1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = 0; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 int metaslab_debug_unload = 0; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 int metaslab_unload_delay = 32; 219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 int zfs_metaslab_mem_limit = 25; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(&mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = &mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 903 metaslab_group_alloc_update(mg); 904 905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 906 mg->mg_prev = mg; 907 mg->mg_next = mg; 908 } else { 909 mgnext = mgprev->mg_next; 910 mg->mg_prev = mgprev; 911 mg->mg_next = mgnext; 912 mgprev->mg_next = mg; 913 mgnext->mg_prev = mg; 914 } 915 for (int i = 0; i < spa->spa_alloc_count; i++) { 916 mc->mc_allocator[i].mca_rotor = mg; 917 mg = mg->mg_next; 918 } 919 } 920 921 /* 922 * Passivate a metaslab group and remove it from the allocation rotor. 923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 924 * a metaslab group. This function will momentarily drop spa_config_locks 925 * that are lower than the SCL_ALLOC lock (see comment below). 926 */ 927 void 928 metaslab_group_passivate(metaslab_group_t *mg) 929 { 930 metaslab_class_t *mc = mg->mg_class; 931 spa_t *spa = mc->mc_spa; 932 metaslab_group_t *mgprev, *mgnext; 933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 934 935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 936 (SCL_ALLOC | SCL_ZIO)); 937 938 if (--mg->mg_activation_count != 0) { 939 for (int i = 0; i < spa->spa_alloc_count; i++) 940 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 941 ASSERT(mg->mg_prev == NULL); 942 ASSERT(mg->mg_next == NULL); 943 ASSERT(mg->mg_activation_count < 0); 944 return; 945 } 946 947 /* 948 * The spa_config_lock is an array of rwlocks, ordered as 949 * follows (from highest to lowest): 950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 951 * SCL_ZIO > SCL_FREE > SCL_VDEV 952 * (For more information about the spa_config_lock see spa_misc.c) 953 * The higher the lock, the broader its coverage. When we passivate 954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 955 * config locks. However, the metaslab group's taskq might be trying 956 * to preload metaslabs so we must drop the SCL_ZIO lock and any 957 * lower locks to allow the I/O to complete. At a minimum, 958 * we continue to hold the SCL_ALLOC lock, which prevents any future 959 * allocations from taking place and any changes to the vdev tree. 960 */ 961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 962 taskq_wait_outstanding(mg->mg_taskq, 0); 963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 964 metaslab_group_alloc_update(mg); 965 for (int i = 0; i < mg->mg_allocators; i++) { 966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 967 metaslab_t *msp = mga->mga_primary; 968 if (msp != NULL) { 969 mutex_enter(&msp->ms_lock); 970 metaslab_passivate(msp, 971 metaslab_weight_from_range_tree(msp)); 972 mutex_exit(&msp->ms_lock); 973 } 974 msp = mga->mga_secondary; 975 if (msp != NULL) { 976 mutex_enter(&msp->ms_lock); 977 metaslab_passivate(msp, 978 metaslab_weight_from_range_tree(msp)); 979 mutex_exit(&msp->ms_lock); 980 } 981 } 982 983 mgprev = mg->mg_prev; 984 mgnext = mg->mg_next; 985 986 if (mg == mgnext) { 987 mgnext = NULL; 988 } else { 989 mgprev->mg_next = mgnext; 990 mgnext->mg_prev = mgprev; 991 } 992 for (int i = 0; i < spa->spa_alloc_count; i++) { 993 if (mc->mc_allocator[i].mca_rotor == mg) 994 mc->mc_allocator[i].mca_rotor = mgnext; 995 } 996 997 mg->mg_prev = NULL; 998 mg->mg_next = NULL; 999 } 1000 1001 boolean_t 1002 metaslab_group_initialized(metaslab_group_t *mg) 1003 { 1004 vdev_t *vd = mg->mg_vd; 1005 vdev_stat_t *vs = &vd->vdev_stat; 1006 1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1008 } 1009 1010 uint64_t 1011 metaslab_group_get_space(metaslab_group_t *mg) 1012 { 1013 /* 1014 * Note that the number of nodes in mg_metaslab_tree may be one less 1015 * than vdev_ms_count, due to the embedded log metaslab. 1016 */ 1017 mutex_enter(&mg->mg_lock); 1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1019 mutex_exit(&mg->mg_lock); 1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1021 } 1022 1023 void 1024 metaslab_group_histogram_verify(metaslab_group_t *mg) 1025 { 1026 uint64_t *mg_hist; 1027 avl_tree_t *t = &mg->mg_metaslab_tree; 1028 uint64_t ashift = mg->mg_vd->vdev_ashift; 1029 1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1031 return; 1032 1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1034 KM_SLEEP); 1035 1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1037 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1038 1039 mutex_enter(&mg->mg_lock); 1040 for (metaslab_t *msp = avl_first(t); 1041 msp != NULL; msp = AVL_NEXT(t, msp)) { 1042 VERIFY3P(msp->ms_group, ==, mg); 1043 /* skip if not active */ 1044 if (msp->ms_sm == NULL) 1045 continue; 1046 1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1048 mg_hist[i + ashift] += 1049 msp->ms_sm->sm_phys->smp_histogram[i]; 1050 } 1051 } 1052 1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1055 1056 mutex_exit(&mg->mg_lock); 1057 1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1059 } 1060 1061 static void 1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1063 { 1064 metaslab_class_t *mc = mg->mg_class; 1065 uint64_t ashift = mg->mg_vd->vdev_ashift; 1066 1067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1068 if (msp->ms_sm == NULL) 1069 return; 1070 1071 mutex_enter(&mg->mg_lock); 1072 mutex_enter(&mc->mc_lock); 1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1074 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1076 mg->mg_histogram[i + ashift] += 1077 msp->ms_sm->sm_phys->smp_histogram[i]; 1078 mc->mc_histogram[i + ashift] += 1079 msp->ms_sm->sm_phys->smp_histogram[i]; 1080 } 1081 mutex_exit(&mc->mc_lock); 1082 mutex_exit(&mg->mg_lock); 1083 } 1084 1085 void 1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 metaslab_class_t *mc = mg->mg_class; 1089 uint64_t ashift = mg->mg_vd->vdev_ashift; 1090 1091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1092 if (msp->ms_sm == NULL) 1093 return; 1094 1095 mutex_enter(&mg->mg_lock); 1096 mutex_enter(&mc->mc_lock); 1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1098 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1099 msp->ms_sm->sm_phys->smp_histogram[i]); 1100 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1101 msp->ms_sm->sm_phys->smp_histogram[i]); 1102 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1104 1105 mg->mg_histogram[i + ashift] -= 1106 msp->ms_sm->sm_phys->smp_histogram[i]; 1107 mc->mc_histogram[i + ashift] -= 1108 msp->ms_sm->sm_phys->smp_histogram[i]; 1109 } 1110 mutex_exit(&mc->mc_lock); 1111 mutex_exit(&mg->mg_lock); 1112 } 1113 1114 static void 1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1116 { 1117 ASSERT(msp->ms_group == NULL); 1118 mutex_enter(&mg->mg_lock); 1119 msp->ms_group = mg; 1120 msp->ms_weight = 0; 1121 avl_add(&mg->mg_metaslab_tree, msp); 1122 mutex_exit(&mg->mg_lock); 1123 1124 mutex_enter(&msp->ms_lock); 1125 metaslab_group_histogram_add(mg, msp); 1126 mutex_exit(&msp->ms_lock); 1127 } 1128 1129 static void 1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1131 { 1132 mutex_enter(&msp->ms_lock); 1133 metaslab_group_histogram_remove(mg, msp); 1134 mutex_exit(&msp->ms_lock); 1135 1136 mutex_enter(&mg->mg_lock); 1137 ASSERT(msp->ms_group == mg); 1138 avl_remove(&mg->mg_metaslab_tree, msp); 1139 1140 metaslab_class_t *mc = msp->ms_group->mg_class; 1141 multilist_sublist_t *mls = 1142 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1143 if (multilist_link_active(&msp->ms_class_txg_node)) 1144 multilist_sublist_remove(mls, msp); 1145 multilist_sublist_unlock(mls); 1146 1147 msp->ms_group = NULL; 1148 mutex_exit(&mg->mg_lock); 1149 } 1150 1151 static void 1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1153 { 1154 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1155 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1156 ASSERT(msp->ms_group == mg); 1157 1158 avl_remove(&mg->mg_metaslab_tree, msp); 1159 msp->ms_weight = weight; 1160 avl_add(&mg->mg_metaslab_tree, msp); 1161 1162 } 1163 1164 static void 1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1166 { 1167 /* 1168 * Although in principle the weight can be any value, in 1169 * practice we do not use values in the range [1, 511]. 1170 */ 1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1172 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1173 1174 mutex_enter(&mg->mg_lock); 1175 metaslab_group_sort_impl(mg, msp, weight); 1176 mutex_exit(&mg->mg_lock); 1177 } 1178 1179 /* 1180 * Calculate the fragmentation for a given metaslab group. We can use 1181 * a simple average here since all metaslabs within the group must have 1182 * the same size. The return value will be a value between 0 and 100 1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1184 * group have a fragmentation metric. 1185 */ 1186 uint64_t 1187 metaslab_group_fragmentation(metaslab_group_t *mg) 1188 { 1189 vdev_t *vd = mg->mg_vd; 1190 uint64_t fragmentation = 0; 1191 uint64_t valid_ms = 0; 1192 1193 for (int m = 0; m < vd->vdev_ms_count; m++) { 1194 metaslab_t *msp = vd->vdev_ms[m]; 1195 1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1197 continue; 1198 if (msp->ms_group != mg) 1199 continue; 1200 1201 valid_ms++; 1202 fragmentation += msp->ms_fragmentation; 1203 } 1204 1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1206 return (ZFS_FRAG_INVALID); 1207 1208 fragmentation /= valid_ms; 1209 ASSERT3U(fragmentation, <=, 100); 1210 return (fragmentation); 1211 } 1212 1213 /* 1214 * Determine if a given metaslab group should skip allocations. A metaslab 1215 * group should avoid allocations if its free capacity is less than the 1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1218 * that can still handle allocations. If the allocation throttle is enabled 1219 * then we skip allocations to devices that have reached their maximum 1220 * allocation queue depth unless the selected metaslab group is the only 1221 * eligible group remaining. 1222 */ 1223 static boolean_t 1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1225 uint64_t psize, int allocator, int d) 1226 { 1227 spa_t *spa = mg->mg_vd->vdev_spa; 1228 metaslab_class_t *mc = mg->mg_class; 1229 1230 /* 1231 * We can only consider skipping this metaslab group if it's 1232 * in the normal metaslab class and there are other metaslab 1233 * groups to select from. Otherwise, we always consider it eligible 1234 * for allocations. 1235 */ 1236 if ((mc != spa_normal_class(spa) && 1237 mc != spa_special_class(spa) && 1238 mc != spa_dedup_class(spa)) || 1239 mc->mc_groups <= 1) 1240 return (B_TRUE); 1241 1242 /* 1243 * If the metaslab group's mg_allocatable flag is set (see comments 1244 * in metaslab_group_alloc_update() for more information) and 1245 * the allocation throttle is disabled then allow allocations to this 1246 * device. However, if the allocation throttle is enabled then 1247 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1248 * to determine if we should allow allocations to this metaslab group. 1249 * If all metaslab groups are no longer considered allocatable 1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1251 * gang block size then we allow allocations on this metaslab group 1252 * regardless of the mg_allocatable or throttle settings. 1253 */ 1254 if (mg->mg_allocatable) { 1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1256 int64_t qdepth; 1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1258 1259 if (!mc->mc_alloc_throttle_enabled) 1260 return (B_TRUE); 1261 1262 /* 1263 * If this metaslab group does not have any free space, then 1264 * there is no point in looking further. 1265 */ 1266 if (mg->mg_no_free_space) 1267 return (B_FALSE); 1268 1269 /* 1270 * Relax allocation throttling for ditto blocks. Due to 1271 * random imbalances in allocation it tends to push copies 1272 * to one vdev, that looks a bit better at the moment. 1273 */ 1274 qmax = qmax * (4 + d) / 4; 1275 1276 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1277 1278 /* 1279 * If this metaslab group is below its qmax or it's 1280 * the only allocatable metasable group, then attempt 1281 * to allocate from it. 1282 */ 1283 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1284 return (B_TRUE); 1285 ASSERT3U(mc->mc_alloc_groups, >, 1); 1286 1287 /* 1288 * Since this metaslab group is at or over its qmax, we 1289 * need to determine if there are metaslab groups after this 1290 * one that might be able to handle this allocation. This is 1291 * racy since we can't hold the locks for all metaslab 1292 * groups at the same time when we make this check. 1293 */ 1294 for (metaslab_group_t *mgp = mg->mg_next; 1295 mgp != rotor; mgp = mgp->mg_next) { 1296 metaslab_group_allocator_t *mgap = 1297 &mgp->mg_allocator[allocator]; 1298 qmax = mgap->mga_cur_max_alloc_queue_depth; 1299 qmax = qmax * (4 + d) / 4; 1300 qdepth = 1301 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1302 1303 /* 1304 * If there is another metaslab group that 1305 * might be able to handle the allocation, then 1306 * we return false so that we skip this group. 1307 */ 1308 if (qdepth < qmax && !mgp->mg_no_free_space) 1309 return (B_FALSE); 1310 } 1311 1312 /* 1313 * We didn't find another group to handle the allocation 1314 * so we can't skip this metaslab group even though 1315 * we are at or over our qmax. 1316 */ 1317 return (B_TRUE); 1318 1319 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1320 return (B_TRUE); 1321 } 1322 return (B_FALSE); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Range tree callbacks 1328 * ========================================================================== 1329 */ 1330 1331 /* 1332 * Comparison function for the private size-ordered tree using 32-bit 1333 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1334 */ 1335 static int 1336 metaslab_rangesize32_compare(const void *x1, const void *x2) 1337 { 1338 const range_seg32_t *r1 = x1; 1339 const range_seg32_t *r2 = x2; 1340 1341 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1342 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1343 1344 int cmp = TREE_CMP(rs_size1, rs_size2); 1345 if (likely(cmp)) 1346 return (cmp); 1347 1348 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1349 } 1350 1351 /* 1352 * Comparison function for the private size-ordered tree using 64-bit 1353 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1354 */ 1355 static int 1356 metaslab_rangesize64_compare(const void *x1, const void *x2) 1357 { 1358 const range_seg64_t *r1 = x1; 1359 const range_seg64_t *r2 = x2; 1360 1361 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1362 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1363 1364 int cmp = TREE_CMP(rs_size1, rs_size2); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1369 } 1370 typedef struct metaslab_rt_arg { 1371 zfs_btree_t *mra_bt; 1372 uint32_t mra_floor_shift; 1373 } metaslab_rt_arg_t; 1374 1375 struct mssa_arg { 1376 range_tree_t *rt; 1377 metaslab_rt_arg_t *mra; 1378 }; 1379 1380 static void 1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1382 { 1383 struct mssa_arg *mssap = arg; 1384 range_tree_t *rt = mssap->rt; 1385 metaslab_rt_arg_t *mrap = mssap->mra; 1386 range_seg_max_t seg = {0}; 1387 rs_set_start(&seg, rt, start); 1388 rs_set_end(&seg, rt, start + size); 1389 metaslab_rt_add(rt, &seg, mrap); 1390 } 1391 1392 static void 1393 metaslab_size_tree_full_load(range_tree_t *rt) 1394 { 1395 metaslab_rt_arg_t *mrap = rt->rt_arg; 1396 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1397 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1398 mrap->mra_floor_shift = 0; 1399 struct mssa_arg arg = {0}; 1400 arg.rt = rt; 1401 arg.mra = mrap; 1402 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1403 } 1404 1405 /* 1406 * Create any block allocator specific components. The current allocators 1407 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1408 */ 1409 /* ARGSUSED */ 1410 static void 1411 metaslab_rt_create(range_tree_t *rt, void *arg) 1412 { 1413 metaslab_rt_arg_t *mrap = arg; 1414 zfs_btree_t *size_tree = mrap->mra_bt; 1415 1416 size_t size; 1417 int (*compare) (const void *, const void *); 1418 switch (rt->rt_type) { 1419 case RANGE_SEG32: 1420 size = sizeof (range_seg32_t); 1421 compare = metaslab_rangesize32_compare; 1422 break; 1423 case RANGE_SEG64: 1424 size = sizeof (range_seg64_t); 1425 compare = metaslab_rangesize64_compare; 1426 break; 1427 default: 1428 panic("Invalid range seg type %d", rt->rt_type); 1429 } 1430 zfs_btree_create(size_tree, compare, size); 1431 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1432 } 1433 1434 /* ARGSUSED */ 1435 static void 1436 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1437 { 1438 metaslab_rt_arg_t *mrap = arg; 1439 zfs_btree_t *size_tree = mrap->mra_bt; 1440 1441 zfs_btree_destroy(size_tree); 1442 kmem_free(mrap, sizeof (*mrap)); 1443 } 1444 1445 /* ARGSUSED */ 1446 static void 1447 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1448 { 1449 metaslab_rt_arg_t *mrap = arg; 1450 zfs_btree_t *size_tree = mrap->mra_bt; 1451 1452 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1453 (1 << mrap->mra_floor_shift)) 1454 return; 1455 1456 zfs_btree_add(size_tree, rs); 1457 } 1458 1459 /* ARGSUSED */ 1460 static void 1461 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1462 { 1463 metaslab_rt_arg_t *mrap = arg; 1464 zfs_btree_t *size_tree = mrap->mra_bt; 1465 1466 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1467 mrap->mra_floor_shift)) 1468 return; 1469 1470 zfs_btree_remove(size_tree, rs); 1471 } 1472 1473 /* ARGSUSED */ 1474 static void 1475 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1476 { 1477 metaslab_rt_arg_t *mrap = arg; 1478 zfs_btree_t *size_tree = mrap->mra_bt; 1479 zfs_btree_clear(size_tree); 1480 zfs_btree_destroy(size_tree); 1481 1482 metaslab_rt_create(rt, arg); 1483 } 1484 1485 static range_tree_ops_t metaslab_rt_ops = { 1486 .rtop_create = metaslab_rt_create, 1487 .rtop_destroy = metaslab_rt_destroy, 1488 .rtop_add = metaslab_rt_add, 1489 .rtop_remove = metaslab_rt_remove, 1490 .rtop_vacate = metaslab_rt_vacate 1491 }; 1492 1493 /* 1494 * ========================================================================== 1495 * Common allocator routines 1496 * ========================================================================== 1497 */ 1498 1499 /* 1500 * Return the maximum contiguous segment within the metaslab. 1501 */ 1502 uint64_t 1503 metaslab_largest_allocatable(metaslab_t *msp) 1504 { 1505 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1506 range_seg_t *rs; 1507 1508 if (t == NULL) 1509 return (0); 1510 if (zfs_btree_numnodes(t) == 0) 1511 metaslab_size_tree_full_load(msp->ms_allocatable); 1512 1513 rs = zfs_btree_last(t, NULL); 1514 if (rs == NULL) 1515 return (0); 1516 1517 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1518 msp->ms_allocatable)); 1519 } 1520 1521 /* 1522 * Return the maximum contiguous segment within the unflushed frees of this 1523 * metaslab. 1524 */ 1525 static uint64_t 1526 metaslab_largest_unflushed_free(metaslab_t *msp) 1527 { 1528 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1529 1530 if (msp->ms_unflushed_frees == NULL) 1531 return (0); 1532 1533 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1534 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1535 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1536 NULL); 1537 if (rs == NULL) 1538 return (0); 1539 1540 /* 1541 * When a range is freed from the metaslab, that range is added to 1542 * both the unflushed frees and the deferred frees. While the block 1543 * will eventually be usable, if the metaslab were loaded the range 1544 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1545 * txgs had passed. As a result, when attempting to estimate an upper 1546 * bound for the largest currently-usable free segment in the 1547 * metaslab, we need to not consider any ranges currently in the defer 1548 * trees. This algorithm approximates the largest available chunk in 1549 * the largest range in the unflushed_frees tree by taking the first 1550 * chunk. While this may be a poor estimate, it should only remain so 1551 * briefly and should eventually self-correct as frees are no longer 1552 * deferred. Similar logic applies to the ms_freed tree. See 1553 * metaslab_load() for more details. 1554 * 1555 * There are two primary sources of inaccuracy in this estimate. Both 1556 * are tolerated for performance reasons. The first source is that we 1557 * only check the largest segment for overlaps. Smaller segments may 1558 * have more favorable overlaps with the other trees, resulting in 1559 * larger usable chunks. Second, we only look at the first chunk in 1560 * the largest segment; there may be other usable chunks in the 1561 * largest segment, but we ignore them. 1562 */ 1563 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1564 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1565 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1566 uint64_t start = 0; 1567 uint64_t size = 0; 1568 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1569 rsize, &start, &size); 1570 if (found) { 1571 if (rstart == start) 1572 return (0); 1573 rsize = start - rstart; 1574 } 1575 } 1576 1577 uint64_t start = 0; 1578 uint64_t size = 0; 1579 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1580 rsize, &start, &size); 1581 if (found) 1582 rsize = start - rstart; 1583 1584 return (rsize); 1585 } 1586 1587 static range_seg_t * 1588 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1589 uint64_t size, zfs_btree_index_t *where) 1590 { 1591 range_seg_t *rs; 1592 range_seg_max_t rsearch; 1593 1594 rs_set_start(&rsearch, rt, start); 1595 rs_set_end(&rsearch, rt, start + size); 1596 1597 rs = zfs_btree_find(t, &rsearch, where); 1598 if (rs == NULL) { 1599 rs = zfs_btree_next(t, where, where); 1600 } 1601 1602 return (rs); 1603 } 1604 1605 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1606 defined(WITH_CF_BLOCK_ALLOCATOR) 1607 1608 /* 1609 * This is a helper function that can be used by the allocator to find a 1610 * suitable block to allocate. This will search the specified B-tree looking 1611 * for a block that matches the specified criteria. 1612 */ 1613 static uint64_t 1614 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1615 uint64_t max_search) 1616 { 1617 if (*cursor == 0) 1618 *cursor = rt->rt_start; 1619 zfs_btree_t *bt = &rt->rt_root; 1620 zfs_btree_index_t where; 1621 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1622 uint64_t first_found; 1623 int count_searched = 0; 1624 1625 if (rs != NULL) 1626 first_found = rs_get_start(rs, rt); 1627 1628 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1629 max_search || count_searched < metaslab_min_search_count)) { 1630 uint64_t offset = rs_get_start(rs, rt); 1631 if (offset + size <= rs_get_end(rs, rt)) { 1632 *cursor = offset + size; 1633 return (offset); 1634 } 1635 rs = zfs_btree_next(bt, &where, &where); 1636 count_searched++; 1637 } 1638 1639 *cursor = 0; 1640 return (-1ULL); 1641 } 1642 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1643 1644 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1645 /* 1646 * ========================================================================== 1647 * Dynamic Fit (df) block allocator 1648 * 1649 * Search for a free chunk of at least this size, starting from the last 1650 * offset (for this alignment of block) looking for up to 1651 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1652 * found within 16MB, then return a free chunk of exactly the requested size (or 1653 * larger). 1654 * 1655 * If it seems like searching from the last offset will be unproductive, skip 1656 * that and just return a free chunk of exactly the requested size (or larger). 1657 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1658 * mechanism is probably not very useful and may be removed in the future. 1659 * 1660 * The behavior when not searching can be changed to return the largest free 1661 * chunk, instead of a free chunk of exactly the requested size, by setting 1662 * metaslab_df_use_largest_segment. 1663 * ========================================================================== 1664 */ 1665 static uint64_t 1666 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1667 { 1668 /* 1669 * Find the largest power of 2 block size that evenly divides the 1670 * requested size. This is used to try to allocate blocks with similar 1671 * alignment from the same area of the metaslab (i.e. same cursor 1672 * bucket) but it does not guarantee that other allocations sizes 1673 * may exist in the same region. 1674 */ 1675 uint64_t align = size & -size; 1676 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1677 range_tree_t *rt = msp->ms_allocatable; 1678 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1679 uint64_t offset; 1680 1681 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1682 1683 /* 1684 * If we're running low on space, find a segment based on size, 1685 * rather than iterating based on offset. 1686 */ 1687 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1688 free_pct < metaslab_df_free_pct) { 1689 offset = -1; 1690 } else { 1691 offset = metaslab_block_picker(rt, 1692 cursor, size, metaslab_df_max_search); 1693 } 1694 1695 if (offset == -1) { 1696 range_seg_t *rs; 1697 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1698 metaslab_size_tree_full_load(msp->ms_allocatable); 1699 1700 if (metaslab_df_use_largest_segment) { 1701 /* use largest free segment */ 1702 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1703 } else { 1704 zfs_btree_index_t where; 1705 /* use segment of this size, or next largest */ 1706 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1707 rt, msp->ms_start, size, &where); 1708 } 1709 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1710 rt)) { 1711 offset = rs_get_start(rs, rt); 1712 *cursor = offset + size; 1713 } 1714 } 1715 1716 return (offset); 1717 } 1718 1719 static metaslab_ops_t metaslab_df_ops = { 1720 metaslab_df_alloc 1721 }; 1722 1723 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1724 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1725 1726 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1727 /* 1728 * ========================================================================== 1729 * Cursor fit block allocator - 1730 * Select the largest region in the metaslab, set the cursor to the beginning 1731 * of the range and the cursor_end to the end of the range. As allocations 1732 * are made advance the cursor. Continue allocating from the cursor until 1733 * the range is exhausted and then find a new range. 1734 * ========================================================================== 1735 */ 1736 static uint64_t 1737 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1738 { 1739 range_tree_t *rt = msp->ms_allocatable; 1740 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1741 uint64_t *cursor = &msp->ms_lbas[0]; 1742 uint64_t *cursor_end = &msp->ms_lbas[1]; 1743 uint64_t offset = 0; 1744 1745 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1746 1747 ASSERT3U(*cursor_end, >=, *cursor); 1748 1749 if ((*cursor + size) > *cursor_end) { 1750 range_seg_t *rs; 1751 1752 if (zfs_btree_numnodes(t) == 0) 1753 metaslab_size_tree_full_load(msp->ms_allocatable); 1754 rs = zfs_btree_last(t, NULL); 1755 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1756 size) 1757 return (-1ULL); 1758 1759 *cursor = rs_get_start(rs, rt); 1760 *cursor_end = rs_get_end(rs, rt); 1761 } 1762 1763 offset = *cursor; 1764 *cursor += size; 1765 1766 return (offset); 1767 } 1768 1769 static metaslab_ops_t metaslab_cf_ops = { 1770 metaslab_cf_alloc 1771 }; 1772 1773 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1774 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1775 1776 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1777 /* 1778 * ========================================================================== 1779 * New dynamic fit allocator - 1780 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1781 * contiguous blocks. If no region is found then just use the largest segment 1782 * that remains. 1783 * ========================================================================== 1784 */ 1785 1786 /* 1787 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1788 * to request from the allocator. 1789 */ 1790 uint64_t metaslab_ndf_clump_shift = 4; 1791 1792 static uint64_t 1793 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1794 { 1795 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1796 range_tree_t *rt = msp->ms_allocatable; 1797 zfs_btree_index_t where; 1798 range_seg_t *rs; 1799 range_seg_max_t rsearch; 1800 uint64_t hbit = highbit64(size); 1801 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1802 uint64_t max_size = metaslab_largest_allocatable(msp); 1803 1804 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1805 1806 if (max_size < size) 1807 return (-1ULL); 1808 1809 rs_set_start(&rsearch, rt, *cursor); 1810 rs_set_end(&rsearch, rt, *cursor + size); 1811 1812 rs = zfs_btree_find(t, &rsearch, &where); 1813 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1814 t = &msp->ms_allocatable_by_size; 1815 1816 rs_set_start(&rsearch, rt, 0); 1817 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1818 metaslab_ndf_clump_shift))); 1819 1820 rs = zfs_btree_find(t, &rsearch, &where); 1821 if (rs == NULL) 1822 rs = zfs_btree_next(t, &where, &where); 1823 ASSERT(rs != NULL); 1824 } 1825 1826 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1827 *cursor = rs_get_start(rs, rt) + size; 1828 return (rs_get_start(rs, rt)); 1829 } 1830 return (-1ULL); 1831 } 1832 1833 static metaslab_ops_t metaslab_ndf_ops = { 1834 metaslab_ndf_alloc 1835 }; 1836 1837 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1839 1840 1841 /* 1842 * ========================================================================== 1843 * Metaslabs 1844 * ========================================================================== 1845 */ 1846 1847 /* 1848 * Wait for any in-progress metaslab loads to complete. 1849 */ 1850 static void 1851 metaslab_load_wait(metaslab_t *msp) 1852 { 1853 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1854 1855 while (msp->ms_loading) { 1856 ASSERT(!msp->ms_loaded); 1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1858 } 1859 } 1860 1861 /* 1862 * Wait for any in-progress flushing to complete. 1863 */ 1864 static void 1865 metaslab_flush_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_flushing) 1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1871 } 1872 1873 static unsigned int 1874 metaslab_idx_func(multilist_t *ml, void *arg) 1875 { 1876 metaslab_t *msp = arg; 1877 return (msp->ms_id % multilist_get_num_sublists(ml)); 1878 } 1879 1880 uint64_t 1881 metaslab_allocated_space(metaslab_t *msp) 1882 { 1883 return (msp->ms_allocated_space); 1884 } 1885 1886 /* 1887 * Verify that the space accounting on disk matches the in-core range_trees. 1888 */ 1889 static void 1890 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1891 { 1892 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1893 uint64_t allocating = 0; 1894 uint64_t sm_free_space, msp_free_space; 1895 1896 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1897 ASSERT(!msp->ms_condensing); 1898 1899 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1900 return; 1901 1902 /* 1903 * We can only verify the metaslab space when we're called 1904 * from syncing context with a loaded metaslab that has an 1905 * allocated space map. Calling this in non-syncing context 1906 * does not provide a consistent view of the metaslab since 1907 * we're performing allocations in the future. 1908 */ 1909 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1910 !msp->ms_loaded) 1911 return; 1912 1913 /* 1914 * Even though the smp_alloc field can get negative, 1915 * when it comes to a metaslab's space map, that should 1916 * never be the case. 1917 */ 1918 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1919 1920 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1921 range_tree_space(msp->ms_unflushed_frees)); 1922 1923 ASSERT3U(metaslab_allocated_space(msp), ==, 1924 space_map_allocated(msp->ms_sm) + 1925 range_tree_space(msp->ms_unflushed_allocs) - 1926 range_tree_space(msp->ms_unflushed_frees)); 1927 1928 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1929 1930 /* 1931 * Account for future allocations since we would have 1932 * already deducted that space from the ms_allocatable. 1933 */ 1934 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1935 allocating += 1936 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1937 } 1938 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1939 msp->ms_allocating_total); 1940 1941 ASSERT3U(msp->ms_deferspace, ==, 1942 range_tree_space(msp->ms_defer[0]) + 1943 range_tree_space(msp->ms_defer[1])); 1944 1945 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1946 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1947 1948 VERIFY3U(sm_free_space, ==, msp_free_space); 1949 } 1950 1951 static void 1952 metaslab_aux_histograms_clear(metaslab_t *msp) 1953 { 1954 /* 1955 * Auxiliary histograms are only cleared when resetting them, 1956 * which can only happen while the metaslab is loaded. 1957 */ 1958 ASSERT(msp->ms_loaded); 1959 1960 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1961 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1962 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1963 } 1964 1965 static void 1966 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1967 range_tree_t *rt) 1968 { 1969 /* 1970 * This is modeled after space_map_histogram_add(), so refer to that 1971 * function for implementation details. We want this to work like 1972 * the space map histogram, and not the range tree histogram, as we 1973 * are essentially constructing a delta that will be later subtracted 1974 * from the space map histogram. 1975 */ 1976 int idx = 0; 1977 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1978 ASSERT3U(i, >=, idx + shift); 1979 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1980 1981 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1982 ASSERT3U(idx + shift, ==, i); 1983 idx++; 1984 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Called at every sync pass that the metaslab gets synced. 1991 * 1992 * The reason is that we want our auxiliary histograms to be updated 1993 * wherever the metaslab's space map histogram is updated. This way 1994 * we stay consistent on which parts of the metaslab space map's 1995 * histogram are currently not available for allocations (e.g because 1996 * they are in the defer, freed, and freeing trees). 1997 */ 1998 static void 1999 metaslab_aux_histograms_update(metaslab_t *msp) 2000 { 2001 space_map_t *sm = msp->ms_sm; 2002 ASSERT(sm != NULL); 2003 2004 /* 2005 * This is similar to the metaslab's space map histogram updates 2006 * that take place in metaslab_sync(). The only difference is that 2007 * we only care about segments that haven't made it into the 2008 * ms_allocatable tree yet. 2009 */ 2010 if (msp->ms_loaded) { 2011 metaslab_aux_histograms_clear(msp); 2012 2013 metaslab_aux_histogram_add(msp->ms_synchist, 2014 sm->sm_shift, msp->ms_freed); 2015 2016 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2017 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2018 sm->sm_shift, msp->ms_defer[t]); 2019 } 2020 } 2021 2022 metaslab_aux_histogram_add(msp->ms_synchist, 2023 sm->sm_shift, msp->ms_freeing); 2024 } 2025 2026 /* 2027 * Called every time we are done syncing (writing to) the metaslab, 2028 * i.e. at the end of each sync pass. 2029 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2030 */ 2031 static void 2032 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2033 { 2034 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2035 space_map_t *sm = msp->ms_sm; 2036 2037 if (sm == NULL) { 2038 /* 2039 * We came here from metaslab_init() when creating/opening a 2040 * pool, looking at a metaslab that hasn't had any allocations 2041 * yet. 2042 */ 2043 return; 2044 } 2045 2046 /* 2047 * This is similar to the actions that we take for the ms_freed 2048 * and ms_defer trees in metaslab_sync_done(). 2049 */ 2050 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2051 if (defer_allowed) { 2052 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2053 sizeof (msp->ms_synchist)); 2054 } else { 2055 bzero(msp->ms_deferhist[hist_index], 2056 sizeof (msp->ms_deferhist[hist_index])); 2057 } 2058 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2059 } 2060 2061 /* 2062 * Ensure that the metaslab's weight and fragmentation are consistent 2063 * with the contents of the histogram (either the range tree's histogram 2064 * or the space map's depending whether the metaslab is loaded). 2065 */ 2066 static void 2067 metaslab_verify_weight_and_frag(metaslab_t *msp) 2068 { 2069 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2070 2071 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2072 return; 2073 2074 /* 2075 * We can end up here from vdev_remove_complete(), in which case we 2076 * cannot do these assertions because we hold spa config locks and 2077 * thus we are not allowed to read from the DMU. 2078 * 2079 * We check if the metaslab group has been removed and if that's 2080 * the case we return immediately as that would mean that we are 2081 * here from the aforementioned code path. 2082 */ 2083 if (msp->ms_group == NULL) 2084 return; 2085 2086 /* 2087 * Devices being removed always return a weight of 0 and leave 2088 * fragmentation and ms_max_size as is - there is nothing for 2089 * us to verify here. 2090 */ 2091 vdev_t *vd = msp->ms_group->mg_vd; 2092 if (vd->vdev_removing) 2093 return; 2094 2095 /* 2096 * If the metaslab is dirty it probably means that we've done 2097 * some allocations or frees that have changed our histograms 2098 * and thus the weight. 2099 */ 2100 for (int t = 0; t < TXG_SIZE; t++) { 2101 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2102 return; 2103 } 2104 2105 /* 2106 * This verification checks that our in-memory state is consistent 2107 * with what's on disk. If the pool is read-only then there aren't 2108 * any changes and we just have the initially-loaded state. 2109 */ 2110 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2111 return; 2112 2113 /* some extra verification for in-core tree if you can */ 2114 if (msp->ms_loaded) { 2115 range_tree_stat_verify(msp->ms_allocatable); 2116 VERIFY(space_map_histogram_verify(msp->ms_sm, 2117 msp->ms_allocatable)); 2118 } 2119 2120 uint64_t weight = msp->ms_weight; 2121 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2122 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2123 uint64_t frag = msp->ms_fragmentation; 2124 uint64_t max_segsize = msp->ms_max_size; 2125 2126 msp->ms_weight = 0; 2127 msp->ms_fragmentation = 0; 2128 2129 /* 2130 * This function is used for verification purposes and thus should 2131 * not introduce any side-effects/mutations on the system's state. 2132 * 2133 * Regardless of whether metaslab_weight() thinks this metaslab 2134 * should be active or not, we want to ensure that the actual weight 2135 * (and therefore the value of ms_weight) would be the same if it 2136 * was to be recalculated at this point. 2137 * 2138 * In addition we set the nodirty flag so metaslab_weight() does 2139 * not dirty the metaslab for future TXGs (e.g. when trying to 2140 * force condensing to upgrade the metaslab spacemaps). 2141 */ 2142 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2143 2144 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2145 2146 /* 2147 * If the weight type changed then there is no point in doing 2148 * verification. Revert fields to their original values. 2149 */ 2150 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2151 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2152 msp->ms_fragmentation = frag; 2153 msp->ms_weight = weight; 2154 return; 2155 } 2156 2157 VERIFY3U(msp->ms_fragmentation, ==, frag); 2158 VERIFY3U(msp->ms_weight, ==, weight); 2159 } 2160 2161 /* 2162 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2163 * this class that was used longest ago, and attempt to unload it. We don't 2164 * want to spend too much time in this loop to prevent performance 2165 * degradation, and we expect that most of the time this operation will 2166 * succeed. Between that and the normal unloading processing during txg sync, 2167 * we expect this to keep the metaslab memory usage under control. 2168 */ 2169 static void 2170 metaslab_potentially_evict(metaslab_class_t *mc) 2171 { 2172 #ifdef _KERNEL 2173 uint64_t allmem = arc_all_memory(); 2174 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2175 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2176 int tries = 0; 2177 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2178 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2179 tries++) { 2180 unsigned int idx = multilist_get_random_index( 2181 &mc->mc_metaslab_txg_list); 2182 multilist_sublist_t *mls = 2183 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2184 metaslab_t *msp = multilist_sublist_head(mls); 2185 multilist_sublist_unlock(mls); 2186 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2187 inuse * size) { 2188 VERIFY3P(mls, ==, multilist_sublist_lock( 2189 &mc->mc_metaslab_txg_list, idx)); 2190 ASSERT3U(idx, ==, 2191 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2192 2193 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2194 multilist_sublist_unlock(mls); 2195 break; 2196 } 2197 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2198 multilist_sublist_unlock(mls); 2199 /* 2200 * If the metaslab is currently loading there are two 2201 * cases. If it's the metaslab we're evicting, we 2202 * can't continue on or we'll panic when we attempt to 2203 * recursively lock the mutex. If it's another 2204 * metaslab that's loading, it can be safely skipped, 2205 * since we know it's very new and therefore not a 2206 * good eviction candidate. We check later once the 2207 * lock is held that the metaslab is fully loaded 2208 * before actually unloading it. 2209 */ 2210 if (msp->ms_loading) { 2211 msp = next_msp; 2212 inuse = 2213 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2214 continue; 2215 } 2216 /* 2217 * We can't unload metaslabs with no spacemap because 2218 * they're not ready to be unloaded yet. We can't 2219 * unload metaslabs with outstanding allocations 2220 * because doing so could cause the metaslab's weight 2221 * to decrease while it's unloaded, which violates an 2222 * invariant that we use to prevent unnecessary 2223 * loading. We also don't unload metaslabs that are 2224 * currently active because they are high-weight 2225 * metaslabs that are likely to be used in the near 2226 * future. 2227 */ 2228 mutex_enter(&msp->ms_lock); 2229 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2230 msp->ms_allocating_total == 0) { 2231 metaslab_unload(msp); 2232 } 2233 mutex_exit(&msp->ms_lock); 2234 msp = next_msp; 2235 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2236 } 2237 } 2238 #endif 2239 } 2240 2241 static int 2242 metaslab_load_impl(metaslab_t *msp) 2243 { 2244 int error = 0; 2245 2246 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2247 ASSERT(msp->ms_loading); 2248 ASSERT(!msp->ms_condensing); 2249 2250 /* 2251 * We temporarily drop the lock to unblock other operations while we 2252 * are reading the space map. Therefore, metaslab_sync() and 2253 * metaslab_sync_done() can run at the same time as we do. 2254 * 2255 * If we are using the log space maps, metaslab_sync() can't write to 2256 * the metaslab's space map while we are loading as we only write to 2257 * it when we are flushing the metaslab, and that can't happen while 2258 * we are loading it. 2259 * 2260 * If we are not using log space maps though, metaslab_sync() can 2261 * append to the space map while we are loading. Therefore we load 2262 * only entries that existed when we started the load. Additionally, 2263 * metaslab_sync_done() has to wait for the load to complete because 2264 * there are potential races like metaslab_load() loading parts of the 2265 * space map that are currently being appended by metaslab_sync(). If 2266 * we didn't, the ms_allocatable would have entries that 2267 * metaslab_sync_done() would try to re-add later. 2268 * 2269 * That's why before dropping the lock we remember the synced length 2270 * of the metaslab and read up to that point of the space map, 2271 * ignoring entries appended by metaslab_sync() that happen after we 2272 * drop the lock. 2273 */ 2274 uint64_t length = msp->ms_synced_length; 2275 mutex_exit(&msp->ms_lock); 2276 2277 hrtime_t load_start = gethrtime(); 2278 metaslab_rt_arg_t *mrap; 2279 if (msp->ms_allocatable->rt_arg == NULL) { 2280 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2281 } else { 2282 mrap = msp->ms_allocatable->rt_arg; 2283 msp->ms_allocatable->rt_ops = NULL; 2284 msp->ms_allocatable->rt_arg = NULL; 2285 } 2286 mrap->mra_bt = &msp->ms_allocatable_by_size; 2287 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2288 2289 if (msp->ms_sm != NULL) { 2290 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2291 SM_FREE, length); 2292 2293 /* Now, populate the size-sorted tree. */ 2294 metaslab_rt_create(msp->ms_allocatable, mrap); 2295 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2296 msp->ms_allocatable->rt_arg = mrap; 2297 2298 struct mssa_arg arg = {0}; 2299 arg.rt = msp->ms_allocatable; 2300 arg.mra = mrap; 2301 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2302 &arg); 2303 } else { 2304 /* 2305 * Add the size-sorted tree first, since we don't need to load 2306 * the metaslab from the spacemap. 2307 */ 2308 metaslab_rt_create(msp->ms_allocatable, mrap); 2309 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2310 msp->ms_allocatable->rt_arg = mrap; 2311 /* 2312 * The space map has not been allocated yet, so treat 2313 * all the space in the metaslab as free and add it to the 2314 * ms_allocatable tree. 2315 */ 2316 range_tree_add(msp->ms_allocatable, 2317 msp->ms_start, msp->ms_size); 2318 2319 if (msp->ms_new) { 2320 /* 2321 * If the ms_sm doesn't exist, this means that this 2322 * metaslab hasn't gone through metaslab_sync() and 2323 * thus has never been dirtied. So we shouldn't 2324 * expect any unflushed allocs or frees from previous 2325 * TXGs. 2326 */ 2327 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2328 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2329 } 2330 } 2331 2332 /* 2333 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2334 * changing the ms_sm (or log_sm) and the metaslab's range trees 2335 * while we are about to use them and populate the ms_allocatable. 2336 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2337 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2338 */ 2339 mutex_enter(&msp->ms_sync_lock); 2340 mutex_enter(&msp->ms_lock); 2341 2342 ASSERT(!msp->ms_condensing); 2343 ASSERT(!msp->ms_flushing); 2344 2345 if (error != 0) { 2346 mutex_exit(&msp->ms_sync_lock); 2347 return (error); 2348 } 2349 2350 ASSERT3P(msp->ms_group, !=, NULL); 2351 msp->ms_loaded = B_TRUE; 2352 2353 /* 2354 * Apply all the unflushed changes to ms_allocatable right 2355 * away so any manipulations we do below have a clear view 2356 * of what is allocated and what is free. 2357 */ 2358 range_tree_walk(msp->ms_unflushed_allocs, 2359 range_tree_remove, msp->ms_allocatable); 2360 range_tree_walk(msp->ms_unflushed_frees, 2361 range_tree_add, msp->ms_allocatable); 2362 2363 ASSERT3P(msp->ms_group, !=, NULL); 2364 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2365 if (spa_syncing_log_sm(spa) != NULL) { 2366 ASSERT(spa_feature_is_enabled(spa, 2367 SPA_FEATURE_LOG_SPACEMAP)); 2368 2369 /* 2370 * If we use a log space map we add all the segments 2371 * that are in ms_unflushed_frees so they are available 2372 * for allocation. 2373 * 2374 * ms_allocatable needs to contain all free segments 2375 * that are ready for allocations (thus not segments 2376 * from ms_freeing, ms_freed, and the ms_defer trees). 2377 * But if we grab the lock in this code path at a sync 2378 * pass later that 1, then it also contains the 2379 * segments of ms_freed (they were added to it earlier 2380 * in this path through ms_unflushed_frees). So we 2381 * need to remove all the segments that exist in 2382 * ms_freed from ms_allocatable as they will be added 2383 * later in metaslab_sync_done(). 2384 * 2385 * When there's no log space map, the ms_allocatable 2386 * correctly doesn't contain any segments that exist 2387 * in ms_freed [see ms_synced_length]. 2388 */ 2389 range_tree_walk(msp->ms_freed, 2390 range_tree_remove, msp->ms_allocatable); 2391 } 2392 2393 /* 2394 * If we are not using the log space map, ms_allocatable 2395 * contains the segments that exist in the ms_defer trees 2396 * [see ms_synced_length]. Thus we need to remove them 2397 * from ms_allocatable as they will be added again in 2398 * metaslab_sync_done(). 2399 * 2400 * If we are using the log space map, ms_allocatable still 2401 * contains the segments that exist in the ms_defer trees. 2402 * Not because it read them through the ms_sm though. But 2403 * because these segments are part of ms_unflushed_frees 2404 * whose segments we add to ms_allocatable earlier in this 2405 * code path. 2406 */ 2407 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2408 range_tree_walk(msp->ms_defer[t], 2409 range_tree_remove, msp->ms_allocatable); 2410 } 2411 2412 /* 2413 * Call metaslab_recalculate_weight_and_sort() now that the 2414 * metaslab is loaded so we get the metaslab's real weight. 2415 * 2416 * Unless this metaslab was created with older software and 2417 * has not yet been converted to use segment-based weight, we 2418 * expect the new weight to be better or equal to the weight 2419 * that the metaslab had while it was not loaded. This is 2420 * because the old weight does not take into account the 2421 * consolidation of adjacent segments between TXGs. [see 2422 * comment for ms_synchist and ms_deferhist[] for more info] 2423 */ 2424 uint64_t weight = msp->ms_weight; 2425 uint64_t max_size = msp->ms_max_size; 2426 metaslab_recalculate_weight_and_sort(msp); 2427 if (!WEIGHT_IS_SPACEBASED(weight)) 2428 ASSERT3U(weight, <=, msp->ms_weight); 2429 msp->ms_max_size = metaslab_largest_allocatable(msp); 2430 ASSERT3U(max_size, <=, msp->ms_max_size); 2431 hrtime_t load_end = gethrtime(); 2432 msp->ms_load_time = load_end; 2433 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2434 "ms_id %llu, smp_length %llu, " 2435 "unflushed_allocs %llu, unflushed_frees %llu, " 2436 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2437 "loading_time %lld ms, ms_max_size %llu, " 2438 "max size error %lld, " 2439 "old_weight %llx, new_weight %llx", 2440 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2441 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2442 (u_longlong_t)msp->ms_id, 2443 (u_longlong_t)space_map_length(msp->ms_sm), 2444 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2445 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2446 (u_longlong_t)range_tree_space(msp->ms_freed), 2447 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2448 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2449 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2450 (longlong_t)((load_end - load_start) / 1000000), 2451 (u_longlong_t)msp->ms_max_size, 2452 (u_longlong_t)msp->ms_max_size - max_size, 2453 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2454 2455 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2456 mutex_exit(&msp->ms_sync_lock); 2457 return (0); 2458 } 2459 2460 int 2461 metaslab_load(metaslab_t *msp) 2462 { 2463 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2464 2465 /* 2466 * There may be another thread loading the same metaslab, if that's 2467 * the case just wait until the other thread is done and return. 2468 */ 2469 metaslab_load_wait(msp); 2470 if (msp->ms_loaded) 2471 return (0); 2472 VERIFY(!msp->ms_loading); 2473 ASSERT(!msp->ms_condensing); 2474 2475 /* 2476 * We set the loading flag BEFORE potentially dropping the lock to 2477 * wait for an ongoing flush (see ms_flushing below). This way other 2478 * threads know that there is already a thread that is loading this 2479 * metaslab. 2480 */ 2481 msp->ms_loading = B_TRUE; 2482 2483 /* 2484 * Wait for any in-progress flushing to finish as we drop the ms_lock 2485 * both here (during space_map_load()) and in metaslab_flush() (when 2486 * we flush our changes to the ms_sm). 2487 */ 2488 if (msp->ms_flushing) 2489 metaslab_flush_wait(msp); 2490 2491 /* 2492 * In the possibility that we were waiting for the metaslab to be 2493 * flushed (where we temporarily dropped the ms_lock), ensure that 2494 * no one else loaded the metaslab somehow. 2495 */ 2496 ASSERT(!msp->ms_loaded); 2497 2498 /* 2499 * If we're loading a metaslab in the normal class, consider evicting 2500 * another one to keep our memory usage under the limit defined by the 2501 * zfs_metaslab_mem_limit tunable. 2502 */ 2503 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2504 msp->ms_group->mg_class) { 2505 metaslab_potentially_evict(msp->ms_group->mg_class); 2506 } 2507 2508 int error = metaslab_load_impl(msp); 2509 2510 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2511 msp->ms_loading = B_FALSE; 2512 cv_broadcast(&msp->ms_load_cv); 2513 2514 return (error); 2515 } 2516 2517 void 2518 metaslab_unload(metaslab_t *msp) 2519 { 2520 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2521 2522 /* 2523 * This can happen if a metaslab is selected for eviction (in 2524 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2525 * metaslab_class_evict_old). 2526 */ 2527 if (!msp->ms_loaded) 2528 return; 2529 2530 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2531 msp->ms_loaded = B_FALSE; 2532 msp->ms_unload_time = gethrtime(); 2533 2534 msp->ms_activation_weight = 0; 2535 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2536 2537 if (msp->ms_group != NULL) { 2538 metaslab_class_t *mc = msp->ms_group->mg_class; 2539 multilist_sublist_t *mls = 2540 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2541 if (multilist_link_active(&msp->ms_class_txg_node)) 2542 multilist_sublist_remove(mls, msp); 2543 multilist_sublist_unlock(mls); 2544 2545 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2546 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2547 "ms_id %llu, weight %llx, " 2548 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2549 "loaded %llu ms ago, max_size %llu", 2550 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2551 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2552 (u_longlong_t)msp->ms_id, 2553 (u_longlong_t)msp->ms_weight, 2554 (u_longlong_t)msp->ms_selected_txg, 2555 (u_longlong_t)(msp->ms_unload_time - 2556 msp->ms_selected_time) / 1000 / 1000, 2557 (u_longlong_t)msp->ms_alloc_txg, 2558 (u_longlong_t)(msp->ms_unload_time - 2559 msp->ms_load_time) / 1000 / 1000, 2560 (u_longlong_t)msp->ms_max_size); 2561 } 2562 2563 /* 2564 * We explicitly recalculate the metaslab's weight based on its space 2565 * map (as it is now not loaded). We want unload metaslabs to always 2566 * have their weights calculated from the space map histograms, while 2567 * loaded ones have it calculated from their in-core range tree 2568 * [see metaslab_load()]. This way, the weight reflects the information 2569 * available in-core, whether it is loaded or not. 2570 * 2571 * If ms_group == NULL means that we came here from metaslab_fini(), 2572 * at which point it doesn't make sense for us to do the recalculation 2573 * and the sorting. 2574 */ 2575 if (msp->ms_group != NULL) 2576 metaslab_recalculate_weight_and_sort(msp); 2577 } 2578 2579 /* 2580 * We want to optimize the memory use of the per-metaslab range 2581 * trees. To do this, we store the segments in the range trees in 2582 * units of sectors, zero-indexing from the start of the metaslab. If 2583 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2584 * the ranges using two uint32_ts, rather than two uint64_ts. 2585 */ 2586 range_seg_type_t 2587 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2588 uint64_t *start, uint64_t *shift) 2589 { 2590 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2591 !zfs_metaslab_force_large_segs) { 2592 *shift = vdev->vdev_ashift; 2593 *start = msp->ms_start; 2594 return (RANGE_SEG32); 2595 } else { 2596 *shift = 0; 2597 *start = 0; 2598 return (RANGE_SEG64); 2599 } 2600 } 2601 2602 void 2603 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2604 { 2605 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2606 metaslab_class_t *mc = msp->ms_group->mg_class; 2607 multilist_sublist_t *mls = 2608 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2609 if (multilist_link_active(&msp->ms_class_txg_node)) 2610 multilist_sublist_remove(mls, msp); 2611 msp->ms_selected_txg = txg; 2612 msp->ms_selected_time = gethrtime(); 2613 multilist_sublist_insert_tail(mls, msp); 2614 multilist_sublist_unlock(mls); 2615 } 2616 2617 void 2618 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2619 int64_t defer_delta, int64_t space_delta) 2620 { 2621 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2622 2623 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2624 ASSERT(vd->vdev_ms_count != 0); 2625 2626 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2627 vdev_deflated_space(vd, space_delta)); 2628 } 2629 2630 int 2631 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2632 uint64_t txg, metaslab_t **msp) 2633 { 2634 vdev_t *vd = mg->mg_vd; 2635 spa_t *spa = vd->vdev_spa; 2636 objset_t *mos = spa->spa_meta_objset; 2637 metaslab_t *ms; 2638 int error; 2639 2640 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2641 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2642 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2643 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2644 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2645 multilist_link_init(&ms->ms_class_txg_node); 2646 2647 ms->ms_id = id; 2648 ms->ms_start = id << vd->vdev_ms_shift; 2649 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2650 ms->ms_allocator = -1; 2651 ms->ms_new = B_TRUE; 2652 2653 vdev_ops_t *ops = vd->vdev_ops; 2654 if (ops->vdev_op_metaslab_init != NULL) 2655 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2656 2657 /* 2658 * We only open space map objects that already exist. All others 2659 * will be opened when we finally allocate an object for it. 2660 * 2661 * Note: 2662 * When called from vdev_expand(), we can't call into the DMU as 2663 * we are holding the spa_config_lock as a writer and we would 2664 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2665 * that case, the object parameter is zero though, so we won't 2666 * call into the DMU. 2667 */ 2668 if (object != 0) { 2669 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2670 ms->ms_size, vd->vdev_ashift); 2671 2672 if (error != 0) { 2673 kmem_free(ms, sizeof (metaslab_t)); 2674 return (error); 2675 } 2676 2677 ASSERT(ms->ms_sm != NULL); 2678 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2679 } 2680 2681 uint64_t shift, start; 2682 range_seg_type_t type = 2683 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2684 2685 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2686 for (int t = 0; t < TXG_SIZE; t++) { 2687 ms->ms_allocating[t] = range_tree_create(NULL, type, 2688 NULL, start, shift); 2689 } 2690 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2691 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2692 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2693 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2694 start, shift); 2695 } 2696 ms->ms_checkpointing = 2697 range_tree_create(NULL, type, NULL, start, shift); 2698 ms->ms_unflushed_allocs = 2699 range_tree_create(NULL, type, NULL, start, shift); 2700 2701 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2702 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2703 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2704 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2705 type, mrap, start, shift); 2706 2707 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2708 2709 metaslab_group_add(mg, ms); 2710 metaslab_set_fragmentation(ms, B_FALSE); 2711 2712 /* 2713 * If we're opening an existing pool (txg == 0) or creating 2714 * a new one (txg == TXG_INITIAL), all space is available now. 2715 * If we're adding space to an existing pool, the new space 2716 * does not become available until after this txg has synced. 2717 * The metaslab's weight will also be initialized when we sync 2718 * out this txg. This ensures that we don't attempt to allocate 2719 * from it before we have initialized it completely. 2720 */ 2721 if (txg <= TXG_INITIAL) { 2722 metaslab_sync_done(ms, 0); 2723 metaslab_space_update(vd, mg->mg_class, 2724 metaslab_allocated_space(ms), 0, 0); 2725 } 2726 2727 if (txg != 0) { 2728 vdev_dirty(vd, 0, NULL, txg); 2729 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2730 } 2731 2732 *msp = ms; 2733 2734 return (0); 2735 } 2736 2737 static void 2738 metaslab_fini_flush_data(metaslab_t *msp) 2739 { 2740 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2741 2742 if (metaslab_unflushed_txg(msp) == 0) { 2743 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2744 ==, NULL); 2745 return; 2746 } 2747 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2748 2749 mutex_enter(&spa->spa_flushed_ms_lock); 2750 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2751 mutex_exit(&spa->spa_flushed_ms_lock); 2752 2753 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2754 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2755 } 2756 2757 uint64_t 2758 metaslab_unflushed_changes_memused(metaslab_t *ms) 2759 { 2760 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2761 range_tree_numsegs(ms->ms_unflushed_frees)) * 2762 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2763 } 2764 2765 void 2766 metaslab_fini(metaslab_t *msp) 2767 { 2768 metaslab_group_t *mg = msp->ms_group; 2769 vdev_t *vd = mg->mg_vd; 2770 spa_t *spa = vd->vdev_spa; 2771 2772 metaslab_fini_flush_data(msp); 2773 2774 metaslab_group_remove(mg, msp); 2775 2776 mutex_enter(&msp->ms_lock); 2777 VERIFY(msp->ms_group == NULL); 2778 2779 /* 2780 * If this metaslab hasn't been through metaslab_sync_done() yet its 2781 * space hasn't been accounted for in its vdev and doesn't need to be 2782 * subtracted. 2783 */ 2784 if (!msp->ms_new) { 2785 metaslab_space_update(vd, mg->mg_class, 2786 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2787 2788 } 2789 space_map_close(msp->ms_sm); 2790 msp->ms_sm = NULL; 2791 2792 metaslab_unload(msp); 2793 2794 range_tree_destroy(msp->ms_allocatable); 2795 range_tree_destroy(msp->ms_freeing); 2796 range_tree_destroy(msp->ms_freed); 2797 2798 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2799 metaslab_unflushed_changes_memused(msp)); 2800 spa->spa_unflushed_stats.sus_memused -= 2801 metaslab_unflushed_changes_memused(msp); 2802 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2803 range_tree_destroy(msp->ms_unflushed_allocs); 2804 range_tree_destroy(msp->ms_checkpointing); 2805 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2806 range_tree_destroy(msp->ms_unflushed_frees); 2807 2808 for (int t = 0; t < TXG_SIZE; t++) { 2809 range_tree_destroy(msp->ms_allocating[t]); 2810 } 2811 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2812 range_tree_destroy(msp->ms_defer[t]); 2813 } 2814 ASSERT0(msp->ms_deferspace); 2815 2816 for (int t = 0; t < TXG_SIZE; t++) 2817 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2818 2819 range_tree_vacate(msp->ms_trim, NULL, NULL); 2820 range_tree_destroy(msp->ms_trim); 2821 2822 mutex_exit(&msp->ms_lock); 2823 cv_destroy(&msp->ms_load_cv); 2824 cv_destroy(&msp->ms_flush_cv); 2825 mutex_destroy(&msp->ms_lock); 2826 mutex_destroy(&msp->ms_sync_lock); 2827 ASSERT3U(msp->ms_allocator, ==, -1); 2828 2829 kmem_free(msp, sizeof (metaslab_t)); 2830 } 2831 2832 #define FRAGMENTATION_TABLE_SIZE 17 2833 2834 /* 2835 * This table defines a segment size based fragmentation metric that will 2836 * allow each metaslab to derive its own fragmentation value. This is done 2837 * by calculating the space in each bucket of the spacemap histogram and 2838 * multiplying that by the fragmentation metric in this table. Doing 2839 * this for all buckets and dividing it by the total amount of free 2840 * space in this metaslab (i.e. the total free space in all buckets) gives 2841 * us the fragmentation metric. This means that a high fragmentation metric 2842 * equates to most of the free space being comprised of small segments. 2843 * Conversely, if the metric is low, then most of the free space is in 2844 * large segments. A 10% change in fragmentation equates to approximately 2845 * double the number of segments. 2846 * 2847 * This table defines 0% fragmented space using 16MB segments. Testing has 2848 * shown that segments that are greater than or equal to 16MB do not suffer 2849 * from drastic performance problems. Using this value, we derive the rest 2850 * of the table. Since the fragmentation value is never stored on disk, it 2851 * is possible to change these calculations in the future. 2852 */ 2853 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2854 100, /* 512B */ 2855 100, /* 1K */ 2856 98, /* 2K */ 2857 95, /* 4K */ 2858 90, /* 8K */ 2859 80, /* 16K */ 2860 70, /* 32K */ 2861 60, /* 64K */ 2862 50, /* 128K */ 2863 40, /* 256K */ 2864 30, /* 512K */ 2865 20, /* 1M */ 2866 15, /* 2M */ 2867 10, /* 4M */ 2868 5, /* 8M */ 2869 0 /* 16M */ 2870 }; 2871 2872 /* 2873 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2874 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2875 * been upgraded and does not support this metric. Otherwise, the return 2876 * value should be in the range [0, 100]. 2877 */ 2878 static void 2879 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2880 { 2881 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2882 uint64_t fragmentation = 0; 2883 uint64_t total = 0; 2884 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2885 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2886 2887 if (!feature_enabled) { 2888 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2889 return; 2890 } 2891 2892 /* 2893 * A null space map means that the entire metaslab is free 2894 * and thus is not fragmented. 2895 */ 2896 if (msp->ms_sm == NULL) { 2897 msp->ms_fragmentation = 0; 2898 return; 2899 } 2900 2901 /* 2902 * If this metaslab's space map has not been upgraded, flag it 2903 * so that we upgrade next time we encounter it. 2904 */ 2905 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2906 uint64_t txg = spa_syncing_txg(spa); 2907 vdev_t *vd = msp->ms_group->mg_vd; 2908 2909 /* 2910 * If we've reached the final dirty txg, then we must 2911 * be shutting down the pool. We don't want to dirty 2912 * any data past this point so skip setting the condense 2913 * flag. We can retry this action the next time the pool 2914 * is imported. We also skip marking this metaslab for 2915 * condensing if the caller has explicitly set nodirty. 2916 */ 2917 if (!nodirty && 2918 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2919 msp->ms_condense_wanted = B_TRUE; 2920 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2921 zfs_dbgmsg("txg %llu, requesting force condense: " 2922 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2923 (u_longlong_t)msp->ms_id, 2924 (u_longlong_t)vd->vdev_id); 2925 } 2926 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2927 return; 2928 } 2929 2930 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2931 uint64_t space = 0; 2932 uint8_t shift = msp->ms_sm->sm_shift; 2933 2934 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2935 FRAGMENTATION_TABLE_SIZE - 1); 2936 2937 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2938 continue; 2939 2940 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2941 total += space; 2942 2943 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2944 fragmentation += space * zfs_frag_table[idx]; 2945 } 2946 2947 if (total > 0) 2948 fragmentation /= total; 2949 ASSERT3U(fragmentation, <=, 100); 2950 2951 msp->ms_fragmentation = fragmentation; 2952 } 2953 2954 /* 2955 * Compute a weight -- a selection preference value -- for the given metaslab. 2956 * This is based on the amount of free space, the level of fragmentation, 2957 * the LBA range, and whether the metaslab is loaded. 2958 */ 2959 static uint64_t 2960 metaslab_space_weight(metaslab_t *msp) 2961 { 2962 metaslab_group_t *mg = msp->ms_group; 2963 vdev_t *vd = mg->mg_vd; 2964 uint64_t weight, space; 2965 2966 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2967 2968 /* 2969 * The baseline weight is the metaslab's free space. 2970 */ 2971 space = msp->ms_size - metaslab_allocated_space(msp); 2972 2973 if (metaslab_fragmentation_factor_enabled && 2974 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2975 /* 2976 * Use the fragmentation information to inversely scale 2977 * down the baseline weight. We need to ensure that we 2978 * don't exclude this metaslab completely when it's 100% 2979 * fragmented. To avoid this we reduce the fragmented value 2980 * by 1. 2981 */ 2982 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2983 2984 /* 2985 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2986 * this metaslab again. The fragmentation metric may have 2987 * decreased the space to something smaller than 2988 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2989 * so that we can consume any remaining space. 2990 */ 2991 if (space > 0 && space < SPA_MINBLOCKSIZE) 2992 space = SPA_MINBLOCKSIZE; 2993 } 2994 weight = space; 2995 2996 /* 2997 * Modern disks have uniform bit density and constant angular velocity. 2998 * Therefore, the outer recording zones are faster (higher bandwidth) 2999 * than the inner zones by the ratio of outer to inner track diameter, 3000 * which is typically around 2:1. We account for this by assigning 3001 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3002 * In effect, this means that we'll select the metaslab with the most 3003 * free bandwidth rather than simply the one with the most free space. 3004 */ 3005 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3006 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3007 ASSERT(weight >= space && weight <= 2 * space); 3008 } 3009 3010 /* 3011 * If this metaslab is one we're actively using, adjust its 3012 * weight to make it preferable to any inactive metaslab so 3013 * we'll polish it off. If the fragmentation on this metaslab 3014 * has exceed our threshold, then don't mark it active. 3015 */ 3016 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3017 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3018 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3019 } 3020 3021 WEIGHT_SET_SPACEBASED(weight); 3022 return (weight); 3023 } 3024 3025 /* 3026 * Return the weight of the specified metaslab, according to the segment-based 3027 * weighting algorithm. The metaslab must be loaded. This function can 3028 * be called within a sync pass since it relies only on the metaslab's 3029 * range tree which is always accurate when the metaslab is loaded. 3030 */ 3031 static uint64_t 3032 metaslab_weight_from_range_tree(metaslab_t *msp) 3033 { 3034 uint64_t weight = 0; 3035 uint32_t segments = 0; 3036 3037 ASSERT(msp->ms_loaded); 3038 3039 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3040 i--) { 3041 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3042 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3043 3044 segments <<= 1; 3045 segments += msp->ms_allocatable->rt_histogram[i]; 3046 3047 /* 3048 * The range tree provides more precision than the space map 3049 * and must be downgraded so that all values fit within the 3050 * space map's histogram. This allows us to compare loaded 3051 * vs. unloaded metaslabs to determine which metaslab is 3052 * considered "best". 3053 */ 3054 if (i > max_idx) 3055 continue; 3056 3057 if (segments != 0) { 3058 WEIGHT_SET_COUNT(weight, segments); 3059 WEIGHT_SET_INDEX(weight, i); 3060 WEIGHT_SET_ACTIVE(weight, 0); 3061 break; 3062 } 3063 } 3064 return (weight); 3065 } 3066 3067 /* 3068 * Calculate the weight based on the on-disk histogram. Should be applied 3069 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3070 * give results consistent with the on-disk state 3071 */ 3072 static uint64_t 3073 metaslab_weight_from_spacemap(metaslab_t *msp) 3074 { 3075 space_map_t *sm = msp->ms_sm; 3076 ASSERT(!msp->ms_loaded); 3077 ASSERT(sm != NULL); 3078 ASSERT3U(space_map_object(sm), !=, 0); 3079 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3080 3081 /* 3082 * Create a joint histogram from all the segments that have made 3083 * it to the metaslab's space map histogram, that are not yet 3084 * available for allocation because they are still in the freeing 3085 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3086 * these segments from the space map's histogram to get a more 3087 * accurate weight. 3088 */ 3089 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3090 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3091 deferspace_histogram[i] += msp->ms_synchist[i]; 3092 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3093 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3094 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3095 } 3096 } 3097 3098 uint64_t weight = 0; 3099 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3100 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3101 deferspace_histogram[i]); 3102 uint64_t count = 3103 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3104 if (count != 0) { 3105 WEIGHT_SET_COUNT(weight, count); 3106 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3107 WEIGHT_SET_ACTIVE(weight, 0); 3108 break; 3109 } 3110 } 3111 return (weight); 3112 } 3113 3114 /* 3115 * Compute a segment-based weight for the specified metaslab. The weight 3116 * is determined by highest bucket in the histogram. The information 3117 * for the highest bucket is encoded into the weight value. 3118 */ 3119 static uint64_t 3120 metaslab_segment_weight(metaslab_t *msp) 3121 { 3122 metaslab_group_t *mg = msp->ms_group; 3123 uint64_t weight = 0; 3124 uint8_t shift = mg->mg_vd->vdev_ashift; 3125 3126 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3127 3128 /* 3129 * The metaslab is completely free. 3130 */ 3131 if (metaslab_allocated_space(msp) == 0) { 3132 int idx = highbit64(msp->ms_size) - 1; 3133 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3134 3135 if (idx < max_idx) { 3136 WEIGHT_SET_COUNT(weight, 1ULL); 3137 WEIGHT_SET_INDEX(weight, idx); 3138 } else { 3139 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3140 WEIGHT_SET_INDEX(weight, max_idx); 3141 } 3142 WEIGHT_SET_ACTIVE(weight, 0); 3143 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3144 return (weight); 3145 } 3146 3147 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3148 3149 /* 3150 * If the metaslab is fully allocated then just make the weight 0. 3151 */ 3152 if (metaslab_allocated_space(msp) == msp->ms_size) 3153 return (0); 3154 /* 3155 * If the metaslab is already loaded, then use the range tree to 3156 * determine the weight. Otherwise, we rely on the space map information 3157 * to generate the weight. 3158 */ 3159 if (msp->ms_loaded) { 3160 weight = metaslab_weight_from_range_tree(msp); 3161 } else { 3162 weight = metaslab_weight_from_spacemap(msp); 3163 } 3164 3165 /* 3166 * If the metaslab was active the last time we calculated its weight 3167 * then keep it active. We want to consume the entire region that 3168 * is associated with this weight. 3169 */ 3170 if (msp->ms_activation_weight != 0 && weight != 0) 3171 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3172 return (weight); 3173 } 3174 3175 /* 3176 * Determine if we should attempt to allocate from this metaslab. If the 3177 * metaslab is loaded, then we can determine if the desired allocation 3178 * can be satisfied by looking at the size of the maximum free segment 3179 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3180 * weight. For segment-based weighting we can determine the maximum 3181 * allocation based on the index encoded in its value. For space-based 3182 * weights we rely on the entire weight (excluding the weight-type bit). 3183 */ 3184 static boolean_t 3185 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3186 { 3187 /* 3188 * If the metaslab is loaded, ms_max_size is definitive and we can use 3189 * the fast check. If it's not, the ms_max_size is a lower bound (once 3190 * set), and we should use the fast check as long as we're not in 3191 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3192 * seconds since the metaslab was unloaded. 3193 */ 3194 if (msp->ms_loaded || 3195 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3196 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3197 return (msp->ms_max_size >= asize); 3198 3199 boolean_t should_allocate; 3200 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3201 /* 3202 * The metaslab segment weight indicates segments in the 3203 * range [2^i, 2^(i+1)), where i is the index in the weight. 3204 * Since the asize might be in the middle of the range, we 3205 * should attempt the allocation if asize < 2^(i+1). 3206 */ 3207 should_allocate = (asize < 3208 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3209 } else { 3210 should_allocate = (asize <= 3211 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3212 } 3213 3214 return (should_allocate); 3215 } 3216 3217 static uint64_t 3218 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3219 { 3220 vdev_t *vd = msp->ms_group->mg_vd; 3221 spa_t *spa = vd->vdev_spa; 3222 uint64_t weight; 3223 3224 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3225 3226 metaslab_set_fragmentation(msp, nodirty); 3227 3228 /* 3229 * Update the maximum size. If the metaslab is loaded, this will 3230 * ensure that we get an accurate maximum size if newly freed space 3231 * has been added back into the free tree. If the metaslab is 3232 * unloaded, we check if there's a larger free segment in the 3233 * unflushed frees. This is a lower bound on the largest allocatable 3234 * segment size. Coalescing of adjacent entries may reveal larger 3235 * allocatable segments, but we aren't aware of those until loading 3236 * the space map into a range tree. 3237 */ 3238 if (msp->ms_loaded) { 3239 msp->ms_max_size = metaslab_largest_allocatable(msp); 3240 } else { 3241 msp->ms_max_size = MAX(msp->ms_max_size, 3242 metaslab_largest_unflushed_free(msp)); 3243 } 3244 3245 /* 3246 * Segment-based weighting requires space map histogram support. 3247 */ 3248 if (zfs_metaslab_segment_weight_enabled && 3249 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3250 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3251 sizeof (space_map_phys_t))) { 3252 weight = metaslab_segment_weight(msp); 3253 } else { 3254 weight = metaslab_space_weight(msp); 3255 } 3256 return (weight); 3257 } 3258 3259 void 3260 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3261 { 3262 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3263 3264 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3265 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3266 metaslab_group_sort(msp->ms_group, msp, 3267 metaslab_weight(msp, B_FALSE) | was_active); 3268 } 3269 3270 static int 3271 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3272 int allocator, uint64_t activation_weight) 3273 { 3274 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3275 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3276 3277 /* 3278 * If we're activating for the claim code, we don't want to actually 3279 * set the metaslab up for a specific allocator. 3280 */ 3281 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3282 ASSERT0(msp->ms_activation_weight); 3283 msp->ms_activation_weight = msp->ms_weight; 3284 metaslab_group_sort(mg, msp, msp->ms_weight | 3285 activation_weight); 3286 return (0); 3287 } 3288 3289 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3290 &mga->mga_primary : &mga->mga_secondary); 3291 3292 mutex_enter(&mg->mg_lock); 3293 if (*mspp != NULL) { 3294 mutex_exit(&mg->mg_lock); 3295 return (EEXIST); 3296 } 3297 3298 *mspp = msp; 3299 ASSERT3S(msp->ms_allocator, ==, -1); 3300 msp->ms_allocator = allocator; 3301 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3302 3303 ASSERT0(msp->ms_activation_weight); 3304 msp->ms_activation_weight = msp->ms_weight; 3305 metaslab_group_sort_impl(mg, msp, 3306 msp->ms_weight | activation_weight); 3307 mutex_exit(&mg->mg_lock); 3308 3309 return (0); 3310 } 3311 3312 static int 3313 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3314 { 3315 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3316 3317 /* 3318 * The current metaslab is already activated for us so there 3319 * is nothing to do. Already activated though, doesn't mean 3320 * that this metaslab is activated for our allocator nor our 3321 * requested activation weight. The metaslab could have started 3322 * as an active one for our allocator but changed allocators 3323 * while we were waiting to grab its ms_lock or we stole it 3324 * [see find_valid_metaslab()]. This means that there is a 3325 * possibility of passivating a metaslab of another allocator 3326 * or from a different activation mask, from this thread. 3327 */ 3328 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3329 ASSERT(msp->ms_loaded); 3330 return (0); 3331 } 3332 3333 int error = metaslab_load(msp); 3334 if (error != 0) { 3335 metaslab_group_sort(msp->ms_group, msp, 0); 3336 return (error); 3337 } 3338 3339 /* 3340 * When entering metaslab_load() we may have dropped the 3341 * ms_lock because we were loading this metaslab, or we 3342 * were waiting for another thread to load it for us. In 3343 * that scenario, we recheck the weight of the metaslab 3344 * to see if it was activated by another thread. 3345 * 3346 * If the metaslab was activated for another allocator or 3347 * it was activated with a different activation weight (e.g. 3348 * we wanted to make it a primary but it was activated as 3349 * secondary) we return error (EBUSY). 3350 * 3351 * If the metaslab was activated for the same allocator 3352 * and requested activation mask, skip activating it. 3353 */ 3354 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3355 if (msp->ms_allocator != allocator) 3356 return (EBUSY); 3357 3358 if ((msp->ms_weight & activation_weight) == 0) 3359 return (SET_ERROR(EBUSY)); 3360 3361 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3362 msp->ms_primary); 3363 return (0); 3364 } 3365 3366 /* 3367 * If the metaslab has literally 0 space, it will have weight 0. In 3368 * that case, don't bother activating it. This can happen if the 3369 * metaslab had space during find_valid_metaslab, but another thread 3370 * loaded it and used all that space while we were waiting to grab the 3371 * lock. 3372 */ 3373 if (msp->ms_weight == 0) { 3374 ASSERT0(range_tree_space(msp->ms_allocatable)); 3375 return (SET_ERROR(ENOSPC)); 3376 } 3377 3378 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3379 allocator, activation_weight)) != 0) { 3380 return (error); 3381 } 3382 3383 ASSERT(msp->ms_loaded); 3384 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3385 3386 return (0); 3387 } 3388 3389 static void 3390 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3391 uint64_t weight) 3392 { 3393 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3394 ASSERT(msp->ms_loaded); 3395 3396 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3397 metaslab_group_sort(mg, msp, weight); 3398 return; 3399 } 3400 3401 mutex_enter(&mg->mg_lock); 3402 ASSERT3P(msp->ms_group, ==, mg); 3403 ASSERT3S(0, <=, msp->ms_allocator); 3404 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3405 3406 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3407 if (msp->ms_primary) { 3408 ASSERT3P(mga->mga_primary, ==, msp); 3409 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3410 mga->mga_primary = NULL; 3411 } else { 3412 ASSERT3P(mga->mga_secondary, ==, msp); 3413 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3414 mga->mga_secondary = NULL; 3415 } 3416 msp->ms_allocator = -1; 3417 metaslab_group_sort_impl(mg, msp, weight); 3418 mutex_exit(&mg->mg_lock); 3419 } 3420 3421 static void 3422 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3423 { 3424 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3425 3426 /* 3427 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3428 * this metaslab again. In that case, it had better be empty, 3429 * or we would be leaving space on the table. 3430 */ 3431 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3432 size >= SPA_MINBLOCKSIZE || 3433 range_tree_space(msp->ms_allocatable) == 0); 3434 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3435 3436 ASSERT(msp->ms_activation_weight != 0); 3437 msp->ms_activation_weight = 0; 3438 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3439 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3440 } 3441 3442 /* 3443 * Segment-based metaslabs are activated once and remain active until 3444 * we either fail an allocation attempt (similar to space-based metaslabs) 3445 * or have exhausted the free space in zfs_metaslab_switch_threshold 3446 * buckets since the metaslab was activated. This function checks to see 3447 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3448 * metaslab and passivates it proactively. This will allow us to select a 3449 * metaslab with a larger contiguous region, if any, remaining within this 3450 * metaslab group. If we're in sync pass > 1, then we continue using this 3451 * metaslab so that we don't dirty more block and cause more sync passes. 3452 */ 3453 static void 3454 metaslab_segment_may_passivate(metaslab_t *msp) 3455 { 3456 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3457 3458 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3459 return; 3460 3461 /* 3462 * Since we are in the middle of a sync pass, the most accurate 3463 * information that is accessible to us is the in-core range tree 3464 * histogram; calculate the new weight based on that information. 3465 */ 3466 uint64_t weight = metaslab_weight_from_range_tree(msp); 3467 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3468 int current_idx = WEIGHT_GET_INDEX(weight); 3469 3470 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3471 metaslab_passivate(msp, weight); 3472 } 3473 3474 static void 3475 metaslab_preload(void *arg) 3476 { 3477 metaslab_t *msp = arg; 3478 metaslab_class_t *mc = msp->ms_group->mg_class; 3479 spa_t *spa = mc->mc_spa; 3480 fstrans_cookie_t cookie = spl_fstrans_mark(); 3481 3482 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3483 3484 mutex_enter(&msp->ms_lock); 3485 (void) metaslab_load(msp); 3486 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3487 mutex_exit(&msp->ms_lock); 3488 spl_fstrans_unmark(cookie); 3489 } 3490 3491 static void 3492 metaslab_group_preload(metaslab_group_t *mg) 3493 { 3494 spa_t *spa = mg->mg_vd->vdev_spa; 3495 metaslab_t *msp; 3496 avl_tree_t *t = &mg->mg_metaslab_tree; 3497 int m = 0; 3498 3499 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3500 taskq_wait_outstanding(mg->mg_taskq, 0); 3501 return; 3502 } 3503 3504 mutex_enter(&mg->mg_lock); 3505 3506 /* 3507 * Load the next potential metaslabs 3508 */ 3509 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3510 ASSERT3P(msp->ms_group, ==, mg); 3511 3512 /* 3513 * We preload only the maximum number of metaslabs specified 3514 * by metaslab_preload_limit. If a metaslab is being forced 3515 * to condense then we preload it too. This will ensure 3516 * that force condensing happens in the next txg. 3517 */ 3518 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3519 continue; 3520 } 3521 3522 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3523 msp, TQ_SLEEP) != TASKQID_INVALID); 3524 } 3525 mutex_exit(&mg->mg_lock); 3526 } 3527 3528 /* 3529 * Determine if the space map's on-disk footprint is past our tolerance for 3530 * inefficiency. We would like to use the following criteria to make our 3531 * decision: 3532 * 3533 * 1. Do not condense if the size of the space map object would dramatically 3534 * increase as a result of writing out the free space range tree. 3535 * 3536 * 2. Condense if the on on-disk space map representation is at least 3537 * zfs_condense_pct/100 times the size of the optimal representation 3538 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3539 * 3540 * 3. Do not condense if the on-disk size of the space map does not actually 3541 * decrease. 3542 * 3543 * Unfortunately, we cannot compute the on-disk size of the space map in this 3544 * context because we cannot accurately compute the effects of compression, etc. 3545 * Instead, we apply the heuristic described in the block comment for 3546 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3547 * is greater than a threshold number of blocks. 3548 */ 3549 static boolean_t 3550 metaslab_should_condense(metaslab_t *msp) 3551 { 3552 space_map_t *sm = msp->ms_sm; 3553 vdev_t *vd = msp->ms_group->mg_vd; 3554 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3555 3556 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3557 ASSERT(msp->ms_loaded); 3558 ASSERT(sm != NULL); 3559 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3560 3561 /* 3562 * We always condense metaslabs that are empty and metaslabs for 3563 * which a condense request has been made. 3564 */ 3565 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3566 msp->ms_condense_wanted) 3567 return (B_TRUE); 3568 3569 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3570 uint64_t object_size = space_map_length(sm); 3571 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3572 msp->ms_allocatable, SM_NO_VDEVID); 3573 3574 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3575 object_size > zfs_metaslab_condense_block_threshold * record_size); 3576 } 3577 3578 /* 3579 * Condense the on-disk space map representation to its minimized form. 3580 * The minimized form consists of a small number of allocations followed 3581 * by the entries of the free range tree (ms_allocatable). The condensed 3582 * spacemap contains all the entries of previous TXGs (including those in 3583 * the pool-wide log spacemaps; thus this is effectively a superset of 3584 * metaslab_flush()), but this TXG's entries still need to be written. 3585 */ 3586 static void 3587 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3588 { 3589 range_tree_t *condense_tree; 3590 space_map_t *sm = msp->ms_sm; 3591 uint64_t txg = dmu_tx_get_txg(tx); 3592 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3593 3594 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3595 ASSERT(msp->ms_loaded); 3596 ASSERT(msp->ms_sm != NULL); 3597 3598 /* 3599 * In order to condense the space map, we need to change it so it 3600 * only describes which segments are currently allocated and free. 3601 * 3602 * All the current free space resides in the ms_allocatable, all 3603 * the ms_defer trees, and all the ms_allocating trees. We ignore 3604 * ms_freed because it is empty because we're in sync pass 1. We 3605 * ignore ms_freeing because these changes are not yet reflected 3606 * in the spacemap (they will be written later this txg). 3607 * 3608 * So to truncate the space map to represent all the entries of 3609 * previous TXGs we do the following: 3610 * 3611 * 1] We create a range tree (condense tree) that is 100% empty. 3612 * 2] We add to it all segments found in the ms_defer trees 3613 * as those segments are marked as free in the original space 3614 * map. We do the same with the ms_allocating trees for the same 3615 * reason. Adding these segments should be a relatively 3616 * inexpensive operation since we expect these trees to have a 3617 * small number of nodes. 3618 * 3] We vacate any unflushed allocs, since they are not frees we 3619 * need to add to the condense tree. Then we vacate any 3620 * unflushed frees as they should already be part of ms_allocatable. 3621 * 4] At this point, we would ideally like to add all segments 3622 * in the ms_allocatable tree from the condense tree. This way 3623 * we would write all the entries of the condense tree as the 3624 * condensed space map, which would only contain freed 3625 * segments with everything else assumed to be allocated. 3626 * 3627 * Doing so can be prohibitively expensive as ms_allocatable can 3628 * be large, and therefore computationally expensive to add to 3629 * the condense_tree. Instead we first sync out an entry marking 3630 * everything as allocated, then the condense_tree and then the 3631 * ms_allocatable, in the condensed space map. While this is not 3632 * optimal, it is typically close to optimal and more importantly 3633 * much cheaper to compute. 3634 * 3635 * 5] Finally, as both of the unflushed trees were written to our 3636 * new and condensed metaslab space map, we basically flushed 3637 * all the unflushed changes to disk, thus we call 3638 * metaslab_flush_update(). 3639 */ 3640 ASSERT3U(spa_sync_pass(spa), ==, 1); 3641 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3642 3643 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3644 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3645 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3646 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3647 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3648 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3649 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3650 3651 msp->ms_condense_wanted = B_FALSE; 3652 3653 range_seg_type_t type; 3654 uint64_t shift, start; 3655 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3656 &start, &shift); 3657 3658 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3659 3660 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3661 range_tree_walk(msp->ms_defer[t], 3662 range_tree_add, condense_tree); 3663 } 3664 3665 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3666 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3667 range_tree_add, condense_tree); 3668 } 3669 3670 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3671 metaslab_unflushed_changes_memused(msp)); 3672 spa->spa_unflushed_stats.sus_memused -= 3673 metaslab_unflushed_changes_memused(msp); 3674 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3675 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3676 3677 /* 3678 * We're about to drop the metaslab's lock thus allowing other 3679 * consumers to change it's content. Set the metaslab's ms_condensing 3680 * flag to ensure that allocations on this metaslab do not occur 3681 * while we're in the middle of committing it to disk. This is only 3682 * critical for ms_allocatable as all other range trees use per TXG 3683 * views of their content. 3684 */ 3685 msp->ms_condensing = B_TRUE; 3686 3687 mutex_exit(&msp->ms_lock); 3688 uint64_t object = space_map_object(msp->ms_sm); 3689 space_map_truncate(sm, 3690 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3691 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3692 3693 /* 3694 * space_map_truncate() may have reallocated the spacemap object. 3695 * If so, update the vdev_ms_array. 3696 */ 3697 if (space_map_object(msp->ms_sm) != object) { 3698 object = space_map_object(msp->ms_sm); 3699 dmu_write(spa->spa_meta_objset, 3700 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3701 msp->ms_id, sizeof (uint64_t), &object, tx); 3702 } 3703 3704 /* 3705 * Note: 3706 * When the log space map feature is enabled, each space map will 3707 * always have ALLOCS followed by FREES for each sync pass. This is 3708 * typically true even when the log space map feature is disabled, 3709 * except from the case where a metaslab goes through metaslab_sync() 3710 * and gets condensed. In that case the metaslab's space map will have 3711 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3712 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3713 * sync pass 1. 3714 */ 3715 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3716 shift); 3717 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3718 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3719 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3720 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3721 3722 range_tree_vacate(condense_tree, NULL, NULL); 3723 range_tree_destroy(condense_tree); 3724 range_tree_vacate(tmp_tree, NULL, NULL); 3725 range_tree_destroy(tmp_tree); 3726 mutex_enter(&msp->ms_lock); 3727 3728 msp->ms_condensing = B_FALSE; 3729 metaslab_flush_update(msp, tx); 3730 } 3731 3732 /* 3733 * Called when the metaslab has been flushed (its own spacemap now reflects 3734 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3735 * metadata and any pool-wide related log space map data (e.g. summary, 3736 * obsolete logs, etc..) to reflect that. 3737 */ 3738 static void 3739 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3740 { 3741 metaslab_group_t *mg = msp->ms_group; 3742 spa_t *spa = mg->mg_vd->vdev_spa; 3743 3744 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3745 3746 ASSERT3U(spa_sync_pass(spa), ==, 1); 3747 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3748 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3749 3750 /* 3751 * Just because a metaslab got flushed, that doesn't mean that 3752 * it will pass through metaslab_sync_done(). Thus, make sure to 3753 * update ms_synced_length here in case it doesn't. 3754 */ 3755 msp->ms_synced_length = space_map_length(msp->ms_sm); 3756 3757 /* 3758 * We may end up here from metaslab_condense() without the 3759 * feature being active. In that case this is a no-op. 3760 */ 3761 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3762 return; 3763 3764 ASSERT(spa_syncing_log_sm(spa) != NULL); 3765 ASSERT(msp->ms_sm != NULL); 3766 ASSERT(metaslab_unflushed_txg(msp) != 0); 3767 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3768 3769 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3770 3771 /* update metaslab's position in our flushing tree */ 3772 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3773 mutex_enter(&spa->spa_flushed_ms_lock); 3774 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3775 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3776 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3777 mutex_exit(&spa->spa_flushed_ms_lock); 3778 3779 /* update metaslab counts of spa_log_sm_t nodes */ 3780 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3781 spa_log_sm_increment_current_mscount(spa); 3782 3783 /* cleanup obsolete logs if any */ 3784 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3785 spa_cleanup_old_sm_logs(spa, tx); 3786 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3787 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3788 3789 /* update log space map summary */ 3790 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3791 spa_log_summary_add_flushed_metaslab(spa); 3792 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3793 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3794 } 3795 3796 boolean_t 3797 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3798 { 3799 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3800 3801 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3802 ASSERT3U(spa_sync_pass(spa), ==, 1); 3803 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3804 3805 ASSERT(msp->ms_sm != NULL); 3806 ASSERT(metaslab_unflushed_txg(msp) != 0); 3807 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3808 3809 /* 3810 * There is nothing wrong with flushing the same metaslab twice, as 3811 * this codepath should work on that case. However, the current 3812 * flushing scheme makes sure to avoid this situation as we would be 3813 * making all these calls without having anything meaningful to write 3814 * to disk. We assert this behavior here. 3815 */ 3816 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3817 3818 /* 3819 * We can not flush while loading, because then we would 3820 * not load the ms_unflushed_{allocs,frees}. 3821 */ 3822 if (msp->ms_loading) 3823 return (B_FALSE); 3824 3825 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3826 metaslab_verify_weight_and_frag(msp); 3827 3828 /* 3829 * Metaslab condensing is effectively flushing. Therefore if the 3830 * metaslab can be condensed we can just condense it instead of 3831 * flushing it. 3832 * 3833 * Note that metaslab_condense() does call metaslab_flush_update() 3834 * so we can just return immediately after condensing. We also 3835 * don't need to care about setting ms_flushing or broadcasting 3836 * ms_flush_cv, even if we temporarily drop the ms_lock in 3837 * metaslab_condense(), as the metaslab is already loaded. 3838 */ 3839 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3840 metaslab_group_t *mg = msp->ms_group; 3841 3842 /* 3843 * For all histogram operations below refer to the 3844 * comments of metaslab_sync() where we follow a 3845 * similar procedure. 3846 */ 3847 metaslab_group_histogram_verify(mg); 3848 metaslab_class_histogram_verify(mg->mg_class); 3849 metaslab_group_histogram_remove(mg, msp); 3850 3851 metaslab_condense(msp, tx); 3852 3853 space_map_histogram_clear(msp->ms_sm); 3854 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3855 ASSERT(range_tree_is_empty(msp->ms_freed)); 3856 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3857 space_map_histogram_add(msp->ms_sm, 3858 msp->ms_defer[t], tx); 3859 } 3860 metaslab_aux_histograms_update(msp); 3861 3862 metaslab_group_histogram_add(mg, msp); 3863 metaslab_group_histogram_verify(mg); 3864 metaslab_class_histogram_verify(mg->mg_class); 3865 3866 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3867 3868 /* 3869 * Since we recreated the histogram (and potentially 3870 * the ms_sm too while condensing) ensure that the 3871 * weight is updated too because we are not guaranteed 3872 * that this metaslab is dirty and will go through 3873 * metaslab_sync_done(). 3874 */ 3875 metaslab_recalculate_weight_and_sort(msp); 3876 return (B_TRUE); 3877 } 3878 3879 msp->ms_flushing = B_TRUE; 3880 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3881 3882 mutex_exit(&msp->ms_lock); 3883 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3884 SM_NO_VDEVID, tx); 3885 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3886 SM_NO_VDEVID, tx); 3887 mutex_enter(&msp->ms_lock); 3888 3889 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3890 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3891 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3892 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3893 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3894 spa_name(spa), 3895 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3896 (u_longlong_t)msp->ms_id, 3897 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3898 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3899 (u_longlong_t)(sm_len_after - sm_len_before)); 3900 } 3901 3902 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3903 metaslab_unflushed_changes_memused(msp)); 3904 spa->spa_unflushed_stats.sus_memused -= 3905 metaslab_unflushed_changes_memused(msp); 3906 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3907 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3908 3909 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3910 metaslab_verify_weight_and_frag(msp); 3911 3912 metaslab_flush_update(msp, tx); 3913 3914 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3915 metaslab_verify_weight_and_frag(msp); 3916 3917 msp->ms_flushing = B_FALSE; 3918 cv_broadcast(&msp->ms_flush_cv); 3919 return (B_TRUE); 3920 } 3921 3922 /* 3923 * Write a metaslab to disk in the context of the specified transaction group. 3924 */ 3925 void 3926 metaslab_sync(metaslab_t *msp, uint64_t txg) 3927 { 3928 metaslab_group_t *mg = msp->ms_group; 3929 vdev_t *vd = mg->mg_vd; 3930 spa_t *spa = vd->vdev_spa; 3931 objset_t *mos = spa_meta_objset(spa); 3932 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3933 dmu_tx_t *tx; 3934 3935 ASSERT(!vd->vdev_ishole); 3936 3937 /* 3938 * This metaslab has just been added so there's no work to do now. 3939 */ 3940 if (msp->ms_new) { 3941 ASSERT0(range_tree_space(alloctree)); 3942 ASSERT0(range_tree_space(msp->ms_freeing)); 3943 ASSERT0(range_tree_space(msp->ms_freed)); 3944 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3945 ASSERT0(range_tree_space(msp->ms_trim)); 3946 return; 3947 } 3948 3949 /* 3950 * Normally, we don't want to process a metaslab if there are no 3951 * allocations or frees to perform. However, if the metaslab is being 3952 * forced to condense, it's loaded and we're not beyond the final 3953 * dirty txg, we need to let it through. Not condensing beyond the 3954 * final dirty txg prevents an issue where metaslabs that need to be 3955 * condensed but were loaded for other reasons could cause a panic 3956 * here. By only checking the txg in that branch of the conditional, 3957 * we preserve the utility of the VERIFY statements in all other 3958 * cases. 3959 */ 3960 if (range_tree_is_empty(alloctree) && 3961 range_tree_is_empty(msp->ms_freeing) && 3962 range_tree_is_empty(msp->ms_checkpointing) && 3963 !(msp->ms_loaded && msp->ms_condense_wanted && 3964 txg <= spa_final_dirty_txg(spa))) 3965 return; 3966 3967 3968 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3969 3970 /* 3971 * The only state that can actually be changing concurrently 3972 * with metaslab_sync() is the metaslab's ms_allocatable. No 3973 * other thread can be modifying this txg's alloc, freeing, 3974 * freed, or space_map_phys_t. We drop ms_lock whenever we 3975 * could call into the DMU, because the DMU can call down to 3976 * us (e.g. via zio_free()) at any time. 3977 * 3978 * The spa_vdev_remove_thread() can be reading metaslab state 3979 * concurrently, and it is locked out by the ms_sync_lock. 3980 * Note that the ms_lock is insufficient for this, because it 3981 * is dropped by space_map_write(). 3982 */ 3983 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3984 3985 /* 3986 * Generate a log space map if one doesn't exist already. 3987 */ 3988 spa_generate_syncing_log_sm(spa, tx); 3989 3990 if (msp->ms_sm == NULL) { 3991 uint64_t new_object = space_map_alloc(mos, 3992 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3993 zfs_metaslab_sm_blksz_with_log : 3994 zfs_metaslab_sm_blksz_no_log, tx); 3995 VERIFY3U(new_object, !=, 0); 3996 3997 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3998 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3999 4000 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4001 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4002 ASSERT(msp->ms_sm != NULL); 4003 4004 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4005 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4006 ASSERT0(metaslab_allocated_space(msp)); 4007 } 4008 4009 if (metaslab_unflushed_txg(msp) == 0 && 4010 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 4011 ASSERT(spa_syncing_log_sm(spa) != NULL); 4012 4013 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4014 spa_log_sm_increment_current_mscount(spa); 4015 spa_log_summary_add_flushed_metaslab(spa); 4016 4017 ASSERT(msp->ms_sm != NULL); 4018 mutex_enter(&spa->spa_flushed_ms_lock); 4019 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4020 mutex_exit(&spa->spa_flushed_ms_lock); 4021 4022 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4023 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4024 } 4025 4026 if (!range_tree_is_empty(msp->ms_checkpointing) && 4027 vd->vdev_checkpoint_sm == NULL) { 4028 ASSERT(spa_has_checkpoint(spa)); 4029 4030 uint64_t new_object = space_map_alloc(mos, 4031 zfs_vdev_standard_sm_blksz, tx); 4032 VERIFY3U(new_object, !=, 0); 4033 4034 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4035 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4036 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4037 4038 /* 4039 * We save the space map object as an entry in vdev_top_zap 4040 * so it can be retrieved when the pool is reopened after an 4041 * export or through zdb. 4042 */ 4043 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4044 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4045 sizeof (new_object), 1, &new_object, tx)); 4046 } 4047 4048 mutex_enter(&msp->ms_sync_lock); 4049 mutex_enter(&msp->ms_lock); 4050 4051 /* 4052 * Note: metaslab_condense() clears the space map's histogram. 4053 * Therefore we must verify and remove this histogram before 4054 * condensing. 4055 */ 4056 metaslab_group_histogram_verify(mg); 4057 metaslab_class_histogram_verify(mg->mg_class); 4058 metaslab_group_histogram_remove(mg, msp); 4059 4060 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4061 metaslab_should_condense(msp)) 4062 metaslab_condense(msp, tx); 4063 4064 /* 4065 * We'll be going to disk to sync our space accounting, thus we 4066 * drop the ms_lock during that time so allocations coming from 4067 * open-context (ZIL) for future TXGs do not block. 4068 */ 4069 mutex_exit(&msp->ms_lock); 4070 space_map_t *log_sm = spa_syncing_log_sm(spa); 4071 if (log_sm != NULL) { 4072 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4073 4074 space_map_write(log_sm, alloctree, SM_ALLOC, 4075 vd->vdev_id, tx); 4076 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4077 vd->vdev_id, tx); 4078 mutex_enter(&msp->ms_lock); 4079 4080 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4081 metaslab_unflushed_changes_memused(msp)); 4082 spa->spa_unflushed_stats.sus_memused -= 4083 metaslab_unflushed_changes_memused(msp); 4084 range_tree_remove_xor_add(alloctree, 4085 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4086 range_tree_remove_xor_add(msp->ms_freeing, 4087 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4088 spa->spa_unflushed_stats.sus_memused += 4089 metaslab_unflushed_changes_memused(msp); 4090 } else { 4091 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4092 4093 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4094 SM_NO_VDEVID, tx); 4095 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4096 SM_NO_VDEVID, tx); 4097 mutex_enter(&msp->ms_lock); 4098 } 4099 4100 msp->ms_allocated_space += range_tree_space(alloctree); 4101 ASSERT3U(msp->ms_allocated_space, >=, 4102 range_tree_space(msp->ms_freeing)); 4103 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4104 4105 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4106 ASSERT(spa_has_checkpoint(spa)); 4107 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4108 4109 /* 4110 * Since we are doing writes to disk and the ms_checkpointing 4111 * tree won't be changing during that time, we drop the 4112 * ms_lock while writing to the checkpoint space map, for the 4113 * same reason mentioned above. 4114 */ 4115 mutex_exit(&msp->ms_lock); 4116 space_map_write(vd->vdev_checkpoint_sm, 4117 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4118 mutex_enter(&msp->ms_lock); 4119 4120 spa->spa_checkpoint_info.sci_dspace += 4121 range_tree_space(msp->ms_checkpointing); 4122 vd->vdev_stat.vs_checkpoint_space += 4123 range_tree_space(msp->ms_checkpointing); 4124 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4125 -space_map_allocated(vd->vdev_checkpoint_sm)); 4126 4127 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4128 } 4129 4130 if (msp->ms_loaded) { 4131 /* 4132 * When the space map is loaded, we have an accurate 4133 * histogram in the range tree. This gives us an opportunity 4134 * to bring the space map's histogram up-to-date so we clear 4135 * it first before updating it. 4136 */ 4137 space_map_histogram_clear(msp->ms_sm); 4138 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4139 4140 /* 4141 * Since we've cleared the histogram we need to add back 4142 * any free space that has already been processed, plus 4143 * any deferred space. This allows the on-disk histogram 4144 * to accurately reflect all free space even if some space 4145 * is not yet available for allocation (i.e. deferred). 4146 */ 4147 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4148 4149 /* 4150 * Add back any deferred free space that has not been 4151 * added back into the in-core free tree yet. This will 4152 * ensure that we don't end up with a space map histogram 4153 * that is completely empty unless the metaslab is fully 4154 * allocated. 4155 */ 4156 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4157 space_map_histogram_add(msp->ms_sm, 4158 msp->ms_defer[t], tx); 4159 } 4160 } 4161 4162 /* 4163 * Always add the free space from this sync pass to the space 4164 * map histogram. We want to make sure that the on-disk histogram 4165 * accounts for all free space. If the space map is not loaded, 4166 * then we will lose some accuracy but will correct it the next 4167 * time we load the space map. 4168 */ 4169 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4170 metaslab_aux_histograms_update(msp); 4171 4172 metaslab_group_histogram_add(mg, msp); 4173 metaslab_group_histogram_verify(mg); 4174 metaslab_class_histogram_verify(mg->mg_class); 4175 4176 /* 4177 * For sync pass 1, we avoid traversing this txg's free range tree 4178 * and instead will just swap the pointers for freeing and freed. 4179 * We can safely do this since the freed_tree is guaranteed to be 4180 * empty on the initial pass. 4181 * 4182 * Keep in mind that even if we are currently using a log spacemap 4183 * we want current frees to end up in the ms_allocatable (but not 4184 * get appended to the ms_sm) so their ranges can be reused as usual. 4185 */ 4186 if (spa_sync_pass(spa) == 1) { 4187 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4188 ASSERT0(msp->ms_allocated_this_txg); 4189 } else { 4190 range_tree_vacate(msp->ms_freeing, 4191 range_tree_add, msp->ms_freed); 4192 } 4193 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4194 range_tree_vacate(alloctree, NULL, NULL); 4195 4196 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4197 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4198 & TXG_MASK])); 4199 ASSERT0(range_tree_space(msp->ms_freeing)); 4200 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4201 4202 mutex_exit(&msp->ms_lock); 4203 4204 /* 4205 * Verify that the space map object ID has been recorded in the 4206 * vdev_ms_array. 4207 */ 4208 uint64_t object; 4209 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4210 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4211 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4212 4213 mutex_exit(&msp->ms_sync_lock); 4214 dmu_tx_commit(tx); 4215 } 4216 4217 static void 4218 metaslab_evict(metaslab_t *msp, uint64_t txg) 4219 { 4220 if (!msp->ms_loaded || msp->ms_disabled != 0) 4221 return; 4222 4223 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4224 VERIFY0(range_tree_space( 4225 msp->ms_allocating[(txg + t) & TXG_MASK])); 4226 } 4227 if (msp->ms_allocator != -1) 4228 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4229 4230 if (!metaslab_debug_unload) 4231 metaslab_unload(msp); 4232 } 4233 4234 /* 4235 * Called after a transaction group has completely synced to mark 4236 * all of the metaslab's free space as usable. 4237 */ 4238 void 4239 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4240 { 4241 metaslab_group_t *mg = msp->ms_group; 4242 vdev_t *vd = mg->mg_vd; 4243 spa_t *spa = vd->vdev_spa; 4244 range_tree_t **defer_tree; 4245 int64_t alloc_delta, defer_delta; 4246 boolean_t defer_allowed = B_TRUE; 4247 4248 ASSERT(!vd->vdev_ishole); 4249 4250 mutex_enter(&msp->ms_lock); 4251 4252 if (msp->ms_new) { 4253 /* this is a new metaslab, add its capacity to the vdev */ 4254 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4255 4256 /* there should be no allocations nor frees at this point */ 4257 VERIFY0(msp->ms_allocated_this_txg); 4258 VERIFY0(range_tree_space(msp->ms_freed)); 4259 } 4260 4261 ASSERT0(range_tree_space(msp->ms_freeing)); 4262 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4263 4264 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4265 4266 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4267 metaslab_class_get_alloc(spa_normal_class(spa)); 4268 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4269 defer_allowed = B_FALSE; 4270 } 4271 4272 defer_delta = 0; 4273 alloc_delta = msp->ms_allocated_this_txg - 4274 range_tree_space(msp->ms_freed); 4275 4276 if (defer_allowed) { 4277 defer_delta = range_tree_space(msp->ms_freed) - 4278 range_tree_space(*defer_tree); 4279 } else { 4280 defer_delta -= range_tree_space(*defer_tree); 4281 } 4282 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4283 defer_delta, 0); 4284 4285 if (spa_syncing_log_sm(spa) == NULL) { 4286 /* 4287 * If there's a metaslab_load() in progress and we don't have 4288 * a log space map, it means that we probably wrote to the 4289 * metaslab's space map. If this is the case, we need to 4290 * make sure that we wait for the load to complete so that we 4291 * have a consistent view at the in-core side of the metaslab. 4292 */ 4293 metaslab_load_wait(msp); 4294 } else { 4295 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4296 } 4297 4298 /* 4299 * When auto-trimming is enabled, free ranges which are added to 4300 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4301 * periodically consumed by the vdev_autotrim_thread() which issues 4302 * trims for all ranges and then vacates the tree. The ms_trim tree 4303 * can be discarded at any time with the sole consequence of recent 4304 * frees not being trimmed. 4305 */ 4306 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4307 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4308 if (!defer_allowed) { 4309 range_tree_walk(msp->ms_freed, range_tree_add, 4310 msp->ms_trim); 4311 } 4312 } else { 4313 range_tree_vacate(msp->ms_trim, NULL, NULL); 4314 } 4315 4316 /* 4317 * Move the frees from the defer_tree back to the free 4318 * range tree (if it's loaded). Swap the freed_tree and 4319 * the defer_tree -- this is safe to do because we've 4320 * just emptied out the defer_tree. 4321 */ 4322 range_tree_vacate(*defer_tree, 4323 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4324 if (defer_allowed) { 4325 range_tree_swap(&msp->ms_freed, defer_tree); 4326 } else { 4327 range_tree_vacate(msp->ms_freed, 4328 msp->ms_loaded ? range_tree_add : NULL, 4329 msp->ms_allocatable); 4330 } 4331 4332 msp->ms_synced_length = space_map_length(msp->ms_sm); 4333 4334 msp->ms_deferspace += defer_delta; 4335 ASSERT3S(msp->ms_deferspace, >=, 0); 4336 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4337 if (msp->ms_deferspace != 0) { 4338 /* 4339 * Keep syncing this metaslab until all deferred frees 4340 * are back in circulation. 4341 */ 4342 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4343 } 4344 metaslab_aux_histograms_update_done(msp, defer_allowed); 4345 4346 if (msp->ms_new) { 4347 msp->ms_new = B_FALSE; 4348 mutex_enter(&mg->mg_lock); 4349 mg->mg_ms_ready++; 4350 mutex_exit(&mg->mg_lock); 4351 } 4352 4353 /* 4354 * Re-sort metaslab within its group now that we've adjusted 4355 * its allocatable space. 4356 */ 4357 metaslab_recalculate_weight_and_sort(msp); 4358 4359 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4360 ASSERT0(range_tree_space(msp->ms_freeing)); 4361 ASSERT0(range_tree_space(msp->ms_freed)); 4362 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4363 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4364 msp->ms_allocated_this_txg = 0; 4365 mutex_exit(&msp->ms_lock); 4366 } 4367 4368 void 4369 metaslab_sync_reassess(metaslab_group_t *mg) 4370 { 4371 spa_t *spa = mg->mg_class->mc_spa; 4372 4373 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4374 metaslab_group_alloc_update(mg); 4375 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4376 4377 /* 4378 * Preload the next potential metaslabs but only on active 4379 * metaslab groups. We can get into a state where the metaslab 4380 * is no longer active since we dirty metaslabs as we remove a 4381 * a device, thus potentially making the metaslab group eligible 4382 * for preloading. 4383 */ 4384 if (mg->mg_activation_count > 0) { 4385 metaslab_group_preload(mg); 4386 } 4387 spa_config_exit(spa, SCL_ALLOC, FTAG); 4388 } 4389 4390 /* 4391 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4392 * the same vdev as an existing DVA of this BP, then try to allocate it 4393 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4394 */ 4395 static boolean_t 4396 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4397 { 4398 uint64_t dva_ms_id; 4399 4400 if (DVA_GET_ASIZE(dva) == 0) 4401 return (B_TRUE); 4402 4403 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4404 return (B_TRUE); 4405 4406 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4407 4408 return (msp->ms_id != dva_ms_id); 4409 } 4410 4411 /* 4412 * ========================================================================== 4413 * Metaslab allocation tracing facility 4414 * ========================================================================== 4415 */ 4416 4417 /* 4418 * Add an allocation trace element to the allocation tracing list. 4419 */ 4420 static void 4421 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4422 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4423 int allocator) 4424 { 4425 metaslab_alloc_trace_t *mat; 4426 4427 if (!metaslab_trace_enabled) 4428 return; 4429 4430 /* 4431 * When the tracing list reaches its maximum we remove 4432 * the second element in the list before adding a new one. 4433 * By removing the second element we preserve the original 4434 * entry as a clue to what allocations steps have already been 4435 * performed. 4436 */ 4437 if (zal->zal_size == metaslab_trace_max_entries) { 4438 metaslab_alloc_trace_t *mat_next; 4439 #ifdef ZFS_DEBUG 4440 panic("too many entries in allocation list"); 4441 #endif 4442 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4443 zal->zal_size--; 4444 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4445 list_remove(&zal->zal_list, mat_next); 4446 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4447 } 4448 4449 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4450 list_link_init(&mat->mat_list_node); 4451 mat->mat_mg = mg; 4452 mat->mat_msp = msp; 4453 mat->mat_size = psize; 4454 mat->mat_dva_id = dva_id; 4455 mat->mat_offset = offset; 4456 mat->mat_weight = 0; 4457 mat->mat_allocator = allocator; 4458 4459 if (msp != NULL) 4460 mat->mat_weight = msp->ms_weight; 4461 4462 /* 4463 * The list is part of the zio so locking is not required. Only 4464 * a single thread will perform allocations for a given zio. 4465 */ 4466 list_insert_tail(&zal->zal_list, mat); 4467 zal->zal_size++; 4468 4469 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4470 } 4471 4472 void 4473 metaslab_trace_init(zio_alloc_list_t *zal) 4474 { 4475 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4476 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4477 zal->zal_size = 0; 4478 } 4479 4480 void 4481 metaslab_trace_fini(zio_alloc_list_t *zal) 4482 { 4483 metaslab_alloc_trace_t *mat; 4484 4485 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4486 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4487 list_destroy(&zal->zal_list); 4488 zal->zal_size = 0; 4489 } 4490 4491 /* 4492 * ========================================================================== 4493 * Metaslab block operations 4494 * ========================================================================== 4495 */ 4496 4497 static void 4498 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4499 int allocator) 4500 { 4501 if (!(flags & METASLAB_ASYNC_ALLOC) || 4502 (flags & METASLAB_DONT_THROTTLE)) 4503 return; 4504 4505 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4506 if (!mg->mg_class->mc_alloc_throttle_enabled) 4507 return; 4508 4509 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4510 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4511 } 4512 4513 static void 4514 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4515 { 4516 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4517 metaslab_class_allocator_t *mca = 4518 &mg->mg_class->mc_allocator[allocator]; 4519 uint64_t max = mg->mg_max_alloc_queue_depth; 4520 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4521 while (cur < max) { 4522 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4523 cur, cur + 1) == cur) { 4524 atomic_inc_64(&mca->mca_alloc_max_slots); 4525 return; 4526 } 4527 cur = mga->mga_cur_max_alloc_queue_depth; 4528 } 4529 } 4530 4531 void 4532 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4533 int allocator, boolean_t io_complete) 4534 { 4535 if (!(flags & METASLAB_ASYNC_ALLOC) || 4536 (flags & METASLAB_DONT_THROTTLE)) 4537 return; 4538 4539 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4540 if (!mg->mg_class->mc_alloc_throttle_enabled) 4541 return; 4542 4543 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4544 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4545 if (io_complete) 4546 metaslab_group_increment_qdepth(mg, allocator); 4547 } 4548 4549 void 4550 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4551 int allocator) 4552 { 4553 #ifdef ZFS_DEBUG 4554 const dva_t *dva = bp->blk_dva; 4555 int ndvas = BP_GET_NDVAS(bp); 4556 4557 for (int d = 0; d < ndvas; d++) { 4558 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4559 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4560 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4561 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4562 } 4563 #endif 4564 } 4565 4566 static uint64_t 4567 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4568 { 4569 uint64_t start; 4570 range_tree_t *rt = msp->ms_allocatable; 4571 metaslab_class_t *mc = msp->ms_group->mg_class; 4572 4573 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4574 VERIFY(!msp->ms_condensing); 4575 VERIFY0(msp->ms_disabled); 4576 4577 start = mc->mc_ops->msop_alloc(msp, size); 4578 if (start != -1ULL) { 4579 metaslab_group_t *mg = msp->ms_group; 4580 vdev_t *vd = mg->mg_vd; 4581 4582 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4583 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4584 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4585 range_tree_remove(rt, start, size); 4586 range_tree_clear(msp->ms_trim, start, size); 4587 4588 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4589 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4590 4591 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4592 msp->ms_allocating_total += size; 4593 4594 /* Track the last successful allocation */ 4595 msp->ms_alloc_txg = txg; 4596 metaslab_verify_space(msp, txg); 4597 } 4598 4599 /* 4600 * Now that we've attempted the allocation we need to update the 4601 * metaslab's maximum block size since it may have changed. 4602 */ 4603 msp->ms_max_size = metaslab_largest_allocatable(msp); 4604 return (start); 4605 } 4606 4607 /* 4608 * Find the metaslab with the highest weight that is less than what we've 4609 * already tried. In the common case, this means that we will examine each 4610 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4611 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4612 * activated by another thread, and we fail to allocate from the metaslab we 4613 * have selected, we may not try the newly-activated metaslab, and instead 4614 * activate another metaslab. This is not optimal, but generally does not cause 4615 * any problems (a possible exception being if every metaslab is completely full 4616 * except for the newly-activated metaslab which we fail to examine). 4617 */ 4618 static metaslab_t * 4619 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4620 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4621 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4622 boolean_t *was_active) 4623 { 4624 avl_index_t idx; 4625 avl_tree_t *t = &mg->mg_metaslab_tree; 4626 metaslab_t *msp = avl_find(t, search, &idx); 4627 if (msp == NULL) 4628 msp = avl_nearest(t, idx, AVL_AFTER); 4629 4630 int tries = 0; 4631 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4632 int i; 4633 4634 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4635 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4636 return (NULL); 4637 } 4638 tries++; 4639 4640 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4641 metaslab_trace_add(zal, mg, msp, asize, d, 4642 TRACE_TOO_SMALL, allocator); 4643 continue; 4644 } 4645 4646 /* 4647 * If the selected metaslab is condensing or disabled, 4648 * skip it. 4649 */ 4650 if (msp->ms_condensing || msp->ms_disabled > 0) 4651 continue; 4652 4653 *was_active = msp->ms_allocator != -1; 4654 /* 4655 * If we're activating as primary, this is our first allocation 4656 * from this disk, so we don't need to check how close we are. 4657 * If the metaslab under consideration was already active, 4658 * we're getting desperate enough to steal another allocator's 4659 * metaslab, so we still don't care about distances. 4660 */ 4661 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4662 break; 4663 4664 for (i = 0; i < d; i++) { 4665 if (want_unique && 4666 !metaslab_is_unique(msp, &dva[i])) 4667 break; /* try another metaslab */ 4668 } 4669 if (i == d) 4670 break; 4671 } 4672 4673 if (msp != NULL) { 4674 search->ms_weight = msp->ms_weight; 4675 search->ms_start = msp->ms_start + 1; 4676 search->ms_allocator = msp->ms_allocator; 4677 search->ms_primary = msp->ms_primary; 4678 } 4679 return (msp); 4680 } 4681 4682 static void 4683 metaslab_active_mask_verify(metaslab_t *msp) 4684 { 4685 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4686 4687 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4688 return; 4689 4690 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4691 return; 4692 4693 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4694 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4695 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4696 VERIFY3S(msp->ms_allocator, !=, -1); 4697 VERIFY(msp->ms_primary); 4698 return; 4699 } 4700 4701 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4702 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4703 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4704 VERIFY3S(msp->ms_allocator, !=, -1); 4705 VERIFY(!msp->ms_primary); 4706 return; 4707 } 4708 4709 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4710 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4711 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4712 VERIFY3S(msp->ms_allocator, ==, -1); 4713 return; 4714 } 4715 } 4716 4717 /* ARGSUSED */ 4718 static uint64_t 4719 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4720 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4721 int allocator, boolean_t try_hard) 4722 { 4723 metaslab_t *msp = NULL; 4724 uint64_t offset = -1ULL; 4725 4726 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4727 for (int i = 0; i < d; i++) { 4728 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4729 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4730 activation_weight = METASLAB_WEIGHT_SECONDARY; 4731 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4732 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4733 activation_weight = METASLAB_WEIGHT_CLAIM; 4734 break; 4735 } 4736 } 4737 4738 /* 4739 * If we don't have enough metaslabs active to fill the entire array, we 4740 * just use the 0th slot. 4741 */ 4742 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4743 allocator = 0; 4744 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4745 4746 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4747 4748 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4749 search->ms_weight = UINT64_MAX; 4750 search->ms_start = 0; 4751 /* 4752 * At the end of the metaslab tree are the already-active metaslabs, 4753 * first the primaries, then the secondaries. When we resume searching 4754 * through the tree, we need to consider ms_allocator and ms_primary so 4755 * we start in the location right after where we left off, and don't 4756 * accidentally loop forever considering the same metaslabs. 4757 */ 4758 search->ms_allocator = -1; 4759 search->ms_primary = B_TRUE; 4760 for (;;) { 4761 boolean_t was_active = B_FALSE; 4762 4763 mutex_enter(&mg->mg_lock); 4764 4765 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4766 mga->mga_primary != NULL) { 4767 msp = mga->mga_primary; 4768 4769 /* 4770 * Even though we don't hold the ms_lock for the 4771 * primary metaslab, those fields should not 4772 * change while we hold the mg_lock. Thus it is 4773 * safe to make assertions on them. 4774 */ 4775 ASSERT(msp->ms_primary); 4776 ASSERT3S(msp->ms_allocator, ==, allocator); 4777 ASSERT(msp->ms_loaded); 4778 4779 was_active = B_TRUE; 4780 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4781 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4782 mga->mga_secondary != NULL) { 4783 msp = mga->mga_secondary; 4784 4785 /* 4786 * See comment above about the similar assertions 4787 * for the primary metaslab. 4788 */ 4789 ASSERT(!msp->ms_primary); 4790 ASSERT3S(msp->ms_allocator, ==, allocator); 4791 ASSERT(msp->ms_loaded); 4792 4793 was_active = B_TRUE; 4794 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4795 } else { 4796 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4797 want_unique, asize, allocator, try_hard, zal, 4798 search, &was_active); 4799 } 4800 4801 mutex_exit(&mg->mg_lock); 4802 if (msp == NULL) { 4803 kmem_free(search, sizeof (*search)); 4804 return (-1ULL); 4805 } 4806 mutex_enter(&msp->ms_lock); 4807 4808 metaslab_active_mask_verify(msp); 4809 4810 /* 4811 * This code is disabled out because of issues with 4812 * tracepoints in non-gpl kernel modules. 4813 */ 4814 #if 0 4815 DTRACE_PROBE3(ms__activation__attempt, 4816 metaslab_t *, msp, uint64_t, activation_weight, 4817 boolean_t, was_active); 4818 #endif 4819 4820 /* 4821 * Ensure that the metaslab we have selected is still 4822 * capable of handling our request. It's possible that 4823 * another thread may have changed the weight while we 4824 * were blocked on the metaslab lock. We check the 4825 * active status first to see if we need to set_selected_txg 4826 * a new metaslab. 4827 */ 4828 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4829 ASSERT3S(msp->ms_allocator, ==, -1); 4830 mutex_exit(&msp->ms_lock); 4831 continue; 4832 } 4833 4834 /* 4835 * If the metaslab was activated for another allocator 4836 * while we were waiting in the ms_lock above, or it's 4837 * a primary and we're seeking a secondary (or vice versa), 4838 * we go back and select a new metaslab. 4839 */ 4840 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4841 (msp->ms_allocator != -1) && 4842 (msp->ms_allocator != allocator || ((activation_weight == 4843 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4844 ASSERT(msp->ms_loaded); 4845 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4846 msp->ms_allocator != -1); 4847 mutex_exit(&msp->ms_lock); 4848 continue; 4849 } 4850 4851 /* 4852 * This metaslab was used for claiming regions allocated 4853 * by the ZIL during pool import. Once these regions are 4854 * claimed we don't need to keep the CLAIM bit set 4855 * anymore. Passivate this metaslab to zero its activation 4856 * mask. 4857 */ 4858 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4859 activation_weight != METASLAB_WEIGHT_CLAIM) { 4860 ASSERT(msp->ms_loaded); 4861 ASSERT3S(msp->ms_allocator, ==, -1); 4862 metaslab_passivate(msp, msp->ms_weight & 4863 ~METASLAB_WEIGHT_CLAIM); 4864 mutex_exit(&msp->ms_lock); 4865 continue; 4866 } 4867 4868 metaslab_set_selected_txg(msp, txg); 4869 4870 int activation_error = 4871 metaslab_activate(msp, allocator, activation_weight); 4872 metaslab_active_mask_verify(msp); 4873 4874 /* 4875 * If the metaslab was activated by another thread for 4876 * another allocator or activation_weight (EBUSY), or it 4877 * failed because another metaslab was assigned as primary 4878 * for this allocator (EEXIST) we continue using this 4879 * metaslab for our allocation, rather than going on to a 4880 * worse metaslab (we waited for that metaslab to be loaded 4881 * after all). 4882 * 4883 * If the activation failed due to an I/O error or ENOSPC we 4884 * skip to the next metaslab. 4885 */ 4886 boolean_t activated; 4887 if (activation_error == 0) { 4888 activated = B_TRUE; 4889 } else if (activation_error == EBUSY || 4890 activation_error == EEXIST) { 4891 activated = B_FALSE; 4892 } else { 4893 mutex_exit(&msp->ms_lock); 4894 continue; 4895 } 4896 ASSERT(msp->ms_loaded); 4897 4898 /* 4899 * Now that we have the lock, recheck to see if we should 4900 * continue to use this metaslab for this allocation. The 4901 * the metaslab is now loaded so metaslab_should_allocate() 4902 * can accurately determine if the allocation attempt should 4903 * proceed. 4904 */ 4905 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4906 /* Passivate this metaslab and select a new one. */ 4907 metaslab_trace_add(zal, mg, msp, asize, d, 4908 TRACE_TOO_SMALL, allocator); 4909 goto next; 4910 } 4911 4912 /* 4913 * If this metaslab is currently condensing then pick again 4914 * as we can't manipulate this metaslab until it's committed 4915 * to disk. If this metaslab is being initialized, we shouldn't 4916 * allocate from it since the allocated region might be 4917 * overwritten after allocation. 4918 */ 4919 if (msp->ms_condensing) { 4920 metaslab_trace_add(zal, mg, msp, asize, d, 4921 TRACE_CONDENSING, allocator); 4922 if (activated) { 4923 metaslab_passivate(msp, msp->ms_weight & 4924 ~METASLAB_ACTIVE_MASK); 4925 } 4926 mutex_exit(&msp->ms_lock); 4927 continue; 4928 } else if (msp->ms_disabled > 0) { 4929 metaslab_trace_add(zal, mg, msp, asize, d, 4930 TRACE_DISABLED, allocator); 4931 if (activated) { 4932 metaslab_passivate(msp, msp->ms_weight & 4933 ~METASLAB_ACTIVE_MASK); 4934 } 4935 mutex_exit(&msp->ms_lock); 4936 continue; 4937 } 4938 4939 offset = metaslab_block_alloc(msp, asize, txg); 4940 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4941 4942 if (offset != -1ULL) { 4943 /* Proactively passivate the metaslab, if needed */ 4944 if (activated) 4945 metaslab_segment_may_passivate(msp); 4946 break; 4947 } 4948 next: 4949 ASSERT(msp->ms_loaded); 4950 4951 /* 4952 * This code is disabled out because of issues with 4953 * tracepoints in non-gpl kernel modules. 4954 */ 4955 #if 0 4956 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4957 uint64_t, asize); 4958 #endif 4959 4960 /* 4961 * We were unable to allocate from this metaslab so determine 4962 * a new weight for this metaslab. Now that we have loaded 4963 * the metaslab we can provide a better hint to the metaslab 4964 * selector. 4965 * 4966 * For space-based metaslabs, we use the maximum block size. 4967 * This information is only available when the metaslab 4968 * is loaded and is more accurate than the generic free 4969 * space weight that was calculated by metaslab_weight(). 4970 * This information allows us to quickly compare the maximum 4971 * available allocation in the metaslab to the allocation 4972 * size being requested. 4973 * 4974 * For segment-based metaslabs, determine the new weight 4975 * based on the highest bucket in the range tree. We 4976 * explicitly use the loaded segment weight (i.e. the range 4977 * tree histogram) since it contains the space that is 4978 * currently available for allocation and is accurate 4979 * even within a sync pass. 4980 */ 4981 uint64_t weight; 4982 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4983 weight = metaslab_largest_allocatable(msp); 4984 WEIGHT_SET_SPACEBASED(weight); 4985 } else { 4986 weight = metaslab_weight_from_range_tree(msp); 4987 } 4988 4989 if (activated) { 4990 metaslab_passivate(msp, weight); 4991 } else { 4992 /* 4993 * For the case where we use the metaslab that is 4994 * active for another allocator we want to make 4995 * sure that we retain the activation mask. 4996 * 4997 * Note that we could attempt to use something like 4998 * metaslab_recalculate_weight_and_sort() that 4999 * retains the activation mask here. That function 5000 * uses metaslab_weight() to set the weight though 5001 * which is not as accurate as the calculations 5002 * above. 5003 */ 5004 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5005 metaslab_group_sort(mg, msp, weight); 5006 } 5007 metaslab_active_mask_verify(msp); 5008 5009 /* 5010 * We have just failed an allocation attempt, check 5011 * that metaslab_should_allocate() agrees. Otherwise, 5012 * we may end up in an infinite loop retrying the same 5013 * metaslab. 5014 */ 5015 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5016 5017 mutex_exit(&msp->ms_lock); 5018 } 5019 mutex_exit(&msp->ms_lock); 5020 kmem_free(search, sizeof (*search)); 5021 return (offset); 5022 } 5023 5024 static uint64_t 5025 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5026 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5027 int allocator, boolean_t try_hard) 5028 { 5029 uint64_t offset; 5030 ASSERT(mg->mg_initialized); 5031 5032 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5033 dva, d, allocator, try_hard); 5034 5035 mutex_enter(&mg->mg_lock); 5036 if (offset == -1ULL) { 5037 mg->mg_failed_allocations++; 5038 metaslab_trace_add(zal, mg, NULL, asize, d, 5039 TRACE_GROUP_FAILURE, allocator); 5040 if (asize == SPA_GANGBLOCKSIZE) { 5041 /* 5042 * This metaslab group was unable to allocate 5043 * the minimum gang block size so it must be out of 5044 * space. We must notify the allocation throttle 5045 * to start skipping allocation attempts to this 5046 * metaslab group until more space becomes available. 5047 * Note: this failure cannot be caused by the 5048 * allocation throttle since the allocation throttle 5049 * is only responsible for skipping devices and 5050 * not failing block allocations. 5051 */ 5052 mg->mg_no_free_space = B_TRUE; 5053 } 5054 } 5055 mg->mg_allocations++; 5056 mutex_exit(&mg->mg_lock); 5057 return (offset); 5058 } 5059 5060 /* 5061 * Allocate a block for the specified i/o. 5062 */ 5063 int 5064 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5065 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5066 zio_alloc_list_t *zal, int allocator) 5067 { 5068 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5069 metaslab_group_t *mg, *fast_mg, *rotor; 5070 vdev_t *vd; 5071 boolean_t try_hard = B_FALSE; 5072 5073 ASSERT(!DVA_IS_VALID(&dva[d])); 5074 5075 /* 5076 * For testing, make some blocks above a certain size be gang blocks. 5077 * This will result in more split blocks when using device removal, 5078 * and a large number of split blocks coupled with ztest-induced 5079 * damage can result in extremely long reconstruction times. This 5080 * will also test spilling from special to normal. 5081 */ 5082 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) { 5083 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5084 allocator); 5085 return (SET_ERROR(ENOSPC)); 5086 } 5087 5088 /* 5089 * Start at the rotor and loop through all mgs until we find something. 5090 * Note that there's no locking on mca_rotor or mca_aliquot because 5091 * nothing actually breaks if we miss a few updates -- we just won't 5092 * allocate quite as evenly. It all balances out over time. 5093 * 5094 * If we are doing ditto or log blocks, try to spread them across 5095 * consecutive vdevs. If we're forced to reuse a vdev before we've 5096 * allocated all of our ditto blocks, then try and spread them out on 5097 * that vdev as much as possible. If it turns out to not be possible, 5098 * gradually lower our standards until anything becomes acceptable. 5099 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5100 * gives us hope of containing our fault domains to something we're 5101 * able to reason about. Otherwise, any two top-level vdev failures 5102 * will guarantee the loss of data. With consecutive allocation, 5103 * only two adjacent top-level vdev failures will result in data loss. 5104 * 5105 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5106 * ourselves on the same vdev as our gang block header. That 5107 * way, we can hope for locality in vdev_cache, plus it makes our 5108 * fault domains something tractable. 5109 */ 5110 if (hintdva) { 5111 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5112 5113 /* 5114 * It's possible the vdev we're using as the hint no 5115 * longer exists or its mg has been closed (e.g. by 5116 * device removal). Consult the rotor when 5117 * all else fails. 5118 */ 5119 if (vd != NULL && vd->vdev_mg != NULL) { 5120 mg = vdev_get_mg(vd, mc); 5121 5122 if (flags & METASLAB_HINTBP_AVOID && 5123 mg->mg_next != NULL) 5124 mg = mg->mg_next; 5125 } else { 5126 mg = mca->mca_rotor; 5127 } 5128 } else if (d != 0) { 5129 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5130 mg = vd->vdev_mg->mg_next; 5131 } else if (flags & METASLAB_FASTWRITE) { 5132 mg = fast_mg = mca->mca_rotor; 5133 5134 do { 5135 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5136 mg->mg_vd->vdev_pending_fastwrite) 5137 mg = fast_mg; 5138 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5139 5140 } else { 5141 ASSERT(mca->mca_rotor != NULL); 5142 mg = mca->mca_rotor; 5143 } 5144 5145 /* 5146 * If the hint put us into the wrong metaslab class, or into a 5147 * metaslab group that has been passivated, just follow the rotor. 5148 */ 5149 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5150 mg = mca->mca_rotor; 5151 5152 rotor = mg; 5153 top: 5154 do { 5155 boolean_t allocatable; 5156 5157 ASSERT(mg->mg_activation_count == 1); 5158 vd = mg->mg_vd; 5159 5160 /* 5161 * Don't allocate from faulted devices. 5162 */ 5163 if (try_hard) { 5164 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5165 allocatable = vdev_allocatable(vd); 5166 spa_config_exit(spa, SCL_ZIO, FTAG); 5167 } else { 5168 allocatable = vdev_allocatable(vd); 5169 } 5170 5171 /* 5172 * Determine if the selected metaslab group is eligible 5173 * for allocations. If we're ganging then don't allow 5174 * this metaslab group to skip allocations since that would 5175 * inadvertently return ENOSPC and suspend the pool 5176 * even though space is still available. 5177 */ 5178 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5179 allocatable = metaslab_group_allocatable(mg, rotor, 5180 psize, allocator, d); 5181 } 5182 5183 if (!allocatable) { 5184 metaslab_trace_add(zal, mg, NULL, psize, d, 5185 TRACE_NOT_ALLOCATABLE, allocator); 5186 goto next; 5187 } 5188 5189 ASSERT(mg->mg_initialized); 5190 5191 /* 5192 * Avoid writing single-copy data to a failing, 5193 * non-redundant vdev, unless we've already tried all 5194 * other vdevs. 5195 */ 5196 if ((vd->vdev_stat.vs_write_errors > 0 || 5197 vd->vdev_state < VDEV_STATE_HEALTHY) && 5198 d == 0 && !try_hard && vd->vdev_children == 0) { 5199 metaslab_trace_add(zal, mg, NULL, psize, d, 5200 TRACE_VDEV_ERROR, allocator); 5201 goto next; 5202 } 5203 5204 ASSERT(mg->mg_class == mc); 5205 5206 uint64_t asize = vdev_psize_to_asize(vd, psize); 5207 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5208 5209 /* 5210 * If we don't need to try hard, then require that the 5211 * block be on a different metaslab from any other DVAs 5212 * in this BP (unique=true). If we are trying hard, then 5213 * allow any metaslab to be used (unique=false). 5214 */ 5215 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5216 !try_hard, dva, d, allocator, try_hard); 5217 5218 if (offset != -1ULL) { 5219 /* 5220 * If we've just selected this metaslab group, 5221 * figure out whether the corresponding vdev is 5222 * over- or under-used relative to the pool, 5223 * and set an allocation bias to even it out. 5224 * 5225 * Bias is also used to compensate for unequally 5226 * sized vdevs so that space is allocated fairly. 5227 */ 5228 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5229 vdev_stat_t *vs = &vd->vdev_stat; 5230 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5231 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5232 int64_t ratio; 5233 5234 /* 5235 * Calculate how much more or less we should 5236 * try to allocate from this device during 5237 * this iteration around the rotor. 5238 * 5239 * This basically introduces a zero-centered 5240 * bias towards the devices with the most 5241 * free space, while compensating for vdev 5242 * size differences. 5243 * 5244 * Examples: 5245 * vdev V1 = 16M/128M 5246 * vdev V2 = 16M/128M 5247 * ratio(V1) = 100% ratio(V2) = 100% 5248 * 5249 * vdev V1 = 16M/128M 5250 * vdev V2 = 64M/128M 5251 * ratio(V1) = 127% ratio(V2) = 72% 5252 * 5253 * vdev V1 = 16M/128M 5254 * vdev V2 = 64M/512M 5255 * ratio(V1) = 40% ratio(V2) = 160% 5256 */ 5257 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5258 (mc_free + 1); 5259 mg->mg_bias = ((ratio - 100) * 5260 (int64_t)mg->mg_aliquot) / 100; 5261 } else if (!metaslab_bias_enabled) { 5262 mg->mg_bias = 0; 5263 } 5264 5265 if ((flags & METASLAB_FASTWRITE) || 5266 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5267 mg->mg_aliquot + mg->mg_bias) { 5268 mca->mca_rotor = mg->mg_next; 5269 mca->mca_aliquot = 0; 5270 } 5271 5272 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5273 DVA_SET_OFFSET(&dva[d], offset); 5274 DVA_SET_GANG(&dva[d], 5275 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5276 DVA_SET_ASIZE(&dva[d], asize); 5277 5278 if (flags & METASLAB_FASTWRITE) { 5279 atomic_add_64(&vd->vdev_pending_fastwrite, 5280 psize); 5281 } 5282 5283 return (0); 5284 } 5285 next: 5286 mca->mca_rotor = mg->mg_next; 5287 mca->mca_aliquot = 0; 5288 } while ((mg = mg->mg_next) != rotor); 5289 5290 /* 5291 * If we haven't tried hard, perhaps do so now. 5292 */ 5293 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5294 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5295 psize <= 1 << spa->spa_min_ashift)) { 5296 METASLABSTAT_BUMP(metaslabstat_try_hard); 5297 try_hard = B_TRUE; 5298 goto top; 5299 } 5300 5301 bzero(&dva[d], sizeof (dva_t)); 5302 5303 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5304 return (SET_ERROR(ENOSPC)); 5305 } 5306 5307 void 5308 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5309 boolean_t checkpoint) 5310 { 5311 metaslab_t *msp; 5312 spa_t *spa = vd->vdev_spa; 5313 5314 ASSERT(vdev_is_concrete(vd)); 5315 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5316 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5317 5318 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5319 5320 VERIFY(!msp->ms_condensing); 5321 VERIFY3U(offset, >=, msp->ms_start); 5322 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5323 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5324 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5325 5326 metaslab_check_free_impl(vd, offset, asize); 5327 5328 mutex_enter(&msp->ms_lock); 5329 if (range_tree_is_empty(msp->ms_freeing) && 5330 range_tree_is_empty(msp->ms_checkpointing)) { 5331 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5332 } 5333 5334 if (checkpoint) { 5335 ASSERT(spa_has_checkpoint(spa)); 5336 range_tree_add(msp->ms_checkpointing, offset, asize); 5337 } else { 5338 range_tree_add(msp->ms_freeing, offset, asize); 5339 } 5340 mutex_exit(&msp->ms_lock); 5341 } 5342 5343 /* ARGSUSED */ 5344 void 5345 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5346 uint64_t size, void *arg) 5347 { 5348 boolean_t *checkpoint = arg; 5349 5350 ASSERT3P(checkpoint, !=, NULL); 5351 5352 if (vd->vdev_ops->vdev_op_remap != NULL) 5353 vdev_indirect_mark_obsolete(vd, offset, size); 5354 else 5355 metaslab_free_impl(vd, offset, size, *checkpoint); 5356 } 5357 5358 static void 5359 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5360 boolean_t checkpoint) 5361 { 5362 spa_t *spa = vd->vdev_spa; 5363 5364 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5365 5366 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5367 return; 5368 5369 if (spa->spa_vdev_removal != NULL && 5370 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5371 vdev_is_concrete(vd)) { 5372 /* 5373 * Note: we check if the vdev is concrete because when 5374 * we complete the removal, we first change the vdev to be 5375 * an indirect vdev (in open context), and then (in syncing 5376 * context) clear spa_vdev_removal. 5377 */ 5378 free_from_removing_vdev(vd, offset, size); 5379 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5380 vdev_indirect_mark_obsolete(vd, offset, size); 5381 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5382 metaslab_free_impl_cb, &checkpoint); 5383 } else { 5384 metaslab_free_concrete(vd, offset, size, checkpoint); 5385 } 5386 } 5387 5388 typedef struct remap_blkptr_cb_arg { 5389 blkptr_t *rbca_bp; 5390 spa_remap_cb_t rbca_cb; 5391 vdev_t *rbca_remap_vd; 5392 uint64_t rbca_remap_offset; 5393 void *rbca_cb_arg; 5394 } remap_blkptr_cb_arg_t; 5395 5396 static void 5397 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5398 uint64_t size, void *arg) 5399 { 5400 remap_blkptr_cb_arg_t *rbca = arg; 5401 blkptr_t *bp = rbca->rbca_bp; 5402 5403 /* We can not remap split blocks. */ 5404 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5405 return; 5406 ASSERT0(inner_offset); 5407 5408 if (rbca->rbca_cb != NULL) { 5409 /* 5410 * At this point we know that we are not handling split 5411 * blocks and we invoke the callback on the previous 5412 * vdev which must be indirect. 5413 */ 5414 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5415 5416 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5417 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5418 5419 /* set up remap_blkptr_cb_arg for the next call */ 5420 rbca->rbca_remap_vd = vd; 5421 rbca->rbca_remap_offset = offset; 5422 } 5423 5424 /* 5425 * The phys birth time is that of dva[0]. This ensures that we know 5426 * when each dva was written, so that resilver can determine which 5427 * blocks need to be scrubbed (i.e. those written during the time 5428 * the vdev was offline). It also ensures that the key used in 5429 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5430 * we didn't change the phys_birth, a lookup in the ARC for a 5431 * remapped BP could find the data that was previously stored at 5432 * this vdev + offset. 5433 */ 5434 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5435 DVA_GET_VDEV(&bp->blk_dva[0])); 5436 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5437 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5438 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5439 5440 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5441 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5442 } 5443 5444 /* 5445 * If the block pointer contains any indirect DVAs, modify them to refer to 5446 * concrete DVAs. Note that this will sometimes not be possible, leaving 5447 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5448 * segments in the mapping (i.e. it is a "split block"). 5449 * 5450 * If the BP was remapped, calls the callback on the original dva (note the 5451 * callback can be called multiple times if the original indirect DVA refers 5452 * to another indirect DVA, etc). 5453 * 5454 * Returns TRUE if the BP was remapped. 5455 */ 5456 boolean_t 5457 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5458 { 5459 remap_blkptr_cb_arg_t rbca; 5460 5461 if (!zfs_remap_blkptr_enable) 5462 return (B_FALSE); 5463 5464 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5465 return (B_FALSE); 5466 5467 /* 5468 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5469 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5470 */ 5471 if (BP_GET_DEDUP(bp)) 5472 return (B_FALSE); 5473 5474 /* 5475 * Gang blocks can not be remapped, because 5476 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5477 * the BP used to read the gang block header (GBH) being the same 5478 * as the DVA[0] that we allocated for the GBH. 5479 */ 5480 if (BP_IS_GANG(bp)) 5481 return (B_FALSE); 5482 5483 /* 5484 * Embedded BP's have no DVA to remap. 5485 */ 5486 if (BP_GET_NDVAS(bp) < 1) 5487 return (B_FALSE); 5488 5489 /* 5490 * Note: we only remap dva[0]. If we remapped other dvas, we 5491 * would no longer know what their phys birth txg is. 5492 */ 5493 dva_t *dva = &bp->blk_dva[0]; 5494 5495 uint64_t offset = DVA_GET_OFFSET(dva); 5496 uint64_t size = DVA_GET_ASIZE(dva); 5497 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5498 5499 if (vd->vdev_ops->vdev_op_remap == NULL) 5500 return (B_FALSE); 5501 5502 rbca.rbca_bp = bp; 5503 rbca.rbca_cb = callback; 5504 rbca.rbca_remap_vd = vd; 5505 rbca.rbca_remap_offset = offset; 5506 rbca.rbca_cb_arg = arg; 5507 5508 /* 5509 * remap_blkptr_cb() will be called in order for each level of 5510 * indirection, until a concrete vdev is reached or a split block is 5511 * encountered. old_vd and old_offset are updated within the callback 5512 * as we go from the one indirect vdev to the next one (either concrete 5513 * or indirect again) in that order. 5514 */ 5515 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5516 5517 /* Check if the DVA wasn't remapped because it is a split block */ 5518 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5519 return (B_FALSE); 5520 5521 return (B_TRUE); 5522 } 5523 5524 /* 5525 * Undo the allocation of a DVA which happened in the given transaction group. 5526 */ 5527 void 5528 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5529 { 5530 metaslab_t *msp; 5531 vdev_t *vd; 5532 uint64_t vdev = DVA_GET_VDEV(dva); 5533 uint64_t offset = DVA_GET_OFFSET(dva); 5534 uint64_t size = DVA_GET_ASIZE(dva); 5535 5536 ASSERT(DVA_IS_VALID(dva)); 5537 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5538 5539 if (txg > spa_freeze_txg(spa)) 5540 return; 5541 5542 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5543 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5544 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5545 (u_longlong_t)vdev, (u_longlong_t)offset, 5546 (u_longlong_t)size); 5547 return; 5548 } 5549 5550 ASSERT(!vd->vdev_removing); 5551 ASSERT(vdev_is_concrete(vd)); 5552 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5553 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5554 5555 if (DVA_GET_GANG(dva)) 5556 size = vdev_gang_header_asize(vd); 5557 5558 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5559 5560 mutex_enter(&msp->ms_lock); 5561 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5562 offset, size); 5563 msp->ms_allocating_total -= size; 5564 5565 VERIFY(!msp->ms_condensing); 5566 VERIFY3U(offset, >=, msp->ms_start); 5567 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5568 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5569 msp->ms_size); 5570 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5571 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5572 range_tree_add(msp->ms_allocatable, offset, size); 5573 mutex_exit(&msp->ms_lock); 5574 } 5575 5576 /* 5577 * Free the block represented by the given DVA. 5578 */ 5579 void 5580 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5581 { 5582 uint64_t vdev = DVA_GET_VDEV(dva); 5583 uint64_t offset = DVA_GET_OFFSET(dva); 5584 uint64_t size = DVA_GET_ASIZE(dva); 5585 vdev_t *vd = vdev_lookup_top(spa, vdev); 5586 5587 ASSERT(DVA_IS_VALID(dva)); 5588 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5589 5590 if (DVA_GET_GANG(dva)) { 5591 size = vdev_gang_header_asize(vd); 5592 } 5593 5594 metaslab_free_impl(vd, offset, size, checkpoint); 5595 } 5596 5597 /* 5598 * Reserve some allocation slots. The reservation system must be called 5599 * before we call into the allocator. If there aren't any available slots 5600 * then the I/O will be throttled until an I/O completes and its slots are 5601 * freed up. The function returns true if it was successful in placing 5602 * the reservation. 5603 */ 5604 boolean_t 5605 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5606 zio_t *zio, int flags) 5607 { 5608 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5609 uint64_t available_slots = 0; 5610 boolean_t slot_reserved = B_FALSE; 5611 uint64_t max = mca->mca_alloc_max_slots; 5612 5613 ASSERT(mc->mc_alloc_throttle_enabled); 5614 mutex_enter(&mc->mc_lock); 5615 5616 uint64_t reserved_slots = zfs_refcount_count(&mca->mca_alloc_slots); 5617 if (reserved_slots < max) 5618 available_slots = max - reserved_slots; 5619 5620 if (slots <= available_slots || GANG_ALLOCATION(flags) || 5621 flags & METASLAB_MUST_RESERVE) { 5622 /* 5623 * We reserve the slots individually so that we can unreserve 5624 * them individually when an I/O completes. 5625 */ 5626 for (int d = 0; d < slots; d++) 5627 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5628 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5629 slot_reserved = B_TRUE; 5630 } 5631 5632 mutex_exit(&mc->mc_lock); 5633 return (slot_reserved); 5634 } 5635 5636 void 5637 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5638 int allocator, zio_t *zio) 5639 { 5640 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5641 5642 ASSERT(mc->mc_alloc_throttle_enabled); 5643 mutex_enter(&mc->mc_lock); 5644 for (int d = 0; d < slots; d++) 5645 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5646 mutex_exit(&mc->mc_lock); 5647 } 5648 5649 static int 5650 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5651 uint64_t txg) 5652 { 5653 metaslab_t *msp; 5654 spa_t *spa = vd->vdev_spa; 5655 int error = 0; 5656 5657 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5658 return (SET_ERROR(ENXIO)); 5659 5660 ASSERT3P(vd->vdev_ms, !=, NULL); 5661 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5662 5663 mutex_enter(&msp->ms_lock); 5664 5665 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5666 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5667 if (error == EBUSY) { 5668 ASSERT(msp->ms_loaded); 5669 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5670 error = 0; 5671 } 5672 } 5673 5674 if (error == 0 && 5675 !range_tree_contains(msp->ms_allocatable, offset, size)) 5676 error = SET_ERROR(ENOENT); 5677 5678 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5679 mutex_exit(&msp->ms_lock); 5680 return (error); 5681 } 5682 5683 VERIFY(!msp->ms_condensing); 5684 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5685 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5686 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5687 msp->ms_size); 5688 range_tree_remove(msp->ms_allocatable, offset, size); 5689 range_tree_clear(msp->ms_trim, offset, size); 5690 5691 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5692 metaslab_class_t *mc = msp->ms_group->mg_class; 5693 multilist_sublist_t *mls = 5694 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5695 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5696 msp->ms_selected_txg = txg; 5697 multilist_sublist_insert_head(mls, msp); 5698 } 5699 multilist_sublist_unlock(mls); 5700 5701 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5702 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5703 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5704 offset, size); 5705 msp->ms_allocating_total += size; 5706 } 5707 5708 mutex_exit(&msp->ms_lock); 5709 5710 return (0); 5711 } 5712 5713 typedef struct metaslab_claim_cb_arg_t { 5714 uint64_t mcca_txg; 5715 int mcca_error; 5716 } metaslab_claim_cb_arg_t; 5717 5718 /* ARGSUSED */ 5719 static void 5720 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5721 uint64_t size, void *arg) 5722 { 5723 metaslab_claim_cb_arg_t *mcca_arg = arg; 5724 5725 if (mcca_arg->mcca_error == 0) { 5726 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5727 size, mcca_arg->mcca_txg); 5728 } 5729 } 5730 5731 int 5732 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5733 { 5734 if (vd->vdev_ops->vdev_op_remap != NULL) { 5735 metaslab_claim_cb_arg_t arg; 5736 5737 /* 5738 * Only zdb(8) can claim on indirect vdevs. This is used 5739 * to detect leaks of mapped space (that are not accounted 5740 * for in the obsolete counts, spacemap, or bpobj). 5741 */ 5742 ASSERT(!spa_writeable(vd->vdev_spa)); 5743 arg.mcca_error = 0; 5744 arg.mcca_txg = txg; 5745 5746 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5747 metaslab_claim_impl_cb, &arg); 5748 5749 if (arg.mcca_error == 0) { 5750 arg.mcca_error = metaslab_claim_concrete(vd, 5751 offset, size, txg); 5752 } 5753 return (arg.mcca_error); 5754 } else { 5755 return (metaslab_claim_concrete(vd, offset, size, txg)); 5756 } 5757 } 5758 5759 /* 5760 * Intent log support: upon opening the pool after a crash, notify the SPA 5761 * of blocks that the intent log has allocated for immediate write, but 5762 * which are still considered free by the SPA because the last transaction 5763 * group didn't commit yet. 5764 */ 5765 static int 5766 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5767 { 5768 uint64_t vdev = DVA_GET_VDEV(dva); 5769 uint64_t offset = DVA_GET_OFFSET(dva); 5770 uint64_t size = DVA_GET_ASIZE(dva); 5771 vdev_t *vd; 5772 5773 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5774 return (SET_ERROR(ENXIO)); 5775 } 5776 5777 ASSERT(DVA_IS_VALID(dva)); 5778 5779 if (DVA_GET_GANG(dva)) 5780 size = vdev_gang_header_asize(vd); 5781 5782 return (metaslab_claim_impl(vd, offset, size, txg)); 5783 } 5784 5785 int 5786 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5787 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5788 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5789 { 5790 dva_t *dva = bp->blk_dva; 5791 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5792 int error = 0; 5793 5794 ASSERT(bp->blk_birth == 0); 5795 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5796 5797 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5798 5799 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5800 /* no vdevs in this class */ 5801 spa_config_exit(spa, SCL_ALLOC, FTAG); 5802 return (SET_ERROR(ENOSPC)); 5803 } 5804 5805 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5806 ASSERT(BP_GET_NDVAS(bp) == 0); 5807 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5808 ASSERT3P(zal, !=, NULL); 5809 5810 for (int d = 0; d < ndvas; d++) { 5811 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5812 txg, flags, zal, allocator); 5813 if (error != 0) { 5814 for (d--; d >= 0; d--) { 5815 metaslab_unalloc_dva(spa, &dva[d], txg); 5816 metaslab_group_alloc_decrement(spa, 5817 DVA_GET_VDEV(&dva[d]), zio, flags, 5818 allocator, B_FALSE); 5819 bzero(&dva[d], sizeof (dva_t)); 5820 } 5821 spa_config_exit(spa, SCL_ALLOC, FTAG); 5822 return (error); 5823 } else { 5824 /* 5825 * Update the metaslab group's queue depth 5826 * based on the newly allocated dva. 5827 */ 5828 metaslab_group_alloc_increment(spa, 5829 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5830 } 5831 } 5832 ASSERT(error == 0); 5833 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5834 5835 spa_config_exit(spa, SCL_ALLOC, FTAG); 5836 5837 BP_SET_BIRTH(bp, txg, 0); 5838 5839 return (0); 5840 } 5841 5842 void 5843 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5844 { 5845 const dva_t *dva = bp->blk_dva; 5846 int ndvas = BP_GET_NDVAS(bp); 5847 5848 ASSERT(!BP_IS_HOLE(bp)); 5849 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5850 5851 /* 5852 * If we have a checkpoint for the pool we need to make sure that 5853 * the blocks that we free that are part of the checkpoint won't be 5854 * reused until the checkpoint is discarded or we revert to it. 5855 * 5856 * The checkpoint flag is passed down the metaslab_free code path 5857 * and is set whenever we want to add a block to the checkpoint's 5858 * accounting. That is, we "checkpoint" blocks that existed at the 5859 * time the checkpoint was created and are therefore referenced by 5860 * the checkpointed uberblock. 5861 * 5862 * Note that, we don't checkpoint any blocks if the current 5863 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5864 * normally as they will be referenced by the checkpointed uberblock. 5865 */ 5866 boolean_t checkpoint = B_FALSE; 5867 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5868 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5869 /* 5870 * At this point, if the block is part of the checkpoint 5871 * there is no way it was created in the current txg. 5872 */ 5873 ASSERT(!now); 5874 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5875 checkpoint = B_TRUE; 5876 } 5877 5878 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5879 5880 for (int d = 0; d < ndvas; d++) { 5881 if (now) { 5882 metaslab_unalloc_dva(spa, &dva[d], txg); 5883 } else { 5884 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5885 metaslab_free_dva(spa, &dva[d], checkpoint); 5886 } 5887 } 5888 5889 spa_config_exit(spa, SCL_FREE, FTAG); 5890 } 5891 5892 int 5893 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5894 { 5895 const dva_t *dva = bp->blk_dva; 5896 int ndvas = BP_GET_NDVAS(bp); 5897 int error = 0; 5898 5899 ASSERT(!BP_IS_HOLE(bp)); 5900 5901 if (txg != 0) { 5902 /* 5903 * First do a dry run to make sure all DVAs are claimable, 5904 * so we don't have to unwind from partial failures below. 5905 */ 5906 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5907 return (error); 5908 } 5909 5910 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5911 5912 for (int d = 0; d < ndvas; d++) { 5913 error = metaslab_claim_dva(spa, &dva[d], txg); 5914 if (error != 0) 5915 break; 5916 } 5917 5918 spa_config_exit(spa, SCL_ALLOC, FTAG); 5919 5920 ASSERT(error == 0 || txg == 0); 5921 5922 return (error); 5923 } 5924 5925 void 5926 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5927 { 5928 const dva_t *dva = bp->blk_dva; 5929 int ndvas = BP_GET_NDVAS(bp); 5930 uint64_t psize = BP_GET_PSIZE(bp); 5931 int d; 5932 vdev_t *vd; 5933 5934 ASSERT(!BP_IS_HOLE(bp)); 5935 ASSERT(!BP_IS_EMBEDDED(bp)); 5936 ASSERT(psize > 0); 5937 5938 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5939 5940 for (d = 0; d < ndvas; d++) { 5941 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5942 continue; 5943 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5944 } 5945 5946 spa_config_exit(spa, SCL_VDEV, FTAG); 5947 } 5948 5949 void 5950 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5951 { 5952 const dva_t *dva = bp->blk_dva; 5953 int ndvas = BP_GET_NDVAS(bp); 5954 uint64_t psize = BP_GET_PSIZE(bp); 5955 int d; 5956 vdev_t *vd; 5957 5958 ASSERT(!BP_IS_HOLE(bp)); 5959 ASSERT(!BP_IS_EMBEDDED(bp)); 5960 ASSERT(psize > 0); 5961 5962 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5963 5964 for (d = 0; d < ndvas; d++) { 5965 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5966 continue; 5967 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5968 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5969 } 5970 5971 spa_config_exit(spa, SCL_VDEV, FTAG); 5972 } 5973 5974 /* ARGSUSED */ 5975 static void 5976 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5977 uint64_t size, void *arg) 5978 { 5979 if (vd->vdev_ops == &vdev_indirect_ops) 5980 return; 5981 5982 metaslab_check_free_impl(vd, offset, size); 5983 } 5984 5985 static void 5986 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5987 { 5988 metaslab_t *msp; 5989 spa_t *spa __maybe_unused = vd->vdev_spa; 5990 5991 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5992 return; 5993 5994 if (vd->vdev_ops->vdev_op_remap != NULL) { 5995 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5996 metaslab_check_free_impl_cb, NULL); 5997 return; 5998 } 5999 6000 ASSERT(vdev_is_concrete(vd)); 6001 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6002 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6003 6004 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6005 6006 mutex_enter(&msp->ms_lock); 6007 if (msp->ms_loaded) { 6008 range_tree_verify_not_present(msp->ms_allocatable, 6009 offset, size); 6010 } 6011 6012 /* 6013 * Check all segments that currently exist in the freeing pipeline. 6014 * 6015 * It would intuitively make sense to also check the current allocating 6016 * tree since metaslab_unalloc_dva() exists for extents that are 6017 * allocated and freed in the same sync pass within the same txg. 6018 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6019 * segment but then we free part of it within the same txg 6020 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6021 * current allocating tree. 6022 */ 6023 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6024 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6025 range_tree_verify_not_present(msp->ms_freed, offset, size); 6026 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6027 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6028 range_tree_verify_not_present(msp->ms_trim, offset, size); 6029 mutex_exit(&msp->ms_lock); 6030 } 6031 6032 void 6033 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6034 { 6035 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6036 return; 6037 6038 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6039 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6040 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6041 vdev_t *vd = vdev_lookup_top(spa, vdev); 6042 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6043 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6044 6045 if (DVA_GET_GANG(&bp->blk_dva[i])) 6046 size = vdev_gang_header_asize(vd); 6047 6048 ASSERT3P(vd, !=, NULL); 6049 6050 metaslab_check_free_impl(vd, offset, size); 6051 } 6052 spa_config_exit(spa, SCL_VDEV, FTAG); 6053 } 6054 6055 static void 6056 metaslab_group_disable_wait(metaslab_group_t *mg) 6057 { 6058 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6059 while (mg->mg_disabled_updating) { 6060 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6061 } 6062 } 6063 6064 static void 6065 metaslab_group_disabled_increment(metaslab_group_t *mg) 6066 { 6067 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6068 ASSERT(mg->mg_disabled_updating); 6069 6070 while (mg->mg_ms_disabled >= max_disabled_ms) { 6071 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6072 } 6073 mg->mg_ms_disabled++; 6074 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6075 } 6076 6077 /* 6078 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6079 * We must also track how many metaslabs are currently disabled within a 6080 * metaslab group and limit them to prevent allocation failures from 6081 * occurring because all metaslabs are disabled. 6082 */ 6083 void 6084 metaslab_disable(metaslab_t *msp) 6085 { 6086 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6087 metaslab_group_t *mg = msp->ms_group; 6088 6089 mutex_enter(&mg->mg_ms_disabled_lock); 6090 6091 /* 6092 * To keep an accurate count of how many threads have disabled 6093 * a specific metaslab group, we only allow one thread to mark 6094 * the metaslab group at a time. This ensures that the value of 6095 * ms_disabled will be accurate when we decide to mark a metaslab 6096 * group as disabled. To do this we force all other threads 6097 * to wait till the metaslab's mg_disabled_updating flag is no 6098 * longer set. 6099 */ 6100 metaslab_group_disable_wait(mg); 6101 mg->mg_disabled_updating = B_TRUE; 6102 if (msp->ms_disabled == 0) { 6103 metaslab_group_disabled_increment(mg); 6104 } 6105 mutex_enter(&msp->ms_lock); 6106 msp->ms_disabled++; 6107 mutex_exit(&msp->ms_lock); 6108 6109 mg->mg_disabled_updating = B_FALSE; 6110 cv_broadcast(&mg->mg_ms_disabled_cv); 6111 mutex_exit(&mg->mg_ms_disabled_lock); 6112 } 6113 6114 void 6115 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6116 { 6117 metaslab_group_t *mg = msp->ms_group; 6118 spa_t *spa = mg->mg_vd->vdev_spa; 6119 6120 /* 6121 * Wait for the outstanding IO to be synced to prevent newly 6122 * allocated blocks from being overwritten. This used by 6123 * initialize and TRIM which are modifying unallocated space. 6124 */ 6125 if (sync) 6126 txg_wait_synced(spa_get_dsl(spa), 0); 6127 6128 mutex_enter(&mg->mg_ms_disabled_lock); 6129 mutex_enter(&msp->ms_lock); 6130 if (--msp->ms_disabled == 0) { 6131 mg->mg_ms_disabled--; 6132 cv_broadcast(&mg->mg_ms_disabled_cv); 6133 if (unload) 6134 metaslab_unload(msp); 6135 } 6136 mutex_exit(&msp->ms_lock); 6137 mutex_exit(&mg->mg_ms_disabled_lock); 6138 } 6139 6140 static void 6141 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6142 { 6143 vdev_t *vd = ms->ms_group->mg_vd; 6144 spa_t *spa = vd->vdev_spa; 6145 objset_t *mos = spa_meta_objset(spa); 6146 6147 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6148 6149 metaslab_unflushed_phys_t entry = { 6150 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6151 }; 6152 uint64_t entry_size = sizeof (entry); 6153 uint64_t entry_offset = ms->ms_id * entry_size; 6154 6155 uint64_t object = 0; 6156 int err = zap_lookup(mos, vd->vdev_top_zap, 6157 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6158 &object); 6159 if (err == ENOENT) { 6160 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6161 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6162 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6163 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6164 &object, tx)); 6165 } else { 6166 VERIFY0(err); 6167 } 6168 6169 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6170 &entry, tx); 6171 } 6172 6173 void 6174 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6175 { 6176 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6177 6178 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6179 return; 6180 6181 ms->ms_unflushed_txg = txg; 6182 metaslab_update_ondisk_flush_data(ms, tx); 6183 } 6184 6185 uint64_t 6186 metaslab_unflushed_txg(metaslab_t *ms) 6187 { 6188 return (ms->ms_unflushed_txg); 6189 } 6190 6191 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6192 "Allocation granularity (a.k.a. stripe size)"); 6193 6194 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6195 "Load all metaslabs when pool is first opened"); 6196 6197 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6198 "Prevent metaslabs from being unloaded"); 6199 6200 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6201 "Preload potential metaslabs during reassessment"); 6202 6203 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6204 "Delay in txgs after metaslab was last used before unloading"); 6205 6206 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6207 "Delay in milliseconds after metaslab was last used before unloading"); 6208 6209 /* BEGIN CSTYLED */ 6210 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6211 "Percentage of metaslab group size that should be free to make it " 6212 "eligible for allocation"); 6213 6214 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6215 "Percentage of metaslab group size that should be considered eligible " 6216 "for allocations unless all metaslab groups within the metaslab class " 6217 "have also crossed this threshold"); 6218 6219 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6220 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6221 6222 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6223 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6224 /* END CSTYLED */ 6225 6226 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6227 "Prefer metaslabs with lower LBAs"); 6228 6229 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6230 "Enable metaslab group biasing"); 6231 6232 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6233 ZMOD_RW, "Enable segment-based metaslab selection"); 6234 6235 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6236 "Segment-based metaslab selection maximum buckets before switching"); 6237 6238 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6239 "Blocks larger than this size are forced to be gang blocks"); 6240 6241 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6242 "Max distance (bytes) to search forward before using size tree"); 6243 6244 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6245 "When looking in size tree, use largest segment instead of exact fit"); 6246 6247 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6248 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6249 6250 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6251 "Percentage of memory that can be used to store metaslab range trees"); 6252 6253 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6254 ZMOD_RW, "Try hard to allocate before ganging"); 6255 6256 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6257 "Normally only consider this many of the best metaslabs in each vdev"); 6258