xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	WITH_DF_BLOCK_ALLOCATOR
44 
45 #define	GANG_ALLOCATION(flags) \
46 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 
48 /*
49  * Metaslab granularity, in bytes. This is roughly similar to what would be
50  * referred to as the "stripe size" in traditional RAID arrays. In normal
51  * operation, we will try to write this amount of data to a top-level vdev
52  * before moving on to the next one.
53  */
54 unsigned long metaslab_aliquot = 512 << 10;
55 
56 /*
57  * For testing, make some blocks above a certain size be gang blocks.
58  */
59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 
61 /*
62  * In pools where the log space map feature is not enabled we touch
63  * multiple metaslabs (and their respective space maps) with each
64  * transaction group. Thus, we benefit from having a small space map
65  * block size since it allows us to issue more I/O operations scattered
66  * around the disk. So a sane default for the space map block size
67  * is 8~16K.
68  */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70 
71 /*
72  * When the log space map feature is enabled, we accumulate a lot of
73  * changes per metaslab that are flushed once in a while so we benefit
74  * from a bigger block size like 128K for the metaslab space maps.
75  */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77 
78 /*
79  * The in-core space map representation is more compact than its on-disk form.
80  * The zfs_condense_pct determines how much more compact the in-core
81  * space map representation must be before we compact it on-disk.
82  * Values should be greater than or equal to 100.
83  */
84 int zfs_condense_pct = 200;
85 
86 /*
87  * Condensing a metaslab is not guaranteed to actually reduce the amount of
88  * space used on disk. In particular, a space map uses data in increments of
89  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90  * same number of blocks after condensing. Since the goal of condensing is to
91  * reduce the number of IOPs required to read the space map, we only want to
92  * condense when we can be sure we will reduce the number of blocks used by the
93  * space map. Unfortunately, we cannot precisely compute whether or not this is
94  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95  * we apply the following heuristic: do not condense a spacemap unless the
96  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97  * blocks.
98  */
99 int zfs_metaslab_condense_block_threshold = 4;
100 
101 /*
102  * The zfs_mg_noalloc_threshold defines which metaslab groups should
103  * be eligible for allocation. The value is defined as a percentage of
104  * free space. Metaslab groups that have more free space than
105  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106  * a metaslab group's free space is less than or equal to the
107  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110  * groups are allowed to accept allocations. Gang blocks are always
111  * eligible to allocate on any metaslab group. The default value of 0 means
112  * no metaslab group will be excluded based on this criterion.
113  */
114 int zfs_mg_noalloc_threshold = 0;
115 
116 /*
117  * Metaslab groups are considered eligible for allocations if their
118  * fragmentation metric (measured as a percentage) is less than or
119  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120  * exceeds this threshold then it will be skipped unless all metaslab
121  * groups within the metaslab class have also crossed this threshold.
122  *
123  * This tunable was introduced to avoid edge cases where we continue
124  * allocating from very fragmented disks in our pool while other, less
125  * fragmented disks, exists. On the other hand, if all disks in the
126  * pool are uniformly approaching the threshold, the threshold can
127  * be a speed bump in performance, where we keep switching the disks
128  * that we allocate from (e.g. we allocate some segments from disk A
129  * making it bypassing the threshold while freeing segments from disk
130  * B getting its fragmentation below the threshold).
131  *
132  * Empirically, we've seen that our vdev selection for allocations is
133  * good enough that fragmentation increases uniformly across all vdevs
134  * the majority of the time. Thus we set the threshold percentage high
135  * enough to avoid hitting the speed bump on pools that are being pushed
136  * to the edge.
137  */
138 int zfs_mg_fragmentation_threshold = 95;
139 
140 /*
141  * Allow metaslabs to keep their active state as long as their fragmentation
142  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143  * active metaslab that exceeds this threshold will no longer keep its active
144  * status allowing better metaslabs to be selected.
145  */
146 int zfs_metaslab_fragmentation_threshold = 70;
147 
148 /*
149  * When set will load all metaslabs when pool is first opened.
150  */
151 int metaslab_debug_load = 0;
152 
153 /*
154  * When set will prevent metaslabs from being unloaded.
155  */
156 int metaslab_debug_unload = 0;
157 
158 /*
159  * Minimum size which forces the dynamic allocator to change
160  * it's allocation strategy.  Once the space map cannot satisfy
161  * an allocation of this size then it switches to using more
162  * aggressive strategy (i.e search by size rather than offset).
163  */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165 
166 /*
167  * The minimum free space, in percent, which must be available
168  * in a space map to continue allocations in a first-fit fashion.
169  * Once the space map's free space drops below this level we dynamically
170  * switch to using best-fit allocations.
171  */
172 int metaslab_df_free_pct = 4;
173 
174 /*
175  * Maximum distance to search forward from the last offset. Without this
176  * limit, fragmented pools can see >100,000 iterations and
177  * metaslab_block_picker() becomes the performance limiting factor on
178  * high-performance storage.
179  *
180  * With the default setting of 16MB, we typically see less than 500
181  * iterations, even with very fragmented, ashift=9 pools. The maximum number
182  * of iterations possible is:
183  *     metaslab_df_max_search / (2 * (1<<ashift))
184  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185  * 2048 (with ashift=12).
186  */
187 int metaslab_df_max_search = 16 * 1024 * 1024;
188 
189 /*
190  * Forces the metaslab_block_picker function to search for at least this many
191  * segments forwards until giving up on finding a segment that the allocation
192  * will fit into.
193  */
194 uint32_t metaslab_min_search_count = 100;
195 
196 /*
197  * If we are not searching forward (due to metaslab_df_max_search,
198  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199  * controls what segment is used.  If it is set, we will use the largest free
200  * segment.  If it is not set, we will use a segment of exactly the requested
201  * size (or larger).
202  */
203 int metaslab_df_use_largest_segment = B_FALSE;
204 
205 /*
206  * Percentage of all cpus that can be used by the metaslab taskq.
207  */
208 int metaslab_load_pct = 50;
209 
210 /*
211  * These tunables control how long a metaslab will remain loaded after the
212  * last allocation from it.  A metaslab can't be unloaded until at least
213  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215  * unloaded sooner.  These settings are intended to be generous -- to keep
216  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217  */
218 int metaslab_unload_delay = 32;
219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 
221 /*
222  * Max number of metaslabs per group to preload.
223  */
224 int metaslab_preload_limit = 10;
225 
226 /*
227  * Enable/disable preloading of metaslab.
228  */
229 int metaslab_preload_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable fragmentation weighting on metaslabs.
233  */
234 int metaslab_fragmentation_factor_enabled = B_TRUE;
235 
236 /*
237  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238  */
239 int metaslab_lba_weighting_enabled = B_TRUE;
240 
241 /*
242  * Enable/disable metaslab group biasing.
243  */
244 int metaslab_bias_enabled = B_TRUE;
245 
246 /*
247  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248  */
249 boolean_t zfs_remap_blkptr_enable = B_TRUE;
250 
251 /*
252  * Enable/disable segment-based metaslab selection.
253  */
254 int zfs_metaslab_segment_weight_enabled = B_TRUE;
255 
256 /*
257  * When using segment-based metaslab selection, we will continue
258  * allocating from the active metaslab until we have exhausted
259  * zfs_metaslab_switch_threshold of its buckets.
260  */
261 int zfs_metaslab_switch_threshold = 2;
262 
263 /*
264  * Internal switch to enable/disable the metaslab allocation tracing
265  * facility.
266  */
267 boolean_t metaslab_trace_enabled = B_FALSE;
268 
269 /*
270  * Maximum entries that the metaslab allocation tracing facility will keep
271  * in a given list when running in non-debug mode. We limit the number
272  * of entries in non-debug mode to prevent us from using up too much memory.
273  * The limit should be sufficiently large that we don't expect any allocation
274  * to every exceed this value. In debug mode, the system will panic if this
275  * limit is ever reached allowing for further investigation.
276  */
277 uint64_t metaslab_trace_max_entries = 5000;
278 
279 /*
280  * Maximum number of metaslabs per group that can be disabled
281  * simultaneously.
282  */
283 int max_disabled_ms = 3;
284 
285 /*
286  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287  * To avoid 64-bit overflow, don't set above UINT32_MAX.
288  */
289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
290 
291 /*
292  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293  * a metaslab would take it over this percentage, the oldest selected metaslab
294  * is automatically unloaded.
295  */
296 int zfs_metaslab_mem_limit = 25;
297 
298 /*
299  * Force the per-metaslab range trees to use 64-bit integers to store
300  * segments. Used for debugging purposes.
301  */
302 boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303 
304 /*
305  * By default we only store segments over a certain size in the size-sorted
306  * metaslab trees (ms_allocatable_by_size and
307  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308  * improves load and unload times at the cost of causing us to use slightly
309  * larger segments than we would otherwise in some cases.
310  */
311 uint32_t metaslab_by_size_min_shift = 14;
312 
313 /*
314  * If not set, we will first try normal allocation.  If that fails then
315  * we will do a gang allocation.  If that fails then we will do a "try hard"
316  * gang allocation.  If that fails then we will have a multi-layer gang
317  * block.
318  *
319  * If set, we will first try normal allocation.  If that fails then
320  * we will do a "try hard" allocation.  If that fails we will do a gang
321  * allocation.  If that fails we will do a "try hard" gang allocation.  If
322  * that fails then we will have a multi-layer gang block.
323  */
324 int zfs_metaslab_try_hard_before_gang = B_FALSE;
325 
326 /*
327  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328  * metaslabs.  This improves performance, especially when there are many
329  * metaslabs per vdev and the allocation can't actually be satisfied (so we
330  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
331  * worse weight but it can actually satisfy the allocation, we won't find it
332  * until trying hard.  This may happen if the worse metaslab is not loaded
333  * (and the true weight is better than we have calculated), or due to weight
334  * bucketization.  E.g. we are looking for a 60K segment, and the best
335  * metaslabs all have free segments in the 32-63K bucket, but the best
336  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338  * bucket, and therefore a lower weight).
339  */
340 int zfs_metaslab_find_max_tries = 100;
341 
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346 
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354 
355 typedef struct metaslab_stats {
356 	kstat_named_t metaslabstat_trace_over_limit;
357 	kstat_named_t metaslabstat_reload_tree;
358 	kstat_named_t metaslabstat_too_many_tries;
359 	kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361 
362 static metaslab_stats_t metaslab_stats = {
363 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
364 	{ "reload_tree",		KSTAT_DATA_UINT64 },
365 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
366 	{ "try_hard",			KSTAT_DATA_UINT64 },
367 };
368 
369 #define	METASLABSTAT_BUMP(stat) \
370 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
371 
372 
373 kstat_t *metaslab_ksp;
374 
375 void
376 metaslab_stat_init(void)
377 {
378 	ASSERT(metaslab_alloc_trace_cache == NULL);
379 	metaslab_alloc_trace_cache = kmem_cache_create(
380 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 	    0, NULL, NULL, NULL, NULL, NULL, 0);
382 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 	if (metaslab_ksp != NULL) {
386 		metaslab_ksp->ks_data = &metaslab_stats;
387 		kstat_install(metaslab_ksp);
388 	}
389 }
390 
391 void
392 metaslab_stat_fini(void)
393 {
394 	if (metaslab_ksp != NULL) {
395 		kstat_delete(metaslab_ksp);
396 		metaslab_ksp = NULL;
397 	}
398 
399 	kmem_cache_destroy(metaslab_alloc_trace_cache);
400 	metaslab_alloc_trace_cache = NULL;
401 }
402 
403 /*
404  * ==========================================================================
405  * Metaslab classes
406  * ==========================================================================
407  */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
410 {
411 	metaslab_class_t *mc;
412 
413 	mc = kmem_zalloc(offsetof(metaslab_class_t,
414 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415 
416 	mc->mc_spa = spa;
417 	mc->mc_ops = ops;
418 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 	for (int i = 0; i < spa->spa_alloc_count; i++) {
422 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 		mca->mca_rotor = NULL;
424 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 	}
426 
427 	return (mc);
428 }
429 
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 	spa_t *spa = mc->mc_spa;
434 
435 	ASSERT(mc->mc_alloc == 0);
436 	ASSERT(mc->mc_deferred == 0);
437 	ASSERT(mc->mc_space == 0);
438 	ASSERT(mc->mc_dspace == 0);
439 
440 	for (int i = 0; i < spa->spa_alloc_count; i++) {
441 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 		ASSERT(mca->mca_rotor == NULL);
443 		zfs_refcount_destroy(&mca->mca_alloc_slots);
444 	}
445 	mutex_destroy(&mc->mc_lock);
446 	multilist_destroy(&mc->mc_metaslab_txg_list);
447 	kmem_free(mc, offsetof(metaslab_class_t,
448 	    mc_allocator[spa->spa_alloc_count]));
449 }
450 
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 	metaslab_group_t *mg;
455 	vdev_t *vd;
456 
457 	/*
458 	 * Must hold one of the spa_config locks.
459 	 */
460 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462 
463 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 		return (0);
465 
466 	do {
467 		vd = mg->mg_vd;
468 		ASSERT(vd->vdev_mg != NULL);
469 		ASSERT3P(vd->vdev_top, ==, vd);
470 		ASSERT3P(mg->mg_class, ==, mc);
471 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473 
474 	return (0);
475 }
476 
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 	atomic_add_64(&mc->mc_alloc, alloc_delta);
482 	atomic_add_64(&mc->mc_deferred, defer_delta);
483 	atomic_add_64(&mc->mc_space, space_delta);
484 	atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486 
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 	return (mc->mc_alloc);
491 }
492 
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 	return (mc->mc_deferred);
497 }
498 
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 	return (mc->mc_space);
503 }
504 
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510 
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 	spa_t *spa = mc->mc_spa;
515 	vdev_t *rvd = spa->spa_root_vdev;
516 	uint64_t *mc_hist;
517 	int i;
518 
519 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 		return;
521 
522 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 	    KM_SLEEP);
524 
525 	mutex_enter(&mc->mc_lock);
526 	for (int c = 0; c < rvd->vdev_children; c++) {
527 		vdev_t *tvd = rvd->vdev_child[c];
528 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529 
530 		/*
531 		 * Skip any holes, uninitialized top-levels, or
532 		 * vdevs that are not in this metalab class.
533 		 */
534 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 		    mg->mg_class != mc) {
536 			continue;
537 		}
538 
539 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541 
542 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 			mc_hist[i] += mg->mg_histogram[i];
544 	}
545 
546 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 	}
549 
550 	mutex_exit(&mc->mc_lock);
551 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553 
554 /*
555  * Calculate the metaslab class's fragmentation metric. The metric
556  * is weighted based on the space contribution of each metaslab group.
557  * The return value will be a number between 0 and 100 (inclusive), or
558  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559  * zfs_frag_table for more information about the metric.
560  */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 	uint64_t fragmentation = 0;
566 
567 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568 
569 	for (int c = 0; c < rvd->vdev_children; c++) {
570 		vdev_t *tvd = rvd->vdev_child[c];
571 		metaslab_group_t *mg = tvd->vdev_mg;
572 
573 		/*
574 		 * Skip any holes, uninitialized top-levels,
575 		 * or vdevs that are not in this metalab class.
576 		 */
577 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 		    mg->mg_class != mc) {
579 			continue;
580 		}
581 
582 		/*
583 		 * If a metaslab group does not contain a fragmentation
584 		 * metric then just bail out.
585 		 */
586 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 			return (ZFS_FRAG_INVALID);
589 		}
590 
591 		/*
592 		 * Determine how much this metaslab_group is contributing
593 		 * to the overall pool fragmentation metric.
594 		 */
595 		fragmentation += mg->mg_fragmentation *
596 		    metaslab_group_get_space(mg);
597 	}
598 	fragmentation /= metaslab_class_get_space(mc);
599 
600 	ASSERT3U(fragmentation, <=, 100);
601 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 	return (fragmentation);
603 }
604 
605 /*
606  * Calculate the amount of expandable space that is available in
607  * this metaslab class. If a device is expanded then its expandable
608  * space will be the amount of allocatable space that is currently not
609  * part of this metaslab class.
610  */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 	uint64_t space = 0;
616 
617 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 	for (int c = 0; c < rvd->vdev_children; c++) {
619 		vdev_t *tvd = rvd->vdev_child[c];
620 		metaslab_group_t *mg = tvd->vdev_mg;
621 
622 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 		    mg->mg_class != mc) {
624 			continue;
625 		}
626 
627 		/*
628 		 * Calculate if we have enough space to add additional
629 		 * metaslabs. We report the expandable space in terms
630 		 * of the metaslab size since that's the unit of expansion.
631 		 */
632 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 		    1ULL << tvd->vdev_ms_shift);
634 	}
635 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 	return (space);
637 }
638 
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 	multilist_t *ml = &mc->mc_metaslab_txg_list;
643 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 		metaslab_t *msp = multilist_sublist_head(mls);
646 		multilist_sublist_unlock(mls);
647 		while (msp != NULL) {
648 			mutex_enter(&msp->ms_lock);
649 
650 			/*
651 			 * If the metaslab has been removed from the list
652 			 * (which could happen if we were at the memory limit
653 			 * and it was evicted during this loop), then we can't
654 			 * proceed and we should restart the sublist.
655 			 */
656 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 				mutex_exit(&msp->ms_lock);
658 				i--;
659 				break;
660 			}
661 			mls = multilist_sublist_lock(ml, i);
662 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 			multilist_sublist_unlock(mls);
664 			if (txg >
665 			    msp->ms_selected_txg + metaslab_unload_delay &&
666 			    gethrtime() > msp->ms_selected_time +
667 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 				metaslab_evict(msp, txg);
669 			} else {
670 				/*
671 				 * Once we've hit a metaslab selected too
672 				 * recently to evict, we're done evicting for
673 				 * now.
674 				 */
675 				mutex_exit(&msp->ms_lock);
676 				break;
677 			}
678 			mutex_exit(&msp->ms_lock);
679 			msp = next_msp;
680 		}
681 	}
682 }
683 
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 	const metaslab_t *m1 = (const metaslab_t *)x1;
688 	const metaslab_t *m2 = (const metaslab_t *)x2;
689 
690 	int sort1 = 0;
691 	int sort2 = 0;
692 	if (m1->ms_allocator != -1 && m1->ms_primary)
693 		sort1 = 1;
694 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 		sort1 = 2;
696 	if (m2->ms_allocator != -1 && m2->ms_primary)
697 		sort2 = 1;
698 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 		sort2 = 2;
700 
701 	/*
702 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 	 * selecting a metaslab to allocate from, an allocator first tries its
704 	 * primary, then secondary active metaslab. If it doesn't have active
705 	 * metaslabs, or can't allocate from them, it searches for an inactive
706 	 * metaslab to activate. If it can't find a suitable one, it will steal
707 	 * a primary or secondary metaslab from another allocator.
708 	 */
709 	if (sort1 < sort2)
710 		return (-1);
711 	if (sort1 > sort2)
712 		return (1);
713 
714 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 	if (likely(cmp))
716 		return (cmp);
717 
718 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719 
720 	return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722 
723 /*
724  * ==========================================================================
725  * Metaslab groups
726  * ==========================================================================
727  */
728 /*
729  * Update the allocatable flag and the metaslab group's capacity.
730  * The allocatable flag is set to true if the capacity is below
731  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733  * transitions from allocatable to non-allocatable or vice versa then the
734  * metaslab group's class is updated to reflect the transition.
735  */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 	vdev_t *vd = mg->mg_vd;
740 	metaslab_class_t *mc = mg->mg_class;
741 	vdev_stat_t *vs = &vd->vdev_stat;
742 	boolean_t was_allocatable;
743 	boolean_t was_initialized;
744 
745 	ASSERT(vd == vd->vdev_top);
746 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 	    SCL_ALLOC);
748 
749 	mutex_enter(&mg->mg_lock);
750 	was_allocatable = mg->mg_allocatable;
751 	was_initialized = mg->mg_initialized;
752 
753 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 	    (vs->vs_space + 1);
755 
756 	mutex_enter(&mc->mc_lock);
757 
758 	/*
759 	 * If the metaslab group was just added then it won't
760 	 * have any space until we finish syncing out this txg.
761 	 * At that point we will consider it initialized and available
762 	 * for allocations.  We also don't consider non-activated
763 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 	 * to be initialized, because they can't be used for allocation.
765 	 */
766 	mg->mg_initialized = metaslab_group_initialized(mg);
767 	if (!was_initialized && mg->mg_initialized) {
768 		mc->mc_groups++;
769 	} else if (was_initialized && !mg->mg_initialized) {
770 		ASSERT3U(mc->mc_groups, >, 0);
771 		mc->mc_groups--;
772 	}
773 	if (mg->mg_initialized)
774 		mg->mg_no_free_space = B_FALSE;
775 
776 	/*
777 	 * A metaslab group is considered allocatable if it has plenty
778 	 * of free space or is not heavily fragmented. We only take
779 	 * fragmentation into account if the metaslab group has a valid
780 	 * fragmentation metric (i.e. a value between 0 and 100).
781 	 */
782 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786 
787 	/*
788 	 * The mc_alloc_groups maintains a count of the number of
789 	 * groups in this metaslab class that are still above the
790 	 * zfs_mg_noalloc_threshold. This is used by the allocating
791 	 * threads to determine if they should avoid allocations to
792 	 * a given group. The allocator will avoid allocations to a group
793 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 	 * and there are still other groups that are above the threshold.
795 	 * When a group transitions from allocatable to non-allocatable or
796 	 * vice versa we update the metaslab class to reflect that change.
797 	 * When the mc_alloc_groups value drops to 0 that means that all
798 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 	 * eligible for allocations. This effectively means that all devices
800 	 * are balanced again.
801 	 */
802 	if (was_allocatable && !mg->mg_allocatable)
803 		mc->mc_alloc_groups--;
804 	else if (!was_allocatable && mg->mg_allocatable)
805 		mc->mc_alloc_groups++;
806 	mutex_exit(&mc->mc_lock);
807 
808 	mutex_exit(&mg->mg_lock);
809 }
810 
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 	const metaslab_t *a = va;
815 	const metaslab_t *b = vb;
816 
817 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 	if (likely(cmp))
819 		return (cmp);
820 
821 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 	if (cmp)
825 		return (cmp);
826 
827 	return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829 
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 	metaslab_group_t *mg;
834 
835 	mg = kmem_zalloc(offsetof(metaslab_group_t,
836 	    mg_allocator[allocators]), KM_SLEEP);
837 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 	mg->mg_vd = vd;
843 	mg->mg_class = mc;
844 	mg->mg_activation_count = 0;
845 	mg->mg_initialized = B_FALSE;
846 	mg->mg_no_free_space = B_TRUE;
847 	mg->mg_allocators = allocators;
848 
849 	for (int i = 0; i < allocators; i++) {
850 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 	}
853 
854 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856 
857 	return (mg);
858 }
859 
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 	ASSERT(mg->mg_prev == NULL);
864 	ASSERT(mg->mg_next == NULL);
865 	/*
866 	 * We may have gone below zero with the activation count
867 	 * either because we never activated in the first place or
868 	 * because we're done, and possibly removing the vdev.
869 	 */
870 	ASSERT(mg->mg_activation_count <= 0);
871 
872 	taskq_destroy(mg->mg_taskq);
873 	avl_destroy(&mg->mg_metaslab_tree);
874 	mutex_destroy(&mg->mg_lock);
875 	mutex_destroy(&mg->mg_ms_disabled_lock);
876 	cv_destroy(&mg->mg_ms_disabled_cv);
877 
878 	for (int i = 0; i < mg->mg_allocators; i++) {
879 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 	}
882 	kmem_free(mg, offsetof(metaslab_group_t,
883 	    mg_allocator[mg->mg_allocators]));
884 }
885 
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 	metaslab_class_t *mc = mg->mg_class;
890 	spa_t *spa = mc->mc_spa;
891 	metaslab_group_t *mgprev, *mgnext;
892 
893 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894 
895 	ASSERT(mg->mg_prev == NULL);
896 	ASSERT(mg->mg_next == NULL);
897 	ASSERT(mg->mg_activation_count <= 0);
898 
899 	if (++mg->mg_activation_count <= 0)
900 		return;
901 
902 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
903 	metaslab_group_alloc_update(mg);
904 
905 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
906 		mg->mg_prev = mg;
907 		mg->mg_next = mg;
908 	} else {
909 		mgnext = mgprev->mg_next;
910 		mg->mg_prev = mgprev;
911 		mg->mg_next = mgnext;
912 		mgprev->mg_next = mg;
913 		mgnext->mg_prev = mg;
914 	}
915 	for (int i = 0; i < spa->spa_alloc_count; i++) {
916 		mc->mc_allocator[i].mca_rotor = mg;
917 		mg = mg->mg_next;
918 	}
919 }
920 
921 /*
922  * Passivate a metaslab group and remove it from the allocation rotor.
923  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
924  * a metaslab group. This function will momentarily drop spa_config_locks
925  * that are lower than the SCL_ALLOC lock (see comment below).
926  */
927 void
928 metaslab_group_passivate(metaslab_group_t *mg)
929 {
930 	metaslab_class_t *mc = mg->mg_class;
931 	spa_t *spa = mc->mc_spa;
932 	metaslab_group_t *mgprev, *mgnext;
933 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
934 
935 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
936 	    (SCL_ALLOC | SCL_ZIO));
937 
938 	if (--mg->mg_activation_count != 0) {
939 		for (int i = 0; i < spa->spa_alloc_count; i++)
940 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
941 		ASSERT(mg->mg_prev == NULL);
942 		ASSERT(mg->mg_next == NULL);
943 		ASSERT(mg->mg_activation_count < 0);
944 		return;
945 	}
946 
947 	/*
948 	 * The spa_config_lock is an array of rwlocks, ordered as
949 	 * follows (from highest to lowest):
950 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
951 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
952 	 * (For more information about the spa_config_lock see spa_misc.c)
953 	 * The higher the lock, the broader its coverage. When we passivate
954 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
955 	 * config locks. However, the metaslab group's taskq might be trying
956 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
957 	 * lower locks to allow the I/O to complete. At a minimum,
958 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
959 	 * allocations from taking place and any changes to the vdev tree.
960 	 */
961 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
962 	taskq_wait_outstanding(mg->mg_taskq, 0);
963 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
964 	metaslab_group_alloc_update(mg);
965 	for (int i = 0; i < mg->mg_allocators; i++) {
966 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
967 		metaslab_t *msp = mga->mga_primary;
968 		if (msp != NULL) {
969 			mutex_enter(&msp->ms_lock);
970 			metaslab_passivate(msp,
971 			    metaslab_weight_from_range_tree(msp));
972 			mutex_exit(&msp->ms_lock);
973 		}
974 		msp = mga->mga_secondary;
975 		if (msp != NULL) {
976 			mutex_enter(&msp->ms_lock);
977 			metaslab_passivate(msp,
978 			    metaslab_weight_from_range_tree(msp));
979 			mutex_exit(&msp->ms_lock);
980 		}
981 	}
982 
983 	mgprev = mg->mg_prev;
984 	mgnext = mg->mg_next;
985 
986 	if (mg == mgnext) {
987 		mgnext = NULL;
988 	} else {
989 		mgprev->mg_next = mgnext;
990 		mgnext->mg_prev = mgprev;
991 	}
992 	for (int i = 0; i < spa->spa_alloc_count; i++) {
993 		if (mc->mc_allocator[i].mca_rotor == mg)
994 			mc->mc_allocator[i].mca_rotor = mgnext;
995 	}
996 
997 	mg->mg_prev = NULL;
998 	mg->mg_next = NULL;
999 }
1000 
1001 boolean_t
1002 metaslab_group_initialized(metaslab_group_t *mg)
1003 {
1004 	vdev_t *vd = mg->mg_vd;
1005 	vdev_stat_t *vs = &vd->vdev_stat;
1006 
1007 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1008 }
1009 
1010 uint64_t
1011 metaslab_group_get_space(metaslab_group_t *mg)
1012 {
1013 	/*
1014 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1015 	 * than vdev_ms_count, due to the embedded log metaslab.
1016 	 */
1017 	mutex_enter(&mg->mg_lock);
1018 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1019 	mutex_exit(&mg->mg_lock);
1020 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1021 }
1022 
1023 void
1024 metaslab_group_histogram_verify(metaslab_group_t *mg)
1025 {
1026 	uint64_t *mg_hist;
1027 	avl_tree_t *t = &mg->mg_metaslab_tree;
1028 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1029 
1030 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1031 		return;
1032 
1033 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1034 	    KM_SLEEP);
1035 
1036 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1037 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1038 
1039 	mutex_enter(&mg->mg_lock);
1040 	for (metaslab_t *msp = avl_first(t);
1041 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1042 		VERIFY3P(msp->ms_group, ==, mg);
1043 		/* skip if not active */
1044 		if (msp->ms_sm == NULL)
1045 			continue;
1046 
1047 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1048 			mg_hist[i + ashift] +=
1049 			    msp->ms_sm->sm_phys->smp_histogram[i];
1050 		}
1051 	}
1052 
1053 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1054 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1055 
1056 	mutex_exit(&mg->mg_lock);
1057 
1058 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1059 }
1060 
1061 static void
1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1063 {
1064 	metaslab_class_t *mc = mg->mg_class;
1065 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1066 
1067 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1068 	if (msp->ms_sm == NULL)
1069 		return;
1070 
1071 	mutex_enter(&mg->mg_lock);
1072 	mutex_enter(&mc->mc_lock);
1073 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1074 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1075 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1076 		mg->mg_histogram[i + ashift] +=
1077 		    msp->ms_sm->sm_phys->smp_histogram[i];
1078 		mc->mc_histogram[i + ashift] +=
1079 		    msp->ms_sm->sm_phys->smp_histogram[i];
1080 	}
1081 	mutex_exit(&mc->mc_lock);
1082 	mutex_exit(&mg->mg_lock);
1083 }
1084 
1085 void
1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1087 {
1088 	metaslab_class_t *mc = mg->mg_class;
1089 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1090 
1091 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1092 	if (msp->ms_sm == NULL)
1093 		return;
1094 
1095 	mutex_enter(&mg->mg_lock);
1096 	mutex_enter(&mc->mc_lock);
1097 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1098 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1099 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1100 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1101 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1102 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1103 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1104 
1105 		mg->mg_histogram[i + ashift] -=
1106 		    msp->ms_sm->sm_phys->smp_histogram[i];
1107 		mc->mc_histogram[i + ashift] -=
1108 		    msp->ms_sm->sm_phys->smp_histogram[i];
1109 	}
1110 	mutex_exit(&mc->mc_lock);
1111 	mutex_exit(&mg->mg_lock);
1112 }
1113 
1114 static void
1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1116 {
1117 	ASSERT(msp->ms_group == NULL);
1118 	mutex_enter(&mg->mg_lock);
1119 	msp->ms_group = mg;
1120 	msp->ms_weight = 0;
1121 	avl_add(&mg->mg_metaslab_tree, msp);
1122 	mutex_exit(&mg->mg_lock);
1123 
1124 	mutex_enter(&msp->ms_lock);
1125 	metaslab_group_histogram_add(mg, msp);
1126 	mutex_exit(&msp->ms_lock);
1127 }
1128 
1129 static void
1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1131 {
1132 	mutex_enter(&msp->ms_lock);
1133 	metaslab_group_histogram_remove(mg, msp);
1134 	mutex_exit(&msp->ms_lock);
1135 
1136 	mutex_enter(&mg->mg_lock);
1137 	ASSERT(msp->ms_group == mg);
1138 	avl_remove(&mg->mg_metaslab_tree, msp);
1139 
1140 	metaslab_class_t *mc = msp->ms_group->mg_class;
1141 	multilist_sublist_t *mls =
1142 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1143 	if (multilist_link_active(&msp->ms_class_txg_node))
1144 		multilist_sublist_remove(mls, msp);
1145 	multilist_sublist_unlock(mls);
1146 
1147 	msp->ms_group = NULL;
1148 	mutex_exit(&mg->mg_lock);
1149 }
1150 
1151 static void
1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1153 {
1154 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1155 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1156 	ASSERT(msp->ms_group == mg);
1157 
1158 	avl_remove(&mg->mg_metaslab_tree, msp);
1159 	msp->ms_weight = weight;
1160 	avl_add(&mg->mg_metaslab_tree, msp);
1161 
1162 }
1163 
1164 static void
1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1166 {
1167 	/*
1168 	 * Although in principle the weight can be any value, in
1169 	 * practice we do not use values in the range [1, 511].
1170 	 */
1171 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1172 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1173 
1174 	mutex_enter(&mg->mg_lock);
1175 	metaslab_group_sort_impl(mg, msp, weight);
1176 	mutex_exit(&mg->mg_lock);
1177 }
1178 
1179 /*
1180  * Calculate the fragmentation for a given metaslab group. We can use
1181  * a simple average here since all metaslabs within the group must have
1182  * the same size. The return value will be a value between 0 and 100
1183  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1184  * group have a fragmentation metric.
1185  */
1186 uint64_t
1187 metaslab_group_fragmentation(metaslab_group_t *mg)
1188 {
1189 	vdev_t *vd = mg->mg_vd;
1190 	uint64_t fragmentation = 0;
1191 	uint64_t valid_ms = 0;
1192 
1193 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1194 		metaslab_t *msp = vd->vdev_ms[m];
1195 
1196 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1197 			continue;
1198 		if (msp->ms_group != mg)
1199 			continue;
1200 
1201 		valid_ms++;
1202 		fragmentation += msp->ms_fragmentation;
1203 	}
1204 
1205 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1206 		return (ZFS_FRAG_INVALID);
1207 
1208 	fragmentation /= valid_ms;
1209 	ASSERT3U(fragmentation, <=, 100);
1210 	return (fragmentation);
1211 }
1212 
1213 /*
1214  * Determine if a given metaslab group should skip allocations. A metaslab
1215  * group should avoid allocations if its free capacity is less than the
1216  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1217  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1218  * that can still handle allocations. If the allocation throttle is enabled
1219  * then we skip allocations to devices that have reached their maximum
1220  * allocation queue depth unless the selected metaslab group is the only
1221  * eligible group remaining.
1222  */
1223 static boolean_t
1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1225     uint64_t psize, int allocator, int d)
1226 {
1227 	spa_t *spa = mg->mg_vd->vdev_spa;
1228 	metaslab_class_t *mc = mg->mg_class;
1229 
1230 	/*
1231 	 * We can only consider skipping this metaslab group if it's
1232 	 * in the normal metaslab class and there are other metaslab
1233 	 * groups to select from. Otherwise, we always consider it eligible
1234 	 * for allocations.
1235 	 */
1236 	if ((mc != spa_normal_class(spa) &&
1237 	    mc != spa_special_class(spa) &&
1238 	    mc != spa_dedup_class(spa)) ||
1239 	    mc->mc_groups <= 1)
1240 		return (B_TRUE);
1241 
1242 	/*
1243 	 * If the metaslab group's mg_allocatable flag is set (see comments
1244 	 * in metaslab_group_alloc_update() for more information) and
1245 	 * the allocation throttle is disabled then allow allocations to this
1246 	 * device. However, if the allocation throttle is enabled then
1247 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1248 	 * to determine if we should allow allocations to this metaslab group.
1249 	 * If all metaslab groups are no longer considered allocatable
1250 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1251 	 * gang block size then we allow allocations on this metaslab group
1252 	 * regardless of the mg_allocatable or throttle settings.
1253 	 */
1254 	if (mg->mg_allocatable) {
1255 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1256 		int64_t qdepth;
1257 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1258 
1259 		if (!mc->mc_alloc_throttle_enabled)
1260 			return (B_TRUE);
1261 
1262 		/*
1263 		 * If this metaslab group does not have any free space, then
1264 		 * there is no point in looking further.
1265 		 */
1266 		if (mg->mg_no_free_space)
1267 			return (B_FALSE);
1268 
1269 		/*
1270 		 * Relax allocation throttling for ditto blocks.  Due to
1271 		 * random imbalances in allocation it tends to push copies
1272 		 * to one vdev, that looks a bit better at the moment.
1273 		 */
1274 		qmax = qmax * (4 + d) / 4;
1275 
1276 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1277 
1278 		/*
1279 		 * If this metaslab group is below its qmax or it's
1280 		 * the only allocatable metasable group, then attempt
1281 		 * to allocate from it.
1282 		 */
1283 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1284 			return (B_TRUE);
1285 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1286 
1287 		/*
1288 		 * Since this metaslab group is at or over its qmax, we
1289 		 * need to determine if there are metaslab groups after this
1290 		 * one that might be able to handle this allocation. This is
1291 		 * racy since we can't hold the locks for all metaslab
1292 		 * groups at the same time when we make this check.
1293 		 */
1294 		for (metaslab_group_t *mgp = mg->mg_next;
1295 		    mgp != rotor; mgp = mgp->mg_next) {
1296 			metaslab_group_allocator_t *mgap =
1297 			    &mgp->mg_allocator[allocator];
1298 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1299 			qmax = qmax * (4 + d) / 4;
1300 			qdepth =
1301 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1302 
1303 			/*
1304 			 * If there is another metaslab group that
1305 			 * might be able to handle the allocation, then
1306 			 * we return false so that we skip this group.
1307 			 */
1308 			if (qdepth < qmax && !mgp->mg_no_free_space)
1309 				return (B_FALSE);
1310 		}
1311 
1312 		/*
1313 		 * We didn't find another group to handle the allocation
1314 		 * so we can't skip this metaslab group even though
1315 		 * we are at or over our qmax.
1316 		 */
1317 		return (B_TRUE);
1318 
1319 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1320 		return (B_TRUE);
1321 	}
1322 	return (B_FALSE);
1323 }
1324 
1325 /*
1326  * ==========================================================================
1327  * Range tree callbacks
1328  * ==========================================================================
1329  */
1330 
1331 /*
1332  * Comparison function for the private size-ordered tree using 32-bit
1333  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1334  */
1335 static int
1336 metaslab_rangesize32_compare(const void *x1, const void *x2)
1337 {
1338 	const range_seg32_t *r1 = x1;
1339 	const range_seg32_t *r2 = x2;
1340 
1341 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1342 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1343 
1344 	int cmp = TREE_CMP(rs_size1, rs_size2);
1345 	if (likely(cmp))
1346 		return (cmp);
1347 
1348 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1349 }
1350 
1351 /*
1352  * Comparison function for the private size-ordered tree using 64-bit
1353  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1354  */
1355 static int
1356 metaslab_rangesize64_compare(const void *x1, const void *x2)
1357 {
1358 	const range_seg64_t *r1 = x1;
1359 	const range_seg64_t *r2 = x2;
1360 
1361 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1362 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1363 
1364 	int cmp = TREE_CMP(rs_size1, rs_size2);
1365 	if (likely(cmp))
1366 		return (cmp);
1367 
1368 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1369 }
1370 typedef struct metaslab_rt_arg {
1371 	zfs_btree_t *mra_bt;
1372 	uint32_t mra_floor_shift;
1373 } metaslab_rt_arg_t;
1374 
1375 struct mssa_arg {
1376 	range_tree_t *rt;
1377 	metaslab_rt_arg_t *mra;
1378 };
1379 
1380 static void
1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1382 {
1383 	struct mssa_arg *mssap = arg;
1384 	range_tree_t *rt = mssap->rt;
1385 	metaslab_rt_arg_t *mrap = mssap->mra;
1386 	range_seg_max_t seg = {0};
1387 	rs_set_start(&seg, rt, start);
1388 	rs_set_end(&seg, rt, start + size);
1389 	metaslab_rt_add(rt, &seg, mrap);
1390 }
1391 
1392 static void
1393 metaslab_size_tree_full_load(range_tree_t *rt)
1394 {
1395 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1396 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1397 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1398 	mrap->mra_floor_shift = 0;
1399 	struct mssa_arg arg = {0};
1400 	arg.rt = rt;
1401 	arg.mra = mrap;
1402 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1403 }
1404 
1405 /*
1406  * Create any block allocator specific components. The current allocators
1407  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1408  */
1409 /* ARGSUSED */
1410 static void
1411 metaslab_rt_create(range_tree_t *rt, void *arg)
1412 {
1413 	metaslab_rt_arg_t *mrap = arg;
1414 	zfs_btree_t *size_tree = mrap->mra_bt;
1415 
1416 	size_t size;
1417 	int (*compare) (const void *, const void *);
1418 	switch (rt->rt_type) {
1419 	case RANGE_SEG32:
1420 		size = sizeof (range_seg32_t);
1421 		compare = metaslab_rangesize32_compare;
1422 		break;
1423 	case RANGE_SEG64:
1424 		size = sizeof (range_seg64_t);
1425 		compare = metaslab_rangesize64_compare;
1426 		break;
1427 	default:
1428 		panic("Invalid range seg type %d", rt->rt_type);
1429 	}
1430 	zfs_btree_create(size_tree, compare, size);
1431 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1432 }
1433 
1434 /* ARGSUSED */
1435 static void
1436 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1437 {
1438 	metaslab_rt_arg_t *mrap = arg;
1439 	zfs_btree_t *size_tree = mrap->mra_bt;
1440 
1441 	zfs_btree_destroy(size_tree);
1442 	kmem_free(mrap, sizeof (*mrap));
1443 }
1444 
1445 /* ARGSUSED */
1446 static void
1447 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1448 {
1449 	metaslab_rt_arg_t *mrap = arg;
1450 	zfs_btree_t *size_tree = mrap->mra_bt;
1451 
1452 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1453 	    (1 << mrap->mra_floor_shift))
1454 		return;
1455 
1456 	zfs_btree_add(size_tree, rs);
1457 }
1458 
1459 /* ARGSUSED */
1460 static void
1461 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1462 {
1463 	metaslab_rt_arg_t *mrap = arg;
1464 	zfs_btree_t *size_tree = mrap->mra_bt;
1465 
1466 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
1467 	    mrap->mra_floor_shift))
1468 		return;
1469 
1470 	zfs_btree_remove(size_tree, rs);
1471 }
1472 
1473 /* ARGSUSED */
1474 static void
1475 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1476 {
1477 	metaslab_rt_arg_t *mrap = arg;
1478 	zfs_btree_t *size_tree = mrap->mra_bt;
1479 	zfs_btree_clear(size_tree);
1480 	zfs_btree_destroy(size_tree);
1481 
1482 	metaslab_rt_create(rt, arg);
1483 }
1484 
1485 static range_tree_ops_t metaslab_rt_ops = {
1486 	.rtop_create = metaslab_rt_create,
1487 	.rtop_destroy = metaslab_rt_destroy,
1488 	.rtop_add = metaslab_rt_add,
1489 	.rtop_remove = metaslab_rt_remove,
1490 	.rtop_vacate = metaslab_rt_vacate
1491 };
1492 
1493 /*
1494  * ==========================================================================
1495  * Common allocator routines
1496  * ==========================================================================
1497  */
1498 
1499 /*
1500  * Return the maximum contiguous segment within the metaslab.
1501  */
1502 uint64_t
1503 metaslab_largest_allocatable(metaslab_t *msp)
1504 {
1505 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1506 	range_seg_t *rs;
1507 
1508 	if (t == NULL)
1509 		return (0);
1510 	if (zfs_btree_numnodes(t) == 0)
1511 		metaslab_size_tree_full_load(msp->ms_allocatable);
1512 
1513 	rs = zfs_btree_last(t, NULL);
1514 	if (rs == NULL)
1515 		return (0);
1516 
1517 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1518 	    msp->ms_allocatable));
1519 }
1520 
1521 /*
1522  * Return the maximum contiguous segment within the unflushed frees of this
1523  * metaslab.
1524  */
1525 static uint64_t
1526 metaslab_largest_unflushed_free(metaslab_t *msp)
1527 {
1528 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1529 
1530 	if (msp->ms_unflushed_frees == NULL)
1531 		return (0);
1532 
1533 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1534 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1535 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1536 	    NULL);
1537 	if (rs == NULL)
1538 		return (0);
1539 
1540 	/*
1541 	 * When a range is freed from the metaslab, that range is added to
1542 	 * both the unflushed frees and the deferred frees. While the block
1543 	 * will eventually be usable, if the metaslab were loaded the range
1544 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1545 	 * txgs had passed.  As a result, when attempting to estimate an upper
1546 	 * bound for the largest currently-usable free segment in the
1547 	 * metaslab, we need to not consider any ranges currently in the defer
1548 	 * trees. This algorithm approximates the largest available chunk in
1549 	 * the largest range in the unflushed_frees tree by taking the first
1550 	 * chunk.  While this may be a poor estimate, it should only remain so
1551 	 * briefly and should eventually self-correct as frees are no longer
1552 	 * deferred. Similar logic applies to the ms_freed tree. See
1553 	 * metaslab_load() for more details.
1554 	 *
1555 	 * There are two primary sources of inaccuracy in this estimate. Both
1556 	 * are tolerated for performance reasons. The first source is that we
1557 	 * only check the largest segment for overlaps. Smaller segments may
1558 	 * have more favorable overlaps with the other trees, resulting in
1559 	 * larger usable chunks.  Second, we only look at the first chunk in
1560 	 * the largest segment; there may be other usable chunks in the
1561 	 * largest segment, but we ignore them.
1562 	 */
1563 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1564 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1565 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1566 		uint64_t start = 0;
1567 		uint64_t size = 0;
1568 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1569 		    rsize, &start, &size);
1570 		if (found) {
1571 			if (rstart == start)
1572 				return (0);
1573 			rsize = start - rstart;
1574 		}
1575 	}
1576 
1577 	uint64_t start = 0;
1578 	uint64_t size = 0;
1579 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1580 	    rsize, &start, &size);
1581 	if (found)
1582 		rsize = start - rstart;
1583 
1584 	return (rsize);
1585 }
1586 
1587 static range_seg_t *
1588 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1589     uint64_t size, zfs_btree_index_t *where)
1590 {
1591 	range_seg_t *rs;
1592 	range_seg_max_t rsearch;
1593 
1594 	rs_set_start(&rsearch, rt, start);
1595 	rs_set_end(&rsearch, rt, start + size);
1596 
1597 	rs = zfs_btree_find(t, &rsearch, where);
1598 	if (rs == NULL) {
1599 		rs = zfs_btree_next(t, where, where);
1600 	}
1601 
1602 	return (rs);
1603 }
1604 
1605 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1606     defined(WITH_CF_BLOCK_ALLOCATOR)
1607 
1608 /*
1609  * This is a helper function that can be used by the allocator to find a
1610  * suitable block to allocate. This will search the specified B-tree looking
1611  * for a block that matches the specified criteria.
1612  */
1613 static uint64_t
1614 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1615     uint64_t max_search)
1616 {
1617 	if (*cursor == 0)
1618 		*cursor = rt->rt_start;
1619 	zfs_btree_t *bt = &rt->rt_root;
1620 	zfs_btree_index_t where;
1621 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1622 	uint64_t first_found;
1623 	int count_searched = 0;
1624 
1625 	if (rs != NULL)
1626 		first_found = rs_get_start(rs, rt);
1627 
1628 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1629 	    max_search || count_searched < metaslab_min_search_count)) {
1630 		uint64_t offset = rs_get_start(rs, rt);
1631 		if (offset + size <= rs_get_end(rs, rt)) {
1632 			*cursor = offset + size;
1633 			return (offset);
1634 		}
1635 		rs = zfs_btree_next(bt, &where, &where);
1636 		count_searched++;
1637 	}
1638 
1639 	*cursor = 0;
1640 	return (-1ULL);
1641 }
1642 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1643 
1644 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1645 /*
1646  * ==========================================================================
1647  * Dynamic Fit (df) block allocator
1648  *
1649  * Search for a free chunk of at least this size, starting from the last
1650  * offset (for this alignment of block) looking for up to
1651  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1652  * found within 16MB, then return a free chunk of exactly the requested size (or
1653  * larger).
1654  *
1655  * If it seems like searching from the last offset will be unproductive, skip
1656  * that and just return a free chunk of exactly the requested size (or larger).
1657  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1658  * mechanism is probably not very useful and may be removed in the future.
1659  *
1660  * The behavior when not searching can be changed to return the largest free
1661  * chunk, instead of a free chunk of exactly the requested size, by setting
1662  * metaslab_df_use_largest_segment.
1663  * ==========================================================================
1664  */
1665 static uint64_t
1666 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1667 {
1668 	/*
1669 	 * Find the largest power of 2 block size that evenly divides the
1670 	 * requested size. This is used to try to allocate blocks with similar
1671 	 * alignment from the same area of the metaslab (i.e. same cursor
1672 	 * bucket) but it does not guarantee that other allocations sizes
1673 	 * may exist in the same region.
1674 	 */
1675 	uint64_t align = size & -size;
1676 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1677 	range_tree_t *rt = msp->ms_allocatable;
1678 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1679 	uint64_t offset;
1680 
1681 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1682 
1683 	/*
1684 	 * If we're running low on space, find a segment based on size,
1685 	 * rather than iterating based on offset.
1686 	 */
1687 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1688 	    free_pct < metaslab_df_free_pct) {
1689 		offset = -1;
1690 	} else {
1691 		offset = metaslab_block_picker(rt,
1692 		    cursor, size, metaslab_df_max_search);
1693 	}
1694 
1695 	if (offset == -1) {
1696 		range_seg_t *rs;
1697 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1698 			metaslab_size_tree_full_load(msp->ms_allocatable);
1699 
1700 		if (metaslab_df_use_largest_segment) {
1701 			/* use largest free segment */
1702 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1703 		} else {
1704 			zfs_btree_index_t where;
1705 			/* use segment of this size, or next largest */
1706 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1707 			    rt, msp->ms_start, size, &where);
1708 		}
1709 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1710 		    rt)) {
1711 			offset = rs_get_start(rs, rt);
1712 			*cursor = offset + size;
1713 		}
1714 	}
1715 
1716 	return (offset);
1717 }
1718 
1719 static metaslab_ops_t metaslab_df_ops = {
1720 	metaslab_df_alloc
1721 };
1722 
1723 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1724 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1725 
1726 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1727 /*
1728  * ==========================================================================
1729  * Cursor fit block allocator -
1730  * Select the largest region in the metaslab, set the cursor to the beginning
1731  * of the range and the cursor_end to the end of the range. As allocations
1732  * are made advance the cursor. Continue allocating from the cursor until
1733  * the range is exhausted and then find a new range.
1734  * ==========================================================================
1735  */
1736 static uint64_t
1737 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1738 {
1739 	range_tree_t *rt = msp->ms_allocatable;
1740 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1741 	uint64_t *cursor = &msp->ms_lbas[0];
1742 	uint64_t *cursor_end = &msp->ms_lbas[1];
1743 	uint64_t offset = 0;
1744 
1745 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1746 
1747 	ASSERT3U(*cursor_end, >=, *cursor);
1748 
1749 	if ((*cursor + size) > *cursor_end) {
1750 		range_seg_t *rs;
1751 
1752 		if (zfs_btree_numnodes(t) == 0)
1753 			metaslab_size_tree_full_load(msp->ms_allocatable);
1754 		rs = zfs_btree_last(t, NULL);
1755 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1756 		    size)
1757 			return (-1ULL);
1758 
1759 		*cursor = rs_get_start(rs, rt);
1760 		*cursor_end = rs_get_end(rs, rt);
1761 	}
1762 
1763 	offset = *cursor;
1764 	*cursor += size;
1765 
1766 	return (offset);
1767 }
1768 
1769 static metaslab_ops_t metaslab_cf_ops = {
1770 	metaslab_cf_alloc
1771 };
1772 
1773 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1774 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1775 
1776 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1777 /*
1778  * ==========================================================================
1779  * New dynamic fit allocator -
1780  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1781  * contiguous blocks. If no region is found then just use the largest segment
1782  * that remains.
1783  * ==========================================================================
1784  */
1785 
1786 /*
1787  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1788  * to request from the allocator.
1789  */
1790 uint64_t metaslab_ndf_clump_shift = 4;
1791 
1792 static uint64_t
1793 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1794 {
1795 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1796 	range_tree_t *rt = msp->ms_allocatable;
1797 	zfs_btree_index_t where;
1798 	range_seg_t *rs;
1799 	range_seg_max_t rsearch;
1800 	uint64_t hbit = highbit64(size);
1801 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1802 	uint64_t max_size = metaslab_largest_allocatable(msp);
1803 
1804 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1805 
1806 	if (max_size < size)
1807 		return (-1ULL);
1808 
1809 	rs_set_start(&rsearch, rt, *cursor);
1810 	rs_set_end(&rsearch, rt, *cursor + size);
1811 
1812 	rs = zfs_btree_find(t, &rsearch, &where);
1813 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1814 		t = &msp->ms_allocatable_by_size;
1815 
1816 		rs_set_start(&rsearch, rt, 0);
1817 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1818 		    metaslab_ndf_clump_shift)));
1819 
1820 		rs = zfs_btree_find(t, &rsearch, &where);
1821 		if (rs == NULL)
1822 			rs = zfs_btree_next(t, &where, &where);
1823 		ASSERT(rs != NULL);
1824 	}
1825 
1826 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1827 		*cursor = rs_get_start(rs, rt) + size;
1828 		return (rs_get_start(rs, rt));
1829 	}
1830 	return (-1ULL);
1831 }
1832 
1833 static metaslab_ops_t metaslab_ndf_ops = {
1834 	metaslab_ndf_alloc
1835 };
1836 
1837 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1839 
1840 
1841 /*
1842  * ==========================================================================
1843  * Metaslabs
1844  * ==========================================================================
1845  */
1846 
1847 /*
1848  * Wait for any in-progress metaslab loads to complete.
1849  */
1850 static void
1851 metaslab_load_wait(metaslab_t *msp)
1852 {
1853 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1854 
1855 	while (msp->ms_loading) {
1856 		ASSERT(!msp->ms_loaded);
1857 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1858 	}
1859 }
1860 
1861 /*
1862  * Wait for any in-progress flushing to complete.
1863  */
1864 static void
1865 metaslab_flush_wait(metaslab_t *msp)
1866 {
1867 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1868 
1869 	while (msp->ms_flushing)
1870 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1871 }
1872 
1873 static unsigned int
1874 metaslab_idx_func(multilist_t *ml, void *arg)
1875 {
1876 	metaslab_t *msp = arg;
1877 
1878 	/*
1879 	 * ms_id values are allocated sequentially, so full 64bit
1880 	 * division would be a waste of time, so limit it to 32 bits.
1881 	 */
1882 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1883 }
1884 
1885 uint64_t
1886 metaslab_allocated_space(metaslab_t *msp)
1887 {
1888 	return (msp->ms_allocated_space);
1889 }
1890 
1891 /*
1892  * Verify that the space accounting on disk matches the in-core range_trees.
1893  */
1894 static void
1895 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1896 {
1897 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1898 	uint64_t allocating = 0;
1899 	uint64_t sm_free_space, msp_free_space;
1900 
1901 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1902 	ASSERT(!msp->ms_condensing);
1903 
1904 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1905 		return;
1906 
1907 	/*
1908 	 * We can only verify the metaslab space when we're called
1909 	 * from syncing context with a loaded metaslab that has an
1910 	 * allocated space map. Calling this in non-syncing context
1911 	 * does not provide a consistent view of the metaslab since
1912 	 * we're performing allocations in the future.
1913 	 */
1914 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1915 	    !msp->ms_loaded)
1916 		return;
1917 
1918 	/*
1919 	 * Even though the smp_alloc field can get negative,
1920 	 * when it comes to a metaslab's space map, that should
1921 	 * never be the case.
1922 	 */
1923 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1924 
1925 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1926 	    range_tree_space(msp->ms_unflushed_frees));
1927 
1928 	ASSERT3U(metaslab_allocated_space(msp), ==,
1929 	    space_map_allocated(msp->ms_sm) +
1930 	    range_tree_space(msp->ms_unflushed_allocs) -
1931 	    range_tree_space(msp->ms_unflushed_frees));
1932 
1933 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1934 
1935 	/*
1936 	 * Account for future allocations since we would have
1937 	 * already deducted that space from the ms_allocatable.
1938 	 */
1939 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1940 		allocating +=
1941 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1942 	}
1943 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1944 	    msp->ms_allocating_total);
1945 
1946 	ASSERT3U(msp->ms_deferspace, ==,
1947 	    range_tree_space(msp->ms_defer[0]) +
1948 	    range_tree_space(msp->ms_defer[1]));
1949 
1950 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1951 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1952 
1953 	VERIFY3U(sm_free_space, ==, msp_free_space);
1954 }
1955 
1956 static void
1957 metaslab_aux_histograms_clear(metaslab_t *msp)
1958 {
1959 	/*
1960 	 * Auxiliary histograms are only cleared when resetting them,
1961 	 * which can only happen while the metaslab is loaded.
1962 	 */
1963 	ASSERT(msp->ms_loaded);
1964 
1965 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1966 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1967 		bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1968 }
1969 
1970 static void
1971 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1972     range_tree_t *rt)
1973 {
1974 	/*
1975 	 * This is modeled after space_map_histogram_add(), so refer to that
1976 	 * function for implementation details. We want this to work like
1977 	 * the space map histogram, and not the range tree histogram, as we
1978 	 * are essentially constructing a delta that will be later subtracted
1979 	 * from the space map histogram.
1980 	 */
1981 	int idx = 0;
1982 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1983 		ASSERT3U(i, >=, idx + shift);
1984 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1985 
1986 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1987 			ASSERT3U(idx + shift, ==, i);
1988 			idx++;
1989 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1990 		}
1991 	}
1992 }
1993 
1994 /*
1995  * Called at every sync pass that the metaslab gets synced.
1996  *
1997  * The reason is that we want our auxiliary histograms to be updated
1998  * wherever the metaslab's space map histogram is updated. This way
1999  * we stay consistent on which parts of the metaslab space map's
2000  * histogram are currently not available for allocations (e.g because
2001  * they are in the defer, freed, and freeing trees).
2002  */
2003 static void
2004 metaslab_aux_histograms_update(metaslab_t *msp)
2005 {
2006 	space_map_t *sm = msp->ms_sm;
2007 	ASSERT(sm != NULL);
2008 
2009 	/*
2010 	 * This is similar to the metaslab's space map histogram updates
2011 	 * that take place in metaslab_sync(). The only difference is that
2012 	 * we only care about segments that haven't made it into the
2013 	 * ms_allocatable tree yet.
2014 	 */
2015 	if (msp->ms_loaded) {
2016 		metaslab_aux_histograms_clear(msp);
2017 
2018 		metaslab_aux_histogram_add(msp->ms_synchist,
2019 		    sm->sm_shift, msp->ms_freed);
2020 
2021 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2022 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2023 			    sm->sm_shift, msp->ms_defer[t]);
2024 		}
2025 	}
2026 
2027 	metaslab_aux_histogram_add(msp->ms_synchist,
2028 	    sm->sm_shift, msp->ms_freeing);
2029 }
2030 
2031 /*
2032  * Called every time we are done syncing (writing to) the metaslab,
2033  * i.e. at the end of each sync pass.
2034  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2035  */
2036 static void
2037 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2038 {
2039 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2040 	space_map_t *sm = msp->ms_sm;
2041 
2042 	if (sm == NULL) {
2043 		/*
2044 		 * We came here from metaslab_init() when creating/opening a
2045 		 * pool, looking at a metaslab that hasn't had any allocations
2046 		 * yet.
2047 		 */
2048 		return;
2049 	}
2050 
2051 	/*
2052 	 * This is similar to the actions that we take for the ms_freed
2053 	 * and ms_defer trees in metaslab_sync_done().
2054 	 */
2055 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2056 	if (defer_allowed) {
2057 		bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
2058 		    sizeof (msp->ms_synchist));
2059 	} else {
2060 		bzero(msp->ms_deferhist[hist_index],
2061 		    sizeof (msp->ms_deferhist[hist_index]));
2062 	}
2063 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
2064 }
2065 
2066 /*
2067  * Ensure that the metaslab's weight and fragmentation are consistent
2068  * with the contents of the histogram (either the range tree's histogram
2069  * or the space map's depending whether the metaslab is loaded).
2070  */
2071 static void
2072 metaslab_verify_weight_and_frag(metaslab_t *msp)
2073 {
2074 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2075 
2076 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2077 		return;
2078 
2079 	/*
2080 	 * We can end up here from vdev_remove_complete(), in which case we
2081 	 * cannot do these assertions because we hold spa config locks and
2082 	 * thus we are not allowed to read from the DMU.
2083 	 *
2084 	 * We check if the metaslab group has been removed and if that's
2085 	 * the case we return immediately as that would mean that we are
2086 	 * here from the aforementioned code path.
2087 	 */
2088 	if (msp->ms_group == NULL)
2089 		return;
2090 
2091 	/*
2092 	 * Devices being removed always return a weight of 0 and leave
2093 	 * fragmentation and ms_max_size as is - there is nothing for
2094 	 * us to verify here.
2095 	 */
2096 	vdev_t *vd = msp->ms_group->mg_vd;
2097 	if (vd->vdev_removing)
2098 		return;
2099 
2100 	/*
2101 	 * If the metaslab is dirty it probably means that we've done
2102 	 * some allocations or frees that have changed our histograms
2103 	 * and thus the weight.
2104 	 */
2105 	for (int t = 0; t < TXG_SIZE; t++) {
2106 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2107 			return;
2108 	}
2109 
2110 	/*
2111 	 * This verification checks that our in-memory state is consistent
2112 	 * with what's on disk. If the pool is read-only then there aren't
2113 	 * any changes and we just have the initially-loaded state.
2114 	 */
2115 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2116 		return;
2117 
2118 	/* some extra verification for in-core tree if you can */
2119 	if (msp->ms_loaded) {
2120 		range_tree_stat_verify(msp->ms_allocatable);
2121 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2122 		    msp->ms_allocatable));
2123 	}
2124 
2125 	uint64_t weight = msp->ms_weight;
2126 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2127 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2128 	uint64_t frag = msp->ms_fragmentation;
2129 	uint64_t max_segsize = msp->ms_max_size;
2130 
2131 	msp->ms_weight = 0;
2132 	msp->ms_fragmentation = 0;
2133 
2134 	/*
2135 	 * This function is used for verification purposes and thus should
2136 	 * not introduce any side-effects/mutations on the system's state.
2137 	 *
2138 	 * Regardless of whether metaslab_weight() thinks this metaslab
2139 	 * should be active or not, we want to ensure that the actual weight
2140 	 * (and therefore the value of ms_weight) would be the same if it
2141 	 * was to be recalculated at this point.
2142 	 *
2143 	 * In addition we set the nodirty flag so metaslab_weight() does
2144 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2145 	 * force condensing to upgrade the metaslab spacemaps).
2146 	 */
2147 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2148 
2149 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2150 
2151 	/*
2152 	 * If the weight type changed then there is no point in doing
2153 	 * verification. Revert fields to their original values.
2154 	 */
2155 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2156 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2157 		msp->ms_fragmentation = frag;
2158 		msp->ms_weight = weight;
2159 		return;
2160 	}
2161 
2162 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2163 	VERIFY3U(msp->ms_weight, ==, weight);
2164 }
2165 
2166 /*
2167  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2168  * this class that was used longest ago, and attempt to unload it.  We don't
2169  * want to spend too much time in this loop to prevent performance
2170  * degradation, and we expect that most of the time this operation will
2171  * succeed. Between that and the normal unloading processing during txg sync,
2172  * we expect this to keep the metaslab memory usage under control.
2173  */
2174 static void
2175 metaslab_potentially_evict(metaslab_class_t *mc)
2176 {
2177 #ifdef _KERNEL
2178 	uint64_t allmem = arc_all_memory();
2179 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2180 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2181 	int tries = 0;
2182 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2183 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2184 	    tries++) {
2185 		unsigned int idx = multilist_get_random_index(
2186 		    &mc->mc_metaslab_txg_list);
2187 		multilist_sublist_t *mls =
2188 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2189 		metaslab_t *msp = multilist_sublist_head(mls);
2190 		multilist_sublist_unlock(mls);
2191 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2192 		    inuse * size) {
2193 			VERIFY3P(mls, ==, multilist_sublist_lock(
2194 			    &mc->mc_metaslab_txg_list, idx));
2195 			ASSERT3U(idx, ==,
2196 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2197 
2198 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2199 				multilist_sublist_unlock(mls);
2200 				break;
2201 			}
2202 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2203 			multilist_sublist_unlock(mls);
2204 			/*
2205 			 * If the metaslab is currently loading there are two
2206 			 * cases. If it's the metaslab we're evicting, we
2207 			 * can't continue on or we'll panic when we attempt to
2208 			 * recursively lock the mutex. If it's another
2209 			 * metaslab that's loading, it can be safely skipped,
2210 			 * since we know it's very new and therefore not a
2211 			 * good eviction candidate. We check later once the
2212 			 * lock is held that the metaslab is fully loaded
2213 			 * before actually unloading it.
2214 			 */
2215 			if (msp->ms_loading) {
2216 				msp = next_msp;
2217 				inuse =
2218 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2219 				continue;
2220 			}
2221 			/*
2222 			 * We can't unload metaslabs with no spacemap because
2223 			 * they're not ready to be unloaded yet. We can't
2224 			 * unload metaslabs with outstanding allocations
2225 			 * because doing so could cause the metaslab's weight
2226 			 * to decrease while it's unloaded, which violates an
2227 			 * invariant that we use to prevent unnecessary
2228 			 * loading. We also don't unload metaslabs that are
2229 			 * currently active because they are high-weight
2230 			 * metaslabs that are likely to be used in the near
2231 			 * future.
2232 			 */
2233 			mutex_enter(&msp->ms_lock);
2234 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2235 			    msp->ms_allocating_total == 0) {
2236 				metaslab_unload(msp);
2237 			}
2238 			mutex_exit(&msp->ms_lock);
2239 			msp = next_msp;
2240 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2241 		}
2242 	}
2243 #endif
2244 }
2245 
2246 static int
2247 metaslab_load_impl(metaslab_t *msp)
2248 {
2249 	int error = 0;
2250 
2251 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2252 	ASSERT(msp->ms_loading);
2253 	ASSERT(!msp->ms_condensing);
2254 
2255 	/*
2256 	 * We temporarily drop the lock to unblock other operations while we
2257 	 * are reading the space map. Therefore, metaslab_sync() and
2258 	 * metaslab_sync_done() can run at the same time as we do.
2259 	 *
2260 	 * If we are using the log space maps, metaslab_sync() can't write to
2261 	 * the metaslab's space map while we are loading as we only write to
2262 	 * it when we are flushing the metaslab, and that can't happen while
2263 	 * we are loading it.
2264 	 *
2265 	 * If we are not using log space maps though, metaslab_sync() can
2266 	 * append to the space map while we are loading. Therefore we load
2267 	 * only entries that existed when we started the load. Additionally,
2268 	 * metaslab_sync_done() has to wait for the load to complete because
2269 	 * there are potential races like metaslab_load() loading parts of the
2270 	 * space map that are currently being appended by metaslab_sync(). If
2271 	 * we didn't, the ms_allocatable would have entries that
2272 	 * metaslab_sync_done() would try to re-add later.
2273 	 *
2274 	 * That's why before dropping the lock we remember the synced length
2275 	 * of the metaslab and read up to that point of the space map,
2276 	 * ignoring entries appended by metaslab_sync() that happen after we
2277 	 * drop the lock.
2278 	 */
2279 	uint64_t length = msp->ms_synced_length;
2280 	mutex_exit(&msp->ms_lock);
2281 
2282 	hrtime_t load_start = gethrtime();
2283 	metaslab_rt_arg_t *mrap;
2284 	if (msp->ms_allocatable->rt_arg == NULL) {
2285 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2286 	} else {
2287 		mrap = msp->ms_allocatable->rt_arg;
2288 		msp->ms_allocatable->rt_ops = NULL;
2289 		msp->ms_allocatable->rt_arg = NULL;
2290 	}
2291 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2292 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2293 
2294 	if (msp->ms_sm != NULL) {
2295 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2296 		    SM_FREE, length);
2297 
2298 		/* Now, populate the size-sorted tree. */
2299 		metaslab_rt_create(msp->ms_allocatable, mrap);
2300 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2301 		msp->ms_allocatable->rt_arg = mrap;
2302 
2303 		struct mssa_arg arg = {0};
2304 		arg.rt = msp->ms_allocatable;
2305 		arg.mra = mrap;
2306 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2307 		    &arg);
2308 	} else {
2309 		/*
2310 		 * Add the size-sorted tree first, since we don't need to load
2311 		 * the metaslab from the spacemap.
2312 		 */
2313 		metaslab_rt_create(msp->ms_allocatable, mrap);
2314 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2315 		msp->ms_allocatable->rt_arg = mrap;
2316 		/*
2317 		 * The space map has not been allocated yet, so treat
2318 		 * all the space in the metaslab as free and add it to the
2319 		 * ms_allocatable tree.
2320 		 */
2321 		range_tree_add(msp->ms_allocatable,
2322 		    msp->ms_start, msp->ms_size);
2323 
2324 		if (msp->ms_new) {
2325 			/*
2326 			 * If the ms_sm doesn't exist, this means that this
2327 			 * metaslab hasn't gone through metaslab_sync() and
2328 			 * thus has never been dirtied. So we shouldn't
2329 			 * expect any unflushed allocs or frees from previous
2330 			 * TXGs.
2331 			 */
2332 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2333 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2334 		}
2335 	}
2336 
2337 	/*
2338 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2339 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2340 	 * while we are about to use them and populate the ms_allocatable.
2341 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2342 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2343 	 */
2344 	mutex_enter(&msp->ms_sync_lock);
2345 	mutex_enter(&msp->ms_lock);
2346 
2347 	ASSERT(!msp->ms_condensing);
2348 	ASSERT(!msp->ms_flushing);
2349 
2350 	if (error != 0) {
2351 		mutex_exit(&msp->ms_sync_lock);
2352 		return (error);
2353 	}
2354 
2355 	ASSERT3P(msp->ms_group, !=, NULL);
2356 	msp->ms_loaded = B_TRUE;
2357 
2358 	/*
2359 	 * Apply all the unflushed changes to ms_allocatable right
2360 	 * away so any manipulations we do below have a clear view
2361 	 * of what is allocated and what is free.
2362 	 */
2363 	range_tree_walk(msp->ms_unflushed_allocs,
2364 	    range_tree_remove, msp->ms_allocatable);
2365 	range_tree_walk(msp->ms_unflushed_frees,
2366 	    range_tree_add, msp->ms_allocatable);
2367 
2368 	ASSERT3P(msp->ms_group, !=, NULL);
2369 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2370 	if (spa_syncing_log_sm(spa) != NULL) {
2371 		ASSERT(spa_feature_is_enabled(spa,
2372 		    SPA_FEATURE_LOG_SPACEMAP));
2373 
2374 		/*
2375 		 * If we use a log space map we add all the segments
2376 		 * that are in ms_unflushed_frees so they are available
2377 		 * for allocation.
2378 		 *
2379 		 * ms_allocatable needs to contain all free segments
2380 		 * that are ready for allocations (thus not segments
2381 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2382 		 * But if we grab the lock in this code path at a sync
2383 		 * pass later that 1, then it also contains the
2384 		 * segments of ms_freed (they were added to it earlier
2385 		 * in this path through ms_unflushed_frees). So we
2386 		 * need to remove all the segments that exist in
2387 		 * ms_freed from ms_allocatable as they will be added
2388 		 * later in metaslab_sync_done().
2389 		 *
2390 		 * When there's no log space map, the ms_allocatable
2391 		 * correctly doesn't contain any segments that exist
2392 		 * in ms_freed [see ms_synced_length].
2393 		 */
2394 		range_tree_walk(msp->ms_freed,
2395 		    range_tree_remove, msp->ms_allocatable);
2396 	}
2397 
2398 	/*
2399 	 * If we are not using the log space map, ms_allocatable
2400 	 * contains the segments that exist in the ms_defer trees
2401 	 * [see ms_synced_length]. Thus we need to remove them
2402 	 * from ms_allocatable as they will be added again in
2403 	 * metaslab_sync_done().
2404 	 *
2405 	 * If we are using the log space map, ms_allocatable still
2406 	 * contains the segments that exist in the ms_defer trees.
2407 	 * Not because it read them through the ms_sm though. But
2408 	 * because these segments are part of ms_unflushed_frees
2409 	 * whose segments we add to ms_allocatable earlier in this
2410 	 * code path.
2411 	 */
2412 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2413 		range_tree_walk(msp->ms_defer[t],
2414 		    range_tree_remove, msp->ms_allocatable);
2415 	}
2416 
2417 	/*
2418 	 * Call metaslab_recalculate_weight_and_sort() now that the
2419 	 * metaslab is loaded so we get the metaslab's real weight.
2420 	 *
2421 	 * Unless this metaslab was created with older software and
2422 	 * has not yet been converted to use segment-based weight, we
2423 	 * expect the new weight to be better or equal to the weight
2424 	 * that the metaslab had while it was not loaded. This is
2425 	 * because the old weight does not take into account the
2426 	 * consolidation of adjacent segments between TXGs. [see
2427 	 * comment for ms_synchist and ms_deferhist[] for more info]
2428 	 */
2429 	uint64_t weight = msp->ms_weight;
2430 	uint64_t max_size = msp->ms_max_size;
2431 	metaslab_recalculate_weight_and_sort(msp);
2432 	if (!WEIGHT_IS_SPACEBASED(weight))
2433 		ASSERT3U(weight, <=, msp->ms_weight);
2434 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2435 	ASSERT3U(max_size, <=, msp->ms_max_size);
2436 	hrtime_t load_end = gethrtime();
2437 	msp->ms_load_time = load_end;
2438 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2439 	    "ms_id %llu, smp_length %llu, "
2440 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2441 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2442 	    "loading_time %lld ms, ms_max_size %llu, "
2443 	    "max size error %lld, "
2444 	    "old_weight %llx, new_weight %llx",
2445 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2446 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2447 	    (u_longlong_t)msp->ms_id,
2448 	    (u_longlong_t)space_map_length(msp->ms_sm),
2449 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2450 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2451 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2452 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2453 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2454 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2455 	    (longlong_t)((load_end - load_start) / 1000000),
2456 	    (u_longlong_t)msp->ms_max_size,
2457 	    (u_longlong_t)msp->ms_max_size - max_size,
2458 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2459 
2460 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2461 	mutex_exit(&msp->ms_sync_lock);
2462 	return (0);
2463 }
2464 
2465 int
2466 metaslab_load(metaslab_t *msp)
2467 {
2468 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2469 
2470 	/*
2471 	 * There may be another thread loading the same metaslab, if that's
2472 	 * the case just wait until the other thread is done and return.
2473 	 */
2474 	metaslab_load_wait(msp);
2475 	if (msp->ms_loaded)
2476 		return (0);
2477 	VERIFY(!msp->ms_loading);
2478 	ASSERT(!msp->ms_condensing);
2479 
2480 	/*
2481 	 * We set the loading flag BEFORE potentially dropping the lock to
2482 	 * wait for an ongoing flush (see ms_flushing below). This way other
2483 	 * threads know that there is already a thread that is loading this
2484 	 * metaslab.
2485 	 */
2486 	msp->ms_loading = B_TRUE;
2487 
2488 	/*
2489 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2490 	 * both here (during space_map_load()) and in metaslab_flush() (when
2491 	 * we flush our changes to the ms_sm).
2492 	 */
2493 	if (msp->ms_flushing)
2494 		metaslab_flush_wait(msp);
2495 
2496 	/*
2497 	 * In the possibility that we were waiting for the metaslab to be
2498 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2499 	 * no one else loaded the metaslab somehow.
2500 	 */
2501 	ASSERT(!msp->ms_loaded);
2502 
2503 	/*
2504 	 * If we're loading a metaslab in the normal class, consider evicting
2505 	 * another one to keep our memory usage under the limit defined by the
2506 	 * zfs_metaslab_mem_limit tunable.
2507 	 */
2508 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2509 	    msp->ms_group->mg_class) {
2510 		metaslab_potentially_evict(msp->ms_group->mg_class);
2511 	}
2512 
2513 	int error = metaslab_load_impl(msp);
2514 
2515 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2516 	msp->ms_loading = B_FALSE;
2517 	cv_broadcast(&msp->ms_load_cv);
2518 
2519 	return (error);
2520 }
2521 
2522 void
2523 metaslab_unload(metaslab_t *msp)
2524 {
2525 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2526 
2527 	/*
2528 	 * This can happen if a metaslab is selected for eviction (in
2529 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2530 	 * metaslab_class_evict_old).
2531 	 */
2532 	if (!msp->ms_loaded)
2533 		return;
2534 
2535 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2536 	msp->ms_loaded = B_FALSE;
2537 	msp->ms_unload_time = gethrtime();
2538 
2539 	msp->ms_activation_weight = 0;
2540 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2541 
2542 	if (msp->ms_group != NULL) {
2543 		metaslab_class_t *mc = msp->ms_group->mg_class;
2544 		multilist_sublist_t *mls =
2545 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2546 		if (multilist_link_active(&msp->ms_class_txg_node))
2547 			multilist_sublist_remove(mls, msp);
2548 		multilist_sublist_unlock(mls);
2549 
2550 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2551 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2552 		    "ms_id %llu, weight %llx, "
2553 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2554 		    "loaded %llu ms ago, max_size %llu",
2555 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2556 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2557 		    (u_longlong_t)msp->ms_id,
2558 		    (u_longlong_t)msp->ms_weight,
2559 		    (u_longlong_t)msp->ms_selected_txg,
2560 		    (u_longlong_t)(msp->ms_unload_time -
2561 		    msp->ms_selected_time) / 1000 / 1000,
2562 		    (u_longlong_t)msp->ms_alloc_txg,
2563 		    (u_longlong_t)(msp->ms_unload_time -
2564 		    msp->ms_load_time) / 1000 / 1000,
2565 		    (u_longlong_t)msp->ms_max_size);
2566 	}
2567 
2568 	/*
2569 	 * We explicitly recalculate the metaslab's weight based on its space
2570 	 * map (as it is now not loaded). We want unload metaslabs to always
2571 	 * have their weights calculated from the space map histograms, while
2572 	 * loaded ones have it calculated from their in-core range tree
2573 	 * [see metaslab_load()]. This way, the weight reflects the information
2574 	 * available in-core, whether it is loaded or not.
2575 	 *
2576 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2577 	 * at which point it doesn't make sense for us to do the recalculation
2578 	 * and the sorting.
2579 	 */
2580 	if (msp->ms_group != NULL)
2581 		metaslab_recalculate_weight_and_sort(msp);
2582 }
2583 
2584 /*
2585  * We want to optimize the memory use of the per-metaslab range
2586  * trees. To do this, we store the segments in the range trees in
2587  * units of sectors, zero-indexing from the start of the metaslab. If
2588  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2589  * the ranges using two uint32_ts, rather than two uint64_ts.
2590  */
2591 range_seg_type_t
2592 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2593     uint64_t *start, uint64_t *shift)
2594 {
2595 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2596 	    !zfs_metaslab_force_large_segs) {
2597 		*shift = vdev->vdev_ashift;
2598 		*start = msp->ms_start;
2599 		return (RANGE_SEG32);
2600 	} else {
2601 		*shift = 0;
2602 		*start = 0;
2603 		return (RANGE_SEG64);
2604 	}
2605 }
2606 
2607 void
2608 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2609 {
2610 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2611 	metaslab_class_t *mc = msp->ms_group->mg_class;
2612 	multilist_sublist_t *mls =
2613 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2614 	if (multilist_link_active(&msp->ms_class_txg_node))
2615 		multilist_sublist_remove(mls, msp);
2616 	msp->ms_selected_txg = txg;
2617 	msp->ms_selected_time = gethrtime();
2618 	multilist_sublist_insert_tail(mls, msp);
2619 	multilist_sublist_unlock(mls);
2620 }
2621 
2622 void
2623 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2624     int64_t defer_delta, int64_t space_delta)
2625 {
2626 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2627 
2628 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2629 	ASSERT(vd->vdev_ms_count != 0);
2630 
2631 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2632 	    vdev_deflated_space(vd, space_delta));
2633 }
2634 
2635 int
2636 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2637     uint64_t txg, metaslab_t **msp)
2638 {
2639 	vdev_t *vd = mg->mg_vd;
2640 	spa_t *spa = vd->vdev_spa;
2641 	objset_t *mos = spa->spa_meta_objset;
2642 	metaslab_t *ms;
2643 	int error;
2644 
2645 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2646 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2647 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2648 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2649 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2650 	multilist_link_init(&ms->ms_class_txg_node);
2651 
2652 	ms->ms_id = id;
2653 	ms->ms_start = id << vd->vdev_ms_shift;
2654 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2655 	ms->ms_allocator = -1;
2656 	ms->ms_new = B_TRUE;
2657 
2658 	vdev_ops_t *ops = vd->vdev_ops;
2659 	if (ops->vdev_op_metaslab_init != NULL)
2660 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2661 
2662 	/*
2663 	 * We only open space map objects that already exist. All others
2664 	 * will be opened when we finally allocate an object for it. For
2665 	 * readonly pools there is no need to open the space map object.
2666 	 *
2667 	 * Note:
2668 	 * When called from vdev_expand(), we can't call into the DMU as
2669 	 * we are holding the spa_config_lock as a writer and we would
2670 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2671 	 * that case, the object parameter is zero though, so we won't
2672 	 * call into the DMU.
2673 	 */
2674 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2675 	    !spa->spa_read_spacemaps)) {
2676 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2677 		    ms->ms_size, vd->vdev_ashift);
2678 
2679 		if (error != 0) {
2680 			kmem_free(ms, sizeof (metaslab_t));
2681 			return (error);
2682 		}
2683 
2684 		ASSERT(ms->ms_sm != NULL);
2685 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2686 	}
2687 
2688 	uint64_t shift, start;
2689 	range_seg_type_t type =
2690 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2691 
2692 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2693 	for (int t = 0; t < TXG_SIZE; t++) {
2694 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2695 		    NULL, start, shift);
2696 	}
2697 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2698 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2699 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2700 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2701 		    start, shift);
2702 	}
2703 	ms->ms_checkpointing =
2704 	    range_tree_create(NULL, type, NULL, start, shift);
2705 	ms->ms_unflushed_allocs =
2706 	    range_tree_create(NULL, type, NULL, start, shift);
2707 
2708 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2709 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2710 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2711 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2712 	    type, mrap, start, shift);
2713 
2714 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2715 
2716 	metaslab_group_add(mg, ms);
2717 	metaslab_set_fragmentation(ms, B_FALSE);
2718 
2719 	/*
2720 	 * If we're opening an existing pool (txg == 0) or creating
2721 	 * a new one (txg == TXG_INITIAL), all space is available now.
2722 	 * If we're adding space to an existing pool, the new space
2723 	 * does not become available until after this txg has synced.
2724 	 * The metaslab's weight will also be initialized when we sync
2725 	 * out this txg. This ensures that we don't attempt to allocate
2726 	 * from it before we have initialized it completely.
2727 	 */
2728 	if (txg <= TXG_INITIAL) {
2729 		metaslab_sync_done(ms, 0);
2730 		metaslab_space_update(vd, mg->mg_class,
2731 		    metaslab_allocated_space(ms), 0, 0);
2732 	}
2733 
2734 	if (txg != 0) {
2735 		vdev_dirty(vd, 0, NULL, txg);
2736 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2737 	}
2738 
2739 	*msp = ms;
2740 
2741 	return (0);
2742 }
2743 
2744 static void
2745 metaslab_fini_flush_data(metaslab_t *msp)
2746 {
2747 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2748 
2749 	if (metaslab_unflushed_txg(msp) == 0) {
2750 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2751 		    ==, NULL);
2752 		return;
2753 	}
2754 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2755 
2756 	mutex_enter(&spa->spa_flushed_ms_lock);
2757 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2758 	mutex_exit(&spa->spa_flushed_ms_lock);
2759 
2760 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2761 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2762 }
2763 
2764 uint64_t
2765 metaslab_unflushed_changes_memused(metaslab_t *ms)
2766 {
2767 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2768 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2769 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2770 }
2771 
2772 void
2773 metaslab_fini(metaslab_t *msp)
2774 {
2775 	metaslab_group_t *mg = msp->ms_group;
2776 	vdev_t *vd = mg->mg_vd;
2777 	spa_t *spa = vd->vdev_spa;
2778 
2779 	metaslab_fini_flush_data(msp);
2780 
2781 	metaslab_group_remove(mg, msp);
2782 
2783 	mutex_enter(&msp->ms_lock);
2784 	VERIFY(msp->ms_group == NULL);
2785 
2786 	/*
2787 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2788 	 * space hasn't been accounted for in its vdev and doesn't need to be
2789 	 * subtracted.
2790 	 */
2791 	if (!msp->ms_new) {
2792 		metaslab_space_update(vd, mg->mg_class,
2793 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2794 
2795 	}
2796 	space_map_close(msp->ms_sm);
2797 	msp->ms_sm = NULL;
2798 
2799 	metaslab_unload(msp);
2800 
2801 	range_tree_destroy(msp->ms_allocatable);
2802 	range_tree_destroy(msp->ms_freeing);
2803 	range_tree_destroy(msp->ms_freed);
2804 
2805 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2806 	    metaslab_unflushed_changes_memused(msp));
2807 	spa->spa_unflushed_stats.sus_memused -=
2808 	    metaslab_unflushed_changes_memused(msp);
2809 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2810 	range_tree_destroy(msp->ms_unflushed_allocs);
2811 	range_tree_destroy(msp->ms_checkpointing);
2812 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2813 	range_tree_destroy(msp->ms_unflushed_frees);
2814 
2815 	for (int t = 0; t < TXG_SIZE; t++) {
2816 		range_tree_destroy(msp->ms_allocating[t]);
2817 	}
2818 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2819 		range_tree_destroy(msp->ms_defer[t]);
2820 	}
2821 	ASSERT0(msp->ms_deferspace);
2822 
2823 	for (int t = 0; t < TXG_SIZE; t++)
2824 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2825 
2826 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2827 	range_tree_destroy(msp->ms_trim);
2828 
2829 	mutex_exit(&msp->ms_lock);
2830 	cv_destroy(&msp->ms_load_cv);
2831 	cv_destroy(&msp->ms_flush_cv);
2832 	mutex_destroy(&msp->ms_lock);
2833 	mutex_destroy(&msp->ms_sync_lock);
2834 	ASSERT3U(msp->ms_allocator, ==, -1);
2835 
2836 	kmem_free(msp, sizeof (metaslab_t));
2837 }
2838 
2839 #define	FRAGMENTATION_TABLE_SIZE	17
2840 
2841 /*
2842  * This table defines a segment size based fragmentation metric that will
2843  * allow each metaslab to derive its own fragmentation value. This is done
2844  * by calculating the space in each bucket of the spacemap histogram and
2845  * multiplying that by the fragmentation metric in this table. Doing
2846  * this for all buckets and dividing it by the total amount of free
2847  * space in this metaslab (i.e. the total free space in all buckets) gives
2848  * us the fragmentation metric. This means that a high fragmentation metric
2849  * equates to most of the free space being comprised of small segments.
2850  * Conversely, if the metric is low, then most of the free space is in
2851  * large segments. A 10% change in fragmentation equates to approximately
2852  * double the number of segments.
2853  *
2854  * This table defines 0% fragmented space using 16MB segments. Testing has
2855  * shown that segments that are greater than or equal to 16MB do not suffer
2856  * from drastic performance problems. Using this value, we derive the rest
2857  * of the table. Since the fragmentation value is never stored on disk, it
2858  * is possible to change these calculations in the future.
2859  */
2860 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2861 	100,	/* 512B	*/
2862 	100,	/* 1K	*/
2863 	98,	/* 2K	*/
2864 	95,	/* 4K	*/
2865 	90,	/* 8K	*/
2866 	80,	/* 16K	*/
2867 	70,	/* 32K	*/
2868 	60,	/* 64K	*/
2869 	50,	/* 128K	*/
2870 	40,	/* 256K	*/
2871 	30,	/* 512K	*/
2872 	20,	/* 1M	*/
2873 	15,	/* 2M	*/
2874 	10,	/* 4M	*/
2875 	5,	/* 8M	*/
2876 	0	/* 16M	*/
2877 };
2878 
2879 /*
2880  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2881  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2882  * been upgraded and does not support this metric. Otherwise, the return
2883  * value should be in the range [0, 100].
2884  */
2885 static void
2886 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2887 {
2888 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2889 	uint64_t fragmentation = 0;
2890 	uint64_t total = 0;
2891 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2892 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2893 
2894 	if (!feature_enabled) {
2895 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2896 		return;
2897 	}
2898 
2899 	/*
2900 	 * A null space map means that the entire metaslab is free
2901 	 * and thus is not fragmented.
2902 	 */
2903 	if (msp->ms_sm == NULL) {
2904 		msp->ms_fragmentation = 0;
2905 		return;
2906 	}
2907 
2908 	/*
2909 	 * If this metaslab's space map has not been upgraded, flag it
2910 	 * so that we upgrade next time we encounter it.
2911 	 */
2912 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2913 		uint64_t txg = spa_syncing_txg(spa);
2914 		vdev_t *vd = msp->ms_group->mg_vd;
2915 
2916 		/*
2917 		 * If we've reached the final dirty txg, then we must
2918 		 * be shutting down the pool. We don't want to dirty
2919 		 * any data past this point so skip setting the condense
2920 		 * flag. We can retry this action the next time the pool
2921 		 * is imported. We also skip marking this metaslab for
2922 		 * condensing if the caller has explicitly set nodirty.
2923 		 */
2924 		if (!nodirty &&
2925 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2926 			msp->ms_condense_wanted = B_TRUE;
2927 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2928 			zfs_dbgmsg("txg %llu, requesting force condense: "
2929 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2930 			    (u_longlong_t)msp->ms_id,
2931 			    (u_longlong_t)vd->vdev_id);
2932 		}
2933 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2934 		return;
2935 	}
2936 
2937 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2938 		uint64_t space = 0;
2939 		uint8_t shift = msp->ms_sm->sm_shift;
2940 
2941 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2942 		    FRAGMENTATION_TABLE_SIZE - 1);
2943 
2944 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2945 			continue;
2946 
2947 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2948 		total += space;
2949 
2950 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2951 		fragmentation += space * zfs_frag_table[idx];
2952 	}
2953 
2954 	if (total > 0)
2955 		fragmentation /= total;
2956 	ASSERT3U(fragmentation, <=, 100);
2957 
2958 	msp->ms_fragmentation = fragmentation;
2959 }
2960 
2961 /*
2962  * Compute a weight -- a selection preference value -- for the given metaslab.
2963  * This is based on the amount of free space, the level of fragmentation,
2964  * the LBA range, and whether the metaslab is loaded.
2965  */
2966 static uint64_t
2967 metaslab_space_weight(metaslab_t *msp)
2968 {
2969 	metaslab_group_t *mg = msp->ms_group;
2970 	vdev_t *vd = mg->mg_vd;
2971 	uint64_t weight, space;
2972 
2973 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2974 
2975 	/*
2976 	 * The baseline weight is the metaslab's free space.
2977 	 */
2978 	space = msp->ms_size - metaslab_allocated_space(msp);
2979 
2980 	if (metaslab_fragmentation_factor_enabled &&
2981 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2982 		/*
2983 		 * Use the fragmentation information to inversely scale
2984 		 * down the baseline weight. We need to ensure that we
2985 		 * don't exclude this metaslab completely when it's 100%
2986 		 * fragmented. To avoid this we reduce the fragmented value
2987 		 * by 1.
2988 		 */
2989 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2990 
2991 		/*
2992 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2993 		 * this metaslab again. The fragmentation metric may have
2994 		 * decreased the space to something smaller than
2995 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2996 		 * so that we can consume any remaining space.
2997 		 */
2998 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2999 			space = SPA_MINBLOCKSIZE;
3000 	}
3001 	weight = space;
3002 
3003 	/*
3004 	 * Modern disks have uniform bit density and constant angular velocity.
3005 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3006 	 * than the inner zones by the ratio of outer to inner track diameter,
3007 	 * which is typically around 2:1.  We account for this by assigning
3008 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3009 	 * In effect, this means that we'll select the metaslab with the most
3010 	 * free bandwidth rather than simply the one with the most free space.
3011 	 */
3012 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3013 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3014 		ASSERT(weight >= space && weight <= 2 * space);
3015 	}
3016 
3017 	/*
3018 	 * If this metaslab is one we're actively using, adjust its
3019 	 * weight to make it preferable to any inactive metaslab so
3020 	 * we'll polish it off. If the fragmentation on this metaslab
3021 	 * has exceed our threshold, then don't mark it active.
3022 	 */
3023 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3024 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3025 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3026 	}
3027 
3028 	WEIGHT_SET_SPACEBASED(weight);
3029 	return (weight);
3030 }
3031 
3032 /*
3033  * Return the weight of the specified metaslab, according to the segment-based
3034  * weighting algorithm. The metaslab must be loaded. This function can
3035  * be called within a sync pass since it relies only on the metaslab's
3036  * range tree which is always accurate when the metaslab is loaded.
3037  */
3038 static uint64_t
3039 metaslab_weight_from_range_tree(metaslab_t *msp)
3040 {
3041 	uint64_t weight = 0;
3042 	uint32_t segments = 0;
3043 
3044 	ASSERT(msp->ms_loaded);
3045 
3046 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3047 	    i--) {
3048 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3049 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3050 
3051 		segments <<= 1;
3052 		segments += msp->ms_allocatable->rt_histogram[i];
3053 
3054 		/*
3055 		 * The range tree provides more precision than the space map
3056 		 * and must be downgraded so that all values fit within the
3057 		 * space map's histogram. This allows us to compare loaded
3058 		 * vs. unloaded metaslabs to determine which metaslab is
3059 		 * considered "best".
3060 		 */
3061 		if (i > max_idx)
3062 			continue;
3063 
3064 		if (segments != 0) {
3065 			WEIGHT_SET_COUNT(weight, segments);
3066 			WEIGHT_SET_INDEX(weight, i);
3067 			WEIGHT_SET_ACTIVE(weight, 0);
3068 			break;
3069 		}
3070 	}
3071 	return (weight);
3072 }
3073 
3074 /*
3075  * Calculate the weight based on the on-disk histogram. Should be applied
3076  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3077  * give results consistent with the on-disk state
3078  */
3079 static uint64_t
3080 metaslab_weight_from_spacemap(metaslab_t *msp)
3081 {
3082 	space_map_t *sm = msp->ms_sm;
3083 	ASSERT(!msp->ms_loaded);
3084 	ASSERT(sm != NULL);
3085 	ASSERT3U(space_map_object(sm), !=, 0);
3086 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3087 
3088 	/*
3089 	 * Create a joint histogram from all the segments that have made
3090 	 * it to the metaslab's space map histogram, that are not yet
3091 	 * available for allocation because they are still in the freeing
3092 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3093 	 * these segments from the space map's histogram to get a more
3094 	 * accurate weight.
3095 	 */
3096 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3097 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3098 		deferspace_histogram[i] += msp->ms_synchist[i];
3099 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3100 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3101 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3102 		}
3103 	}
3104 
3105 	uint64_t weight = 0;
3106 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3107 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3108 		    deferspace_histogram[i]);
3109 		uint64_t count =
3110 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3111 		if (count != 0) {
3112 			WEIGHT_SET_COUNT(weight, count);
3113 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3114 			WEIGHT_SET_ACTIVE(weight, 0);
3115 			break;
3116 		}
3117 	}
3118 	return (weight);
3119 }
3120 
3121 /*
3122  * Compute a segment-based weight for the specified metaslab. The weight
3123  * is determined by highest bucket in the histogram. The information
3124  * for the highest bucket is encoded into the weight value.
3125  */
3126 static uint64_t
3127 metaslab_segment_weight(metaslab_t *msp)
3128 {
3129 	metaslab_group_t *mg = msp->ms_group;
3130 	uint64_t weight = 0;
3131 	uint8_t shift = mg->mg_vd->vdev_ashift;
3132 
3133 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3134 
3135 	/*
3136 	 * The metaslab is completely free.
3137 	 */
3138 	if (metaslab_allocated_space(msp) == 0) {
3139 		int idx = highbit64(msp->ms_size) - 1;
3140 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3141 
3142 		if (idx < max_idx) {
3143 			WEIGHT_SET_COUNT(weight, 1ULL);
3144 			WEIGHT_SET_INDEX(weight, idx);
3145 		} else {
3146 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3147 			WEIGHT_SET_INDEX(weight, max_idx);
3148 		}
3149 		WEIGHT_SET_ACTIVE(weight, 0);
3150 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3151 		return (weight);
3152 	}
3153 
3154 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3155 
3156 	/*
3157 	 * If the metaslab is fully allocated then just make the weight 0.
3158 	 */
3159 	if (metaslab_allocated_space(msp) == msp->ms_size)
3160 		return (0);
3161 	/*
3162 	 * If the metaslab is already loaded, then use the range tree to
3163 	 * determine the weight. Otherwise, we rely on the space map information
3164 	 * to generate the weight.
3165 	 */
3166 	if (msp->ms_loaded) {
3167 		weight = metaslab_weight_from_range_tree(msp);
3168 	} else {
3169 		weight = metaslab_weight_from_spacemap(msp);
3170 	}
3171 
3172 	/*
3173 	 * If the metaslab was active the last time we calculated its weight
3174 	 * then keep it active. We want to consume the entire region that
3175 	 * is associated with this weight.
3176 	 */
3177 	if (msp->ms_activation_weight != 0 && weight != 0)
3178 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3179 	return (weight);
3180 }
3181 
3182 /*
3183  * Determine if we should attempt to allocate from this metaslab. If the
3184  * metaslab is loaded, then we can determine if the desired allocation
3185  * can be satisfied by looking at the size of the maximum free segment
3186  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3187  * weight. For segment-based weighting we can determine the maximum
3188  * allocation based on the index encoded in its value. For space-based
3189  * weights we rely on the entire weight (excluding the weight-type bit).
3190  */
3191 static boolean_t
3192 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3193 {
3194 	/*
3195 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3196 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3197 	 * set), and we should use the fast check as long as we're not in
3198 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3199 	 * seconds since the metaslab was unloaded.
3200 	 */
3201 	if (msp->ms_loaded ||
3202 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3203 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3204 		return (msp->ms_max_size >= asize);
3205 
3206 	boolean_t should_allocate;
3207 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3208 		/*
3209 		 * The metaslab segment weight indicates segments in the
3210 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3211 		 * Since the asize might be in the middle of the range, we
3212 		 * should attempt the allocation if asize < 2^(i+1).
3213 		 */
3214 		should_allocate = (asize <
3215 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3216 	} else {
3217 		should_allocate = (asize <=
3218 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3219 	}
3220 
3221 	return (should_allocate);
3222 }
3223 
3224 static uint64_t
3225 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3226 {
3227 	vdev_t *vd = msp->ms_group->mg_vd;
3228 	spa_t *spa = vd->vdev_spa;
3229 	uint64_t weight;
3230 
3231 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3232 
3233 	metaslab_set_fragmentation(msp, nodirty);
3234 
3235 	/*
3236 	 * Update the maximum size. If the metaslab is loaded, this will
3237 	 * ensure that we get an accurate maximum size if newly freed space
3238 	 * has been added back into the free tree. If the metaslab is
3239 	 * unloaded, we check if there's a larger free segment in the
3240 	 * unflushed frees. This is a lower bound on the largest allocatable
3241 	 * segment size. Coalescing of adjacent entries may reveal larger
3242 	 * allocatable segments, but we aren't aware of those until loading
3243 	 * the space map into a range tree.
3244 	 */
3245 	if (msp->ms_loaded) {
3246 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3247 	} else {
3248 		msp->ms_max_size = MAX(msp->ms_max_size,
3249 		    metaslab_largest_unflushed_free(msp));
3250 	}
3251 
3252 	/*
3253 	 * Segment-based weighting requires space map histogram support.
3254 	 */
3255 	if (zfs_metaslab_segment_weight_enabled &&
3256 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3257 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3258 	    sizeof (space_map_phys_t))) {
3259 		weight = metaslab_segment_weight(msp);
3260 	} else {
3261 		weight = metaslab_space_weight(msp);
3262 	}
3263 	return (weight);
3264 }
3265 
3266 void
3267 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3268 {
3269 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3270 
3271 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3272 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3273 	metaslab_group_sort(msp->ms_group, msp,
3274 	    metaslab_weight(msp, B_FALSE) | was_active);
3275 }
3276 
3277 static int
3278 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3279     int allocator, uint64_t activation_weight)
3280 {
3281 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3282 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3283 
3284 	/*
3285 	 * If we're activating for the claim code, we don't want to actually
3286 	 * set the metaslab up for a specific allocator.
3287 	 */
3288 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3289 		ASSERT0(msp->ms_activation_weight);
3290 		msp->ms_activation_weight = msp->ms_weight;
3291 		metaslab_group_sort(mg, msp, msp->ms_weight |
3292 		    activation_weight);
3293 		return (0);
3294 	}
3295 
3296 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3297 	    &mga->mga_primary : &mga->mga_secondary);
3298 
3299 	mutex_enter(&mg->mg_lock);
3300 	if (*mspp != NULL) {
3301 		mutex_exit(&mg->mg_lock);
3302 		return (EEXIST);
3303 	}
3304 
3305 	*mspp = msp;
3306 	ASSERT3S(msp->ms_allocator, ==, -1);
3307 	msp->ms_allocator = allocator;
3308 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3309 
3310 	ASSERT0(msp->ms_activation_weight);
3311 	msp->ms_activation_weight = msp->ms_weight;
3312 	metaslab_group_sort_impl(mg, msp,
3313 	    msp->ms_weight | activation_weight);
3314 	mutex_exit(&mg->mg_lock);
3315 
3316 	return (0);
3317 }
3318 
3319 static int
3320 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3321 {
3322 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3323 
3324 	/*
3325 	 * The current metaslab is already activated for us so there
3326 	 * is nothing to do. Already activated though, doesn't mean
3327 	 * that this metaslab is activated for our allocator nor our
3328 	 * requested activation weight. The metaslab could have started
3329 	 * as an active one for our allocator but changed allocators
3330 	 * while we were waiting to grab its ms_lock or we stole it
3331 	 * [see find_valid_metaslab()]. This means that there is a
3332 	 * possibility of passivating a metaslab of another allocator
3333 	 * or from a different activation mask, from this thread.
3334 	 */
3335 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3336 		ASSERT(msp->ms_loaded);
3337 		return (0);
3338 	}
3339 
3340 	int error = metaslab_load(msp);
3341 	if (error != 0) {
3342 		metaslab_group_sort(msp->ms_group, msp, 0);
3343 		return (error);
3344 	}
3345 
3346 	/*
3347 	 * When entering metaslab_load() we may have dropped the
3348 	 * ms_lock because we were loading this metaslab, or we
3349 	 * were waiting for another thread to load it for us. In
3350 	 * that scenario, we recheck the weight of the metaslab
3351 	 * to see if it was activated by another thread.
3352 	 *
3353 	 * If the metaslab was activated for another allocator or
3354 	 * it was activated with a different activation weight (e.g.
3355 	 * we wanted to make it a primary but it was activated as
3356 	 * secondary) we return error (EBUSY).
3357 	 *
3358 	 * If the metaslab was activated for the same allocator
3359 	 * and requested activation mask, skip activating it.
3360 	 */
3361 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3362 		if (msp->ms_allocator != allocator)
3363 			return (EBUSY);
3364 
3365 		if ((msp->ms_weight & activation_weight) == 0)
3366 			return (SET_ERROR(EBUSY));
3367 
3368 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3369 		    msp->ms_primary);
3370 		return (0);
3371 	}
3372 
3373 	/*
3374 	 * If the metaslab has literally 0 space, it will have weight 0. In
3375 	 * that case, don't bother activating it. This can happen if the
3376 	 * metaslab had space during find_valid_metaslab, but another thread
3377 	 * loaded it and used all that space while we were waiting to grab the
3378 	 * lock.
3379 	 */
3380 	if (msp->ms_weight == 0) {
3381 		ASSERT0(range_tree_space(msp->ms_allocatable));
3382 		return (SET_ERROR(ENOSPC));
3383 	}
3384 
3385 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3386 	    allocator, activation_weight)) != 0) {
3387 		return (error);
3388 	}
3389 
3390 	ASSERT(msp->ms_loaded);
3391 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3392 
3393 	return (0);
3394 }
3395 
3396 static void
3397 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3398     uint64_t weight)
3399 {
3400 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3401 	ASSERT(msp->ms_loaded);
3402 
3403 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3404 		metaslab_group_sort(mg, msp, weight);
3405 		return;
3406 	}
3407 
3408 	mutex_enter(&mg->mg_lock);
3409 	ASSERT3P(msp->ms_group, ==, mg);
3410 	ASSERT3S(0, <=, msp->ms_allocator);
3411 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3412 
3413 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3414 	if (msp->ms_primary) {
3415 		ASSERT3P(mga->mga_primary, ==, msp);
3416 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3417 		mga->mga_primary = NULL;
3418 	} else {
3419 		ASSERT3P(mga->mga_secondary, ==, msp);
3420 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3421 		mga->mga_secondary = NULL;
3422 	}
3423 	msp->ms_allocator = -1;
3424 	metaslab_group_sort_impl(mg, msp, weight);
3425 	mutex_exit(&mg->mg_lock);
3426 }
3427 
3428 static void
3429 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3430 {
3431 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3432 
3433 	/*
3434 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3435 	 * this metaslab again.  In that case, it had better be empty,
3436 	 * or we would be leaving space on the table.
3437 	 */
3438 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3439 	    size >= SPA_MINBLOCKSIZE ||
3440 	    range_tree_space(msp->ms_allocatable) == 0);
3441 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3442 
3443 	ASSERT(msp->ms_activation_weight != 0);
3444 	msp->ms_activation_weight = 0;
3445 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3446 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3447 }
3448 
3449 /*
3450  * Segment-based metaslabs are activated once and remain active until
3451  * we either fail an allocation attempt (similar to space-based metaslabs)
3452  * or have exhausted the free space in zfs_metaslab_switch_threshold
3453  * buckets since the metaslab was activated. This function checks to see
3454  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3455  * metaslab and passivates it proactively. This will allow us to select a
3456  * metaslab with a larger contiguous region, if any, remaining within this
3457  * metaslab group. If we're in sync pass > 1, then we continue using this
3458  * metaslab so that we don't dirty more block and cause more sync passes.
3459  */
3460 static void
3461 metaslab_segment_may_passivate(metaslab_t *msp)
3462 {
3463 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3464 
3465 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3466 		return;
3467 
3468 	/*
3469 	 * Since we are in the middle of a sync pass, the most accurate
3470 	 * information that is accessible to us is the in-core range tree
3471 	 * histogram; calculate the new weight based on that information.
3472 	 */
3473 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3474 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3475 	int current_idx = WEIGHT_GET_INDEX(weight);
3476 
3477 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3478 		metaslab_passivate(msp, weight);
3479 }
3480 
3481 static void
3482 metaslab_preload(void *arg)
3483 {
3484 	metaslab_t *msp = arg;
3485 	metaslab_class_t *mc = msp->ms_group->mg_class;
3486 	spa_t *spa = mc->mc_spa;
3487 	fstrans_cookie_t cookie = spl_fstrans_mark();
3488 
3489 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3490 
3491 	mutex_enter(&msp->ms_lock);
3492 	(void) metaslab_load(msp);
3493 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3494 	mutex_exit(&msp->ms_lock);
3495 	spl_fstrans_unmark(cookie);
3496 }
3497 
3498 static void
3499 metaslab_group_preload(metaslab_group_t *mg)
3500 {
3501 	spa_t *spa = mg->mg_vd->vdev_spa;
3502 	metaslab_t *msp;
3503 	avl_tree_t *t = &mg->mg_metaslab_tree;
3504 	int m = 0;
3505 
3506 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3507 		taskq_wait_outstanding(mg->mg_taskq, 0);
3508 		return;
3509 	}
3510 
3511 	mutex_enter(&mg->mg_lock);
3512 
3513 	/*
3514 	 * Load the next potential metaslabs
3515 	 */
3516 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3517 		ASSERT3P(msp->ms_group, ==, mg);
3518 
3519 		/*
3520 		 * We preload only the maximum number of metaslabs specified
3521 		 * by metaslab_preload_limit. If a metaslab is being forced
3522 		 * to condense then we preload it too. This will ensure
3523 		 * that force condensing happens in the next txg.
3524 		 */
3525 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3526 			continue;
3527 		}
3528 
3529 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3530 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3531 	}
3532 	mutex_exit(&mg->mg_lock);
3533 }
3534 
3535 /*
3536  * Determine if the space map's on-disk footprint is past our tolerance for
3537  * inefficiency. We would like to use the following criteria to make our
3538  * decision:
3539  *
3540  * 1. Do not condense if the size of the space map object would dramatically
3541  *    increase as a result of writing out the free space range tree.
3542  *
3543  * 2. Condense if the on on-disk space map representation is at least
3544  *    zfs_condense_pct/100 times the size of the optimal representation
3545  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3546  *
3547  * 3. Do not condense if the on-disk size of the space map does not actually
3548  *    decrease.
3549  *
3550  * Unfortunately, we cannot compute the on-disk size of the space map in this
3551  * context because we cannot accurately compute the effects of compression, etc.
3552  * Instead, we apply the heuristic described in the block comment for
3553  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3554  * is greater than a threshold number of blocks.
3555  */
3556 static boolean_t
3557 metaslab_should_condense(metaslab_t *msp)
3558 {
3559 	space_map_t *sm = msp->ms_sm;
3560 	vdev_t *vd = msp->ms_group->mg_vd;
3561 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3562 
3563 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3564 	ASSERT(msp->ms_loaded);
3565 	ASSERT(sm != NULL);
3566 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3567 
3568 	/*
3569 	 * We always condense metaslabs that are empty and metaslabs for
3570 	 * which a condense request has been made.
3571 	 */
3572 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3573 	    msp->ms_condense_wanted)
3574 		return (B_TRUE);
3575 
3576 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3577 	uint64_t object_size = space_map_length(sm);
3578 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3579 	    msp->ms_allocatable, SM_NO_VDEVID);
3580 
3581 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3582 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3583 }
3584 
3585 /*
3586  * Condense the on-disk space map representation to its minimized form.
3587  * The minimized form consists of a small number of allocations followed
3588  * by the entries of the free range tree (ms_allocatable). The condensed
3589  * spacemap contains all the entries of previous TXGs (including those in
3590  * the pool-wide log spacemaps; thus this is effectively a superset of
3591  * metaslab_flush()), but this TXG's entries still need to be written.
3592  */
3593 static void
3594 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3595 {
3596 	range_tree_t *condense_tree;
3597 	space_map_t *sm = msp->ms_sm;
3598 	uint64_t txg = dmu_tx_get_txg(tx);
3599 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3600 
3601 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3602 	ASSERT(msp->ms_loaded);
3603 	ASSERT(msp->ms_sm != NULL);
3604 
3605 	/*
3606 	 * In order to condense the space map, we need to change it so it
3607 	 * only describes which segments are currently allocated and free.
3608 	 *
3609 	 * All the current free space resides in the ms_allocatable, all
3610 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3611 	 * ms_freed because it is empty because we're in sync pass 1. We
3612 	 * ignore ms_freeing because these changes are not yet reflected
3613 	 * in the spacemap (they will be written later this txg).
3614 	 *
3615 	 * So to truncate the space map to represent all the entries of
3616 	 * previous TXGs we do the following:
3617 	 *
3618 	 * 1] We create a range tree (condense tree) that is 100% empty.
3619 	 * 2] We add to it all segments found in the ms_defer trees
3620 	 *    as those segments are marked as free in the original space
3621 	 *    map. We do the same with the ms_allocating trees for the same
3622 	 *    reason. Adding these segments should be a relatively
3623 	 *    inexpensive operation since we expect these trees to have a
3624 	 *    small number of nodes.
3625 	 * 3] We vacate any unflushed allocs, since they are not frees we
3626 	 *    need to add to the condense tree. Then we vacate any
3627 	 *    unflushed frees as they should already be part of ms_allocatable.
3628 	 * 4] At this point, we would ideally like to add all segments
3629 	 *    in the ms_allocatable tree from the condense tree. This way
3630 	 *    we would write all the entries of the condense tree as the
3631 	 *    condensed space map, which would only contain freed
3632 	 *    segments with everything else assumed to be allocated.
3633 	 *
3634 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3635 	 *    be large, and therefore computationally expensive to add to
3636 	 *    the condense_tree. Instead we first sync out an entry marking
3637 	 *    everything as allocated, then the condense_tree and then the
3638 	 *    ms_allocatable, in the condensed space map. While this is not
3639 	 *    optimal, it is typically close to optimal and more importantly
3640 	 *    much cheaper to compute.
3641 	 *
3642 	 * 5] Finally, as both of the unflushed trees were written to our
3643 	 *    new and condensed metaslab space map, we basically flushed
3644 	 *    all the unflushed changes to disk, thus we call
3645 	 *    metaslab_flush_update().
3646 	 */
3647 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3648 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3649 
3650 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3651 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3652 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3653 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3654 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3655 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3656 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3657 
3658 	msp->ms_condense_wanted = B_FALSE;
3659 
3660 	range_seg_type_t type;
3661 	uint64_t shift, start;
3662 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3663 	    &start, &shift);
3664 
3665 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3666 
3667 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3668 		range_tree_walk(msp->ms_defer[t],
3669 		    range_tree_add, condense_tree);
3670 	}
3671 
3672 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3673 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3674 		    range_tree_add, condense_tree);
3675 	}
3676 
3677 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3678 	    metaslab_unflushed_changes_memused(msp));
3679 	spa->spa_unflushed_stats.sus_memused -=
3680 	    metaslab_unflushed_changes_memused(msp);
3681 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3682 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3683 
3684 	/*
3685 	 * We're about to drop the metaslab's lock thus allowing other
3686 	 * consumers to change it's content. Set the metaslab's ms_condensing
3687 	 * flag to ensure that allocations on this metaslab do not occur
3688 	 * while we're in the middle of committing it to disk. This is only
3689 	 * critical for ms_allocatable as all other range trees use per TXG
3690 	 * views of their content.
3691 	 */
3692 	msp->ms_condensing = B_TRUE;
3693 
3694 	mutex_exit(&msp->ms_lock);
3695 	uint64_t object = space_map_object(msp->ms_sm);
3696 	space_map_truncate(sm,
3697 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3698 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3699 
3700 	/*
3701 	 * space_map_truncate() may have reallocated the spacemap object.
3702 	 * If so, update the vdev_ms_array.
3703 	 */
3704 	if (space_map_object(msp->ms_sm) != object) {
3705 		object = space_map_object(msp->ms_sm);
3706 		dmu_write(spa->spa_meta_objset,
3707 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3708 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3709 	}
3710 
3711 	/*
3712 	 * Note:
3713 	 * When the log space map feature is enabled, each space map will
3714 	 * always have ALLOCS followed by FREES for each sync pass. This is
3715 	 * typically true even when the log space map feature is disabled,
3716 	 * except from the case where a metaslab goes through metaslab_sync()
3717 	 * and gets condensed. In that case the metaslab's space map will have
3718 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3719 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3720 	 * sync pass 1.
3721 	 */
3722 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3723 	    shift);
3724 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3725 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3726 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3727 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3728 
3729 	range_tree_vacate(condense_tree, NULL, NULL);
3730 	range_tree_destroy(condense_tree);
3731 	range_tree_vacate(tmp_tree, NULL, NULL);
3732 	range_tree_destroy(tmp_tree);
3733 	mutex_enter(&msp->ms_lock);
3734 
3735 	msp->ms_condensing = B_FALSE;
3736 	metaslab_flush_update(msp, tx);
3737 }
3738 
3739 /*
3740  * Called when the metaslab has been flushed (its own spacemap now reflects
3741  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3742  * metadata and any pool-wide related log space map data (e.g. summary,
3743  * obsolete logs, etc..) to reflect that.
3744  */
3745 static void
3746 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3747 {
3748 	metaslab_group_t *mg = msp->ms_group;
3749 	spa_t *spa = mg->mg_vd->vdev_spa;
3750 
3751 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3752 
3753 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3754 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3755 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3756 
3757 	/*
3758 	 * Just because a metaslab got flushed, that doesn't mean that
3759 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3760 	 * update ms_synced_length here in case it doesn't.
3761 	 */
3762 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3763 
3764 	/*
3765 	 * We may end up here from metaslab_condense() without the
3766 	 * feature being active. In that case this is a no-op.
3767 	 */
3768 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
3769 		return;
3770 
3771 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3772 	ASSERT(msp->ms_sm != NULL);
3773 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3774 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3775 
3776 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3777 
3778 	/* update metaslab's position in our flushing tree */
3779 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3780 	mutex_enter(&spa->spa_flushed_ms_lock);
3781 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3782 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3783 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3784 	mutex_exit(&spa->spa_flushed_ms_lock);
3785 
3786 	/* update metaslab counts of spa_log_sm_t nodes */
3787 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3788 	spa_log_sm_increment_current_mscount(spa);
3789 
3790 	/* cleanup obsolete logs if any */
3791 	uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3792 	spa_cleanup_old_sm_logs(spa, tx);
3793 	uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3794 	VERIFY3U(log_blocks_after, <=, log_blocks_before);
3795 
3796 	/* update log space map summary */
3797 	uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3798 	spa_log_summary_add_flushed_metaslab(spa);
3799 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3800 	spa_log_summary_decrement_blkcount(spa, blocks_gone);
3801 }
3802 
3803 boolean_t
3804 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3805 {
3806 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3807 
3808 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3809 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3810 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3811 
3812 	ASSERT(msp->ms_sm != NULL);
3813 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3814 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3815 
3816 	/*
3817 	 * There is nothing wrong with flushing the same metaslab twice, as
3818 	 * this codepath should work on that case. However, the current
3819 	 * flushing scheme makes sure to avoid this situation as we would be
3820 	 * making all these calls without having anything meaningful to write
3821 	 * to disk. We assert this behavior here.
3822 	 */
3823 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3824 
3825 	/*
3826 	 * We can not flush while loading, because then we would
3827 	 * not load the ms_unflushed_{allocs,frees}.
3828 	 */
3829 	if (msp->ms_loading)
3830 		return (B_FALSE);
3831 
3832 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3833 	metaslab_verify_weight_and_frag(msp);
3834 
3835 	/*
3836 	 * Metaslab condensing is effectively flushing. Therefore if the
3837 	 * metaslab can be condensed we can just condense it instead of
3838 	 * flushing it.
3839 	 *
3840 	 * Note that metaslab_condense() does call metaslab_flush_update()
3841 	 * so we can just return immediately after condensing. We also
3842 	 * don't need to care about setting ms_flushing or broadcasting
3843 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3844 	 * metaslab_condense(), as the metaslab is already loaded.
3845 	 */
3846 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3847 		metaslab_group_t *mg = msp->ms_group;
3848 
3849 		/*
3850 		 * For all histogram operations below refer to the
3851 		 * comments of metaslab_sync() where we follow a
3852 		 * similar procedure.
3853 		 */
3854 		metaslab_group_histogram_verify(mg);
3855 		metaslab_class_histogram_verify(mg->mg_class);
3856 		metaslab_group_histogram_remove(mg, msp);
3857 
3858 		metaslab_condense(msp, tx);
3859 
3860 		space_map_histogram_clear(msp->ms_sm);
3861 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3862 		ASSERT(range_tree_is_empty(msp->ms_freed));
3863 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3864 			space_map_histogram_add(msp->ms_sm,
3865 			    msp->ms_defer[t], tx);
3866 		}
3867 		metaslab_aux_histograms_update(msp);
3868 
3869 		metaslab_group_histogram_add(mg, msp);
3870 		metaslab_group_histogram_verify(mg);
3871 		metaslab_class_histogram_verify(mg->mg_class);
3872 
3873 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3874 
3875 		/*
3876 		 * Since we recreated the histogram (and potentially
3877 		 * the ms_sm too while condensing) ensure that the
3878 		 * weight is updated too because we are not guaranteed
3879 		 * that this metaslab is dirty and will go through
3880 		 * metaslab_sync_done().
3881 		 */
3882 		metaslab_recalculate_weight_and_sort(msp);
3883 		return (B_TRUE);
3884 	}
3885 
3886 	msp->ms_flushing = B_TRUE;
3887 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3888 
3889 	mutex_exit(&msp->ms_lock);
3890 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3891 	    SM_NO_VDEVID, tx);
3892 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3893 	    SM_NO_VDEVID, tx);
3894 	mutex_enter(&msp->ms_lock);
3895 
3896 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3897 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3898 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3899 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3900 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3901 		    spa_name(spa),
3902 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3903 		    (u_longlong_t)msp->ms_id,
3904 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3905 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3906 		    (u_longlong_t)(sm_len_after - sm_len_before));
3907 	}
3908 
3909 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3910 	    metaslab_unflushed_changes_memused(msp));
3911 	spa->spa_unflushed_stats.sus_memused -=
3912 	    metaslab_unflushed_changes_memused(msp);
3913 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3914 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3915 
3916 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3917 	metaslab_verify_weight_and_frag(msp);
3918 
3919 	metaslab_flush_update(msp, tx);
3920 
3921 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3922 	metaslab_verify_weight_and_frag(msp);
3923 
3924 	msp->ms_flushing = B_FALSE;
3925 	cv_broadcast(&msp->ms_flush_cv);
3926 	return (B_TRUE);
3927 }
3928 
3929 /*
3930  * Write a metaslab to disk in the context of the specified transaction group.
3931  */
3932 void
3933 metaslab_sync(metaslab_t *msp, uint64_t txg)
3934 {
3935 	metaslab_group_t *mg = msp->ms_group;
3936 	vdev_t *vd = mg->mg_vd;
3937 	spa_t *spa = vd->vdev_spa;
3938 	objset_t *mos = spa_meta_objset(spa);
3939 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3940 	dmu_tx_t *tx;
3941 
3942 	ASSERT(!vd->vdev_ishole);
3943 
3944 	/*
3945 	 * This metaslab has just been added so there's no work to do now.
3946 	 */
3947 	if (msp->ms_new) {
3948 		ASSERT0(range_tree_space(alloctree));
3949 		ASSERT0(range_tree_space(msp->ms_freeing));
3950 		ASSERT0(range_tree_space(msp->ms_freed));
3951 		ASSERT0(range_tree_space(msp->ms_checkpointing));
3952 		ASSERT0(range_tree_space(msp->ms_trim));
3953 		return;
3954 	}
3955 
3956 	/*
3957 	 * Normally, we don't want to process a metaslab if there are no
3958 	 * allocations or frees to perform. However, if the metaslab is being
3959 	 * forced to condense, it's loaded and we're not beyond the final
3960 	 * dirty txg, we need to let it through. Not condensing beyond the
3961 	 * final dirty txg prevents an issue where metaslabs that need to be
3962 	 * condensed but were loaded for other reasons could cause a panic
3963 	 * here. By only checking the txg in that branch of the conditional,
3964 	 * we preserve the utility of the VERIFY statements in all other
3965 	 * cases.
3966 	 */
3967 	if (range_tree_is_empty(alloctree) &&
3968 	    range_tree_is_empty(msp->ms_freeing) &&
3969 	    range_tree_is_empty(msp->ms_checkpointing) &&
3970 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3971 	    txg <= spa_final_dirty_txg(spa)))
3972 		return;
3973 
3974 
3975 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3976 
3977 	/*
3978 	 * The only state that can actually be changing concurrently
3979 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3980 	 * other thread can be modifying this txg's alloc, freeing,
3981 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
3982 	 * could call into the DMU, because the DMU can call down to
3983 	 * us (e.g. via zio_free()) at any time.
3984 	 *
3985 	 * The spa_vdev_remove_thread() can be reading metaslab state
3986 	 * concurrently, and it is locked out by the ms_sync_lock.
3987 	 * Note that the ms_lock is insufficient for this, because it
3988 	 * is dropped by space_map_write().
3989 	 */
3990 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3991 
3992 	/*
3993 	 * Generate a log space map if one doesn't exist already.
3994 	 */
3995 	spa_generate_syncing_log_sm(spa, tx);
3996 
3997 	if (msp->ms_sm == NULL) {
3998 		uint64_t new_object = space_map_alloc(mos,
3999 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4000 		    zfs_metaslab_sm_blksz_with_log :
4001 		    zfs_metaslab_sm_blksz_no_log, tx);
4002 		VERIFY3U(new_object, !=, 0);
4003 
4004 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4005 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4006 
4007 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4008 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4009 		ASSERT(msp->ms_sm != NULL);
4010 
4011 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4012 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4013 		ASSERT0(metaslab_allocated_space(msp));
4014 	}
4015 
4016 	if (metaslab_unflushed_txg(msp) == 0 &&
4017 	    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
4018 		ASSERT(spa_syncing_log_sm(spa) != NULL);
4019 
4020 		metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
4021 		spa_log_sm_increment_current_mscount(spa);
4022 		spa_log_summary_add_flushed_metaslab(spa);
4023 
4024 		ASSERT(msp->ms_sm != NULL);
4025 		mutex_enter(&spa->spa_flushed_ms_lock);
4026 		avl_add(&spa->spa_metaslabs_by_flushed, msp);
4027 		mutex_exit(&spa->spa_flushed_ms_lock);
4028 
4029 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4030 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4031 	}
4032 
4033 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4034 	    vd->vdev_checkpoint_sm == NULL) {
4035 		ASSERT(spa_has_checkpoint(spa));
4036 
4037 		uint64_t new_object = space_map_alloc(mos,
4038 		    zfs_vdev_standard_sm_blksz, tx);
4039 		VERIFY3U(new_object, !=, 0);
4040 
4041 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4042 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4043 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4044 
4045 		/*
4046 		 * We save the space map object as an entry in vdev_top_zap
4047 		 * so it can be retrieved when the pool is reopened after an
4048 		 * export or through zdb.
4049 		 */
4050 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4051 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4052 		    sizeof (new_object), 1, &new_object, tx));
4053 	}
4054 
4055 	mutex_enter(&msp->ms_sync_lock);
4056 	mutex_enter(&msp->ms_lock);
4057 
4058 	/*
4059 	 * Note: metaslab_condense() clears the space map's histogram.
4060 	 * Therefore we must verify and remove this histogram before
4061 	 * condensing.
4062 	 */
4063 	metaslab_group_histogram_verify(mg);
4064 	metaslab_class_histogram_verify(mg->mg_class);
4065 	metaslab_group_histogram_remove(mg, msp);
4066 
4067 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4068 	    metaslab_should_condense(msp))
4069 		metaslab_condense(msp, tx);
4070 
4071 	/*
4072 	 * We'll be going to disk to sync our space accounting, thus we
4073 	 * drop the ms_lock during that time so allocations coming from
4074 	 * open-context (ZIL) for future TXGs do not block.
4075 	 */
4076 	mutex_exit(&msp->ms_lock);
4077 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4078 	if (log_sm != NULL) {
4079 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4080 
4081 		space_map_write(log_sm, alloctree, SM_ALLOC,
4082 		    vd->vdev_id, tx);
4083 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4084 		    vd->vdev_id, tx);
4085 		mutex_enter(&msp->ms_lock);
4086 
4087 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4088 		    metaslab_unflushed_changes_memused(msp));
4089 		spa->spa_unflushed_stats.sus_memused -=
4090 		    metaslab_unflushed_changes_memused(msp);
4091 		range_tree_remove_xor_add(alloctree,
4092 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4093 		range_tree_remove_xor_add(msp->ms_freeing,
4094 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4095 		spa->spa_unflushed_stats.sus_memused +=
4096 		    metaslab_unflushed_changes_memused(msp);
4097 	} else {
4098 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4099 
4100 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4101 		    SM_NO_VDEVID, tx);
4102 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4103 		    SM_NO_VDEVID, tx);
4104 		mutex_enter(&msp->ms_lock);
4105 	}
4106 
4107 	msp->ms_allocated_space += range_tree_space(alloctree);
4108 	ASSERT3U(msp->ms_allocated_space, >=,
4109 	    range_tree_space(msp->ms_freeing));
4110 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4111 
4112 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4113 		ASSERT(spa_has_checkpoint(spa));
4114 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4115 
4116 		/*
4117 		 * Since we are doing writes to disk and the ms_checkpointing
4118 		 * tree won't be changing during that time, we drop the
4119 		 * ms_lock while writing to the checkpoint space map, for the
4120 		 * same reason mentioned above.
4121 		 */
4122 		mutex_exit(&msp->ms_lock);
4123 		space_map_write(vd->vdev_checkpoint_sm,
4124 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4125 		mutex_enter(&msp->ms_lock);
4126 
4127 		spa->spa_checkpoint_info.sci_dspace +=
4128 		    range_tree_space(msp->ms_checkpointing);
4129 		vd->vdev_stat.vs_checkpoint_space +=
4130 		    range_tree_space(msp->ms_checkpointing);
4131 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4132 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4133 
4134 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4135 	}
4136 
4137 	if (msp->ms_loaded) {
4138 		/*
4139 		 * When the space map is loaded, we have an accurate
4140 		 * histogram in the range tree. This gives us an opportunity
4141 		 * to bring the space map's histogram up-to-date so we clear
4142 		 * it first before updating it.
4143 		 */
4144 		space_map_histogram_clear(msp->ms_sm);
4145 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4146 
4147 		/*
4148 		 * Since we've cleared the histogram we need to add back
4149 		 * any free space that has already been processed, plus
4150 		 * any deferred space. This allows the on-disk histogram
4151 		 * to accurately reflect all free space even if some space
4152 		 * is not yet available for allocation (i.e. deferred).
4153 		 */
4154 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4155 
4156 		/*
4157 		 * Add back any deferred free space that has not been
4158 		 * added back into the in-core free tree yet. This will
4159 		 * ensure that we don't end up with a space map histogram
4160 		 * that is completely empty unless the metaslab is fully
4161 		 * allocated.
4162 		 */
4163 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4164 			space_map_histogram_add(msp->ms_sm,
4165 			    msp->ms_defer[t], tx);
4166 		}
4167 	}
4168 
4169 	/*
4170 	 * Always add the free space from this sync pass to the space
4171 	 * map histogram. We want to make sure that the on-disk histogram
4172 	 * accounts for all free space. If the space map is not loaded,
4173 	 * then we will lose some accuracy but will correct it the next
4174 	 * time we load the space map.
4175 	 */
4176 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4177 	metaslab_aux_histograms_update(msp);
4178 
4179 	metaslab_group_histogram_add(mg, msp);
4180 	metaslab_group_histogram_verify(mg);
4181 	metaslab_class_histogram_verify(mg->mg_class);
4182 
4183 	/*
4184 	 * For sync pass 1, we avoid traversing this txg's free range tree
4185 	 * and instead will just swap the pointers for freeing and freed.
4186 	 * We can safely do this since the freed_tree is guaranteed to be
4187 	 * empty on the initial pass.
4188 	 *
4189 	 * Keep in mind that even if we are currently using a log spacemap
4190 	 * we want current frees to end up in the ms_allocatable (but not
4191 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4192 	 */
4193 	if (spa_sync_pass(spa) == 1) {
4194 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4195 		ASSERT0(msp->ms_allocated_this_txg);
4196 	} else {
4197 		range_tree_vacate(msp->ms_freeing,
4198 		    range_tree_add, msp->ms_freed);
4199 	}
4200 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4201 	range_tree_vacate(alloctree, NULL, NULL);
4202 
4203 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4204 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4205 	    & TXG_MASK]));
4206 	ASSERT0(range_tree_space(msp->ms_freeing));
4207 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4208 
4209 	mutex_exit(&msp->ms_lock);
4210 
4211 	/*
4212 	 * Verify that the space map object ID has been recorded in the
4213 	 * vdev_ms_array.
4214 	 */
4215 	uint64_t object;
4216 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4217 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4218 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4219 
4220 	mutex_exit(&msp->ms_sync_lock);
4221 	dmu_tx_commit(tx);
4222 }
4223 
4224 static void
4225 metaslab_evict(metaslab_t *msp, uint64_t txg)
4226 {
4227 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4228 		return;
4229 
4230 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4231 		VERIFY0(range_tree_space(
4232 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4233 	}
4234 	if (msp->ms_allocator != -1)
4235 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4236 
4237 	if (!metaslab_debug_unload)
4238 		metaslab_unload(msp);
4239 }
4240 
4241 /*
4242  * Called after a transaction group has completely synced to mark
4243  * all of the metaslab's free space as usable.
4244  */
4245 void
4246 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4247 {
4248 	metaslab_group_t *mg = msp->ms_group;
4249 	vdev_t *vd = mg->mg_vd;
4250 	spa_t *spa = vd->vdev_spa;
4251 	range_tree_t **defer_tree;
4252 	int64_t alloc_delta, defer_delta;
4253 	boolean_t defer_allowed = B_TRUE;
4254 
4255 	ASSERT(!vd->vdev_ishole);
4256 
4257 	mutex_enter(&msp->ms_lock);
4258 
4259 	if (msp->ms_new) {
4260 		/* this is a new metaslab, add its capacity to the vdev */
4261 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4262 
4263 		/* there should be no allocations nor frees at this point */
4264 		VERIFY0(msp->ms_allocated_this_txg);
4265 		VERIFY0(range_tree_space(msp->ms_freed));
4266 	}
4267 
4268 	ASSERT0(range_tree_space(msp->ms_freeing));
4269 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4270 
4271 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4272 
4273 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4274 	    metaslab_class_get_alloc(spa_normal_class(spa));
4275 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4276 		defer_allowed = B_FALSE;
4277 	}
4278 
4279 	defer_delta = 0;
4280 	alloc_delta = msp->ms_allocated_this_txg -
4281 	    range_tree_space(msp->ms_freed);
4282 
4283 	if (defer_allowed) {
4284 		defer_delta = range_tree_space(msp->ms_freed) -
4285 		    range_tree_space(*defer_tree);
4286 	} else {
4287 		defer_delta -= range_tree_space(*defer_tree);
4288 	}
4289 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4290 	    defer_delta, 0);
4291 
4292 	if (spa_syncing_log_sm(spa) == NULL) {
4293 		/*
4294 		 * If there's a metaslab_load() in progress and we don't have
4295 		 * a log space map, it means that we probably wrote to the
4296 		 * metaslab's space map. If this is the case, we need to
4297 		 * make sure that we wait for the load to complete so that we
4298 		 * have a consistent view at the in-core side of the metaslab.
4299 		 */
4300 		metaslab_load_wait(msp);
4301 	} else {
4302 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4303 	}
4304 
4305 	/*
4306 	 * When auto-trimming is enabled, free ranges which are added to
4307 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4308 	 * periodically consumed by the vdev_autotrim_thread() which issues
4309 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4310 	 * can be discarded at any time with the sole consequence of recent
4311 	 * frees not being trimmed.
4312 	 */
4313 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4314 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4315 		if (!defer_allowed) {
4316 			range_tree_walk(msp->ms_freed, range_tree_add,
4317 			    msp->ms_trim);
4318 		}
4319 	} else {
4320 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4321 	}
4322 
4323 	/*
4324 	 * Move the frees from the defer_tree back to the free
4325 	 * range tree (if it's loaded). Swap the freed_tree and
4326 	 * the defer_tree -- this is safe to do because we've
4327 	 * just emptied out the defer_tree.
4328 	 */
4329 	range_tree_vacate(*defer_tree,
4330 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4331 	if (defer_allowed) {
4332 		range_tree_swap(&msp->ms_freed, defer_tree);
4333 	} else {
4334 		range_tree_vacate(msp->ms_freed,
4335 		    msp->ms_loaded ? range_tree_add : NULL,
4336 		    msp->ms_allocatable);
4337 	}
4338 
4339 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4340 
4341 	msp->ms_deferspace += defer_delta;
4342 	ASSERT3S(msp->ms_deferspace, >=, 0);
4343 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4344 	if (msp->ms_deferspace != 0) {
4345 		/*
4346 		 * Keep syncing this metaslab until all deferred frees
4347 		 * are back in circulation.
4348 		 */
4349 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4350 	}
4351 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4352 
4353 	if (msp->ms_new) {
4354 		msp->ms_new = B_FALSE;
4355 		mutex_enter(&mg->mg_lock);
4356 		mg->mg_ms_ready++;
4357 		mutex_exit(&mg->mg_lock);
4358 	}
4359 
4360 	/*
4361 	 * Re-sort metaslab within its group now that we've adjusted
4362 	 * its allocatable space.
4363 	 */
4364 	metaslab_recalculate_weight_and_sort(msp);
4365 
4366 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4367 	ASSERT0(range_tree_space(msp->ms_freeing));
4368 	ASSERT0(range_tree_space(msp->ms_freed));
4369 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4370 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4371 	msp->ms_allocated_this_txg = 0;
4372 	mutex_exit(&msp->ms_lock);
4373 }
4374 
4375 void
4376 metaslab_sync_reassess(metaslab_group_t *mg)
4377 {
4378 	spa_t *spa = mg->mg_class->mc_spa;
4379 
4380 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4381 	metaslab_group_alloc_update(mg);
4382 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4383 
4384 	/*
4385 	 * Preload the next potential metaslabs but only on active
4386 	 * metaslab groups. We can get into a state where the metaslab
4387 	 * is no longer active since we dirty metaslabs as we remove a
4388 	 * a device, thus potentially making the metaslab group eligible
4389 	 * for preloading.
4390 	 */
4391 	if (mg->mg_activation_count > 0) {
4392 		metaslab_group_preload(mg);
4393 	}
4394 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4395 }
4396 
4397 /*
4398  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4399  * the same vdev as an existing DVA of this BP, then try to allocate it
4400  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4401  */
4402 static boolean_t
4403 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4404 {
4405 	uint64_t dva_ms_id;
4406 
4407 	if (DVA_GET_ASIZE(dva) == 0)
4408 		return (B_TRUE);
4409 
4410 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4411 		return (B_TRUE);
4412 
4413 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4414 
4415 	return (msp->ms_id != dva_ms_id);
4416 }
4417 
4418 /*
4419  * ==========================================================================
4420  * Metaslab allocation tracing facility
4421  * ==========================================================================
4422  */
4423 
4424 /*
4425  * Add an allocation trace element to the allocation tracing list.
4426  */
4427 static void
4428 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4429     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4430     int allocator)
4431 {
4432 	metaslab_alloc_trace_t *mat;
4433 
4434 	if (!metaslab_trace_enabled)
4435 		return;
4436 
4437 	/*
4438 	 * When the tracing list reaches its maximum we remove
4439 	 * the second element in the list before adding a new one.
4440 	 * By removing the second element we preserve the original
4441 	 * entry as a clue to what allocations steps have already been
4442 	 * performed.
4443 	 */
4444 	if (zal->zal_size == metaslab_trace_max_entries) {
4445 		metaslab_alloc_trace_t *mat_next;
4446 #ifdef ZFS_DEBUG
4447 		panic("too many entries in allocation list");
4448 #endif
4449 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4450 		zal->zal_size--;
4451 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4452 		list_remove(&zal->zal_list, mat_next);
4453 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4454 	}
4455 
4456 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4457 	list_link_init(&mat->mat_list_node);
4458 	mat->mat_mg = mg;
4459 	mat->mat_msp = msp;
4460 	mat->mat_size = psize;
4461 	mat->mat_dva_id = dva_id;
4462 	mat->mat_offset = offset;
4463 	mat->mat_weight = 0;
4464 	mat->mat_allocator = allocator;
4465 
4466 	if (msp != NULL)
4467 		mat->mat_weight = msp->ms_weight;
4468 
4469 	/*
4470 	 * The list is part of the zio so locking is not required. Only
4471 	 * a single thread will perform allocations for a given zio.
4472 	 */
4473 	list_insert_tail(&zal->zal_list, mat);
4474 	zal->zal_size++;
4475 
4476 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4477 }
4478 
4479 void
4480 metaslab_trace_init(zio_alloc_list_t *zal)
4481 {
4482 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4483 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4484 	zal->zal_size = 0;
4485 }
4486 
4487 void
4488 metaslab_trace_fini(zio_alloc_list_t *zal)
4489 {
4490 	metaslab_alloc_trace_t *mat;
4491 
4492 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4493 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4494 	list_destroy(&zal->zal_list);
4495 	zal->zal_size = 0;
4496 }
4497 
4498 /*
4499  * ==========================================================================
4500  * Metaslab block operations
4501  * ==========================================================================
4502  */
4503 
4504 static void
4505 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
4506     int allocator)
4507 {
4508 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4509 	    (flags & METASLAB_DONT_THROTTLE))
4510 		return;
4511 
4512 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4513 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4514 		return;
4515 
4516 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4517 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4518 }
4519 
4520 static void
4521 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4522 {
4523 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4524 	metaslab_class_allocator_t *mca =
4525 	    &mg->mg_class->mc_allocator[allocator];
4526 	uint64_t max = mg->mg_max_alloc_queue_depth;
4527 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4528 	while (cur < max) {
4529 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4530 		    cur, cur + 1) == cur) {
4531 			atomic_inc_64(&mca->mca_alloc_max_slots);
4532 			return;
4533 		}
4534 		cur = mga->mga_cur_max_alloc_queue_depth;
4535 	}
4536 }
4537 
4538 void
4539 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
4540     int allocator, boolean_t io_complete)
4541 {
4542 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4543 	    (flags & METASLAB_DONT_THROTTLE))
4544 		return;
4545 
4546 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4547 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4548 		return;
4549 
4550 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4551 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4552 	if (io_complete)
4553 		metaslab_group_increment_qdepth(mg, allocator);
4554 }
4555 
4556 void
4557 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
4558     int allocator)
4559 {
4560 #ifdef ZFS_DEBUG
4561 	const dva_t *dva = bp->blk_dva;
4562 	int ndvas = BP_GET_NDVAS(bp);
4563 
4564 	for (int d = 0; d < ndvas; d++) {
4565 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4566 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4567 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4568 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4569 	}
4570 #endif
4571 }
4572 
4573 static uint64_t
4574 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4575 {
4576 	uint64_t start;
4577 	range_tree_t *rt = msp->ms_allocatable;
4578 	metaslab_class_t *mc = msp->ms_group->mg_class;
4579 
4580 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4581 	VERIFY(!msp->ms_condensing);
4582 	VERIFY0(msp->ms_disabled);
4583 
4584 	start = mc->mc_ops->msop_alloc(msp, size);
4585 	if (start != -1ULL) {
4586 		metaslab_group_t *mg = msp->ms_group;
4587 		vdev_t *vd = mg->mg_vd;
4588 
4589 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4590 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4591 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4592 		range_tree_remove(rt, start, size);
4593 		range_tree_clear(msp->ms_trim, start, size);
4594 
4595 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4596 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4597 
4598 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4599 		msp->ms_allocating_total += size;
4600 
4601 		/* Track the last successful allocation */
4602 		msp->ms_alloc_txg = txg;
4603 		metaslab_verify_space(msp, txg);
4604 	}
4605 
4606 	/*
4607 	 * Now that we've attempted the allocation we need to update the
4608 	 * metaslab's maximum block size since it may have changed.
4609 	 */
4610 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4611 	return (start);
4612 }
4613 
4614 /*
4615  * Find the metaslab with the highest weight that is less than what we've
4616  * already tried.  In the common case, this means that we will examine each
4617  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4618  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4619  * activated by another thread, and we fail to allocate from the metaslab we
4620  * have selected, we may not try the newly-activated metaslab, and instead
4621  * activate another metaslab.  This is not optimal, but generally does not cause
4622  * any problems (a possible exception being if every metaslab is completely full
4623  * except for the newly-activated metaslab which we fail to examine).
4624  */
4625 static metaslab_t *
4626 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4627     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4628     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4629     boolean_t *was_active)
4630 {
4631 	avl_index_t idx;
4632 	avl_tree_t *t = &mg->mg_metaslab_tree;
4633 	metaslab_t *msp = avl_find(t, search, &idx);
4634 	if (msp == NULL)
4635 		msp = avl_nearest(t, idx, AVL_AFTER);
4636 
4637 	int tries = 0;
4638 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4639 		int i;
4640 
4641 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4642 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4643 			return (NULL);
4644 		}
4645 		tries++;
4646 
4647 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4648 			metaslab_trace_add(zal, mg, msp, asize, d,
4649 			    TRACE_TOO_SMALL, allocator);
4650 			continue;
4651 		}
4652 
4653 		/*
4654 		 * If the selected metaslab is condensing or disabled,
4655 		 * skip it.
4656 		 */
4657 		if (msp->ms_condensing || msp->ms_disabled > 0)
4658 			continue;
4659 
4660 		*was_active = msp->ms_allocator != -1;
4661 		/*
4662 		 * If we're activating as primary, this is our first allocation
4663 		 * from this disk, so we don't need to check how close we are.
4664 		 * If the metaslab under consideration was already active,
4665 		 * we're getting desperate enough to steal another allocator's
4666 		 * metaslab, so we still don't care about distances.
4667 		 */
4668 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4669 			break;
4670 
4671 		for (i = 0; i < d; i++) {
4672 			if (want_unique &&
4673 			    !metaslab_is_unique(msp, &dva[i]))
4674 				break;  /* try another metaslab */
4675 		}
4676 		if (i == d)
4677 			break;
4678 	}
4679 
4680 	if (msp != NULL) {
4681 		search->ms_weight = msp->ms_weight;
4682 		search->ms_start = msp->ms_start + 1;
4683 		search->ms_allocator = msp->ms_allocator;
4684 		search->ms_primary = msp->ms_primary;
4685 	}
4686 	return (msp);
4687 }
4688 
4689 static void
4690 metaslab_active_mask_verify(metaslab_t *msp)
4691 {
4692 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4693 
4694 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4695 		return;
4696 
4697 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4698 		return;
4699 
4700 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4701 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4702 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4703 		VERIFY3S(msp->ms_allocator, !=, -1);
4704 		VERIFY(msp->ms_primary);
4705 		return;
4706 	}
4707 
4708 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4709 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4710 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4711 		VERIFY3S(msp->ms_allocator, !=, -1);
4712 		VERIFY(!msp->ms_primary);
4713 		return;
4714 	}
4715 
4716 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4717 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4718 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4719 		VERIFY3S(msp->ms_allocator, ==, -1);
4720 		return;
4721 	}
4722 }
4723 
4724 /* ARGSUSED */
4725 static uint64_t
4726 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4727     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4728     int allocator, boolean_t try_hard)
4729 {
4730 	metaslab_t *msp = NULL;
4731 	uint64_t offset = -1ULL;
4732 
4733 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4734 	for (int i = 0; i < d; i++) {
4735 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4736 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4737 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4738 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4739 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4740 			activation_weight = METASLAB_WEIGHT_CLAIM;
4741 			break;
4742 		}
4743 	}
4744 
4745 	/*
4746 	 * If we don't have enough metaslabs active to fill the entire array, we
4747 	 * just use the 0th slot.
4748 	 */
4749 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4750 		allocator = 0;
4751 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4752 
4753 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4754 
4755 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4756 	search->ms_weight = UINT64_MAX;
4757 	search->ms_start = 0;
4758 	/*
4759 	 * At the end of the metaslab tree are the already-active metaslabs,
4760 	 * first the primaries, then the secondaries. When we resume searching
4761 	 * through the tree, we need to consider ms_allocator and ms_primary so
4762 	 * we start in the location right after where we left off, and don't
4763 	 * accidentally loop forever considering the same metaslabs.
4764 	 */
4765 	search->ms_allocator = -1;
4766 	search->ms_primary = B_TRUE;
4767 	for (;;) {
4768 		boolean_t was_active = B_FALSE;
4769 
4770 		mutex_enter(&mg->mg_lock);
4771 
4772 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4773 		    mga->mga_primary != NULL) {
4774 			msp = mga->mga_primary;
4775 
4776 			/*
4777 			 * Even though we don't hold the ms_lock for the
4778 			 * primary metaslab, those fields should not
4779 			 * change while we hold the mg_lock. Thus it is
4780 			 * safe to make assertions on them.
4781 			 */
4782 			ASSERT(msp->ms_primary);
4783 			ASSERT3S(msp->ms_allocator, ==, allocator);
4784 			ASSERT(msp->ms_loaded);
4785 
4786 			was_active = B_TRUE;
4787 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4788 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4789 		    mga->mga_secondary != NULL) {
4790 			msp = mga->mga_secondary;
4791 
4792 			/*
4793 			 * See comment above about the similar assertions
4794 			 * for the primary metaslab.
4795 			 */
4796 			ASSERT(!msp->ms_primary);
4797 			ASSERT3S(msp->ms_allocator, ==, allocator);
4798 			ASSERT(msp->ms_loaded);
4799 
4800 			was_active = B_TRUE;
4801 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4802 		} else {
4803 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4804 			    want_unique, asize, allocator, try_hard, zal,
4805 			    search, &was_active);
4806 		}
4807 
4808 		mutex_exit(&mg->mg_lock);
4809 		if (msp == NULL) {
4810 			kmem_free(search, sizeof (*search));
4811 			return (-1ULL);
4812 		}
4813 		mutex_enter(&msp->ms_lock);
4814 
4815 		metaslab_active_mask_verify(msp);
4816 
4817 		/*
4818 		 * This code is disabled out because of issues with
4819 		 * tracepoints in non-gpl kernel modules.
4820 		 */
4821 #if 0
4822 		DTRACE_PROBE3(ms__activation__attempt,
4823 		    metaslab_t *, msp, uint64_t, activation_weight,
4824 		    boolean_t, was_active);
4825 #endif
4826 
4827 		/*
4828 		 * Ensure that the metaslab we have selected is still
4829 		 * capable of handling our request. It's possible that
4830 		 * another thread may have changed the weight while we
4831 		 * were blocked on the metaslab lock. We check the
4832 		 * active status first to see if we need to set_selected_txg
4833 		 * a new metaslab.
4834 		 */
4835 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4836 			ASSERT3S(msp->ms_allocator, ==, -1);
4837 			mutex_exit(&msp->ms_lock);
4838 			continue;
4839 		}
4840 
4841 		/*
4842 		 * If the metaslab was activated for another allocator
4843 		 * while we were waiting in the ms_lock above, or it's
4844 		 * a primary and we're seeking a secondary (or vice versa),
4845 		 * we go back and select a new metaslab.
4846 		 */
4847 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4848 		    (msp->ms_allocator != -1) &&
4849 		    (msp->ms_allocator != allocator || ((activation_weight ==
4850 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4851 			ASSERT(msp->ms_loaded);
4852 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4853 			    msp->ms_allocator != -1);
4854 			mutex_exit(&msp->ms_lock);
4855 			continue;
4856 		}
4857 
4858 		/*
4859 		 * This metaslab was used for claiming regions allocated
4860 		 * by the ZIL during pool import. Once these regions are
4861 		 * claimed we don't need to keep the CLAIM bit set
4862 		 * anymore. Passivate this metaslab to zero its activation
4863 		 * mask.
4864 		 */
4865 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4866 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4867 			ASSERT(msp->ms_loaded);
4868 			ASSERT3S(msp->ms_allocator, ==, -1);
4869 			metaslab_passivate(msp, msp->ms_weight &
4870 			    ~METASLAB_WEIGHT_CLAIM);
4871 			mutex_exit(&msp->ms_lock);
4872 			continue;
4873 		}
4874 
4875 		metaslab_set_selected_txg(msp, txg);
4876 
4877 		int activation_error =
4878 		    metaslab_activate(msp, allocator, activation_weight);
4879 		metaslab_active_mask_verify(msp);
4880 
4881 		/*
4882 		 * If the metaslab was activated by another thread for
4883 		 * another allocator or activation_weight (EBUSY), or it
4884 		 * failed because another metaslab was assigned as primary
4885 		 * for this allocator (EEXIST) we continue using this
4886 		 * metaslab for our allocation, rather than going on to a
4887 		 * worse metaslab (we waited for that metaslab to be loaded
4888 		 * after all).
4889 		 *
4890 		 * If the activation failed due to an I/O error or ENOSPC we
4891 		 * skip to the next metaslab.
4892 		 */
4893 		boolean_t activated;
4894 		if (activation_error == 0) {
4895 			activated = B_TRUE;
4896 		} else if (activation_error == EBUSY ||
4897 		    activation_error == EEXIST) {
4898 			activated = B_FALSE;
4899 		} else {
4900 			mutex_exit(&msp->ms_lock);
4901 			continue;
4902 		}
4903 		ASSERT(msp->ms_loaded);
4904 
4905 		/*
4906 		 * Now that we have the lock, recheck to see if we should
4907 		 * continue to use this metaslab for this allocation. The
4908 		 * the metaslab is now loaded so metaslab_should_allocate()
4909 		 * can accurately determine if the allocation attempt should
4910 		 * proceed.
4911 		 */
4912 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4913 			/* Passivate this metaslab and select a new one. */
4914 			metaslab_trace_add(zal, mg, msp, asize, d,
4915 			    TRACE_TOO_SMALL, allocator);
4916 			goto next;
4917 		}
4918 
4919 		/*
4920 		 * If this metaslab is currently condensing then pick again
4921 		 * as we can't manipulate this metaslab until it's committed
4922 		 * to disk. If this metaslab is being initialized, we shouldn't
4923 		 * allocate from it since the allocated region might be
4924 		 * overwritten after allocation.
4925 		 */
4926 		if (msp->ms_condensing) {
4927 			metaslab_trace_add(zal, mg, msp, asize, d,
4928 			    TRACE_CONDENSING, allocator);
4929 			if (activated) {
4930 				metaslab_passivate(msp, msp->ms_weight &
4931 				    ~METASLAB_ACTIVE_MASK);
4932 			}
4933 			mutex_exit(&msp->ms_lock);
4934 			continue;
4935 		} else if (msp->ms_disabled > 0) {
4936 			metaslab_trace_add(zal, mg, msp, asize, d,
4937 			    TRACE_DISABLED, allocator);
4938 			if (activated) {
4939 				metaslab_passivate(msp, msp->ms_weight &
4940 				    ~METASLAB_ACTIVE_MASK);
4941 			}
4942 			mutex_exit(&msp->ms_lock);
4943 			continue;
4944 		}
4945 
4946 		offset = metaslab_block_alloc(msp, asize, txg);
4947 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4948 
4949 		if (offset != -1ULL) {
4950 			/* Proactively passivate the metaslab, if needed */
4951 			if (activated)
4952 				metaslab_segment_may_passivate(msp);
4953 			break;
4954 		}
4955 next:
4956 		ASSERT(msp->ms_loaded);
4957 
4958 		/*
4959 		 * This code is disabled out because of issues with
4960 		 * tracepoints in non-gpl kernel modules.
4961 		 */
4962 #if 0
4963 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4964 		    uint64_t, asize);
4965 #endif
4966 
4967 		/*
4968 		 * We were unable to allocate from this metaslab so determine
4969 		 * a new weight for this metaslab. Now that we have loaded
4970 		 * the metaslab we can provide a better hint to the metaslab
4971 		 * selector.
4972 		 *
4973 		 * For space-based metaslabs, we use the maximum block size.
4974 		 * This information is only available when the metaslab
4975 		 * is loaded and is more accurate than the generic free
4976 		 * space weight that was calculated by metaslab_weight().
4977 		 * This information allows us to quickly compare the maximum
4978 		 * available allocation in the metaslab to the allocation
4979 		 * size being requested.
4980 		 *
4981 		 * For segment-based metaslabs, determine the new weight
4982 		 * based on the highest bucket in the range tree. We
4983 		 * explicitly use the loaded segment weight (i.e. the range
4984 		 * tree histogram) since it contains the space that is
4985 		 * currently available for allocation and is accurate
4986 		 * even within a sync pass.
4987 		 */
4988 		uint64_t weight;
4989 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4990 			weight = metaslab_largest_allocatable(msp);
4991 			WEIGHT_SET_SPACEBASED(weight);
4992 		} else {
4993 			weight = metaslab_weight_from_range_tree(msp);
4994 		}
4995 
4996 		if (activated) {
4997 			metaslab_passivate(msp, weight);
4998 		} else {
4999 			/*
5000 			 * For the case where we use the metaslab that is
5001 			 * active for another allocator we want to make
5002 			 * sure that we retain the activation mask.
5003 			 *
5004 			 * Note that we could attempt to use something like
5005 			 * metaslab_recalculate_weight_and_sort() that
5006 			 * retains the activation mask here. That function
5007 			 * uses metaslab_weight() to set the weight though
5008 			 * which is not as accurate as the calculations
5009 			 * above.
5010 			 */
5011 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5012 			metaslab_group_sort(mg, msp, weight);
5013 		}
5014 		metaslab_active_mask_verify(msp);
5015 
5016 		/*
5017 		 * We have just failed an allocation attempt, check
5018 		 * that metaslab_should_allocate() agrees. Otherwise,
5019 		 * we may end up in an infinite loop retrying the same
5020 		 * metaslab.
5021 		 */
5022 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5023 
5024 		mutex_exit(&msp->ms_lock);
5025 	}
5026 	mutex_exit(&msp->ms_lock);
5027 	kmem_free(search, sizeof (*search));
5028 	return (offset);
5029 }
5030 
5031 static uint64_t
5032 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5033     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5034     int allocator, boolean_t try_hard)
5035 {
5036 	uint64_t offset;
5037 	ASSERT(mg->mg_initialized);
5038 
5039 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5040 	    dva, d, allocator, try_hard);
5041 
5042 	mutex_enter(&mg->mg_lock);
5043 	if (offset == -1ULL) {
5044 		mg->mg_failed_allocations++;
5045 		metaslab_trace_add(zal, mg, NULL, asize, d,
5046 		    TRACE_GROUP_FAILURE, allocator);
5047 		if (asize == SPA_GANGBLOCKSIZE) {
5048 			/*
5049 			 * This metaslab group was unable to allocate
5050 			 * the minimum gang block size so it must be out of
5051 			 * space. We must notify the allocation throttle
5052 			 * to start skipping allocation attempts to this
5053 			 * metaslab group until more space becomes available.
5054 			 * Note: this failure cannot be caused by the
5055 			 * allocation throttle since the allocation throttle
5056 			 * is only responsible for skipping devices and
5057 			 * not failing block allocations.
5058 			 */
5059 			mg->mg_no_free_space = B_TRUE;
5060 		}
5061 	}
5062 	mg->mg_allocations++;
5063 	mutex_exit(&mg->mg_lock);
5064 	return (offset);
5065 }
5066 
5067 /*
5068  * Allocate a block for the specified i/o.
5069  */
5070 int
5071 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5072     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5073     zio_alloc_list_t *zal, int allocator)
5074 {
5075 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5076 	metaslab_group_t *mg, *fast_mg, *rotor;
5077 	vdev_t *vd;
5078 	boolean_t try_hard = B_FALSE;
5079 
5080 	ASSERT(!DVA_IS_VALID(&dva[d]));
5081 
5082 	/*
5083 	 * For testing, make some blocks above a certain size be gang blocks.
5084 	 * This will result in more split blocks when using device removal,
5085 	 * and a large number of split blocks coupled with ztest-induced
5086 	 * damage can result in extremely long reconstruction times.  This
5087 	 * will also test spilling from special to normal.
5088 	 */
5089 	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5090 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5091 		    allocator);
5092 		return (SET_ERROR(ENOSPC));
5093 	}
5094 
5095 	/*
5096 	 * Start at the rotor and loop through all mgs until we find something.
5097 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5098 	 * nothing actually breaks if we miss a few updates -- we just won't
5099 	 * allocate quite as evenly.  It all balances out over time.
5100 	 *
5101 	 * If we are doing ditto or log blocks, try to spread them across
5102 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5103 	 * allocated all of our ditto blocks, then try and spread them out on
5104 	 * that vdev as much as possible.  If it turns out to not be possible,
5105 	 * gradually lower our standards until anything becomes acceptable.
5106 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5107 	 * gives us hope of containing our fault domains to something we're
5108 	 * able to reason about.  Otherwise, any two top-level vdev failures
5109 	 * will guarantee the loss of data.  With consecutive allocation,
5110 	 * only two adjacent top-level vdev failures will result in data loss.
5111 	 *
5112 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5113 	 * ourselves on the same vdev as our gang block header.  That
5114 	 * way, we can hope for locality in vdev_cache, plus it makes our
5115 	 * fault domains something tractable.
5116 	 */
5117 	if (hintdva) {
5118 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5119 
5120 		/*
5121 		 * It's possible the vdev we're using as the hint no
5122 		 * longer exists or its mg has been closed (e.g. by
5123 		 * device removal).  Consult the rotor when
5124 		 * all else fails.
5125 		 */
5126 		if (vd != NULL && vd->vdev_mg != NULL) {
5127 			mg = vdev_get_mg(vd, mc);
5128 
5129 			if (flags & METASLAB_HINTBP_AVOID &&
5130 			    mg->mg_next != NULL)
5131 				mg = mg->mg_next;
5132 		} else {
5133 			mg = mca->mca_rotor;
5134 		}
5135 	} else if (d != 0) {
5136 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5137 		mg = vd->vdev_mg->mg_next;
5138 	} else if (flags & METASLAB_FASTWRITE) {
5139 		mg = fast_mg = mca->mca_rotor;
5140 
5141 		do {
5142 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5143 			    mg->mg_vd->vdev_pending_fastwrite)
5144 				mg = fast_mg;
5145 		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5146 
5147 	} else {
5148 		ASSERT(mca->mca_rotor != NULL);
5149 		mg = mca->mca_rotor;
5150 	}
5151 
5152 	/*
5153 	 * If the hint put us into the wrong metaslab class, or into a
5154 	 * metaslab group that has been passivated, just follow the rotor.
5155 	 */
5156 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5157 		mg = mca->mca_rotor;
5158 
5159 	rotor = mg;
5160 top:
5161 	do {
5162 		boolean_t allocatable;
5163 
5164 		ASSERT(mg->mg_activation_count == 1);
5165 		vd = mg->mg_vd;
5166 
5167 		/*
5168 		 * Don't allocate from faulted devices.
5169 		 */
5170 		if (try_hard) {
5171 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5172 			allocatable = vdev_allocatable(vd);
5173 			spa_config_exit(spa, SCL_ZIO, FTAG);
5174 		} else {
5175 			allocatable = vdev_allocatable(vd);
5176 		}
5177 
5178 		/*
5179 		 * Determine if the selected metaslab group is eligible
5180 		 * for allocations. If we're ganging then don't allow
5181 		 * this metaslab group to skip allocations since that would
5182 		 * inadvertently return ENOSPC and suspend the pool
5183 		 * even though space is still available.
5184 		 */
5185 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5186 			allocatable = metaslab_group_allocatable(mg, rotor,
5187 			    psize, allocator, d);
5188 		}
5189 
5190 		if (!allocatable) {
5191 			metaslab_trace_add(zal, mg, NULL, psize, d,
5192 			    TRACE_NOT_ALLOCATABLE, allocator);
5193 			goto next;
5194 		}
5195 
5196 		ASSERT(mg->mg_initialized);
5197 
5198 		/*
5199 		 * Avoid writing single-copy data to a failing,
5200 		 * non-redundant vdev, unless we've already tried all
5201 		 * other vdevs.
5202 		 */
5203 		if ((vd->vdev_stat.vs_write_errors > 0 ||
5204 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
5205 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5206 			metaslab_trace_add(zal, mg, NULL, psize, d,
5207 			    TRACE_VDEV_ERROR, allocator);
5208 			goto next;
5209 		}
5210 
5211 		ASSERT(mg->mg_class == mc);
5212 
5213 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5214 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5215 
5216 		/*
5217 		 * If we don't need to try hard, then require that the
5218 		 * block be on a different metaslab from any other DVAs
5219 		 * in this BP (unique=true).  If we are trying hard, then
5220 		 * allow any metaslab to be used (unique=false).
5221 		 */
5222 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5223 		    !try_hard, dva, d, allocator, try_hard);
5224 
5225 		if (offset != -1ULL) {
5226 			/*
5227 			 * If we've just selected this metaslab group,
5228 			 * figure out whether the corresponding vdev is
5229 			 * over- or under-used relative to the pool,
5230 			 * and set an allocation bias to even it out.
5231 			 *
5232 			 * Bias is also used to compensate for unequally
5233 			 * sized vdevs so that space is allocated fairly.
5234 			 */
5235 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5236 				vdev_stat_t *vs = &vd->vdev_stat;
5237 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5238 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5239 				int64_t ratio;
5240 
5241 				/*
5242 				 * Calculate how much more or less we should
5243 				 * try to allocate from this device during
5244 				 * this iteration around the rotor.
5245 				 *
5246 				 * This basically introduces a zero-centered
5247 				 * bias towards the devices with the most
5248 				 * free space, while compensating for vdev
5249 				 * size differences.
5250 				 *
5251 				 * Examples:
5252 				 *  vdev V1 = 16M/128M
5253 				 *  vdev V2 = 16M/128M
5254 				 *  ratio(V1) = 100% ratio(V2) = 100%
5255 				 *
5256 				 *  vdev V1 = 16M/128M
5257 				 *  vdev V2 = 64M/128M
5258 				 *  ratio(V1) = 127% ratio(V2) =  72%
5259 				 *
5260 				 *  vdev V1 = 16M/128M
5261 				 *  vdev V2 = 64M/512M
5262 				 *  ratio(V1) =  40% ratio(V2) = 160%
5263 				 */
5264 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5265 				    (mc_free + 1);
5266 				mg->mg_bias = ((ratio - 100) *
5267 				    (int64_t)mg->mg_aliquot) / 100;
5268 			} else if (!metaslab_bias_enabled) {
5269 				mg->mg_bias = 0;
5270 			}
5271 
5272 			if ((flags & METASLAB_FASTWRITE) ||
5273 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5274 			    mg->mg_aliquot + mg->mg_bias) {
5275 				mca->mca_rotor = mg->mg_next;
5276 				mca->mca_aliquot = 0;
5277 			}
5278 
5279 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5280 			DVA_SET_OFFSET(&dva[d], offset);
5281 			DVA_SET_GANG(&dva[d],
5282 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5283 			DVA_SET_ASIZE(&dva[d], asize);
5284 
5285 			if (flags & METASLAB_FASTWRITE) {
5286 				atomic_add_64(&vd->vdev_pending_fastwrite,
5287 				    psize);
5288 			}
5289 
5290 			return (0);
5291 		}
5292 next:
5293 		mca->mca_rotor = mg->mg_next;
5294 		mca->mca_aliquot = 0;
5295 	} while ((mg = mg->mg_next) != rotor);
5296 
5297 	/*
5298 	 * If we haven't tried hard, perhaps do so now.
5299 	 */
5300 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5301 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5302 	    psize <= 1 << spa->spa_min_ashift)) {
5303 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5304 		try_hard = B_TRUE;
5305 		goto top;
5306 	}
5307 
5308 	bzero(&dva[d], sizeof (dva_t));
5309 
5310 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5311 	return (SET_ERROR(ENOSPC));
5312 }
5313 
5314 void
5315 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5316     boolean_t checkpoint)
5317 {
5318 	metaslab_t *msp;
5319 	spa_t *spa = vd->vdev_spa;
5320 
5321 	ASSERT(vdev_is_concrete(vd));
5322 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5323 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5324 
5325 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5326 
5327 	VERIFY(!msp->ms_condensing);
5328 	VERIFY3U(offset, >=, msp->ms_start);
5329 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5330 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5331 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5332 
5333 	metaslab_check_free_impl(vd, offset, asize);
5334 
5335 	mutex_enter(&msp->ms_lock);
5336 	if (range_tree_is_empty(msp->ms_freeing) &&
5337 	    range_tree_is_empty(msp->ms_checkpointing)) {
5338 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5339 	}
5340 
5341 	if (checkpoint) {
5342 		ASSERT(spa_has_checkpoint(spa));
5343 		range_tree_add(msp->ms_checkpointing, offset, asize);
5344 	} else {
5345 		range_tree_add(msp->ms_freeing, offset, asize);
5346 	}
5347 	mutex_exit(&msp->ms_lock);
5348 }
5349 
5350 /* ARGSUSED */
5351 void
5352 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5353     uint64_t size, void *arg)
5354 {
5355 	boolean_t *checkpoint = arg;
5356 
5357 	ASSERT3P(checkpoint, !=, NULL);
5358 
5359 	if (vd->vdev_ops->vdev_op_remap != NULL)
5360 		vdev_indirect_mark_obsolete(vd, offset, size);
5361 	else
5362 		metaslab_free_impl(vd, offset, size, *checkpoint);
5363 }
5364 
5365 static void
5366 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5367     boolean_t checkpoint)
5368 {
5369 	spa_t *spa = vd->vdev_spa;
5370 
5371 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5372 
5373 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5374 		return;
5375 
5376 	if (spa->spa_vdev_removal != NULL &&
5377 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5378 	    vdev_is_concrete(vd)) {
5379 		/*
5380 		 * Note: we check if the vdev is concrete because when
5381 		 * we complete the removal, we first change the vdev to be
5382 		 * an indirect vdev (in open context), and then (in syncing
5383 		 * context) clear spa_vdev_removal.
5384 		 */
5385 		free_from_removing_vdev(vd, offset, size);
5386 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5387 		vdev_indirect_mark_obsolete(vd, offset, size);
5388 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5389 		    metaslab_free_impl_cb, &checkpoint);
5390 	} else {
5391 		metaslab_free_concrete(vd, offset, size, checkpoint);
5392 	}
5393 }
5394 
5395 typedef struct remap_blkptr_cb_arg {
5396 	blkptr_t *rbca_bp;
5397 	spa_remap_cb_t rbca_cb;
5398 	vdev_t *rbca_remap_vd;
5399 	uint64_t rbca_remap_offset;
5400 	void *rbca_cb_arg;
5401 } remap_blkptr_cb_arg_t;
5402 
5403 static void
5404 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5405     uint64_t size, void *arg)
5406 {
5407 	remap_blkptr_cb_arg_t *rbca = arg;
5408 	blkptr_t *bp = rbca->rbca_bp;
5409 
5410 	/* We can not remap split blocks. */
5411 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5412 		return;
5413 	ASSERT0(inner_offset);
5414 
5415 	if (rbca->rbca_cb != NULL) {
5416 		/*
5417 		 * At this point we know that we are not handling split
5418 		 * blocks and we invoke the callback on the previous
5419 		 * vdev which must be indirect.
5420 		 */
5421 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5422 
5423 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5424 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5425 
5426 		/* set up remap_blkptr_cb_arg for the next call */
5427 		rbca->rbca_remap_vd = vd;
5428 		rbca->rbca_remap_offset = offset;
5429 	}
5430 
5431 	/*
5432 	 * The phys birth time is that of dva[0].  This ensures that we know
5433 	 * when each dva was written, so that resilver can determine which
5434 	 * blocks need to be scrubbed (i.e. those written during the time
5435 	 * the vdev was offline).  It also ensures that the key used in
5436 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5437 	 * we didn't change the phys_birth, a lookup in the ARC for a
5438 	 * remapped BP could find the data that was previously stored at
5439 	 * this vdev + offset.
5440 	 */
5441 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5442 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5443 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5444 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5445 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5446 
5447 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5448 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5449 }
5450 
5451 /*
5452  * If the block pointer contains any indirect DVAs, modify them to refer to
5453  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5454  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5455  * segments in the mapping (i.e. it is a "split block").
5456  *
5457  * If the BP was remapped, calls the callback on the original dva (note the
5458  * callback can be called multiple times if the original indirect DVA refers
5459  * to another indirect DVA, etc).
5460  *
5461  * Returns TRUE if the BP was remapped.
5462  */
5463 boolean_t
5464 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5465 {
5466 	remap_blkptr_cb_arg_t rbca;
5467 
5468 	if (!zfs_remap_blkptr_enable)
5469 		return (B_FALSE);
5470 
5471 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5472 		return (B_FALSE);
5473 
5474 	/*
5475 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5476 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5477 	 */
5478 	if (BP_GET_DEDUP(bp))
5479 		return (B_FALSE);
5480 
5481 	/*
5482 	 * Gang blocks can not be remapped, because
5483 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5484 	 * the BP used to read the gang block header (GBH) being the same
5485 	 * as the DVA[0] that we allocated for the GBH.
5486 	 */
5487 	if (BP_IS_GANG(bp))
5488 		return (B_FALSE);
5489 
5490 	/*
5491 	 * Embedded BP's have no DVA to remap.
5492 	 */
5493 	if (BP_GET_NDVAS(bp) < 1)
5494 		return (B_FALSE);
5495 
5496 	/*
5497 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5498 	 * would no longer know what their phys birth txg is.
5499 	 */
5500 	dva_t *dva = &bp->blk_dva[0];
5501 
5502 	uint64_t offset = DVA_GET_OFFSET(dva);
5503 	uint64_t size = DVA_GET_ASIZE(dva);
5504 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5505 
5506 	if (vd->vdev_ops->vdev_op_remap == NULL)
5507 		return (B_FALSE);
5508 
5509 	rbca.rbca_bp = bp;
5510 	rbca.rbca_cb = callback;
5511 	rbca.rbca_remap_vd = vd;
5512 	rbca.rbca_remap_offset = offset;
5513 	rbca.rbca_cb_arg = arg;
5514 
5515 	/*
5516 	 * remap_blkptr_cb() will be called in order for each level of
5517 	 * indirection, until a concrete vdev is reached or a split block is
5518 	 * encountered. old_vd and old_offset are updated within the callback
5519 	 * as we go from the one indirect vdev to the next one (either concrete
5520 	 * or indirect again) in that order.
5521 	 */
5522 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5523 
5524 	/* Check if the DVA wasn't remapped because it is a split block */
5525 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5526 		return (B_FALSE);
5527 
5528 	return (B_TRUE);
5529 }
5530 
5531 /*
5532  * Undo the allocation of a DVA which happened in the given transaction group.
5533  */
5534 void
5535 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5536 {
5537 	metaslab_t *msp;
5538 	vdev_t *vd;
5539 	uint64_t vdev = DVA_GET_VDEV(dva);
5540 	uint64_t offset = DVA_GET_OFFSET(dva);
5541 	uint64_t size = DVA_GET_ASIZE(dva);
5542 
5543 	ASSERT(DVA_IS_VALID(dva));
5544 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5545 
5546 	if (txg > spa_freeze_txg(spa))
5547 		return;
5548 
5549 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5550 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5551 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5552 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5553 		    (u_longlong_t)size);
5554 		return;
5555 	}
5556 
5557 	ASSERT(!vd->vdev_removing);
5558 	ASSERT(vdev_is_concrete(vd));
5559 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5560 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5561 
5562 	if (DVA_GET_GANG(dva))
5563 		size = vdev_gang_header_asize(vd);
5564 
5565 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5566 
5567 	mutex_enter(&msp->ms_lock);
5568 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5569 	    offset, size);
5570 	msp->ms_allocating_total -= size;
5571 
5572 	VERIFY(!msp->ms_condensing);
5573 	VERIFY3U(offset, >=, msp->ms_start);
5574 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5575 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5576 	    msp->ms_size);
5577 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5578 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5579 	range_tree_add(msp->ms_allocatable, offset, size);
5580 	mutex_exit(&msp->ms_lock);
5581 }
5582 
5583 /*
5584  * Free the block represented by the given DVA.
5585  */
5586 void
5587 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5588 {
5589 	uint64_t vdev = DVA_GET_VDEV(dva);
5590 	uint64_t offset = DVA_GET_OFFSET(dva);
5591 	uint64_t size = DVA_GET_ASIZE(dva);
5592 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5593 
5594 	ASSERT(DVA_IS_VALID(dva));
5595 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5596 
5597 	if (DVA_GET_GANG(dva)) {
5598 		size = vdev_gang_header_asize(vd);
5599 	}
5600 
5601 	metaslab_free_impl(vd, offset, size, checkpoint);
5602 }
5603 
5604 /*
5605  * Reserve some allocation slots. The reservation system must be called
5606  * before we call into the allocator. If there aren't any available slots
5607  * then the I/O will be throttled until an I/O completes and its slots are
5608  * freed up. The function returns true if it was successful in placing
5609  * the reservation.
5610  */
5611 boolean_t
5612 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5613     zio_t *zio, int flags)
5614 {
5615 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5616 	uint64_t max = mca->mca_alloc_max_slots;
5617 
5618 	ASSERT(mc->mc_alloc_throttle_enabled);
5619 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5620 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5621 		/*
5622 		 * The potential race between _count() and _add() is covered
5623 		 * by the allocator lock in most cases, or irrelevant due to
5624 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5625 		 * But even if we assume some other non-existing scenario, the
5626 		 * worst that can happen is few more I/Os get to allocation
5627 		 * earlier, that is not a problem.
5628 		 *
5629 		 * We reserve the slots individually so that we can unreserve
5630 		 * them individually when an I/O completes.
5631 		 */
5632 		for (int d = 0; d < slots; d++)
5633 			zfs_refcount_add(&mca->mca_alloc_slots, zio);
5634 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5635 		return (B_TRUE);
5636 	}
5637 	return (B_FALSE);
5638 }
5639 
5640 void
5641 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5642     int allocator, zio_t *zio)
5643 {
5644 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5645 
5646 	ASSERT(mc->mc_alloc_throttle_enabled);
5647 	for (int d = 0; d < slots; d++)
5648 		zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5649 }
5650 
5651 static int
5652 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5653     uint64_t txg)
5654 {
5655 	metaslab_t *msp;
5656 	spa_t *spa = vd->vdev_spa;
5657 	int error = 0;
5658 
5659 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5660 		return (SET_ERROR(ENXIO));
5661 
5662 	ASSERT3P(vd->vdev_ms, !=, NULL);
5663 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5664 
5665 	mutex_enter(&msp->ms_lock);
5666 
5667 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5668 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5669 		if (error == EBUSY) {
5670 			ASSERT(msp->ms_loaded);
5671 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5672 			error = 0;
5673 		}
5674 	}
5675 
5676 	if (error == 0 &&
5677 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5678 		error = SET_ERROR(ENOENT);
5679 
5680 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5681 		mutex_exit(&msp->ms_lock);
5682 		return (error);
5683 	}
5684 
5685 	VERIFY(!msp->ms_condensing);
5686 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5687 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5688 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5689 	    msp->ms_size);
5690 	range_tree_remove(msp->ms_allocatable, offset, size);
5691 	range_tree_clear(msp->ms_trim, offset, size);
5692 
5693 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5694 		metaslab_class_t *mc = msp->ms_group->mg_class;
5695 		multilist_sublist_t *mls =
5696 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5697 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5698 			msp->ms_selected_txg = txg;
5699 			multilist_sublist_insert_head(mls, msp);
5700 		}
5701 		multilist_sublist_unlock(mls);
5702 
5703 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5704 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5705 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5706 		    offset, size);
5707 		msp->ms_allocating_total += size;
5708 	}
5709 
5710 	mutex_exit(&msp->ms_lock);
5711 
5712 	return (0);
5713 }
5714 
5715 typedef struct metaslab_claim_cb_arg_t {
5716 	uint64_t	mcca_txg;
5717 	int		mcca_error;
5718 } metaslab_claim_cb_arg_t;
5719 
5720 /* ARGSUSED */
5721 static void
5722 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5723     uint64_t size, void *arg)
5724 {
5725 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5726 
5727 	if (mcca_arg->mcca_error == 0) {
5728 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5729 		    size, mcca_arg->mcca_txg);
5730 	}
5731 }
5732 
5733 int
5734 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5735 {
5736 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5737 		metaslab_claim_cb_arg_t arg;
5738 
5739 		/*
5740 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5741 		 * to detect leaks of mapped space (that are not accounted
5742 		 * for in the obsolete counts, spacemap, or bpobj).
5743 		 */
5744 		ASSERT(!spa_writeable(vd->vdev_spa));
5745 		arg.mcca_error = 0;
5746 		arg.mcca_txg = txg;
5747 
5748 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5749 		    metaslab_claim_impl_cb, &arg);
5750 
5751 		if (arg.mcca_error == 0) {
5752 			arg.mcca_error = metaslab_claim_concrete(vd,
5753 			    offset, size, txg);
5754 		}
5755 		return (arg.mcca_error);
5756 	} else {
5757 		return (metaslab_claim_concrete(vd, offset, size, txg));
5758 	}
5759 }
5760 
5761 /*
5762  * Intent log support: upon opening the pool after a crash, notify the SPA
5763  * of blocks that the intent log has allocated for immediate write, but
5764  * which are still considered free by the SPA because the last transaction
5765  * group didn't commit yet.
5766  */
5767 static int
5768 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5769 {
5770 	uint64_t vdev = DVA_GET_VDEV(dva);
5771 	uint64_t offset = DVA_GET_OFFSET(dva);
5772 	uint64_t size = DVA_GET_ASIZE(dva);
5773 	vdev_t *vd;
5774 
5775 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5776 		return (SET_ERROR(ENXIO));
5777 	}
5778 
5779 	ASSERT(DVA_IS_VALID(dva));
5780 
5781 	if (DVA_GET_GANG(dva))
5782 		size = vdev_gang_header_asize(vd);
5783 
5784 	return (metaslab_claim_impl(vd, offset, size, txg));
5785 }
5786 
5787 int
5788 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5789     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5790     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5791 {
5792 	dva_t *dva = bp->blk_dva;
5793 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5794 	int error = 0;
5795 
5796 	ASSERT(bp->blk_birth == 0);
5797 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5798 
5799 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5800 
5801 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5802 		/* no vdevs in this class */
5803 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5804 		return (SET_ERROR(ENOSPC));
5805 	}
5806 
5807 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5808 	ASSERT(BP_GET_NDVAS(bp) == 0);
5809 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5810 	ASSERT3P(zal, !=, NULL);
5811 
5812 	for (int d = 0; d < ndvas; d++) {
5813 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5814 		    txg, flags, zal, allocator);
5815 		if (error != 0) {
5816 			for (d--; d >= 0; d--) {
5817 				metaslab_unalloc_dva(spa, &dva[d], txg);
5818 				metaslab_group_alloc_decrement(spa,
5819 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5820 				    allocator, B_FALSE);
5821 				bzero(&dva[d], sizeof (dva_t));
5822 			}
5823 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5824 			return (error);
5825 		} else {
5826 			/*
5827 			 * Update the metaslab group's queue depth
5828 			 * based on the newly allocated dva.
5829 			 */
5830 			metaslab_group_alloc_increment(spa,
5831 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5832 		}
5833 	}
5834 	ASSERT(error == 0);
5835 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5836 
5837 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5838 
5839 	BP_SET_BIRTH(bp, txg, 0);
5840 
5841 	return (0);
5842 }
5843 
5844 void
5845 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5846 {
5847 	const dva_t *dva = bp->blk_dva;
5848 	int ndvas = BP_GET_NDVAS(bp);
5849 
5850 	ASSERT(!BP_IS_HOLE(bp));
5851 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5852 
5853 	/*
5854 	 * If we have a checkpoint for the pool we need to make sure that
5855 	 * the blocks that we free that are part of the checkpoint won't be
5856 	 * reused until the checkpoint is discarded or we revert to it.
5857 	 *
5858 	 * The checkpoint flag is passed down the metaslab_free code path
5859 	 * and is set whenever we want to add a block to the checkpoint's
5860 	 * accounting. That is, we "checkpoint" blocks that existed at the
5861 	 * time the checkpoint was created and are therefore referenced by
5862 	 * the checkpointed uberblock.
5863 	 *
5864 	 * Note that, we don't checkpoint any blocks if the current
5865 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5866 	 * normally as they will be referenced by the checkpointed uberblock.
5867 	 */
5868 	boolean_t checkpoint = B_FALSE;
5869 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5870 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5871 		/*
5872 		 * At this point, if the block is part of the checkpoint
5873 		 * there is no way it was created in the current txg.
5874 		 */
5875 		ASSERT(!now);
5876 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5877 		checkpoint = B_TRUE;
5878 	}
5879 
5880 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5881 
5882 	for (int d = 0; d < ndvas; d++) {
5883 		if (now) {
5884 			metaslab_unalloc_dva(spa, &dva[d], txg);
5885 		} else {
5886 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5887 			metaslab_free_dva(spa, &dva[d], checkpoint);
5888 		}
5889 	}
5890 
5891 	spa_config_exit(spa, SCL_FREE, FTAG);
5892 }
5893 
5894 int
5895 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5896 {
5897 	const dva_t *dva = bp->blk_dva;
5898 	int ndvas = BP_GET_NDVAS(bp);
5899 	int error = 0;
5900 
5901 	ASSERT(!BP_IS_HOLE(bp));
5902 
5903 	if (txg != 0) {
5904 		/*
5905 		 * First do a dry run to make sure all DVAs are claimable,
5906 		 * so we don't have to unwind from partial failures below.
5907 		 */
5908 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5909 			return (error);
5910 	}
5911 
5912 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5913 
5914 	for (int d = 0; d < ndvas; d++) {
5915 		error = metaslab_claim_dva(spa, &dva[d], txg);
5916 		if (error != 0)
5917 			break;
5918 	}
5919 
5920 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5921 
5922 	ASSERT(error == 0 || txg == 0);
5923 
5924 	return (error);
5925 }
5926 
5927 void
5928 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5929 {
5930 	const dva_t *dva = bp->blk_dva;
5931 	int ndvas = BP_GET_NDVAS(bp);
5932 	uint64_t psize = BP_GET_PSIZE(bp);
5933 	int d;
5934 	vdev_t *vd;
5935 
5936 	ASSERT(!BP_IS_HOLE(bp));
5937 	ASSERT(!BP_IS_EMBEDDED(bp));
5938 	ASSERT(psize > 0);
5939 
5940 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5941 
5942 	for (d = 0; d < ndvas; d++) {
5943 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5944 			continue;
5945 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5946 	}
5947 
5948 	spa_config_exit(spa, SCL_VDEV, FTAG);
5949 }
5950 
5951 void
5952 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5953 {
5954 	const dva_t *dva = bp->blk_dva;
5955 	int ndvas = BP_GET_NDVAS(bp);
5956 	uint64_t psize = BP_GET_PSIZE(bp);
5957 	int d;
5958 	vdev_t *vd;
5959 
5960 	ASSERT(!BP_IS_HOLE(bp));
5961 	ASSERT(!BP_IS_EMBEDDED(bp));
5962 	ASSERT(psize > 0);
5963 
5964 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5965 
5966 	for (d = 0; d < ndvas; d++) {
5967 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5968 			continue;
5969 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5970 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5971 	}
5972 
5973 	spa_config_exit(spa, SCL_VDEV, FTAG);
5974 }
5975 
5976 /* ARGSUSED */
5977 static void
5978 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5979     uint64_t size, void *arg)
5980 {
5981 	if (vd->vdev_ops == &vdev_indirect_ops)
5982 		return;
5983 
5984 	metaslab_check_free_impl(vd, offset, size);
5985 }
5986 
5987 static void
5988 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5989 {
5990 	metaslab_t *msp;
5991 	spa_t *spa __maybe_unused = vd->vdev_spa;
5992 
5993 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5994 		return;
5995 
5996 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5997 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5998 		    metaslab_check_free_impl_cb, NULL);
5999 		return;
6000 	}
6001 
6002 	ASSERT(vdev_is_concrete(vd));
6003 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6004 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6005 
6006 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6007 
6008 	mutex_enter(&msp->ms_lock);
6009 	if (msp->ms_loaded) {
6010 		range_tree_verify_not_present(msp->ms_allocatable,
6011 		    offset, size);
6012 	}
6013 
6014 	/*
6015 	 * Check all segments that currently exist in the freeing pipeline.
6016 	 *
6017 	 * It would intuitively make sense to also check the current allocating
6018 	 * tree since metaslab_unalloc_dva() exists for extents that are
6019 	 * allocated and freed in the same sync pass within the same txg.
6020 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6021 	 * segment but then we free part of it within the same txg
6022 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6023 	 * current allocating tree.
6024 	 */
6025 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6026 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6027 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6028 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6029 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6030 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6031 	mutex_exit(&msp->ms_lock);
6032 }
6033 
6034 void
6035 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6036 {
6037 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6038 		return;
6039 
6040 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6041 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6042 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6043 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6044 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6045 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6046 
6047 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6048 			size = vdev_gang_header_asize(vd);
6049 
6050 		ASSERT3P(vd, !=, NULL);
6051 
6052 		metaslab_check_free_impl(vd, offset, size);
6053 	}
6054 	spa_config_exit(spa, SCL_VDEV, FTAG);
6055 }
6056 
6057 static void
6058 metaslab_group_disable_wait(metaslab_group_t *mg)
6059 {
6060 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6061 	while (mg->mg_disabled_updating) {
6062 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6063 	}
6064 }
6065 
6066 static void
6067 metaslab_group_disabled_increment(metaslab_group_t *mg)
6068 {
6069 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6070 	ASSERT(mg->mg_disabled_updating);
6071 
6072 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6073 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6074 	}
6075 	mg->mg_ms_disabled++;
6076 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6077 }
6078 
6079 /*
6080  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6081  * We must also track how many metaslabs are currently disabled within a
6082  * metaslab group and limit them to prevent allocation failures from
6083  * occurring because all metaslabs are disabled.
6084  */
6085 void
6086 metaslab_disable(metaslab_t *msp)
6087 {
6088 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6089 	metaslab_group_t *mg = msp->ms_group;
6090 
6091 	mutex_enter(&mg->mg_ms_disabled_lock);
6092 
6093 	/*
6094 	 * To keep an accurate count of how many threads have disabled
6095 	 * a specific metaslab group, we only allow one thread to mark
6096 	 * the metaslab group at a time. This ensures that the value of
6097 	 * ms_disabled will be accurate when we decide to mark a metaslab
6098 	 * group as disabled. To do this we force all other threads
6099 	 * to wait till the metaslab's mg_disabled_updating flag is no
6100 	 * longer set.
6101 	 */
6102 	metaslab_group_disable_wait(mg);
6103 	mg->mg_disabled_updating = B_TRUE;
6104 	if (msp->ms_disabled == 0) {
6105 		metaslab_group_disabled_increment(mg);
6106 	}
6107 	mutex_enter(&msp->ms_lock);
6108 	msp->ms_disabled++;
6109 	mutex_exit(&msp->ms_lock);
6110 
6111 	mg->mg_disabled_updating = B_FALSE;
6112 	cv_broadcast(&mg->mg_ms_disabled_cv);
6113 	mutex_exit(&mg->mg_ms_disabled_lock);
6114 }
6115 
6116 void
6117 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6118 {
6119 	metaslab_group_t *mg = msp->ms_group;
6120 	spa_t *spa = mg->mg_vd->vdev_spa;
6121 
6122 	/*
6123 	 * Wait for the outstanding IO to be synced to prevent newly
6124 	 * allocated blocks from being overwritten.  This used by
6125 	 * initialize and TRIM which are modifying unallocated space.
6126 	 */
6127 	if (sync)
6128 		txg_wait_synced(spa_get_dsl(spa), 0);
6129 
6130 	mutex_enter(&mg->mg_ms_disabled_lock);
6131 	mutex_enter(&msp->ms_lock);
6132 	if (--msp->ms_disabled == 0) {
6133 		mg->mg_ms_disabled--;
6134 		cv_broadcast(&mg->mg_ms_disabled_cv);
6135 		if (unload)
6136 			metaslab_unload(msp);
6137 	}
6138 	mutex_exit(&msp->ms_lock);
6139 	mutex_exit(&mg->mg_ms_disabled_lock);
6140 }
6141 
6142 static void
6143 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6144 {
6145 	vdev_t *vd = ms->ms_group->mg_vd;
6146 	spa_t *spa = vd->vdev_spa;
6147 	objset_t *mos = spa_meta_objset(spa);
6148 
6149 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6150 
6151 	metaslab_unflushed_phys_t entry = {
6152 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6153 	};
6154 	uint64_t entry_size = sizeof (entry);
6155 	uint64_t entry_offset = ms->ms_id * entry_size;
6156 
6157 	uint64_t object = 0;
6158 	int err = zap_lookup(mos, vd->vdev_top_zap,
6159 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6160 	    &object);
6161 	if (err == ENOENT) {
6162 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6163 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6164 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6165 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6166 		    &object, tx));
6167 	} else {
6168 		VERIFY0(err);
6169 	}
6170 
6171 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6172 	    &entry, tx);
6173 }
6174 
6175 void
6176 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6177 {
6178 	spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
6179 
6180 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
6181 		return;
6182 
6183 	ms->ms_unflushed_txg = txg;
6184 	metaslab_update_ondisk_flush_data(ms, tx);
6185 }
6186 
6187 uint64_t
6188 metaslab_unflushed_txg(metaslab_t *ms)
6189 {
6190 	return (ms->ms_unflushed_txg);
6191 }
6192 
6193 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6194 	"Allocation granularity (a.k.a. stripe size)");
6195 
6196 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6197 	"Load all metaslabs when pool is first opened");
6198 
6199 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6200 	"Prevent metaslabs from being unloaded");
6201 
6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6203 	"Preload potential metaslabs during reassessment");
6204 
6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
6206 	"Delay in txgs after metaslab was last used before unloading");
6207 
6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
6209 	"Delay in milliseconds after metaslab was last used before unloading");
6210 
6211 /* BEGIN CSTYLED */
6212 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
6213 	"Percentage of metaslab group size that should be free to make it "
6214 	"eligible for allocation");
6215 
6216 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
6217 	"Percentage of metaslab group size that should be considered eligible "
6218 	"for allocations unless all metaslab groups within the metaslab class "
6219 	"have also crossed this threshold");
6220 
6221 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
6222 	 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6223 
6224 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW,
6225 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6226 /* END CSTYLED */
6227 
6228 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6229 	"Prefer metaslabs with lower LBAs");
6230 
6231 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6232 	"Enable metaslab group biasing");
6233 
6234 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6235 	ZMOD_RW, "Enable segment-based metaslab selection");
6236 
6237 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6238 	"Segment-based metaslab selection maximum buckets before switching");
6239 
6240 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6241 	"Blocks larger than this size are forced to be gang blocks");
6242 
6243 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
6244 	"Max distance (bytes) to search forward before using size tree");
6245 
6246 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6247 	"When looking in size tree, use largest segment instead of exact fit");
6248 
6249 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6250 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6251 
6252 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
6253 	"Percentage of memory that can be used to store metaslab range trees");
6254 
6255 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6256 	ZMOD_RW, "Try hard to allocate before ganging");
6257 
6258 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW,
6259 	"Normally only consider this many of the best metaslabs in each vdev");
6260