xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 29fc4075e69fd27de0cded313ac6000165d99f8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
42 
43 #define	WITH_DF_BLOCK_ALLOCATOR
44 
45 #define	GANG_ALLOCATION(flags) \
46 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 
48 /*
49  * Metaslab granularity, in bytes. This is roughly similar to what would be
50  * referred to as the "stripe size" in traditional RAID arrays. In normal
51  * operation, we will try to write this amount of data to each disk before
52  * moving on to the next top-level vdev.
53  */
54 static unsigned long metaslab_aliquot = 1024 * 1024;
55 
56 /*
57  * For testing, make some blocks above a certain size be gang blocks.
58  */
59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 
61 /*
62  * In pools where the log space map feature is not enabled we touch
63  * multiple metaslabs (and their respective space maps) with each
64  * transaction group. Thus, we benefit from having a small space map
65  * block size since it allows us to issue more I/O operations scattered
66  * around the disk. So a sane default for the space map block size
67  * is 8~16K.
68  */
69 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70 
71 /*
72  * When the log space map feature is enabled, we accumulate a lot of
73  * changes per metaslab that are flushed once in a while so we benefit
74  * from a bigger block size like 128K for the metaslab space maps.
75  */
76 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77 
78 /*
79  * The in-core space map representation is more compact than its on-disk form.
80  * The zfs_condense_pct determines how much more compact the in-core
81  * space map representation must be before we compact it on-disk.
82  * Values should be greater than or equal to 100.
83  */
84 int zfs_condense_pct = 200;
85 
86 /*
87  * Condensing a metaslab is not guaranteed to actually reduce the amount of
88  * space used on disk. In particular, a space map uses data in increments of
89  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90  * same number of blocks after condensing. Since the goal of condensing is to
91  * reduce the number of IOPs required to read the space map, we only want to
92  * condense when we can be sure we will reduce the number of blocks used by the
93  * space map. Unfortunately, we cannot precisely compute whether or not this is
94  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95  * we apply the following heuristic: do not condense a spacemap unless the
96  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97  * blocks.
98  */
99 static const int zfs_metaslab_condense_block_threshold = 4;
100 
101 /*
102  * The zfs_mg_noalloc_threshold defines which metaslab groups should
103  * be eligible for allocation. The value is defined as a percentage of
104  * free space. Metaslab groups that have more free space than
105  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106  * a metaslab group's free space is less than or equal to the
107  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110  * groups are allowed to accept allocations. Gang blocks are always
111  * eligible to allocate on any metaslab group. The default value of 0 means
112  * no metaslab group will be excluded based on this criterion.
113  */
114 static int zfs_mg_noalloc_threshold = 0;
115 
116 /*
117  * Metaslab groups are considered eligible for allocations if their
118  * fragmentation metric (measured as a percentage) is less than or
119  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120  * exceeds this threshold then it will be skipped unless all metaslab
121  * groups within the metaslab class have also crossed this threshold.
122  *
123  * This tunable was introduced to avoid edge cases where we continue
124  * allocating from very fragmented disks in our pool while other, less
125  * fragmented disks, exists. On the other hand, if all disks in the
126  * pool are uniformly approaching the threshold, the threshold can
127  * be a speed bump in performance, where we keep switching the disks
128  * that we allocate from (e.g. we allocate some segments from disk A
129  * making it bypassing the threshold while freeing segments from disk
130  * B getting its fragmentation below the threshold).
131  *
132  * Empirically, we've seen that our vdev selection for allocations is
133  * good enough that fragmentation increases uniformly across all vdevs
134  * the majority of the time. Thus we set the threshold percentage high
135  * enough to avoid hitting the speed bump on pools that are being pushed
136  * to the edge.
137  */
138 static int zfs_mg_fragmentation_threshold = 95;
139 
140 /*
141  * Allow metaslabs to keep their active state as long as their fragmentation
142  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143  * active metaslab that exceeds this threshold will no longer keep its active
144  * status allowing better metaslabs to be selected.
145  */
146 static int zfs_metaslab_fragmentation_threshold = 70;
147 
148 /*
149  * When set will load all metaslabs when pool is first opened.
150  */
151 int metaslab_debug_load = B_FALSE;
152 
153 /*
154  * When set will prevent metaslabs from being unloaded.
155  */
156 static int metaslab_debug_unload = B_FALSE;
157 
158 /*
159  * Minimum size which forces the dynamic allocator to change
160  * it's allocation strategy.  Once the space map cannot satisfy
161  * an allocation of this size then it switches to using more
162  * aggressive strategy (i.e search by size rather than offset).
163  */
164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165 
166 /*
167  * The minimum free space, in percent, which must be available
168  * in a space map to continue allocations in a first-fit fashion.
169  * Once the space map's free space drops below this level we dynamically
170  * switch to using best-fit allocations.
171  */
172 int metaslab_df_free_pct = 4;
173 
174 /*
175  * Maximum distance to search forward from the last offset. Without this
176  * limit, fragmented pools can see >100,000 iterations and
177  * metaslab_block_picker() becomes the performance limiting factor on
178  * high-performance storage.
179  *
180  * With the default setting of 16MB, we typically see less than 500
181  * iterations, even with very fragmented, ashift=9 pools. The maximum number
182  * of iterations possible is:
183  *     metaslab_df_max_search / (2 * (1<<ashift))
184  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185  * 2048 (with ashift=12).
186  */
187 static int metaslab_df_max_search = 16 * 1024 * 1024;
188 
189 /*
190  * Forces the metaslab_block_picker function to search for at least this many
191  * segments forwards until giving up on finding a segment that the allocation
192  * will fit into.
193  */
194 static const uint32_t metaslab_min_search_count = 100;
195 
196 /*
197  * If we are not searching forward (due to metaslab_df_max_search,
198  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199  * controls what segment is used.  If it is set, we will use the largest free
200  * segment.  If it is not set, we will use a segment of exactly the requested
201  * size (or larger).
202  */
203 static int metaslab_df_use_largest_segment = B_FALSE;
204 
205 /*
206  * Percentage of all cpus that can be used by the metaslab taskq.
207  */
208 int metaslab_load_pct = 50;
209 
210 /*
211  * These tunables control how long a metaslab will remain loaded after the
212  * last allocation from it.  A metaslab can't be unloaded until at least
213  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215  * unloaded sooner.  These settings are intended to be generous -- to keep
216  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217  */
218 static int metaslab_unload_delay = 32;
219 static int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 
221 /*
222  * Max number of metaslabs per group to preload.
223  */
224 int metaslab_preload_limit = 10;
225 
226 /*
227  * Enable/disable preloading of metaslab.
228  */
229 static int metaslab_preload_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable fragmentation weighting on metaslabs.
233  */
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235 
236 /*
237  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238  */
239 static int metaslab_lba_weighting_enabled = B_TRUE;
240 
241 /*
242  * Enable/disable metaslab group biasing.
243  */
244 static int metaslab_bias_enabled = B_TRUE;
245 
246 /*
247  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248  */
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250 
251 /*
252  * Enable/disable segment-based metaslab selection.
253  */
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255 
256 /*
257  * When using segment-based metaslab selection, we will continue
258  * allocating from the active metaslab until we have exhausted
259  * zfs_metaslab_switch_threshold of its buckets.
260  */
261 static int zfs_metaslab_switch_threshold = 2;
262 
263 /*
264  * Internal switch to enable/disable the metaslab allocation tracing
265  * facility.
266  */
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
268 
269 /*
270  * Maximum entries that the metaslab allocation tracing facility will keep
271  * in a given list when running in non-debug mode. We limit the number
272  * of entries in non-debug mode to prevent us from using up too much memory.
273  * The limit should be sufficiently large that we don't expect any allocation
274  * to every exceed this value. In debug mode, the system will panic if this
275  * limit is ever reached allowing for further investigation.
276  */
277 static const uint64_t metaslab_trace_max_entries = 5000;
278 
279 /*
280  * Maximum number of metaslabs per group that can be disabled
281  * simultaneously.
282  */
283 static const int max_disabled_ms = 3;
284 
285 /*
286  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287  * To avoid 64-bit overflow, don't set above UINT32_MAX.
288  */
289 static unsigned long zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290 
291 /*
292  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293  * a metaslab would take it over this percentage, the oldest selected metaslab
294  * is automatically unloaded.
295  */
296 static int zfs_metaslab_mem_limit = 25;
297 
298 /*
299  * Force the per-metaslab range trees to use 64-bit integers to store
300  * segments. Used for debugging purposes.
301  */
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303 
304 /*
305  * By default we only store segments over a certain size in the size-sorted
306  * metaslab trees (ms_allocatable_by_size and
307  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308  * improves load and unload times at the cost of causing us to use slightly
309  * larger segments than we would otherwise in some cases.
310  */
311 static const uint32_t metaslab_by_size_min_shift = 14;
312 
313 /*
314  * If not set, we will first try normal allocation.  If that fails then
315  * we will do a gang allocation.  If that fails then we will do a "try hard"
316  * gang allocation.  If that fails then we will have a multi-layer gang
317  * block.
318  *
319  * If set, we will first try normal allocation.  If that fails then
320  * we will do a "try hard" allocation.  If that fails we will do a gang
321  * allocation.  If that fails we will do a "try hard" gang allocation.  If
322  * that fails then we will have a multi-layer gang block.
323  */
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325 
326 /*
327  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328  * metaslabs.  This improves performance, especially when there are many
329  * metaslabs per vdev and the allocation can't actually be satisfied (so we
330  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
331  * worse weight but it can actually satisfy the allocation, we won't find it
332  * until trying hard.  This may happen if the worse metaslab is not loaded
333  * (and the true weight is better than we have calculated), or due to weight
334  * bucketization.  E.g. we are looking for a 60K segment, and the best
335  * metaslabs all have free segments in the 32-63K bucket, but the best
336  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338  * bucket, and therefore a lower weight).
339  */
340 static int zfs_metaslab_find_max_tries = 100;
341 
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346 
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
354 
355 typedef struct metaslab_stats {
356 	kstat_named_t metaslabstat_trace_over_limit;
357 	kstat_named_t metaslabstat_reload_tree;
358 	kstat_named_t metaslabstat_too_many_tries;
359 	kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
361 
362 static metaslab_stats_t metaslab_stats = {
363 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
364 	{ "reload_tree",		KSTAT_DATA_UINT64 },
365 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
366 	{ "try_hard",			KSTAT_DATA_UINT64 },
367 };
368 
369 #define	METASLABSTAT_BUMP(stat) \
370 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
371 
372 
373 static kstat_t *metaslab_ksp;
374 
375 void
376 metaslab_stat_init(void)
377 {
378 	ASSERT(metaslab_alloc_trace_cache == NULL);
379 	metaslab_alloc_trace_cache = kmem_cache_create(
380 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 	    0, NULL, NULL, NULL, NULL, NULL, 0);
382 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 	if (metaslab_ksp != NULL) {
386 		metaslab_ksp->ks_data = &metaslab_stats;
387 		kstat_install(metaslab_ksp);
388 	}
389 }
390 
391 void
392 metaslab_stat_fini(void)
393 {
394 	if (metaslab_ksp != NULL) {
395 		kstat_delete(metaslab_ksp);
396 		metaslab_ksp = NULL;
397 	}
398 
399 	kmem_cache_destroy(metaslab_alloc_trace_cache);
400 	metaslab_alloc_trace_cache = NULL;
401 }
402 
403 /*
404  * ==========================================================================
405  * Metaslab classes
406  * ==========================================================================
407  */
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410 {
411 	metaslab_class_t *mc;
412 
413 	mc = kmem_zalloc(offsetof(metaslab_class_t,
414 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415 
416 	mc->mc_spa = spa;
417 	mc->mc_ops = ops;
418 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 	for (int i = 0; i < spa->spa_alloc_count; i++) {
422 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 		mca->mca_rotor = NULL;
424 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 	}
426 
427 	return (mc);
428 }
429 
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
432 {
433 	spa_t *spa = mc->mc_spa;
434 
435 	ASSERT(mc->mc_alloc == 0);
436 	ASSERT(mc->mc_deferred == 0);
437 	ASSERT(mc->mc_space == 0);
438 	ASSERT(mc->mc_dspace == 0);
439 
440 	for (int i = 0; i < spa->spa_alloc_count; i++) {
441 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 		ASSERT(mca->mca_rotor == NULL);
443 		zfs_refcount_destroy(&mca->mca_alloc_slots);
444 	}
445 	mutex_destroy(&mc->mc_lock);
446 	multilist_destroy(&mc->mc_metaslab_txg_list);
447 	kmem_free(mc, offsetof(metaslab_class_t,
448 	    mc_allocator[spa->spa_alloc_count]));
449 }
450 
451 int
452 metaslab_class_validate(metaslab_class_t *mc)
453 {
454 	metaslab_group_t *mg;
455 	vdev_t *vd;
456 
457 	/*
458 	 * Must hold one of the spa_config locks.
459 	 */
460 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462 
463 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 		return (0);
465 
466 	do {
467 		vd = mg->mg_vd;
468 		ASSERT(vd->vdev_mg != NULL);
469 		ASSERT3P(vd->vdev_top, ==, vd);
470 		ASSERT3P(mg->mg_class, ==, mc);
471 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473 
474 	return (0);
475 }
476 
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480 {
481 	atomic_add_64(&mc->mc_alloc, alloc_delta);
482 	atomic_add_64(&mc->mc_deferred, defer_delta);
483 	atomic_add_64(&mc->mc_space, space_delta);
484 	atomic_add_64(&mc->mc_dspace, dspace_delta);
485 }
486 
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
489 {
490 	return (mc->mc_alloc);
491 }
492 
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
495 {
496 	return (mc->mc_deferred);
497 }
498 
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
501 {
502 	return (mc->mc_space);
503 }
504 
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
507 {
508 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 }
510 
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
513 {
514 	spa_t *spa = mc->mc_spa;
515 	vdev_t *rvd = spa->spa_root_vdev;
516 	uint64_t *mc_hist;
517 	int i;
518 
519 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 		return;
521 
522 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 	    KM_SLEEP);
524 
525 	mutex_enter(&mc->mc_lock);
526 	for (int c = 0; c < rvd->vdev_children; c++) {
527 		vdev_t *tvd = rvd->vdev_child[c];
528 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529 
530 		/*
531 		 * Skip any holes, uninitialized top-levels, or
532 		 * vdevs that are not in this metalab class.
533 		 */
534 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 		    mg->mg_class != mc) {
536 			continue;
537 		}
538 
539 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541 
542 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 			mc_hist[i] += mg->mg_histogram[i];
544 	}
545 
546 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 	}
549 
550 	mutex_exit(&mc->mc_lock);
551 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552 }
553 
554 /*
555  * Calculate the metaslab class's fragmentation metric. The metric
556  * is weighted based on the space contribution of each metaslab group.
557  * The return value will be a number between 0 and 100 (inclusive), or
558  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559  * zfs_frag_table for more information about the metric.
560  */
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
563 {
564 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 	uint64_t fragmentation = 0;
566 
567 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568 
569 	for (int c = 0; c < rvd->vdev_children; c++) {
570 		vdev_t *tvd = rvd->vdev_child[c];
571 		metaslab_group_t *mg = tvd->vdev_mg;
572 
573 		/*
574 		 * Skip any holes, uninitialized top-levels,
575 		 * or vdevs that are not in this metalab class.
576 		 */
577 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 		    mg->mg_class != mc) {
579 			continue;
580 		}
581 
582 		/*
583 		 * If a metaslab group does not contain a fragmentation
584 		 * metric then just bail out.
585 		 */
586 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 			return (ZFS_FRAG_INVALID);
589 		}
590 
591 		/*
592 		 * Determine how much this metaslab_group is contributing
593 		 * to the overall pool fragmentation metric.
594 		 */
595 		fragmentation += mg->mg_fragmentation *
596 		    metaslab_group_get_space(mg);
597 	}
598 	fragmentation /= metaslab_class_get_space(mc);
599 
600 	ASSERT3U(fragmentation, <=, 100);
601 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 	return (fragmentation);
603 }
604 
605 /*
606  * Calculate the amount of expandable space that is available in
607  * this metaslab class. If a device is expanded then its expandable
608  * space will be the amount of allocatable space that is currently not
609  * part of this metaslab class.
610  */
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
613 {
614 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 	uint64_t space = 0;
616 
617 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 	for (int c = 0; c < rvd->vdev_children; c++) {
619 		vdev_t *tvd = rvd->vdev_child[c];
620 		metaslab_group_t *mg = tvd->vdev_mg;
621 
622 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 		    mg->mg_class != mc) {
624 			continue;
625 		}
626 
627 		/*
628 		 * Calculate if we have enough space to add additional
629 		 * metaslabs. We report the expandable space in terms
630 		 * of the metaslab size since that's the unit of expansion.
631 		 */
632 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 		    1ULL << tvd->vdev_ms_shift);
634 	}
635 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 	return (space);
637 }
638 
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641 {
642 	multilist_t *ml = &mc->mc_metaslab_txg_list;
643 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 		metaslab_t *msp = multilist_sublist_head(mls);
646 		multilist_sublist_unlock(mls);
647 		while (msp != NULL) {
648 			mutex_enter(&msp->ms_lock);
649 
650 			/*
651 			 * If the metaslab has been removed from the list
652 			 * (which could happen if we were at the memory limit
653 			 * and it was evicted during this loop), then we can't
654 			 * proceed and we should restart the sublist.
655 			 */
656 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 				mutex_exit(&msp->ms_lock);
658 				i--;
659 				break;
660 			}
661 			mls = multilist_sublist_lock(ml, i);
662 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 			multilist_sublist_unlock(mls);
664 			if (txg >
665 			    msp->ms_selected_txg + metaslab_unload_delay &&
666 			    gethrtime() > msp->ms_selected_time +
667 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 				metaslab_evict(msp, txg);
669 			} else {
670 				/*
671 				 * Once we've hit a metaslab selected too
672 				 * recently to evict, we're done evicting for
673 				 * now.
674 				 */
675 				mutex_exit(&msp->ms_lock);
676 				break;
677 			}
678 			mutex_exit(&msp->ms_lock);
679 			msp = next_msp;
680 		}
681 	}
682 }
683 
684 static int
685 metaslab_compare(const void *x1, const void *x2)
686 {
687 	const metaslab_t *m1 = (const metaslab_t *)x1;
688 	const metaslab_t *m2 = (const metaslab_t *)x2;
689 
690 	int sort1 = 0;
691 	int sort2 = 0;
692 	if (m1->ms_allocator != -1 && m1->ms_primary)
693 		sort1 = 1;
694 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 		sort1 = 2;
696 	if (m2->ms_allocator != -1 && m2->ms_primary)
697 		sort2 = 1;
698 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 		sort2 = 2;
700 
701 	/*
702 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 	 * selecting a metaslab to allocate from, an allocator first tries its
704 	 * primary, then secondary active metaslab. If it doesn't have active
705 	 * metaslabs, or can't allocate from them, it searches for an inactive
706 	 * metaslab to activate. If it can't find a suitable one, it will steal
707 	 * a primary or secondary metaslab from another allocator.
708 	 */
709 	if (sort1 < sort2)
710 		return (-1);
711 	if (sort1 > sort2)
712 		return (1);
713 
714 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 	if (likely(cmp))
716 		return (cmp);
717 
718 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719 
720 	return (TREE_CMP(m1->ms_start, m2->ms_start));
721 }
722 
723 /*
724  * ==========================================================================
725  * Metaslab groups
726  * ==========================================================================
727  */
728 /*
729  * Update the allocatable flag and the metaslab group's capacity.
730  * The allocatable flag is set to true if the capacity is below
731  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733  * transitions from allocatable to non-allocatable or vice versa then the
734  * metaslab group's class is updated to reflect the transition.
735  */
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
738 {
739 	vdev_t *vd = mg->mg_vd;
740 	metaslab_class_t *mc = mg->mg_class;
741 	vdev_stat_t *vs = &vd->vdev_stat;
742 	boolean_t was_allocatable;
743 	boolean_t was_initialized;
744 
745 	ASSERT(vd == vd->vdev_top);
746 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 	    SCL_ALLOC);
748 
749 	mutex_enter(&mg->mg_lock);
750 	was_allocatable = mg->mg_allocatable;
751 	was_initialized = mg->mg_initialized;
752 
753 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 	    (vs->vs_space + 1);
755 
756 	mutex_enter(&mc->mc_lock);
757 
758 	/*
759 	 * If the metaslab group was just added then it won't
760 	 * have any space until we finish syncing out this txg.
761 	 * At that point we will consider it initialized and available
762 	 * for allocations.  We also don't consider non-activated
763 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 	 * to be initialized, because they can't be used for allocation.
765 	 */
766 	mg->mg_initialized = metaslab_group_initialized(mg);
767 	if (!was_initialized && mg->mg_initialized) {
768 		mc->mc_groups++;
769 	} else if (was_initialized && !mg->mg_initialized) {
770 		ASSERT3U(mc->mc_groups, >, 0);
771 		mc->mc_groups--;
772 	}
773 	if (mg->mg_initialized)
774 		mg->mg_no_free_space = B_FALSE;
775 
776 	/*
777 	 * A metaslab group is considered allocatable if it has plenty
778 	 * of free space or is not heavily fragmented. We only take
779 	 * fragmentation into account if the metaslab group has a valid
780 	 * fragmentation metric (i.e. a value between 0 and 100).
781 	 */
782 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786 
787 	/*
788 	 * The mc_alloc_groups maintains a count of the number of
789 	 * groups in this metaslab class that are still above the
790 	 * zfs_mg_noalloc_threshold. This is used by the allocating
791 	 * threads to determine if they should avoid allocations to
792 	 * a given group. The allocator will avoid allocations to a group
793 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 	 * and there are still other groups that are above the threshold.
795 	 * When a group transitions from allocatable to non-allocatable or
796 	 * vice versa we update the metaslab class to reflect that change.
797 	 * When the mc_alloc_groups value drops to 0 that means that all
798 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 	 * eligible for allocations. This effectively means that all devices
800 	 * are balanced again.
801 	 */
802 	if (was_allocatable && !mg->mg_allocatable)
803 		mc->mc_alloc_groups--;
804 	else if (!was_allocatable && mg->mg_allocatable)
805 		mc->mc_alloc_groups++;
806 	mutex_exit(&mc->mc_lock);
807 
808 	mutex_exit(&mg->mg_lock);
809 }
810 
811 int
812 metaslab_sort_by_flushed(const void *va, const void *vb)
813 {
814 	const metaslab_t *a = va;
815 	const metaslab_t *b = vb;
816 
817 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 	if (likely(cmp))
819 		return (cmp);
820 
821 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 	if (cmp)
825 		return (cmp);
826 
827 	return (TREE_CMP(a->ms_id, b->ms_id));
828 }
829 
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832 {
833 	metaslab_group_t *mg;
834 
835 	mg = kmem_zalloc(offsetof(metaslab_group_t,
836 	    mg_allocator[allocators]), KM_SLEEP);
837 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 	mg->mg_vd = vd;
843 	mg->mg_class = mc;
844 	mg->mg_activation_count = 0;
845 	mg->mg_initialized = B_FALSE;
846 	mg->mg_no_free_space = B_TRUE;
847 	mg->mg_allocators = allocators;
848 
849 	for (int i = 0; i < allocators; i++) {
850 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852 	}
853 
854 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856 
857 	return (mg);
858 }
859 
860 void
861 metaslab_group_destroy(metaslab_group_t *mg)
862 {
863 	ASSERT(mg->mg_prev == NULL);
864 	ASSERT(mg->mg_next == NULL);
865 	/*
866 	 * We may have gone below zero with the activation count
867 	 * either because we never activated in the first place or
868 	 * because we're done, and possibly removing the vdev.
869 	 */
870 	ASSERT(mg->mg_activation_count <= 0);
871 
872 	taskq_destroy(mg->mg_taskq);
873 	avl_destroy(&mg->mg_metaslab_tree);
874 	mutex_destroy(&mg->mg_lock);
875 	mutex_destroy(&mg->mg_ms_disabled_lock);
876 	cv_destroy(&mg->mg_ms_disabled_cv);
877 
878 	for (int i = 0; i < mg->mg_allocators; i++) {
879 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881 	}
882 	kmem_free(mg, offsetof(metaslab_group_t,
883 	    mg_allocator[mg->mg_allocators]));
884 }
885 
886 void
887 metaslab_group_activate(metaslab_group_t *mg)
888 {
889 	metaslab_class_t *mc = mg->mg_class;
890 	spa_t *spa = mc->mc_spa;
891 	metaslab_group_t *mgprev, *mgnext;
892 
893 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894 
895 	ASSERT(mg->mg_prev == NULL);
896 	ASSERT(mg->mg_next == NULL);
897 	ASSERT(mg->mg_activation_count <= 0);
898 
899 	if (++mg->mg_activation_count <= 0)
900 		return;
901 
902 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
903 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904 	metaslab_group_alloc_update(mg);
905 
906 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907 		mg->mg_prev = mg;
908 		mg->mg_next = mg;
909 	} else {
910 		mgnext = mgprev->mg_next;
911 		mg->mg_prev = mgprev;
912 		mg->mg_next = mgnext;
913 		mgprev->mg_next = mg;
914 		mgnext->mg_prev = mg;
915 	}
916 	for (int i = 0; i < spa->spa_alloc_count; i++) {
917 		mc->mc_allocator[i].mca_rotor = mg;
918 		mg = mg->mg_next;
919 	}
920 }
921 
922 /*
923  * Passivate a metaslab group and remove it from the allocation rotor.
924  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925  * a metaslab group. This function will momentarily drop spa_config_locks
926  * that are lower than the SCL_ALLOC lock (see comment below).
927  */
928 void
929 metaslab_group_passivate(metaslab_group_t *mg)
930 {
931 	metaslab_class_t *mc = mg->mg_class;
932 	spa_t *spa = mc->mc_spa;
933 	metaslab_group_t *mgprev, *mgnext;
934 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935 
936 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937 	    (SCL_ALLOC | SCL_ZIO));
938 
939 	if (--mg->mg_activation_count != 0) {
940 		for (int i = 0; i < spa->spa_alloc_count; i++)
941 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942 		ASSERT(mg->mg_prev == NULL);
943 		ASSERT(mg->mg_next == NULL);
944 		ASSERT(mg->mg_activation_count < 0);
945 		return;
946 	}
947 
948 	/*
949 	 * The spa_config_lock is an array of rwlocks, ordered as
950 	 * follows (from highest to lowest):
951 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
953 	 * (For more information about the spa_config_lock see spa_misc.c)
954 	 * The higher the lock, the broader its coverage. When we passivate
955 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956 	 * config locks. However, the metaslab group's taskq might be trying
957 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958 	 * lower locks to allow the I/O to complete. At a minimum,
959 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
960 	 * allocations from taking place and any changes to the vdev tree.
961 	 */
962 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963 	taskq_wait_outstanding(mg->mg_taskq, 0);
964 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965 	metaslab_group_alloc_update(mg);
966 	for (int i = 0; i < mg->mg_allocators; i++) {
967 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968 		metaslab_t *msp = mga->mga_primary;
969 		if (msp != NULL) {
970 			mutex_enter(&msp->ms_lock);
971 			metaslab_passivate(msp,
972 			    metaslab_weight_from_range_tree(msp));
973 			mutex_exit(&msp->ms_lock);
974 		}
975 		msp = mga->mga_secondary;
976 		if (msp != NULL) {
977 			mutex_enter(&msp->ms_lock);
978 			metaslab_passivate(msp,
979 			    metaslab_weight_from_range_tree(msp));
980 			mutex_exit(&msp->ms_lock);
981 		}
982 	}
983 
984 	mgprev = mg->mg_prev;
985 	mgnext = mg->mg_next;
986 
987 	if (mg == mgnext) {
988 		mgnext = NULL;
989 	} else {
990 		mgprev->mg_next = mgnext;
991 		mgnext->mg_prev = mgprev;
992 	}
993 	for (int i = 0; i < spa->spa_alloc_count; i++) {
994 		if (mc->mc_allocator[i].mca_rotor == mg)
995 			mc->mc_allocator[i].mca_rotor = mgnext;
996 	}
997 
998 	mg->mg_prev = NULL;
999 	mg->mg_next = NULL;
1000 }
1001 
1002 boolean_t
1003 metaslab_group_initialized(metaslab_group_t *mg)
1004 {
1005 	vdev_t *vd = mg->mg_vd;
1006 	vdev_stat_t *vs = &vd->vdev_stat;
1007 
1008 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009 }
1010 
1011 uint64_t
1012 metaslab_group_get_space(metaslab_group_t *mg)
1013 {
1014 	/*
1015 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1016 	 * than vdev_ms_count, due to the embedded log metaslab.
1017 	 */
1018 	mutex_enter(&mg->mg_lock);
1019 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020 	mutex_exit(&mg->mg_lock);
1021 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022 }
1023 
1024 void
1025 metaslab_group_histogram_verify(metaslab_group_t *mg)
1026 {
1027 	uint64_t *mg_hist;
1028 	avl_tree_t *t = &mg->mg_metaslab_tree;
1029 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1030 
1031 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032 		return;
1033 
1034 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035 	    KM_SLEEP);
1036 
1037 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039 
1040 	mutex_enter(&mg->mg_lock);
1041 	for (metaslab_t *msp = avl_first(t);
1042 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1043 		VERIFY3P(msp->ms_group, ==, mg);
1044 		/* skip if not active */
1045 		if (msp->ms_sm == NULL)
1046 			continue;
1047 
1048 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049 			mg_hist[i + ashift] +=
1050 			    msp->ms_sm->sm_phys->smp_histogram[i];
1051 		}
1052 	}
1053 
1054 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056 
1057 	mutex_exit(&mg->mg_lock);
1058 
1059 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060 }
1061 
1062 static void
1063 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064 {
1065 	metaslab_class_t *mc = mg->mg_class;
1066 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1067 
1068 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1069 	if (msp->ms_sm == NULL)
1070 		return;
1071 
1072 	mutex_enter(&mg->mg_lock);
1073 	mutex_enter(&mc->mc_lock);
1074 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077 		mg->mg_histogram[i + ashift] +=
1078 		    msp->ms_sm->sm_phys->smp_histogram[i];
1079 		mc->mc_histogram[i + ashift] +=
1080 		    msp->ms_sm->sm_phys->smp_histogram[i];
1081 	}
1082 	mutex_exit(&mc->mc_lock);
1083 	mutex_exit(&mg->mg_lock);
1084 }
1085 
1086 void
1087 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088 {
1089 	metaslab_class_t *mc = mg->mg_class;
1090 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1091 
1092 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1093 	if (msp->ms_sm == NULL)
1094 		return;
1095 
1096 	mutex_enter(&mg->mg_lock);
1097 	mutex_enter(&mc->mc_lock);
1098 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1101 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1103 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105 
1106 		mg->mg_histogram[i + ashift] -=
1107 		    msp->ms_sm->sm_phys->smp_histogram[i];
1108 		mc->mc_histogram[i + ashift] -=
1109 		    msp->ms_sm->sm_phys->smp_histogram[i];
1110 	}
1111 	mutex_exit(&mc->mc_lock);
1112 	mutex_exit(&mg->mg_lock);
1113 }
1114 
1115 static void
1116 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117 {
1118 	ASSERT(msp->ms_group == NULL);
1119 	mutex_enter(&mg->mg_lock);
1120 	msp->ms_group = mg;
1121 	msp->ms_weight = 0;
1122 	avl_add(&mg->mg_metaslab_tree, msp);
1123 	mutex_exit(&mg->mg_lock);
1124 
1125 	mutex_enter(&msp->ms_lock);
1126 	metaslab_group_histogram_add(mg, msp);
1127 	mutex_exit(&msp->ms_lock);
1128 }
1129 
1130 static void
1131 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132 {
1133 	mutex_enter(&msp->ms_lock);
1134 	metaslab_group_histogram_remove(mg, msp);
1135 	mutex_exit(&msp->ms_lock);
1136 
1137 	mutex_enter(&mg->mg_lock);
1138 	ASSERT(msp->ms_group == mg);
1139 	avl_remove(&mg->mg_metaslab_tree, msp);
1140 
1141 	metaslab_class_t *mc = msp->ms_group->mg_class;
1142 	multilist_sublist_t *mls =
1143 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144 	if (multilist_link_active(&msp->ms_class_txg_node))
1145 		multilist_sublist_remove(mls, msp);
1146 	multilist_sublist_unlock(mls);
1147 
1148 	msp->ms_group = NULL;
1149 	mutex_exit(&mg->mg_lock);
1150 }
1151 
1152 static void
1153 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154 {
1155 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1156 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1157 	ASSERT(msp->ms_group == mg);
1158 
1159 	avl_remove(&mg->mg_metaslab_tree, msp);
1160 	msp->ms_weight = weight;
1161 	avl_add(&mg->mg_metaslab_tree, msp);
1162 
1163 }
1164 
1165 static void
1166 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167 {
1168 	/*
1169 	 * Although in principle the weight can be any value, in
1170 	 * practice we do not use values in the range [1, 511].
1171 	 */
1172 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1174 
1175 	mutex_enter(&mg->mg_lock);
1176 	metaslab_group_sort_impl(mg, msp, weight);
1177 	mutex_exit(&mg->mg_lock);
1178 }
1179 
1180 /*
1181  * Calculate the fragmentation for a given metaslab group. We can use
1182  * a simple average here since all metaslabs within the group must have
1183  * the same size. The return value will be a value between 0 and 100
1184  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185  * group have a fragmentation metric.
1186  */
1187 uint64_t
1188 metaslab_group_fragmentation(metaslab_group_t *mg)
1189 {
1190 	vdev_t *vd = mg->mg_vd;
1191 	uint64_t fragmentation = 0;
1192 	uint64_t valid_ms = 0;
1193 
1194 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1195 		metaslab_t *msp = vd->vdev_ms[m];
1196 
1197 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198 			continue;
1199 		if (msp->ms_group != mg)
1200 			continue;
1201 
1202 		valid_ms++;
1203 		fragmentation += msp->ms_fragmentation;
1204 	}
1205 
1206 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207 		return (ZFS_FRAG_INVALID);
1208 
1209 	fragmentation /= valid_ms;
1210 	ASSERT3U(fragmentation, <=, 100);
1211 	return (fragmentation);
1212 }
1213 
1214 /*
1215  * Determine if a given metaslab group should skip allocations. A metaslab
1216  * group should avoid allocations if its free capacity is less than the
1217  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219  * that can still handle allocations. If the allocation throttle is enabled
1220  * then we skip allocations to devices that have reached their maximum
1221  * allocation queue depth unless the selected metaslab group is the only
1222  * eligible group remaining.
1223  */
1224 static boolean_t
1225 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226     uint64_t psize, int allocator, int d)
1227 {
1228 	spa_t *spa = mg->mg_vd->vdev_spa;
1229 	metaslab_class_t *mc = mg->mg_class;
1230 
1231 	/*
1232 	 * We can only consider skipping this metaslab group if it's
1233 	 * in the normal metaslab class and there are other metaslab
1234 	 * groups to select from. Otherwise, we always consider it eligible
1235 	 * for allocations.
1236 	 */
1237 	if ((mc != spa_normal_class(spa) &&
1238 	    mc != spa_special_class(spa) &&
1239 	    mc != spa_dedup_class(spa)) ||
1240 	    mc->mc_groups <= 1)
1241 		return (B_TRUE);
1242 
1243 	/*
1244 	 * If the metaslab group's mg_allocatable flag is set (see comments
1245 	 * in metaslab_group_alloc_update() for more information) and
1246 	 * the allocation throttle is disabled then allow allocations to this
1247 	 * device. However, if the allocation throttle is enabled then
1248 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249 	 * to determine if we should allow allocations to this metaslab group.
1250 	 * If all metaslab groups are no longer considered allocatable
1251 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252 	 * gang block size then we allow allocations on this metaslab group
1253 	 * regardless of the mg_allocatable or throttle settings.
1254 	 */
1255 	if (mg->mg_allocatable) {
1256 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257 		int64_t qdepth;
1258 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259 
1260 		if (!mc->mc_alloc_throttle_enabled)
1261 			return (B_TRUE);
1262 
1263 		/*
1264 		 * If this metaslab group does not have any free space, then
1265 		 * there is no point in looking further.
1266 		 */
1267 		if (mg->mg_no_free_space)
1268 			return (B_FALSE);
1269 
1270 		/*
1271 		 * Relax allocation throttling for ditto blocks.  Due to
1272 		 * random imbalances in allocation it tends to push copies
1273 		 * to one vdev, that looks a bit better at the moment.
1274 		 */
1275 		qmax = qmax * (4 + d) / 4;
1276 
1277 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1278 
1279 		/*
1280 		 * If this metaslab group is below its qmax or it's
1281 		 * the only allocatable metasable group, then attempt
1282 		 * to allocate from it.
1283 		 */
1284 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1285 			return (B_TRUE);
1286 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1287 
1288 		/*
1289 		 * Since this metaslab group is at or over its qmax, we
1290 		 * need to determine if there are metaslab groups after this
1291 		 * one that might be able to handle this allocation. This is
1292 		 * racy since we can't hold the locks for all metaslab
1293 		 * groups at the same time when we make this check.
1294 		 */
1295 		for (metaslab_group_t *mgp = mg->mg_next;
1296 		    mgp != rotor; mgp = mgp->mg_next) {
1297 			metaslab_group_allocator_t *mgap =
1298 			    &mgp->mg_allocator[allocator];
1299 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1300 			qmax = qmax * (4 + d) / 4;
1301 			qdepth =
1302 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1303 
1304 			/*
1305 			 * If there is another metaslab group that
1306 			 * might be able to handle the allocation, then
1307 			 * we return false so that we skip this group.
1308 			 */
1309 			if (qdepth < qmax && !mgp->mg_no_free_space)
1310 				return (B_FALSE);
1311 		}
1312 
1313 		/*
1314 		 * We didn't find another group to handle the allocation
1315 		 * so we can't skip this metaslab group even though
1316 		 * we are at or over our qmax.
1317 		 */
1318 		return (B_TRUE);
1319 
1320 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1321 		return (B_TRUE);
1322 	}
1323 	return (B_FALSE);
1324 }
1325 
1326 /*
1327  * ==========================================================================
1328  * Range tree callbacks
1329  * ==========================================================================
1330  */
1331 
1332 /*
1333  * Comparison function for the private size-ordered tree using 32-bit
1334  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1335  */
1336 static int
1337 metaslab_rangesize32_compare(const void *x1, const void *x2)
1338 {
1339 	const range_seg32_t *r1 = x1;
1340 	const range_seg32_t *r2 = x2;
1341 
1342 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1343 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1344 
1345 	int cmp = TREE_CMP(rs_size1, rs_size2);
1346 	if (likely(cmp))
1347 		return (cmp);
1348 
1349 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1350 }
1351 
1352 /*
1353  * Comparison function for the private size-ordered tree using 64-bit
1354  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1355  */
1356 static int
1357 metaslab_rangesize64_compare(const void *x1, const void *x2)
1358 {
1359 	const range_seg64_t *r1 = x1;
1360 	const range_seg64_t *r2 = x2;
1361 
1362 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1363 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1364 
1365 	int cmp = TREE_CMP(rs_size1, rs_size2);
1366 	if (likely(cmp))
1367 		return (cmp);
1368 
1369 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1370 }
1371 typedef struct metaslab_rt_arg {
1372 	zfs_btree_t *mra_bt;
1373 	uint32_t mra_floor_shift;
1374 } metaslab_rt_arg_t;
1375 
1376 struct mssa_arg {
1377 	range_tree_t *rt;
1378 	metaslab_rt_arg_t *mra;
1379 };
1380 
1381 static void
1382 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1383 {
1384 	struct mssa_arg *mssap = arg;
1385 	range_tree_t *rt = mssap->rt;
1386 	metaslab_rt_arg_t *mrap = mssap->mra;
1387 	range_seg_max_t seg = {0};
1388 	rs_set_start(&seg, rt, start);
1389 	rs_set_end(&seg, rt, start + size);
1390 	metaslab_rt_add(rt, &seg, mrap);
1391 }
1392 
1393 static void
1394 metaslab_size_tree_full_load(range_tree_t *rt)
1395 {
1396 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1397 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1398 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1399 	mrap->mra_floor_shift = 0;
1400 	struct mssa_arg arg = {0};
1401 	arg.rt = rt;
1402 	arg.mra = mrap;
1403 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1404 }
1405 
1406 /*
1407  * Create any block allocator specific components. The current allocators
1408  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1409  */
1410 static void
1411 metaslab_rt_create(range_tree_t *rt, void *arg)
1412 {
1413 	metaslab_rt_arg_t *mrap = arg;
1414 	zfs_btree_t *size_tree = mrap->mra_bt;
1415 
1416 	size_t size;
1417 	int (*compare) (const void *, const void *);
1418 	switch (rt->rt_type) {
1419 	case RANGE_SEG32:
1420 		size = sizeof (range_seg32_t);
1421 		compare = metaslab_rangesize32_compare;
1422 		break;
1423 	case RANGE_SEG64:
1424 		size = sizeof (range_seg64_t);
1425 		compare = metaslab_rangesize64_compare;
1426 		break;
1427 	default:
1428 		panic("Invalid range seg type %d", rt->rt_type);
1429 	}
1430 	zfs_btree_create(size_tree, compare, size);
1431 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1432 }
1433 
1434 static void
1435 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1436 {
1437 	(void) rt;
1438 	metaslab_rt_arg_t *mrap = arg;
1439 	zfs_btree_t *size_tree = mrap->mra_bt;
1440 
1441 	zfs_btree_destroy(size_tree);
1442 	kmem_free(mrap, sizeof (*mrap));
1443 }
1444 
1445 static void
1446 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1447 {
1448 	metaslab_rt_arg_t *mrap = arg;
1449 	zfs_btree_t *size_tree = mrap->mra_bt;
1450 
1451 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1452 	    (1 << mrap->mra_floor_shift))
1453 		return;
1454 
1455 	zfs_btree_add(size_tree, rs);
1456 }
1457 
1458 static void
1459 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1460 {
1461 	metaslab_rt_arg_t *mrap = arg;
1462 	zfs_btree_t *size_tree = mrap->mra_bt;
1463 
1464 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
1465 	    mrap->mra_floor_shift))
1466 		return;
1467 
1468 	zfs_btree_remove(size_tree, rs);
1469 }
1470 
1471 static void
1472 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1473 {
1474 	metaslab_rt_arg_t *mrap = arg;
1475 	zfs_btree_t *size_tree = mrap->mra_bt;
1476 	zfs_btree_clear(size_tree);
1477 	zfs_btree_destroy(size_tree);
1478 
1479 	metaslab_rt_create(rt, arg);
1480 }
1481 
1482 static const range_tree_ops_t metaslab_rt_ops = {
1483 	.rtop_create = metaslab_rt_create,
1484 	.rtop_destroy = metaslab_rt_destroy,
1485 	.rtop_add = metaslab_rt_add,
1486 	.rtop_remove = metaslab_rt_remove,
1487 	.rtop_vacate = metaslab_rt_vacate
1488 };
1489 
1490 /*
1491  * ==========================================================================
1492  * Common allocator routines
1493  * ==========================================================================
1494  */
1495 
1496 /*
1497  * Return the maximum contiguous segment within the metaslab.
1498  */
1499 uint64_t
1500 metaslab_largest_allocatable(metaslab_t *msp)
1501 {
1502 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1503 	range_seg_t *rs;
1504 
1505 	if (t == NULL)
1506 		return (0);
1507 	if (zfs_btree_numnodes(t) == 0)
1508 		metaslab_size_tree_full_load(msp->ms_allocatable);
1509 
1510 	rs = zfs_btree_last(t, NULL);
1511 	if (rs == NULL)
1512 		return (0);
1513 
1514 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1515 	    msp->ms_allocatable));
1516 }
1517 
1518 /*
1519  * Return the maximum contiguous segment within the unflushed frees of this
1520  * metaslab.
1521  */
1522 static uint64_t
1523 metaslab_largest_unflushed_free(metaslab_t *msp)
1524 {
1525 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1526 
1527 	if (msp->ms_unflushed_frees == NULL)
1528 		return (0);
1529 
1530 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1531 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1532 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1533 	    NULL);
1534 	if (rs == NULL)
1535 		return (0);
1536 
1537 	/*
1538 	 * When a range is freed from the metaslab, that range is added to
1539 	 * both the unflushed frees and the deferred frees. While the block
1540 	 * will eventually be usable, if the metaslab were loaded the range
1541 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1542 	 * txgs had passed.  As a result, when attempting to estimate an upper
1543 	 * bound for the largest currently-usable free segment in the
1544 	 * metaslab, we need to not consider any ranges currently in the defer
1545 	 * trees. This algorithm approximates the largest available chunk in
1546 	 * the largest range in the unflushed_frees tree by taking the first
1547 	 * chunk.  While this may be a poor estimate, it should only remain so
1548 	 * briefly and should eventually self-correct as frees are no longer
1549 	 * deferred. Similar logic applies to the ms_freed tree. See
1550 	 * metaslab_load() for more details.
1551 	 *
1552 	 * There are two primary sources of inaccuracy in this estimate. Both
1553 	 * are tolerated for performance reasons. The first source is that we
1554 	 * only check the largest segment for overlaps. Smaller segments may
1555 	 * have more favorable overlaps with the other trees, resulting in
1556 	 * larger usable chunks.  Second, we only look at the first chunk in
1557 	 * the largest segment; there may be other usable chunks in the
1558 	 * largest segment, but we ignore them.
1559 	 */
1560 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1561 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1562 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1563 		uint64_t start = 0;
1564 		uint64_t size = 0;
1565 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1566 		    rsize, &start, &size);
1567 		if (found) {
1568 			if (rstart == start)
1569 				return (0);
1570 			rsize = start - rstart;
1571 		}
1572 	}
1573 
1574 	uint64_t start = 0;
1575 	uint64_t size = 0;
1576 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1577 	    rsize, &start, &size);
1578 	if (found)
1579 		rsize = start - rstart;
1580 
1581 	return (rsize);
1582 }
1583 
1584 static range_seg_t *
1585 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1586     uint64_t size, zfs_btree_index_t *where)
1587 {
1588 	range_seg_t *rs;
1589 	range_seg_max_t rsearch;
1590 
1591 	rs_set_start(&rsearch, rt, start);
1592 	rs_set_end(&rsearch, rt, start + size);
1593 
1594 	rs = zfs_btree_find(t, &rsearch, where);
1595 	if (rs == NULL) {
1596 		rs = zfs_btree_next(t, where, where);
1597 	}
1598 
1599 	return (rs);
1600 }
1601 
1602 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1603     defined(WITH_CF_BLOCK_ALLOCATOR)
1604 
1605 /*
1606  * This is a helper function that can be used by the allocator to find a
1607  * suitable block to allocate. This will search the specified B-tree looking
1608  * for a block that matches the specified criteria.
1609  */
1610 static uint64_t
1611 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1612     uint64_t max_search)
1613 {
1614 	if (*cursor == 0)
1615 		*cursor = rt->rt_start;
1616 	zfs_btree_t *bt = &rt->rt_root;
1617 	zfs_btree_index_t where;
1618 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1619 	uint64_t first_found;
1620 	int count_searched = 0;
1621 
1622 	if (rs != NULL)
1623 		first_found = rs_get_start(rs, rt);
1624 
1625 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1626 	    max_search || count_searched < metaslab_min_search_count)) {
1627 		uint64_t offset = rs_get_start(rs, rt);
1628 		if (offset + size <= rs_get_end(rs, rt)) {
1629 			*cursor = offset + size;
1630 			return (offset);
1631 		}
1632 		rs = zfs_btree_next(bt, &where, &where);
1633 		count_searched++;
1634 	}
1635 
1636 	*cursor = 0;
1637 	return (-1ULL);
1638 }
1639 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1640 
1641 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1642 /*
1643  * ==========================================================================
1644  * Dynamic Fit (df) block allocator
1645  *
1646  * Search for a free chunk of at least this size, starting from the last
1647  * offset (for this alignment of block) looking for up to
1648  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1649  * found within 16MB, then return a free chunk of exactly the requested size (or
1650  * larger).
1651  *
1652  * If it seems like searching from the last offset will be unproductive, skip
1653  * that and just return a free chunk of exactly the requested size (or larger).
1654  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1655  * mechanism is probably not very useful and may be removed in the future.
1656  *
1657  * The behavior when not searching can be changed to return the largest free
1658  * chunk, instead of a free chunk of exactly the requested size, by setting
1659  * metaslab_df_use_largest_segment.
1660  * ==========================================================================
1661  */
1662 static uint64_t
1663 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1664 {
1665 	/*
1666 	 * Find the largest power of 2 block size that evenly divides the
1667 	 * requested size. This is used to try to allocate blocks with similar
1668 	 * alignment from the same area of the metaslab (i.e. same cursor
1669 	 * bucket) but it does not guarantee that other allocations sizes
1670 	 * may exist in the same region.
1671 	 */
1672 	uint64_t align = size & -size;
1673 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1674 	range_tree_t *rt = msp->ms_allocatable;
1675 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1676 	uint64_t offset;
1677 
1678 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1679 
1680 	/*
1681 	 * If we're running low on space, find a segment based on size,
1682 	 * rather than iterating based on offset.
1683 	 */
1684 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1685 	    free_pct < metaslab_df_free_pct) {
1686 		offset = -1;
1687 	} else {
1688 		offset = metaslab_block_picker(rt,
1689 		    cursor, size, metaslab_df_max_search);
1690 	}
1691 
1692 	if (offset == -1) {
1693 		range_seg_t *rs;
1694 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1695 			metaslab_size_tree_full_load(msp->ms_allocatable);
1696 
1697 		if (metaslab_df_use_largest_segment) {
1698 			/* use largest free segment */
1699 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1700 		} else {
1701 			zfs_btree_index_t where;
1702 			/* use segment of this size, or next largest */
1703 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1704 			    rt, msp->ms_start, size, &where);
1705 		}
1706 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1707 		    rt)) {
1708 			offset = rs_get_start(rs, rt);
1709 			*cursor = offset + size;
1710 		}
1711 	}
1712 
1713 	return (offset);
1714 }
1715 
1716 const metaslab_ops_t zfs_metaslab_ops = {
1717 	metaslab_df_alloc
1718 };
1719 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1720 
1721 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1722 /*
1723  * ==========================================================================
1724  * Cursor fit block allocator -
1725  * Select the largest region in the metaslab, set the cursor to the beginning
1726  * of the range and the cursor_end to the end of the range. As allocations
1727  * are made advance the cursor. Continue allocating from the cursor until
1728  * the range is exhausted and then find a new range.
1729  * ==========================================================================
1730  */
1731 static uint64_t
1732 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1733 {
1734 	range_tree_t *rt = msp->ms_allocatable;
1735 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1736 	uint64_t *cursor = &msp->ms_lbas[0];
1737 	uint64_t *cursor_end = &msp->ms_lbas[1];
1738 	uint64_t offset = 0;
1739 
1740 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1741 
1742 	ASSERT3U(*cursor_end, >=, *cursor);
1743 
1744 	if ((*cursor + size) > *cursor_end) {
1745 		range_seg_t *rs;
1746 
1747 		if (zfs_btree_numnodes(t) == 0)
1748 			metaslab_size_tree_full_load(msp->ms_allocatable);
1749 		rs = zfs_btree_last(t, NULL);
1750 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1751 		    size)
1752 			return (-1ULL);
1753 
1754 		*cursor = rs_get_start(rs, rt);
1755 		*cursor_end = rs_get_end(rs, rt);
1756 	}
1757 
1758 	offset = *cursor;
1759 	*cursor += size;
1760 
1761 	return (offset);
1762 }
1763 
1764 const metaslab_ops_t zfs_metaslab_ops = {
1765 	metaslab_cf_alloc
1766 };
1767 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1768 
1769 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1770 /*
1771  * ==========================================================================
1772  * New dynamic fit allocator -
1773  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1774  * contiguous blocks. If no region is found then just use the largest segment
1775  * that remains.
1776  * ==========================================================================
1777  */
1778 
1779 /*
1780  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1781  * to request from the allocator.
1782  */
1783 uint64_t metaslab_ndf_clump_shift = 4;
1784 
1785 static uint64_t
1786 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1787 {
1788 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1789 	range_tree_t *rt = msp->ms_allocatable;
1790 	zfs_btree_index_t where;
1791 	range_seg_t *rs;
1792 	range_seg_max_t rsearch;
1793 	uint64_t hbit = highbit64(size);
1794 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1795 	uint64_t max_size = metaslab_largest_allocatable(msp);
1796 
1797 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1798 
1799 	if (max_size < size)
1800 		return (-1ULL);
1801 
1802 	rs_set_start(&rsearch, rt, *cursor);
1803 	rs_set_end(&rsearch, rt, *cursor + size);
1804 
1805 	rs = zfs_btree_find(t, &rsearch, &where);
1806 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1807 		t = &msp->ms_allocatable_by_size;
1808 
1809 		rs_set_start(&rsearch, rt, 0);
1810 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1811 		    metaslab_ndf_clump_shift)));
1812 
1813 		rs = zfs_btree_find(t, &rsearch, &where);
1814 		if (rs == NULL)
1815 			rs = zfs_btree_next(t, &where, &where);
1816 		ASSERT(rs != NULL);
1817 	}
1818 
1819 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1820 		*cursor = rs_get_start(rs, rt) + size;
1821 		return (rs_get_start(rs, rt));
1822 	}
1823 	return (-1ULL);
1824 }
1825 
1826 const metaslab_ops_t zfs_metaslab_ops = {
1827 	metaslab_ndf_alloc
1828 };
1829 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1830 
1831 
1832 /*
1833  * ==========================================================================
1834  * Metaslabs
1835  * ==========================================================================
1836  */
1837 
1838 /*
1839  * Wait for any in-progress metaslab loads to complete.
1840  */
1841 static void
1842 metaslab_load_wait(metaslab_t *msp)
1843 {
1844 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1845 
1846 	while (msp->ms_loading) {
1847 		ASSERT(!msp->ms_loaded);
1848 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1849 	}
1850 }
1851 
1852 /*
1853  * Wait for any in-progress flushing to complete.
1854  */
1855 static void
1856 metaslab_flush_wait(metaslab_t *msp)
1857 {
1858 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1859 
1860 	while (msp->ms_flushing)
1861 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1862 }
1863 
1864 static unsigned int
1865 metaslab_idx_func(multilist_t *ml, void *arg)
1866 {
1867 	metaslab_t *msp = arg;
1868 
1869 	/*
1870 	 * ms_id values are allocated sequentially, so full 64bit
1871 	 * division would be a waste of time, so limit it to 32 bits.
1872 	 */
1873 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1874 }
1875 
1876 uint64_t
1877 metaslab_allocated_space(metaslab_t *msp)
1878 {
1879 	return (msp->ms_allocated_space);
1880 }
1881 
1882 /*
1883  * Verify that the space accounting on disk matches the in-core range_trees.
1884  */
1885 static void
1886 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1887 {
1888 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1889 	uint64_t allocating = 0;
1890 	uint64_t sm_free_space, msp_free_space;
1891 
1892 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1893 	ASSERT(!msp->ms_condensing);
1894 
1895 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1896 		return;
1897 
1898 	/*
1899 	 * We can only verify the metaslab space when we're called
1900 	 * from syncing context with a loaded metaslab that has an
1901 	 * allocated space map. Calling this in non-syncing context
1902 	 * does not provide a consistent view of the metaslab since
1903 	 * we're performing allocations in the future.
1904 	 */
1905 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1906 	    !msp->ms_loaded)
1907 		return;
1908 
1909 	/*
1910 	 * Even though the smp_alloc field can get negative,
1911 	 * when it comes to a metaslab's space map, that should
1912 	 * never be the case.
1913 	 */
1914 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1915 
1916 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1917 	    range_tree_space(msp->ms_unflushed_frees));
1918 
1919 	ASSERT3U(metaslab_allocated_space(msp), ==,
1920 	    space_map_allocated(msp->ms_sm) +
1921 	    range_tree_space(msp->ms_unflushed_allocs) -
1922 	    range_tree_space(msp->ms_unflushed_frees));
1923 
1924 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1925 
1926 	/*
1927 	 * Account for future allocations since we would have
1928 	 * already deducted that space from the ms_allocatable.
1929 	 */
1930 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1931 		allocating +=
1932 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1933 	}
1934 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1935 	    msp->ms_allocating_total);
1936 
1937 	ASSERT3U(msp->ms_deferspace, ==,
1938 	    range_tree_space(msp->ms_defer[0]) +
1939 	    range_tree_space(msp->ms_defer[1]));
1940 
1941 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1942 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1943 
1944 	VERIFY3U(sm_free_space, ==, msp_free_space);
1945 }
1946 
1947 static void
1948 metaslab_aux_histograms_clear(metaslab_t *msp)
1949 {
1950 	/*
1951 	 * Auxiliary histograms are only cleared when resetting them,
1952 	 * which can only happen while the metaslab is loaded.
1953 	 */
1954 	ASSERT(msp->ms_loaded);
1955 
1956 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1957 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1958 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1959 }
1960 
1961 static void
1962 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1963     range_tree_t *rt)
1964 {
1965 	/*
1966 	 * This is modeled after space_map_histogram_add(), so refer to that
1967 	 * function for implementation details. We want this to work like
1968 	 * the space map histogram, and not the range tree histogram, as we
1969 	 * are essentially constructing a delta that will be later subtracted
1970 	 * from the space map histogram.
1971 	 */
1972 	int idx = 0;
1973 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1974 		ASSERT3U(i, >=, idx + shift);
1975 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1976 
1977 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1978 			ASSERT3U(idx + shift, ==, i);
1979 			idx++;
1980 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1981 		}
1982 	}
1983 }
1984 
1985 /*
1986  * Called at every sync pass that the metaslab gets synced.
1987  *
1988  * The reason is that we want our auxiliary histograms to be updated
1989  * wherever the metaslab's space map histogram is updated. This way
1990  * we stay consistent on which parts of the metaslab space map's
1991  * histogram are currently not available for allocations (e.g because
1992  * they are in the defer, freed, and freeing trees).
1993  */
1994 static void
1995 metaslab_aux_histograms_update(metaslab_t *msp)
1996 {
1997 	space_map_t *sm = msp->ms_sm;
1998 	ASSERT(sm != NULL);
1999 
2000 	/*
2001 	 * This is similar to the metaslab's space map histogram updates
2002 	 * that take place in metaslab_sync(). The only difference is that
2003 	 * we only care about segments that haven't made it into the
2004 	 * ms_allocatable tree yet.
2005 	 */
2006 	if (msp->ms_loaded) {
2007 		metaslab_aux_histograms_clear(msp);
2008 
2009 		metaslab_aux_histogram_add(msp->ms_synchist,
2010 		    sm->sm_shift, msp->ms_freed);
2011 
2012 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2013 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2014 			    sm->sm_shift, msp->ms_defer[t]);
2015 		}
2016 	}
2017 
2018 	metaslab_aux_histogram_add(msp->ms_synchist,
2019 	    sm->sm_shift, msp->ms_freeing);
2020 }
2021 
2022 /*
2023  * Called every time we are done syncing (writing to) the metaslab,
2024  * i.e. at the end of each sync pass.
2025  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2026  */
2027 static void
2028 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2029 {
2030 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2031 	space_map_t *sm = msp->ms_sm;
2032 
2033 	if (sm == NULL) {
2034 		/*
2035 		 * We came here from metaslab_init() when creating/opening a
2036 		 * pool, looking at a metaslab that hasn't had any allocations
2037 		 * yet.
2038 		 */
2039 		return;
2040 	}
2041 
2042 	/*
2043 	 * This is similar to the actions that we take for the ms_freed
2044 	 * and ms_defer trees in metaslab_sync_done().
2045 	 */
2046 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2047 	if (defer_allowed) {
2048 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2049 		    sizeof (msp->ms_synchist));
2050 	} else {
2051 		memset(msp->ms_deferhist[hist_index], 0,
2052 		    sizeof (msp->ms_deferhist[hist_index]));
2053 	}
2054 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2055 }
2056 
2057 /*
2058  * Ensure that the metaslab's weight and fragmentation are consistent
2059  * with the contents of the histogram (either the range tree's histogram
2060  * or the space map's depending whether the metaslab is loaded).
2061  */
2062 static void
2063 metaslab_verify_weight_and_frag(metaslab_t *msp)
2064 {
2065 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2066 
2067 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2068 		return;
2069 
2070 	/*
2071 	 * We can end up here from vdev_remove_complete(), in which case we
2072 	 * cannot do these assertions because we hold spa config locks and
2073 	 * thus we are not allowed to read from the DMU.
2074 	 *
2075 	 * We check if the metaslab group has been removed and if that's
2076 	 * the case we return immediately as that would mean that we are
2077 	 * here from the aforementioned code path.
2078 	 */
2079 	if (msp->ms_group == NULL)
2080 		return;
2081 
2082 	/*
2083 	 * Devices being removed always return a weight of 0 and leave
2084 	 * fragmentation and ms_max_size as is - there is nothing for
2085 	 * us to verify here.
2086 	 */
2087 	vdev_t *vd = msp->ms_group->mg_vd;
2088 	if (vd->vdev_removing)
2089 		return;
2090 
2091 	/*
2092 	 * If the metaslab is dirty it probably means that we've done
2093 	 * some allocations or frees that have changed our histograms
2094 	 * and thus the weight.
2095 	 */
2096 	for (int t = 0; t < TXG_SIZE; t++) {
2097 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2098 			return;
2099 	}
2100 
2101 	/*
2102 	 * This verification checks that our in-memory state is consistent
2103 	 * with what's on disk. If the pool is read-only then there aren't
2104 	 * any changes and we just have the initially-loaded state.
2105 	 */
2106 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2107 		return;
2108 
2109 	/* some extra verification for in-core tree if you can */
2110 	if (msp->ms_loaded) {
2111 		range_tree_stat_verify(msp->ms_allocatable);
2112 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2113 		    msp->ms_allocatable));
2114 	}
2115 
2116 	uint64_t weight = msp->ms_weight;
2117 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2118 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2119 	uint64_t frag = msp->ms_fragmentation;
2120 	uint64_t max_segsize = msp->ms_max_size;
2121 
2122 	msp->ms_weight = 0;
2123 	msp->ms_fragmentation = 0;
2124 
2125 	/*
2126 	 * This function is used for verification purposes and thus should
2127 	 * not introduce any side-effects/mutations on the system's state.
2128 	 *
2129 	 * Regardless of whether metaslab_weight() thinks this metaslab
2130 	 * should be active or not, we want to ensure that the actual weight
2131 	 * (and therefore the value of ms_weight) would be the same if it
2132 	 * was to be recalculated at this point.
2133 	 *
2134 	 * In addition we set the nodirty flag so metaslab_weight() does
2135 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2136 	 * force condensing to upgrade the metaslab spacemaps).
2137 	 */
2138 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2139 
2140 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2141 
2142 	/*
2143 	 * If the weight type changed then there is no point in doing
2144 	 * verification. Revert fields to their original values.
2145 	 */
2146 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2147 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2148 		msp->ms_fragmentation = frag;
2149 		msp->ms_weight = weight;
2150 		return;
2151 	}
2152 
2153 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2154 	VERIFY3U(msp->ms_weight, ==, weight);
2155 }
2156 
2157 /*
2158  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2159  * this class that was used longest ago, and attempt to unload it.  We don't
2160  * want to spend too much time in this loop to prevent performance
2161  * degradation, and we expect that most of the time this operation will
2162  * succeed. Between that and the normal unloading processing during txg sync,
2163  * we expect this to keep the metaslab memory usage under control.
2164  */
2165 static void
2166 metaslab_potentially_evict(metaslab_class_t *mc)
2167 {
2168 #ifdef _KERNEL
2169 	uint64_t allmem = arc_all_memory();
2170 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2171 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2172 	int tries = 0;
2173 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2174 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2175 	    tries++) {
2176 		unsigned int idx = multilist_get_random_index(
2177 		    &mc->mc_metaslab_txg_list);
2178 		multilist_sublist_t *mls =
2179 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2180 		metaslab_t *msp = multilist_sublist_head(mls);
2181 		multilist_sublist_unlock(mls);
2182 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2183 		    inuse * size) {
2184 			VERIFY3P(mls, ==, multilist_sublist_lock(
2185 			    &mc->mc_metaslab_txg_list, idx));
2186 			ASSERT3U(idx, ==,
2187 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2188 
2189 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2190 				multilist_sublist_unlock(mls);
2191 				break;
2192 			}
2193 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2194 			multilist_sublist_unlock(mls);
2195 			/*
2196 			 * If the metaslab is currently loading there are two
2197 			 * cases. If it's the metaslab we're evicting, we
2198 			 * can't continue on or we'll panic when we attempt to
2199 			 * recursively lock the mutex. If it's another
2200 			 * metaslab that's loading, it can be safely skipped,
2201 			 * since we know it's very new and therefore not a
2202 			 * good eviction candidate. We check later once the
2203 			 * lock is held that the metaslab is fully loaded
2204 			 * before actually unloading it.
2205 			 */
2206 			if (msp->ms_loading) {
2207 				msp = next_msp;
2208 				inuse =
2209 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2210 				continue;
2211 			}
2212 			/*
2213 			 * We can't unload metaslabs with no spacemap because
2214 			 * they're not ready to be unloaded yet. We can't
2215 			 * unload metaslabs with outstanding allocations
2216 			 * because doing so could cause the metaslab's weight
2217 			 * to decrease while it's unloaded, which violates an
2218 			 * invariant that we use to prevent unnecessary
2219 			 * loading. We also don't unload metaslabs that are
2220 			 * currently active because they are high-weight
2221 			 * metaslabs that are likely to be used in the near
2222 			 * future.
2223 			 */
2224 			mutex_enter(&msp->ms_lock);
2225 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2226 			    msp->ms_allocating_total == 0) {
2227 				metaslab_unload(msp);
2228 			}
2229 			mutex_exit(&msp->ms_lock);
2230 			msp = next_msp;
2231 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2232 		}
2233 	}
2234 #else
2235 	(void) mc, (void) zfs_metaslab_mem_limit;
2236 #endif
2237 }
2238 
2239 static int
2240 metaslab_load_impl(metaslab_t *msp)
2241 {
2242 	int error = 0;
2243 
2244 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2245 	ASSERT(msp->ms_loading);
2246 	ASSERT(!msp->ms_condensing);
2247 
2248 	/*
2249 	 * We temporarily drop the lock to unblock other operations while we
2250 	 * are reading the space map. Therefore, metaslab_sync() and
2251 	 * metaslab_sync_done() can run at the same time as we do.
2252 	 *
2253 	 * If we are using the log space maps, metaslab_sync() can't write to
2254 	 * the metaslab's space map while we are loading as we only write to
2255 	 * it when we are flushing the metaslab, and that can't happen while
2256 	 * we are loading it.
2257 	 *
2258 	 * If we are not using log space maps though, metaslab_sync() can
2259 	 * append to the space map while we are loading. Therefore we load
2260 	 * only entries that existed when we started the load. Additionally,
2261 	 * metaslab_sync_done() has to wait for the load to complete because
2262 	 * there are potential races like metaslab_load() loading parts of the
2263 	 * space map that are currently being appended by metaslab_sync(). If
2264 	 * we didn't, the ms_allocatable would have entries that
2265 	 * metaslab_sync_done() would try to re-add later.
2266 	 *
2267 	 * That's why before dropping the lock we remember the synced length
2268 	 * of the metaslab and read up to that point of the space map,
2269 	 * ignoring entries appended by metaslab_sync() that happen after we
2270 	 * drop the lock.
2271 	 */
2272 	uint64_t length = msp->ms_synced_length;
2273 	mutex_exit(&msp->ms_lock);
2274 
2275 	hrtime_t load_start = gethrtime();
2276 	metaslab_rt_arg_t *mrap;
2277 	if (msp->ms_allocatable->rt_arg == NULL) {
2278 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2279 	} else {
2280 		mrap = msp->ms_allocatable->rt_arg;
2281 		msp->ms_allocatable->rt_ops = NULL;
2282 		msp->ms_allocatable->rt_arg = NULL;
2283 	}
2284 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2285 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2286 
2287 	if (msp->ms_sm != NULL) {
2288 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2289 		    SM_FREE, length);
2290 
2291 		/* Now, populate the size-sorted tree. */
2292 		metaslab_rt_create(msp->ms_allocatable, mrap);
2293 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2294 		msp->ms_allocatable->rt_arg = mrap;
2295 
2296 		struct mssa_arg arg = {0};
2297 		arg.rt = msp->ms_allocatable;
2298 		arg.mra = mrap;
2299 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2300 		    &arg);
2301 	} else {
2302 		/*
2303 		 * Add the size-sorted tree first, since we don't need to load
2304 		 * the metaslab from the spacemap.
2305 		 */
2306 		metaslab_rt_create(msp->ms_allocatable, mrap);
2307 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2308 		msp->ms_allocatable->rt_arg = mrap;
2309 		/*
2310 		 * The space map has not been allocated yet, so treat
2311 		 * all the space in the metaslab as free and add it to the
2312 		 * ms_allocatable tree.
2313 		 */
2314 		range_tree_add(msp->ms_allocatable,
2315 		    msp->ms_start, msp->ms_size);
2316 
2317 		if (msp->ms_new) {
2318 			/*
2319 			 * If the ms_sm doesn't exist, this means that this
2320 			 * metaslab hasn't gone through metaslab_sync() and
2321 			 * thus has never been dirtied. So we shouldn't
2322 			 * expect any unflushed allocs or frees from previous
2323 			 * TXGs.
2324 			 */
2325 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2326 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2332 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2333 	 * while we are about to use them and populate the ms_allocatable.
2334 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2335 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2336 	 */
2337 	mutex_enter(&msp->ms_sync_lock);
2338 	mutex_enter(&msp->ms_lock);
2339 
2340 	ASSERT(!msp->ms_condensing);
2341 	ASSERT(!msp->ms_flushing);
2342 
2343 	if (error != 0) {
2344 		mutex_exit(&msp->ms_sync_lock);
2345 		return (error);
2346 	}
2347 
2348 	ASSERT3P(msp->ms_group, !=, NULL);
2349 	msp->ms_loaded = B_TRUE;
2350 
2351 	/*
2352 	 * Apply all the unflushed changes to ms_allocatable right
2353 	 * away so any manipulations we do below have a clear view
2354 	 * of what is allocated and what is free.
2355 	 */
2356 	range_tree_walk(msp->ms_unflushed_allocs,
2357 	    range_tree_remove, msp->ms_allocatable);
2358 	range_tree_walk(msp->ms_unflushed_frees,
2359 	    range_tree_add, msp->ms_allocatable);
2360 
2361 	ASSERT3P(msp->ms_group, !=, NULL);
2362 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2363 	if (spa_syncing_log_sm(spa) != NULL) {
2364 		ASSERT(spa_feature_is_enabled(spa,
2365 		    SPA_FEATURE_LOG_SPACEMAP));
2366 
2367 		/*
2368 		 * If we use a log space map we add all the segments
2369 		 * that are in ms_unflushed_frees so they are available
2370 		 * for allocation.
2371 		 *
2372 		 * ms_allocatable needs to contain all free segments
2373 		 * that are ready for allocations (thus not segments
2374 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2375 		 * But if we grab the lock in this code path at a sync
2376 		 * pass later that 1, then it also contains the
2377 		 * segments of ms_freed (they were added to it earlier
2378 		 * in this path through ms_unflushed_frees). So we
2379 		 * need to remove all the segments that exist in
2380 		 * ms_freed from ms_allocatable as they will be added
2381 		 * later in metaslab_sync_done().
2382 		 *
2383 		 * When there's no log space map, the ms_allocatable
2384 		 * correctly doesn't contain any segments that exist
2385 		 * in ms_freed [see ms_synced_length].
2386 		 */
2387 		range_tree_walk(msp->ms_freed,
2388 		    range_tree_remove, msp->ms_allocatable);
2389 	}
2390 
2391 	/*
2392 	 * If we are not using the log space map, ms_allocatable
2393 	 * contains the segments that exist in the ms_defer trees
2394 	 * [see ms_synced_length]. Thus we need to remove them
2395 	 * from ms_allocatable as they will be added again in
2396 	 * metaslab_sync_done().
2397 	 *
2398 	 * If we are using the log space map, ms_allocatable still
2399 	 * contains the segments that exist in the ms_defer trees.
2400 	 * Not because it read them through the ms_sm though. But
2401 	 * because these segments are part of ms_unflushed_frees
2402 	 * whose segments we add to ms_allocatable earlier in this
2403 	 * code path.
2404 	 */
2405 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2406 		range_tree_walk(msp->ms_defer[t],
2407 		    range_tree_remove, msp->ms_allocatable);
2408 	}
2409 
2410 	/*
2411 	 * Call metaslab_recalculate_weight_and_sort() now that the
2412 	 * metaslab is loaded so we get the metaslab's real weight.
2413 	 *
2414 	 * Unless this metaslab was created with older software and
2415 	 * has not yet been converted to use segment-based weight, we
2416 	 * expect the new weight to be better or equal to the weight
2417 	 * that the metaslab had while it was not loaded. This is
2418 	 * because the old weight does not take into account the
2419 	 * consolidation of adjacent segments between TXGs. [see
2420 	 * comment for ms_synchist and ms_deferhist[] for more info]
2421 	 */
2422 	uint64_t weight = msp->ms_weight;
2423 	uint64_t max_size = msp->ms_max_size;
2424 	metaslab_recalculate_weight_and_sort(msp);
2425 	if (!WEIGHT_IS_SPACEBASED(weight))
2426 		ASSERT3U(weight, <=, msp->ms_weight);
2427 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2428 	ASSERT3U(max_size, <=, msp->ms_max_size);
2429 	hrtime_t load_end = gethrtime();
2430 	msp->ms_load_time = load_end;
2431 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2432 	    "ms_id %llu, smp_length %llu, "
2433 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2434 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2435 	    "loading_time %lld ms, ms_max_size %llu, "
2436 	    "max size error %lld, "
2437 	    "old_weight %llx, new_weight %llx",
2438 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2439 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2440 	    (u_longlong_t)msp->ms_id,
2441 	    (u_longlong_t)space_map_length(msp->ms_sm),
2442 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2443 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2444 	    (u_longlong_t)range_tree_space(msp->ms_freed),
2445 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2446 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2447 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2448 	    (longlong_t)((load_end - load_start) / 1000000),
2449 	    (u_longlong_t)msp->ms_max_size,
2450 	    (u_longlong_t)msp->ms_max_size - max_size,
2451 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2452 
2453 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2454 	mutex_exit(&msp->ms_sync_lock);
2455 	return (0);
2456 }
2457 
2458 int
2459 metaslab_load(metaslab_t *msp)
2460 {
2461 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2462 
2463 	/*
2464 	 * There may be another thread loading the same metaslab, if that's
2465 	 * the case just wait until the other thread is done and return.
2466 	 */
2467 	metaslab_load_wait(msp);
2468 	if (msp->ms_loaded)
2469 		return (0);
2470 	VERIFY(!msp->ms_loading);
2471 	ASSERT(!msp->ms_condensing);
2472 
2473 	/*
2474 	 * We set the loading flag BEFORE potentially dropping the lock to
2475 	 * wait for an ongoing flush (see ms_flushing below). This way other
2476 	 * threads know that there is already a thread that is loading this
2477 	 * metaslab.
2478 	 */
2479 	msp->ms_loading = B_TRUE;
2480 
2481 	/*
2482 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2483 	 * both here (during space_map_load()) and in metaslab_flush() (when
2484 	 * we flush our changes to the ms_sm).
2485 	 */
2486 	if (msp->ms_flushing)
2487 		metaslab_flush_wait(msp);
2488 
2489 	/*
2490 	 * In the possibility that we were waiting for the metaslab to be
2491 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2492 	 * no one else loaded the metaslab somehow.
2493 	 */
2494 	ASSERT(!msp->ms_loaded);
2495 
2496 	/*
2497 	 * If we're loading a metaslab in the normal class, consider evicting
2498 	 * another one to keep our memory usage under the limit defined by the
2499 	 * zfs_metaslab_mem_limit tunable.
2500 	 */
2501 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2502 	    msp->ms_group->mg_class) {
2503 		metaslab_potentially_evict(msp->ms_group->mg_class);
2504 	}
2505 
2506 	int error = metaslab_load_impl(msp);
2507 
2508 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2509 	msp->ms_loading = B_FALSE;
2510 	cv_broadcast(&msp->ms_load_cv);
2511 
2512 	return (error);
2513 }
2514 
2515 void
2516 metaslab_unload(metaslab_t *msp)
2517 {
2518 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2519 
2520 	/*
2521 	 * This can happen if a metaslab is selected for eviction (in
2522 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2523 	 * metaslab_class_evict_old).
2524 	 */
2525 	if (!msp->ms_loaded)
2526 		return;
2527 
2528 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2529 	msp->ms_loaded = B_FALSE;
2530 	msp->ms_unload_time = gethrtime();
2531 
2532 	msp->ms_activation_weight = 0;
2533 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2534 
2535 	if (msp->ms_group != NULL) {
2536 		metaslab_class_t *mc = msp->ms_group->mg_class;
2537 		multilist_sublist_t *mls =
2538 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2539 		if (multilist_link_active(&msp->ms_class_txg_node))
2540 			multilist_sublist_remove(mls, msp);
2541 		multilist_sublist_unlock(mls);
2542 
2543 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2544 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2545 		    "ms_id %llu, weight %llx, "
2546 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2547 		    "loaded %llu ms ago, max_size %llu",
2548 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2549 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2550 		    (u_longlong_t)msp->ms_id,
2551 		    (u_longlong_t)msp->ms_weight,
2552 		    (u_longlong_t)msp->ms_selected_txg,
2553 		    (u_longlong_t)(msp->ms_unload_time -
2554 		    msp->ms_selected_time) / 1000 / 1000,
2555 		    (u_longlong_t)msp->ms_alloc_txg,
2556 		    (u_longlong_t)(msp->ms_unload_time -
2557 		    msp->ms_load_time) / 1000 / 1000,
2558 		    (u_longlong_t)msp->ms_max_size);
2559 	}
2560 
2561 	/*
2562 	 * We explicitly recalculate the metaslab's weight based on its space
2563 	 * map (as it is now not loaded). We want unload metaslabs to always
2564 	 * have their weights calculated from the space map histograms, while
2565 	 * loaded ones have it calculated from their in-core range tree
2566 	 * [see metaslab_load()]. This way, the weight reflects the information
2567 	 * available in-core, whether it is loaded or not.
2568 	 *
2569 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2570 	 * at which point it doesn't make sense for us to do the recalculation
2571 	 * and the sorting.
2572 	 */
2573 	if (msp->ms_group != NULL)
2574 		metaslab_recalculate_weight_and_sort(msp);
2575 }
2576 
2577 /*
2578  * We want to optimize the memory use of the per-metaslab range
2579  * trees. To do this, we store the segments in the range trees in
2580  * units of sectors, zero-indexing from the start of the metaslab. If
2581  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2582  * the ranges using two uint32_ts, rather than two uint64_ts.
2583  */
2584 range_seg_type_t
2585 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2586     uint64_t *start, uint64_t *shift)
2587 {
2588 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2589 	    !zfs_metaslab_force_large_segs) {
2590 		*shift = vdev->vdev_ashift;
2591 		*start = msp->ms_start;
2592 		return (RANGE_SEG32);
2593 	} else {
2594 		*shift = 0;
2595 		*start = 0;
2596 		return (RANGE_SEG64);
2597 	}
2598 }
2599 
2600 void
2601 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2602 {
2603 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2604 	metaslab_class_t *mc = msp->ms_group->mg_class;
2605 	multilist_sublist_t *mls =
2606 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2607 	if (multilist_link_active(&msp->ms_class_txg_node))
2608 		multilist_sublist_remove(mls, msp);
2609 	msp->ms_selected_txg = txg;
2610 	msp->ms_selected_time = gethrtime();
2611 	multilist_sublist_insert_tail(mls, msp);
2612 	multilist_sublist_unlock(mls);
2613 }
2614 
2615 void
2616 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2617     int64_t defer_delta, int64_t space_delta)
2618 {
2619 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2620 
2621 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2622 	ASSERT(vd->vdev_ms_count != 0);
2623 
2624 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2625 	    vdev_deflated_space(vd, space_delta));
2626 }
2627 
2628 int
2629 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2630     uint64_t txg, metaslab_t **msp)
2631 {
2632 	vdev_t *vd = mg->mg_vd;
2633 	spa_t *spa = vd->vdev_spa;
2634 	objset_t *mos = spa->spa_meta_objset;
2635 	metaslab_t *ms;
2636 	int error;
2637 
2638 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2639 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2640 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2641 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2642 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2643 	multilist_link_init(&ms->ms_class_txg_node);
2644 
2645 	ms->ms_id = id;
2646 	ms->ms_start = id << vd->vdev_ms_shift;
2647 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2648 	ms->ms_allocator = -1;
2649 	ms->ms_new = B_TRUE;
2650 
2651 	vdev_ops_t *ops = vd->vdev_ops;
2652 	if (ops->vdev_op_metaslab_init != NULL)
2653 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2654 
2655 	/*
2656 	 * We only open space map objects that already exist. All others
2657 	 * will be opened when we finally allocate an object for it. For
2658 	 * readonly pools there is no need to open the space map object.
2659 	 *
2660 	 * Note:
2661 	 * When called from vdev_expand(), we can't call into the DMU as
2662 	 * we are holding the spa_config_lock as a writer and we would
2663 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2664 	 * that case, the object parameter is zero though, so we won't
2665 	 * call into the DMU.
2666 	 */
2667 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2668 	    !spa->spa_read_spacemaps)) {
2669 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2670 		    ms->ms_size, vd->vdev_ashift);
2671 
2672 		if (error != 0) {
2673 			kmem_free(ms, sizeof (metaslab_t));
2674 			return (error);
2675 		}
2676 
2677 		ASSERT(ms->ms_sm != NULL);
2678 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2679 	}
2680 
2681 	uint64_t shift, start;
2682 	range_seg_type_t type =
2683 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2684 
2685 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2686 	for (int t = 0; t < TXG_SIZE; t++) {
2687 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2688 		    NULL, start, shift);
2689 	}
2690 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2691 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2692 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2693 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2694 		    start, shift);
2695 	}
2696 	ms->ms_checkpointing =
2697 	    range_tree_create(NULL, type, NULL, start, shift);
2698 	ms->ms_unflushed_allocs =
2699 	    range_tree_create(NULL, type, NULL, start, shift);
2700 
2701 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2702 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2703 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2704 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2705 	    type, mrap, start, shift);
2706 
2707 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2708 
2709 	metaslab_group_add(mg, ms);
2710 	metaslab_set_fragmentation(ms, B_FALSE);
2711 
2712 	/*
2713 	 * If we're opening an existing pool (txg == 0) or creating
2714 	 * a new one (txg == TXG_INITIAL), all space is available now.
2715 	 * If we're adding space to an existing pool, the new space
2716 	 * does not become available until after this txg has synced.
2717 	 * The metaslab's weight will also be initialized when we sync
2718 	 * out this txg. This ensures that we don't attempt to allocate
2719 	 * from it before we have initialized it completely.
2720 	 */
2721 	if (txg <= TXG_INITIAL) {
2722 		metaslab_sync_done(ms, 0);
2723 		metaslab_space_update(vd, mg->mg_class,
2724 		    metaslab_allocated_space(ms), 0, 0);
2725 	}
2726 
2727 	if (txg != 0) {
2728 		vdev_dirty(vd, 0, NULL, txg);
2729 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2730 	}
2731 
2732 	*msp = ms;
2733 
2734 	return (0);
2735 }
2736 
2737 static void
2738 metaslab_fini_flush_data(metaslab_t *msp)
2739 {
2740 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2741 
2742 	if (metaslab_unflushed_txg(msp) == 0) {
2743 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2744 		    ==, NULL);
2745 		return;
2746 	}
2747 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2748 
2749 	mutex_enter(&spa->spa_flushed_ms_lock);
2750 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2751 	mutex_exit(&spa->spa_flushed_ms_lock);
2752 
2753 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2754 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2755 	    metaslab_unflushed_dirty(msp));
2756 }
2757 
2758 uint64_t
2759 metaslab_unflushed_changes_memused(metaslab_t *ms)
2760 {
2761 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2762 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2763 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2764 }
2765 
2766 void
2767 metaslab_fini(metaslab_t *msp)
2768 {
2769 	metaslab_group_t *mg = msp->ms_group;
2770 	vdev_t *vd = mg->mg_vd;
2771 	spa_t *spa = vd->vdev_spa;
2772 
2773 	metaslab_fini_flush_data(msp);
2774 
2775 	metaslab_group_remove(mg, msp);
2776 
2777 	mutex_enter(&msp->ms_lock);
2778 	VERIFY(msp->ms_group == NULL);
2779 
2780 	/*
2781 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2782 	 * space hasn't been accounted for in its vdev and doesn't need to be
2783 	 * subtracted.
2784 	 */
2785 	if (!msp->ms_new) {
2786 		metaslab_space_update(vd, mg->mg_class,
2787 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2788 
2789 	}
2790 	space_map_close(msp->ms_sm);
2791 	msp->ms_sm = NULL;
2792 
2793 	metaslab_unload(msp);
2794 
2795 	range_tree_destroy(msp->ms_allocatable);
2796 	range_tree_destroy(msp->ms_freeing);
2797 	range_tree_destroy(msp->ms_freed);
2798 
2799 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2800 	    metaslab_unflushed_changes_memused(msp));
2801 	spa->spa_unflushed_stats.sus_memused -=
2802 	    metaslab_unflushed_changes_memused(msp);
2803 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2804 	range_tree_destroy(msp->ms_unflushed_allocs);
2805 	range_tree_destroy(msp->ms_checkpointing);
2806 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2807 	range_tree_destroy(msp->ms_unflushed_frees);
2808 
2809 	for (int t = 0; t < TXG_SIZE; t++) {
2810 		range_tree_destroy(msp->ms_allocating[t]);
2811 	}
2812 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2813 		range_tree_destroy(msp->ms_defer[t]);
2814 	}
2815 	ASSERT0(msp->ms_deferspace);
2816 
2817 	for (int t = 0; t < TXG_SIZE; t++)
2818 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2819 
2820 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2821 	range_tree_destroy(msp->ms_trim);
2822 
2823 	mutex_exit(&msp->ms_lock);
2824 	cv_destroy(&msp->ms_load_cv);
2825 	cv_destroy(&msp->ms_flush_cv);
2826 	mutex_destroy(&msp->ms_lock);
2827 	mutex_destroy(&msp->ms_sync_lock);
2828 	ASSERT3U(msp->ms_allocator, ==, -1);
2829 
2830 	kmem_free(msp, sizeof (metaslab_t));
2831 }
2832 
2833 #define	FRAGMENTATION_TABLE_SIZE	17
2834 
2835 /*
2836  * This table defines a segment size based fragmentation metric that will
2837  * allow each metaslab to derive its own fragmentation value. This is done
2838  * by calculating the space in each bucket of the spacemap histogram and
2839  * multiplying that by the fragmentation metric in this table. Doing
2840  * this for all buckets and dividing it by the total amount of free
2841  * space in this metaslab (i.e. the total free space in all buckets) gives
2842  * us the fragmentation metric. This means that a high fragmentation metric
2843  * equates to most of the free space being comprised of small segments.
2844  * Conversely, if the metric is low, then most of the free space is in
2845  * large segments. A 10% change in fragmentation equates to approximately
2846  * double the number of segments.
2847  *
2848  * This table defines 0% fragmented space using 16MB segments. Testing has
2849  * shown that segments that are greater than or equal to 16MB do not suffer
2850  * from drastic performance problems. Using this value, we derive the rest
2851  * of the table. Since the fragmentation value is never stored on disk, it
2852  * is possible to change these calculations in the future.
2853  */
2854 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2855 	100,	/* 512B	*/
2856 	100,	/* 1K	*/
2857 	98,	/* 2K	*/
2858 	95,	/* 4K	*/
2859 	90,	/* 8K	*/
2860 	80,	/* 16K	*/
2861 	70,	/* 32K	*/
2862 	60,	/* 64K	*/
2863 	50,	/* 128K	*/
2864 	40,	/* 256K	*/
2865 	30,	/* 512K	*/
2866 	20,	/* 1M	*/
2867 	15,	/* 2M	*/
2868 	10,	/* 4M	*/
2869 	5,	/* 8M	*/
2870 	0	/* 16M	*/
2871 };
2872 
2873 /*
2874  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2875  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2876  * been upgraded and does not support this metric. Otherwise, the return
2877  * value should be in the range [0, 100].
2878  */
2879 static void
2880 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2881 {
2882 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2883 	uint64_t fragmentation = 0;
2884 	uint64_t total = 0;
2885 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2886 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2887 
2888 	if (!feature_enabled) {
2889 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2890 		return;
2891 	}
2892 
2893 	/*
2894 	 * A null space map means that the entire metaslab is free
2895 	 * and thus is not fragmented.
2896 	 */
2897 	if (msp->ms_sm == NULL) {
2898 		msp->ms_fragmentation = 0;
2899 		return;
2900 	}
2901 
2902 	/*
2903 	 * If this metaslab's space map has not been upgraded, flag it
2904 	 * so that we upgrade next time we encounter it.
2905 	 */
2906 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2907 		uint64_t txg = spa_syncing_txg(spa);
2908 		vdev_t *vd = msp->ms_group->mg_vd;
2909 
2910 		/*
2911 		 * If we've reached the final dirty txg, then we must
2912 		 * be shutting down the pool. We don't want to dirty
2913 		 * any data past this point so skip setting the condense
2914 		 * flag. We can retry this action the next time the pool
2915 		 * is imported. We also skip marking this metaslab for
2916 		 * condensing if the caller has explicitly set nodirty.
2917 		 */
2918 		if (!nodirty &&
2919 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2920 			msp->ms_condense_wanted = B_TRUE;
2921 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2922 			zfs_dbgmsg("txg %llu, requesting force condense: "
2923 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2924 			    (u_longlong_t)msp->ms_id,
2925 			    (u_longlong_t)vd->vdev_id);
2926 		}
2927 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2928 		return;
2929 	}
2930 
2931 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2932 		uint64_t space = 0;
2933 		uint8_t shift = msp->ms_sm->sm_shift;
2934 
2935 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2936 		    FRAGMENTATION_TABLE_SIZE - 1);
2937 
2938 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2939 			continue;
2940 
2941 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2942 		total += space;
2943 
2944 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2945 		fragmentation += space * zfs_frag_table[idx];
2946 	}
2947 
2948 	if (total > 0)
2949 		fragmentation /= total;
2950 	ASSERT3U(fragmentation, <=, 100);
2951 
2952 	msp->ms_fragmentation = fragmentation;
2953 }
2954 
2955 /*
2956  * Compute a weight -- a selection preference value -- for the given metaslab.
2957  * This is based on the amount of free space, the level of fragmentation,
2958  * the LBA range, and whether the metaslab is loaded.
2959  */
2960 static uint64_t
2961 metaslab_space_weight(metaslab_t *msp)
2962 {
2963 	metaslab_group_t *mg = msp->ms_group;
2964 	vdev_t *vd = mg->mg_vd;
2965 	uint64_t weight, space;
2966 
2967 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2968 
2969 	/*
2970 	 * The baseline weight is the metaslab's free space.
2971 	 */
2972 	space = msp->ms_size - metaslab_allocated_space(msp);
2973 
2974 	if (metaslab_fragmentation_factor_enabled &&
2975 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2976 		/*
2977 		 * Use the fragmentation information to inversely scale
2978 		 * down the baseline weight. We need to ensure that we
2979 		 * don't exclude this metaslab completely when it's 100%
2980 		 * fragmented. To avoid this we reduce the fragmented value
2981 		 * by 1.
2982 		 */
2983 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2984 
2985 		/*
2986 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2987 		 * this metaslab again. The fragmentation metric may have
2988 		 * decreased the space to something smaller than
2989 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2990 		 * so that we can consume any remaining space.
2991 		 */
2992 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2993 			space = SPA_MINBLOCKSIZE;
2994 	}
2995 	weight = space;
2996 
2997 	/*
2998 	 * Modern disks have uniform bit density and constant angular velocity.
2999 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3000 	 * than the inner zones by the ratio of outer to inner track diameter,
3001 	 * which is typically around 2:1.  We account for this by assigning
3002 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3003 	 * In effect, this means that we'll select the metaslab with the most
3004 	 * free bandwidth rather than simply the one with the most free space.
3005 	 */
3006 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3007 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3008 		ASSERT(weight >= space && weight <= 2 * space);
3009 	}
3010 
3011 	/*
3012 	 * If this metaslab is one we're actively using, adjust its
3013 	 * weight to make it preferable to any inactive metaslab so
3014 	 * we'll polish it off. If the fragmentation on this metaslab
3015 	 * has exceed our threshold, then don't mark it active.
3016 	 */
3017 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3018 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3019 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3020 	}
3021 
3022 	WEIGHT_SET_SPACEBASED(weight);
3023 	return (weight);
3024 }
3025 
3026 /*
3027  * Return the weight of the specified metaslab, according to the segment-based
3028  * weighting algorithm. The metaslab must be loaded. This function can
3029  * be called within a sync pass since it relies only on the metaslab's
3030  * range tree which is always accurate when the metaslab is loaded.
3031  */
3032 static uint64_t
3033 metaslab_weight_from_range_tree(metaslab_t *msp)
3034 {
3035 	uint64_t weight = 0;
3036 	uint32_t segments = 0;
3037 
3038 	ASSERT(msp->ms_loaded);
3039 
3040 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3041 	    i--) {
3042 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3043 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3044 
3045 		segments <<= 1;
3046 		segments += msp->ms_allocatable->rt_histogram[i];
3047 
3048 		/*
3049 		 * The range tree provides more precision than the space map
3050 		 * and must be downgraded so that all values fit within the
3051 		 * space map's histogram. This allows us to compare loaded
3052 		 * vs. unloaded metaslabs to determine which metaslab is
3053 		 * considered "best".
3054 		 */
3055 		if (i > max_idx)
3056 			continue;
3057 
3058 		if (segments != 0) {
3059 			WEIGHT_SET_COUNT(weight, segments);
3060 			WEIGHT_SET_INDEX(weight, i);
3061 			WEIGHT_SET_ACTIVE(weight, 0);
3062 			break;
3063 		}
3064 	}
3065 	return (weight);
3066 }
3067 
3068 /*
3069  * Calculate the weight based on the on-disk histogram. Should be applied
3070  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3071  * give results consistent with the on-disk state
3072  */
3073 static uint64_t
3074 metaslab_weight_from_spacemap(metaslab_t *msp)
3075 {
3076 	space_map_t *sm = msp->ms_sm;
3077 	ASSERT(!msp->ms_loaded);
3078 	ASSERT(sm != NULL);
3079 	ASSERT3U(space_map_object(sm), !=, 0);
3080 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3081 
3082 	/*
3083 	 * Create a joint histogram from all the segments that have made
3084 	 * it to the metaslab's space map histogram, that are not yet
3085 	 * available for allocation because they are still in the freeing
3086 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3087 	 * these segments from the space map's histogram to get a more
3088 	 * accurate weight.
3089 	 */
3090 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3091 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3092 		deferspace_histogram[i] += msp->ms_synchist[i];
3093 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3094 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3095 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3096 		}
3097 	}
3098 
3099 	uint64_t weight = 0;
3100 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3101 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3102 		    deferspace_histogram[i]);
3103 		uint64_t count =
3104 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3105 		if (count != 0) {
3106 			WEIGHT_SET_COUNT(weight, count);
3107 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3108 			WEIGHT_SET_ACTIVE(weight, 0);
3109 			break;
3110 		}
3111 	}
3112 	return (weight);
3113 }
3114 
3115 /*
3116  * Compute a segment-based weight for the specified metaslab. The weight
3117  * is determined by highest bucket in the histogram. The information
3118  * for the highest bucket is encoded into the weight value.
3119  */
3120 static uint64_t
3121 metaslab_segment_weight(metaslab_t *msp)
3122 {
3123 	metaslab_group_t *mg = msp->ms_group;
3124 	uint64_t weight = 0;
3125 	uint8_t shift = mg->mg_vd->vdev_ashift;
3126 
3127 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3128 
3129 	/*
3130 	 * The metaslab is completely free.
3131 	 */
3132 	if (metaslab_allocated_space(msp) == 0) {
3133 		int idx = highbit64(msp->ms_size) - 1;
3134 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3135 
3136 		if (idx < max_idx) {
3137 			WEIGHT_SET_COUNT(weight, 1ULL);
3138 			WEIGHT_SET_INDEX(weight, idx);
3139 		} else {
3140 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3141 			WEIGHT_SET_INDEX(weight, max_idx);
3142 		}
3143 		WEIGHT_SET_ACTIVE(weight, 0);
3144 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3145 		return (weight);
3146 	}
3147 
3148 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3149 
3150 	/*
3151 	 * If the metaslab is fully allocated then just make the weight 0.
3152 	 */
3153 	if (metaslab_allocated_space(msp) == msp->ms_size)
3154 		return (0);
3155 	/*
3156 	 * If the metaslab is already loaded, then use the range tree to
3157 	 * determine the weight. Otherwise, we rely on the space map information
3158 	 * to generate the weight.
3159 	 */
3160 	if (msp->ms_loaded) {
3161 		weight = metaslab_weight_from_range_tree(msp);
3162 	} else {
3163 		weight = metaslab_weight_from_spacemap(msp);
3164 	}
3165 
3166 	/*
3167 	 * If the metaslab was active the last time we calculated its weight
3168 	 * then keep it active. We want to consume the entire region that
3169 	 * is associated with this weight.
3170 	 */
3171 	if (msp->ms_activation_weight != 0 && weight != 0)
3172 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3173 	return (weight);
3174 }
3175 
3176 /*
3177  * Determine if we should attempt to allocate from this metaslab. If the
3178  * metaslab is loaded, then we can determine if the desired allocation
3179  * can be satisfied by looking at the size of the maximum free segment
3180  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3181  * weight. For segment-based weighting we can determine the maximum
3182  * allocation based on the index encoded in its value. For space-based
3183  * weights we rely on the entire weight (excluding the weight-type bit).
3184  */
3185 static boolean_t
3186 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3187 {
3188 	/*
3189 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3190 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3191 	 * set), and we should use the fast check as long as we're not in
3192 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3193 	 * seconds since the metaslab was unloaded.
3194 	 */
3195 	if (msp->ms_loaded ||
3196 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3197 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3198 		return (msp->ms_max_size >= asize);
3199 
3200 	boolean_t should_allocate;
3201 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3202 		/*
3203 		 * The metaslab segment weight indicates segments in the
3204 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3205 		 * Since the asize might be in the middle of the range, we
3206 		 * should attempt the allocation if asize < 2^(i+1).
3207 		 */
3208 		should_allocate = (asize <
3209 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3210 	} else {
3211 		should_allocate = (asize <=
3212 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3213 	}
3214 
3215 	return (should_allocate);
3216 }
3217 
3218 static uint64_t
3219 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3220 {
3221 	vdev_t *vd = msp->ms_group->mg_vd;
3222 	spa_t *spa = vd->vdev_spa;
3223 	uint64_t weight;
3224 
3225 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3226 
3227 	metaslab_set_fragmentation(msp, nodirty);
3228 
3229 	/*
3230 	 * Update the maximum size. If the metaslab is loaded, this will
3231 	 * ensure that we get an accurate maximum size if newly freed space
3232 	 * has been added back into the free tree. If the metaslab is
3233 	 * unloaded, we check if there's a larger free segment in the
3234 	 * unflushed frees. This is a lower bound on the largest allocatable
3235 	 * segment size. Coalescing of adjacent entries may reveal larger
3236 	 * allocatable segments, but we aren't aware of those until loading
3237 	 * the space map into a range tree.
3238 	 */
3239 	if (msp->ms_loaded) {
3240 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3241 	} else {
3242 		msp->ms_max_size = MAX(msp->ms_max_size,
3243 		    metaslab_largest_unflushed_free(msp));
3244 	}
3245 
3246 	/*
3247 	 * Segment-based weighting requires space map histogram support.
3248 	 */
3249 	if (zfs_metaslab_segment_weight_enabled &&
3250 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3251 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3252 	    sizeof (space_map_phys_t))) {
3253 		weight = metaslab_segment_weight(msp);
3254 	} else {
3255 		weight = metaslab_space_weight(msp);
3256 	}
3257 	return (weight);
3258 }
3259 
3260 void
3261 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3262 {
3263 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3264 
3265 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3266 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3267 	metaslab_group_sort(msp->ms_group, msp,
3268 	    metaslab_weight(msp, B_FALSE) | was_active);
3269 }
3270 
3271 static int
3272 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3273     int allocator, uint64_t activation_weight)
3274 {
3275 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3276 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3277 
3278 	/*
3279 	 * If we're activating for the claim code, we don't want to actually
3280 	 * set the metaslab up for a specific allocator.
3281 	 */
3282 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3283 		ASSERT0(msp->ms_activation_weight);
3284 		msp->ms_activation_weight = msp->ms_weight;
3285 		metaslab_group_sort(mg, msp, msp->ms_weight |
3286 		    activation_weight);
3287 		return (0);
3288 	}
3289 
3290 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3291 	    &mga->mga_primary : &mga->mga_secondary);
3292 
3293 	mutex_enter(&mg->mg_lock);
3294 	if (*mspp != NULL) {
3295 		mutex_exit(&mg->mg_lock);
3296 		return (EEXIST);
3297 	}
3298 
3299 	*mspp = msp;
3300 	ASSERT3S(msp->ms_allocator, ==, -1);
3301 	msp->ms_allocator = allocator;
3302 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3303 
3304 	ASSERT0(msp->ms_activation_weight);
3305 	msp->ms_activation_weight = msp->ms_weight;
3306 	metaslab_group_sort_impl(mg, msp,
3307 	    msp->ms_weight | activation_weight);
3308 	mutex_exit(&mg->mg_lock);
3309 
3310 	return (0);
3311 }
3312 
3313 static int
3314 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3315 {
3316 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3317 
3318 	/*
3319 	 * The current metaslab is already activated for us so there
3320 	 * is nothing to do. Already activated though, doesn't mean
3321 	 * that this metaslab is activated for our allocator nor our
3322 	 * requested activation weight. The metaslab could have started
3323 	 * as an active one for our allocator but changed allocators
3324 	 * while we were waiting to grab its ms_lock or we stole it
3325 	 * [see find_valid_metaslab()]. This means that there is a
3326 	 * possibility of passivating a metaslab of another allocator
3327 	 * or from a different activation mask, from this thread.
3328 	 */
3329 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3330 		ASSERT(msp->ms_loaded);
3331 		return (0);
3332 	}
3333 
3334 	int error = metaslab_load(msp);
3335 	if (error != 0) {
3336 		metaslab_group_sort(msp->ms_group, msp, 0);
3337 		return (error);
3338 	}
3339 
3340 	/*
3341 	 * When entering metaslab_load() we may have dropped the
3342 	 * ms_lock because we were loading this metaslab, or we
3343 	 * were waiting for another thread to load it for us. In
3344 	 * that scenario, we recheck the weight of the metaslab
3345 	 * to see if it was activated by another thread.
3346 	 *
3347 	 * If the metaslab was activated for another allocator or
3348 	 * it was activated with a different activation weight (e.g.
3349 	 * we wanted to make it a primary but it was activated as
3350 	 * secondary) we return error (EBUSY).
3351 	 *
3352 	 * If the metaslab was activated for the same allocator
3353 	 * and requested activation mask, skip activating it.
3354 	 */
3355 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3356 		if (msp->ms_allocator != allocator)
3357 			return (EBUSY);
3358 
3359 		if ((msp->ms_weight & activation_weight) == 0)
3360 			return (SET_ERROR(EBUSY));
3361 
3362 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3363 		    msp->ms_primary);
3364 		return (0);
3365 	}
3366 
3367 	/*
3368 	 * If the metaslab has literally 0 space, it will have weight 0. In
3369 	 * that case, don't bother activating it. This can happen if the
3370 	 * metaslab had space during find_valid_metaslab, but another thread
3371 	 * loaded it and used all that space while we were waiting to grab the
3372 	 * lock.
3373 	 */
3374 	if (msp->ms_weight == 0) {
3375 		ASSERT0(range_tree_space(msp->ms_allocatable));
3376 		return (SET_ERROR(ENOSPC));
3377 	}
3378 
3379 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3380 	    allocator, activation_weight)) != 0) {
3381 		return (error);
3382 	}
3383 
3384 	ASSERT(msp->ms_loaded);
3385 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3386 
3387 	return (0);
3388 }
3389 
3390 static void
3391 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3392     uint64_t weight)
3393 {
3394 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3395 	ASSERT(msp->ms_loaded);
3396 
3397 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3398 		metaslab_group_sort(mg, msp, weight);
3399 		return;
3400 	}
3401 
3402 	mutex_enter(&mg->mg_lock);
3403 	ASSERT3P(msp->ms_group, ==, mg);
3404 	ASSERT3S(0, <=, msp->ms_allocator);
3405 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3406 
3407 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3408 	if (msp->ms_primary) {
3409 		ASSERT3P(mga->mga_primary, ==, msp);
3410 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3411 		mga->mga_primary = NULL;
3412 	} else {
3413 		ASSERT3P(mga->mga_secondary, ==, msp);
3414 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3415 		mga->mga_secondary = NULL;
3416 	}
3417 	msp->ms_allocator = -1;
3418 	metaslab_group_sort_impl(mg, msp, weight);
3419 	mutex_exit(&mg->mg_lock);
3420 }
3421 
3422 static void
3423 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3424 {
3425 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3426 
3427 	/*
3428 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3429 	 * this metaslab again.  In that case, it had better be empty,
3430 	 * or we would be leaving space on the table.
3431 	 */
3432 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3433 	    size >= SPA_MINBLOCKSIZE ||
3434 	    range_tree_space(msp->ms_allocatable) == 0);
3435 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3436 
3437 	ASSERT(msp->ms_activation_weight != 0);
3438 	msp->ms_activation_weight = 0;
3439 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3440 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3441 }
3442 
3443 /*
3444  * Segment-based metaslabs are activated once and remain active until
3445  * we either fail an allocation attempt (similar to space-based metaslabs)
3446  * or have exhausted the free space in zfs_metaslab_switch_threshold
3447  * buckets since the metaslab was activated. This function checks to see
3448  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3449  * metaslab and passivates it proactively. This will allow us to select a
3450  * metaslab with a larger contiguous region, if any, remaining within this
3451  * metaslab group. If we're in sync pass > 1, then we continue using this
3452  * metaslab so that we don't dirty more block and cause more sync passes.
3453  */
3454 static void
3455 metaslab_segment_may_passivate(metaslab_t *msp)
3456 {
3457 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3458 
3459 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3460 		return;
3461 
3462 	/*
3463 	 * Since we are in the middle of a sync pass, the most accurate
3464 	 * information that is accessible to us is the in-core range tree
3465 	 * histogram; calculate the new weight based on that information.
3466 	 */
3467 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3468 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3469 	int current_idx = WEIGHT_GET_INDEX(weight);
3470 
3471 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3472 		metaslab_passivate(msp, weight);
3473 }
3474 
3475 static void
3476 metaslab_preload(void *arg)
3477 {
3478 	metaslab_t *msp = arg;
3479 	metaslab_class_t *mc = msp->ms_group->mg_class;
3480 	spa_t *spa = mc->mc_spa;
3481 	fstrans_cookie_t cookie = spl_fstrans_mark();
3482 
3483 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3484 
3485 	mutex_enter(&msp->ms_lock);
3486 	(void) metaslab_load(msp);
3487 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3488 	mutex_exit(&msp->ms_lock);
3489 	spl_fstrans_unmark(cookie);
3490 }
3491 
3492 static void
3493 metaslab_group_preload(metaslab_group_t *mg)
3494 {
3495 	spa_t *spa = mg->mg_vd->vdev_spa;
3496 	metaslab_t *msp;
3497 	avl_tree_t *t = &mg->mg_metaslab_tree;
3498 	int m = 0;
3499 
3500 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3501 		taskq_wait_outstanding(mg->mg_taskq, 0);
3502 		return;
3503 	}
3504 
3505 	mutex_enter(&mg->mg_lock);
3506 
3507 	/*
3508 	 * Load the next potential metaslabs
3509 	 */
3510 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3511 		ASSERT3P(msp->ms_group, ==, mg);
3512 
3513 		/*
3514 		 * We preload only the maximum number of metaslabs specified
3515 		 * by metaslab_preload_limit. If a metaslab is being forced
3516 		 * to condense then we preload it too. This will ensure
3517 		 * that force condensing happens in the next txg.
3518 		 */
3519 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3520 			continue;
3521 		}
3522 
3523 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3524 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3525 	}
3526 	mutex_exit(&mg->mg_lock);
3527 }
3528 
3529 /*
3530  * Determine if the space map's on-disk footprint is past our tolerance for
3531  * inefficiency. We would like to use the following criteria to make our
3532  * decision:
3533  *
3534  * 1. Do not condense if the size of the space map object would dramatically
3535  *    increase as a result of writing out the free space range tree.
3536  *
3537  * 2. Condense if the on on-disk space map representation is at least
3538  *    zfs_condense_pct/100 times the size of the optimal representation
3539  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3540  *
3541  * 3. Do not condense if the on-disk size of the space map does not actually
3542  *    decrease.
3543  *
3544  * Unfortunately, we cannot compute the on-disk size of the space map in this
3545  * context because we cannot accurately compute the effects of compression, etc.
3546  * Instead, we apply the heuristic described in the block comment for
3547  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3548  * is greater than a threshold number of blocks.
3549  */
3550 static boolean_t
3551 metaslab_should_condense(metaslab_t *msp)
3552 {
3553 	space_map_t *sm = msp->ms_sm;
3554 	vdev_t *vd = msp->ms_group->mg_vd;
3555 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3556 
3557 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3558 	ASSERT(msp->ms_loaded);
3559 	ASSERT(sm != NULL);
3560 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3561 
3562 	/*
3563 	 * We always condense metaslabs that are empty and metaslabs for
3564 	 * which a condense request has been made.
3565 	 */
3566 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3567 	    msp->ms_condense_wanted)
3568 		return (B_TRUE);
3569 
3570 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3571 	uint64_t object_size = space_map_length(sm);
3572 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3573 	    msp->ms_allocatable, SM_NO_VDEVID);
3574 
3575 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3576 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3577 }
3578 
3579 /*
3580  * Condense the on-disk space map representation to its minimized form.
3581  * The minimized form consists of a small number of allocations followed
3582  * by the entries of the free range tree (ms_allocatable). The condensed
3583  * spacemap contains all the entries of previous TXGs (including those in
3584  * the pool-wide log spacemaps; thus this is effectively a superset of
3585  * metaslab_flush()), but this TXG's entries still need to be written.
3586  */
3587 static void
3588 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3589 {
3590 	range_tree_t *condense_tree;
3591 	space_map_t *sm = msp->ms_sm;
3592 	uint64_t txg = dmu_tx_get_txg(tx);
3593 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3594 
3595 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3596 	ASSERT(msp->ms_loaded);
3597 	ASSERT(msp->ms_sm != NULL);
3598 
3599 	/*
3600 	 * In order to condense the space map, we need to change it so it
3601 	 * only describes which segments are currently allocated and free.
3602 	 *
3603 	 * All the current free space resides in the ms_allocatable, all
3604 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3605 	 * ms_freed because it is empty because we're in sync pass 1. We
3606 	 * ignore ms_freeing because these changes are not yet reflected
3607 	 * in the spacemap (they will be written later this txg).
3608 	 *
3609 	 * So to truncate the space map to represent all the entries of
3610 	 * previous TXGs we do the following:
3611 	 *
3612 	 * 1] We create a range tree (condense tree) that is 100% empty.
3613 	 * 2] We add to it all segments found in the ms_defer trees
3614 	 *    as those segments are marked as free in the original space
3615 	 *    map. We do the same with the ms_allocating trees for the same
3616 	 *    reason. Adding these segments should be a relatively
3617 	 *    inexpensive operation since we expect these trees to have a
3618 	 *    small number of nodes.
3619 	 * 3] We vacate any unflushed allocs, since they are not frees we
3620 	 *    need to add to the condense tree. Then we vacate any
3621 	 *    unflushed frees as they should already be part of ms_allocatable.
3622 	 * 4] At this point, we would ideally like to add all segments
3623 	 *    in the ms_allocatable tree from the condense tree. This way
3624 	 *    we would write all the entries of the condense tree as the
3625 	 *    condensed space map, which would only contain freed
3626 	 *    segments with everything else assumed to be allocated.
3627 	 *
3628 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3629 	 *    be large, and therefore computationally expensive to add to
3630 	 *    the condense_tree. Instead we first sync out an entry marking
3631 	 *    everything as allocated, then the condense_tree and then the
3632 	 *    ms_allocatable, in the condensed space map. While this is not
3633 	 *    optimal, it is typically close to optimal and more importantly
3634 	 *    much cheaper to compute.
3635 	 *
3636 	 * 5] Finally, as both of the unflushed trees were written to our
3637 	 *    new and condensed metaslab space map, we basically flushed
3638 	 *    all the unflushed changes to disk, thus we call
3639 	 *    metaslab_flush_update().
3640 	 */
3641 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3642 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3643 
3644 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3645 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3646 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3647 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3648 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3649 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3650 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3651 
3652 	msp->ms_condense_wanted = B_FALSE;
3653 
3654 	range_seg_type_t type;
3655 	uint64_t shift, start;
3656 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3657 	    &start, &shift);
3658 
3659 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3660 
3661 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3662 		range_tree_walk(msp->ms_defer[t],
3663 		    range_tree_add, condense_tree);
3664 	}
3665 
3666 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3667 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3668 		    range_tree_add, condense_tree);
3669 	}
3670 
3671 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3672 	    metaslab_unflushed_changes_memused(msp));
3673 	spa->spa_unflushed_stats.sus_memused -=
3674 	    metaslab_unflushed_changes_memused(msp);
3675 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3676 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3677 
3678 	/*
3679 	 * We're about to drop the metaslab's lock thus allowing other
3680 	 * consumers to change it's content. Set the metaslab's ms_condensing
3681 	 * flag to ensure that allocations on this metaslab do not occur
3682 	 * while we're in the middle of committing it to disk. This is only
3683 	 * critical for ms_allocatable as all other range trees use per TXG
3684 	 * views of their content.
3685 	 */
3686 	msp->ms_condensing = B_TRUE;
3687 
3688 	mutex_exit(&msp->ms_lock);
3689 	uint64_t object = space_map_object(msp->ms_sm);
3690 	space_map_truncate(sm,
3691 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3692 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3693 
3694 	/*
3695 	 * space_map_truncate() may have reallocated the spacemap object.
3696 	 * If so, update the vdev_ms_array.
3697 	 */
3698 	if (space_map_object(msp->ms_sm) != object) {
3699 		object = space_map_object(msp->ms_sm);
3700 		dmu_write(spa->spa_meta_objset,
3701 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3702 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3703 	}
3704 
3705 	/*
3706 	 * Note:
3707 	 * When the log space map feature is enabled, each space map will
3708 	 * always have ALLOCS followed by FREES for each sync pass. This is
3709 	 * typically true even when the log space map feature is disabled,
3710 	 * except from the case where a metaslab goes through metaslab_sync()
3711 	 * and gets condensed. In that case the metaslab's space map will have
3712 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3713 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3714 	 * sync pass 1.
3715 	 */
3716 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3717 	    shift);
3718 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3719 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3720 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3721 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3722 
3723 	range_tree_vacate(condense_tree, NULL, NULL);
3724 	range_tree_destroy(condense_tree);
3725 	range_tree_vacate(tmp_tree, NULL, NULL);
3726 	range_tree_destroy(tmp_tree);
3727 	mutex_enter(&msp->ms_lock);
3728 
3729 	msp->ms_condensing = B_FALSE;
3730 	metaslab_flush_update(msp, tx);
3731 }
3732 
3733 static void
3734 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3735 {
3736 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3737 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3738 	ASSERT(msp->ms_sm != NULL);
3739 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3740 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3741 
3742 	mutex_enter(&spa->spa_flushed_ms_lock);
3743 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3744 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3745 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3746 	mutex_exit(&spa->spa_flushed_ms_lock);
3747 
3748 	spa_log_sm_increment_current_mscount(spa);
3749 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3750 }
3751 
3752 void
3753 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3754 {
3755 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3756 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3757 	ASSERT(msp->ms_sm != NULL);
3758 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3759 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3760 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3761 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3762 
3763 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3764 
3765 	/* update metaslab's position in our flushing tree */
3766 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3767 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3768 	mutex_enter(&spa->spa_flushed_ms_lock);
3769 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3770 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3771 	metaslab_set_unflushed_dirty(msp, dirty);
3772 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3773 	mutex_exit(&spa->spa_flushed_ms_lock);
3774 
3775 	/* update metaslab counts of spa_log_sm_t nodes */
3776 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3777 	spa_log_sm_increment_current_mscount(spa);
3778 
3779 	/* update log space map summary */
3780 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3781 	    ms_prev_flushed_dirty);
3782 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3783 
3784 	/* cleanup obsolete logs if any */
3785 	spa_cleanup_old_sm_logs(spa, tx);
3786 }
3787 
3788 /*
3789  * Called when the metaslab has been flushed (its own spacemap now reflects
3790  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3791  * metadata and any pool-wide related log space map data (e.g. summary,
3792  * obsolete logs, etc..) to reflect that.
3793  */
3794 static void
3795 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3796 {
3797 	metaslab_group_t *mg = msp->ms_group;
3798 	spa_t *spa = mg->mg_vd->vdev_spa;
3799 
3800 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3801 
3802 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3803 
3804 	/*
3805 	 * Just because a metaslab got flushed, that doesn't mean that
3806 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3807 	 * update ms_synced_length here in case it doesn't.
3808 	 */
3809 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3810 
3811 	/*
3812 	 * We may end up here from metaslab_condense() without the
3813 	 * feature being active. In that case this is a no-op.
3814 	 */
3815 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3816 	    metaslab_unflushed_txg(msp) == 0)
3817 		return;
3818 
3819 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3820 }
3821 
3822 boolean_t
3823 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3824 {
3825 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3826 
3827 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3828 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3829 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3830 
3831 	ASSERT(msp->ms_sm != NULL);
3832 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3833 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3834 
3835 	/*
3836 	 * There is nothing wrong with flushing the same metaslab twice, as
3837 	 * this codepath should work on that case. However, the current
3838 	 * flushing scheme makes sure to avoid this situation as we would be
3839 	 * making all these calls without having anything meaningful to write
3840 	 * to disk. We assert this behavior here.
3841 	 */
3842 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3843 
3844 	/*
3845 	 * We can not flush while loading, because then we would
3846 	 * not load the ms_unflushed_{allocs,frees}.
3847 	 */
3848 	if (msp->ms_loading)
3849 		return (B_FALSE);
3850 
3851 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3852 	metaslab_verify_weight_and_frag(msp);
3853 
3854 	/*
3855 	 * Metaslab condensing is effectively flushing. Therefore if the
3856 	 * metaslab can be condensed we can just condense it instead of
3857 	 * flushing it.
3858 	 *
3859 	 * Note that metaslab_condense() does call metaslab_flush_update()
3860 	 * so we can just return immediately after condensing. We also
3861 	 * don't need to care about setting ms_flushing or broadcasting
3862 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3863 	 * metaslab_condense(), as the metaslab is already loaded.
3864 	 */
3865 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3866 		metaslab_group_t *mg = msp->ms_group;
3867 
3868 		/*
3869 		 * For all histogram operations below refer to the
3870 		 * comments of metaslab_sync() where we follow a
3871 		 * similar procedure.
3872 		 */
3873 		metaslab_group_histogram_verify(mg);
3874 		metaslab_class_histogram_verify(mg->mg_class);
3875 		metaslab_group_histogram_remove(mg, msp);
3876 
3877 		metaslab_condense(msp, tx);
3878 
3879 		space_map_histogram_clear(msp->ms_sm);
3880 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3881 		ASSERT(range_tree_is_empty(msp->ms_freed));
3882 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3883 			space_map_histogram_add(msp->ms_sm,
3884 			    msp->ms_defer[t], tx);
3885 		}
3886 		metaslab_aux_histograms_update(msp);
3887 
3888 		metaslab_group_histogram_add(mg, msp);
3889 		metaslab_group_histogram_verify(mg);
3890 		metaslab_class_histogram_verify(mg->mg_class);
3891 
3892 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3893 
3894 		/*
3895 		 * Since we recreated the histogram (and potentially
3896 		 * the ms_sm too while condensing) ensure that the
3897 		 * weight is updated too because we are not guaranteed
3898 		 * that this metaslab is dirty and will go through
3899 		 * metaslab_sync_done().
3900 		 */
3901 		metaslab_recalculate_weight_and_sort(msp);
3902 		return (B_TRUE);
3903 	}
3904 
3905 	msp->ms_flushing = B_TRUE;
3906 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3907 
3908 	mutex_exit(&msp->ms_lock);
3909 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3910 	    SM_NO_VDEVID, tx);
3911 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3912 	    SM_NO_VDEVID, tx);
3913 	mutex_enter(&msp->ms_lock);
3914 
3915 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3916 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3917 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3918 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3919 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3920 		    spa_name(spa),
3921 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3922 		    (u_longlong_t)msp->ms_id,
3923 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3924 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3925 		    (u_longlong_t)(sm_len_after - sm_len_before));
3926 	}
3927 
3928 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3929 	    metaslab_unflushed_changes_memused(msp));
3930 	spa->spa_unflushed_stats.sus_memused -=
3931 	    metaslab_unflushed_changes_memused(msp);
3932 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3933 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3934 
3935 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3936 	metaslab_verify_weight_and_frag(msp);
3937 
3938 	metaslab_flush_update(msp, tx);
3939 
3940 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3941 	metaslab_verify_weight_and_frag(msp);
3942 
3943 	msp->ms_flushing = B_FALSE;
3944 	cv_broadcast(&msp->ms_flush_cv);
3945 	return (B_TRUE);
3946 }
3947 
3948 /*
3949  * Write a metaslab to disk in the context of the specified transaction group.
3950  */
3951 void
3952 metaslab_sync(metaslab_t *msp, uint64_t txg)
3953 {
3954 	metaslab_group_t *mg = msp->ms_group;
3955 	vdev_t *vd = mg->mg_vd;
3956 	spa_t *spa = vd->vdev_spa;
3957 	objset_t *mos = spa_meta_objset(spa);
3958 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3959 	dmu_tx_t *tx;
3960 
3961 	ASSERT(!vd->vdev_ishole);
3962 
3963 	/*
3964 	 * This metaslab has just been added so there's no work to do now.
3965 	 */
3966 	if (msp->ms_new) {
3967 		ASSERT0(range_tree_space(alloctree));
3968 		ASSERT0(range_tree_space(msp->ms_freeing));
3969 		ASSERT0(range_tree_space(msp->ms_freed));
3970 		ASSERT0(range_tree_space(msp->ms_checkpointing));
3971 		ASSERT0(range_tree_space(msp->ms_trim));
3972 		return;
3973 	}
3974 
3975 	/*
3976 	 * Normally, we don't want to process a metaslab if there are no
3977 	 * allocations or frees to perform. However, if the metaslab is being
3978 	 * forced to condense, it's loaded and we're not beyond the final
3979 	 * dirty txg, we need to let it through. Not condensing beyond the
3980 	 * final dirty txg prevents an issue where metaslabs that need to be
3981 	 * condensed but were loaded for other reasons could cause a panic
3982 	 * here. By only checking the txg in that branch of the conditional,
3983 	 * we preserve the utility of the VERIFY statements in all other
3984 	 * cases.
3985 	 */
3986 	if (range_tree_is_empty(alloctree) &&
3987 	    range_tree_is_empty(msp->ms_freeing) &&
3988 	    range_tree_is_empty(msp->ms_checkpointing) &&
3989 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3990 	    txg <= spa_final_dirty_txg(spa)))
3991 		return;
3992 
3993 
3994 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3995 
3996 	/*
3997 	 * The only state that can actually be changing concurrently
3998 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3999 	 * other thread can be modifying this txg's alloc, freeing,
4000 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4001 	 * could call into the DMU, because the DMU can call down to
4002 	 * us (e.g. via zio_free()) at any time.
4003 	 *
4004 	 * The spa_vdev_remove_thread() can be reading metaslab state
4005 	 * concurrently, and it is locked out by the ms_sync_lock.
4006 	 * Note that the ms_lock is insufficient for this, because it
4007 	 * is dropped by space_map_write().
4008 	 */
4009 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4010 
4011 	/*
4012 	 * Generate a log space map if one doesn't exist already.
4013 	 */
4014 	spa_generate_syncing_log_sm(spa, tx);
4015 
4016 	if (msp->ms_sm == NULL) {
4017 		uint64_t new_object = space_map_alloc(mos,
4018 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4019 		    zfs_metaslab_sm_blksz_with_log :
4020 		    zfs_metaslab_sm_blksz_no_log, tx);
4021 		VERIFY3U(new_object, !=, 0);
4022 
4023 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4024 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4025 
4026 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4027 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4028 		ASSERT(msp->ms_sm != NULL);
4029 
4030 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4031 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4032 		ASSERT0(metaslab_allocated_space(msp));
4033 	}
4034 
4035 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4036 	    vd->vdev_checkpoint_sm == NULL) {
4037 		ASSERT(spa_has_checkpoint(spa));
4038 
4039 		uint64_t new_object = space_map_alloc(mos,
4040 		    zfs_vdev_standard_sm_blksz, tx);
4041 		VERIFY3U(new_object, !=, 0);
4042 
4043 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4044 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4045 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4046 
4047 		/*
4048 		 * We save the space map object as an entry in vdev_top_zap
4049 		 * so it can be retrieved when the pool is reopened after an
4050 		 * export or through zdb.
4051 		 */
4052 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4053 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4054 		    sizeof (new_object), 1, &new_object, tx));
4055 	}
4056 
4057 	mutex_enter(&msp->ms_sync_lock);
4058 	mutex_enter(&msp->ms_lock);
4059 
4060 	/*
4061 	 * Note: metaslab_condense() clears the space map's histogram.
4062 	 * Therefore we must verify and remove this histogram before
4063 	 * condensing.
4064 	 */
4065 	metaslab_group_histogram_verify(mg);
4066 	metaslab_class_histogram_verify(mg->mg_class);
4067 	metaslab_group_histogram_remove(mg, msp);
4068 
4069 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4070 	    metaslab_should_condense(msp))
4071 		metaslab_condense(msp, tx);
4072 
4073 	/*
4074 	 * We'll be going to disk to sync our space accounting, thus we
4075 	 * drop the ms_lock during that time so allocations coming from
4076 	 * open-context (ZIL) for future TXGs do not block.
4077 	 */
4078 	mutex_exit(&msp->ms_lock);
4079 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4080 	if (log_sm != NULL) {
4081 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4082 		if (metaslab_unflushed_txg(msp) == 0)
4083 			metaslab_unflushed_add(msp, tx);
4084 		else if (!metaslab_unflushed_dirty(msp))
4085 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4086 
4087 		space_map_write(log_sm, alloctree, SM_ALLOC,
4088 		    vd->vdev_id, tx);
4089 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4090 		    vd->vdev_id, tx);
4091 		mutex_enter(&msp->ms_lock);
4092 
4093 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4094 		    metaslab_unflushed_changes_memused(msp));
4095 		spa->spa_unflushed_stats.sus_memused -=
4096 		    metaslab_unflushed_changes_memused(msp);
4097 		range_tree_remove_xor_add(alloctree,
4098 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4099 		range_tree_remove_xor_add(msp->ms_freeing,
4100 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4101 		spa->spa_unflushed_stats.sus_memused +=
4102 		    metaslab_unflushed_changes_memused(msp);
4103 	} else {
4104 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4105 
4106 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4107 		    SM_NO_VDEVID, tx);
4108 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4109 		    SM_NO_VDEVID, tx);
4110 		mutex_enter(&msp->ms_lock);
4111 	}
4112 
4113 	msp->ms_allocated_space += range_tree_space(alloctree);
4114 	ASSERT3U(msp->ms_allocated_space, >=,
4115 	    range_tree_space(msp->ms_freeing));
4116 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4117 
4118 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4119 		ASSERT(spa_has_checkpoint(spa));
4120 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4121 
4122 		/*
4123 		 * Since we are doing writes to disk and the ms_checkpointing
4124 		 * tree won't be changing during that time, we drop the
4125 		 * ms_lock while writing to the checkpoint space map, for the
4126 		 * same reason mentioned above.
4127 		 */
4128 		mutex_exit(&msp->ms_lock);
4129 		space_map_write(vd->vdev_checkpoint_sm,
4130 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4131 		mutex_enter(&msp->ms_lock);
4132 
4133 		spa->spa_checkpoint_info.sci_dspace +=
4134 		    range_tree_space(msp->ms_checkpointing);
4135 		vd->vdev_stat.vs_checkpoint_space +=
4136 		    range_tree_space(msp->ms_checkpointing);
4137 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4138 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4139 
4140 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4141 	}
4142 
4143 	if (msp->ms_loaded) {
4144 		/*
4145 		 * When the space map is loaded, we have an accurate
4146 		 * histogram in the range tree. This gives us an opportunity
4147 		 * to bring the space map's histogram up-to-date so we clear
4148 		 * it first before updating it.
4149 		 */
4150 		space_map_histogram_clear(msp->ms_sm);
4151 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4152 
4153 		/*
4154 		 * Since we've cleared the histogram we need to add back
4155 		 * any free space that has already been processed, plus
4156 		 * any deferred space. This allows the on-disk histogram
4157 		 * to accurately reflect all free space even if some space
4158 		 * is not yet available for allocation (i.e. deferred).
4159 		 */
4160 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4161 
4162 		/*
4163 		 * Add back any deferred free space that has not been
4164 		 * added back into the in-core free tree yet. This will
4165 		 * ensure that we don't end up with a space map histogram
4166 		 * that is completely empty unless the metaslab is fully
4167 		 * allocated.
4168 		 */
4169 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4170 			space_map_histogram_add(msp->ms_sm,
4171 			    msp->ms_defer[t], tx);
4172 		}
4173 	}
4174 
4175 	/*
4176 	 * Always add the free space from this sync pass to the space
4177 	 * map histogram. We want to make sure that the on-disk histogram
4178 	 * accounts for all free space. If the space map is not loaded,
4179 	 * then we will lose some accuracy but will correct it the next
4180 	 * time we load the space map.
4181 	 */
4182 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4183 	metaslab_aux_histograms_update(msp);
4184 
4185 	metaslab_group_histogram_add(mg, msp);
4186 	metaslab_group_histogram_verify(mg);
4187 	metaslab_class_histogram_verify(mg->mg_class);
4188 
4189 	/*
4190 	 * For sync pass 1, we avoid traversing this txg's free range tree
4191 	 * and instead will just swap the pointers for freeing and freed.
4192 	 * We can safely do this since the freed_tree is guaranteed to be
4193 	 * empty on the initial pass.
4194 	 *
4195 	 * Keep in mind that even if we are currently using a log spacemap
4196 	 * we want current frees to end up in the ms_allocatable (but not
4197 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4198 	 */
4199 	if (spa_sync_pass(spa) == 1) {
4200 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4201 		ASSERT0(msp->ms_allocated_this_txg);
4202 	} else {
4203 		range_tree_vacate(msp->ms_freeing,
4204 		    range_tree_add, msp->ms_freed);
4205 	}
4206 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4207 	range_tree_vacate(alloctree, NULL, NULL);
4208 
4209 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4210 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4211 	    & TXG_MASK]));
4212 	ASSERT0(range_tree_space(msp->ms_freeing));
4213 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4214 
4215 	mutex_exit(&msp->ms_lock);
4216 
4217 	/*
4218 	 * Verify that the space map object ID has been recorded in the
4219 	 * vdev_ms_array.
4220 	 */
4221 	uint64_t object;
4222 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4223 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4224 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4225 
4226 	mutex_exit(&msp->ms_sync_lock);
4227 	dmu_tx_commit(tx);
4228 }
4229 
4230 static void
4231 metaslab_evict(metaslab_t *msp, uint64_t txg)
4232 {
4233 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4234 		return;
4235 
4236 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4237 		VERIFY0(range_tree_space(
4238 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4239 	}
4240 	if (msp->ms_allocator != -1)
4241 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4242 
4243 	if (!metaslab_debug_unload)
4244 		metaslab_unload(msp);
4245 }
4246 
4247 /*
4248  * Called after a transaction group has completely synced to mark
4249  * all of the metaslab's free space as usable.
4250  */
4251 void
4252 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4253 {
4254 	metaslab_group_t *mg = msp->ms_group;
4255 	vdev_t *vd = mg->mg_vd;
4256 	spa_t *spa = vd->vdev_spa;
4257 	range_tree_t **defer_tree;
4258 	int64_t alloc_delta, defer_delta;
4259 	boolean_t defer_allowed = B_TRUE;
4260 
4261 	ASSERT(!vd->vdev_ishole);
4262 
4263 	mutex_enter(&msp->ms_lock);
4264 
4265 	if (msp->ms_new) {
4266 		/* this is a new metaslab, add its capacity to the vdev */
4267 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4268 
4269 		/* there should be no allocations nor frees at this point */
4270 		VERIFY0(msp->ms_allocated_this_txg);
4271 		VERIFY0(range_tree_space(msp->ms_freed));
4272 	}
4273 
4274 	ASSERT0(range_tree_space(msp->ms_freeing));
4275 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4276 
4277 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4278 
4279 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4280 	    metaslab_class_get_alloc(spa_normal_class(spa));
4281 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4282 		defer_allowed = B_FALSE;
4283 	}
4284 
4285 	defer_delta = 0;
4286 	alloc_delta = msp->ms_allocated_this_txg -
4287 	    range_tree_space(msp->ms_freed);
4288 
4289 	if (defer_allowed) {
4290 		defer_delta = range_tree_space(msp->ms_freed) -
4291 		    range_tree_space(*defer_tree);
4292 	} else {
4293 		defer_delta -= range_tree_space(*defer_tree);
4294 	}
4295 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4296 	    defer_delta, 0);
4297 
4298 	if (spa_syncing_log_sm(spa) == NULL) {
4299 		/*
4300 		 * If there's a metaslab_load() in progress and we don't have
4301 		 * a log space map, it means that we probably wrote to the
4302 		 * metaslab's space map. If this is the case, we need to
4303 		 * make sure that we wait for the load to complete so that we
4304 		 * have a consistent view at the in-core side of the metaslab.
4305 		 */
4306 		metaslab_load_wait(msp);
4307 	} else {
4308 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4309 	}
4310 
4311 	/*
4312 	 * When auto-trimming is enabled, free ranges which are added to
4313 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4314 	 * periodically consumed by the vdev_autotrim_thread() which issues
4315 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4316 	 * can be discarded at any time with the sole consequence of recent
4317 	 * frees not being trimmed.
4318 	 */
4319 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4320 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4321 		if (!defer_allowed) {
4322 			range_tree_walk(msp->ms_freed, range_tree_add,
4323 			    msp->ms_trim);
4324 		}
4325 	} else {
4326 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4327 	}
4328 
4329 	/*
4330 	 * Move the frees from the defer_tree back to the free
4331 	 * range tree (if it's loaded). Swap the freed_tree and
4332 	 * the defer_tree -- this is safe to do because we've
4333 	 * just emptied out the defer_tree.
4334 	 */
4335 	range_tree_vacate(*defer_tree,
4336 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4337 	if (defer_allowed) {
4338 		range_tree_swap(&msp->ms_freed, defer_tree);
4339 	} else {
4340 		range_tree_vacate(msp->ms_freed,
4341 		    msp->ms_loaded ? range_tree_add : NULL,
4342 		    msp->ms_allocatable);
4343 	}
4344 
4345 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4346 
4347 	msp->ms_deferspace += defer_delta;
4348 	ASSERT3S(msp->ms_deferspace, >=, 0);
4349 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4350 	if (msp->ms_deferspace != 0) {
4351 		/*
4352 		 * Keep syncing this metaslab until all deferred frees
4353 		 * are back in circulation.
4354 		 */
4355 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4356 	}
4357 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4358 
4359 	if (msp->ms_new) {
4360 		msp->ms_new = B_FALSE;
4361 		mutex_enter(&mg->mg_lock);
4362 		mg->mg_ms_ready++;
4363 		mutex_exit(&mg->mg_lock);
4364 	}
4365 
4366 	/*
4367 	 * Re-sort metaslab within its group now that we've adjusted
4368 	 * its allocatable space.
4369 	 */
4370 	metaslab_recalculate_weight_and_sort(msp);
4371 
4372 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4373 	ASSERT0(range_tree_space(msp->ms_freeing));
4374 	ASSERT0(range_tree_space(msp->ms_freed));
4375 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4376 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4377 	msp->ms_allocated_this_txg = 0;
4378 	mutex_exit(&msp->ms_lock);
4379 }
4380 
4381 void
4382 metaslab_sync_reassess(metaslab_group_t *mg)
4383 {
4384 	spa_t *spa = mg->mg_class->mc_spa;
4385 
4386 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4387 	metaslab_group_alloc_update(mg);
4388 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4389 
4390 	/*
4391 	 * Preload the next potential metaslabs but only on active
4392 	 * metaslab groups. We can get into a state where the metaslab
4393 	 * is no longer active since we dirty metaslabs as we remove a
4394 	 * a device, thus potentially making the metaslab group eligible
4395 	 * for preloading.
4396 	 */
4397 	if (mg->mg_activation_count > 0) {
4398 		metaslab_group_preload(mg);
4399 	}
4400 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4401 }
4402 
4403 /*
4404  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4405  * the same vdev as an existing DVA of this BP, then try to allocate it
4406  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4407  */
4408 static boolean_t
4409 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4410 {
4411 	uint64_t dva_ms_id;
4412 
4413 	if (DVA_GET_ASIZE(dva) == 0)
4414 		return (B_TRUE);
4415 
4416 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4417 		return (B_TRUE);
4418 
4419 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4420 
4421 	return (msp->ms_id != dva_ms_id);
4422 }
4423 
4424 /*
4425  * ==========================================================================
4426  * Metaslab allocation tracing facility
4427  * ==========================================================================
4428  */
4429 
4430 /*
4431  * Add an allocation trace element to the allocation tracing list.
4432  */
4433 static void
4434 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4435     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4436     int allocator)
4437 {
4438 	metaslab_alloc_trace_t *mat;
4439 
4440 	if (!metaslab_trace_enabled)
4441 		return;
4442 
4443 	/*
4444 	 * When the tracing list reaches its maximum we remove
4445 	 * the second element in the list before adding a new one.
4446 	 * By removing the second element we preserve the original
4447 	 * entry as a clue to what allocations steps have already been
4448 	 * performed.
4449 	 */
4450 	if (zal->zal_size == metaslab_trace_max_entries) {
4451 		metaslab_alloc_trace_t *mat_next;
4452 #ifdef ZFS_DEBUG
4453 		panic("too many entries in allocation list");
4454 #endif
4455 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4456 		zal->zal_size--;
4457 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4458 		list_remove(&zal->zal_list, mat_next);
4459 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4460 	}
4461 
4462 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4463 	list_link_init(&mat->mat_list_node);
4464 	mat->mat_mg = mg;
4465 	mat->mat_msp = msp;
4466 	mat->mat_size = psize;
4467 	mat->mat_dva_id = dva_id;
4468 	mat->mat_offset = offset;
4469 	mat->mat_weight = 0;
4470 	mat->mat_allocator = allocator;
4471 
4472 	if (msp != NULL)
4473 		mat->mat_weight = msp->ms_weight;
4474 
4475 	/*
4476 	 * The list is part of the zio so locking is not required. Only
4477 	 * a single thread will perform allocations for a given zio.
4478 	 */
4479 	list_insert_tail(&zal->zal_list, mat);
4480 	zal->zal_size++;
4481 
4482 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4483 }
4484 
4485 void
4486 metaslab_trace_init(zio_alloc_list_t *zal)
4487 {
4488 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4489 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4490 	zal->zal_size = 0;
4491 }
4492 
4493 void
4494 metaslab_trace_fini(zio_alloc_list_t *zal)
4495 {
4496 	metaslab_alloc_trace_t *mat;
4497 
4498 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4499 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4500 	list_destroy(&zal->zal_list);
4501 	zal->zal_size = 0;
4502 }
4503 
4504 /*
4505  * ==========================================================================
4506  * Metaslab block operations
4507  * ==========================================================================
4508  */
4509 
4510 static void
4511 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4512     int flags, int allocator)
4513 {
4514 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4515 	    (flags & METASLAB_DONT_THROTTLE))
4516 		return;
4517 
4518 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4519 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4520 		return;
4521 
4522 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4523 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4524 }
4525 
4526 static void
4527 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4528 {
4529 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4530 	metaslab_class_allocator_t *mca =
4531 	    &mg->mg_class->mc_allocator[allocator];
4532 	uint64_t max = mg->mg_max_alloc_queue_depth;
4533 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4534 	while (cur < max) {
4535 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4536 		    cur, cur + 1) == cur) {
4537 			atomic_inc_64(&mca->mca_alloc_max_slots);
4538 			return;
4539 		}
4540 		cur = mga->mga_cur_max_alloc_queue_depth;
4541 	}
4542 }
4543 
4544 void
4545 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4546     int flags, int allocator, boolean_t io_complete)
4547 {
4548 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4549 	    (flags & METASLAB_DONT_THROTTLE))
4550 		return;
4551 
4552 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4553 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4554 		return;
4555 
4556 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4557 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4558 	if (io_complete)
4559 		metaslab_group_increment_qdepth(mg, allocator);
4560 }
4561 
4562 void
4563 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4564     int allocator)
4565 {
4566 #ifdef ZFS_DEBUG
4567 	const dva_t *dva = bp->blk_dva;
4568 	int ndvas = BP_GET_NDVAS(bp);
4569 
4570 	for (int d = 0; d < ndvas; d++) {
4571 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4572 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4573 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4574 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4575 	}
4576 #endif
4577 }
4578 
4579 static uint64_t
4580 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4581 {
4582 	uint64_t start;
4583 	range_tree_t *rt = msp->ms_allocatable;
4584 	metaslab_class_t *mc = msp->ms_group->mg_class;
4585 
4586 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4587 	VERIFY(!msp->ms_condensing);
4588 	VERIFY0(msp->ms_disabled);
4589 
4590 	start = mc->mc_ops->msop_alloc(msp, size);
4591 	if (start != -1ULL) {
4592 		metaslab_group_t *mg = msp->ms_group;
4593 		vdev_t *vd = mg->mg_vd;
4594 
4595 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4596 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4597 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4598 		range_tree_remove(rt, start, size);
4599 		range_tree_clear(msp->ms_trim, start, size);
4600 
4601 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4602 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4603 
4604 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4605 		msp->ms_allocating_total += size;
4606 
4607 		/* Track the last successful allocation */
4608 		msp->ms_alloc_txg = txg;
4609 		metaslab_verify_space(msp, txg);
4610 	}
4611 
4612 	/*
4613 	 * Now that we've attempted the allocation we need to update the
4614 	 * metaslab's maximum block size since it may have changed.
4615 	 */
4616 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4617 	return (start);
4618 }
4619 
4620 /*
4621  * Find the metaslab with the highest weight that is less than what we've
4622  * already tried.  In the common case, this means that we will examine each
4623  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4624  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4625  * activated by another thread, and we fail to allocate from the metaslab we
4626  * have selected, we may not try the newly-activated metaslab, and instead
4627  * activate another metaslab.  This is not optimal, but generally does not cause
4628  * any problems (a possible exception being if every metaslab is completely full
4629  * except for the newly-activated metaslab which we fail to examine).
4630  */
4631 static metaslab_t *
4632 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4633     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4634     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4635     boolean_t *was_active)
4636 {
4637 	avl_index_t idx;
4638 	avl_tree_t *t = &mg->mg_metaslab_tree;
4639 	metaslab_t *msp = avl_find(t, search, &idx);
4640 	if (msp == NULL)
4641 		msp = avl_nearest(t, idx, AVL_AFTER);
4642 
4643 	int tries = 0;
4644 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4645 		int i;
4646 
4647 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4648 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4649 			return (NULL);
4650 		}
4651 		tries++;
4652 
4653 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4654 			metaslab_trace_add(zal, mg, msp, asize, d,
4655 			    TRACE_TOO_SMALL, allocator);
4656 			continue;
4657 		}
4658 
4659 		/*
4660 		 * If the selected metaslab is condensing or disabled,
4661 		 * skip it.
4662 		 */
4663 		if (msp->ms_condensing || msp->ms_disabled > 0)
4664 			continue;
4665 
4666 		*was_active = msp->ms_allocator != -1;
4667 		/*
4668 		 * If we're activating as primary, this is our first allocation
4669 		 * from this disk, so we don't need to check how close we are.
4670 		 * If the metaslab under consideration was already active,
4671 		 * we're getting desperate enough to steal another allocator's
4672 		 * metaslab, so we still don't care about distances.
4673 		 */
4674 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4675 			break;
4676 
4677 		for (i = 0; i < d; i++) {
4678 			if (want_unique &&
4679 			    !metaslab_is_unique(msp, &dva[i]))
4680 				break;  /* try another metaslab */
4681 		}
4682 		if (i == d)
4683 			break;
4684 	}
4685 
4686 	if (msp != NULL) {
4687 		search->ms_weight = msp->ms_weight;
4688 		search->ms_start = msp->ms_start + 1;
4689 		search->ms_allocator = msp->ms_allocator;
4690 		search->ms_primary = msp->ms_primary;
4691 	}
4692 	return (msp);
4693 }
4694 
4695 static void
4696 metaslab_active_mask_verify(metaslab_t *msp)
4697 {
4698 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4699 
4700 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4701 		return;
4702 
4703 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4704 		return;
4705 
4706 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4707 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4708 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4709 		VERIFY3S(msp->ms_allocator, !=, -1);
4710 		VERIFY(msp->ms_primary);
4711 		return;
4712 	}
4713 
4714 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4715 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4716 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4717 		VERIFY3S(msp->ms_allocator, !=, -1);
4718 		VERIFY(!msp->ms_primary);
4719 		return;
4720 	}
4721 
4722 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4723 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4724 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4725 		VERIFY3S(msp->ms_allocator, ==, -1);
4726 		return;
4727 	}
4728 }
4729 
4730 static uint64_t
4731 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4732     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4733     int allocator, boolean_t try_hard)
4734 {
4735 	metaslab_t *msp = NULL;
4736 	uint64_t offset = -1ULL;
4737 
4738 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4739 	for (int i = 0; i < d; i++) {
4740 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4741 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4742 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4743 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4744 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4745 			activation_weight = METASLAB_WEIGHT_CLAIM;
4746 			break;
4747 		}
4748 	}
4749 
4750 	/*
4751 	 * If we don't have enough metaslabs active to fill the entire array, we
4752 	 * just use the 0th slot.
4753 	 */
4754 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4755 		allocator = 0;
4756 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4757 
4758 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4759 
4760 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4761 	search->ms_weight = UINT64_MAX;
4762 	search->ms_start = 0;
4763 	/*
4764 	 * At the end of the metaslab tree are the already-active metaslabs,
4765 	 * first the primaries, then the secondaries. When we resume searching
4766 	 * through the tree, we need to consider ms_allocator and ms_primary so
4767 	 * we start in the location right after where we left off, and don't
4768 	 * accidentally loop forever considering the same metaslabs.
4769 	 */
4770 	search->ms_allocator = -1;
4771 	search->ms_primary = B_TRUE;
4772 	for (;;) {
4773 		boolean_t was_active = B_FALSE;
4774 
4775 		mutex_enter(&mg->mg_lock);
4776 
4777 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4778 		    mga->mga_primary != NULL) {
4779 			msp = mga->mga_primary;
4780 
4781 			/*
4782 			 * Even though we don't hold the ms_lock for the
4783 			 * primary metaslab, those fields should not
4784 			 * change while we hold the mg_lock. Thus it is
4785 			 * safe to make assertions on them.
4786 			 */
4787 			ASSERT(msp->ms_primary);
4788 			ASSERT3S(msp->ms_allocator, ==, allocator);
4789 			ASSERT(msp->ms_loaded);
4790 
4791 			was_active = B_TRUE;
4792 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4793 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4794 		    mga->mga_secondary != NULL) {
4795 			msp = mga->mga_secondary;
4796 
4797 			/*
4798 			 * See comment above about the similar assertions
4799 			 * for the primary metaslab.
4800 			 */
4801 			ASSERT(!msp->ms_primary);
4802 			ASSERT3S(msp->ms_allocator, ==, allocator);
4803 			ASSERT(msp->ms_loaded);
4804 
4805 			was_active = B_TRUE;
4806 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4807 		} else {
4808 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4809 			    want_unique, asize, allocator, try_hard, zal,
4810 			    search, &was_active);
4811 		}
4812 
4813 		mutex_exit(&mg->mg_lock);
4814 		if (msp == NULL) {
4815 			kmem_free(search, sizeof (*search));
4816 			return (-1ULL);
4817 		}
4818 		mutex_enter(&msp->ms_lock);
4819 
4820 		metaslab_active_mask_verify(msp);
4821 
4822 		/*
4823 		 * This code is disabled out because of issues with
4824 		 * tracepoints in non-gpl kernel modules.
4825 		 */
4826 #if 0
4827 		DTRACE_PROBE3(ms__activation__attempt,
4828 		    metaslab_t *, msp, uint64_t, activation_weight,
4829 		    boolean_t, was_active);
4830 #endif
4831 
4832 		/*
4833 		 * Ensure that the metaslab we have selected is still
4834 		 * capable of handling our request. It's possible that
4835 		 * another thread may have changed the weight while we
4836 		 * were blocked on the metaslab lock. We check the
4837 		 * active status first to see if we need to set_selected_txg
4838 		 * a new metaslab.
4839 		 */
4840 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4841 			ASSERT3S(msp->ms_allocator, ==, -1);
4842 			mutex_exit(&msp->ms_lock);
4843 			continue;
4844 		}
4845 
4846 		/*
4847 		 * If the metaslab was activated for another allocator
4848 		 * while we were waiting in the ms_lock above, or it's
4849 		 * a primary and we're seeking a secondary (or vice versa),
4850 		 * we go back and select a new metaslab.
4851 		 */
4852 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4853 		    (msp->ms_allocator != -1) &&
4854 		    (msp->ms_allocator != allocator || ((activation_weight ==
4855 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4856 			ASSERT(msp->ms_loaded);
4857 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4858 			    msp->ms_allocator != -1);
4859 			mutex_exit(&msp->ms_lock);
4860 			continue;
4861 		}
4862 
4863 		/*
4864 		 * This metaslab was used for claiming regions allocated
4865 		 * by the ZIL during pool import. Once these regions are
4866 		 * claimed we don't need to keep the CLAIM bit set
4867 		 * anymore. Passivate this metaslab to zero its activation
4868 		 * mask.
4869 		 */
4870 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4871 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4872 			ASSERT(msp->ms_loaded);
4873 			ASSERT3S(msp->ms_allocator, ==, -1);
4874 			metaslab_passivate(msp, msp->ms_weight &
4875 			    ~METASLAB_WEIGHT_CLAIM);
4876 			mutex_exit(&msp->ms_lock);
4877 			continue;
4878 		}
4879 
4880 		metaslab_set_selected_txg(msp, txg);
4881 
4882 		int activation_error =
4883 		    metaslab_activate(msp, allocator, activation_weight);
4884 		metaslab_active_mask_verify(msp);
4885 
4886 		/*
4887 		 * If the metaslab was activated by another thread for
4888 		 * another allocator or activation_weight (EBUSY), or it
4889 		 * failed because another metaslab was assigned as primary
4890 		 * for this allocator (EEXIST) we continue using this
4891 		 * metaslab for our allocation, rather than going on to a
4892 		 * worse metaslab (we waited for that metaslab to be loaded
4893 		 * after all).
4894 		 *
4895 		 * If the activation failed due to an I/O error or ENOSPC we
4896 		 * skip to the next metaslab.
4897 		 */
4898 		boolean_t activated;
4899 		if (activation_error == 0) {
4900 			activated = B_TRUE;
4901 		} else if (activation_error == EBUSY ||
4902 		    activation_error == EEXIST) {
4903 			activated = B_FALSE;
4904 		} else {
4905 			mutex_exit(&msp->ms_lock);
4906 			continue;
4907 		}
4908 		ASSERT(msp->ms_loaded);
4909 
4910 		/*
4911 		 * Now that we have the lock, recheck to see if we should
4912 		 * continue to use this metaslab for this allocation. The
4913 		 * the metaslab is now loaded so metaslab_should_allocate()
4914 		 * can accurately determine if the allocation attempt should
4915 		 * proceed.
4916 		 */
4917 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4918 			/* Passivate this metaslab and select a new one. */
4919 			metaslab_trace_add(zal, mg, msp, asize, d,
4920 			    TRACE_TOO_SMALL, allocator);
4921 			goto next;
4922 		}
4923 
4924 		/*
4925 		 * If this metaslab is currently condensing then pick again
4926 		 * as we can't manipulate this metaslab until it's committed
4927 		 * to disk. If this metaslab is being initialized, we shouldn't
4928 		 * allocate from it since the allocated region might be
4929 		 * overwritten after allocation.
4930 		 */
4931 		if (msp->ms_condensing) {
4932 			metaslab_trace_add(zal, mg, msp, asize, d,
4933 			    TRACE_CONDENSING, allocator);
4934 			if (activated) {
4935 				metaslab_passivate(msp, msp->ms_weight &
4936 				    ~METASLAB_ACTIVE_MASK);
4937 			}
4938 			mutex_exit(&msp->ms_lock);
4939 			continue;
4940 		} else if (msp->ms_disabled > 0) {
4941 			metaslab_trace_add(zal, mg, msp, asize, d,
4942 			    TRACE_DISABLED, allocator);
4943 			if (activated) {
4944 				metaslab_passivate(msp, msp->ms_weight &
4945 				    ~METASLAB_ACTIVE_MASK);
4946 			}
4947 			mutex_exit(&msp->ms_lock);
4948 			continue;
4949 		}
4950 
4951 		offset = metaslab_block_alloc(msp, asize, txg);
4952 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4953 
4954 		if (offset != -1ULL) {
4955 			/* Proactively passivate the metaslab, if needed */
4956 			if (activated)
4957 				metaslab_segment_may_passivate(msp);
4958 			break;
4959 		}
4960 next:
4961 		ASSERT(msp->ms_loaded);
4962 
4963 		/*
4964 		 * This code is disabled out because of issues with
4965 		 * tracepoints in non-gpl kernel modules.
4966 		 */
4967 #if 0
4968 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4969 		    uint64_t, asize);
4970 #endif
4971 
4972 		/*
4973 		 * We were unable to allocate from this metaslab so determine
4974 		 * a new weight for this metaslab. Now that we have loaded
4975 		 * the metaslab we can provide a better hint to the metaslab
4976 		 * selector.
4977 		 *
4978 		 * For space-based metaslabs, we use the maximum block size.
4979 		 * This information is only available when the metaslab
4980 		 * is loaded and is more accurate than the generic free
4981 		 * space weight that was calculated by metaslab_weight().
4982 		 * This information allows us to quickly compare the maximum
4983 		 * available allocation in the metaslab to the allocation
4984 		 * size being requested.
4985 		 *
4986 		 * For segment-based metaslabs, determine the new weight
4987 		 * based on the highest bucket in the range tree. We
4988 		 * explicitly use the loaded segment weight (i.e. the range
4989 		 * tree histogram) since it contains the space that is
4990 		 * currently available for allocation and is accurate
4991 		 * even within a sync pass.
4992 		 */
4993 		uint64_t weight;
4994 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4995 			weight = metaslab_largest_allocatable(msp);
4996 			WEIGHT_SET_SPACEBASED(weight);
4997 		} else {
4998 			weight = metaslab_weight_from_range_tree(msp);
4999 		}
5000 
5001 		if (activated) {
5002 			metaslab_passivate(msp, weight);
5003 		} else {
5004 			/*
5005 			 * For the case where we use the metaslab that is
5006 			 * active for another allocator we want to make
5007 			 * sure that we retain the activation mask.
5008 			 *
5009 			 * Note that we could attempt to use something like
5010 			 * metaslab_recalculate_weight_and_sort() that
5011 			 * retains the activation mask here. That function
5012 			 * uses metaslab_weight() to set the weight though
5013 			 * which is not as accurate as the calculations
5014 			 * above.
5015 			 */
5016 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5017 			metaslab_group_sort(mg, msp, weight);
5018 		}
5019 		metaslab_active_mask_verify(msp);
5020 
5021 		/*
5022 		 * We have just failed an allocation attempt, check
5023 		 * that metaslab_should_allocate() agrees. Otherwise,
5024 		 * we may end up in an infinite loop retrying the same
5025 		 * metaslab.
5026 		 */
5027 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5028 
5029 		mutex_exit(&msp->ms_lock);
5030 	}
5031 	mutex_exit(&msp->ms_lock);
5032 	kmem_free(search, sizeof (*search));
5033 	return (offset);
5034 }
5035 
5036 static uint64_t
5037 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5038     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5039     int allocator, boolean_t try_hard)
5040 {
5041 	uint64_t offset;
5042 	ASSERT(mg->mg_initialized);
5043 
5044 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5045 	    dva, d, allocator, try_hard);
5046 
5047 	mutex_enter(&mg->mg_lock);
5048 	if (offset == -1ULL) {
5049 		mg->mg_failed_allocations++;
5050 		metaslab_trace_add(zal, mg, NULL, asize, d,
5051 		    TRACE_GROUP_FAILURE, allocator);
5052 		if (asize == SPA_GANGBLOCKSIZE) {
5053 			/*
5054 			 * This metaslab group was unable to allocate
5055 			 * the minimum gang block size so it must be out of
5056 			 * space. We must notify the allocation throttle
5057 			 * to start skipping allocation attempts to this
5058 			 * metaslab group until more space becomes available.
5059 			 * Note: this failure cannot be caused by the
5060 			 * allocation throttle since the allocation throttle
5061 			 * is only responsible for skipping devices and
5062 			 * not failing block allocations.
5063 			 */
5064 			mg->mg_no_free_space = B_TRUE;
5065 		}
5066 	}
5067 	mg->mg_allocations++;
5068 	mutex_exit(&mg->mg_lock);
5069 	return (offset);
5070 }
5071 
5072 /*
5073  * Allocate a block for the specified i/o.
5074  */
5075 int
5076 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5077     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5078     zio_alloc_list_t *zal, int allocator)
5079 {
5080 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5081 	metaslab_group_t *mg, *fast_mg, *rotor;
5082 	vdev_t *vd;
5083 	boolean_t try_hard = B_FALSE;
5084 
5085 	ASSERT(!DVA_IS_VALID(&dva[d]));
5086 
5087 	/*
5088 	 * For testing, make some blocks above a certain size be gang blocks.
5089 	 * This will result in more split blocks when using device removal,
5090 	 * and a large number of split blocks coupled with ztest-induced
5091 	 * damage can result in extremely long reconstruction times.  This
5092 	 * will also test spilling from special to normal.
5093 	 */
5094 	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5095 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5096 		    allocator);
5097 		return (SET_ERROR(ENOSPC));
5098 	}
5099 
5100 	/*
5101 	 * Start at the rotor and loop through all mgs until we find something.
5102 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5103 	 * nothing actually breaks if we miss a few updates -- we just won't
5104 	 * allocate quite as evenly.  It all balances out over time.
5105 	 *
5106 	 * If we are doing ditto or log blocks, try to spread them across
5107 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5108 	 * allocated all of our ditto blocks, then try and spread them out on
5109 	 * that vdev as much as possible.  If it turns out to not be possible,
5110 	 * gradually lower our standards until anything becomes acceptable.
5111 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5112 	 * gives us hope of containing our fault domains to something we're
5113 	 * able to reason about.  Otherwise, any two top-level vdev failures
5114 	 * will guarantee the loss of data.  With consecutive allocation,
5115 	 * only two adjacent top-level vdev failures will result in data loss.
5116 	 *
5117 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5118 	 * ourselves on the same vdev as our gang block header.  That
5119 	 * way, we can hope for locality in vdev_cache, plus it makes our
5120 	 * fault domains something tractable.
5121 	 */
5122 	if (hintdva) {
5123 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5124 
5125 		/*
5126 		 * It's possible the vdev we're using as the hint no
5127 		 * longer exists or its mg has been closed (e.g. by
5128 		 * device removal).  Consult the rotor when
5129 		 * all else fails.
5130 		 */
5131 		if (vd != NULL && vd->vdev_mg != NULL) {
5132 			mg = vdev_get_mg(vd, mc);
5133 
5134 			if (flags & METASLAB_HINTBP_AVOID &&
5135 			    mg->mg_next != NULL)
5136 				mg = mg->mg_next;
5137 		} else {
5138 			mg = mca->mca_rotor;
5139 		}
5140 	} else if (d != 0) {
5141 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5142 		mg = vd->vdev_mg->mg_next;
5143 	} else if (flags & METASLAB_FASTWRITE) {
5144 		mg = fast_mg = mca->mca_rotor;
5145 
5146 		do {
5147 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5148 			    mg->mg_vd->vdev_pending_fastwrite)
5149 				mg = fast_mg;
5150 		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5151 
5152 	} else {
5153 		ASSERT(mca->mca_rotor != NULL);
5154 		mg = mca->mca_rotor;
5155 	}
5156 
5157 	/*
5158 	 * If the hint put us into the wrong metaslab class, or into a
5159 	 * metaslab group that has been passivated, just follow the rotor.
5160 	 */
5161 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5162 		mg = mca->mca_rotor;
5163 
5164 	rotor = mg;
5165 top:
5166 	do {
5167 		boolean_t allocatable;
5168 
5169 		ASSERT(mg->mg_activation_count == 1);
5170 		vd = mg->mg_vd;
5171 
5172 		/*
5173 		 * Don't allocate from faulted devices.
5174 		 */
5175 		if (try_hard) {
5176 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5177 			allocatable = vdev_allocatable(vd);
5178 			spa_config_exit(spa, SCL_ZIO, FTAG);
5179 		} else {
5180 			allocatable = vdev_allocatable(vd);
5181 		}
5182 
5183 		/*
5184 		 * Determine if the selected metaslab group is eligible
5185 		 * for allocations. If we're ganging then don't allow
5186 		 * this metaslab group to skip allocations since that would
5187 		 * inadvertently return ENOSPC and suspend the pool
5188 		 * even though space is still available.
5189 		 */
5190 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5191 			allocatable = metaslab_group_allocatable(mg, rotor,
5192 			    psize, allocator, d);
5193 		}
5194 
5195 		if (!allocatable) {
5196 			metaslab_trace_add(zal, mg, NULL, psize, d,
5197 			    TRACE_NOT_ALLOCATABLE, allocator);
5198 			goto next;
5199 		}
5200 
5201 		ASSERT(mg->mg_initialized);
5202 
5203 		/*
5204 		 * Avoid writing single-copy data to a failing,
5205 		 * non-redundant vdev, unless we've already tried all
5206 		 * other vdevs.
5207 		 */
5208 		if ((vd->vdev_stat.vs_write_errors > 0 ||
5209 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
5210 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5211 			metaslab_trace_add(zal, mg, NULL, psize, d,
5212 			    TRACE_VDEV_ERROR, allocator);
5213 			goto next;
5214 		}
5215 
5216 		ASSERT(mg->mg_class == mc);
5217 
5218 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5219 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5220 
5221 		/*
5222 		 * If we don't need to try hard, then require that the
5223 		 * block be on a different metaslab from any other DVAs
5224 		 * in this BP (unique=true).  If we are trying hard, then
5225 		 * allow any metaslab to be used (unique=false).
5226 		 */
5227 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5228 		    !try_hard, dva, d, allocator, try_hard);
5229 
5230 		if (offset != -1ULL) {
5231 			/*
5232 			 * If we've just selected this metaslab group,
5233 			 * figure out whether the corresponding vdev is
5234 			 * over- or under-used relative to the pool,
5235 			 * and set an allocation bias to even it out.
5236 			 *
5237 			 * Bias is also used to compensate for unequally
5238 			 * sized vdevs so that space is allocated fairly.
5239 			 */
5240 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5241 				vdev_stat_t *vs = &vd->vdev_stat;
5242 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5243 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5244 				int64_t ratio;
5245 
5246 				/*
5247 				 * Calculate how much more or less we should
5248 				 * try to allocate from this device during
5249 				 * this iteration around the rotor.
5250 				 *
5251 				 * This basically introduces a zero-centered
5252 				 * bias towards the devices with the most
5253 				 * free space, while compensating for vdev
5254 				 * size differences.
5255 				 *
5256 				 * Examples:
5257 				 *  vdev V1 = 16M/128M
5258 				 *  vdev V2 = 16M/128M
5259 				 *  ratio(V1) = 100% ratio(V2) = 100%
5260 				 *
5261 				 *  vdev V1 = 16M/128M
5262 				 *  vdev V2 = 64M/128M
5263 				 *  ratio(V1) = 127% ratio(V2) =  72%
5264 				 *
5265 				 *  vdev V1 = 16M/128M
5266 				 *  vdev V2 = 64M/512M
5267 				 *  ratio(V1) =  40% ratio(V2) = 160%
5268 				 */
5269 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5270 				    (mc_free + 1);
5271 				mg->mg_bias = ((ratio - 100) *
5272 				    (int64_t)mg->mg_aliquot) / 100;
5273 			} else if (!metaslab_bias_enabled) {
5274 				mg->mg_bias = 0;
5275 			}
5276 
5277 			if ((flags & METASLAB_FASTWRITE) ||
5278 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5279 			    mg->mg_aliquot + mg->mg_bias) {
5280 				mca->mca_rotor = mg->mg_next;
5281 				mca->mca_aliquot = 0;
5282 			}
5283 
5284 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5285 			DVA_SET_OFFSET(&dva[d], offset);
5286 			DVA_SET_GANG(&dva[d],
5287 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5288 			DVA_SET_ASIZE(&dva[d], asize);
5289 
5290 			if (flags & METASLAB_FASTWRITE) {
5291 				atomic_add_64(&vd->vdev_pending_fastwrite,
5292 				    psize);
5293 			}
5294 
5295 			return (0);
5296 		}
5297 next:
5298 		mca->mca_rotor = mg->mg_next;
5299 		mca->mca_aliquot = 0;
5300 	} while ((mg = mg->mg_next) != rotor);
5301 
5302 	/*
5303 	 * If we haven't tried hard, perhaps do so now.
5304 	 */
5305 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5306 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5307 	    psize <= 1 << spa->spa_min_ashift)) {
5308 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5309 		try_hard = B_TRUE;
5310 		goto top;
5311 	}
5312 
5313 	memset(&dva[d], 0, sizeof (dva_t));
5314 
5315 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5316 	return (SET_ERROR(ENOSPC));
5317 }
5318 
5319 void
5320 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5321     boolean_t checkpoint)
5322 {
5323 	metaslab_t *msp;
5324 	spa_t *spa = vd->vdev_spa;
5325 
5326 	ASSERT(vdev_is_concrete(vd));
5327 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5328 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5329 
5330 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5331 
5332 	VERIFY(!msp->ms_condensing);
5333 	VERIFY3U(offset, >=, msp->ms_start);
5334 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5335 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5336 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5337 
5338 	metaslab_check_free_impl(vd, offset, asize);
5339 
5340 	mutex_enter(&msp->ms_lock);
5341 	if (range_tree_is_empty(msp->ms_freeing) &&
5342 	    range_tree_is_empty(msp->ms_checkpointing)) {
5343 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5344 	}
5345 
5346 	if (checkpoint) {
5347 		ASSERT(spa_has_checkpoint(spa));
5348 		range_tree_add(msp->ms_checkpointing, offset, asize);
5349 	} else {
5350 		range_tree_add(msp->ms_freeing, offset, asize);
5351 	}
5352 	mutex_exit(&msp->ms_lock);
5353 }
5354 
5355 void
5356 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5357     uint64_t size, void *arg)
5358 {
5359 	(void) inner_offset;
5360 	boolean_t *checkpoint = arg;
5361 
5362 	ASSERT3P(checkpoint, !=, NULL);
5363 
5364 	if (vd->vdev_ops->vdev_op_remap != NULL)
5365 		vdev_indirect_mark_obsolete(vd, offset, size);
5366 	else
5367 		metaslab_free_impl(vd, offset, size, *checkpoint);
5368 }
5369 
5370 static void
5371 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5372     boolean_t checkpoint)
5373 {
5374 	spa_t *spa = vd->vdev_spa;
5375 
5376 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5377 
5378 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5379 		return;
5380 
5381 	if (spa->spa_vdev_removal != NULL &&
5382 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5383 	    vdev_is_concrete(vd)) {
5384 		/*
5385 		 * Note: we check if the vdev is concrete because when
5386 		 * we complete the removal, we first change the vdev to be
5387 		 * an indirect vdev (in open context), and then (in syncing
5388 		 * context) clear spa_vdev_removal.
5389 		 */
5390 		free_from_removing_vdev(vd, offset, size);
5391 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5392 		vdev_indirect_mark_obsolete(vd, offset, size);
5393 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5394 		    metaslab_free_impl_cb, &checkpoint);
5395 	} else {
5396 		metaslab_free_concrete(vd, offset, size, checkpoint);
5397 	}
5398 }
5399 
5400 typedef struct remap_blkptr_cb_arg {
5401 	blkptr_t *rbca_bp;
5402 	spa_remap_cb_t rbca_cb;
5403 	vdev_t *rbca_remap_vd;
5404 	uint64_t rbca_remap_offset;
5405 	void *rbca_cb_arg;
5406 } remap_blkptr_cb_arg_t;
5407 
5408 static void
5409 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5410     uint64_t size, void *arg)
5411 {
5412 	remap_blkptr_cb_arg_t *rbca = arg;
5413 	blkptr_t *bp = rbca->rbca_bp;
5414 
5415 	/* We can not remap split blocks. */
5416 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5417 		return;
5418 	ASSERT0(inner_offset);
5419 
5420 	if (rbca->rbca_cb != NULL) {
5421 		/*
5422 		 * At this point we know that we are not handling split
5423 		 * blocks and we invoke the callback on the previous
5424 		 * vdev which must be indirect.
5425 		 */
5426 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5427 
5428 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5429 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5430 
5431 		/* set up remap_blkptr_cb_arg for the next call */
5432 		rbca->rbca_remap_vd = vd;
5433 		rbca->rbca_remap_offset = offset;
5434 	}
5435 
5436 	/*
5437 	 * The phys birth time is that of dva[0].  This ensures that we know
5438 	 * when each dva was written, so that resilver can determine which
5439 	 * blocks need to be scrubbed (i.e. those written during the time
5440 	 * the vdev was offline).  It also ensures that the key used in
5441 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5442 	 * we didn't change the phys_birth, a lookup in the ARC for a
5443 	 * remapped BP could find the data that was previously stored at
5444 	 * this vdev + offset.
5445 	 */
5446 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5447 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5448 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5449 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5450 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5451 
5452 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5453 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5454 }
5455 
5456 /*
5457  * If the block pointer contains any indirect DVAs, modify them to refer to
5458  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5459  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5460  * segments in the mapping (i.e. it is a "split block").
5461  *
5462  * If the BP was remapped, calls the callback on the original dva (note the
5463  * callback can be called multiple times if the original indirect DVA refers
5464  * to another indirect DVA, etc).
5465  *
5466  * Returns TRUE if the BP was remapped.
5467  */
5468 boolean_t
5469 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5470 {
5471 	remap_blkptr_cb_arg_t rbca;
5472 
5473 	if (!zfs_remap_blkptr_enable)
5474 		return (B_FALSE);
5475 
5476 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5477 		return (B_FALSE);
5478 
5479 	/*
5480 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5481 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5482 	 */
5483 	if (BP_GET_DEDUP(bp))
5484 		return (B_FALSE);
5485 
5486 	/*
5487 	 * Gang blocks can not be remapped, because
5488 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5489 	 * the BP used to read the gang block header (GBH) being the same
5490 	 * as the DVA[0] that we allocated for the GBH.
5491 	 */
5492 	if (BP_IS_GANG(bp))
5493 		return (B_FALSE);
5494 
5495 	/*
5496 	 * Embedded BP's have no DVA to remap.
5497 	 */
5498 	if (BP_GET_NDVAS(bp) < 1)
5499 		return (B_FALSE);
5500 
5501 	/*
5502 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5503 	 * would no longer know what their phys birth txg is.
5504 	 */
5505 	dva_t *dva = &bp->blk_dva[0];
5506 
5507 	uint64_t offset = DVA_GET_OFFSET(dva);
5508 	uint64_t size = DVA_GET_ASIZE(dva);
5509 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5510 
5511 	if (vd->vdev_ops->vdev_op_remap == NULL)
5512 		return (B_FALSE);
5513 
5514 	rbca.rbca_bp = bp;
5515 	rbca.rbca_cb = callback;
5516 	rbca.rbca_remap_vd = vd;
5517 	rbca.rbca_remap_offset = offset;
5518 	rbca.rbca_cb_arg = arg;
5519 
5520 	/*
5521 	 * remap_blkptr_cb() will be called in order for each level of
5522 	 * indirection, until a concrete vdev is reached or a split block is
5523 	 * encountered. old_vd and old_offset are updated within the callback
5524 	 * as we go from the one indirect vdev to the next one (either concrete
5525 	 * or indirect again) in that order.
5526 	 */
5527 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5528 
5529 	/* Check if the DVA wasn't remapped because it is a split block */
5530 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5531 		return (B_FALSE);
5532 
5533 	return (B_TRUE);
5534 }
5535 
5536 /*
5537  * Undo the allocation of a DVA which happened in the given transaction group.
5538  */
5539 void
5540 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5541 {
5542 	metaslab_t *msp;
5543 	vdev_t *vd;
5544 	uint64_t vdev = DVA_GET_VDEV(dva);
5545 	uint64_t offset = DVA_GET_OFFSET(dva);
5546 	uint64_t size = DVA_GET_ASIZE(dva);
5547 
5548 	ASSERT(DVA_IS_VALID(dva));
5549 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5550 
5551 	if (txg > spa_freeze_txg(spa))
5552 		return;
5553 
5554 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5555 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5556 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5557 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5558 		    (u_longlong_t)size);
5559 		return;
5560 	}
5561 
5562 	ASSERT(!vd->vdev_removing);
5563 	ASSERT(vdev_is_concrete(vd));
5564 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5565 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5566 
5567 	if (DVA_GET_GANG(dva))
5568 		size = vdev_gang_header_asize(vd);
5569 
5570 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5571 
5572 	mutex_enter(&msp->ms_lock);
5573 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5574 	    offset, size);
5575 	msp->ms_allocating_total -= size;
5576 
5577 	VERIFY(!msp->ms_condensing);
5578 	VERIFY3U(offset, >=, msp->ms_start);
5579 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5580 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5581 	    msp->ms_size);
5582 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5583 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5584 	range_tree_add(msp->ms_allocatable, offset, size);
5585 	mutex_exit(&msp->ms_lock);
5586 }
5587 
5588 /*
5589  * Free the block represented by the given DVA.
5590  */
5591 void
5592 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5593 {
5594 	uint64_t vdev = DVA_GET_VDEV(dva);
5595 	uint64_t offset = DVA_GET_OFFSET(dva);
5596 	uint64_t size = DVA_GET_ASIZE(dva);
5597 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5598 
5599 	ASSERT(DVA_IS_VALID(dva));
5600 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5601 
5602 	if (DVA_GET_GANG(dva)) {
5603 		size = vdev_gang_header_asize(vd);
5604 	}
5605 
5606 	metaslab_free_impl(vd, offset, size, checkpoint);
5607 }
5608 
5609 /*
5610  * Reserve some allocation slots. The reservation system must be called
5611  * before we call into the allocator. If there aren't any available slots
5612  * then the I/O will be throttled until an I/O completes and its slots are
5613  * freed up. The function returns true if it was successful in placing
5614  * the reservation.
5615  */
5616 boolean_t
5617 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5618     zio_t *zio, int flags)
5619 {
5620 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5621 	uint64_t max = mca->mca_alloc_max_slots;
5622 
5623 	ASSERT(mc->mc_alloc_throttle_enabled);
5624 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5625 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5626 		/*
5627 		 * The potential race between _count() and _add() is covered
5628 		 * by the allocator lock in most cases, or irrelevant due to
5629 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5630 		 * But even if we assume some other non-existing scenario, the
5631 		 * worst that can happen is few more I/Os get to allocation
5632 		 * earlier, that is not a problem.
5633 		 *
5634 		 * We reserve the slots individually so that we can unreserve
5635 		 * them individually when an I/O completes.
5636 		 */
5637 		for (int d = 0; d < slots; d++)
5638 			zfs_refcount_add(&mca->mca_alloc_slots, zio);
5639 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5640 		return (B_TRUE);
5641 	}
5642 	return (B_FALSE);
5643 }
5644 
5645 void
5646 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5647     int allocator, zio_t *zio)
5648 {
5649 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5650 
5651 	ASSERT(mc->mc_alloc_throttle_enabled);
5652 	for (int d = 0; d < slots; d++)
5653 		zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5654 }
5655 
5656 static int
5657 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5658     uint64_t txg)
5659 {
5660 	metaslab_t *msp;
5661 	spa_t *spa = vd->vdev_spa;
5662 	int error = 0;
5663 
5664 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5665 		return (SET_ERROR(ENXIO));
5666 
5667 	ASSERT3P(vd->vdev_ms, !=, NULL);
5668 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5669 
5670 	mutex_enter(&msp->ms_lock);
5671 
5672 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5673 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5674 		if (error == EBUSY) {
5675 			ASSERT(msp->ms_loaded);
5676 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5677 			error = 0;
5678 		}
5679 	}
5680 
5681 	if (error == 0 &&
5682 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5683 		error = SET_ERROR(ENOENT);
5684 
5685 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5686 		mutex_exit(&msp->ms_lock);
5687 		return (error);
5688 	}
5689 
5690 	VERIFY(!msp->ms_condensing);
5691 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5692 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5693 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5694 	    msp->ms_size);
5695 	range_tree_remove(msp->ms_allocatable, offset, size);
5696 	range_tree_clear(msp->ms_trim, offset, size);
5697 
5698 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5699 		metaslab_class_t *mc = msp->ms_group->mg_class;
5700 		multilist_sublist_t *mls =
5701 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5702 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5703 			msp->ms_selected_txg = txg;
5704 			multilist_sublist_insert_head(mls, msp);
5705 		}
5706 		multilist_sublist_unlock(mls);
5707 
5708 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5709 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5710 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5711 		    offset, size);
5712 		msp->ms_allocating_total += size;
5713 	}
5714 
5715 	mutex_exit(&msp->ms_lock);
5716 
5717 	return (0);
5718 }
5719 
5720 typedef struct metaslab_claim_cb_arg_t {
5721 	uint64_t	mcca_txg;
5722 	int		mcca_error;
5723 } metaslab_claim_cb_arg_t;
5724 
5725 static void
5726 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5727     uint64_t size, void *arg)
5728 {
5729 	(void) inner_offset;
5730 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5731 
5732 	if (mcca_arg->mcca_error == 0) {
5733 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5734 		    size, mcca_arg->mcca_txg);
5735 	}
5736 }
5737 
5738 int
5739 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5740 {
5741 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5742 		metaslab_claim_cb_arg_t arg;
5743 
5744 		/*
5745 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5746 		 * to detect leaks of mapped space (that are not accounted
5747 		 * for in the obsolete counts, spacemap, or bpobj).
5748 		 */
5749 		ASSERT(!spa_writeable(vd->vdev_spa));
5750 		arg.mcca_error = 0;
5751 		arg.mcca_txg = txg;
5752 
5753 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5754 		    metaslab_claim_impl_cb, &arg);
5755 
5756 		if (arg.mcca_error == 0) {
5757 			arg.mcca_error = metaslab_claim_concrete(vd,
5758 			    offset, size, txg);
5759 		}
5760 		return (arg.mcca_error);
5761 	} else {
5762 		return (metaslab_claim_concrete(vd, offset, size, txg));
5763 	}
5764 }
5765 
5766 /*
5767  * Intent log support: upon opening the pool after a crash, notify the SPA
5768  * of blocks that the intent log has allocated for immediate write, but
5769  * which are still considered free by the SPA because the last transaction
5770  * group didn't commit yet.
5771  */
5772 static int
5773 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5774 {
5775 	uint64_t vdev = DVA_GET_VDEV(dva);
5776 	uint64_t offset = DVA_GET_OFFSET(dva);
5777 	uint64_t size = DVA_GET_ASIZE(dva);
5778 	vdev_t *vd;
5779 
5780 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5781 		return (SET_ERROR(ENXIO));
5782 	}
5783 
5784 	ASSERT(DVA_IS_VALID(dva));
5785 
5786 	if (DVA_GET_GANG(dva))
5787 		size = vdev_gang_header_asize(vd);
5788 
5789 	return (metaslab_claim_impl(vd, offset, size, txg));
5790 }
5791 
5792 int
5793 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5794     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5795     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5796 {
5797 	dva_t *dva = bp->blk_dva;
5798 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5799 	int error = 0;
5800 
5801 	ASSERT(bp->blk_birth == 0);
5802 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5803 
5804 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5805 
5806 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5807 		/* no vdevs in this class */
5808 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5809 		return (SET_ERROR(ENOSPC));
5810 	}
5811 
5812 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5813 	ASSERT(BP_GET_NDVAS(bp) == 0);
5814 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5815 	ASSERT3P(zal, !=, NULL);
5816 
5817 	for (int d = 0; d < ndvas; d++) {
5818 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5819 		    txg, flags, zal, allocator);
5820 		if (error != 0) {
5821 			for (d--; d >= 0; d--) {
5822 				metaslab_unalloc_dva(spa, &dva[d], txg);
5823 				metaslab_group_alloc_decrement(spa,
5824 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5825 				    allocator, B_FALSE);
5826 				memset(&dva[d], 0, sizeof (dva_t));
5827 			}
5828 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5829 			return (error);
5830 		} else {
5831 			/*
5832 			 * Update the metaslab group's queue depth
5833 			 * based on the newly allocated dva.
5834 			 */
5835 			metaslab_group_alloc_increment(spa,
5836 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5837 		}
5838 	}
5839 	ASSERT(error == 0);
5840 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5841 
5842 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5843 
5844 	BP_SET_BIRTH(bp, txg, 0);
5845 
5846 	return (0);
5847 }
5848 
5849 void
5850 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5851 {
5852 	const dva_t *dva = bp->blk_dva;
5853 	int ndvas = BP_GET_NDVAS(bp);
5854 
5855 	ASSERT(!BP_IS_HOLE(bp));
5856 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5857 
5858 	/*
5859 	 * If we have a checkpoint for the pool we need to make sure that
5860 	 * the blocks that we free that are part of the checkpoint won't be
5861 	 * reused until the checkpoint is discarded or we revert to it.
5862 	 *
5863 	 * The checkpoint flag is passed down the metaslab_free code path
5864 	 * and is set whenever we want to add a block to the checkpoint's
5865 	 * accounting. That is, we "checkpoint" blocks that existed at the
5866 	 * time the checkpoint was created and are therefore referenced by
5867 	 * the checkpointed uberblock.
5868 	 *
5869 	 * Note that, we don't checkpoint any blocks if the current
5870 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5871 	 * normally as they will be referenced by the checkpointed uberblock.
5872 	 */
5873 	boolean_t checkpoint = B_FALSE;
5874 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5875 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5876 		/*
5877 		 * At this point, if the block is part of the checkpoint
5878 		 * there is no way it was created in the current txg.
5879 		 */
5880 		ASSERT(!now);
5881 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5882 		checkpoint = B_TRUE;
5883 	}
5884 
5885 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5886 
5887 	for (int d = 0; d < ndvas; d++) {
5888 		if (now) {
5889 			metaslab_unalloc_dva(spa, &dva[d], txg);
5890 		} else {
5891 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5892 			metaslab_free_dva(spa, &dva[d], checkpoint);
5893 		}
5894 	}
5895 
5896 	spa_config_exit(spa, SCL_FREE, FTAG);
5897 }
5898 
5899 int
5900 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5901 {
5902 	const dva_t *dva = bp->blk_dva;
5903 	int ndvas = BP_GET_NDVAS(bp);
5904 	int error = 0;
5905 
5906 	ASSERT(!BP_IS_HOLE(bp));
5907 
5908 	if (txg != 0) {
5909 		/*
5910 		 * First do a dry run to make sure all DVAs are claimable,
5911 		 * so we don't have to unwind from partial failures below.
5912 		 */
5913 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5914 			return (error);
5915 	}
5916 
5917 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5918 
5919 	for (int d = 0; d < ndvas; d++) {
5920 		error = metaslab_claim_dva(spa, &dva[d], txg);
5921 		if (error != 0)
5922 			break;
5923 	}
5924 
5925 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5926 
5927 	ASSERT(error == 0 || txg == 0);
5928 
5929 	return (error);
5930 }
5931 
5932 void
5933 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5934 {
5935 	const dva_t *dva = bp->blk_dva;
5936 	int ndvas = BP_GET_NDVAS(bp);
5937 	uint64_t psize = BP_GET_PSIZE(bp);
5938 	int d;
5939 	vdev_t *vd;
5940 
5941 	ASSERT(!BP_IS_HOLE(bp));
5942 	ASSERT(!BP_IS_EMBEDDED(bp));
5943 	ASSERT(psize > 0);
5944 
5945 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5946 
5947 	for (d = 0; d < ndvas; d++) {
5948 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5949 			continue;
5950 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5951 	}
5952 
5953 	spa_config_exit(spa, SCL_VDEV, FTAG);
5954 }
5955 
5956 void
5957 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5958 {
5959 	const dva_t *dva = bp->blk_dva;
5960 	int ndvas = BP_GET_NDVAS(bp);
5961 	uint64_t psize = BP_GET_PSIZE(bp);
5962 	int d;
5963 	vdev_t *vd;
5964 
5965 	ASSERT(!BP_IS_HOLE(bp));
5966 	ASSERT(!BP_IS_EMBEDDED(bp));
5967 	ASSERT(psize > 0);
5968 
5969 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5970 
5971 	for (d = 0; d < ndvas; d++) {
5972 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5973 			continue;
5974 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5975 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5976 	}
5977 
5978 	spa_config_exit(spa, SCL_VDEV, FTAG);
5979 }
5980 
5981 static void
5982 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5983     uint64_t size, void *arg)
5984 {
5985 	(void) inner, (void) arg;
5986 
5987 	if (vd->vdev_ops == &vdev_indirect_ops)
5988 		return;
5989 
5990 	metaslab_check_free_impl(vd, offset, size);
5991 }
5992 
5993 static void
5994 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5995 {
5996 	metaslab_t *msp;
5997 	spa_t *spa __maybe_unused = vd->vdev_spa;
5998 
5999 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6000 		return;
6001 
6002 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6003 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6004 		    metaslab_check_free_impl_cb, NULL);
6005 		return;
6006 	}
6007 
6008 	ASSERT(vdev_is_concrete(vd));
6009 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6010 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6011 
6012 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6013 
6014 	mutex_enter(&msp->ms_lock);
6015 	if (msp->ms_loaded) {
6016 		range_tree_verify_not_present(msp->ms_allocatable,
6017 		    offset, size);
6018 	}
6019 
6020 	/*
6021 	 * Check all segments that currently exist in the freeing pipeline.
6022 	 *
6023 	 * It would intuitively make sense to also check the current allocating
6024 	 * tree since metaslab_unalloc_dva() exists for extents that are
6025 	 * allocated and freed in the same sync pass within the same txg.
6026 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6027 	 * segment but then we free part of it within the same txg
6028 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6029 	 * current allocating tree.
6030 	 */
6031 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6032 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6033 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6034 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6035 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6036 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6037 	mutex_exit(&msp->ms_lock);
6038 }
6039 
6040 void
6041 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6042 {
6043 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6044 		return;
6045 
6046 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6047 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6048 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6049 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6050 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6051 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6052 
6053 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6054 			size = vdev_gang_header_asize(vd);
6055 
6056 		ASSERT3P(vd, !=, NULL);
6057 
6058 		metaslab_check_free_impl(vd, offset, size);
6059 	}
6060 	spa_config_exit(spa, SCL_VDEV, FTAG);
6061 }
6062 
6063 static void
6064 metaslab_group_disable_wait(metaslab_group_t *mg)
6065 {
6066 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6067 	while (mg->mg_disabled_updating) {
6068 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6069 	}
6070 }
6071 
6072 static void
6073 metaslab_group_disabled_increment(metaslab_group_t *mg)
6074 {
6075 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6076 	ASSERT(mg->mg_disabled_updating);
6077 
6078 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6079 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6080 	}
6081 	mg->mg_ms_disabled++;
6082 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6083 }
6084 
6085 /*
6086  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6087  * We must also track how many metaslabs are currently disabled within a
6088  * metaslab group and limit them to prevent allocation failures from
6089  * occurring because all metaslabs are disabled.
6090  */
6091 void
6092 metaslab_disable(metaslab_t *msp)
6093 {
6094 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6095 	metaslab_group_t *mg = msp->ms_group;
6096 
6097 	mutex_enter(&mg->mg_ms_disabled_lock);
6098 
6099 	/*
6100 	 * To keep an accurate count of how many threads have disabled
6101 	 * a specific metaslab group, we only allow one thread to mark
6102 	 * the metaslab group at a time. This ensures that the value of
6103 	 * ms_disabled will be accurate when we decide to mark a metaslab
6104 	 * group as disabled. To do this we force all other threads
6105 	 * to wait till the metaslab's mg_disabled_updating flag is no
6106 	 * longer set.
6107 	 */
6108 	metaslab_group_disable_wait(mg);
6109 	mg->mg_disabled_updating = B_TRUE;
6110 	if (msp->ms_disabled == 0) {
6111 		metaslab_group_disabled_increment(mg);
6112 	}
6113 	mutex_enter(&msp->ms_lock);
6114 	msp->ms_disabled++;
6115 	mutex_exit(&msp->ms_lock);
6116 
6117 	mg->mg_disabled_updating = B_FALSE;
6118 	cv_broadcast(&mg->mg_ms_disabled_cv);
6119 	mutex_exit(&mg->mg_ms_disabled_lock);
6120 }
6121 
6122 void
6123 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6124 {
6125 	metaslab_group_t *mg = msp->ms_group;
6126 	spa_t *spa = mg->mg_vd->vdev_spa;
6127 
6128 	/*
6129 	 * Wait for the outstanding IO to be synced to prevent newly
6130 	 * allocated blocks from being overwritten.  This used by
6131 	 * initialize and TRIM which are modifying unallocated space.
6132 	 */
6133 	if (sync)
6134 		txg_wait_synced(spa_get_dsl(spa), 0);
6135 
6136 	mutex_enter(&mg->mg_ms_disabled_lock);
6137 	mutex_enter(&msp->ms_lock);
6138 	if (--msp->ms_disabled == 0) {
6139 		mg->mg_ms_disabled--;
6140 		cv_broadcast(&mg->mg_ms_disabled_cv);
6141 		if (unload)
6142 			metaslab_unload(msp);
6143 	}
6144 	mutex_exit(&msp->ms_lock);
6145 	mutex_exit(&mg->mg_ms_disabled_lock);
6146 }
6147 
6148 void
6149 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6150 {
6151 	ms->ms_unflushed_dirty = dirty;
6152 }
6153 
6154 static void
6155 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6156 {
6157 	vdev_t *vd = ms->ms_group->mg_vd;
6158 	spa_t *spa = vd->vdev_spa;
6159 	objset_t *mos = spa_meta_objset(spa);
6160 
6161 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6162 
6163 	metaslab_unflushed_phys_t entry = {
6164 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6165 	};
6166 	uint64_t entry_size = sizeof (entry);
6167 	uint64_t entry_offset = ms->ms_id * entry_size;
6168 
6169 	uint64_t object = 0;
6170 	int err = zap_lookup(mos, vd->vdev_top_zap,
6171 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6172 	    &object);
6173 	if (err == ENOENT) {
6174 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6175 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6176 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6177 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6178 		    &object, tx));
6179 	} else {
6180 		VERIFY0(err);
6181 	}
6182 
6183 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6184 	    &entry, tx);
6185 }
6186 
6187 void
6188 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6189 {
6190 	ms->ms_unflushed_txg = txg;
6191 	metaslab_update_ondisk_flush_data(ms, tx);
6192 }
6193 
6194 boolean_t
6195 metaslab_unflushed_dirty(metaslab_t *ms)
6196 {
6197 	return (ms->ms_unflushed_dirty);
6198 }
6199 
6200 uint64_t
6201 metaslab_unflushed_txg(metaslab_t *ms)
6202 {
6203 	return (ms->ms_unflushed_txg);
6204 }
6205 
6206 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6207 	"Allocation granularity (a.k.a. stripe size)");
6208 
6209 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6210 	"Load all metaslabs when pool is first opened");
6211 
6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6213 	"Prevent metaslabs from being unloaded");
6214 
6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6216 	"Preload potential metaslabs during reassessment");
6217 
6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
6219 	"Delay in txgs after metaslab was last used before unloading");
6220 
6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
6222 	"Delay in milliseconds after metaslab was last used before unloading");
6223 
6224 /* BEGIN CSTYLED */
6225 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
6226 	"Percentage of metaslab group size that should be free to make it "
6227 	"eligible for allocation");
6228 
6229 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
6230 	"Percentage of metaslab group size that should be considered eligible "
6231 	"for allocations unless all metaslab groups within the metaslab class "
6232 	"have also crossed this threshold");
6233 
6234 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6235 	ZMOD_RW,
6236 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6237 /* END CSTYLED */
6238 
6239 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
6240 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6241 
6242 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6243 	"Prefer metaslabs with lower LBAs");
6244 
6245 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6246 	"Enable metaslab group biasing");
6247 
6248 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6249 	ZMOD_RW, "Enable segment-based metaslab selection");
6250 
6251 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6252 	"Segment-based metaslab selection maximum buckets before switching");
6253 
6254 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6255 	"Blocks larger than this size are forced to be gang blocks");
6256 
6257 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
6258 	"Max distance (bytes) to search forward before using size tree");
6259 
6260 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6261 	"When looking in size tree, use largest segment instead of exact fit");
6262 
6263 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6264 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6265 
6266 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
6267 	"Percentage of memory that can be used to store metaslab range trees");
6268 
6269 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6270 	ZMOD_RW, "Try hard to allocate before ganging");
6271 
6272 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW,
6273 	"Normally only consider this many of the best metaslabs in each vdev");
6274