xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 2e620256bd76c449c835c604e404483437743011)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	GANG_ALLOCATION(flags) \
44 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
45 
46 /*
47  * Metaslab granularity, in bytes. This is roughly similar to what would be
48  * referred to as the "stripe size" in traditional RAID arrays. In normal
49  * operation, we will try to write this amount of data to each disk before
50  * moving on to the next top-level vdev.
51  */
52 static uint64_t metaslab_aliquot = 1024 * 1024;
53 
54 /*
55  * For testing, make some blocks above a certain size be gang blocks.
56  */
57 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
58 
59 /*
60  * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
61  */
62 uint_t metaslab_force_ganging_pct = 3;
63 
64 /*
65  * In pools where the log space map feature is not enabled we touch
66  * multiple metaslabs (and their respective space maps) with each
67  * transaction group. Thus, we benefit from having a small space map
68  * block size since it allows us to issue more I/O operations scattered
69  * around the disk. So a sane default for the space map block size
70  * is 8~16K.
71  */
72 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
73 
74 /*
75  * When the log space map feature is enabled, we accumulate a lot of
76  * changes per metaslab that are flushed once in a while so we benefit
77  * from a bigger block size like 128K for the metaslab space maps.
78  */
79 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
80 
81 /*
82  * The in-core space map representation is more compact than its on-disk form.
83  * The zfs_condense_pct determines how much more compact the in-core
84  * space map representation must be before we compact it on-disk.
85  * Values should be greater than or equal to 100.
86  */
87 uint_t zfs_condense_pct = 200;
88 
89 /*
90  * Condensing a metaslab is not guaranteed to actually reduce the amount of
91  * space used on disk. In particular, a space map uses data in increments of
92  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
93  * same number of blocks after condensing. Since the goal of condensing is to
94  * reduce the number of IOPs required to read the space map, we only want to
95  * condense when we can be sure we will reduce the number of blocks used by the
96  * space map. Unfortunately, we cannot precisely compute whether or not this is
97  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
98  * we apply the following heuristic: do not condense a spacemap unless the
99  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
100  * blocks.
101  */
102 static const int zfs_metaslab_condense_block_threshold = 4;
103 
104 /*
105  * The zfs_mg_noalloc_threshold defines which metaslab groups should
106  * be eligible for allocation. The value is defined as a percentage of
107  * free space. Metaslab groups that have more free space than
108  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
109  * a metaslab group's free space is less than or equal to the
110  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
111  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
112  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
113  * groups are allowed to accept allocations. Gang blocks are always
114  * eligible to allocate on any metaslab group. The default value of 0 means
115  * no metaslab group will be excluded based on this criterion.
116  */
117 static uint_t zfs_mg_noalloc_threshold = 0;
118 
119 /*
120  * Metaslab groups are considered eligible for allocations if their
121  * fragmentation metric (measured as a percentage) is less than or
122  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
123  * exceeds this threshold then it will be skipped unless all metaslab
124  * groups within the metaslab class have also crossed this threshold.
125  *
126  * This tunable was introduced to avoid edge cases where we continue
127  * allocating from very fragmented disks in our pool while other, less
128  * fragmented disks, exists. On the other hand, if all disks in the
129  * pool are uniformly approaching the threshold, the threshold can
130  * be a speed bump in performance, where we keep switching the disks
131  * that we allocate from (e.g. we allocate some segments from disk A
132  * making it bypassing the threshold while freeing segments from disk
133  * B getting its fragmentation below the threshold).
134  *
135  * Empirically, we've seen that our vdev selection for allocations is
136  * good enough that fragmentation increases uniformly across all vdevs
137  * the majority of the time. Thus we set the threshold percentage high
138  * enough to avoid hitting the speed bump on pools that are being pushed
139  * to the edge.
140  */
141 static uint_t zfs_mg_fragmentation_threshold = 95;
142 
143 /*
144  * Allow metaslabs to keep their active state as long as their fragmentation
145  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
146  * active metaslab that exceeds this threshold will no longer keep its active
147  * status allowing better metaslabs to be selected.
148  */
149 static uint_t zfs_metaslab_fragmentation_threshold = 70;
150 
151 /*
152  * When set will load all metaslabs when pool is first opened.
153  */
154 int metaslab_debug_load = B_FALSE;
155 
156 /*
157  * When set will prevent metaslabs from being unloaded.
158  */
159 static int metaslab_debug_unload = B_FALSE;
160 
161 /*
162  * Minimum size which forces the dynamic allocator to change
163  * it's allocation strategy.  Once the space map cannot satisfy
164  * an allocation of this size then it switches to using more
165  * aggressive strategy (i.e search by size rather than offset).
166  */
167 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
168 
169 /*
170  * The minimum free space, in percent, which must be available
171  * in a space map to continue allocations in a first-fit fashion.
172  * Once the space map's free space drops below this level we dynamically
173  * switch to using best-fit allocations.
174  */
175 uint_t metaslab_df_free_pct = 4;
176 
177 /*
178  * Maximum distance to search forward from the last offset. Without this
179  * limit, fragmented pools can see >100,000 iterations and
180  * metaslab_block_picker() becomes the performance limiting factor on
181  * high-performance storage.
182  *
183  * With the default setting of 16MB, we typically see less than 500
184  * iterations, even with very fragmented, ashift=9 pools. The maximum number
185  * of iterations possible is:
186  *     metaslab_df_max_search / (2 * (1<<ashift))
187  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
188  * 2048 (with ashift=12).
189  */
190 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
191 
192 /*
193  * Forces the metaslab_block_picker function to search for at least this many
194  * segments forwards until giving up on finding a segment that the allocation
195  * will fit into.
196  */
197 static const uint32_t metaslab_min_search_count = 100;
198 
199 /*
200  * If we are not searching forward (due to metaslab_df_max_search,
201  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
202  * controls what segment is used.  If it is set, we will use the largest free
203  * segment.  If it is not set, we will use a segment of exactly the requested
204  * size (or larger).
205  */
206 static int metaslab_df_use_largest_segment = B_FALSE;
207 
208 /*
209  * These tunables control how long a metaslab will remain loaded after the
210  * last allocation from it.  A metaslab can't be unloaded until at least
211  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
212  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
213  * unloaded sooner.  These settings are intended to be generous -- to keep
214  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
215  */
216 static uint_t metaslab_unload_delay = 32;
217 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
218 
219 /*
220  * Max number of metaslabs per group to preload.
221  */
222 uint_t metaslab_preload_limit = 10;
223 
224 /*
225  * Enable/disable preloading of metaslab.
226  */
227 static int metaslab_preload_enabled = B_TRUE;
228 
229 /*
230  * Enable/disable fragmentation weighting on metaslabs.
231  */
232 static int metaslab_fragmentation_factor_enabled = B_TRUE;
233 
234 /*
235  * Enable/disable lba weighting (i.e. outer tracks are given preference).
236  */
237 static int metaslab_lba_weighting_enabled = B_TRUE;
238 
239 /*
240  * Enable/disable metaslab group biasing.
241  */
242 static int metaslab_bias_enabled = B_TRUE;
243 
244 /*
245  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
246  */
247 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
248 
249 /*
250  * Enable/disable segment-based metaslab selection.
251  */
252 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
253 
254 /*
255  * When using segment-based metaslab selection, we will continue
256  * allocating from the active metaslab until we have exhausted
257  * zfs_metaslab_switch_threshold of its buckets.
258  */
259 static int zfs_metaslab_switch_threshold = 2;
260 
261 /*
262  * Internal switch to enable/disable the metaslab allocation tracing
263  * facility.
264  */
265 static const boolean_t metaslab_trace_enabled = B_FALSE;
266 
267 /*
268  * Maximum entries that the metaslab allocation tracing facility will keep
269  * in a given list when running in non-debug mode. We limit the number
270  * of entries in non-debug mode to prevent us from using up too much memory.
271  * The limit should be sufficiently large that we don't expect any allocation
272  * to every exceed this value. In debug mode, the system will panic if this
273  * limit is ever reached allowing for further investigation.
274  */
275 static const uint64_t metaslab_trace_max_entries = 5000;
276 
277 /*
278  * Maximum number of metaslabs per group that can be disabled
279  * simultaneously.
280  */
281 static const int max_disabled_ms = 3;
282 
283 /*
284  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
285  * To avoid 64-bit overflow, don't set above UINT32_MAX.
286  */
287 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
288 
289 /*
290  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
291  * a metaslab would take it over this percentage, the oldest selected metaslab
292  * is automatically unloaded.
293  */
294 static uint_t zfs_metaslab_mem_limit = 25;
295 
296 /*
297  * Force the per-metaslab range trees to use 64-bit integers to store
298  * segments. Used for debugging purposes.
299  */
300 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
301 
302 /*
303  * By default we only store segments over a certain size in the size-sorted
304  * metaslab trees (ms_allocatable_by_size and
305  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
306  * improves load and unload times at the cost of causing us to use slightly
307  * larger segments than we would otherwise in some cases.
308  */
309 static const uint32_t metaslab_by_size_min_shift = 14;
310 
311 /*
312  * If not set, we will first try normal allocation.  If that fails then
313  * we will do a gang allocation.  If that fails then we will do a "try hard"
314  * gang allocation.  If that fails then we will have a multi-layer gang
315  * block.
316  *
317  * If set, we will first try normal allocation.  If that fails then
318  * we will do a "try hard" allocation.  If that fails we will do a gang
319  * allocation.  If that fails we will do a "try hard" gang allocation.  If
320  * that fails then we will have a multi-layer gang block.
321  */
322 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
323 
324 /*
325  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
326  * metaslabs.  This improves performance, especially when there are many
327  * metaslabs per vdev and the allocation can't actually be satisfied (so we
328  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
329  * worse weight but it can actually satisfy the allocation, we won't find it
330  * until trying hard.  This may happen if the worse metaslab is not loaded
331  * (and the true weight is better than we have calculated), or due to weight
332  * bucketization.  E.g. we are looking for a 60K segment, and the best
333  * metaslabs all have free segments in the 32-63K bucket, but the best
334  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
335  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
336  * bucket, and therefore a lower weight).
337  */
338 static uint_t zfs_metaslab_find_max_tries = 100;
339 
340 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
341 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
342 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
343 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
344 
345 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
346 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
347 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
348 static unsigned int metaslab_idx_func(multilist_t *, void *);
349 static void metaslab_evict(metaslab_t *, uint64_t);
350 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
351 kmem_cache_t *metaslab_alloc_trace_cache;
352 
353 typedef struct metaslab_stats {
354 	kstat_named_t metaslabstat_trace_over_limit;
355 	kstat_named_t metaslabstat_reload_tree;
356 	kstat_named_t metaslabstat_too_many_tries;
357 	kstat_named_t metaslabstat_try_hard;
358 } metaslab_stats_t;
359 
360 static metaslab_stats_t metaslab_stats = {
361 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
362 	{ "reload_tree",		KSTAT_DATA_UINT64 },
363 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
364 	{ "try_hard",			KSTAT_DATA_UINT64 },
365 };
366 
367 #define	METASLABSTAT_BUMP(stat) \
368 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
369 
370 
371 static kstat_t *metaslab_ksp;
372 
373 void
374 metaslab_stat_init(void)
375 {
376 	ASSERT(metaslab_alloc_trace_cache == NULL);
377 	metaslab_alloc_trace_cache = kmem_cache_create(
378 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
379 	    0, NULL, NULL, NULL, NULL, NULL, 0);
380 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
381 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
382 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
383 	if (metaslab_ksp != NULL) {
384 		metaslab_ksp->ks_data = &metaslab_stats;
385 		kstat_install(metaslab_ksp);
386 	}
387 }
388 
389 void
390 metaslab_stat_fini(void)
391 {
392 	if (metaslab_ksp != NULL) {
393 		kstat_delete(metaslab_ksp);
394 		metaslab_ksp = NULL;
395 	}
396 
397 	kmem_cache_destroy(metaslab_alloc_trace_cache);
398 	metaslab_alloc_trace_cache = NULL;
399 }
400 
401 /*
402  * ==========================================================================
403  * Metaslab classes
404  * ==========================================================================
405  */
406 metaslab_class_t *
407 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
408 {
409 	metaslab_class_t *mc;
410 
411 	mc = kmem_zalloc(offsetof(metaslab_class_t,
412 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
413 
414 	mc->mc_spa = spa;
415 	mc->mc_ops = ops;
416 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
417 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
418 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
419 	for (int i = 0; i < spa->spa_alloc_count; i++) {
420 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
421 		mca->mca_rotor = NULL;
422 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
423 	}
424 
425 	return (mc);
426 }
427 
428 void
429 metaslab_class_destroy(metaslab_class_t *mc)
430 {
431 	spa_t *spa = mc->mc_spa;
432 
433 	ASSERT(mc->mc_alloc == 0);
434 	ASSERT(mc->mc_deferred == 0);
435 	ASSERT(mc->mc_space == 0);
436 	ASSERT(mc->mc_dspace == 0);
437 
438 	for (int i = 0; i < spa->spa_alloc_count; i++) {
439 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
440 		ASSERT(mca->mca_rotor == NULL);
441 		zfs_refcount_destroy(&mca->mca_alloc_slots);
442 	}
443 	mutex_destroy(&mc->mc_lock);
444 	multilist_destroy(&mc->mc_metaslab_txg_list);
445 	kmem_free(mc, offsetof(metaslab_class_t,
446 	    mc_allocator[spa->spa_alloc_count]));
447 }
448 
449 int
450 metaslab_class_validate(metaslab_class_t *mc)
451 {
452 	metaslab_group_t *mg;
453 	vdev_t *vd;
454 
455 	/*
456 	 * Must hold one of the spa_config locks.
457 	 */
458 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
459 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
460 
461 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
462 		return (0);
463 
464 	do {
465 		vd = mg->mg_vd;
466 		ASSERT(vd->vdev_mg != NULL);
467 		ASSERT3P(vd->vdev_top, ==, vd);
468 		ASSERT3P(mg->mg_class, ==, mc);
469 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
470 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
471 
472 	return (0);
473 }
474 
475 static void
476 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
477     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
478 {
479 	atomic_add_64(&mc->mc_alloc, alloc_delta);
480 	atomic_add_64(&mc->mc_deferred, defer_delta);
481 	atomic_add_64(&mc->mc_space, space_delta);
482 	atomic_add_64(&mc->mc_dspace, dspace_delta);
483 }
484 
485 uint64_t
486 metaslab_class_get_alloc(metaslab_class_t *mc)
487 {
488 	return (mc->mc_alloc);
489 }
490 
491 uint64_t
492 metaslab_class_get_deferred(metaslab_class_t *mc)
493 {
494 	return (mc->mc_deferred);
495 }
496 
497 uint64_t
498 metaslab_class_get_space(metaslab_class_t *mc)
499 {
500 	return (mc->mc_space);
501 }
502 
503 uint64_t
504 metaslab_class_get_dspace(metaslab_class_t *mc)
505 {
506 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
507 }
508 
509 void
510 metaslab_class_histogram_verify(metaslab_class_t *mc)
511 {
512 	spa_t *spa = mc->mc_spa;
513 	vdev_t *rvd = spa->spa_root_vdev;
514 	uint64_t *mc_hist;
515 	int i;
516 
517 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
518 		return;
519 
520 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
521 	    KM_SLEEP);
522 
523 	mutex_enter(&mc->mc_lock);
524 	for (int c = 0; c < rvd->vdev_children; c++) {
525 		vdev_t *tvd = rvd->vdev_child[c];
526 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
527 
528 		/*
529 		 * Skip any holes, uninitialized top-levels, or
530 		 * vdevs that are not in this metalab class.
531 		 */
532 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
533 		    mg->mg_class != mc) {
534 			continue;
535 		}
536 
537 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
538 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
539 
540 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
541 			mc_hist[i] += mg->mg_histogram[i];
542 	}
543 
544 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
545 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
546 	}
547 
548 	mutex_exit(&mc->mc_lock);
549 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
550 }
551 
552 /*
553  * Calculate the metaslab class's fragmentation metric. The metric
554  * is weighted based on the space contribution of each metaslab group.
555  * The return value will be a number between 0 and 100 (inclusive), or
556  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
557  * zfs_frag_table for more information about the metric.
558  */
559 uint64_t
560 metaslab_class_fragmentation(metaslab_class_t *mc)
561 {
562 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
563 	uint64_t fragmentation = 0;
564 
565 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
566 
567 	for (int c = 0; c < rvd->vdev_children; c++) {
568 		vdev_t *tvd = rvd->vdev_child[c];
569 		metaslab_group_t *mg = tvd->vdev_mg;
570 
571 		/*
572 		 * Skip any holes, uninitialized top-levels,
573 		 * or vdevs that are not in this metalab class.
574 		 */
575 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
576 		    mg->mg_class != mc) {
577 			continue;
578 		}
579 
580 		/*
581 		 * If a metaslab group does not contain a fragmentation
582 		 * metric then just bail out.
583 		 */
584 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
585 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
586 			return (ZFS_FRAG_INVALID);
587 		}
588 
589 		/*
590 		 * Determine how much this metaslab_group is contributing
591 		 * to the overall pool fragmentation metric.
592 		 */
593 		fragmentation += mg->mg_fragmentation *
594 		    metaslab_group_get_space(mg);
595 	}
596 	fragmentation /= metaslab_class_get_space(mc);
597 
598 	ASSERT3U(fragmentation, <=, 100);
599 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
600 	return (fragmentation);
601 }
602 
603 /*
604  * Calculate the amount of expandable space that is available in
605  * this metaslab class. If a device is expanded then its expandable
606  * space will be the amount of allocatable space that is currently not
607  * part of this metaslab class.
608  */
609 uint64_t
610 metaslab_class_expandable_space(metaslab_class_t *mc)
611 {
612 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
613 	uint64_t space = 0;
614 
615 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
616 	for (int c = 0; c < rvd->vdev_children; c++) {
617 		vdev_t *tvd = rvd->vdev_child[c];
618 		metaslab_group_t *mg = tvd->vdev_mg;
619 
620 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
621 		    mg->mg_class != mc) {
622 			continue;
623 		}
624 
625 		/*
626 		 * Calculate if we have enough space to add additional
627 		 * metaslabs. We report the expandable space in terms
628 		 * of the metaslab size since that's the unit of expansion.
629 		 */
630 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
631 		    1ULL << tvd->vdev_ms_shift);
632 	}
633 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
634 	return (space);
635 }
636 
637 void
638 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
639 {
640 	multilist_t *ml = &mc->mc_metaslab_txg_list;
641 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
642 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
643 		metaslab_t *msp = multilist_sublist_head(mls);
644 		multilist_sublist_unlock(mls);
645 		while (msp != NULL) {
646 			mutex_enter(&msp->ms_lock);
647 
648 			/*
649 			 * If the metaslab has been removed from the list
650 			 * (which could happen if we were at the memory limit
651 			 * and it was evicted during this loop), then we can't
652 			 * proceed and we should restart the sublist.
653 			 */
654 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
655 				mutex_exit(&msp->ms_lock);
656 				i--;
657 				break;
658 			}
659 			mls = multilist_sublist_lock(ml, i);
660 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
661 			multilist_sublist_unlock(mls);
662 			if (txg >
663 			    msp->ms_selected_txg + metaslab_unload_delay &&
664 			    gethrtime() > msp->ms_selected_time +
665 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
666 				metaslab_evict(msp, txg);
667 			} else {
668 				/*
669 				 * Once we've hit a metaslab selected too
670 				 * recently to evict, we're done evicting for
671 				 * now.
672 				 */
673 				mutex_exit(&msp->ms_lock);
674 				break;
675 			}
676 			mutex_exit(&msp->ms_lock);
677 			msp = next_msp;
678 		}
679 	}
680 }
681 
682 static int
683 metaslab_compare(const void *x1, const void *x2)
684 {
685 	const metaslab_t *m1 = (const metaslab_t *)x1;
686 	const metaslab_t *m2 = (const metaslab_t *)x2;
687 
688 	int sort1 = 0;
689 	int sort2 = 0;
690 	if (m1->ms_allocator != -1 && m1->ms_primary)
691 		sort1 = 1;
692 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
693 		sort1 = 2;
694 	if (m2->ms_allocator != -1 && m2->ms_primary)
695 		sort2 = 1;
696 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
697 		sort2 = 2;
698 
699 	/*
700 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
701 	 * selecting a metaslab to allocate from, an allocator first tries its
702 	 * primary, then secondary active metaslab. If it doesn't have active
703 	 * metaslabs, or can't allocate from them, it searches for an inactive
704 	 * metaslab to activate. If it can't find a suitable one, it will steal
705 	 * a primary or secondary metaslab from another allocator.
706 	 */
707 	if (sort1 < sort2)
708 		return (-1);
709 	if (sort1 > sort2)
710 		return (1);
711 
712 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
713 	if (likely(cmp))
714 		return (cmp);
715 
716 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
717 
718 	return (TREE_CMP(m1->ms_start, m2->ms_start));
719 }
720 
721 /*
722  * ==========================================================================
723  * Metaslab groups
724  * ==========================================================================
725  */
726 /*
727  * Update the allocatable flag and the metaslab group's capacity.
728  * The allocatable flag is set to true if the capacity is below
729  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
730  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
731  * transitions from allocatable to non-allocatable or vice versa then the
732  * metaslab group's class is updated to reflect the transition.
733  */
734 static void
735 metaslab_group_alloc_update(metaslab_group_t *mg)
736 {
737 	vdev_t *vd = mg->mg_vd;
738 	metaslab_class_t *mc = mg->mg_class;
739 	vdev_stat_t *vs = &vd->vdev_stat;
740 	boolean_t was_allocatable;
741 	boolean_t was_initialized;
742 
743 	ASSERT(vd == vd->vdev_top);
744 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
745 	    SCL_ALLOC);
746 
747 	mutex_enter(&mg->mg_lock);
748 	was_allocatable = mg->mg_allocatable;
749 	was_initialized = mg->mg_initialized;
750 
751 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
752 	    (vs->vs_space + 1);
753 
754 	mutex_enter(&mc->mc_lock);
755 
756 	/*
757 	 * If the metaslab group was just added then it won't
758 	 * have any space until we finish syncing out this txg.
759 	 * At that point we will consider it initialized and available
760 	 * for allocations.  We also don't consider non-activated
761 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
762 	 * to be initialized, because they can't be used for allocation.
763 	 */
764 	mg->mg_initialized = metaslab_group_initialized(mg);
765 	if (!was_initialized && mg->mg_initialized) {
766 		mc->mc_groups++;
767 	} else if (was_initialized && !mg->mg_initialized) {
768 		ASSERT3U(mc->mc_groups, >, 0);
769 		mc->mc_groups--;
770 	}
771 	if (mg->mg_initialized)
772 		mg->mg_no_free_space = B_FALSE;
773 
774 	/*
775 	 * A metaslab group is considered allocatable if it has plenty
776 	 * of free space or is not heavily fragmented. We only take
777 	 * fragmentation into account if the metaslab group has a valid
778 	 * fragmentation metric (i.e. a value between 0 and 100).
779 	 */
780 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
781 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
782 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
783 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
784 
785 	/*
786 	 * The mc_alloc_groups maintains a count of the number of
787 	 * groups in this metaslab class that are still above the
788 	 * zfs_mg_noalloc_threshold. This is used by the allocating
789 	 * threads to determine if they should avoid allocations to
790 	 * a given group. The allocator will avoid allocations to a group
791 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
792 	 * and there are still other groups that are above the threshold.
793 	 * When a group transitions from allocatable to non-allocatable or
794 	 * vice versa we update the metaslab class to reflect that change.
795 	 * When the mc_alloc_groups value drops to 0 that means that all
796 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
797 	 * eligible for allocations. This effectively means that all devices
798 	 * are balanced again.
799 	 */
800 	if (was_allocatable && !mg->mg_allocatable)
801 		mc->mc_alloc_groups--;
802 	else if (!was_allocatable && mg->mg_allocatable)
803 		mc->mc_alloc_groups++;
804 	mutex_exit(&mc->mc_lock);
805 
806 	mutex_exit(&mg->mg_lock);
807 }
808 
809 int
810 metaslab_sort_by_flushed(const void *va, const void *vb)
811 {
812 	const metaslab_t *a = va;
813 	const metaslab_t *b = vb;
814 
815 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
816 	if (likely(cmp))
817 		return (cmp);
818 
819 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
820 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
821 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
822 	if (cmp)
823 		return (cmp);
824 
825 	return (TREE_CMP(a->ms_id, b->ms_id));
826 }
827 
828 metaslab_group_t *
829 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
830 {
831 	metaslab_group_t *mg;
832 
833 	mg = kmem_zalloc(offsetof(metaslab_group_t,
834 	    mg_allocator[allocators]), KM_SLEEP);
835 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
836 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
837 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
838 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
839 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
840 	mg->mg_vd = vd;
841 	mg->mg_class = mc;
842 	mg->mg_activation_count = 0;
843 	mg->mg_initialized = B_FALSE;
844 	mg->mg_no_free_space = B_TRUE;
845 	mg->mg_allocators = allocators;
846 
847 	for (int i = 0; i < allocators; i++) {
848 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
849 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
850 	}
851 
852 	return (mg);
853 }
854 
855 void
856 metaslab_group_destroy(metaslab_group_t *mg)
857 {
858 	ASSERT(mg->mg_prev == NULL);
859 	ASSERT(mg->mg_next == NULL);
860 	/*
861 	 * We may have gone below zero with the activation count
862 	 * either because we never activated in the first place or
863 	 * because we're done, and possibly removing the vdev.
864 	 */
865 	ASSERT(mg->mg_activation_count <= 0);
866 
867 	avl_destroy(&mg->mg_metaslab_tree);
868 	mutex_destroy(&mg->mg_lock);
869 	mutex_destroy(&mg->mg_ms_disabled_lock);
870 	cv_destroy(&mg->mg_ms_disabled_cv);
871 
872 	for (int i = 0; i < mg->mg_allocators; i++) {
873 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
874 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
875 	}
876 	kmem_free(mg, offsetof(metaslab_group_t,
877 	    mg_allocator[mg->mg_allocators]));
878 }
879 
880 void
881 metaslab_group_activate(metaslab_group_t *mg)
882 {
883 	metaslab_class_t *mc = mg->mg_class;
884 	spa_t *spa = mc->mc_spa;
885 	metaslab_group_t *mgprev, *mgnext;
886 
887 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
888 
889 	ASSERT(mg->mg_prev == NULL);
890 	ASSERT(mg->mg_next == NULL);
891 	ASSERT(mg->mg_activation_count <= 0);
892 
893 	if (++mg->mg_activation_count <= 0)
894 		return;
895 
896 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
897 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
898 	metaslab_group_alloc_update(mg);
899 
900 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
901 		mg->mg_prev = mg;
902 		mg->mg_next = mg;
903 	} else {
904 		mgnext = mgprev->mg_next;
905 		mg->mg_prev = mgprev;
906 		mg->mg_next = mgnext;
907 		mgprev->mg_next = mg;
908 		mgnext->mg_prev = mg;
909 	}
910 	for (int i = 0; i < spa->spa_alloc_count; i++) {
911 		mc->mc_allocator[i].mca_rotor = mg;
912 		mg = mg->mg_next;
913 	}
914 }
915 
916 /*
917  * Passivate a metaslab group and remove it from the allocation rotor.
918  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
919  * a metaslab group. This function will momentarily drop spa_config_locks
920  * that are lower than the SCL_ALLOC lock (see comment below).
921  */
922 void
923 metaslab_group_passivate(metaslab_group_t *mg)
924 {
925 	metaslab_class_t *mc = mg->mg_class;
926 	spa_t *spa = mc->mc_spa;
927 	metaslab_group_t *mgprev, *mgnext;
928 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
929 
930 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
931 	    (SCL_ALLOC | SCL_ZIO));
932 
933 	if (--mg->mg_activation_count != 0) {
934 		for (int i = 0; i < spa->spa_alloc_count; i++)
935 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
936 		ASSERT(mg->mg_prev == NULL);
937 		ASSERT(mg->mg_next == NULL);
938 		ASSERT(mg->mg_activation_count < 0);
939 		return;
940 	}
941 
942 	/*
943 	 * The spa_config_lock is an array of rwlocks, ordered as
944 	 * follows (from highest to lowest):
945 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
946 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
947 	 * (For more information about the spa_config_lock see spa_misc.c)
948 	 * The higher the lock, the broader its coverage. When we passivate
949 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
950 	 * config locks. However, the metaslab group's taskq might be trying
951 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
952 	 * lower locks to allow the I/O to complete. At a minimum,
953 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
954 	 * allocations from taking place and any changes to the vdev tree.
955 	 */
956 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
957 	taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
958 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
959 	metaslab_group_alloc_update(mg);
960 	for (int i = 0; i < mg->mg_allocators; i++) {
961 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
962 		metaslab_t *msp = mga->mga_primary;
963 		if (msp != NULL) {
964 			mutex_enter(&msp->ms_lock);
965 			metaslab_passivate(msp,
966 			    metaslab_weight_from_range_tree(msp));
967 			mutex_exit(&msp->ms_lock);
968 		}
969 		msp = mga->mga_secondary;
970 		if (msp != NULL) {
971 			mutex_enter(&msp->ms_lock);
972 			metaslab_passivate(msp,
973 			    metaslab_weight_from_range_tree(msp));
974 			mutex_exit(&msp->ms_lock);
975 		}
976 	}
977 
978 	mgprev = mg->mg_prev;
979 	mgnext = mg->mg_next;
980 
981 	if (mg == mgnext) {
982 		mgnext = NULL;
983 	} else {
984 		mgprev->mg_next = mgnext;
985 		mgnext->mg_prev = mgprev;
986 	}
987 	for (int i = 0; i < spa->spa_alloc_count; i++) {
988 		if (mc->mc_allocator[i].mca_rotor == mg)
989 			mc->mc_allocator[i].mca_rotor = mgnext;
990 	}
991 
992 	mg->mg_prev = NULL;
993 	mg->mg_next = NULL;
994 }
995 
996 boolean_t
997 metaslab_group_initialized(metaslab_group_t *mg)
998 {
999 	vdev_t *vd = mg->mg_vd;
1000 	vdev_stat_t *vs = &vd->vdev_stat;
1001 
1002 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1003 }
1004 
1005 uint64_t
1006 metaslab_group_get_space(metaslab_group_t *mg)
1007 {
1008 	/*
1009 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1010 	 * than vdev_ms_count, due to the embedded log metaslab.
1011 	 */
1012 	mutex_enter(&mg->mg_lock);
1013 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1014 	mutex_exit(&mg->mg_lock);
1015 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1016 }
1017 
1018 void
1019 metaslab_group_histogram_verify(metaslab_group_t *mg)
1020 {
1021 	uint64_t *mg_hist;
1022 	avl_tree_t *t = &mg->mg_metaslab_tree;
1023 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1024 
1025 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1026 		return;
1027 
1028 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1029 	    KM_SLEEP);
1030 
1031 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1032 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1033 
1034 	mutex_enter(&mg->mg_lock);
1035 	for (metaslab_t *msp = avl_first(t);
1036 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1037 		VERIFY3P(msp->ms_group, ==, mg);
1038 		/* skip if not active */
1039 		if (msp->ms_sm == NULL)
1040 			continue;
1041 
1042 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1043 			mg_hist[i + ashift] +=
1044 			    msp->ms_sm->sm_phys->smp_histogram[i];
1045 		}
1046 	}
1047 
1048 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1049 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1050 
1051 	mutex_exit(&mg->mg_lock);
1052 
1053 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1054 }
1055 
1056 static void
1057 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1058 {
1059 	metaslab_class_t *mc = mg->mg_class;
1060 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1061 
1062 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1063 	if (msp->ms_sm == NULL)
1064 		return;
1065 
1066 	mutex_enter(&mg->mg_lock);
1067 	mutex_enter(&mc->mc_lock);
1068 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1069 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1070 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1071 		mg->mg_histogram[i + ashift] +=
1072 		    msp->ms_sm->sm_phys->smp_histogram[i];
1073 		mc->mc_histogram[i + ashift] +=
1074 		    msp->ms_sm->sm_phys->smp_histogram[i];
1075 	}
1076 	mutex_exit(&mc->mc_lock);
1077 	mutex_exit(&mg->mg_lock);
1078 }
1079 
1080 void
1081 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1082 {
1083 	metaslab_class_t *mc = mg->mg_class;
1084 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1085 
1086 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1087 	if (msp->ms_sm == NULL)
1088 		return;
1089 
1090 	mutex_enter(&mg->mg_lock);
1091 	mutex_enter(&mc->mc_lock);
1092 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1093 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1094 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1095 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1096 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1097 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1098 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1099 
1100 		mg->mg_histogram[i + ashift] -=
1101 		    msp->ms_sm->sm_phys->smp_histogram[i];
1102 		mc->mc_histogram[i + ashift] -=
1103 		    msp->ms_sm->sm_phys->smp_histogram[i];
1104 	}
1105 	mutex_exit(&mc->mc_lock);
1106 	mutex_exit(&mg->mg_lock);
1107 }
1108 
1109 static void
1110 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1111 {
1112 	ASSERT(msp->ms_group == NULL);
1113 	mutex_enter(&mg->mg_lock);
1114 	msp->ms_group = mg;
1115 	msp->ms_weight = 0;
1116 	avl_add(&mg->mg_metaslab_tree, msp);
1117 	mutex_exit(&mg->mg_lock);
1118 
1119 	mutex_enter(&msp->ms_lock);
1120 	metaslab_group_histogram_add(mg, msp);
1121 	mutex_exit(&msp->ms_lock);
1122 }
1123 
1124 static void
1125 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1126 {
1127 	mutex_enter(&msp->ms_lock);
1128 	metaslab_group_histogram_remove(mg, msp);
1129 	mutex_exit(&msp->ms_lock);
1130 
1131 	mutex_enter(&mg->mg_lock);
1132 	ASSERT(msp->ms_group == mg);
1133 	avl_remove(&mg->mg_metaslab_tree, msp);
1134 
1135 	metaslab_class_t *mc = msp->ms_group->mg_class;
1136 	multilist_sublist_t *mls =
1137 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1138 	if (multilist_link_active(&msp->ms_class_txg_node))
1139 		multilist_sublist_remove(mls, msp);
1140 	multilist_sublist_unlock(mls);
1141 
1142 	msp->ms_group = NULL;
1143 	mutex_exit(&mg->mg_lock);
1144 }
1145 
1146 static void
1147 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1148 {
1149 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1150 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1151 	ASSERT(msp->ms_group == mg);
1152 
1153 	avl_remove(&mg->mg_metaslab_tree, msp);
1154 	msp->ms_weight = weight;
1155 	avl_add(&mg->mg_metaslab_tree, msp);
1156 
1157 }
1158 
1159 static void
1160 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1161 {
1162 	/*
1163 	 * Although in principle the weight can be any value, in
1164 	 * practice we do not use values in the range [1, 511].
1165 	 */
1166 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1167 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1168 
1169 	mutex_enter(&mg->mg_lock);
1170 	metaslab_group_sort_impl(mg, msp, weight);
1171 	mutex_exit(&mg->mg_lock);
1172 }
1173 
1174 /*
1175  * Calculate the fragmentation for a given metaslab group. We can use
1176  * a simple average here since all metaslabs within the group must have
1177  * the same size. The return value will be a value between 0 and 100
1178  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1179  * group have a fragmentation metric.
1180  */
1181 uint64_t
1182 metaslab_group_fragmentation(metaslab_group_t *mg)
1183 {
1184 	vdev_t *vd = mg->mg_vd;
1185 	uint64_t fragmentation = 0;
1186 	uint64_t valid_ms = 0;
1187 
1188 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1189 		metaslab_t *msp = vd->vdev_ms[m];
1190 
1191 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1192 			continue;
1193 		if (msp->ms_group != mg)
1194 			continue;
1195 
1196 		valid_ms++;
1197 		fragmentation += msp->ms_fragmentation;
1198 	}
1199 
1200 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1201 		return (ZFS_FRAG_INVALID);
1202 
1203 	fragmentation /= valid_ms;
1204 	ASSERT3U(fragmentation, <=, 100);
1205 	return (fragmentation);
1206 }
1207 
1208 /*
1209  * Determine if a given metaslab group should skip allocations. A metaslab
1210  * group should avoid allocations if its free capacity is less than the
1211  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1212  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1213  * that can still handle allocations. If the allocation throttle is enabled
1214  * then we skip allocations to devices that have reached their maximum
1215  * allocation queue depth unless the selected metaslab group is the only
1216  * eligible group remaining.
1217  */
1218 static boolean_t
1219 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1220     int flags, uint64_t psize, int allocator, int d)
1221 {
1222 	spa_t *spa = mg->mg_vd->vdev_spa;
1223 	metaslab_class_t *mc = mg->mg_class;
1224 
1225 	/*
1226 	 * We can only consider skipping this metaslab group if it's
1227 	 * in the normal metaslab class and there are other metaslab
1228 	 * groups to select from. Otherwise, we always consider it eligible
1229 	 * for allocations.
1230 	 */
1231 	if ((mc != spa_normal_class(spa) &&
1232 	    mc != spa_special_class(spa) &&
1233 	    mc != spa_dedup_class(spa)) ||
1234 	    mc->mc_groups <= 1)
1235 		return (B_TRUE);
1236 
1237 	/*
1238 	 * If the metaslab group's mg_allocatable flag is set (see comments
1239 	 * in metaslab_group_alloc_update() for more information) and
1240 	 * the allocation throttle is disabled then allow allocations to this
1241 	 * device. However, if the allocation throttle is enabled then
1242 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1243 	 * to determine if we should allow allocations to this metaslab group.
1244 	 * If all metaslab groups are no longer considered allocatable
1245 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1246 	 * gang block size then we allow allocations on this metaslab group
1247 	 * regardless of the mg_allocatable or throttle settings.
1248 	 */
1249 	if (mg->mg_allocatable) {
1250 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1251 		int64_t qdepth;
1252 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1253 
1254 		if (!mc->mc_alloc_throttle_enabled)
1255 			return (B_TRUE);
1256 
1257 		/*
1258 		 * If this metaslab group does not have any free space, then
1259 		 * there is no point in looking further.
1260 		 */
1261 		if (mg->mg_no_free_space)
1262 			return (B_FALSE);
1263 
1264 		/*
1265 		 * Some allocations (e.g., those coming from device removal
1266 		 * where the * allocations are not even counted in the
1267 		 * metaslab * allocation queues) are allowed to bypass
1268 		 * the throttle.
1269 		 */
1270 		if (flags & METASLAB_DONT_THROTTLE)
1271 			return (B_TRUE);
1272 
1273 		/*
1274 		 * Relax allocation throttling for ditto blocks.  Due to
1275 		 * random imbalances in allocation it tends to push copies
1276 		 * to one vdev, that looks a bit better at the moment.
1277 		 */
1278 		qmax = qmax * (4 + d) / 4;
1279 
1280 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1281 
1282 		/*
1283 		 * If this metaslab group is below its qmax or it's
1284 		 * the only allocatable metaslab group, then attempt
1285 		 * to allocate from it.
1286 		 */
1287 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1288 			return (B_TRUE);
1289 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1290 
1291 		/*
1292 		 * Since this metaslab group is at or over its qmax, we
1293 		 * need to determine if there are metaslab groups after this
1294 		 * one that might be able to handle this allocation. This is
1295 		 * racy since we can't hold the locks for all metaslab
1296 		 * groups at the same time when we make this check.
1297 		 */
1298 		for (metaslab_group_t *mgp = mg->mg_next;
1299 		    mgp != rotor; mgp = mgp->mg_next) {
1300 			metaslab_group_allocator_t *mgap =
1301 			    &mgp->mg_allocator[allocator];
1302 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1303 			qmax = qmax * (4 + d) / 4;
1304 			qdepth =
1305 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1306 
1307 			/*
1308 			 * If there is another metaslab group that
1309 			 * might be able to handle the allocation, then
1310 			 * we return false so that we skip this group.
1311 			 */
1312 			if (qdepth < qmax && !mgp->mg_no_free_space)
1313 				return (B_FALSE);
1314 		}
1315 
1316 		/*
1317 		 * We didn't find another group to handle the allocation
1318 		 * so we can't skip this metaslab group even though
1319 		 * we are at or over our qmax.
1320 		 */
1321 		return (B_TRUE);
1322 
1323 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1324 		return (B_TRUE);
1325 	}
1326 	return (B_FALSE);
1327 }
1328 
1329 /*
1330  * ==========================================================================
1331  * Range tree callbacks
1332  * ==========================================================================
1333  */
1334 
1335 /*
1336  * Comparison function for the private size-ordered tree using 32-bit
1337  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1338  */
1339 __attribute__((always_inline)) inline
1340 static int
1341 metaslab_rangesize32_compare(const void *x1, const void *x2)
1342 {
1343 	const range_seg32_t *r1 = x1;
1344 	const range_seg32_t *r2 = x2;
1345 
1346 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1347 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1348 
1349 	int cmp = TREE_CMP(rs_size1, rs_size2);
1350 
1351 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1352 }
1353 
1354 /*
1355  * Comparison function for the private size-ordered tree using 64-bit
1356  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1357  */
1358 __attribute__((always_inline)) inline
1359 static int
1360 metaslab_rangesize64_compare(const void *x1, const void *x2)
1361 {
1362 	const range_seg64_t *r1 = x1;
1363 	const range_seg64_t *r2 = x2;
1364 
1365 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1366 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1367 
1368 	int cmp = TREE_CMP(rs_size1, rs_size2);
1369 
1370 	return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1371 }
1372 
1373 typedef struct metaslab_rt_arg {
1374 	zfs_btree_t *mra_bt;
1375 	uint32_t mra_floor_shift;
1376 } metaslab_rt_arg_t;
1377 
1378 struct mssa_arg {
1379 	range_tree_t *rt;
1380 	metaslab_rt_arg_t *mra;
1381 };
1382 
1383 static void
1384 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1385 {
1386 	struct mssa_arg *mssap = arg;
1387 	range_tree_t *rt = mssap->rt;
1388 	metaslab_rt_arg_t *mrap = mssap->mra;
1389 	range_seg_max_t seg = {0};
1390 	rs_set_start(&seg, rt, start);
1391 	rs_set_end(&seg, rt, start + size);
1392 	metaslab_rt_add(rt, &seg, mrap);
1393 }
1394 
1395 static void
1396 metaslab_size_tree_full_load(range_tree_t *rt)
1397 {
1398 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1399 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1400 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1401 	mrap->mra_floor_shift = 0;
1402 	struct mssa_arg arg = {0};
1403 	arg.rt = rt;
1404 	arg.mra = mrap;
1405 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1406 }
1407 
1408 
1409 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1410     range_seg32_t, metaslab_rangesize32_compare)
1411 
1412 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1413     range_seg64_t, metaslab_rangesize64_compare)
1414 
1415 /*
1416  * Create any block allocator specific components. The current allocators
1417  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1418  */
1419 static void
1420 metaslab_rt_create(range_tree_t *rt, void *arg)
1421 {
1422 	metaslab_rt_arg_t *mrap = arg;
1423 	zfs_btree_t *size_tree = mrap->mra_bt;
1424 
1425 	size_t size;
1426 	int (*compare) (const void *, const void *);
1427 	bt_find_in_buf_f bt_find;
1428 	switch (rt->rt_type) {
1429 	case RANGE_SEG32:
1430 		size = sizeof (range_seg32_t);
1431 		compare = metaslab_rangesize32_compare;
1432 		bt_find = metaslab_rt_find_rangesize32_in_buf;
1433 		break;
1434 	case RANGE_SEG64:
1435 		size = sizeof (range_seg64_t);
1436 		compare = metaslab_rangesize64_compare;
1437 		bt_find = metaslab_rt_find_rangesize64_in_buf;
1438 		break;
1439 	default:
1440 		panic("Invalid range seg type %d", rt->rt_type);
1441 	}
1442 	zfs_btree_create(size_tree, compare, bt_find, size);
1443 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1444 }
1445 
1446 static void
1447 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1448 {
1449 	(void) rt;
1450 	metaslab_rt_arg_t *mrap = arg;
1451 	zfs_btree_t *size_tree = mrap->mra_bt;
1452 
1453 	zfs_btree_destroy(size_tree);
1454 	kmem_free(mrap, sizeof (*mrap));
1455 }
1456 
1457 static void
1458 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1459 {
1460 	metaslab_rt_arg_t *mrap = arg;
1461 	zfs_btree_t *size_tree = mrap->mra_bt;
1462 
1463 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1464 	    (1ULL << mrap->mra_floor_shift))
1465 		return;
1466 
1467 	zfs_btree_add(size_tree, rs);
1468 }
1469 
1470 static void
1471 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1472 {
1473 	metaslab_rt_arg_t *mrap = arg;
1474 	zfs_btree_t *size_tree = mrap->mra_bt;
1475 
1476 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1477 	    mrap->mra_floor_shift))
1478 		return;
1479 
1480 	zfs_btree_remove(size_tree, rs);
1481 }
1482 
1483 static void
1484 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1485 {
1486 	metaslab_rt_arg_t *mrap = arg;
1487 	zfs_btree_t *size_tree = mrap->mra_bt;
1488 	zfs_btree_clear(size_tree);
1489 	zfs_btree_destroy(size_tree);
1490 
1491 	metaslab_rt_create(rt, arg);
1492 }
1493 
1494 static const range_tree_ops_t metaslab_rt_ops = {
1495 	.rtop_create = metaslab_rt_create,
1496 	.rtop_destroy = metaslab_rt_destroy,
1497 	.rtop_add = metaslab_rt_add,
1498 	.rtop_remove = metaslab_rt_remove,
1499 	.rtop_vacate = metaslab_rt_vacate
1500 };
1501 
1502 /*
1503  * ==========================================================================
1504  * Common allocator routines
1505  * ==========================================================================
1506  */
1507 
1508 /*
1509  * Return the maximum contiguous segment within the metaslab.
1510  */
1511 uint64_t
1512 metaslab_largest_allocatable(metaslab_t *msp)
1513 {
1514 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1515 	range_seg_t *rs;
1516 
1517 	if (t == NULL)
1518 		return (0);
1519 	if (zfs_btree_numnodes(t) == 0)
1520 		metaslab_size_tree_full_load(msp->ms_allocatable);
1521 
1522 	rs = zfs_btree_last(t, NULL);
1523 	if (rs == NULL)
1524 		return (0);
1525 
1526 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1527 	    msp->ms_allocatable));
1528 }
1529 
1530 /*
1531  * Return the maximum contiguous segment within the unflushed frees of this
1532  * metaslab.
1533  */
1534 static uint64_t
1535 metaslab_largest_unflushed_free(metaslab_t *msp)
1536 {
1537 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1538 
1539 	if (msp->ms_unflushed_frees == NULL)
1540 		return (0);
1541 
1542 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1543 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1544 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1545 	    NULL);
1546 	if (rs == NULL)
1547 		return (0);
1548 
1549 	/*
1550 	 * When a range is freed from the metaslab, that range is added to
1551 	 * both the unflushed frees and the deferred frees. While the block
1552 	 * will eventually be usable, if the metaslab were loaded the range
1553 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1554 	 * txgs had passed.  As a result, when attempting to estimate an upper
1555 	 * bound for the largest currently-usable free segment in the
1556 	 * metaslab, we need to not consider any ranges currently in the defer
1557 	 * trees. This algorithm approximates the largest available chunk in
1558 	 * the largest range in the unflushed_frees tree by taking the first
1559 	 * chunk.  While this may be a poor estimate, it should only remain so
1560 	 * briefly and should eventually self-correct as frees are no longer
1561 	 * deferred. Similar logic applies to the ms_freed tree. See
1562 	 * metaslab_load() for more details.
1563 	 *
1564 	 * There are two primary sources of inaccuracy in this estimate. Both
1565 	 * are tolerated for performance reasons. The first source is that we
1566 	 * only check the largest segment for overlaps. Smaller segments may
1567 	 * have more favorable overlaps with the other trees, resulting in
1568 	 * larger usable chunks.  Second, we only look at the first chunk in
1569 	 * the largest segment; there may be other usable chunks in the
1570 	 * largest segment, but we ignore them.
1571 	 */
1572 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1573 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1574 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1575 		uint64_t start = 0;
1576 		uint64_t size = 0;
1577 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1578 		    rsize, &start, &size);
1579 		if (found) {
1580 			if (rstart == start)
1581 				return (0);
1582 			rsize = start - rstart;
1583 		}
1584 	}
1585 
1586 	uint64_t start = 0;
1587 	uint64_t size = 0;
1588 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1589 	    rsize, &start, &size);
1590 	if (found)
1591 		rsize = start - rstart;
1592 
1593 	return (rsize);
1594 }
1595 
1596 static range_seg_t *
1597 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1598     uint64_t size, zfs_btree_index_t *where)
1599 {
1600 	range_seg_t *rs;
1601 	range_seg_max_t rsearch;
1602 
1603 	rs_set_start(&rsearch, rt, start);
1604 	rs_set_end(&rsearch, rt, start + size);
1605 
1606 	rs = zfs_btree_find(t, &rsearch, where);
1607 	if (rs == NULL) {
1608 		rs = zfs_btree_next(t, where, where);
1609 	}
1610 
1611 	return (rs);
1612 }
1613 
1614 /*
1615  * This is a helper function that can be used by the allocator to find a
1616  * suitable block to allocate. This will search the specified B-tree looking
1617  * for a block that matches the specified criteria.
1618  */
1619 static uint64_t
1620 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1621     uint64_t max_search)
1622 {
1623 	if (*cursor == 0)
1624 		*cursor = rt->rt_start;
1625 	zfs_btree_t *bt = &rt->rt_root;
1626 	zfs_btree_index_t where;
1627 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1628 	uint64_t first_found;
1629 	int count_searched = 0;
1630 
1631 	if (rs != NULL)
1632 		first_found = rs_get_start(rs, rt);
1633 
1634 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1635 	    max_search || count_searched < metaslab_min_search_count)) {
1636 		uint64_t offset = rs_get_start(rs, rt);
1637 		if (offset + size <= rs_get_end(rs, rt)) {
1638 			*cursor = offset + size;
1639 			return (offset);
1640 		}
1641 		rs = zfs_btree_next(bt, &where, &where);
1642 		count_searched++;
1643 	}
1644 
1645 	*cursor = 0;
1646 	return (-1ULL);
1647 }
1648 
1649 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
1650 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
1651 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
1652 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1653 
1654 static metaslab_ops_t metaslab_allocators[] = {
1655 	{ "dynamic", metaslab_df_alloc },
1656 	{ "cursor", metaslab_cf_alloc },
1657 	{ "new-dynamic", metaslab_ndf_alloc },
1658 };
1659 
1660 static int
1661 spa_find_allocator_byname(const char *val)
1662 {
1663 	int a = ARRAY_SIZE(metaslab_allocators) - 1;
1664 	if (strcmp("new-dynamic", val) == 0)
1665 		return (-1); /* remove when ndf is working */
1666 	for (; a >= 0; a--) {
1667 		if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1668 			return (a);
1669 	}
1670 	return (-1);
1671 }
1672 
1673 void
1674 spa_set_allocator(spa_t *spa, const char *allocator)
1675 {
1676 	int a = spa_find_allocator_byname(allocator);
1677 	if (a < 0) a = 0;
1678 	spa->spa_active_allocator = a;
1679 	zfs_dbgmsg("spa allocator: %s\n", metaslab_allocators[a].msop_name);
1680 }
1681 
1682 int
1683 spa_get_allocator(spa_t *spa)
1684 {
1685 	return (spa->spa_active_allocator);
1686 }
1687 
1688 #if defined(_KERNEL)
1689 int
1690 param_set_active_allocator_common(const char *val)
1691 {
1692 	char *p;
1693 
1694 	if (val == NULL)
1695 		return (SET_ERROR(EINVAL));
1696 
1697 	if ((p = strchr(val, '\n')) != NULL)
1698 		*p = '\0';
1699 
1700 	int a = spa_find_allocator_byname(val);
1701 	if (a < 0)
1702 		return (SET_ERROR(EINVAL));
1703 
1704 	zfs_active_allocator = metaslab_allocators[a].msop_name;
1705 	return (0);
1706 }
1707 #endif
1708 
1709 metaslab_ops_t *
1710 metaslab_allocator(spa_t *spa)
1711 {
1712 	int allocator = spa_get_allocator(spa);
1713 	return (&metaslab_allocators[allocator]);
1714 }
1715 
1716 /*
1717  * ==========================================================================
1718  * Dynamic Fit (df) block allocator
1719  *
1720  * Search for a free chunk of at least this size, starting from the last
1721  * offset (for this alignment of block) looking for up to
1722  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1723  * found within 16MB, then return a free chunk of exactly the requested size (or
1724  * larger).
1725  *
1726  * If it seems like searching from the last offset will be unproductive, skip
1727  * that and just return a free chunk of exactly the requested size (or larger).
1728  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1729  * mechanism is probably not very useful and may be removed in the future.
1730  *
1731  * The behavior when not searching can be changed to return the largest free
1732  * chunk, instead of a free chunk of exactly the requested size, by setting
1733  * metaslab_df_use_largest_segment.
1734  * ==========================================================================
1735  */
1736 static uint64_t
1737 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1738 {
1739 	/*
1740 	 * Find the largest power of 2 block size that evenly divides the
1741 	 * requested size. This is used to try to allocate blocks with similar
1742 	 * alignment from the same area of the metaslab (i.e. same cursor
1743 	 * bucket) but it does not guarantee that other allocations sizes
1744 	 * may exist in the same region.
1745 	 */
1746 	uint64_t align = size & -size;
1747 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1748 	range_tree_t *rt = msp->ms_allocatable;
1749 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1750 	uint64_t offset;
1751 
1752 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1753 
1754 	/*
1755 	 * If we're running low on space, find a segment based on size,
1756 	 * rather than iterating based on offset.
1757 	 */
1758 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1759 	    free_pct < metaslab_df_free_pct) {
1760 		offset = -1;
1761 	} else {
1762 		offset = metaslab_block_picker(rt,
1763 		    cursor, size, metaslab_df_max_search);
1764 	}
1765 
1766 	if (offset == -1) {
1767 		range_seg_t *rs;
1768 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1769 			metaslab_size_tree_full_load(msp->ms_allocatable);
1770 
1771 		if (metaslab_df_use_largest_segment) {
1772 			/* use largest free segment */
1773 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1774 		} else {
1775 			zfs_btree_index_t where;
1776 			/* use segment of this size, or next largest */
1777 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1778 			    rt, msp->ms_start, size, &where);
1779 		}
1780 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1781 		    rt)) {
1782 			offset = rs_get_start(rs, rt);
1783 			*cursor = offset + size;
1784 		}
1785 	}
1786 
1787 	return (offset);
1788 }
1789 
1790 /*
1791  * ==========================================================================
1792  * Cursor fit block allocator -
1793  * Select the largest region in the metaslab, set the cursor to the beginning
1794  * of the range and the cursor_end to the end of the range. As allocations
1795  * are made advance the cursor. Continue allocating from the cursor until
1796  * the range is exhausted and then find a new range.
1797  * ==========================================================================
1798  */
1799 static uint64_t
1800 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1801 {
1802 	range_tree_t *rt = msp->ms_allocatable;
1803 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1804 	uint64_t *cursor = &msp->ms_lbas[0];
1805 	uint64_t *cursor_end = &msp->ms_lbas[1];
1806 	uint64_t offset = 0;
1807 
1808 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1809 
1810 	ASSERT3U(*cursor_end, >=, *cursor);
1811 
1812 	if ((*cursor + size) > *cursor_end) {
1813 		range_seg_t *rs;
1814 
1815 		if (zfs_btree_numnodes(t) == 0)
1816 			metaslab_size_tree_full_load(msp->ms_allocatable);
1817 		rs = zfs_btree_last(t, NULL);
1818 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1819 		    size)
1820 			return (-1ULL);
1821 
1822 		*cursor = rs_get_start(rs, rt);
1823 		*cursor_end = rs_get_end(rs, rt);
1824 	}
1825 
1826 	offset = *cursor;
1827 	*cursor += size;
1828 
1829 	return (offset);
1830 }
1831 
1832 /*
1833  * ==========================================================================
1834  * New dynamic fit allocator -
1835  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1836  * contiguous blocks. If no region is found then just use the largest segment
1837  * that remains.
1838  * ==========================================================================
1839  */
1840 
1841 /*
1842  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1843  * to request from the allocator.
1844  */
1845 uint64_t metaslab_ndf_clump_shift = 4;
1846 
1847 static uint64_t
1848 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1849 {
1850 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1851 	range_tree_t *rt = msp->ms_allocatable;
1852 	zfs_btree_index_t where;
1853 	range_seg_t *rs;
1854 	range_seg_max_t rsearch;
1855 	uint64_t hbit = highbit64(size);
1856 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1857 	uint64_t max_size = metaslab_largest_allocatable(msp);
1858 
1859 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1860 
1861 	if (max_size < size)
1862 		return (-1ULL);
1863 
1864 	rs_set_start(&rsearch, rt, *cursor);
1865 	rs_set_end(&rsearch, rt, *cursor + size);
1866 
1867 	rs = zfs_btree_find(t, &rsearch, &where);
1868 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1869 		t = &msp->ms_allocatable_by_size;
1870 
1871 		rs_set_start(&rsearch, rt, 0);
1872 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1873 		    metaslab_ndf_clump_shift)));
1874 
1875 		rs = zfs_btree_find(t, &rsearch, &where);
1876 		if (rs == NULL)
1877 			rs = zfs_btree_next(t, &where, &where);
1878 		ASSERT(rs != NULL);
1879 	}
1880 
1881 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1882 		*cursor = rs_get_start(rs, rt) + size;
1883 		return (rs_get_start(rs, rt));
1884 	}
1885 	return (-1ULL);
1886 }
1887 
1888 /*
1889  * ==========================================================================
1890  * Metaslabs
1891  * ==========================================================================
1892  */
1893 
1894 /*
1895  * Wait for any in-progress metaslab loads to complete.
1896  */
1897 static void
1898 metaslab_load_wait(metaslab_t *msp)
1899 {
1900 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1901 
1902 	while (msp->ms_loading) {
1903 		ASSERT(!msp->ms_loaded);
1904 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1905 	}
1906 }
1907 
1908 /*
1909  * Wait for any in-progress flushing to complete.
1910  */
1911 static void
1912 metaslab_flush_wait(metaslab_t *msp)
1913 {
1914 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1915 
1916 	while (msp->ms_flushing)
1917 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1918 }
1919 
1920 static unsigned int
1921 metaslab_idx_func(multilist_t *ml, void *arg)
1922 {
1923 	metaslab_t *msp = arg;
1924 
1925 	/*
1926 	 * ms_id values are allocated sequentially, so full 64bit
1927 	 * division would be a waste of time, so limit it to 32 bits.
1928 	 */
1929 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1930 }
1931 
1932 uint64_t
1933 metaslab_allocated_space(metaslab_t *msp)
1934 {
1935 	return (msp->ms_allocated_space);
1936 }
1937 
1938 /*
1939  * Verify that the space accounting on disk matches the in-core range_trees.
1940  */
1941 static void
1942 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1943 {
1944 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1945 	uint64_t allocating = 0;
1946 	uint64_t sm_free_space, msp_free_space;
1947 
1948 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1949 	ASSERT(!msp->ms_condensing);
1950 
1951 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1952 		return;
1953 
1954 	/*
1955 	 * We can only verify the metaslab space when we're called
1956 	 * from syncing context with a loaded metaslab that has an
1957 	 * allocated space map. Calling this in non-syncing context
1958 	 * does not provide a consistent view of the metaslab since
1959 	 * we're performing allocations in the future.
1960 	 */
1961 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1962 	    !msp->ms_loaded)
1963 		return;
1964 
1965 	/*
1966 	 * Even though the smp_alloc field can get negative,
1967 	 * when it comes to a metaslab's space map, that should
1968 	 * never be the case.
1969 	 */
1970 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1971 
1972 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1973 	    range_tree_space(msp->ms_unflushed_frees));
1974 
1975 	ASSERT3U(metaslab_allocated_space(msp), ==,
1976 	    space_map_allocated(msp->ms_sm) +
1977 	    range_tree_space(msp->ms_unflushed_allocs) -
1978 	    range_tree_space(msp->ms_unflushed_frees));
1979 
1980 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1981 
1982 	/*
1983 	 * Account for future allocations since we would have
1984 	 * already deducted that space from the ms_allocatable.
1985 	 */
1986 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1987 		allocating +=
1988 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1989 	}
1990 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1991 	    msp->ms_allocating_total);
1992 
1993 	ASSERT3U(msp->ms_deferspace, ==,
1994 	    range_tree_space(msp->ms_defer[0]) +
1995 	    range_tree_space(msp->ms_defer[1]));
1996 
1997 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1998 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1999 
2000 	VERIFY3U(sm_free_space, ==, msp_free_space);
2001 }
2002 
2003 static void
2004 metaslab_aux_histograms_clear(metaslab_t *msp)
2005 {
2006 	/*
2007 	 * Auxiliary histograms are only cleared when resetting them,
2008 	 * which can only happen while the metaslab is loaded.
2009 	 */
2010 	ASSERT(msp->ms_loaded);
2011 
2012 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2013 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
2014 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2015 }
2016 
2017 static void
2018 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2019     range_tree_t *rt)
2020 {
2021 	/*
2022 	 * This is modeled after space_map_histogram_add(), so refer to that
2023 	 * function for implementation details. We want this to work like
2024 	 * the space map histogram, and not the range tree histogram, as we
2025 	 * are essentially constructing a delta that will be later subtracted
2026 	 * from the space map histogram.
2027 	 */
2028 	int idx = 0;
2029 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
2030 		ASSERT3U(i, >=, idx + shift);
2031 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2032 
2033 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2034 			ASSERT3U(idx + shift, ==, i);
2035 			idx++;
2036 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2037 		}
2038 	}
2039 }
2040 
2041 /*
2042  * Called at every sync pass that the metaslab gets synced.
2043  *
2044  * The reason is that we want our auxiliary histograms to be updated
2045  * wherever the metaslab's space map histogram is updated. This way
2046  * we stay consistent on which parts of the metaslab space map's
2047  * histogram are currently not available for allocations (e.g because
2048  * they are in the defer, freed, and freeing trees).
2049  */
2050 static void
2051 metaslab_aux_histograms_update(metaslab_t *msp)
2052 {
2053 	space_map_t *sm = msp->ms_sm;
2054 	ASSERT(sm != NULL);
2055 
2056 	/*
2057 	 * This is similar to the metaslab's space map histogram updates
2058 	 * that take place in metaslab_sync(). The only difference is that
2059 	 * we only care about segments that haven't made it into the
2060 	 * ms_allocatable tree yet.
2061 	 */
2062 	if (msp->ms_loaded) {
2063 		metaslab_aux_histograms_clear(msp);
2064 
2065 		metaslab_aux_histogram_add(msp->ms_synchist,
2066 		    sm->sm_shift, msp->ms_freed);
2067 
2068 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2069 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2070 			    sm->sm_shift, msp->ms_defer[t]);
2071 		}
2072 	}
2073 
2074 	metaslab_aux_histogram_add(msp->ms_synchist,
2075 	    sm->sm_shift, msp->ms_freeing);
2076 }
2077 
2078 /*
2079  * Called every time we are done syncing (writing to) the metaslab,
2080  * i.e. at the end of each sync pass.
2081  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2082  */
2083 static void
2084 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2085 {
2086 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2087 	space_map_t *sm = msp->ms_sm;
2088 
2089 	if (sm == NULL) {
2090 		/*
2091 		 * We came here from metaslab_init() when creating/opening a
2092 		 * pool, looking at a metaslab that hasn't had any allocations
2093 		 * yet.
2094 		 */
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * This is similar to the actions that we take for the ms_freed
2100 	 * and ms_defer trees in metaslab_sync_done().
2101 	 */
2102 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2103 	if (defer_allowed) {
2104 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2105 		    sizeof (msp->ms_synchist));
2106 	} else {
2107 		memset(msp->ms_deferhist[hist_index], 0,
2108 		    sizeof (msp->ms_deferhist[hist_index]));
2109 	}
2110 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2111 }
2112 
2113 /*
2114  * Ensure that the metaslab's weight and fragmentation are consistent
2115  * with the contents of the histogram (either the range tree's histogram
2116  * or the space map's depending whether the metaslab is loaded).
2117  */
2118 static void
2119 metaslab_verify_weight_and_frag(metaslab_t *msp)
2120 {
2121 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2122 
2123 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2124 		return;
2125 
2126 	/*
2127 	 * We can end up here from vdev_remove_complete(), in which case we
2128 	 * cannot do these assertions because we hold spa config locks and
2129 	 * thus we are not allowed to read from the DMU.
2130 	 *
2131 	 * We check if the metaslab group has been removed and if that's
2132 	 * the case we return immediately as that would mean that we are
2133 	 * here from the aforementioned code path.
2134 	 */
2135 	if (msp->ms_group == NULL)
2136 		return;
2137 
2138 	/*
2139 	 * Devices being removed always return a weight of 0 and leave
2140 	 * fragmentation and ms_max_size as is - there is nothing for
2141 	 * us to verify here.
2142 	 */
2143 	vdev_t *vd = msp->ms_group->mg_vd;
2144 	if (vd->vdev_removing)
2145 		return;
2146 
2147 	/*
2148 	 * If the metaslab is dirty it probably means that we've done
2149 	 * some allocations or frees that have changed our histograms
2150 	 * and thus the weight.
2151 	 */
2152 	for (int t = 0; t < TXG_SIZE; t++) {
2153 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2154 			return;
2155 	}
2156 
2157 	/*
2158 	 * This verification checks that our in-memory state is consistent
2159 	 * with what's on disk. If the pool is read-only then there aren't
2160 	 * any changes and we just have the initially-loaded state.
2161 	 */
2162 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2163 		return;
2164 
2165 	/* some extra verification for in-core tree if you can */
2166 	if (msp->ms_loaded) {
2167 		range_tree_stat_verify(msp->ms_allocatable);
2168 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2169 		    msp->ms_allocatable));
2170 	}
2171 
2172 	uint64_t weight = msp->ms_weight;
2173 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2174 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2175 	uint64_t frag = msp->ms_fragmentation;
2176 	uint64_t max_segsize = msp->ms_max_size;
2177 
2178 	msp->ms_weight = 0;
2179 	msp->ms_fragmentation = 0;
2180 
2181 	/*
2182 	 * This function is used for verification purposes and thus should
2183 	 * not introduce any side-effects/mutations on the system's state.
2184 	 *
2185 	 * Regardless of whether metaslab_weight() thinks this metaslab
2186 	 * should be active or not, we want to ensure that the actual weight
2187 	 * (and therefore the value of ms_weight) would be the same if it
2188 	 * was to be recalculated at this point.
2189 	 *
2190 	 * In addition we set the nodirty flag so metaslab_weight() does
2191 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2192 	 * force condensing to upgrade the metaslab spacemaps).
2193 	 */
2194 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2195 
2196 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2197 
2198 	/*
2199 	 * If the weight type changed then there is no point in doing
2200 	 * verification. Revert fields to their original values.
2201 	 */
2202 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2203 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2204 		msp->ms_fragmentation = frag;
2205 		msp->ms_weight = weight;
2206 		return;
2207 	}
2208 
2209 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2210 	VERIFY3U(msp->ms_weight, ==, weight);
2211 }
2212 
2213 /*
2214  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2215  * this class that was used longest ago, and attempt to unload it.  We don't
2216  * want to spend too much time in this loop to prevent performance
2217  * degradation, and we expect that most of the time this operation will
2218  * succeed. Between that and the normal unloading processing during txg sync,
2219  * we expect this to keep the metaslab memory usage under control.
2220  */
2221 static void
2222 metaslab_potentially_evict(metaslab_class_t *mc)
2223 {
2224 #ifdef _KERNEL
2225 	uint64_t allmem = arc_all_memory();
2226 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2227 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2228 	uint_t tries = 0;
2229 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2230 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2231 	    tries++) {
2232 		unsigned int idx = multilist_get_random_index(
2233 		    &mc->mc_metaslab_txg_list);
2234 		multilist_sublist_t *mls =
2235 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2236 		metaslab_t *msp = multilist_sublist_head(mls);
2237 		multilist_sublist_unlock(mls);
2238 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2239 		    inuse * size) {
2240 			VERIFY3P(mls, ==, multilist_sublist_lock(
2241 			    &mc->mc_metaslab_txg_list, idx));
2242 			ASSERT3U(idx, ==,
2243 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2244 
2245 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2246 				multilist_sublist_unlock(mls);
2247 				break;
2248 			}
2249 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2250 			multilist_sublist_unlock(mls);
2251 			/*
2252 			 * If the metaslab is currently loading there are two
2253 			 * cases. If it's the metaslab we're evicting, we
2254 			 * can't continue on or we'll panic when we attempt to
2255 			 * recursively lock the mutex. If it's another
2256 			 * metaslab that's loading, it can be safely skipped,
2257 			 * since we know it's very new and therefore not a
2258 			 * good eviction candidate. We check later once the
2259 			 * lock is held that the metaslab is fully loaded
2260 			 * before actually unloading it.
2261 			 */
2262 			if (msp->ms_loading) {
2263 				msp = next_msp;
2264 				inuse =
2265 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2266 				continue;
2267 			}
2268 			/*
2269 			 * We can't unload metaslabs with no spacemap because
2270 			 * they're not ready to be unloaded yet. We can't
2271 			 * unload metaslabs with outstanding allocations
2272 			 * because doing so could cause the metaslab's weight
2273 			 * to decrease while it's unloaded, which violates an
2274 			 * invariant that we use to prevent unnecessary
2275 			 * loading. We also don't unload metaslabs that are
2276 			 * currently active because they are high-weight
2277 			 * metaslabs that are likely to be used in the near
2278 			 * future.
2279 			 */
2280 			mutex_enter(&msp->ms_lock);
2281 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2282 			    msp->ms_allocating_total == 0) {
2283 				metaslab_unload(msp);
2284 			}
2285 			mutex_exit(&msp->ms_lock);
2286 			msp = next_msp;
2287 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2288 		}
2289 	}
2290 #else
2291 	(void) mc, (void) zfs_metaslab_mem_limit;
2292 #endif
2293 }
2294 
2295 static int
2296 metaslab_load_impl(metaslab_t *msp)
2297 {
2298 	int error = 0;
2299 
2300 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2301 	ASSERT(msp->ms_loading);
2302 	ASSERT(!msp->ms_condensing);
2303 
2304 	/*
2305 	 * We temporarily drop the lock to unblock other operations while we
2306 	 * are reading the space map. Therefore, metaslab_sync() and
2307 	 * metaslab_sync_done() can run at the same time as we do.
2308 	 *
2309 	 * If we are using the log space maps, metaslab_sync() can't write to
2310 	 * the metaslab's space map while we are loading as we only write to
2311 	 * it when we are flushing the metaslab, and that can't happen while
2312 	 * we are loading it.
2313 	 *
2314 	 * If we are not using log space maps though, metaslab_sync() can
2315 	 * append to the space map while we are loading. Therefore we load
2316 	 * only entries that existed when we started the load. Additionally,
2317 	 * metaslab_sync_done() has to wait for the load to complete because
2318 	 * there are potential races like metaslab_load() loading parts of the
2319 	 * space map that are currently being appended by metaslab_sync(). If
2320 	 * we didn't, the ms_allocatable would have entries that
2321 	 * metaslab_sync_done() would try to re-add later.
2322 	 *
2323 	 * That's why before dropping the lock we remember the synced length
2324 	 * of the metaslab and read up to that point of the space map,
2325 	 * ignoring entries appended by metaslab_sync() that happen after we
2326 	 * drop the lock.
2327 	 */
2328 	uint64_t length = msp->ms_synced_length;
2329 	mutex_exit(&msp->ms_lock);
2330 
2331 	hrtime_t load_start = gethrtime();
2332 	metaslab_rt_arg_t *mrap;
2333 	if (msp->ms_allocatable->rt_arg == NULL) {
2334 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2335 	} else {
2336 		mrap = msp->ms_allocatable->rt_arg;
2337 		msp->ms_allocatable->rt_ops = NULL;
2338 		msp->ms_allocatable->rt_arg = NULL;
2339 	}
2340 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2341 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2342 
2343 	if (msp->ms_sm != NULL) {
2344 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2345 		    SM_FREE, length);
2346 
2347 		/* Now, populate the size-sorted tree. */
2348 		metaslab_rt_create(msp->ms_allocatable, mrap);
2349 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2350 		msp->ms_allocatable->rt_arg = mrap;
2351 
2352 		struct mssa_arg arg = {0};
2353 		arg.rt = msp->ms_allocatable;
2354 		arg.mra = mrap;
2355 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2356 		    &arg);
2357 	} else {
2358 		/*
2359 		 * Add the size-sorted tree first, since we don't need to load
2360 		 * the metaslab from the spacemap.
2361 		 */
2362 		metaslab_rt_create(msp->ms_allocatable, mrap);
2363 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2364 		msp->ms_allocatable->rt_arg = mrap;
2365 		/*
2366 		 * The space map has not been allocated yet, so treat
2367 		 * all the space in the metaslab as free and add it to the
2368 		 * ms_allocatable tree.
2369 		 */
2370 		range_tree_add(msp->ms_allocatable,
2371 		    msp->ms_start, msp->ms_size);
2372 
2373 		if (msp->ms_new) {
2374 			/*
2375 			 * If the ms_sm doesn't exist, this means that this
2376 			 * metaslab hasn't gone through metaslab_sync() and
2377 			 * thus has never been dirtied. So we shouldn't
2378 			 * expect any unflushed allocs or frees from previous
2379 			 * TXGs.
2380 			 */
2381 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2382 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2383 		}
2384 	}
2385 
2386 	/*
2387 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2388 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2389 	 * while we are about to use them and populate the ms_allocatable.
2390 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2391 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2392 	 */
2393 	mutex_enter(&msp->ms_sync_lock);
2394 	mutex_enter(&msp->ms_lock);
2395 
2396 	ASSERT(!msp->ms_condensing);
2397 	ASSERT(!msp->ms_flushing);
2398 
2399 	if (error != 0) {
2400 		mutex_exit(&msp->ms_sync_lock);
2401 		return (error);
2402 	}
2403 
2404 	ASSERT3P(msp->ms_group, !=, NULL);
2405 	msp->ms_loaded = B_TRUE;
2406 
2407 	/*
2408 	 * Apply all the unflushed changes to ms_allocatable right
2409 	 * away so any manipulations we do below have a clear view
2410 	 * of what is allocated and what is free.
2411 	 */
2412 	range_tree_walk(msp->ms_unflushed_allocs,
2413 	    range_tree_remove, msp->ms_allocatable);
2414 	range_tree_walk(msp->ms_unflushed_frees,
2415 	    range_tree_add, msp->ms_allocatable);
2416 
2417 	ASSERT3P(msp->ms_group, !=, NULL);
2418 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2419 	if (spa_syncing_log_sm(spa) != NULL) {
2420 		ASSERT(spa_feature_is_enabled(spa,
2421 		    SPA_FEATURE_LOG_SPACEMAP));
2422 
2423 		/*
2424 		 * If we use a log space map we add all the segments
2425 		 * that are in ms_unflushed_frees so they are available
2426 		 * for allocation.
2427 		 *
2428 		 * ms_allocatable needs to contain all free segments
2429 		 * that are ready for allocations (thus not segments
2430 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2431 		 * But if we grab the lock in this code path at a sync
2432 		 * pass later that 1, then it also contains the
2433 		 * segments of ms_freed (they were added to it earlier
2434 		 * in this path through ms_unflushed_frees). So we
2435 		 * need to remove all the segments that exist in
2436 		 * ms_freed from ms_allocatable as they will be added
2437 		 * later in metaslab_sync_done().
2438 		 *
2439 		 * When there's no log space map, the ms_allocatable
2440 		 * correctly doesn't contain any segments that exist
2441 		 * in ms_freed [see ms_synced_length].
2442 		 */
2443 		range_tree_walk(msp->ms_freed,
2444 		    range_tree_remove, msp->ms_allocatable);
2445 	}
2446 
2447 	/*
2448 	 * If we are not using the log space map, ms_allocatable
2449 	 * contains the segments that exist in the ms_defer trees
2450 	 * [see ms_synced_length]. Thus we need to remove them
2451 	 * from ms_allocatable as they will be added again in
2452 	 * metaslab_sync_done().
2453 	 *
2454 	 * If we are using the log space map, ms_allocatable still
2455 	 * contains the segments that exist in the ms_defer trees.
2456 	 * Not because it read them through the ms_sm though. But
2457 	 * because these segments are part of ms_unflushed_frees
2458 	 * whose segments we add to ms_allocatable earlier in this
2459 	 * code path.
2460 	 */
2461 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2462 		range_tree_walk(msp->ms_defer[t],
2463 		    range_tree_remove, msp->ms_allocatable);
2464 	}
2465 
2466 	/*
2467 	 * Call metaslab_recalculate_weight_and_sort() now that the
2468 	 * metaslab is loaded so we get the metaslab's real weight.
2469 	 *
2470 	 * Unless this metaslab was created with older software and
2471 	 * has not yet been converted to use segment-based weight, we
2472 	 * expect the new weight to be better or equal to the weight
2473 	 * that the metaslab had while it was not loaded. This is
2474 	 * because the old weight does not take into account the
2475 	 * consolidation of adjacent segments between TXGs. [see
2476 	 * comment for ms_synchist and ms_deferhist[] for more info]
2477 	 */
2478 	uint64_t weight = msp->ms_weight;
2479 	uint64_t max_size = msp->ms_max_size;
2480 	metaslab_recalculate_weight_and_sort(msp);
2481 	if (!WEIGHT_IS_SPACEBASED(weight))
2482 		ASSERT3U(weight, <=, msp->ms_weight);
2483 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2484 	ASSERT3U(max_size, <=, msp->ms_max_size);
2485 	hrtime_t load_end = gethrtime();
2486 	msp->ms_load_time = load_end;
2487 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2488 	    "ms_id %llu, smp_length %llu, "
2489 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2490 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2491 	    "loading_time %lld ms, ms_max_size %llu, "
2492 	    "max size error %lld, "
2493 	    "old_weight %llx, new_weight %llx",
2494 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2495 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2496 	    (u_longlong_t)msp->ms_id,
2497 	    (u_longlong_t)space_map_length(msp->ms_sm),
2498 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2499 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2500 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2501 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2502 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2503 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2504 	    (longlong_t)((load_end - load_start) / 1000000),
2505 	    (u_longlong_t)msp->ms_max_size,
2506 	    (u_longlong_t)msp->ms_max_size - max_size,
2507 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2508 
2509 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2510 	mutex_exit(&msp->ms_sync_lock);
2511 	return (0);
2512 }
2513 
2514 int
2515 metaslab_load(metaslab_t *msp)
2516 {
2517 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2518 
2519 	/*
2520 	 * There may be another thread loading the same metaslab, if that's
2521 	 * the case just wait until the other thread is done and return.
2522 	 */
2523 	metaslab_load_wait(msp);
2524 	if (msp->ms_loaded)
2525 		return (0);
2526 	VERIFY(!msp->ms_loading);
2527 	ASSERT(!msp->ms_condensing);
2528 
2529 	/*
2530 	 * We set the loading flag BEFORE potentially dropping the lock to
2531 	 * wait for an ongoing flush (see ms_flushing below). This way other
2532 	 * threads know that there is already a thread that is loading this
2533 	 * metaslab.
2534 	 */
2535 	msp->ms_loading = B_TRUE;
2536 
2537 	/*
2538 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2539 	 * both here (during space_map_load()) and in metaslab_flush() (when
2540 	 * we flush our changes to the ms_sm).
2541 	 */
2542 	if (msp->ms_flushing)
2543 		metaslab_flush_wait(msp);
2544 
2545 	/*
2546 	 * In the possibility that we were waiting for the metaslab to be
2547 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2548 	 * no one else loaded the metaslab somehow.
2549 	 */
2550 	ASSERT(!msp->ms_loaded);
2551 
2552 	/*
2553 	 * If we're loading a metaslab in the normal class, consider evicting
2554 	 * another one to keep our memory usage under the limit defined by the
2555 	 * zfs_metaslab_mem_limit tunable.
2556 	 */
2557 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2558 	    msp->ms_group->mg_class) {
2559 		metaslab_potentially_evict(msp->ms_group->mg_class);
2560 	}
2561 
2562 	int error = metaslab_load_impl(msp);
2563 
2564 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2565 	msp->ms_loading = B_FALSE;
2566 	cv_broadcast(&msp->ms_load_cv);
2567 
2568 	return (error);
2569 }
2570 
2571 void
2572 metaslab_unload(metaslab_t *msp)
2573 {
2574 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2575 
2576 	/*
2577 	 * This can happen if a metaslab is selected for eviction (in
2578 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2579 	 * metaslab_class_evict_old).
2580 	 */
2581 	if (!msp->ms_loaded)
2582 		return;
2583 
2584 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2585 	msp->ms_loaded = B_FALSE;
2586 	msp->ms_unload_time = gethrtime();
2587 
2588 	msp->ms_activation_weight = 0;
2589 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2590 
2591 	if (msp->ms_group != NULL) {
2592 		metaslab_class_t *mc = msp->ms_group->mg_class;
2593 		multilist_sublist_t *mls =
2594 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2595 		if (multilist_link_active(&msp->ms_class_txg_node))
2596 			multilist_sublist_remove(mls, msp);
2597 		multilist_sublist_unlock(mls);
2598 
2599 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2600 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2601 		    "ms_id %llu, weight %llx, "
2602 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2603 		    "loaded %llu ms ago, max_size %llu",
2604 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2605 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2606 		    (u_longlong_t)msp->ms_id,
2607 		    (u_longlong_t)msp->ms_weight,
2608 		    (u_longlong_t)msp->ms_selected_txg,
2609 		    (u_longlong_t)(msp->ms_unload_time -
2610 		    msp->ms_selected_time) / 1000 / 1000,
2611 		    (u_longlong_t)msp->ms_alloc_txg,
2612 		    (u_longlong_t)(msp->ms_unload_time -
2613 		    msp->ms_load_time) / 1000 / 1000,
2614 		    (u_longlong_t)msp->ms_max_size);
2615 	}
2616 
2617 	/*
2618 	 * We explicitly recalculate the metaslab's weight based on its space
2619 	 * map (as it is now not loaded). We want unload metaslabs to always
2620 	 * have their weights calculated from the space map histograms, while
2621 	 * loaded ones have it calculated from their in-core range tree
2622 	 * [see metaslab_load()]. This way, the weight reflects the information
2623 	 * available in-core, whether it is loaded or not.
2624 	 *
2625 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2626 	 * at which point it doesn't make sense for us to do the recalculation
2627 	 * and the sorting.
2628 	 */
2629 	if (msp->ms_group != NULL)
2630 		metaslab_recalculate_weight_and_sort(msp);
2631 }
2632 
2633 /*
2634  * We want to optimize the memory use of the per-metaslab range
2635  * trees. To do this, we store the segments in the range trees in
2636  * units of sectors, zero-indexing from the start of the metaslab. If
2637  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2638  * the ranges using two uint32_ts, rather than two uint64_ts.
2639  */
2640 range_seg_type_t
2641 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2642     uint64_t *start, uint64_t *shift)
2643 {
2644 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2645 	    !zfs_metaslab_force_large_segs) {
2646 		*shift = vdev->vdev_ashift;
2647 		*start = msp->ms_start;
2648 		return (RANGE_SEG32);
2649 	} else {
2650 		*shift = 0;
2651 		*start = 0;
2652 		return (RANGE_SEG64);
2653 	}
2654 }
2655 
2656 void
2657 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2658 {
2659 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2660 	metaslab_class_t *mc = msp->ms_group->mg_class;
2661 	multilist_sublist_t *mls =
2662 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2663 	if (multilist_link_active(&msp->ms_class_txg_node))
2664 		multilist_sublist_remove(mls, msp);
2665 	msp->ms_selected_txg = txg;
2666 	msp->ms_selected_time = gethrtime();
2667 	multilist_sublist_insert_tail(mls, msp);
2668 	multilist_sublist_unlock(mls);
2669 }
2670 
2671 void
2672 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2673     int64_t defer_delta, int64_t space_delta)
2674 {
2675 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2676 
2677 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2678 	ASSERT(vd->vdev_ms_count != 0);
2679 
2680 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2681 	    vdev_deflated_space(vd, space_delta));
2682 }
2683 
2684 int
2685 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2686     uint64_t txg, metaslab_t **msp)
2687 {
2688 	vdev_t *vd = mg->mg_vd;
2689 	spa_t *spa = vd->vdev_spa;
2690 	objset_t *mos = spa->spa_meta_objset;
2691 	metaslab_t *ms;
2692 	int error;
2693 
2694 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2695 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2696 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2697 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2698 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2699 	multilist_link_init(&ms->ms_class_txg_node);
2700 
2701 	ms->ms_id = id;
2702 	ms->ms_start = id << vd->vdev_ms_shift;
2703 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2704 	ms->ms_allocator = -1;
2705 	ms->ms_new = B_TRUE;
2706 
2707 	vdev_ops_t *ops = vd->vdev_ops;
2708 	if (ops->vdev_op_metaslab_init != NULL)
2709 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2710 
2711 	/*
2712 	 * We only open space map objects that already exist. All others
2713 	 * will be opened when we finally allocate an object for it. For
2714 	 * readonly pools there is no need to open the space map object.
2715 	 *
2716 	 * Note:
2717 	 * When called from vdev_expand(), we can't call into the DMU as
2718 	 * we are holding the spa_config_lock as a writer and we would
2719 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2720 	 * that case, the object parameter is zero though, so we won't
2721 	 * call into the DMU.
2722 	 */
2723 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2724 	    !spa->spa_read_spacemaps)) {
2725 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2726 		    ms->ms_size, vd->vdev_ashift);
2727 
2728 		if (error != 0) {
2729 			kmem_free(ms, sizeof (metaslab_t));
2730 			return (error);
2731 		}
2732 
2733 		ASSERT(ms->ms_sm != NULL);
2734 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2735 	}
2736 
2737 	uint64_t shift, start;
2738 	range_seg_type_t type =
2739 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2740 
2741 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2742 	for (int t = 0; t < TXG_SIZE; t++) {
2743 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2744 		    NULL, start, shift);
2745 	}
2746 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2747 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2748 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2749 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2750 		    start, shift);
2751 	}
2752 	ms->ms_checkpointing =
2753 	    range_tree_create(NULL, type, NULL, start, shift);
2754 	ms->ms_unflushed_allocs =
2755 	    range_tree_create(NULL, type, NULL, start, shift);
2756 
2757 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2758 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2759 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2760 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2761 	    type, mrap, start, shift);
2762 
2763 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2764 
2765 	metaslab_group_add(mg, ms);
2766 	metaslab_set_fragmentation(ms, B_FALSE);
2767 
2768 	/*
2769 	 * If we're opening an existing pool (txg == 0) or creating
2770 	 * a new one (txg == TXG_INITIAL), all space is available now.
2771 	 * If we're adding space to an existing pool, the new space
2772 	 * does not become available until after this txg has synced.
2773 	 * The metaslab's weight will also be initialized when we sync
2774 	 * out this txg. This ensures that we don't attempt to allocate
2775 	 * from it before we have initialized it completely.
2776 	 */
2777 	if (txg <= TXG_INITIAL) {
2778 		metaslab_sync_done(ms, 0);
2779 		metaslab_space_update(vd, mg->mg_class,
2780 		    metaslab_allocated_space(ms), 0, 0);
2781 	}
2782 
2783 	if (txg != 0) {
2784 		vdev_dirty(vd, 0, NULL, txg);
2785 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2786 	}
2787 
2788 	*msp = ms;
2789 
2790 	return (0);
2791 }
2792 
2793 static void
2794 metaslab_fini_flush_data(metaslab_t *msp)
2795 {
2796 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2797 
2798 	if (metaslab_unflushed_txg(msp) == 0) {
2799 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2800 		    ==, NULL);
2801 		return;
2802 	}
2803 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2804 
2805 	mutex_enter(&spa->spa_flushed_ms_lock);
2806 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2807 	mutex_exit(&spa->spa_flushed_ms_lock);
2808 
2809 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2810 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2811 	    metaslab_unflushed_dirty(msp));
2812 }
2813 
2814 uint64_t
2815 metaslab_unflushed_changes_memused(metaslab_t *ms)
2816 {
2817 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2818 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2819 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2820 }
2821 
2822 void
2823 metaslab_fini(metaslab_t *msp)
2824 {
2825 	metaslab_group_t *mg = msp->ms_group;
2826 	vdev_t *vd = mg->mg_vd;
2827 	spa_t *spa = vd->vdev_spa;
2828 
2829 	metaslab_fini_flush_data(msp);
2830 
2831 	metaslab_group_remove(mg, msp);
2832 
2833 	mutex_enter(&msp->ms_lock);
2834 	VERIFY(msp->ms_group == NULL);
2835 
2836 	/*
2837 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2838 	 * space hasn't been accounted for in its vdev and doesn't need to be
2839 	 * subtracted.
2840 	 */
2841 	if (!msp->ms_new) {
2842 		metaslab_space_update(vd, mg->mg_class,
2843 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2844 
2845 	}
2846 	space_map_close(msp->ms_sm);
2847 	msp->ms_sm = NULL;
2848 
2849 	metaslab_unload(msp);
2850 
2851 	range_tree_destroy(msp->ms_allocatable);
2852 	range_tree_destroy(msp->ms_freeing);
2853 	range_tree_destroy(msp->ms_freed);
2854 
2855 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2856 	    metaslab_unflushed_changes_memused(msp));
2857 	spa->spa_unflushed_stats.sus_memused -=
2858 	    metaslab_unflushed_changes_memused(msp);
2859 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2860 	range_tree_destroy(msp->ms_unflushed_allocs);
2861 	range_tree_destroy(msp->ms_checkpointing);
2862 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2863 	range_tree_destroy(msp->ms_unflushed_frees);
2864 
2865 	for (int t = 0; t < TXG_SIZE; t++) {
2866 		range_tree_destroy(msp->ms_allocating[t]);
2867 	}
2868 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2869 		range_tree_destroy(msp->ms_defer[t]);
2870 	}
2871 	ASSERT0(msp->ms_deferspace);
2872 
2873 	for (int t = 0; t < TXG_SIZE; t++)
2874 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2875 
2876 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2877 	range_tree_destroy(msp->ms_trim);
2878 
2879 	mutex_exit(&msp->ms_lock);
2880 	cv_destroy(&msp->ms_load_cv);
2881 	cv_destroy(&msp->ms_flush_cv);
2882 	mutex_destroy(&msp->ms_lock);
2883 	mutex_destroy(&msp->ms_sync_lock);
2884 	ASSERT3U(msp->ms_allocator, ==, -1);
2885 
2886 	kmem_free(msp, sizeof (metaslab_t));
2887 }
2888 
2889 #define	FRAGMENTATION_TABLE_SIZE	17
2890 
2891 /*
2892  * This table defines a segment size based fragmentation metric that will
2893  * allow each metaslab to derive its own fragmentation value. This is done
2894  * by calculating the space in each bucket of the spacemap histogram and
2895  * multiplying that by the fragmentation metric in this table. Doing
2896  * this for all buckets and dividing it by the total amount of free
2897  * space in this metaslab (i.e. the total free space in all buckets) gives
2898  * us the fragmentation metric. This means that a high fragmentation metric
2899  * equates to most of the free space being comprised of small segments.
2900  * Conversely, if the metric is low, then most of the free space is in
2901  * large segments. A 10% change in fragmentation equates to approximately
2902  * double the number of segments.
2903  *
2904  * This table defines 0% fragmented space using 16MB segments. Testing has
2905  * shown that segments that are greater than or equal to 16MB do not suffer
2906  * from drastic performance problems. Using this value, we derive the rest
2907  * of the table. Since the fragmentation value is never stored on disk, it
2908  * is possible to change these calculations in the future.
2909  */
2910 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2911 	100,	/* 512B	*/
2912 	100,	/* 1K	*/
2913 	98,	/* 2K	*/
2914 	95,	/* 4K	*/
2915 	90,	/* 8K	*/
2916 	80,	/* 16K	*/
2917 	70,	/* 32K	*/
2918 	60,	/* 64K	*/
2919 	50,	/* 128K	*/
2920 	40,	/* 256K	*/
2921 	30,	/* 512K	*/
2922 	20,	/* 1M	*/
2923 	15,	/* 2M	*/
2924 	10,	/* 4M	*/
2925 	5,	/* 8M	*/
2926 	0	/* 16M	*/
2927 };
2928 
2929 /*
2930  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2931  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2932  * been upgraded and does not support this metric. Otherwise, the return
2933  * value should be in the range [0, 100].
2934  */
2935 static void
2936 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2937 {
2938 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2939 	uint64_t fragmentation = 0;
2940 	uint64_t total = 0;
2941 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2942 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2943 
2944 	if (!feature_enabled) {
2945 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2946 		return;
2947 	}
2948 
2949 	/*
2950 	 * A null space map means that the entire metaslab is free
2951 	 * and thus is not fragmented.
2952 	 */
2953 	if (msp->ms_sm == NULL) {
2954 		msp->ms_fragmentation = 0;
2955 		return;
2956 	}
2957 
2958 	/*
2959 	 * If this metaslab's space map has not been upgraded, flag it
2960 	 * so that we upgrade next time we encounter it.
2961 	 */
2962 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2963 		uint64_t txg = spa_syncing_txg(spa);
2964 		vdev_t *vd = msp->ms_group->mg_vd;
2965 
2966 		/*
2967 		 * If we've reached the final dirty txg, then we must
2968 		 * be shutting down the pool. We don't want to dirty
2969 		 * any data past this point so skip setting the condense
2970 		 * flag. We can retry this action the next time the pool
2971 		 * is imported. We also skip marking this metaslab for
2972 		 * condensing if the caller has explicitly set nodirty.
2973 		 */
2974 		if (!nodirty &&
2975 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2976 			msp->ms_condense_wanted = B_TRUE;
2977 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2978 			zfs_dbgmsg("txg %llu, requesting force condense: "
2979 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2980 			    (u_longlong_t)msp->ms_id,
2981 			    (u_longlong_t)vd->vdev_id);
2982 		}
2983 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2984 		return;
2985 	}
2986 
2987 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2988 		uint64_t space = 0;
2989 		uint8_t shift = msp->ms_sm->sm_shift;
2990 
2991 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2992 		    FRAGMENTATION_TABLE_SIZE - 1);
2993 
2994 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2995 			continue;
2996 
2997 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2998 		total += space;
2999 
3000 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3001 		fragmentation += space * zfs_frag_table[idx];
3002 	}
3003 
3004 	if (total > 0)
3005 		fragmentation /= total;
3006 	ASSERT3U(fragmentation, <=, 100);
3007 
3008 	msp->ms_fragmentation = fragmentation;
3009 }
3010 
3011 /*
3012  * Compute a weight -- a selection preference value -- for the given metaslab.
3013  * This is based on the amount of free space, the level of fragmentation,
3014  * the LBA range, and whether the metaslab is loaded.
3015  */
3016 static uint64_t
3017 metaslab_space_weight(metaslab_t *msp)
3018 {
3019 	metaslab_group_t *mg = msp->ms_group;
3020 	vdev_t *vd = mg->mg_vd;
3021 	uint64_t weight, space;
3022 
3023 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3024 
3025 	/*
3026 	 * The baseline weight is the metaslab's free space.
3027 	 */
3028 	space = msp->ms_size - metaslab_allocated_space(msp);
3029 
3030 	if (metaslab_fragmentation_factor_enabled &&
3031 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3032 		/*
3033 		 * Use the fragmentation information to inversely scale
3034 		 * down the baseline weight. We need to ensure that we
3035 		 * don't exclude this metaslab completely when it's 100%
3036 		 * fragmented. To avoid this we reduce the fragmented value
3037 		 * by 1.
3038 		 */
3039 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3040 
3041 		/*
3042 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3043 		 * this metaslab again. The fragmentation metric may have
3044 		 * decreased the space to something smaller than
3045 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3046 		 * so that we can consume any remaining space.
3047 		 */
3048 		if (space > 0 && space < SPA_MINBLOCKSIZE)
3049 			space = SPA_MINBLOCKSIZE;
3050 	}
3051 	weight = space;
3052 
3053 	/*
3054 	 * Modern disks have uniform bit density and constant angular velocity.
3055 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3056 	 * than the inner zones by the ratio of outer to inner track diameter,
3057 	 * which is typically around 2:1.  We account for this by assigning
3058 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3059 	 * In effect, this means that we'll select the metaslab with the most
3060 	 * free bandwidth rather than simply the one with the most free space.
3061 	 */
3062 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3063 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3064 		ASSERT(weight >= space && weight <= 2 * space);
3065 	}
3066 
3067 	/*
3068 	 * If this metaslab is one we're actively using, adjust its
3069 	 * weight to make it preferable to any inactive metaslab so
3070 	 * we'll polish it off. If the fragmentation on this metaslab
3071 	 * has exceed our threshold, then don't mark it active.
3072 	 */
3073 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3074 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3075 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3076 	}
3077 
3078 	WEIGHT_SET_SPACEBASED(weight);
3079 	return (weight);
3080 }
3081 
3082 /*
3083  * Return the weight of the specified metaslab, according to the segment-based
3084  * weighting algorithm. The metaslab must be loaded. This function can
3085  * be called within a sync pass since it relies only on the metaslab's
3086  * range tree which is always accurate when the metaslab is loaded.
3087  */
3088 static uint64_t
3089 metaslab_weight_from_range_tree(metaslab_t *msp)
3090 {
3091 	uint64_t weight = 0;
3092 	uint32_t segments = 0;
3093 
3094 	ASSERT(msp->ms_loaded);
3095 
3096 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3097 	    i--) {
3098 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3099 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3100 
3101 		segments <<= 1;
3102 		segments += msp->ms_allocatable->rt_histogram[i];
3103 
3104 		/*
3105 		 * The range tree provides more precision than the space map
3106 		 * and must be downgraded so that all values fit within the
3107 		 * space map's histogram. This allows us to compare loaded
3108 		 * vs. unloaded metaslabs to determine which metaslab is
3109 		 * considered "best".
3110 		 */
3111 		if (i > max_idx)
3112 			continue;
3113 
3114 		if (segments != 0) {
3115 			WEIGHT_SET_COUNT(weight, segments);
3116 			WEIGHT_SET_INDEX(weight, i);
3117 			WEIGHT_SET_ACTIVE(weight, 0);
3118 			break;
3119 		}
3120 	}
3121 	return (weight);
3122 }
3123 
3124 /*
3125  * Calculate the weight based on the on-disk histogram. Should be applied
3126  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3127  * give results consistent with the on-disk state
3128  */
3129 static uint64_t
3130 metaslab_weight_from_spacemap(metaslab_t *msp)
3131 {
3132 	space_map_t *sm = msp->ms_sm;
3133 	ASSERT(!msp->ms_loaded);
3134 	ASSERT(sm != NULL);
3135 	ASSERT3U(space_map_object(sm), !=, 0);
3136 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3137 
3138 	/*
3139 	 * Create a joint histogram from all the segments that have made
3140 	 * it to the metaslab's space map histogram, that are not yet
3141 	 * available for allocation because they are still in the freeing
3142 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3143 	 * these segments from the space map's histogram to get a more
3144 	 * accurate weight.
3145 	 */
3146 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3147 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3148 		deferspace_histogram[i] += msp->ms_synchist[i];
3149 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3150 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3151 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3152 		}
3153 	}
3154 
3155 	uint64_t weight = 0;
3156 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3157 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3158 		    deferspace_histogram[i]);
3159 		uint64_t count =
3160 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3161 		if (count != 0) {
3162 			WEIGHT_SET_COUNT(weight, count);
3163 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3164 			WEIGHT_SET_ACTIVE(weight, 0);
3165 			break;
3166 		}
3167 	}
3168 	return (weight);
3169 }
3170 
3171 /*
3172  * Compute a segment-based weight for the specified metaslab. The weight
3173  * is determined by highest bucket in the histogram. The information
3174  * for the highest bucket is encoded into the weight value.
3175  */
3176 static uint64_t
3177 metaslab_segment_weight(metaslab_t *msp)
3178 {
3179 	metaslab_group_t *mg = msp->ms_group;
3180 	uint64_t weight = 0;
3181 	uint8_t shift = mg->mg_vd->vdev_ashift;
3182 
3183 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3184 
3185 	/*
3186 	 * The metaslab is completely free.
3187 	 */
3188 	if (metaslab_allocated_space(msp) == 0) {
3189 		int idx = highbit64(msp->ms_size) - 1;
3190 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3191 
3192 		if (idx < max_idx) {
3193 			WEIGHT_SET_COUNT(weight, 1ULL);
3194 			WEIGHT_SET_INDEX(weight, idx);
3195 		} else {
3196 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3197 			WEIGHT_SET_INDEX(weight, max_idx);
3198 		}
3199 		WEIGHT_SET_ACTIVE(weight, 0);
3200 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3201 		return (weight);
3202 	}
3203 
3204 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3205 
3206 	/*
3207 	 * If the metaslab is fully allocated then just make the weight 0.
3208 	 */
3209 	if (metaslab_allocated_space(msp) == msp->ms_size)
3210 		return (0);
3211 	/*
3212 	 * If the metaslab is already loaded, then use the range tree to
3213 	 * determine the weight. Otherwise, we rely on the space map information
3214 	 * to generate the weight.
3215 	 */
3216 	if (msp->ms_loaded) {
3217 		weight = metaslab_weight_from_range_tree(msp);
3218 	} else {
3219 		weight = metaslab_weight_from_spacemap(msp);
3220 	}
3221 
3222 	/*
3223 	 * If the metaslab was active the last time we calculated its weight
3224 	 * then keep it active. We want to consume the entire region that
3225 	 * is associated with this weight.
3226 	 */
3227 	if (msp->ms_activation_weight != 0 && weight != 0)
3228 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3229 	return (weight);
3230 }
3231 
3232 /*
3233  * Determine if we should attempt to allocate from this metaslab. If the
3234  * metaslab is loaded, then we can determine if the desired allocation
3235  * can be satisfied by looking at the size of the maximum free segment
3236  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3237  * weight. For segment-based weighting we can determine the maximum
3238  * allocation based on the index encoded in its value. For space-based
3239  * weights we rely on the entire weight (excluding the weight-type bit).
3240  */
3241 static boolean_t
3242 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3243 {
3244 	/*
3245 	 * This case will usually but not always get caught by the checks below;
3246 	 * metaslabs can be loaded by various means, including the trim and
3247 	 * initialize code. Once that happens, without this check they are
3248 	 * allocatable even before they finish their first txg sync.
3249 	 */
3250 	if (unlikely(msp->ms_new))
3251 		return (B_FALSE);
3252 
3253 	/*
3254 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3255 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3256 	 * set), and we should use the fast check as long as we're not in
3257 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3258 	 * seconds since the metaslab was unloaded.
3259 	 */
3260 	if (msp->ms_loaded ||
3261 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3262 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3263 		return (msp->ms_max_size >= asize);
3264 
3265 	boolean_t should_allocate;
3266 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3267 		/*
3268 		 * The metaslab segment weight indicates segments in the
3269 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3270 		 * Since the asize might be in the middle of the range, we
3271 		 * should attempt the allocation if asize < 2^(i+1).
3272 		 */
3273 		should_allocate = (asize <
3274 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3275 	} else {
3276 		should_allocate = (asize <=
3277 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3278 	}
3279 
3280 	return (should_allocate);
3281 }
3282 
3283 static uint64_t
3284 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3285 {
3286 	vdev_t *vd = msp->ms_group->mg_vd;
3287 	spa_t *spa = vd->vdev_spa;
3288 	uint64_t weight;
3289 
3290 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3291 
3292 	metaslab_set_fragmentation(msp, nodirty);
3293 
3294 	/*
3295 	 * Update the maximum size. If the metaslab is loaded, this will
3296 	 * ensure that we get an accurate maximum size if newly freed space
3297 	 * has been added back into the free tree. If the metaslab is
3298 	 * unloaded, we check if there's a larger free segment in the
3299 	 * unflushed frees. This is a lower bound on the largest allocatable
3300 	 * segment size. Coalescing of adjacent entries may reveal larger
3301 	 * allocatable segments, but we aren't aware of those until loading
3302 	 * the space map into a range tree.
3303 	 */
3304 	if (msp->ms_loaded) {
3305 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3306 	} else {
3307 		msp->ms_max_size = MAX(msp->ms_max_size,
3308 		    metaslab_largest_unflushed_free(msp));
3309 	}
3310 
3311 	/*
3312 	 * Segment-based weighting requires space map histogram support.
3313 	 */
3314 	if (zfs_metaslab_segment_weight_enabled &&
3315 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3316 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3317 	    sizeof (space_map_phys_t))) {
3318 		weight = metaslab_segment_weight(msp);
3319 	} else {
3320 		weight = metaslab_space_weight(msp);
3321 	}
3322 	return (weight);
3323 }
3324 
3325 void
3326 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3327 {
3328 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3329 
3330 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3331 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3332 	metaslab_group_sort(msp->ms_group, msp,
3333 	    metaslab_weight(msp, B_FALSE) | was_active);
3334 }
3335 
3336 static int
3337 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3338     int allocator, uint64_t activation_weight)
3339 {
3340 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3341 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3342 
3343 	/*
3344 	 * If we're activating for the claim code, we don't want to actually
3345 	 * set the metaslab up for a specific allocator.
3346 	 */
3347 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3348 		ASSERT0(msp->ms_activation_weight);
3349 		msp->ms_activation_weight = msp->ms_weight;
3350 		metaslab_group_sort(mg, msp, msp->ms_weight |
3351 		    activation_weight);
3352 		return (0);
3353 	}
3354 
3355 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3356 	    &mga->mga_primary : &mga->mga_secondary);
3357 
3358 	mutex_enter(&mg->mg_lock);
3359 	if (*mspp != NULL) {
3360 		mutex_exit(&mg->mg_lock);
3361 		return (EEXIST);
3362 	}
3363 
3364 	*mspp = msp;
3365 	ASSERT3S(msp->ms_allocator, ==, -1);
3366 	msp->ms_allocator = allocator;
3367 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3368 
3369 	ASSERT0(msp->ms_activation_weight);
3370 	msp->ms_activation_weight = msp->ms_weight;
3371 	metaslab_group_sort_impl(mg, msp,
3372 	    msp->ms_weight | activation_weight);
3373 	mutex_exit(&mg->mg_lock);
3374 
3375 	return (0);
3376 }
3377 
3378 static int
3379 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3380 {
3381 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3382 
3383 	/*
3384 	 * The current metaslab is already activated for us so there
3385 	 * is nothing to do. Already activated though, doesn't mean
3386 	 * that this metaslab is activated for our allocator nor our
3387 	 * requested activation weight. The metaslab could have started
3388 	 * as an active one for our allocator but changed allocators
3389 	 * while we were waiting to grab its ms_lock or we stole it
3390 	 * [see find_valid_metaslab()]. This means that there is a
3391 	 * possibility of passivating a metaslab of another allocator
3392 	 * or from a different activation mask, from this thread.
3393 	 */
3394 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3395 		ASSERT(msp->ms_loaded);
3396 		return (0);
3397 	}
3398 
3399 	int error = metaslab_load(msp);
3400 	if (error != 0) {
3401 		metaslab_group_sort(msp->ms_group, msp, 0);
3402 		return (error);
3403 	}
3404 
3405 	/*
3406 	 * When entering metaslab_load() we may have dropped the
3407 	 * ms_lock because we were loading this metaslab, or we
3408 	 * were waiting for another thread to load it for us. In
3409 	 * that scenario, we recheck the weight of the metaslab
3410 	 * to see if it was activated by another thread.
3411 	 *
3412 	 * If the metaslab was activated for another allocator or
3413 	 * it was activated with a different activation weight (e.g.
3414 	 * we wanted to make it a primary but it was activated as
3415 	 * secondary) we return error (EBUSY).
3416 	 *
3417 	 * If the metaslab was activated for the same allocator
3418 	 * and requested activation mask, skip activating it.
3419 	 */
3420 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3421 		if (msp->ms_allocator != allocator)
3422 			return (EBUSY);
3423 
3424 		if ((msp->ms_weight & activation_weight) == 0)
3425 			return (SET_ERROR(EBUSY));
3426 
3427 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3428 		    msp->ms_primary);
3429 		return (0);
3430 	}
3431 
3432 	/*
3433 	 * If the metaslab has literally 0 space, it will have weight 0. In
3434 	 * that case, don't bother activating it. This can happen if the
3435 	 * metaslab had space during find_valid_metaslab, but another thread
3436 	 * loaded it and used all that space while we were waiting to grab the
3437 	 * lock.
3438 	 */
3439 	if (msp->ms_weight == 0) {
3440 		ASSERT0(range_tree_space(msp->ms_allocatable));
3441 		return (SET_ERROR(ENOSPC));
3442 	}
3443 
3444 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3445 	    allocator, activation_weight)) != 0) {
3446 		return (error);
3447 	}
3448 
3449 	ASSERT(msp->ms_loaded);
3450 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3451 
3452 	return (0);
3453 }
3454 
3455 static void
3456 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3457     uint64_t weight)
3458 {
3459 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3460 	ASSERT(msp->ms_loaded);
3461 
3462 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3463 		metaslab_group_sort(mg, msp, weight);
3464 		return;
3465 	}
3466 
3467 	mutex_enter(&mg->mg_lock);
3468 	ASSERT3P(msp->ms_group, ==, mg);
3469 	ASSERT3S(0, <=, msp->ms_allocator);
3470 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3471 
3472 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3473 	if (msp->ms_primary) {
3474 		ASSERT3P(mga->mga_primary, ==, msp);
3475 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3476 		mga->mga_primary = NULL;
3477 	} else {
3478 		ASSERT3P(mga->mga_secondary, ==, msp);
3479 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3480 		mga->mga_secondary = NULL;
3481 	}
3482 	msp->ms_allocator = -1;
3483 	metaslab_group_sort_impl(mg, msp, weight);
3484 	mutex_exit(&mg->mg_lock);
3485 }
3486 
3487 static void
3488 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3489 {
3490 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3491 
3492 	/*
3493 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3494 	 * this metaslab again.  In that case, it had better be empty,
3495 	 * or we would be leaving space on the table.
3496 	 */
3497 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3498 	    size >= SPA_MINBLOCKSIZE ||
3499 	    range_tree_space(msp->ms_allocatable) == 0);
3500 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3501 
3502 	ASSERT(msp->ms_activation_weight != 0);
3503 	msp->ms_activation_weight = 0;
3504 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3505 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3506 }
3507 
3508 /*
3509  * Segment-based metaslabs are activated once and remain active until
3510  * we either fail an allocation attempt (similar to space-based metaslabs)
3511  * or have exhausted the free space in zfs_metaslab_switch_threshold
3512  * buckets since the metaslab was activated. This function checks to see
3513  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3514  * metaslab and passivates it proactively. This will allow us to select a
3515  * metaslab with a larger contiguous region, if any, remaining within this
3516  * metaslab group. If we're in sync pass > 1, then we continue using this
3517  * metaslab so that we don't dirty more block and cause more sync passes.
3518  */
3519 static void
3520 metaslab_segment_may_passivate(metaslab_t *msp)
3521 {
3522 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3523 
3524 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3525 		return;
3526 
3527 	/*
3528 	 * Since we are in the middle of a sync pass, the most accurate
3529 	 * information that is accessible to us is the in-core range tree
3530 	 * histogram; calculate the new weight based on that information.
3531 	 */
3532 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3533 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3534 	int current_idx = WEIGHT_GET_INDEX(weight);
3535 
3536 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3537 		metaslab_passivate(msp, weight);
3538 }
3539 
3540 static void
3541 metaslab_preload(void *arg)
3542 {
3543 	metaslab_t *msp = arg;
3544 	metaslab_class_t *mc = msp->ms_group->mg_class;
3545 	spa_t *spa = mc->mc_spa;
3546 	fstrans_cookie_t cookie = spl_fstrans_mark();
3547 
3548 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3549 
3550 	mutex_enter(&msp->ms_lock);
3551 	(void) metaslab_load(msp);
3552 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3553 	mutex_exit(&msp->ms_lock);
3554 	spl_fstrans_unmark(cookie);
3555 }
3556 
3557 static void
3558 metaslab_group_preload(metaslab_group_t *mg)
3559 {
3560 	spa_t *spa = mg->mg_vd->vdev_spa;
3561 	metaslab_t *msp;
3562 	avl_tree_t *t = &mg->mg_metaslab_tree;
3563 	int m = 0;
3564 
3565 	if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3566 		return;
3567 
3568 	mutex_enter(&mg->mg_lock);
3569 
3570 	/*
3571 	 * Load the next potential metaslabs
3572 	 */
3573 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3574 		ASSERT3P(msp->ms_group, ==, mg);
3575 
3576 		/*
3577 		 * We preload only the maximum number of metaslabs specified
3578 		 * by metaslab_preload_limit. If a metaslab is being forced
3579 		 * to condense then we preload it too. This will ensure
3580 		 * that force condensing happens in the next txg.
3581 		 */
3582 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3583 			continue;
3584 		}
3585 
3586 		VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3587 		    msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3588 		    != TASKQID_INVALID);
3589 	}
3590 	mutex_exit(&mg->mg_lock);
3591 }
3592 
3593 /*
3594  * Determine if the space map's on-disk footprint is past our tolerance for
3595  * inefficiency. We would like to use the following criteria to make our
3596  * decision:
3597  *
3598  * 1. Do not condense if the size of the space map object would dramatically
3599  *    increase as a result of writing out the free space range tree.
3600  *
3601  * 2. Condense if the on on-disk space map representation is at least
3602  *    zfs_condense_pct/100 times the size of the optimal representation
3603  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3604  *
3605  * 3. Do not condense if the on-disk size of the space map does not actually
3606  *    decrease.
3607  *
3608  * Unfortunately, we cannot compute the on-disk size of the space map in this
3609  * context because we cannot accurately compute the effects of compression, etc.
3610  * Instead, we apply the heuristic described in the block comment for
3611  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3612  * is greater than a threshold number of blocks.
3613  */
3614 static boolean_t
3615 metaslab_should_condense(metaslab_t *msp)
3616 {
3617 	space_map_t *sm = msp->ms_sm;
3618 	vdev_t *vd = msp->ms_group->mg_vd;
3619 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3620 
3621 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3622 	ASSERT(msp->ms_loaded);
3623 	ASSERT(sm != NULL);
3624 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3625 
3626 	/*
3627 	 * We always condense metaslabs that are empty and metaslabs for
3628 	 * which a condense request has been made.
3629 	 */
3630 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3631 	    msp->ms_condense_wanted)
3632 		return (B_TRUE);
3633 
3634 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3635 	uint64_t object_size = space_map_length(sm);
3636 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3637 	    msp->ms_allocatable, SM_NO_VDEVID);
3638 
3639 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3640 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3641 }
3642 
3643 /*
3644  * Condense the on-disk space map representation to its minimized form.
3645  * The minimized form consists of a small number of allocations followed
3646  * by the entries of the free range tree (ms_allocatable). The condensed
3647  * spacemap contains all the entries of previous TXGs (including those in
3648  * the pool-wide log spacemaps; thus this is effectively a superset of
3649  * metaslab_flush()), but this TXG's entries still need to be written.
3650  */
3651 static void
3652 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3653 {
3654 	range_tree_t *condense_tree;
3655 	space_map_t *sm = msp->ms_sm;
3656 	uint64_t txg = dmu_tx_get_txg(tx);
3657 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3658 
3659 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3660 	ASSERT(msp->ms_loaded);
3661 	ASSERT(msp->ms_sm != NULL);
3662 
3663 	/*
3664 	 * In order to condense the space map, we need to change it so it
3665 	 * only describes which segments are currently allocated and free.
3666 	 *
3667 	 * All the current free space resides in the ms_allocatable, all
3668 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3669 	 * ms_freed because it is empty because we're in sync pass 1. We
3670 	 * ignore ms_freeing because these changes are not yet reflected
3671 	 * in the spacemap (they will be written later this txg).
3672 	 *
3673 	 * So to truncate the space map to represent all the entries of
3674 	 * previous TXGs we do the following:
3675 	 *
3676 	 * 1] We create a range tree (condense tree) that is 100% empty.
3677 	 * 2] We add to it all segments found in the ms_defer trees
3678 	 *    as those segments are marked as free in the original space
3679 	 *    map. We do the same with the ms_allocating trees for the same
3680 	 *    reason. Adding these segments should be a relatively
3681 	 *    inexpensive operation since we expect these trees to have a
3682 	 *    small number of nodes.
3683 	 * 3] We vacate any unflushed allocs, since they are not frees we
3684 	 *    need to add to the condense tree. Then we vacate any
3685 	 *    unflushed frees as they should already be part of ms_allocatable.
3686 	 * 4] At this point, we would ideally like to add all segments
3687 	 *    in the ms_allocatable tree from the condense tree. This way
3688 	 *    we would write all the entries of the condense tree as the
3689 	 *    condensed space map, which would only contain freed
3690 	 *    segments with everything else assumed to be allocated.
3691 	 *
3692 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3693 	 *    be large, and therefore computationally expensive to add to
3694 	 *    the condense_tree. Instead we first sync out an entry marking
3695 	 *    everything as allocated, then the condense_tree and then the
3696 	 *    ms_allocatable, in the condensed space map. While this is not
3697 	 *    optimal, it is typically close to optimal and more importantly
3698 	 *    much cheaper to compute.
3699 	 *
3700 	 * 5] Finally, as both of the unflushed trees were written to our
3701 	 *    new and condensed metaslab space map, we basically flushed
3702 	 *    all the unflushed changes to disk, thus we call
3703 	 *    metaslab_flush_update().
3704 	 */
3705 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3706 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3707 
3708 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3709 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3710 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3711 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3712 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3713 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3714 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3715 
3716 	msp->ms_condense_wanted = B_FALSE;
3717 
3718 	range_seg_type_t type;
3719 	uint64_t shift, start;
3720 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3721 	    &start, &shift);
3722 
3723 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3724 
3725 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3726 		range_tree_walk(msp->ms_defer[t],
3727 		    range_tree_add, condense_tree);
3728 	}
3729 
3730 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3731 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3732 		    range_tree_add, condense_tree);
3733 	}
3734 
3735 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3736 	    metaslab_unflushed_changes_memused(msp));
3737 	spa->spa_unflushed_stats.sus_memused -=
3738 	    metaslab_unflushed_changes_memused(msp);
3739 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3740 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3741 
3742 	/*
3743 	 * We're about to drop the metaslab's lock thus allowing other
3744 	 * consumers to change it's content. Set the metaslab's ms_condensing
3745 	 * flag to ensure that allocations on this metaslab do not occur
3746 	 * while we're in the middle of committing it to disk. This is only
3747 	 * critical for ms_allocatable as all other range trees use per TXG
3748 	 * views of their content.
3749 	 */
3750 	msp->ms_condensing = B_TRUE;
3751 
3752 	mutex_exit(&msp->ms_lock);
3753 	uint64_t object = space_map_object(msp->ms_sm);
3754 	space_map_truncate(sm,
3755 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3756 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3757 
3758 	/*
3759 	 * space_map_truncate() may have reallocated the spacemap object.
3760 	 * If so, update the vdev_ms_array.
3761 	 */
3762 	if (space_map_object(msp->ms_sm) != object) {
3763 		object = space_map_object(msp->ms_sm);
3764 		dmu_write(spa->spa_meta_objset,
3765 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3766 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3767 	}
3768 
3769 	/*
3770 	 * Note:
3771 	 * When the log space map feature is enabled, each space map will
3772 	 * always have ALLOCS followed by FREES for each sync pass. This is
3773 	 * typically true even when the log space map feature is disabled,
3774 	 * except from the case where a metaslab goes through metaslab_sync()
3775 	 * and gets condensed. In that case the metaslab's space map will have
3776 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3777 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3778 	 * sync pass 1.
3779 	 */
3780 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3781 	    shift);
3782 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3783 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3784 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3785 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3786 
3787 	range_tree_vacate(condense_tree, NULL, NULL);
3788 	range_tree_destroy(condense_tree);
3789 	range_tree_vacate(tmp_tree, NULL, NULL);
3790 	range_tree_destroy(tmp_tree);
3791 	mutex_enter(&msp->ms_lock);
3792 
3793 	msp->ms_condensing = B_FALSE;
3794 	metaslab_flush_update(msp, tx);
3795 }
3796 
3797 static void
3798 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3799 {
3800 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3801 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3802 	ASSERT(msp->ms_sm != NULL);
3803 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3804 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3805 
3806 	mutex_enter(&spa->spa_flushed_ms_lock);
3807 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3808 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3809 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3810 	mutex_exit(&spa->spa_flushed_ms_lock);
3811 
3812 	spa_log_sm_increment_current_mscount(spa);
3813 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3814 }
3815 
3816 void
3817 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3818 {
3819 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3820 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3821 	ASSERT(msp->ms_sm != NULL);
3822 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3823 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3824 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3825 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3826 
3827 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3828 
3829 	/* update metaslab's position in our flushing tree */
3830 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3831 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3832 	mutex_enter(&spa->spa_flushed_ms_lock);
3833 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3834 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3835 	metaslab_set_unflushed_dirty(msp, dirty);
3836 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3837 	mutex_exit(&spa->spa_flushed_ms_lock);
3838 
3839 	/* update metaslab counts of spa_log_sm_t nodes */
3840 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3841 	spa_log_sm_increment_current_mscount(spa);
3842 
3843 	/* update log space map summary */
3844 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3845 	    ms_prev_flushed_dirty);
3846 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3847 
3848 	/* cleanup obsolete logs if any */
3849 	spa_cleanup_old_sm_logs(spa, tx);
3850 }
3851 
3852 /*
3853  * Called when the metaslab has been flushed (its own spacemap now reflects
3854  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3855  * metadata and any pool-wide related log space map data (e.g. summary,
3856  * obsolete logs, etc..) to reflect that.
3857  */
3858 static void
3859 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3860 {
3861 	metaslab_group_t *mg = msp->ms_group;
3862 	spa_t *spa = mg->mg_vd->vdev_spa;
3863 
3864 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3865 
3866 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3867 
3868 	/*
3869 	 * Just because a metaslab got flushed, that doesn't mean that
3870 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3871 	 * update ms_synced_length here in case it doesn't.
3872 	 */
3873 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3874 
3875 	/*
3876 	 * We may end up here from metaslab_condense() without the
3877 	 * feature being active. In that case this is a no-op.
3878 	 */
3879 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3880 	    metaslab_unflushed_txg(msp) == 0)
3881 		return;
3882 
3883 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3884 }
3885 
3886 boolean_t
3887 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3888 {
3889 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3890 
3891 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3892 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3893 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3894 
3895 	ASSERT(msp->ms_sm != NULL);
3896 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3897 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3898 
3899 	/*
3900 	 * There is nothing wrong with flushing the same metaslab twice, as
3901 	 * this codepath should work on that case. However, the current
3902 	 * flushing scheme makes sure to avoid this situation as we would be
3903 	 * making all these calls without having anything meaningful to write
3904 	 * to disk. We assert this behavior here.
3905 	 */
3906 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3907 
3908 	/*
3909 	 * We can not flush while loading, because then we would
3910 	 * not load the ms_unflushed_{allocs,frees}.
3911 	 */
3912 	if (msp->ms_loading)
3913 		return (B_FALSE);
3914 
3915 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3916 	metaslab_verify_weight_and_frag(msp);
3917 
3918 	/*
3919 	 * Metaslab condensing is effectively flushing. Therefore if the
3920 	 * metaslab can be condensed we can just condense it instead of
3921 	 * flushing it.
3922 	 *
3923 	 * Note that metaslab_condense() does call metaslab_flush_update()
3924 	 * so we can just return immediately after condensing. We also
3925 	 * don't need to care about setting ms_flushing or broadcasting
3926 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3927 	 * metaslab_condense(), as the metaslab is already loaded.
3928 	 */
3929 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3930 		metaslab_group_t *mg = msp->ms_group;
3931 
3932 		/*
3933 		 * For all histogram operations below refer to the
3934 		 * comments of metaslab_sync() where we follow a
3935 		 * similar procedure.
3936 		 */
3937 		metaslab_group_histogram_verify(mg);
3938 		metaslab_class_histogram_verify(mg->mg_class);
3939 		metaslab_group_histogram_remove(mg, msp);
3940 
3941 		metaslab_condense(msp, tx);
3942 
3943 		space_map_histogram_clear(msp->ms_sm);
3944 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3945 		ASSERT(range_tree_is_empty(msp->ms_freed));
3946 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3947 			space_map_histogram_add(msp->ms_sm,
3948 			    msp->ms_defer[t], tx);
3949 		}
3950 		metaslab_aux_histograms_update(msp);
3951 
3952 		metaslab_group_histogram_add(mg, msp);
3953 		metaslab_group_histogram_verify(mg);
3954 		metaslab_class_histogram_verify(mg->mg_class);
3955 
3956 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3957 
3958 		/*
3959 		 * Since we recreated the histogram (and potentially
3960 		 * the ms_sm too while condensing) ensure that the
3961 		 * weight is updated too because we are not guaranteed
3962 		 * that this metaslab is dirty and will go through
3963 		 * metaslab_sync_done().
3964 		 */
3965 		metaslab_recalculate_weight_and_sort(msp);
3966 		return (B_TRUE);
3967 	}
3968 
3969 	msp->ms_flushing = B_TRUE;
3970 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3971 
3972 	mutex_exit(&msp->ms_lock);
3973 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3974 	    SM_NO_VDEVID, tx);
3975 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3976 	    SM_NO_VDEVID, tx);
3977 	mutex_enter(&msp->ms_lock);
3978 
3979 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3980 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3981 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3982 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3983 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3984 		    spa_name(spa),
3985 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3986 		    (u_longlong_t)msp->ms_id,
3987 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3988 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3989 		    (u_longlong_t)(sm_len_after - sm_len_before));
3990 	}
3991 
3992 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3993 	    metaslab_unflushed_changes_memused(msp));
3994 	spa->spa_unflushed_stats.sus_memused -=
3995 	    metaslab_unflushed_changes_memused(msp);
3996 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3997 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3998 
3999 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4000 	metaslab_verify_weight_and_frag(msp);
4001 
4002 	metaslab_flush_update(msp, tx);
4003 
4004 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4005 	metaslab_verify_weight_and_frag(msp);
4006 
4007 	msp->ms_flushing = B_FALSE;
4008 	cv_broadcast(&msp->ms_flush_cv);
4009 	return (B_TRUE);
4010 }
4011 
4012 /*
4013  * Write a metaslab to disk in the context of the specified transaction group.
4014  */
4015 void
4016 metaslab_sync(metaslab_t *msp, uint64_t txg)
4017 {
4018 	metaslab_group_t *mg = msp->ms_group;
4019 	vdev_t *vd = mg->mg_vd;
4020 	spa_t *spa = vd->vdev_spa;
4021 	objset_t *mos = spa_meta_objset(spa);
4022 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4023 	dmu_tx_t *tx;
4024 
4025 	ASSERT(!vd->vdev_ishole);
4026 
4027 	/*
4028 	 * This metaslab has just been added so there's no work to do now.
4029 	 */
4030 	if (msp->ms_new) {
4031 		ASSERT0(range_tree_space(alloctree));
4032 		ASSERT0(range_tree_space(msp->ms_freeing));
4033 		ASSERT0(range_tree_space(msp->ms_freed));
4034 		ASSERT0(range_tree_space(msp->ms_checkpointing));
4035 		ASSERT0(range_tree_space(msp->ms_trim));
4036 		return;
4037 	}
4038 
4039 	/*
4040 	 * Normally, we don't want to process a metaslab if there are no
4041 	 * allocations or frees to perform. However, if the metaslab is being
4042 	 * forced to condense, it's loaded and we're not beyond the final
4043 	 * dirty txg, we need to let it through. Not condensing beyond the
4044 	 * final dirty txg prevents an issue where metaslabs that need to be
4045 	 * condensed but were loaded for other reasons could cause a panic
4046 	 * here. By only checking the txg in that branch of the conditional,
4047 	 * we preserve the utility of the VERIFY statements in all other
4048 	 * cases.
4049 	 */
4050 	if (range_tree_is_empty(alloctree) &&
4051 	    range_tree_is_empty(msp->ms_freeing) &&
4052 	    range_tree_is_empty(msp->ms_checkpointing) &&
4053 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
4054 	    txg <= spa_final_dirty_txg(spa)))
4055 		return;
4056 
4057 
4058 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4059 
4060 	/*
4061 	 * The only state that can actually be changing concurrently
4062 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
4063 	 * other thread can be modifying this txg's alloc, freeing,
4064 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4065 	 * could call into the DMU, because the DMU can call down to
4066 	 * us (e.g. via zio_free()) at any time.
4067 	 *
4068 	 * The spa_vdev_remove_thread() can be reading metaslab state
4069 	 * concurrently, and it is locked out by the ms_sync_lock.
4070 	 * Note that the ms_lock is insufficient for this, because it
4071 	 * is dropped by space_map_write().
4072 	 */
4073 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4074 
4075 	/*
4076 	 * Generate a log space map if one doesn't exist already.
4077 	 */
4078 	spa_generate_syncing_log_sm(spa, tx);
4079 
4080 	if (msp->ms_sm == NULL) {
4081 		uint64_t new_object = space_map_alloc(mos,
4082 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4083 		    zfs_metaslab_sm_blksz_with_log :
4084 		    zfs_metaslab_sm_blksz_no_log, tx);
4085 		VERIFY3U(new_object, !=, 0);
4086 
4087 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4088 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4089 
4090 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4091 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4092 		ASSERT(msp->ms_sm != NULL);
4093 
4094 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4095 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4096 		ASSERT0(metaslab_allocated_space(msp));
4097 	}
4098 
4099 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4100 	    vd->vdev_checkpoint_sm == NULL) {
4101 		ASSERT(spa_has_checkpoint(spa));
4102 
4103 		uint64_t new_object = space_map_alloc(mos,
4104 		    zfs_vdev_standard_sm_blksz, tx);
4105 		VERIFY3U(new_object, !=, 0);
4106 
4107 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4108 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4109 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4110 
4111 		/*
4112 		 * We save the space map object as an entry in vdev_top_zap
4113 		 * so it can be retrieved when the pool is reopened after an
4114 		 * export or through zdb.
4115 		 */
4116 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4117 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4118 		    sizeof (new_object), 1, &new_object, tx));
4119 	}
4120 
4121 	mutex_enter(&msp->ms_sync_lock);
4122 	mutex_enter(&msp->ms_lock);
4123 
4124 	/*
4125 	 * Note: metaslab_condense() clears the space map's histogram.
4126 	 * Therefore we must verify and remove this histogram before
4127 	 * condensing.
4128 	 */
4129 	metaslab_group_histogram_verify(mg);
4130 	metaslab_class_histogram_verify(mg->mg_class);
4131 	metaslab_group_histogram_remove(mg, msp);
4132 
4133 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4134 	    metaslab_should_condense(msp))
4135 		metaslab_condense(msp, tx);
4136 
4137 	/*
4138 	 * We'll be going to disk to sync our space accounting, thus we
4139 	 * drop the ms_lock during that time so allocations coming from
4140 	 * open-context (ZIL) for future TXGs do not block.
4141 	 */
4142 	mutex_exit(&msp->ms_lock);
4143 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4144 	if (log_sm != NULL) {
4145 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4146 		if (metaslab_unflushed_txg(msp) == 0)
4147 			metaslab_unflushed_add(msp, tx);
4148 		else if (!metaslab_unflushed_dirty(msp))
4149 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4150 
4151 		space_map_write(log_sm, alloctree, SM_ALLOC,
4152 		    vd->vdev_id, tx);
4153 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4154 		    vd->vdev_id, tx);
4155 		mutex_enter(&msp->ms_lock);
4156 
4157 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4158 		    metaslab_unflushed_changes_memused(msp));
4159 		spa->spa_unflushed_stats.sus_memused -=
4160 		    metaslab_unflushed_changes_memused(msp);
4161 		range_tree_remove_xor_add(alloctree,
4162 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4163 		range_tree_remove_xor_add(msp->ms_freeing,
4164 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4165 		spa->spa_unflushed_stats.sus_memused +=
4166 		    metaslab_unflushed_changes_memused(msp);
4167 	} else {
4168 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4169 
4170 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4171 		    SM_NO_VDEVID, tx);
4172 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4173 		    SM_NO_VDEVID, tx);
4174 		mutex_enter(&msp->ms_lock);
4175 	}
4176 
4177 	msp->ms_allocated_space += range_tree_space(alloctree);
4178 	ASSERT3U(msp->ms_allocated_space, >=,
4179 	    range_tree_space(msp->ms_freeing));
4180 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4181 
4182 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4183 		ASSERT(spa_has_checkpoint(spa));
4184 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4185 
4186 		/*
4187 		 * Since we are doing writes to disk and the ms_checkpointing
4188 		 * tree won't be changing during that time, we drop the
4189 		 * ms_lock while writing to the checkpoint space map, for the
4190 		 * same reason mentioned above.
4191 		 */
4192 		mutex_exit(&msp->ms_lock);
4193 		space_map_write(vd->vdev_checkpoint_sm,
4194 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4195 		mutex_enter(&msp->ms_lock);
4196 
4197 		spa->spa_checkpoint_info.sci_dspace +=
4198 		    range_tree_space(msp->ms_checkpointing);
4199 		vd->vdev_stat.vs_checkpoint_space +=
4200 		    range_tree_space(msp->ms_checkpointing);
4201 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4202 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4203 
4204 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4205 	}
4206 
4207 	if (msp->ms_loaded) {
4208 		/*
4209 		 * When the space map is loaded, we have an accurate
4210 		 * histogram in the range tree. This gives us an opportunity
4211 		 * to bring the space map's histogram up-to-date so we clear
4212 		 * it first before updating it.
4213 		 */
4214 		space_map_histogram_clear(msp->ms_sm);
4215 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4216 
4217 		/*
4218 		 * Since we've cleared the histogram we need to add back
4219 		 * any free space that has already been processed, plus
4220 		 * any deferred space. This allows the on-disk histogram
4221 		 * to accurately reflect all free space even if some space
4222 		 * is not yet available for allocation (i.e. deferred).
4223 		 */
4224 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4225 
4226 		/*
4227 		 * Add back any deferred free space that has not been
4228 		 * added back into the in-core free tree yet. This will
4229 		 * ensure that we don't end up with a space map histogram
4230 		 * that is completely empty unless the metaslab is fully
4231 		 * allocated.
4232 		 */
4233 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4234 			space_map_histogram_add(msp->ms_sm,
4235 			    msp->ms_defer[t], tx);
4236 		}
4237 	}
4238 
4239 	/*
4240 	 * Always add the free space from this sync pass to the space
4241 	 * map histogram. We want to make sure that the on-disk histogram
4242 	 * accounts for all free space. If the space map is not loaded,
4243 	 * then we will lose some accuracy but will correct it the next
4244 	 * time we load the space map.
4245 	 */
4246 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4247 	metaslab_aux_histograms_update(msp);
4248 
4249 	metaslab_group_histogram_add(mg, msp);
4250 	metaslab_group_histogram_verify(mg);
4251 	metaslab_class_histogram_verify(mg->mg_class);
4252 
4253 	/*
4254 	 * For sync pass 1, we avoid traversing this txg's free range tree
4255 	 * and instead will just swap the pointers for freeing and freed.
4256 	 * We can safely do this since the freed_tree is guaranteed to be
4257 	 * empty on the initial pass.
4258 	 *
4259 	 * Keep in mind that even if we are currently using a log spacemap
4260 	 * we want current frees to end up in the ms_allocatable (but not
4261 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4262 	 */
4263 	if (spa_sync_pass(spa) == 1) {
4264 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4265 		ASSERT0(msp->ms_allocated_this_txg);
4266 	} else {
4267 		range_tree_vacate(msp->ms_freeing,
4268 		    range_tree_add, msp->ms_freed);
4269 	}
4270 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4271 	range_tree_vacate(alloctree, NULL, NULL);
4272 
4273 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4274 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4275 	    & TXG_MASK]));
4276 	ASSERT0(range_tree_space(msp->ms_freeing));
4277 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4278 
4279 	mutex_exit(&msp->ms_lock);
4280 
4281 	/*
4282 	 * Verify that the space map object ID has been recorded in the
4283 	 * vdev_ms_array.
4284 	 */
4285 	uint64_t object;
4286 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4287 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4288 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4289 
4290 	mutex_exit(&msp->ms_sync_lock);
4291 	dmu_tx_commit(tx);
4292 }
4293 
4294 static void
4295 metaslab_evict(metaslab_t *msp, uint64_t txg)
4296 {
4297 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4298 		return;
4299 
4300 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4301 		VERIFY0(range_tree_space(
4302 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4303 	}
4304 	if (msp->ms_allocator != -1)
4305 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4306 
4307 	if (!metaslab_debug_unload)
4308 		metaslab_unload(msp);
4309 }
4310 
4311 /*
4312  * Called after a transaction group has completely synced to mark
4313  * all of the metaslab's free space as usable.
4314  */
4315 void
4316 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4317 {
4318 	metaslab_group_t *mg = msp->ms_group;
4319 	vdev_t *vd = mg->mg_vd;
4320 	spa_t *spa = vd->vdev_spa;
4321 	range_tree_t **defer_tree;
4322 	int64_t alloc_delta, defer_delta;
4323 	boolean_t defer_allowed = B_TRUE;
4324 
4325 	ASSERT(!vd->vdev_ishole);
4326 
4327 	mutex_enter(&msp->ms_lock);
4328 
4329 	if (msp->ms_new) {
4330 		/* this is a new metaslab, add its capacity to the vdev */
4331 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4332 
4333 		/* there should be no allocations nor frees at this point */
4334 		VERIFY0(msp->ms_allocated_this_txg);
4335 		VERIFY0(range_tree_space(msp->ms_freed));
4336 	}
4337 
4338 	ASSERT0(range_tree_space(msp->ms_freeing));
4339 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4340 
4341 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4342 
4343 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4344 	    metaslab_class_get_alloc(spa_normal_class(spa));
4345 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4346 		defer_allowed = B_FALSE;
4347 	}
4348 
4349 	defer_delta = 0;
4350 	alloc_delta = msp->ms_allocated_this_txg -
4351 	    range_tree_space(msp->ms_freed);
4352 
4353 	if (defer_allowed) {
4354 		defer_delta = range_tree_space(msp->ms_freed) -
4355 		    range_tree_space(*defer_tree);
4356 	} else {
4357 		defer_delta -= range_tree_space(*defer_tree);
4358 	}
4359 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4360 	    defer_delta, 0);
4361 
4362 	if (spa_syncing_log_sm(spa) == NULL) {
4363 		/*
4364 		 * If there's a metaslab_load() in progress and we don't have
4365 		 * a log space map, it means that we probably wrote to the
4366 		 * metaslab's space map. If this is the case, we need to
4367 		 * make sure that we wait for the load to complete so that we
4368 		 * have a consistent view at the in-core side of the metaslab.
4369 		 */
4370 		metaslab_load_wait(msp);
4371 	} else {
4372 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4373 	}
4374 
4375 	/*
4376 	 * When auto-trimming is enabled, free ranges which are added to
4377 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4378 	 * periodically consumed by the vdev_autotrim_thread() which issues
4379 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4380 	 * can be discarded at any time with the sole consequence of recent
4381 	 * frees not being trimmed.
4382 	 */
4383 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4384 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4385 		if (!defer_allowed) {
4386 			range_tree_walk(msp->ms_freed, range_tree_add,
4387 			    msp->ms_trim);
4388 		}
4389 	} else {
4390 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4391 	}
4392 
4393 	/*
4394 	 * Move the frees from the defer_tree back to the free
4395 	 * range tree (if it's loaded). Swap the freed_tree and
4396 	 * the defer_tree -- this is safe to do because we've
4397 	 * just emptied out the defer_tree.
4398 	 */
4399 	range_tree_vacate(*defer_tree,
4400 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4401 	if (defer_allowed) {
4402 		range_tree_swap(&msp->ms_freed, defer_tree);
4403 	} else {
4404 		range_tree_vacate(msp->ms_freed,
4405 		    msp->ms_loaded ? range_tree_add : NULL,
4406 		    msp->ms_allocatable);
4407 	}
4408 
4409 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4410 
4411 	msp->ms_deferspace += defer_delta;
4412 	ASSERT3S(msp->ms_deferspace, >=, 0);
4413 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4414 	if (msp->ms_deferspace != 0) {
4415 		/*
4416 		 * Keep syncing this metaslab until all deferred frees
4417 		 * are back in circulation.
4418 		 */
4419 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4420 	}
4421 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4422 
4423 	if (msp->ms_new) {
4424 		msp->ms_new = B_FALSE;
4425 		mutex_enter(&mg->mg_lock);
4426 		mg->mg_ms_ready++;
4427 		mutex_exit(&mg->mg_lock);
4428 	}
4429 
4430 	/*
4431 	 * Re-sort metaslab within its group now that we've adjusted
4432 	 * its allocatable space.
4433 	 */
4434 	metaslab_recalculate_weight_and_sort(msp);
4435 
4436 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4437 	ASSERT0(range_tree_space(msp->ms_freeing));
4438 	ASSERT0(range_tree_space(msp->ms_freed));
4439 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4440 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4441 	msp->ms_allocated_this_txg = 0;
4442 	mutex_exit(&msp->ms_lock);
4443 }
4444 
4445 void
4446 metaslab_sync_reassess(metaslab_group_t *mg)
4447 {
4448 	spa_t *spa = mg->mg_class->mc_spa;
4449 
4450 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4451 	metaslab_group_alloc_update(mg);
4452 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4453 
4454 	/*
4455 	 * Preload the next potential metaslabs but only on active
4456 	 * metaslab groups. We can get into a state where the metaslab
4457 	 * is no longer active since we dirty metaslabs as we remove a
4458 	 * a device, thus potentially making the metaslab group eligible
4459 	 * for preloading.
4460 	 */
4461 	if (mg->mg_activation_count > 0) {
4462 		metaslab_group_preload(mg);
4463 	}
4464 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4465 }
4466 
4467 /*
4468  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4469  * the same vdev as an existing DVA of this BP, then try to allocate it
4470  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4471  */
4472 static boolean_t
4473 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4474 {
4475 	uint64_t dva_ms_id;
4476 
4477 	if (DVA_GET_ASIZE(dva) == 0)
4478 		return (B_TRUE);
4479 
4480 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4481 		return (B_TRUE);
4482 
4483 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4484 
4485 	return (msp->ms_id != dva_ms_id);
4486 }
4487 
4488 /*
4489  * ==========================================================================
4490  * Metaslab allocation tracing facility
4491  * ==========================================================================
4492  */
4493 
4494 /*
4495  * Add an allocation trace element to the allocation tracing list.
4496  */
4497 static void
4498 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4499     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4500     int allocator)
4501 {
4502 	metaslab_alloc_trace_t *mat;
4503 
4504 	if (!metaslab_trace_enabled)
4505 		return;
4506 
4507 	/*
4508 	 * When the tracing list reaches its maximum we remove
4509 	 * the second element in the list before adding a new one.
4510 	 * By removing the second element we preserve the original
4511 	 * entry as a clue to what allocations steps have already been
4512 	 * performed.
4513 	 */
4514 	if (zal->zal_size == metaslab_trace_max_entries) {
4515 		metaslab_alloc_trace_t *mat_next;
4516 #ifdef ZFS_DEBUG
4517 		panic("too many entries in allocation list");
4518 #endif
4519 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4520 		zal->zal_size--;
4521 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4522 		list_remove(&zal->zal_list, mat_next);
4523 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4524 	}
4525 
4526 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4527 	list_link_init(&mat->mat_list_node);
4528 	mat->mat_mg = mg;
4529 	mat->mat_msp = msp;
4530 	mat->mat_size = psize;
4531 	mat->mat_dva_id = dva_id;
4532 	mat->mat_offset = offset;
4533 	mat->mat_weight = 0;
4534 	mat->mat_allocator = allocator;
4535 
4536 	if (msp != NULL)
4537 		mat->mat_weight = msp->ms_weight;
4538 
4539 	/*
4540 	 * The list is part of the zio so locking is not required. Only
4541 	 * a single thread will perform allocations for a given zio.
4542 	 */
4543 	list_insert_tail(&zal->zal_list, mat);
4544 	zal->zal_size++;
4545 
4546 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4547 }
4548 
4549 void
4550 metaslab_trace_init(zio_alloc_list_t *zal)
4551 {
4552 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4553 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4554 	zal->zal_size = 0;
4555 }
4556 
4557 void
4558 metaslab_trace_fini(zio_alloc_list_t *zal)
4559 {
4560 	metaslab_alloc_trace_t *mat;
4561 
4562 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4563 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4564 	list_destroy(&zal->zal_list);
4565 	zal->zal_size = 0;
4566 }
4567 
4568 /*
4569  * ==========================================================================
4570  * Metaslab block operations
4571  * ==========================================================================
4572  */
4573 
4574 static void
4575 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4576     int flags, int allocator)
4577 {
4578 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4579 	    (flags & METASLAB_DONT_THROTTLE))
4580 		return;
4581 
4582 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4583 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4584 		return;
4585 
4586 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4587 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4588 }
4589 
4590 static void
4591 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4592 {
4593 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4594 	metaslab_class_allocator_t *mca =
4595 	    &mg->mg_class->mc_allocator[allocator];
4596 	uint64_t max = mg->mg_max_alloc_queue_depth;
4597 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4598 	while (cur < max) {
4599 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4600 		    cur, cur + 1) == cur) {
4601 			atomic_inc_64(&mca->mca_alloc_max_slots);
4602 			return;
4603 		}
4604 		cur = mga->mga_cur_max_alloc_queue_depth;
4605 	}
4606 }
4607 
4608 void
4609 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4610     int flags, int allocator, boolean_t io_complete)
4611 {
4612 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4613 	    (flags & METASLAB_DONT_THROTTLE))
4614 		return;
4615 
4616 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4617 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4618 		return;
4619 
4620 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4621 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4622 	if (io_complete)
4623 		metaslab_group_increment_qdepth(mg, allocator);
4624 }
4625 
4626 void
4627 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4628     int allocator)
4629 {
4630 #ifdef ZFS_DEBUG
4631 	const dva_t *dva = bp->blk_dva;
4632 	int ndvas = BP_GET_NDVAS(bp);
4633 
4634 	for (int d = 0; d < ndvas; d++) {
4635 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4636 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4637 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4638 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4639 	}
4640 #endif
4641 }
4642 
4643 static uint64_t
4644 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4645 {
4646 	uint64_t start;
4647 	range_tree_t *rt = msp->ms_allocatable;
4648 	metaslab_class_t *mc = msp->ms_group->mg_class;
4649 
4650 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4651 	VERIFY(!msp->ms_condensing);
4652 	VERIFY0(msp->ms_disabled);
4653 
4654 	start = mc->mc_ops->msop_alloc(msp, size);
4655 	if (start != -1ULL) {
4656 		metaslab_group_t *mg = msp->ms_group;
4657 		vdev_t *vd = mg->mg_vd;
4658 
4659 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4660 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4661 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4662 		range_tree_remove(rt, start, size);
4663 		range_tree_clear(msp->ms_trim, start, size);
4664 
4665 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4666 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4667 
4668 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4669 		msp->ms_allocating_total += size;
4670 
4671 		/* Track the last successful allocation */
4672 		msp->ms_alloc_txg = txg;
4673 		metaslab_verify_space(msp, txg);
4674 	}
4675 
4676 	/*
4677 	 * Now that we've attempted the allocation we need to update the
4678 	 * metaslab's maximum block size since it may have changed.
4679 	 */
4680 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4681 	return (start);
4682 }
4683 
4684 /*
4685  * Find the metaslab with the highest weight that is less than what we've
4686  * already tried.  In the common case, this means that we will examine each
4687  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4688  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4689  * activated by another thread, and we fail to allocate from the metaslab we
4690  * have selected, we may not try the newly-activated metaslab, and instead
4691  * activate another metaslab.  This is not optimal, but generally does not cause
4692  * any problems (a possible exception being if every metaslab is completely full
4693  * except for the newly-activated metaslab which we fail to examine).
4694  */
4695 static metaslab_t *
4696 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4697     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4698     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4699     boolean_t *was_active)
4700 {
4701 	avl_index_t idx;
4702 	avl_tree_t *t = &mg->mg_metaslab_tree;
4703 	metaslab_t *msp = avl_find(t, search, &idx);
4704 	if (msp == NULL)
4705 		msp = avl_nearest(t, idx, AVL_AFTER);
4706 
4707 	uint_t tries = 0;
4708 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4709 		int i;
4710 
4711 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4712 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4713 			return (NULL);
4714 		}
4715 		tries++;
4716 
4717 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4718 			metaslab_trace_add(zal, mg, msp, asize, d,
4719 			    TRACE_TOO_SMALL, allocator);
4720 			continue;
4721 		}
4722 
4723 		/*
4724 		 * If the selected metaslab is condensing or disabled,
4725 		 * skip it.
4726 		 */
4727 		if (msp->ms_condensing || msp->ms_disabled > 0)
4728 			continue;
4729 
4730 		*was_active = msp->ms_allocator != -1;
4731 		/*
4732 		 * If we're activating as primary, this is our first allocation
4733 		 * from this disk, so we don't need to check how close we are.
4734 		 * If the metaslab under consideration was already active,
4735 		 * we're getting desperate enough to steal another allocator's
4736 		 * metaslab, so we still don't care about distances.
4737 		 */
4738 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4739 			break;
4740 
4741 		for (i = 0; i < d; i++) {
4742 			if (want_unique &&
4743 			    !metaslab_is_unique(msp, &dva[i]))
4744 				break;  /* try another metaslab */
4745 		}
4746 		if (i == d)
4747 			break;
4748 	}
4749 
4750 	if (msp != NULL) {
4751 		search->ms_weight = msp->ms_weight;
4752 		search->ms_start = msp->ms_start + 1;
4753 		search->ms_allocator = msp->ms_allocator;
4754 		search->ms_primary = msp->ms_primary;
4755 	}
4756 	return (msp);
4757 }
4758 
4759 static void
4760 metaslab_active_mask_verify(metaslab_t *msp)
4761 {
4762 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4763 
4764 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4765 		return;
4766 
4767 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4768 		return;
4769 
4770 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4771 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4772 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4773 		VERIFY3S(msp->ms_allocator, !=, -1);
4774 		VERIFY(msp->ms_primary);
4775 		return;
4776 	}
4777 
4778 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4779 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4780 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4781 		VERIFY3S(msp->ms_allocator, !=, -1);
4782 		VERIFY(!msp->ms_primary);
4783 		return;
4784 	}
4785 
4786 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4787 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4788 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4789 		VERIFY3S(msp->ms_allocator, ==, -1);
4790 		return;
4791 	}
4792 }
4793 
4794 static uint64_t
4795 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4796     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4797     int allocator, boolean_t try_hard)
4798 {
4799 	metaslab_t *msp = NULL;
4800 	uint64_t offset = -1ULL;
4801 
4802 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4803 	for (int i = 0; i < d; i++) {
4804 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4805 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4806 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4807 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4808 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4809 			activation_weight = METASLAB_WEIGHT_CLAIM;
4810 			break;
4811 		}
4812 	}
4813 
4814 	/*
4815 	 * If we don't have enough metaslabs active to fill the entire array, we
4816 	 * just use the 0th slot.
4817 	 */
4818 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4819 		allocator = 0;
4820 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4821 
4822 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4823 
4824 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4825 	search->ms_weight = UINT64_MAX;
4826 	search->ms_start = 0;
4827 	/*
4828 	 * At the end of the metaslab tree are the already-active metaslabs,
4829 	 * first the primaries, then the secondaries. When we resume searching
4830 	 * through the tree, we need to consider ms_allocator and ms_primary so
4831 	 * we start in the location right after where we left off, and don't
4832 	 * accidentally loop forever considering the same metaslabs.
4833 	 */
4834 	search->ms_allocator = -1;
4835 	search->ms_primary = B_TRUE;
4836 	for (;;) {
4837 		boolean_t was_active = B_FALSE;
4838 
4839 		mutex_enter(&mg->mg_lock);
4840 
4841 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4842 		    mga->mga_primary != NULL) {
4843 			msp = mga->mga_primary;
4844 
4845 			/*
4846 			 * Even though we don't hold the ms_lock for the
4847 			 * primary metaslab, those fields should not
4848 			 * change while we hold the mg_lock. Thus it is
4849 			 * safe to make assertions on them.
4850 			 */
4851 			ASSERT(msp->ms_primary);
4852 			ASSERT3S(msp->ms_allocator, ==, allocator);
4853 			ASSERT(msp->ms_loaded);
4854 
4855 			was_active = B_TRUE;
4856 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4857 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4858 		    mga->mga_secondary != NULL) {
4859 			msp = mga->mga_secondary;
4860 
4861 			/*
4862 			 * See comment above about the similar assertions
4863 			 * for the primary metaslab.
4864 			 */
4865 			ASSERT(!msp->ms_primary);
4866 			ASSERT3S(msp->ms_allocator, ==, allocator);
4867 			ASSERT(msp->ms_loaded);
4868 
4869 			was_active = B_TRUE;
4870 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4871 		} else {
4872 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4873 			    want_unique, asize, allocator, try_hard, zal,
4874 			    search, &was_active);
4875 		}
4876 
4877 		mutex_exit(&mg->mg_lock);
4878 		if (msp == NULL) {
4879 			kmem_free(search, sizeof (*search));
4880 			return (-1ULL);
4881 		}
4882 		mutex_enter(&msp->ms_lock);
4883 
4884 		metaslab_active_mask_verify(msp);
4885 
4886 		/*
4887 		 * This code is disabled out because of issues with
4888 		 * tracepoints in non-gpl kernel modules.
4889 		 */
4890 #if 0
4891 		DTRACE_PROBE3(ms__activation__attempt,
4892 		    metaslab_t *, msp, uint64_t, activation_weight,
4893 		    boolean_t, was_active);
4894 #endif
4895 
4896 		/*
4897 		 * Ensure that the metaslab we have selected is still
4898 		 * capable of handling our request. It's possible that
4899 		 * another thread may have changed the weight while we
4900 		 * were blocked on the metaslab lock. We check the
4901 		 * active status first to see if we need to set_selected_txg
4902 		 * a new metaslab.
4903 		 */
4904 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4905 			ASSERT3S(msp->ms_allocator, ==, -1);
4906 			mutex_exit(&msp->ms_lock);
4907 			continue;
4908 		}
4909 
4910 		/*
4911 		 * If the metaslab was activated for another allocator
4912 		 * while we were waiting in the ms_lock above, or it's
4913 		 * a primary and we're seeking a secondary (or vice versa),
4914 		 * we go back and select a new metaslab.
4915 		 */
4916 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4917 		    (msp->ms_allocator != -1) &&
4918 		    (msp->ms_allocator != allocator || ((activation_weight ==
4919 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4920 			ASSERT(msp->ms_loaded);
4921 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4922 			    msp->ms_allocator != -1);
4923 			mutex_exit(&msp->ms_lock);
4924 			continue;
4925 		}
4926 
4927 		/*
4928 		 * This metaslab was used for claiming regions allocated
4929 		 * by the ZIL during pool import. Once these regions are
4930 		 * claimed we don't need to keep the CLAIM bit set
4931 		 * anymore. Passivate this metaslab to zero its activation
4932 		 * mask.
4933 		 */
4934 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4935 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4936 			ASSERT(msp->ms_loaded);
4937 			ASSERT3S(msp->ms_allocator, ==, -1);
4938 			metaslab_passivate(msp, msp->ms_weight &
4939 			    ~METASLAB_WEIGHT_CLAIM);
4940 			mutex_exit(&msp->ms_lock);
4941 			continue;
4942 		}
4943 
4944 		metaslab_set_selected_txg(msp, txg);
4945 
4946 		int activation_error =
4947 		    metaslab_activate(msp, allocator, activation_weight);
4948 		metaslab_active_mask_verify(msp);
4949 
4950 		/*
4951 		 * If the metaslab was activated by another thread for
4952 		 * another allocator or activation_weight (EBUSY), or it
4953 		 * failed because another metaslab was assigned as primary
4954 		 * for this allocator (EEXIST) we continue using this
4955 		 * metaslab for our allocation, rather than going on to a
4956 		 * worse metaslab (we waited for that metaslab to be loaded
4957 		 * after all).
4958 		 *
4959 		 * If the activation failed due to an I/O error or ENOSPC we
4960 		 * skip to the next metaslab.
4961 		 */
4962 		boolean_t activated;
4963 		if (activation_error == 0) {
4964 			activated = B_TRUE;
4965 		} else if (activation_error == EBUSY ||
4966 		    activation_error == EEXIST) {
4967 			activated = B_FALSE;
4968 		} else {
4969 			mutex_exit(&msp->ms_lock);
4970 			continue;
4971 		}
4972 		ASSERT(msp->ms_loaded);
4973 
4974 		/*
4975 		 * Now that we have the lock, recheck to see if we should
4976 		 * continue to use this metaslab for this allocation. The
4977 		 * the metaslab is now loaded so metaslab_should_allocate()
4978 		 * can accurately determine if the allocation attempt should
4979 		 * proceed.
4980 		 */
4981 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4982 			/* Passivate this metaslab and select a new one. */
4983 			metaslab_trace_add(zal, mg, msp, asize, d,
4984 			    TRACE_TOO_SMALL, allocator);
4985 			goto next;
4986 		}
4987 
4988 		/*
4989 		 * If this metaslab is currently condensing then pick again
4990 		 * as we can't manipulate this metaslab until it's committed
4991 		 * to disk. If this metaslab is being initialized, we shouldn't
4992 		 * allocate from it since the allocated region might be
4993 		 * overwritten after allocation.
4994 		 */
4995 		if (msp->ms_condensing) {
4996 			metaslab_trace_add(zal, mg, msp, asize, d,
4997 			    TRACE_CONDENSING, allocator);
4998 			if (activated) {
4999 				metaslab_passivate(msp, msp->ms_weight &
5000 				    ~METASLAB_ACTIVE_MASK);
5001 			}
5002 			mutex_exit(&msp->ms_lock);
5003 			continue;
5004 		} else if (msp->ms_disabled > 0) {
5005 			metaslab_trace_add(zal, mg, msp, asize, d,
5006 			    TRACE_DISABLED, allocator);
5007 			if (activated) {
5008 				metaslab_passivate(msp, msp->ms_weight &
5009 				    ~METASLAB_ACTIVE_MASK);
5010 			}
5011 			mutex_exit(&msp->ms_lock);
5012 			continue;
5013 		}
5014 
5015 		offset = metaslab_block_alloc(msp, asize, txg);
5016 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5017 
5018 		if (offset != -1ULL) {
5019 			/* Proactively passivate the metaslab, if needed */
5020 			if (activated)
5021 				metaslab_segment_may_passivate(msp);
5022 			break;
5023 		}
5024 next:
5025 		ASSERT(msp->ms_loaded);
5026 
5027 		/*
5028 		 * This code is disabled out because of issues with
5029 		 * tracepoints in non-gpl kernel modules.
5030 		 */
5031 #if 0
5032 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5033 		    uint64_t, asize);
5034 #endif
5035 
5036 		/*
5037 		 * We were unable to allocate from this metaslab so determine
5038 		 * a new weight for this metaslab. Now that we have loaded
5039 		 * the metaslab we can provide a better hint to the metaslab
5040 		 * selector.
5041 		 *
5042 		 * For space-based metaslabs, we use the maximum block size.
5043 		 * This information is only available when the metaslab
5044 		 * is loaded and is more accurate than the generic free
5045 		 * space weight that was calculated by metaslab_weight().
5046 		 * This information allows us to quickly compare the maximum
5047 		 * available allocation in the metaslab to the allocation
5048 		 * size being requested.
5049 		 *
5050 		 * For segment-based metaslabs, determine the new weight
5051 		 * based on the highest bucket in the range tree. We
5052 		 * explicitly use the loaded segment weight (i.e. the range
5053 		 * tree histogram) since it contains the space that is
5054 		 * currently available for allocation and is accurate
5055 		 * even within a sync pass.
5056 		 */
5057 		uint64_t weight;
5058 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5059 			weight = metaslab_largest_allocatable(msp);
5060 			WEIGHT_SET_SPACEBASED(weight);
5061 		} else {
5062 			weight = metaslab_weight_from_range_tree(msp);
5063 		}
5064 
5065 		if (activated) {
5066 			metaslab_passivate(msp, weight);
5067 		} else {
5068 			/*
5069 			 * For the case where we use the metaslab that is
5070 			 * active for another allocator we want to make
5071 			 * sure that we retain the activation mask.
5072 			 *
5073 			 * Note that we could attempt to use something like
5074 			 * metaslab_recalculate_weight_and_sort() that
5075 			 * retains the activation mask here. That function
5076 			 * uses metaslab_weight() to set the weight though
5077 			 * which is not as accurate as the calculations
5078 			 * above.
5079 			 */
5080 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5081 			metaslab_group_sort(mg, msp, weight);
5082 		}
5083 		metaslab_active_mask_verify(msp);
5084 
5085 		/*
5086 		 * We have just failed an allocation attempt, check
5087 		 * that metaslab_should_allocate() agrees. Otherwise,
5088 		 * we may end up in an infinite loop retrying the same
5089 		 * metaslab.
5090 		 */
5091 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5092 
5093 		mutex_exit(&msp->ms_lock);
5094 	}
5095 	mutex_exit(&msp->ms_lock);
5096 	kmem_free(search, sizeof (*search));
5097 	return (offset);
5098 }
5099 
5100 static uint64_t
5101 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5102     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5103     int allocator, boolean_t try_hard)
5104 {
5105 	uint64_t offset;
5106 	ASSERT(mg->mg_initialized);
5107 
5108 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5109 	    dva, d, allocator, try_hard);
5110 
5111 	mutex_enter(&mg->mg_lock);
5112 	if (offset == -1ULL) {
5113 		mg->mg_failed_allocations++;
5114 		metaslab_trace_add(zal, mg, NULL, asize, d,
5115 		    TRACE_GROUP_FAILURE, allocator);
5116 		if (asize == SPA_GANGBLOCKSIZE) {
5117 			/*
5118 			 * This metaslab group was unable to allocate
5119 			 * the minimum gang block size so it must be out of
5120 			 * space. We must notify the allocation throttle
5121 			 * to start skipping allocation attempts to this
5122 			 * metaslab group until more space becomes available.
5123 			 * Note: this failure cannot be caused by the
5124 			 * allocation throttle since the allocation throttle
5125 			 * is only responsible for skipping devices and
5126 			 * not failing block allocations.
5127 			 */
5128 			mg->mg_no_free_space = B_TRUE;
5129 		}
5130 	}
5131 	mg->mg_allocations++;
5132 	mutex_exit(&mg->mg_lock);
5133 	return (offset);
5134 }
5135 
5136 /*
5137  * Allocate a block for the specified i/o.
5138  */
5139 int
5140 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5141     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5142     zio_alloc_list_t *zal, int allocator)
5143 {
5144 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5145 	metaslab_group_t *mg, *rotor;
5146 	vdev_t *vd;
5147 	boolean_t try_hard = B_FALSE;
5148 
5149 	ASSERT(!DVA_IS_VALID(&dva[d]));
5150 
5151 	/*
5152 	 * For testing, make some blocks above a certain size be gang blocks.
5153 	 * This will result in more split blocks when using device removal,
5154 	 * and a large number of split blocks coupled with ztest-induced
5155 	 * damage can result in extremely long reconstruction times.  This
5156 	 * will also test spilling from special to normal.
5157 	 */
5158 	if (psize >= metaslab_force_ganging &&
5159 	    metaslab_force_ganging_pct > 0 &&
5160 	    (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5161 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5162 		    allocator);
5163 		return (SET_ERROR(ENOSPC));
5164 	}
5165 
5166 	/*
5167 	 * Start at the rotor and loop through all mgs until we find something.
5168 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5169 	 * nothing actually breaks if we miss a few updates -- we just won't
5170 	 * allocate quite as evenly.  It all balances out over time.
5171 	 *
5172 	 * If we are doing ditto or log blocks, try to spread them across
5173 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5174 	 * allocated all of our ditto blocks, then try and spread them out on
5175 	 * that vdev as much as possible.  If it turns out to not be possible,
5176 	 * gradually lower our standards until anything becomes acceptable.
5177 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5178 	 * gives us hope of containing our fault domains to something we're
5179 	 * able to reason about.  Otherwise, any two top-level vdev failures
5180 	 * will guarantee the loss of data.  With consecutive allocation,
5181 	 * only two adjacent top-level vdev failures will result in data loss.
5182 	 *
5183 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5184 	 * ourselves on the same vdev as our gang block header.  That
5185 	 * way, we can hope for locality in vdev_cache, plus it makes our
5186 	 * fault domains something tractable.
5187 	 */
5188 	if (hintdva) {
5189 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5190 
5191 		/*
5192 		 * It's possible the vdev we're using as the hint no
5193 		 * longer exists or its mg has been closed (e.g. by
5194 		 * device removal).  Consult the rotor when
5195 		 * all else fails.
5196 		 */
5197 		if (vd != NULL && vd->vdev_mg != NULL) {
5198 			mg = vdev_get_mg(vd, mc);
5199 
5200 			if (flags & METASLAB_HINTBP_AVOID)
5201 				mg = mg->mg_next;
5202 		} else {
5203 			mg = mca->mca_rotor;
5204 		}
5205 	} else if (d != 0) {
5206 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5207 		mg = vd->vdev_mg->mg_next;
5208 	} else {
5209 		ASSERT(mca->mca_rotor != NULL);
5210 		mg = mca->mca_rotor;
5211 	}
5212 
5213 	/*
5214 	 * If the hint put us into the wrong metaslab class, or into a
5215 	 * metaslab group that has been passivated, just follow the rotor.
5216 	 */
5217 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5218 		mg = mca->mca_rotor;
5219 
5220 	rotor = mg;
5221 top:
5222 	do {
5223 		boolean_t allocatable;
5224 
5225 		ASSERT(mg->mg_activation_count == 1);
5226 		vd = mg->mg_vd;
5227 
5228 		/*
5229 		 * Don't allocate from faulted devices.
5230 		 */
5231 		if (try_hard) {
5232 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5233 			allocatable = vdev_allocatable(vd);
5234 			spa_config_exit(spa, SCL_ZIO, FTAG);
5235 		} else {
5236 			allocatable = vdev_allocatable(vd);
5237 		}
5238 
5239 		/*
5240 		 * Determine if the selected metaslab group is eligible
5241 		 * for allocations. If we're ganging then don't allow
5242 		 * this metaslab group to skip allocations since that would
5243 		 * inadvertently return ENOSPC and suspend the pool
5244 		 * even though space is still available.
5245 		 */
5246 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5247 			allocatable = metaslab_group_allocatable(mg, rotor,
5248 			    flags, psize, allocator, d);
5249 		}
5250 
5251 		if (!allocatable) {
5252 			metaslab_trace_add(zal, mg, NULL, psize, d,
5253 			    TRACE_NOT_ALLOCATABLE, allocator);
5254 			goto next;
5255 		}
5256 
5257 		ASSERT(mg->mg_initialized);
5258 
5259 		/*
5260 		 * Avoid writing single-copy data to an unhealthy,
5261 		 * non-redundant vdev, unless we've already tried all
5262 		 * other vdevs.
5263 		 */
5264 		if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5265 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5266 			metaslab_trace_add(zal, mg, NULL, psize, d,
5267 			    TRACE_VDEV_ERROR, allocator);
5268 			goto next;
5269 		}
5270 
5271 		ASSERT(mg->mg_class == mc);
5272 
5273 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5274 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5275 
5276 		/*
5277 		 * If we don't need to try hard, then require that the
5278 		 * block be on a different metaslab from any other DVAs
5279 		 * in this BP (unique=true).  If we are trying hard, then
5280 		 * allow any metaslab to be used (unique=false).
5281 		 */
5282 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5283 		    !try_hard, dva, d, allocator, try_hard);
5284 
5285 		if (offset != -1ULL) {
5286 			/*
5287 			 * If we've just selected this metaslab group,
5288 			 * figure out whether the corresponding vdev is
5289 			 * over- or under-used relative to the pool,
5290 			 * and set an allocation bias to even it out.
5291 			 *
5292 			 * Bias is also used to compensate for unequally
5293 			 * sized vdevs so that space is allocated fairly.
5294 			 */
5295 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5296 				vdev_stat_t *vs = &vd->vdev_stat;
5297 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5298 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5299 				int64_t ratio;
5300 
5301 				/*
5302 				 * Calculate how much more or less we should
5303 				 * try to allocate from this device during
5304 				 * this iteration around the rotor.
5305 				 *
5306 				 * This basically introduces a zero-centered
5307 				 * bias towards the devices with the most
5308 				 * free space, while compensating for vdev
5309 				 * size differences.
5310 				 *
5311 				 * Examples:
5312 				 *  vdev V1 = 16M/128M
5313 				 *  vdev V2 = 16M/128M
5314 				 *  ratio(V1) = 100% ratio(V2) = 100%
5315 				 *
5316 				 *  vdev V1 = 16M/128M
5317 				 *  vdev V2 = 64M/128M
5318 				 *  ratio(V1) = 127% ratio(V2) =  72%
5319 				 *
5320 				 *  vdev V1 = 16M/128M
5321 				 *  vdev V2 = 64M/512M
5322 				 *  ratio(V1) =  40% ratio(V2) = 160%
5323 				 */
5324 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5325 				    (mc_free + 1);
5326 				mg->mg_bias = ((ratio - 100) *
5327 				    (int64_t)mg->mg_aliquot) / 100;
5328 			} else if (!metaslab_bias_enabled) {
5329 				mg->mg_bias = 0;
5330 			}
5331 
5332 			if ((flags & METASLAB_ZIL) ||
5333 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5334 			    mg->mg_aliquot + mg->mg_bias) {
5335 				mca->mca_rotor = mg->mg_next;
5336 				mca->mca_aliquot = 0;
5337 			}
5338 
5339 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5340 			DVA_SET_OFFSET(&dva[d], offset);
5341 			DVA_SET_GANG(&dva[d],
5342 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5343 			DVA_SET_ASIZE(&dva[d], asize);
5344 
5345 			return (0);
5346 		}
5347 next:
5348 		mca->mca_rotor = mg->mg_next;
5349 		mca->mca_aliquot = 0;
5350 	} while ((mg = mg->mg_next) != rotor);
5351 
5352 	/*
5353 	 * If we haven't tried hard, perhaps do so now.
5354 	 */
5355 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5356 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5357 	    psize <= 1 << spa->spa_min_ashift)) {
5358 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5359 		try_hard = B_TRUE;
5360 		goto top;
5361 	}
5362 
5363 	memset(&dva[d], 0, sizeof (dva_t));
5364 
5365 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5366 	return (SET_ERROR(ENOSPC));
5367 }
5368 
5369 void
5370 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5371     boolean_t checkpoint)
5372 {
5373 	metaslab_t *msp;
5374 	spa_t *spa = vd->vdev_spa;
5375 
5376 	ASSERT(vdev_is_concrete(vd));
5377 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5378 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5379 
5380 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5381 
5382 	VERIFY(!msp->ms_condensing);
5383 	VERIFY3U(offset, >=, msp->ms_start);
5384 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5385 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5386 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5387 
5388 	metaslab_check_free_impl(vd, offset, asize);
5389 
5390 	mutex_enter(&msp->ms_lock);
5391 	if (range_tree_is_empty(msp->ms_freeing) &&
5392 	    range_tree_is_empty(msp->ms_checkpointing)) {
5393 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5394 	}
5395 
5396 	if (checkpoint) {
5397 		ASSERT(spa_has_checkpoint(spa));
5398 		range_tree_add(msp->ms_checkpointing, offset, asize);
5399 	} else {
5400 		range_tree_add(msp->ms_freeing, offset, asize);
5401 	}
5402 	mutex_exit(&msp->ms_lock);
5403 }
5404 
5405 void
5406 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5407     uint64_t size, void *arg)
5408 {
5409 	(void) inner_offset;
5410 	boolean_t *checkpoint = arg;
5411 
5412 	ASSERT3P(checkpoint, !=, NULL);
5413 
5414 	if (vd->vdev_ops->vdev_op_remap != NULL)
5415 		vdev_indirect_mark_obsolete(vd, offset, size);
5416 	else
5417 		metaslab_free_impl(vd, offset, size, *checkpoint);
5418 }
5419 
5420 static void
5421 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5422     boolean_t checkpoint)
5423 {
5424 	spa_t *spa = vd->vdev_spa;
5425 
5426 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5427 
5428 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5429 		return;
5430 
5431 	if (spa->spa_vdev_removal != NULL &&
5432 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5433 	    vdev_is_concrete(vd)) {
5434 		/*
5435 		 * Note: we check if the vdev is concrete because when
5436 		 * we complete the removal, we first change the vdev to be
5437 		 * an indirect vdev (in open context), and then (in syncing
5438 		 * context) clear spa_vdev_removal.
5439 		 */
5440 		free_from_removing_vdev(vd, offset, size);
5441 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5442 		vdev_indirect_mark_obsolete(vd, offset, size);
5443 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5444 		    metaslab_free_impl_cb, &checkpoint);
5445 	} else {
5446 		metaslab_free_concrete(vd, offset, size, checkpoint);
5447 	}
5448 }
5449 
5450 typedef struct remap_blkptr_cb_arg {
5451 	blkptr_t *rbca_bp;
5452 	spa_remap_cb_t rbca_cb;
5453 	vdev_t *rbca_remap_vd;
5454 	uint64_t rbca_remap_offset;
5455 	void *rbca_cb_arg;
5456 } remap_blkptr_cb_arg_t;
5457 
5458 static void
5459 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5460     uint64_t size, void *arg)
5461 {
5462 	remap_blkptr_cb_arg_t *rbca = arg;
5463 	blkptr_t *bp = rbca->rbca_bp;
5464 
5465 	/* We can not remap split blocks. */
5466 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5467 		return;
5468 	ASSERT0(inner_offset);
5469 
5470 	if (rbca->rbca_cb != NULL) {
5471 		/*
5472 		 * At this point we know that we are not handling split
5473 		 * blocks and we invoke the callback on the previous
5474 		 * vdev which must be indirect.
5475 		 */
5476 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5477 
5478 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5479 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5480 
5481 		/* set up remap_blkptr_cb_arg for the next call */
5482 		rbca->rbca_remap_vd = vd;
5483 		rbca->rbca_remap_offset = offset;
5484 	}
5485 
5486 	/*
5487 	 * The phys birth time is that of dva[0].  This ensures that we know
5488 	 * when each dva was written, so that resilver can determine which
5489 	 * blocks need to be scrubbed (i.e. those written during the time
5490 	 * the vdev was offline).  It also ensures that the key used in
5491 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5492 	 * we didn't change the phys_birth, a lookup in the ARC for a
5493 	 * remapped BP could find the data that was previously stored at
5494 	 * this vdev + offset.
5495 	 */
5496 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5497 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5498 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5499 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5500 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5501 
5502 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5503 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5504 }
5505 
5506 /*
5507  * If the block pointer contains any indirect DVAs, modify them to refer to
5508  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5509  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5510  * segments in the mapping (i.e. it is a "split block").
5511  *
5512  * If the BP was remapped, calls the callback on the original dva (note the
5513  * callback can be called multiple times if the original indirect DVA refers
5514  * to another indirect DVA, etc).
5515  *
5516  * Returns TRUE if the BP was remapped.
5517  */
5518 boolean_t
5519 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5520 {
5521 	remap_blkptr_cb_arg_t rbca;
5522 
5523 	if (!zfs_remap_blkptr_enable)
5524 		return (B_FALSE);
5525 
5526 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5527 		return (B_FALSE);
5528 
5529 	/*
5530 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5531 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5532 	 */
5533 	if (BP_GET_DEDUP(bp))
5534 		return (B_FALSE);
5535 
5536 	/*
5537 	 * Gang blocks can not be remapped, because
5538 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5539 	 * the BP used to read the gang block header (GBH) being the same
5540 	 * as the DVA[0] that we allocated for the GBH.
5541 	 */
5542 	if (BP_IS_GANG(bp))
5543 		return (B_FALSE);
5544 
5545 	/*
5546 	 * Embedded BP's have no DVA to remap.
5547 	 */
5548 	if (BP_GET_NDVAS(bp) < 1)
5549 		return (B_FALSE);
5550 
5551 	/*
5552 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5553 	 * would no longer know what their phys birth txg is.
5554 	 */
5555 	dva_t *dva = &bp->blk_dva[0];
5556 
5557 	uint64_t offset = DVA_GET_OFFSET(dva);
5558 	uint64_t size = DVA_GET_ASIZE(dva);
5559 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5560 
5561 	if (vd->vdev_ops->vdev_op_remap == NULL)
5562 		return (B_FALSE);
5563 
5564 	rbca.rbca_bp = bp;
5565 	rbca.rbca_cb = callback;
5566 	rbca.rbca_remap_vd = vd;
5567 	rbca.rbca_remap_offset = offset;
5568 	rbca.rbca_cb_arg = arg;
5569 
5570 	/*
5571 	 * remap_blkptr_cb() will be called in order for each level of
5572 	 * indirection, until a concrete vdev is reached or a split block is
5573 	 * encountered. old_vd and old_offset are updated within the callback
5574 	 * as we go from the one indirect vdev to the next one (either concrete
5575 	 * or indirect again) in that order.
5576 	 */
5577 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5578 
5579 	/* Check if the DVA wasn't remapped because it is a split block */
5580 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5581 		return (B_FALSE);
5582 
5583 	return (B_TRUE);
5584 }
5585 
5586 /*
5587  * Undo the allocation of a DVA which happened in the given transaction group.
5588  */
5589 void
5590 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5591 {
5592 	metaslab_t *msp;
5593 	vdev_t *vd;
5594 	uint64_t vdev = DVA_GET_VDEV(dva);
5595 	uint64_t offset = DVA_GET_OFFSET(dva);
5596 	uint64_t size = DVA_GET_ASIZE(dva);
5597 
5598 	ASSERT(DVA_IS_VALID(dva));
5599 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5600 
5601 	if (txg > spa_freeze_txg(spa))
5602 		return;
5603 
5604 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5605 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5606 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5607 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5608 		    (u_longlong_t)size);
5609 		return;
5610 	}
5611 
5612 	ASSERT(!vd->vdev_removing);
5613 	ASSERT(vdev_is_concrete(vd));
5614 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5615 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5616 
5617 	if (DVA_GET_GANG(dva))
5618 		size = vdev_gang_header_asize(vd);
5619 
5620 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5621 
5622 	mutex_enter(&msp->ms_lock);
5623 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5624 	    offset, size);
5625 	msp->ms_allocating_total -= size;
5626 
5627 	VERIFY(!msp->ms_condensing);
5628 	VERIFY3U(offset, >=, msp->ms_start);
5629 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5630 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5631 	    msp->ms_size);
5632 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5633 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5634 	range_tree_add(msp->ms_allocatable, offset, size);
5635 	mutex_exit(&msp->ms_lock);
5636 }
5637 
5638 /*
5639  * Free the block represented by the given DVA.
5640  */
5641 void
5642 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5643 {
5644 	uint64_t vdev = DVA_GET_VDEV(dva);
5645 	uint64_t offset = DVA_GET_OFFSET(dva);
5646 	uint64_t size = DVA_GET_ASIZE(dva);
5647 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5648 
5649 	ASSERT(DVA_IS_VALID(dva));
5650 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5651 
5652 	if (DVA_GET_GANG(dva)) {
5653 		size = vdev_gang_header_asize(vd);
5654 	}
5655 
5656 	metaslab_free_impl(vd, offset, size, checkpoint);
5657 }
5658 
5659 /*
5660  * Reserve some allocation slots. The reservation system must be called
5661  * before we call into the allocator. If there aren't any available slots
5662  * then the I/O will be throttled until an I/O completes and its slots are
5663  * freed up. The function returns true if it was successful in placing
5664  * the reservation.
5665  */
5666 boolean_t
5667 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5668     zio_t *zio, int flags)
5669 {
5670 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5671 	uint64_t max = mca->mca_alloc_max_slots;
5672 
5673 	ASSERT(mc->mc_alloc_throttle_enabled);
5674 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5675 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5676 		/*
5677 		 * The potential race between _count() and _add() is covered
5678 		 * by the allocator lock in most cases, or irrelevant due to
5679 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5680 		 * But even if we assume some other non-existing scenario, the
5681 		 * worst that can happen is few more I/Os get to allocation
5682 		 * earlier, that is not a problem.
5683 		 *
5684 		 * We reserve the slots individually so that we can unreserve
5685 		 * them individually when an I/O completes.
5686 		 */
5687 		zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5688 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5689 		return (B_TRUE);
5690 	}
5691 	return (B_FALSE);
5692 }
5693 
5694 void
5695 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5696     int allocator, zio_t *zio)
5697 {
5698 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5699 
5700 	ASSERT(mc->mc_alloc_throttle_enabled);
5701 	zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5702 }
5703 
5704 static int
5705 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5706     uint64_t txg)
5707 {
5708 	metaslab_t *msp;
5709 	spa_t *spa = vd->vdev_spa;
5710 	int error = 0;
5711 
5712 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5713 		return (SET_ERROR(ENXIO));
5714 
5715 	ASSERT3P(vd->vdev_ms, !=, NULL);
5716 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5717 
5718 	mutex_enter(&msp->ms_lock);
5719 
5720 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5721 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5722 		if (error == EBUSY) {
5723 			ASSERT(msp->ms_loaded);
5724 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5725 			error = 0;
5726 		}
5727 	}
5728 
5729 	if (error == 0 &&
5730 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5731 		error = SET_ERROR(ENOENT);
5732 
5733 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5734 		mutex_exit(&msp->ms_lock);
5735 		return (error);
5736 	}
5737 
5738 	VERIFY(!msp->ms_condensing);
5739 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5740 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5741 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5742 	    msp->ms_size);
5743 	range_tree_remove(msp->ms_allocatable, offset, size);
5744 	range_tree_clear(msp->ms_trim, offset, size);
5745 
5746 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5747 		metaslab_class_t *mc = msp->ms_group->mg_class;
5748 		multilist_sublist_t *mls =
5749 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5750 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5751 			msp->ms_selected_txg = txg;
5752 			multilist_sublist_insert_head(mls, msp);
5753 		}
5754 		multilist_sublist_unlock(mls);
5755 
5756 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5757 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5758 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5759 		    offset, size);
5760 		msp->ms_allocating_total += size;
5761 	}
5762 
5763 	mutex_exit(&msp->ms_lock);
5764 
5765 	return (0);
5766 }
5767 
5768 typedef struct metaslab_claim_cb_arg_t {
5769 	uint64_t	mcca_txg;
5770 	int		mcca_error;
5771 } metaslab_claim_cb_arg_t;
5772 
5773 static void
5774 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5775     uint64_t size, void *arg)
5776 {
5777 	(void) inner_offset;
5778 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5779 
5780 	if (mcca_arg->mcca_error == 0) {
5781 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5782 		    size, mcca_arg->mcca_txg);
5783 	}
5784 }
5785 
5786 int
5787 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5788 {
5789 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5790 		metaslab_claim_cb_arg_t arg;
5791 
5792 		/*
5793 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5794 		 * to detect leaks of mapped space (that are not accounted
5795 		 * for in the obsolete counts, spacemap, or bpobj).
5796 		 */
5797 		ASSERT(!spa_writeable(vd->vdev_spa));
5798 		arg.mcca_error = 0;
5799 		arg.mcca_txg = txg;
5800 
5801 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5802 		    metaslab_claim_impl_cb, &arg);
5803 
5804 		if (arg.mcca_error == 0) {
5805 			arg.mcca_error = metaslab_claim_concrete(vd,
5806 			    offset, size, txg);
5807 		}
5808 		return (arg.mcca_error);
5809 	} else {
5810 		return (metaslab_claim_concrete(vd, offset, size, txg));
5811 	}
5812 }
5813 
5814 /*
5815  * Intent log support: upon opening the pool after a crash, notify the SPA
5816  * of blocks that the intent log has allocated for immediate write, but
5817  * which are still considered free by the SPA because the last transaction
5818  * group didn't commit yet.
5819  */
5820 static int
5821 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5822 {
5823 	uint64_t vdev = DVA_GET_VDEV(dva);
5824 	uint64_t offset = DVA_GET_OFFSET(dva);
5825 	uint64_t size = DVA_GET_ASIZE(dva);
5826 	vdev_t *vd;
5827 
5828 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5829 		return (SET_ERROR(ENXIO));
5830 	}
5831 
5832 	ASSERT(DVA_IS_VALID(dva));
5833 
5834 	if (DVA_GET_GANG(dva))
5835 		size = vdev_gang_header_asize(vd);
5836 
5837 	return (metaslab_claim_impl(vd, offset, size, txg));
5838 }
5839 
5840 int
5841 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5842     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5843     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5844 {
5845 	dva_t *dva = bp->blk_dva;
5846 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5847 	int error = 0;
5848 
5849 	ASSERT(bp->blk_birth == 0);
5850 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5851 
5852 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5853 
5854 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5855 		/* no vdevs in this class */
5856 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5857 		return (SET_ERROR(ENOSPC));
5858 	}
5859 
5860 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5861 	ASSERT(BP_GET_NDVAS(bp) == 0);
5862 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5863 	ASSERT3P(zal, !=, NULL);
5864 
5865 	for (int d = 0; d < ndvas; d++) {
5866 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5867 		    txg, flags, zal, allocator);
5868 		if (error != 0) {
5869 			for (d--; d >= 0; d--) {
5870 				metaslab_unalloc_dva(spa, &dva[d], txg);
5871 				metaslab_group_alloc_decrement(spa,
5872 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5873 				    allocator, B_FALSE);
5874 				memset(&dva[d], 0, sizeof (dva_t));
5875 			}
5876 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5877 			return (error);
5878 		} else {
5879 			/*
5880 			 * Update the metaslab group's queue depth
5881 			 * based on the newly allocated dva.
5882 			 */
5883 			metaslab_group_alloc_increment(spa,
5884 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5885 		}
5886 	}
5887 	ASSERT(error == 0);
5888 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5889 
5890 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5891 
5892 	BP_SET_BIRTH(bp, txg, 0);
5893 
5894 	return (0);
5895 }
5896 
5897 void
5898 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5899 {
5900 	const dva_t *dva = bp->blk_dva;
5901 	int ndvas = BP_GET_NDVAS(bp);
5902 
5903 	ASSERT(!BP_IS_HOLE(bp));
5904 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5905 
5906 	/*
5907 	 * If we have a checkpoint for the pool we need to make sure that
5908 	 * the blocks that we free that are part of the checkpoint won't be
5909 	 * reused until the checkpoint is discarded or we revert to it.
5910 	 *
5911 	 * The checkpoint flag is passed down the metaslab_free code path
5912 	 * and is set whenever we want to add a block to the checkpoint's
5913 	 * accounting. That is, we "checkpoint" blocks that existed at the
5914 	 * time the checkpoint was created and are therefore referenced by
5915 	 * the checkpointed uberblock.
5916 	 *
5917 	 * Note that, we don't checkpoint any blocks if the current
5918 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5919 	 * normally as they will be referenced by the checkpointed uberblock.
5920 	 */
5921 	boolean_t checkpoint = B_FALSE;
5922 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5923 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5924 		/*
5925 		 * At this point, if the block is part of the checkpoint
5926 		 * there is no way it was created in the current txg.
5927 		 */
5928 		ASSERT(!now);
5929 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5930 		checkpoint = B_TRUE;
5931 	}
5932 
5933 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5934 
5935 	for (int d = 0; d < ndvas; d++) {
5936 		if (now) {
5937 			metaslab_unalloc_dva(spa, &dva[d], txg);
5938 		} else {
5939 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5940 			metaslab_free_dva(spa, &dva[d], checkpoint);
5941 		}
5942 	}
5943 
5944 	spa_config_exit(spa, SCL_FREE, FTAG);
5945 }
5946 
5947 int
5948 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5949 {
5950 	const dva_t *dva = bp->blk_dva;
5951 	int ndvas = BP_GET_NDVAS(bp);
5952 	int error = 0;
5953 
5954 	ASSERT(!BP_IS_HOLE(bp));
5955 
5956 	if (txg != 0) {
5957 		/*
5958 		 * First do a dry run to make sure all DVAs are claimable,
5959 		 * so we don't have to unwind from partial failures below.
5960 		 */
5961 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5962 			return (error);
5963 	}
5964 
5965 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5966 
5967 	for (int d = 0; d < ndvas; d++) {
5968 		error = metaslab_claim_dva(spa, &dva[d], txg);
5969 		if (error != 0)
5970 			break;
5971 	}
5972 
5973 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5974 
5975 	ASSERT(error == 0 || txg == 0);
5976 
5977 	return (error);
5978 }
5979 
5980 static void
5981 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5982     uint64_t size, void *arg)
5983 {
5984 	(void) inner, (void) arg;
5985 
5986 	if (vd->vdev_ops == &vdev_indirect_ops)
5987 		return;
5988 
5989 	metaslab_check_free_impl(vd, offset, size);
5990 }
5991 
5992 static void
5993 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5994 {
5995 	metaslab_t *msp;
5996 	spa_t *spa __maybe_unused = vd->vdev_spa;
5997 
5998 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5999 		return;
6000 
6001 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6002 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6003 		    metaslab_check_free_impl_cb, NULL);
6004 		return;
6005 	}
6006 
6007 	ASSERT(vdev_is_concrete(vd));
6008 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6009 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6010 
6011 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6012 
6013 	mutex_enter(&msp->ms_lock);
6014 	if (msp->ms_loaded) {
6015 		range_tree_verify_not_present(msp->ms_allocatable,
6016 		    offset, size);
6017 	}
6018 
6019 	/*
6020 	 * Check all segments that currently exist in the freeing pipeline.
6021 	 *
6022 	 * It would intuitively make sense to also check the current allocating
6023 	 * tree since metaslab_unalloc_dva() exists for extents that are
6024 	 * allocated and freed in the same sync pass within the same txg.
6025 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6026 	 * segment but then we free part of it within the same txg
6027 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6028 	 * current allocating tree.
6029 	 */
6030 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6031 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6032 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6033 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6034 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6035 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6036 	mutex_exit(&msp->ms_lock);
6037 }
6038 
6039 void
6040 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6041 {
6042 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6043 		return;
6044 
6045 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6046 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6047 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6048 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6049 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6050 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6051 
6052 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6053 			size = vdev_gang_header_asize(vd);
6054 
6055 		ASSERT3P(vd, !=, NULL);
6056 
6057 		metaslab_check_free_impl(vd, offset, size);
6058 	}
6059 	spa_config_exit(spa, SCL_VDEV, FTAG);
6060 }
6061 
6062 static void
6063 metaslab_group_disable_wait(metaslab_group_t *mg)
6064 {
6065 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6066 	while (mg->mg_disabled_updating) {
6067 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6068 	}
6069 }
6070 
6071 static void
6072 metaslab_group_disabled_increment(metaslab_group_t *mg)
6073 {
6074 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6075 	ASSERT(mg->mg_disabled_updating);
6076 
6077 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6078 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6079 	}
6080 	mg->mg_ms_disabled++;
6081 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6082 }
6083 
6084 /*
6085  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6086  * We must also track how many metaslabs are currently disabled within a
6087  * metaslab group and limit them to prevent allocation failures from
6088  * occurring because all metaslabs are disabled.
6089  */
6090 void
6091 metaslab_disable(metaslab_t *msp)
6092 {
6093 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6094 	metaslab_group_t *mg = msp->ms_group;
6095 
6096 	mutex_enter(&mg->mg_ms_disabled_lock);
6097 
6098 	/*
6099 	 * To keep an accurate count of how many threads have disabled
6100 	 * a specific metaslab group, we only allow one thread to mark
6101 	 * the metaslab group at a time. This ensures that the value of
6102 	 * ms_disabled will be accurate when we decide to mark a metaslab
6103 	 * group as disabled. To do this we force all other threads
6104 	 * to wait till the metaslab's mg_disabled_updating flag is no
6105 	 * longer set.
6106 	 */
6107 	metaslab_group_disable_wait(mg);
6108 	mg->mg_disabled_updating = B_TRUE;
6109 	if (msp->ms_disabled == 0) {
6110 		metaslab_group_disabled_increment(mg);
6111 	}
6112 	mutex_enter(&msp->ms_lock);
6113 	msp->ms_disabled++;
6114 	mutex_exit(&msp->ms_lock);
6115 
6116 	mg->mg_disabled_updating = B_FALSE;
6117 	cv_broadcast(&mg->mg_ms_disabled_cv);
6118 	mutex_exit(&mg->mg_ms_disabled_lock);
6119 }
6120 
6121 void
6122 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6123 {
6124 	metaslab_group_t *mg = msp->ms_group;
6125 	spa_t *spa = mg->mg_vd->vdev_spa;
6126 
6127 	/*
6128 	 * Wait for the outstanding IO to be synced to prevent newly
6129 	 * allocated blocks from being overwritten.  This used by
6130 	 * initialize and TRIM which are modifying unallocated space.
6131 	 */
6132 	if (sync)
6133 		txg_wait_synced(spa_get_dsl(spa), 0);
6134 
6135 	mutex_enter(&mg->mg_ms_disabled_lock);
6136 	mutex_enter(&msp->ms_lock);
6137 	if (--msp->ms_disabled == 0) {
6138 		mg->mg_ms_disabled--;
6139 		cv_broadcast(&mg->mg_ms_disabled_cv);
6140 		if (unload)
6141 			metaslab_unload(msp);
6142 	}
6143 	mutex_exit(&msp->ms_lock);
6144 	mutex_exit(&mg->mg_ms_disabled_lock);
6145 }
6146 
6147 void
6148 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6149 {
6150 	ms->ms_unflushed_dirty = dirty;
6151 }
6152 
6153 static void
6154 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6155 {
6156 	vdev_t *vd = ms->ms_group->mg_vd;
6157 	spa_t *spa = vd->vdev_spa;
6158 	objset_t *mos = spa_meta_objset(spa);
6159 
6160 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6161 
6162 	metaslab_unflushed_phys_t entry = {
6163 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6164 	};
6165 	uint64_t entry_size = sizeof (entry);
6166 	uint64_t entry_offset = ms->ms_id * entry_size;
6167 
6168 	uint64_t object = 0;
6169 	int err = zap_lookup(mos, vd->vdev_top_zap,
6170 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6171 	    &object);
6172 	if (err == ENOENT) {
6173 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6174 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6175 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6176 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6177 		    &object, tx));
6178 	} else {
6179 		VERIFY0(err);
6180 	}
6181 
6182 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6183 	    &entry, tx);
6184 }
6185 
6186 void
6187 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6188 {
6189 	ms->ms_unflushed_txg = txg;
6190 	metaslab_update_ondisk_flush_data(ms, tx);
6191 }
6192 
6193 boolean_t
6194 metaslab_unflushed_dirty(metaslab_t *ms)
6195 {
6196 	return (ms->ms_unflushed_dirty);
6197 }
6198 
6199 uint64_t
6200 metaslab_unflushed_txg(metaslab_t *ms)
6201 {
6202 	return (ms->ms_unflushed_txg);
6203 }
6204 
6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6206 	"Allocation granularity (a.k.a. stripe size)");
6207 
6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6209 	"Load all metaslabs when pool is first opened");
6210 
6211 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6212 	"Prevent metaslabs from being unloaded");
6213 
6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6215 	"Preload potential metaslabs during reassessment");
6216 
6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6218 	"Max number of metaslabs per group to preload");
6219 
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6221 	"Delay in txgs after metaslab was last used before unloading");
6222 
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6224 	"Delay in milliseconds after metaslab was last used before unloading");
6225 
6226 /* BEGIN CSTYLED */
6227 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6228 	"Percentage of metaslab group size that should be free to make it "
6229 	"eligible for allocation");
6230 
6231 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6232 	"Percentage of metaslab group size that should be considered eligible "
6233 	"for allocations unless all metaslab groups within the metaslab class "
6234 	"have also crossed this threshold");
6235 
6236 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6237 	ZMOD_RW,
6238 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6239 /* END CSTYLED */
6240 
6241 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6242 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6243 
6244 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6245 	"Prefer metaslabs with lower LBAs");
6246 
6247 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6248 	"Enable metaslab group biasing");
6249 
6250 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6251 	ZMOD_RW, "Enable segment-based metaslab selection");
6252 
6253 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6254 	"Segment-based metaslab selection maximum buckets before switching");
6255 
6256 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6257 	"Blocks larger than this size are sometimes forced to be gang blocks");
6258 
6259 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6260 	"Percentage of large blocks that will be forced to be gang blocks");
6261 
6262 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6263 	"Max distance (bytes) to search forward before using size tree");
6264 
6265 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6266 	"When looking in size tree, use largest segment instead of exact fit");
6267 
6268 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6269 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6270 
6271 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6272 	"Percentage of memory that can be used to store metaslab range trees");
6273 
6274 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6275 	ZMOD_RW, "Try hard to allocate before ganging");
6276 
6277 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6278 	"Normally only consider this many of the best metaslabs in each vdev");
6279 
6280 /* BEGIN CSTYLED */
6281 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6282 	param_set_active_allocator, param_get_charp, ZMOD_RW,
6283 	"SPA active allocator");
6284 /* END CSTYLED */
6285