1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 static unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 static const int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 static int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 static int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 static int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = B_FALSE; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 static int metaslab_debug_unload = B_FALSE; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 static int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 static const uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 static int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 static int metaslab_unload_delay = 32; 219 static int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 static int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 static int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 static int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 static int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 static int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 static const boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 static const uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 static const int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 static unsigned long zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 static int zfs_metaslab_mem_limit = 25; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 static const uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 static int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 static kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(&mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = &mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 903 metaslab_group_alloc_update(mg); 904 905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 906 mg->mg_prev = mg; 907 mg->mg_next = mg; 908 } else { 909 mgnext = mgprev->mg_next; 910 mg->mg_prev = mgprev; 911 mg->mg_next = mgnext; 912 mgprev->mg_next = mg; 913 mgnext->mg_prev = mg; 914 } 915 for (int i = 0; i < spa->spa_alloc_count; i++) { 916 mc->mc_allocator[i].mca_rotor = mg; 917 mg = mg->mg_next; 918 } 919 } 920 921 /* 922 * Passivate a metaslab group and remove it from the allocation rotor. 923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 924 * a metaslab group. This function will momentarily drop spa_config_locks 925 * that are lower than the SCL_ALLOC lock (see comment below). 926 */ 927 void 928 metaslab_group_passivate(metaslab_group_t *mg) 929 { 930 metaslab_class_t *mc = mg->mg_class; 931 spa_t *spa = mc->mc_spa; 932 metaslab_group_t *mgprev, *mgnext; 933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 934 935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 936 (SCL_ALLOC | SCL_ZIO)); 937 938 if (--mg->mg_activation_count != 0) { 939 for (int i = 0; i < spa->spa_alloc_count; i++) 940 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 941 ASSERT(mg->mg_prev == NULL); 942 ASSERT(mg->mg_next == NULL); 943 ASSERT(mg->mg_activation_count < 0); 944 return; 945 } 946 947 /* 948 * The spa_config_lock is an array of rwlocks, ordered as 949 * follows (from highest to lowest): 950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 951 * SCL_ZIO > SCL_FREE > SCL_VDEV 952 * (For more information about the spa_config_lock see spa_misc.c) 953 * The higher the lock, the broader its coverage. When we passivate 954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 955 * config locks. However, the metaslab group's taskq might be trying 956 * to preload metaslabs so we must drop the SCL_ZIO lock and any 957 * lower locks to allow the I/O to complete. At a minimum, 958 * we continue to hold the SCL_ALLOC lock, which prevents any future 959 * allocations from taking place and any changes to the vdev tree. 960 */ 961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 962 taskq_wait_outstanding(mg->mg_taskq, 0); 963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 964 metaslab_group_alloc_update(mg); 965 for (int i = 0; i < mg->mg_allocators; i++) { 966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 967 metaslab_t *msp = mga->mga_primary; 968 if (msp != NULL) { 969 mutex_enter(&msp->ms_lock); 970 metaslab_passivate(msp, 971 metaslab_weight_from_range_tree(msp)); 972 mutex_exit(&msp->ms_lock); 973 } 974 msp = mga->mga_secondary; 975 if (msp != NULL) { 976 mutex_enter(&msp->ms_lock); 977 metaslab_passivate(msp, 978 metaslab_weight_from_range_tree(msp)); 979 mutex_exit(&msp->ms_lock); 980 } 981 } 982 983 mgprev = mg->mg_prev; 984 mgnext = mg->mg_next; 985 986 if (mg == mgnext) { 987 mgnext = NULL; 988 } else { 989 mgprev->mg_next = mgnext; 990 mgnext->mg_prev = mgprev; 991 } 992 for (int i = 0; i < spa->spa_alloc_count; i++) { 993 if (mc->mc_allocator[i].mca_rotor == mg) 994 mc->mc_allocator[i].mca_rotor = mgnext; 995 } 996 997 mg->mg_prev = NULL; 998 mg->mg_next = NULL; 999 } 1000 1001 boolean_t 1002 metaslab_group_initialized(metaslab_group_t *mg) 1003 { 1004 vdev_t *vd = mg->mg_vd; 1005 vdev_stat_t *vs = &vd->vdev_stat; 1006 1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1008 } 1009 1010 uint64_t 1011 metaslab_group_get_space(metaslab_group_t *mg) 1012 { 1013 /* 1014 * Note that the number of nodes in mg_metaslab_tree may be one less 1015 * than vdev_ms_count, due to the embedded log metaslab. 1016 */ 1017 mutex_enter(&mg->mg_lock); 1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1019 mutex_exit(&mg->mg_lock); 1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1021 } 1022 1023 void 1024 metaslab_group_histogram_verify(metaslab_group_t *mg) 1025 { 1026 uint64_t *mg_hist; 1027 avl_tree_t *t = &mg->mg_metaslab_tree; 1028 uint64_t ashift = mg->mg_vd->vdev_ashift; 1029 1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1031 return; 1032 1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1034 KM_SLEEP); 1035 1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1037 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1038 1039 mutex_enter(&mg->mg_lock); 1040 for (metaslab_t *msp = avl_first(t); 1041 msp != NULL; msp = AVL_NEXT(t, msp)) { 1042 VERIFY3P(msp->ms_group, ==, mg); 1043 /* skip if not active */ 1044 if (msp->ms_sm == NULL) 1045 continue; 1046 1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1048 mg_hist[i + ashift] += 1049 msp->ms_sm->sm_phys->smp_histogram[i]; 1050 } 1051 } 1052 1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1055 1056 mutex_exit(&mg->mg_lock); 1057 1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1059 } 1060 1061 static void 1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1063 { 1064 metaslab_class_t *mc = mg->mg_class; 1065 uint64_t ashift = mg->mg_vd->vdev_ashift; 1066 1067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1068 if (msp->ms_sm == NULL) 1069 return; 1070 1071 mutex_enter(&mg->mg_lock); 1072 mutex_enter(&mc->mc_lock); 1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1074 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1076 mg->mg_histogram[i + ashift] += 1077 msp->ms_sm->sm_phys->smp_histogram[i]; 1078 mc->mc_histogram[i + ashift] += 1079 msp->ms_sm->sm_phys->smp_histogram[i]; 1080 } 1081 mutex_exit(&mc->mc_lock); 1082 mutex_exit(&mg->mg_lock); 1083 } 1084 1085 void 1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 metaslab_class_t *mc = mg->mg_class; 1089 uint64_t ashift = mg->mg_vd->vdev_ashift; 1090 1091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1092 if (msp->ms_sm == NULL) 1093 return; 1094 1095 mutex_enter(&mg->mg_lock); 1096 mutex_enter(&mc->mc_lock); 1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1098 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1099 msp->ms_sm->sm_phys->smp_histogram[i]); 1100 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1101 msp->ms_sm->sm_phys->smp_histogram[i]); 1102 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1104 1105 mg->mg_histogram[i + ashift] -= 1106 msp->ms_sm->sm_phys->smp_histogram[i]; 1107 mc->mc_histogram[i + ashift] -= 1108 msp->ms_sm->sm_phys->smp_histogram[i]; 1109 } 1110 mutex_exit(&mc->mc_lock); 1111 mutex_exit(&mg->mg_lock); 1112 } 1113 1114 static void 1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1116 { 1117 ASSERT(msp->ms_group == NULL); 1118 mutex_enter(&mg->mg_lock); 1119 msp->ms_group = mg; 1120 msp->ms_weight = 0; 1121 avl_add(&mg->mg_metaslab_tree, msp); 1122 mutex_exit(&mg->mg_lock); 1123 1124 mutex_enter(&msp->ms_lock); 1125 metaslab_group_histogram_add(mg, msp); 1126 mutex_exit(&msp->ms_lock); 1127 } 1128 1129 static void 1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1131 { 1132 mutex_enter(&msp->ms_lock); 1133 metaslab_group_histogram_remove(mg, msp); 1134 mutex_exit(&msp->ms_lock); 1135 1136 mutex_enter(&mg->mg_lock); 1137 ASSERT(msp->ms_group == mg); 1138 avl_remove(&mg->mg_metaslab_tree, msp); 1139 1140 metaslab_class_t *mc = msp->ms_group->mg_class; 1141 multilist_sublist_t *mls = 1142 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1143 if (multilist_link_active(&msp->ms_class_txg_node)) 1144 multilist_sublist_remove(mls, msp); 1145 multilist_sublist_unlock(mls); 1146 1147 msp->ms_group = NULL; 1148 mutex_exit(&mg->mg_lock); 1149 } 1150 1151 static void 1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1153 { 1154 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1155 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1156 ASSERT(msp->ms_group == mg); 1157 1158 avl_remove(&mg->mg_metaslab_tree, msp); 1159 msp->ms_weight = weight; 1160 avl_add(&mg->mg_metaslab_tree, msp); 1161 1162 } 1163 1164 static void 1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1166 { 1167 /* 1168 * Although in principle the weight can be any value, in 1169 * practice we do not use values in the range [1, 511]. 1170 */ 1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1172 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1173 1174 mutex_enter(&mg->mg_lock); 1175 metaslab_group_sort_impl(mg, msp, weight); 1176 mutex_exit(&mg->mg_lock); 1177 } 1178 1179 /* 1180 * Calculate the fragmentation for a given metaslab group. We can use 1181 * a simple average here since all metaslabs within the group must have 1182 * the same size. The return value will be a value between 0 and 100 1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1184 * group have a fragmentation metric. 1185 */ 1186 uint64_t 1187 metaslab_group_fragmentation(metaslab_group_t *mg) 1188 { 1189 vdev_t *vd = mg->mg_vd; 1190 uint64_t fragmentation = 0; 1191 uint64_t valid_ms = 0; 1192 1193 for (int m = 0; m < vd->vdev_ms_count; m++) { 1194 metaslab_t *msp = vd->vdev_ms[m]; 1195 1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1197 continue; 1198 if (msp->ms_group != mg) 1199 continue; 1200 1201 valid_ms++; 1202 fragmentation += msp->ms_fragmentation; 1203 } 1204 1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1206 return (ZFS_FRAG_INVALID); 1207 1208 fragmentation /= valid_ms; 1209 ASSERT3U(fragmentation, <=, 100); 1210 return (fragmentation); 1211 } 1212 1213 /* 1214 * Determine if a given metaslab group should skip allocations. A metaslab 1215 * group should avoid allocations if its free capacity is less than the 1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1218 * that can still handle allocations. If the allocation throttle is enabled 1219 * then we skip allocations to devices that have reached their maximum 1220 * allocation queue depth unless the selected metaslab group is the only 1221 * eligible group remaining. 1222 */ 1223 static boolean_t 1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1225 uint64_t psize, int allocator, int d) 1226 { 1227 spa_t *spa = mg->mg_vd->vdev_spa; 1228 metaslab_class_t *mc = mg->mg_class; 1229 1230 /* 1231 * We can only consider skipping this metaslab group if it's 1232 * in the normal metaslab class and there are other metaslab 1233 * groups to select from. Otherwise, we always consider it eligible 1234 * for allocations. 1235 */ 1236 if ((mc != spa_normal_class(spa) && 1237 mc != spa_special_class(spa) && 1238 mc != spa_dedup_class(spa)) || 1239 mc->mc_groups <= 1) 1240 return (B_TRUE); 1241 1242 /* 1243 * If the metaslab group's mg_allocatable flag is set (see comments 1244 * in metaslab_group_alloc_update() for more information) and 1245 * the allocation throttle is disabled then allow allocations to this 1246 * device. However, if the allocation throttle is enabled then 1247 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1248 * to determine if we should allow allocations to this metaslab group. 1249 * If all metaslab groups are no longer considered allocatable 1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1251 * gang block size then we allow allocations on this metaslab group 1252 * regardless of the mg_allocatable or throttle settings. 1253 */ 1254 if (mg->mg_allocatable) { 1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1256 int64_t qdepth; 1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1258 1259 if (!mc->mc_alloc_throttle_enabled) 1260 return (B_TRUE); 1261 1262 /* 1263 * If this metaslab group does not have any free space, then 1264 * there is no point in looking further. 1265 */ 1266 if (mg->mg_no_free_space) 1267 return (B_FALSE); 1268 1269 /* 1270 * Relax allocation throttling for ditto blocks. Due to 1271 * random imbalances in allocation it tends to push copies 1272 * to one vdev, that looks a bit better at the moment. 1273 */ 1274 qmax = qmax * (4 + d) / 4; 1275 1276 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1277 1278 /* 1279 * If this metaslab group is below its qmax or it's 1280 * the only allocatable metasable group, then attempt 1281 * to allocate from it. 1282 */ 1283 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1284 return (B_TRUE); 1285 ASSERT3U(mc->mc_alloc_groups, >, 1); 1286 1287 /* 1288 * Since this metaslab group is at or over its qmax, we 1289 * need to determine if there are metaslab groups after this 1290 * one that might be able to handle this allocation. This is 1291 * racy since we can't hold the locks for all metaslab 1292 * groups at the same time when we make this check. 1293 */ 1294 for (metaslab_group_t *mgp = mg->mg_next; 1295 mgp != rotor; mgp = mgp->mg_next) { 1296 metaslab_group_allocator_t *mgap = 1297 &mgp->mg_allocator[allocator]; 1298 qmax = mgap->mga_cur_max_alloc_queue_depth; 1299 qmax = qmax * (4 + d) / 4; 1300 qdepth = 1301 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1302 1303 /* 1304 * If there is another metaslab group that 1305 * might be able to handle the allocation, then 1306 * we return false so that we skip this group. 1307 */ 1308 if (qdepth < qmax && !mgp->mg_no_free_space) 1309 return (B_FALSE); 1310 } 1311 1312 /* 1313 * We didn't find another group to handle the allocation 1314 * so we can't skip this metaslab group even though 1315 * we are at or over our qmax. 1316 */ 1317 return (B_TRUE); 1318 1319 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1320 return (B_TRUE); 1321 } 1322 return (B_FALSE); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Range tree callbacks 1328 * ========================================================================== 1329 */ 1330 1331 /* 1332 * Comparison function for the private size-ordered tree using 32-bit 1333 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1334 */ 1335 static int 1336 metaslab_rangesize32_compare(const void *x1, const void *x2) 1337 { 1338 const range_seg32_t *r1 = x1; 1339 const range_seg32_t *r2 = x2; 1340 1341 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1342 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1343 1344 int cmp = TREE_CMP(rs_size1, rs_size2); 1345 if (likely(cmp)) 1346 return (cmp); 1347 1348 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1349 } 1350 1351 /* 1352 * Comparison function for the private size-ordered tree using 64-bit 1353 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1354 */ 1355 static int 1356 metaslab_rangesize64_compare(const void *x1, const void *x2) 1357 { 1358 const range_seg64_t *r1 = x1; 1359 const range_seg64_t *r2 = x2; 1360 1361 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1362 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1363 1364 int cmp = TREE_CMP(rs_size1, rs_size2); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1369 } 1370 typedef struct metaslab_rt_arg { 1371 zfs_btree_t *mra_bt; 1372 uint32_t mra_floor_shift; 1373 } metaslab_rt_arg_t; 1374 1375 struct mssa_arg { 1376 range_tree_t *rt; 1377 metaslab_rt_arg_t *mra; 1378 }; 1379 1380 static void 1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1382 { 1383 struct mssa_arg *mssap = arg; 1384 range_tree_t *rt = mssap->rt; 1385 metaslab_rt_arg_t *mrap = mssap->mra; 1386 range_seg_max_t seg = {0}; 1387 rs_set_start(&seg, rt, start); 1388 rs_set_end(&seg, rt, start + size); 1389 metaslab_rt_add(rt, &seg, mrap); 1390 } 1391 1392 static void 1393 metaslab_size_tree_full_load(range_tree_t *rt) 1394 { 1395 metaslab_rt_arg_t *mrap = rt->rt_arg; 1396 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1397 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1398 mrap->mra_floor_shift = 0; 1399 struct mssa_arg arg = {0}; 1400 arg.rt = rt; 1401 arg.mra = mrap; 1402 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1403 } 1404 1405 /* 1406 * Create any block allocator specific components. The current allocators 1407 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1408 */ 1409 static void 1410 metaslab_rt_create(range_tree_t *rt, void *arg) 1411 { 1412 metaslab_rt_arg_t *mrap = arg; 1413 zfs_btree_t *size_tree = mrap->mra_bt; 1414 1415 size_t size; 1416 int (*compare) (const void *, const void *); 1417 switch (rt->rt_type) { 1418 case RANGE_SEG32: 1419 size = sizeof (range_seg32_t); 1420 compare = metaslab_rangesize32_compare; 1421 break; 1422 case RANGE_SEG64: 1423 size = sizeof (range_seg64_t); 1424 compare = metaslab_rangesize64_compare; 1425 break; 1426 default: 1427 panic("Invalid range seg type %d", rt->rt_type); 1428 } 1429 zfs_btree_create(size_tree, compare, size); 1430 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1431 } 1432 1433 static void 1434 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1435 { 1436 (void) rt; 1437 metaslab_rt_arg_t *mrap = arg; 1438 zfs_btree_t *size_tree = mrap->mra_bt; 1439 1440 zfs_btree_destroy(size_tree); 1441 kmem_free(mrap, sizeof (*mrap)); 1442 } 1443 1444 static void 1445 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1446 { 1447 metaslab_rt_arg_t *mrap = arg; 1448 zfs_btree_t *size_tree = mrap->mra_bt; 1449 1450 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1451 (1 << mrap->mra_floor_shift)) 1452 return; 1453 1454 zfs_btree_add(size_tree, rs); 1455 } 1456 1457 static void 1458 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1459 { 1460 metaslab_rt_arg_t *mrap = arg; 1461 zfs_btree_t *size_tree = mrap->mra_bt; 1462 1463 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1464 mrap->mra_floor_shift)) 1465 return; 1466 1467 zfs_btree_remove(size_tree, rs); 1468 } 1469 1470 static void 1471 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1472 { 1473 metaslab_rt_arg_t *mrap = arg; 1474 zfs_btree_t *size_tree = mrap->mra_bt; 1475 zfs_btree_clear(size_tree); 1476 zfs_btree_destroy(size_tree); 1477 1478 metaslab_rt_create(rt, arg); 1479 } 1480 1481 static const range_tree_ops_t metaslab_rt_ops = { 1482 .rtop_create = metaslab_rt_create, 1483 .rtop_destroy = metaslab_rt_destroy, 1484 .rtop_add = metaslab_rt_add, 1485 .rtop_remove = metaslab_rt_remove, 1486 .rtop_vacate = metaslab_rt_vacate 1487 }; 1488 1489 /* 1490 * ========================================================================== 1491 * Common allocator routines 1492 * ========================================================================== 1493 */ 1494 1495 /* 1496 * Return the maximum contiguous segment within the metaslab. 1497 */ 1498 uint64_t 1499 metaslab_largest_allocatable(metaslab_t *msp) 1500 { 1501 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1502 range_seg_t *rs; 1503 1504 if (t == NULL) 1505 return (0); 1506 if (zfs_btree_numnodes(t) == 0) 1507 metaslab_size_tree_full_load(msp->ms_allocatable); 1508 1509 rs = zfs_btree_last(t, NULL); 1510 if (rs == NULL) 1511 return (0); 1512 1513 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1514 msp->ms_allocatable)); 1515 } 1516 1517 /* 1518 * Return the maximum contiguous segment within the unflushed frees of this 1519 * metaslab. 1520 */ 1521 static uint64_t 1522 metaslab_largest_unflushed_free(metaslab_t *msp) 1523 { 1524 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1525 1526 if (msp->ms_unflushed_frees == NULL) 1527 return (0); 1528 1529 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1530 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1531 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1532 NULL); 1533 if (rs == NULL) 1534 return (0); 1535 1536 /* 1537 * When a range is freed from the metaslab, that range is added to 1538 * both the unflushed frees and the deferred frees. While the block 1539 * will eventually be usable, if the metaslab were loaded the range 1540 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1541 * txgs had passed. As a result, when attempting to estimate an upper 1542 * bound for the largest currently-usable free segment in the 1543 * metaslab, we need to not consider any ranges currently in the defer 1544 * trees. This algorithm approximates the largest available chunk in 1545 * the largest range in the unflushed_frees tree by taking the first 1546 * chunk. While this may be a poor estimate, it should only remain so 1547 * briefly and should eventually self-correct as frees are no longer 1548 * deferred. Similar logic applies to the ms_freed tree. See 1549 * metaslab_load() for more details. 1550 * 1551 * There are two primary sources of inaccuracy in this estimate. Both 1552 * are tolerated for performance reasons. The first source is that we 1553 * only check the largest segment for overlaps. Smaller segments may 1554 * have more favorable overlaps with the other trees, resulting in 1555 * larger usable chunks. Second, we only look at the first chunk in 1556 * the largest segment; there may be other usable chunks in the 1557 * largest segment, but we ignore them. 1558 */ 1559 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1560 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1561 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1562 uint64_t start = 0; 1563 uint64_t size = 0; 1564 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1565 rsize, &start, &size); 1566 if (found) { 1567 if (rstart == start) 1568 return (0); 1569 rsize = start - rstart; 1570 } 1571 } 1572 1573 uint64_t start = 0; 1574 uint64_t size = 0; 1575 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1576 rsize, &start, &size); 1577 if (found) 1578 rsize = start - rstart; 1579 1580 return (rsize); 1581 } 1582 1583 static range_seg_t * 1584 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1585 uint64_t size, zfs_btree_index_t *where) 1586 { 1587 range_seg_t *rs; 1588 range_seg_max_t rsearch; 1589 1590 rs_set_start(&rsearch, rt, start); 1591 rs_set_end(&rsearch, rt, start + size); 1592 1593 rs = zfs_btree_find(t, &rsearch, where); 1594 if (rs == NULL) { 1595 rs = zfs_btree_next(t, where, where); 1596 } 1597 1598 return (rs); 1599 } 1600 1601 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1602 defined(WITH_CF_BLOCK_ALLOCATOR) 1603 1604 /* 1605 * This is a helper function that can be used by the allocator to find a 1606 * suitable block to allocate. This will search the specified B-tree looking 1607 * for a block that matches the specified criteria. 1608 */ 1609 static uint64_t 1610 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1611 uint64_t max_search) 1612 { 1613 if (*cursor == 0) 1614 *cursor = rt->rt_start; 1615 zfs_btree_t *bt = &rt->rt_root; 1616 zfs_btree_index_t where; 1617 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1618 uint64_t first_found; 1619 int count_searched = 0; 1620 1621 if (rs != NULL) 1622 first_found = rs_get_start(rs, rt); 1623 1624 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1625 max_search || count_searched < metaslab_min_search_count)) { 1626 uint64_t offset = rs_get_start(rs, rt); 1627 if (offset + size <= rs_get_end(rs, rt)) { 1628 *cursor = offset + size; 1629 return (offset); 1630 } 1631 rs = zfs_btree_next(bt, &where, &where); 1632 count_searched++; 1633 } 1634 1635 *cursor = 0; 1636 return (-1ULL); 1637 } 1638 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1639 1640 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1641 /* 1642 * ========================================================================== 1643 * Dynamic Fit (df) block allocator 1644 * 1645 * Search for a free chunk of at least this size, starting from the last 1646 * offset (for this alignment of block) looking for up to 1647 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1648 * found within 16MB, then return a free chunk of exactly the requested size (or 1649 * larger). 1650 * 1651 * If it seems like searching from the last offset will be unproductive, skip 1652 * that and just return a free chunk of exactly the requested size (or larger). 1653 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1654 * mechanism is probably not very useful and may be removed in the future. 1655 * 1656 * The behavior when not searching can be changed to return the largest free 1657 * chunk, instead of a free chunk of exactly the requested size, by setting 1658 * metaslab_df_use_largest_segment. 1659 * ========================================================================== 1660 */ 1661 static uint64_t 1662 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1663 { 1664 /* 1665 * Find the largest power of 2 block size that evenly divides the 1666 * requested size. This is used to try to allocate blocks with similar 1667 * alignment from the same area of the metaslab (i.e. same cursor 1668 * bucket) but it does not guarantee that other allocations sizes 1669 * may exist in the same region. 1670 */ 1671 uint64_t align = size & -size; 1672 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1673 range_tree_t *rt = msp->ms_allocatable; 1674 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1675 uint64_t offset; 1676 1677 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1678 1679 /* 1680 * If we're running low on space, find a segment based on size, 1681 * rather than iterating based on offset. 1682 */ 1683 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1684 free_pct < metaslab_df_free_pct) { 1685 offset = -1; 1686 } else { 1687 offset = metaslab_block_picker(rt, 1688 cursor, size, metaslab_df_max_search); 1689 } 1690 1691 if (offset == -1) { 1692 range_seg_t *rs; 1693 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1694 metaslab_size_tree_full_load(msp->ms_allocatable); 1695 1696 if (metaslab_df_use_largest_segment) { 1697 /* use largest free segment */ 1698 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1699 } else { 1700 zfs_btree_index_t where; 1701 /* use segment of this size, or next largest */ 1702 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1703 rt, msp->ms_start, size, &where); 1704 } 1705 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1706 rt)) { 1707 offset = rs_get_start(rs, rt); 1708 *cursor = offset + size; 1709 } 1710 } 1711 1712 return (offset); 1713 } 1714 1715 const metaslab_ops_t zfs_metaslab_ops = { 1716 metaslab_df_alloc 1717 }; 1718 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1719 1720 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1721 /* 1722 * ========================================================================== 1723 * Cursor fit block allocator - 1724 * Select the largest region in the metaslab, set the cursor to the beginning 1725 * of the range and the cursor_end to the end of the range. As allocations 1726 * are made advance the cursor. Continue allocating from the cursor until 1727 * the range is exhausted and then find a new range. 1728 * ========================================================================== 1729 */ 1730 static uint64_t 1731 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1732 { 1733 range_tree_t *rt = msp->ms_allocatable; 1734 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1735 uint64_t *cursor = &msp->ms_lbas[0]; 1736 uint64_t *cursor_end = &msp->ms_lbas[1]; 1737 uint64_t offset = 0; 1738 1739 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1740 1741 ASSERT3U(*cursor_end, >=, *cursor); 1742 1743 if ((*cursor + size) > *cursor_end) { 1744 range_seg_t *rs; 1745 1746 if (zfs_btree_numnodes(t) == 0) 1747 metaslab_size_tree_full_load(msp->ms_allocatable); 1748 rs = zfs_btree_last(t, NULL); 1749 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1750 size) 1751 return (-1ULL); 1752 1753 *cursor = rs_get_start(rs, rt); 1754 *cursor_end = rs_get_end(rs, rt); 1755 } 1756 1757 offset = *cursor; 1758 *cursor += size; 1759 1760 return (offset); 1761 } 1762 1763 const metaslab_ops_t zfs_metaslab_ops = { 1764 metaslab_cf_alloc 1765 }; 1766 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1767 1768 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1769 /* 1770 * ========================================================================== 1771 * New dynamic fit allocator - 1772 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1773 * contiguous blocks. If no region is found then just use the largest segment 1774 * that remains. 1775 * ========================================================================== 1776 */ 1777 1778 /* 1779 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1780 * to request from the allocator. 1781 */ 1782 uint64_t metaslab_ndf_clump_shift = 4; 1783 1784 static uint64_t 1785 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1786 { 1787 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1788 range_tree_t *rt = msp->ms_allocatable; 1789 zfs_btree_index_t where; 1790 range_seg_t *rs; 1791 range_seg_max_t rsearch; 1792 uint64_t hbit = highbit64(size); 1793 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1794 uint64_t max_size = metaslab_largest_allocatable(msp); 1795 1796 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1797 1798 if (max_size < size) 1799 return (-1ULL); 1800 1801 rs_set_start(&rsearch, rt, *cursor); 1802 rs_set_end(&rsearch, rt, *cursor + size); 1803 1804 rs = zfs_btree_find(t, &rsearch, &where); 1805 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1806 t = &msp->ms_allocatable_by_size; 1807 1808 rs_set_start(&rsearch, rt, 0); 1809 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1810 metaslab_ndf_clump_shift))); 1811 1812 rs = zfs_btree_find(t, &rsearch, &where); 1813 if (rs == NULL) 1814 rs = zfs_btree_next(t, &where, &where); 1815 ASSERT(rs != NULL); 1816 } 1817 1818 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1819 *cursor = rs_get_start(rs, rt) + size; 1820 return (rs_get_start(rs, rt)); 1821 } 1822 return (-1ULL); 1823 } 1824 1825 const metaslab_ops_t zfs_metaslab_ops = { 1826 metaslab_ndf_alloc 1827 }; 1828 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1829 1830 1831 /* 1832 * ========================================================================== 1833 * Metaslabs 1834 * ========================================================================== 1835 */ 1836 1837 /* 1838 * Wait for any in-progress metaslab loads to complete. 1839 */ 1840 static void 1841 metaslab_load_wait(metaslab_t *msp) 1842 { 1843 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1844 1845 while (msp->ms_loading) { 1846 ASSERT(!msp->ms_loaded); 1847 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1848 } 1849 } 1850 1851 /* 1852 * Wait for any in-progress flushing to complete. 1853 */ 1854 static void 1855 metaslab_flush_wait(metaslab_t *msp) 1856 { 1857 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1858 1859 while (msp->ms_flushing) 1860 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1861 } 1862 1863 static unsigned int 1864 metaslab_idx_func(multilist_t *ml, void *arg) 1865 { 1866 metaslab_t *msp = arg; 1867 1868 /* 1869 * ms_id values are allocated sequentially, so full 64bit 1870 * division would be a waste of time, so limit it to 32 bits. 1871 */ 1872 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1873 } 1874 1875 uint64_t 1876 metaslab_allocated_space(metaslab_t *msp) 1877 { 1878 return (msp->ms_allocated_space); 1879 } 1880 1881 /* 1882 * Verify that the space accounting on disk matches the in-core range_trees. 1883 */ 1884 static void 1885 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1886 { 1887 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1888 uint64_t allocating = 0; 1889 uint64_t sm_free_space, msp_free_space; 1890 1891 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1892 ASSERT(!msp->ms_condensing); 1893 1894 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1895 return; 1896 1897 /* 1898 * We can only verify the metaslab space when we're called 1899 * from syncing context with a loaded metaslab that has an 1900 * allocated space map. Calling this in non-syncing context 1901 * does not provide a consistent view of the metaslab since 1902 * we're performing allocations in the future. 1903 */ 1904 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1905 !msp->ms_loaded) 1906 return; 1907 1908 /* 1909 * Even though the smp_alloc field can get negative, 1910 * when it comes to a metaslab's space map, that should 1911 * never be the case. 1912 */ 1913 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1914 1915 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1916 range_tree_space(msp->ms_unflushed_frees)); 1917 1918 ASSERT3U(metaslab_allocated_space(msp), ==, 1919 space_map_allocated(msp->ms_sm) + 1920 range_tree_space(msp->ms_unflushed_allocs) - 1921 range_tree_space(msp->ms_unflushed_frees)); 1922 1923 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1924 1925 /* 1926 * Account for future allocations since we would have 1927 * already deducted that space from the ms_allocatable. 1928 */ 1929 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1930 allocating += 1931 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1932 } 1933 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1934 msp->ms_allocating_total); 1935 1936 ASSERT3U(msp->ms_deferspace, ==, 1937 range_tree_space(msp->ms_defer[0]) + 1938 range_tree_space(msp->ms_defer[1])); 1939 1940 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1941 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1942 1943 VERIFY3U(sm_free_space, ==, msp_free_space); 1944 } 1945 1946 static void 1947 metaslab_aux_histograms_clear(metaslab_t *msp) 1948 { 1949 /* 1950 * Auxiliary histograms are only cleared when resetting them, 1951 * which can only happen while the metaslab is loaded. 1952 */ 1953 ASSERT(msp->ms_loaded); 1954 1955 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1956 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1957 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1958 } 1959 1960 static void 1961 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1962 range_tree_t *rt) 1963 { 1964 /* 1965 * This is modeled after space_map_histogram_add(), so refer to that 1966 * function for implementation details. We want this to work like 1967 * the space map histogram, and not the range tree histogram, as we 1968 * are essentially constructing a delta that will be later subtracted 1969 * from the space map histogram. 1970 */ 1971 int idx = 0; 1972 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1973 ASSERT3U(i, >=, idx + shift); 1974 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1975 1976 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1977 ASSERT3U(idx + shift, ==, i); 1978 idx++; 1979 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1980 } 1981 } 1982 } 1983 1984 /* 1985 * Called at every sync pass that the metaslab gets synced. 1986 * 1987 * The reason is that we want our auxiliary histograms to be updated 1988 * wherever the metaslab's space map histogram is updated. This way 1989 * we stay consistent on which parts of the metaslab space map's 1990 * histogram are currently not available for allocations (e.g because 1991 * they are in the defer, freed, and freeing trees). 1992 */ 1993 static void 1994 metaslab_aux_histograms_update(metaslab_t *msp) 1995 { 1996 space_map_t *sm = msp->ms_sm; 1997 ASSERT(sm != NULL); 1998 1999 /* 2000 * This is similar to the metaslab's space map histogram updates 2001 * that take place in metaslab_sync(). The only difference is that 2002 * we only care about segments that haven't made it into the 2003 * ms_allocatable tree yet. 2004 */ 2005 if (msp->ms_loaded) { 2006 metaslab_aux_histograms_clear(msp); 2007 2008 metaslab_aux_histogram_add(msp->ms_synchist, 2009 sm->sm_shift, msp->ms_freed); 2010 2011 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2012 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2013 sm->sm_shift, msp->ms_defer[t]); 2014 } 2015 } 2016 2017 metaslab_aux_histogram_add(msp->ms_synchist, 2018 sm->sm_shift, msp->ms_freeing); 2019 } 2020 2021 /* 2022 * Called every time we are done syncing (writing to) the metaslab, 2023 * i.e. at the end of each sync pass. 2024 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2025 */ 2026 static void 2027 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2028 { 2029 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2030 space_map_t *sm = msp->ms_sm; 2031 2032 if (sm == NULL) { 2033 /* 2034 * We came here from metaslab_init() when creating/opening a 2035 * pool, looking at a metaslab that hasn't had any allocations 2036 * yet. 2037 */ 2038 return; 2039 } 2040 2041 /* 2042 * This is similar to the actions that we take for the ms_freed 2043 * and ms_defer trees in metaslab_sync_done(). 2044 */ 2045 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2046 if (defer_allowed) { 2047 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2048 sizeof (msp->ms_synchist)); 2049 } else { 2050 bzero(msp->ms_deferhist[hist_index], 2051 sizeof (msp->ms_deferhist[hist_index])); 2052 } 2053 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2054 } 2055 2056 /* 2057 * Ensure that the metaslab's weight and fragmentation are consistent 2058 * with the contents of the histogram (either the range tree's histogram 2059 * or the space map's depending whether the metaslab is loaded). 2060 */ 2061 static void 2062 metaslab_verify_weight_and_frag(metaslab_t *msp) 2063 { 2064 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2065 2066 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2067 return; 2068 2069 /* 2070 * We can end up here from vdev_remove_complete(), in which case we 2071 * cannot do these assertions because we hold spa config locks and 2072 * thus we are not allowed to read from the DMU. 2073 * 2074 * We check if the metaslab group has been removed and if that's 2075 * the case we return immediately as that would mean that we are 2076 * here from the aforementioned code path. 2077 */ 2078 if (msp->ms_group == NULL) 2079 return; 2080 2081 /* 2082 * Devices being removed always return a weight of 0 and leave 2083 * fragmentation and ms_max_size as is - there is nothing for 2084 * us to verify here. 2085 */ 2086 vdev_t *vd = msp->ms_group->mg_vd; 2087 if (vd->vdev_removing) 2088 return; 2089 2090 /* 2091 * If the metaslab is dirty it probably means that we've done 2092 * some allocations or frees that have changed our histograms 2093 * and thus the weight. 2094 */ 2095 for (int t = 0; t < TXG_SIZE; t++) { 2096 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2097 return; 2098 } 2099 2100 /* 2101 * This verification checks that our in-memory state is consistent 2102 * with what's on disk. If the pool is read-only then there aren't 2103 * any changes and we just have the initially-loaded state. 2104 */ 2105 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2106 return; 2107 2108 /* some extra verification for in-core tree if you can */ 2109 if (msp->ms_loaded) { 2110 range_tree_stat_verify(msp->ms_allocatable); 2111 VERIFY(space_map_histogram_verify(msp->ms_sm, 2112 msp->ms_allocatable)); 2113 } 2114 2115 uint64_t weight = msp->ms_weight; 2116 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2117 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2118 uint64_t frag = msp->ms_fragmentation; 2119 uint64_t max_segsize = msp->ms_max_size; 2120 2121 msp->ms_weight = 0; 2122 msp->ms_fragmentation = 0; 2123 2124 /* 2125 * This function is used for verification purposes and thus should 2126 * not introduce any side-effects/mutations on the system's state. 2127 * 2128 * Regardless of whether metaslab_weight() thinks this metaslab 2129 * should be active or not, we want to ensure that the actual weight 2130 * (and therefore the value of ms_weight) would be the same if it 2131 * was to be recalculated at this point. 2132 * 2133 * In addition we set the nodirty flag so metaslab_weight() does 2134 * not dirty the metaslab for future TXGs (e.g. when trying to 2135 * force condensing to upgrade the metaslab spacemaps). 2136 */ 2137 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2138 2139 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2140 2141 /* 2142 * If the weight type changed then there is no point in doing 2143 * verification. Revert fields to their original values. 2144 */ 2145 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2146 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2147 msp->ms_fragmentation = frag; 2148 msp->ms_weight = weight; 2149 return; 2150 } 2151 2152 VERIFY3U(msp->ms_fragmentation, ==, frag); 2153 VERIFY3U(msp->ms_weight, ==, weight); 2154 } 2155 2156 /* 2157 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2158 * this class that was used longest ago, and attempt to unload it. We don't 2159 * want to spend too much time in this loop to prevent performance 2160 * degradation, and we expect that most of the time this operation will 2161 * succeed. Between that and the normal unloading processing during txg sync, 2162 * we expect this to keep the metaslab memory usage under control. 2163 */ 2164 static void 2165 metaslab_potentially_evict(metaslab_class_t *mc) 2166 { 2167 #ifdef _KERNEL 2168 uint64_t allmem = arc_all_memory(); 2169 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2170 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2171 int tries = 0; 2172 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2173 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2174 tries++) { 2175 unsigned int idx = multilist_get_random_index( 2176 &mc->mc_metaslab_txg_list); 2177 multilist_sublist_t *mls = 2178 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2179 metaslab_t *msp = multilist_sublist_head(mls); 2180 multilist_sublist_unlock(mls); 2181 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2182 inuse * size) { 2183 VERIFY3P(mls, ==, multilist_sublist_lock( 2184 &mc->mc_metaslab_txg_list, idx)); 2185 ASSERT3U(idx, ==, 2186 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2187 2188 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2189 multilist_sublist_unlock(mls); 2190 break; 2191 } 2192 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2193 multilist_sublist_unlock(mls); 2194 /* 2195 * If the metaslab is currently loading there are two 2196 * cases. If it's the metaslab we're evicting, we 2197 * can't continue on or we'll panic when we attempt to 2198 * recursively lock the mutex. If it's another 2199 * metaslab that's loading, it can be safely skipped, 2200 * since we know it's very new and therefore not a 2201 * good eviction candidate. We check later once the 2202 * lock is held that the metaslab is fully loaded 2203 * before actually unloading it. 2204 */ 2205 if (msp->ms_loading) { 2206 msp = next_msp; 2207 inuse = 2208 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2209 continue; 2210 } 2211 /* 2212 * We can't unload metaslabs with no spacemap because 2213 * they're not ready to be unloaded yet. We can't 2214 * unload metaslabs with outstanding allocations 2215 * because doing so could cause the metaslab's weight 2216 * to decrease while it's unloaded, which violates an 2217 * invariant that we use to prevent unnecessary 2218 * loading. We also don't unload metaslabs that are 2219 * currently active because they are high-weight 2220 * metaslabs that are likely to be used in the near 2221 * future. 2222 */ 2223 mutex_enter(&msp->ms_lock); 2224 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2225 msp->ms_allocating_total == 0) { 2226 metaslab_unload(msp); 2227 } 2228 mutex_exit(&msp->ms_lock); 2229 msp = next_msp; 2230 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2231 } 2232 } 2233 #else 2234 (void) mc, (void) zfs_metaslab_mem_limit; 2235 #endif 2236 } 2237 2238 static int 2239 metaslab_load_impl(metaslab_t *msp) 2240 { 2241 int error = 0; 2242 2243 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2244 ASSERT(msp->ms_loading); 2245 ASSERT(!msp->ms_condensing); 2246 2247 /* 2248 * We temporarily drop the lock to unblock other operations while we 2249 * are reading the space map. Therefore, metaslab_sync() and 2250 * metaslab_sync_done() can run at the same time as we do. 2251 * 2252 * If we are using the log space maps, metaslab_sync() can't write to 2253 * the metaslab's space map while we are loading as we only write to 2254 * it when we are flushing the metaslab, and that can't happen while 2255 * we are loading it. 2256 * 2257 * If we are not using log space maps though, metaslab_sync() can 2258 * append to the space map while we are loading. Therefore we load 2259 * only entries that existed when we started the load. Additionally, 2260 * metaslab_sync_done() has to wait for the load to complete because 2261 * there are potential races like metaslab_load() loading parts of the 2262 * space map that are currently being appended by metaslab_sync(). If 2263 * we didn't, the ms_allocatable would have entries that 2264 * metaslab_sync_done() would try to re-add later. 2265 * 2266 * That's why before dropping the lock we remember the synced length 2267 * of the metaslab and read up to that point of the space map, 2268 * ignoring entries appended by metaslab_sync() that happen after we 2269 * drop the lock. 2270 */ 2271 uint64_t length = msp->ms_synced_length; 2272 mutex_exit(&msp->ms_lock); 2273 2274 hrtime_t load_start = gethrtime(); 2275 metaslab_rt_arg_t *mrap; 2276 if (msp->ms_allocatable->rt_arg == NULL) { 2277 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2278 } else { 2279 mrap = msp->ms_allocatable->rt_arg; 2280 msp->ms_allocatable->rt_ops = NULL; 2281 msp->ms_allocatable->rt_arg = NULL; 2282 } 2283 mrap->mra_bt = &msp->ms_allocatable_by_size; 2284 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2285 2286 if (msp->ms_sm != NULL) { 2287 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2288 SM_FREE, length); 2289 2290 /* Now, populate the size-sorted tree. */ 2291 metaslab_rt_create(msp->ms_allocatable, mrap); 2292 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2293 msp->ms_allocatable->rt_arg = mrap; 2294 2295 struct mssa_arg arg = {0}; 2296 arg.rt = msp->ms_allocatable; 2297 arg.mra = mrap; 2298 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2299 &arg); 2300 } else { 2301 /* 2302 * Add the size-sorted tree first, since we don't need to load 2303 * the metaslab from the spacemap. 2304 */ 2305 metaslab_rt_create(msp->ms_allocatable, mrap); 2306 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2307 msp->ms_allocatable->rt_arg = mrap; 2308 /* 2309 * The space map has not been allocated yet, so treat 2310 * all the space in the metaslab as free and add it to the 2311 * ms_allocatable tree. 2312 */ 2313 range_tree_add(msp->ms_allocatable, 2314 msp->ms_start, msp->ms_size); 2315 2316 if (msp->ms_new) { 2317 /* 2318 * If the ms_sm doesn't exist, this means that this 2319 * metaslab hasn't gone through metaslab_sync() and 2320 * thus has never been dirtied. So we shouldn't 2321 * expect any unflushed allocs or frees from previous 2322 * TXGs. 2323 */ 2324 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2325 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2326 } 2327 } 2328 2329 /* 2330 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2331 * changing the ms_sm (or log_sm) and the metaslab's range trees 2332 * while we are about to use them and populate the ms_allocatable. 2333 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2334 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2335 */ 2336 mutex_enter(&msp->ms_sync_lock); 2337 mutex_enter(&msp->ms_lock); 2338 2339 ASSERT(!msp->ms_condensing); 2340 ASSERT(!msp->ms_flushing); 2341 2342 if (error != 0) { 2343 mutex_exit(&msp->ms_sync_lock); 2344 return (error); 2345 } 2346 2347 ASSERT3P(msp->ms_group, !=, NULL); 2348 msp->ms_loaded = B_TRUE; 2349 2350 /* 2351 * Apply all the unflushed changes to ms_allocatable right 2352 * away so any manipulations we do below have a clear view 2353 * of what is allocated and what is free. 2354 */ 2355 range_tree_walk(msp->ms_unflushed_allocs, 2356 range_tree_remove, msp->ms_allocatable); 2357 range_tree_walk(msp->ms_unflushed_frees, 2358 range_tree_add, msp->ms_allocatable); 2359 2360 ASSERT3P(msp->ms_group, !=, NULL); 2361 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2362 if (spa_syncing_log_sm(spa) != NULL) { 2363 ASSERT(spa_feature_is_enabled(spa, 2364 SPA_FEATURE_LOG_SPACEMAP)); 2365 2366 /* 2367 * If we use a log space map we add all the segments 2368 * that are in ms_unflushed_frees so they are available 2369 * for allocation. 2370 * 2371 * ms_allocatable needs to contain all free segments 2372 * that are ready for allocations (thus not segments 2373 * from ms_freeing, ms_freed, and the ms_defer trees). 2374 * But if we grab the lock in this code path at a sync 2375 * pass later that 1, then it also contains the 2376 * segments of ms_freed (they were added to it earlier 2377 * in this path through ms_unflushed_frees). So we 2378 * need to remove all the segments that exist in 2379 * ms_freed from ms_allocatable as they will be added 2380 * later in metaslab_sync_done(). 2381 * 2382 * When there's no log space map, the ms_allocatable 2383 * correctly doesn't contain any segments that exist 2384 * in ms_freed [see ms_synced_length]. 2385 */ 2386 range_tree_walk(msp->ms_freed, 2387 range_tree_remove, msp->ms_allocatable); 2388 } 2389 2390 /* 2391 * If we are not using the log space map, ms_allocatable 2392 * contains the segments that exist in the ms_defer trees 2393 * [see ms_synced_length]. Thus we need to remove them 2394 * from ms_allocatable as they will be added again in 2395 * metaslab_sync_done(). 2396 * 2397 * If we are using the log space map, ms_allocatable still 2398 * contains the segments that exist in the ms_defer trees. 2399 * Not because it read them through the ms_sm though. But 2400 * because these segments are part of ms_unflushed_frees 2401 * whose segments we add to ms_allocatable earlier in this 2402 * code path. 2403 */ 2404 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2405 range_tree_walk(msp->ms_defer[t], 2406 range_tree_remove, msp->ms_allocatable); 2407 } 2408 2409 /* 2410 * Call metaslab_recalculate_weight_and_sort() now that the 2411 * metaslab is loaded so we get the metaslab's real weight. 2412 * 2413 * Unless this metaslab was created with older software and 2414 * has not yet been converted to use segment-based weight, we 2415 * expect the new weight to be better or equal to the weight 2416 * that the metaslab had while it was not loaded. This is 2417 * because the old weight does not take into account the 2418 * consolidation of adjacent segments between TXGs. [see 2419 * comment for ms_synchist and ms_deferhist[] for more info] 2420 */ 2421 uint64_t weight = msp->ms_weight; 2422 uint64_t max_size = msp->ms_max_size; 2423 metaslab_recalculate_weight_and_sort(msp); 2424 if (!WEIGHT_IS_SPACEBASED(weight)) 2425 ASSERT3U(weight, <=, msp->ms_weight); 2426 msp->ms_max_size = metaslab_largest_allocatable(msp); 2427 ASSERT3U(max_size, <=, msp->ms_max_size); 2428 hrtime_t load_end = gethrtime(); 2429 msp->ms_load_time = load_end; 2430 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2431 "ms_id %llu, smp_length %llu, " 2432 "unflushed_allocs %llu, unflushed_frees %llu, " 2433 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2434 "loading_time %lld ms, ms_max_size %llu, " 2435 "max size error %lld, " 2436 "old_weight %llx, new_weight %llx", 2437 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2438 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2439 (u_longlong_t)msp->ms_id, 2440 (u_longlong_t)space_map_length(msp->ms_sm), 2441 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2442 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2443 (u_longlong_t)range_tree_space(msp->ms_freed), 2444 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2445 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2446 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2447 (longlong_t)((load_end - load_start) / 1000000), 2448 (u_longlong_t)msp->ms_max_size, 2449 (u_longlong_t)msp->ms_max_size - max_size, 2450 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2451 2452 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2453 mutex_exit(&msp->ms_sync_lock); 2454 return (0); 2455 } 2456 2457 int 2458 metaslab_load(metaslab_t *msp) 2459 { 2460 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2461 2462 /* 2463 * There may be another thread loading the same metaslab, if that's 2464 * the case just wait until the other thread is done and return. 2465 */ 2466 metaslab_load_wait(msp); 2467 if (msp->ms_loaded) 2468 return (0); 2469 VERIFY(!msp->ms_loading); 2470 ASSERT(!msp->ms_condensing); 2471 2472 /* 2473 * We set the loading flag BEFORE potentially dropping the lock to 2474 * wait for an ongoing flush (see ms_flushing below). This way other 2475 * threads know that there is already a thread that is loading this 2476 * metaslab. 2477 */ 2478 msp->ms_loading = B_TRUE; 2479 2480 /* 2481 * Wait for any in-progress flushing to finish as we drop the ms_lock 2482 * both here (during space_map_load()) and in metaslab_flush() (when 2483 * we flush our changes to the ms_sm). 2484 */ 2485 if (msp->ms_flushing) 2486 metaslab_flush_wait(msp); 2487 2488 /* 2489 * In the possibility that we were waiting for the metaslab to be 2490 * flushed (where we temporarily dropped the ms_lock), ensure that 2491 * no one else loaded the metaslab somehow. 2492 */ 2493 ASSERT(!msp->ms_loaded); 2494 2495 /* 2496 * If we're loading a metaslab in the normal class, consider evicting 2497 * another one to keep our memory usage under the limit defined by the 2498 * zfs_metaslab_mem_limit tunable. 2499 */ 2500 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2501 msp->ms_group->mg_class) { 2502 metaslab_potentially_evict(msp->ms_group->mg_class); 2503 } 2504 2505 int error = metaslab_load_impl(msp); 2506 2507 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2508 msp->ms_loading = B_FALSE; 2509 cv_broadcast(&msp->ms_load_cv); 2510 2511 return (error); 2512 } 2513 2514 void 2515 metaslab_unload(metaslab_t *msp) 2516 { 2517 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2518 2519 /* 2520 * This can happen if a metaslab is selected for eviction (in 2521 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2522 * metaslab_class_evict_old). 2523 */ 2524 if (!msp->ms_loaded) 2525 return; 2526 2527 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2528 msp->ms_loaded = B_FALSE; 2529 msp->ms_unload_time = gethrtime(); 2530 2531 msp->ms_activation_weight = 0; 2532 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2533 2534 if (msp->ms_group != NULL) { 2535 metaslab_class_t *mc = msp->ms_group->mg_class; 2536 multilist_sublist_t *mls = 2537 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2538 if (multilist_link_active(&msp->ms_class_txg_node)) 2539 multilist_sublist_remove(mls, msp); 2540 multilist_sublist_unlock(mls); 2541 2542 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2543 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2544 "ms_id %llu, weight %llx, " 2545 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2546 "loaded %llu ms ago, max_size %llu", 2547 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2548 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2549 (u_longlong_t)msp->ms_id, 2550 (u_longlong_t)msp->ms_weight, 2551 (u_longlong_t)msp->ms_selected_txg, 2552 (u_longlong_t)(msp->ms_unload_time - 2553 msp->ms_selected_time) / 1000 / 1000, 2554 (u_longlong_t)msp->ms_alloc_txg, 2555 (u_longlong_t)(msp->ms_unload_time - 2556 msp->ms_load_time) / 1000 / 1000, 2557 (u_longlong_t)msp->ms_max_size); 2558 } 2559 2560 /* 2561 * We explicitly recalculate the metaslab's weight based on its space 2562 * map (as it is now not loaded). We want unload metaslabs to always 2563 * have their weights calculated from the space map histograms, while 2564 * loaded ones have it calculated from their in-core range tree 2565 * [see metaslab_load()]. This way, the weight reflects the information 2566 * available in-core, whether it is loaded or not. 2567 * 2568 * If ms_group == NULL means that we came here from metaslab_fini(), 2569 * at which point it doesn't make sense for us to do the recalculation 2570 * and the sorting. 2571 */ 2572 if (msp->ms_group != NULL) 2573 metaslab_recalculate_weight_and_sort(msp); 2574 } 2575 2576 /* 2577 * We want to optimize the memory use of the per-metaslab range 2578 * trees. To do this, we store the segments in the range trees in 2579 * units of sectors, zero-indexing from the start of the metaslab. If 2580 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2581 * the ranges using two uint32_ts, rather than two uint64_ts. 2582 */ 2583 range_seg_type_t 2584 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2585 uint64_t *start, uint64_t *shift) 2586 { 2587 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2588 !zfs_metaslab_force_large_segs) { 2589 *shift = vdev->vdev_ashift; 2590 *start = msp->ms_start; 2591 return (RANGE_SEG32); 2592 } else { 2593 *shift = 0; 2594 *start = 0; 2595 return (RANGE_SEG64); 2596 } 2597 } 2598 2599 void 2600 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2601 { 2602 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2603 metaslab_class_t *mc = msp->ms_group->mg_class; 2604 multilist_sublist_t *mls = 2605 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2606 if (multilist_link_active(&msp->ms_class_txg_node)) 2607 multilist_sublist_remove(mls, msp); 2608 msp->ms_selected_txg = txg; 2609 msp->ms_selected_time = gethrtime(); 2610 multilist_sublist_insert_tail(mls, msp); 2611 multilist_sublist_unlock(mls); 2612 } 2613 2614 void 2615 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2616 int64_t defer_delta, int64_t space_delta) 2617 { 2618 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2619 2620 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2621 ASSERT(vd->vdev_ms_count != 0); 2622 2623 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2624 vdev_deflated_space(vd, space_delta)); 2625 } 2626 2627 int 2628 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2629 uint64_t txg, metaslab_t **msp) 2630 { 2631 vdev_t *vd = mg->mg_vd; 2632 spa_t *spa = vd->vdev_spa; 2633 objset_t *mos = spa->spa_meta_objset; 2634 metaslab_t *ms; 2635 int error; 2636 2637 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2638 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2639 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2640 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2641 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2642 multilist_link_init(&ms->ms_class_txg_node); 2643 2644 ms->ms_id = id; 2645 ms->ms_start = id << vd->vdev_ms_shift; 2646 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2647 ms->ms_allocator = -1; 2648 ms->ms_new = B_TRUE; 2649 2650 vdev_ops_t *ops = vd->vdev_ops; 2651 if (ops->vdev_op_metaslab_init != NULL) 2652 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2653 2654 /* 2655 * We only open space map objects that already exist. All others 2656 * will be opened when we finally allocate an object for it. For 2657 * readonly pools there is no need to open the space map object. 2658 * 2659 * Note: 2660 * When called from vdev_expand(), we can't call into the DMU as 2661 * we are holding the spa_config_lock as a writer and we would 2662 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2663 * that case, the object parameter is zero though, so we won't 2664 * call into the DMU. 2665 */ 2666 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2667 !spa->spa_read_spacemaps)) { 2668 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2669 ms->ms_size, vd->vdev_ashift); 2670 2671 if (error != 0) { 2672 kmem_free(ms, sizeof (metaslab_t)); 2673 return (error); 2674 } 2675 2676 ASSERT(ms->ms_sm != NULL); 2677 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2678 } 2679 2680 uint64_t shift, start; 2681 range_seg_type_t type = 2682 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2683 2684 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2685 for (int t = 0; t < TXG_SIZE; t++) { 2686 ms->ms_allocating[t] = range_tree_create(NULL, type, 2687 NULL, start, shift); 2688 } 2689 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2690 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2691 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2692 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2693 start, shift); 2694 } 2695 ms->ms_checkpointing = 2696 range_tree_create(NULL, type, NULL, start, shift); 2697 ms->ms_unflushed_allocs = 2698 range_tree_create(NULL, type, NULL, start, shift); 2699 2700 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2701 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2702 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2703 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2704 type, mrap, start, shift); 2705 2706 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2707 2708 metaslab_group_add(mg, ms); 2709 metaslab_set_fragmentation(ms, B_FALSE); 2710 2711 /* 2712 * If we're opening an existing pool (txg == 0) or creating 2713 * a new one (txg == TXG_INITIAL), all space is available now. 2714 * If we're adding space to an existing pool, the new space 2715 * does not become available until after this txg has synced. 2716 * The metaslab's weight will also be initialized when we sync 2717 * out this txg. This ensures that we don't attempt to allocate 2718 * from it before we have initialized it completely. 2719 */ 2720 if (txg <= TXG_INITIAL) { 2721 metaslab_sync_done(ms, 0); 2722 metaslab_space_update(vd, mg->mg_class, 2723 metaslab_allocated_space(ms), 0, 0); 2724 } 2725 2726 if (txg != 0) { 2727 vdev_dirty(vd, 0, NULL, txg); 2728 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2729 } 2730 2731 *msp = ms; 2732 2733 return (0); 2734 } 2735 2736 static void 2737 metaslab_fini_flush_data(metaslab_t *msp) 2738 { 2739 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2740 2741 if (metaslab_unflushed_txg(msp) == 0) { 2742 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2743 ==, NULL); 2744 return; 2745 } 2746 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2747 2748 mutex_enter(&spa->spa_flushed_ms_lock); 2749 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2750 mutex_exit(&spa->spa_flushed_ms_lock); 2751 2752 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2753 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2754 } 2755 2756 uint64_t 2757 metaslab_unflushed_changes_memused(metaslab_t *ms) 2758 { 2759 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2760 range_tree_numsegs(ms->ms_unflushed_frees)) * 2761 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2762 } 2763 2764 void 2765 metaslab_fini(metaslab_t *msp) 2766 { 2767 metaslab_group_t *mg = msp->ms_group; 2768 vdev_t *vd = mg->mg_vd; 2769 spa_t *spa = vd->vdev_spa; 2770 2771 metaslab_fini_flush_data(msp); 2772 2773 metaslab_group_remove(mg, msp); 2774 2775 mutex_enter(&msp->ms_lock); 2776 VERIFY(msp->ms_group == NULL); 2777 2778 /* 2779 * If this metaslab hasn't been through metaslab_sync_done() yet its 2780 * space hasn't been accounted for in its vdev and doesn't need to be 2781 * subtracted. 2782 */ 2783 if (!msp->ms_new) { 2784 metaslab_space_update(vd, mg->mg_class, 2785 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2786 2787 } 2788 space_map_close(msp->ms_sm); 2789 msp->ms_sm = NULL; 2790 2791 metaslab_unload(msp); 2792 2793 range_tree_destroy(msp->ms_allocatable); 2794 range_tree_destroy(msp->ms_freeing); 2795 range_tree_destroy(msp->ms_freed); 2796 2797 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2798 metaslab_unflushed_changes_memused(msp)); 2799 spa->spa_unflushed_stats.sus_memused -= 2800 metaslab_unflushed_changes_memused(msp); 2801 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2802 range_tree_destroy(msp->ms_unflushed_allocs); 2803 range_tree_destroy(msp->ms_checkpointing); 2804 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2805 range_tree_destroy(msp->ms_unflushed_frees); 2806 2807 for (int t = 0; t < TXG_SIZE; t++) { 2808 range_tree_destroy(msp->ms_allocating[t]); 2809 } 2810 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2811 range_tree_destroy(msp->ms_defer[t]); 2812 } 2813 ASSERT0(msp->ms_deferspace); 2814 2815 for (int t = 0; t < TXG_SIZE; t++) 2816 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2817 2818 range_tree_vacate(msp->ms_trim, NULL, NULL); 2819 range_tree_destroy(msp->ms_trim); 2820 2821 mutex_exit(&msp->ms_lock); 2822 cv_destroy(&msp->ms_load_cv); 2823 cv_destroy(&msp->ms_flush_cv); 2824 mutex_destroy(&msp->ms_lock); 2825 mutex_destroy(&msp->ms_sync_lock); 2826 ASSERT3U(msp->ms_allocator, ==, -1); 2827 2828 kmem_free(msp, sizeof (metaslab_t)); 2829 } 2830 2831 #define FRAGMENTATION_TABLE_SIZE 17 2832 2833 /* 2834 * This table defines a segment size based fragmentation metric that will 2835 * allow each metaslab to derive its own fragmentation value. This is done 2836 * by calculating the space in each bucket of the spacemap histogram and 2837 * multiplying that by the fragmentation metric in this table. Doing 2838 * this for all buckets and dividing it by the total amount of free 2839 * space in this metaslab (i.e. the total free space in all buckets) gives 2840 * us the fragmentation metric. This means that a high fragmentation metric 2841 * equates to most of the free space being comprised of small segments. 2842 * Conversely, if the metric is low, then most of the free space is in 2843 * large segments. A 10% change in fragmentation equates to approximately 2844 * double the number of segments. 2845 * 2846 * This table defines 0% fragmented space using 16MB segments. Testing has 2847 * shown that segments that are greater than or equal to 16MB do not suffer 2848 * from drastic performance problems. Using this value, we derive the rest 2849 * of the table. Since the fragmentation value is never stored on disk, it 2850 * is possible to change these calculations in the future. 2851 */ 2852 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2853 100, /* 512B */ 2854 100, /* 1K */ 2855 98, /* 2K */ 2856 95, /* 4K */ 2857 90, /* 8K */ 2858 80, /* 16K */ 2859 70, /* 32K */ 2860 60, /* 64K */ 2861 50, /* 128K */ 2862 40, /* 256K */ 2863 30, /* 512K */ 2864 20, /* 1M */ 2865 15, /* 2M */ 2866 10, /* 4M */ 2867 5, /* 8M */ 2868 0 /* 16M */ 2869 }; 2870 2871 /* 2872 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2873 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2874 * been upgraded and does not support this metric. Otherwise, the return 2875 * value should be in the range [0, 100]. 2876 */ 2877 static void 2878 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2879 { 2880 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2881 uint64_t fragmentation = 0; 2882 uint64_t total = 0; 2883 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2884 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2885 2886 if (!feature_enabled) { 2887 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2888 return; 2889 } 2890 2891 /* 2892 * A null space map means that the entire metaslab is free 2893 * and thus is not fragmented. 2894 */ 2895 if (msp->ms_sm == NULL) { 2896 msp->ms_fragmentation = 0; 2897 return; 2898 } 2899 2900 /* 2901 * If this metaslab's space map has not been upgraded, flag it 2902 * so that we upgrade next time we encounter it. 2903 */ 2904 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2905 uint64_t txg = spa_syncing_txg(spa); 2906 vdev_t *vd = msp->ms_group->mg_vd; 2907 2908 /* 2909 * If we've reached the final dirty txg, then we must 2910 * be shutting down the pool. We don't want to dirty 2911 * any data past this point so skip setting the condense 2912 * flag. We can retry this action the next time the pool 2913 * is imported. We also skip marking this metaslab for 2914 * condensing if the caller has explicitly set nodirty. 2915 */ 2916 if (!nodirty && 2917 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2918 msp->ms_condense_wanted = B_TRUE; 2919 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2920 zfs_dbgmsg("txg %llu, requesting force condense: " 2921 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2922 (u_longlong_t)msp->ms_id, 2923 (u_longlong_t)vd->vdev_id); 2924 } 2925 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2926 return; 2927 } 2928 2929 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2930 uint64_t space = 0; 2931 uint8_t shift = msp->ms_sm->sm_shift; 2932 2933 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2934 FRAGMENTATION_TABLE_SIZE - 1); 2935 2936 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2937 continue; 2938 2939 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2940 total += space; 2941 2942 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2943 fragmentation += space * zfs_frag_table[idx]; 2944 } 2945 2946 if (total > 0) 2947 fragmentation /= total; 2948 ASSERT3U(fragmentation, <=, 100); 2949 2950 msp->ms_fragmentation = fragmentation; 2951 } 2952 2953 /* 2954 * Compute a weight -- a selection preference value -- for the given metaslab. 2955 * This is based on the amount of free space, the level of fragmentation, 2956 * the LBA range, and whether the metaslab is loaded. 2957 */ 2958 static uint64_t 2959 metaslab_space_weight(metaslab_t *msp) 2960 { 2961 metaslab_group_t *mg = msp->ms_group; 2962 vdev_t *vd = mg->mg_vd; 2963 uint64_t weight, space; 2964 2965 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2966 2967 /* 2968 * The baseline weight is the metaslab's free space. 2969 */ 2970 space = msp->ms_size - metaslab_allocated_space(msp); 2971 2972 if (metaslab_fragmentation_factor_enabled && 2973 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2974 /* 2975 * Use the fragmentation information to inversely scale 2976 * down the baseline weight. We need to ensure that we 2977 * don't exclude this metaslab completely when it's 100% 2978 * fragmented. To avoid this we reduce the fragmented value 2979 * by 1. 2980 */ 2981 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2982 2983 /* 2984 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2985 * this metaslab again. The fragmentation metric may have 2986 * decreased the space to something smaller than 2987 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2988 * so that we can consume any remaining space. 2989 */ 2990 if (space > 0 && space < SPA_MINBLOCKSIZE) 2991 space = SPA_MINBLOCKSIZE; 2992 } 2993 weight = space; 2994 2995 /* 2996 * Modern disks have uniform bit density and constant angular velocity. 2997 * Therefore, the outer recording zones are faster (higher bandwidth) 2998 * than the inner zones by the ratio of outer to inner track diameter, 2999 * which is typically around 2:1. We account for this by assigning 3000 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3001 * In effect, this means that we'll select the metaslab with the most 3002 * free bandwidth rather than simply the one with the most free space. 3003 */ 3004 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3005 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3006 ASSERT(weight >= space && weight <= 2 * space); 3007 } 3008 3009 /* 3010 * If this metaslab is one we're actively using, adjust its 3011 * weight to make it preferable to any inactive metaslab so 3012 * we'll polish it off. If the fragmentation on this metaslab 3013 * has exceed our threshold, then don't mark it active. 3014 */ 3015 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3016 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3017 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3018 } 3019 3020 WEIGHT_SET_SPACEBASED(weight); 3021 return (weight); 3022 } 3023 3024 /* 3025 * Return the weight of the specified metaslab, according to the segment-based 3026 * weighting algorithm. The metaslab must be loaded. This function can 3027 * be called within a sync pass since it relies only on the metaslab's 3028 * range tree which is always accurate when the metaslab is loaded. 3029 */ 3030 static uint64_t 3031 metaslab_weight_from_range_tree(metaslab_t *msp) 3032 { 3033 uint64_t weight = 0; 3034 uint32_t segments = 0; 3035 3036 ASSERT(msp->ms_loaded); 3037 3038 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3039 i--) { 3040 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3041 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3042 3043 segments <<= 1; 3044 segments += msp->ms_allocatable->rt_histogram[i]; 3045 3046 /* 3047 * The range tree provides more precision than the space map 3048 * and must be downgraded so that all values fit within the 3049 * space map's histogram. This allows us to compare loaded 3050 * vs. unloaded metaslabs to determine which metaslab is 3051 * considered "best". 3052 */ 3053 if (i > max_idx) 3054 continue; 3055 3056 if (segments != 0) { 3057 WEIGHT_SET_COUNT(weight, segments); 3058 WEIGHT_SET_INDEX(weight, i); 3059 WEIGHT_SET_ACTIVE(weight, 0); 3060 break; 3061 } 3062 } 3063 return (weight); 3064 } 3065 3066 /* 3067 * Calculate the weight based on the on-disk histogram. Should be applied 3068 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3069 * give results consistent with the on-disk state 3070 */ 3071 static uint64_t 3072 metaslab_weight_from_spacemap(metaslab_t *msp) 3073 { 3074 space_map_t *sm = msp->ms_sm; 3075 ASSERT(!msp->ms_loaded); 3076 ASSERT(sm != NULL); 3077 ASSERT3U(space_map_object(sm), !=, 0); 3078 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3079 3080 /* 3081 * Create a joint histogram from all the segments that have made 3082 * it to the metaslab's space map histogram, that are not yet 3083 * available for allocation because they are still in the freeing 3084 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3085 * these segments from the space map's histogram to get a more 3086 * accurate weight. 3087 */ 3088 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3089 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3090 deferspace_histogram[i] += msp->ms_synchist[i]; 3091 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3092 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3093 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3094 } 3095 } 3096 3097 uint64_t weight = 0; 3098 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3099 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3100 deferspace_histogram[i]); 3101 uint64_t count = 3102 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3103 if (count != 0) { 3104 WEIGHT_SET_COUNT(weight, count); 3105 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3106 WEIGHT_SET_ACTIVE(weight, 0); 3107 break; 3108 } 3109 } 3110 return (weight); 3111 } 3112 3113 /* 3114 * Compute a segment-based weight for the specified metaslab. The weight 3115 * is determined by highest bucket in the histogram. The information 3116 * for the highest bucket is encoded into the weight value. 3117 */ 3118 static uint64_t 3119 metaslab_segment_weight(metaslab_t *msp) 3120 { 3121 metaslab_group_t *mg = msp->ms_group; 3122 uint64_t weight = 0; 3123 uint8_t shift = mg->mg_vd->vdev_ashift; 3124 3125 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3126 3127 /* 3128 * The metaslab is completely free. 3129 */ 3130 if (metaslab_allocated_space(msp) == 0) { 3131 int idx = highbit64(msp->ms_size) - 1; 3132 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3133 3134 if (idx < max_idx) { 3135 WEIGHT_SET_COUNT(weight, 1ULL); 3136 WEIGHT_SET_INDEX(weight, idx); 3137 } else { 3138 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3139 WEIGHT_SET_INDEX(weight, max_idx); 3140 } 3141 WEIGHT_SET_ACTIVE(weight, 0); 3142 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3143 return (weight); 3144 } 3145 3146 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3147 3148 /* 3149 * If the metaslab is fully allocated then just make the weight 0. 3150 */ 3151 if (metaslab_allocated_space(msp) == msp->ms_size) 3152 return (0); 3153 /* 3154 * If the metaslab is already loaded, then use the range tree to 3155 * determine the weight. Otherwise, we rely on the space map information 3156 * to generate the weight. 3157 */ 3158 if (msp->ms_loaded) { 3159 weight = metaslab_weight_from_range_tree(msp); 3160 } else { 3161 weight = metaslab_weight_from_spacemap(msp); 3162 } 3163 3164 /* 3165 * If the metaslab was active the last time we calculated its weight 3166 * then keep it active. We want to consume the entire region that 3167 * is associated with this weight. 3168 */ 3169 if (msp->ms_activation_weight != 0 && weight != 0) 3170 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3171 return (weight); 3172 } 3173 3174 /* 3175 * Determine if we should attempt to allocate from this metaslab. If the 3176 * metaslab is loaded, then we can determine if the desired allocation 3177 * can be satisfied by looking at the size of the maximum free segment 3178 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3179 * weight. For segment-based weighting we can determine the maximum 3180 * allocation based on the index encoded in its value. For space-based 3181 * weights we rely on the entire weight (excluding the weight-type bit). 3182 */ 3183 static boolean_t 3184 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3185 { 3186 /* 3187 * If the metaslab is loaded, ms_max_size is definitive and we can use 3188 * the fast check. If it's not, the ms_max_size is a lower bound (once 3189 * set), and we should use the fast check as long as we're not in 3190 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3191 * seconds since the metaslab was unloaded. 3192 */ 3193 if (msp->ms_loaded || 3194 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3195 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3196 return (msp->ms_max_size >= asize); 3197 3198 boolean_t should_allocate; 3199 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3200 /* 3201 * The metaslab segment weight indicates segments in the 3202 * range [2^i, 2^(i+1)), where i is the index in the weight. 3203 * Since the asize might be in the middle of the range, we 3204 * should attempt the allocation if asize < 2^(i+1). 3205 */ 3206 should_allocate = (asize < 3207 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3208 } else { 3209 should_allocate = (asize <= 3210 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3211 } 3212 3213 return (should_allocate); 3214 } 3215 3216 static uint64_t 3217 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3218 { 3219 vdev_t *vd = msp->ms_group->mg_vd; 3220 spa_t *spa = vd->vdev_spa; 3221 uint64_t weight; 3222 3223 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3224 3225 metaslab_set_fragmentation(msp, nodirty); 3226 3227 /* 3228 * Update the maximum size. If the metaslab is loaded, this will 3229 * ensure that we get an accurate maximum size if newly freed space 3230 * has been added back into the free tree. If the metaslab is 3231 * unloaded, we check if there's a larger free segment in the 3232 * unflushed frees. This is a lower bound on the largest allocatable 3233 * segment size. Coalescing of adjacent entries may reveal larger 3234 * allocatable segments, but we aren't aware of those until loading 3235 * the space map into a range tree. 3236 */ 3237 if (msp->ms_loaded) { 3238 msp->ms_max_size = metaslab_largest_allocatable(msp); 3239 } else { 3240 msp->ms_max_size = MAX(msp->ms_max_size, 3241 metaslab_largest_unflushed_free(msp)); 3242 } 3243 3244 /* 3245 * Segment-based weighting requires space map histogram support. 3246 */ 3247 if (zfs_metaslab_segment_weight_enabled && 3248 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3249 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3250 sizeof (space_map_phys_t))) { 3251 weight = metaslab_segment_weight(msp); 3252 } else { 3253 weight = metaslab_space_weight(msp); 3254 } 3255 return (weight); 3256 } 3257 3258 void 3259 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3260 { 3261 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3262 3263 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3264 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3265 metaslab_group_sort(msp->ms_group, msp, 3266 metaslab_weight(msp, B_FALSE) | was_active); 3267 } 3268 3269 static int 3270 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3271 int allocator, uint64_t activation_weight) 3272 { 3273 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3274 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3275 3276 /* 3277 * If we're activating for the claim code, we don't want to actually 3278 * set the metaslab up for a specific allocator. 3279 */ 3280 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3281 ASSERT0(msp->ms_activation_weight); 3282 msp->ms_activation_weight = msp->ms_weight; 3283 metaslab_group_sort(mg, msp, msp->ms_weight | 3284 activation_weight); 3285 return (0); 3286 } 3287 3288 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3289 &mga->mga_primary : &mga->mga_secondary); 3290 3291 mutex_enter(&mg->mg_lock); 3292 if (*mspp != NULL) { 3293 mutex_exit(&mg->mg_lock); 3294 return (EEXIST); 3295 } 3296 3297 *mspp = msp; 3298 ASSERT3S(msp->ms_allocator, ==, -1); 3299 msp->ms_allocator = allocator; 3300 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3301 3302 ASSERT0(msp->ms_activation_weight); 3303 msp->ms_activation_weight = msp->ms_weight; 3304 metaslab_group_sort_impl(mg, msp, 3305 msp->ms_weight | activation_weight); 3306 mutex_exit(&mg->mg_lock); 3307 3308 return (0); 3309 } 3310 3311 static int 3312 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3313 { 3314 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3315 3316 /* 3317 * The current metaslab is already activated for us so there 3318 * is nothing to do. Already activated though, doesn't mean 3319 * that this metaslab is activated for our allocator nor our 3320 * requested activation weight. The metaslab could have started 3321 * as an active one for our allocator but changed allocators 3322 * while we were waiting to grab its ms_lock or we stole it 3323 * [see find_valid_metaslab()]. This means that there is a 3324 * possibility of passivating a metaslab of another allocator 3325 * or from a different activation mask, from this thread. 3326 */ 3327 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3328 ASSERT(msp->ms_loaded); 3329 return (0); 3330 } 3331 3332 int error = metaslab_load(msp); 3333 if (error != 0) { 3334 metaslab_group_sort(msp->ms_group, msp, 0); 3335 return (error); 3336 } 3337 3338 /* 3339 * When entering metaslab_load() we may have dropped the 3340 * ms_lock because we were loading this metaslab, or we 3341 * were waiting for another thread to load it for us. In 3342 * that scenario, we recheck the weight of the metaslab 3343 * to see if it was activated by another thread. 3344 * 3345 * If the metaslab was activated for another allocator or 3346 * it was activated with a different activation weight (e.g. 3347 * we wanted to make it a primary but it was activated as 3348 * secondary) we return error (EBUSY). 3349 * 3350 * If the metaslab was activated for the same allocator 3351 * and requested activation mask, skip activating it. 3352 */ 3353 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3354 if (msp->ms_allocator != allocator) 3355 return (EBUSY); 3356 3357 if ((msp->ms_weight & activation_weight) == 0) 3358 return (SET_ERROR(EBUSY)); 3359 3360 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3361 msp->ms_primary); 3362 return (0); 3363 } 3364 3365 /* 3366 * If the metaslab has literally 0 space, it will have weight 0. In 3367 * that case, don't bother activating it. This can happen if the 3368 * metaslab had space during find_valid_metaslab, but another thread 3369 * loaded it and used all that space while we were waiting to grab the 3370 * lock. 3371 */ 3372 if (msp->ms_weight == 0) { 3373 ASSERT0(range_tree_space(msp->ms_allocatable)); 3374 return (SET_ERROR(ENOSPC)); 3375 } 3376 3377 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3378 allocator, activation_weight)) != 0) { 3379 return (error); 3380 } 3381 3382 ASSERT(msp->ms_loaded); 3383 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3384 3385 return (0); 3386 } 3387 3388 static void 3389 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3390 uint64_t weight) 3391 { 3392 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3393 ASSERT(msp->ms_loaded); 3394 3395 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3396 metaslab_group_sort(mg, msp, weight); 3397 return; 3398 } 3399 3400 mutex_enter(&mg->mg_lock); 3401 ASSERT3P(msp->ms_group, ==, mg); 3402 ASSERT3S(0, <=, msp->ms_allocator); 3403 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3404 3405 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3406 if (msp->ms_primary) { 3407 ASSERT3P(mga->mga_primary, ==, msp); 3408 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3409 mga->mga_primary = NULL; 3410 } else { 3411 ASSERT3P(mga->mga_secondary, ==, msp); 3412 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3413 mga->mga_secondary = NULL; 3414 } 3415 msp->ms_allocator = -1; 3416 metaslab_group_sort_impl(mg, msp, weight); 3417 mutex_exit(&mg->mg_lock); 3418 } 3419 3420 static void 3421 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3422 { 3423 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3424 3425 /* 3426 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3427 * this metaslab again. In that case, it had better be empty, 3428 * or we would be leaving space on the table. 3429 */ 3430 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3431 size >= SPA_MINBLOCKSIZE || 3432 range_tree_space(msp->ms_allocatable) == 0); 3433 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3434 3435 ASSERT(msp->ms_activation_weight != 0); 3436 msp->ms_activation_weight = 0; 3437 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3438 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3439 } 3440 3441 /* 3442 * Segment-based metaslabs are activated once and remain active until 3443 * we either fail an allocation attempt (similar to space-based metaslabs) 3444 * or have exhausted the free space in zfs_metaslab_switch_threshold 3445 * buckets since the metaslab was activated. This function checks to see 3446 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3447 * metaslab and passivates it proactively. This will allow us to select a 3448 * metaslab with a larger contiguous region, if any, remaining within this 3449 * metaslab group. If we're in sync pass > 1, then we continue using this 3450 * metaslab so that we don't dirty more block and cause more sync passes. 3451 */ 3452 static void 3453 metaslab_segment_may_passivate(metaslab_t *msp) 3454 { 3455 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3456 3457 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3458 return; 3459 3460 /* 3461 * Since we are in the middle of a sync pass, the most accurate 3462 * information that is accessible to us is the in-core range tree 3463 * histogram; calculate the new weight based on that information. 3464 */ 3465 uint64_t weight = metaslab_weight_from_range_tree(msp); 3466 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3467 int current_idx = WEIGHT_GET_INDEX(weight); 3468 3469 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3470 metaslab_passivate(msp, weight); 3471 } 3472 3473 static void 3474 metaslab_preload(void *arg) 3475 { 3476 metaslab_t *msp = arg; 3477 metaslab_class_t *mc = msp->ms_group->mg_class; 3478 spa_t *spa = mc->mc_spa; 3479 fstrans_cookie_t cookie = spl_fstrans_mark(); 3480 3481 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3482 3483 mutex_enter(&msp->ms_lock); 3484 (void) metaslab_load(msp); 3485 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3486 mutex_exit(&msp->ms_lock); 3487 spl_fstrans_unmark(cookie); 3488 } 3489 3490 static void 3491 metaslab_group_preload(metaslab_group_t *mg) 3492 { 3493 spa_t *spa = mg->mg_vd->vdev_spa; 3494 metaslab_t *msp; 3495 avl_tree_t *t = &mg->mg_metaslab_tree; 3496 int m = 0; 3497 3498 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3499 taskq_wait_outstanding(mg->mg_taskq, 0); 3500 return; 3501 } 3502 3503 mutex_enter(&mg->mg_lock); 3504 3505 /* 3506 * Load the next potential metaslabs 3507 */ 3508 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3509 ASSERT3P(msp->ms_group, ==, mg); 3510 3511 /* 3512 * We preload only the maximum number of metaslabs specified 3513 * by metaslab_preload_limit. If a metaslab is being forced 3514 * to condense then we preload it too. This will ensure 3515 * that force condensing happens in the next txg. 3516 */ 3517 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3518 continue; 3519 } 3520 3521 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3522 msp, TQ_SLEEP) != TASKQID_INVALID); 3523 } 3524 mutex_exit(&mg->mg_lock); 3525 } 3526 3527 /* 3528 * Determine if the space map's on-disk footprint is past our tolerance for 3529 * inefficiency. We would like to use the following criteria to make our 3530 * decision: 3531 * 3532 * 1. Do not condense if the size of the space map object would dramatically 3533 * increase as a result of writing out the free space range tree. 3534 * 3535 * 2. Condense if the on on-disk space map representation is at least 3536 * zfs_condense_pct/100 times the size of the optimal representation 3537 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3538 * 3539 * 3. Do not condense if the on-disk size of the space map does not actually 3540 * decrease. 3541 * 3542 * Unfortunately, we cannot compute the on-disk size of the space map in this 3543 * context because we cannot accurately compute the effects of compression, etc. 3544 * Instead, we apply the heuristic described in the block comment for 3545 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3546 * is greater than a threshold number of blocks. 3547 */ 3548 static boolean_t 3549 metaslab_should_condense(metaslab_t *msp) 3550 { 3551 space_map_t *sm = msp->ms_sm; 3552 vdev_t *vd = msp->ms_group->mg_vd; 3553 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3554 3555 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3556 ASSERT(msp->ms_loaded); 3557 ASSERT(sm != NULL); 3558 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3559 3560 /* 3561 * We always condense metaslabs that are empty and metaslabs for 3562 * which a condense request has been made. 3563 */ 3564 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3565 msp->ms_condense_wanted) 3566 return (B_TRUE); 3567 3568 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3569 uint64_t object_size = space_map_length(sm); 3570 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3571 msp->ms_allocatable, SM_NO_VDEVID); 3572 3573 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3574 object_size > zfs_metaslab_condense_block_threshold * record_size); 3575 } 3576 3577 /* 3578 * Condense the on-disk space map representation to its minimized form. 3579 * The minimized form consists of a small number of allocations followed 3580 * by the entries of the free range tree (ms_allocatable). The condensed 3581 * spacemap contains all the entries of previous TXGs (including those in 3582 * the pool-wide log spacemaps; thus this is effectively a superset of 3583 * metaslab_flush()), but this TXG's entries still need to be written. 3584 */ 3585 static void 3586 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3587 { 3588 range_tree_t *condense_tree; 3589 space_map_t *sm = msp->ms_sm; 3590 uint64_t txg = dmu_tx_get_txg(tx); 3591 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3592 3593 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3594 ASSERT(msp->ms_loaded); 3595 ASSERT(msp->ms_sm != NULL); 3596 3597 /* 3598 * In order to condense the space map, we need to change it so it 3599 * only describes which segments are currently allocated and free. 3600 * 3601 * All the current free space resides in the ms_allocatable, all 3602 * the ms_defer trees, and all the ms_allocating trees. We ignore 3603 * ms_freed because it is empty because we're in sync pass 1. We 3604 * ignore ms_freeing because these changes are not yet reflected 3605 * in the spacemap (they will be written later this txg). 3606 * 3607 * So to truncate the space map to represent all the entries of 3608 * previous TXGs we do the following: 3609 * 3610 * 1] We create a range tree (condense tree) that is 100% empty. 3611 * 2] We add to it all segments found in the ms_defer trees 3612 * as those segments are marked as free in the original space 3613 * map. We do the same with the ms_allocating trees for the same 3614 * reason. Adding these segments should be a relatively 3615 * inexpensive operation since we expect these trees to have a 3616 * small number of nodes. 3617 * 3] We vacate any unflushed allocs, since they are not frees we 3618 * need to add to the condense tree. Then we vacate any 3619 * unflushed frees as they should already be part of ms_allocatable. 3620 * 4] At this point, we would ideally like to add all segments 3621 * in the ms_allocatable tree from the condense tree. This way 3622 * we would write all the entries of the condense tree as the 3623 * condensed space map, which would only contain freed 3624 * segments with everything else assumed to be allocated. 3625 * 3626 * Doing so can be prohibitively expensive as ms_allocatable can 3627 * be large, and therefore computationally expensive to add to 3628 * the condense_tree. Instead we first sync out an entry marking 3629 * everything as allocated, then the condense_tree and then the 3630 * ms_allocatable, in the condensed space map. While this is not 3631 * optimal, it is typically close to optimal and more importantly 3632 * much cheaper to compute. 3633 * 3634 * 5] Finally, as both of the unflushed trees were written to our 3635 * new and condensed metaslab space map, we basically flushed 3636 * all the unflushed changes to disk, thus we call 3637 * metaslab_flush_update(). 3638 */ 3639 ASSERT3U(spa_sync_pass(spa), ==, 1); 3640 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3641 3642 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3643 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3644 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3645 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3646 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3647 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3648 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3649 3650 msp->ms_condense_wanted = B_FALSE; 3651 3652 range_seg_type_t type; 3653 uint64_t shift, start; 3654 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3655 &start, &shift); 3656 3657 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3658 3659 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3660 range_tree_walk(msp->ms_defer[t], 3661 range_tree_add, condense_tree); 3662 } 3663 3664 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3665 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3666 range_tree_add, condense_tree); 3667 } 3668 3669 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3670 metaslab_unflushed_changes_memused(msp)); 3671 spa->spa_unflushed_stats.sus_memused -= 3672 metaslab_unflushed_changes_memused(msp); 3673 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3674 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3675 3676 /* 3677 * We're about to drop the metaslab's lock thus allowing other 3678 * consumers to change it's content. Set the metaslab's ms_condensing 3679 * flag to ensure that allocations on this metaslab do not occur 3680 * while we're in the middle of committing it to disk. This is only 3681 * critical for ms_allocatable as all other range trees use per TXG 3682 * views of their content. 3683 */ 3684 msp->ms_condensing = B_TRUE; 3685 3686 mutex_exit(&msp->ms_lock); 3687 uint64_t object = space_map_object(msp->ms_sm); 3688 space_map_truncate(sm, 3689 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3690 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3691 3692 /* 3693 * space_map_truncate() may have reallocated the spacemap object. 3694 * If so, update the vdev_ms_array. 3695 */ 3696 if (space_map_object(msp->ms_sm) != object) { 3697 object = space_map_object(msp->ms_sm); 3698 dmu_write(spa->spa_meta_objset, 3699 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3700 msp->ms_id, sizeof (uint64_t), &object, tx); 3701 } 3702 3703 /* 3704 * Note: 3705 * When the log space map feature is enabled, each space map will 3706 * always have ALLOCS followed by FREES for each sync pass. This is 3707 * typically true even when the log space map feature is disabled, 3708 * except from the case where a metaslab goes through metaslab_sync() 3709 * and gets condensed. In that case the metaslab's space map will have 3710 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3711 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3712 * sync pass 1. 3713 */ 3714 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3715 shift); 3716 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3717 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3718 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3719 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3720 3721 range_tree_vacate(condense_tree, NULL, NULL); 3722 range_tree_destroy(condense_tree); 3723 range_tree_vacate(tmp_tree, NULL, NULL); 3724 range_tree_destroy(tmp_tree); 3725 mutex_enter(&msp->ms_lock); 3726 3727 msp->ms_condensing = B_FALSE; 3728 metaslab_flush_update(msp, tx); 3729 } 3730 3731 /* 3732 * Called when the metaslab has been flushed (its own spacemap now reflects 3733 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3734 * metadata and any pool-wide related log space map data (e.g. summary, 3735 * obsolete logs, etc..) to reflect that. 3736 */ 3737 static void 3738 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3739 { 3740 metaslab_group_t *mg = msp->ms_group; 3741 spa_t *spa = mg->mg_vd->vdev_spa; 3742 3743 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3744 3745 ASSERT3U(spa_sync_pass(spa), ==, 1); 3746 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3747 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3748 3749 /* 3750 * Just because a metaslab got flushed, that doesn't mean that 3751 * it will pass through metaslab_sync_done(). Thus, make sure to 3752 * update ms_synced_length here in case it doesn't. 3753 */ 3754 msp->ms_synced_length = space_map_length(msp->ms_sm); 3755 3756 /* 3757 * We may end up here from metaslab_condense() without the 3758 * feature being active. In that case this is a no-op. 3759 */ 3760 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3761 return; 3762 3763 ASSERT(spa_syncing_log_sm(spa) != NULL); 3764 ASSERT(msp->ms_sm != NULL); 3765 ASSERT(metaslab_unflushed_txg(msp) != 0); 3766 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3767 3768 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3769 3770 /* update metaslab's position in our flushing tree */ 3771 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3772 mutex_enter(&spa->spa_flushed_ms_lock); 3773 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3774 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3775 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3776 mutex_exit(&spa->spa_flushed_ms_lock); 3777 3778 /* update metaslab counts of spa_log_sm_t nodes */ 3779 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3780 spa_log_sm_increment_current_mscount(spa); 3781 3782 /* cleanup obsolete logs if any */ 3783 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3784 spa_cleanup_old_sm_logs(spa, tx); 3785 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3786 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3787 3788 /* update log space map summary */ 3789 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3790 spa_log_summary_add_flushed_metaslab(spa); 3791 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3792 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3793 } 3794 3795 boolean_t 3796 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3797 { 3798 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3799 3800 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3801 ASSERT3U(spa_sync_pass(spa), ==, 1); 3802 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3803 3804 ASSERT(msp->ms_sm != NULL); 3805 ASSERT(metaslab_unflushed_txg(msp) != 0); 3806 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3807 3808 /* 3809 * There is nothing wrong with flushing the same metaslab twice, as 3810 * this codepath should work on that case. However, the current 3811 * flushing scheme makes sure to avoid this situation as we would be 3812 * making all these calls without having anything meaningful to write 3813 * to disk. We assert this behavior here. 3814 */ 3815 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3816 3817 /* 3818 * We can not flush while loading, because then we would 3819 * not load the ms_unflushed_{allocs,frees}. 3820 */ 3821 if (msp->ms_loading) 3822 return (B_FALSE); 3823 3824 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3825 metaslab_verify_weight_and_frag(msp); 3826 3827 /* 3828 * Metaslab condensing is effectively flushing. Therefore if the 3829 * metaslab can be condensed we can just condense it instead of 3830 * flushing it. 3831 * 3832 * Note that metaslab_condense() does call metaslab_flush_update() 3833 * so we can just return immediately after condensing. We also 3834 * don't need to care about setting ms_flushing or broadcasting 3835 * ms_flush_cv, even if we temporarily drop the ms_lock in 3836 * metaslab_condense(), as the metaslab is already loaded. 3837 */ 3838 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3839 metaslab_group_t *mg = msp->ms_group; 3840 3841 /* 3842 * For all histogram operations below refer to the 3843 * comments of metaslab_sync() where we follow a 3844 * similar procedure. 3845 */ 3846 metaslab_group_histogram_verify(mg); 3847 metaslab_class_histogram_verify(mg->mg_class); 3848 metaslab_group_histogram_remove(mg, msp); 3849 3850 metaslab_condense(msp, tx); 3851 3852 space_map_histogram_clear(msp->ms_sm); 3853 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3854 ASSERT(range_tree_is_empty(msp->ms_freed)); 3855 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3856 space_map_histogram_add(msp->ms_sm, 3857 msp->ms_defer[t], tx); 3858 } 3859 metaslab_aux_histograms_update(msp); 3860 3861 metaslab_group_histogram_add(mg, msp); 3862 metaslab_group_histogram_verify(mg); 3863 metaslab_class_histogram_verify(mg->mg_class); 3864 3865 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3866 3867 /* 3868 * Since we recreated the histogram (and potentially 3869 * the ms_sm too while condensing) ensure that the 3870 * weight is updated too because we are not guaranteed 3871 * that this metaslab is dirty and will go through 3872 * metaslab_sync_done(). 3873 */ 3874 metaslab_recalculate_weight_and_sort(msp); 3875 return (B_TRUE); 3876 } 3877 3878 msp->ms_flushing = B_TRUE; 3879 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3880 3881 mutex_exit(&msp->ms_lock); 3882 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3883 SM_NO_VDEVID, tx); 3884 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3885 SM_NO_VDEVID, tx); 3886 mutex_enter(&msp->ms_lock); 3887 3888 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3889 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3890 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3891 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3892 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3893 spa_name(spa), 3894 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3895 (u_longlong_t)msp->ms_id, 3896 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3897 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3898 (u_longlong_t)(sm_len_after - sm_len_before)); 3899 } 3900 3901 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3902 metaslab_unflushed_changes_memused(msp)); 3903 spa->spa_unflushed_stats.sus_memused -= 3904 metaslab_unflushed_changes_memused(msp); 3905 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3906 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3907 3908 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3909 metaslab_verify_weight_and_frag(msp); 3910 3911 metaslab_flush_update(msp, tx); 3912 3913 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3914 metaslab_verify_weight_and_frag(msp); 3915 3916 msp->ms_flushing = B_FALSE; 3917 cv_broadcast(&msp->ms_flush_cv); 3918 return (B_TRUE); 3919 } 3920 3921 /* 3922 * Write a metaslab to disk in the context of the specified transaction group. 3923 */ 3924 void 3925 metaslab_sync(metaslab_t *msp, uint64_t txg) 3926 { 3927 metaslab_group_t *mg = msp->ms_group; 3928 vdev_t *vd = mg->mg_vd; 3929 spa_t *spa = vd->vdev_spa; 3930 objset_t *mos = spa_meta_objset(spa); 3931 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3932 dmu_tx_t *tx; 3933 3934 ASSERT(!vd->vdev_ishole); 3935 3936 /* 3937 * This metaslab has just been added so there's no work to do now. 3938 */ 3939 if (msp->ms_new) { 3940 ASSERT0(range_tree_space(alloctree)); 3941 ASSERT0(range_tree_space(msp->ms_freeing)); 3942 ASSERT0(range_tree_space(msp->ms_freed)); 3943 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3944 ASSERT0(range_tree_space(msp->ms_trim)); 3945 return; 3946 } 3947 3948 /* 3949 * Normally, we don't want to process a metaslab if there are no 3950 * allocations or frees to perform. However, if the metaslab is being 3951 * forced to condense, it's loaded and we're not beyond the final 3952 * dirty txg, we need to let it through. Not condensing beyond the 3953 * final dirty txg prevents an issue where metaslabs that need to be 3954 * condensed but were loaded for other reasons could cause a panic 3955 * here. By only checking the txg in that branch of the conditional, 3956 * we preserve the utility of the VERIFY statements in all other 3957 * cases. 3958 */ 3959 if (range_tree_is_empty(alloctree) && 3960 range_tree_is_empty(msp->ms_freeing) && 3961 range_tree_is_empty(msp->ms_checkpointing) && 3962 !(msp->ms_loaded && msp->ms_condense_wanted && 3963 txg <= spa_final_dirty_txg(spa))) 3964 return; 3965 3966 3967 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3968 3969 /* 3970 * The only state that can actually be changing concurrently 3971 * with metaslab_sync() is the metaslab's ms_allocatable. No 3972 * other thread can be modifying this txg's alloc, freeing, 3973 * freed, or space_map_phys_t. We drop ms_lock whenever we 3974 * could call into the DMU, because the DMU can call down to 3975 * us (e.g. via zio_free()) at any time. 3976 * 3977 * The spa_vdev_remove_thread() can be reading metaslab state 3978 * concurrently, and it is locked out by the ms_sync_lock. 3979 * Note that the ms_lock is insufficient for this, because it 3980 * is dropped by space_map_write(). 3981 */ 3982 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3983 3984 /* 3985 * Generate a log space map if one doesn't exist already. 3986 */ 3987 spa_generate_syncing_log_sm(spa, tx); 3988 3989 if (msp->ms_sm == NULL) { 3990 uint64_t new_object = space_map_alloc(mos, 3991 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3992 zfs_metaslab_sm_blksz_with_log : 3993 zfs_metaslab_sm_blksz_no_log, tx); 3994 VERIFY3U(new_object, !=, 0); 3995 3996 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3997 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3998 3999 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4000 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4001 ASSERT(msp->ms_sm != NULL); 4002 4003 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4004 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4005 ASSERT0(metaslab_allocated_space(msp)); 4006 } 4007 4008 if (metaslab_unflushed_txg(msp) == 0 && 4009 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 4010 ASSERT(spa_syncing_log_sm(spa) != NULL); 4011 4012 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4013 spa_log_sm_increment_current_mscount(spa); 4014 spa_log_summary_add_flushed_metaslab(spa); 4015 4016 ASSERT(msp->ms_sm != NULL); 4017 mutex_enter(&spa->spa_flushed_ms_lock); 4018 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4019 mutex_exit(&spa->spa_flushed_ms_lock); 4020 4021 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4022 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4023 } 4024 4025 if (!range_tree_is_empty(msp->ms_checkpointing) && 4026 vd->vdev_checkpoint_sm == NULL) { 4027 ASSERT(spa_has_checkpoint(spa)); 4028 4029 uint64_t new_object = space_map_alloc(mos, 4030 zfs_vdev_standard_sm_blksz, tx); 4031 VERIFY3U(new_object, !=, 0); 4032 4033 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4034 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4035 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4036 4037 /* 4038 * We save the space map object as an entry in vdev_top_zap 4039 * so it can be retrieved when the pool is reopened after an 4040 * export or through zdb. 4041 */ 4042 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4043 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4044 sizeof (new_object), 1, &new_object, tx)); 4045 } 4046 4047 mutex_enter(&msp->ms_sync_lock); 4048 mutex_enter(&msp->ms_lock); 4049 4050 /* 4051 * Note: metaslab_condense() clears the space map's histogram. 4052 * Therefore we must verify and remove this histogram before 4053 * condensing. 4054 */ 4055 metaslab_group_histogram_verify(mg); 4056 metaslab_class_histogram_verify(mg->mg_class); 4057 metaslab_group_histogram_remove(mg, msp); 4058 4059 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4060 metaslab_should_condense(msp)) 4061 metaslab_condense(msp, tx); 4062 4063 /* 4064 * We'll be going to disk to sync our space accounting, thus we 4065 * drop the ms_lock during that time so allocations coming from 4066 * open-context (ZIL) for future TXGs do not block. 4067 */ 4068 mutex_exit(&msp->ms_lock); 4069 space_map_t *log_sm = spa_syncing_log_sm(spa); 4070 if (log_sm != NULL) { 4071 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4072 4073 space_map_write(log_sm, alloctree, SM_ALLOC, 4074 vd->vdev_id, tx); 4075 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4076 vd->vdev_id, tx); 4077 mutex_enter(&msp->ms_lock); 4078 4079 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4080 metaslab_unflushed_changes_memused(msp)); 4081 spa->spa_unflushed_stats.sus_memused -= 4082 metaslab_unflushed_changes_memused(msp); 4083 range_tree_remove_xor_add(alloctree, 4084 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4085 range_tree_remove_xor_add(msp->ms_freeing, 4086 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4087 spa->spa_unflushed_stats.sus_memused += 4088 metaslab_unflushed_changes_memused(msp); 4089 } else { 4090 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4091 4092 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4093 SM_NO_VDEVID, tx); 4094 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4095 SM_NO_VDEVID, tx); 4096 mutex_enter(&msp->ms_lock); 4097 } 4098 4099 msp->ms_allocated_space += range_tree_space(alloctree); 4100 ASSERT3U(msp->ms_allocated_space, >=, 4101 range_tree_space(msp->ms_freeing)); 4102 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4103 4104 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4105 ASSERT(spa_has_checkpoint(spa)); 4106 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4107 4108 /* 4109 * Since we are doing writes to disk and the ms_checkpointing 4110 * tree won't be changing during that time, we drop the 4111 * ms_lock while writing to the checkpoint space map, for the 4112 * same reason mentioned above. 4113 */ 4114 mutex_exit(&msp->ms_lock); 4115 space_map_write(vd->vdev_checkpoint_sm, 4116 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4117 mutex_enter(&msp->ms_lock); 4118 4119 spa->spa_checkpoint_info.sci_dspace += 4120 range_tree_space(msp->ms_checkpointing); 4121 vd->vdev_stat.vs_checkpoint_space += 4122 range_tree_space(msp->ms_checkpointing); 4123 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4124 -space_map_allocated(vd->vdev_checkpoint_sm)); 4125 4126 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4127 } 4128 4129 if (msp->ms_loaded) { 4130 /* 4131 * When the space map is loaded, we have an accurate 4132 * histogram in the range tree. This gives us an opportunity 4133 * to bring the space map's histogram up-to-date so we clear 4134 * it first before updating it. 4135 */ 4136 space_map_histogram_clear(msp->ms_sm); 4137 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4138 4139 /* 4140 * Since we've cleared the histogram we need to add back 4141 * any free space that has already been processed, plus 4142 * any deferred space. This allows the on-disk histogram 4143 * to accurately reflect all free space even if some space 4144 * is not yet available for allocation (i.e. deferred). 4145 */ 4146 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4147 4148 /* 4149 * Add back any deferred free space that has not been 4150 * added back into the in-core free tree yet. This will 4151 * ensure that we don't end up with a space map histogram 4152 * that is completely empty unless the metaslab is fully 4153 * allocated. 4154 */ 4155 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4156 space_map_histogram_add(msp->ms_sm, 4157 msp->ms_defer[t], tx); 4158 } 4159 } 4160 4161 /* 4162 * Always add the free space from this sync pass to the space 4163 * map histogram. We want to make sure that the on-disk histogram 4164 * accounts for all free space. If the space map is not loaded, 4165 * then we will lose some accuracy but will correct it the next 4166 * time we load the space map. 4167 */ 4168 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4169 metaslab_aux_histograms_update(msp); 4170 4171 metaslab_group_histogram_add(mg, msp); 4172 metaslab_group_histogram_verify(mg); 4173 metaslab_class_histogram_verify(mg->mg_class); 4174 4175 /* 4176 * For sync pass 1, we avoid traversing this txg's free range tree 4177 * and instead will just swap the pointers for freeing and freed. 4178 * We can safely do this since the freed_tree is guaranteed to be 4179 * empty on the initial pass. 4180 * 4181 * Keep in mind that even if we are currently using a log spacemap 4182 * we want current frees to end up in the ms_allocatable (but not 4183 * get appended to the ms_sm) so their ranges can be reused as usual. 4184 */ 4185 if (spa_sync_pass(spa) == 1) { 4186 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4187 ASSERT0(msp->ms_allocated_this_txg); 4188 } else { 4189 range_tree_vacate(msp->ms_freeing, 4190 range_tree_add, msp->ms_freed); 4191 } 4192 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4193 range_tree_vacate(alloctree, NULL, NULL); 4194 4195 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4196 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4197 & TXG_MASK])); 4198 ASSERT0(range_tree_space(msp->ms_freeing)); 4199 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4200 4201 mutex_exit(&msp->ms_lock); 4202 4203 /* 4204 * Verify that the space map object ID has been recorded in the 4205 * vdev_ms_array. 4206 */ 4207 uint64_t object; 4208 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4209 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4210 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4211 4212 mutex_exit(&msp->ms_sync_lock); 4213 dmu_tx_commit(tx); 4214 } 4215 4216 static void 4217 metaslab_evict(metaslab_t *msp, uint64_t txg) 4218 { 4219 if (!msp->ms_loaded || msp->ms_disabled != 0) 4220 return; 4221 4222 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4223 VERIFY0(range_tree_space( 4224 msp->ms_allocating[(txg + t) & TXG_MASK])); 4225 } 4226 if (msp->ms_allocator != -1) 4227 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4228 4229 if (!metaslab_debug_unload) 4230 metaslab_unload(msp); 4231 } 4232 4233 /* 4234 * Called after a transaction group has completely synced to mark 4235 * all of the metaslab's free space as usable. 4236 */ 4237 void 4238 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4239 { 4240 metaslab_group_t *mg = msp->ms_group; 4241 vdev_t *vd = mg->mg_vd; 4242 spa_t *spa = vd->vdev_spa; 4243 range_tree_t **defer_tree; 4244 int64_t alloc_delta, defer_delta; 4245 boolean_t defer_allowed = B_TRUE; 4246 4247 ASSERT(!vd->vdev_ishole); 4248 4249 mutex_enter(&msp->ms_lock); 4250 4251 if (msp->ms_new) { 4252 /* this is a new metaslab, add its capacity to the vdev */ 4253 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4254 4255 /* there should be no allocations nor frees at this point */ 4256 VERIFY0(msp->ms_allocated_this_txg); 4257 VERIFY0(range_tree_space(msp->ms_freed)); 4258 } 4259 4260 ASSERT0(range_tree_space(msp->ms_freeing)); 4261 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4262 4263 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4264 4265 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4266 metaslab_class_get_alloc(spa_normal_class(spa)); 4267 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4268 defer_allowed = B_FALSE; 4269 } 4270 4271 defer_delta = 0; 4272 alloc_delta = msp->ms_allocated_this_txg - 4273 range_tree_space(msp->ms_freed); 4274 4275 if (defer_allowed) { 4276 defer_delta = range_tree_space(msp->ms_freed) - 4277 range_tree_space(*defer_tree); 4278 } else { 4279 defer_delta -= range_tree_space(*defer_tree); 4280 } 4281 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4282 defer_delta, 0); 4283 4284 if (spa_syncing_log_sm(spa) == NULL) { 4285 /* 4286 * If there's a metaslab_load() in progress and we don't have 4287 * a log space map, it means that we probably wrote to the 4288 * metaslab's space map. If this is the case, we need to 4289 * make sure that we wait for the load to complete so that we 4290 * have a consistent view at the in-core side of the metaslab. 4291 */ 4292 metaslab_load_wait(msp); 4293 } else { 4294 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4295 } 4296 4297 /* 4298 * When auto-trimming is enabled, free ranges which are added to 4299 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4300 * periodically consumed by the vdev_autotrim_thread() which issues 4301 * trims for all ranges and then vacates the tree. The ms_trim tree 4302 * can be discarded at any time with the sole consequence of recent 4303 * frees not being trimmed. 4304 */ 4305 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4306 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4307 if (!defer_allowed) { 4308 range_tree_walk(msp->ms_freed, range_tree_add, 4309 msp->ms_trim); 4310 } 4311 } else { 4312 range_tree_vacate(msp->ms_trim, NULL, NULL); 4313 } 4314 4315 /* 4316 * Move the frees from the defer_tree back to the free 4317 * range tree (if it's loaded). Swap the freed_tree and 4318 * the defer_tree -- this is safe to do because we've 4319 * just emptied out the defer_tree. 4320 */ 4321 range_tree_vacate(*defer_tree, 4322 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4323 if (defer_allowed) { 4324 range_tree_swap(&msp->ms_freed, defer_tree); 4325 } else { 4326 range_tree_vacate(msp->ms_freed, 4327 msp->ms_loaded ? range_tree_add : NULL, 4328 msp->ms_allocatable); 4329 } 4330 4331 msp->ms_synced_length = space_map_length(msp->ms_sm); 4332 4333 msp->ms_deferspace += defer_delta; 4334 ASSERT3S(msp->ms_deferspace, >=, 0); 4335 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4336 if (msp->ms_deferspace != 0) { 4337 /* 4338 * Keep syncing this metaslab until all deferred frees 4339 * are back in circulation. 4340 */ 4341 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4342 } 4343 metaslab_aux_histograms_update_done(msp, defer_allowed); 4344 4345 if (msp->ms_new) { 4346 msp->ms_new = B_FALSE; 4347 mutex_enter(&mg->mg_lock); 4348 mg->mg_ms_ready++; 4349 mutex_exit(&mg->mg_lock); 4350 } 4351 4352 /* 4353 * Re-sort metaslab within its group now that we've adjusted 4354 * its allocatable space. 4355 */ 4356 metaslab_recalculate_weight_and_sort(msp); 4357 4358 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4359 ASSERT0(range_tree_space(msp->ms_freeing)); 4360 ASSERT0(range_tree_space(msp->ms_freed)); 4361 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4362 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4363 msp->ms_allocated_this_txg = 0; 4364 mutex_exit(&msp->ms_lock); 4365 } 4366 4367 void 4368 metaslab_sync_reassess(metaslab_group_t *mg) 4369 { 4370 spa_t *spa = mg->mg_class->mc_spa; 4371 4372 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4373 metaslab_group_alloc_update(mg); 4374 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4375 4376 /* 4377 * Preload the next potential metaslabs but only on active 4378 * metaslab groups. We can get into a state where the metaslab 4379 * is no longer active since we dirty metaslabs as we remove a 4380 * a device, thus potentially making the metaslab group eligible 4381 * for preloading. 4382 */ 4383 if (mg->mg_activation_count > 0) { 4384 metaslab_group_preload(mg); 4385 } 4386 spa_config_exit(spa, SCL_ALLOC, FTAG); 4387 } 4388 4389 /* 4390 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4391 * the same vdev as an existing DVA of this BP, then try to allocate it 4392 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4393 */ 4394 static boolean_t 4395 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4396 { 4397 uint64_t dva_ms_id; 4398 4399 if (DVA_GET_ASIZE(dva) == 0) 4400 return (B_TRUE); 4401 4402 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4403 return (B_TRUE); 4404 4405 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4406 4407 return (msp->ms_id != dva_ms_id); 4408 } 4409 4410 /* 4411 * ========================================================================== 4412 * Metaslab allocation tracing facility 4413 * ========================================================================== 4414 */ 4415 4416 /* 4417 * Add an allocation trace element to the allocation tracing list. 4418 */ 4419 static void 4420 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4421 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4422 int allocator) 4423 { 4424 metaslab_alloc_trace_t *mat; 4425 4426 if (!metaslab_trace_enabled) 4427 return; 4428 4429 /* 4430 * When the tracing list reaches its maximum we remove 4431 * the second element in the list before adding a new one. 4432 * By removing the second element we preserve the original 4433 * entry as a clue to what allocations steps have already been 4434 * performed. 4435 */ 4436 if (zal->zal_size == metaslab_trace_max_entries) { 4437 metaslab_alloc_trace_t *mat_next; 4438 #ifdef ZFS_DEBUG 4439 panic("too many entries in allocation list"); 4440 #endif 4441 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4442 zal->zal_size--; 4443 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4444 list_remove(&zal->zal_list, mat_next); 4445 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4446 } 4447 4448 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4449 list_link_init(&mat->mat_list_node); 4450 mat->mat_mg = mg; 4451 mat->mat_msp = msp; 4452 mat->mat_size = psize; 4453 mat->mat_dva_id = dva_id; 4454 mat->mat_offset = offset; 4455 mat->mat_weight = 0; 4456 mat->mat_allocator = allocator; 4457 4458 if (msp != NULL) 4459 mat->mat_weight = msp->ms_weight; 4460 4461 /* 4462 * The list is part of the zio so locking is not required. Only 4463 * a single thread will perform allocations for a given zio. 4464 */ 4465 list_insert_tail(&zal->zal_list, mat); 4466 zal->zal_size++; 4467 4468 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4469 } 4470 4471 void 4472 metaslab_trace_init(zio_alloc_list_t *zal) 4473 { 4474 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4475 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4476 zal->zal_size = 0; 4477 } 4478 4479 void 4480 metaslab_trace_fini(zio_alloc_list_t *zal) 4481 { 4482 metaslab_alloc_trace_t *mat; 4483 4484 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4485 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4486 list_destroy(&zal->zal_list); 4487 zal->zal_size = 0; 4488 } 4489 4490 /* 4491 * ========================================================================== 4492 * Metaslab block operations 4493 * ========================================================================== 4494 */ 4495 4496 static void 4497 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4498 int allocator) 4499 { 4500 if (!(flags & METASLAB_ASYNC_ALLOC) || 4501 (flags & METASLAB_DONT_THROTTLE)) 4502 return; 4503 4504 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4505 if (!mg->mg_class->mc_alloc_throttle_enabled) 4506 return; 4507 4508 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4509 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4510 } 4511 4512 static void 4513 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4514 { 4515 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4516 metaslab_class_allocator_t *mca = 4517 &mg->mg_class->mc_allocator[allocator]; 4518 uint64_t max = mg->mg_max_alloc_queue_depth; 4519 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4520 while (cur < max) { 4521 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4522 cur, cur + 1) == cur) { 4523 atomic_inc_64(&mca->mca_alloc_max_slots); 4524 return; 4525 } 4526 cur = mga->mga_cur_max_alloc_queue_depth; 4527 } 4528 } 4529 4530 void 4531 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4532 int allocator, boolean_t io_complete) 4533 { 4534 if (!(flags & METASLAB_ASYNC_ALLOC) || 4535 (flags & METASLAB_DONT_THROTTLE)) 4536 return; 4537 4538 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4539 if (!mg->mg_class->mc_alloc_throttle_enabled) 4540 return; 4541 4542 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4543 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4544 if (io_complete) 4545 metaslab_group_increment_qdepth(mg, allocator); 4546 } 4547 4548 void 4549 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4550 int allocator) 4551 { 4552 #ifdef ZFS_DEBUG 4553 const dva_t *dva = bp->blk_dva; 4554 int ndvas = BP_GET_NDVAS(bp); 4555 4556 for (int d = 0; d < ndvas; d++) { 4557 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4558 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4559 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4560 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4561 } 4562 #endif 4563 } 4564 4565 static uint64_t 4566 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4567 { 4568 uint64_t start; 4569 range_tree_t *rt = msp->ms_allocatable; 4570 metaslab_class_t *mc = msp->ms_group->mg_class; 4571 4572 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4573 VERIFY(!msp->ms_condensing); 4574 VERIFY0(msp->ms_disabled); 4575 4576 start = mc->mc_ops->msop_alloc(msp, size); 4577 if (start != -1ULL) { 4578 metaslab_group_t *mg = msp->ms_group; 4579 vdev_t *vd = mg->mg_vd; 4580 4581 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4582 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4583 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4584 range_tree_remove(rt, start, size); 4585 range_tree_clear(msp->ms_trim, start, size); 4586 4587 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4588 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4589 4590 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4591 msp->ms_allocating_total += size; 4592 4593 /* Track the last successful allocation */ 4594 msp->ms_alloc_txg = txg; 4595 metaslab_verify_space(msp, txg); 4596 } 4597 4598 /* 4599 * Now that we've attempted the allocation we need to update the 4600 * metaslab's maximum block size since it may have changed. 4601 */ 4602 msp->ms_max_size = metaslab_largest_allocatable(msp); 4603 return (start); 4604 } 4605 4606 /* 4607 * Find the metaslab with the highest weight that is less than what we've 4608 * already tried. In the common case, this means that we will examine each 4609 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4610 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4611 * activated by another thread, and we fail to allocate from the metaslab we 4612 * have selected, we may not try the newly-activated metaslab, and instead 4613 * activate another metaslab. This is not optimal, but generally does not cause 4614 * any problems (a possible exception being if every metaslab is completely full 4615 * except for the newly-activated metaslab which we fail to examine). 4616 */ 4617 static metaslab_t * 4618 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4619 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4620 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4621 boolean_t *was_active) 4622 { 4623 avl_index_t idx; 4624 avl_tree_t *t = &mg->mg_metaslab_tree; 4625 metaslab_t *msp = avl_find(t, search, &idx); 4626 if (msp == NULL) 4627 msp = avl_nearest(t, idx, AVL_AFTER); 4628 4629 int tries = 0; 4630 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4631 int i; 4632 4633 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4634 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4635 return (NULL); 4636 } 4637 tries++; 4638 4639 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4640 metaslab_trace_add(zal, mg, msp, asize, d, 4641 TRACE_TOO_SMALL, allocator); 4642 continue; 4643 } 4644 4645 /* 4646 * If the selected metaslab is condensing or disabled, 4647 * skip it. 4648 */ 4649 if (msp->ms_condensing || msp->ms_disabled > 0) 4650 continue; 4651 4652 *was_active = msp->ms_allocator != -1; 4653 /* 4654 * If we're activating as primary, this is our first allocation 4655 * from this disk, so we don't need to check how close we are. 4656 * If the metaslab under consideration was already active, 4657 * we're getting desperate enough to steal another allocator's 4658 * metaslab, so we still don't care about distances. 4659 */ 4660 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4661 break; 4662 4663 for (i = 0; i < d; i++) { 4664 if (want_unique && 4665 !metaslab_is_unique(msp, &dva[i])) 4666 break; /* try another metaslab */ 4667 } 4668 if (i == d) 4669 break; 4670 } 4671 4672 if (msp != NULL) { 4673 search->ms_weight = msp->ms_weight; 4674 search->ms_start = msp->ms_start + 1; 4675 search->ms_allocator = msp->ms_allocator; 4676 search->ms_primary = msp->ms_primary; 4677 } 4678 return (msp); 4679 } 4680 4681 static void 4682 metaslab_active_mask_verify(metaslab_t *msp) 4683 { 4684 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4685 4686 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4687 return; 4688 4689 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4690 return; 4691 4692 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4693 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4694 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4695 VERIFY3S(msp->ms_allocator, !=, -1); 4696 VERIFY(msp->ms_primary); 4697 return; 4698 } 4699 4700 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4701 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4702 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4703 VERIFY3S(msp->ms_allocator, !=, -1); 4704 VERIFY(!msp->ms_primary); 4705 return; 4706 } 4707 4708 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4709 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4710 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4711 VERIFY3S(msp->ms_allocator, ==, -1); 4712 return; 4713 } 4714 } 4715 4716 static uint64_t 4717 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4718 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4719 int allocator, boolean_t try_hard) 4720 { 4721 metaslab_t *msp = NULL; 4722 uint64_t offset = -1ULL; 4723 4724 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4725 for (int i = 0; i < d; i++) { 4726 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4727 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4728 activation_weight = METASLAB_WEIGHT_SECONDARY; 4729 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4730 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4731 activation_weight = METASLAB_WEIGHT_CLAIM; 4732 break; 4733 } 4734 } 4735 4736 /* 4737 * If we don't have enough metaslabs active to fill the entire array, we 4738 * just use the 0th slot. 4739 */ 4740 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4741 allocator = 0; 4742 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4743 4744 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4745 4746 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4747 search->ms_weight = UINT64_MAX; 4748 search->ms_start = 0; 4749 /* 4750 * At the end of the metaslab tree are the already-active metaslabs, 4751 * first the primaries, then the secondaries. When we resume searching 4752 * through the tree, we need to consider ms_allocator and ms_primary so 4753 * we start in the location right after where we left off, and don't 4754 * accidentally loop forever considering the same metaslabs. 4755 */ 4756 search->ms_allocator = -1; 4757 search->ms_primary = B_TRUE; 4758 for (;;) { 4759 boolean_t was_active = B_FALSE; 4760 4761 mutex_enter(&mg->mg_lock); 4762 4763 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4764 mga->mga_primary != NULL) { 4765 msp = mga->mga_primary; 4766 4767 /* 4768 * Even though we don't hold the ms_lock for the 4769 * primary metaslab, those fields should not 4770 * change while we hold the mg_lock. Thus it is 4771 * safe to make assertions on them. 4772 */ 4773 ASSERT(msp->ms_primary); 4774 ASSERT3S(msp->ms_allocator, ==, allocator); 4775 ASSERT(msp->ms_loaded); 4776 4777 was_active = B_TRUE; 4778 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4779 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4780 mga->mga_secondary != NULL) { 4781 msp = mga->mga_secondary; 4782 4783 /* 4784 * See comment above about the similar assertions 4785 * for the primary metaslab. 4786 */ 4787 ASSERT(!msp->ms_primary); 4788 ASSERT3S(msp->ms_allocator, ==, allocator); 4789 ASSERT(msp->ms_loaded); 4790 4791 was_active = B_TRUE; 4792 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4793 } else { 4794 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4795 want_unique, asize, allocator, try_hard, zal, 4796 search, &was_active); 4797 } 4798 4799 mutex_exit(&mg->mg_lock); 4800 if (msp == NULL) { 4801 kmem_free(search, sizeof (*search)); 4802 return (-1ULL); 4803 } 4804 mutex_enter(&msp->ms_lock); 4805 4806 metaslab_active_mask_verify(msp); 4807 4808 /* 4809 * This code is disabled out because of issues with 4810 * tracepoints in non-gpl kernel modules. 4811 */ 4812 #if 0 4813 DTRACE_PROBE3(ms__activation__attempt, 4814 metaslab_t *, msp, uint64_t, activation_weight, 4815 boolean_t, was_active); 4816 #endif 4817 4818 /* 4819 * Ensure that the metaslab we have selected is still 4820 * capable of handling our request. It's possible that 4821 * another thread may have changed the weight while we 4822 * were blocked on the metaslab lock. We check the 4823 * active status first to see if we need to set_selected_txg 4824 * a new metaslab. 4825 */ 4826 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4827 ASSERT3S(msp->ms_allocator, ==, -1); 4828 mutex_exit(&msp->ms_lock); 4829 continue; 4830 } 4831 4832 /* 4833 * If the metaslab was activated for another allocator 4834 * while we were waiting in the ms_lock above, or it's 4835 * a primary and we're seeking a secondary (or vice versa), 4836 * we go back and select a new metaslab. 4837 */ 4838 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4839 (msp->ms_allocator != -1) && 4840 (msp->ms_allocator != allocator || ((activation_weight == 4841 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4842 ASSERT(msp->ms_loaded); 4843 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4844 msp->ms_allocator != -1); 4845 mutex_exit(&msp->ms_lock); 4846 continue; 4847 } 4848 4849 /* 4850 * This metaslab was used for claiming regions allocated 4851 * by the ZIL during pool import. Once these regions are 4852 * claimed we don't need to keep the CLAIM bit set 4853 * anymore. Passivate this metaslab to zero its activation 4854 * mask. 4855 */ 4856 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4857 activation_weight != METASLAB_WEIGHT_CLAIM) { 4858 ASSERT(msp->ms_loaded); 4859 ASSERT3S(msp->ms_allocator, ==, -1); 4860 metaslab_passivate(msp, msp->ms_weight & 4861 ~METASLAB_WEIGHT_CLAIM); 4862 mutex_exit(&msp->ms_lock); 4863 continue; 4864 } 4865 4866 metaslab_set_selected_txg(msp, txg); 4867 4868 int activation_error = 4869 metaslab_activate(msp, allocator, activation_weight); 4870 metaslab_active_mask_verify(msp); 4871 4872 /* 4873 * If the metaslab was activated by another thread for 4874 * another allocator or activation_weight (EBUSY), or it 4875 * failed because another metaslab was assigned as primary 4876 * for this allocator (EEXIST) we continue using this 4877 * metaslab for our allocation, rather than going on to a 4878 * worse metaslab (we waited for that metaslab to be loaded 4879 * after all). 4880 * 4881 * If the activation failed due to an I/O error or ENOSPC we 4882 * skip to the next metaslab. 4883 */ 4884 boolean_t activated; 4885 if (activation_error == 0) { 4886 activated = B_TRUE; 4887 } else if (activation_error == EBUSY || 4888 activation_error == EEXIST) { 4889 activated = B_FALSE; 4890 } else { 4891 mutex_exit(&msp->ms_lock); 4892 continue; 4893 } 4894 ASSERT(msp->ms_loaded); 4895 4896 /* 4897 * Now that we have the lock, recheck to see if we should 4898 * continue to use this metaslab for this allocation. The 4899 * the metaslab is now loaded so metaslab_should_allocate() 4900 * can accurately determine if the allocation attempt should 4901 * proceed. 4902 */ 4903 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4904 /* Passivate this metaslab and select a new one. */ 4905 metaslab_trace_add(zal, mg, msp, asize, d, 4906 TRACE_TOO_SMALL, allocator); 4907 goto next; 4908 } 4909 4910 /* 4911 * If this metaslab is currently condensing then pick again 4912 * as we can't manipulate this metaslab until it's committed 4913 * to disk. If this metaslab is being initialized, we shouldn't 4914 * allocate from it since the allocated region might be 4915 * overwritten after allocation. 4916 */ 4917 if (msp->ms_condensing) { 4918 metaslab_trace_add(zal, mg, msp, asize, d, 4919 TRACE_CONDENSING, allocator); 4920 if (activated) { 4921 metaslab_passivate(msp, msp->ms_weight & 4922 ~METASLAB_ACTIVE_MASK); 4923 } 4924 mutex_exit(&msp->ms_lock); 4925 continue; 4926 } else if (msp->ms_disabled > 0) { 4927 metaslab_trace_add(zal, mg, msp, asize, d, 4928 TRACE_DISABLED, allocator); 4929 if (activated) { 4930 metaslab_passivate(msp, msp->ms_weight & 4931 ~METASLAB_ACTIVE_MASK); 4932 } 4933 mutex_exit(&msp->ms_lock); 4934 continue; 4935 } 4936 4937 offset = metaslab_block_alloc(msp, asize, txg); 4938 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4939 4940 if (offset != -1ULL) { 4941 /* Proactively passivate the metaslab, if needed */ 4942 if (activated) 4943 metaslab_segment_may_passivate(msp); 4944 break; 4945 } 4946 next: 4947 ASSERT(msp->ms_loaded); 4948 4949 /* 4950 * This code is disabled out because of issues with 4951 * tracepoints in non-gpl kernel modules. 4952 */ 4953 #if 0 4954 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4955 uint64_t, asize); 4956 #endif 4957 4958 /* 4959 * We were unable to allocate from this metaslab so determine 4960 * a new weight for this metaslab. Now that we have loaded 4961 * the metaslab we can provide a better hint to the metaslab 4962 * selector. 4963 * 4964 * For space-based metaslabs, we use the maximum block size. 4965 * This information is only available when the metaslab 4966 * is loaded and is more accurate than the generic free 4967 * space weight that was calculated by metaslab_weight(). 4968 * This information allows us to quickly compare the maximum 4969 * available allocation in the metaslab to the allocation 4970 * size being requested. 4971 * 4972 * For segment-based metaslabs, determine the new weight 4973 * based on the highest bucket in the range tree. We 4974 * explicitly use the loaded segment weight (i.e. the range 4975 * tree histogram) since it contains the space that is 4976 * currently available for allocation and is accurate 4977 * even within a sync pass. 4978 */ 4979 uint64_t weight; 4980 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4981 weight = metaslab_largest_allocatable(msp); 4982 WEIGHT_SET_SPACEBASED(weight); 4983 } else { 4984 weight = metaslab_weight_from_range_tree(msp); 4985 } 4986 4987 if (activated) { 4988 metaslab_passivate(msp, weight); 4989 } else { 4990 /* 4991 * For the case where we use the metaslab that is 4992 * active for another allocator we want to make 4993 * sure that we retain the activation mask. 4994 * 4995 * Note that we could attempt to use something like 4996 * metaslab_recalculate_weight_and_sort() that 4997 * retains the activation mask here. That function 4998 * uses metaslab_weight() to set the weight though 4999 * which is not as accurate as the calculations 5000 * above. 5001 */ 5002 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5003 metaslab_group_sort(mg, msp, weight); 5004 } 5005 metaslab_active_mask_verify(msp); 5006 5007 /* 5008 * We have just failed an allocation attempt, check 5009 * that metaslab_should_allocate() agrees. Otherwise, 5010 * we may end up in an infinite loop retrying the same 5011 * metaslab. 5012 */ 5013 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5014 5015 mutex_exit(&msp->ms_lock); 5016 } 5017 mutex_exit(&msp->ms_lock); 5018 kmem_free(search, sizeof (*search)); 5019 return (offset); 5020 } 5021 5022 static uint64_t 5023 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5024 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5025 int allocator, boolean_t try_hard) 5026 { 5027 uint64_t offset; 5028 ASSERT(mg->mg_initialized); 5029 5030 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5031 dva, d, allocator, try_hard); 5032 5033 mutex_enter(&mg->mg_lock); 5034 if (offset == -1ULL) { 5035 mg->mg_failed_allocations++; 5036 metaslab_trace_add(zal, mg, NULL, asize, d, 5037 TRACE_GROUP_FAILURE, allocator); 5038 if (asize == SPA_GANGBLOCKSIZE) { 5039 /* 5040 * This metaslab group was unable to allocate 5041 * the minimum gang block size so it must be out of 5042 * space. We must notify the allocation throttle 5043 * to start skipping allocation attempts to this 5044 * metaslab group until more space becomes available. 5045 * Note: this failure cannot be caused by the 5046 * allocation throttle since the allocation throttle 5047 * is only responsible for skipping devices and 5048 * not failing block allocations. 5049 */ 5050 mg->mg_no_free_space = B_TRUE; 5051 } 5052 } 5053 mg->mg_allocations++; 5054 mutex_exit(&mg->mg_lock); 5055 return (offset); 5056 } 5057 5058 /* 5059 * Allocate a block for the specified i/o. 5060 */ 5061 int 5062 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5063 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5064 zio_alloc_list_t *zal, int allocator) 5065 { 5066 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5067 metaslab_group_t *mg, *fast_mg, *rotor; 5068 vdev_t *vd; 5069 boolean_t try_hard = B_FALSE; 5070 5071 ASSERT(!DVA_IS_VALID(&dva[d])); 5072 5073 /* 5074 * For testing, make some blocks above a certain size be gang blocks. 5075 * This will result in more split blocks when using device removal, 5076 * and a large number of split blocks coupled with ztest-induced 5077 * damage can result in extremely long reconstruction times. This 5078 * will also test spilling from special to normal. 5079 */ 5080 if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) { 5081 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5082 allocator); 5083 return (SET_ERROR(ENOSPC)); 5084 } 5085 5086 /* 5087 * Start at the rotor and loop through all mgs until we find something. 5088 * Note that there's no locking on mca_rotor or mca_aliquot because 5089 * nothing actually breaks if we miss a few updates -- we just won't 5090 * allocate quite as evenly. It all balances out over time. 5091 * 5092 * If we are doing ditto or log blocks, try to spread them across 5093 * consecutive vdevs. If we're forced to reuse a vdev before we've 5094 * allocated all of our ditto blocks, then try and spread them out on 5095 * that vdev as much as possible. If it turns out to not be possible, 5096 * gradually lower our standards until anything becomes acceptable. 5097 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5098 * gives us hope of containing our fault domains to something we're 5099 * able to reason about. Otherwise, any two top-level vdev failures 5100 * will guarantee the loss of data. With consecutive allocation, 5101 * only two adjacent top-level vdev failures will result in data loss. 5102 * 5103 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5104 * ourselves on the same vdev as our gang block header. That 5105 * way, we can hope for locality in vdev_cache, plus it makes our 5106 * fault domains something tractable. 5107 */ 5108 if (hintdva) { 5109 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5110 5111 /* 5112 * It's possible the vdev we're using as the hint no 5113 * longer exists or its mg has been closed (e.g. by 5114 * device removal). Consult the rotor when 5115 * all else fails. 5116 */ 5117 if (vd != NULL && vd->vdev_mg != NULL) { 5118 mg = vdev_get_mg(vd, mc); 5119 5120 if (flags & METASLAB_HINTBP_AVOID && 5121 mg->mg_next != NULL) 5122 mg = mg->mg_next; 5123 } else { 5124 mg = mca->mca_rotor; 5125 } 5126 } else if (d != 0) { 5127 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5128 mg = vd->vdev_mg->mg_next; 5129 } else if (flags & METASLAB_FASTWRITE) { 5130 mg = fast_mg = mca->mca_rotor; 5131 5132 do { 5133 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5134 mg->mg_vd->vdev_pending_fastwrite) 5135 mg = fast_mg; 5136 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5137 5138 } else { 5139 ASSERT(mca->mca_rotor != NULL); 5140 mg = mca->mca_rotor; 5141 } 5142 5143 /* 5144 * If the hint put us into the wrong metaslab class, or into a 5145 * metaslab group that has been passivated, just follow the rotor. 5146 */ 5147 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5148 mg = mca->mca_rotor; 5149 5150 rotor = mg; 5151 top: 5152 do { 5153 boolean_t allocatable; 5154 5155 ASSERT(mg->mg_activation_count == 1); 5156 vd = mg->mg_vd; 5157 5158 /* 5159 * Don't allocate from faulted devices. 5160 */ 5161 if (try_hard) { 5162 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5163 allocatable = vdev_allocatable(vd); 5164 spa_config_exit(spa, SCL_ZIO, FTAG); 5165 } else { 5166 allocatable = vdev_allocatable(vd); 5167 } 5168 5169 /* 5170 * Determine if the selected metaslab group is eligible 5171 * for allocations. If we're ganging then don't allow 5172 * this metaslab group to skip allocations since that would 5173 * inadvertently return ENOSPC and suspend the pool 5174 * even though space is still available. 5175 */ 5176 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5177 allocatable = metaslab_group_allocatable(mg, rotor, 5178 psize, allocator, d); 5179 } 5180 5181 if (!allocatable) { 5182 metaslab_trace_add(zal, mg, NULL, psize, d, 5183 TRACE_NOT_ALLOCATABLE, allocator); 5184 goto next; 5185 } 5186 5187 ASSERT(mg->mg_initialized); 5188 5189 /* 5190 * Avoid writing single-copy data to a failing, 5191 * non-redundant vdev, unless we've already tried all 5192 * other vdevs. 5193 */ 5194 if ((vd->vdev_stat.vs_write_errors > 0 || 5195 vd->vdev_state < VDEV_STATE_HEALTHY) && 5196 d == 0 && !try_hard && vd->vdev_children == 0) { 5197 metaslab_trace_add(zal, mg, NULL, psize, d, 5198 TRACE_VDEV_ERROR, allocator); 5199 goto next; 5200 } 5201 5202 ASSERT(mg->mg_class == mc); 5203 5204 uint64_t asize = vdev_psize_to_asize(vd, psize); 5205 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5206 5207 /* 5208 * If we don't need to try hard, then require that the 5209 * block be on a different metaslab from any other DVAs 5210 * in this BP (unique=true). If we are trying hard, then 5211 * allow any metaslab to be used (unique=false). 5212 */ 5213 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5214 !try_hard, dva, d, allocator, try_hard); 5215 5216 if (offset != -1ULL) { 5217 /* 5218 * If we've just selected this metaslab group, 5219 * figure out whether the corresponding vdev is 5220 * over- or under-used relative to the pool, 5221 * and set an allocation bias to even it out. 5222 * 5223 * Bias is also used to compensate for unequally 5224 * sized vdevs so that space is allocated fairly. 5225 */ 5226 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5227 vdev_stat_t *vs = &vd->vdev_stat; 5228 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5229 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5230 int64_t ratio; 5231 5232 /* 5233 * Calculate how much more or less we should 5234 * try to allocate from this device during 5235 * this iteration around the rotor. 5236 * 5237 * This basically introduces a zero-centered 5238 * bias towards the devices with the most 5239 * free space, while compensating for vdev 5240 * size differences. 5241 * 5242 * Examples: 5243 * vdev V1 = 16M/128M 5244 * vdev V2 = 16M/128M 5245 * ratio(V1) = 100% ratio(V2) = 100% 5246 * 5247 * vdev V1 = 16M/128M 5248 * vdev V2 = 64M/128M 5249 * ratio(V1) = 127% ratio(V2) = 72% 5250 * 5251 * vdev V1 = 16M/128M 5252 * vdev V2 = 64M/512M 5253 * ratio(V1) = 40% ratio(V2) = 160% 5254 */ 5255 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5256 (mc_free + 1); 5257 mg->mg_bias = ((ratio - 100) * 5258 (int64_t)mg->mg_aliquot) / 100; 5259 } else if (!metaslab_bias_enabled) { 5260 mg->mg_bias = 0; 5261 } 5262 5263 if ((flags & METASLAB_FASTWRITE) || 5264 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5265 mg->mg_aliquot + mg->mg_bias) { 5266 mca->mca_rotor = mg->mg_next; 5267 mca->mca_aliquot = 0; 5268 } 5269 5270 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5271 DVA_SET_OFFSET(&dva[d], offset); 5272 DVA_SET_GANG(&dva[d], 5273 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5274 DVA_SET_ASIZE(&dva[d], asize); 5275 5276 if (flags & METASLAB_FASTWRITE) { 5277 atomic_add_64(&vd->vdev_pending_fastwrite, 5278 psize); 5279 } 5280 5281 return (0); 5282 } 5283 next: 5284 mca->mca_rotor = mg->mg_next; 5285 mca->mca_aliquot = 0; 5286 } while ((mg = mg->mg_next) != rotor); 5287 5288 /* 5289 * If we haven't tried hard, perhaps do so now. 5290 */ 5291 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5292 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5293 psize <= 1 << spa->spa_min_ashift)) { 5294 METASLABSTAT_BUMP(metaslabstat_try_hard); 5295 try_hard = B_TRUE; 5296 goto top; 5297 } 5298 5299 bzero(&dva[d], sizeof (dva_t)); 5300 5301 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5302 return (SET_ERROR(ENOSPC)); 5303 } 5304 5305 void 5306 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5307 boolean_t checkpoint) 5308 { 5309 metaslab_t *msp; 5310 spa_t *spa = vd->vdev_spa; 5311 5312 ASSERT(vdev_is_concrete(vd)); 5313 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5314 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5315 5316 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5317 5318 VERIFY(!msp->ms_condensing); 5319 VERIFY3U(offset, >=, msp->ms_start); 5320 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5321 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5322 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5323 5324 metaslab_check_free_impl(vd, offset, asize); 5325 5326 mutex_enter(&msp->ms_lock); 5327 if (range_tree_is_empty(msp->ms_freeing) && 5328 range_tree_is_empty(msp->ms_checkpointing)) { 5329 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5330 } 5331 5332 if (checkpoint) { 5333 ASSERT(spa_has_checkpoint(spa)); 5334 range_tree_add(msp->ms_checkpointing, offset, asize); 5335 } else { 5336 range_tree_add(msp->ms_freeing, offset, asize); 5337 } 5338 mutex_exit(&msp->ms_lock); 5339 } 5340 5341 void 5342 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5343 uint64_t size, void *arg) 5344 { 5345 (void) inner_offset; 5346 boolean_t *checkpoint = arg; 5347 5348 ASSERT3P(checkpoint, !=, NULL); 5349 5350 if (vd->vdev_ops->vdev_op_remap != NULL) 5351 vdev_indirect_mark_obsolete(vd, offset, size); 5352 else 5353 metaslab_free_impl(vd, offset, size, *checkpoint); 5354 } 5355 5356 static void 5357 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5358 boolean_t checkpoint) 5359 { 5360 spa_t *spa = vd->vdev_spa; 5361 5362 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5363 5364 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5365 return; 5366 5367 if (spa->spa_vdev_removal != NULL && 5368 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5369 vdev_is_concrete(vd)) { 5370 /* 5371 * Note: we check if the vdev is concrete because when 5372 * we complete the removal, we first change the vdev to be 5373 * an indirect vdev (in open context), and then (in syncing 5374 * context) clear spa_vdev_removal. 5375 */ 5376 free_from_removing_vdev(vd, offset, size); 5377 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5378 vdev_indirect_mark_obsolete(vd, offset, size); 5379 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5380 metaslab_free_impl_cb, &checkpoint); 5381 } else { 5382 metaslab_free_concrete(vd, offset, size, checkpoint); 5383 } 5384 } 5385 5386 typedef struct remap_blkptr_cb_arg { 5387 blkptr_t *rbca_bp; 5388 spa_remap_cb_t rbca_cb; 5389 vdev_t *rbca_remap_vd; 5390 uint64_t rbca_remap_offset; 5391 void *rbca_cb_arg; 5392 } remap_blkptr_cb_arg_t; 5393 5394 static void 5395 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5396 uint64_t size, void *arg) 5397 { 5398 remap_blkptr_cb_arg_t *rbca = arg; 5399 blkptr_t *bp = rbca->rbca_bp; 5400 5401 /* We can not remap split blocks. */ 5402 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5403 return; 5404 ASSERT0(inner_offset); 5405 5406 if (rbca->rbca_cb != NULL) { 5407 /* 5408 * At this point we know that we are not handling split 5409 * blocks and we invoke the callback on the previous 5410 * vdev which must be indirect. 5411 */ 5412 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5413 5414 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5415 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5416 5417 /* set up remap_blkptr_cb_arg for the next call */ 5418 rbca->rbca_remap_vd = vd; 5419 rbca->rbca_remap_offset = offset; 5420 } 5421 5422 /* 5423 * The phys birth time is that of dva[0]. This ensures that we know 5424 * when each dva was written, so that resilver can determine which 5425 * blocks need to be scrubbed (i.e. those written during the time 5426 * the vdev was offline). It also ensures that the key used in 5427 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5428 * we didn't change the phys_birth, a lookup in the ARC for a 5429 * remapped BP could find the data that was previously stored at 5430 * this vdev + offset. 5431 */ 5432 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5433 DVA_GET_VDEV(&bp->blk_dva[0])); 5434 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5435 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5436 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5437 5438 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5439 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5440 } 5441 5442 /* 5443 * If the block pointer contains any indirect DVAs, modify them to refer to 5444 * concrete DVAs. Note that this will sometimes not be possible, leaving 5445 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5446 * segments in the mapping (i.e. it is a "split block"). 5447 * 5448 * If the BP was remapped, calls the callback on the original dva (note the 5449 * callback can be called multiple times if the original indirect DVA refers 5450 * to another indirect DVA, etc). 5451 * 5452 * Returns TRUE if the BP was remapped. 5453 */ 5454 boolean_t 5455 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5456 { 5457 remap_blkptr_cb_arg_t rbca; 5458 5459 if (!zfs_remap_blkptr_enable) 5460 return (B_FALSE); 5461 5462 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5463 return (B_FALSE); 5464 5465 /* 5466 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5467 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5468 */ 5469 if (BP_GET_DEDUP(bp)) 5470 return (B_FALSE); 5471 5472 /* 5473 * Gang blocks can not be remapped, because 5474 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5475 * the BP used to read the gang block header (GBH) being the same 5476 * as the DVA[0] that we allocated for the GBH. 5477 */ 5478 if (BP_IS_GANG(bp)) 5479 return (B_FALSE); 5480 5481 /* 5482 * Embedded BP's have no DVA to remap. 5483 */ 5484 if (BP_GET_NDVAS(bp) < 1) 5485 return (B_FALSE); 5486 5487 /* 5488 * Note: we only remap dva[0]. If we remapped other dvas, we 5489 * would no longer know what their phys birth txg is. 5490 */ 5491 dva_t *dva = &bp->blk_dva[0]; 5492 5493 uint64_t offset = DVA_GET_OFFSET(dva); 5494 uint64_t size = DVA_GET_ASIZE(dva); 5495 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5496 5497 if (vd->vdev_ops->vdev_op_remap == NULL) 5498 return (B_FALSE); 5499 5500 rbca.rbca_bp = bp; 5501 rbca.rbca_cb = callback; 5502 rbca.rbca_remap_vd = vd; 5503 rbca.rbca_remap_offset = offset; 5504 rbca.rbca_cb_arg = arg; 5505 5506 /* 5507 * remap_blkptr_cb() will be called in order for each level of 5508 * indirection, until a concrete vdev is reached or a split block is 5509 * encountered. old_vd and old_offset are updated within the callback 5510 * as we go from the one indirect vdev to the next one (either concrete 5511 * or indirect again) in that order. 5512 */ 5513 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5514 5515 /* Check if the DVA wasn't remapped because it is a split block */ 5516 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5517 return (B_FALSE); 5518 5519 return (B_TRUE); 5520 } 5521 5522 /* 5523 * Undo the allocation of a DVA which happened in the given transaction group. 5524 */ 5525 void 5526 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5527 { 5528 metaslab_t *msp; 5529 vdev_t *vd; 5530 uint64_t vdev = DVA_GET_VDEV(dva); 5531 uint64_t offset = DVA_GET_OFFSET(dva); 5532 uint64_t size = DVA_GET_ASIZE(dva); 5533 5534 ASSERT(DVA_IS_VALID(dva)); 5535 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5536 5537 if (txg > spa_freeze_txg(spa)) 5538 return; 5539 5540 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5541 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5542 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5543 (u_longlong_t)vdev, (u_longlong_t)offset, 5544 (u_longlong_t)size); 5545 return; 5546 } 5547 5548 ASSERT(!vd->vdev_removing); 5549 ASSERT(vdev_is_concrete(vd)); 5550 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5551 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5552 5553 if (DVA_GET_GANG(dva)) 5554 size = vdev_gang_header_asize(vd); 5555 5556 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5557 5558 mutex_enter(&msp->ms_lock); 5559 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5560 offset, size); 5561 msp->ms_allocating_total -= size; 5562 5563 VERIFY(!msp->ms_condensing); 5564 VERIFY3U(offset, >=, msp->ms_start); 5565 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5566 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5567 msp->ms_size); 5568 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5569 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5570 range_tree_add(msp->ms_allocatable, offset, size); 5571 mutex_exit(&msp->ms_lock); 5572 } 5573 5574 /* 5575 * Free the block represented by the given DVA. 5576 */ 5577 void 5578 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5579 { 5580 uint64_t vdev = DVA_GET_VDEV(dva); 5581 uint64_t offset = DVA_GET_OFFSET(dva); 5582 uint64_t size = DVA_GET_ASIZE(dva); 5583 vdev_t *vd = vdev_lookup_top(spa, vdev); 5584 5585 ASSERT(DVA_IS_VALID(dva)); 5586 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5587 5588 if (DVA_GET_GANG(dva)) { 5589 size = vdev_gang_header_asize(vd); 5590 } 5591 5592 metaslab_free_impl(vd, offset, size, checkpoint); 5593 } 5594 5595 /* 5596 * Reserve some allocation slots. The reservation system must be called 5597 * before we call into the allocator. If there aren't any available slots 5598 * then the I/O will be throttled until an I/O completes and its slots are 5599 * freed up. The function returns true if it was successful in placing 5600 * the reservation. 5601 */ 5602 boolean_t 5603 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5604 zio_t *zio, int flags) 5605 { 5606 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5607 uint64_t max = mca->mca_alloc_max_slots; 5608 5609 ASSERT(mc->mc_alloc_throttle_enabled); 5610 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5611 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5612 /* 5613 * The potential race between _count() and _add() is covered 5614 * by the allocator lock in most cases, or irrelevant due to 5615 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5616 * But even if we assume some other non-existing scenario, the 5617 * worst that can happen is few more I/Os get to allocation 5618 * earlier, that is not a problem. 5619 * 5620 * We reserve the slots individually so that we can unreserve 5621 * them individually when an I/O completes. 5622 */ 5623 for (int d = 0; d < slots; d++) 5624 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5625 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5626 return (B_TRUE); 5627 } 5628 return (B_FALSE); 5629 } 5630 5631 void 5632 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5633 int allocator, zio_t *zio) 5634 { 5635 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5636 5637 ASSERT(mc->mc_alloc_throttle_enabled); 5638 for (int d = 0; d < slots; d++) 5639 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5640 } 5641 5642 static int 5643 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5644 uint64_t txg) 5645 { 5646 metaslab_t *msp; 5647 spa_t *spa = vd->vdev_spa; 5648 int error = 0; 5649 5650 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5651 return (SET_ERROR(ENXIO)); 5652 5653 ASSERT3P(vd->vdev_ms, !=, NULL); 5654 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5655 5656 mutex_enter(&msp->ms_lock); 5657 5658 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5659 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5660 if (error == EBUSY) { 5661 ASSERT(msp->ms_loaded); 5662 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5663 error = 0; 5664 } 5665 } 5666 5667 if (error == 0 && 5668 !range_tree_contains(msp->ms_allocatable, offset, size)) 5669 error = SET_ERROR(ENOENT); 5670 5671 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5672 mutex_exit(&msp->ms_lock); 5673 return (error); 5674 } 5675 5676 VERIFY(!msp->ms_condensing); 5677 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5678 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5679 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5680 msp->ms_size); 5681 range_tree_remove(msp->ms_allocatable, offset, size); 5682 range_tree_clear(msp->ms_trim, offset, size); 5683 5684 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5685 metaslab_class_t *mc = msp->ms_group->mg_class; 5686 multilist_sublist_t *mls = 5687 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5688 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5689 msp->ms_selected_txg = txg; 5690 multilist_sublist_insert_head(mls, msp); 5691 } 5692 multilist_sublist_unlock(mls); 5693 5694 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5695 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5696 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5697 offset, size); 5698 msp->ms_allocating_total += size; 5699 } 5700 5701 mutex_exit(&msp->ms_lock); 5702 5703 return (0); 5704 } 5705 5706 typedef struct metaslab_claim_cb_arg_t { 5707 uint64_t mcca_txg; 5708 int mcca_error; 5709 } metaslab_claim_cb_arg_t; 5710 5711 static void 5712 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5713 uint64_t size, void *arg) 5714 { 5715 (void) inner_offset; 5716 metaslab_claim_cb_arg_t *mcca_arg = arg; 5717 5718 if (mcca_arg->mcca_error == 0) { 5719 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5720 size, mcca_arg->mcca_txg); 5721 } 5722 } 5723 5724 int 5725 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5726 { 5727 if (vd->vdev_ops->vdev_op_remap != NULL) { 5728 metaslab_claim_cb_arg_t arg; 5729 5730 /* 5731 * Only zdb(8) can claim on indirect vdevs. This is used 5732 * to detect leaks of mapped space (that are not accounted 5733 * for in the obsolete counts, spacemap, or bpobj). 5734 */ 5735 ASSERT(!spa_writeable(vd->vdev_spa)); 5736 arg.mcca_error = 0; 5737 arg.mcca_txg = txg; 5738 5739 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5740 metaslab_claim_impl_cb, &arg); 5741 5742 if (arg.mcca_error == 0) { 5743 arg.mcca_error = metaslab_claim_concrete(vd, 5744 offset, size, txg); 5745 } 5746 return (arg.mcca_error); 5747 } else { 5748 return (metaslab_claim_concrete(vd, offset, size, txg)); 5749 } 5750 } 5751 5752 /* 5753 * Intent log support: upon opening the pool after a crash, notify the SPA 5754 * of blocks that the intent log has allocated for immediate write, but 5755 * which are still considered free by the SPA because the last transaction 5756 * group didn't commit yet. 5757 */ 5758 static int 5759 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5760 { 5761 uint64_t vdev = DVA_GET_VDEV(dva); 5762 uint64_t offset = DVA_GET_OFFSET(dva); 5763 uint64_t size = DVA_GET_ASIZE(dva); 5764 vdev_t *vd; 5765 5766 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5767 return (SET_ERROR(ENXIO)); 5768 } 5769 5770 ASSERT(DVA_IS_VALID(dva)); 5771 5772 if (DVA_GET_GANG(dva)) 5773 size = vdev_gang_header_asize(vd); 5774 5775 return (metaslab_claim_impl(vd, offset, size, txg)); 5776 } 5777 5778 int 5779 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5780 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5781 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5782 { 5783 dva_t *dva = bp->blk_dva; 5784 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5785 int error = 0; 5786 5787 ASSERT(bp->blk_birth == 0); 5788 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5789 5790 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5791 5792 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5793 /* no vdevs in this class */ 5794 spa_config_exit(spa, SCL_ALLOC, FTAG); 5795 return (SET_ERROR(ENOSPC)); 5796 } 5797 5798 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5799 ASSERT(BP_GET_NDVAS(bp) == 0); 5800 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5801 ASSERT3P(zal, !=, NULL); 5802 5803 for (int d = 0; d < ndvas; d++) { 5804 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5805 txg, flags, zal, allocator); 5806 if (error != 0) { 5807 for (d--; d >= 0; d--) { 5808 metaslab_unalloc_dva(spa, &dva[d], txg); 5809 metaslab_group_alloc_decrement(spa, 5810 DVA_GET_VDEV(&dva[d]), zio, flags, 5811 allocator, B_FALSE); 5812 bzero(&dva[d], sizeof (dva_t)); 5813 } 5814 spa_config_exit(spa, SCL_ALLOC, FTAG); 5815 return (error); 5816 } else { 5817 /* 5818 * Update the metaslab group's queue depth 5819 * based on the newly allocated dva. 5820 */ 5821 metaslab_group_alloc_increment(spa, 5822 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5823 } 5824 } 5825 ASSERT(error == 0); 5826 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5827 5828 spa_config_exit(spa, SCL_ALLOC, FTAG); 5829 5830 BP_SET_BIRTH(bp, txg, 0); 5831 5832 return (0); 5833 } 5834 5835 void 5836 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5837 { 5838 const dva_t *dva = bp->blk_dva; 5839 int ndvas = BP_GET_NDVAS(bp); 5840 5841 ASSERT(!BP_IS_HOLE(bp)); 5842 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5843 5844 /* 5845 * If we have a checkpoint for the pool we need to make sure that 5846 * the blocks that we free that are part of the checkpoint won't be 5847 * reused until the checkpoint is discarded or we revert to it. 5848 * 5849 * The checkpoint flag is passed down the metaslab_free code path 5850 * and is set whenever we want to add a block to the checkpoint's 5851 * accounting. That is, we "checkpoint" blocks that existed at the 5852 * time the checkpoint was created and are therefore referenced by 5853 * the checkpointed uberblock. 5854 * 5855 * Note that, we don't checkpoint any blocks if the current 5856 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5857 * normally as they will be referenced by the checkpointed uberblock. 5858 */ 5859 boolean_t checkpoint = B_FALSE; 5860 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5861 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5862 /* 5863 * At this point, if the block is part of the checkpoint 5864 * there is no way it was created in the current txg. 5865 */ 5866 ASSERT(!now); 5867 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5868 checkpoint = B_TRUE; 5869 } 5870 5871 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5872 5873 for (int d = 0; d < ndvas; d++) { 5874 if (now) { 5875 metaslab_unalloc_dva(spa, &dva[d], txg); 5876 } else { 5877 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5878 metaslab_free_dva(spa, &dva[d], checkpoint); 5879 } 5880 } 5881 5882 spa_config_exit(spa, SCL_FREE, FTAG); 5883 } 5884 5885 int 5886 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5887 { 5888 const dva_t *dva = bp->blk_dva; 5889 int ndvas = BP_GET_NDVAS(bp); 5890 int error = 0; 5891 5892 ASSERT(!BP_IS_HOLE(bp)); 5893 5894 if (txg != 0) { 5895 /* 5896 * First do a dry run to make sure all DVAs are claimable, 5897 * so we don't have to unwind from partial failures below. 5898 */ 5899 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5900 return (error); 5901 } 5902 5903 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5904 5905 for (int d = 0; d < ndvas; d++) { 5906 error = metaslab_claim_dva(spa, &dva[d], txg); 5907 if (error != 0) 5908 break; 5909 } 5910 5911 spa_config_exit(spa, SCL_ALLOC, FTAG); 5912 5913 ASSERT(error == 0 || txg == 0); 5914 5915 return (error); 5916 } 5917 5918 void 5919 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5920 { 5921 const dva_t *dva = bp->blk_dva; 5922 int ndvas = BP_GET_NDVAS(bp); 5923 uint64_t psize = BP_GET_PSIZE(bp); 5924 int d; 5925 vdev_t *vd; 5926 5927 ASSERT(!BP_IS_HOLE(bp)); 5928 ASSERT(!BP_IS_EMBEDDED(bp)); 5929 ASSERT(psize > 0); 5930 5931 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5932 5933 for (d = 0; d < ndvas; d++) { 5934 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5935 continue; 5936 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5937 } 5938 5939 spa_config_exit(spa, SCL_VDEV, FTAG); 5940 } 5941 5942 void 5943 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5944 { 5945 const dva_t *dva = bp->blk_dva; 5946 int ndvas = BP_GET_NDVAS(bp); 5947 uint64_t psize = BP_GET_PSIZE(bp); 5948 int d; 5949 vdev_t *vd; 5950 5951 ASSERT(!BP_IS_HOLE(bp)); 5952 ASSERT(!BP_IS_EMBEDDED(bp)); 5953 ASSERT(psize > 0); 5954 5955 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5956 5957 for (d = 0; d < ndvas; d++) { 5958 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5959 continue; 5960 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5961 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5962 } 5963 5964 spa_config_exit(spa, SCL_VDEV, FTAG); 5965 } 5966 5967 static void 5968 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5969 uint64_t size, void *arg) 5970 { 5971 (void) inner, (void) arg; 5972 5973 if (vd->vdev_ops == &vdev_indirect_ops) 5974 return; 5975 5976 metaslab_check_free_impl(vd, offset, size); 5977 } 5978 5979 static void 5980 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5981 { 5982 metaslab_t *msp; 5983 spa_t *spa __maybe_unused = vd->vdev_spa; 5984 5985 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5986 return; 5987 5988 if (vd->vdev_ops->vdev_op_remap != NULL) { 5989 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5990 metaslab_check_free_impl_cb, NULL); 5991 return; 5992 } 5993 5994 ASSERT(vdev_is_concrete(vd)); 5995 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5996 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5997 5998 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5999 6000 mutex_enter(&msp->ms_lock); 6001 if (msp->ms_loaded) { 6002 range_tree_verify_not_present(msp->ms_allocatable, 6003 offset, size); 6004 } 6005 6006 /* 6007 * Check all segments that currently exist in the freeing pipeline. 6008 * 6009 * It would intuitively make sense to also check the current allocating 6010 * tree since metaslab_unalloc_dva() exists for extents that are 6011 * allocated and freed in the same sync pass within the same txg. 6012 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6013 * segment but then we free part of it within the same txg 6014 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6015 * current allocating tree. 6016 */ 6017 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6018 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6019 range_tree_verify_not_present(msp->ms_freed, offset, size); 6020 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6021 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6022 range_tree_verify_not_present(msp->ms_trim, offset, size); 6023 mutex_exit(&msp->ms_lock); 6024 } 6025 6026 void 6027 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6028 { 6029 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6030 return; 6031 6032 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6033 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6034 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6035 vdev_t *vd = vdev_lookup_top(spa, vdev); 6036 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6037 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6038 6039 if (DVA_GET_GANG(&bp->blk_dva[i])) 6040 size = vdev_gang_header_asize(vd); 6041 6042 ASSERT3P(vd, !=, NULL); 6043 6044 metaslab_check_free_impl(vd, offset, size); 6045 } 6046 spa_config_exit(spa, SCL_VDEV, FTAG); 6047 } 6048 6049 static void 6050 metaslab_group_disable_wait(metaslab_group_t *mg) 6051 { 6052 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6053 while (mg->mg_disabled_updating) { 6054 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6055 } 6056 } 6057 6058 static void 6059 metaslab_group_disabled_increment(metaslab_group_t *mg) 6060 { 6061 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6062 ASSERT(mg->mg_disabled_updating); 6063 6064 while (mg->mg_ms_disabled >= max_disabled_ms) { 6065 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6066 } 6067 mg->mg_ms_disabled++; 6068 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6069 } 6070 6071 /* 6072 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6073 * We must also track how many metaslabs are currently disabled within a 6074 * metaslab group and limit them to prevent allocation failures from 6075 * occurring because all metaslabs are disabled. 6076 */ 6077 void 6078 metaslab_disable(metaslab_t *msp) 6079 { 6080 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6081 metaslab_group_t *mg = msp->ms_group; 6082 6083 mutex_enter(&mg->mg_ms_disabled_lock); 6084 6085 /* 6086 * To keep an accurate count of how many threads have disabled 6087 * a specific metaslab group, we only allow one thread to mark 6088 * the metaslab group at a time. This ensures that the value of 6089 * ms_disabled will be accurate when we decide to mark a metaslab 6090 * group as disabled. To do this we force all other threads 6091 * to wait till the metaslab's mg_disabled_updating flag is no 6092 * longer set. 6093 */ 6094 metaslab_group_disable_wait(mg); 6095 mg->mg_disabled_updating = B_TRUE; 6096 if (msp->ms_disabled == 0) { 6097 metaslab_group_disabled_increment(mg); 6098 } 6099 mutex_enter(&msp->ms_lock); 6100 msp->ms_disabled++; 6101 mutex_exit(&msp->ms_lock); 6102 6103 mg->mg_disabled_updating = B_FALSE; 6104 cv_broadcast(&mg->mg_ms_disabled_cv); 6105 mutex_exit(&mg->mg_ms_disabled_lock); 6106 } 6107 6108 void 6109 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6110 { 6111 metaslab_group_t *mg = msp->ms_group; 6112 spa_t *spa = mg->mg_vd->vdev_spa; 6113 6114 /* 6115 * Wait for the outstanding IO to be synced to prevent newly 6116 * allocated blocks from being overwritten. This used by 6117 * initialize and TRIM which are modifying unallocated space. 6118 */ 6119 if (sync) 6120 txg_wait_synced(spa_get_dsl(spa), 0); 6121 6122 mutex_enter(&mg->mg_ms_disabled_lock); 6123 mutex_enter(&msp->ms_lock); 6124 if (--msp->ms_disabled == 0) { 6125 mg->mg_ms_disabled--; 6126 cv_broadcast(&mg->mg_ms_disabled_cv); 6127 if (unload) 6128 metaslab_unload(msp); 6129 } 6130 mutex_exit(&msp->ms_lock); 6131 mutex_exit(&mg->mg_ms_disabled_lock); 6132 } 6133 6134 static void 6135 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6136 { 6137 vdev_t *vd = ms->ms_group->mg_vd; 6138 spa_t *spa = vd->vdev_spa; 6139 objset_t *mos = spa_meta_objset(spa); 6140 6141 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6142 6143 metaslab_unflushed_phys_t entry = { 6144 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6145 }; 6146 uint64_t entry_size = sizeof (entry); 6147 uint64_t entry_offset = ms->ms_id * entry_size; 6148 6149 uint64_t object = 0; 6150 int err = zap_lookup(mos, vd->vdev_top_zap, 6151 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6152 &object); 6153 if (err == ENOENT) { 6154 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6155 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6156 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6157 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6158 &object, tx)); 6159 } else { 6160 VERIFY0(err); 6161 } 6162 6163 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6164 &entry, tx); 6165 } 6166 6167 void 6168 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6169 { 6170 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6171 6172 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6173 return; 6174 6175 ms->ms_unflushed_txg = txg; 6176 metaslab_update_ondisk_flush_data(ms, tx); 6177 } 6178 6179 uint64_t 6180 metaslab_unflushed_txg(metaslab_t *ms) 6181 { 6182 return (ms->ms_unflushed_txg); 6183 } 6184 6185 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6186 "Allocation granularity (a.k.a. stripe size)"); 6187 6188 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6189 "Load all metaslabs when pool is first opened"); 6190 6191 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6192 "Prevent metaslabs from being unloaded"); 6193 6194 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6195 "Preload potential metaslabs during reassessment"); 6196 6197 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6198 "Delay in txgs after metaslab was last used before unloading"); 6199 6200 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6201 "Delay in milliseconds after metaslab was last used before unloading"); 6202 6203 /* BEGIN CSTYLED */ 6204 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6205 "Percentage of metaslab group size that should be free to make it " 6206 "eligible for allocation"); 6207 6208 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6209 "Percentage of metaslab group size that should be considered eligible " 6210 "for allocations unless all metaslab groups within the metaslab class " 6211 "have also crossed this threshold"); 6212 6213 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6214 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6215 6216 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6217 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6218 /* END CSTYLED */ 6219 6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6221 "Prefer metaslabs with lower LBAs"); 6222 6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6224 "Enable metaslab group biasing"); 6225 6226 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6227 ZMOD_RW, "Enable segment-based metaslab selection"); 6228 6229 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6230 "Segment-based metaslab selection maximum buckets before switching"); 6231 6232 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6233 "Blocks larger than this size are forced to be gang blocks"); 6234 6235 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6236 "Max distance (bytes) to search forward before using size tree"); 6237 6238 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6239 "When looking in size tree, use largest segment instead of exact fit"); 6240 6241 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6242 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6243 6244 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6245 "Percentage of memory that can be used to store metaslab range trees"); 6246 6247 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6248 ZMOD_RW, "Try hard to allocate before ganging"); 6249 6250 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6251 "Normally only consider this many of the best metaslabs in each vdev"); 6252