1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2017, Intel Corporation. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/brt.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/space_map.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/vdev_draid.h> 38 #include <sys/zio.h> 39 #include <sys/spa_impl.h> 40 #include <sys/zfeature.h> 41 #include <sys/vdev_indirect_mapping.h> 42 #include <sys/zap.h> 43 #include <sys/btree.h> 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab group's per child vdev granularity, in bytes. This is roughly 50 * similar to what would be referred to as the "stripe size" in traditional 51 * RAID arrays. In normal operation, we will try to write this amount of 52 * data to each disk before moving on to the next top-level vdev. 53 */ 54 static uint64_t metaslab_aliquot = 2 * 1024 * 1024; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often. 63 */ 64 uint_t metaslab_force_ganging_pct = 3; 65 66 /* 67 * In pools where the log space map feature is not enabled we touch 68 * multiple metaslabs (and their respective space maps) with each 69 * transaction group. Thus, we benefit from having a small space map 70 * block size since it allows us to issue more I/O operations scattered 71 * around the disk. So a sane default for the space map block size 72 * is 8~16K. 73 */ 74 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 75 76 /* 77 * When the log space map feature is enabled, we accumulate a lot of 78 * changes per metaslab that are flushed once in a while so we benefit 79 * from a bigger block size like 128K for the metaslab space maps. 80 */ 81 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 82 83 /* 84 * The in-core space map representation is more compact than its on-disk form. 85 * The zfs_condense_pct determines how much more compact the in-core 86 * space map representation must be before we compact it on-disk. 87 * Values should be greater than or equal to 100. 88 */ 89 uint_t zfs_condense_pct = 200; 90 91 /* 92 * Condensing a metaslab is not guaranteed to actually reduce the amount of 93 * space used on disk. In particular, a space map uses data in increments of 94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 95 * same number of blocks after condensing. Since the goal of condensing is to 96 * reduce the number of IOPs required to read the space map, we only want to 97 * condense when we can be sure we will reduce the number of blocks used by the 98 * space map. Unfortunately, we cannot precisely compute whether or not this is 99 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 100 * we apply the following heuristic: do not condense a spacemap unless the 101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 102 * blocks. 103 */ 104 static const int zfs_metaslab_condense_block_threshold = 4; 105 106 /* 107 * The zfs_mg_noalloc_threshold defines which metaslab groups should 108 * be eligible for allocation. The value is defined as a percentage of 109 * free space. Metaslab groups that have more free space than 110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 111 * a metaslab group's free space is less than or equal to the 112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 115 * groups are allowed to accept allocations. Gang blocks are always 116 * eligible to allocate on any metaslab group. The default value of 0 means 117 * no metaslab group will be excluded based on this criterion. 118 */ 119 static uint_t zfs_mg_noalloc_threshold = 0; 120 121 /* 122 * Metaslab groups are considered eligible for allocations if their 123 * fragmentation metric (measured as a percentage) is less than or 124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 125 * exceeds this threshold then it will be skipped unless all metaslab 126 * groups within the metaslab class have also crossed this threshold. 127 * 128 * This tunable was introduced to avoid edge cases where we continue 129 * allocating from very fragmented disks in our pool while other, less 130 * fragmented disks, exists. On the other hand, if all disks in the 131 * pool are uniformly approaching the threshold, the threshold can 132 * be a speed bump in performance, where we keep switching the disks 133 * that we allocate from (e.g. we allocate some segments from disk A 134 * making it bypassing the threshold while freeing segments from disk 135 * B getting its fragmentation below the threshold). 136 * 137 * Empirically, we've seen that our vdev selection for allocations is 138 * good enough that fragmentation increases uniformly across all vdevs 139 * the majority of the time. Thus we set the threshold percentage high 140 * enough to avoid hitting the speed bump on pools that are being pushed 141 * to the edge. 142 */ 143 static uint_t zfs_mg_fragmentation_threshold = 95; 144 145 /* 146 * Allow metaslabs to keep their active state as long as their fragmentation 147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 148 * active metaslab that exceeds this threshold will no longer keep its active 149 * status allowing better metaslabs to be selected. 150 */ 151 static uint_t zfs_metaslab_fragmentation_threshold = 77; 152 153 /* 154 * When set will load all metaslabs when pool is first opened. 155 */ 156 int metaslab_debug_load = B_FALSE; 157 158 /* 159 * When set will prevent metaslabs from being unloaded. 160 */ 161 static int metaslab_debug_unload = B_FALSE; 162 163 /* 164 * Minimum size which forces the dynamic allocator to change 165 * it's allocation strategy. Once the space map cannot satisfy 166 * an allocation of this size then it switches to using more 167 * aggressive strategy (i.e search by size rather than offset). 168 */ 169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 170 171 /* 172 * The minimum free space, in percent, which must be available 173 * in a space map to continue allocations in a first-fit fashion. 174 * Once the space map's free space drops below this level we dynamically 175 * switch to using best-fit allocations. 176 */ 177 uint_t metaslab_df_free_pct = 4; 178 179 /* 180 * Maximum distance to search forward from the last offset. Without this 181 * limit, fragmented pools can see >100,000 iterations and 182 * metaslab_block_picker() becomes the performance limiting factor on 183 * high-performance storage. 184 * 185 * With the default setting of 16MB, we typically see less than 500 186 * iterations, even with very fragmented, ashift=9 pools. The maximum number 187 * of iterations possible is: 188 * metaslab_df_max_search / (2 * (1<<ashift)) 189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 190 * 2048 (with ashift=12). 191 */ 192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 193 194 /* 195 * Forces the metaslab_block_picker function to search for at least this many 196 * segments forwards until giving up on finding a segment that the allocation 197 * will fit into. 198 */ 199 static const uint32_t metaslab_min_search_count = 100; 200 201 /* 202 * If we are not searching forward (due to metaslab_df_max_search, 203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 204 * controls what segment is used. If it is set, we will use the largest free 205 * segment. If it is not set, we will use a segment of exactly the requested 206 * size (or larger). 207 */ 208 static int metaslab_df_use_largest_segment = B_FALSE; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 static uint_t metaslab_unload_delay = 32; 219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 uint_t metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 static int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 static int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 static int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable space-based metaslab group biasing. 243 */ 244 static int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Control performance-based metaslab group biasing. 248 */ 249 static int metaslab_perf_bias = 1; 250 251 /* 252 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 253 */ 254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 255 256 /* 257 * Enable/disable segment-based metaslab selection. 258 */ 259 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 260 261 /* 262 * When using segment-based metaslab selection, we will continue 263 * allocating from the active metaslab until we have exhausted 264 * zfs_metaslab_switch_threshold of its buckets. 265 */ 266 static int zfs_metaslab_switch_threshold = 2; 267 268 /* 269 * Internal switch to enable/disable the metaslab allocation tracing 270 * facility. 271 */ 272 static const boolean_t metaslab_trace_enabled = B_FALSE; 273 274 /* 275 * Maximum entries that the metaslab allocation tracing facility will keep 276 * in a given list when running in non-debug mode. We limit the number 277 * of entries in non-debug mode to prevent us from using up too much memory. 278 * The limit should be sufficiently large that we don't expect any allocation 279 * to every exceed this value. In debug mode, the system will panic if this 280 * limit is ever reached allowing for further investigation. 281 */ 282 static const uint64_t metaslab_trace_max_entries = 5000; 283 284 /* 285 * Maximum number of metaslabs per group that can be disabled 286 * simultaneously. 287 */ 288 static const int max_disabled_ms = 3; 289 290 /* 291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 292 * To avoid 64-bit overflow, don't set above UINT32_MAX. 293 */ 294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 295 296 /* 297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 298 * a metaslab would take it over this percentage, the oldest selected metaslab 299 * is automatically unloaded. 300 */ 301 static uint_t zfs_metaslab_mem_limit = 25; 302 303 /* 304 * Force the per-metaslab range trees to use 64-bit integers to store 305 * segments. Used for debugging purposes. 306 */ 307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 308 309 /* 310 * By default we only store segments over a certain size in the size-sorted 311 * metaslab trees (ms_allocatable_by_size and 312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 313 * improves load and unload times at the cost of causing us to use slightly 314 * larger segments than we would otherwise in some cases. 315 */ 316 static const uint32_t metaslab_by_size_min_shift = 14; 317 318 /* 319 * If not set, we will first try normal allocation. If that fails then 320 * we will do a gang allocation. If that fails then we will do a "try hard" 321 * gang allocation. If that fails then we will have a multi-layer gang 322 * block. 323 * 324 * If set, we will first try normal allocation. If that fails then 325 * we will do a "try hard" allocation. If that fails we will do a gang 326 * allocation. If that fails we will do a "try hard" gang allocation. If 327 * that fails then we will have a multi-layer gang block. 328 */ 329 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 330 331 /* 332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 333 * metaslabs. This improves performance, especially when there are many 334 * metaslabs per vdev and the allocation can't actually be satisfied (so we 335 * would otherwise iterate all the metaslabs). If there is a metaslab with a 336 * worse weight but it can actually satisfy the allocation, we won't find it 337 * until trying hard. This may happen if the worse metaslab is not loaded 338 * (and the true weight is better than we have calculated), or due to weight 339 * bucketization. E.g. we are looking for a 60K segment, and the best 340 * metaslabs all have free segments in the 32-63K bucket, but the best 341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 343 * bucket, and therefore a lower weight). 344 */ 345 static uint_t zfs_metaslab_find_max_tries = 100; 346 347 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 351 352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 355 static unsigned int metaslab_idx_func(multilist_t *, void *); 356 static void metaslab_evict(metaslab_t *, uint64_t); 357 static void metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, 358 void *arg); 359 kmem_cache_t *metaslab_alloc_trace_cache; 360 361 typedef struct metaslab_stats { 362 kstat_named_t metaslabstat_trace_over_limit; 363 kstat_named_t metaslabstat_reload_tree; 364 kstat_named_t metaslabstat_too_many_tries; 365 kstat_named_t metaslabstat_try_hard; 366 } metaslab_stats_t; 367 368 static metaslab_stats_t metaslab_stats = { 369 { "trace_over_limit", KSTAT_DATA_UINT64 }, 370 { "reload_tree", KSTAT_DATA_UINT64 }, 371 { "too_many_tries", KSTAT_DATA_UINT64 }, 372 { "try_hard", KSTAT_DATA_UINT64 }, 373 }; 374 375 #define METASLABSTAT_BUMP(stat) \ 376 atomic_inc_64(&metaslab_stats.stat.value.ui64); 377 378 379 static kstat_t *metaslab_ksp; 380 381 void 382 metaslab_stat_init(void) 383 { 384 ASSERT(metaslab_alloc_trace_cache == NULL); 385 metaslab_alloc_trace_cache = kmem_cache_create( 386 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 387 0, NULL, NULL, NULL, NULL, NULL, 0); 388 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 389 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 390 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 391 if (metaslab_ksp != NULL) { 392 metaslab_ksp->ks_data = &metaslab_stats; 393 kstat_install(metaslab_ksp); 394 } 395 } 396 397 void 398 metaslab_stat_fini(void) 399 { 400 if (metaslab_ksp != NULL) { 401 kstat_delete(metaslab_ksp); 402 metaslab_ksp = NULL; 403 } 404 405 kmem_cache_destroy(metaslab_alloc_trace_cache); 406 metaslab_alloc_trace_cache = NULL; 407 } 408 409 /* 410 * ========================================================================== 411 * Metaslab classes 412 * ========================================================================== 413 */ 414 metaslab_class_t * 415 metaslab_class_create(spa_t *spa, const char *name, 416 const metaslab_ops_t *ops, boolean_t is_log) 417 { 418 metaslab_class_t *mc; 419 420 mc = kmem_zalloc(offsetof(metaslab_class_t, 421 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 422 423 mc->mc_spa = spa; 424 mc->mc_name = name; 425 mc->mc_ops = ops; 426 mc->mc_is_log = is_log; 427 mc->mc_alloc_io_size = SPA_OLD_MAXBLOCKSIZE; 428 mc->mc_alloc_max = UINT64_MAX; 429 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 430 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 431 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 432 for (int i = 0; i < spa->spa_alloc_count; i++) { 433 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 434 mutex_init(&mca->mca_lock, NULL, MUTEX_DEFAULT, NULL); 435 avl_create(&mca->mca_tree, zio_bookmark_compare, 436 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 437 mca->mca_rotor = NULL; 438 mca->mca_reserved = 0; 439 } 440 441 return (mc); 442 } 443 444 void 445 metaslab_class_destroy(metaslab_class_t *mc) 446 { 447 spa_t *spa = mc->mc_spa; 448 449 ASSERT(mc->mc_alloc == 0); 450 ASSERT(mc->mc_deferred == 0); 451 ASSERT(mc->mc_space == 0); 452 ASSERT(mc->mc_dspace == 0); 453 454 for (int i = 0; i < spa->spa_alloc_count; i++) { 455 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 456 avl_destroy(&mca->mca_tree); 457 mutex_destroy(&mca->mca_lock); 458 ASSERT(mca->mca_rotor == NULL); 459 ASSERT0(mca->mca_reserved); 460 } 461 mutex_destroy(&mc->mc_lock); 462 multilist_destroy(&mc->mc_metaslab_txg_list); 463 kmem_free(mc, offsetof(metaslab_class_t, 464 mc_allocator[spa->spa_alloc_count])); 465 } 466 467 void 468 metaslab_class_validate(metaslab_class_t *mc) 469 { 470 #ifdef ZFS_DEBUG 471 spa_t *spa = mc->mc_spa; 472 473 /* 474 * Must hold one of the spa_config locks. 475 */ 476 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) || 477 spa_config_held(spa, SCL_ALL, RW_WRITER)); 478 479 for (int i = 0; i < spa->spa_alloc_count; i++) { 480 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 481 metaslab_group_t *mg, *rotor; 482 483 ASSERT0(avl_numnodes(&mca->mca_tree)); 484 ASSERT0(mca->mca_reserved); 485 486 if ((mg = rotor = mca->mca_rotor) == NULL) 487 continue; 488 do { 489 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 490 vdev_t *vd = mg->mg_vd; 491 492 ASSERT3P(vd->vdev_top, ==, vd); 493 ASSERT(vd->vdev_mg == mg || vd->vdev_log_mg == mg); 494 ASSERT3P(mg->mg_class, ==, mc); 495 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 496 ASSERT0(zfs_refcount_count(&mga->mga_queue_depth)); 497 } while ((mg = mg->mg_next) != rotor); 498 } 499 #endif 500 } 501 502 /* 503 * For each metaslab group in a class pre-calculate allocation quota and 504 * target queue depth to balance their space usage and write performance. 505 * Based on those pre-calculate class allocation throttle threshold for 506 * optimal saturation. onsync is true once per TXG to enable/disable 507 * allocation throttling and update moving average of maximum I/O size. 508 */ 509 void 510 metaslab_class_balance(metaslab_class_t *mc, boolean_t onsync) 511 { 512 metaslab_group_t *mg, *first; 513 514 /* 515 * Must hold one of the spa_config locks. 516 */ 517 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 518 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 519 520 if (onsync) 521 metaslab_class_validate(mc); 522 523 if (mc->mc_groups == 0) { 524 if (onsync) 525 mc->mc_alloc_throttle_enabled = B_FALSE; 526 mc->mc_alloc_max = UINT64_MAX; 527 return; 528 } 529 530 if (onsync) { 531 /* 532 * Moving average of maximum allocation size, in absence of 533 * large allocations shrinking to 1/8 of metaslab_aliquot. 534 */ 535 mc->mc_alloc_io_size = (3 * mc->mc_alloc_io_size + 536 metaslab_aliquot / 8) / 4; 537 mc->mc_alloc_throttle_enabled = mc->mc_is_log ? 0 : 538 zio_dva_throttle_enabled; 539 } 540 541 mg = first = mc->mc_allocator[0].mca_rotor; 542 uint64_t children = 0; 543 do { 544 children += vdev_get_ndisks(mg->mg_vd) - 545 vdev_get_nparity(mg->mg_vd); 546 } while ((mg = mg->mg_next) != first); 547 548 uint64_t sum_aliquot = 0; 549 do { 550 vdev_stat_t *vs = &mg->mg_vd->vdev_stat; 551 uint_t ratio; 552 553 /* 554 * Scale allocations per iteration with average number of 555 * children. Wider vdevs need more sequential allocations 556 * to keep decent per-child I/O size. 557 */ 558 uint64_t mg_aliquot = MAX(metaslab_aliquot * children / 559 mc->mc_groups, mc->mc_alloc_io_size * 4); 560 561 /* 562 * Scale allocations per iteration with the vdev capacity, 563 * relative to average. Bigger vdevs should get more to 564 * fill up at the same time as smaller ones. 565 */ 566 if (mc->mc_space > 0 && vs->vs_space > 0) { 567 ratio = vs->vs_space / (mc->mc_space / (mc->mc_groups * 568 256) + 1); 569 mg_aliquot = mg_aliquot * ratio / 256; 570 } 571 572 /* 573 * Scale allocations per iteration with the vdev's free space 574 * fraction, relative to average. Despite the above, vdevs free 575 * space fractions may get imbalanced, for example due to new 576 * vdev addition or different performance. We want free space 577 * fractions to be similar to postpone fragmentation. 578 * 579 * But same time we don't want to throttle vdevs still having 580 * plenty of free space, that appear faster than others, even 581 * if that cause temporary imbalance. Allow them to allocate 582 * more by keeping their allocation queue depth equivalent to 583 * 2.5 full iteration, even if they repeatedly drain it. Later 584 * with the free space reduction gradually reduce the target 585 * queue depth, stronger enforcing the free space balance. 586 */ 587 if (metaslab_bias_enabled && 588 mc->mc_space > 0 && vs->vs_space > 0) { 589 uint64_t vs_free = vs->vs_space > vs->vs_alloc ? 590 vs->vs_space - vs->vs_alloc : 0; 591 uint64_t mc_free = mc->mc_space > mc->mc_alloc ? 592 mc->mc_space - mc->mc_alloc : 0; 593 /* 594 * vs_fr is 16 bit fixed-point free space fraction. 595 * mc_fr is 8 bit fixed-point free space fraction. 596 * ratio as their quotient is 8 bit fixed-point. 597 */ 598 uint_t vs_fr = vs_free / (vs->vs_space / 65536 + 1); 599 uint_t mc_fr = mc_free / (mc->mc_space / 256 + 1); 600 ratio = vs_fr / (mc_fr + 1); 601 mg->mg_aliquot = mg_aliquot * ratio / 256; 602 /* From 2.5x at 25% full to 1x at 75%. */ 603 ratio = MIN(163840, vs_fr * 3 + 16384); 604 mg->mg_queue_target = MAX(mg->mg_aliquot, 605 mg->mg_aliquot * ratio / 65536); 606 } else { 607 mg->mg_aliquot = mg_aliquot; 608 mg->mg_queue_target = mg->mg_aliquot * 2; 609 } 610 sum_aliquot += mg->mg_aliquot; 611 } while ((mg = mg->mg_next) != first); 612 613 /* 614 * Set per-class allocation throttle threshold to 4 iterations through 615 * all the vdevs. This should keep all vdevs busy even if some are 616 * allocating more than we planned for them due to bigger blocks or 617 * better performance. 618 */ 619 mc->mc_alloc_max = sum_aliquot * 4; 620 } 621 622 static void 623 metaslab_class_rotate(metaslab_group_t *mg, int allocator, uint64_t psize, 624 boolean_t success) 625 { 626 metaslab_class_t *mc = mg->mg_class; 627 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 628 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 629 630 /* 631 * Exit fast if there is nothing to rotate, we are not following 632 * the rotor (copies, gangs, etc) or somebody already rotated it. 633 */ 634 if (mc->mc_groups < 2 || mca->mca_rotor != mg) 635 return; 636 637 /* 638 * Always rotate in case of allocation error or a log class. 639 */ 640 if (!success || mc->mc_is_log) 641 goto rotate; 642 643 /* 644 * Allocate from this group if we expect next I/O of the same size to 645 * mostly fit within the allocation quota. Rotate if we expect it to 646 * mostly go over the target queue depth. Meanwhile, to stripe between 647 * groups in configured amounts per child even if we can't reach the 648 * target queue depth, i.e. can't saturate the group write performance, 649 * always rotate after allocating the queue target bytes. 650 */ 651 uint64_t naq = atomic_add_64_nv(&mca->mca_aliquot, psize) + psize / 2; 652 if (naq < mg->mg_aliquot) 653 return; 654 if (naq >= mg->mg_queue_target) 655 goto rotate; 656 if (zfs_refcount_count(&mga->mga_queue_depth) + psize + psize / 2 >= 657 mg->mg_queue_target) 658 goto rotate; 659 660 /* 661 * When the pool is not too busy, prefer restoring the vdev free space 662 * balance instead of getting maximum speed we might not need, so that 663 * we could have more flexibility during more busy times later. 664 */ 665 if (metaslab_perf_bias <= 0) 666 goto rotate; 667 if (metaslab_perf_bias >= 2) 668 return; 669 spa_t *spa = mc->mc_spa; 670 dsl_pool_t *dp = spa_get_dsl(spa); 671 if (dp == NULL) 672 return; 673 uint64_t busy_thresh = zfs_dirty_data_max * 674 (zfs_vdev_async_write_active_min_dirty_percent + 675 zfs_vdev_async_write_active_max_dirty_percent) / 200; 676 if (dp->dp_dirty_total > busy_thresh || spa_has_pending_synctask(spa)) 677 return; 678 679 rotate: 680 mca->mca_rotor = mg->mg_next; 681 mca->mca_aliquot = 0; 682 } 683 684 static void 685 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 686 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 687 { 688 atomic_add_64(&mc->mc_alloc, alloc_delta); 689 atomic_add_64(&mc->mc_deferred, defer_delta); 690 atomic_add_64(&mc->mc_space, space_delta); 691 atomic_add_64(&mc->mc_dspace, dspace_delta); 692 } 693 694 const char * 695 metaslab_class_get_name(metaslab_class_t *mc) 696 { 697 return (mc->mc_name); 698 } 699 700 uint64_t 701 metaslab_class_get_alloc(metaslab_class_t *mc) 702 { 703 return (mc->mc_alloc); 704 } 705 706 uint64_t 707 metaslab_class_get_deferred(metaslab_class_t *mc) 708 { 709 return (mc->mc_deferred); 710 } 711 712 uint64_t 713 metaslab_class_get_space(metaslab_class_t *mc) 714 { 715 return (mc->mc_space); 716 } 717 718 uint64_t 719 metaslab_class_get_dspace(metaslab_class_t *mc) 720 { 721 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 722 } 723 724 void 725 metaslab_class_histogram_verify(metaslab_class_t *mc) 726 { 727 spa_t *spa = mc->mc_spa; 728 vdev_t *rvd = spa->spa_root_vdev; 729 uint64_t *mc_hist; 730 int i; 731 732 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 733 return; 734 735 mc_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE, 736 KM_SLEEP); 737 738 mutex_enter(&mc->mc_lock); 739 for (int c = 0; c < rvd->vdev_children; c++) { 740 vdev_t *tvd = rvd->vdev_child[c]; 741 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 742 743 /* 744 * Skip any holes, uninitialized top-levels, or 745 * vdevs that are not in this metalab class. 746 */ 747 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 748 mg->mg_class != mc) { 749 continue; 750 } 751 752 IMPLY(mg == mg->mg_vd->vdev_log_mg, 753 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 754 755 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) 756 mc_hist[i] += mg->mg_histogram[i]; 757 } 758 759 for (i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 760 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 761 } 762 763 mutex_exit(&mc->mc_lock); 764 kmem_free(mc_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE); 765 } 766 767 /* 768 * Calculate the metaslab class's fragmentation metric. The metric 769 * is weighted based on the space contribution of each metaslab group. 770 * The return value will be a number between 0 and 100 (inclusive), or 771 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 772 * zfs_frag_table for more information about the metric. 773 */ 774 uint64_t 775 metaslab_class_fragmentation(metaslab_class_t *mc) 776 { 777 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 778 uint64_t fragmentation = 0; 779 780 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 781 782 for (int c = 0; c < rvd->vdev_children; c++) { 783 vdev_t *tvd = rvd->vdev_child[c]; 784 metaslab_group_t *mg = tvd->vdev_mg; 785 786 /* 787 * Skip any holes, uninitialized top-levels, 788 * or vdevs that are not in this metalab class. 789 */ 790 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 791 mg->mg_class != mc) { 792 continue; 793 } 794 795 /* 796 * If a metaslab group does not contain a fragmentation 797 * metric then just bail out. 798 */ 799 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 800 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 801 return (ZFS_FRAG_INVALID); 802 } 803 804 /* 805 * Determine how much this metaslab_group is contributing 806 * to the overall pool fragmentation metric. 807 */ 808 fragmentation += mg->mg_fragmentation * 809 metaslab_group_get_space(mg); 810 } 811 fragmentation /= metaslab_class_get_space(mc); 812 813 ASSERT3U(fragmentation, <=, 100); 814 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 815 return (fragmentation); 816 } 817 818 /* 819 * Calculate the amount of expandable space that is available in 820 * this metaslab class. If a device is expanded then its expandable 821 * space will be the amount of allocatable space that is currently not 822 * part of this metaslab class. 823 */ 824 uint64_t 825 metaslab_class_expandable_space(metaslab_class_t *mc) 826 { 827 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 828 uint64_t space = 0; 829 830 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 831 for (int c = 0; c < rvd->vdev_children; c++) { 832 vdev_t *tvd = rvd->vdev_child[c]; 833 metaslab_group_t *mg = tvd->vdev_mg; 834 835 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 836 mg->mg_class != mc) { 837 continue; 838 } 839 840 /* 841 * Calculate if we have enough space to add additional 842 * metaslabs. We report the expandable space in terms 843 * of the metaslab size since that's the unit of expansion. 844 */ 845 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize, 846 1ULL << tvd->vdev_ms_shift, uint64_t); 847 } 848 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 849 return (space); 850 } 851 852 void 853 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 854 { 855 multilist_t *ml = &mc->mc_metaslab_txg_list; 856 uint64_t now = gethrestime_sec(); 857 /* Round delay up to next second. */ 858 uint_t delay = (metaslab_unload_delay_ms + 999) / 1000; 859 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 860 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i); 861 metaslab_t *msp = multilist_sublist_head(mls); 862 multilist_sublist_unlock(mls); 863 while (msp != NULL) { 864 mutex_enter(&msp->ms_lock); 865 866 /* 867 * If the metaslab has been removed from the list 868 * (which could happen if we were at the memory limit 869 * and it was evicted during this loop), then we can't 870 * proceed and we should restart the sublist. 871 */ 872 if (!multilist_link_active(&msp->ms_class_txg_node)) { 873 mutex_exit(&msp->ms_lock); 874 i--; 875 break; 876 } 877 mls = multilist_sublist_lock_idx(ml, i); 878 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 879 multilist_sublist_unlock(mls); 880 if (txg > 881 msp->ms_selected_txg + metaslab_unload_delay && 882 now > msp->ms_selected_time + delay && 883 (msp->ms_allocator == -1 || 884 !metaslab_preload_enabled)) { 885 metaslab_evict(msp, txg); 886 } else { 887 /* 888 * Once we've hit a metaslab selected too 889 * recently to evict, we're done evicting for 890 * now. 891 */ 892 mutex_exit(&msp->ms_lock); 893 break; 894 } 895 mutex_exit(&msp->ms_lock); 896 msp = next_msp; 897 } 898 } 899 } 900 901 static int 902 metaslab_compare(const void *x1, const void *x2) 903 { 904 const metaslab_t *m1 = (const metaslab_t *)x1; 905 const metaslab_t *m2 = (const metaslab_t *)x2; 906 907 int sort1 = 0; 908 int sort2 = 0; 909 if (m1->ms_allocator != -1 && m1->ms_primary) 910 sort1 = 1; 911 else if (m1->ms_allocator != -1 && !m1->ms_primary) 912 sort1 = 2; 913 if (m2->ms_allocator != -1 && m2->ms_primary) 914 sort2 = 1; 915 else if (m2->ms_allocator != -1 && !m2->ms_primary) 916 sort2 = 2; 917 918 /* 919 * Sort inactive metaslabs first, then primaries, then secondaries. When 920 * selecting a metaslab to allocate from, an allocator first tries its 921 * primary, then secondary active metaslab. If it doesn't have active 922 * metaslabs, or can't allocate from them, it searches for an inactive 923 * metaslab to activate. If it can't find a suitable one, it will steal 924 * a primary or secondary metaslab from another allocator. 925 */ 926 if (sort1 < sort2) 927 return (-1); 928 if (sort1 > sort2) 929 return (1); 930 931 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 932 if (likely(cmp)) 933 return (cmp); 934 935 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 936 937 return (TREE_CMP(m1->ms_start, m2->ms_start)); 938 } 939 940 /* 941 * ========================================================================== 942 * Metaslab groups 943 * ========================================================================== 944 */ 945 /* 946 * Update the allocatable flag and the metaslab group's capacity. 947 * The allocatable flag is set to true if the capacity is below 948 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 949 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 950 * transitions from allocatable to non-allocatable or vice versa then the 951 * metaslab group's class is updated to reflect the transition. 952 */ 953 static void 954 metaslab_group_alloc_update(metaslab_group_t *mg) 955 { 956 vdev_t *vd = mg->mg_vd; 957 metaslab_class_t *mc = mg->mg_class; 958 vdev_stat_t *vs = &vd->vdev_stat; 959 boolean_t was_allocatable; 960 boolean_t was_initialized; 961 962 ASSERT(vd == vd->vdev_top); 963 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 964 SCL_ALLOC); 965 966 mutex_enter(&mg->mg_lock); 967 was_allocatable = mg->mg_allocatable; 968 was_initialized = mg->mg_initialized; 969 970 uint64_t free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 971 (vs->vs_space + 1); 972 973 mutex_enter(&mc->mc_lock); 974 975 /* 976 * If the metaslab group was just added then it won't 977 * have any space until we finish syncing out this txg. 978 * At that point we will consider it initialized and available 979 * for allocations. We also don't consider non-activated 980 * metaslab groups (e.g. vdevs that are in the middle of being removed) 981 * to be initialized, because they can't be used for allocation. 982 */ 983 mg->mg_initialized = metaslab_group_initialized(mg); 984 if (!was_initialized && mg->mg_initialized) { 985 mc->mc_groups++; 986 } else if (was_initialized && !mg->mg_initialized) { 987 ASSERT3U(mc->mc_groups, >, 0); 988 mc->mc_groups--; 989 } 990 if (mg->mg_initialized) 991 mg->mg_no_free_space = B_FALSE; 992 993 /* 994 * A metaslab group is considered allocatable if it has plenty 995 * of free space or is not heavily fragmented. We only take 996 * fragmentation into account if the metaslab group has a valid 997 * fragmentation metric (i.e. a value between 0 and 100). 998 */ 999 mg->mg_allocatable = (mg->mg_activation_count > 0 && 1000 free_capacity > zfs_mg_noalloc_threshold && 1001 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 1002 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 1003 1004 /* 1005 * The mc_alloc_groups maintains a count of the number of 1006 * groups in this metaslab class that are still above the 1007 * zfs_mg_noalloc_threshold. This is used by the allocating 1008 * threads to determine if they should avoid allocations to 1009 * a given group. The allocator will avoid allocations to a group 1010 * if that group has reached or is below the zfs_mg_noalloc_threshold 1011 * and there are still other groups that are above the threshold. 1012 * When a group transitions from allocatable to non-allocatable or 1013 * vice versa we update the metaslab class to reflect that change. 1014 * When the mc_alloc_groups value drops to 0 that means that all 1015 * groups have reached the zfs_mg_noalloc_threshold making all groups 1016 * eligible for allocations. This effectively means that all devices 1017 * are balanced again. 1018 */ 1019 if (was_allocatable && !mg->mg_allocatable) 1020 mc->mc_alloc_groups--; 1021 else if (!was_allocatable && mg->mg_allocatable) 1022 mc->mc_alloc_groups++; 1023 mutex_exit(&mc->mc_lock); 1024 1025 mutex_exit(&mg->mg_lock); 1026 } 1027 1028 int 1029 metaslab_sort_by_flushed(const void *va, const void *vb) 1030 { 1031 const metaslab_t *a = va; 1032 const metaslab_t *b = vb; 1033 1034 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 1035 if (likely(cmp)) 1036 return (cmp); 1037 1038 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 1039 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 1040 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 1041 if (cmp) 1042 return (cmp); 1043 1044 return (TREE_CMP(a->ms_id, b->ms_id)); 1045 } 1046 1047 metaslab_group_t * 1048 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd) 1049 { 1050 spa_t *spa = mc->mc_spa; 1051 metaslab_group_t *mg; 1052 1053 mg = kmem_zalloc(offsetof(metaslab_group_t, 1054 mg_allocator[spa->spa_alloc_count]), KM_SLEEP); 1055 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 1056 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 1057 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 1058 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 1059 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 1060 mg->mg_vd = vd; 1061 mg->mg_class = mc; 1062 mg->mg_activation_count = 0; 1063 mg->mg_initialized = B_FALSE; 1064 mg->mg_no_free_space = B_TRUE; 1065 1066 for (int i = 0; i < spa->spa_alloc_count; i++) { 1067 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1068 zfs_refcount_create_tracked(&mga->mga_queue_depth); 1069 } 1070 1071 return (mg); 1072 } 1073 1074 void 1075 metaslab_group_destroy(metaslab_group_t *mg) 1076 { 1077 spa_t *spa = mg->mg_class->mc_spa; 1078 1079 ASSERT(mg->mg_prev == NULL); 1080 ASSERT(mg->mg_next == NULL); 1081 /* 1082 * We may have gone below zero with the activation count 1083 * either because we never activated in the first place or 1084 * because we're done, and possibly removing the vdev. 1085 */ 1086 ASSERT(mg->mg_activation_count <= 0); 1087 1088 avl_destroy(&mg->mg_metaslab_tree); 1089 mutex_destroy(&mg->mg_lock); 1090 mutex_destroy(&mg->mg_ms_disabled_lock); 1091 cv_destroy(&mg->mg_ms_disabled_cv); 1092 1093 for (int i = 0; i < spa->spa_alloc_count; i++) { 1094 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1095 zfs_refcount_destroy(&mga->mga_queue_depth); 1096 } 1097 kmem_free(mg, offsetof(metaslab_group_t, 1098 mg_allocator[spa->spa_alloc_count])); 1099 } 1100 1101 void 1102 metaslab_group_activate(metaslab_group_t *mg) 1103 { 1104 metaslab_class_t *mc = mg->mg_class; 1105 spa_t *spa = mc->mc_spa; 1106 metaslab_group_t *mgprev, *mgnext; 1107 1108 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 1109 1110 ASSERT(mg->mg_prev == NULL); 1111 ASSERT(mg->mg_next == NULL); 1112 ASSERT(mg->mg_activation_count <= 0); 1113 1114 if (++mg->mg_activation_count <= 0) 1115 return; 1116 1117 metaslab_group_alloc_update(mg); 1118 1119 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 1120 mg->mg_prev = mg; 1121 mg->mg_next = mg; 1122 } else { 1123 mgnext = mgprev->mg_next; 1124 mg->mg_prev = mgprev; 1125 mg->mg_next = mgnext; 1126 mgprev->mg_next = mg; 1127 mgnext->mg_prev = mg; 1128 } 1129 for (int i = 0; i < spa->spa_alloc_count; i++) { 1130 mc->mc_allocator[i].mca_rotor = mg; 1131 mg = mg->mg_next; 1132 } 1133 metaslab_class_balance(mc, B_FALSE); 1134 } 1135 1136 /* 1137 * Passivate a metaslab group and remove it from the allocation rotor. 1138 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 1139 * a metaslab group. This function will momentarily drop spa_config_locks 1140 * that are lower than the SCL_ALLOC lock (see comment below). 1141 */ 1142 void 1143 metaslab_group_passivate(metaslab_group_t *mg) 1144 { 1145 metaslab_class_t *mc = mg->mg_class; 1146 spa_t *spa = mc->mc_spa; 1147 metaslab_group_t *mgprev, *mgnext; 1148 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 1149 1150 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 1151 (SCL_ALLOC | SCL_ZIO)); 1152 1153 if (--mg->mg_activation_count != 0) { 1154 for (int i = 0; i < spa->spa_alloc_count; i++) 1155 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 1156 ASSERT(mg->mg_prev == NULL); 1157 ASSERT(mg->mg_next == NULL); 1158 ASSERT(mg->mg_activation_count < 0); 1159 return; 1160 } 1161 1162 /* 1163 * The spa_config_lock is an array of rwlocks, ordered as 1164 * follows (from highest to lowest): 1165 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 1166 * SCL_ZIO > SCL_FREE > SCL_VDEV 1167 * (For more information about the spa_config_lock see spa_misc.c) 1168 * The higher the lock, the broader its coverage. When we passivate 1169 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 1170 * config locks. However, the metaslab group's taskq might be trying 1171 * to preload metaslabs so we must drop the SCL_ZIO lock and any 1172 * lower locks to allow the I/O to complete. At a minimum, 1173 * we continue to hold the SCL_ALLOC lock, which prevents any future 1174 * allocations from taking place and any changes to the vdev tree. 1175 */ 1176 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 1177 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0); 1178 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 1179 metaslab_group_alloc_update(mg); 1180 for (int i = 0; i < spa->spa_alloc_count; i++) { 1181 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 1182 metaslab_t *msp = mga->mga_primary; 1183 if (msp != NULL) { 1184 mutex_enter(&msp->ms_lock); 1185 metaslab_passivate(msp, 1186 metaslab_weight_from_range_tree(msp)); 1187 mutex_exit(&msp->ms_lock); 1188 } 1189 msp = mga->mga_secondary; 1190 if (msp != NULL) { 1191 mutex_enter(&msp->ms_lock); 1192 metaslab_passivate(msp, 1193 metaslab_weight_from_range_tree(msp)); 1194 mutex_exit(&msp->ms_lock); 1195 } 1196 } 1197 1198 mgprev = mg->mg_prev; 1199 mgnext = mg->mg_next; 1200 1201 if (mg == mgnext) { 1202 mgnext = NULL; 1203 } else { 1204 mgprev->mg_next = mgnext; 1205 mgnext->mg_prev = mgprev; 1206 } 1207 for (int i = 0; i < spa->spa_alloc_count; i++) { 1208 if (mc->mc_allocator[i].mca_rotor == mg) 1209 mc->mc_allocator[i].mca_rotor = mgnext; 1210 } 1211 1212 mg->mg_prev = NULL; 1213 mg->mg_next = NULL; 1214 metaslab_class_balance(mc, B_FALSE); 1215 } 1216 1217 boolean_t 1218 metaslab_group_initialized(metaslab_group_t *mg) 1219 { 1220 vdev_t *vd = mg->mg_vd; 1221 vdev_stat_t *vs = &vd->vdev_stat; 1222 1223 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1224 } 1225 1226 uint64_t 1227 metaslab_group_get_space(metaslab_group_t *mg) 1228 { 1229 /* 1230 * Note that the number of nodes in mg_metaslab_tree may be one less 1231 * than vdev_ms_count, due to the embedded log metaslab. 1232 */ 1233 mutex_enter(&mg->mg_lock); 1234 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1235 mutex_exit(&mg->mg_lock); 1236 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1237 } 1238 1239 void 1240 metaslab_group_histogram_verify(metaslab_group_t *mg) 1241 { 1242 uint64_t *mg_hist; 1243 avl_tree_t *t = &mg->mg_metaslab_tree; 1244 uint64_t ashift = mg->mg_vd->vdev_ashift; 1245 1246 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1247 return; 1248 1249 mg_hist = kmem_zalloc(sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE, 1250 KM_SLEEP); 1251 1252 ASSERT3U(ZFS_RANGE_TREE_HISTOGRAM_SIZE, >=, 1253 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1254 1255 mutex_enter(&mg->mg_lock); 1256 for (metaslab_t *msp = avl_first(t); 1257 msp != NULL; msp = AVL_NEXT(t, msp)) { 1258 VERIFY3P(msp->ms_group, ==, mg); 1259 /* skip if not active */ 1260 if (msp->ms_sm == NULL) 1261 continue; 1262 1263 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1264 mg_hist[i + ashift] += 1265 msp->ms_sm->sm_phys->smp_histogram[i]; 1266 } 1267 } 1268 1269 for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i ++) 1270 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1271 1272 mutex_exit(&mg->mg_lock); 1273 1274 kmem_free(mg_hist, sizeof (uint64_t) * ZFS_RANGE_TREE_HISTOGRAM_SIZE); 1275 } 1276 1277 static void 1278 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1279 { 1280 metaslab_class_t *mc = mg->mg_class; 1281 uint64_t ashift = mg->mg_vd->vdev_ashift; 1282 1283 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1284 if (msp->ms_sm == NULL) 1285 return; 1286 1287 mutex_enter(&mg->mg_lock); 1288 mutex_enter(&mc->mc_lock); 1289 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1290 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1291 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1292 mg->mg_histogram[i + ashift] += 1293 msp->ms_sm->sm_phys->smp_histogram[i]; 1294 mc->mc_histogram[i + ashift] += 1295 msp->ms_sm->sm_phys->smp_histogram[i]; 1296 } 1297 mutex_exit(&mc->mc_lock); 1298 mutex_exit(&mg->mg_lock); 1299 } 1300 1301 void 1302 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1303 { 1304 metaslab_class_t *mc = mg->mg_class; 1305 uint64_t ashift = mg->mg_vd->vdev_ashift; 1306 1307 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1308 if (msp->ms_sm == NULL) 1309 return; 1310 1311 mutex_enter(&mg->mg_lock); 1312 mutex_enter(&mc->mc_lock); 1313 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1314 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1315 msp->ms_sm->sm_phys->smp_histogram[i]); 1316 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1317 msp->ms_sm->sm_phys->smp_histogram[i]); 1318 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1319 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1320 1321 mg->mg_histogram[i + ashift] -= 1322 msp->ms_sm->sm_phys->smp_histogram[i]; 1323 mc->mc_histogram[i + ashift] -= 1324 msp->ms_sm->sm_phys->smp_histogram[i]; 1325 } 1326 mutex_exit(&mc->mc_lock); 1327 mutex_exit(&mg->mg_lock); 1328 } 1329 1330 static void 1331 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1332 { 1333 ASSERT(msp->ms_group == NULL); 1334 mutex_enter(&mg->mg_lock); 1335 msp->ms_group = mg; 1336 msp->ms_weight = 0; 1337 avl_add(&mg->mg_metaslab_tree, msp); 1338 mutex_exit(&mg->mg_lock); 1339 1340 mutex_enter(&msp->ms_lock); 1341 metaslab_group_histogram_add(mg, msp); 1342 mutex_exit(&msp->ms_lock); 1343 } 1344 1345 static void 1346 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1347 { 1348 mutex_enter(&msp->ms_lock); 1349 metaslab_group_histogram_remove(mg, msp); 1350 mutex_exit(&msp->ms_lock); 1351 1352 mutex_enter(&mg->mg_lock); 1353 ASSERT(msp->ms_group == mg); 1354 avl_remove(&mg->mg_metaslab_tree, msp); 1355 1356 metaslab_class_t *mc = msp->ms_group->mg_class; 1357 multilist_sublist_t *mls = 1358 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1359 if (multilist_link_active(&msp->ms_class_txg_node)) 1360 multilist_sublist_remove(mls, msp); 1361 multilist_sublist_unlock(mls); 1362 1363 msp->ms_group = NULL; 1364 mutex_exit(&mg->mg_lock); 1365 } 1366 1367 static void 1368 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1369 { 1370 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1371 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1372 ASSERT(msp->ms_group == mg); 1373 1374 avl_remove(&mg->mg_metaslab_tree, msp); 1375 msp->ms_weight = weight; 1376 avl_add(&mg->mg_metaslab_tree, msp); 1377 1378 } 1379 1380 static void 1381 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1382 { 1383 /* 1384 * Although in principle the weight can be any value, in 1385 * practice we do not use values in the range [1, 511]. 1386 */ 1387 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1388 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1389 1390 mutex_enter(&mg->mg_lock); 1391 metaslab_group_sort_impl(mg, msp, weight); 1392 mutex_exit(&mg->mg_lock); 1393 } 1394 1395 /* 1396 * Calculate the fragmentation for a given metaslab group. Weight metaslabs 1397 * on the amount of free space. The return value will be between 0 and 100 1398 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1399 * group have a fragmentation metric. 1400 */ 1401 uint64_t 1402 metaslab_group_fragmentation(metaslab_group_t *mg) 1403 { 1404 vdev_t *vd = mg->mg_vd; 1405 uint64_t fragmentation = 0; 1406 uint64_t valid_ms = 0, total_ms = 0; 1407 uint64_t free, total_free = 0; 1408 1409 for (int m = 0; m < vd->vdev_ms_count; m++) { 1410 metaslab_t *msp = vd->vdev_ms[m]; 1411 1412 if (msp->ms_group != mg) 1413 continue; 1414 total_ms++; 1415 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1416 continue; 1417 1418 valid_ms++; 1419 free = (msp->ms_size - metaslab_allocated_space(msp)) / 1420 SPA_MINBLOCKSIZE; /* To prevent overflows. */ 1421 total_free += free; 1422 fragmentation += msp->ms_fragmentation * free; 1423 } 1424 1425 if (valid_ms < (total_ms + 1) / 2 || total_free == 0) 1426 return (ZFS_FRAG_INVALID); 1427 1428 fragmentation /= total_free; 1429 ASSERT3U(fragmentation, <=, 100); 1430 return (fragmentation); 1431 } 1432 1433 /* 1434 * ========================================================================== 1435 * Range tree callbacks 1436 * ========================================================================== 1437 */ 1438 1439 /* 1440 * Comparison function for the private size-ordered tree using 32-bit 1441 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1442 */ 1443 __attribute__((always_inline)) inline 1444 static int 1445 metaslab_rangesize32_compare(const void *x1, const void *x2) 1446 { 1447 const zfs_range_seg32_t *r1 = x1; 1448 const zfs_range_seg32_t *r2 = x2; 1449 1450 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1451 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1452 1453 int cmp = TREE_CMP(rs_size1, rs_size2); 1454 1455 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1456 } 1457 1458 /* 1459 * Comparison function for the private size-ordered tree using 64-bit 1460 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1461 */ 1462 __attribute__((always_inline)) inline 1463 static int 1464 metaslab_rangesize64_compare(const void *x1, const void *x2) 1465 { 1466 const zfs_range_seg64_t *r1 = x1; 1467 const zfs_range_seg64_t *r2 = x2; 1468 1469 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1470 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1471 1472 int cmp = TREE_CMP(rs_size1, rs_size2); 1473 1474 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1475 } 1476 1477 typedef struct metaslab_rt_arg { 1478 zfs_btree_t *mra_bt; 1479 uint32_t mra_floor_shift; 1480 } metaslab_rt_arg_t; 1481 1482 struct mssa_arg { 1483 zfs_range_tree_t *rt; 1484 metaslab_rt_arg_t *mra; 1485 }; 1486 1487 static void 1488 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1489 { 1490 struct mssa_arg *mssap = arg; 1491 zfs_range_tree_t *rt = mssap->rt; 1492 metaslab_rt_arg_t *mrap = mssap->mra; 1493 zfs_range_seg_max_t seg = {0}; 1494 zfs_rs_set_start(&seg, rt, start); 1495 zfs_rs_set_end(&seg, rt, start + size); 1496 metaslab_rt_add(rt, &seg, mrap); 1497 } 1498 1499 static void 1500 metaslab_size_tree_full_load(zfs_range_tree_t *rt) 1501 { 1502 metaslab_rt_arg_t *mrap = rt->rt_arg; 1503 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1504 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1505 mrap->mra_floor_shift = 0; 1506 struct mssa_arg arg = {0}; 1507 arg.rt = rt; 1508 arg.mra = mrap; 1509 zfs_range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1510 } 1511 1512 1513 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf, 1514 zfs_range_seg32_t, metaslab_rangesize32_compare) 1515 1516 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf, 1517 zfs_range_seg64_t, metaslab_rangesize64_compare) 1518 1519 /* 1520 * Create any block allocator specific components. The current allocators 1521 * rely on using both a size-ordered zfs_range_tree_t and an array of 1522 * uint64_t's. 1523 */ 1524 static void 1525 metaslab_rt_create(zfs_range_tree_t *rt, void *arg) 1526 { 1527 metaslab_rt_arg_t *mrap = arg; 1528 zfs_btree_t *size_tree = mrap->mra_bt; 1529 1530 size_t size; 1531 int (*compare) (const void *, const void *); 1532 bt_find_in_buf_f bt_find; 1533 switch (rt->rt_type) { 1534 case ZFS_RANGE_SEG32: 1535 size = sizeof (zfs_range_seg32_t); 1536 compare = metaslab_rangesize32_compare; 1537 bt_find = metaslab_rt_find_rangesize32_in_buf; 1538 break; 1539 case ZFS_RANGE_SEG64: 1540 size = sizeof (zfs_range_seg64_t); 1541 compare = metaslab_rangesize64_compare; 1542 bt_find = metaslab_rt_find_rangesize64_in_buf; 1543 break; 1544 default: 1545 panic("Invalid range seg type %d", rt->rt_type); 1546 } 1547 zfs_btree_create(size_tree, compare, bt_find, size); 1548 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1549 } 1550 1551 static void 1552 metaslab_rt_destroy(zfs_range_tree_t *rt, void *arg) 1553 { 1554 (void) rt; 1555 metaslab_rt_arg_t *mrap = arg; 1556 zfs_btree_t *size_tree = mrap->mra_bt; 1557 1558 zfs_btree_destroy(size_tree); 1559 kmem_free(mrap, sizeof (*mrap)); 1560 } 1561 1562 static void 1563 metaslab_rt_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 1564 { 1565 metaslab_rt_arg_t *mrap = arg; 1566 zfs_btree_t *size_tree = mrap->mra_bt; 1567 1568 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < 1569 (1ULL << mrap->mra_floor_shift)) 1570 return; 1571 1572 zfs_btree_add(size_tree, rs); 1573 } 1574 1575 static void 1576 metaslab_rt_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 1577 { 1578 metaslab_rt_arg_t *mrap = arg; 1579 zfs_btree_t *size_tree = mrap->mra_bt; 1580 1581 if (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt) < (1ULL << 1582 mrap->mra_floor_shift)) 1583 return; 1584 1585 zfs_btree_remove(size_tree, rs); 1586 } 1587 1588 static void 1589 metaslab_rt_vacate(zfs_range_tree_t *rt, void *arg) 1590 { 1591 metaslab_rt_arg_t *mrap = arg; 1592 zfs_btree_t *size_tree = mrap->mra_bt; 1593 zfs_btree_clear(size_tree); 1594 zfs_btree_destroy(size_tree); 1595 1596 metaslab_rt_create(rt, arg); 1597 } 1598 1599 static const zfs_range_tree_ops_t metaslab_rt_ops = { 1600 .rtop_create = metaslab_rt_create, 1601 .rtop_destroy = metaslab_rt_destroy, 1602 .rtop_add = metaslab_rt_add, 1603 .rtop_remove = metaslab_rt_remove, 1604 .rtop_vacate = metaslab_rt_vacate 1605 }; 1606 1607 /* 1608 * ========================================================================== 1609 * Common allocator routines 1610 * ========================================================================== 1611 */ 1612 1613 /* 1614 * Return the maximum contiguous segment within the metaslab. 1615 */ 1616 uint64_t 1617 metaslab_largest_allocatable(metaslab_t *msp) 1618 { 1619 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1620 zfs_range_seg_t *rs; 1621 1622 if (t == NULL) 1623 return (0); 1624 if (zfs_btree_numnodes(t) == 0) 1625 metaslab_size_tree_full_load(msp->ms_allocatable); 1626 1627 rs = zfs_btree_last(t, NULL); 1628 if (rs == NULL) 1629 return (0); 1630 1631 return (zfs_rs_get_end(rs, msp->ms_allocatable) - zfs_rs_get_start(rs, 1632 msp->ms_allocatable)); 1633 } 1634 1635 /* 1636 * Return the maximum contiguous segment within the unflushed frees of this 1637 * metaslab. 1638 */ 1639 static uint64_t 1640 metaslab_largest_unflushed_free(metaslab_t *msp) 1641 { 1642 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1643 1644 if (msp->ms_unflushed_frees == NULL) 1645 return (0); 1646 1647 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1648 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1649 zfs_range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1650 NULL); 1651 if (rs == NULL) 1652 return (0); 1653 1654 /* 1655 * When a range is freed from the metaslab, that range is added to 1656 * both the unflushed frees and the deferred frees. While the block 1657 * will eventually be usable, if the metaslab were loaded the range 1658 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1659 * txgs had passed. As a result, when attempting to estimate an upper 1660 * bound for the largest currently-usable free segment in the 1661 * metaslab, we need to not consider any ranges currently in the defer 1662 * trees. This algorithm approximates the largest available chunk in 1663 * the largest range in the unflushed_frees tree by taking the first 1664 * chunk. While this may be a poor estimate, it should only remain so 1665 * briefly and should eventually self-correct as frees are no longer 1666 * deferred. Similar logic applies to the ms_freed tree. See 1667 * metaslab_load() for more details. 1668 * 1669 * There are two primary sources of inaccuracy in this estimate. Both 1670 * are tolerated for performance reasons. The first source is that we 1671 * only check the largest segment for overlaps. Smaller segments may 1672 * have more favorable overlaps with the other trees, resulting in 1673 * larger usable chunks. Second, we only look at the first chunk in 1674 * the largest segment; there may be other usable chunks in the 1675 * largest segment, but we ignore them. 1676 */ 1677 uint64_t rstart = zfs_rs_get_start(rs, msp->ms_unflushed_frees); 1678 uint64_t rsize = zfs_rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1679 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1680 uint64_t start = 0; 1681 uint64_t size = 0; 1682 boolean_t found = zfs_range_tree_find_in(msp->ms_defer[t], 1683 rstart, rsize, &start, &size); 1684 if (found) { 1685 if (rstart == start) 1686 return (0); 1687 rsize = start - rstart; 1688 } 1689 } 1690 1691 uint64_t start = 0; 1692 uint64_t size = 0; 1693 boolean_t found = zfs_range_tree_find_in(msp->ms_freed, rstart, 1694 rsize, &start, &size); 1695 if (found) 1696 rsize = start - rstart; 1697 1698 return (rsize); 1699 } 1700 1701 static zfs_range_seg_t * 1702 metaslab_block_find(zfs_btree_t *t, zfs_range_tree_t *rt, uint64_t start, 1703 uint64_t size, uint64_t max_size, zfs_btree_index_t *where) 1704 { 1705 zfs_range_seg_t *rs; 1706 zfs_range_seg_max_t rsearch; 1707 1708 zfs_rs_set_start(&rsearch, rt, start); 1709 zfs_rs_set_end(&rsearch, rt, start + max_size); 1710 1711 rs = zfs_btree_find(t, &rsearch, where); 1712 if (rs == NULL) { 1713 if (size == max_size) { 1714 rs = zfs_btree_next(t, where, where); 1715 } else { 1716 /* 1717 * If we're searching for a range, get the largest 1718 * segment in that range, or the smallest one bigger 1719 * than it. 1720 */ 1721 rs = zfs_btree_prev(t, where, where); 1722 if (rs == NULL || zfs_rs_get_end(rs, rt) - 1723 zfs_rs_get_start(rs, rt) < size) { 1724 rs = zfs_btree_next(t, where, where); 1725 } 1726 } 1727 } 1728 1729 return (rs); 1730 } 1731 1732 /* 1733 * This is a helper function that can be used by the allocator to find a 1734 * suitable block to allocate. This will search the specified B-tree looking 1735 * for a block that matches the specified criteria. 1736 */ 1737 static uint64_t 1738 metaslab_block_picker(zfs_range_tree_t *rt, uint64_t *cursor, uint64_t size, 1739 uint64_t max_size, uint64_t max_search, uint64_t *found_size) 1740 { 1741 if (*cursor == 0) 1742 *cursor = rt->rt_start; 1743 zfs_btree_t *bt = &rt->rt_root; 1744 zfs_btree_index_t where; 1745 zfs_range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, 1746 max_size, &where); 1747 uint64_t first_found; 1748 int count_searched = 0; 1749 1750 if (rs != NULL) 1751 first_found = zfs_rs_get_start(rs, rt); 1752 1753 while (rs != NULL && (zfs_rs_get_start(rs, rt) - first_found <= 1754 max_search || count_searched < metaslab_min_search_count)) { 1755 uint64_t offset = zfs_rs_get_start(rs, rt); 1756 if (offset + size <= zfs_rs_get_end(rs, rt)) { 1757 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset, 1758 max_size); 1759 *cursor = offset + *found_size; 1760 return (offset); 1761 } 1762 rs = zfs_btree_next(bt, &where, &where); 1763 count_searched++; 1764 } 1765 1766 *cursor = 0; 1767 *found_size = 0; 1768 return (-1ULL); 1769 } 1770 1771 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size, 1772 uint64_t max_size, uint64_t *found_size); 1773 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size, 1774 uint64_t max_size, uint64_t *found_size); 1775 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, 1776 uint64_t max_size, uint64_t *found_size); 1777 metaslab_ops_t *metaslab_allocator(spa_t *spa); 1778 1779 static metaslab_ops_t metaslab_allocators[] = { 1780 { "dynamic", metaslab_df_alloc }, 1781 { "cursor", metaslab_cf_alloc }, 1782 { "new-dynamic", metaslab_ndf_alloc }, 1783 }; 1784 1785 static int 1786 spa_find_allocator_byname(const char *val) 1787 { 1788 int a = ARRAY_SIZE(metaslab_allocators) - 1; 1789 if (strcmp("new-dynamic", val) == 0) 1790 return (-1); /* remove when ndf is working */ 1791 for (; a >= 0; a--) { 1792 if (strcmp(val, metaslab_allocators[a].msop_name) == 0) 1793 return (a); 1794 } 1795 return (-1); 1796 } 1797 1798 void 1799 spa_set_allocator(spa_t *spa, const char *allocator) 1800 { 1801 int a = spa_find_allocator_byname(allocator); 1802 if (a < 0) a = 0; 1803 spa->spa_active_allocator = a; 1804 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name); 1805 } 1806 1807 int 1808 spa_get_allocator(spa_t *spa) 1809 { 1810 return (spa->spa_active_allocator); 1811 } 1812 1813 #if defined(_KERNEL) 1814 int 1815 param_set_active_allocator_common(const char *val) 1816 { 1817 char *p; 1818 1819 if (val == NULL) 1820 return (SET_ERROR(EINVAL)); 1821 1822 if ((p = strchr(val, '\n')) != NULL) 1823 *p = '\0'; 1824 1825 int a = spa_find_allocator_byname(val); 1826 if (a < 0) 1827 return (SET_ERROR(EINVAL)); 1828 1829 zfs_active_allocator = metaslab_allocators[a].msop_name; 1830 return (0); 1831 } 1832 #endif 1833 1834 metaslab_ops_t * 1835 metaslab_allocator(spa_t *spa) 1836 { 1837 int allocator = spa_get_allocator(spa); 1838 return (&metaslab_allocators[allocator]); 1839 } 1840 1841 /* 1842 * ========================================================================== 1843 * Dynamic Fit (df) block allocator 1844 * 1845 * Search for a free chunk of at least this size, starting from the last 1846 * offset (for this alignment of block) looking for up to 1847 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1848 * found within 16MB, then return a free chunk of exactly the requested size (or 1849 * larger). 1850 * 1851 * If it seems like searching from the last offset will be unproductive, skip 1852 * that and just return a free chunk of exactly the requested size (or larger). 1853 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1854 * mechanism is probably not very useful and may be removed in the future. 1855 * 1856 * The behavior when not searching can be changed to return the largest free 1857 * chunk, instead of a free chunk of exactly the requested size, by setting 1858 * metaslab_df_use_largest_segment. 1859 * ========================================================================== 1860 */ 1861 static uint64_t 1862 metaslab_df_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1863 uint64_t *found_size) 1864 { 1865 /* 1866 * Find the largest power of 2 block size that evenly divides the 1867 * requested size. This is used to try to allocate blocks with similar 1868 * alignment from the same area of the metaslab (i.e. same cursor 1869 * bucket) but it does not guarantee that other allocations sizes 1870 * may exist in the same region. 1871 */ 1872 uint64_t align = max_size & -max_size; 1873 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1874 zfs_range_tree_t *rt = msp->ms_allocatable; 1875 uint_t free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size; 1876 uint64_t offset; 1877 1878 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1879 1880 /* 1881 * If we're running low on space, find a segment based on size, 1882 * rather than iterating based on offset. 1883 */ 1884 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1885 free_pct < metaslab_df_free_pct) { 1886 align = size & -size; 1887 cursor = &msp->ms_lbas[highbit64(align) - 1]; 1888 offset = -1; 1889 } else { 1890 offset = metaslab_block_picker(rt, cursor, size, max_size, 1891 metaslab_df_max_search, found_size); 1892 if (max_size != size && offset == -1) { 1893 align = size & -size; 1894 cursor = &msp->ms_lbas[highbit64(align) - 1]; 1895 offset = metaslab_block_picker(rt, cursor, size, 1896 max_size, metaslab_df_max_search, found_size); 1897 } 1898 } 1899 1900 if (offset == -1) { 1901 zfs_range_seg_t *rs; 1902 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1903 metaslab_size_tree_full_load(msp->ms_allocatable); 1904 1905 if (metaslab_df_use_largest_segment) { 1906 /* use largest free segment */ 1907 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1908 } else { 1909 zfs_btree_index_t where; 1910 /* use segment of this size, or next largest */ 1911 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1912 rt, msp->ms_start, size, max_size, &where); 1913 } 1914 if (rs != NULL && zfs_rs_get_start(rs, rt) + size <= 1915 zfs_rs_get_end(rs, rt)) { 1916 offset = zfs_rs_get_start(rs, rt); 1917 *found_size = MIN(zfs_rs_get_end(rs, rt) - offset, 1918 max_size); 1919 *cursor = offset + *found_size; 1920 } 1921 } 1922 1923 return (offset); 1924 } 1925 1926 /* 1927 * ========================================================================== 1928 * Cursor fit block allocator - 1929 * Select the largest region in the metaslab, set the cursor to the beginning 1930 * of the range and the cursor_end to the end of the range. As allocations 1931 * are made advance the cursor. Continue allocating from the cursor until 1932 * the range is exhausted and then find a new range. 1933 * ========================================================================== 1934 */ 1935 static uint64_t 1936 metaslab_cf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1937 uint64_t *found_size) 1938 { 1939 zfs_range_tree_t *rt = msp->ms_allocatable; 1940 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1941 uint64_t *cursor = &msp->ms_lbas[0]; 1942 uint64_t *cursor_end = &msp->ms_lbas[1]; 1943 uint64_t offset = 0; 1944 1945 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1946 1947 ASSERT3U(*cursor_end, >=, *cursor); 1948 1949 if ((*cursor + size) > *cursor_end) { 1950 zfs_range_seg_t *rs; 1951 1952 if (zfs_btree_numnodes(t) == 0) 1953 metaslab_size_tree_full_load(msp->ms_allocatable); 1954 rs = zfs_btree_last(t, NULL); 1955 if (rs == NULL || (zfs_rs_get_end(rs, rt) - 1956 zfs_rs_get_start(rs, rt)) < size) 1957 return (-1ULL); 1958 1959 *cursor = zfs_rs_get_start(rs, rt); 1960 *cursor_end = zfs_rs_get_end(rs, rt); 1961 } 1962 1963 offset = *cursor; 1964 *found_size = MIN(*cursor_end - offset, max_size); 1965 *cursor = offset + *found_size; 1966 1967 return (offset); 1968 } 1969 1970 /* 1971 * ========================================================================== 1972 * New dynamic fit allocator - 1973 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1974 * contiguous blocks. If no region is found then just use the largest segment 1975 * that remains. 1976 * ========================================================================== 1977 */ 1978 1979 /* 1980 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1981 * to request from the allocator. 1982 */ 1983 uint64_t metaslab_ndf_clump_shift = 4; 1984 1985 static uint64_t 1986 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 1987 uint64_t *found_size) 1988 { 1989 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1990 zfs_range_tree_t *rt = msp->ms_allocatable; 1991 zfs_btree_index_t where; 1992 zfs_range_seg_t *rs; 1993 zfs_range_seg_max_t rsearch; 1994 uint64_t hbit = highbit64(max_size); 1995 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1996 uint64_t max_possible_size = metaslab_largest_allocatable(msp); 1997 1998 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1999 2000 if (max_possible_size < size) 2001 return (-1ULL); 2002 2003 zfs_rs_set_start(&rsearch, rt, *cursor); 2004 zfs_rs_set_end(&rsearch, rt, *cursor + max_size); 2005 2006 rs = zfs_btree_find(t, &rsearch, &where); 2007 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) < 2008 max_size) { 2009 hbit = highbit64(size); 2010 cursor = &msp->ms_lbas[hbit - 1]; 2011 zfs_rs_set_start(&rsearch, rt, *cursor); 2012 zfs_rs_set_end(&rsearch, rt, *cursor + size); 2013 2014 rs = zfs_btree_find(t, &rsearch, &where); 2015 } 2016 if (rs == NULL || (zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) < 2017 size) { 2018 t = &msp->ms_allocatable_by_size; 2019 2020 zfs_rs_set_start(&rsearch, rt, 0); 2021 zfs_rs_set_end(&rsearch, rt, MIN(max_possible_size, 2022 1ULL << (hbit + metaslab_ndf_clump_shift))); 2023 2024 rs = zfs_btree_find(t, &rsearch, &where); 2025 if (rs == NULL) 2026 rs = zfs_btree_next(t, &where, &where); 2027 ASSERT(rs != NULL); 2028 } 2029 2030 if ((zfs_rs_get_end(rs, rt) - zfs_rs_get_start(rs, rt)) >= size) { 2031 *found_size = MIN(zfs_rs_get_end(rs, rt) - 2032 zfs_rs_get_start(rs, rt), max_size); 2033 *cursor = zfs_rs_get_start(rs, rt) + *found_size; 2034 return (zfs_rs_get_start(rs, rt)); 2035 } 2036 return (-1ULL); 2037 } 2038 2039 /* 2040 * ========================================================================== 2041 * Metaslabs 2042 * ========================================================================== 2043 */ 2044 2045 /* 2046 * Wait for any in-progress metaslab loads to complete. 2047 */ 2048 static void 2049 metaslab_load_wait(metaslab_t *msp) 2050 { 2051 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2052 2053 while (msp->ms_loading) { 2054 ASSERT(!msp->ms_loaded); 2055 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 2056 } 2057 } 2058 2059 /* 2060 * Wait for any in-progress flushing to complete. 2061 */ 2062 static void 2063 metaslab_flush_wait(metaslab_t *msp) 2064 { 2065 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2066 2067 while (msp->ms_flushing) 2068 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 2069 } 2070 2071 static unsigned int 2072 metaslab_idx_func(multilist_t *ml, void *arg) 2073 { 2074 metaslab_t *msp = arg; 2075 2076 /* 2077 * ms_id values are allocated sequentially, so full 64bit 2078 * division would be a waste of time, so limit it to 32 bits. 2079 */ 2080 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 2081 } 2082 2083 uint64_t 2084 metaslab_allocated_space(metaslab_t *msp) 2085 { 2086 return (msp->ms_allocated_space); 2087 } 2088 2089 /* 2090 * Verify that the space accounting on disk matches the in-core range_trees. 2091 */ 2092 static void 2093 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 2094 { 2095 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2096 uint64_t allocating = 0; 2097 uint64_t sm_free_space, msp_free_space; 2098 2099 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2100 ASSERT(!msp->ms_condensing); 2101 2102 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2103 return; 2104 2105 /* 2106 * We can only verify the metaslab space when we're called 2107 * from syncing context with a loaded metaslab that has an 2108 * allocated space map. Calling this in non-syncing context 2109 * does not provide a consistent view of the metaslab since 2110 * we're performing allocations in the future. 2111 */ 2112 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 2113 !msp->ms_loaded) 2114 return; 2115 2116 /* 2117 * Even though the smp_alloc field can get negative, 2118 * when it comes to a metaslab's space map, that should 2119 * never be the case. 2120 */ 2121 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 2122 2123 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 2124 zfs_range_tree_space(msp->ms_unflushed_frees)); 2125 2126 ASSERT3U(metaslab_allocated_space(msp), ==, 2127 space_map_allocated(msp->ms_sm) + 2128 zfs_range_tree_space(msp->ms_unflushed_allocs) - 2129 zfs_range_tree_space(msp->ms_unflushed_frees)); 2130 2131 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 2132 2133 /* 2134 * Account for future allocations since we would have 2135 * already deducted that space from the ms_allocatable. 2136 */ 2137 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 2138 allocating += 2139 zfs_range_tree_space(msp->ms_allocating[(txg + t) & 2140 TXG_MASK]); 2141 } 2142 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 2143 msp->ms_allocating_total); 2144 2145 ASSERT3U(msp->ms_deferspace, ==, 2146 zfs_range_tree_space(msp->ms_defer[0]) + 2147 zfs_range_tree_space(msp->ms_defer[1])); 2148 2149 msp_free_space = zfs_range_tree_space(msp->ms_allocatable) + 2150 allocating + msp->ms_deferspace + 2151 zfs_range_tree_space(msp->ms_freed); 2152 2153 VERIFY3U(sm_free_space, ==, msp_free_space); 2154 } 2155 2156 static void 2157 metaslab_aux_histograms_clear(metaslab_t *msp) 2158 { 2159 /* 2160 * Auxiliary histograms are only cleared when resetting them, 2161 * which can only happen while the metaslab is loaded. 2162 */ 2163 ASSERT(msp->ms_loaded); 2164 2165 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2166 for (int t = 0; t < TXG_DEFER_SIZE; t++) 2167 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 2168 } 2169 2170 static void 2171 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 2172 zfs_range_tree_t *rt) 2173 { 2174 /* 2175 * This is modeled after space_map_histogram_add(), so refer to that 2176 * function for implementation details. We want this to work like 2177 * the space map histogram, and not the range tree histogram, as we 2178 * are essentially constructing a delta that will be later subtracted 2179 * from the space map histogram. 2180 */ 2181 int idx = 0; 2182 for (int i = shift; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) { 2183 ASSERT3U(i, >=, idx + shift); 2184 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 2185 2186 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 2187 ASSERT3U(idx + shift, ==, i); 2188 idx++; 2189 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 2190 } 2191 } 2192 } 2193 2194 /* 2195 * Called at every sync pass that the metaslab gets synced. 2196 * 2197 * The reason is that we want our auxiliary histograms to be updated 2198 * wherever the metaslab's space map histogram is updated. This way 2199 * we stay consistent on which parts of the metaslab space map's 2200 * histogram are currently not available for allocations (e.g because 2201 * they are in the defer, freed, and freeing trees). 2202 */ 2203 static void 2204 metaslab_aux_histograms_update(metaslab_t *msp) 2205 { 2206 space_map_t *sm = msp->ms_sm; 2207 ASSERT(sm != NULL); 2208 2209 /* 2210 * This is similar to the metaslab's space map histogram updates 2211 * that take place in metaslab_sync(). The only difference is that 2212 * we only care about segments that haven't made it into the 2213 * ms_allocatable tree yet. 2214 */ 2215 if (msp->ms_loaded) { 2216 metaslab_aux_histograms_clear(msp); 2217 2218 metaslab_aux_histogram_add(msp->ms_synchist, 2219 sm->sm_shift, msp->ms_freed); 2220 2221 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2222 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2223 sm->sm_shift, msp->ms_defer[t]); 2224 } 2225 } 2226 2227 metaslab_aux_histogram_add(msp->ms_synchist, 2228 sm->sm_shift, msp->ms_freeing); 2229 } 2230 2231 /* 2232 * Called every time we are done syncing (writing to) the metaslab, 2233 * i.e. at the end of each sync pass. 2234 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2235 */ 2236 static void 2237 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2238 { 2239 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2240 space_map_t *sm = msp->ms_sm; 2241 2242 if (sm == NULL) { 2243 /* 2244 * We came here from metaslab_init() when creating/opening a 2245 * pool, looking at a metaslab that hasn't had any allocations 2246 * yet. 2247 */ 2248 return; 2249 } 2250 2251 /* 2252 * This is similar to the actions that we take for the ms_freed 2253 * and ms_defer trees in metaslab_sync_done(). 2254 */ 2255 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2256 if (defer_allowed) { 2257 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2258 sizeof (msp->ms_synchist)); 2259 } else { 2260 memset(msp->ms_deferhist[hist_index], 0, 2261 sizeof (msp->ms_deferhist[hist_index])); 2262 } 2263 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2264 } 2265 2266 /* 2267 * Ensure that the metaslab's weight and fragmentation are consistent 2268 * with the contents of the histogram (either the range tree's histogram 2269 * or the space map's depending whether the metaslab is loaded). 2270 */ 2271 static void 2272 metaslab_verify_weight_and_frag(metaslab_t *msp) 2273 { 2274 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2275 2276 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2277 return; 2278 2279 /* 2280 * We can end up here from vdev_remove_complete(), in which case we 2281 * cannot do these assertions because we hold spa config locks and 2282 * thus we are not allowed to read from the DMU. 2283 * 2284 * We check if the metaslab group has been removed and if that's 2285 * the case we return immediately as that would mean that we are 2286 * here from the aforementioned code path. 2287 */ 2288 if (msp->ms_group == NULL) 2289 return; 2290 2291 /* 2292 * Devices being removed always return a weight of 0 and leave 2293 * fragmentation and ms_max_size as is - there is nothing for 2294 * us to verify here. 2295 */ 2296 vdev_t *vd = msp->ms_group->mg_vd; 2297 if (vd->vdev_removing) 2298 return; 2299 2300 /* 2301 * If the metaslab is dirty it probably means that we've done 2302 * some allocations or frees that have changed our histograms 2303 * and thus the weight. 2304 */ 2305 for (int t = 0; t < TXG_SIZE; t++) { 2306 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2307 return; 2308 } 2309 2310 /* 2311 * This verification checks that our in-memory state is consistent 2312 * with what's on disk. If the pool is read-only then there aren't 2313 * any changes and we just have the initially-loaded state. 2314 */ 2315 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2316 return; 2317 2318 /* some extra verification for in-core tree if you can */ 2319 if (msp->ms_loaded) { 2320 zfs_range_tree_stat_verify(msp->ms_allocatable); 2321 VERIFY(space_map_histogram_verify(msp->ms_sm, 2322 msp->ms_allocatable)); 2323 } 2324 2325 uint64_t weight = msp->ms_weight; 2326 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2327 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2328 uint64_t frag = msp->ms_fragmentation; 2329 uint64_t max_segsize = msp->ms_max_size; 2330 2331 msp->ms_weight = 0; 2332 msp->ms_fragmentation = 0; 2333 2334 /* 2335 * This function is used for verification purposes and thus should 2336 * not introduce any side-effects/mutations on the system's state. 2337 * 2338 * Regardless of whether metaslab_weight() thinks this metaslab 2339 * should be active or not, we want to ensure that the actual weight 2340 * (and therefore the value of ms_weight) would be the same if it 2341 * was to be recalculated at this point. 2342 * 2343 * In addition we set the nodirty flag so metaslab_weight() does 2344 * not dirty the metaslab for future TXGs (e.g. when trying to 2345 * force condensing to upgrade the metaslab spacemaps). 2346 */ 2347 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2348 2349 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2350 2351 /* 2352 * If the weight type changed then there is no point in doing 2353 * verification. Revert fields to their original values. 2354 */ 2355 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2356 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2357 msp->ms_fragmentation = frag; 2358 msp->ms_weight = weight; 2359 return; 2360 } 2361 2362 VERIFY3U(msp->ms_fragmentation, ==, frag); 2363 VERIFY3U(msp->ms_weight, ==, weight); 2364 } 2365 2366 /* 2367 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2368 * this class that was used longest ago, and attempt to unload it. We don't 2369 * want to spend too much time in this loop to prevent performance 2370 * degradation, and we expect that most of the time this operation will 2371 * succeed. Between that and the normal unloading processing during txg sync, 2372 * we expect this to keep the metaslab memory usage under control. 2373 */ 2374 static void 2375 metaslab_potentially_evict(metaslab_class_t *mc) 2376 { 2377 #ifdef _KERNEL 2378 uint64_t allmem = arc_all_memory(); 2379 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2380 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2381 uint_t tries = 0; 2382 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2383 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2384 tries++) { 2385 unsigned int idx = multilist_get_random_index( 2386 &mc->mc_metaslab_txg_list); 2387 multilist_sublist_t *mls = 2388 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx); 2389 metaslab_t *msp = multilist_sublist_head(mls); 2390 multilist_sublist_unlock(mls); 2391 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2392 inuse * size) { 2393 VERIFY3P(mls, ==, multilist_sublist_lock_idx( 2394 &mc->mc_metaslab_txg_list, idx)); 2395 ASSERT3U(idx, ==, 2396 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2397 2398 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2399 multilist_sublist_unlock(mls); 2400 break; 2401 } 2402 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2403 multilist_sublist_unlock(mls); 2404 /* 2405 * If the metaslab is currently loading there are two 2406 * cases. If it's the metaslab we're evicting, we 2407 * can't continue on or we'll panic when we attempt to 2408 * recursively lock the mutex. If it's another 2409 * metaslab that's loading, it can be safely skipped, 2410 * since we know it's very new and therefore not a 2411 * good eviction candidate. We check later once the 2412 * lock is held that the metaslab is fully loaded 2413 * before actually unloading it. 2414 */ 2415 if (msp->ms_loading) { 2416 msp = next_msp; 2417 inuse = 2418 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2419 continue; 2420 } 2421 /* 2422 * We can't unload metaslabs with no spacemap because 2423 * they're not ready to be unloaded yet. We can't 2424 * unload metaslabs with outstanding allocations 2425 * because doing so could cause the metaslab's weight 2426 * to decrease while it's unloaded, which violates an 2427 * invariant that we use to prevent unnecessary 2428 * loading. We also don't unload metaslabs that are 2429 * currently active because they are high-weight 2430 * metaslabs that are likely to be used in the near 2431 * future. 2432 */ 2433 mutex_enter(&msp->ms_lock); 2434 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2435 msp->ms_allocating_total == 0) { 2436 metaslab_unload(msp); 2437 } 2438 mutex_exit(&msp->ms_lock); 2439 msp = next_msp; 2440 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2441 } 2442 } 2443 #else 2444 (void) mc, (void) zfs_metaslab_mem_limit; 2445 #endif 2446 } 2447 2448 static int 2449 metaslab_load_impl(metaslab_t *msp) 2450 { 2451 int error = 0; 2452 2453 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2454 ASSERT(msp->ms_loading); 2455 ASSERT(!msp->ms_condensing); 2456 2457 /* 2458 * We temporarily drop the lock to unblock other operations while we 2459 * are reading the space map. Therefore, metaslab_sync() and 2460 * metaslab_sync_done() can run at the same time as we do. 2461 * 2462 * If we are using the log space maps, metaslab_sync() can't write to 2463 * the metaslab's space map while we are loading as we only write to 2464 * it when we are flushing the metaslab, and that can't happen while 2465 * we are loading it. 2466 * 2467 * If we are not using log space maps though, metaslab_sync() can 2468 * append to the space map while we are loading. Therefore we load 2469 * only entries that existed when we started the load. Additionally, 2470 * metaslab_sync_done() has to wait for the load to complete because 2471 * there are potential races like metaslab_load() loading parts of the 2472 * space map that are currently being appended by metaslab_sync(). If 2473 * we didn't, the ms_allocatable would have entries that 2474 * metaslab_sync_done() would try to re-add later. 2475 * 2476 * That's why before dropping the lock we remember the synced length 2477 * of the metaslab and read up to that point of the space map, 2478 * ignoring entries appended by metaslab_sync() that happen after we 2479 * drop the lock. 2480 */ 2481 uint64_t length = msp->ms_synced_length; 2482 mutex_exit(&msp->ms_lock); 2483 2484 hrtime_t load_start = gethrtime(); 2485 metaslab_rt_arg_t *mrap; 2486 if (msp->ms_allocatable->rt_arg == NULL) { 2487 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2488 } else { 2489 mrap = msp->ms_allocatable->rt_arg; 2490 msp->ms_allocatable->rt_ops = NULL; 2491 msp->ms_allocatable->rt_arg = NULL; 2492 } 2493 mrap->mra_bt = &msp->ms_allocatable_by_size; 2494 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2495 2496 if (msp->ms_sm != NULL) { 2497 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2498 SM_FREE, length); 2499 2500 /* Now, populate the size-sorted tree. */ 2501 metaslab_rt_create(msp->ms_allocatable, mrap); 2502 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2503 msp->ms_allocatable->rt_arg = mrap; 2504 2505 struct mssa_arg arg = {0}; 2506 arg.rt = msp->ms_allocatable; 2507 arg.mra = mrap; 2508 zfs_range_tree_walk(msp->ms_allocatable, 2509 metaslab_size_sorted_add, &arg); 2510 } else { 2511 /* 2512 * Add the size-sorted tree first, since we don't need to load 2513 * the metaslab from the spacemap. 2514 */ 2515 metaslab_rt_create(msp->ms_allocatable, mrap); 2516 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2517 msp->ms_allocatable->rt_arg = mrap; 2518 /* 2519 * The space map has not been allocated yet, so treat 2520 * all the space in the metaslab as free and add it to the 2521 * ms_allocatable tree. 2522 */ 2523 zfs_range_tree_add(msp->ms_allocatable, 2524 msp->ms_start, msp->ms_size); 2525 2526 if (msp->ms_new) { 2527 /* 2528 * If the ms_sm doesn't exist, this means that this 2529 * metaslab hasn't gone through metaslab_sync() and 2530 * thus has never been dirtied. So we shouldn't 2531 * expect any unflushed allocs or frees from previous 2532 * TXGs. 2533 */ 2534 ASSERT(zfs_range_tree_is_empty( 2535 msp->ms_unflushed_allocs)); 2536 ASSERT(zfs_range_tree_is_empty( 2537 msp->ms_unflushed_frees)); 2538 } 2539 } 2540 2541 /* 2542 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2543 * changing the ms_sm (or log_sm) and the metaslab's range trees 2544 * while we are about to use them and populate the ms_allocatable. 2545 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2546 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2547 */ 2548 mutex_enter(&msp->ms_sync_lock); 2549 mutex_enter(&msp->ms_lock); 2550 2551 ASSERT(!msp->ms_condensing); 2552 ASSERT(!msp->ms_flushing); 2553 2554 if (error != 0) { 2555 mutex_exit(&msp->ms_sync_lock); 2556 return (error); 2557 } 2558 2559 ASSERT3P(msp->ms_group, !=, NULL); 2560 msp->ms_loaded = B_TRUE; 2561 2562 /* 2563 * Apply all the unflushed changes to ms_allocatable right 2564 * away so any manipulations we do below have a clear view 2565 * of what is allocated and what is free. 2566 */ 2567 zfs_range_tree_walk(msp->ms_unflushed_allocs, 2568 zfs_range_tree_remove, msp->ms_allocatable); 2569 zfs_range_tree_walk(msp->ms_unflushed_frees, 2570 zfs_range_tree_add, msp->ms_allocatable); 2571 2572 ASSERT3P(msp->ms_group, !=, NULL); 2573 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2574 if (spa_syncing_log_sm(spa) != NULL) { 2575 ASSERT(spa_feature_is_enabled(spa, 2576 SPA_FEATURE_LOG_SPACEMAP)); 2577 2578 /* 2579 * If we use a log space map we add all the segments 2580 * that are in ms_unflushed_frees so they are available 2581 * for allocation. 2582 * 2583 * ms_allocatable needs to contain all free segments 2584 * that are ready for allocations (thus not segments 2585 * from ms_freeing, ms_freed, and the ms_defer trees). 2586 * But if we grab the lock in this code path at a sync 2587 * pass later that 1, then it also contains the 2588 * segments of ms_freed (they were added to it earlier 2589 * in this path through ms_unflushed_frees). So we 2590 * need to remove all the segments that exist in 2591 * ms_freed from ms_allocatable as they will be added 2592 * later in metaslab_sync_done(). 2593 * 2594 * When there's no log space map, the ms_allocatable 2595 * correctly doesn't contain any segments that exist 2596 * in ms_freed [see ms_synced_length]. 2597 */ 2598 zfs_range_tree_walk(msp->ms_freed, 2599 zfs_range_tree_remove, msp->ms_allocatable); 2600 } 2601 2602 /* 2603 * If we are not using the log space map, ms_allocatable 2604 * contains the segments that exist in the ms_defer trees 2605 * [see ms_synced_length]. Thus we need to remove them 2606 * from ms_allocatable as they will be added again in 2607 * metaslab_sync_done(). 2608 * 2609 * If we are using the log space map, ms_allocatable still 2610 * contains the segments that exist in the ms_defer trees. 2611 * Not because it read them through the ms_sm though. But 2612 * because these segments are part of ms_unflushed_frees 2613 * whose segments we add to ms_allocatable earlier in this 2614 * code path. 2615 */ 2616 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2617 zfs_range_tree_walk(msp->ms_defer[t], 2618 zfs_range_tree_remove, msp->ms_allocatable); 2619 } 2620 2621 /* 2622 * Call metaslab_recalculate_weight_and_sort() now that the 2623 * metaslab is loaded so we get the metaslab's real weight. 2624 * 2625 * Unless this metaslab was created with older software and 2626 * has not yet been converted to use segment-based weight, we 2627 * expect the new weight to be better or equal to the weight 2628 * that the metaslab had while it was not loaded. This is 2629 * because the old weight does not take into account the 2630 * consolidation of adjacent segments between TXGs. [see 2631 * comment for ms_synchist and ms_deferhist[] for more info] 2632 */ 2633 uint64_t weight = msp->ms_weight; 2634 uint64_t max_size = msp->ms_max_size; 2635 metaslab_recalculate_weight_and_sort(msp); 2636 if (!WEIGHT_IS_SPACEBASED(weight)) 2637 ASSERT3U(weight, <=, msp->ms_weight); 2638 msp->ms_max_size = metaslab_largest_allocatable(msp); 2639 ASSERT3U(max_size, <=, msp->ms_max_size); 2640 hrtime_t load_end = gethrtime(); 2641 msp->ms_load_time = load_end; 2642 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, class %s, vdev_id %llu, " 2643 "ms_id %llu, smp_length %llu, " 2644 "unflushed_allocs %llu, unflushed_frees %llu, " 2645 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2646 "loading_time %lld ms, ms_max_size %llu, " 2647 "max size error %lld, " 2648 "old_weight %llx, new_weight %llx", 2649 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2650 msp->ms_group->mg_class->mc_name, 2651 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2652 (u_longlong_t)msp->ms_id, 2653 (u_longlong_t)space_map_length(msp->ms_sm), 2654 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_allocs), 2655 (u_longlong_t)zfs_range_tree_space(msp->ms_unflushed_frees), 2656 (u_longlong_t)zfs_range_tree_space(msp->ms_freed), 2657 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[0]), 2658 (u_longlong_t)zfs_range_tree_space(msp->ms_defer[1]), 2659 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2660 (longlong_t)((load_end - load_start) / 1000000), 2661 (u_longlong_t)msp->ms_max_size, 2662 (u_longlong_t)msp->ms_max_size - max_size, 2663 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2664 2665 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2666 mutex_exit(&msp->ms_sync_lock); 2667 return (0); 2668 } 2669 2670 int 2671 metaslab_load(metaslab_t *msp) 2672 { 2673 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2674 2675 /* 2676 * There may be another thread loading the same metaslab, if that's 2677 * the case just wait until the other thread is done and return. 2678 */ 2679 metaslab_load_wait(msp); 2680 if (msp->ms_loaded) 2681 return (0); 2682 VERIFY(!msp->ms_loading); 2683 ASSERT(!msp->ms_condensing); 2684 2685 /* 2686 * We set the loading flag BEFORE potentially dropping the lock to 2687 * wait for an ongoing flush (see ms_flushing below). This way other 2688 * threads know that there is already a thread that is loading this 2689 * metaslab. 2690 */ 2691 msp->ms_loading = B_TRUE; 2692 2693 /* 2694 * Wait for any in-progress flushing to finish as we drop the ms_lock 2695 * both here (during space_map_load()) and in metaslab_flush() (when 2696 * we flush our changes to the ms_sm). 2697 */ 2698 if (msp->ms_flushing) 2699 metaslab_flush_wait(msp); 2700 2701 /* 2702 * In the possibility that we were waiting for the metaslab to be 2703 * flushed (where we temporarily dropped the ms_lock), ensure that 2704 * no one else loaded the metaslab somehow. 2705 */ 2706 ASSERT(!msp->ms_loaded); 2707 2708 /* 2709 * If we're loading a metaslab in the normal class, consider evicting 2710 * another one to keep our memory usage under the limit defined by the 2711 * zfs_metaslab_mem_limit tunable. 2712 */ 2713 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2714 msp->ms_group->mg_class) { 2715 metaslab_potentially_evict(msp->ms_group->mg_class); 2716 } 2717 2718 int error = metaslab_load_impl(msp); 2719 2720 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2721 msp->ms_loading = B_FALSE; 2722 cv_broadcast(&msp->ms_load_cv); 2723 2724 return (error); 2725 } 2726 2727 void 2728 metaslab_unload(metaslab_t *msp) 2729 { 2730 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2731 2732 /* 2733 * This can happen if a metaslab is selected for eviction (in 2734 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2735 * metaslab_class_evict_old). 2736 */ 2737 if (!msp->ms_loaded) 2738 return; 2739 2740 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2741 msp->ms_loaded = B_FALSE; 2742 msp->ms_unload_time = gethrtime(); 2743 2744 msp->ms_activation_weight = 0; 2745 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2746 2747 if (msp->ms_group != NULL) { 2748 metaslab_class_t *mc = msp->ms_group->mg_class; 2749 multilist_sublist_t *mls = 2750 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2751 if (multilist_link_active(&msp->ms_class_txg_node)) 2752 multilist_sublist_remove(mls, msp); 2753 multilist_sublist_unlock(mls); 2754 2755 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2756 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, class %s, " 2757 "vdev_id %llu, ms_id %llu, weight %llx, " 2758 "selected txg %llu (%llu s ago), alloc_txg %llu, " 2759 "loaded %llu ms ago, max_size %llu", 2760 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2761 msp->ms_group->mg_class->mc_name, 2762 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2763 (u_longlong_t)msp->ms_id, 2764 (u_longlong_t)msp->ms_weight, 2765 (u_longlong_t)msp->ms_selected_txg, 2766 (u_longlong_t)(NSEC2SEC(msp->ms_unload_time) - 2767 msp->ms_selected_time), 2768 (u_longlong_t)msp->ms_alloc_txg, 2769 (u_longlong_t)(msp->ms_unload_time - 2770 msp->ms_load_time) / 1000 / 1000, 2771 (u_longlong_t)msp->ms_max_size); 2772 } 2773 2774 /* 2775 * We explicitly recalculate the metaslab's weight based on its space 2776 * map (as it is now not loaded). We want unload metaslabs to always 2777 * have their weights calculated from the space map histograms, while 2778 * loaded ones have it calculated from their in-core range tree 2779 * [see metaslab_load()]. This way, the weight reflects the information 2780 * available in-core, whether it is loaded or not. 2781 * 2782 * If ms_group == NULL means that we came here from metaslab_fini(), 2783 * at which point it doesn't make sense for us to do the recalculation 2784 * and the sorting. 2785 */ 2786 if (msp->ms_group != NULL) 2787 metaslab_recalculate_weight_and_sort(msp); 2788 } 2789 2790 /* 2791 * We want to optimize the memory use of the per-metaslab range 2792 * trees. To do this, we store the segments in the range trees in 2793 * units of sectors, zero-indexing from the start of the metaslab. If 2794 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2795 * the ranges using two uint32_ts, rather than two uint64_ts. 2796 */ 2797 zfs_range_seg_type_t 2798 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2799 uint64_t *start, uint64_t *shift) 2800 { 2801 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2802 !zfs_metaslab_force_large_segs) { 2803 *shift = vdev->vdev_ashift; 2804 *start = msp->ms_start; 2805 return (ZFS_RANGE_SEG32); 2806 } else { 2807 *shift = 0; 2808 *start = 0; 2809 return (ZFS_RANGE_SEG64); 2810 } 2811 } 2812 2813 void 2814 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2815 { 2816 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2817 metaslab_class_t *mc = msp->ms_group->mg_class; 2818 multilist_sublist_t *mls = 2819 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2820 if (multilist_link_active(&msp->ms_class_txg_node)) 2821 multilist_sublist_remove(mls, msp); 2822 msp->ms_selected_txg = txg; 2823 msp->ms_selected_time = gethrestime_sec(); 2824 multilist_sublist_insert_tail(mls, msp); 2825 multilist_sublist_unlock(mls); 2826 } 2827 2828 void 2829 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2830 int64_t defer_delta, int64_t space_delta) 2831 { 2832 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2833 2834 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2835 ASSERT(vd->vdev_ms_count != 0); 2836 2837 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2838 vdev_deflated_space(vd, space_delta)); 2839 } 2840 2841 int 2842 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2843 uint64_t txg, metaslab_t **msp) 2844 { 2845 vdev_t *vd = mg->mg_vd; 2846 spa_t *spa = vd->vdev_spa; 2847 objset_t *mos = spa->spa_meta_objset; 2848 metaslab_t *ms; 2849 int error; 2850 2851 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2852 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2853 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2854 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2855 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2856 multilist_link_init(&ms->ms_class_txg_node); 2857 2858 ms->ms_id = id; 2859 ms->ms_start = id << vd->vdev_ms_shift; 2860 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2861 ms->ms_allocator = -1; 2862 ms->ms_new = B_TRUE; 2863 2864 vdev_ops_t *ops = vd->vdev_ops; 2865 if (ops->vdev_op_metaslab_init != NULL) 2866 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2867 2868 /* 2869 * We only open space map objects that already exist. All others 2870 * will be opened when we finally allocate an object for it. For 2871 * readonly pools there is no need to open the space map object. 2872 * 2873 * Note: 2874 * When called from vdev_expand(), we can't call into the DMU as 2875 * we are holding the spa_config_lock as a writer and we would 2876 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2877 * that case, the object parameter is zero though, so we won't 2878 * call into the DMU. 2879 */ 2880 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2881 !spa->spa_read_spacemaps)) { 2882 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2883 ms->ms_size, vd->vdev_ashift); 2884 2885 if (error != 0) { 2886 kmem_free(ms, sizeof (metaslab_t)); 2887 return (error); 2888 } 2889 2890 ASSERT(ms->ms_sm != NULL); 2891 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2892 } 2893 2894 uint64_t shift, start; 2895 zfs_range_seg_type_t type = 2896 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2897 2898 ms->ms_allocatable = zfs_range_tree_create(NULL, type, NULL, start, 2899 shift); 2900 for (int t = 0; t < TXG_SIZE; t++) { 2901 ms->ms_allocating[t] = zfs_range_tree_create(NULL, type, 2902 NULL, start, shift); 2903 } 2904 ms->ms_freeing = zfs_range_tree_create(NULL, type, NULL, start, shift); 2905 ms->ms_freed = zfs_range_tree_create(NULL, type, NULL, start, shift); 2906 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2907 ms->ms_defer[t] = zfs_range_tree_create(NULL, type, NULL, 2908 start, shift); 2909 } 2910 ms->ms_checkpointing = 2911 zfs_range_tree_create(NULL, type, NULL, start, shift); 2912 ms->ms_unflushed_allocs = 2913 zfs_range_tree_create(NULL, type, NULL, start, shift); 2914 2915 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2916 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2917 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2918 ms->ms_unflushed_frees = zfs_range_tree_create(&metaslab_rt_ops, 2919 type, mrap, start, shift); 2920 2921 ms->ms_trim = zfs_range_tree_create(NULL, type, NULL, start, shift); 2922 2923 metaslab_group_add(mg, ms); 2924 metaslab_set_fragmentation(ms, B_FALSE); 2925 2926 /* 2927 * If we're opening an existing pool (txg == 0) or creating 2928 * a new one (txg == TXG_INITIAL), all space is available now. 2929 * If we're adding space to an existing pool, the new space 2930 * does not become available until after this txg has synced. 2931 * The metaslab's weight will also be initialized when we sync 2932 * out this txg. This ensures that we don't attempt to allocate 2933 * from it before we have initialized it completely. 2934 */ 2935 if (txg <= TXG_INITIAL) { 2936 metaslab_sync_done(ms, 0); 2937 metaslab_space_update(vd, mg->mg_class, 2938 metaslab_allocated_space(ms), 0, 0); 2939 } 2940 2941 if (txg != 0) { 2942 vdev_dirty(vd, 0, NULL, txg); 2943 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2944 } 2945 2946 *msp = ms; 2947 2948 return (0); 2949 } 2950 2951 static void 2952 metaslab_fini_flush_data(metaslab_t *msp) 2953 { 2954 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2955 2956 if (metaslab_unflushed_txg(msp) == 0) { 2957 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2958 ==, NULL); 2959 return; 2960 } 2961 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2962 2963 mutex_enter(&spa->spa_flushed_ms_lock); 2964 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2965 mutex_exit(&spa->spa_flushed_ms_lock); 2966 2967 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2968 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2969 metaslab_unflushed_dirty(msp)); 2970 } 2971 2972 uint64_t 2973 metaslab_unflushed_changes_memused(metaslab_t *ms) 2974 { 2975 return ((zfs_range_tree_numsegs(ms->ms_unflushed_allocs) + 2976 zfs_range_tree_numsegs(ms->ms_unflushed_frees)) * 2977 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2978 } 2979 2980 void 2981 metaslab_fini(metaslab_t *msp) 2982 { 2983 metaslab_group_t *mg = msp->ms_group; 2984 vdev_t *vd = mg->mg_vd; 2985 spa_t *spa = vd->vdev_spa; 2986 2987 metaslab_fini_flush_data(msp); 2988 2989 metaslab_group_remove(mg, msp); 2990 2991 mutex_enter(&msp->ms_lock); 2992 VERIFY(msp->ms_group == NULL); 2993 2994 /* 2995 * If this metaslab hasn't been through metaslab_sync_done() yet its 2996 * space hasn't been accounted for in its vdev and doesn't need to be 2997 * subtracted. 2998 */ 2999 if (!msp->ms_new) { 3000 metaslab_space_update(vd, mg->mg_class, 3001 -metaslab_allocated_space(msp), 0, -msp->ms_size); 3002 3003 } 3004 space_map_close(msp->ms_sm); 3005 msp->ms_sm = NULL; 3006 3007 metaslab_unload(msp); 3008 3009 zfs_range_tree_destroy(msp->ms_allocatable); 3010 zfs_range_tree_destroy(msp->ms_freeing); 3011 zfs_range_tree_destroy(msp->ms_freed); 3012 3013 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3014 metaslab_unflushed_changes_memused(msp)); 3015 spa->spa_unflushed_stats.sus_memused -= 3016 metaslab_unflushed_changes_memused(msp); 3017 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3018 zfs_range_tree_destroy(msp->ms_unflushed_allocs); 3019 zfs_range_tree_destroy(msp->ms_checkpointing); 3020 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3021 zfs_range_tree_destroy(msp->ms_unflushed_frees); 3022 3023 for (int t = 0; t < TXG_SIZE; t++) { 3024 zfs_range_tree_destroy(msp->ms_allocating[t]); 3025 } 3026 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3027 zfs_range_tree_destroy(msp->ms_defer[t]); 3028 } 3029 ASSERT0(msp->ms_deferspace); 3030 3031 for (int t = 0; t < TXG_SIZE; t++) 3032 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 3033 3034 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL); 3035 zfs_range_tree_destroy(msp->ms_trim); 3036 3037 mutex_exit(&msp->ms_lock); 3038 cv_destroy(&msp->ms_load_cv); 3039 cv_destroy(&msp->ms_flush_cv); 3040 mutex_destroy(&msp->ms_lock); 3041 mutex_destroy(&msp->ms_sync_lock); 3042 ASSERT3U(msp->ms_allocator, ==, -1); 3043 3044 kmem_free(msp, sizeof (metaslab_t)); 3045 } 3046 3047 /* 3048 * This table defines a segment size based fragmentation metric that will 3049 * allow each metaslab to derive its own fragmentation value. This is done 3050 * by calculating the space in each bucket of the spacemap histogram and 3051 * multiplying that by the fragmentation metric in this table. Doing 3052 * this for all buckets and dividing it by the total amount of free 3053 * space in this metaslab (i.e. the total free space in all buckets) gives 3054 * us the fragmentation metric. This means that a high fragmentation metric 3055 * equates to most of the free space being comprised of small segments. 3056 * Conversely, if the metric is low, then most of the free space is in 3057 * large segments. 3058 * 3059 * This table defines 0% fragmented space using 512M segments. Using this value, 3060 * we derive the rest of the table. This table originally went up to 16MB, but 3061 * with larger recordsizes, larger ashifts, and use of raidz3, it is possible 3062 * to have significantly larger allocations than were previously possible. 3063 * Since the fragmentation value is never stored on disk, it is possible to 3064 * change these calculations in the future. 3065 */ 3066 static const int zfs_frag_table[] = { 3067 100, /* 512B */ 3068 99, /* 1K */ 3069 97, /* 2K */ 3070 93, /* 4K */ 3071 88, /* 8K */ 3072 83, /* 16K */ 3073 77, /* 32K */ 3074 71, /* 64K */ 3075 64, /* 128K */ 3076 57, /* 256K */ 3077 50, /* 512K */ 3078 43, /* 1M */ 3079 36, /* 2M */ 3080 29, /* 4M */ 3081 23, /* 8M */ 3082 17, /* 16M */ 3083 12, /* 32M */ 3084 7, /* 64M */ 3085 3, /* 128M */ 3086 1, /* 256M */ 3087 0, /* 512M */ 3088 }; 3089 #define FRAGMENTATION_TABLE_SIZE \ 3090 (sizeof (zfs_frag_table)/(sizeof (zfs_frag_table[0]))) 3091 3092 /* 3093 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 3094 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 3095 * been upgraded and does not support this metric. Otherwise, the return 3096 * value should be in the range [0, 100]. 3097 */ 3098 static void 3099 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 3100 { 3101 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3102 uint64_t fragmentation = 0; 3103 uint64_t total = 0; 3104 boolean_t feature_enabled = spa_feature_is_enabled(spa, 3105 SPA_FEATURE_SPACEMAP_HISTOGRAM); 3106 3107 if (!feature_enabled) { 3108 msp->ms_fragmentation = ZFS_FRAG_INVALID; 3109 return; 3110 } 3111 3112 /* 3113 * A null space map means that the entire metaslab is free 3114 * and thus is not fragmented. 3115 */ 3116 if (msp->ms_sm == NULL) { 3117 msp->ms_fragmentation = 0; 3118 return; 3119 } 3120 3121 /* 3122 * If this metaslab's space map has not been upgraded, flag it 3123 * so that we upgrade next time we encounter it. 3124 */ 3125 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 3126 uint64_t txg = spa_syncing_txg(spa); 3127 vdev_t *vd = msp->ms_group->mg_vd; 3128 3129 /* 3130 * If we've reached the final dirty txg, then we must 3131 * be shutting down the pool. We don't want to dirty 3132 * any data past this point so skip setting the condense 3133 * flag. We can retry this action the next time the pool 3134 * is imported. We also skip marking this metaslab for 3135 * condensing if the caller has explicitly set nodirty. 3136 */ 3137 if (!nodirty && 3138 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 3139 msp->ms_condense_wanted = B_TRUE; 3140 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 3141 zfs_dbgmsg("txg %llu, requesting force condense: " 3142 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 3143 (u_longlong_t)msp->ms_id, 3144 (u_longlong_t)vd->vdev_id); 3145 } 3146 msp->ms_fragmentation = ZFS_FRAG_INVALID; 3147 return; 3148 } 3149 3150 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3151 uint64_t space = 0; 3152 uint8_t shift = msp->ms_sm->sm_shift; 3153 3154 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 3155 FRAGMENTATION_TABLE_SIZE - 1); 3156 3157 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 3158 continue; 3159 3160 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 3161 total += space; 3162 3163 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 3164 fragmentation += space * zfs_frag_table[idx]; 3165 } 3166 3167 if (total > 0) 3168 fragmentation /= total; 3169 ASSERT3U(fragmentation, <=, 100); 3170 3171 msp->ms_fragmentation = fragmentation; 3172 } 3173 3174 /* 3175 * Compute a weight -- a selection preference value -- for the given metaslab. 3176 * This is based on the amount of free space, the level of fragmentation, 3177 * the LBA range, and whether the metaslab is loaded. 3178 */ 3179 static uint64_t 3180 metaslab_space_weight(metaslab_t *msp) 3181 { 3182 metaslab_group_t *mg = msp->ms_group; 3183 vdev_t *vd = mg->mg_vd; 3184 uint64_t weight, space; 3185 3186 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3187 3188 /* 3189 * The baseline weight is the metaslab's free space. 3190 */ 3191 space = msp->ms_size - metaslab_allocated_space(msp); 3192 3193 if (metaslab_fragmentation_factor_enabled && 3194 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 3195 /* 3196 * Use the fragmentation information to inversely scale 3197 * down the baseline weight. We need to ensure that we 3198 * don't exclude this metaslab completely when it's 100% 3199 * fragmented. To avoid this we reduce the fragmented value 3200 * by 1. 3201 */ 3202 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 3203 3204 /* 3205 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 3206 * this metaslab again. The fragmentation metric may have 3207 * decreased the space to something smaller than 3208 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 3209 * so that we can consume any remaining space. 3210 */ 3211 if (space > 0 && space < SPA_MINBLOCKSIZE) 3212 space = SPA_MINBLOCKSIZE; 3213 } 3214 weight = space; 3215 3216 /* 3217 * Modern disks have uniform bit density and constant angular velocity. 3218 * Therefore, the outer recording zones are faster (higher bandwidth) 3219 * than the inner zones by the ratio of outer to inner track diameter, 3220 * which is typically around 2:1. We account for this by assigning 3221 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3222 * In effect, this means that we'll select the metaslab with the most 3223 * free bandwidth rather than simply the one with the most free space. 3224 */ 3225 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3226 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3227 ASSERT(weight >= space && weight <= 2 * space); 3228 } 3229 3230 /* 3231 * If this metaslab is one we're actively using, adjust its 3232 * weight to make it preferable to any inactive metaslab so 3233 * we'll polish it off. If the fragmentation on this metaslab 3234 * has exceed our threshold, then don't mark it active. 3235 */ 3236 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3237 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3238 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3239 } 3240 3241 WEIGHT_SET_SPACEBASED(weight); 3242 return (weight); 3243 } 3244 3245 /* 3246 * Return the weight of the specified metaslab, according to the segment-based 3247 * weighting algorithm. The metaslab must be loaded. This function can 3248 * be called within a sync pass since it relies only on the metaslab's 3249 * range tree which is always accurate when the metaslab is loaded. 3250 */ 3251 static uint64_t 3252 metaslab_weight_from_range_tree(metaslab_t *msp) 3253 { 3254 uint64_t weight = 0; 3255 uint32_t segments = 0; 3256 3257 ASSERT(msp->ms_loaded); 3258 3259 for (int i = ZFS_RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3260 i--) { 3261 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3262 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3263 3264 segments <<= 1; 3265 segments += msp->ms_allocatable->rt_histogram[i]; 3266 3267 /* 3268 * The range tree provides more precision than the space map 3269 * and must be downgraded so that all values fit within the 3270 * space map's histogram. This allows us to compare loaded 3271 * vs. unloaded metaslabs to determine which metaslab is 3272 * considered "best". 3273 */ 3274 if (i > max_idx) 3275 continue; 3276 3277 if (segments != 0) { 3278 WEIGHT_SET_COUNT(weight, segments); 3279 WEIGHT_SET_INDEX(weight, i); 3280 WEIGHT_SET_ACTIVE(weight, 0); 3281 break; 3282 } 3283 } 3284 return (weight); 3285 } 3286 3287 /* 3288 * Calculate the weight based on the on-disk histogram. Should be applied 3289 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3290 * give results consistent with the on-disk state 3291 */ 3292 static uint64_t 3293 metaslab_weight_from_spacemap(metaslab_t *msp) 3294 { 3295 space_map_t *sm = msp->ms_sm; 3296 ASSERT(!msp->ms_loaded); 3297 ASSERT(sm != NULL); 3298 ASSERT3U(space_map_object(sm), !=, 0); 3299 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3300 3301 /* 3302 * Create a joint histogram from all the segments that have made 3303 * it to the metaslab's space map histogram, that are not yet 3304 * available for allocation because they are still in the freeing 3305 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3306 * these segments from the space map's histogram to get a more 3307 * accurate weight. 3308 */ 3309 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3310 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3311 deferspace_histogram[i] += msp->ms_synchist[i]; 3312 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3313 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3314 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3315 } 3316 } 3317 3318 uint64_t weight = 0; 3319 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3320 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3321 deferspace_histogram[i]); 3322 uint64_t count = 3323 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3324 if (count != 0) { 3325 WEIGHT_SET_COUNT(weight, count); 3326 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3327 WEIGHT_SET_ACTIVE(weight, 0); 3328 break; 3329 } 3330 } 3331 return (weight); 3332 } 3333 3334 /* 3335 * Compute a segment-based weight for the specified metaslab. The weight 3336 * is determined by highest bucket in the histogram. The information 3337 * for the highest bucket is encoded into the weight value. 3338 */ 3339 static uint64_t 3340 metaslab_segment_weight(metaslab_t *msp) 3341 { 3342 metaslab_group_t *mg = msp->ms_group; 3343 uint64_t weight = 0; 3344 uint8_t shift = mg->mg_vd->vdev_ashift; 3345 3346 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3347 3348 /* 3349 * The metaslab is completely free. 3350 */ 3351 if (metaslab_allocated_space(msp) == 0) { 3352 int idx = highbit64(msp->ms_size) - 1; 3353 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3354 3355 if (idx < max_idx) { 3356 WEIGHT_SET_COUNT(weight, 1ULL); 3357 WEIGHT_SET_INDEX(weight, idx); 3358 } else { 3359 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3360 WEIGHT_SET_INDEX(weight, max_idx); 3361 } 3362 WEIGHT_SET_ACTIVE(weight, 0); 3363 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3364 return (weight); 3365 } 3366 3367 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3368 3369 /* 3370 * If the metaslab is fully allocated then just make the weight 0. 3371 */ 3372 if (metaslab_allocated_space(msp) == msp->ms_size) 3373 return (0); 3374 /* 3375 * If the metaslab is already loaded, then use the range tree to 3376 * determine the weight. Otherwise, we rely on the space map information 3377 * to generate the weight. 3378 */ 3379 if (msp->ms_loaded) { 3380 weight = metaslab_weight_from_range_tree(msp); 3381 } else { 3382 weight = metaslab_weight_from_spacemap(msp); 3383 } 3384 3385 /* 3386 * If the metaslab was active the last time we calculated its weight 3387 * then keep it active. We want to consume the entire region that 3388 * is associated with this weight. 3389 */ 3390 if (msp->ms_activation_weight != 0 && weight != 0) 3391 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3392 return (weight); 3393 } 3394 3395 /* 3396 * Determine if we should attempt to allocate from this metaslab. If the 3397 * metaslab is loaded, then we can determine if the desired allocation 3398 * can be satisfied by looking at the size of the maximum free segment 3399 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3400 * weight. For segment-based weighting we can determine the maximum 3401 * allocation based on the index encoded in its value. For space-based 3402 * weights we rely on the entire weight (excluding the weight-type bit). 3403 */ 3404 static boolean_t 3405 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3406 { 3407 /* 3408 * This case will usually but not always get caught by the checks below; 3409 * metaslabs can be loaded by various means, including the trim and 3410 * initialize code. Once that happens, without this check they are 3411 * allocatable even before they finish their first txg sync. 3412 */ 3413 if (unlikely(msp->ms_new)) 3414 return (B_FALSE); 3415 3416 /* 3417 * If the metaslab is loaded, ms_max_size is definitive and we can use 3418 * the fast check. If it's not, the ms_max_size is a lower bound (once 3419 * set), and we should use the fast check as long as we're not in 3420 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3421 * seconds since the metaslab was unloaded. 3422 */ 3423 if (msp->ms_loaded || 3424 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3425 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3426 return (msp->ms_max_size >= asize); 3427 3428 boolean_t should_allocate; 3429 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3430 /* 3431 * The metaslab segment weight indicates segments in the 3432 * range [2^i, 2^(i+1)), where i is the index in the weight. 3433 * Since the asize might be in the middle of the range, we 3434 * should attempt the allocation if asize < 2^(i+1). 3435 */ 3436 should_allocate = (asize < 3437 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3438 } else { 3439 should_allocate = (asize <= 3440 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3441 } 3442 3443 return (should_allocate); 3444 } 3445 3446 static uint64_t 3447 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3448 { 3449 vdev_t *vd = msp->ms_group->mg_vd; 3450 spa_t *spa = vd->vdev_spa; 3451 uint64_t weight; 3452 3453 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3454 3455 metaslab_set_fragmentation(msp, nodirty); 3456 3457 /* 3458 * Update the maximum size. If the metaslab is loaded, this will 3459 * ensure that we get an accurate maximum size if newly freed space 3460 * has been added back into the free tree. If the metaslab is 3461 * unloaded, we check if there's a larger free segment in the 3462 * unflushed frees. This is a lower bound on the largest allocatable 3463 * segment size. Coalescing of adjacent entries may reveal larger 3464 * allocatable segments, but we aren't aware of those until loading 3465 * the space map into a range tree. 3466 */ 3467 if (msp->ms_loaded) { 3468 msp->ms_max_size = metaslab_largest_allocatable(msp); 3469 } else { 3470 msp->ms_max_size = MAX(msp->ms_max_size, 3471 metaslab_largest_unflushed_free(msp)); 3472 } 3473 3474 /* 3475 * Segment-based weighting requires space map histogram support. 3476 */ 3477 if (zfs_metaslab_segment_weight_enabled && 3478 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3479 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3480 sizeof (space_map_phys_t))) { 3481 weight = metaslab_segment_weight(msp); 3482 } else { 3483 weight = metaslab_space_weight(msp); 3484 } 3485 return (weight); 3486 } 3487 3488 void 3489 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3490 { 3491 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3492 3493 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3494 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3495 metaslab_group_sort(msp->ms_group, msp, 3496 metaslab_weight(msp, B_FALSE) | was_active); 3497 } 3498 3499 static int 3500 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3501 int allocator, uint64_t activation_weight) 3502 { 3503 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3504 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3505 3506 /* 3507 * If we're activating for the claim code, we don't want to actually 3508 * set the metaslab up for a specific allocator. 3509 */ 3510 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3511 ASSERT0(msp->ms_activation_weight); 3512 msp->ms_activation_weight = msp->ms_weight; 3513 metaslab_group_sort(mg, msp, msp->ms_weight | 3514 activation_weight); 3515 return (0); 3516 } 3517 3518 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3519 &mga->mga_primary : &mga->mga_secondary); 3520 3521 mutex_enter(&mg->mg_lock); 3522 if (*mspp != NULL) { 3523 mutex_exit(&mg->mg_lock); 3524 return (EEXIST); 3525 } 3526 3527 *mspp = msp; 3528 ASSERT3S(msp->ms_allocator, ==, -1); 3529 msp->ms_allocator = allocator; 3530 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3531 3532 ASSERT0(msp->ms_activation_weight); 3533 msp->ms_activation_weight = msp->ms_weight; 3534 metaslab_group_sort_impl(mg, msp, 3535 msp->ms_weight | activation_weight); 3536 mutex_exit(&mg->mg_lock); 3537 3538 return (0); 3539 } 3540 3541 static int 3542 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3543 { 3544 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3545 3546 /* 3547 * The current metaslab is already activated for us so there 3548 * is nothing to do. Already activated though, doesn't mean 3549 * that this metaslab is activated for our allocator nor our 3550 * requested activation weight. The metaslab could have started 3551 * as an active one for our allocator but changed allocators 3552 * while we were waiting to grab its ms_lock or we stole it 3553 * [see find_valid_metaslab()]. This means that there is a 3554 * possibility of passivating a metaslab of another allocator 3555 * or from a different activation mask, from this thread. 3556 */ 3557 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3558 ASSERT(msp->ms_loaded); 3559 return (0); 3560 } 3561 3562 int error = metaslab_load(msp); 3563 if (error != 0) { 3564 metaslab_group_sort(msp->ms_group, msp, 0); 3565 return (error); 3566 } 3567 3568 /* 3569 * When entering metaslab_load() we may have dropped the 3570 * ms_lock because we were loading this metaslab, or we 3571 * were waiting for another thread to load it for us. In 3572 * that scenario, we recheck the weight of the metaslab 3573 * to see if it was activated by another thread. 3574 * 3575 * If the metaslab was activated for another allocator or 3576 * it was activated with a different activation weight (e.g. 3577 * we wanted to make it a primary but it was activated as 3578 * secondary) we return error (EBUSY). 3579 * 3580 * If the metaslab was activated for the same allocator 3581 * and requested activation mask, skip activating it. 3582 */ 3583 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3584 if (msp->ms_allocator != allocator) 3585 return (EBUSY); 3586 3587 if ((msp->ms_weight & activation_weight) == 0) 3588 return (SET_ERROR(EBUSY)); 3589 3590 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3591 msp->ms_primary); 3592 return (0); 3593 } 3594 3595 /* 3596 * If the metaslab has literally 0 space, it will have weight 0. In 3597 * that case, don't bother activating it. This can happen if the 3598 * metaslab had space during find_valid_metaslab, but another thread 3599 * loaded it and used all that space while we were waiting to grab the 3600 * lock. 3601 */ 3602 if (msp->ms_weight == 0) { 3603 ASSERT0(zfs_range_tree_space(msp->ms_allocatable)); 3604 return (SET_ERROR(ENOSPC)); 3605 } 3606 3607 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3608 allocator, activation_weight)) != 0) { 3609 return (error); 3610 } 3611 3612 ASSERT(msp->ms_loaded); 3613 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3614 3615 return (0); 3616 } 3617 3618 static void 3619 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3620 uint64_t weight) 3621 { 3622 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3623 ASSERT(msp->ms_loaded); 3624 3625 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3626 metaslab_group_sort(mg, msp, weight); 3627 return; 3628 } 3629 3630 mutex_enter(&mg->mg_lock); 3631 ASSERT3P(msp->ms_group, ==, mg); 3632 ASSERT3S(0, <=, msp->ms_allocator); 3633 ASSERT3U(msp->ms_allocator, <, mg->mg_class->mc_spa->spa_alloc_count); 3634 3635 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3636 if (msp->ms_primary) { 3637 ASSERT3P(mga->mga_primary, ==, msp); 3638 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3639 mga->mga_primary = NULL; 3640 } else { 3641 ASSERT3P(mga->mga_secondary, ==, msp); 3642 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3643 mga->mga_secondary = NULL; 3644 } 3645 msp->ms_allocator = -1; 3646 metaslab_group_sort_impl(mg, msp, weight); 3647 mutex_exit(&mg->mg_lock); 3648 } 3649 3650 static void 3651 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3652 { 3653 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3654 3655 /* 3656 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3657 * this metaslab again. In that case, it had better be empty, 3658 * or we would be leaving space on the table. 3659 */ 3660 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3661 size >= SPA_MINBLOCKSIZE || 3662 zfs_range_tree_space(msp->ms_allocatable) == 0); 3663 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3664 3665 ASSERT(msp->ms_activation_weight != 0); 3666 msp->ms_activation_weight = 0; 3667 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3668 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3669 } 3670 3671 /* 3672 * Segment-based metaslabs are activated once and remain active until 3673 * we either fail an allocation attempt (similar to space-based metaslabs) 3674 * or have exhausted the free space in zfs_metaslab_switch_threshold 3675 * buckets since the metaslab was activated. This function checks to see 3676 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3677 * metaslab and passivates it proactively. This will allow us to select a 3678 * metaslab with a larger contiguous region, if any, remaining within this 3679 * metaslab group. If we're in sync pass > 1, then we continue using this 3680 * metaslab so that we don't dirty more block and cause more sync passes. 3681 */ 3682 static void 3683 metaslab_segment_may_passivate(metaslab_t *msp) 3684 { 3685 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3686 3687 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3688 return; 3689 3690 /* 3691 * As long as a single largest free segment covers majorioty of free 3692 * space, don't consider the metaslab fragmented. It should allow 3693 * us to fill new unfragmented metaslabs full before switching. 3694 */ 3695 if (metaslab_largest_allocatable(msp) > 3696 zfs_range_tree_space(msp->ms_allocatable) * 15 / 16) 3697 return; 3698 3699 /* 3700 * Since we are in the middle of a sync pass, the most accurate 3701 * information that is accessible to us is the in-core range tree 3702 * histogram; calculate the new weight based on that information. 3703 */ 3704 uint64_t weight = metaslab_weight_from_range_tree(msp); 3705 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3706 int current_idx = WEIGHT_GET_INDEX(weight); 3707 3708 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3709 metaslab_passivate(msp, weight); 3710 } 3711 3712 static void 3713 metaslab_preload(void *arg) 3714 { 3715 metaslab_t *msp = arg; 3716 metaslab_class_t *mc = msp->ms_group->mg_class; 3717 spa_t *spa = mc->mc_spa; 3718 fstrans_cookie_t cookie = spl_fstrans_mark(); 3719 3720 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3721 3722 mutex_enter(&msp->ms_lock); 3723 (void) metaslab_load(msp); 3724 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3725 mutex_exit(&msp->ms_lock); 3726 spl_fstrans_unmark(cookie); 3727 } 3728 3729 static void 3730 metaslab_group_preload(metaslab_group_t *mg) 3731 { 3732 spa_t *spa = mg->mg_vd->vdev_spa; 3733 metaslab_t *msp; 3734 avl_tree_t *t = &mg->mg_metaslab_tree; 3735 int m = 0; 3736 3737 if (spa_shutting_down(spa) || !metaslab_preload_enabled) 3738 return; 3739 3740 mutex_enter(&mg->mg_lock); 3741 3742 /* 3743 * Load the next potential metaslabs 3744 */ 3745 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3746 ASSERT3P(msp->ms_group, ==, mg); 3747 3748 /* 3749 * We preload only the maximum number of metaslabs specified 3750 * by metaslab_preload_limit. If a metaslab is being forced 3751 * to condense then we preload it too. This will ensure 3752 * that force condensing happens in the next txg. 3753 */ 3754 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3755 continue; 3756 } 3757 3758 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload, 3759 msp, TQ_SLEEP | (m <= spa->spa_alloc_count ? TQ_FRONT : 0)) 3760 != TASKQID_INVALID); 3761 } 3762 mutex_exit(&mg->mg_lock); 3763 } 3764 3765 /* 3766 * Determine if the space map's on-disk footprint is past our tolerance for 3767 * inefficiency. We would like to use the following criteria to make our 3768 * decision: 3769 * 3770 * 1. Do not condense if the size of the space map object would dramatically 3771 * increase as a result of writing out the free space range tree. 3772 * 3773 * 2. Condense if the on on-disk space map representation is at least 3774 * zfs_condense_pct/100 times the size of the optimal representation 3775 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3776 * 3777 * 3. Do not condense if the on-disk size of the space map does not actually 3778 * decrease. 3779 * 3780 * Unfortunately, we cannot compute the on-disk size of the space map in this 3781 * context because we cannot accurately compute the effects of compression, etc. 3782 * Instead, we apply the heuristic described in the block comment for 3783 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3784 * is greater than a threshold number of blocks. 3785 */ 3786 static boolean_t 3787 metaslab_should_condense(metaslab_t *msp) 3788 { 3789 space_map_t *sm = msp->ms_sm; 3790 vdev_t *vd = msp->ms_group->mg_vd; 3791 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3792 3793 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3794 ASSERT(msp->ms_loaded); 3795 ASSERT(sm != NULL); 3796 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3797 3798 /* 3799 * We always condense metaslabs that are empty and metaslabs for 3800 * which a condense request has been made. 3801 */ 3802 if (zfs_range_tree_numsegs(msp->ms_allocatable) == 0 || 3803 msp->ms_condense_wanted) 3804 return (B_TRUE); 3805 3806 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3807 uint64_t object_size = space_map_length(sm); 3808 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3809 msp->ms_allocatable, SM_NO_VDEVID); 3810 3811 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3812 object_size > zfs_metaslab_condense_block_threshold * record_size); 3813 } 3814 3815 /* 3816 * Condense the on-disk space map representation to its minimized form. 3817 * The minimized form consists of a small number of allocations followed 3818 * by the entries of the free range tree (ms_allocatable). The condensed 3819 * spacemap contains all the entries of previous TXGs (including those in 3820 * the pool-wide log spacemaps; thus this is effectively a superset of 3821 * metaslab_flush()), but this TXG's entries still need to be written. 3822 */ 3823 static void 3824 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3825 { 3826 zfs_range_tree_t *condense_tree; 3827 space_map_t *sm = msp->ms_sm; 3828 uint64_t txg = dmu_tx_get_txg(tx); 3829 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3830 3831 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3832 ASSERT(msp->ms_loaded); 3833 ASSERT(msp->ms_sm != NULL); 3834 3835 /* 3836 * In order to condense the space map, we need to change it so it 3837 * only describes which segments are currently allocated and free. 3838 * 3839 * All the current free space resides in the ms_allocatable, all 3840 * the ms_defer trees, and all the ms_allocating trees. We ignore 3841 * ms_freed because it is empty because we're in sync pass 1. We 3842 * ignore ms_freeing because these changes are not yet reflected 3843 * in the spacemap (they will be written later this txg). 3844 * 3845 * So to truncate the space map to represent all the entries of 3846 * previous TXGs we do the following: 3847 * 3848 * 1] We create a range tree (condense tree) that is 100% empty. 3849 * 2] We add to it all segments found in the ms_defer trees 3850 * as those segments are marked as free in the original space 3851 * map. We do the same with the ms_allocating trees for the same 3852 * reason. Adding these segments should be a relatively 3853 * inexpensive operation since we expect these trees to have a 3854 * small number of nodes. 3855 * 3] We vacate any unflushed allocs, since they are not frees we 3856 * need to add to the condense tree. Then we vacate any 3857 * unflushed frees as they should already be part of ms_allocatable. 3858 * 4] At this point, we would ideally like to add all segments 3859 * in the ms_allocatable tree from the condense tree. This way 3860 * we would write all the entries of the condense tree as the 3861 * condensed space map, which would only contain freed 3862 * segments with everything else assumed to be allocated. 3863 * 3864 * Doing so can be prohibitively expensive as ms_allocatable can 3865 * be large, and therefore computationally expensive to add to 3866 * the condense_tree. Instead we first sync out an entry marking 3867 * everything as allocated, then the condense_tree and then the 3868 * ms_allocatable, in the condensed space map. While this is not 3869 * optimal, it is typically close to optimal and more importantly 3870 * much cheaper to compute. 3871 * 3872 * 5] Finally, as both of the unflushed trees were written to our 3873 * new and condensed metaslab space map, we basically flushed 3874 * all the unflushed changes to disk, thus we call 3875 * metaslab_flush_update(). 3876 */ 3877 ASSERT3U(spa_sync_pass(spa), ==, 1); 3878 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3879 3880 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3881 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3882 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3883 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3884 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3885 (u_longlong_t)zfs_range_tree_numsegs(msp->ms_allocatable), 3886 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3887 3888 msp->ms_condense_wanted = B_FALSE; 3889 3890 zfs_range_seg_type_t type; 3891 uint64_t shift, start; 3892 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3893 &start, &shift); 3894 3895 condense_tree = zfs_range_tree_create(NULL, type, NULL, start, shift); 3896 3897 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3898 zfs_range_tree_walk(msp->ms_defer[t], 3899 zfs_range_tree_add, condense_tree); 3900 } 3901 3902 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3903 zfs_range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3904 zfs_range_tree_add, condense_tree); 3905 } 3906 3907 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3908 metaslab_unflushed_changes_memused(msp)); 3909 spa->spa_unflushed_stats.sus_memused -= 3910 metaslab_unflushed_changes_memused(msp); 3911 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3912 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3913 3914 /* 3915 * We're about to drop the metaslab's lock thus allowing other 3916 * consumers to change it's content. Set the metaslab's ms_condensing 3917 * flag to ensure that allocations on this metaslab do not occur 3918 * while we're in the middle of committing it to disk. This is only 3919 * critical for ms_allocatable as all other range trees use per TXG 3920 * views of their content. 3921 */ 3922 msp->ms_condensing = B_TRUE; 3923 3924 mutex_exit(&msp->ms_lock); 3925 uint64_t object = space_map_object(msp->ms_sm); 3926 space_map_truncate(sm, 3927 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3928 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3929 3930 /* 3931 * space_map_truncate() may have reallocated the spacemap object. 3932 * If so, update the vdev_ms_array. 3933 */ 3934 if (space_map_object(msp->ms_sm) != object) { 3935 object = space_map_object(msp->ms_sm); 3936 dmu_write(spa->spa_meta_objset, 3937 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3938 msp->ms_id, sizeof (uint64_t), &object, tx); 3939 } 3940 3941 /* 3942 * Note: 3943 * When the log space map feature is enabled, each space map will 3944 * always have ALLOCS followed by FREES for each sync pass. This is 3945 * typically true even when the log space map feature is disabled, 3946 * except from the case where a metaslab goes through metaslab_sync() 3947 * and gets condensed. In that case the metaslab's space map will have 3948 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3949 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3950 * sync pass 1. 3951 */ 3952 zfs_range_tree_t *tmp_tree = zfs_range_tree_create(NULL, type, NULL, 3953 start, shift); 3954 zfs_range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3955 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3956 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3957 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3958 3959 zfs_range_tree_vacate(condense_tree, NULL, NULL); 3960 zfs_range_tree_destroy(condense_tree); 3961 zfs_range_tree_vacate(tmp_tree, NULL, NULL); 3962 zfs_range_tree_destroy(tmp_tree); 3963 mutex_enter(&msp->ms_lock); 3964 3965 msp->ms_condensing = B_FALSE; 3966 metaslab_flush_update(msp, tx); 3967 } 3968 3969 static void 3970 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3971 { 3972 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3973 ASSERT(spa_syncing_log_sm(spa) != NULL); 3974 ASSERT(msp->ms_sm != NULL); 3975 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 3976 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 3977 3978 mutex_enter(&spa->spa_flushed_ms_lock); 3979 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3980 metaslab_set_unflushed_dirty(msp, B_TRUE); 3981 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3982 mutex_exit(&spa->spa_flushed_ms_lock); 3983 3984 spa_log_sm_increment_current_mscount(spa); 3985 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3986 } 3987 3988 void 3989 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3990 { 3991 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3992 ASSERT(spa_syncing_log_sm(spa) != NULL); 3993 ASSERT(msp->ms_sm != NULL); 3994 ASSERT(metaslab_unflushed_txg(msp) != 0); 3995 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3996 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 3997 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 3998 3999 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 4000 4001 /* update metaslab's position in our flushing tree */ 4002 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 4003 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 4004 mutex_enter(&spa->spa_flushed_ms_lock); 4005 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 4006 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4007 metaslab_set_unflushed_dirty(msp, dirty); 4008 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4009 mutex_exit(&spa->spa_flushed_ms_lock); 4010 4011 /* update metaslab counts of spa_log_sm_t nodes */ 4012 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 4013 spa_log_sm_increment_current_mscount(spa); 4014 4015 /* update log space map summary */ 4016 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 4017 ms_prev_flushed_dirty); 4018 spa_log_summary_add_flushed_metaslab(spa, dirty); 4019 4020 /* cleanup obsolete logs if any */ 4021 spa_cleanup_old_sm_logs(spa, tx); 4022 } 4023 4024 /* 4025 * Called when the metaslab has been flushed (its own spacemap now reflects 4026 * all the contents of the pool-wide spacemap log). Updates the metaslab's 4027 * metadata and any pool-wide related log space map data (e.g. summary, 4028 * obsolete logs, etc..) to reflect that. 4029 */ 4030 static void 4031 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 4032 { 4033 metaslab_group_t *mg = msp->ms_group; 4034 spa_t *spa = mg->mg_vd->vdev_spa; 4035 4036 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4037 4038 ASSERT3U(spa_sync_pass(spa), ==, 1); 4039 4040 /* 4041 * Just because a metaslab got flushed, that doesn't mean that 4042 * it will pass through metaslab_sync_done(). Thus, make sure to 4043 * update ms_synced_length here in case it doesn't. 4044 */ 4045 msp->ms_synced_length = space_map_length(msp->ms_sm); 4046 4047 /* 4048 * We may end up here from metaslab_condense() without the 4049 * feature being active. In that case this is a no-op. 4050 */ 4051 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 4052 metaslab_unflushed_txg(msp) == 0) 4053 return; 4054 4055 metaslab_unflushed_bump(msp, tx, B_FALSE); 4056 } 4057 4058 boolean_t 4059 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 4060 { 4061 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 4062 4063 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4064 ASSERT3U(spa_sync_pass(spa), ==, 1); 4065 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4066 4067 ASSERT(msp->ms_sm != NULL); 4068 ASSERT(metaslab_unflushed_txg(msp) != 0); 4069 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 4070 4071 /* 4072 * There is nothing wrong with flushing the same metaslab twice, as 4073 * this codepath should work on that case. However, the current 4074 * flushing scheme makes sure to avoid this situation as we would be 4075 * making all these calls without having anything meaningful to write 4076 * to disk. We assert this behavior here. 4077 */ 4078 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 4079 4080 /* 4081 * We can not flush while loading, because then we would 4082 * not load the ms_unflushed_{allocs,frees}. 4083 */ 4084 if (msp->ms_loading) 4085 return (B_FALSE); 4086 4087 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4088 metaslab_verify_weight_and_frag(msp); 4089 4090 /* 4091 * Metaslab condensing is effectively flushing. Therefore if the 4092 * metaslab can be condensed we can just condense it instead of 4093 * flushing it. 4094 * 4095 * Note that metaslab_condense() does call metaslab_flush_update() 4096 * so we can just return immediately after condensing. We also 4097 * don't need to care about setting ms_flushing or broadcasting 4098 * ms_flush_cv, even if we temporarily drop the ms_lock in 4099 * metaslab_condense(), as the metaslab is already loaded. 4100 */ 4101 if (msp->ms_loaded && metaslab_should_condense(msp)) { 4102 metaslab_group_t *mg = msp->ms_group; 4103 4104 /* 4105 * For all histogram operations below refer to the 4106 * comments of metaslab_sync() where we follow a 4107 * similar procedure. 4108 */ 4109 metaslab_group_histogram_verify(mg); 4110 metaslab_class_histogram_verify(mg->mg_class); 4111 metaslab_group_histogram_remove(mg, msp); 4112 4113 metaslab_condense(msp, tx); 4114 4115 space_map_histogram_clear(msp->ms_sm); 4116 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4117 ASSERT(zfs_range_tree_is_empty(msp->ms_freed)); 4118 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4119 space_map_histogram_add(msp->ms_sm, 4120 msp->ms_defer[t], tx); 4121 } 4122 metaslab_aux_histograms_update(msp); 4123 4124 metaslab_group_histogram_add(mg, msp); 4125 metaslab_group_histogram_verify(mg); 4126 metaslab_class_histogram_verify(mg->mg_class); 4127 4128 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4129 4130 /* 4131 * Since we recreated the histogram (and potentially 4132 * the ms_sm too while condensing) ensure that the 4133 * weight is updated too because we are not guaranteed 4134 * that this metaslab is dirty and will go through 4135 * metaslab_sync_done(). 4136 */ 4137 metaslab_recalculate_weight_and_sort(msp); 4138 return (B_TRUE); 4139 } 4140 4141 msp->ms_flushing = B_TRUE; 4142 uint64_t sm_len_before = space_map_length(msp->ms_sm); 4143 4144 mutex_exit(&msp->ms_lock); 4145 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 4146 SM_NO_VDEVID, tx); 4147 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 4148 SM_NO_VDEVID, tx); 4149 mutex_enter(&msp->ms_lock); 4150 4151 uint64_t sm_len_after = space_map_length(msp->ms_sm); 4152 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 4153 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 4154 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 4155 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 4156 spa_name(spa), 4157 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 4158 (u_longlong_t)msp->ms_id, 4159 (u_longlong_t)zfs_range_tree_space( 4160 msp->ms_unflushed_allocs), 4161 (u_longlong_t)zfs_range_tree_space( 4162 msp->ms_unflushed_frees), 4163 (u_longlong_t)(sm_len_after - sm_len_before)); 4164 } 4165 4166 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4167 metaslab_unflushed_changes_memused(msp)); 4168 spa->spa_unflushed_stats.sus_memused -= 4169 metaslab_unflushed_changes_memused(msp); 4170 zfs_range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 4171 zfs_range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 4172 4173 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4174 metaslab_verify_weight_and_frag(msp); 4175 4176 metaslab_flush_update(msp, tx); 4177 4178 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 4179 metaslab_verify_weight_and_frag(msp); 4180 4181 msp->ms_flushing = B_FALSE; 4182 cv_broadcast(&msp->ms_flush_cv); 4183 return (B_TRUE); 4184 } 4185 4186 /* 4187 * Write a metaslab to disk in the context of the specified transaction group. 4188 */ 4189 void 4190 metaslab_sync(metaslab_t *msp, uint64_t txg) 4191 { 4192 metaslab_group_t *mg = msp->ms_group; 4193 vdev_t *vd = mg->mg_vd; 4194 spa_t *spa = vd->vdev_spa; 4195 objset_t *mos = spa_meta_objset(spa); 4196 zfs_range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 4197 dmu_tx_t *tx; 4198 4199 ASSERT(!vd->vdev_ishole); 4200 4201 /* 4202 * This metaslab has just been added so there's no work to do now. 4203 */ 4204 if (msp->ms_new) { 4205 ASSERT0(zfs_range_tree_space(alloctree)); 4206 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4207 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 4208 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4209 ASSERT0(zfs_range_tree_space(msp->ms_trim)); 4210 return; 4211 } 4212 4213 /* 4214 * Normally, we don't want to process a metaslab if there are no 4215 * allocations or frees to perform. However, if the metaslab is being 4216 * forced to condense, it's loaded and we're not beyond the final 4217 * dirty txg, we need to let it through. Not condensing beyond the 4218 * final dirty txg prevents an issue where metaslabs that need to be 4219 * condensed but were loaded for other reasons could cause a panic 4220 * here. By only checking the txg in that branch of the conditional, 4221 * we preserve the utility of the VERIFY statements in all other 4222 * cases. 4223 */ 4224 if (zfs_range_tree_is_empty(alloctree) && 4225 zfs_range_tree_is_empty(msp->ms_freeing) && 4226 zfs_range_tree_is_empty(msp->ms_checkpointing) && 4227 !(msp->ms_loaded && msp->ms_condense_wanted && 4228 txg <= spa_final_dirty_txg(spa))) 4229 return; 4230 4231 4232 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4233 4234 /* 4235 * The only state that can actually be changing concurrently 4236 * with metaslab_sync() is the metaslab's ms_allocatable. No 4237 * other thread can be modifying this txg's alloc, freeing, 4238 * freed, or space_map_phys_t. We drop ms_lock whenever we 4239 * could call into the DMU, because the DMU can call down to 4240 * us (e.g. via zio_free()) at any time. 4241 * 4242 * The spa_vdev_remove_thread() can be reading metaslab state 4243 * concurrently, and it is locked out by the ms_sync_lock. 4244 * Note that the ms_lock is insufficient for this, because it 4245 * is dropped by space_map_write(). 4246 */ 4247 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4248 4249 /* 4250 * Generate a log space map if one doesn't exist already. 4251 */ 4252 spa_generate_syncing_log_sm(spa, tx); 4253 4254 if (msp->ms_sm == NULL) { 4255 uint64_t new_object = space_map_alloc(mos, 4256 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4257 zfs_metaslab_sm_blksz_with_log : 4258 zfs_metaslab_sm_blksz_no_log, tx); 4259 VERIFY3U(new_object, !=, 0); 4260 4261 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4262 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4263 4264 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4265 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4266 ASSERT(msp->ms_sm != NULL); 4267 4268 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_allocs)); 4269 ASSERT(zfs_range_tree_is_empty(msp->ms_unflushed_frees)); 4270 ASSERT0(metaslab_allocated_space(msp)); 4271 } 4272 4273 if (!zfs_range_tree_is_empty(msp->ms_checkpointing) && 4274 vd->vdev_checkpoint_sm == NULL) { 4275 ASSERT(spa_has_checkpoint(spa)); 4276 4277 uint64_t new_object = space_map_alloc(mos, 4278 zfs_vdev_standard_sm_blksz, tx); 4279 VERIFY3U(new_object, !=, 0); 4280 4281 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4282 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4283 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4284 4285 /* 4286 * We save the space map object as an entry in vdev_top_zap 4287 * so it can be retrieved when the pool is reopened after an 4288 * export or through zdb. 4289 */ 4290 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4291 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4292 sizeof (new_object), 1, &new_object, tx)); 4293 } 4294 4295 mutex_enter(&msp->ms_sync_lock); 4296 mutex_enter(&msp->ms_lock); 4297 4298 /* 4299 * Note: metaslab_condense() clears the space map's histogram. 4300 * Therefore we must verify and remove this histogram before 4301 * condensing. 4302 */ 4303 metaslab_group_histogram_verify(mg); 4304 metaslab_class_histogram_verify(mg->mg_class); 4305 metaslab_group_histogram_remove(mg, msp); 4306 4307 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4308 metaslab_should_condense(msp)) 4309 metaslab_condense(msp, tx); 4310 4311 /* 4312 * We'll be going to disk to sync our space accounting, thus we 4313 * drop the ms_lock during that time so allocations coming from 4314 * open-context (ZIL) for future TXGs do not block. 4315 */ 4316 mutex_exit(&msp->ms_lock); 4317 space_map_t *log_sm = spa_syncing_log_sm(spa); 4318 if (log_sm != NULL) { 4319 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4320 if (metaslab_unflushed_txg(msp) == 0) 4321 metaslab_unflushed_add(msp, tx); 4322 else if (!metaslab_unflushed_dirty(msp)) 4323 metaslab_unflushed_bump(msp, tx, B_TRUE); 4324 4325 space_map_write(log_sm, alloctree, SM_ALLOC, 4326 vd->vdev_id, tx); 4327 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4328 vd->vdev_id, tx); 4329 mutex_enter(&msp->ms_lock); 4330 4331 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4332 metaslab_unflushed_changes_memused(msp)); 4333 spa->spa_unflushed_stats.sus_memused -= 4334 metaslab_unflushed_changes_memused(msp); 4335 zfs_range_tree_remove_xor_add(alloctree, 4336 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4337 zfs_range_tree_remove_xor_add(msp->ms_freeing, 4338 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4339 spa->spa_unflushed_stats.sus_memused += 4340 metaslab_unflushed_changes_memused(msp); 4341 } else { 4342 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4343 4344 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4345 SM_NO_VDEVID, tx); 4346 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4347 SM_NO_VDEVID, tx); 4348 mutex_enter(&msp->ms_lock); 4349 } 4350 4351 msp->ms_allocated_space += zfs_range_tree_space(alloctree); 4352 ASSERT3U(msp->ms_allocated_space, >=, 4353 zfs_range_tree_space(msp->ms_freeing)); 4354 msp->ms_allocated_space -= zfs_range_tree_space(msp->ms_freeing); 4355 4356 if (!zfs_range_tree_is_empty(msp->ms_checkpointing)) { 4357 ASSERT(spa_has_checkpoint(spa)); 4358 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4359 4360 /* 4361 * Since we are doing writes to disk and the ms_checkpointing 4362 * tree won't be changing during that time, we drop the 4363 * ms_lock while writing to the checkpoint space map, for the 4364 * same reason mentioned above. 4365 */ 4366 mutex_exit(&msp->ms_lock); 4367 space_map_write(vd->vdev_checkpoint_sm, 4368 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4369 mutex_enter(&msp->ms_lock); 4370 4371 spa->spa_checkpoint_info.sci_dspace += 4372 zfs_range_tree_space(msp->ms_checkpointing); 4373 vd->vdev_stat.vs_checkpoint_space += 4374 zfs_range_tree_space(msp->ms_checkpointing); 4375 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4376 -space_map_allocated(vd->vdev_checkpoint_sm)); 4377 4378 zfs_range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4379 } 4380 4381 if (msp->ms_loaded) { 4382 /* 4383 * When the space map is loaded, we have an accurate 4384 * histogram in the range tree. This gives us an opportunity 4385 * to bring the space map's histogram up-to-date so we clear 4386 * it first before updating it. 4387 */ 4388 space_map_histogram_clear(msp->ms_sm); 4389 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4390 4391 /* 4392 * Since we've cleared the histogram we need to add back 4393 * any free space that has already been processed, plus 4394 * any deferred space. This allows the on-disk histogram 4395 * to accurately reflect all free space even if some space 4396 * is not yet available for allocation (i.e. deferred). 4397 */ 4398 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4399 4400 /* 4401 * Add back any deferred free space that has not been 4402 * added back into the in-core free tree yet. This will 4403 * ensure that we don't end up with a space map histogram 4404 * that is completely empty unless the metaslab is fully 4405 * allocated. 4406 */ 4407 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4408 space_map_histogram_add(msp->ms_sm, 4409 msp->ms_defer[t], tx); 4410 } 4411 } 4412 4413 /* 4414 * Always add the free space from this sync pass to the space 4415 * map histogram. We want to make sure that the on-disk histogram 4416 * accounts for all free space. If the space map is not loaded, 4417 * then we will lose some accuracy but will correct it the next 4418 * time we load the space map. 4419 */ 4420 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4421 metaslab_aux_histograms_update(msp); 4422 4423 metaslab_group_histogram_add(mg, msp); 4424 metaslab_group_histogram_verify(mg); 4425 metaslab_class_histogram_verify(mg->mg_class); 4426 4427 /* 4428 * For sync pass 1, we avoid traversing this txg's free range tree 4429 * and instead will just swap the pointers for freeing and freed. 4430 * We can safely do this since the freed_tree is guaranteed to be 4431 * empty on the initial pass. 4432 * 4433 * Keep in mind that even if we are currently using a log spacemap 4434 * we want current frees to end up in the ms_allocatable (but not 4435 * get appended to the ms_sm) so their ranges can be reused as usual. 4436 */ 4437 if (spa_sync_pass(spa) == 1) { 4438 zfs_range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4439 ASSERT0(msp->ms_allocated_this_txg); 4440 } else { 4441 zfs_range_tree_vacate(msp->ms_freeing, 4442 zfs_range_tree_add, msp->ms_freed); 4443 } 4444 msp->ms_allocated_this_txg += zfs_range_tree_space(alloctree); 4445 zfs_range_tree_vacate(alloctree, NULL, NULL); 4446 4447 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4448 ASSERT0(zfs_range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4449 & TXG_MASK])); 4450 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4451 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4452 4453 mutex_exit(&msp->ms_lock); 4454 4455 /* 4456 * Verify that the space map object ID has been recorded in the 4457 * vdev_ms_array. 4458 */ 4459 uint64_t object; 4460 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4461 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4462 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4463 4464 mutex_exit(&msp->ms_sync_lock); 4465 dmu_tx_commit(tx); 4466 } 4467 4468 static void 4469 metaslab_evict(metaslab_t *msp, uint64_t txg) 4470 { 4471 if (!msp->ms_loaded || msp->ms_disabled != 0) 4472 return; 4473 4474 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4475 VERIFY0(zfs_range_tree_space( 4476 msp->ms_allocating[(txg + t) & TXG_MASK])); 4477 } 4478 if (msp->ms_allocator != -1) 4479 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4480 4481 if (!metaslab_debug_unload) 4482 metaslab_unload(msp); 4483 } 4484 4485 /* 4486 * Called after a transaction group has completely synced to mark 4487 * all of the metaslab's free space as usable. 4488 */ 4489 void 4490 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4491 { 4492 metaslab_group_t *mg = msp->ms_group; 4493 vdev_t *vd = mg->mg_vd; 4494 spa_t *spa = vd->vdev_spa; 4495 zfs_range_tree_t **defer_tree; 4496 int64_t alloc_delta, defer_delta; 4497 boolean_t defer_allowed = B_TRUE; 4498 4499 ASSERT(!vd->vdev_ishole); 4500 4501 mutex_enter(&msp->ms_lock); 4502 4503 if (msp->ms_new) { 4504 /* this is a new metaslab, add its capacity to the vdev */ 4505 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4506 4507 /* there should be no allocations nor frees at this point */ 4508 VERIFY0(msp->ms_allocated_this_txg); 4509 VERIFY0(zfs_range_tree_space(msp->ms_freed)); 4510 } 4511 4512 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4513 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4514 4515 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4516 4517 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4518 metaslab_class_get_alloc(spa_normal_class(spa)); 4519 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing || 4520 vd->vdev_rz_expanding) { 4521 defer_allowed = B_FALSE; 4522 } 4523 4524 defer_delta = 0; 4525 alloc_delta = msp->ms_allocated_this_txg - 4526 zfs_range_tree_space(msp->ms_freed); 4527 4528 if (defer_allowed) { 4529 defer_delta = zfs_range_tree_space(msp->ms_freed) - 4530 zfs_range_tree_space(*defer_tree); 4531 } else { 4532 defer_delta -= zfs_range_tree_space(*defer_tree); 4533 } 4534 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4535 defer_delta, 0); 4536 4537 if (spa_syncing_log_sm(spa) == NULL) { 4538 /* 4539 * If there's a metaslab_load() in progress and we don't have 4540 * a log space map, it means that we probably wrote to the 4541 * metaslab's space map. If this is the case, we need to 4542 * make sure that we wait for the load to complete so that we 4543 * have a consistent view at the in-core side of the metaslab. 4544 */ 4545 metaslab_load_wait(msp); 4546 } else { 4547 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4548 } 4549 4550 /* 4551 * When auto-trimming is enabled, free ranges which are added to 4552 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4553 * periodically consumed by the vdev_autotrim_thread() which issues 4554 * trims for all ranges and then vacates the tree. The ms_trim tree 4555 * can be discarded at any time with the sole consequence of recent 4556 * frees not being trimmed. 4557 */ 4558 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4559 zfs_range_tree_walk(*defer_tree, zfs_range_tree_add, 4560 msp->ms_trim); 4561 if (!defer_allowed) { 4562 zfs_range_tree_walk(msp->ms_freed, zfs_range_tree_add, 4563 msp->ms_trim); 4564 } 4565 } else { 4566 zfs_range_tree_vacate(msp->ms_trim, NULL, NULL); 4567 } 4568 4569 /* 4570 * Move the frees from the defer_tree back to the free 4571 * range tree (if it's loaded). Swap the freed_tree and 4572 * the defer_tree -- this is safe to do because we've 4573 * just emptied out the defer_tree. 4574 */ 4575 zfs_range_tree_vacate(*defer_tree, 4576 msp->ms_loaded ? zfs_range_tree_add : NULL, msp->ms_allocatable); 4577 if (defer_allowed) { 4578 zfs_range_tree_swap(&msp->ms_freed, defer_tree); 4579 } else { 4580 zfs_range_tree_vacate(msp->ms_freed, 4581 msp->ms_loaded ? zfs_range_tree_add : NULL, 4582 msp->ms_allocatable); 4583 } 4584 4585 msp->ms_synced_length = space_map_length(msp->ms_sm); 4586 4587 msp->ms_deferspace += defer_delta; 4588 ASSERT3S(msp->ms_deferspace, >=, 0); 4589 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4590 if (msp->ms_deferspace != 0) { 4591 /* 4592 * Keep syncing this metaslab until all deferred frees 4593 * are back in circulation. 4594 */ 4595 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4596 } 4597 metaslab_aux_histograms_update_done(msp, defer_allowed); 4598 4599 if (msp->ms_new) { 4600 msp->ms_new = B_FALSE; 4601 mutex_enter(&mg->mg_lock); 4602 mg->mg_ms_ready++; 4603 mutex_exit(&mg->mg_lock); 4604 } 4605 4606 /* 4607 * Re-sort metaslab within its group now that we've adjusted 4608 * its allocatable space. 4609 */ 4610 metaslab_recalculate_weight_and_sort(msp); 4611 4612 ASSERT0(zfs_range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4613 ASSERT0(zfs_range_tree_space(msp->ms_freeing)); 4614 ASSERT0(zfs_range_tree_space(msp->ms_freed)); 4615 ASSERT0(zfs_range_tree_space(msp->ms_checkpointing)); 4616 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4617 msp->ms_allocated_this_txg = 0; 4618 mutex_exit(&msp->ms_lock); 4619 } 4620 4621 void 4622 metaslab_sync_reassess(metaslab_group_t *mg) 4623 { 4624 spa_t *spa = mg->mg_class->mc_spa; 4625 4626 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4627 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4628 metaslab_group_alloc_update(mg); 4629 4630 /* 4631 * Preload the next potential metaslabs but only on active 4632 * metaslab groups. We can get into a state where the metaslab 4633 * is no longer active since we dirty metaslabs as we remove a 4634 * a device, thus potentially making the metaslab group eligible 4635 * for preloading. 4636 */ 4637 if (mg->mg_activation_count > 0) { 4638 metaslab_group_preload(mg); 4639 } 4640 spa_config_exit(spa, SCL_ALLOC, FTAG); 4641 } 4642 4643 /* 4644 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4645 * the same vdev as an existing DVA of this BP, then try to allocate it 4646 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4647 */ 4648 static boolean_t 4649 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4650 { 4651 uint64_t dva_ms_id; 4652 4653 if (DVA_GET_ASIZE(dva) == 0) 4654 return (B_TRUE); 4655 4656 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4657 return (B_TRUE); 4658 4659 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4660 4661 return (msp->ms_id != dva_ms_id); 4662 } 4663 4664 /* 4665 * ========================================================================== 4666 * Metaslab allocation tracing facility 4667 * ========================================================================== 4668 */ 4669 4670 /* 4671 * Add an allocation trace element to the allocation tracing list. 4672 */ 4673 static void 4674 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4675 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4676 int allocator) 4677 { 4678 metaslab_alloc_trace_t *mat; 4679 4680 if (!metaslab_trace_enabled) 4681 return; 4682 4683 /* 4684 * When the tracing list reaches its maximum we remove 4685 * the second element in the list before adding a new one. 4686 * By removing the second element we preserve the original 4687 * entry as a clue to what allocations steps have already been 4688 * performed. 4689 */ 4690 if (zal->zal_size == metaslab_trace_max_entries) { 4691 metaslab_alloc_trace_t *mat_next; 4692 #ifdef ZFS_DEBUG 4693 panic("too many entries in allocation list"); 4694 #endif 4695 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4696 zal->zal_size--; 4697 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4698 list_remove(&zal->zal_list, mat_next); 4699 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4700 } 4701 4702 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4703 list_link_init(&mat->mat_list_node); 4704 mat->mat_mg = mg; 4705 mat->mat_msp = msp; 4706 mat->mat_size = psize; 4707 mat->mat_dva_id = dva_id; 4708 mat->mat_offset = offset; 4709 mat->mat_weight = 0; 4710 mat->mat_allocator = allocator; 4711 4712 if (msp != NULL) 4713 mat->mat_weight = msp->ms_weight; 4714 4715 /* 4716 * The list is part of the zio so locking is not required. Only 4717 * a single thread will perform allocations for a given zio. 4718 */ 4719 list_insert_tail(&zal->zal_list, mat); 4720 zal->zal_size++; 4721 4722 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4723 } 4724 4725 void 4726 metaslab_trace_move(zio_alloc_list_t *old, zio_alloc_list_t *new) 4727 { 4728 ASSERT0(new->zal_size); 4729 list_move_tail(&new->zal_list, &old->zal_list); 4730 new->zal_size = old->zal_size; 4731 list_destroy(&old->zal_list); 4732 } 4733 4734 void 4735 metaslab_trace_init(zio_alloc_list_t *zal) 4736 { 4737 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4738 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4739 zal->zal_size = 0; 4740 } 4741 4742 void 4743 metaslab_trace_fini(zio_alloc_list_t *zal) 4744 { 4745 metaslab_alloc_trace_t *mat; 4746 4747 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4748 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4749 list_destroy(&zal->zal_list); 4750 zal->zal_size = 0; 4751 } 4752 4753 /* 4754 * ========================================================================== 4755 * Metaslab block operations 4756 * ========================================================================== 4757 */ 4758 4759 static void 4760 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, int allocator, 4761 int flags, uint64_t psize, const void *tag) 4762 { 4763 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL) 4764 return; 4765 4766 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4767 if (!mg->mg_class->mc_alloc_throttle_enabled) 4768 return; 4769 4770 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4771 (void) zfs_refcount_add_many(&mga->mga_queue_depth, psize, tag); 4772 } 4773 4774 void 4775 metaslab_group_alloc_increment_all(spa_t *spa, blkptr_t *bp, int allocator, 4776 int flags, uint64_t psize, const void *tag) 4777 { 4778 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4779 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[d]); 4780 metaslab_group_alloc_increment(spa, vdev, allocator, flags, 4781 psize, tag); 4782 } 4783 } 4784 4785 void 4786 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, int allocator, 4787 int flags, uint64_t psize, const void *tag) 4788 { 4789 if (!(flags & METASLAB_ASYNC_ALLOC) || tag == NULL) 4790 return; 4791 4792 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4793 if (!mg->mg_class->mc_alloc_throttle_enabled) 4794 return; 4795 4796 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4797 (void) zfs_refcount_remove_many(&mga->mga_queue_depth, psize, tag); 4798 } 4799 4800 static uint64_t 4801 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t max_size, 4802 uint64_t txg, uint64_t *actual_size) 4803 { 4804 uint64_t start; 4805 zfs_range_tree_t *rt = msp->ms_allocatable; 4806 metaslab_class_t *mc = msp->ms_group->mg_class; 4807 4808 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4809 VERIFY(!msp->ms_condensing); 4810 VERIFY0(msp->ms_disabled); 4811 VERIFY0(msp->ms_new); 4812 4813 start = mc->mc_ops->msop_alloc(msp, size, max_size, actual_size); 4814 if (start != -1ULL) { 4815 size = *actual_size; 4816 metaslab_group_t *mg = msp->ms_group; 4817 vdev_t *vd = mg->mg_vd; 4818 4819 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4820 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4821 VERIFY3U(zfs_range_tree_space(rt) - size, <=, msp->ms_size); 4822 zfs_range_tree_remove(rt, start, size); 4823 zfs_range_tree_clear(msp->ms_trim, start, size); 4824 4825 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4826 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4827 4828 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, 4829 size); 4830 msp->ms_allocating_total += size; 4831 4832 /* Track the last successful allocation */ 4833 msp->ms_alloc_txg = txg; 4834 metaslab_verify_space(msp, txg); 4835 } 4836 4837 /* 4838 * Now that we've attempted the allocation we need to update the 4839 * metaslab's maximum block size since it may have changed. 4840 */ 4841 msp->ms_max_size = metaslab_largest_allocatable(msp); 4842 return (start); 4843 } 4844 4845 /* 4846 * Find the metaslab with the highest weight that is less than what we've 4847 * already tried. In the common case, this means that we will examine each 4848 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4849 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4850 * activated by another thread, and we fail to allocate from the metaslab we 4851 * have selected, we may not try the newly-activated metaslab, and instead 4852 * activate another metaslab. This is not optimal, but generally does not cause 4853 * any problems (a possible exception being if every metaslab is completely full 4854 * except for the newly-activated metaslab which we fail to examine). 4855 */ 4856 static metaslab_t * 4857 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4858 dva_t *dva, int d, uint64_t asize, int allocator, 4859 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4860 boolean_t *was_active) 4861 { 4862 avl_index_t idx; 4863 avl_tree_t *t = &mg->mg_metaslab_tree; 4864 metaslab_t *msp = avl_find(t, search, &idx); 4865 if (msp == NULL) 4866 msp = avl_nearest(t, idx, AVL_AFTER); 4867 4868 uint_t tries = 0; 4869 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4870 int i; 4871 4872 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4873 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4874 return (NULL); 4875 } 4876 tries++; 4877 4878 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4879 metaslab_trace_add(zal, mg, msp, asize, d, 4880 TRACE_TOO_SMALL, allocator); 4881 continue; 4882 } 4883 4884 /* 4885 * If the selected metaslab is condensing or disabled, or 4886 * hasn't gone through a metaslab_sync_done(), then skip it. 4887 */ 4888 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new) 4889 continue; 4890 4891 *was_active = msp->ms_allocator != -1; 4892 /* 4893 * If we're activating as primary, this is our first allocation 4894 * from this disk, so we don't need to check how close we are. 4895 * If the metaslab under consideration was already active, 4896 * we're getting desperate enough to steal another allocator's 4897 * metaslab, so we still don't care about distances. 4898 */ 4899 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4900 break; 4901 4902 if (!try_hard) { 4903 for (i = 0; i < d; i++) { 4904 if (!metaslab_is_unique(msp, &dva[i])) 4905 break; /* try another metaslab */ 4906 } 4907 if (i == d) 4908 break; 4909 } 4910 } 4911 4912 if (msp != NULL) { 4913 search->ms_weight = msp->ms_weight; 4914 search->ms_start = msp->ms_start + 1; 4915 search->ms_allocator = msp->ms_allocator; 4916 search->ms_primary = msp->ms_primary; 4917 } 4918 return (msp); 4919 } 4920 4921 static void 4922 metaslab_active_mask_verify(metaslab_t *msp) 4923 { 4924 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4925 4926 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4927 return; 4928 4929 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4930 return; 4931 4932 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4933 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4934 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4935 VERIFY3S(msp->ms_allocator, !=, -1); 4936 VERIFY(msp->ms_primary); 4937 return; 4938 } 4939 4940 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4941 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4942 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4943 VERIFY3S(msp->ms_allocator, !=, -1); 4944 VERIFY(!msp->ms_primary); 4945 return; 4946 } 4947 4948 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4949 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4950 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4951 VERIFY3S(msp->ms_allocator, ==, -1); 4952 return; 4953 } 4954 } 4955 4956 static uint64_t 4957 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 4958 uint64_t asize, uint64_t max_asize, uint64_t txg, 4959 dva_t *dva, int d, int allocator, boolean_t try_hard, 4960 uint64_t *actual_asize) 4961 { 4962 metaslab_t *msp = NULL; 4963 uint64_t offset = -1ULL; 4964 4965 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4966 for (int i = 0; i < d; i++) { 4967 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4968 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4969 activation_weight = METASLAB_WEIGHT_SECONDARY; 4970 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4971 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4972 activation_weight = METASLAB_WEIGHT_CLAIM; 4973 break; 4974 } 4975 } 4976 4977 /* 4978 * If we don't have enough metaslabs active, we just use the 0th slot. 4979 */ 4980 if (allocator >= mg->mg_ms_ready / 3) 4981 allocator = 0; 4982 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4983 4984 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4985 4986 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4987 search->ms_weight = UINT64_MAX; 4988 search->ms_start = 0; 4989 /* 4990 * At the end of the metaslab tree are the already-active metaslabs, 4991 * first the primaries, then the secondaries. When we resume searching 4992 * through the tree, we need to consider ms_allocator and ms_primary so 4993 * we start in the location right after where we left off, and don't 4994 * accidentally loop forever considering the same metaslabs. 4995 */ 4996 search->ms_allocator = -1; 4997 search->ms_primary = B_TRUE; 4998 for (;;) { 4999 boolean_t was_active = B_FALSE; 5000 5001 mutex_enter(&mg->mg_lock); 5002 5003 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 5004 mga->mga_primary != NULL) { 5005 msp = mga->mga_primary; 5006 5007 /* 5008 * Even though we don't hold the ms_lock for the 5009 * primary metaslab, those fields should not 5010 * change while we hold the mg_lock. Thus it is 5011 * safe to make assertions on them. 5012 */ 5013 ASSERT(msp->ms_primary); 5014 ASSERT3S(msp->ms_allocator, ==, allocator); 5015 ASSERT(msp->ms_loaded); 5016 5017 was_active = B_TRUE; 5018 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5019 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 5020 mga->mga_secondary != NULL) { 5021 msp = mga->mga_secondary; 5022 5023 /* 5024 * See comment above about the similar assertions 5025 * for the primary metaslab. 5026 */ 5027 ASSERT(!msp->ms_primary); 5028 ASSERT3S(msp->ms_allocator, ==, allocator); 5029 ASSERT(msp->ms_loaded); 5030 5031 was_active = B_TRUE; 5032 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5033 } else { 5034 msp = find_valid_metaslab(mg, activation_weight, dva, d, 5035 asize, allocator, try_hard, zal, search, 5036 &was_active); 5037 } 5038 5039 mutex_exit(&mg->mg_lock); 5040 if (msp == NULL) 5041 break; 5042 mutex_enter(&msp->ms_lock); 5043 5044 metaslab_active_mask_verify(msp); 5045 5046 /* 5047 * This code is disabled out because of issues with 5048 * tracepoints in non-gpl kernel modules. 5049 */ 5050 #if 0 5051 DTRACE_PROBE3(ms__activation__attempt, 5052 metaslab_t *, msp, uint64_t, activation_weight, 5053 boolean_t, was_active); 5054 #endif 5055 5056 /* 5057 * Ensure that the metaslab we have selected is still 5058 * capable of handling our request. It's possible that 5059 * another thread may have changed the weight while we 5060 * were blocked on the metaslab lock. We check the 5061 * active status first to see if we need to set_selected_txg 5062 * a new metaslab. 5063 */ 5064 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 5065 ASSERT3S(msp->ms_allocator, ==, -1); 5066 mutex_exit(&msp->ms_lock); 5067 continue; 5068 } 5069 5070 /* 5071 * If the metaslab was activated for another allocator 5072 * while we were waiting in the ms_lock above, or it's 5073 * a primary and we're seeking a secondary (or vice versa), 5074 * we go back and select a new metaslab. 5075 */ 5076 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 5077 (msp->ms_allocator != -1) && 5078 (msp->ms_allocator != allocator || ((activation_weight == 5079 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 5080 ASSERT(msp->ms_loaded); 5081 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 5082 msp->ms_allocator != -1); 5083 mutex_exit(&msp->ms_lock); 5084 continue; 5085 } 5086 5087 /* 5088 * This metaslab was used for claiming regions allocated 5089 * by the ZIL during pool import. Once these regions are 5090 * claimed we don't need to keep the CLAIM bit set 5091 * anymore. Passivate this metaslab to zero its activation 5092 * mask. 5093 */ 5094 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 5095 activation_weight != METASLAB_WEIGHT_CLAIM) { 5096 ASSERT(msp->ms_loaded); 5097 ASSERT3S(msp->ms_allocator, ==, -1); 5098 metaslab_passivate(msp, msp->ms_weight & 5099 ~METASLAB_WEIGHT_CLAIM); 5100 mutex_exit(&msp->ms_lock); 5101 continue; 5102 } 5103 5104 metaslab_set_selected_txg(msp, txg); 5105 5106 int activation_error = 5107 metaslab_activate(msp, allocator, activation_weight); 5108 metaslab_active_mask_verify(msp); 5109 5110 /* 5111 * If the metaslab was activated by another thread for 5112 * another allocator or activation_weight (EBUSY), or it 5113 * failed because another metaslab was assigned as primary 5114 * for this allocator (EEXIST) we continue using this 5115 * metaslab for our allocation, rather than going on to a 5116 * worse metaslab (we waited for that metaslab to be loaded 5117 * after all). 5118 * 5119 * If the activation failed due to an I/O error or ENOSPC we 5120 * skip to the next metaslab. 5121 */ 5122 boolean_t activated; 5123 if (activation_error == 0) { 5124 activated = B_TRUE; 5125 } else if (activation_error == EBUSY || 5126 activation_error == EEXIST) { 5127 activated = B_FALSE; 5128 } else { 5129 mutex_exit(&msp->ms_lock); 5130 continue; 5131 } 5132 ASSERT(msp->ms_loaded); 5133 5134 /* 5135 * Now that we have the lock, recheck to see if we should 5136 * continue to use this metaslab for this allocation. The 5137 * the metaslab is now loaded so metaslab_should_allocate() 5138 * can accurately determine if the allocation attempt should 5139 * proceed. 5140 */ 5141 if (!metaslab_should_allocate(msp, asize, try_hard)) { 5142 /* Passivate this metaslab and select a new one. */ 5143 metaslab_trace_add(zal, mg, msp, asize, d, 5144 TRACE_TOO_SMALL, allocator); 5145 goto next; 5146 } 5147 5148 /* 5149 * If this metaslab is currently condensing then pick again 5150 * as we can't manipulate this metaslab until it's committed 5151 * to disk. If this metaslab is being initialized, we shouldn't 5152 * allocate from it since the allocated region might be 5153 * overwritten after allocation. 5154 */ 5155 if (msp->ms_condensing) { 5156 metaslab_trace_add(zal, mg, msp, asize, d, 5157 TRACE_CONDENSING, allocator); 5158 if (activated) { 5159 metaslab_passivate(msp, msp->ms_weight & 5160 ~METASLAB_ACTIVE_MASK); 5161 } 5162 mutex_exit(&msp->ms_lock); 5163 continue; 5164 } else if (msp->ms_disabled > 0) { 5165 metaslab_trace_add(zal, mg, msp, asize, d, 5166 TRACE_DISABLED, allocator); 5167 if (activated) { 5168 metaslab_passivate(msp, msp->ms_weight & 5169 ~METASLAB_ACTIVE_MASK); 5170 } 5171 mutex_exit(&msp->ms_lock); 5172 continue; 5173 } 5174 5175 offset = metaslab_block_alloc(msp, asize, max_asize, txg, 5176 actual_asize); 5177 5178 if (offset != -1ULL) { 5179 metaslab_trace_add(zal, mg, msp, *actual_asize, d, 5180 offset, allocator); 5181 /* Proactively passivate the metaslab, if needed */ 5182 if (activated) 5183 metaslab_segment_may_passivate(msp); 5184 mutex_exit(&msp->ms_lock); 5185 break; 5186 } 5187 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 5188 next: 5189 ASSERT(msp->ms_loaded); 5190 5191 /* 5192 * This code is disabled out because of issues with 5193 * tracepoints in non-gpl kernel modules. 5194 */ 5195 #if 0 5196 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 5197 uint64_t, asize); 5198 #endif 5199 5200 /* 5201 * We were unable to allocate from this metaslab so determine 5202 * a new weight for this metaslab. Now that we have loaded 5203 * the metaslab we can provide a better hint to the metaslab 5204 * selector. 5205 * 5206 * For space-based metaslabs, we use the maximum block size. 5207 * This information is only available when the metaslab 5208 * is loaded and is more accurate than the generic free 5209 * space weight that was calculated by metaslab_weight(). 5210 * This information allows us to quickly compare the maximum 5211 * available allocation in the metaslab to the allocation 5212 * size being requested. 5213 * 5214 * For segment-based metaslabs, determine the new weight 5215 * based on the highest bucket in the range tree. We 5216 * explicitly use the loaded segment weight (i.e. the range 5217 * tree histogram) since it contains the space that is 5218 * currently available for allocation and is accurate 5219 * even within a sync pass. 5220 */ 5221 uint64_t weight; 5222 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5223 weight = metaslab_largest_allocatable(msp); 5224 WEIGHT_SET_SPACEBASED(weight); 5225 } else { 5226 weight = metaslab_weight_from_range_tree(msp); 5227 } 5228 5229 if (activated) { 5230 metaslab_passivate(msp, weight); 5231 } else { 5232 /* 5233 * For the case where we use the metaslab that is 5234 * active for another allocator we want to make 5235 * sure that we retain the activation mask. 5236 * 5237 * Note that we could attempt to use something like 5238 * metaslab_recalculate_weight_and_sort() that 5239 * retains the activation mask here. That function 5240 * uses metaslab_weight() to set the weight though 5241 * which is not as accurate as the calculations 5242 * above. 5243 */ 5244 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5245 metaslab_group_sort(mg, msp, weight); 5246 } 5247 metaslab_active_mask_verify(msp); 5248 5249 /* 5250 * We have just failed an allocation attempt, check 5251 * that metaslab_should_allocate() agrees. Otherwise, 5252 * we may end up in an infinite loop retrying the same 5253 * metaslab. 5254 */ 5255 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5256 5257 mutex_exit(&msp->ms_lock); 5258 } 5259 kmem_free(search, sizeof (*search)); 5260 5261 if (offset == -1ULL) { 5262 metaslab_trace_add(zal, mg, NULL, asize, d, 5263 TRACE_GROUP_FAILURE, allocator); 5264 if (asize <= vdev_get_min_alloc(mg->mg_vd)) { 5265 /* 5266 * This metaslab group was unable to allocate 5267 * the minimum block size so it must be out of 5268 * space. Notify the allocation throttle to 5269 * skip allocation attempts to this group until 5270 * more space becomes available. 5271 */ 5272 mg->mg_no_free_space = B_TRUE; 5273 } 5274 } 5275 return (offset); 5276 } 5277 5278 static boolean_t 5279 metaslab_group_allocatable(spa_t *spa, metaslab_group_t *mg, uint64_t psize, 5280 int d, int flags, boolean_t try_hard, zio_alloc_list_t *zal, int allocator) 5281 { 5282 metaslab_class_t *mc = mg->mg_class; 5283 vdev_t *vd = mg->mg_vd; 5284 boolean_t allocatable; 5285 5286 /* 5287 * Don't allocate from faulted devices. 5288 */ 5289 if (try_hard) 5290 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5291 allocatable = vdev_allocatable(vd); 5292 if (try_hard) 5293 spa_config_exit(spa, SCL_ZIO, FTAG); 5294 if (!allocatable) { 5295 metaslab_trace_add(zal, mg, NULL, psize, d, 5296 TRACE_NOT_ALLOCATABLE, allocator); 5297 return (B_FALSE); 5298 } 5299 5300 if (!try_hard) { 5301 /* 5302 * Avoid vdevs with too little space or too fragmented. 5303 */ 5304 if (!GANG_ALLOCATION(flags) && (mg->mg_no_free_space || 5305 (!mg->mg_allocatable && mc->mc_alloc_groups > 0))) { 5306 metaslab_trace_add(zal, mg, NULL, psize, d, 5307 TRACE_NOT_ALLOCATABLE, allocator); 5308 return (B_FALSE); 5309 } 5310 5311 /* 5312 * Avoid writing single-copy data to an unhealthy, 5313 * non-redundant vdev. 5314 */ 5315 if (d == 0 && vd->vdev_state < VDEV_STATE_HEALTHY && 5316 vd->vdev_children == 0) { 5317 metaslab_trace_add(zal, mg, NULL, psize, d, 5318 TRACE_VDEV_ERROR, allocator); 5319 return (B_FALSE); 5320 } 5321 } 5322 5323 return (B_TRUE); 5324 } 5325 5326 static int 5327 metaslab_alloc_dva_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5328 uint64_t max_psize, dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, 5329 int flags, zio_alloc_list_t *zal, int allocator, uint64_t *actual_psize) 5330 { 5331 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5332 metaslab_group_t *mg = NULL, *rotor; 5333 vdev_t *vd; 5334 boolean_t try_hard = B_FALSE; 5335 5336 ASSERT(!DVA_IS_VALID(&dva[d])); 5337 5338 /* 5339 * For testing, make some blocks above a certain size be gang blocks. 5340 * This will result in more split blocks when using device removal, 5341 * and a large number of split blocks coupled with ztest-induced 5342 * damage can result in extremely long reconstruction times. This 5343 * will also test spilling from special to normal. 5344 */ 5345 if (psize >= metaslab_force_ganging && 5346 metaslab_force_ganging_pct > 0 && 5347 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5348 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5349 allocator); 5350 return (SET_ERROR(ENOSPC)); 5351 } 5352 if (max_psize > psize && max_psize >= metaslab_force_ganging && 5353 metaslab_force_ganging_pct > 0 && 5354 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5355 max_psize = MAX((psize + max_psize) / 2, 5356 metaslab_force_ganging); 5357 } 5358 ASSERT3U(psize, <=, max_psize); 5359 5360 /* 5361 * Start at the rotor and loop through all mgs until we find something. 5362 * Note that there's no locking on mca_rotor or mca_aliquot because 5363 * nothing actually breaks if we miss a few updates -- we just won't 5364 * allocate quite as evenly. It all balances out over time. 5365 * 5366 * If we are doing ditto or log blocks, try to spread them across 5367 * consecutive vdevs. If we're forced to reuse a vdev before we've 5368 * allocated all of our ditto blocks, then try and spread them out on 5369 * that vdev as much as possible. If it turns out to not be possible, 5370 * gradually lower our standards until anything becomes acceptable. 5371 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5372 * gives us hope of containing our fault domains to something we're 5373 * able to reason about. Otherwise, any two top-level vdev failures 5374 * will guarantee the loss of data. With consecutive allocation, 5375 * only two adjacent top-level vdev failures will result in data loss. 5376 * 5377 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5378 * ourselves on the same vdev as our gang block header. It makes our 5379 * fault domains something tractable. 5380 */ 5381 if (hintdva && DVA_IS_VALID(&hintdva[d])) { 5382 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5383 mg = vdev_get_mg(vd, mc); 5384 } 5385 if (mg == NULL && d != 0) { 5386 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5387 mg = vdev_get_mg(vd, mc)->mg_next; 5388 } 5389 if (mg == NULL || mg->mg_class != mc || mg->mg_activation_count <= 0) { 5390 ASSERT(mca->mca_rotor != NULL); 5391 mg = mca->mca_rotor; 5392 } 5393 5394 rotor = mg; 5395 top: 5396 do { 5397 ASSERT(mg->mg_activation_count == 1); 5398 ASSERT(mg->mg_class == mc); 5399 5400 if (!metaslab_group_allocatable(spa, mg, psize, d, flags, 5401 try_hard, zal, allocator)) 5402 goto next; 5403 5404 vd = mg->mg_vd; 5405 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg); 5406 ASSERT0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5407 uint64_t max_asize = vdev_psize_to_asize_txg(vd, max_psize, 5408 txg); 5409 ASSERT0(P2PHASE(max_asize, 1ULL << vd->vdev_ashift)); 5410 uint64_t offset = metaslab_group_alloc(mg, zal, asize, 5411 max_asize, txg, dva, d, allocator, try_hard, 5412 &asize); 5413 5414 if (offset != -1ULL) { 5415 if (actual_psize) 5416 *actual_psize = vdev_asize_to_psize_txg(vd, 5417 asize, txg); 5418 metaslab_class_rotate(mg, allocator, psize, B_TRUE); 5419 5420 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5421 DVA_SET_OFFSET(&dva[d], offset); 5422 DVA_SET_GANG(&dva[d], 5423 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5424 DVA_SET_ASIZE(&dva[d], asize); 5425 return (0); 5426 } 5427 next: 5428 metaslab_class_rotate(mg, allocator, psize, B_FALSE); 5429 } while ((mg = mg->mg_next) != rotor); 5430 5431 /* 5432 * If we haven't tried hard, perhaps do so now. 5433 */ 5434 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5435 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5436 psize <= spa->spa_min_alloc)) { 5437 METASLABSTAT_BUMP(metaslabstat_try_hard); 5438 try_hard = B_TRUE; 5439 goto top; 5440 } 5441 5442 memset(&dva[d], 0, sizeof (dva_t)); 5443 5444 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5445 return (SET_ERROR(ENOSPC)); 5446 } 5447 5448 /* 5449 * Allocate a block for the specified i/o. 5450 */ 5451 int 5452 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5453 dva_t *dva, int d, const dva_t *hintdva, uint64_t txg, int flags, 5454 zio_alloc_list_t *zal, int allocator) 5455 { 5456 return (metaslab_alloc_dva_range(spa, mc, psize, psize, dva, d, hintdva, 5457 txg, flags, zal, allocator, NULL)); 5458 } 5459 5460 void 5461 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5462 boolean_t checkpoint) 5463 { 5464 metaslab_t *msp; 5465 spa_t *spa = vd->vdev_spa; 5466 int m = offset >> vd->vdev_ms_shift; 5467 5468 ASSERT(vdev_is_concrete(vd)); 5469 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5470 VERIFY3U(m, <, vd->vdev_ms_count); 5471 5472 msp = vd->vdev_ms[m]; 5473 5474 VERIFY(!msp->ms_condensing); 5475 VERIFY3U(offset, >=, msp->ms_start); 5476 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5477 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5478 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5479 5480 metaslab_check_free_impl(vd, offset, asize); 5481 5482 mutex_enter(&msp->ms_lock); 5483 if (zfs_range_tree_is_empty(msp->ms_freeing) && 5484 zfs_range_tree_is_empty(msp->ms_checkpointing)) { 5485 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5486 } 5487 5488 if (checkpoint) { 5489 ASSERT(spa_has_checkpoint(spa)); 5490 zfs_range_tree_add(msp->ms_checkpointing, offset, asize); 5491 } else { 5492 zfs_range_tree_add(msp->ms_freeing, offset, asize); 5493 } 5494 mutex_exit(&msp->ms_lock); 5495 } 5496 5497 void 5498 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5499 uint64_t size, void *arg) 5500 { 5501 (void) inner_offset; 5502 boolean_t *checkpoint = arg; 5503 5504 ASSERT3P(checkpoint, !=, NULL); 5505 5506 if (vd->vdev_ops->vdev_op_remap != NULL) 5507 vdev_indirect_mark_obsolete(vd, offset, size); 5508 else 5509 metaslab_free_impl(vd, offset, size, *checkpoint); 5510 } 5511 5512 static void 5513 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5514 boolean_t checkpoint) 5515 { 5516 spa_t *spa = vd->vdev_spa; 5517 5518 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5519 5520 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5521 return; 5522 5523 if (spa->spa_vdev_removal != NULL && 5524 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5525 vdev_is_concrete(vd)) { 5526 /* 5527 * Note: we check if the vdev is concrete because when 5528 * we complete the removal, we first change the vdev to be 5529 * an indirect vdev (in open context), and then (in syncing 5530 * context) clear spa_vdev_removal. 5531 */ 5532 free_from_removing_vdev(vd, offset, size); 5533 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5534 vdev_indirect_mark_obsolete(vd, offset, size); 5535 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5536 metaslab_free_impl_cb, &checkpoint); 5537 } else { 5538 metaslab_free_concrete(vd, offset, size, checkpoint); 5539 } 5540 } 5541 5542 typedef struct remap_blkptr_cb_arg { 5543 blkptr_t *rbca_bp; 5544 spa_remap_cb_t rbca_cb; 5545 vdev_t *rbca_remap_vd; 5546 uint64_t rbca_remap_offset; 5547 void *rbca_cb_arg; 5548 } remap_blkptr_cb_arg_t; 5549 5550 static void 5551 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5552 uint64_t size, void *arg) 5553 { 5554 remap_blkptr_cb_arg_t *rbca = arg; 5555 blkptr_t *bp = rbca->rbca_bp; 5556 5557 /* We can not remap split blocks. */ 5558 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5559 return; 5560 ASSERT0(inner_offset); 5561 5562 if (rbca->rbca_cb != NULL) { 5563 /* 5564 * At this point we know that we are not handling split 5565 * blocks and we invoke the callback on the previous 5566 * vdev which must be indirect. 5567 */ 5568 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5569 5570 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5571 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5572 5573 /* set up remap_blkptr_cb_arg for the next call */ 5574 rbca->rbca_remap_vd = vd; 5575 rbca->rbca_remap_offset = offset; 5576 } 5577 5578 /* 5579 * The phys birth time is that of dva[0]. This ensures that we know 5580 * when each dva was written, so that resilver can determine which 5581 * blocks need to be scrubbed (i.e. those written during the time 5582 * the vdev was offline). It also ensures that the key used in 5583 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5584 * we didn't change the phys_birth, a lookup in the ARC for a 5585 * remapped BP could find the data that was previously stored at 5586 * this vdev + offset. 5587 */ 5588 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5589 DVA_GET_VDEV(&bp->blk_dva[0])); 5590 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5591 uint64_t physical_birth = vdev_indirect_births_physbirth(vib, 5592 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5593 BP_SET_PHYSICAL_BIRTH(bp, physical_birth); 5594 5595 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5596 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5597 } 5598 5599 /* 5600 * If the block pointer contains any indirect DVAs, modify them to refer to 5601 * concrete DVAs. Note that this will sometimes not be possible, leaving 5602 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5603 * segments in the mapping (i.e. it is a "split block"). 5604 * 5605 * If the BP was remapped, calls the callback on the original dva (note the 5606 * callback can be called multiple times if the original indirect DVA refers 5607 * to another indirect DVA, etc). 5608 * 5609 * Returns TRUE if the BP was remapped. 5610 */ 5611 boolean_t 5612 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5613 { 5614 remap_blkptr_cb_arg_t rbca; 5615 5616 if (!zfs_remap_blkptr_enable) 5617 return (B_FALSE); 5618 5619 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5620 return (B_FALSE); 5621 5622 /* 5623 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5624 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5625 */ 5626 if (BP_GET_DEDUP(bp)) 5627 return (B_FALSE); 5628 5629 /* 5630 * Gang blocks can not be remapped, because 5631 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5632 * the BP used to read the gang block header (GBH) being the same 5633 * as the DVA[0] that we allocated for the GBH. 5634 */ 5635 if (BP_IS_GANG(bp)) 5636 return (B_FALSE); 5637 5638 /* 5639 * Embedded BP's have no DVA to remap. 5640 */ 5641 if (BP_GET_NDVAS(bp) < 1) 5642 return (B_FALSE); 5643 5644 /* 5645 * Cloned blocks can not be remapped since BRT depends on specific 5646 * vdev id and offset in the DVA[0] for its reference counting. 5647 */ 5648 if (!BP_IS_METADATA(bp) && brt_maybe_exists(spa, bp)) 5649 return (B_FALSE); 5650 5651 /* 5652 * Note: we only remap dva[0]. If we remapped other dvas, we 5653 * would no longer know what their phys birth txg is. 5654 */ 5655 dva_t *dva = &bp->blk_dva[0]; 5656 5657 uint64_t offset = DVA_GET_OFFSET(dva); 5658 uint64_t size = DVA_GET_ASIZE(dva); 5659 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5660 5661 if (vd->vdev_ops->vdev_op_remap == NULL) 5662 return (B_FALSE); 5663 5664 rbca.rbca_bp = bp; 5665 rbca.rbca_cb = callback; 5666 rbca.rbca_remap_vd = vd; 5667 rbca.rbca_remap_offset = offset; 5668 rbca.rbca_cb_arg = arg; 5669 5670 /* 5671 * remap_blkptr_cb() will be called in order for each level of 5672 * indirection, until a concrete vdev is reached or a split block is 5673 * encountered. old_vd and old_offset are updated within the callback 5674 * as we go from the one indirect vdev to the next one (either concrete 5675 * or indirect again) in that order. 5676 */ 5677 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5678 5679 /* Check if the DVA wasn't remapped because it is a split block */ 5680 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5681 return (B_FALSE); 5682 5683 return (B_TRUE); 5684 } 5685 5686 /* 5687 * Undo the allocation of a DVA which happened in the given transaction group. 5688 */ 5689 void 5690 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5691 { 5692 metaslab_t *msp; 5693 vdev_t *vd; 5694 uint64_t vdev = DVA_GET_VDEV(dva); 5695 uint64_t offset = DVA_GET_OFFSET(dva); 5696 uint64_t size = DVA_GET_ASIZE(dva); 5697 5698 ASSERT(DVA_IS_VALID(dva)); 5699 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5700 5701 if (txg > spa_freeze_txg(spa)) 5702 return; 5703 5704 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5705 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5706 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5707 (u_longlong_t)vdev, (u_longlong_t)offset, 5708 (u_longlong_t)size); 5709 return; 5710 } 5711 5712 ASSERT(!vd->vdev_removing); 5713 ASSERT(vdev_is_concrete(vd)); 5714 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5715 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5716 5717 if (DVA_GET_GANG(dva)) 5718 size = vdev_gang_header_asize(vd); 5719 5720 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5721 5722 mutex_enter(&msp->ms_lock); 5723 zfs_range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5724 offset, size); 5725 msp->ms_allocating_total -= size; 5726 5727 VERIFY(!msp->ms_condensing); 5728 VERIFY3U(offset, >=, msp->ms_start); 5729 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5730 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) + size, <=, 5731 msp->ms_size); 5732 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5733 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5734 zfs_range_tree_add(msp->ms_allocatable, offset, size); 5735 mutex_exit(&msp->ms_lock); 5736 } 5737 5738 /* 5739 * Free the block represented by the given DVA. 5740 */ 5741 void 5742 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5743 { 5744 uint64_t vdev = DVA_GET_VDEV(dva); 5745 uint64_t offset = DVA_GET_OFFSET(dva); 5746 uint64_t size = DVA_GET_ASIZE(dva); 5747 vdev_t *vd = vdev_lookup_top(spa, vdev); 5748 5749 ASSERT(DVA_IS_VALID(dva)); 5750 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5751 5752 if (DVA_GET_GANG(dva)) { 5753 size = vdev_gang_header_asize(vd); 5754 } 5755 5756 metaslab_free_impl(vd, offset, size, checkpoint); 5757 } 5758 5759 /* 5760 * Reserve some allocation slots. The reservation system must be called 5761 * before we call into the allocator. If there aren't any available slots 5762 * then the I/O will be throttled until an I/O completes and its slots are 5763 * freed up. The function returns true if it was successful in placing 5764 * the reservation. 5765 */ 5766 boolean_t 5767 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio, 5768 boolean_t must, boolean_t *more) 5769 { 5770 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 5771 5772 ASSERT(mc->mc_alloc_throttle_enabled); 5773 if (mc->mc_alloc_io_size < zio->io_size) { 5774 mc->mc_alloc_io_size = zio->io_size; 5775 metaslab_class_balance(mc, B_FALSE); 5776 } 5777 if (must || mca->mca_reserved <= mc->mc_alloc_max) { 5778 /* 5779 * The potential race between compare and add is covered by the 5780 * allocator lock in most cases, or irrelevant due to must set. 5781 * But even if we assume some other non-existing scenario, the 5782 * worst that can happen is few more I/Os get to allocation 5783 * earlier, that is not a problem. 5784 */ 5785 int64_t delta = slots * zio->io_size; 5786 *more = (atomic_add_64_nv(&mca->mca_reserved, delta) <= 5787 mc->mc_alloc_max); 5788 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5789 return (B_TRUE); 5790 } 5791 *more = B_FALSE; 5792 return (B_FALSE); 5793 } 5794 5795 boolean_t 5796 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5797 zio_t *zio) 5798 { 5799 metaslab_class_allocator_t *mca = &mc->mc_allocator[zio->io_allocator]; 5800 5801 ASSERT(mc->mc_alloc_throttle_enabled); 5802 int64_t delta = slots * zio->io_size; 5803 return (atomic_add_64_nv(&mca->mca_reserved, -delta) <= 5804 mc->mc_alloc_max); 5805 } 5806 5807 static int 5808 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5809 uint64_t txg) 5810 { 5811 metaslab_t *msp; 5812 spa_t *spa = vd->vdev_spa; 5813 int error = 0; 5814 5815 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5816 return (SET_ERROR(ENXIO)); 5817 5818 ASSERT3P(vd->vdev_ms, !=, NULL); 5819 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5820 5821 mutex_enter(&msp->ms_lock); 5822 5823 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5824 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5825 if (error == EBUSY) { 5826 ASSERT(msp->ms_loaded); 5827 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5828 error = 0; 5829 } 5830 } 5831 5832 if (error == 0 && 5833 !zfs_range_tree_contains(msp->ms_allocatable, offset, size)) 5834 error = SET_ERROR(ENOENT); 5835 5836 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5837 mutex_exit(&msp->ms_lock); 5838 return (error); 5839 } 5840 5841 VERIFY(!msp->ms_condensing); 5842 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5843 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5844 VERIFY3U(zfs_range_tree_space(msp->ms_allocatable) - size, <=, 5845 msp->ms_size); 5846 zfs_range_tree_remove(msp->ms_allocatable, offset, size); 5847 zfs_range_tree_clear(msp->ms_trim, offset, size); 5848 5849 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5850 metaslab_class_t *mc = msp->ms_group->mg_class; 5851 multilist_sublist_t *mls = 5852 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5853 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5854 msp->ms_selected_txg = txg; 5855 multilist_sublist_insert_head(mls, msp); 5856 } 5857 multilist_sublist_unlock(mls); 5858 5859 if (zfs_range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5860 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5861 zfs_range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5862 offset, size); 5863 msp->ms_allocating_total += size; 5864 } 5865 5866 mutex_exit(&msp->ms_lock); 5867 5868 return (0); 5869 } 5870 5871 typedef struct metaslab_claim_cb_arg_t { 5872 uint64_t mcca_txg; 5873 int mcca_error; 5874 } metaslab_claim_cb_arg_t; 5875 5876 static void 5877 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5878 uint64_t size, void *arg) 5879 { 5880 (void) inner_offset; 5881 metaslab_claim_cb_arg_t *mcca_arg = arg; 5882 5883 if (mcca_arg->mcca_error == 0) { 5884 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5885 size, mcca_arg->mcca_txg); 5886 } 5887 } 5888 5889 int 5890 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5891 { 5892 if (vd->vdev_ops->vdev_op_remap != NULL) { 5893 metaslab_claim_cb_arg_t arg; 5894 5895 /* 5896 * Only zdb(8) can claim on indirect vdevs. This is used 5897 * to detect leaks of mapped space (that are not accounted 5898 * for in the obsolete counts, spacemap, or bpobj). 5899 */ 5900 ASSERT(!spa_writeable(vd->vdev_spa)); 5901 arg.mcca_error = 0; 5902 arg.mcca_txg = txg; 5903 5904 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5905 metaslab_claim_impl_cb, &arg); 5906 5907 if (arg.mcca_error == 0) { 5908 arg.mcca_error = metaslab_claim_concrete(vd, 5909 offset, size, txg); 5910 } 5911 return (arg.mcca_error); 5912 } else { 5913 return (metaslab_claim_concrete(vd, offset, size, txg)); 5914 } 5915 } 5916 5917 /* 5918 * Intent log support: upon opening the pool after a crash, notify the SPA 5919 * of blocks that the intent log has allocated for immediate write, but 5920 * which are still considered free by the SPA because the last transaction 5921 * group didn't commit yet. 5922 */ 5923 static int 5924 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5925 { 5926 uint64_t vdev = DVA_GET_VDEV(dva); 5927 uint64_t offset = DVA_GET_OFFSET(dva); 5928 uint64_t size = DVA_GET_ASIZE(dva); 5929 vdev_t *vd; 5930 5931 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5932 return (SET_ERROR(ENXIO)); 5933 } 5934 5935 ASSERT(DVA_IS_VALID(dva)); 5936 5937 if (DVA_GET_GANG(dva)) 5938 size = vdev_gang_header_asize(vd); 5939 5940 return (metaslab_claim_impl(vd, offset, size, txg)); 5941 } 5942 5943 int 5944 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5945 int ndvas, uint64_t txg, const blkptr_t *hintbp, int flags, 5946 zio_alloc_list_t *zal, int allocator, const void *tag) 5947 { 5948 return (metaslab_alloc_range(spa, mc, psize, psize, bp, ndvas, txg, 5949 hintbp, flags, zal, allocator, tag, NULL)); 5950 } 5951 5952 int 5953 metaslab_alloc_range(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5954 uint64_t max_psize, blkptr_t *bp, int ndvas, uint64_t txg, 5955 const blkptr_t *hintbp, int flags, zio_alloc_list_t *zal, int allocator, 5956 const void *tag, uint64_t *actual_psize) 5957 { 5958 dva_t *dva = bp->blk_dva; 5959 const dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5960 int error = 0; 5961 5962 ASSERT0(BP_GET_LOGICAL_BIRTH(bp)); 5963 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 5964 5965 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5966 5967 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5968 /* no vdevs in this class */ 5969 spa_config_exit(spa, SCL_ALLOC, FTAG); 5970 return (SET_ERROR(ENOSPC)); 5971 } 5972 5973 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5974 ASSERT(BP_GET_NDVAS(bp) == 0); 5975 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5976 ASSERT3P(zal, !=, NULL); 5977 5978 uint64_t cur_psize = 0; 5979 5980 for (int d = 0; d < ndvas; d++) { 5981 error = metaslab_alloc_dva_range(spa, mc, psize, max_psize, 5982 dva, d, hintdva, txg, flags, zal, allocator, 5983 actual_psize ? &cur_psize : NULL); 5984 if (error != 0) { 5985 for (d--; d >= 0; d--) { 5986 metaslab_unalloc_dva(spa, &dva[d], txg); 5987 metaslab_group_alloc_decrement(spa, 5988 DVA_GET_VDEV(&dva[d]), allocator, flags, 5989 psize, tag); 5990 memset(&dva[d], 0, sizeof (dva_t)); 5991 } 5992 spa_config_exit(spa, SCL_ALLOC, FTAG); 5993 return (error); 5994 } else { 5995 /* 5996 * Update the metaslab group's queue depth 5997 * based on the newly allocated dva. 5998 */ 5999 metaslab_group_alloc_increment(spa, 6000 DVA_GET_VDEV(&dva[d]), allocator, flags, psize, 6001 tag); 6002 if (actual_psize) 6003 max_psize = MIN(cur_psize, max_psize); 6004 } 6005 } 6006 ASSERT(error == 0); 6007 ASSERT(BP_GET_NDVAS(bp) == ndvas); 6008 if (actual_psize) 6009 *actual_psize = max_psize; 6010 6011 spa_config_exit(spa, SCL_ALLOC, FTAG); 6012 6013 BP_SET_BIRTH(bp, txg, 0); 6014 6015 return (0); 6016 } 6017 6018 void 6019 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 6020 { 6021 const dva_t *dva = bp->blk_dva; 6022 int ndvas = BP_GET_NDVAS(bp); 6023 6024 ASSERT(!BP_IS_HOLE(bp)); 6025 ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa)); 6026 6027 /* 6028 * If we have a checkpoint for the pool we need to make sure that 6029 * the blocks that we free that are part of the checkpoint won't be 6030 * reused until the checkpoint is discarded or we revert to it. 6031 * 6032 * The checkpoint flag is passed down the metaslab_free code path 6033 * and is set whenever we want to add a block to the checkpoint's 6034 * accounting. That is, we "checkpoint" blocks that existed at the 6035 * time the checkpoint was created and are therefore referenced by 6036 * the checkpointed uberblock. 6037 * 6038 * Note that, we don't checkpoint any blocks if the current 6039 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 6040 * normally as they will be referenced by the checkpointed uberblock. 6041 */ 6042 boolean_t checkpoint = B_FALSE; 6043 if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg && 6044 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 6045 /* 6046 * At this point, if the block is part of the checkpoint 6047 * there is no way it was created in the current txg. 6048 */ 6049 ASSERT(!now); 6050 ASSERT3U(spa_syncing_txg(spa), ==, txg); 6051 checkpoint = B_TRUE; 6052 } 6053 6054 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 6055 6056 for (int d = 0; d < ndvas; d++) { 6057 if (now) { 6058 metaslab_unalloc_dva(spa, &dva[d], txg); 6059 } else { 6060 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 6061 metaslab_free_dva(spa, &dva[d], checkpoint); 6062 } 6063 } 6064 6065 spa_config_exit(spa, SCL_FREE, FTAG); 6066 } 6067 6068 int 6069 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 6070 { 6071 const dva_t *dva = bp->blk_dva; 6072 int ndvas = BP_GET_NDVAS(bp); 6073 int error = 0; 6074 6075 ASSERT(!BP_IS_HOLE(bp)); 6076 6077 if (txg != 0) { 6078 /* 6079 * First do a dry run to make sure all DVAs are claimable, 6080 * so we don't have to unwind from partial failures below. 6081 */ 6082 if ((error = metaslab_claim(spa, bp, 0)) != 0) 6083 return (error); 6084 } 6085 6086 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 6087 6088 for (int d = 0; d < ndvas; d++) { 6089 error = metaslab_claim_dva(spa, &dva[d], txg); 6090 if (error != 0) 6091 break; 6092 } 6093 6094 spa_config_exit(spa, SCL_ALLOC, FTAG); 6095 6096 ASSERT(error == 0 || txg == 0); 6097 6098 return (error); 6099 } 6100 6101 static void 6102 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 6103 uint64_t size, void *arg) 6104 { 6105 (void) inner, (void) arg; 6106 6107 if (vd->vdev_ops == &vdev_indirect_ops) 6108 return; 6109 6110 metaslab_check_free_impl(vd, offset, size); 6111 } 6112 6113 static void 6114 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 6115 { 6116 metaslab_t *msp; 6117 spa_t *spa __maybe_unused = vd->vdev_spa; 6118 6119 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6120 return; 6121 6122 if (vd->vdev_ops->vdev_op_remap != NULL) { 6123 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6124 metaslab_check_free_impl_cb, NULL); 6125 return; 6126 } 6127 6128 ASSERT(vdev_is_concrete(vd)); 6129 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6130 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6131 6132 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6133 6134 mutex_enter(&msp->ms_lock); 6135 if (msp->ms_loaded) { 6136 zfs_range_tree_verify_not_present(msp->ms_allocatable, 6137 offset, size); 6138 } 6139 6140 /* 6141 * Check all segments that currently exist in the freeing pipeline. 6142 * 6143 * It would intuitively make sense to also check the current allocating 6144 * tree since metaslab_unalloc_dva() exists for extents that are 6145 * allocated and freed in the same sync pass within the same txg. 6146 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6147 * segment but then we free part of it within the same txg 6148 * [see zil_sync()]. Thus, we don't call zfs_range_tree_verify() in the 6149 * current allocating tree. 6150 */ 6151 zfs_range_tree_verify_not_present(msp->ms_freeing, offset, size); 6152 zfs_range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6153 zfs_range_tree_verify_not_present(msp->ms_freed, offset, size); 6154 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6155 zfs_range_tree_verify_not_present(msp->ms_defer[j], offset, 6156 size); 6157 zfs_range_tree_verify_not_present(msp->ms_trim, offset, size); 6158 mutex_exit(&msp->ms_lock); 6159 } 6160 6161 void 6162 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6163 { 6164 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6165 return; 6166 6167 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6168 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6169 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6170 vdev_t *vd = vdev_lookup_top(spa, vdev); 6171 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6172 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6173 6174 if (DVA_GET_GANG(&bp->blk_dva[i])) 6175 size = vdev_gang_header_asize(vd); 6176 6177 ASSERT3P(vd, !=, NULL); 6178 6179 metaslab_check_free_impl(vd, offset, size); 6180 } 6181 spa_config_exit(spa, SCL_VDEV, FTAG); 6182 } 6183 6184 static void 6185 metaslab_group_disable_wait(metaslab_group_t *mg) 6186 { 6187 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6188 while (mg->mg_disabled_updating) { 6189 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6190 } 6191 } 6192 6193 static void 6194 metaslab_group_disabled_increment(metaslab_group_t *mg) 6195 { 6196 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6197 ASSERT(mg->mg_disabled_updating); 6198 6199 while (mg->mg_ms_disabled >= max_disabled_ms) { 6200 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6201 } 6202 mg->mg_ms_disabled++; 6203 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6204 } 6205 6206 /* 6207 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6208 * We must also track how many metaslabs are currently disabled within a 6209 * metaslab group and limit them to prevent allocation failures from 6210 * occurring because all metaslabs are disabled. 6211 */ 6212 void 6213 metaslab_disable(metaslab_t *msp) 6214 { 6215 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6216 metaslab_group_t *mg = msp->ms_group; 6217 6218 mutex_enter(&mg->mg_ms_disabled_lock); 6219 6220 /* 6221 * To keep an accurate count of how many threads have disabled 6222 * a specific metaslab group, we only allow one thread to mark 6223 * the metaslab group at a time. This ensures that the value of 6224 * ms_disabled will be accurate when we decide to mark a metaslab 6225 * group as disabled. To do this we force all other threads 6226 * to wait till the metaslab's mg_disabled_updating flag is no 6227 * longer set. 6228 */ 6229 metaslab_group_disable_wait(mg); 6230 mg->mg_disabled_updating = B_TRUE; 6231 if (msp->ms_disabled == 0) { 6232 metaslab_group_disabled_increment(mg); 6233 } 6234 mutex_enter(&msp->ms_lock); 6235 msp->ms_disabled++; 6236 mutex_exit(&msp->ms_lock); 6237 6238 mg->mg_disabled_updating = B_FALSE; 6239 cv_broadcast(&mg->mg_ms_disabled_cv); 6240 mutex_exit(&mg->mg_ms_disabled_lock); 6241 } 6242 6243 void 6244 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6245 { 6246 metaslab_group_t *mg = msp->ms_group; 6247 spa_t *spa = mg->mg_vd->vdev_spa; 6248 6249 /* 6250 * Wait for the outstanding IO to be synced to prevent newly 6251 * allocated blocks from being overwritten. This used by 6252 * initialize and TRIM which are modifying unallocated space. 6253 */ 6254 if (sync) 6255 txg_wait_synced(spa_get_dsl(spa), 0); 6256 6257 mutex_enter(&mg->mg_ms_disabled_lock); 6258 mutex_enter(&msp->ms_lock); 6259 if (--msp->ms_disabled == 0) { 6260 mg->mg_ms_disabled--; 6261 cv_broadcast(&mg->mg_ms_disabled_cv); 6262 if (unload) 6263 metaslab_unload(msp); 6264 } 6265 mutex_exit(&msp->ms_lock); 6266 mutex_exit(&mg->mg_ms_disabled_lock); 6267 } 6268 6269 void 6270 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6271 { 6272 ms->ms_unflushed_dirty = dirty; 6273 } 6274 6275 static void 6276 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6277 { 6278 vdev_t *vd = ms->ms_group->mg_vd; 6279 spa_t *spa = vd->vdev_spa; 6280 objset_t *mos = spa_meta_objset(spa); 6281 6282 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6283 6284 metaslab_unflushed_phys_t entry = { 6285 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6286 }; 6287 uint64_t entry_size = sizeof (entry); 6288 uint64_t entry_offset = ms->ms_id * entry_size; 6289 6290 uint64_t object = 0; 6291 int err = zap_lookup(mos, vd->vdev_top_zap, 6292 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6293 &object); 6294 if (err == ENOENT) { 6295 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6296 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6297 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6298 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6299 &object, tx)); 6300 } else { 6301 VERIFY0(err); 6302 } 6303 6304 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6305 &entry, tx); 6306 } 6307 6308 void 6309 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6310 { 6311 ms->ms_unflushed_txg = txg; 6312 metaslab_update_ondisk_flush_data(ms, tx); 6313 } 6314 6315 boolean_t 6316 metaslab_unflushed_dirty(metaslab_t *ms) 6317 { 6318 return (ms->ms_unflushed_dirty); 6319 } 6320 6321 uint64_t 6322 metaslab_unflushed_txg(metaslab_t *ms) 6323 { 6324 return (ms->ms_unflushed_txg); 6325 } 6326 6327 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6328 "Allocation granularity (a.k.a. stripe size)"); 6329 6330 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6331 "Load all metaslabs when pool is first opened"); 6332 6333 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6334 "Prevent metaslabs from being unloaded"); 6335 6336 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6337 "Preload potential metaslabs during reassessment"); 6338 6339 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW, 6340 "Max number of metaslabs per group to preload"); 6341 6342 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6343 "Delay in txgs after metaslab was last used before unloading"); 6344 6345 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6346 "Delay in milliseconds after metaslab was last used before unloading"); 6347 6348 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6349 "Percentage of metaslab group size that should be free to make it " 6350 "eligible for allocation"); 6351 6352 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6353 "Percentage of metaslab group size that should be considered eligible " 6354 "for allocations unless all metaslab groups within the metaslab class " 6355 "have also crossed this threshold"); 6356 6357 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6358 ZMOD_RW, 6359 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6360 6361 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6362 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6363 6364 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6365 "Prefer metaslabs with lower LBAs"); 6366 6367 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6368 "Enable space-based metaslab group biasing"); 6369 6370 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, perf_bias, INT, ZMOD_RW, 6371 "Enable performance-based metaslab group biasing"); 6372 6373 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6374 ZMOD_RW, "Enable segment-based metaslab selection"); 6375 6376 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6377 "Segment-based metaslab selection maximum buckets before switching"); 6378 6379 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6380 "Blocks larger than this size are sometimes forced to be gang blocks"); 6381 6382 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW, 6383 "Percentage of large blocks that will be forced to be gang blocks"); 6384 6385 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6386 "Max distance (bytes) to search forward before using size tree"); 6387 6388 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6389 "When looking in size tree, use largest segment instead of exact fit"); 6390 6391 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6392 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6393 6394 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6395 "Percentage of memory that can be used to store metaslab range trees"); 6396 6397 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6398 ZMOD_RW, "Try hard to allocate before ganging"); 6399 6400 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 6401 "Normally only consider this many of the best metaslabs in each vdev"); 6402 6403 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator, 6404 param_set_active_allocator, param_get_charp, ZMOD_RW, 6405 "SPA active allocator"); 6406