled, free ranges which are added to
4322 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4323 	 * periodically consumed by the vdev_autotrim_thread() which issues
4324 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4325 	 * can be discarded at any time with the sole consequence of recent
4326 	 * frees not being trimmed.
4327 	 */
4328 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4329 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4330 		if (!defer_allowed) {
4331 			range_tree_walk(msp->ms_freed, range_tree_add,
4332 			    msp->ms_trim);
4333 		}
4334 	} else {
4335 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4336 	}
4337 
4338 	/*
4339 	 * Move the frees from the defer_tree back to the free
4340 	 * range tree (if it's loaded). Swap the freed_tree and
4341 	 * the defer_tree -- this is safe to do because we've
4342 	 * just emptied out the defer_tree.
4343 	 */
4344 	range_tree_vacate(*defer_tree,
4345 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4346 	if (defer_allowed) {
4347 		range_tree_swap(&msp->ms_freed, defer_tree);
4348 	} else {
4349 		range_tree_vacate(msp->ms_freed,
4350 		    msp->ms_loaded ? range_tree_add : NULL,
4351 		    msp->ms_allocatable);
4352 	}
4353 
4354 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4355 
4356 	msp->ms_deferspace += defer_delta;
4357 	ASSERT3S(msp->ms_deferspace, >=, 0);
4358 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4359 	if (msp->ms_deferspace != 0) {
4360 		/*
4361 		 * Keep syncing this metaslab until all deferred frees
4362 		 * are back in circulation.
4363 		 */
4364 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4365 	}
4366 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4367 
4368 	if (msp->ms_new) {
4369 		msp->ms_new = B_FALSE;
4370 		mutex_enter(&mg->mg_lock);
4371 		mg->mg_ms_ready++;
4372 		mutex_exit(&mg->mg_lock);
4373 	}
4374 
4375 	/*
4376 	 * Re-sort metaslab within its group now that we've adjusted
4377 	 * its allocatable space.
4378 	 */
4379 	metaslab_recalculate_weight_and_sort(msp);
4380 
4381 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4382 	ASSERT0(range_tree_space(msp->ms_freeing));
4383 	ASSERT0(range_tree_space(msp->ms_freed));
4384 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4385 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4386 	msp->ms_allocated_this_txg = 0;
4387 	mutex_exit(&msp->ms_lock);
4388 }
4389 
4390 void
4391 metaslab_sync_reassess(metaslab_group_t *mg)
4392 {
4393 	spa_t *spa = mg->mg_class->mc_spa;
4394 
4395 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4396 	metaslab_group_alloc_update(mg);
4397 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4398 
4399 	/*
4400 	 * Preload the next potential metaslabs but only on active
4401 	 * metaslab groups. We can get into a state where the metaslab
4402 	 * is no longer active since we dirty metaslabs as we remove a
4403 	 * a device, thus potentially making the metaslab group eligible
4404 	 * for preloading.
4405 	 */
4406 	if (mg->mg_activation_count > 0) {
4407 		metaslab_group_preload(mg);
4408 	}
4409 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4410 }
4411 
4412 /*
4413  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4414  * the same vdev as an existing DVA of this BP, then try to allocate it
4415  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4416  */
4417 static boolean_t
4418 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4419 {
4420 	uint64_t dva_ms_id;
4421 
4422 	if (DVA_GET_ASIZE(dva) == 0)
4423 		return (B_TRUE);
4424 
4425 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4426 		return (B_TRUE);
4427 
4428 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4429 
4430 	return (msp->ms_id != dva_ms_id);
4431 }
4432 
4433 /*
4434  * ==========================================================================
4435  * Metaslab allocation tracing facility
4436  * ==========================================================================
4437  */
4438 
4439 /*
4440  * Add an allocation trace element to the allocation tracing list.
4441  */
4442 static void
4443 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4444     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4445     int allocator)
4446 {
4447 	metaslab_alloc_trace_t *mat;
4448 
4449 	if (!metaslab_trace_enabled)
4450 		return;
4451 
4452 	/*
4453 	 * When the tracing list reaches its maximum we remove
4454 	 * the second element in the list before adding a new one.
4455 	 * By removing the second element we preserve the original
4456 	 * entry as a clue to what allocations steps have already been
4457 	 * performed.
4458 	 */
4459 	if (zal->zal_size == metaslab_trace_max_entries) {
4460 		metaslab_alloc_trace_t *mat_next;
4461 #ifdef ZFS_DEBUG
4462 		panic("too many entries in allocation list");
4463 #endif
4464 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4465 		zal->zal_size--;
4466 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4467 		list_remove(&zal->zal_list, mat_next);
4468 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4469 	}
4470 
4471 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4472 	list_link_init(&mat->mat_list_node);
4473 	mat->mat_mg = mg;
4474 	mat->mat_msp = msp;
4475 	mat->mat_size = psize;
4476 	mat->mat_dva_id = dva_id;
4477 	mat->mat_offset = offset;
4478 	mat->mat_weight = 0;
4479 	mat->mat_allocator = allocator;
4480 
4481 	if (msp != NULL)
4482 		mat->mat_weight = msp->ms_weight;
4483 
4484 	/*
4485 	 * The list is part of the zio so locking is not required. Only
4486 	 * a single thread will perform allocations for a given zio.
4487 	 */
4488 	list_insert_tail(&zal->zal_list, mat);
4489 	zal->zal_size++;
4490 
4491 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4492 }
4493 
4494 void
4495 metaslab_trace_init(zio_alloc_list_t *zal)
4496 {
4497 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4498 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4499 	zal->zal_size = 0;
4500 }
4501 
4502 void
4503 metaslab_trace_fini(zio_alloc_list_t *zal)
4504 {
4505 	metaslab_alloc_trace_t *mat;
4506 
4507 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4508 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4509 	list_destroy(&zal->zal_list);
4510 	zal->zal_size = 0;
4511 }
4512 
4513 /*
4514  * ==========================================================================
4515  * Metaslab block operations
4516  * ==========================================================================
4517  */
4518 
4519 static void
4520 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4521     int flags, int allocator)
4522 {
4523 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4524 	    (flags & METASLAB_DONT_THROTTLE))
4525 		return;
4526 
4527 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4528 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4529 		return;
4530 
4531 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4532 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4533 }
4534 
4535 static void
4536 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4537 {
4538 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4539 	metaslab_class_allocator_t *mca =
4540 	    &mg->mg_class->mc_allocator[allocator];
4541 	uint64_t max = mg->mg_max_alloc_queue_depth;
4542 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4543 	while (cur < max) {
4544 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4545 		    cur, cur + 1) == cur) {
4546 			atomic_inc_64(&mca->mca_alloc_max_slots);
4547 			return;
4548 		}
4549 		cur = mga->mga_cur_max_alloc_queue_depth;
4550 	}
4551 }
4552 
4553 void
4554 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4555     int flags, int allocator, boolean_t io_complete)
4556 {
4557 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4558 	    (flags & METASLAB_DONT_THROTTLE))
4559 		return;
4560 
4561 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4562 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4563 		return;
4564 
4565 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4566 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4567 	if (io_complete)
4568 		metaslab_group_increment_qdepth(mg, allocator);
4569 }
4570 
4571 void
4572 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4573     int allocator)
4574 {
4575 #ifdef ZFS_DEBUG
4576 	const dva_t *dva = bp->blk_dva;
4577 	int ndvas = BP_GET_NDVAS(bp);
4578 
4579 	for (int d = 0; d < ndvas; d++) {
4580 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4581 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4582 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4583 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4584 	}
4585 #endif
4586 }
4587 
4588 static uint64_t
4589 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4590 {
4591 	uint64_t start;
4592 	range_tree_t *rt = msp->ms_allocatable;
4593 	metaslab_class_t *mc = msp->ms_group->mg_class;
4594 
4595 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4596 	VERIFY(!msp->ms_condensing);
4597 	VERIFY0(msp->ms_disabled);
4598 
4599 	start = mc->mc_ops->msop_alloc(msp, size);
4600 	if (start != -1ULL) {
4601 		metaslab_group_t *mg = msp->ms_group;
4602 		vdev_t *vd = mg->mg_vd;
4603 
4604 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4605 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4606 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4607 		range_tree_remove(rt, start, size);
4608 		range_tree_clear(msp->ms_trim, start, size);
4609 
4610 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4611 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4612 
4613 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4614 		msp->ms_allocating_total += size;
4615 
4616 		/* Track the last successful allocation */
4617 		msp->ms_alloc_txg = txg;
4618 		metaslab_verify_space(msp, txg);
4619 	}
4620 
4621 	/*
4622 	 * Now that we've attempted the allocation we need to update the
4623 	 * metaslab's maximum block size since it may have changed.
4624 	 */
4625 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4626 	return (start);
4627 }
4628 
4629 /*
4630  * Find the metaslab with the highest weight that is less than what we've
4631  * already tried.  In the common case, this means that we will examine each
4632  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4633  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4634  * activated by another thread, and we fail to allocate from the metaslab we
4635  * have selected, we may not try the newly-activated metaslab, and instead
4636  * activate another metaslab.  This is not optimal, but generally does not cause
4637  * any problems (a possible exception being if every metaslab is completely full
4638  * except for the newly-activated metaslab which we fail to examine).
4639  */
4640 static metaslab_t *
4641 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4642     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4643     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4644     boolean_t *was_active)
4645 {
4646 	avl_index_t idx;
4647 	avl_tree_t *t = &mg->mg_metaslab_tree;
4648 	metaslab_t *msp = avl_find(t, search, &idx);
4649 	if (msp == NULL)
4650 		msp = avl_nearest(t, idx, AVL_AFTER);
4651 
4652 	uint_t tries = 0;
4653 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4654 		int i;
4655 
4656 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4657 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4658 			return (NULL);
4659 		}
4660 		tries++;
4661 
4662 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4663 			metaslab_trace_add(zal, mg, msp, asize, d,
4664 			    TRACE_TOO_SMALL, allocator);
4665 			continue;
4666 		}
4667 
4668 		/*
4669 		 * If the selected metaslab is condensing or disabled,
4670 		 * skip it.
4671 		 */
4672 		if (msp->ms_condensing || msp->ms_disabled > 0)
4673 			continue;
4674 
4675 		*was_active = msp->ms_allocator != -1;
4676 		/*
4677 		 * If we're activating as primary, this is our first allocation
4678 		 * from this disk, so we don't need to check how close we are.
4679 		 * If the metaslab under consideration was already active,
4680 		 * we're getting desperate enough to steal another allocator's
4681 		 * metaslab, so we still don't care about distances.
4682 		 */
4683 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4684 			break;
4685 
4686 		for (i = 0; i < d; i++) {
4687 			if (want_unique &&
4688 			    !metaslab_is_unique(msp, &dva[i]))
4689 				break;  /* try another metaslab */
4690 		}
4691 		if (i == d)
4692 			break;
4693 	}
4694 
4695 	if (msp != NULL) {
4696 		search->ms_weight = msp->ms_weight;
4697 		search->ms_start = msp->ms_start + 1;
4698 		search->ms_allocator = msp->ms_allocator;
4699 		search->ms_primary = msp->ms_primary;
4700 	}
4701 	return (msp);
4702 }
4703 
4704 static void
4705 metaslab_active_mask_verify(metaslab_t *msp)
4706 {
4707 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4708 
4709 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4710 		return;
4711 
4712 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4713 		return;
4714 
4715 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4716 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4717 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4718 		VERIFY3S(msp->ms_allocator, !=, -1);
4719 		VERIFY(msp->ms_primary);
4720 		return;
4721 	}
4722 
4723 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4724 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4725 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4726 		VERIFY3S(msp->ms_allocator, !=, -1);
4727 		VERIFY(!msp->ms_primary);
4728 		return;
4729 	}
4730 
4731 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4732 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4733 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4734 		VERIFY3S(msp->ms_allocator, ==, -1);
4735 		return;
4736 	}
4737 }
4738 
4739 static uint64_t
4740 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4741     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4742     int allocator, boolean_t try_hard)
4743 {
4744 	metaslab_t *msp = NULL;
4745 	uint64_t offset = -1ULL;
4746 
4747 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4748 	for (int i = 0; i < d; i++) {
4749 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4750 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4751 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4752 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4753 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4754 			activation_weight = METASLAB_WEIGHT_CLAIM;
4755 			break;
4756 		}
4757 	}
4758 
4759 	/*
4760 	 * If we don't have enough metaslabs active to fill the entire array, we
4761 	 * just use the 0th slot.
4762 	 */
4763 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4764 		allocator = 0;
4765 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4766 
4767 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4768 
4769 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4770 	search->ms_weight = UINT64_MAX;
4771 	search->ms_start = 0;
4772 	/*
4773 	 * At the end of the metaslab tree are the already-active metaslabs,
4774 	 * first the primaries, then the secondaries. When we resume searching
4775 	 * through the tree, we need to consider ms_allocator and ms_primary so
4776 	 * we start in the location right after where we left off, and don't
4777 	 * accidentally loop forever considering the same metaslabs.
4778 	 */
4779 	search->ms_allocator = -1;
4780 	search->ms_primary = B_TRUE;
4781 	for (;;) {
4782 		boolean_t was_active = B_FALSE;
4783 
4784 		mutex_enter(&mg->mg_lock);
4785 
4786 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4787 		    mga->mga_primary != NULL) {
4788 			msp = mga->mga_primary;
4789 
4790 			/*
4791 			 * Even though we don't hold the ms_lock for the
4792 			 * primary metaslab, those fields should not
4793 			 * change while we hold the mg_lock. Thus it is
4794 			 * safe to make assertions on them.
4795 			 */
4796 			ASSERT(msp->ms_primary);
4797 			ASSERT3S(msp->ms_allocator, ==, allocator);
4798 			ASSERT(msp->ms_loaded);
4799 
4800 			was_active = B_TRUE;
4801 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4802 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4803 		    mga->mga_secondary != NULL) {
4804 			msp = mga->mga_secondary;
4805 
4806 			/*
4807 			 * See comment above about the similar assertions
4808 			 * for the primary metaslab.
4809 			 */
4810 			ASSERT(!msp->ms_primary);
4811 			ASSERT3S(msp->ms_allocator, ==, allocator);
4812 			ASSERT(msp->ms_loaded);
4813 
4814 			was_active = B_TRUE;
4815 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4816 		} else {
4817 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4818 			    want_unique, asize, allocator, try_hard, zal,
4819 			    search, &was_active);
4820 		}
4821 
4822 		mutex_exit(&mg->mg_lock);
4823 		if (msp == NULL) {
4824 			kmem_free(search, sizeof (*search));
4825 			return (-1ULL);
4826 		}
4827 		mutex_enter(&msp->ms_lock);
4828 
4829 		metaslab_active_mask_verify(msp);
4830 
4831 		/*
4832 		 * This code is disabled out because of issues with
4833 		 * tracepoints in non-gpl kernel modules.
4834 		 */
4835 #if 0
4836 		DTRACE_PROBE3(ms__activation__attempt,
4837 		    metaslab_t *, msp, uint64_t, activation_weight,
4838 		    boolean_t, was_active);
4839 #endif
4840 
4841 		/*
4842 		 * Ensure that the metaslab we have selected is still
4843 		 * capable of handling our request. It's possible that
4844 		 * another thread may have changed the weight while we
4845 		 * were blocked on the metaslab lock. We check the
4846 		 * active status first to see if we need to set_selected_txg
4847 		 * a new metaslab.
4848 		 */
4849 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4850 			ASSERT3S(msp->ms_allocator, ==, -1);
4851 			mutex_exit(&msp->ms_lock);
4852 			continue;
4853 		}
4854 
4855 		/*
4856 		 * If the metaslab was activated for another allocator
4857 		 * while we were waiting in the ms_lock above, or it's
4858 		 * a primary and we're seeking a secondary (or vice versa),
4859 		 * we go back and select a new metaslab.
4860 		 */
4861 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4862 		    (msp->ms_allocator != -1) &&
4863 		    (msp->ms_allocator != allocator || ((activation_weight ==
4864 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4865 			ASSERT(msp->ms_loaded);
4866 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4867 			    msp->ms_allocator != -1);
4868 			mutex_exit(&msp->ms_lock);
4869 			continue;
4870 		}
4871 
4872 		/*
4873 		 * This metaslab was used for claiming regions allocated
4874 		 * by the ZIL during pool import. Once these regions are
4875 		 * claimed we don't need to keep the CLAIM bit set
4876 		 * anymore. Passivate this metaslab to zero its activation
4877 		 * mask.
4878 		 */
4879 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4880 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4881 			ASSERT(msp->ms_loaded);
4882 			ASSERT3S(msp->ms_allocator, ==, -1);
4883 			metaslab_passivate(msp, msp->ms_weight &
4884 			    ~METASLAB_WEIGHT_CLAIM);
4885 			mutex_exit(&msp->ms_lock);
4886 			continue;
4887 		}
4888 
4889 		metaslab_set_selected_txg(msp, txg);
4890 
4891 		int activation_error =
4892 		    metaslab_activate(msp, allocator, activation_weight);
4893 		metaslab_active_mask_verify(msp);
4894 
4895 		/*
4896 		 * If the metaslab was activated by another thread for
4897 		 * another allocator or activation_weight (EBUSY), or it
4898 		 * failed because another metaslab was assigned as primary
4899 		 * for this allocator (EEXIST) we continue using this
4900 		 * metaslab for our allocation, rather than going on to a
4901 		 * worse metaslab (we waited for that metaslab to be loaded
4902 		 * after all).
4903 		 *
4904 		 * If the activation failed due to an I/O error or ENOSPC we
4905 		 * skip to the next metaslab.
4906 		 */
4907 		boolean_t activated;
4908 		if (activation_error == 0) {
4909 			activated = B_TRUE;
4910 		} else if (activation_error == EBUSY ||
4911 		    activation_error == EEXIST) {
4912 			activated = B_FALSE;
4913 		} else {
4914 			mutex_exit(&msp->ms_lock);
4915 			continue;
4916 		}
4917 		ASSERT(msp->ms_loaded);
4918 
4919 		/*
4920 		 * Now that we have the lock, recheck to see if we should
4921 		 * continue to use this metaslab for this allocation. The
4922 		 * the metaslab is now loaded so metaslab_should_allocate()
4923 		 * can accurately determine if the allocation attempt should
4924 		 * proceed.
4925 		 */
4926 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4927 			/* Passivate this metaslab and select a new one. */
4928 			metaslab_trace_add(zal, mg, msp, asize, d,
4929 			    TRACE_TOO_SMALL, allocator);
4930 			goto next;
4931 		}
4932 
4933 		/*
4934 		 * If this metaslab is currently condensing then pick again
4935 		 * as we can't manipulate this metaslab until it's committed
4936 		 * to disk. If this metaslab is being initialized, we shouldn't
4937 		 * allocate from it since the allocated region might be
4938 		 * overwritten after allocation.
4939 		 */
4940 		if (msp->ms_condensing) {
4941 			metaslab_trace_add(zal, mg, msp, asize, d,
4942 			    TRACE_CONDENSING, allocator);
4943 			if (activated) {
4944 				metaslab_passivate(msp, msp->ms_weight &
4945 				    ~METASLAB_ACTIVE_MASK);
4946 			}
4947 			mutex_exit(&msp->ms_lock);
4948 			continue;
4949 		} else if (msp->ms_disabled > 0) {
4950 			metaslab_trace_add(zal, mg, msp, asize, d,
4951 			    TRACE_DISABLED, allocator);
4952 			if (activated) {
4953 				metaslab_passivate(msp, msp->ms_weight &
4954 				    ~METASLAB_ACTIVE_MASK);
4955 			}
4956 			mutex_exit(&msp->ms_lock);
4957 			continue;
4958 		}
4959 
4960 		offset = metaslab_block_alloc(msp, asize, txg);
4961 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4962 
4963 		if (offset != -1ULL) {
4964 			/* Proactively passivate the metaslab, if needed */
4965 			if (activated)
4966 				metaslab_segment_may_passivate(msp);
4967 			break;
4968 		}
4969 next:
4970 		ASSERT(msp->ms_loaded);
4971 
4972 		/*
4973 		 * This code is disabled out because of issues with
4974 		 * tracepoints in non-gpl kernel modules.
4975 		 */
4976 #if 0
4977 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4978 		    uint64_t, asize);
4979 #endif
4980 
4981 		/*
4982 		 * We were unable to allocate from this metaslab so determine
4983 		 * a new weight for this metaslab. Now that we have loaded
4984 		 * the metaslab we can provide a better hint to the metaslab
4985 		 * selector.
4986 		 *
4987 		 * For space-based metaslabs, we use the maximum block size.
4988 		 * This information is only available when the metaslab
4989 		 * is loaded and is more accurate than the generic free
4990 		 * space weight that was calculated by metaslab_weight().
4991 		 * This information allows us to quickly compare the maximum
4992 		 * available allocation in the metaslab to the allocation
4993 		 * size being requested.
4994 		 *
4995 		 * For segment-based metaslabs, determine the new weight
4996 		 * based on the highest bucket in the range tree. We
4997 		 * explicitly use the loaded segment weight (i.e. the range
4998 		 * tree histogram) since it contains the space that is
4999 		 * currently available for allocation and is accurate
5000 		 * even within a sync pass.
5001 		 */
5002 		uint64_t weight;
5003 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5004 			weight = metaslab_largest_allocatable(msp);
5005 			WEIGHT_SET_SPACEBASED(weight);
5006 		} else {
5007 			weight = metaslab_weight_from_range_tree(msp);
5008 		}
5009 
5010 		if (activated) {
5011 			metaslab_passivate(msp, weight);
5012 		} else {
5013 			/*
5014 			 * For the case where we use the metaslab that is
5015 			 * active for another allocator we want to make
5016 			 * sure that we retain the activation mask.
5017 			 *
5018 			 * Note that we could attempt to use something like
5019 			 * metaslab_recalculate_weight_and_sort() that
5020 			 * retains the activation mask here. That function
5021 			 * uses metaslab_weight() to set the weight though
5022 			 * which is not as accurate as the calculations
5023 			 * above.
5024 			 */
5025 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5026 			metaslab_group_sort(mg, msp, weight);
5027 		}
5028 		metaslab_active_mask_verify(msp);
5029 
5030 		/*
5031 		 * We have just failed an allocation attempt, check
5032 		 * that metaslab_should_allocate() agrees. Otherwise,
5033 		 * we may end up in an infinite loop retrying the same
5034 		 * metaslab.
5035 		 */
5036 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5037 
5038 		mutex_exit(&msp->ms_lock);
5039 	}
5040 	mutex_exit(&msp->ms_lock);
5041 	kmem_free(search, sizeof (*search));
5042 	return (offset);
5043 }
5044 
5045 static uint64_t
5046 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5047     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5048     int allocator, boolean_t try_hard)
5049 {
5050 	uint64_t offset;
5051 	ASSERT(mg->mg_initialized);
5052 
5053 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5054 	    dva, d, allocator, try_hard);
5055 
5056 	mutex_enter(&mg->mg_lock);
5057 	if (offset == -1ULL) {
5058 		mg->mg_failed_allocations++;
5059 		metaslab_trace_add(zal, mg, NULL, asize, d,
5060 		    TRACE_GROUP_FAILURE, allocator);
5061 		if (asize == SPA_GANGBLOCKSIZE) {
5062 			/*
5063 			 * This metaslab group was unable to allocate
5064 			 * the minimum gang block size so it must be out of
5065 			 * space. We must notify the allocation throttle
5066 			 * to start skipping allocation attempts to this
5067 			 * metaslab group until more space becomes available.
5068 			 * Note: this failure cannot be caused by the
5069 			 * allocation throttle since the allocation throttle
5070 			 * is only responsible for skipping devices and
5071 			 * not failing block allocations.
5072 			 */
5073 			mg->mg_no_free_space = B_TRUE;
5074 		}
5075 	}
5076 	mg->mg_allocations++;
5077 	mutex_exit(&mg->mg_lock);
5078 	return (offset);
5079 }
5080 
5081 /*
5082  * Allocate a block for the specified i/o.
5083  */
5084 int
5085 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5086     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5087     zio_alloc_list_t *zal, int allocator)
5088 {
5089 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5090 	metaslab_group_t *mg, *fast_mg, *rotor;
5091 	vdev_t *vd;
5092 	boolean_t try_hard = B_FALSE;
5093 
5094 	ASSERT(!DVA_IS_VALID(&dva[d]));
5095 
5096 	/*
5097 	 * For testing, make some blocks above a certain size be gang blocks.
5098 	 * This will result in more split blocks when using device removal,
5099 	 * and a large number of split blocks coupled with ztest-induced
5100 	 * damage can result in extremely long reconstruction times.  This
5101 	 * will also test spilling from special to normal.
5102 	 */
5103 	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5104 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5105 		    allocator);
5106 		return (SET_ERROR(ENOSPC));
5107 	}
5108 
5109 	/*
5110 	 * Start at the rotor and loop through all mgs until we find something.
5111 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5112 	 * nothing actually breaks if we miss a few updates -- we just won't
5113 	 * allocate quite as evenly.  It all balances out over time.
5114 	 *
5115 	 * If we are doing ditto or log blocks, try to spread them across
5116 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5117 	 * allocated all of our ditto blocks, then try and spread them out on
5118 	 * that vdev as much as possible.  If it turns out to not be possible,
5119 	 * gradually lower our standards until anything becomes acceptable.
5120 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5121 	 * gives us hope of containing our fault domains to something we're
5122 	 * able to reason about.  Otherwise, any two top-level vdev failures
5123 	 * will guarantee the loss of data.  With consecutive allocation,
5124 	 * only two adjacent top-level vdev failures will result in data loss.
5125 	 *
5126 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5127 	 * ourselves on the same vdev as our gang block header.  That
5128 	 * way, we can hope for locality in vdev_cache, plus it makes our
5129 	 * fault domains something tractable.
5130 	 */
5131 	if (hintdva) {
5132 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5133 
5134 		/*
5135 		 * It's possible the vdev we're using as the hint no
5136 		 * longer exists or its mg has been closed (e.g. by
5137 		 * device removal).  Consult the rotor when
5138 		 * all else fails.
5139 		 */
5140 		if (vd != NULL && vd->vdev_mg != NULL) {
5141 			mg = vdev_get_mg(vd, mc);
5142 
5143 			if (flags & METASLAB_HINTBP_AVOID)
5144 				mg = mg->mg_next;
5145 		} else {
5146 			mg = mca->mca_rotor;
5147 		}
5148 	} else if (d != 0) {
5149 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5150 		mg = vd->vdev_mg->mg_next;
5151 	} else if (flags & METASLAB_FASTWRITE) {
5152 		mg = fast_mg = mca->mca_rotor;
5153 
5154 		do {
5155 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5156 			    mg->mg_vd->vdev_pending_fastwrite)
5157 				mg = fast_mg;
5158 		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5159 
5160 	} else {
5161 		ASSERT(mca->mca_rotor != NULL);
5162 		mg = mca->mca_rotor;
5163 	}
5164 
5165 	/*
5166 	 * If the hint put us into the wrong metaslab class, or into a
5167 	 * metaslab group that has been passivated, just follow the rotor.
5168 	 */
5169 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5170 		mg = mca->mca_rotor;
5171 
5172 	rotor = mg;
5173 top:
5174 	do {
5175 		boolean_t allocatable;
5176 
5177 		ASSERT(mg->mg_activation_count == 1);
5178 		vd = mg->mg_vd;
5179 
5180 		/*
5181 		 * Don't allocate from faulted devices.
5182 		 */
5183 		if (try_hard) {
5184 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5185 			allocatable = vdev_allocatable(vd);
5186 			spa_config_exit(spa, SCL_ZIO, FTAG);
5187 		} else {
5188 			allocatable = vdev_allocatable(vd);
5189 		}
5190 
5191 		/*
5192 		 * Determine if the selected metaslab group is eligible
5193 		 * for allocations. If we're ganging then don't allow
5194 		 * this metaslab group to skip allocations since that would
5195 		 * inadvertently return ENOSPC and suspend the pool
5196 		 * even though space is still available.
5197 		 */
5198 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5199 			allocatable = metaslab_group_allocatable(mg, rotor,
5200 			    flags, psize, allocator, d);
5201 		}
5202 
5203 		if (!allocatable) {
5204 			metaslab_trace_add(zal, mg, NULL, psize, d,
5205 			    TRACE_NOT_ALLOCATABLE, allocator);
5206 			goto next;
5207 		}
5208 
5209 		ASSERT(mg->mg_initialized);
5210 
5211 		/*
5212 		 * Avoid writing single-copy data to an unhealthy,
5213 		 * non-redundant vdev, unless we've already tried all
5214 		 * other vdevs.
5215 		 */
5216 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5217 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5218 			metaslab_trace_add(zal, mg, NULL, psize, d,
5219 			    TRACE_VDEV_ERROR, allocator);
5220 			goto next;
5221 		}
5222 
5223 		ASSERT(mg->mg_class == mc);
5224 
5225 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5226 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5227 
5228 		/*
5229 		 * If we don't need to try hard, then require that the
5230 		 * block be on a different metaslab from any other DVAs
5231 		 * in this BP (unique=true).  If we are trying hard, then
5232 		 * allow any metaslab to be used (unique=false).
5233 		 */
5234 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5235 		    !try_hard, dva, d, allocator, try_hard);
5236 
5237 		if (offset != -1ULL) {
5238 			/*
5239 			 * If we've just selected this metaslab group,
5240 			 * figure out whether the corresponding vdev is
5241 			 * over- or under-used relative to the pool,
5242 			 * and set an allocation bias to even it out.
5243 			 *
5244 			 * Bias is also used to compensate for unequally
5245 			 * sized vdevs so that space is allocated fairly.
5246 			 */
5247 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5248 				vdev_stat_t *vs = &vd->vdev_stat;
5249 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5250 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5251 				int64_t ratio;
5252 
5253 				/*
5254 				 * Calculate how much more or less we should
5255 				 * try to allocate from this device during
5256 				 * this iteration around the rotor.
5257 				 *
5258 				 * This basically introduces a zero-centered
5259 				 * bias towards the devices with the most
5260 				 * free space, while compensating for vdev
5261 				 * size differences.
5262 				 *
5263 				 * Examples:
5264 				 *  vdev V1 = 16M/128M
5265 				 *  vdev V2 = 16M/128M
5266 				 *  ratio(V1) = 100% ratio(V2) = 100%
5267 				 *
5268 				 *  vdev V1 = 16M/128M
5269 				 *  vdev V2 = 64M/128M
5270 				 *  ratio(V1) = 127% ratio(V2) =  72%
5271 				 *
5272 				 *  vdev V1 = 16M/128M
5273 				 *  vdev V2 = 64M/512M
5274 				 *  ratio(V1) =  40% ratio(V2) = 160%
5275 				 */
5276 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5277 				    (mc_free + 1);
5278 				mg->mg_bias = ((ratio - 100) *
5279 				    (int64_t)mg->mg_aliquot) / 100;
5280 			} else if (!metaslab_bias_enabled) {
5281 				mg->mg_bias = 0;
5282 			}
5283 
5284 			if ((flags & METASLAB_FASTWRITE) ||
5285 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5286 			    mg->mg_aliquot + mg->mg_bias) {
5287 				mca->mca_rotor = mg->mg_next;
5288 				mca->mca_aliquot = 0;
5289 			}
5290 
5291 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5292 			DVA_SET_OFFSET(&dva[d], offset);
5293 			DVA_SET_GANG(&dva[d],
5294 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5295 			DVA_SET_ASIZE(&dva[d], asize);
5296 
5297 			if (flags & METASLAB_FASTWRITE) {
5298 				atomic_add_64(&vd->vdev_pending_fastwrite,
5299 				    psize);
5300 			}
5301 
5302 			return (0);
5303 		}
5304 next:
5305 		mca->mca_rotor = mg->mg_next;
5306 		mca->mca_aliquot = 0;
5307 	} while ((mg = mg->mg_next) != rotor);
5308 
5309 	/*
5310 	 * If we haven't tried hard, perhaps do so now.
5311 	 */
5312 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5313 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5314 	    psize <= 1 << spa->spa_min_ashift)) {
5315 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5316 		try_hard = B_TRUE;
5317 		goto top;
5318 	}
5319 
5320 	memset(&dva[d], 0, sizeof (dva_t));
5321 
5322 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5323 	return (SET_ERROR(ENOSPC));
5324 }
5325 
5326 void
5327 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5328     boolean_t checkpoint)
5329 {
5330 	metaslab_t *msp;
5331 	spa_t *spa = vd->vdev_spa;
5332 
5333 	ASSERT(vdev_is_concrete(vd));
5334 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5335 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5336 
5337 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5338 
5339 	VERIFY(!msp->ms_condensing);
5340 	VERIFY3U(offset, >=, msp->ms_start);
5341 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5342 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5343 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5344 
5345 	metaslab_check_free_impl(vd, offset, asize);
5346 
5347 	mutex_enter(&msp->ms_lock);
5348 	if (range_tree_is_empty(msp->ms_freeing) &&
5349 	    range_tree_is_empty(msp->ms_checkpointing)) {
5350 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5351 	}
5352 
5353 	if (checkpoint) {
5354 		ASSERT(spa_has_checkpoint(spa));
5355 		range_tree_add(msp->ms_checkpointing, offset, asize);
5356 	} else {
5357 		range_tree_add(msp->ms_freeing, offset, asize);
5358 	}
5359 	mutex_exit(&msp->ms_lock);
5360 }
5361 
5362 void
5363 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5364     uint64_t size, void *arg)
5365 {
5366 	(void) inner_offset;
5367 	boolean_t *checkpoint = arg;
5368 
5369 	ASSERT3P(checkpoint, !=, NULL);
5370 
5371 	if (vd->vdev_ops->vdev_op_remap != NULL)
5372 		vdev_indirect_mark_obsolete(vd, offset, size);
5373 	else
5374 		metaslab_free_impl(vd, offset, size, *checkpoint);
5375 }
5376 
5377 static void
5378 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5379     boolean_t checkpoint)
5380 {
5381 	spa_t *spa = vd->vdev_spa;
5382 
5383 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5384 
5385 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5386 		return;
5387 
5388 	if (spa->spa_vdev_removal != NULL &&
5389 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5390 	    vdev_is_concrete(vd)) {
5391 		/*
5392 		 * Note: we check if the vdev is concrete because when
5393 		 * we complete the removal, we first change the vdev to be
5394 		 * an indirect vdev (in open context), and then (in syncing
5395 		 * context) clear spa_vdev_removal.
5396 		 */
5397 		free_from_removing_vdev(vd, offset, size);
5398 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5399 		vdev_indirect_mark_obsolete(vd, offset, size);
5400 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5401 		    metaslab_free_impl_cb, &checkpoint);
5402 	} else {
5403 		metaslab_free_concrete(vd, offset, size, checkpoint);
5404 	}
5405 }
5406 
5407 typedef struct remap_blkptr_cb_arg {
5408 	blkptr_t *rbca_bp;
5409 	spa_remap_cb_t rbca_cb;
5410 	vdev_t *rbca_remap_vd;
5411 	uint64_t rbca_remap_offset;
5412 	void *rbca_cb_arg;
5413 } remap_blkptr_cb_arg_t;
5414 
5415 static void
5416 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5417     uint64_t size, void *arg)
5418 {
5419 	remap_blkptr_cb_arg_t *rbca = arg;
5420 	blkptr_t *bp = rbca->rbca_bp;
5421 
5422 	/* We can not remap split blocks. */
5423 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5424 		return;
5425 	ASSERT0(inner_offset);
5426 
5427 	if (rbca->rbca_cb != NULL) {
5428 		/*
5429 		 * At this point we know that we are not handling split
5430 		 * blocks and we invoke the callback on the previous
5431 		 * vdev which must be indirect.
5432 		 */
5433 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5434 
5435 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5436 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5437 
5438 		/* set up remap_blkptr_cb_arg for the next call */
5439 		rbca->rbca_remap_vd = vd;
5440 		rbca->rbca_remap_offset = offset;
5441 	}
5442 
5443 	/*
5444 	 * The phys birth time is that of dva[0].  This ensures that we know
5445 	 * when each dva was written, so that resilver can determine which
5446 	 * blocks need to be scrubbed (i.e. those written during the time
5447 	 * the vdev was offline).  It also ensures that the key used in
5448 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5449 	 * we didn't change the phys_birth, a lookup in the ARC for a
5450 	 * remapped BP could find the data that was previously stored at
5451 	 * this vdev + offset.
5452 	 */
5453 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5454 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5455 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5456 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5457 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5458 
5459 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5460 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5461 }
5462 
5463 /*
5464  * If the block pointer contains any indirect DVAs, modify them to refer to
5465  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5466  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5467  * segments in the mapping (i.e. it is a "split block").
5468  *
5469  * If the BP was remapped, calls the callback on the original dva (note the
5470  * callback can be called multiple times if the original indirect DVA refers
5471  * to another indirect DVA, etc).
5472  *
5473  * Returns TRUE if the BP was remapped.
5474  */
5475 boolean_t
5476 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5477 {
5478 	remap_blkptr_cb_arg_t rbca;
5479 
5480 	if (!zfs_remap_blkptr_enable)
5481 		return (B_FALSE);
5482 
5483 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5484 		return (B_FALSE);
5485 
5486 	/*
5487 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5488 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5489 	 */
5490 	if (BP_GET_DEDUP(bp))
5491 		return (B_FALSE);
5492 
5493 	/*
5494 	 * Gang blocks can not be remapped, because
5495 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5496 	 * the BP used to read the gang block header (GBH) being the same
5497 	 * as the DVA[0] that we allocated for the GBH.
5498 	 */
5499 	if (BP_IS_GANG(bp))
5500 		return (B_FALSE);
5501 
5502 	/*
5503 	 * Embedded BP's have no DVA to remap.
5504 	 */
5505 	if (BP_GET_NDVAS(bp) < 1)
5506 		return (B_FALSE);
5507 
5508 	/*
5509 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5510 	 * would no longer know what their phys birth txg is.
5511 	 */
5512 	dva_t *dva = &bp->blk_dva[0];
5513 
5514 	uint64_t offset = DVA_GET_OFFSET(dva);
5515 	uint64_t size = DVA_GET_ASIZE(dva);
5516 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5517 
5518 	if (vd->vdev_ops->vdev_op_remap == NULL)
5519 		return (B_FALSE);
5520 
5521 	rbca.rbca_bp = bp;
5522 	rbca.rbca_cb = callback;
5523 	rbca.rbca_remap_vd = vd;
5524 	rbca.rbca_remap_offset = offset;
5525 	rbca.rbca_cb_arg = arg;
5526 
5527 	/*
5528 	 * remap_blkptr_cb() will be called in order for each level of
5529 	 * indirection, until a concrete vdev is reached or a split block is
5530 	 * encountered. old_vd and old_offset are updated within the callback
5531 	 * as we go from the one indirect vdev to the next one (either concrete
5532 	 * or indirect again) in that order.
5533 	 */
5534 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5535 
5536 	/* Check if the DVA wasn't remapped because it is a split block */
5537 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5538 		return (B_FALSE);
5539 
5540 	return (B_TRUE);
5541 }
5542 
5543 /*
5544  * Undo the allocation of a DVA which happened in the given transaction group.
5545  */
5546 void
5547 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5548 {
5549 	metaslab_t *msp;
5550 	vdev_t *vd;
5551 	uint64_t vdev = DVA_GET_VDEV(dva);
5552 	uint64_t offset = DVA_GET_OFFSET(dva);
5553 	uint64_t size = DVA_GET_ASIZE(dva);
5554 
5555 	ASSERT(DVA_IS_VALID(dva));
5556 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5557 
5558 	if (txg > spa_freeze_txg(spa))
5559 		return;
5560 
5561 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5562 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5563 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5564 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5565 		    (u_longlong_t)size);
5566 		return;
5567 	}
5568 
5569 	ASSERT(!vd->vdev_removing);
5570 	ASSERT(vdev_is_concrete(vd));
5571 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5572 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5573 
5574 	if (DVA_GET_GANG(dva))
5575 		size = vdev_gang_header_asize(vd);
5576 
5577 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5578 
5579 	mutex_enter(&msp->ms_lock);
5580 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5581 	    offset, size);
5582 	msp->ms_allocating_total -= size;
5583 
5584 	VERIFY(!msp->ms_condensing);
5585 	VERIFY3U(offset, >=, msp->ms_start);
5586 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5587 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5588 	    msp->ms_size);
5589 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5590 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5591 	range_tree_add(msp->ms_allocatable, offset, size);
5592 	mutex_exit(&msp->ms_lock);
5593 }
5594 
5595 /*
5596  * Free the block represented by the given DVA.
5597  */
5598 void
5599 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5600 {
5601 	uint64_t vdev = DVA_GET_VDEV(dva);
5602 	uint64_t offset = DVA_GET_OFFSET(dva);
5603 	uint64_t size = DVA_GET_ASIZE(dva);
5604 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5605 
5606 	ASSERT(DVA_IS_VALID(dva));
5607 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5608 
5609 	if (DVA_GET_GANG(dva)) {
5610 		size = vdev_gang_header_asize(vd);
5611 	}
5612 
5613 	metaslab_free_impl(vd, offset, size, checkpoint);
5614 }
5615 
5616 /*
5617  * Reserve some allocation slots. The reservation system must be called
5618  * before we call into the allocator. If there aren't any available slots
5619  * then the I/O will be throttled until an I/O completes and its slots are
5620  * freed up. The function returns true if it was successful in placing
5621  * the reservation.
5622  */
5623 boolean_t
5624 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5625     zio_t *zio, int flags)
5626 {
5627 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5628 	uint64_t max = mca->mca_alloc_max_slots;
5629 
5630 	ASSERT(mc->mc_alloc_throttle_enabled);
5631 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5632 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5633 		/*
5634 		 * The potential race between _count() and _add() is covered
5635 		 * by the allocator lock in most cases, or irrelevant due to
5636 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5637 		 * But even if we assume some other non-existing scenario, the
5638 		 * worst that can happen is few more I/Os get to allocation
5639 		 * earlier, that is not a problem.
5640 		 *
5641 		 * We reserve the slots individually so that we can unreserve
5642 		 * them individually when an I/O completes.
5643 		 */
5644 		for (int d = 0; d < slots; d++)
5645 			zfs_refcount_add(&mca->mca_alloc_slots, zio);
5646 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5647 		return (B_TRUE);
5648 	}
5649 	return (B_FALSE);
5650 }
5651 
5652 void
5653 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5654     int allocator, zio_t *zio)
5655 {
5656 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5657 
5658 	ASSERT(mc->mc_alloc_throttle_enabled);
5659 	for (int d = 0; d < slots; d++)
5660 		zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5661 }
5662 
5663 static int
5664 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5665     uint64_t txg)
5666 {
5667 	metaslab_t *msp;
5668 	spa_t *spa = vd->vdev_spa;
5669 	int error = 0;
5670 
5671 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5672 		return (SET_ERROR(ENXIO));
5673 
5674 	ASSERT3P(vd->vdev_ms, !=, NULL);
5675 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5676 
5677 	mutex_enter(&msp->ms_lock);
5678 
5679 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5680 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5681 		if (error == EBUSY) {
5682 			ASSERT(msp->ms_loaded);
5683 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5684 			error = 0;
5685 		}
5686 	}
5687 
5688 	if (error == 0 &&
5689 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5690 		error = SET_ERROR(ENOENT);
5691 
5692 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5693 		mutex_exit(&msp->ms_lock);
5694 		return (error);
5695 	}
5696 
5697 	VERIFY(!msp->ms_condensing);
5698 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5699 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5700 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5701 	    msp->ms_size);
5702 	range_tree_remove(msp->ms_allocatable, offset, size);
5703 	range_tree_clear(msp->ms_trim, offset, size);
5704 
5705 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5706 		metaslab_class_t *mc = msp->ms_group->mg_class;
5707 		multilist_sublist_t *mls =
5708 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5709 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5710 			msp->ms_selected_txg = txg;
5711 			multilist_sublist_insert_head(mls, msp);
5712 		}
5713 		multilist_sublist_unlock(mls);
5714 
5715 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5716 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5717 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5718 		    offset, size);
5719 		msp->ms_allocating_total += size;
5720 	}
5721 
5722 	mutex_exit(&msp->ms_lock);
5723 
5724 	return (0);
5725 }
5726 
5727 typedef struct metaslab_claim_cb_arg_t {
5728 	uint64_t	mcca_txg;
5729 	int		mcca_error;
5730 } metaslab_claim_cb_arg_t;
5731 
5732 static void
5733 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5734     uint64_t size, void *arg)
5735 {
5736 	(void) inner_offset;
5737 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5738 
5739 	if (mcca_arg->mcca_error == 0) {
5740 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5741 		    size, mcca_arg->mcca_txg);
5742 	}
5743 }
5744 
5745 int
5746 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5747 {
5748 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5749 		metaslab_claim_cb_arg_t arg;
5750 
5751 		/*
5752 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5753 		 * to detect leaks of mapped space (that are not accounted
5754 		 * for in the obsolete counts, spacemap, or bpobj).
5755 		 */
5756 		ASSERT(!spa_writeable(vd->vdev_spa));
5757 		arg.mcca_error = 0;
5758 		arg.mcca_txg = txg;
5759 
5760 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5761 		    metaslab_claim_impl_cb, &arg);
5762 
5763 		if (arg.mcca_error == 0) {
5764 			arg.mcca_error = metaslab_claim_concrete(vd,
5765 			    offset, size, txg);
5766 		}
5767 		return (arg.mcca_error);
5768 	} else {
5769 		return (metaslab_claim_concrete(vd, offset, size, txg));
5770 	}
5771 }
5772 
5773 /*
5774  * Intent log support: upon opening the pool after a crash, notify the SPA
5775  * of blocks that the intent log has allocated for immediate write, but
5776  * which are still considered free by the SPA because the last transaction
5777  * group didn't commit yet.
5778  */
5779 static int
5780 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5781 {
5782 	uint64_t vdev = DVA_GET_VDEV(dva);
5783 	uint64_t offset = DVA_GET_OFFSET(dva);
5784 	uint64_t size = DVA_GET_ASIZE(dva);
5785 	vdev_t *vd;
5786 
5787 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5788 		return (SET_ERROR(ENXIO));
5789 	}
5790 
5791 	ASSERT(DVA_IS_VALID(dva));
5792 
5793 	if (DVA_GET_GANG(dva))
5794 		size = vdev_gang_header_asize(vd);
5795 
5796 	return (metaslab_claim_impl(vd, offset, size, txg));
5797 }
5798 
5799 int
5800 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5801     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5802     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5803 {
5804 	dva_t *dva = bp->blk_dva;
5805 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5806 	int error = 0;
5807 
5808 	ASSERT(bp->blk_birth == 0);
5809 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5810 
5811 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5812 
5813 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5814 		/* no vdevs in this class */
5815 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5816 		return (SET_ERROR(ENOSPC));
5817 	}
5818 
5819 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5820 	ASSERT(BP_GET_NDVAS(bp) == 0);
5821 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5822 	ASSERT3P(zal, !=, NULL);
5823 
5824 	for (int d = 0; d < ndvas; d++) {
5825 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5826 		    txg, flags, zal, allocator);
5827 		if (error != 0) {
5828 			for (d--; d >= 0; d--) {
5829 				metaslab_unalloc_dva(spa, &dva[d], txg);
5830 				metaslab_group_alloc_decrement(spa,
5831 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5832 				    allocator, B_FALSE);
5833 				memset(&dva[d], 0, sizeof (dva_t));
5834 			}
5835 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5836 			return (error);
5837 		} else {
5838 			/*
5839 			 * Update the metaslab group's queue depth
5840 			 * based on the newly allocated dva.
5841 			 */
5842 			metaslab_group_alloc_increment(spa,
5843 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5844 		}
5845 	}
5846 	ASSERT(error == 0);
5847 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5848 
5849 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5850 
5851 	BP_SET_BIRTH(bp, txg, 0);
5852 
5853 	return (0);
5854 }
5855 
5856 void
5857 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5858 {
5859 	const dva_t *dva = bp->blk_dva;
5860 	int ndvas = BP_GET_NDVAS(bp);
5861 
5862 	ASSERT(!BP_IS_HOLE(bp));
5863 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5864 
5865 	/*
5866 	 * If we have a checkpoint for the pool we need to make sure that
5867 	 * the blocks that we free that are part of the checkpoint won't be
5868 	 * reused until the checkpoint is discarded or we revert to it.
5869 	 *
5870 	 * The checkpoint flag is passed down the metaslab_free code path
5871 	 * and is set whenever we want to add a block to the checkpoint's
5872 	 * accounting. That is, we "checkpoint" blocks that existed at the
5873 	 * time the checkpoint was created and are therefore referenced by
5874 	 * the checkpointed uberblock.
5875 	 *
5876 	 * Note that, we don't checkpoint any blocks if the current
5877 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5878 	 * normally as they will be referenced by the checkpointed uberblock.
5879 	 */
5880 	boolean_t checkpoint = B_FALSE;
5881 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5882 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5883 		/*
5884 		 * At this point, if the block is part of the checkpoint
5885 		 * there is no way it was created in the current txg.
5886 		 */
5887 		ASSERT(!now);
5888 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5889 		checkpoint = B_TRUE;
5890 	}
5891 
5892 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5893 
5894 	for (int d = 0; d < ndvas; d++) {
5895 		if (now) {
5896 			metaslab_unalloc_dva(spa, &dva[d], txg);
5897 		} else {
5898 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5899 			metaslab_free_dva(spa, &dva[d], checkpoint);
5900 		}
5901 	}
5902 
5903 	spa_config_exit(spa, SCL_FREE, FTAG);
5904 }
5905 
5906 int
5907 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5908 {
5909 	const dva_t *dva = bp->blk_dva;
5910 	int ndvas = BP_GET_NDVAS(bp);
5911 	int error = 0;
5912 
5913 	ASSERT(!BP_IS_HOLE(bp));
5914 
5915 	if (txg != 0) {
5916 		/*
5917 		 * First do a dry run to make sure all DVAs are claimable,
5918 		 * so we don't have to unwind from partial failures below.
5919 		 */
5920 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5921 			return (error);
5922 	}
5923 
5924 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5925 
5926 	for (int d = 0; d < ndvas; d++) {
5927 		error = metaslab_claim_dva(spa, &dva[d], txg);
5928 		if (error != 0)
5929 			break;
5930 	}
5931 
5932 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5933 
5934 	ASSERT(error == 0 || txg == 0);
5935 
5936 	return (error);
5937 }
5938 
5939 void
5940 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5941 {
5942 	const dva_t *dva = bp->blk_dva;
5943 	int ndvas = BP_GET_NDVAS(bp);
5944 	uint64_t psize = BP_GET_PSIZE(bp);
5945 	int d;
5946 	vdev_t *vd;
5947 
5948 	ASSERT(!BP_IS_HOLE(bp));
5949 	ASSERT(!BP_IS_EMBEDDED(bp));
5950 	ASSERT(psize > 0);
5951 
5952 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5953 
5954 	for (d = 0; d < ndvas; d++) {
5955 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5956 			continue;
5957 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5958 	}
5959 
5960 	spa_config_exit(spa, SCL_VDEV, FTAG);
5961 }
5962 
5963 void
5964 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5965 {
5966 	const dva_t *dva = bp->blk_dva;
5967 	int ndvas = BP_GET_NDVAS(bp);
5968 	uint64_t psize = BP_GET_PSIZE(bp);
5969 	int d;
5970 	vdev_t *vd;
5971 
5972 	ASSERT(!BP_IS_HOLE(bp));
5973 	ASSERT(!BP_IS_EMBEDDED(bp));
5974 	ASSERT(psize > 0);
5975 
5976 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5977 
5978 	for (d = 0; d < ndvas; d++) {
5979 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5980 			continue;
5981 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5982 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5983 	}
5984 
5985 	spa_config_exit(spa, SCL_VDEV, FTAG);
5986 }
5987 
5988 static void
5989 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5990     uint64_t size, void *arg)
5991 {
5992 	(void) inner, (void) arg;
5993 
5994 	if (vd->vdev_ops == &vdev_indirect_ops)
5995 		return;
5996 
5997 	metaslab_check_free_impl(vd, offset, size);
5998 }
5999 
6000 static void
6001 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
6002 {
6003 	metaslab_t *msp;
6004 	spa_t *spa __maybe_unused = vd->vdev_spa;
6005 
6006 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6007 		return;
6008 
6009 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6010 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6011 		    metaslab_check_free_impl_cb, NULL);
6012 		return;
6013 	}
6014 
6015 	ASSERT(vdev_is_concrete(vd));
6016 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6017 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6018 
6019 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6020 
6021 	mutex_enter(&msp->ms_lock);
6022 	if (msp->ms_loaded) {
6023 		range_tree_verify_not_present(msp->ms_allocatable,
6024 		    offset, size);
6025 	}
6026 
6027 	/*
6028 	 * Check all segments that currently exist in the freeing pipeline.
6029 	 *
6030 	 * It would intuitively make sense to also check the current allocating
6031 	 * tree since metaslab_unalloc_dva() exists for extents that are
6032 	 * allocated and freed in the same sync pass within the same txg.
6033 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6034 	 * segment but then we free part of it within the same txg
6035 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6036 	 * current allocating tree.
6037 	 */
6038 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6039 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6040 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6041 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6042 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6043 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6044 	mutex_exit(&msp->ms_lock);
6045 }
6046 
6047 void
6048 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6049 {
6050 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6051 		return;
6052 
6053 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6054 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6055 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6056 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6057 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6058 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6059 
6060 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6061 			size = vdev_gang_header_asize(vd);
6062 
6063 		ASSERT3P(vd, !=, NULL);
6064 
6065 		metaslab_check_free_impl(vd, offset, size);
6066 	}
6067 	spa_config_exit(spa, SCL_VDEV, FTAG);
6068 }
6069 
6070 static void
6071 metaslab_group_disable_wait(metaslab_group_t *mg)
6072 {
6073 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6074 	while (mg->mg_disabled_updating) {
6075 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6076 	}
6077 }
6078 
6079 static void
6080 metaslab_group_disabled_increment(metaslab_group_t *mg)
6081 {
6082 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6083 	ASSERT(mg->mg_disabled_updating);
6084 
6085 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6086 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6087 	}
6088 	mg->mg_ms_disabled++;
6089 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6090 }
6091 
6092 /*
6093  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6094  * We must also track how many metaslabs are currently disabled within a
6095  * metaslab group and limit them to prevent allocation failures from
6096  * occurring because all metaslabs are disabled.
6097  */
6098 void
6099 metaslab_disable(metaslab_t *msp)
6100 {
6101 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6102 	metaslab_group_t *mg = msp->ms_group;
6103 
6104 	mutex_enter(&mg->mg_ms_disabled_lock);
6105 
6106 	/*
6107 	 * To keep an accurate count of how many threads have disabled
6108 	 * a specific metaslab group, we only allow one thread to mark
6109 	 * the metaslab group at a time. This ensures that the value of
6110 	 * ms_disabled will be accurate when we decide to mark a metaslab
6111 	 * group as disabled. To do this we force all other threads
6112 	 * to wait till the metaslab's mg_disabled_updating flag is no
6113 	 * longer set.
6114 	 */
6115 	metaslab_group_disable_wait(mg);
6116 	mg->mg_disabled_updating = B_TRUE;
6117 	if (msp->ms_disabled == 0) {
6118 		metaslab_group_disabled_increment(mg);
6119 	}
6120 	mutex_enter(&msp->ms_lock);
6121 	msp->ms_disabled++;
6122 	mutex_exit(&msp->ms_lock);
6123 
6124 	mg->mg_disabled_updating = B_FALSE;
6125 	cv_broadcast(&mg->mg_ms_disabled_cv);
6126 	mutex_exit(&mg->mg_ms_disabled_lock);
6127 }
6128 
6129 void
6130 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6131 {
6132 	metaslab_group_t *mg = msp->ms_group;
6133 	spa_t *spa = mg->mg_vd->vdev_spa;
6134 
6135 	/*
6136 	 * Wait for the outstanding IO to be synced to prevent newly
6137 	 * allocated blocks from being overwritten.  This used by
6138 	 * initialize and TRIM which are modifying unallocated space.
6139 	 */
6140 	if (sync)
6141 		txg_wait_synced(spa_get_dsl(spa), 0);
6142 
6143 	mutex_enter(&mg->mg_ms_disabled_lock);
6144 	mutex_enter(&msp->ms_lock);
6145 	if (--msp->ms_disabled == 0) {
6146 		mg->mg_ms_disabled--;
6147 		cv_broadcast(&mg->mg_ms_disabled_cv);
6148 		if (unload)
6149 			metaslab_unload(msp);
6150 	}
6151 	mutex_exit(&msp->ms_lock);
6152 	mutex_exit(&mg->mg_ms_disabled_lock);
6153 }
6154 
6155 void
6156 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6157 {
6158 	ms->ms_unflushed_dirty = dirty;
6159 }
6160 
6161 static void
6162 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6163 {
6164 	vdev_t *vd = ms->ms_group->mg_vd;
6165 	spa_t *spa = vd->vdev_spa;
6166 	objset_t *mos = spa_meta_objset(spa);
6167 
6168 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6169 
6170 	metaslab_unflushed_phys_t entry = {
6171 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6172 	};
6173 	uint64_t entry_size = sizeof (entry);
6174 	uint64_t entry_offset = ms->ms_id * entry_size;
6175 
6176 	uint64_t object = 0;
6177 	int err = zap_lookup(mos, vd->vdev_top_zap,
6178 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6179 	    &object);
6180 	if (err == ENOENT) {
6181 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6182 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6183 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6184 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6185 		    &object, tx));
6186 	} else {
6187 		VERIFY0(err);
6188 	}
6189 
6190 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6191 	    &entry, tx);
6192 }
6193 
6194 void
6195 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6196 {
6197 	ms->ms_unflushed_txg = txg;
6198 	metaslab_update_ondisk_flush_data(ms, tx);
6199 }
6200 
6201 boolean_t
6202 metaslab_unflushed_dirty(metaslab_t *ms)
6203 {
6204 	return (ms->ms_unflushed_dirty);
6205 }
6206 
6207 uint64_t
6208 metaslab_unflushed_txg(metaslab_t *ms)
6209 {
6210 	return (ms->ms_unflushed_txg);
6211 }
6212 
6213 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6214 	"Allocation granularity (a.k.a. stripe size)");
6215 
6216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6217 	"Load all metaslabs when pool is first opened");
6218 
6219 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6220 	"Prevent metaslabs from being unloaded");
6221 
6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6223 	"Preload potential metaslabs during reassessment");
6224 
6225 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6226 	"Delay in txgs after metaslab was last used before unloading");
6227 
6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6229 	"Delay in milliseconds after metaslab was last used before unloading");
6230 
6231 /* BEGIN CSTYLED */
6232 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6233 	"Percentage of metaslab group size that should be free to make it "
6234 	"eligible for allocation");
6235 
6236 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6237 	"Percentage of metaslab group size that should be considered eligible "
6238 	"for allocations unless all metaslab groups within the metaslab class "
6239 	"have also crossed this threshold");
6240 
6241 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6242 	ZMOD_RW,
6243 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6244 /* END CSTYLED */
6245 
6246 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6247 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6248 
6249 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6250 	"Prefer metaslabs with lower LBAs");
6251 
6252 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6253 	"Enable metaslab group biasing");
6254 
6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6256 	ZMOD_RW, "Enable segment-based metaslab selection");
6257 
6258 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6259 	"Segment-based metaslab selection maximum buckets before switching");
6260 
6261 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6262 	"Blocks larger than this size are forced to be gang blocks");
6263 
6264 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6265 	"Max distance (bytes) to search forward before using size tree");
6266 
6267 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6268 	"When looking in size tree, use largest segment instead of exact fit");
6269 
6270 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6271 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6272 
6273 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6274 	"Percentage of memory that can be used to store metaslab range trees");
6275 
6276 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6277 	ZMOD_RW, "Try hard to allocate before ganging");
6278 
6279 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6280 	"Normally only consider this many of the best metaslabs in each vdev");
6281