1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to each disk before 52 * moving on to the next top-level vdev. 53 */ 54 static uint64_t metaslab_aliquot = 1024 * 1024; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often. 63 */ 64 uint_t metaslab_force_ganging_pct = 3; 65 66 /* 67 * In pools where the log space map feature is not enabled we touch 68 * multiple metaslabs (and their respective space maps) with each 69 * transaction group. Thus, we benefit from having a small space map 70 * block size since it allows us to issue more I/O operations scattered 71 * around the disk. So a sane default for the space map block size 72 * is 8~16K. 73 */ 74 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 75 76 /* 77 * When the log space map feature is enabled, we accumulate a lot of 78 * changes per metaslab that are flushed once in a while so we benefit 79 * from a bigger block size like 128K for the metaslab space maps. 80 */ 81 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 82 83 /* 84 * The in-core space map representation is more compact than its on-disk form. 85 * The zfs_condense_pct determines how much more compact the in-core 86 * space map representation must be before we compact it on-disk. 87 * Values should be greater than or equal to 100. 88 */ 89 uint_t zfs_condense_pct = 200; 90 91 /* 92 * Condensing a metaslab is not guaranteed to actually reduce the amount of 93 * space used on disk. In particular, a space map uses data in increments of 94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 95 * same number of blocks after condensing. Since the goal of condensing is to 96 * reduce the number of IOPs required to read the space map, we only want to 97 * condense when we can be sure we will reduce the number of blocks used by the 98 * space map. Unfortunately, we cannot precisely compute whether or not this is 99 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 100 * we apply the following heuristic: do not condense a spacemap unless the 101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 102 * blocks. 103 */ 104 static const int zfs_metaslab_condense_block_threshold = 4; 105 106 /* 107 * The zfs_mg_noalloc_threshold defines which metaslab groups should 108 * be eligible for allocation. The value is defined as a percentage of 109 * free space. Metaslab groups that have more free space than 110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 111 * a metaslab group's free space is less than or equal to the 112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 115 * groups are allowed to accept allocations. Gang blocks are always 116 * eligible to allocate on any metaslab group. The default value of 0 means 117 * no metaslab group will be excluded based on this criterion. 118 */ 119 static uint_t zfs_mg_noalloc_threshold = 0; 120 121 /* 122 * Metaslab groups are considered eligible for allocations if their 123 * fragmentation metric (measured as a percentage) is less than or 124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 125 * exceeds this threshold then it will be skipped unless all metaslab 126 * groups within the metaslab class have also crossed this threshold. 127 * 128 * This tunable was introduced to avoid edge cases where we continue 129 * allocating from very fragmented disks in our pool while other, less 130 * fragmented disks, exists. On the other hand, if all disks in the 131 * pool are uniformly approaching the threshold, the threshold can 132 * be a speed bump in performance, where we keep switching the disks 133 * that we allocate from (e.g. we allocate some segments from disk A 134 * making it bypassing the threshold while freeing segments from disk 135 * B getting its fragmentation below the threshold). 136 * 137 * Empirically, we've seen that our vdev selection for allocations is 138 * good enough that fragmentation increases uniformly across all vdevs 139 * the majority of the time. Thus we set the threshold percentage high 140 * enough to avoid hitting the speed bump on pools that are being pushed 141 * to the edge. 142 */ 143 static uint_t zfs_mg_fragmentation_threshold = 95; 144 145 /* 146 * Allow metaslabs to keep their active state as long as their fragmentation 147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 148 * active metaslab that exceeds this threshold will no longer keep its active 149 * status allowing better metaslabs to be selected. 150 */ 151 static uint_t zfs_metaslab_fragmentation_threshold = 70; 152 153 /* 154 * When set will load all metaslabs when pool is first opened. 155 */ 156 int metaslab_debug_load = B_FALSE; 157 158 /* 159 * When set will prevent metaslabs from being unloaded. 160 */ 161 static int metaslab_debug_unload = B_FALSE; 162 163 /* 164 * Minimum size which forces the dynamic allocator to change 165 * it's allocation strategy. Once the space map cannot satisfy 166 * an allocation of this size then it switches to using more 167 * aggressive strategy (i.e search by size rather than offset). 168 */ 169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 170 171 /* 172 * The minimum free space, in percent, which must be available 173 * in a space map to continue allocations in a first-fit fashion. 174 * Once the space map's free space drops below this level we dynamically 175 * switch to using best-fit allocations. 176 */ 177 uint_t metaslab_df_free_pct = 4; 178 179 /* 180 * Maximum distance to search forward from the last offset. Without this 181 * limit, fragmented pools can see >100,000 iterations and 182 * metaslab_block_picker() becomes the performance limiting factor on 183 * high-performance storage. 184 * 185 * With the default setting of 16MB, we typically see less than 500 186 * iterations, even with very fragmented, ashift=9 pools. The maximum number 187 * of iterations possible is: 188 * metaslab_df_max_search / (2 * (1<<ashift)) 189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 190 * 2048 (with ashift=12). 191 */ 192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 193 194 /* 195 * Forces the metaslab_block_picker function to search for at least this many 196 * segments forwards until giving up on finding a segment that the allocation 197 * will fit into. 198 */ 199 static const uint32_t metaslab_min_search_count = 100; 200 201 /* 202 * If we are not searching forward (due to metaslab_df_max_search, 203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 204 * controls what segment is used. If it is set, we will use the largest free 205 * segment. If it is not set, we will use a segment of exactly the requested 206 * size (or larger). 207 */ 208 static int metaslab_df_use_largest_segment = B_FALSE; 209 210 /* 211 * Percentage of all cpus that can be used by the metaslab taskq. 212 */ 213 int metaslab_load_pct = 50; 214 215 /* 216 * These tunables control how long a metaslab will remain loaded after the 217 * last allocation from it. A metaslab can't be unloaded until at least 218 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 219 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 220 * unloaded sooner. These settings are intended to be generous -- to keep 221 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 222 */ 223 static uint_t metaslab_unload_delay = 32; 224 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 225 226 /* 227 * Max number of metaslabs per group to preload. 228 */ 229 uint_t metaslab_preload_limit = 10; 230 231 /* 232 * Enable/disable preloading of metaslab. 233 */ 234 static int metaslab_preload_enabled = B_TRUE; 235 236 /* 237 * Enable/disable fragmentation weighting on metaslabs. 238 */ 239 static int metaslab_fragmentation_factor_enabled = B_TRUE; 240 241 /* 242 * Enable/disable lba weighting (i.e. outer tracks are given preference). 243 */ 244 static int metaslab_lba_weighting_enabled = B_TRUE; 245 246 /* 247 * Enable/disable metaslab group biasing. 248 */ 249 static int metaslab_bias_enabled = B_TRUE; 250 251 /* 252 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 253 */ 254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 255 256 /* 257 * Enable/disable segment-based metaslab selection. 258 */ 259 static int zfs_metaslab_segment_weight_enabled = B_TRUE; 260 261 /* 262 * When using segment-based metaslab selection, we will continue 263 * allocating from the active metaslab until we have exhausted 264 * zfs_metaslab_switch_threshold of its buckets. 265 */ 266 static int zfs_metaslab_switch_threshold = 2; 267 268 /* 269 * Internal switch to enable/disable the metaslab allocation tracing 270 * facility. 271 */ 272 static const boolean_t metaslab_trace_enabled = B_FALSE; 273 274 /* 275 * Maximum entries that the metaslab allocation tracing facility will keep 276 * in a given list when running in non-debug mode. We limit the number 277 * of entries in non-debug mode to prevent us from using up too much memory. 278 * The limit should be sufficiently large that we don't expect any allocation 279 * to every exceed this value. In debug mode, the system will panic if this 280 * limit is ever reached allowing for further investigation. 281 */ 282 static const uint64_t metaslab_trace_max_entries = 5000; 283 284 /* 285 * Maximum number of metaslabs per group that can be disabled 286 * simultaneously. 287 */ 288 static const int max_disabled_ms = 3; 289 290 /* 291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 292 * To avoid 64-bit overflow, don't set above UINT32_MAX. 293 */ 294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 295 296 /* 297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 298 * a metaslab would take it over this percentage, the oldest selected metaslab 299 * is automatically unloaded. 300 */ 301 static uint_t zfs_metaslab_mem_limit = 25; 302 303 /* 304 * Force the per-metaslab range trees to use 64-bit integers to store 305 * segments. Used for debugging purposes. 306 */ 307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 308 309 /* 310 * By default we only store segments over a certain size in the size-sorted 311 * metaslab trees (ms_allocatable_by_size and 312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 313 * improves load and unload times at the cost of causing us to use slightly 314 * larger segments than we would otherwise in some cases. 315 */ 316 static const uint32_t metaslab_by_size_min_shift = 14; 317 318 /* 319 * If not set, we will first try normal allocation. If that fails then 320 * we will do a gang allocation. If that fails then we will do a "try hard" 321 * gang allocation. If that fails then we will have a multi-layer gang 322 * block. 323 * 324 * If set, we will first try normal allocation. If that fails then 325 * we will do a "try hard" allocation. If that fails we will do a gang 326 * allocation. If that fails we will do a "try hard" gang allocation. If 327 * that fails then we will have a multi-layer gang block. 328 */ 329 static int zfs_metaslab_try_hard_before_gang = B_FALSE; 330 331 /* 332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 333 * metaslabs. This improves performance, especially when there are many 334 * metaslabs per vdev and the allocation can't actually be satisfied (so we 335 * would otherwise iterate all the metaslabs). If there is a metaslab with a 336 * worse weight but it can actually satisfy the allocation, we won't find it 337 * until trying hard. This may happen if the worse metaslab is not loaded 338 * (and the true weight is better than we have calculated), or due to weight 339 * bucketization. E.g. we are looking for a 60K segment, and the best 340 * metaslabs all have free segments in the 32-63K bucket, but the best 341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 343 * bucket, and therefore a lower weight). 344 */ 345 static uint_t zfs_metaslab_find_max_tries = 100; 346 347 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 351 352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 355 static unsigned int metaslab_idx_func(multilist_t *, void *); 356 static void metaslab_evict(metaslab_t *, uint64_t); 357 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 358 kmem_cache_t *metaslab_alloc_trace_cache; 359 360 typedef struct metaslab_stats { 361 kstat_named_t metaslabstat_trace_over_limit; 362 kstat_named_t metaslabstat_reload_tree; 363 kstat_named_t metaslabstat_too_many_tries; 364 kstat_named_t metaslabstat_try_hard; 365 } metaslab_stats_t; 366 367 static metaslab_stats_t metaslab_stats = { 368 { "trace_over_limit", KSTAT_DATA_UINT64 }, 369 { "reload_tree", KSTAT_DATA_UINT64 }, 370 { "too_many_tries", KSTAT_DATA_UINT64 }, 371 { "try_hard", KSTAT_DATA_UINT64 }, 372 }; 373 374 #define METASLABSTAT_BUMP(stat) \ 375 atomic_inc_64(&metaslab_stats.stat.value.ui64); 376 377 378 static kstat_t *metaslab_ksp; 379 380 void 381 metaslab_stat_init(void) 382 { 383 ASSERT(metaslab_alloc_trace_cache == NULL); 384 metaslab_alloc_trace_cache = kmem_cache_create( 385 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 386 0, NULL, NULL, NULL, NULL, NULL, 0); 387 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 388 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 389 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 390 if (metaslab_ksp != NULL) { 391 metaslab_ksp->ks_data = &metaslab_stats; 392 kstat_install(metaslab_ksp); 393 } 394 } 395 396 void 397 metaslab_stat_fini(void) 398 { 399 if (metaslab_ksp != NULL) { 400 kstat_delete(metaslab_ksp); 401 metaslab_ksp = NULL; 402 } 403 404 kmem_cache_destroy(metaslab_alloc_trace_cache); 405 metaslab_alloc_trace_cache = NULL; 406 } 407 408 /* 409 * ========================================================================== 410 * Metaslab classes 411 * ========================================================================== 412 */ 413 metaslab_class_t * 414 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 415 { 416 metaslab_class_t *mc; 417 418 mc = kmem_zalloc(offsetof(metaslab_class_t, 419 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 420 421 mc->mc_spa = spa; 422 mc->mc_ops = ops; 423 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 424 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 425 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 426 for (int i = 0; i < spa->spa_alloc_count; i++) { 427 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 428 mca->mca_rotor = NULL; 429 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 430 } 431 432 return (mc); 433 } 434 435 void 436 metaslab_class_destroy(metaslab_class_t *mc) 437 { 438 spa_t *spa = mc->mc_spa; 439 440 ASSERT(mc->mc_alloc == 0); 441 ASSERT(mc->mc_deferred == 0); 442 ASSERT(mc->mc_space == 0); 443 ASSERT(mc->mc_dspace == 0); 444 445 for (int i = 0; i < spa->spa_alloc_count; i++) { 446 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 447 ASSERT(mca->mca_rotor == NULL); 448 zfs_refcount_destroy(&mca->mca_alloc_slots); 449 } 450 mutex_destroy(&mc->mc_lock); 451 multilist_destroy(&mc->mc_metaslab_txg_list); 452 kmem_free(mc, offsetof(metaslab_class_t, 453 mc_allocator[spa->spa_alloc_count])); 454 } 455 456 int 457 metaslab_class_validate(metaslab_class_t *mc) 458 { 459 metaslab_group_t *mg; 460 vdev_t *vd; 461 462 /* 463 * Must hold one of the spa_config locks. 464 */ 465 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 466 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 467 468 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 469 return (0); 470 471 do { 472 vd = mg->mg_vd; 473 ASSERT(vd->vdev_mg != NULL); 474 ASSERT3P(vd->vdev_top, ==, vd); 475 ASSERT3P(mg->mg_class, ==, mc); 476 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 477 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 478 479 return (0); 480 } 481 482 static void 483 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 484 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 485 { 486 atomic_add_64(&mc->mc_alloc, alloc_delta); 487 atomic_add_64(&mc->mc_deferred, defer_delta); 488 atomic_add_64(&mc->mc_space, space_delta); 489 atomic_add_64(&mc->mc_dspace, dspace_delta); 490 } 491 492 uint64_t 493 metaslab_class_get_alloc(metaslab_class_t *mc) 494 { 495 return (mc->mc_alloc); 496 } 497 498 uint64_t 499 metaslab_class_get_deferred(metaslab_class_t *mc) 500 { 501 return (mc->mc_deferred); 502 } 503 504 uint64_t 505 metaslab_class_get_space(metaslab_class_t *mc) 506 { 507 return (mc->mc_space); 508 } 509 510 uint64_t 511 metaslab_class_get_dspace(metaslab_class_t *mc) 512 { 513 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 514 } 515 516 void 517 metaslab_class_histogram_verify(metaslab_class_t *mc) 518 { 519 spa_t *spa = mc->mc_spa; 520 vdev_t *rvd = spa->spa_root_vdev; 521 uint64_t *mc_hist; 522 int i; 523 524 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 525 return; 526 527 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 528 KM_SLEEP); 529 530 mutex_enter(&mc->mc_lock); 531 for (int c = 0; c < rvd->vdev_children; c++) { 532 vdev_t *tvd = rvd->vdev_child[c]; 533 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 534 535 /* 536 * Skip any holes, uninitialized top-levels, or 537 * vdevs that are not in this metalab class. 538 */ 539 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 540 mg->mg_class != mc) { 541 continue; 542 } 543 544 IMPLY(mg == mg->mg_vd->vdev_log_mg, 545 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 546 547 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 548 mc_hist[i] += mg->mg_histogram[i]; 549 } 550 551 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 552 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 553 } 554 555 mutex_exit(&mc->mc_lock); 556 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 557 } 558 559 /* 560 * Calculate the metaslab class's fragmentation metric. The metric 561 * is weighted based on the space contribution of each metaslab group. 562 * The return value will be a number between 0 and 100 (inclusive), or 563 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 564 * zfs_frag_table for more information about the metric. 565 */ 566 uint64_t 567 metaslab_class_fragmentation(metaslab_class_t *mc) 568 { 569 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 570 uint64_t fragmentation = 0; 571 572 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 573 574 for (int c = 0; c < rvd->vdev_children; c++) { 575 vdev_t *tvd = rvd->vdev_child[c]; 576 metaslab_group_t *mg = tvd->vdev_mg; 577 578 /* 579 * Skip any holes, uninitialized top-levels, 580 * or vdevs that are not in this metalab class. 581 */ 582 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 583 mg->mg_class != mc) { 584 continue; 585 } 586 587 /* 588 * If a metaslab group does not contain a fragmentation 589 * metric then just bail out. 590 */ 591 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 592 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 593 return (ZFS_FRAG_INVALID); 594 } 595 596 /* 597 * Determine how much this metaslab_group is contributing 598 * to the overall pool fragmentation metric. 599 */ 600 fragmentation += mg->mg_fragmentation * 601 metaslab_group_get_space(mg); 602 } 603 fragmentation /= metaslab_class_get_space(mc); 604 605 ASSERT3U(fragmentation, <=, 100); 606 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 607 return (fragmentation); 608 } 609 610 /* 611 * Calculate the amount of expandable space that is available in 612 * this metaslab class. If a device is expanded then its expandable 613 * space will be the amount of allocatable space that is currently not 614 * part of this metaslab class. 615 */ 616 uint64_t 617 metaslab_class_expandable_space(metaslab_class_t *mc) 618 { 619 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 620 uint64_t space = 0; 621 622 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 623 for (int c = 0; c < rvd->vdev_children; c++) { 624 vdev_t *tvd = rvd->vdev_child[c]; 625 metaslab_group_t *mg = tvd->vdev_mg; 626 627 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 628 mg->mg_class != mc) { 629 continue; 630 } 631 632 /* 633 * Calculate if we have enough space to add additional 634 * metaslabs. We report the expandable space in terms 635 * of the metaslab size since that's the unit of expansion. 636 */ 637 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 638 1ULL << tvd->vdev_ms_shift); 639 } 640 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 641 return (space); 642 } 643 644 void 645 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 646 { 647 multilist_t *ml = &mc->mc_metaslab_txg_list; 648 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 649 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 650 metaslab_t *msp = multilist_sublist_head(mls); 651 multilist_sublist_unlock(mls); 652 while (msp != NULL) { 653 mutex_enter(&msp->ms_lock); 654 655 /* 656 * If the metaslab has been removed from the list 657 * (which could happen if we were at the memory limit 658 * and it was evicted during this loop), then we can't 659 * proceed and we should restart the sublist. 660 */ 661 if (!multilist_link_active(&msp->ms_class_txg_node)) { 662 mutex_exit(&msp->ms_lock); 663 i--; 664 break; 665 } 666 mls = multilist_sublist_lock(ml, i); 667 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 668 multilist_sublist_unlock(mls); 669 if (txg > 670 msp->ms_selected_txg + metaslab_unload_delay && 671 gethrtime() > msp->ms_selected_time + 672 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 673 metaslab_evict(msp, txg); 674 } else { 675 /* 676 * Once we've hit a metaslab selected too 677 * recently to evict, we're done evicting for 678 * now. 679 */ 680 mutex_exit(&msp->ms_lock); 681 break; 682 } 683 mutex_exit(&msp->ms_lock); 684 msp = next_msp; 685 } 686 } 687 } 688 689 static int 690 metaslab_compare(const void *x1, const void *x2) 691 { 692 const metaslab_t *m1 = (const metaslab_t *)x1; 693 const metaslab_t *m2 = (const metaslab_t *)x2; 694 695 int sort1 = 0; 696 int sort2 = 0; 697 if (m1->ms_allocator != -1 && m1->ms_primary) 698 sort1 = 1; 699 else if (m1->ms_allocator != -1 && !m1->ms_primary) 700 sort1 = 2; 701 if (m2->ms_allocator != -1 && m2->ms_primary) 702 sort2 = 1; 703 else if (m2->ms_allocator != -1 && !m2->ms_primary) 704 sort2 = 2; 705 706 /* 707 * Sort inactive metaslabs first, then primaries, then secondaries. When 708 * selecting a metaslab to allocate from, an allocator first tries its 709 * primary, then secondary active metaslab. If it doesn't have active 710 * metaslabs, or can't allocate from them, it searches for an inactive 711 * metaslab to activate. If it can't find a suitable one, it will steal 712 * a primary or secondary metaslab from another allocator. 713 */ 714 if (sort1 < sort2) 715 return (-1); 716 if (sort1 > sort2) 717 return (1); 718 719 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 720 if (likely(cmp)) 721 return (cmp); 722 723 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 724 725 return (TREE_CMP(m1->ms_start, m2->ms_start)); 726 } 727 728 /* 729 * ========================================================================== 730 * Metaslab groups 731 * ========================================================================== 732 */ 733 /* 734 * Update the allocatable flag and the metaslab group's capacity. 735 * The allocatable flag is set to true if the capacity is below 736 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 737 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 738 * transitions from allocatable to non-allocatable or vice versa then the 739 * metaslab group's class is updated to reflect the transition. 740 */ 741 static void 742 metaslab_group_alloc_update(metaslab_group_t *mg) 743 { 744 vdev_t *vd = mg->mg_vd; 745 metaslab_class_t *mc = mg->mg_class; 746 vdev_stat_t *vs = &vd->vdev_stat; 747 boolean_t was_allocatable; 748 boolean_t was_initialized; 749 750 ASSERT(vd == vd->vdev_top); 751 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 752 SCL_ALLOC); 753 754 mutex_enter(&mg->mg_lock); 755 was_allocatable = mg->mg_allocatable; 756 was_initialized = mg->mg_initialized; 757 758 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 759 (vs->vs_space + 1); 760 761 mutex_enter(&mc->mc_lock); 762 763 /* 764 * If the metaslab group was just added then it won't 765 * have any space until we finish syncing out this txg. 766 * At that point we will consider it initialized and available 767 * for allocations. We also don't consider non-activated 768 * metaslab groups (e.g. vdevs that are in the middle of being removed) 769 * to be initialized, because they can't be used for allocation. 770 */ 771 mg->mg_initialized = metaslab_group_initialized(mg); 772 if (!was_initialized && mg->mg_initialized) { 773 mc->mc_groups++; 774 } else if (was_initialized && !mg->mg_initialized) { 775 ASSERT3U(mc->mc_groups, >, 0); 776 mc->mc_groups--; 777 } 778 if (mg->mg_initialized) 779 mg->mg_no_free_space = B_FALSE; 780 781 /* 782 * A metaslab group is considered allocatable if it has plenty 783 * of free space or is not heavily fragmented. We only take 784 * fragmentation into account if the metaslab group has a valid 785 * fragmentation metric (i.e. a value between 0 and 100). 786 */ 787 mg->mg_allocatable = (mg->mg_activation_count > 0 && 788 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 789 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 790 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 791 792 /* 793 * The mc_alloc_groups maintains a count of the number of 794 * groups in this metaslab class that are still above the 795 * zfs_mg_noalloc_threshold. This is used by the allocating 796 * threads to determine if they should avoid allocations to 797 * a given group. The allocator will avoid allocations to a group 798 * if that group has reached or is below the zfs_mg_noalloc_threshold 799 * and there are still other groups that are above the threshold. 800 * When a group transitions from allocatable to non-allocatable or 801 * vice versa we update the metaslab class to reflect that change. 802 * When the mc_alloc_groups value drops to 0 that means that all 803 * groups have reached the zfs_mg_noalloc_threshold making all groups 804 * eligible for allocations. This effectively means that all devices 805 * are balanced again. 806 */ 807 if (was_allocatable && !mg->mg_allocatable) 808 mc->mc_alloc_groups--; 809 else if (!was_allocatable && mg->mg_allocatable) 810 mc->mc_alloc_groups++; 811 mutex_exit(&mc->mc_lock); 812 813 mutex_exit(&mg->mg_lock); 814 } 815 816 int 817 metaslab_sort_by_flushed(const void *va, const void *vb) 818 { 819 const metaslab_t *a = va; 820 const metaslab_t *b = vb; 821 822 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 823 if (likely(cmp)) 824 return (cmp); 825 826 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 827 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 828 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 829 if (cmp) 830 return (cmp); 831 832 return (TREE_CMP(a->ms_id, b->ms_id)); 833 } 834 835 metaslab_group_t * 836 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 837 { 838 metaslab_group_t *mg; 839 840 mg = kmem_zalloc(offsetof(metaslab_group_t, 841 mg_allocator[allocators]), KM_SLEEP); 842 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 843 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 844 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 845 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 846 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 847 mg->mg_vd = vd; 848 mg->mg_class = mc; 849 mg->mg_activation_count = 0; 850 mg->mg_initialized = B_FALSE; 851 mg->mg_no_free_space = B_TRUE; 852 mg->mg_allocators = allocators; 853 854 for (int i = 0; i < allocators; i++) { 855 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 856 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 857 } 858 859 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 860 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 861 862 return (mg); 863 } 864 865 void 866 metaslab_group_destroy(metaslab_group_t *mg) 867 { 868 ASSERT(mg->mg_prev == NULL); 869 ASSERT(mg->mg_next == NULL); 870 /* 871 * We may have gone below zero with the activation count 872 * either because we never activated in the first place or 873 * because we're done, and possibly removing the vdev. 874 */ 875 ASSERT(mg->mg_activation_count <= 0); 876 877 taskq_destroy(mg->mg_taskq); 878 avl_destroy(&mg->mg_metaslab_tree); 879 mutex_destroy(&mg->mg_lock); 880 mutex_destroy(&mg->mg_ms_disabled_lock); 881 cv_destroy(&mg->mg_ms_disabled_cv); 882 883 for (int i = 0; i < mg->mg_allocators; i++) { 884 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 885 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 886 } 887 kmem_free(mg, offsetof(metaslab_group_t, 888 mg_allocator[mg->mg_allocators])); 889 } 890 891 void 892 metaslab_group_activate(metaslab_group_t *mg) 893 { 894 metaslab_class_t *mc = mg->mg_class; 895 spa_t *spa = mc->mc_spa; 896 metaslab_group_t *mgprev, *mgnext; 897 898 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 899 900 ASSERT(mg->mg_prev == NULL); 901 ASSERT(mg->mg_next == NULL); 902 ASSERT(mg->mg_activation_count <= 0); 903 904 if (++mg->mg_activation_count <= 0) 905 return; 906 907 mg->mg_aliquot = metaslab_aliquot * MAX(1, 908 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd)); 909 metaslab_group_alloc_update(mg); 910 911 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 912 mg->mg_prev = mg; 913 mg->mg_next = mg; 914 } else { 915 mgnext = mgprev->mg_next; 916 mg->mg_prev = mgprev; 917 mg->mg_next = mgnext; 918 mgprev->mg_next = mg; 919 mgnext->mg_prev = mg; 920 } 921 for (int i = 0; i < spa->spa_alloc_count; i++) { 922 mc->mc_allocator[i].mca_rotor = mg; 923 mg = mg->mg_next; 924 } 925 } 926 927 /* 928 * Passivate a metaslab group and remove it from the allocation rotor. 929 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 930 * a metaslab group. This function will momentarily drop spa_config_locks 931 * that are lower than the SCL_ALLOC lock (see comment below). 932 */ 933 void 934 metaslab_group_passivate(metaslab_group_t *mg) 935 { 936 metaslab_class_t *mc = mg->mg_class; 937 spa_t *spa = mc->mc_spa; 938 metaslab_group_t *mgprev, *mgnext; 939 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 940 941 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 942 (SCL_ALLOC | SCL_ZIO)); 943 944 if (--mg->mg_activation_count != 0) { 945 for (int i = 0; i < spa->spa_alloc_count; i++) 946 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 947 ASSERT(mg->mg_prev == NULL); 948 ASSERT(mg->mg_next == NULL); 949 ASSERT(mg->mg_activation_count < 0); 950 return; 951 } 952 953 /* 954 * The spa_config_lock is an array of rwlocks, ordered as 955 * follows (from highest to lowest): 956 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 957 * SCL_ZIO > SCL_FREE > SCL_VDEV 958 * (For more information about the spa_config_lock see spa_misc.c) 959 * The higher the lock, the broader its coverage. When we passivate 960 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 961 * config locks. However, the metaslab group's taskq might be trying 962 * to preload metaslabs so we must drop the SCL_ZIO lock and any 963 * lower locks to allow the I/O to complete. At a minimum, 964 * we continue to hold the SCL_ALLOC lock, which prevents any future 965 * allocations from taking place and any changes to the vdev tree. 966 */ 967 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 968 taskq_wait_outstanding(mg->mg_taskq, 0); 969 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 970 metaslab_group_alloc_update(mg); 971 for (int i = 0; i < mg->mg_allocators; i++) { 972 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 973 metaslab_t *msp = mga->mga_primary; 974 if (msp != NULL) { 975 mutex_enter(&msp->ms_lock); 976 metaslab_passivate(msp, 977 metaslab_weight_from_range_tree(msp)); 978 mutex_exit(&msp->ms_lock); 979 } 980 msp = mga->mga_secondary; 981 if (msp != NULL) { 982 mutex_enter(&msp->ms_lock); 983 metaslab_passivate(msp, 984 metaslab_weight_from_range_tree(msp)); 985 mutex_exit(&msp->ms_lock); 986 } 987 } 988 989 mgprev = mg->mg_prev; 990 mgnext = mg->mg_next; 991 992 if (mg == mgnext) { 993 mgnext = NULL; 994 } else { 995 mgprev->mg_next = mgnext; 996 mgnext->mg_prev = mgprev; 997 } 998 for (int i = 0; i < spa->spa_alloc_count; i++) { 999 if (mc->mc_allocator[i].mca_rotor == mg) 1000 mc->mc_allocator[i].mca_rotor = mgnext; 1001 } 1002 1003 mg->mg_prev = NULL; 1004 mg->mg_next = NULL; 1005 } 1006 1007 boolean_t 1008 metaslab_group_initialized(metaslab_group_t *mg) 1009 { 1010 vdev_t *vd = mg->mg_vd; 1011 vdev_stat_t *vs = &vd->vdev_stat; 1012 1013 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1014 } 1015 1016 uint64_t 1017 metaslab_group_get_space(metaslab_group_t *mg) 1018 { 1019 /* 1020 * Note that the number of nodes in mg_metaslab_tree may be one less 1021 * than vdev_ms_count, due to the embedded log metaslab. 1022 */ 1023 mutex_enter(&mg->mg_lock); 1024 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1025 mutex_exit(&mg->mg_lock); 1026 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1027 } 1028 1029 void 1030 metaslab_group_histogram_verify(metaslab_group_t *mg) 1031 { 1032 uint64_t *mg_hist; 1033 avl_tree_t *t = &mg->mg_metaslab_tree; 1034 uint64_t ashift = mg->mg_vd->vdev_ashift; 1035 1036 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1037 return; 1038 1039 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1040 KM_SLEEP); 1041 1042 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1043 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1044 1045 mutex_enter(&mg->mg_lock); 1046 for (metaslab_t *msp = avl_first(t); 1047 msp != NULL; msp = AVL_NEXT(t, msp)) { 1048 VERIFY3P(msp->ms_group, ==, mg); 1049 /* skip if not active */ 1050 if (msp->ms_sm == NULL) 1051 continue; 1052 1053 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1054 mg_hist[i + ashift] += 1055 msp->ms_sm->sm_phys->smp_histogram[i]; 1056 } 1057 } 1058 1059 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1060 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1061 1062 mutex_exit(&mg->mg_lock); 1063 1064 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1065 } 1066 1067 static void 1068 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1069 { 1070 metaslab_class_t *mc = mg->mg_class; 1071 uint64_t ashift = mg->mg_vd->vdev_ashift; 1072 1073 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1074 if (msp->ms_sm == NULL) 1075 return; 1076 1077 mutex_enter(&mg->mg_lock); 1078 mutex_enter(&mc->mc_lock); 1079 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1080 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1081 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1082 mg->mg_histogram[i + ashift] += 1083 msp->ms_sm->sm_phys->smp_histogram[i]; 1084 mc->mc_histogram[i + ashift] += 1085 msp->ms_sm->sm_phys->smp_histogram[i]; 1086 } 1087 mutex_exit(&mc->mc_lock); 1088 mutex_exit(&mg->mg_lock); 1089 } 1090 1091 void 1092 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1093 { 1094 metaslab_class_t *mc = mg->mg_class; 1095 uint64_t ashift = mg->mg_vd->vdev_ashift; 1096 1097 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1098 if (msp->ms_sm == NULL) 1099 return; 1100 1101 mutex_enter(&mg->mg_lock); 1102 mutex_enter(&mc->mc_lock); 1103 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1104 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1105 msp->ms_sm->sm_phys->smp_histogram[i]); 1106 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1107 msp->ms_sm->sm_phys->smp_histogram[i]); 1108 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1109 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1110 1111 mg->mg_histogram[i + ashift] -= 1112 msp->ms_sm->sm_phys->smp_histogram[i]; 1113 mc->mc_histogram[i + ashift] -= 1114 msp->ms_sm->sm_phys->smp_histogram[i]; 1115 } 1116 mutex_exit(&mc->mc_lock); 1117 mutex_exit(&mg->mg_lock); 1118 } 1119 1120 static void 1121 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1122 { 1123 ASSERT(msp->ms_group == NULL); 1124 mutex_enter(&mg->mg_lock); 1125 msp->ms_group = mg; 1126 msp->ms_weight = 0; 1127 avl_add(&mg->mg_metaslab_tree, msp); 1128 mutex_exit(&mg->mg_lock); 1129 1130 mutex_enter(&msp->ms_lock); 1131 metaslab_group_histogram_add(mg, msp); 1132 mutex_exit(&msp->ms_lock); 1133 } 1134 1135 static void 1136 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1137 { 1138 mutex_enter(&msp->ms_lock); 1139 metaslab_group_histogram_remove(mg, msp); 1140 mutex_exit(&msp->ms_lock); 1141 1142 mutex_enter(&mg->mg_lock); 1143 ASSERT(msp->ms_group == mg); 1144 avl_remove(&mg->mg_metaslab_tree, msp); 1145 1146 metaslab_class_t *mc = msp->ms_group->mg_class; 1147 multilist_sublist_t *mls = 1148 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1149 if (multilist_link_active(&msp->ms_class_txg_node)) 1150 multilist_sublist_remove(mls, msp); 1151 multilist_sublist_unlock(mls); 1152 1153 msp->ms_group = NULL; 1154 mutex_exit(&mg->mg_lock); 1155 } 1156 1157 static void 1158 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1159 { 1160 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1161 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1162 ASSERT(msp->ms_group == mg); 1163 1164 avl_remove(&mg->mg_metaslab_tree, msp); 1165 msp->ms_weight = weight; 1166 avl_add(&mg->mg_metaslab_tree, msp); 1167 1168 } 1169 1170 static void 1171 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1172 { 1173 /* 1174 * Although in principle the weight can be any value, in 1175 * practice we do not use values in the range [1, 511]. 1176 */ 1177 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1178 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1179 1180 mutex_enter(&mg->mg_lock); 1181 metaslab_group_sort_impl(mg, msp, weight); 1182 mutex_exit(&mg->mg_lock); 1183 } 1184 1185 /* 1186 * Calculate the fragmentation for a given metaslab group. We can use 1187 * a simple average here since all metaslabs within the group must have 1188 * the same size. The return value will be a value between 0 and 100 1189 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1190 * group have a fragmentation metric. 1191 */ 1192 uint64_t 1193 metaslab_group_fragmentation(metaslab_group_t *mg) 1194 { 1195 vdev_t *vd = mg->mg_vd; 1196 uint64_t fragmentation = 0; 1197 uint64_t valid_ms = 0; 1198 1199 for (int m = 0; m < vd->vdev_ms_count; m++) { 1200 metaslab_t *msp = vd->vdev_ms[m]; 1201 1202 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1203 continue; 1204 if (msp->ms_group != mg) 1205 continue; 1206 1207 valid_ms++; 1208 fragmentation += msp->ms_fragmentation; 1209 } 1210 1211 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1212 return (ZFS_FRAG_INVALID); 1213 1214 fragmentation /= valid_ms; 1215 ASSERT3U(fragmentation, <=, 100); 1216 return (fragmentation); 1217 } 1218 1219 /* 1220 * Determine if a given metaslab group should skip allocations. A metaslab 1221 * group should avoid allocations if its free capacity is less than the 1222 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1223 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1224 * that can still handle allocations. If the allocation throttle is enabled 1225 * then we skip allocations to devices that have reached their maximum 1226 * allocation queue depth unless the selected metaslab group is the only 1227 * eligible group remaining. 1228 */ 1229 static boolean_t 1230 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1231 int flags, uint64_t psize, int allocator, int d) 1232 { 1233 spa_t *spa = mg->mg_vd->vdev_spa; 1234 metaslab_class_t *mc = mg->mg_class; 1235 1236 /* 1237 * We can only consider skipping this metaslab group if it's 1238 * in the normal metaslab class and there are other metaslab 1239 * groups to select from. Otherwise, we always consider it eligible 1240 * for allocations. 1241 */ 1242 if ((mc != spa_normal_class(spa) && 1243 mc != spa_special_class(spa) && 1244 mc != spa_dedup_class(spa)) || 1245 mc->mc_groups <= 1) 1246 return (B_TRUE); 1247 1248 /* 1249 * If the metaslab group's mg_allocatable flag is set (see comments 1250 * in metaslab_group_alloc_update() for more information) and 1251 * the allocation throttle is disabled then allow allocations to this 1252 * device. However, if the allocation throttle is enabled then 1253 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1254 * to determine if we should allow allocations to this metaslab group. 1255 * If all metaslab groups are no longer considered allocatable 1256 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1257 * gang block size then we allow allocations on this metaslab group 1258 * regardless of the mg_allocatable or throttle settings. 1259 */ 1260 if (mg->mg_allocatable) { 1261 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1262 int64_t qdepth; 1263 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1264 1265 if (!mc->mc_alloc_throttle_enabled) 1266 return (B_TRUE); 1267 1268 /* 1269 * If this metaslab group does not have any free space, then 1270 * there is no point in looking further. 1271 */ 1272 if (mg->mg_no_free_space) 1273 return (B_FALSE); 1274 1275 /* 1276 * Some allocations (e.g., those coming from device removal 1277 * where the * allocations are not even counted in the 1278 * metaslab * allocation queues) are allowed to bypass 1279 * the throttle. 1280 */ 1281 if (flags & METASLAB_DONT_THROTTLE) 1282 return (B_TRUE); 1283 1284 /* 1285 * Relax allocation throttling for ditto blocks. Due to 1286 * random imbalances in allocation it tends to push copies 1287 * to one vdev, that looks a bit better at the moment. 1288 */ 1289 qmax = qmax * (4 + d) / 4; 1290 1291 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1292 1293 /* 1294 * If this metaslab group is below its qmax or it's 1295 * the only allocatable metaslab group, then attempt 1296 * to allocate from it. 1297 */ 1298 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1299 return (B_TRUE); 1300 ASSERT3U(mc->mc_alloc_groups, >, 1); 1301 1302 /* 1303 * Since this metaslab group is at or over its qmax, we 1304 * need to determine if there are metaslab groups after this 1305 * one that might be able to handle this allocation. This is 1306 * racy since we can't hold the locks for all metaslab 1307 * groups at the same time when we make this check. 1308 */ 1309 for (metaslab_group_t *mgp = mg->mg_next; 1310 mgp != rotor; mgp = mgp->mg_next) { 1311 metaslab_group_allocator_t *mgap = 1312 &mgp->mg_allocator[allocator]; 1313 qmax = mgap->mga_cur_max_alloc_queue_depth; 1314 qmax = qmax * (4 + d) / 4; 1315 qdepth = 1316 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1317 1318 /* 1319 * If there is another metaslab group that 1320 * might be able to handle the allocation, then 1321 * we return false so that we skip this group. 1322 */ 1323 if (qdepth < qmax && !mgp->mg_no_free_space) 1324 return (B_FALSE); 1325 } 1326 1327 /* 1328 * We didn't find another group to handle the allocation 1329 * so we can't skip this metaslab group even though 1330 * we are at or over our qmax. 1331 */ 1332 return (B_TRUE); 1333 1334 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1335 return (B_TRUE); 1336 } 1337 return (B_FALSE); 1338 } 1339 1340 /* 1341 * ========================================================================== 1342 * Range tree callbacks 1343 * ========================================================================== 1344 */ 1345 1346 /* 1347 * Comparison function for the private size-ordered tree using 32-bit 1348 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1349 */ 1350 __attribute__((always_inline)) inline 1351 static int 1352 metaslab_rangesize32_compare(const void *x1, const void *x2) 1353 { 1354 const range_seg32_t *r1 = x1; 1355 const range_seg32_t *r2 = x2; 1356 1357 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1358 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1359 1360 int cmp = TREE_CMP(rs_size1, rs_size2); 1361 1362 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1363 } 1364 1365 /* 1366 * Comparison function for the private size-ordered tree using 64-bit 1367 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1368 */ 1369 __attribute__((always_inline)) inline 1370 static int 1371 metaslab_rangesize64_compare(const void *x1, const void *x2) 1372 { 1373 const range_seg64_t *r1 = x1; 1374 const range_seg64_t *r2 = x2; 1375 1376 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1377 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1378 1379 int cmp = TREE_CMP(rs_size1, rs_size2); 1380 1381 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1382 } 1383 1384 typedef struct metaslab_rt_arg { 1385 zfs_btree_t *mra_bt; 1386 uint32_t mra_floor_shift; 1387 } metaslab_rt_arg_t; 1388 1389 struct mssa_arg { 1390 range_tree_t *rt; 1391 metaslab_rt_arg_t *mra; 1392 }; 1393 1394 static void 1395 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1396 { 1397 struct mssa_arg *mssap = arg; 1398 range_tree_t *rt = mssap->rt; 1399 metaslab_rt_arg_t *mrap = mssap->mra; 1400 range_seg_max_t seg = {0}; 1401 rs_set_start(&seg, rt, start); 1402 rs_set_end(&seg, rt, start + size); 1403 metaslab_rt_add(rt, &seg, mrap); 1404 } 1405 1406 static void 1407 metaslab_size_tree_full_load(range_tree_t *rt) 1408 { 1409 metaslab_rt_arg_t *mrap = rt->rt_arg; 1410 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1411 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1412 mrap->mra_floor_shift = 0; 1413 struct mssa_arg arg = {0}; 1414 arg.rt = rt; 1415 arg.mra = mrap; 1416 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1417 } 1418 1419 1420 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf, 1421 range_seg32_t, metaslab_rangesize32_compare) 1422 1423 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf, 1424 range_seg64_t, metaslab_rangesize64_compare) 1425 1426 /* 1427 * Create any block allocator specific components. The current allocators 1428 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1429 */ 1430 static void 1431 metaslab_rt_create(range_tree_t *rt, void *arg) 1432 { 1433 metaslab_rt_arg_t *mrap = arg; 1434 zfs_btree_t *size_tree = mrap->mra_bt; 1435 1436 size_t size; 1437 int (*compare) (const void *, const void *); 1438 bt_find_in_buf_f bt_find; 1439 switch (rt->rt_type) { 1440 case RANGE_SEG32: 1441 size = sizeof (range_seg32_t); 1442 compare = metaslab_rangesize32_compare; 1443 bt_find = metaslab_rt_find_rangesize32_in_buf; 1444 break; 1445 case RANGE_SEG64: 1446 size = sizeof (range_seg64_t); 1447 compare = metaslab_rangesize64_compare; 1448 bt_find = metaslab_rt_find_rangesize64_in_buf; 1449 break; 1450 default: 1451 panic("Invalid range seg type %d", rt->rt_type); 1452 } 1453 zfs_btree_create(size_tree, compare, bt_find, size); 1454 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1455 } 1456 1457 static void 1458 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1459 { 1460 (void) rt; 1461 metaslab_rt_arg_t *mrap = arg; 1462 zfs_btree_t *size_tree = mrap->mra_bt; 1463 1464 zfs_btree_destroy(size_tree); 1465 kmem_free(mrap, sizeof (*mrap)); 1466 } 1467 1468 static void 1469 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1470 { 1471 metaslab_rt_arg_t *mrap = arg; 1472 zfs_btree_t *size_tree = mrap->mra_bt; 1473 1474 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1475 (1ULL << mrap->mra_floor_shift)) 1476 return; 1477 1478 zfs_btree_add(size_tree, rs); 1479 } 1480 1481 static void 1482 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1483 { 1484 metaslab_rt_arg_t *mrap = arg; 1485 zfs_btree_t *size_tree = mrap->mra_bt; 1486 1487 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL << 1488 mrap->mra_floor_shift)) 1489 return; 1490 1491 zfs_btree_remove(size_tree, rs); 1492 } 1493 1494 static void 1495 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1496 { 1497 metaslab_rt_arg_t *mrap = arg; 1498 zfs_btree_t *size_tree = mrap->mra_bt; 1499 zfs_btree_clear(size_tree); 1500 zfs_btree_destroy(size_tree); 1501 1502 metaslab_rt_create(rt, arg); 1503 } 1504 1505 static const range_tree_ops_t metaslab_rt_ops = { 1506 .rtop_create = metaslab_rt_create, 1507 .rtop_destroy = metaslab_rt_destroy, 1508 .rtop_add = metaslab_rt_add, 1509 .rtop_remove = metaslab_rt_remove, 1510 .rtop_vacate = metaslab_rt_vacate 1511 }; 1512 1513 /* 1514 * ========================================================================== 1515 * Common allocator routines 1516 * ========================================================================== 1517 */ 1518 1519 /* 1520 * Return the maximum contiguous segment within the metaslab. 1521 */ 1522 uint64_t 1523 metaslab_largest_allocatable(metaslab_t *msp) 1524 { 1525 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1526 range_seg_t *rs; 1527 1528 if (t == NULL) 1529 return (0); 1530 if (zfs_btree_numnodes(t) == 0) 1531 metaslab_size_tree_full_load(msp->ms_allocatable); 1532 1533 rs = zfs_btree_last(t, NULL); 1534 if (rs == NULL) 1535 return (0); 1536 1537 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1538 msp->ms_allocatable)); 1539 } 1540 1541 /* 1542 * Return the maximum contiguous segment within the unflushed frees of this 1543 * metaslab. 1544 */ 1545 static uint64_t 1546 metaslab_largest_unflushed_free(metaslab_t *msp) 1547 { 1548 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1549 1550 if (msp->ms_unflushed_frees == NULL) 1551 return (0); 1552 1553 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1554 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1555 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1556 NULL); 1557 if (rs == NULL) 1558 return (0); 1559 1560 /* 1561 * When a range is freed from the metaslab, that range is added to 1562 * both the unflushed frees and the deferred frees. While the block 1563 * will eventually be usable, if the metaslab were loaded the range 1564 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1565 * txgs had passed. As a result, when attempting to estimate an upper 1566 * bound for the largest currently-usable free segment in the 1567 * metaslab, we need to not consider any ranges currently in the defer 1568 * trees. This algorithm approximates the largest available chunk in 1569 * the largest range in the unflushed_frees tree by taking the first 1570 * chunk. While this may be a poor estimate, it should only remain so 1571 * briefly and should eventually self-correct as frees are no longer 1572 * deferred. Similar logic applies to the ms_freed tree. See 1573 * metaslab_load() for more details. 1574 * 1575 * There are two primary sources of inaccuracy in this estimate. Both 1576 * are tolerated for performance reasons. The first source is that we 1577 * only check the largest segment for overlaps. Smaller segments may 1578 * have more favorable overlaps with the other trees, resulting in 1579 * larger usable chunks. Second, we only look at the first chunk in 1580 * the largest segment; there may be other usable chunks in the 1581 * largest segment, but we ignore them. 1582 */ 1583 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1584 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1585 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1586 uint64_t start = 0; 1587 uint64_t size = 0; 1588 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1589 rsize, &start, &size); 1590 if (found) { 1591 if (rstart == start) 1592 return (0); 1593 rsize = start - rstart; 1594 } 1595 } 1596 1597 uint64_t start = 0; 1598 uint64_t size = 0; 1599 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1600 rsize, &start, &size); 1601 if (found) 1602 rsize = start - rstart; 1603 1604 return (rsize); 1605 } 1606 1607 static range_seg_t * 1608 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1609 uint64_t size, zfs_btree_index_t *where) 1610 { 1611 range_seg_t *rs; 1612 range_seg_max_t rsearch; 1613 1614 rs_set_start(&rsearch, rt, start); 1615 rs_set_end(&rsearch, rt, start + size); 1616 1617 rs = zfs_btree_find(t, &rsearch, where); 1618 if (rs == NULL) { 1619 rs = zfs_btree_next(t, where, where); 1620 } 1621 1622 return (rs); 1623 } 1624 1625 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1626 defined(WITH_CF_BLOCK_ALLOCATOR) 1627 1628 /* 1629 * This is a helper function that can be used by the allocator to find a 1630 * suitable block to allocate. This will search the specified B-tree looking 1631 * for a block that matches the specified criteria. 1632 */ 1633 static uint64_t 1634 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1635 uint64_t max_search) 1636 { 1637 if (*cursor == 0) 1638 *cursor = rt->rt_start; 1639 zfs_btree_t *bt = &rt->rt_root; 1640 zfs_btree_index_t where; 1641 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1642 uint64_t first_found; 1643 int count_searched = 0; 1644 1645 if (rs != NULL) 1646 first_found = rs_get_start(rs, rt); 1647 1648 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1649 max_search || count_searched < metaslab_min_search_count)) { 1650 uint64_t offset = rs_get_start(rs, rt); 1651 if (offset + size <= rs_get_end(rs, rt)) { 1652 *cursor = offset + size; 1653 return (offset); 1654 } 1655 rs = zfs_btree_next(bt, &where, &where); 1656 count_searched++; 1657 } 1658 1659 *cursor = 0; 1660 return (-1ULL); 1661 } 1662 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1663 1664 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1665 /* 1666 * ========================================================================== 1667 * Dynamic Fit (df) block allocator 1668 * 1669 * Search for a free chunk of at least this size, starting from the last 1670 * offset (for this alignment of block) looking for up to 1671 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1672 * found within 16MB, then return a free chunk of exactly the requested size (or 1673 * larger). 1674 * 1675 * If it seems like searching from the last offset will be unproductive, skip 1676 * that and just return a free chunk of exactly the requested size (or larger). 1677 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1678 * mechanism is probably not very useful and may be removed in the future. 1679 * 1680 * The behavior when not searching can be changed to return the largest free 1681 * chunk, instead of a free chunk of exactly the requested size, by setting 1682 * metaslab_df_use_largest_segment. 1683 * ========================================================================== 1684 */ 1685 static uint64_t 1686 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1687 { 1688 /* 1689 * Find the largest power of 2 block size that evenly divides the 1690 * requested size. This is used to try to allocate blocks with similar 1691 * alignment from the same area of the metaslab (i.e. same cursor 1692 * bucket) but it does not guarantee that other allocations sizes 1693 * may exist in the same region. 1694 */ 1695 uint64_t align = size & -size; 1696 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1697 range_tree_t *rt = msp->ms_allocatable; 1698 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1699 uint64_t offset; 1700 1701 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1702 1703 /* 1704 * If we're running low on space, find a segment based on size, 1705 * rather than iterating based on offset. 1706 */ 1707 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1708 free_pct < metaslab_df_free_pct) { 1709 offset = -1; 1710 } else { 1711 offset = metaslab_block_picker(rt, 1712 cursor, size, metaslab_df_max_search); 1713 } 1714 1715 if (offset == -1) { 1716 range_seg_t *rs; 1717 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1718 metaslab_size_tree_full_load(msp->ms_allocatable); 1719 1720 if (metaslab_df_use_largest_segment) { 1721 /* use largest free segment */ 1722 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1723 } else { 1724 zfs_btree_index_t where; 1725 /* use segment of this size, or next largest */ 1726 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1727 rt, msp->ms_start, size, &where); 1728 } 1729 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1730 rt)) { 1731 offset = rs_get_start(rs, rt); 1732 *cursor = offset + size; 1733 } 1734 } 1735 1736 return (offset); 1737 } 1738 1739 const metaslab_ops_t zfs_metaslab_ops = { 1740 metaslab_df_alloc 1741 }; 1742 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1743 1744 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1745 /* 1746 * ========================================================================== 1747 * Cursor fit block allocator - 1748 * Select the largest region in the metaslab, set the cursor to the beginning 1749 * of the range and the cursor_end to the end of the range. As allocations 1750 * are made advance the cursor. Continue allocating from the cursor until 1751 * the range is exhausted and then find a new range. 1752 * ========================================================================== 1753 */ 1754 static uint64_t 1755 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1756 { 1757 range_tree_t *rt = msp->ms_allocatable; 1758 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1759 uint64_t *cursor = &msp->ms_lbas[0]; 1760 uint64_t *cursor_end = &msp->ms_lbas[1]; 1761 uint64_t offset = 0; 1762 1763 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1764 1765 ASSERT3U(*cursor_end, >=, *cursor); 1766 1767 if ((*cursor + size) > *cursor_end) { 1768 range_seg_t *rs; 1769 1770 if (zfs_btree_numnodes(t) == 0) 1771 metaslab_size_tree_full_load(msp->ms_allocatable); 1772 rs = zfs_btree_last(t, NULL); 1773 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1774 size) 1775 return (-1ULL); 1776 1777 *cursor = rs_get_start(rs, rt); 1778 *cursor_end = rs_get_end(rs, rt); 1779 } 1780 1781 offset = *cursor; 1782 *cursor += size; 1783 1784 return (offset); 1785 } 1786 1787 const metaslab_ops_t zfs_metaslab_ops = { 1788 metaslab_cf_alloc 1789 }; 1790 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1791 1792 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1793 /* 1794 * ========================================================================== 1795 * New dynamic fit allocator - 1796 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1797 * contiguous blocks. If no region is found then just use the largest segment 1798 * that remains. 1799 * ========================================================================== 1800 */ 1801 1802 /* 1803 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1804 * to request from the allocator. 1805 */ 1806 uint64_t metaslab_ndf_clump_shift = 4; 1807 1808 static uint64_t 1809 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1810 { 1811 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1812 range_tree_t *rt = msp->ms_allocatable; 1813 zfs_btree_index_t where; 1814 range_seg_t *rs; 1815 range_seg_max_t rsearch; 1816 uint64_t hbit = highbit64(size); 1817 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1818 uint64_t max_size = metaslab_largest_allocatable(msp); 1819 1820 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1821 1822 if (max_size < size) 1823 return (-1ULL); 1824 1825 rs_set_start(&rsearch, rt, *cursor); 1826 rs_set_end(&rsearch, rt, *cursor + size); 1827 1828 rs = zfs_btree_find(t, &rsearch, &where); 1829 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1830 t = &msp->ms_allocatable_by_size; 1831 1832 rs_set_start(&rsearch, rt, 0); 1833 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1834 metaslab_ndf_clump_shift))); 1835 1836 rs = zfs_btree_find(t, &rsearch, &where); 1837 if (rs == NULL) 1838 rs = zfs_btree_next(t, &where, &where); 1839 ASSERT(rs != NULL); 1840 } 1841 1842 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1843 *cursor = rs_get_start(rs, rt) + size; 1844 return (rs_get_start(rs, rt)); 1845 } 1846 return (-1ULL); 1847 } 1848 1849 const metaslab_ops_t zfs_metaslab_ops = { 1850 metaslab_ndf_alloc 1851 }; 1852 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1853 1854 1855 /* 1856 * ========================================================================== 1857 * Metaslabs 1858 * ========================================================================== 1859 */ 1860 1861 /* 1862 * Wait for any in-progress metaslab loads to complete. 1863 */ 1864 static void 1865 metaslab_load_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_loading) { 1870 ASSERT(!msp->ms_loaded); 1871 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1872 } 1873 } 1874 1875 /* 1876 * Wait for any in-progress flushing to complete. 1877 */ 1878 static void 1879 metaslab_flush_wait(metaslab_t *msp) 1880 { 1881 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1882 1883 while (msp->ms_flushing) 1884 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1885 } 1886 1887 static unsigned int 1888 metaslab_idx_func(multilist_t *ml, void *arg) 1889 { 1890 metaslab_t *msp = arg; 1891 1892 /* 1893 * ms_id values are allocated sequentially, so full 64bit 1894 * division would be a waste of time, so limit it to 32 bits. 1895 */ 1896 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1897 } 1898 1899 uint64_t 1900 metaslab_allocated_space(metaslab_t *msp) 1901 { 1902 return (msp->ms_allocated_space); 1903 } 1904 1905 /* 1906 * Verify that the space accounting on disk matches the in-core range_trees. 1907 */ 1908 static void 1909 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1910 { 1911 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1912 uint64_t allocating = 0; 1913 uint64_t sm_free_space, msp_free_space; 1914 1915 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1916 ASSERT(!msp->ms_condensing); 1917 1918 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1919 return; 1920 1921 /* 1922 * We can only verify the metaslab space when we're called 1923 * from syncing context with a loaded metaslab that has an 1924 * allocated space map. Calling this in non-syncing context 1925 * does not provide a consistent view of the metaslab since 1926 * we're performing allocations in the future. 1927 */ 1928 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1929 !msp->ms_loaded) 1930 return; 1931 1932 /* 1933 * Even though the smp_alloc field can get negative, 1934 * when it comes to a metaslab's space map, that should 1935 * never be the case. 1936 */ 1937 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1938 1939 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1940 range_tree_space(msp->ms_unflushed_frees)); 1941 1942 ASSERT3U(metaslab_allocated_space(msp), ==, 1943 space_map_allocated(msp->ms_sm) + 1944 range_tree_space(msp->ms_unflushed_allocs) - 1945 range_tree_space(msp->ms_unflushed_frees)); 1946 1947 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1948 1949 /* 1950 * Account for future allocations since we would have 1951 * already deducted that space from the ms_allocatable. 1952 */ 1953 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1954 allocating += 1955 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1956 } 1957 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1958 msp->ms_allocating_total); 1959 1960 ASSERT3U(msp->ms_deferspace, ==, 1961 range_tree_space(msp->ms_defer[0]) + 1962 range_tree_space(msp->ms_defer[1])); 1963 1964 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1965 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1966 1967 VERIFY3U(sm_free_space, ==, msp_free_space); 1968 } 1969 1970 static void 1971 metaslab_aux_histograms_clear(metaslab_t *msp) 1972 { 1973 /* 1974 * Auxiliary histograms are only cleared when resetting them, 1975 * which can only happen while the metaslab is loaded. 1976 */ 1977 ASSERT(msp->ms_loaded); 1978 1979 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 1980 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1981 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 1982 } 1983 1984 static void 1985 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1986 range_tree_t *rt) 1987 { 1988 /* 1989 * This is modeled after space_map_histogram_add(), so refer to that 1990 * function for implementation details. We want this to work like 1991 * the space map histogram, and not the range tree histogram, as we 1992 * are essentially constructing a delta that will be later subtracted 1993 * from the space map histogram. 1994 */ 1995 int idx = 0; 1996 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1997 ASSERT3U(i, >=, idx + shift); 1998 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1999 2000 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 2001 ASSERT3U(idx + shift, ==, i); 2002 idx++; 2003 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 2004 } 2005 } 2006 } 2007 2008 /* 2009 * Called at every sync pass that the metaslab gets synced. 2010 * 2011 * The reason is that we want our auxiliary histograms to be updated 2012 * wherever the metaslab's space map histogram is updated. This way 2013 * we stay consistent on which parts of the metaslab space map's 2014 * histogram are currently not available for allocations (e.g because 2015 * they are in the defer, freed, and freeing trees). 2016 */ 2017 static void 2018 metaslab_aux_histograms_update(metaslab_t *msp) 2019 { 2020 space_map_t *sm = msp->ms_sm; 2021 ASSERT(sm != NULL); 2022 2023 /* 2024 * This is similar to the metaslab's space map histogram updates 2025 * that take place in metaslab_sync(). The only difference is that 2026 * we only care about segments that haven't made it into the 2027 * ms_allocatable tree yet. 2028 */ 2029 if (msp->ms_loaded) { 2030 metaslab_aux_histograms_clear(msp); 2031 2032 metaslab_aux_histogram_add(msp->ms_synchist, 2033 sm->sm_shift, msp->ms_freed); 2034 2035 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2036 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2037 sm->sm_shift, msp->ms_defer[t]); 2038 } 2039 } 2040 2041 metaslab_aux_histogram_add(msp->ms_synchist, 2042 sm->sm_shift, msp->ms_freeing); 2043 } 2044 2045 /* 2046 * Called every time we are done syncing (writing to) the metaslab, 2047 * i.e. at the end of each sync pass. 2048 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2049 */ 2050 static void 2051 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2052 { 2053 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2054 space_map_t *sm = msp->ms_sm; 2055 2056 if (sm == NULL) { 2057 /* 2058 * We came here from metaslab_init() when creating/opening a 2059 * pool, looking at a metaslab that hasn't had any allocations 2060 * yet. 2061 */ 2062 return; 2063 } 2064 2065 /* 2066 * This is similar to the actions that we take for the ms_freed 2067 * and ms_defer trees in metaslab_sync_done(). 2068 */ 2069 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2070 if (defer_allowed) { 2071 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2072 sizeof (msp->ms_synchist)); 2073 } else { 2074 memset(msp->ms_deferhist[hist_index], 0, 2075 sizeof (msp->ms_deferhist[hist_index])); 2076 } 2077 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2078 } 2079 2080 /* 2081 * Ensure that the metaslab's weight and fragmentation are consistent 2082 * with the contents of the histogram (either the range tree's histogram 2083 * or the space map's depending whether the metaslab is loaded). 2084 */ 2085 static void 2086 metaslab_verify_weight_and_frag(metaslab_t *msp) 2087 { 2088 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2089 2090 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2091 return; 2092 2093 /* 2094 * We can end up here from vdev_remove_complete(), in which case we 2095 * cannot do these assertions because we hold spa config locks and 2096 * thus we are not allowed to read from the DMU. 2097 * 2098 * We check if the metaslab group has been removed and if that's 2099 * the case we return immediately as that would mean that we are 2100 * here from the aforementioned code path. 2101 */ 2102 if (msp->ms_group == NULL) 2103 return; 2104 2105 /* 2106 * Devices being removed always return a weight of 0 and leave 2107 * fragmentation and ms_max_size as is - there is nothing for 2108 * us to verify here. 2109 */ 2110 vdev_t *vd = msp->ms_group->mg_vd; 2111 if (vd->vdev_removing) 2112 return; 2113 2114 /* 2115 * If the metaslab is dirty it probably means that we've done 2116 * some allocations or frees that have changed our histograms 2117 * and thus the weight. 2118 */ 2119 for (int t = 0; t < TXG_SIZE; t++) { 2120 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2121 return; 2122 } 2123 2124 /* 2125 * This verification checks that our in-memory state is consistent 2126 * with what's on disk. If the pool is read-only then there aren't 2127 * any changes and we just have the initially-loaded state. 2128 */ 2129 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2130 return; 2131 2132 /* some extra verification for in-core tree if you can */ 2133 if (msp->ms_loaded) { 2134 range_tree_stat_verify(msp->ms_allocatable); 2135 VERIFY(space_map_histogram_verify(msp->ms_sm, 2136 msp->ms_allocatable)); 2137 } 2138 2139 uint64_t weight = msp->ms_weight; 2140 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2141 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2142 uint64_t frag = msp->ms_fragmentation; 2143 uint64_t max_segsize = msp->ms_max_size; 2144 2145 msp->ms_weight = 0; 2146 msp->ms_fragmentation = 0; 2147 2148 /* 2149 * This function is used for verification purposes and thus should 2150 * not introduce any side-effects/mutations on the system's state. 2151 * 2152 * Regardless of whether metaslab_weight() thinks this metaslab 2153 * should be active or not, we want to ensure that the actual weight 2154 * (and therefore the value of ms_weight) would be the same if it 2155 * was to be recalculated at this point. 2156 * 2157 * In addition we set the nodirty flag so metaslab_weight() does 2158 * not dirty the metaslab for future TXGs (e.g. when trying to 2159 * force condensing to upgrade the metaslab spacemaps). 2160 */ 2161 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2162 2163 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2164 2165 /* 2166 * If the weight type changed then there is no point in doing 2167 * verification. Revert fields to their original values. 2168 */ 2169 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2170 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2171 msp->ms_fragmentation = frag; 2172 msp->ms_weight = weight; 2173 return; 2174 } 2175 2176 VERIFY3U(msp->ms_fragmentation, ==, frag); 2177 VERIFY3U(msp->ms_weight, ==, weight); 2178 } 2179 2180 /* 2181 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2182 * this class that was used longest ago, and attempt to unload it. We don't 2183 * want to spend too much time in this loop to prevent performance 2184 * degradation, and we expect that most of the time this operation will 2185 * succeed. Between that and the normal unloading processing during txg sync, 2186 * we expect this to keep the metaslab memory usage under control. 2187 */ 2188 static void 2189 metaslab_potentially_evict(metaslab_class_t *mc) 2190 { 2191 #ifdef _KERNEL 2192 uint64_t allmem = arc_all_memory(); 2193 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2194 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2195 uint_t tries = 0; 2196 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2197 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2198 tries++) { 2199 unsigned int idx = multilist_get_random_index( 2200 &mc->mc_metaslab_txg_list); 2201 multilist_sublist_t *mls = 2202 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2203 metaslab_t *msp = multilist_sublist_head(mls); 2204 multilist_sublist_unlock(mls); 2205 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2206 inuse * size) { 2207 VERIFY3P(mls, ==, multilist_sublist_lock( 2208 &mc->mc_metaslab_txg_list, idx)); 2209 ASSERT3U(idx, ==, 2210 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2211 2212 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2213 multilist_sublist_unlock(mls); 2214 break; 2215 } 2216 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2217 multilist_sublist_unlock(mls); 2218 /* 2219 * If the metaslab is currently loading there are two 2220 * cases. If it's the metaslab we're evicting, we 2221 * can't continue on or we'll panic when we attempt to 2222 * recursively lock the mutex. If it's another 2223 * metaslab that's loading, it can be safely skipped, 2224 * since we know it's very new and therefore not a 2225 * good eviction candidate. We check later once the 2226 * lock is held that the metaslab is fully loaded 2227 * before actually unloading it. 2228 */ 2229 if (msp->ms_loading) { 2230 msp = next_msp; 2231 inuse = 2232 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2233 continue; 2234 } 2235 /* 2236 * We can't unload metaslabs with no spacemap because 2237 * they're not ready to be unloaded yet. We can't 2238 * unload metaslabs with outstanding allocations 2239 * because doing so could cause the metaslab's weight 2240 * to decrease while it's unloaded, which violates an 2241 * invariant that we use to prevent unnecessary 2242 * loading. We also don't unload metaslabs that are 2243 * currently active because they are high-weight 2244 * metaslabs that are likely to be used in the near 2245 * future. 2246 */ 2247 mutex_enter(&msp->ms_lock); 2248 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2249 msp->ms_allocating_total == 0) { 2250 metaslab_unload(msp); 2251 } 2252 mutex_exit(&msp->ms_lock); 2253 msp = next_msp; 2254 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2255 } 2256 } 2257 #else 2258 (void) mc, (void) zfs_metaslab_mem_limit; 2259 #endif 2260 } 2261 2262 static int 2263 metaslab_load_impl(metaslab_t *msp) 2264 { 2265 int error = 0; 2266 2267 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2268 ASSERT(msp->ms_loading); 2269 ASSERT(!msp->ms_condensing); 2270 2271 /* 2272 * We temporarily drop the lock to unblock other operations while we 2273 * are reading the space map. Therefore, metaslab_sync() and 2274 * metaslab_sync_done() can run at the same time as we do. 2275 * 2276 * If we are using the log space maps, metaslab_sync() can't write to 2277 * the metaslab's space map while we are loading as we only write to 2278 * it when we are flushing the metaslab, and that can't happen while 2279 * we are loading it. 2280 * 2281 * If we are not using log space maps though, metaslab_sync() can 2282 * append to the space map while we are loading. Therefore we load 2283 * only entries that existed when we started the load. Additionally, 2284 * metaslab_sync_done() has to wait for the load to complete because 2285 * there are potential races like metaslab_load() loading parts of the 2286 * space map that are currently being appended by metaslab_sync(). If 2287 * we didn't, the ms_allocatable would have entries that 2288 * metaslab_sync_done() would try to re-add later. 2289 * 2290 * That's why before dropping the lock we remember the synced length 2291 * of the metaslab and read up to that point of the space map, 2292 * ignoring entries appended by metaslab_sync() that happen after we 2293 * drop the lock. 2294 */ 2295 uint64_t length = msp->ms_synced_length; 2296 mutex_exit(&msp->ms_lock); 2297 2298 hrtime_t load_start = gethrtime(); 2299 metaslab_rt_arg_t *mrap; 2300 if (msp->ms_allocatable->rt_arg == NULL) { 2301 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2302 } else { 2303 mrap = msp->ms_allocatable->rt_arg; 2304 msp->ms_allocatable->rt_ops = NULL; 2305 msp->ms_allocatable->rt_arg = NULL; 2306 } 2307 mrap->mra_bt = &msp->ms_allocatable_by_size; 2308 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2309 2310 if (msp->ms_sm != NULL) { 2311 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2312 SM_FREE, length); 2313 2314 /* Now, populate the size-sorted tree. */ 2315 metaslab_rt_create(msp->ms_allocatable, mrap); 2316 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2317 msp->ms_allocatable->rt_arg = mrap; 2318 2319 struct mssa_arg arg = {0}; 2320 arg.rt = msp->ms_allocatable; 2321 arg.mra = mrap; 2322 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2323 &arg); 2324 } else { 2325 /* 2326 * Add the size-sorted tree first, since we don't need to load 2327 * the metaslab from the spacemap. 2328 */ 2329 metaslab_rt_create(msp->ms_allocatable, mrap); 2330 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2331 msp->ms_allocatable->rt_arg = mrap; 2332 /* 2333 * The space map has not been allocated yet, so treat 2334 * all the space in the metaslab as free and add it to the 2335 * ms_allocatable tree. 2336 */ 2337 range_tree_add(msp->ms_allocatable, 2338 msp->ms_start, msp->ms_size); 2339 2340 if (msp->ms_new) { 2341 /* 2342 * If the ms_sm doesn't exist, this means that this 2343 * metaslab hasn't gone through metaslab_sync() and 2344 * thus has never been dirtied. So we shouldn't 2345 * expect any unflushed allocs or frees from previous 2346 * TXGs. 2347 */ 2348 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2349 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2350 } 2351 } 2352 2353 /* 2354 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2355 * changing the ms_sm (or log_sm) and the metaslab's range trees 2356 * while we are about to use them and populate the ms_allocatable. 2357 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2358 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2359 */ 2360 mutex_enter(&msp->ms_sync_lock); 2361 mutex_enter(&msp->ms_lock); 2362 2363 ASSERT(!msp->ms_condensing); 2364 ASSERT(!msp->ms_flushing); 2365 2366 if (error != 0) { 2367 mutex_exit(&msp->ms_sync_lock); 2368 return (error); 2369 } 2370 2371 ASSERT3P(msp->ms_group, !=, NULL); 2372 msp->ms_loaded = B_TRUE; 2373 2374 /* 2375 * Apply all the unflushed changes to ms_allocatable right 2376 * away so any manipulations we do below have a clear view 2377 * of what is allocated and what is free. 2378 */ 2379 range_tree_walk(msp->ms_unflushed_allocs, 2380 range_tree_remove, msp->ms_allocatable); 2381 range_tree_walk(msp->ms_unflushed_frees, 2382 range_tree_add, msp->ms_allocatable); 2383 2384 ASSERT3P(msp->ms_group, !=, NULL); 2385 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2386 if (spa_syncing_log_sm(spa) != NULL) { 2387 ASSERT(spa_feature_is_enabled(spa, 2388 SPA_FEATURE_LOG_SPACEMAP)); 2389 2390 /* 2391 * If we use a log space map we add all the segments 2392 * that are in ms_unflushed_frees so they are available 2393 * for allocation. 2394 * 2395 * ms_allocatable needs to contain all free segments 2396 * that are ready for allocations (thus not segments 2397 * from ms_freeing, ms_freed, and the ms_defer trees). 2398 * But if we grab the lock in this code path at a sync 2399 * pass later that 1, then it also contains the 2400 * segments of ms_freed (they were added to it earlier 2401 * in this path through ms_unflushed_frees). So we 2402 * need to remove all the segments that exist in 2403 * ms_freed from ms_allocatable as they will be added 2404 * later in metaslab_sync_done(). 2405 * 2406 * When there's no log space map, the ms_allocatable 2407 * correctly doesn't contain any segments that exist 2408 * in ms_freed [see ms_synced_length]. 2409 */ 2410 range_tree_walk(msp->ms_freed, 2411 range_tree_remove, msp->ms_allocatable); 2412 } 2413 2414 /* 2415 * If we are not using the log space map, ms_allocatable 2416 * contains the segments that exist in the ms_defer trees 2417 * [see ms_synced_length]. Thus we need to remove them 2418 * from ms_allocatable as they will be added again in 2419 * metaslab_sync_done(). 2420 * 2421 * If we are using the log space map, ms_allocatable still 2422 * contains the segments that exist in the ms_defer trees. 2423 * Not because it read them through the ms_sm though. But 2424 * because these segments are part of ms_unflushed_frees 2425 * whose segments we add to ms_allocatable earlier in this 2426 * code path. 2427 */ 2428 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2429 range_tree_walk(msp->ms_defer[t], 2430 range_tree_remove, msp->ms_allocatable); 2431 } 2432 2433 /* 2434 * Call metaslab_recalculate_weight_and_sort() now that the 2435 * metaslab is loaded so we get the metaslab's real weight. 2436 * 2437 * Unless this metaslab was created with older software and 2438 * has not yet been converted to use segment-based weight, we 2439 * expect the new weight to be better or equal to the weight 2440 * that the metaslab had while it was not loaded. This is 2441 * because the old weight does not take into account the 2442 * consolidation of adjacent segments between TXGs. [see 2443 * comment for ms_synchist and ms_deferhist[] for more info] 2444 */ 2445 uint64_t weight = msp->ms_weight; 2446 uint64_t max_size = msp->ms_max_size; 2447 metaslab_recalculate_weight_and_sort(msp); 2448 if (!WEIGHT_IS_SPACEBASED(weight)) 2449 ASSERT3U(weight, <=, msp->ms_weight); 2450 msp->ms_max_size = metaslab_largest_allocatable(msp); 2451 ASSERT3U(max_size, <=, msp->ms_max_size); 2452 hrtime_t load_end = gethrtime(); 2453 msp->ms_load_time = load_end; 2454 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2455 "ms_id %llu, smp_length %llu, " 2456 "unflushed_allocs %llu, unflushed_frees %llu, " 2457 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2458 "loading_time %lld ms, ms_max_size %llu, " 2459 "max size error %lld, " 2460 "old_weight %llx, new_weight %llx", 2461 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2462 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2463 (u_longlong_t)msp->ms_id, 2464 (u_longlong_t)space_map_length(msp->ms_sm), 2465 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 2466 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 2467 (u_longlong_t)range_tree_space(msp->ms_freed), 2468 (u_longlong_t)range_tree_space(msp->ms_defer[0]), 2469 (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2470 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2471 (longlong_t)((load_end - load_start) / 1000000), 2472 (u_longlong_t)msp->ms_max_size, 2473 (u_longlong_t)msp->ms_max_size - max_size, 2474 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2475 2476 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2477 mutex_exit(&msp->ms_sync_lock); 2478 return (0); 2479 } 2480 2481 int 2482 metaslab_load(metaslab_t *msp) 2483 { 2484 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2485 2486 /* 2487 * There may be another thread loading the same metaslab, if that's 2488 * the case just wait until the other thread is done and return. 2489 */ 2490 metaslab_load_wait(msp); 2491 if (msp->ms_loaded) 2492 return (0); 2493 VERIFY(!msp->ms_loading); 2494 ASSERT(!msp->ms_condensing); 2495 2496 /* 2497 * We set the loading flag BEFORE potentially dropping the lock to 2498 * wait for an ongoing flush (see ms_flushing below). This way other 2499 * threads know that there is already a thread that is loading this 2500 * metaslab. 2501 */ 2502 msp->ms_loading = B_TRUE; 2503 2504 /* 2505 * Wait for any in-progress flushing to finish as we drop the ms_lock 2506 * both here (during space_map_load()) and in metaslab_flush() (when 2507 * we flush our changes to the ms_sm). 2508 */ 2509 if (msp->ms_flushing) 2510 metaslab_flush_wait(msp); 2511 2512 /* 2513 * In the possibility that we were waiting for the metaslab to be 2514 * flushed (where we temporarily dropped the ms_lock), ensure that 2515 * no one else loaded the metaslab somehow. 2516 */ 2517 ASSERT(!msp->ms_loaded); 2518 2519 /* 2520 * If we're loading a metaslab in the normal class, consider evicting 2521 * another one to keep our memory usage under the limit defined by the 2522 * zfs_metaslab_mem_limit tunable. 2523 */ 2524 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2525 msp->ms_group->mg_class) { 2526 metaslab_potentially_evict(msp->ms_group->mg_class); 2527 } 2528 2529 int error = metaslab_load_impl(msp); 2530 2531 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2532 msp->ms_loading = B_FALSE; 2533 cv_broadcast(&msp->ms_load_cv); 2534 2535 return (error); 2536 } 2537 2538 void 2539 metaslab_unload(metaslab_t *msp) 2540 { 2541 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2542 2543 /* 2544 * This can happen if a metaslab is selected for eviction (in 2545 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2546 * metaslab_class_evict_old). 2547 */ 2548 if (!msp->ms_loaded) 2549 return; 2550 2551 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2552 msp->ms_loaded = B_FALSE; 2553 msp->ms_unload_time = gethrtime(); 2554 2555 msp->ms_activation_weight = 0; 2556 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2557 2558 if (msp->ms_group != NULL) { 2559 metaslab_class_t *mc = msp->ms_group->mg_class; 2560 multilist_sublist_t *mls = 2561 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2562 if (multilist_link_active(&msp->ms_class_txg_node)) 2563 multilist_sublist_remove(mls, msp); 2564 multilist_sublist_unlock(mls); 2565 2566 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2567 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2568 "ms_id %llu, weight %llx, " 2569 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2570 "loaded %llu ms ago, max_size %llu", 2571 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 2572 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 2573 (u_longlong_t)msp->ms_id, 2574 (u_longlong_t)msp->ms_weight, 2575 (u_longlong_t)msp->ms_selected_txg, 2576 (u_longlong_t)(msp->ms_unload_time - 2577 msp->ms_selected_time) / 1000 / 1000, 2578 (u_longlong_t)msp->ms_alloc_txg, 2579 (u_longlong_t)(msp->ms_unload_time - 2580 msp->ms_load_time) / 1000 / 1000, 2581 (u_longlong_t)msp->ms_max_size); 2582 } 2583 2584 /* 2585 * We explicitly recalculate the metaslab's weight based on its space 2586 * map (as it is now not loaded). We want unload metaslabs to always 2587 * have their weights calculated from the space map histograms, while 2588 * loaded ones have it calculated from their in-core range tree 2589 * [see metaslab_load()]. This way, the weight reflects the information 2590 * available in-core, whether it is loaded or not. 2591 * 2592 * If ms_group == NULL means that we came here from metaslab_fini(), 2593 * at which point it doesn't make sense for us to do the recalculation 2594 * and the sorting. 2595 */ 2596 if (msp->ms_group != NULL) 2597 metaslab_recalculate_weight_and_sort(msp); 2598 } 2599 2600 /* 2601 * We want to optimize the memory use of the per-metaslab range 2602 * trees. To do this, we store the segments in the range trees in 2603 * units of sectors, zero-indexing from the start of the metaslab. If 2604 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2605 * the ranges using two uint32_ts, rather than two uint64_ts. 2606 */ 2607 range_seg_type_t 2608 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2609 uint64_t *start, uint64_t *shift) 2610 { 2611 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2612 !zfs_metaslab_force_large_segs) { 2613 *shift = vdev->vdev_ashift; 2614 *start = msp->ms_start; 2615 return (RANGE_SEG32); 2616 } else { 2617 *shift = 0; 2618 *start = 0; 2619 return (RANGE_SEG64); 2620 } 2621 } 2622 2623 void 2624 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2625 { 2626 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2627 metaslab_class_t *mc = msp->ms_group->mg_class; 2628 multilist_sublist_t *mls = 2629 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2630 if (multilist_link_active(&msp->ms_class_txg_node)) 2631 multilist_sublist_remove(mls, msp); 2632 msp->ms_selected_txg = txg; 2633 msp->ms_selected_time = gethrtime(); 2634 multilist_sublist_insert_tail(mls, msp); 2635 multilist_sublist_unlock(mls); 2636 } 2637 2638 void 2639 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2640 int64_t defer_delta, int64_t space_delta) 2641 { 2642 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2643 2644 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2645 ASSERT(vd->vdev_ms_count != 0); 2646 2647 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2648 vdev_deflated_space(vd, space_delta)); 2649 } 2650 2651 int 2652 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2653 uint64_t txg, metaslab_t **msp) 2654 { 2655 vdev_t *vd = mg->mg_vd; 2656 spa_t *spa = vd->vdev_spa; 2657 objset_t *mos = spa->spa_meta_objset; 2658 metaslab_t *ms; 2659 int error; 2660 2661 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2662 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2663 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2664 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2665 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2666 multilist_link_init(&ms->ms_class_txg_node); 2667 2668 ms->ms_id = id; 2669 ms->ms_start = id << vd->vdev_ms_shift; 2670 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2671 ms->ms_allocator = -1; 2672 ms->ms_new = B_TRUE; 2673 2674 vdev_ops_t *ops = vd->vdev_ops; 2675 if (ops->vdev_op_metaslab_init != NULL) 2676 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2677 2678 /* 2679 * We only open space map objects that already exist. All others 2680 * will be opened when we finally allocate an object for it. For 2681 * readonly pools there is no need to open the space map object. 2682 * 2683 * Note: 2684 * When called from vdev_expand(), we can't call into the DMU as 2685 * we are holding the spa_config_lock as a writer and we would 2686 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2687 * that case, the object parameter is zero though, so we won't 2688 * call into the DMU. 2689 */ 2690 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 2691 !spa->spa_read_spacemaps)) { 2692 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2693 ms->ms_size, vd->vdev_ashift); 2694 2695 if (error != 0) { 2696 kmem_free(ms, sizeof (metaslab_t)); 2697 return (error); 2698 } 2699 2700 ASSERT(ms->ms_sm != NULL); 2701 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2702 } 2703 2704 uint64_t shift, start; 2705 range_seg_type_t type = 2706 metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2707 2708 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2709 for (int t = 0; t < TXG_SIZE; t++) { 2710 ms->ms_allocating[t] = range_tree_create(NULL, type, 2711 NULL, start, shift); 2712 } 2713 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2714 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2715 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2716 ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2717 start, shift); 2718 } 2719 ms->ms_checkpointing = 2720 range_tree_create(NULL, type, NULL, start, shift); 2721 ms->ms_unflushed_allocs = 2722 range_tree_create(NULL, type, NULL, start, shift); 2723 2724 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2725 mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2726 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2727 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2728 type, mrap, start, shift); 2729 2730 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2731 2732 metaslab_group_add(mg, ms); 2733 metaslab_set_fragmentation(ms, B_FALSE); 2734 2735 /* 2736 * If we're opening an existing pool (txg == 0) or creating 2737 * a new one (txg == TXG_INITIAL), all space is available now. 2738 * If we're adding space to an existing pool, the new space 2739 * does not become available until after this txg has synced. 2740 * The metaslab's weight will also be initialized when we sync 2741 * out this txg. This ensures that we don't attempt to allocate 2742 * from it before we have initialized it completely. 2743 */ 2744 if (txg <= TXG_INITIAL) { 2745 metaslab_sync_done(ms, 0); 2746 metaslab_space_update(vd, mg->mg_class, 2747 metaslab_allocated_space(ms), 0, 0); 2748 } 2749 2750 if (txg != 0) { 2751 vdev_dirty(vd, 0, NULL, txg); 2752 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2753 } 2754 2755 *msp = ms; 2756 2757 return (0); 2758 } 2759 2760 static void 2761 metaslab_fini_flush_data(metaslab_t *msp) 2762 { 2763 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2764 2765 if (metaslab_unflushed_txg(msp) == 0) { 2766 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2767 ==, NULL); 2768 return; 2769 } 2770 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2771 2772 mutex_enter(&spa->spa_flushed_ms_lock); 2773 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2774 mutex_exit(&spa->spa_flushed_ms_lock); 2775 2776 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2777 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2778 metaslab_unflushed_dirty(msp)); 2779 } 2780 2781 uint64_t 2782 metaslab_unflushed_changes_memused(metaslab_t *ms) 2783 { 2784 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2785 range_tree_numsegs(ms->ms_unflushed_frees)) * 2786 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2787 } 2788 2789 void 2790 metaslab_fini(metaslab_t *msp) 2791 { 2792 metaslab_group_t *mg = msp->ms_group; 2793 vdev_t *vd = mg->mg_vd; 2794 spa_t *spa = vd->vdev_spa; 2795 2796 metaslab_fini_flush_data(msp); 2797 2798 metaslab_group_remove(mg, msp); 2799 2800 mutex_enter(&msp->ms_lock); 2801 VERIFY(msp->ms_group == NULL); 2802 2803 /* 2804 * If this metaslab hasn't been through metaslab_sync_done() yet its 2805 * space hasn't been accounted for in its vdev and doesn't need to be 2806 * subtracted. 2807 */ 2808 if (!msp->ms_new) { 2809 metaslab_space_update(vd, mg->mg_class, 2810 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2811 2812 } 2813 space_map_close(msp->ms_sm); 2814 msp->ms_sm = NULL; 2815 2816 metaslab_unload(msp); 2817 2818 range_tree_destroy(msp->ms_allocatable); 2819 range_tree_destroy(msp->ms_freeing); 2820 range_tree_destroy(msp->ms_freed); 2821 2822 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2823 metaslab_unflushed_changes_memused(msp)); 2824 spa->spa_unflushed_stats.sus_memused -= 2825 metaslab_unflushed_changes_memused(msp); 2826 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2827 range_tree_destroy(msp->ms_unflushed_allocs); 2828 range_tree_destroy(msp->ms_checkpointing); 2829 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2830 range_tree_destroy(msp->ms_unflushed_frees); 2831 2832 for (int t = 0; t < TXG_SIZE; t++) { 2833 range_tree_destroy(msp->ms_allocating[t]); 2834 } 2835 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2836 range_tree_destroy(msp->ms_defer[t]); 2837 } 2838 ASSERT0(msp->ms_deferspace); 2839 2840 for (int t = 0; t < TXG_SIZE; t++) 2841 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2842 2843 range_tree_vacate(msp->ms_trim, NULL, NULL); 2844 range_tree_destroy(msp->ms_trim); 2845 2846 mutex_exit(&msp->ms_lock); 2847 cv_destroy(&msp->ms_load_cv); 2848 cv_destroy(&msp->ms_flush_cv); 2849 mutex_destroy(&msp->ms_lock); 2850 mutex_destroy(&msp->ms_sync_lock); 2851 ASSERT3U(msp->ms_allocator, ==, -1); 2852 2853 kmem_free(msp, sizeof (metaslab_t)); 2854 } 2855 2856 #define FRAGMENTATION_TABLE_SIZE 17 2857 2858 /* 2859 * This table defines a segment size based fragmentation metric that will 2860 * allow each metaslab to derive its own fragmentation value. This is done 2861 * by calculating the space in each bucket of the spacemap histogram and 2862 * multiplying that by the fragmentation metric in this table. Doing 2863 * this for all buckets and dividing it by the total amount of free 2864 * space in this metaslab (i.e. the total free space in all buckets) gives 2865 * us the fragmentation metric. This means that a high fragmentation metric 2866 * equates to most of the free space being comprised of small segments. 2867 * Conversely, if the metric is low, then most of the free space is in 2868 * large segments. A 10% change in fragmentation equates to approximately 2869 * double the number of segments. 2870 * 2871 * This table defines 0% fragmented space using 16MB segments. Testing has 2872 * shown that segments that are greater than or equal to 16MB do not suffer 2873 * from drastic performance problems. Using this value, we derive the rest 2874 * of the table. Since the fragmentation value is never stored on disk, it 2875 * is possible to change these calculations in the future. 2876 */ 2877 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2878 100, /* 512B */ 2879 100, /* 1K */ 2880 98, /* 2K */ 2881 95, /* 4K */ 2882 90, /* 8K */ 2883 80, /* 16K */ 2884 70, /* 32K */ 2885 60, /* 64K */ 2886 50, /* 128K */ 2887 40, /* 256K */ 2888 30, /* 512K */ 2889 20, /* 1M */ 2890 15, /* 2M */ 2891 10, /* 4M */ 2892 5, /* 8M */ 2893 0 /* 16M */ 2894 }; 2895 2896 /* 2897 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2898 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2899 * been upgraded and does not support this metric. Otherwise, the return 2900 * value should be in the range [0, 100]. 2901 */ 2902 static void 2903 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2904 { 2905 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2906 uint64_t fragmentation = 0; 2907 uint64_t total = 0; 2908 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2909 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2910 2911 if (!feature_enabled) { 2912 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2913 return; 2914 } 2915 2916 /* 2917 * A null space map means that the entire metaslab is free 2918 * and thus is not fragmented. 2919 */ 2920 if (msp->ms_sm == NULL) { 2921 msp->ms_fragmentation = 0; 2922 return; 2923 } 2924 2925 /* 2926 * If this metaslab's space map has not been upgraded, flag it 2927 * so that we upgrade next time we encounter it. 2928 */ 2929 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2930 uint64_t txg = spa_syncing_txg(spa); 2931 vdev_t *vd = msp->ms_group->mg_vd; 2932 2933 /* 2934 * If we've reached the final dirty txg, then we must 2935 * be shutting down the pool. We don't want to dirty 2936 * any data past this point so skip setting the condense 2937 * flag. We can retry this action the next time the pool 2938 * is imported. We also skip marking this metaslab for 2939 * condensing if the caller has explicitly set nodirty. 2940 */ 2941 if (!nodirty && 2942 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2943 msp->ms_condense_wanted = B_TRUE; 2944 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2945 zfs_dbgmsg("txg %llu, requesting force condense: " 2946 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 2947 (u_longlong_t)msp->ms_id, 2948 (u_longlong_t)vd->vdev_id); 2949 } 2950 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2951 return; 2952 } 2953 2954 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2955 uint64_t space = 0; 2956 uint8_t shift = msp->ms_sm->sm_shift; 2957 2958 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2959 FRAGMENTATION_TABLE_SIZE - 1); 2960 2961 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2962 continue; 2963 2964 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2965 total += space; 2966 2967 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2968 fragmentation += space * zfs_frag_table[idx]; 2969 } 2970 2971 if (total > 0) 2972 fragmentation /= total; 2973 ASSERT3U(fragmentation, <=, 100); 2974 2975 msp->ms_fragmentation = fragmentation; 2976 } 2977 2978 /* 2979 * Compute a weight -- a selection preference value -- for the given metaslab. 2980 * This is based on the amount of free space, the level of fragmentation, 2981 * the LBA range, and whether the metaslab is loaded. 2982 */ 2983 static uint64_t 2984 metaslab_space_weight(metaslab_t *msp) 2985 { 2986 metaslab_group_t *mg = msp->ms_group; 2987 vdev_t *vd = mg->mg_vd; 2988 uint64_t weight, space; 2989 2990 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2991 2992 /* 2993 * The baseline weight is the metaslab's free space. 2994 */ 2995 space = msp->ms_size - metaslab_allocated_space(msp); 2996 2997 if (metaslab_fragmentation_factor_enabled && 2998 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2999 /* 3000 * Use the fragmentation information to inversely scale 3001 * down the baseline weight. We need to ensure that we 3002 * don't exclude this metaslab completely when it's 100% 3003 * fragmented. To avoid this we reduce the fragmented value 3004 * by 1. 3005 */ 3006 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 3007 3008 /* 3009 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 3010 * this metaslab again. The fragmentation metric may have 3011 * decreased the space to something smaller than 3012 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 3013 * so that we can consume any remaining space. 3014 */ 3015 if (space > 0 && space < SPA_MINBLOCKSIZE) 3016 space = SPA_MINBLOCKSIZE; 3017 } 3018 weight = space; 3019 3020 /* 3021 * Modern disks have uniform bit density and constant angular velocity. 3022 * Therefore, the outer recording zones are faster (higher bandwidth) 3023 * than the inner zones by the ratio of outer to inner track diameter, 3024 * which is typically around 2:1. We account for this by assigning 3025 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3026 * In effect, this means that we'll select the metaslab with the most 3027 * free bandwidth rather than simply the one with the most free space. 3028 */ 3029 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3030 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3031 ASSERT(weight >= space && weight <= 2 * space); 3032 } 3033 3034 /* 3035 * If this metaslab is one we're actively using, adjust its 3036 * weight to make it preferable to any inactive metaslab so 3037 * we'll polish it off. If the fragmentation on this metaslab 3038 * has exceed our threshold, then don't mark it active. 3039 */ 3040 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3041 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3042 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3043 } 3044 3045 WEIGHT_SET_SPACEBASED(weight); 3046 return (weight); 3047 } 3048 3049 /* 3050 * Return the weight of the specified metaslab, according to the segment-based 3051 * weighting algorithm. The metaslab must be loaded. This function can 3052 * be called within a sync pass since it relies only on the metaslab's 3053 * range tree which is always accurate when the metaslab is loaded. 3054 */ 3055 static uint64_t 3056 metaslab_weight_from_range_tree(metaslab_t *msp) 3057 { 3058 uint64_t weight = 0; 3059 uint32_t segments = 0; 3060 3061 ASSERT(msp->ms_loaded); 3062 3063 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3064 i--) { 3065 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3066 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3067 3068 segments <<= 1; 3069 segments += msp->ms_allocatable->rt_histogram[i]; 3070 3071 /* 3072 * The range tree provides more precision than the space map 3073 * and must be downgraded so that all values fit within the 3074 * space map's histogram. This allows us to compare loaded 3075 * vs. unloaded metaslabs to determine which metaslab is 3076 * considered "best". 3077 */ 3078 if (i > max_idx) 3079 continue; 3080 3081 if (segments != 0) { 3082 WEIGHT_SET_COUNT(weight, segments); 3083 WEIGHT_SET_INDEX(weight, i); 3084 WEIGHT_SET_ACTIVE(weight, 0); 3085 break; 3086 } 3087 } 3088 return (weight); 3089 } 3090 3091 /* 3092 * Calculate the weight based on the on-disk histogram. Should be applied 3093 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3094 * give results consistent with the on-disk state 3095 */ 3096 static uint64_t 3097 metaslab_weight_from_spacemap(metaslab_t *msp) 3098 { 3099 space_map_t *sm = msp->ms_sm; 3100 ASSERT(!msp->ms_loaded); 3101 ASSERT(sm != NULL); 3102 ASSERT3U(space_map_object(sm), !=, 0); 3103 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3104 3105 /* 3106 * Create a joint histogram from all the segments that have made 3107 * it to the metaslab's space map histogram, that are not yet 3108 * available for allocation because they are still in the freeing 3109 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3110 * these segments from the space map's histogram to get a more 3111 * accurate weight. 3112 */ 3113 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3114 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3115 deferspace_histogram[i] += msp->ms_synchist[i]; 3116 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3117 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3118 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3119 } 3120 } 3121 3122 uint64_t weight = 0; 3123 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3124 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3125 deferspace_histogram[i]); 3126 uint64_t count = 3127 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3128 if (count != 0) { 3129 WEIGHT_SET_COUNT(weight, count); 3130 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3131 WEIGHT_SET_ACTIVE(weight, 0); 3132 break; 3133 } 3134 } 3135 return (weight); 3136 } 3137 3138 /* 3139 * Compute a segment-based weight for the specified metaslab. The weight 3140 * is determined by highest bucket in the histogram. The information 3141 * for the highest bucket is encoded into the weight value. 3142 */ 3143 static uint64_t 3144 metaslab_segment_weight(metaslab_t *msp) 3145 { 3146 metaslab_group_t *mg = msp->ms_group; 3147 uint64_t weight = 0; 3148 uint8_t shift = mg->mg_vd->vdev_ashift; 3149 3150 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3151 3152 /* 3153 * The metaslab is completely free. 3154 */ 3155 if (metaslab_allocated_space(msp) == 0) { 3156 int idx = highbit64(msp->ms_size) - 1; 3157 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3158 3159 if (idx < max_idx) { 3160 WEIGHT_SET_COUNT(weight, 1ULL); 3161 WEIGHT_SET_INDEX(weight, idx); 3162 } else { 3163 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3164 WEIGHT_SET_INDEX(weight, max_idx); 3165 } 3166 WEIGHT_SET_ACTIVE(weight, 0); 3167 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3168 return (weight); 3169 } 3170 3171 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3172 3173 /* 3174 * If the metaslab is fully allocated then just make the weight 0. 3175 */ 3176 if (metaslab_allocated_space(msp) == msp->ms_size) 3177 return (0); 3178 /* 3179 * If the metaslab is already loaded, then use the range tree to 3180 * determine the weight. Otherwise, we rely on the space map information 3181 * to generate the weight. 3182 */ 3183 if (msp->ms_loaded) { 3184 weight = metaslab_weight_from_range_tree(msp); 3185 } else { 3186 weight = metaslab_weight_from_spacemap(msp); 3187 } 3188 3189 /* 3190 * If the metaslab was active the last time we calculated its weight 3191 * then keep it active. We want to consume the entire region that 3192 * is associated with this weight. 3193 */ 3194 if (msp->ms_activation_weight != 0 && weight != 0) 3195 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3196 return (weight); 3197 } 3198 3199 /* 3200 * Determine if we should attempt to allocate from this metaslab. If the 3201 * metaslab is loaded, then we can determine if the desired allocation 3202 * can be satisfied by looking at the size of the maximum free segment 3203 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3204 * weight. For segment-based weighting we can determine the maximum 3205 * allocation based on the index encoded in its value. For space-based 3206 * weights we rely on the entire weight (excluding the weight-type bit). 3207 */ 3208 static boolean_t 3209 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3210 { 3211 /* 3212 * If the metaslab is loaded, ms_max_size is definitive and we can use 3213 * the fast check. If it's not, the ms_max_size is a lower bound (once 3214 * set), and we should use the fast check as long as we're not in 3215 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3216 * seconds since the metaslab was unloaded. 3217 */ 3218 if (msp->ms_loaded || 3219 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3220 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3221 return (msp->ms_max_size >= asize); 3222 3223 boolean_t should_allocate; 3224 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3225 /* 3226 * The metaslab segment weight indicates segments in the 3227 * range [2^i, 2^(i+1)), where i is the index in the weight. 3228 * Since the asize might be in the middle of the range, we 3229 * should attempt the allocation if asize < 2^(i+1). 3230 */ 3231 should_allocate = (asize < 3232 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3233 } else { 3234 should_allocate = (asize <= 3235 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3236 } 3237 3238 return (should_allocate); 3239 } 3240 3241 static uint64_t 3242 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3243 { 3244 vdev_t *vd = msp->ms_group->mg_vd; 3245 spa_t *spa = vd->vdev_spa; 3246 uint64_t weight; 3247 3248 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3249 3250 metaslab_set_fragmentation(msp, nodirty); 3251 3252 /* 3253 * Update the maximum size. If the metaslab is loaded, this will 3254 * ensure that we get an accurate maximum size if newly freed space 3255 * has been added back into the free tree. If the metaslab is 3256 * unloaded, we check if there's a larger free segment in the 3257 * unflushed frees. This is a lower bound on the largest allocatable 3258 * segment size. Coalescing of adjacent entries may reveal larger 3259 * allocatable segments, but we aren't aware of those until loading 3260 * the space map into a range tree. 3261 */ 3262 if (msp->ms_loaded) { 3263 msp->ms_max_size = metaslab_largest_allocatable(msp); 3264 } else { 3265 msp->ms_max_size = MAX(msp->ms_max_size, 3266 metaslab_largest_unflushed_free(msp)); 3267 } 3268 3269 /* 3270 * Segment-based weighting requires space map histogram support. 3271 */ 3272 if (zfs_metaslab_segment_weight_enabled && 3273 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3274 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3275 sizeof (space_map_phys_t))) { 3276 weight = metaslab_segment_weight(msp); 3277 } else { 3278 weight = metaslab_space_weight(msp); 3279 } 3280 return (weight); 3281 } 3282 3283 void 3284 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3285 { 3286 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3287 3288 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3289 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3290 metaslab_group_sort(msp->ms_group, msp, 3291 metaslab_weight(msp, B_FALSE) | was_active); 3292 } 3293 3294 static int 3295 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3296 int allocator, uint64_t activation_weight) 3297 { 3298 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3299 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3300 3301 /* 3302 * If we're activating for the claim code, we don't want to actually 3303 * set the metaslab up for a specific allocator. 3304 */ 3305 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3306 ASSERT0(msp->ms_activation_weight); 3307 msp->ms_activation_weight = msp->ms_weight; 3308 metaslab_group_sort(mg, msp, msp->ms_weight | 3309 activation_weight); 3310 return (0); 3311 } 3312 3313 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3314 &mga->mga_primary : &mga->mga_secondary); 3315 3316 mutex_enter(&mg->mg_lock); 3317 if (*mspp != NULL) { 3318 mutex_exit(&mg->mg_lock); 3319 return (EEXIST); 3320 } 3321 3322 *mspp = msp; 3323 ASSERT3S(msp->ms_allocator, ==, -1); 3324 msp->ms_allocator = allocator; 3325 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3326 3327 ASSERT0(msp->ms_activation_weight); 3328 msp->ms_activation_weight = msp->ms_weight; 3329 metaslab_group_sort_impl(mg, msp, 3330 msp->ms_weight | activation_weight); 3331 mutex_exit(&mg->mg_lock); 3332 3333 return (0); 3334 } 3335 3336 static int 3337 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3338 { 3339 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3340 3341 /* 3342 * The current metaslab is already activated for us so there 3343 * is nothing to do. Already activated though, doesn't mean 3344 * that this metaslab is activated for our allocator nor our 3345 * requested activation weight. The metaslab could have started 3346 * as an active one for our allocator but changed allocators 3347 * while we were waiting to grab its ms_lock or we stole it 3348 * [see find_valid_metaslab()]. This means that there is a 3349 * possibility of passivating a metaslab of another allocator 3350 * or from a different activation mask, from this thread. 3351 */ 3352 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3353 ASSERT(msp->ms_loaded); 3354 return (0); 3355 } 3356 3357 int error = metaslab_load(msp); 3358 if (error != 0) { 3359 metaslab_group_sort(msp->ms_group, msp, 0); 3360 return (error); 3361 } 3362 3363 /* 3364 * When entering metaslab_load() we may have dropped the 3365 * ms_lock because we were loading this metaslab, or we 3366 * were waiting for another thread to load it for us. In 3367 * that scenario, we recheck the weight of the metaslab 3368 * to see if it was activated by another thread. 3369 * 3370 * If the metaslab was activated for another allocator or 3371 * it was activated with a different activation weight (e.g. 3372 * we wanted to make it a primary but it was activated as 3373 * secondary) we return error (EBUSY). 3374 * 3375 * If the metaslab was activated for the same allocator 3376 * and requested activation mask, skip activating it. 3377 */ 3378 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3379 if (msp->ms_allocator != allocator) 3380 return (EBUSY); 3381 3382 if ((msp->ms_weight & activation_weight) == 0) 3383 return (SET_ERROR(EBUSY)); 3384 3385 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3386 msp->ms_primary); 3387 return (0); 3388 } 3389 3390 /* 3391 * If the metaslab has literally 0 space, it will have weight 0. In 3392 * that case, don't bother activating it. This can happen if the 3393 * metaslab had space during find_valid_metaslab, but another thread 3394 * loaded it and used all that space while we were waiting to grab the 3395 * lock. 3396 */ 3397 if (msp->ms_weight == 0) { 3398 ASSERT0(range_tree_space(msp->ms_allocatable)); 3399 return (SET_ERROR(ENOSPC)); 3400 } 3401 3402 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3403 allocator, activation_weight)) != 0) { 3404 return (error); 3405 } 3406 3407 ASSERT(msp->ms_loaded); 3408 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3409 3410 return (0); 3411 } 3412 3413 static void 3414 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3415 uint64_t weight) 3416 { 3417 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3418 ASSERT(msp->ms_loaded); 3419 3420 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3421 metaslab_group_sort(mg, msp, weight); 3422 return; 3423 } 3424 3425 mutex_enter(&mg->mg_lock); 3426 ASSERT3P(msp->ms_group, ==, mg); 3427 ASSERT3S(0, <=, msp->ms_allocator); 3428 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3429 3430 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3431 if (msp->ms_primary) { 3432 ASSERT3P(mga->mga_primary, ==, msp); 3433 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3434 mga->mga_primary = NULL; 3435 } else { 3436 ASSERT3P(mga->mga_secondary, ==, msp); 3437 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3438 mga->mga_secondary = NULL; 3439 } 3440 msp->ms_allocator = -1; 3441 metaslab_group_sort_impl(mg, msp, weight); 3442 mutex_exit(&mg->mg_lock); 3443 } 3444 3445 static void 3446 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3447 { 3448 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3449 3450 /* 3451 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3452 * this metaslab again. In that case, it had better be empty, 3453 * or we would be leaving space on the table. 3454 */ 3455 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3456 size >= SPA_MINBLOCKSIZE || 3457 range_tree_space(msp->ms_allocatable) == 0); 3458 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3459 3460 ASSERT(msp->ms_activation_weight != 0); 3461 msp->ms_activation_weight = 0; 3462 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3463 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3464 } 3465 3466 /* 3467 * Segment-based metaslabs are activated once and remain active until 3468 * we either fail an allocation attempt (similar to space-based metaslabs) 3469 * or have exhausted the free space in zfs_metaslab_switch_threshold 3470 * buckets since the metaslab was activated. This function checks to see 3471 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3472 * metaslab and passivates it proactively. This will allow us to select a 3473 * metaslab with a larger contiguous region, if any, remaining within this 3474 * metaslab group. If we're in sync pass > 1, then we continue using this 3475 * metaslab so that we don't dirty more block and cause more sync passes. 3476 */ 3477 static void 3478 metaslab_segment_may_passivate(metaslab_t *msp) 3479 { 3480 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3481 3482 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3483 return; 3484 3485 /* 3486 * Since we are in the middle of a sync pass, the most accurate 3487 * information that is accessible to us is the in-core range tree 3488 * histogram; calculate the new weight based on that information. 3489 */ 3490 uint64_t weight = metaslab_weight_from_range_tree(msp); 3491 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3492 int current_idx = WEIGHT_GET_INDEX(weight); 3493 3494 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3495 metaslab_passivate(msp, weight); 3496 } 3497 3498 static void 3499 metaslab_preload(void *arg) 3500 { 3501 metaslab_t *msp = arg; 3502 metaslab_class_t *mc = msp->ms_group->mg_class; 3503 spa_t *spa = mc->mc_spa; 3504 fstrans_cookie_t cookie = spl_fstrans_mark(); 3505 3506 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3507 3508 mutex_enter(&msp->ms_lock); 3509 (void) metaslab_load(msp); 3510 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3511 mutex_exit(&msp->ms_lock); 3512 spl_fstrans_unmark(cookie); 3513 } 3514 3515 static void 3516 metaslab_group_preload(metaslab_group_t *mg) 3517 { 3518 spa_t *spa = mg->mg_vd->vdev_spa; 3519 metaslab_t *msp; 3520 avl_tree_t *t = &mg->mg_metaslab_tree; 3521 int m = 0; 3522 3523 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3524 taskq_wait_outstanding(mg->mg_taskq, 0); 3525 return; 3526 } 3527 3528 mutex_enter(&mg->mg_lock); 3529 3530 /* 3531 * Load the next potential metaslabs 3532 */ 3533 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3534 ASSERT3P(msp->ms_group, ==, mg); 3535 3536 /* 3537 * We preload only the maximum number of metaslabs specified 3538 * by metaslab_preload_limit. If a metaslab is being forced 3539 * to condense then we preload it too. This will ensure 3540 * that force condensing happens in the next txg. 3541 */ 3542 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3543 continue; 3544 } 3545 3546 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3547 msp, TQ_SLEEP) != TASKQID_INVALID); 3548 } 3549 mutex_exit(&mg->mg_lock); 3550 } 3551 3552 /* 3553 * Determine if the space map's on-disk footprint is past our tolerance for 3554 * inefficiency. We would like to use the following criteria to make our 3555 * decision: 3556 * 3557 * 1. Do not condense if the size of the space map object would dramatically 3558 * increase as a result of writing out the free space range tree. 3559 * 3560 * 2. Condense if the on on-disk space map representation is at least 3561 * zfs_condense_pct/100 times the size of the optimal representation 3562 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3563 * 3564 * 3. Do not condense if the on-disk size of the space map does not actually 3565 * decrease. 3566 * 3567 * Unfortunately, we cannot compute the on-disk size of the space map in this 3568 * context because we cannot accurately compute the effects of compression, etc. 3569 * Instead, we apply the heuristic described in the block comment for 3570 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3571 * is greater than a threshold number of blocks. 3572 */ 3573 static boolean_t 3574 metaslab_should_condense(metaslab_t *msp) 3575 { 3576 space_map_t *sm = msp->ms_sm; 3577 vdev_t *vd = msp->ms_group->mg_vd; 3578 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3579 3580 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3581 ASSERT(msp->ms_loaded); 3582 ASSERT(sm != NULL); 3583 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3584 3585 /* 3586 * We always condense metaslabs that are empty and metaslabs for 3587 * which a condense request has been made. 3588 */ 3589 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3590 msp->ms_condense_wanted) 3591 return (B_TRUE); 3592 3593 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3594 uint64_t object_size = space_map_length(sm); 3595 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3596 msp->ms_allocatable, SM_NO_VDEVID); 3597 3598 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3599 object_size > zfs_metaslab_condense_block_threshold * record_size); 3600 } 3601 3602 /* 3603 * Condense the on-disk space map representation to its minimized form. 3604 * The minimized form consists of a small number of allocations followed 3605 * by the entries of the free range tree (ms_allocatable). The condensed 3606 * spacemap contains all the entries of previous TXGs (including those in 3607 * the pool-wide log spacemaps; thus this is effectively a superset of 3608 * metaslab_flush()), but this TXG's entries still need to be written. 3609 */ 3610 static void 3611 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3612 { 3613 range_tree_t *condense_tree; 3614 space_map_t *sm = msp->ms_sm; 3615 uint64_t txg = dmu_tx_get_txg(tx); 3616 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3617 3618 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3619 ASSERT(msp->ms_loaded); 3620 ASSERT(msp->ms_sm != NULL); 3621 3622 /* 3623 * In order to condense the space map, we need to change it so it 3624 * only describes which segments are currently allocated and free. 3625 * 3626 * All the current free space resides in the ms_allocatable, all 3627 * the ms_defer trees, and all the ms_allocating trees. We ignore 3628 * ms_freed because it is empty because we're in sync pass 1. We 3629 * ignore ms_freeing because these changes are not yet reflected 3630 * in the spacemap (they will be written later this txg). 3631 * 3632 * So to truncate the space map to represent all the entries of 3633 * previous TXGs we do the following: 3634 * 3635 * 1] We create a range tree (condense tree) that is 100% empty. 3636 * 2] We add to it all segments found in the ms_defer trees 3637 * as those segments are marked as free in the original space 3638 * map. We do the same with the ms_allocating trees for the same 3639 * reason. Adding these segments should be a relatively 3640 * inexpensive operation since we expect these trees to have a 3641 * small number of nodes. 3642 * 3] We vacate any unflushed allocs, since they are not frees we 3643 * need to add to the condense tree. Then we vacate any 3644 * unflushed frees as they should already be part of ms_allocatable. 3645 * 4] At this point, we would ideally like to add all segments 3646 * in the ms_allocatable tree from the condense tree. This way 3647 * we would write all the entries of the condense tree as the 3648 * condensed space map, which would only contain freed 3649 * segments with everything else assumed to be allocated. 3650 * 3651 * Doing so can be prohibitively expensive as ms_allocatable can 3652 * be large, and therefore computationally expensive to add to 3653 * the condense_tree. Instead we first sync out an entry marking 3654 * everything as allocated, then the condense_tree and then the 3655 * ms_allocatable, in the condensed space map. While this is not 3656 * optimal, it is typically close to optimal and more importantly 3657 * much cheaper to compute. 3658 * 3659 * 5] Finally, as both of the unflushed trees were written to our 3660 * new and condensed metaslab space map, we basically flushed 3661 * all the unflushed changes to disk, thus we call 3662 * metaslab_flush_update(). 3663 */ 3664 ASSERT3U(spa_sync_pass(spa), ==, 1); 3665 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3666 3667 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3668 "spa %s, smp size %llu, segments %llu, forcing condense=%s", 3669 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 3670 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3671 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 3672 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3673 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3674 3675 msp->ms_condense_wanted = B_FALSE; 3676 3677 range_seg_type_t type; 3678 uint64_t shift, start; 3679 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3680 &start, &shift); 3681 3682 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3683 3684 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3685 range_tree_walk(msp->ms_defer[t], 3686 range_tree_add, condense_tree); 3687 } 3688 3689 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3690 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3691 range_tree_add, condense_tree); 3692 } 3693 3694 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3695 metaslab_unflushed_changes_memused(msp)); 3696 spa->spa_unflushed_stats.sus_memused -= 3697 metaslab_unflushed_changes_memused(msp); 3698 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3699 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3700 3701 /* 3702 * We're about to drop the metaslab's lock thus allowing other 3703 * consumers to change it's content. Set the metaslab's ms_condensing 3704 * flag to ensure that allocations on this metaslab do not occur 3705 * while we're in the middle of committing it to disk. This is only 3706 * critical for ms_allocatable as all other range trees use per TXG 3707 * views of their content. 3708 */ 3709 msp->ms_condensing = B_TRUE; 3710 3711 mutex_exit(&msp->ms_lock); 3712 uint64_t object = space_map_object(msp->ms_sm); 3713 space_map_truncate(sm, 3714 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3715 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3716 3717 /* 3718 * space_map_truncate() may have reallocated the spacemap object. 3719 * If so, update the vdev_ms_array. 3720 */ 3721 if (space_map_object(msp->ms_sm) != object) { 3722 object = space_map_object(msp->ms_sm); 3723 dmu_write(spa->spa_meta_objset, 3724 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3725 msp->ms_id, sizeof (uint64_t), &object, tx); 3726 } 3727 3728 /* 3729 * Note: 3730 * When the log space map feature is enabled, each space map will 3731 * always have ALLOCS followed by FREES for each sync pass. This is 3732 * typically true even when the log space map feature is disabled, 3733 * except from the case where a metaslab goes through metaslab_sync() 3734 * and gets condensed. In that case the metaslab's space map will have 3735 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3736 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3737 * sync pass 1. 3738 */ 3739 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3740 shift); 3741 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3742 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3743 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3744 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3745 3746 range_tree_vacate(condense_tree, NULL, NULL); 3747 range_tree_destroy(condense_tree); 3748 range_tree_vacate(tmp_tree, NULL, NULL); 3749 range_tree_destroy(tmp_tree); 3750 mutex_enter(&msp->ms_lock); 3751 3752 msp->ms_condensing = B_FALSE; 3753 metaslab_flush_update(msp, tx); 3754 } 3755 3756 static void 3757 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3758 { 3759 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3760 ASSERT(spa_syncing_log_sm(spa) != NULL); 3761 ASSERT(msp->ms_sm != NULL); 3762 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3763 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3764 3765 mutex_enter(&spa->spa_flushed_ms_lock); 3766 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3767 metaslab_set_unflushed_dirty(msp, B_TRUE); 3768 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3769 mutex_exit(&spa->spa_flushed_ms_lock); 3770 3771 spa_log_sm_increment_current_mscount(spa); 3772 spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3773 } 3774 3775 void 3776 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3777 { 3778 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3779 ASSERT(spa_syncing_log_sm(spa) != NULL); 3780 ASSERT(msp->ms_sm != NULL); 3781 ASSERT(metaslab_unflushed_txg(msp) != 0); 3782 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3783 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3784 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3785 3786 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3787 3788 /* update metaslab's position in our flushing tree */ 3789 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3790 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3791 mutex_enter(&spa->spa_flushed_ms_lock); 3792 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3793 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3794 metaslab_set_unflushed_dirty(msp, dirty); 3795 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3796 mutex_exit(&spa->spa_flushed_ms_lock); 3797 3798 /* update metaslab counts of spa_log_sm_t nodes */ 3799 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3800 spa_log_sm_increment_current_mscount(spa); 3801 3802 /* update log space map summary */ 3803 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 3804 ms_prev_flushed_dirty); 3805 spa_log_summary_add_flushed_metaslab(spa, dirty); 3806 3807 /* cleanup obsolete logs if any */ 3808 spa_cleanup_old_sm_logs(spa, tx); 3809 } 3810 3811 /* 3812 * Called when the metaslab has been flushed (its own spacemap now reflects 3813 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3814 * metadata and any pool-wide related log space map data (e.g. summary, 3815 * obsolete logs, etc..) to reflect that. 3816 */ 3817 static void 3818 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3819 { 3820 metaslab_group_t *mg = msp->ms_group; 3821 spa_t *spa = mg->mg_vd->vdev_spa; 3822 3823 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3824 3825 ASSERT3U(spa_sync_pass(spa), ==, 1); 3826 3827 /* 3828 * Just because a metaslab got flushed, that doesn't mean that 3829 * it will pass through metaslab_sync_done(). Thus, make sure to 3830 * update ms_synced_length here in case it doesn't. 3831 */ 3832 msp->ms_synced_length = space_map_length(msp->ms_sm); 3833 3834 /* 3835 * We may end up here from metaslab_condense() without the 3836 * feature being active. In that case this is a no-op. 3837 */ 3838 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 3839 metaslab_unflushed_txg(msp) == 0) 3840 return; 3841 3842 metaslab_unflushed_bump(msp, tx, B_FALSE); 3843 } 3844 3845 boolean_t 3846 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3847 { 3848 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3849 3850 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3851 ASSERT3U(spa_sync_pass(spa), ==, 1); 3852 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3853 3854 ASSERT(msp->ms_sm != NULL); 3855 ASSERT(metaslab_unflushed_txg(msp) != 0); 3856 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3857 3858 /* 3859 * There is nothing wrong with flushing the same metaslab twice, as 3860 * this codepath should work on that case. However, the current 3861 * flushing scheme makes sure to avoid this situation as we would be 3862 * making all these calls without having anything meaningful to write 3863 * to disk. We assert this behavior here. 3864 */ 3865 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3866 3867 /* 3868 * We can not flush while loading, because then we would 3869 * not load the ms_unflushed_{allocs,frees}. 3870 */ 3871 if (msp->ms_loading) 3872 return (B_FALSE); 3873 3874 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3875 metaslab_verify_weight_and_frag(msp); 3876 3877 /* 3878 * Metaslab condensing is effectively flushing. Therefore if the 3879 * metaslab can be condensed we can just condense it instead of 3880 * flushing it. 3881 * 3882 * Note that metaslab_condense() does call metaslab_flush_update() 3883 * so we can just return immediately after condensing. We also 3884 * don't need to care about setting ms_flushing or broadcasting 3885 * ms_flush_cv, even if we temporarily drop the ms_lock in 3886 * metaslab_condense(), as the metaslab is already loaded. 3887 */ 3888 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3889 metaslab_group_t *mg = msp->ms_group; 3890 3891 /* 3892 * For all histogram operations below refer to the 3893 * comments of metaslab_sync() where we follow a 3894 * similar procedure. 3895 */ 3896 metaslab_group_histogram_verify(mg); 3897 metaslab_class_histogram_verify(mg->mg_class); 3898 metaslab_group_histogram_remove(mg, msp); 3899 3900 metaslab_condense(msp, tx); 3901 3902 space_map_histogram_clear(msp->ms_sm); 3903 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3904 ASSERT(range_tree_is_empty(msp->ms_freed)); 3905 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3906 space_map_histogram_add(msp->ms_sm, 3907 msp->ms_defer[t], tx); 3908 } 3909 metaslab_aux_histograms_update(msp); 3910 3911 metaslab_group_histogram_add(mg, msp); 3912 metaslab_group_histogram_verify(mg); 3913 metaslab_class_histogram_verify(mg->mg_class); 3914 3915 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3916 3917 /* 3918 * Since we recreated the histogram (and potentially 3919 * the ms_sm too while condensing) ensure that the 3920 * weight is updated too because we are not guaranteed 3921 * that this metaslab is dirty and will go through 3922 * metaslab_sync_done(). 3923 */ 3924 metaslab_recalculate_weight_and_sort(msp); 3925 return (B_TRUE); 3926 } 3927 3928 msp->ms_flushing = B_TRUE; 3929 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3930 3931 mutex_exit(&msp->ms_lock); 3932 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3933 SM_NO_VDEVID, tx); 3934 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3935 SM_NO_VDEVID, tx); 3936 mutex_enter(&msp->ms_lock); 3937 3938 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3939 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3940 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3941 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3942 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 3943 spa_name(spa), 3944 (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 3945 (u_longlong_t)msp->ms_id, 3946 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 3947 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 3948 (u_longlong_t)(sm_len_after - sm_len_before)); 3949 } 3950 3951 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3952 metaslab_unflushed_changes_memused(msp)); 3953 spa->spa_unflushed_stats.sus_memused -= 3954 metaslab_unflushed_changes_memused(msp); 3955 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3956 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3957 3958 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3959 metaslab_verify_weight_and_frag(msp); 3960 3961 metaslab_flush_update(msp, tx); 3962 3963 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3964 metaslab_verify_weight_and_frag(msp); 3965 3966 msp->ms_flushing = B_FALSE; 3967 cv_broadcast(&msp->ms_flush_cv); 3968 return (B_TRUE); 3969 } 3970 3971 /* 3972 * Write a metaslab to disk in the context of the specified transaction group. 3973 */ 3974 void 3975 metaslab_sync(metaslab_t *msp, uint64_t txg) 3976 { 3977 metaslab_group_t *mg = msp->ms_group; 3978 vdev_t *vd = mg->mg_vd; 3979 spa_t *spa = vd->vdev_spa; 3980 objset_t *mos = spa_meta_objset(spa); 3981 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3982 dmu_tx_t *tx; 3983 3984 ASSERT(!vd->vdev_ishole); 3985 3986 /* 3987 * This metaslab has just been added so there's no work to do now. 3988 */ 3989 if (msp->ms_new) { 3990 ASSERT0(range_tree_space(alloctree)); 3991 ASSERT0(range_tree_space(msp->ms_freeing)); 3992 ASSERT0(range_tree_space(msp->ms_freed)); 3993 ASSERT0(range_tree_space(msp->ms_checkpointing)); 3994 ASSERT0(range_tree_space(msp->ms_trim)); 3995 return; 3996 } 3997 3998 /* 3999 * Normally, we don't want to process a metaslab if there are no 4000 * allocations or frees to perform. However, if the metaslab is being 4001 * forced to condense, it's loaded and we're not beyond the final 4002 * dirty txg, we need to let it through. Not condensing beyond the 4003 * final dirty txg prevents an issue where metaslabs that need to be 4004 * condensed but were loaded for other reasons could cause a panic 4005 * here. By only checking the txg in that branch of the conditional, 4006 * we preserve the utility of the VERIFY statements in all other 4007 * cases. 4008 */ 4009 if (range_tree_is_empty(alloctree) && 4010 range_tree_is_empty(msp->ms_freeing) && 4011 range_tree_is_empty(msp->ms_checkpointing) && 4012 !(msp->ms_loaded && msp->ms_condense_wanted && 4013 txg <= spa_final_dirty_txg(spa))) 4014 return; 4015 4016 4017 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4018 4019 /* 4020 * The only state that can actually be changing concurrently 4021 * with metaslab_sync() is the metaslab's ms_allocatable. No 4022 * other thread can be modifying this txg's alloc, freeing, 4023 * freed, or space_map_phys_t. We drop ms_lock whenever we 4024 * could call into the DMU, because the DMU can call down to 4025 * us (e.g. via zio_free()) at any time. 4026 * 4027 * The spa_vdev_remove_thread() can be reading metaslab state 4028 * concurrently, and it is locked out by the ms_sync_lock. 4029 * Note that the ms_lock is insufficient for this, because it 4030 * is dropped by space_map_write(). 4031 */ 4032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4033 4034 /* 4035 * Generate a log space map if one doesn't exist already. 4036 */ 4037 spa_generate_syncing_log_sm(spa, tx); 4038 4039 if (msp->ms_sm == NULL) { 4040 uint64_t new_object = space_map_alloc(mos, 4041 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4042 zfs_metaslab_sm_blksz_with_log : 4043 zfs_metaslab_sm_blksz_no_log, tx); 4044 VERIFY3U(new_object, !=, 0); 4045 4046 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4047 msp->ms_id, sizeof (uint64_t), &new_object, tx); 4048 4049 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4050 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4051 ASSERT(msp->ms_sm != NULL); 4052 4053 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4054 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4055 ASSERT0(metaslab_allocated_space(msp)); 4056 } 4057 4058 if (!range_tree_is_empty(msp->ms_checkpointing) && 4059 vd->vdev_checkpoint_sm == NULL) { 4060 ASSERT(spa_has_checkpoint(spa)); 4061 4062 uint64_t new_object = space_map_alloc(mos, 4063 zfs_vdev_standard_sm_blksz, tx); 4064 VERIFY3U(new_object, !=, 0); 4065 4066 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4067 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4068 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4069 4070 /* 4071 * We save the space map object as an entry in vdev_top_zap 4072 * so it can be retrieved when the pool is reopened after an 4073 * export or through zdb. 4074 */ 4075 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4076 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4077 sizeof (new_object), 1, &new_object, tx)); 4078 } 4079 4080 mutex_enter(&msp->ms_sync_lock); 4081 mutex_enter(&msp->ms_lock); 4082 4083 /* 4084 * Note: metaslab_condense() clears the space map's histogram. 4085 * Therefore we must verify and remove this histogram before 4086 * condensing. 4087 */ 4088 metaslab_group_histogram_verify(mg); 4089 metaslab_class_histogram_verify(mg->mg_class); 4090 metaslab_group_histogram_remove(mg, msp); 4091 4092 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4093 metaslab_should_condense(msp)) 4094 metaslab_condense(msp, tx); 4095 4096 /* 4097 * We'll be going to disk to sync our space accounting, thus we 4098 * drop the ms_lock during that time so allocations coming from 4099 * open-context (ZIL) for future TXGs do not block. 4100 */ 4101 mutex_exit(&msp->ms_lock); 4102 space_map_t *log_sm = spa_syncing_log_sm(spa); 4103 if (log_sm != NULL) { 4104 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4105 if (metaslab_unflushed_txg(msp) == 0) 4106 metaslab_unflushed_add(msp, tx); 4107 else if (!metaslab_unflushed_dirty(msp)) 4108 metaslab_unflushed_bump(msp, tx, B_TRUE); 4109 4110 space_map_write(log_sm, alloctree, SM_ALLOC, 4111 vd->vdev_id, tx); 4112 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4113 vd->vdev_id, tx); 4114 mutex_enter(&msp->ms_lock); 4115 4116 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4117 metaslab_unflushed_changes_memused(msp)); 4118 spa->spa_unflushed_stats.sus_memused -= 4119 metaslab_unflushed_changes_memused(msp); 4120 range_tree_remove_xor_add(alloctree, 4121 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4122 range_tree_remove_xor_add(msp->ms_freeing, 4123 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4124 spa->spa_unflushed_stats.sus_memused += 4125 metaslab_unflushed_changes_memused(msp); 4126 } else { 4127 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4128 4129 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4130 SM_NO_VDEVID, tx); 4131 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4132 SM_NO_VDEVID, tx); 4133 mutex_enter(&msp->ms_lock); 4134 } 4135 4136 msp->ms_allocated_space += range_tree_space(alloctree); 4137 ASSERT3U(msp->ms_allocated_space, >=, 4138 range_tree_space(msp->ms_freeing)); 4139 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4140 4141 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4142 ASSERT(spa_has_checkpoint(spa)); 4143 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4144 4145 /* 4146 * Since we are doing writes to disk and the ms_checkpointing 4147 * tree won't be changing during that time, we drop the 4148 * ms_lock while writing to the checkpoint space map, for the 4149 * same reason mentioned above. 4150 */ 4151 mutex_exit(&msp->ms_lock); 4152 space_map_write(vd->vdev_checkpoint_sm, 4153 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4154 mutex_enter(&msp->ms_lock); 4155 4156 spa->spa_checkpoint_info.sci_dspace += 4157 range_tree_space(msp->ms_checkpointing); 4158 vd->vdev_stat.vs_checkpoint_space += 4159 range_tree_space(msp->ms_checkpointing); 4160 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4161 -space_map_allocated(vd->vdev_checkpoint_sm)); 4162 4163 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4164 } 4165 4166 if (msp->ms_loaded) { 4167 /* 4168 * When the space map is loaded, we have an accurate 4169 * histogram in the range tree. This gives us an opportunity 4170 * to bring the space map's histogram up-to-date so we clear 4171 * it first before updating it. 4172 */ 4173 space_map_histogram_clear(msp->ms_sm); 4174 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4175 4176 /* 4177 * Since we've cleared the histogram we need to add back 4178 * any free space that has already been processed, plus 4179 * any deferred space. This allows the on-disk histogram 4180 * to accurately reflect all free space even if some space 4181 * is not yet available for allocation (i.e. deferred). 4182 */ 4183 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4184 4185 /* 4186 * Add back any deferred free space that has not been 4187 * added back into the in-core free tree yet. This will 4188 * ensure that we don't end up with a space map histogram 4189 * that is completely empty unless the metaslab is fully 4190 * allocated. 4191 */ 4192 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4193 space_map_histogram_add(msp->ms_sm, 4194 msp->ms_defer[t], tx); 4195 } 4196 } 4197 4198 /* 4199 * Always add the free space from this sync pass to the space 4200 * map histogram. We want to make sure that the on-disk histogram 4201 * accounts for all free space. If the space map is not loaded, 4202 * then we will lose some accuracy but will correct it the next 4203 * time we load the space map. 4204 */ 4205 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4206 metaslab_aux_histograms_update(msp); 4207 4208 metaslab_group_histogram_add(mg, msp); 4209 metaslab_group_histogram_verify(mg); 4210 metaslab_class_histogram_verify(mg->mg_class); 4211 4212 /* 4213 * For sync pass 1, we avoid traversing this txg's free range tree 4214 * and instead will just swap the pointers for freeing and freed. 4215 * We can safely do this since the freed_tree is guaranteed to be 4216 * empty on the initial pass. 4217 * 4218 * Keep in mind that even if we are currently using a log spacemap 4219 * we want current frees to end up in the ms_allocatable (but not 4220 * get appended to the ms_sm) so their ranges can be reused as usual. 4221 */ 4222 if (spa_sync_pass(spa) == 1) { 4223 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4224 ASSERT0(msp->ms_allocated_this_txg); 4225 } else { 4226 range_tree_vacate(msp->ms_freeing, 4227 range_tree_add, msp->ms_freed); 4228 } 4229 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4230 range_tree_vacate(alloctree, NULL, NULL); 4231 4232 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4233 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4234 & TXG_MASK])); 4235 ASSERT0(range_tree_space(msp->ms_freeing)); 4236 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4237 4238 mutex_exit(&msp->ms_lock); 4239 4240 /* 4241 * Verify that the space map object ID has been recorded in the 4242 * vdev_ms_array. 4243 */ 4244 uint64_t object; 4245 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4246 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4247 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4248 4249 mutex_exit(&msp->ms_sync_lock); 4250 dmu_tx_commit(tx); 4251 } 4252 4253 static void 4254 metaslab_evict(metaslab_t *msp, uint64_t txg) 4255 { 4256 if (!msp->ms_loaded || msp->ms_disabled != 0) 4257 return; 4258 4259 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4260 VERIFY0(range_tree_space( 4261 msp->ms_allocating[(txg + t) & TXG_MASK])); 4262 } 4263 if (msp->ms_allocator != -1) 4264 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4265 4266 if (!metaslab_debug_unload) 4267 metaslab_unload(msp); 4268 } 4269 4270 /* 4271 * Called after a transaction group has completely synced to mark 4272 * all of the metaslab's free space as usable. 4273 */ 4274 void 4275 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4276 { 4277 metaslab_group_t *mg = msp->ms_group; 4278 vdev_t *vd = mg->mg_vd; 4279 spa_t *spa = vd->vdev_spa; 4280 range_tree_t **defer_tree; 4281 int64_t alloc_delta, defer_delta; 4282 boolean_t defer_allowed = B_TRUE; 4283 4284 ASSERT(!vd->vdev_ishole); 4285 4286 mutex_enter(&msp->ms_lock); 4287 4288 if (msp->ms_new) { 4289 /* this is a new metaslab, add its capacity to the vdev */ 4290 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4291 4292 /* there should be no allocations nor frees at this point */ 4293 VERIFY0(msp->ms_allocated_this_txg); 4294 VERIFY0(range_tree_space(msp->ms_freed)); 4295 } 4296 4297 ASSERT0(range_tree_space(msp->ms_freeing)); 4298 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4299 4300 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4301 4302 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4303 metaslab_class_get_alloc(spa_normal_class(spa)); 4304 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4305 defer_allowed = B_FALSE; 4306 } 4307 4308 defer_delta = 0; 4309 alloc_delta = msp->ms_allocated_this_txg - 4310 range_tree_space(msp->ms_freed); 4311 4312 if (defer_allowed) { 4313 defer_delta = range_tree_space(msp->ms_freed) - 4314 range_tree_space(*defer_tree); 4315 } else { 4316 defer_delta -= range_tree_space(*defer_tree); 4317 } 4318 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4319 defer_delta, 0); 4320 4321 if (spa_syncing_log_sm(spa) == NULL) { 4322 /* 4323 * If there's a metaslab_load() in progress and we don't have 4324 * a log space map, it means that we probably wrote to the 4325 * metaslab's space map. If this is the case, we need to 4326 * make sure that we wait for the load to complete so that we 4327 * have a consistent view at the in-core side of the metaslab. 4328 */ 4329 metaslab_load_wait(msp); 4330 } else { 4331 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4332 } 4333 4334 /* 4335 * When auto-trimming is enabled, free ranges which are added to 4336 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4337 * periodically consumed by the vdev_autotrim_thread() which issues 4338 * trims for all ranges and then vacates the tree. The ms_trim tree 4339 * can be discarded at any time with the sole consequence of recent 4340 * frees not being trimmed. 4341 */ 4342 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4343 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4344 if (!defer_allowed) { 4345 range_tree_walk(msp->ms_freed, range_tree_add, 4346 msp->ms_trim); 4347 } 4348 } else { 4349 range_tree_vacate(msp->ms_trim, NULL, NULL); 4350 } 4351 4352 /* 4353 * Move the frees from the defer_tree back to the free 4354 * range tree (if it's loaded). Swap the freed_tree and 4355 * the defer_tree -- this is safe to do because we've 4356 * just emptied out the defer_tree. 4357 */ 4358 range_tree_vacate(*defer_tree, 4359 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4360 if (defer_allowed) { 4361 range_tree_swap(&msp->ms_freed, defer_tree); 4362 } else { 4363 range_tree_vacate(msp->ms_freed, 4364 msp->ms_loaded ? range_tree_add : NULL, 4365 msp->ms_allocatable); 4366 } 4367 4368 msp->ms_synced_length = space_map_length(msp->ms_sm); 4369 4370 msp->ms_deferspace += defer_delta; 4371 ASSERT3S(msp->ms_deferspace, >=, 0); 4372 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4373 if (msp->ms_deferspace != 0) { 4374 /* 4375 * Keep syncing this metaslab until all deferred frees 4376 * are back in circulation. 4377 */ 4378 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4379 } 4380 metaslab_aux_histograms_update_done(msp, defer_allowed); 4381 4382 if (msp->ms_new) { 4383 msp->ms_new = B_FALSE; 4384 mutex_enter(&mg->mg_lock); 4385 mg->mg_ms_ready++; 4386 mutex_exit(&mg->mg_lock); 4387 } 4388 4389 /* 4390 * Re-sort metaslab within its group now that we've adjusted 4391 * its allocatable space. 4392 */ 4393 metaslab_recalculate_weight_and_sort(msp); 4394 4395 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4396 ASSERT0(range_tree_space(msp->ms_freeing)); 4397 ASSERT0(range_tree_space(msp->ms_freed)); 4398 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4399 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4400 msp->ms_allocated_this_txg = 0; 4401 mutex_exit(&msp->ms_lock); 4402 } 4403 4404 void 4405 metaslab_sync_reassess(metaslab_group_t *mg) 4406 { 4407 spa_t *spa = mg->mg_class->mc_spa; 4408 4409 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4410 metaslab_group_alloc_update(mg); 4411 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4412 4413 /* 4414 * Preload the next potential metaslabs but only on active 4415 * metaslab groups. We can get into a state where the metaslab 4416 * is no longer active since we dirty metaslabs as we remove a 4417 * a device, thus potentially making the metaslab group eligible 4418 * for preloading. 4419 */ 4420 if (mg->mg_activation_count > 0) { 4421 metaslab_group_preload(mg); 4422 } 4423 spa_config_exit(spa, SCL_ALLOC, FTAG); 4424 } 4425 4426 /* 4427 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4428 * the same vdev as an existing DVA of this BP, then try to allocate it 4429 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4430 */ 4431 static boolean_t 4432 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4433 { 4434 uint64_t dva_ms_id; 4435 4436 if (DVA_GET_ASIZE(dva) == 0) 4437 return (B_TRUE); 4438 4439 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4440 return (B_TRUE); 4441 4442 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4443 4444 return (msp->ms_id != dva_ms_id); 4445 } 4446 4447 /* 4448 * ========================================================================== 4449 * Metaslab allocation tracing facility 4450 * ========================================================================== 4451 */ 4452 4453 /* 4454 * Add an allocation trace element to the allocation tracing list. 4455 */ 4456 static void 4457 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4458 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4459 int allocator) 4460 { 4461 metaslab_alloc_trace_t *mat; 4462 4463 if (!metaslab_trace_enabled) 4464 return; 4465 4466 /* 4467 * When the tracing list reaches its maximum we remove 4468 * the second element in the list before adding a new one. 4469 * By removing the second element we preserve the original 4470 * entry as a clue to what allocations steps have already been 4471 * performed. 4472 */ 4473 if (zal->zal_size == metaslab_trace_max_entries) { 4474 metaslab_alloc_trace_t *mat_next; 4475 #ifdef ZFS_DEBUG 4476 panic("too many entries in allocation list"); 4477 #endif 4478 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4479 zal->zal_size--; 4480 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4481 list_remove(&zal->zal_list, mat_next); 4482 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4483 } 4484 4485 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4486 list_link_init(&mat->mat_list_node); 4487 mat->mat_mg = mg; 4488 mat->mat_msp = msp; 4489 mat->mat_size = psize; 4490 mat->mat_dva_id = dva_id; 4491 mat->mat_offset = offset; 4492 mat->mat_weight = 0; 4493 mat->mat_allocator = allocator; 4494 4495 if (msp != NULL) 4496 mat->mat_weight = msp->ms_weight; 4497 4498 /* 4499 * The list is part of the zio so locking is not required. Only 4500 * a single thread will perform allocations for a given zio. 4501 */ 4502 list_insert_tail(&zal->zal_list, mat); 4503 zal->zal_size++; 4504 4505 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4506 } 4507 4508 void 4509 metaslab_trace_init(zio_alloc_list_t *zal) 4510 { 4511 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4512 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4513 zal->zal_size = 0; 4514 } 4515 4516 void 4517 metaslab_trace_fini(zio_alloc_list_t *zal) 4518 { 4519 metaslab_alloc_trace_t *mat; 4520 4521 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4522 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4523 list_destroy(&zal->zal_list); 4524 zal->zal_size = 0; 4525 } 4526 4527 /* 4528 * ========================================================================== 4529 * Metaslab block operations 4530 * ========================================================================== 4531 */ 4532 4533 static void 4534 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag, 4535 int flags, int allocator) 4536 { 4537 if (!(flags & METASLAB_ASYNC_ALLOC) || 4538 (flags & METASLAB_DONT_THROTTLE)) 4539 return; 4540 4541 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4542 if (!mg->mg_class->mc_alloc_throttle_enabled) 4543 return; 4544 4545 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4546 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4547 } 4548 4549 static void 4550 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4551 { 4552 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4553 metaslab_class_allocator_t *mca = 4554 &mg->mg_class->mc_allocator[allocator]; 4555 uint64_t max = mg->mg_max_alloc_queue_depth; 4556 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4557 while (cur < max) { 4558 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4559 cur, cur + 1) == cur) { 4560 atomic_inc_64(&mca->mca_alloc_max_slots); 4561 return; 4562 } 4563 cur = mga->mga_cur_max_alloc_queue_depth; 4564 } 4565 } 4566 4567 void 4568 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag, 4569 int flags, int allocator, boolean_t io_complete) 4570 { 4571 if (!(flags & METASLAB_ASYNC_ALLOC) || 4572 (flags & METASLAB_DONT_THROTTLE)) 4573 return; 4574 4575 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4576 if (!mg->mg_class->mc_alloc_throttle_enabled) 4577 return; 4578 4579 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4580 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4581 if (io_complete) 4582 metaslab_group_increment_qdepth(mg, allocator); 4583 } 4584 4585 void 4586 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag, 4587 int allocator) 4588 { 4589 #ifdef ZFS_DEBUG 4590 const dva_t *dva = bp->blk_dva; 4591 int ndvas = BP_GET_NDVAS(bp); 4592 4593 for (int d = 0; d < ndvas; d++) { 4594 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4595 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4596 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4597 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4598 } 4599 #endif 4600 } 4601 4602 static uint64_t 4603 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4604 { 4605 uint64_t start; 4606 range_tree_t *rt = msp->ms_allocatable; 4607 metaslab_class_t *mc = msp->ms_group->mg_class; 4608 4609 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4610 VERIFY(!msp->ms_condensing); 4611 VERIFY0(msp->ms_disabled); 4612 4613 start = mc->mc_ops->msop_alloc(msp, size); 4614 if (start != -1ULL) { 4615 metaslab_group_t *mg = msp->ms_group; 4616 vdev_t *vd = mg->mg_vd; 4617 4618 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4619 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4620 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4621 range_tree_remove(rt, start, size); 4622 range_tree_clear(msp->ms_trim, start, size); 4623 4624 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4625 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4626 4627 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4628 msp->ms_allocating_total += size; 4629 4630 /* Track the last successful allocation */ 4631 msp->ms_alloc_txg = txg; 4632 metaslab_verify_space(msp, txg); 4633 } 4634 4635 /* 4636 * Now that we've attempted the allocation we need to update the 4637 * metaslab's maximum block size since it may have changed. 4638 */ 4639 msp->ms_max_size = metaslab_largest_allocatable(msp); 4640 return (start); 4641 } 4642 4643 /* 4644 * Find the metaslab with the highest weight that is less than what we've 4645 * already tried. In the common case, this means that we will examine each 4646 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4647 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4648 * activated by another thread, and we fail to allocate from the metaslab we 4649 * have selected, we may not try the newly-activated metaslab, and instead 4650 * activate another metaslab. This is not optimal, but generally does not cause 4651 * any problems (a possible exception being if every metaslab is completely full 4652 * except for the newly-activated metaslab which we fail to examine). 4653 */ 4654 static metaslab_t * 4655 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4656 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4657 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4658 boolean_t *was_active) 4659 { 4660 avl_index_t idx; 4661 avl_tree_t *t = &mg->mg_metaslab_tree; 4662 metaslab_t *msp = avl_find(t, search, &idx); 4663 if (msp == NULL) 4664 msp = avl_nearest(t, idx, AVL_AFTER); 4665 4666 uint_t tries = 0; 4667 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4668 int i; 4669 4670 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4671 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4672 return (NULL); 4673 } 4674 tries++; 4675 4676 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4677 metaslab_trace_add(zal, mg, msp, asize, d, 4678 TRACE_TOO_SMALL, allocator); 4679 continue; 4680 } 4681 4682 /* 4683 * If the selected metaslab is condensing or disabled, 4684 * skip it. 4685 */ 4686 if (msp->ms_condensing || msp->ms_disabled > 0) 4687 continue; 4688 4689 *was_active = msp->ms_allocator != -1; 4690 /* 4691 * If we're activating as primary, this is our first allocation 4692 * from this disk, so we don't need to check how close we are. 4693 * If the metaslab under consideration was already active, 4694 * we're getting desperate enough to steal another allocator's 4695 * metaslab, so we still don't care about distances. 4696 */ 4697 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4698 break; 4699 4700 for (i = 0; i < d; i++) { 4701 if (want_unique && 4702 !metaslab_is_unique(msp, &dva[i])) 4703 break; /* try another metaslab */ 4704 } 4705 if (i == d) 4706 break; 4707 } 4708 4709 if (msp != NULL) { 4710 search->ms_weight = msp->ms_weight; 4711 search->ms_start = msp->ms_start + 1; 4712 search->ms_allocator = msp->ms_allocator; 4713 search->ms_primary = msp->ms_primary; 4714 } 4715 return (msp); 4716 } 4717 4718 static void 4719 metaslab_active_mask_verify(metaslab_t *msp) 4720 { 4721 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4722 4723 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4724 return; 4725 4726 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4727 return; 4728 4729 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4730 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4731 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4732 VERIFY3S(msp->ms_allocator, !=, -1); 4733 VERIFY(msp->ms_primary); 4734 return; 4735 } 4736 4737 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4738 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4739 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4740 VERIFY3S(msp->ms_allocator, !=, -1); 4741 VERIFY(!msp->ms_primary); 4742 return; 4743 } 4744 4745 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4746 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4747 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4748 VERIFY3S(msp->ms_allocator, ==, -1); 4749 return; 4750 } 4751 } 4752 4753 static uint64_t 4754 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4755 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4756 int allocator, boolean_t try_hard) 4757 { 4758 metaslab_t *msp = NULL; 4759 uint64_t offset = -1ULL; 4760 4761 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4762 for (int i = 0; i < d; i++) { 4763 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4764 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4765 activation_weight = METASLAB_WEIGHT_SECONDARY; 4766 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4767 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4768 activation_weight = METASLAB_WEIGHT_CLAIM; 4769 break; 4770 } 4771 } 4772 4773 /* 4774 * If we don't have enough metaslabs active to fill the entire array, we 4775 * just use the 0th slot. 4776 */ 4777 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4778 allocator = 0; 4779 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4780 4781 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4782 4783 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4784 search->ms_weight = UINT64_MAX; 4785 search->ms_start = 0; 4786 /* 4787 * At the end of the metaslab tree are the already-active metaslabs, 4788 * first the primaries, then the secondaries. When we resume searching 4789 * through the tree, we need to consider ms_allocator and ms_primary so 4790 * we start in the location right after where we left off, and don't 4791 * accidentally loop forever considering the same metaslabs. 4792 */ 4793 search->ms_allocator = -1; 4794 search->ms_primary = B_TRUE; 4795 for (;;) { 4796 boolean_t was_active = B_FALSE; 4797 4798 mutex_enter(&mg->mg_lock); 4799 4800 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4801 mga->mga_primary != NULL) { 4802 msp = mga->mga_primary; 4803 4804 /* 4805 * Even though we don't hold the ms_lock for the 4806 * primary metaslab, those fields should not 4807 * change while we hold the mg_lock. Thus it is 4808 * safe to make assertions on them. 4809 */ 4810 ASSERT(msp->ms_primary); 4811 ASSERT3S(msp->ms_allocator, ==, allocator); 4812 ASSERT(msp->ms_loaded); 4813 4814 was_active = B_TRUE; 4815 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4816 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4817 mga->mga_secondary != NULL) { 4818 msp = mga->mga_secondary; 4819 4820 /* 4821 * See comment above about the similar assertions 4822 * for the primary metaslab. 4823 */ 4824 ASSERT(!msp->ms_primary); 4825 ASSERT3S(msp->ms_allocator, ==, allocator); 4826 ASSERT(msp->ms_loaded); 4827 4828 was_active = B_TRUE; 4829 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4830 } else { 4831 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4832 want_unique, asize, allocator, try_hard, zal, 4833 search, &was_active); 4834 } 4835 4836 mutex_exit(&mg->mg_lock); 4837 if (msp == NULL) { 4838 kmem_free(search, sizeof (*search)); 4839 return (-1ULL); 4840 } 4841 mutex_enter(&msp->ms_lock); 4842 4843 metaslab_active_mask_verify(msp); 4844 4845 /* 4846 * This code is disabled out because of issues with 4847 * tracepoints in non-gpl kernel modules. 4848 */ 4849 #if 0 4850 DTRACE_PROBE3(ms__activation__attempt, 4851 metaslab_t *, msp, uint64_t, activation_weight, 4852 boolean_t, was_active); 4853 #endif 4854 4855 /* 4856 * Ensure that the metaslab we have selected is still 4857 * capable of handling our request. It's possible that 4858 * another thread may have changed the weight while we 4859 * were blocked on the metaslab lock. We check the 4860 * active status first to see if we need to set_selected_txg 4861 * a new metaslab. 4862 */ 4863 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4864 ASSERT3S(msp->ms_allocator, ==, -1); 4865 mutex_exit(&msp->ms_lock); 4866 continue; 4867 } 4868 4869 /* 4870 * If the metaslab was activated for another allocator 4871 * while we were waiting in the ms_lock above, or it's 4872 * a primary and we're seeking a secondary (or vice versa), 4873 * we go back and select a new metaslab. 4874 */ 4875 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4876 (msp->ms_allocator != -1) && 4877 (msp->ms_allocator != allocator || ((activation_weight == 4878 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4879 ASSERT(msp->ms_loaded); 4880 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4881 msp->ms_allocator != -1); 4882 mutex_exit(&msp->ms_lock); 4883 continue; 4884 } 4885 4886 /* 4887 * This metaslab was used for claiming regions allocated 4888 * by the ZIL during pool import. Once these regions are 4889 * claimed we don't need to keep the CLAIM bit set 4890 * anymore. Passivate this metaslab to zero its activation 4891 * mask. 4892 */ 4893 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4894 activation_weight != METASLAB_WEIGHT_CLAIM) { 4895 ASSERT(msp->ms_loaded); 4896 ASSERT3S(msp->ms_allocator, ==, -1); 4897 metaslab_passivate(msp, msp->ms_weight & 4898 ~METASLAB_WEIGHT_CLAIM); 4899 mutex_exit(&msp->ms_lock); 4900 continue; 4901 } 4902 4903 metaslab_set_selected_txg(msp, txg); 4904 4905 int activation_error = 4906 metaslab_activate(msp, allocator, activation_weight); 4907 metaslab_active_mask_verify(msp); 4908 4909 /* 4910 * If the metaslab was activated by another thread for 4911 * another allocator or activation_weight (EBUSY), or it 4912 * failed because another metaslab was assigned as primary 4913 * for this allocator (EEXIST) we continue using this 4914 * metaslab for our allocation, rather than going on to a 4915 * worse metaslab (we waited for that metaslab to be loaded 4916 * after all). 4917 * 4918 * If the activation failed due to an I/O error or ENOSPC we 4919 * skip to the next metaslab. 4920 */ 4921 boolean_t activated; 4922 if (activation_error == 0) { 4923 activated = B_TRUE; 4924 } else if (activation_error == EBUSY || 4925 activation_error == EEXIST) { 4926 activated = B_FALSE; 4927 } else { 4928 mutex_exit(&msp->ms_lock); 4929 continue; 4930 } 4931 ASSERT(msp->ms_loaded); 4932 4933 /* 4934 * Now that we have the lock, recheck to see if we should 4935 * continue to use this metaslab for this allocation. The 4936 * the metaslab is now loaded so metaslab_should_allocate() 4937 * can accurately determine if the allocation attempt should 4938 * proceed. 4939 */ 4940 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4941 /* Passivate this metaslab and select a new one. */ 4942 metaslab_trace_add(zal, mg, msp, asize, d, 4943 TRACE_TOO_SMALL, allocator); 4944 goto next; 4945 } 4946 4947 /* 4948 * If this metaslab is currently condensing then pick again 4949 * as we can't manipulate this metaslab until it's committed 4950 * to disk. If this metaslab is being initialized, we shouldn't 4951 * allocate from it since the allocated region might be 4952 * overwritten after allocation. 4953 */ 4954 if (msp->ms_condensing) { 4955 metaslab_trace_add(zal, mg, msp, asize, d, 4956 TRACE_CONDENSING, allocator); 4957 if (activated) { 4958 metaslab_passivate(msp, msp->ms_weight & 4959 ~METASLAB_ACTIVE_MASK); 4960 } 4961 mutex_exit(&msp->ms_lock); 4962 continue; 4963 } else if (msp->ms_disabled > 0) { 4964 metaslab_trace_add(zal, mg, msp, asize, d, 4965 TRACE_DISABLED, allocator); 4966 if (activated) { 4967 metaslab_passivate(msp, msp->ms_weight & 4968 ~METASLAB_ACTIVE_MASK); 4969 } 4970 mutex_exit(&msp->ms_lock); 4971 continue; 4972 } 4973 4974 offset = metaslab_block_alloc(msp, asize, txg); 4975 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4976 4977 if (offset != -1ULL) { 4978 /* Proactively passivate the metaslab, if needed */ 4979 if (activated) 4980 metaslab_segment_may_passivate(msp); 4981 break; 4982 } 4983 next: 4984 ASSERT(msp->ms_loaded); 4985 4986 /* 4987 * This code is disabled out because of issues with 4988 * tracepoints in non-gpl kernel modules. 4989 */ 4990 #if 0 4991 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4992 uint64_t, asize); 4993 #endif 4994 4995 /* 4996 * We were unable to allocate from this metaslab so determine 4997 * a new weight for this metaslab. Now that we have loaded 4998 * the metaslab we can provide a better hint to the metaslab 4999 * selector. 5000 * 5001 * For space-based metaslabs, we use the maximum block size. 5002 * This information is only available when the metaslab 5003 * is loaded and is more accurate than the generic free 5004 * space weight that was calculated by metaslab_weight(). 5005 * This information allows us to quickly compare the maximum 5006 * available allocation in the metaslab to the allocation 5007 * size being requested. 5008 * 5009 * For segment-based metaslabs, determine the new weight 5010 * based on the highest bucket in the range tree. We 5011 * explicitly use the loaded segment weight (i.e. the range 5012 * tree histogram) since it contains the space that is 5013 * currently available for allocation and is accurate 5014 * even within a sync pass. 5015 */ 5016 uint64_t weight; 5017 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5018 weight = metaslab_largest_allocatable(msp); 5019 WEIGHT_SET_SPACEBASED(weight); 5020 } else { 5021 weight = metaslab_weight_from_range_tree(msp); 5022 } 5023 5024 if (activated) { 5025 metaslab_passivate(msp, weight); 5026 } else { 5027 /* 5028 * For the case where we use the metaslab that is 5029 * active for another allocator we want to make 5030 * sure that we retain the activation mask. 5031 * 5032 * Note that we could attempt to use something like 5033 * metaslab_recalculate_weight_and_sort() that 5034 * retains the activation mask here. That function 5035 * uses metaslab_weight() to set the weight though 5036 * which is not as accurate as the calculations 5037 * above. 5038 */ 5039 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5040 metaslab_group_sort(mg, msp, weight); 5041 } 5042 metaslab_active_mask_verify(msp); 5043 5044 /* 5045 * We have just failed an allocation attempt, check 5046 * that metaslab_should_allocate() agrees. Otherwise, 5047 * we may end up in an infinite loop retrying the same 5048 * metaslab. 5049 */ 5050 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5051 5052 mutex_exit(&msp->ms_lock); 5053 } 5054 mutex_exit(&msp->ms_lock); 5055 kmem_free(search, sizeof (*search)); 5056 return (offset); 5057 } 5058 5059 static uint64_t 5060 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5061 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5062 int allocator, boolean_t try_hard) 5063 { 5064 uint64_t offset; 5065 ASSERT(mg->mg_initialized); 5066 5067 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5068 dva, d, allocator, try_hard); 5069 5070 mutex_enter(&mg->mg_lock); 5071 if (offset == -1ULL) { 5072 mg->mg_failed_allocations++; 5073 metaslab_trace_add(zal, mg, NULL, asize, d, 5074 TRACE_GROUP_FAILURE, allocator); 5075 if (asize == SPA_GANGBLOCKSIZE) { 5076 /* 5077 * This metaslab group was unable to allocate 5078 * the minimum gang block size so it must be out of 5079 * space. We must notify the allocation throttle 5080 * to start skipping allocation attempts to this 5081 * metaslab group until more space becomes available. 5082 * Note: this failure cannot be caused by the 5083 * allocation throttle since the allocation throttle 5084 * is only responsible for skipping devices and 5085 * not failing block allocations. 5086 */ 5087 mg->mg_no_free_space = B_TRUE; 5088 } 5089 } 5090 mg->mg_allocations++; 5091 mutex_exit(&mg->mg_lock); 5092 return (offset); 5093 } 5094 5095 /* 5096 * Allocate a block for the specified i/o. 5097 */ 5098 int 5099 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5100 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5101 zio_alloc_list_t *zal, int allocator) 5102 { 5103 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5104 metaslab_group_t *mg, *rotor; 5105 vdev_t *vd; 5106 boolean_t try_hard = B_FALSE; 5107 5108 ASSERT(!DVA_IS_VALID(&dva[d])); 5109 5110 /* 5111 * For testing, make some blocks above a certain size be gang blocks. 5112 * This will result in more split blocks when using device removal, 5113 * and a large number of split blocks coupled with ztest-induced 5114 * damage can result in extremely long reconstruction times. This 5115 * will also test spilling from special to normal. 5116 */ 5117 if (psize >= metaslab_force_ganging && 5118 metaslab_force_ganging_pct > 0 && 5119 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5120 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5121 allocator); 5122 return (SET_ERROR(ENOSPC)); 5123 } 5124 5125 /* 5126 * Start at the rotor and loop through all mgs until we find something. 5127 * Note that there's no locking on mca_rotor or mca_aliquot because 5128 * nothing actually breaks if we miss a few updates -- we just won't 5129 * allocate quite as evenly. It all balances out over time. 5130 * 5131 * If we are doing ditto or log blocks, try to spread them across 5132 * consecutive vdevs. If we're forced to reuse a vdev before we've 5133 * allocated all of our ditto blocks, then try and spread them out on 5134 * that vdev as much as possible. If it turns out to not be possible, 5135 * gradually lower our standards until anything becomes acceptable. 5136 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5137 * gives us hope of containing our fault domains to something we're 5138 * able to reason about. Otherwise, any two top-level vdev failures 5139 * will guarantee the loss of data. With consecutive allocation, 5140 * only two adjacent top-level vdev failures will result in data loss. 5141 * 5142 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5143 * ourselves on the same vdev as our gang block header. That 5144 * way, we can hope for locality in vdev_cache, plus it makes our 5145 * fault domains something tractable. 5146 */ 5147 if (hintdva) { 5148 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5149 5150 /* 5151 * It's possible the vdev we're using as the hint no 5152 * longer exists or its mg has been closed (e.g. by 5153 * device removal). Consult the rotor when 5154 * all else fails. 5155 */ 5156 if (vd != NULL && vd->vdev_mg != NULL) { 5157 mg = vdev_get_mg(vd, mc); 5158 5159 if (flags & METASLAB_HINTBP_AVOID) 5160 mg = mg->mg_next; 5161 } else { 5162 mg = mca->mca_rotor; 5163 } 5164 } else if (d != 0) { 5165 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5166 mg = vd->vdev_mg->mg_next; 5167 } else { 5168 ASSERT(mca->mca_rotor != NULL); 5169 mg = mca->mca_rotor; 5170 } 5171 5172 /* 5173 * If the hint put us into the wrong metaslab class, or into a 5174 * metaslab group that has been passivated, just follow the rotor. 5175 */ 5176 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5177 mg = mca->mca_rotor; 5178 5179 rotor = mg; 5180 top: 5181 do { 5182 boolean_t allocatable; 5183 5184 ASSERT(mg->mg_activation_count == 1); 5185 vd = mg->mg_vd; 5186 5187 /* 5188 * Don't allocate from faulted devices. 5189 */ 5190 if (try_hard) { 5191 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5192 allocatable = vdev_allocatable(vd); 5193 spa_config_exit(spa, SCL_ZIO, FTAG); 5194 } else { 5195 allocatable = vdev_allocatable(vd); 5196 } 5197 5198 /* 5199 * Determine if the selected metaslab group is eligible 5200 * for allocations. If we're ganging then don't allow 5201 * this metaslab group to skip allocations since that would 5202 * inadvertently return ENOSPC and suspend the pool 5203 * even though space is still available. 5204 */ 5205 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5206 allocatable = metaslab_group_allocatable(mg, rotor, 5207 flags, psize, allocator, d); 5208 } 5209 5210 if (!allocatable) { 5211 metaslab_trace_add(zal, mg, NULL, psize, d, 5212 TRACE_NOT_ALLOCATABLE, allocator); 5213 goto next; 5214 } 5215 5216 ASSERT(mg->mg_initialized); 5217 5218 /* 5219 * Avoid writing single-copy data to an unhealthy, 5220 * non-redundant vdev, unless we've already tried all 5221 * other vdevs. 5222 */ 5223 if (vd->vdev_state < VDEV_STATE_HEALTHY && 5224 d == 0 && !try_hard && vd->vdev_children == 0) { 5225 metaslab_trace_add(zal, mg, NULL, psize, d, 5226 TRACE_VDEV_ERROR, allocator); 5227 goto next; 5228 } 5229 5230 ASSERT(mg->mg_class == mc); 5231 5232 uint64_t asize = vdev_psize_to_asize(vd, psize); 5233 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5234 5235 /* 5236 * If we don't need to try hard, then require that the 5237 * block be on a different metaslab from any other DVAs 5238 * in this BP (unique=true). If we are trying hard, then 5239 * allow any metaslab to be used (unique=false). 5240 */ 5241 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5242 !try_hard, dva, d, allocator, try_hard); 5243 5244 if (offset != -1ULL) { 5245 /* 5246 * If we've just selected this metaslab group, 5247 * figure out whether the corresponding vdev is 5248 * over- or under-used relative to the pool, 5249 * and set an allocation bias to even it out. 5250 * 5251 * Bias is also used to compensate for unequally 5252 * sized vdevs so that space is allocated fairly. 5253 */ 5254 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5255 vdev_stat_t *vs = &vd->vdev_stat; 5256 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5257 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5258 int64_t ratio; 5259 5260 /* 5261 * Calculate how much more or less we should 5262 * try to allocate from this device during 5263 * this iteration around the rotor. 5264 * 5265 * This basically introduces a zero-centered 5266 * bias towards the devices with the most 5267 * free space, while compensating for vdev 5268 * size differences. 5269 * 5270 * Examples: 5271 * vdev V1 = 16M/128M 5272 * vdev V2 = 16M/128M 5273 * ratio(V1) = 100% ratio(V2) = 100% 5274 * 5275 * vdev V1 = 16M/128M 5276 * vdev V2 = 64M/128M 5277 * ratio(V1) = 127% ratio(V2) = 72% 5278 * 5279 * vdev V1 = 16M/128M 5280 * vdev V2 = 64M/512M 5281 * ratio(V1) = 40% ratio(V2) = 160% 5282 */ 5283 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5284 (mc_free + 1); 5285 mg->mg_bias = ((ratio - 100) * 5286 (int64_t)mg->mg_aliquot) / 100; 5287 } else if (!metaslab_bias_enabled) { 5288 mg->mg_bias = 0; 5289 } 5290 5291 if ((flags & METASLAB_ZIL) || 5292 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5293 mg->mg_aliquot + mg->mg_bias) { 5294 mca->mca_rotor = mg->mg_next; 5295 mca->mca_aliquot = 0; 5296 } 5297 5298 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5299 DVA_SET_OFFSET(&dva[d], offset); 5300 DVA_SET_GANG(&dva[d], 5301 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5302 DVA_SET_ASIZE(&dva[d], asize); 5303 5304 return (0); 5305 } 5306 next: 5307 mca->mca_rotor = mg->mg_next; 5308 mca->mca_aliquot = 0; 5309 } while ((mg = mg->mg_next) != rotor); 5310 5311 /* 5312 * If we haven't tried hard, perhaps do so now. 5313 */ 5314 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5315 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5316 psize <= 1 << spa->spa_min_ashift)) { 5317 METASLABSTAT_BUMP(metaslabstat_try_hard); 5318 try_hard = B_TRUE; 5319 goto top; 5320 } 5321 5322 memset(&dva[d], 0, sizeof (dva_t)); 5323 5324 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5325 return (SET_ERROR(ENOSPC)); 5326 } 5327 5328 void 5329 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5330 boolean_t checkpoint) 5331 { 5332 metaslab_t *msp; 5333 spa_t *spa = vd->vdev_spa; 5334 5335 ASSERT(vdev_is_concrete(vd)); 5336 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5337 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5338 5339 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5340 5341 VERIFY(!msp->ms_condensing); 5342 VERIFY3U(offset, >=, msp->ms_start); 5343 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5344 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5345 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5346 5347 metaslab_check_free_impl(vd, offset, asize); 5348 5349 mutex_enter(&msp->ms_lock); 5350 if (range_tree_is_empty(msp->ms_freeing) && 5351 range_tree_is_empty(msp->ms_checkpointing)) { 5352 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5353 } 5354 5355 if (checkpoint) { 5356 ASSERT(spa_has_checkpoint(spa)); 5357 range_tree_add(msp->ms_checkpointing, offset, asize); 5358 } else { 5359 range_tree_add(msp->ms_freeing, offset, asize); 5360 } 5361 mutex_exit(&msp->ms_lock); 5362 } 5363 5364 void 5365 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5366 uint64_t size, void *arg) 5367 { 5368 (void) inner_offset; 5369 boolean_t *checkpoint = arg; 5370 5371 ASSERT3P(checkpoint, !=, NULL); 5372 5373 if (vd->vdev_ops->vdev_op_remap != NULL) 5374 vdev_indirect_mark_obsolete(vd, offset, size); 5375 else 5376 metaslab_free_impl(vd, offset, size, *checkpoint); 5377 } 5378 5379 static void 5380 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5381 boolean_t checkpoint) 5382 { 5383 spa_t *spa = vd->vdev_spa; 5384 5385 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5386 5387 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5388 return; 5389 5390 if (spa->spa_vdev_removal != NULL && 5391 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5392 vdev_is_concrete(vd)) { 5393 /* 5394 * Note: we check if the vdev is concrete because when 5395 * we complete the removal, we first change the vdev to be 5396 * an indirect vdev (in open context), and then (in syncing 5397 * context) clear spa_vdev_removal. 5398 */ 5399 free_from_removing_vdev(vd, offset, size); 5400 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5401 vdev_indirect_mark_obsolete(vd, offset, size); 5402 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5403 metaslab_free_impl_cb, &checkpoint); 5404 } else { 5405 metaslab_free_concrete(vd, offset, size, checkpoint); 5406 } 5407 } 5408 5409 typedef struct remap_blkptr_cb_arg { 5410 blkptr_t *rbca_bp; 5411 spa_remap_cb_t rbca_cb; 5412 vdev_t *rbca_remap_vd; 5413 uint64_t rbca_remap_offset; 5414 void *rbca_cb_arg; 5415 } remap_blkptr_cb_arg_t; 5416 5417 static void 5418 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5419 uint64_t size, void *arg) 5420 { 5421 remap_blkptr_cb_arg_t *rbca = arg; 5422 blkptr_t *bp = rbca->rbca_bp; 5423 5424 /* We can not remap split blocks. */ 5425 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5426 return; 5427 ASSERT0(inner_offset); 5428 5429 if (rbca->rbca_cb != NULL) { 5430 /* 5431 * At this point we know that we are not handling split 5432 * blocks and we invoke the callback on the previous 5433 * vdev which must be indirect. 5434 */ 5435 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5436 5437 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5438 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5439 5440 /* set up remap_blkptr_cb_arg for the next call */ 5441 rbca->rbca_remap_vd = vd; 5442 rbca->rbca_remap_offset = offset; 5443 } 5444 5445 /* 5446 * The phys birth time is that of dva[0]. This ensures that we know 5447 * when each dva was written, so that resilver can determine which 5448 * blocks need to be scrubbed (i.e. those written during the time 5449 * the vdev was offline). It also ensures that the key used in 5450 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5451 * we didn't change the phys_birth, a lookup in the ARC for a 5452 * remapped BP could find the data that was previously stored at 5453 * this vdev + offset. 5454 */ 5455 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5456 DVA_GET_VDEV(&bp->blk_dva[0])); 5457 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5458 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5459 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5460 5461 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5462 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5463 } 5464 5465 /* 5466 * If the block pointer contains any indirect DVAs, modify them to refer to 5467 * concrete DVAs. Note that this will sometimes not be possible, leaving 5468 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5469 * segments in the mapping (i.e. it is a "split block"). 5470 * 5471 * If the BP was remapped, calls the callback on the original dva (note the 5472 * callback can be called multiple times if the original indirect DVA refers 5473 * to another indirect DVA, etc). 5474 * 5475 * Returns TRUE if the BP was remapped. 5476 */ 5477 boolean_t 5478 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5479 { 5480 remap_blkptr_cb_arg_t rbca; 5481 5482 if (!zfs_remap_blkptr_enable) 5483 return (B_FALSE); 5484 5485 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5486 return (B_FALSE); 5487 5488 /* 5489 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5490 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5491 */ 5492 if (BP_GET_DEDUP(bp)) 5493 return (B_FALSE); 5494 5495 /* 5496 * Gang blocks can not be remapped, because 5497 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5498 * the BP used to read the gang block header (GBH) being the same 5499 * as the DVA[0] that we allocated for the GBH. 5500 */ 5501 if (BP_IS_GANG(bp)) 5502 return (B_FALSE); 5503 5504 /* 5505 * Embedded BP's have no DVA to remap. 5506 */ 5507 if (BP_GET_NDVAS(bp) < 1) 5508 return (B_FALSE); 5509 5510 /* 5511 * Note: we only remap dva[0]. If we remapped other dvas, we 5512 * would no longer know what their phys birth txg is. 5513 */ 5514 dva_t *dva = &bp->blk_dva[0]; 5515 5516 uint64_t offset = DVA_GET_OFFSET(dva); 5517 uint64_t size = DVA_GET_ASIZE(dva); 5518 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5519 5520 if (vd->vdev_ops->vdev_op_remap == NULL) 5521 return (B_FALSE); 5522 5523 rbca.rbca_bp = bp; 5524 rbca.rbca_cb = callback; 5525 rbca.rbca_remap_vd = vd; 5526 rbca.rbca_remap_offset = offset; 5527 rbca.rbca_cb_arg = arg; 5528 5529 /* 5530 * remap_blkptr_cb() will be called in order for each level of 5531 * indirection, until a concrete vdev is reached or a split block is 5532 * encountered. old_vd and old_offset are updated within the callback 5533 * as we go from the one indirect vdev to the next one (either concrete 5534 * or indirect again) in that order. 5535 */ 5536 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5537 5538 /* Check if the DVA wasn't remapped because it is a split block */ 5539 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5540 return (B_FALSE); 5541 5542 return (B_TRUE); 5543 } 5544 5545 /* 5546 * Undo the allocation of a DVA which happened in the given transaction group. 5547 */ 5548 void 5549 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5550 { 5551 metaslab_t *msp; 5552 vdev_t *vd; 5553 uint64_t vdev = DVA_GET_VDEV(dva); 5554 uint64_t offset = DVA_GET_OFFSET(dva); 5555 uint64_t size = DVA_GET_ASIZE(dva); 5556 5557 ASSERT(DVA_IS_VALID(dva)); 5558 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5559 5560 if (txg > spa_freeze_txg(spa)) 5561 return; 5562 5563 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5564 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5565 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5566 (u_longlong_t)vdev, (u_longlong_t)offset, 5567 (u_longlong_t)size); 5568 return; 5569 } 5570 5571 ASSERT(!vd->vdev_removing); 5572 ASSERT(vdev_is_concrete(vd)); 5573 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5574 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5575 5576 if (DVA_GET_GANG(dva)) 5577 size = vdev_gang_header_asize(vd); 5578 5579 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5580 5581 mutex_enter(&msp->ms_lock); 5582 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5583 offset, size); 5584 msp->ms_allocating_total -= size; 5585 5586 VERIFY(!msp->ms_condensing); 5587 VERIFY3U(offset, >=, msp->ms_start); 5588 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5589 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5590 msp->ms_size); 5591 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5592 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5593 range_tree_add(msp->ms_allocatable, offset, size); 5594 mutex_exit(&msp->ms_lock); 5595 } 5596 5597 /* 5598 * Free the block represented by the given DVA. 5599 */ 5600 void 5601 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5602 { 5603 uint64_t vdev = DVA_GET_VDEV(dva); 5604 uint64_t offset = DVA_GET_OFFSET(dva); 5605 uint64_t size = DVA_GET_ASIZE(dva); 5606 vdev_t *vd = vdev_lookup_top(spa, vdev); 5607 5608 ASSERT(DVA_IS_VALID(dva)); 5609 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5610 5611 if (DVA_GET_GANG(dva)) { 5612 size = vdev_gang_header_asize(vd); 5613 } 5614 5615 metaslab_free_impl(vd, offset, size, checkpoint); 5616 } 5617 5618 /* 5619 * Reserve some allocation slots. The reservation system must be called 5620 * before we call into the allocator. If there aren't any available slots 5621 * then the I/O will be throttled until an I/O completes and its slots are 5622 * freed up. The function returns true if it was successful in placing 5623 * the reservation. 5624 */ 5625 boolean_t 5626 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5627 zio_t *zio, int flags) 5628 { 5629 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5630 uint64_t max = mca->mca_alloc_max_slots; 5631 5632 ASSERT(mc->mc_alloc_throttle_enabled); 5633 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 5634 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5635 /* 5636 * The potential race between _count() and _add() is covered 5637 * by the allocator lock in most cases, or irrelevant due to 5638 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 5639 * But even if we assume some other non-existing scenario, the 5640 * worst that can happen is few more I/Os get to allocation 5641 * earlier, that is not a problem. 5642 * 5643 * We reserve the slots individually so that we can unreserve 5644 * them individually when an I/O completes. 5645 */ 5646 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio); 5647 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5648 return (B_TRUE); 5649 } 5650 return (B_FALSE); 5651 } 5652 5653 void 5654 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5655 int allocator, zio_t *zio) 5656 { 5657 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5658 5659 ASSERT(mc->mc_alloc_throttle_enabled); 5660 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio); 5661 } 5662 5663 static int 5664 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5665 uint64_t txg) 5666 { 5667 metaslab_t *msp; 5668 spa_t *spa = vd->vdev_spa; 5669 int error = 0; 5670 5671 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5672 return (SET_ERROR(ENXIO)); 5673 5674 ASSERT3P(vd->vdev_ms, !=, NULL); 5675 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5676 5677 mutex_enter(&msp->ms_lock); 5678 5679 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5680 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5681 if (error == EBUSY) { 5682 ASSERT(msp->ms_loaded); 5683 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5684 error = 0; 5685 } 5686 } 5687 5688 if (error == 0 && 5689 !range_tree_contains(msp->ms_allocatable, offset, size)) 5690 error = SET_ERROR(ENOENT); 5691 5692 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5693 mutex_exit(&msp->ms_lock); 5694 return (error); 5695 } 5696 5697 VERIFY(!msp->ms_condensing); 5698 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5699 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5700 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5701 msp->ms_size); 5702 range_tree_remove(msp->ms_allocatable, offset, size); 5703 range_tree_clear(msp->ms_trim, offset, size); 5704 5705 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5706 metaslab_class_t *mc = msp->ms_group->mg_class; 5707 multilist_sublist_t *mls = 5708 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5709 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5710 msp->ms_selected_txg = txg; 5711 multilist_sublist_insert_head(mls, msp); 5712 } 5713 multilist_sublist_unlock(mls); 5714 5715 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5716 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5717 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5718 offset, size); 5719 msp->ms_allocating_total += size; 5720 } 5721 5722 mutex_exit(&msp->ms_lock); 5723 5724 return (0); 5725 } 5726 5727 typedef struct metaslab_claim_cb_arg_t { 5728 uint64_t mcca_txg; 5729 int mcca_error; 5730 } metaslab_claim_cb_arg_t; 5731 5732 static void 5733 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5734 uint64_t size, void *arg) 5735 { 5736 (void) inner_offset; 5737 metaslab_claim_cb_arg_t *mcca_arg = arg; 5738 5739 if (mcca_arg->mcca_error == 0) { 5740 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5741 size, mcca_arg->mcca_txg); 5742 } 5743 } 5744 5745 int 5746 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5747 { 5748 if (vd->vdev_ops->vdev_op_remap != NULL) { 5749 metaslab_claim_cb_arg_t arg; 5750 5751 /* 5752 * Only zdb(8) can claim on indirect vdevs. This is used 5753 * to detect leaks of mapped space (that are not accounted 5754 * for in the obsolete counts, spacemap, or bpobj). 5755 */ 5756 ASSERT(!spa_writeable(vd->vdev_spa)); 5757 arg.mcca_error = 0; 5758 arg.mcca_txg = txg; 5759 5760 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5761 metaslab_claim_impl_cb, &arg); 5762 5763 if (arg.mcca_error == 0) { 5764 arg.mcca_error = metaslab_claim_concrete(vd, 5765 offset, size, txg); 5766 } 5767 return (arg.mcca_error); 5768 } else { 5769 return (metaslab_claim_concrete(vd, offset, size, txg)); 5770 } 5771 } 5772 5773 /* 5774 * Intent log support: upon opening the pool after a crash, notify the SPA 5775 * of blocks that the intent log has allocated for immediate write, but 5776 * which are still considered free by the SPA because the last transaction 5777 * group didn't commit yet. 5778 */ 5779 static int 5780 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5781 { 5782 uint64_t vdev = DVA_GET_VDEV(dva); 5783 uint64_t offset = DVA_GET_OFFSET(dva); 5784 uint64_t size = DVA_GET_ASIZE(dva); 5785 vdev_t *vd; 5786 5787 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5788 return (SET_ERROR(ENXIO)); 5789 } 5790 5791 ASSERT(DVA_IS_VALID(dva)); 5792 5793 if (DVA_GET_GANG(dva)) 5794 size = vdev_gang_header_asize(vd); 5795 5796 return (metaslab_claim_impl(vd, offset, size, txg)); 5797 } 5798 5799 int 5800 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5801 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5802 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5803 { 5804 dva_t *dva = bp->blk_dva; 5805 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5806 int error = 0; 5807 5808 ASSERT(bp->blk_birth == 0); 5809 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5810 5811 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5812 5813 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5814 /* no vdevs in this class */ 5815 spa_config_exit(spa, SCL_ALLOC, FTAG); 5816 return (SET_ERROR(ENOSPC)); 5817 } 5818 5819 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5820 ASSERT(BP_GET_NDVAS(bp) == 0); 5821 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5822 ASSERT3P(zal, !=, NULL); 5823 5824 for (int d = 0; d < ndvas; d++) { 5825 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5826 txg, flags, zal, allocator); 5827 if (error != 0) { 5828 for (d--; d >= 0; d--) { 5829 metaslab_unalloc_dva(spa, &dva[d], txg); 5830 metaslab_group_alloc_decrement(spa, 5831 DVA_GET_VDEV(&dva[d]), zio, flags, 5832 allocator, B_FALSE); 5833 memset(&dva[d], 0, sizeof (dva_t)); 5834 } 5835 spa_config_exit(spa, SCL_ALLOC, FTAG); 5836 return (error); 5837 } else { 5838 /* 5839 * Update the metaslab group's queue depth 5840 * based on the newly allocated dva. 5841 */ 5842 metaslab_group_alloc_increment(spa, 5843 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5844 } 5845 } 5846 ASSERT(error == 0); 5847 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5848 5849 spa_config_exit(spa, SCL_ALLOC, FTAG); 5850 5851 BP_SET_BIRTH(bp, txg, 0); 5852 5853 return (0); 5854 } 5855 5856 void 5857 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5858 { 5859 const dva_t *dva = bp->blk_dva; 5860 int ndvas = BP_GET_NDVAS(bp); 5861 5862 ASSERT(!BP_IS_HOLE(bp)); 5863 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5864 5865 /* 5866 * If we have a checkpoint for the pool we need to make sure that 5867 * the blocks that we free that are part of the checkpoint won't be 5868 * reused until the checkpoint is discarded or we revert to it. 5869 * 5870 * The checkpoint flag is passed down the metaslab_free code path 5871 * and is set whenever we want to add a block to the checkpoint's 5872 * accounting. That is, we "checkpoint" blocks that existed at the 5873 * time the checkpoint was created and are therefore referenced by 5874 * the checkpointed uberblock. 5875 * 5876 * Note that, we don't checkpoint any blocks if the current 5877 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5878 * normally as they will be referenced by the checkpointed uberblock. 5879 */ 5880 boolean_t checkpoint = B_FALSE; 5881 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5882 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5883 /* 5884 * At this point, if the block is part of the checkpoint 5885 * there is no way it was created in the current txg. 5886 */ 5887 ASSERT(!now); 5888 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5889 checkpoint = B_TRUE; 5890 } 5891 5892 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5893 5894 for (int d = 0; d < ndvas; d++) { 5895 if (now) { 5896 metaslab_unalloc_dva(spa, &dva[d], txg); 5897 } else { 5898 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5899 metaslab_free_dva(spa, &dva[d], checkpoint); 5900 } 5901 } 5902 5903 spa_config_exit(spa, SCL_FREE, FTAG); 5904 } 5905 5906 int 5907 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5908 { 5909 const dva_t *dva = bp->blk_dva; 5910 int ndvas = BP_GET_NDVAS(bp); 5911 int error = 0; 5912 5913 ASSERT(!BP_IS_HOLE(bp)); 5914 5915 if (txg != 0) { 5916 /* 5917 * First do a dry run to make sure all DVAs are claimable, 5918 * so we don't have to unwind from partial failures below. 5919 */ 5920 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5921 return (error); 5922 } 5923 5924 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5925 5926 for (int d = 0; d < ndvas; d++) { 5927 error = metaslab_claim_dva(spa, &dva[d], txg); 5928 if (error != 0) 5929 break; 5930 } 5931 5932 spa_config_exit(spa, SCL_ALLOC, FTAG); 5933 5934 ASSERT(error == 0 || txg == 0); 5935 5936 return (error); 5937 } 5938 5939 static void 5940 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5941 uint64_t size, void *arg) 5942 { 5943 (void) inner, (void) arg; 5944 5945 if (vd->vdev_ops == &vdev_indirect_ops) 5946 return; 5947 5948 metaslab_check_free_impl(vd, offset, size); 5949 } 5950 5951 static void 5952 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5953 { 5954 metaslab_t *msp; 5955 spa_t *spa __maybe_unused = vd->vdev_spa; 5956 5957 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5958 return; 5959 5960 if (vd->vdev_ops->vdev_op_remap != NULL) { 5961 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5962 metaslab_check_free_impl_cb, NULL); 5963 return; 5964 } 5965 5966 ASSERT(vdev_is_concrete(vd)); 5967 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5968 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5969 5970 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5971 5972 mutex_enter(&msp->ms_lock); 5973 if (msp->ms_loaded) { 5974 range_tree_verify_not_present(msp->ms_allocatable, 5975 offset, size); 5976 } 5977 5978 /* 5979 * Check all segments that currently exist in the freeing pipeline. 5980 * 5981 * It would intuitively make sense to also check the current allocating 5982 * tree since metaslab_unalloc_dva() exists for extents that are 5983 * allocated and freed in the same sync pass within the same txg. 5984 * Unfortunately there are places (e.g. the ZIL) where we allocate a 5985 * segment but then we free part of it within the same txg 5986 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 5987 * current allocating tree. 5988 */ 5989 range_tree_verify_not_present(msp->ms_freeing, offset, size); 5990 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 5991 range_tree_verify_not_present(msp->ms_freed, offset, size); 5992 for (int j = 0; j < TXG_DEFER_SIZE; j++) 5993 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 5994 range_tree_verify_not_present(msp->ms_trim, offset, size); 5995 mutex_exit(&msp->ms_lock); 5996 } 5997 5998 void 5999 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6000 { 6001 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6002 return; 6003 6004 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6005 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6006 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6007 vdev_t *vd = vdev_lookup_top(spa, vdev); 6008 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6009 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6010 6011 if (DVA_GET_GANG(&bp->blk_dva[i])) 6012 size = vdev_gang_header_asize(vd); 6013 6014 ASSERT3P(vd, !=, NULL); 6015 6016 metaslab_check_free_impl(vd, offset, size); 6017 } 6018 spa_config_exit(spa, SCL_VDEV, FTAG); 6019 } 6020 6021 static void 6022 metaslab_group_disable_wait(metaslab_group_t *mg) 6023 { 6024 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6025 while (mg->mg_disabled_updating) { 6026 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6027 } 6028 } 6029 6030 static void 6031 metaslab_group_disabled_increment(metaslab_group_t *mg) 6032 { 6033 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6034 ASSERT(mg->mg_disabled_updating); 6035 6036 while (mg->mg_ms_disabled >= max_disabled_ms) { 6037 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6038 } 6039 mg->mg_ms_disabled++; 6040 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6041 } 6042 6043 /* 6044 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6045 * We must also track how many metaslabs are currently disabled within a 6046 * metaslab group and limit them to prevent allocation failures from 6047 * occurring because all metaslabs are disabled. 6048 */ 6049 void 6050 metaslab_disable(metaslab_t *msp) 6051 { 6052 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6053 metaslab_group_t *mg = msp->ms_group; 6054 6055 mutex_enter(&mg->mg_ms_disabled_lock); 6056 6057 /* 6058 * To keep an accurate count of how many threads have disabled 6059 * a specific metaslab group, we only allow one thread to mark 6060 * the metaslab group at a time. This ensures that the value of 6061 * ms_disabled will be accurate when we decide to mark a metaslab 6062 * group as disabled. To do this we force all other threads 6063 * to wait till the metaslab's mg_disabled_updating flag is no 6064 * longer set. 6065 */ 6066 metaslab_group_disable_wait(mg); 6067 mg->mg_disabled_updating = B_TRUE; 6068 if (msp->ms_disabled == 0) { 6069 metaslab_group_disabled_increment(mg); 6070 } 6071 mutex_enter(&msp->ms_lock); 6072 msp->ms_disabled++; 6073 mutex_exit(&msp->ms_lock); 6074 6075 mg->mg_disabled_updating = B_FALSE; 6076 cv_broadcast(&mg->mg_ms_disabled_cv); 6077 mutex_exit(&mg->mg_ms_disabled_lock); 6078 } 6079 6080 void 6081 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6082 { 6083 metaslab_group_t *mg = msp->ms_group; 6084 spa_t *spa = mg->mg_vd->vdev_spa; 6085 6086 /* 6087 * Wait for the outstanding IO to be synced to prevent newly 6088 * allocated blocks from being overwritten. This used by 6089 * initialize and TRIM which are modifying unallocated space. 6090 */ 6091 if (sync) 6092 txg_wait_synced(spa_get_dsl(spa), 0); 6093 6094 mutex_enter(&mg->mg_ms_disabled_lock); 6095 mutex_enter(&msp->ms_lock); 6096 if (--msp->ms_disabled == 0) { 6097 mg->mg_ms_disabled--; 6098 cv_broadcast(&mg->mg_ms_disabled_cv); 6099 if (unload) 6100 metaslab_unload(msp); 6101 } 6102 mutex_exit(&msp->ms_lock); 6103 mutex_exit(&mg->mg_ms_disabled_lock); 6104 } 6105 6106 void 6107 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6108 { 6109 ms->ms_unflushed_dirty = dirty; 6110 } 6111 6112 static void 6113 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6114 { 6115 vdev_t *vd = ms->ms_group->mg_vd; 6116 spa_t *spa = vd->vdev_spa; 6117 objset_t *mos = spa_meta_objset(spa); 6118 6119 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6120 6121 metaslab_unflushed_phys_t entry = { 6122 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6123 }; 6124 uint64_t entry_size = sizeof (entry); 6125 uint64_t entry_offset = ms->ms_id * entry_size; 6126 6127 uint64_t object = 0; 6128 int err = zap_lookup(mos, vd->vdev_top_zap, 6129 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6130 &object); 6131 if (err == ENOENT) { 6132 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6133 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6134 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6135 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6136 &object, tx)); 6137 } else { 6138 VERIFY0(err); 6139 } 6140 6141 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6142 &entry, tx); 6143 } 6144 6145 void 6146 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6147 { 6148 ms->ms_unflushed_txg = txg; 6149 metaslab_update_ondisk_flush_data(ms, tx); 6150 } 6151 6152 boolean_t 6153 metaslab_unflushed_dirty(metaslab_t *ms) 6154 { 6155 return (ms->ms_unflushed_dirty); 6156 } 6157 6158 uint64_t 6159 metaslab_unflushed_txg(metaslab_t *ms) 6160 { 6161 return (ms->ms_unflushed_txg); 6162 } 6163 6164 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6165 "Allocation granularity (a.k.a. stripe size)"); 6166 6167 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6168 "Load all metaslabs when pool is first opened"); 6169 6170 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6171 "Prevent metaslabs from being unloaded"); 6172 6173 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6174 "Preload potential metaslabs during reassessment"); 6175 6176 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6177 "Delay in txgs after metaslab was last used before unloading"); 6178 6179 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6180 "Delay in milliseconds after metaslab was last used before unloading"); 6181 6182 /* BEGIN CSTYLED */ 6183 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6184 "Percentage of metaslab group size that should be free to make it " 6185 "eligible for allocation"); 6186 6187 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6188 "Percentage of metaslab group size that should be considered eligible " 6189 "for allocations unless all metaslab groups within the metaslab class " 6190 "have also crossed this threshold"); 6191 6192 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6193 ZMOD_RW, 6194 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6195 /* END CSTYLED */ 6196 6197 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6198 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6199 6200 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6201 "Prefer metaslabs with lower LBAs"); 6202 6203 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6204 "Enable metaslab group biasing"); 6205 6206 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6207 ZMOD_RW, "Enable segment-based metaslab selection"); 6208 6209 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6210 "Segment-based metaslab selection maximum buckets before switching"); 6211 6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6213 "Blocks larger than this size are sometimes forced to be gang blocks"); 6214 6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW, 6216 "Percentage of large blocks that will be forced to be gang blocks"); 6217 6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6219 "Max distance (bytes) to search forward before using size tree"); 6220 6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6222 "When looking in size tree, use largest segment instead of exact fit"); 6223 6224 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6225 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6226 6227 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6228 "Percentage of memory that can be used to store metaslab range trees"); 6229 6230 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6231 ZMOD_RW, "Try hard to allocate before ganging"); 6232 6233 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 6234 "Normally only consider this many of the best metaslabs in each vdev"); 6235