xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision be181ee2a28aa2b4b0e76684bce9f673ef668874)
1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  * CDDL HEADER START
3eda14cbcSMatt Macy  *
4eda14cbcSMatt Macy  * The contents of this file are subject to the terms of the
5eda14cbcSMatt Macy  * Common Development and Distribution License (the "License").
6eda14cbcSMatt Macy  * You may not use this file except in compliance with the License.
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9271171e0SMartin Matuska  * or https://opensource.org/licenses/CDDL-1.0.
10eda14cbcSMatt Macy  * See the License for the specific language governing permissions
11eda14cbcSMatt Macy  * and limitations under the License.
12eda14cbcSMatt Macy  *
13eda14cbcSMatt Macy  * When distributing Covered Code, include this CDDL HEADER in each
14eda14cbcSMatt Macy  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15eda14cbcSMatt Macy  * If applicable, add the following below this CDDL HEADER, with the
16eda14cbcSMatt Macy  * fields enclosed by brackets "[]" replaced with your own identifying
17eda14cbcSMatt Macy  * information: Portions Copyright [yyyy] [name of copyright owner]
18eda14cbcSMatt Macy  *
19eda14cbcSMatt Macy  * CDDL HEADER END
20eda14cbcSMatt Macy  */
21eda14cbcSMatt Macy /*
22eda14cbcSMatt Macy  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23eda14cbcSMatt Macy  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24eda14cbcSMatt Macy  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
252c48331dSMatt Macy  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26eda14cbcSMatt Macy  * Copyright (c) 2017, Intel Corporation.
27eda14cbcSMatt Macy  */
28eda14cbcSMatt Macy 
29eda14cbcSMatt Macy #include <sys/zfs_context.h>
30eda14cbcSMatt Macy #include <sys/dmu.h>
31eda14cbcSMatt Macy #include <sys/dmu_tx.h>
32eda14cbcSMatt Macy #include <sys/space_map.h>
33eda14cbcSMatt Macy #include <sys/metaslab_impl.h>
34eda14cbcSMatt Macy #include <sys/vdev_impl.h>
357877fdebSMatt Macy #include <sys/vdev_draid.h>
36eda14cbcSMatt Macy #include <sys/zio.h>
37eda14cbcSMatt Macy #include <sys/spa_impl.h>
38eda14cbcSMatt Macy #include <sys/zfeature.h>
39eda14cbcSMatt Macy #include <sys/vdev_indirect_mapping.h>
40eda14cbcSMatt Macy #include <sys/zap.h>
41eda14cbcSMatt Macy #include <sys/btree.h>
42eda14cbcSMatt Macy 
43eda14cbcSMatt Macy #define	WITH_DF_BLOCK_ALLOCATOR
44eda14cbcSMatt Macy 
45eda14cbcSMatt Macy #define	GANG_ALLOCATION(flags) \
46eda14cbcSMatt Macy 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47eda14cbcSMatt Macy 
48eda14cbcSMatt Macy /*
49eda14cbcSMatt Macy  * Metaslab granularity, in bytes. This is roughly similar to what would be
50eda14cbcSMatt Macy  * referred to as the "stripe size" in traditional RAID arrays. In normal
51716fd348SMartin Matuska  * operation, we will try to write this amount of data to each disk before
52716fd348SMartin Matuska  * moving on to the next top-level vdev.
53eda14cbcSMatt Macy  */
54716fd348SMartin Matuska static unsigned long metaslab_aliquot = 1024 * 1024;
55eda14cbcSMatt Macy 
56eda14cbcSMatt Macy /*
57eda14cbcSMatt Macy  * For testing, make some blocks above a certain size be gang blocks.
58eda14cbcSMatt Macy  */
59eda14cbcSMatt Macy unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60eda14cbcSMatt Macy 
61eda14cbcSMatt Macy /*
62eda14cbcSMatt Macy  * In pools where the log space map feature is not enabled we touch
63eda14cbcSMatt Macy  * multiple metaslabs (and their respective space maps) with each
64eda14cbcSMatt Macy  * transaction group. Thus, we benefit from having a small space map
65eda14cbcSMatt Macy  * block size since it allows us to issue more I/O operations scattered
66eda14cbcSMatt Macy  * around the disk. So a sane default for the space map block size
67eda14cbcSMatt Macy  * is 8~16K.
68eda14cbcSMatt Macy  */
69eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_no_log = (1 << 14);
70eda14cbcSMatt Macy 
71eda14cbcSMatt Macy /*
72eda14cbcSMatt Macy  * When the log space map feature is enabled, we accumulate a lot of
73eda14cbcSMatt Macy  * changes per metaslab that are flushed once in a while so we benefit
74eda14cbcSMatt Macy  * from a bigger block size like 128K for the metaslab space maps.
75eda14cbcSMatt Macy  */
76eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_with_log = (1 << 17);
77eda14cbcSMatt Macy 
78eda14cbcSMatt Macy /*
79eda14cbcSMatt Macy  * The in-core space map representation is more compact than its on-disk form.
80eda14cbcSMatt Macy  * The zfs_condense_pct determines how much more compact the in-core
81eda14cbcSMatt Macy  * space map representation must be before we compact it on-disk.
82eda14cbcSMatt Macy  * Values should be greater than or equal to 100.
83eda14cbcSMatt Macy  */
84*be181ee2SMartin Matuska uint_t zfs_condense_pct = 200;
85eda14cbcSMatt Macy 
86eda14cbcSMatt Macy /*
87eda14cbcSMatt Macy  * Condensing a metaslab is not guaranteed to actually reduce the amount of
88eda14cbcSMatt Macy  * space used on disk. In particular, a space map uses data in increments of
89eda14cbcSMatt Macy  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
90eda14cbcSMatt Macy  * same number of blocks after condensing. Since the goal of condensing is to
91eda14cbcSMatt Macy  * reduce the number of IOPs required to read the space map, we only want to
92eda14cbcSMatt Macy  * condense when we can be sure we will reduce the number of blocks used by the
93eda14cbcSMatt Macy  * space map. Unfortunately, we cannot precisely compute whether or not this is
94eda14cbcSMatt Macy  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
95eda14cbcSMatt Macy  * we apply the following heuristic: do not condense a spacemap unless the
96eda14cbcSMatt Macy  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
97eda14cbcSMatt Macy  * blocks.
98eda14cbcSMatt Macy  */
99e92ffd9bSMartin Matuska static const int zfs_metaslab_condense_block_threshold = 4;
100eda14cbcSMatt Macy 
101eda14cbcSMatt Macy /*
102eda14cbcSMatt Macy  * The zfs_mg_noalloc_threshold defines which metaslab groups should
103eda14cbcSMatt Macy  * be eligible for allocation. The value is defined as a percentage of
104eda14cbcSMatt Macy  * free space. Metaslab groups that have more free space than
105eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
106eda14cbcSMatt Macy  * a metaslab group's free space is less than or equal to the
107eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
108eda14cbcSMatt Macy  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
109eda14cbcSMatt Macy  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
110eda14cbcSMatt Macy  * groups are allowed to accept allocations. Gang blocks are always
111eda14cbcSMatt Macy  * eligible to allocate on any metaslab group. The default value of 0 means
112eda14cbcSMatt Macy  * no metaslab group will be excluded based on this criterion.
113eda14cbcSMatt Macy  */
114*be181ee2SMartin Matuska static uint_t zfs_mg_noalloc_threshold = 0;
115eda14cbcSMatt Macy 
116eda14cbcSMatt Macy /*
117eda14cbcSMatt Macy  * Metaslab groups are considered eligible for allocations if their
118eda14cbcSMatt Macy  * fragmentation metric (measured as a percentage) is less than or
119eda14cbcSMatt Macy  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
120eda14cbcSMatt Macy  * exceeds this threshold then it will be skipped unless all metaslab
121eda14cbcSMatt Macy  * groups within the metaslab class have also crossed this threshold.
122eda14cbcSMatt Macy  *
123eda14cbcSMatt Macy  * This tunable was introduced to avoid edge cases where we continue
124eda14cbcSMatt Macy  * allocating from very fragmented disks in our pool while other, less
125eda14cbcSMatt Macy  * fragmented disks, exists. On the other hand, if all disks in the
126eda14cbcSMatt Macy  * pool are uniformly approaching the threshold, the threshold can
127eda14cbcSMatt Macy  * be a speed bump in performance, where we keep switching the disks
128eda14cbcSMatt Macy  * that we allocate from (e.g. we allocate some segments from disk A
129eda14cbcSMatt Macy  * making it bypassing the threshold while freeing segments from disk
130eda14cbcSMatt Macy  * B getting its fragmentation below the threshold).
131eda14cbcSMatt Macy  *
132eda14cbcSMatt Macy  * Empirically, we've seen that our vdev selection for allocations is
133eda14cbcSMatt Macy  * good enough that fragmentation increases uniformly across all vdevs
134eda14cbcSMatt Macy  * the majority of the time. Thus we set the threshold percentage high
135eda14cbcSMatt Macy  * enough to avoid hitting the speed bump on pools that are being pushed
136eda14cbcSMatt Macy  * to the edge.
137eda14cbcSMatt Macy  */
138*be181ee2SMartin Matuska static uint_t zfs_mg_fragmentation_threshold = 95;
139eda14cbcSMatt Macy 
140eda14cbcSMatt Macy /*
141eda14cbcSMatt Macy  * Allow metaslabs to keep their active state as long as their fragmentation
142eda14cbcSMatt Macy  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
143eda14cbcSMatt Macy  * active metaslab that exceeds this threshold will no longer keep its active
144eda14cbcSMatt Macy  * status allowing better metaslabs to be selected.
145eda14cbcSMatt Macy  */
146*be181ee2SMartin Matuska static uint_t zfs_metaslab_fragmentation_threshold = 70;
147eda14cbcSMatt Macy 
148eda14cbcSMatt Macy /*
149eda14cbcSMatt Macy  * When set will load all metaslabs when pool is first opened.
150eda14cbcSMatt Macy  */
151e92ffd9bSMartin Matuska int metaslab_debug_load = B_FALSE;
152eda14cbcSMatt Macy 
153eda14cbcSMatt Macy /*
154eda14cbcSMatt Macy  * When set will prevent metaslabs from being unloaded.
155eda14cbcSMatt Macy  */
156e92ffd9bSMartin Matuska static int metaslab_debug_unload = B_FALSE;
157eda14cbcSMatt Macy 
158eda14cbcSMatt Macy /*
159eda14cbcSMatt Macy  * Minimum size which forces the dynamic allocator to change
160eda14cbcSMatt Macy  * it's allocation strategy.  Once the space map cannot satisfy
161eda14cbcSMatt Macy  * an allocation of this size then it switches to using more
162eda14cbcSMatt Macy  * aggressive strategy (i.e search by size rather than offset).
163eda14cbcSMatt Macy  */
164eda14cbcSMatt Macy uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
165eda14cbcSMatt Macy 
166eda14cbcSMatt Macy /*
167eda14cbcSMatt Macy  * The minimum free space, in percent, which must be available
168eda14cbcSMatt Macy  * in a space map to continue allocations in a first-fit fashion.
169eda14cbcSMatt Macy  * Once the space map's free space drops below this level we dynamically
170eda14cbcSMatt Macy  * switch to using best-fit allocations.
171eda14cbcSMatt Macy  */
172*be181ee2SMartin Matuska uint_t metaslab_df_free_pct = 4;
173eda14cbcSMatt Macy 
174eda14cbcSMatt Macy /*
175eda14cbcSMatt Macy  * Maximum distance to search forward from the last offset. Without this
176eda14cbcSMatt Macy  * limit, fragmented pools can see >100,000 iterations and
177eda14cbcSMatt Macy  * metaslab_block_picker() becomes the performance limiting factor on
178eda14cbcSMatt Macy  * high-performance storage.
179eda14cbcSMatt Macy  *
180eda14cbcSMatt Macy  * With the default setting of 16MB, we typically see less than 500
181eda14cbcSMatt Macy  * iterations, even with very fragmented, ashift=9 pools. The maximum number
182eda14cbcSMatt Macy  * of iterations possible is:
183eda14cbcSMatt Macy  *     metaslab_df_max_search / (2 * (1<<ashift))
184eda14cbcSMatt Macy  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
185eda14cbcSMatt Macy  * 2048 (with ashift=12).
186eda14cbcSMatt Macy  */
187*be181ee2SMartin Matuska static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
188eda14cbcSMatt Macy 
189eda14cbcSMatt Macy /*
190eda14cbcSMatt Macy  * Forces the metaslab_block_picker function to search for at least this many
191eda14cbcSMatt Macy  * segments forwards until giving up on finding a segment that the allocation
192eda14cbcSMatt Macy  * will fit into.
193eda14cbcSMatt Macy  */
194e92ffd9bSMartin Matuska static const uint32_t metaslab_min_search_count = 100;
195eda14cbcSMatt Macy 
196eda14cbcSMatt Macy /*
197eda14cbcSMatt Macy  * If we are not searching forward (due to metaslab_df_max_search,
198eda14cbcSMatt Macy  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
199eda14cbcSMatt Macy  * controls what segment is used.  If it is set, we will use the largest free
200eda14cbcSMatt Macy  * segment.  If it is not set, we will use a segment of exactly the requested
201eda14cbcSMatt Macy  * size (or larger).
202eda14cbcSMatt Macy  */
203e92ffd9bSMartin Matuska static int metaslab_df_use_largest_segment = B_FALSE;
204eda14cbcSMatt Macy 
205eda14cbcSMatt Macy /*
206eda14cbcSMatt Macy  * Percentage of all cpus that can be used by the metaslab taskq.
207eda14cbcSMatt Macy  */
208eda14cbcSMatt Macy int metaslab_load_pct = 50;
209eda14cbcSMatt Macy 
210eda14cbcSMatt Macy /*
211eda14cbcSMatt Macy  * These tunables control how long a metaslab will remain loaded after the
212eda14cbcSMatt Macy  * last allocation from it.  A metaslab can't be unloaded until at least
213eda14cbcSMatt Macy  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214eda14cbcSMatt Macy  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
215eda14cbcSMatt Macy  * unloaded sooner.  These settings are intended to be generous -- to keep
216eda14cbcSMatt Macy  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
217eda14cbcSMatt Macy  */
218*be181ee2SMartin Matuska static uint_t metaslab_unload_delay = 32;
219*be181ee2SMartin Matuska static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220eda14cbcSMatt Macy 
221eda14cbcSMatt Macy /*
222eda14cbcSMatt Macy  * Max number of metaslabs per group to preload.
223eda14cbcSMatt Macy  */
224*be181ee2SMartin Matuska uint_t metaslab_preload_limit = 10;
225eda14cbcSMatt Macy 
226eda14cbcSMatt Macy /*
227eda14cbcSMatt Macy  * Enable/disable preloading of metaslab.
228eda14cbcSMatt Macy  */
229e92ffd9bSMartin Matuska static int metaslab_preload_enabled = B_TRUE;
230eda14cbcSMatt Macy 
231eda14cbcSMatt Macy /*
232eda14cbcSMatt Macy  * Enable/disable fragmentation weighting on metaslabs.
233eda14cbcSMatt Macy  */
234e92ffd9bSMartin Matuska static int metaslab_fragmentation_factor_enabled = B_TRUE;
235eda14cbcSMatt Macy 
236eda14cbcSMatt Macy /*
237eda14cbcSMatt Macy  * Enable/disable lba weighting (i.e. outer tracks are given preference).
238eda14cbcSMatt Macy  */
239e92ffd9bSMartin Matuska static int metaslab_lba_weighting_enabled = B_TRUE;
240eda14cbcSMatt Macy 
241eda14cbcSMatt Macy /*
242eda14cbcSMatt Macy  * Enable/disable metaslab group biasing.
243eda14cbcSMatt Macy  */
244e92ffd9bSMartin Matuska static int metaslab_bias_enabled = B_TRUE;
245eda14cbcSMatt Macy 
246eda14cbcSMatt Macy /*
247eda14cbcSMatt Macy  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
248eda14cbcSMatt Macy  */
249e92ffd9bSMartin Matuska static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250eda14cbcSMatt Macy 
251eda14cbcSMatt Macy /*
252eda14cbcSMatt Macy  * Enable/disable segment-based metaslab selection.
253eda14cbcSMatt Macy  */
254e92ffd9bSMartin Matuska static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255eda14cbcSMatt Macy 
256eda14cbcSMatt Macy /*
257eda14cbcSMatt Macy  * When using segment-based metaslab selection, we will continue
258eda14cbcSMatt Macy  * allocating from the active metaslab until we have exhausted
259eda14cbcSMatt Macy  * zfs_metaslab_switch_threshold of its buckets.
260eda14cbcSMatt Macy  */
261e92ffd9bSMartin Matuska static int zfs_metaslab_switch_threshold = 2;
262eda14cbcSMatt Macy 
263eda14cbcSMatt Macy /*
264eda14cbcSMatt Macy  * Internal switch to enable/disable the metaslab allocation tracing
265eda14cbcSMatt Macy  * facility.
266eda14cbcSMatt Macy  */
267e92ffd9bSMartin Matuska static const boolean_t metaslab_trace_enabled = B_FALSE;
268eda14cbcSMatt Macy 
269eda14cbcSMatt Macy /*
270eda14cbcSMatt Macy  * Maximum entries that the metaslab allocation tracing facility will keep
271eda14cbcSMatt Macy  * in a given list when running in non-debug mode. We limit the number
272eda14cbcSMatt Macy  * of entries in non-debug mode to prevent us from using up too much memory.
273eda14cbcSMatt Macy  * The limit should be sufficiently large that we don't expect any allocation
274eda14cbcSMatt Macy  * to every exceed this value. In debug mode, the system will panic if this
275eda14cbcSMatt Macy  * limit is ever reached allowing for further investigation.
276eda14cbcSMatt Macy  */
277e92ffd9bSMartin Matuska static const uint64_t metaslab_trace_max_entries = 5000;
278eda14cbcSMatt Macy 
279eda14cbcSMatt Macy /*
280eda14cbcSMatt Macy  * Maximum number of metaslabs per group that can be disabled
281eda14cbcSMatt Macy  * simultaneously.
282eda14cbcSMatt Macy  */
283e92ffd9bSMartin Matuska static const int max_disabled_ms = 3;
284eda14cbcSMatt Macy 
285eda14cbcSMatt Macy /*
286eda14cbcSMatt Macy  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287eda14cbcSMatt Macy  * To avoid 64-bit overflow, don't set above UINT32_MAX.
288eda14cbcSMatt Macy  */
289e92ffd9bSMartin Matuska static unsigned long zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290eda14cbcSMatt Macy 
291eda14cbcSMatt Macy /*
292eda14cbcSMatt Macy  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293eda14cbcSMatt Macy  * a metaslab would take it over this percentage, the oldest selected metaslab
294eda14cbcSMatt Macy  * is automatically unloaded.
295eda14cbcSMatt Macy  */
296*be181ee2SMartin Matuska static uint_t zfs_metaslab_mem_limit = 25;
297eda14cbcSMatt Macy 
298eda14cbcSMatt Macy /*
299eda14cbcSMatt Macy  * Force the per-metaslab range trees to use 64-bit integers to store
300eda14cbcSMatt Macy  * segments. Used for debugging purposes.
301eda14cbcSMatt Macy  */
302e92ffd9bSMartin Matuska static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303eda14cbcSMatt Macy 
304eda14cbcSMatt Macy /*
305eda14cbcSMatt Macy  * By default we only store segments over a certain size in the size-sorted
306eda14cbcSMatt Macy  * metaslab trees (ms_allocatable_by_size and
307eda14cbcSMatt Macy  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308eda14cbcSMatt Macy  * improves load and unload times at the cost of causing us to use slightly
309eda14cbcSMatt Macy  * larger segments than we would otherwise in some cases.
310eda14cbcSMatt Macy  */
311e92ffd9bSMartin Matuska static const uint32_t metaslab_by_size_min_shift = 14;
312eda14cbcSMatt Macy 
3137877fdebSMatt Macy /*
3147877fdebSMatt Macy  * If not set, we will first try normal allocation.  If that fails then
3157877fdebSMatt Macy  * we will do a gang allocation.  If that fails then we will do a "try hard"
3167877fdebSMatt Macy  * gang allocation.  If that fails then we will have a multi-layer gang
3177877fdebSMatt Macy  * block.
3187877fdebSMatt Macy  *
3197877fdebSMatt Macy  * If set, we will first try normal allocation.  If that fails then
3207877fdebSMatt Macy  * we will do a "try hard" allocation.  If that fails we will do a gang
3217877fdebSMatt Macy  * allocation.  If that fails we will do a "try hard" gang allocation.  If
3227877fdebSMatt Macy  * that fails then we will have a multi-layer gang block.
3237877fdebSMatt Macy  */
324e92ffd9bSMartin Matuska static int zfs_metaslab_try_hard_before_gang = B_FALSE;
3257877fdebSMatt Macy 
3267877fdebSMatt Macy /*
3277877fdebSMatt Macy  * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
3287877fdebSMatt Macy  * metaslabs.  This improves performance, especially when there are many
3297877fdebSMatt Macy  * metaslabs per vdev and the allocation can't actually be satisfied (so we
3307877fdebSMatt Macy  * would otherwise iterate all the metaslabs).  If there is a metaslab with a
3317877fdebSMatt Macy  * worse weight but it can actually satisfy the allocation, we won't find it
3327877fdebSMatt Macy  * until trying hard.  This may happen if the worse metaslab is not loaded
3337877fdebSMatt Macy  * (and the true weight is better than we have calculated), or due to weight
3347877fdebSMatt Macy  * bucketization.  E.g. we are looking for a 60K segment, and the best
3357877fdebSMatt Macy  * metaslabs all have free segments in the 32-63K bucket, but the best
3367877fdebSMatt Macy  * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
3377877fdebSMatt Macy  * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
3387877fdebSMatt Macy  * bucket, and therefore a lower weight).
3397877fdebSMatt Macy  */
340*be181ee2SMartin Matuska static uint_t zfs_metaslab_find_max_tries = 100;
3417877fdebSMatt Macy 
342eda14cbcSMatt Macy static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343eda14cbcSMatt Macy static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344eda14cbcSMatt Macy static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345eda14cbcSMatt Macy static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
346eda14cbcSMatt Macy 
347eda14cbcSMatt Macy static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348eda14cbcSMatt Macy static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349eda14cbcSMatt Macy static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350eda14cbcSMatt Macy static unsigned int metaslab_idx_func(multilist_t *, void *);
351eda14cbcSMatt Macy static void metaslab_evict(metaslab_t *, uint64_t);
352eda14cbcSMatt Macy static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353eda14cbcSMatt Macy kmem_cache_t *metaslab_alloc_trace_cache;
354eda14cbcSMatt Macy 
355eda14cbcSMatt Macy typedef struct metaslab_stats {
356eda14cbcSMatt Macy 	kstat_named_t metaslabstat_trace_over_limit;
357eda14cbcSMatt Macy 	kstat_named_t metaslabstat_reload_tree;
3587877fdebSMatt Macy 	kstat_named_t metaslabstat_too_many_tries;
3597877fdebSMatt Macy 	kstat_named_t metaslabstat_try_hard;
360eda14cbcSMatt Macy } metaslab_stats_t;
361eda14cbcSMatt Macy 
362eda14cbcSMatt Macy static metaslab_stats_t metaslab_stats = {
363eda14cbcSMatt Macy 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
364eda14cbcSMatt Macy 	{ "reload_tree",		KSTAT_DATA_UINT64 },
3657877fdebSMatt Macy 	{ "too_many_tries",		KSTAT_DATA_UINT64 },
3667877fdebSMatt Macy 	{ "try_hard",			KSTAT_DATA_UINT64 },
367eda14cbcSMatt Macy };
368eda14cbcSMatt Macy 
369eda14cbcSMatt Macy #define	METASLABSTAT_BUMP(stat) \
370eda14cbcSMatt Macy 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
371eda14cbcSMatt Macy 
372eda14cbcSMatt Macy 
373e92ffd9bSMartin Matuska static kstat_t *metaslab_ksp;
374eda14cbcSMatt Macy 
375eda14cbcSMatt Macy void
376eda14cbcSMatt Macy metaslab_stat_init(void)
377eda14cbcSMatt Macy {
378eda14cbcSMatt Macy 	ASSERT(metaslab_alloc_trace_cache == NULL);
379eda14cbcSMatt Macy 	metaslab_alloc_trace_cache = kmem_cache_create(
380eda14cbcSMatt Macy 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381eda14cbcSMatt Macy 	    0, NULL, NULL, NULL, NULL, NULL, 0);
382eda14cbcSMatt Macy 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383eda14cbcSMatt Macy 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384eda14cbcSMatt Macy 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385eda14cbcSMatt Macy 	if (metaslab_ksp != NULL) {
386eda14cbcSMatt Macy 		metaslab_ksp->ks_data = &metaslab_stats;
387eda14cbcSMatt Macy 		kstat_install(metaslab_ksp);
388eda14cbcSMatt Macy 	}
389eda14cbcSMatt Macy }
390eda14cbcSMatt Macy 
391eda14cbcSMatt Macy void
392eda14cbcSMatt Macy metaslab_stat_fini(void)
393eda14cbcSMatt Macy {
394eda14cbcSMatt Macy 	if (metaslab_ksp != NULL) {
395eda14cbcSMatt Macy 		kstat_delete(metaslab_ksp);
396eda14cbcSMatt Macy 		metaslab_ksp = NULL;
397eda14cbcSMatt Macy 	}
398eda14cbcSMatt Macy 
399eda14cbcSMatt Macy 	kmem_cache_destroy(metaslab_alloc_trace_cache);
400eda14cbcSMatt Macy 	metaslab_alloc_trace_cache = NULL;
401eda14cbcSMatt Macy }
402eda14cbcSMatt Macy 
403eda14cbcSMatt Macy /*
404eda14cbcSMatt Macy  * ==========================================================================
405eda14cbcSMatt Macy  * Metaslab classes
406eda14cbcSMatt Macy  * ==========================================================================
407eda14cbcSMatt Macy  */
408eda14cbcSMatt Macy metaslab_class_t *
409e92ffd9bSMartin Matuska metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
410eda14cbcSMatt Macy {
411eda14cbcSMatt Macy 	metaslab_class_t *mc;
412eda14cbcSMatt Macy 
4137877fdebSMatt Macy 	mc = kmem_zalloc(offsetof(metaslab_class_t,
4147877fdebSMatt Macy 	    mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
415eda14cbcSMatt Macy 
416eda14cbcSMatt Macy 	mc->mc_spa = spa;
417eda14cbcSMatt Macy 	mc->mc_ops = ops;
418eda14cbcSMatt Macy 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
4193ff01b23SMartin Matuska 	multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420eda14cbcSMatt Macy 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
4217877fdebSMatt Macy 	for (int i = 0; i < spa->spa_alloc_count; i++) {
4227877fdebSMatt Macy 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
4237877fdebSMatt Macy 		mca->mca_rotor = NULL;
4247877fdebSMatt Macy 		zfs_refcount_create_tracked(&mca->mca_alloc_slots);
4257877fdebSMatt Macy 	}
426eda14cbcSMatt Macy 
427eda14cbcSMatt Macy 	return (mc);
428eda14cbcSMatt Macy }
429eda14cbcSMatt Macy 
430eda14cbcSMatt Macy void
431eda14cbcSMatt Macy metaslab_class_destroy(metaslab_class_t *mc)
432eda14cbcSMatt Macy {
4337877fdebSMatt Macy 	spa_t *spa = mc->mc_spa;
4347877fdebSMatt Macy 
435eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc == 0);
436eda14cbcSMatt Macy 	ASSERT(mc->mc_deferred == 0);
437eda14cbcSMatt Macy 	ASSERT(mc->mc_space == 0);
438eda14cbcSMatt Macy 	ASSERT(mc->mc_dspace == 0);
439eda14cbcSMatt Macy 
4407877fdebSMatt Macy 	for (int i = 0; i < spa->spa_alloc_count; i++) {
4417877fdebSMatt Macy 		metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
4427877fdebSMatt Macy 		ASSERT(mca->mca_rotor == NULL);
4437877fdebSMatt Macy 		zfs_refcount_destroy(&mca->mca_alloc_slots);
4447877fdebSMatt Macy 	}
445eda14cbcSMatt Macy 	mutex_destroy(&mc->mc_lock);
4463ff01b23SMartin Matuska 	multilist_destroy(&mc->mc_metaslab_txg_list);
4477877fdebSMatt Macy 	kmem_free(mc, offsetof(metaslab_class_t,
4487877fdebSMatt Macy 	    mc_allocator[spa->spa_alloc_count]));
449eda14cbcSMatt Macy }
450eda14cbcSMatt Macy 
451eda14cbcSMatt Macy int
452eda14cbcSMatt Macy metaslab_class_validate(metaslab_class_t *mc)
453eda14cbcSMatt Macy {
454eda14cbcSMatt Macy 	metaslab_group_t *mg;
455eda14cbcSMatt Macy 	vdev_t *vd;
456eda14cbcSMatt Macy 
457eda14cbcSMatt Macy 	/*
458eda14cbcSMatt Macy 	 * Must hold one of the spa_config locks.
459eda14cbcSMatt Macy 	 */
460eda14cbcSMatt Macy 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461eda14cbcSMatt Macy 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
462eda14cbcSMatt Macy 
4637877fdebSMatt Macy 	if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464eda14cbcSMatt Macy 		return (0);
465eda14cbcSMatt Macy 
466eda14cbcSMatt Macy 	do {
467eda14cbcSMatt Macy 		vd = mg->mg_vd;
468eda14cbcSMatt Macy 		ASSERT(vd->vdev_mg != NULL);
469eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_top, ==, vd);
470eda14cbcSMatt Macy 		ASSERT3P(mg->mg_class, ==, mc);
471eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
4727877fdebSMatt Macy 	} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
473eda14cbcSMatt Macy 
474eda14cbcSMatt Macy 	return (0);
475eda14cbcSMatt Macy }
476eda14cbcSMatt Macy 
477eda14cbcSMatt Macy static void
478eda14cbcSMatt Macy metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479eda14cbcSMatt Macy     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
480eda14cbcSMatt Macy {
481eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_alloc, alloc_delta);
482eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_deferred, defer_delta);
483eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_space, space_delta);
484eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_dspace, dspace_delta);
485eda14cbcSMatt Macy }
486eda14cbcSMatt Macy 
487eda14cbcSMatt Macy uint64_t
488eda14cbcSMatt Macy metaslab_class_get_alloc(metaslab_class_t *mc)
489eda14cbcSMatt Macy {
490eda14cbcSMatt Macy 	return (mc->mc_alloc);
491eda14cbcSMatt Macy }
492eda14cbcSMatt Macy 
493eda14cbcSMatt Macy uint64_t
494eda14cbcSMatt Macy metaslab_class_get_deferred(metaslab_class_t *mc)
495eda14cbcSMatt Macy {
496eda14cbcSMatt Macy 	return (mc->mc_deferred);
497eda14cbcSMatt Macy }
498eda14cbcSMatt Macy 
499eda14cbcSMatt Macy uint64_t
500eda14cbcSMatt Macy metaslab_class_get_space(metaslab_class_t *mc)
501eda14cbcSMatt Macy {
502eda14cbcSMatt Macy 	return (mc->mc_space);
503eda14cbcSMatt Macy }
504eda14cbcSMatt Macy 
505eda14cbcSMatt Macy uint64_t
506eda14cbcSMatt Macy metaslab_class_get_dspace(metaslab_class_t *mc)
507eda14cbcSMatt Macy {
508eda14cbcSMatt Macy 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509eda14cbcSMatt Macy }
510eda14cbcSMatt Macy 
511eda14cbcSMatt Macy void
512eda14cbcSMatt Macy metaslab_class_histogram_verify(metaslab_class_t *mc)
513eda14cbcSMatt Macy {
514eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
515eda14cbcSMatt Macy 	vdev_t *rvd = spa->spa_root_vdev;
516eda14cbcSMatt Macy 	uint64_t *mc_hist;
517eda14cbcSMatt Macy 	int i;
518eda14cbcSMatt Macy 
519eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520eda14cbcSMatt Macy 		return;
521eda14cbcSMatt Macy 
522eda14cbcSMatt Macy 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523eda14cbcSMatt Macy 	    KM_SLEEP);
524eda14cbcSMatt Macy 
525184c1b94SMartin Matuska 	mutex_enter(&mc->mc_lock);
526eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
527eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
528184c1b94SMartin Matuska 		metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529eda14cbcSMatt Macy 
530eda14cbcSMatt Macy 		/*
531eda14cbcSMatt Macy 		 * Skip any holes, uninitialized top-levels, or
532eda14cbcSMatt Macy 		 * vdevs that are not in this metalab class.
533eda14cbcSMatt Macy 		 */
534eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535eda14cbcSMatt Macy 		    mg->mg_class != mc) {
536eda14cbcSMatt Macy 			continue;
537eda14cbcSMatt Macy 		}
538eda14cbcSMatt Macy 
539184c1b94SMartin Matuska 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
540184c1b94SMartin Matuska 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
541184c1b94SMartin Matuska 
542eda14cbcSMatt Macy 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543eda14cbcSMatt Macy 			mc_hist[i] += mg->mg_histogram[i];
544eda14cbcSMatt Macy 	}
545eda14cbcSMatt Macy 
546184c1b94SMartin Matuska 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547eda14cbcSMatt Macy 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548184c1b94SMartin Matuska 	}
549eda14cbcSMatt Macy 
550184c1b94SMartin Matuska 	mutex_exit(&mc->mc_lock);
551eda14cbcSMatt Macy 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
552eda14cbcSMatt Macy }
553eda14cbcSMatt Macy 
554eda14cbcSMatt Macy /*
555eda14cbcSMatt Macy  * Calculate the metaslab class's fragmentation metric. The metric
556eda14cbcSMatt Macy  * is weighted based on the space contribution of each metaslab group.
557eda14cbcSMatt Macy  * The return value will be a number between 0 and 100 (inclusive), or
558eda14cbcSMatt Macy  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559eda14cbcSMatt Macy  * zfs_frag_table for more information about the metric.
560eda14cbcSMatt Macy  */
561eda14cbcSMatt Macy uint64_t
562eda14cbcSMatt Macy metaslab_class_fragmentation(metaslab_class_t *mc)
563eda14cbcSMatt Macy {
564eda14cbcSMatt Macy 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
566eda14cbcSMatt Macy 
567eda14cbcSMatt Macy 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
568eda14cbcSMatt Macy 
569eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
570eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
571eda14cbcSMatt Macy 		metaslab_group_t *mg = tvd->vdev_mg;
572eda14cbcSMatt Macy 
573eda14cbcSMatt Macy 		/*
574eda14cbcSMatt Macy 		 * Skip any holes, uninitialized top-levels,
575eda14cbcSMatt Macy 		 * or vdevs that are not in this metalab class.
576eda14cbcSMatt Macy 		 */
577eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578eda14cbcSMatt Macy 		    mg->mg_class != mc) {
579eda14cbcSMatt Macy 			continue;
580eda14cbcSMatt Macy 		}
581eda14cbcSMatt Macy 
582eda14cbcSMatt Macy 		/*
583eda14cbcSMatt Macy 		 * If a metaslab group does not contain a fragmentation
584eda14cbcSMatt Macy 		 * metric then just bail out.
585eda14cbcSMatt Macy 		 */
586eda14cbcSMatt Macy 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587eda14cbcSMatt Macy 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588eda14cbcSMatt Macy 			return (ZFS_FRAG_INVALID);
589eda14cbcSMatt Macy 		}
590eda14cbcSMatt Macy 
591eda14cbcSMatt Macy 		/*
592eda14cbcSMatt Macy 		 * Determine how much this metaslab_group is contributing
593eda14cbcSMatt Macy 		 * to the overall pool fragmentation metric.
594eda14cbcSMatt Macy 		 */
595eda14cbcSMatt Macy 		fragmentation += mg->mg_fragmentation *
596eda14cbcSMatt Macy 		    metaslab_group_get_space(mg);
597eda14cbcSMatt Macy 	}
598eda14cbcSMatt Macy 	fragmentation /= metaslab_class_get_space(mc);
599eda14cbcSMatt Macy 
600eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
601eda14cbcSMatt Macy 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602eda14cbcSMatt Macy 	return (fragmentation);
603eda14cbcSMatt Macy }
604eda14cbcSMatt Macy 
605eda14cbcSMatt Macy /*
606eda14cbcSMatt Macy  * Calculate the amount of expandable space that is available in
607eda14cbcSMatt Macy  * this metaslab class. If a device is expanded then its expandable
608eda14cbcSMatt Macy  * space will be the amount of allocatable space that is currently not
609eda14cbcSMatt Macy  * part of this metaslab class.
610eda14cbcSMatt Macy  */
611eda14cbcSMatt Macy uint64_t
612eda14cbcSMatt Macy metaslab_class_expandable_space(metaslab_class_t *mc)
613eda14cbcSMatt Macy {
614eda14cbcSMatt Macy 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615eda14cbcSMatt Macy 	uint64_t space = 0;
616eda14cbcSMatt Macy 
617eda14cbcSMatt Macy 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
619eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
620eda14cbcSMatt Macy 		metaslab_group_t *mg = tvd->vdev_mg;
621eda14cbcSMatt Macy 
622eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623eda14cbcSMatt Macy 		    mg->mg_class != mc) {
624eda14cbcSMatt Macy 			continue;
625eda14cbcSMatt Macy 		}
626eda14cbcSMatt Macy 
627eda14cbcSMatt Macy 		/*
628eda14cbcSMatt Macy 		 * Calculate if we have enough space to add additional
629eda14cbcSMatt Macy 		 * metaslabs. We report the expandable space in terms
630eda14cbcSMatt Macy 		 * of the metaslab size since that's the unit of expansion.
631eda14cbcSMatt Macy 		 */
632eda14cbcSMatt Macy 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633eda14cbcSMatt Macy 		    1ULL << tvd->vdev_ms_shift);
634eda14cbcSMatt Macy 	}
635eda14cbcSMatt Macy 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636eda14cbcSMatt Macy 	return (space);
637eda14cbcSMatt Macy }
638eda14cbcSMatt Macy 
639eda14cbcSMatt Macy void
640eda14cbcSMatt Macy metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
641eda14cbcSMatt Macy {
6423ff01b23SMartin Matuska 	multilist_t *ml = &mc->mc_metaslab_txg_list;
643eda14cbcSMatt Macy 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644eda14cbcSMatt Macy 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645eda14cbcSMatt Macy 		metaslab_t *msp = multilist_sublist_head(mls);
646eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
647eda14cbcSMatt Macy 		while (msp != NULL) {
648eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
649eda14cbcSMatt Macy 
650eda14cbcSMatt Macy 			/*
651eda14cbcSMatt Macy 			 * If the metaslab has been removed from the list
652eda14cbcSMatt Macy 			 * (which could happen if we were at the memory limit
653eda14cbcSMatt Macy 			 * and it was evicted during this loop), then we can't
654eda14cbcSMatt Macy 			 * proceed and we should restart the sublist.
655eda14cbcSMatt Macy 			 */
656eda14cbcSMatt Macy 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
657eda14cbcSMatt Macy 				mutex_exit(&msp->ms_lock);
658eda14cbcSMatt Macy 				i--;
659eda14cbcSMatt Macy 				break;
660eda14cbcSMatt Macy 			}
661eda14cbcSMatt Macy 			mls = multilist_sublist_lock(ml, i);
662eda14cbcSMatt Macy 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663eda14cbcSMatt Macy 			multilist_sublist_unlock(mls);
664eda14cbcSMatt Macy 			if (txg >
665eda14cbcSMatt Macy 			    msp->ms_selected_txg + metaslab_unload_delay &&
666eda14cbcSMatt Macy 			    gethrtime() > msp->ms_selected_time +
667eda14cbcSMatt Macy 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668eda14cbcSMatt Macy 				metaslab_evict(msp, txg);
669eda14cbcSMatt Macy 			} else {
670eda14cbcSMatt Macy 				/*
671eda14cbcSMatt Macy 				 * Once we've hit a metaslab selected too
672eda14cbcSMatt Macy 				 * recently to evict, we're done evicting for
673eda14cbcSMatt Macy 				 * now.
674eda14cbcSMatt Macy 				 */
675eda14cbcSMatt Macy 				mutex_exit(&msp->ms_lock);
676eda14cbcSMatt Macy 				break;
677eda14cbcSMatt Macy 			}
678eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
679eda14cbcSMatt Macy 			msp = next_msp;
680eda14cbcSMatt Macy 		}
681eda14cbcSMatt Macy 	}
682eda14cbcSMatt Macy }
683eda14cbcSMatt Macy 
684eda14cbcSMatt Macy static int
685eda14cbcSMatt Macy metaslab_compare(const void *x1, const void *x2)
686eda14cbcSMatt Macy {
687eda14cbcSMatt Macy 	const metaslab_t *m1 = (const metaslab_t *)x1;
688eda14cbcSMatt Macy 	const metaslab_t *m2 = (const metaslab_t *)x2;
689eda14cbcSMatt Macy 
690eda14cbcSMatt Macy 	int sort1 = 0;
691eda14cbcSMatt Macy 	int sort2 = 0;
692eda14cbcSMatt Macy 	if (m1->ms_allocator != -1 && m1->ms_primary)
693eda14cbcSMatt Macy 		sort1 = 1;
694eda14cbcSMatt Macy 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
695eda14cbcSMatt Macy 		sort1 = 2;
696eda14cbcSMatt Macy 	if (m2->ms_allocator != -1 && m2->ms_primary)
697eda14cbcSMatt Macy 		sort2 = 1;
698eda14cbcSMatt Macy 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
699eda14cbcSMatt Macy 		sort2 = 2;
700eda14cbcSMatt Macy 
701eda14cbcSMatt Macy 	/*
702eda14cbcSMatt Macy 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
703eda14cbcSMatt Macy 	 * selecting a metaslab to allocate from, an allocator first tries its
704eda14cbcSMatt Macy 	 * primary, then secondary active metaslab. If it doesn't have active
705eda14cbcSMatt Macy 	 * metaslabs, or can't allocate from them, it searches for an inactive
706eda14cbcSMatt Macy 	 * metaslab to activate. If it can't find a suitable one, it will steal
707eda14cbcSMatt Macy 	 * a primary or secondary metaslab from another allocator.
708eda14cbcSMatt Macy 	 */
709eda14cbcSMatt Macy 	if (sort1 < sort2)
710eda14cbcSMatt Macy 		return (-1);
711eda14cbcSMatt Macy 	if (sort1 > sort2)
712eda14cbcSMatt Macy 		return (1);
713eda14cbcSMatt Macy 
714eda14cbcSMatt Macy 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715eda14cbcSMatt Macy 	if (likely(cmp))
716eda14cbcSMatt Macy 		return (cmp);
717eda14cbcSMatt Macy 
718eda14cbcSMatt Macy 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
719eda14cbcSMatt Macy 
720eda14cbcSMatt Macy 	return (TREE_CMP(m1->ms_start, m2->ms_start));
721eda14cbcSMatt Macy }
722eda14cbcSMatt Macy 
723eda14cbcSMatt Macy /*
724eda14cbcSMatt Macy  * ==========================================================================
725eda14cbcSMatt Macy  * Metaslab groups
726eda14cbcSMatt Macy  * ==========================================================================
727eda14cbcSMatt Macy  */
728eda14cbcSMatt Macy /*
729eda14cbcSMatt Macy  * Update the allocatable flag and the metaslab group's capacity.
730eda14cbcSMatt Macy  * The allocatable flag is set to true if the capacity is below
731eda14cbcSMatt Macy  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732eda14cbcSMatt Macy  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733eda14cbcSMatt Macy  * transitions from allocatable to non-allocatable or vice versa then the
734eda14cbcSMatt Macy  * metaslab group's class is updated to reflect the transition.
735eda14cbcSMatt Macy  */
736eda14cbcSMatt Macy static void
737eda14cbcSMatt Macy metaslab_group_alloc_update(metaslab_group_t *mg)
738eda14cbcSMatt Macy {
739eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
740eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
741eda14cbcSMatt Macy 	vdev_stat_t *vs = &vd->vdev_stat;
742eda14cbcSMatt Macy 	boolean_t was_allocatable;
743eda14cbcSMatt Macy 	boolean_t was_initialized;
744eda14cbcSMatt Macy 
745eda14cbcSMatt Macy 	ASSERT(vd == vd->vdev_top);
746eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747eda14cbcSMatt Macy 	    SCL_ALLOC);
748eda14cbcSMatt Macy 
749eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
750eda14cbcSMatt Macy 	was_allocatable = mg->mg_allocatable;
751eda14cbcSMatt Macy 	was_initialized = mg->mg_initialized;
752eda14cbcSMatt Macy 
753eda14cbcSMatt Macy 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754eda14cbcSMatt Macy 	    (vs->vs_space + 1);
755eda14cbcSMatt Macy 
756eda14cbcSMatt Macy 	mutex_enter(&mc->mc_lock);
757eda14cbcSMatt Macy 
758eda14cbcSMatt Macy 	/*
759eda14cbcSMatt Macy 	 * If the metaslab group was just added then it won't
760eda14cbcSMatt Macy 	 * have any space until we finish syncing out this txg.
761eda14cbcSMatt Macy 	 * At that point we will consider it initialized and available
762eda14cbcSMatt Macy 	 * for allocations.  We also don't consider non-activated
763eda14cbcSMatt Macy 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764eda14cbcSMatt Macy 	 * to be initialized, because they can't be used for allocation.
765eda14cbcSMatt Macy 	 */
766eda14cbcSMatt Macy 	mg->mg_initialized = metaslab_group_initialized(mg);
767eda14cbcSMatt Macy 	if (!was_initialized && mg->mg_initialized) {
768eda14cbcSMatt Macy 		mc->mc_groups++;
769eda14cbcSMatt Macy 	} else if (was_initialized && !mg->mg_initialized) {
770eda14cbcSMatt Macy 		ASSERT3U(mc->mc_groups, >, 0);
771eda14cbcSMatt Macy 		mc->mc_groups--;
772eda14cbcSMatt Macy 	}
773eda14cbcSMatt Macy 	if (mg->mg_initialized)
774eda14cbcSMatt Macy 		mg->mg_no_free_space = B_FALSE;
775eda14cbcSMatt Macy 
776eda14cbcSMatt Macy 	/*
777eda14cbcSMatt Macy 	 * A metaslab group is considered allocatable if it has plenty
778eda14cbcSMatt Macy 	 * of free space or is not heavily fragmented. We only take
779eda14cbcSMatt Macy 	 * fragmentation into account if the metaslab group has a valid
780eda14cbcSMatt Macy 	 * fragmentation metric (i.e. a value between 0 and 100).
781eda14cbcSMatt Macy 	 */
782eda14cbcSMatt Macy 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783eda14cbcSMatt Macy 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784eda14cbcSMatt Macy 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785eda14cbcSMatt Macy 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
786eda14cbcSMatt Macy 
787eda14cbcSMatt Macy 	/*
788eda14cbcSMatt Macy 	 * The mc_alloc_groups maintains a count of the number of
789eda14cbcSMatt Macy 	 * groups in this metaslab class that are still above the
790eda14cbcSMatt Macy 	 * zfs_mg_noalloc_threshold. This is used by the allocating
791eda14cbcSMatt Macy 	 * threads to determine if they should avoid allocations to
792eda14cbcSMatt Macy 	 * a given group. The allocator will avoid allocations to a group
793eda14cbcSMatt Macy 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
794eda14cbcSMatt Macy 	 * and there are still other groups that are above the threshold.
795eda14cbcSMatt Macy 	 * When a group transitions from allocatable to non-allocatable or
796eda14cbcSMatt Macy 	 * vice versa we update the metaslab class to reflect that change.
797eda14cbcSMatt Macy 	 * When the mc_alloc_groups value drops to 0 that means that all
798eda14cbcSMatt Macy 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
799eda14cbcSMatt Macy 	 * eligible for allocations. This effectively means that all devices
800eda14cbcSMatt Macy 	 * are balanced again.
801eda14cbcSMatt Macy 	 */
802eda14cbcSMatt Macy 	if (was_allocatable && !mg->mg_allocatable)
803eda14cbcSMatt Macy 		mc->mc_alloc_groups--;
804eda14cbcSMatt Macy 	else if (!was_allocatable && mg->mg_allocatable)
805eda14cbcSMatt Macy 		mc->mc_alloc_groups++;
806eda14cbcSMatt Macy 	mutex_exit(&mc->mc_lock);
807eda14cbcSMatt Macy 
808eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
809eda14cbcSMatt Macy }
810eda14cbcSMatt Macy 
811eda14cbcSMatt Macy int
812eda14cbcSMatt Macy metaslab_sort_by_flushed(const void *va, const void *vb)
813eda14cbcSMatt Macy {
814eda14cbcSMatt Macy 	const metaslab_t *a = va;
815eda14cbcSMatt Macy 	const metaslab_t *b = vb;
816eda14cbcSMatt Macy 
817eda14cbcSMatt Macy 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818eda14cbcSMatt Macy 	if (likely(cmp))
819eda14cbcSMatt Macy 		return (cmp);
820eda14cbcSMatt Macy 
821eda14cbcSMatt Macy 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822eda14cbcSMatt Macy 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823eda14cbcSMatt Macy 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824eda14cbcSMatt Macy 	if (cmp)
825eda14cbcSMatt Macy 		return (cmp);
826eda14cbcSMatt Macy 
827eda14cbcSMatt Macy 	return (TREE_CMP(a->ms_id, b->ms_id));
828eda14cbcSMatt Macy }
829eda14cbcSMatt Macy 
830eda14cbcSMatt Macy metaslab_group_t *
831eda14cbcSMatt Macy metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
832eda14cbcSMatt Macy {
833eda14cbcSMatt Macy 	metaslab_group_t *mg;
834eda14cbcSMatt Macy 
8357877fdebSMatt Macy 	mg = kmem_zalloc(offsetof(metaslab_group_t,
8367877fdebSMatt Macy 	    mg_allocator[allocators]), KM_SLEEP);
837eda14cbcSMatt Macy 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838eda14cbcSMatt Macy 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839eda14cbcSMatt Macy 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840eda14cbcSMatt Macy 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841eda14cbcSMatt Macy 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842eda14cbcSMatt Macy 	mg->mg_vd = vd;
843eda14cbcSMatt Macy 	mg->mg_class = mc;
844eda14cbcSMatt Macy 	mg->mg_activation_count = 0;
845eda14cbcSMatt Macy 	mg->mg_initialized = B_FALSE;
846eda14cbcSMatt Macy 	mg->mg_no_free_space = B_TRUE;
847eda14cbcSMatt Macy 	mg->mg_allocators = allocators;
848eda14cbcSMatt Macy 
849eda14cbcSMatt Macy 	for (int i = 0; i < allocators; i++) {
850eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851eda14cbcSMatt Macy 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
852eda14cbcSMatt Macy 	}
853eda14cbcSMatt Macy 
854eda14cbcSMatt Macy 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
855eda14cbcSMatt Macy 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
856eda14cbcSMatt Macy 
857eda14cbcSMatt Macy 	return (mg);
858eda14cbcSMatt Macy }
859eda14cbcSMatt Macy 
860eda14cbcSMatt Macy void
861eda14cbcSMatt Macy metaslab_group_destroy(metaslab_group_t *mg)
862eda14cbcSMatt Macy {
863eda14cbcSMatt Macy 	ASSERT(mg->mg_prev == NULL);
864eda14cbcSMatt Macy 	ASSERT(mg->mg_next == NULL);
865eda14cbcSMatt Macy 	/*
866eda14cbcSMatt Macy 	 * We may have gone below zero with the activation count
867eda14cbcSMatt Macy 	 * either because we never activated in the first place or
868eda14cbcSMatt Macy 	 * because we're done, and possibly removing the vdev.
869eda14cbcSMatt Macy 	 */
870eda14cbcSMatt Macy 	ASSERT(mg->mg_activation_count <= 0);
871eda14cbcSMatt Macy 
872eda14cbcSMatt Macy 	taskq_destroy(mg->mg_taskq);
873eda14cbcSMatt Macy 	avl_destroy(&mg->mg_metaslab_tree);
874eda14cbcSMatt Macy 	mutex_destroy(&mg->mg_lock);
875eda14cbcSMatt Macy 	mutex_destroy(&mg->mg_ms_disabled_lock);
876eda14cbcSMatt Macy 	cv_destroy(&mg->mg_ms_disabled_cv);
877eda14cbcSMatt Macy 
878eda14cbcSMatt Macy 	for (int i = 0; i < mg->mg_allocators; i++) {
879eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
880eda14cbcSMatt Macy 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
881eda14cbcSMatt Macy 	}
8827877fdebSMatt Macy 	kmem_free(mg, offsetof(metaslab_group_t,
8837877fdebSMatt Macy 	    mg_allocator[mg->mg_allocators]));
884eda14cbcSMatt Macy }
885eda14cbcSMatt Macy 
886eda14cbcSMatt Macy void
887eda14cbcSMatt Macy metaslab_group_activate(metaslab_group_t *mg)
888eda14cbcSMatt Macy {
889eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
8907877fdebSMatt Macy 	spa_t *spa = mc->mc_spa;
891eda14cbcSMatt Macy 	metaslab_group_t *mgprev, *mgnext;
892eda14cbcSMatt Macy 
8937877fdebSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
894eda14cbcSMatt Macy 
895eda14cbcSMatt Macy 	ASSERT(mg->mg_prev == NULL);
896eda14cbcSMatt Macy 	ASSERT(mg->mg_next == NULL);
897eda14cbcSMatt Macy 	ASSERT(mg->mg_activation_count <= 0);
898eda14cbcSMatt Macy 
899eda14cbcSMatt Macy 	if (++mg->mg_activation_count <= 0)
900eda14cbcSMatt Macy 		return;
901eda14cbcSMatt Macy 
902716fd348SMartin Matuska 	mg->mg_aliquot = metaslab_aliquot * MAX(1,
903716fd348SMartin Matuska 	    vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
904eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
905eda14cbcSMatt Macy 
9067877fdebSMatt Macy 	if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
907eda14cbcSMatt Macy 		mg->mg_prev = mg;
908eda14cbcSMatt Macy 		mg->mg_next = mg;
909eda14cbcSMatt Macy 	} else {
910eda14cbcSMatt Macy 		mgnext = mgprev->mg_next;
911eda14cbcSMatt Macy 		mg->mg_prev = mgprev;
912eda14cbcSMatt Macy 		mg->mg_next = mgnext;
913eda14cbcSMatt Macy 		mgprev->mg_next = mg;
914eda14cbcSMatt Macy 		mgnext->mg_prev = mg;
915eda14cbcSMatt Macy 	}
9167877fdebSMatt Macy 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9177877fdebSMatt Macy 		mc->mc_allocator[i].mca_rotor = mg;
9187877fdebSMatt Macy 		mg = mg->mg_next;
9197877fdebSMatt Macy 	}
920eda14cbcSMatt Macy }
921eda14cbcSMatt Macy 
922eda14cbcSMatt Macy /*
923eda14cbcSMatt Macy  * Passivate a metaslab group and remove it from the allocation rotor.
924eda14cbcSMatt Macy  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
925eda14cbcSMatt Macy  * a metaslab group. This function will momentarily drop spa_config_locks
926eda14cbcSMatt Macy  * that are lower than the SCL_ALLOC lock (see comment below).
927eda14cbcSMatt Macy  */
928eda14cbcSMatt Macy void
929eda14cbcSMatt Macy metaslab_group_passivate(metaslab_group_t *mg)
930eda14cbcSMatt Macy {
931eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
932eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
933eda14cbcSMatt Macy 	metaslab_group_t *mgprev, *mgnext;
934eda14cbcSMatt Macy 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
935eda14cbcSMatt Macy 
936eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
937eda14cbcSMatt Macy 	    (SCL_ALLOC | SCL_ZIO));
938eda14cbcSMatt Macy 
939eda14cbcSMatt Macy 	if (--mg->mg_activation_count != 0) {
9407877fdebSMatt Macy 		for (int i = 0; i < spa->spa_alloc_count; i++)
9417877fdebSMatt Macy 			ASSERT(mc->mc_allocator[i].mca_rotor != mg);
942eda14cbcSMatt Macy 		ASSERT(mg->mg_prev == NULL);
943eda14cbcSMatt Macy 		ASSERT(mg->mg_next == NULL);
944eda14cbcSMatt Macy 		ASSERT(mg->mg_activation_count < 0);
945eda14cbcSMatt Macy 		return;
946eda14cbcSMatt Macy 	}
947eda14cbcSMatt Macy 
948eda14cbcSMatt Macy 	/*
949eda14cbcSMatt Macy 	 * The spa_config_lock is an array of rwlocks, ordered as
950eda14cbcSMatt Macy 	 * follows (from highest to lowest):
951eda14cbcSMatt Macy 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
952eda14cbcSMatt Macy 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
953eda14cbcSMatt Macy 	 * (For more information about the spa_config_lock see spa_misc.c)
954eda14cbcSMatt Macy 	 * The higher the lock, the broader its coverage. When we passivate
955eda14cbcSMatt Macy 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
956eda14cbcSMatt Macy 	 * config locks. However, the metaslab group's taskq might be trying
957eda14cbcSMatt Macy 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
958eda14cbcSMatt Macy 	 * lower locks to allow the I/O to complete. At a minimum,
959eda14cbcSMatt Macy 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
960eda14cbcSMatt Macy 	 * allocations from taking place and any changes to the vdev tree.
961eda14cbcSMatt Macy 	 */
962eda14cbcSMatt Macy 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
963eda14cbcSMatt Macy 	taskq_wait_outstanding(mg->mg_taskq, 0);
964eda14cbcSMatt Macy 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
965eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
966eda14cbcSMatt Macy 	for (int i = 0; i < mg->mg_allocators; i++) {
967eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
968eda14cbcSMatt Macy 		metaslab_t *msp = mga->mga_primary;
969eda14cbcSMatt Macy 		if (msp != NULL) {
970eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
971eda14cbcSMatt Macy 			metaslab_passivate(msp,
972eda14cbcSMatt Macy 			    metaslab_weight_from_range_tree(msp));
973eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
974eda14cbcSMatt Macy 		}
975eda14cbcSMatt Macy 		msp = mga->mga_secondary;
976eda14cbcSMatt Macy 		if (msp != NULL) {
977eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
978eda14cbcSMatt Macy 			metaslab_passivate(msp,
979eda14cbcSMatt Macy 			    metaslab_weight_from_range_tree(msp));
980eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
981eda14cbcSMatt Macy 		}
982eda14cbcSMatt Macy 	}
983eda14cbcSMatt Macy 
984eda14cbcSMatt Macy 	mgprev = mg->mg_prev;
985eda14cbcSMatt Macy 	mgnext = mg->mg_next;
986eda14cbcSMatt Macy 
987eda14cbcSMatt Macy 	if (mg == mgnext) {
9887877fdebSMatt Macy 		mgnext = NULL;
989eda14cbcSMatt Macy 	} else {
990eda14cbcSMatt Macy 		mgprev->mg_next = mgnext;
991eda14cbcSMatt Macy 		mgnext->mg_prev = mgprev;
992eda14cbcSMatt Macy 	}
9937877fdebSMatt Macy 	for (int i = 0; i < spa->spa_alloc_count; i++) {
9947877fdebSMatt Macy 		if (mc->mc_allocator[i].mca_rotor == mg)
9957877fdebSMatt Macy 			mc->mc_allocator[i].mca_rotor = mgnext;
9967877fdebSMatt Macy 	}
997eda14cbcSMatt Macy 
998eda14cbcSMatt Macy 	mg->mg_prev = NULL;
999eda14cbcSMatt Macy 	mg->mg_next = NULL;
1000eda14cbcSMatt Macy }
1001eda14cbcSMatt Macy 
1002eda14cbcSMatt Macy boolean_t
1003eda14cbcSMatt Macy metaslab_group_initialized(metaslab_group_t *mg)
1004eda14cbcSMatt Macy {
1005eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
1006eda14cbcSMatt Macy 	vdev_stat_t *vs = &vd->vdev_stat;
1007eda14cbcSMatt Macy 
1008eda14cbcSMatt Macy 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1009eda14cbcSMatt Macy }
1010eda14cbcSMatt Macy 
1011eda14cbcSMatt Macy uint64_t
1012eda14cbcSMatt Macy metaslab_group_get_space(metaslab_group_t *mg)
1013eda14cbcSMatt Macy {
1014184c1b94SMartin Matuska 	/*
1015184c1b94SMartin Matuska 	 * Note that the number of nodes in mg_metaslab_tree may be one less
1016184c1b94SMartin Matuska 	 * than vdev_ms_count, due to the embedded log metaslab.
1017184c1b94SMartin Matuska 	 */
1018184c1b94SMartin Matuska 	mutex_enter(&mg->mg_lock);
1019184c1b94SMartin Matuska 	uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1020184c1b94SMartin Matuska 	mutex_exit(&mg->mg_lock);
1021184c1b94SMartin Matuska 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1022eda14cbcSMatt Macy }
1023eda14cbcSMatt Macy 
1024eda14cbcSMatt Macy void
1025eda14cbcSMatt Macy metaslab_group_histogram_verify(metaslab_group_t *mg)
1026eda14cbcSMatt Macy {
1027eda14cbcSMatt Macy 	uint64_t *mg_hist;
1028184c1b94SMartin Matuska 	avl_tree_t *t = &mg->mg_metaslab_tree;
1029184c1b94SMartin Matuska 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1030eda14cbcSMatt Macy 
1031eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1032eda14cbcSMatt Macy 		return;
1033eda14cbcSMatt Macy 
1034eda14cbcSMatt Macy 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1035eda14cbcSMatt Macy 	    KM_SLEEP);
1036eda14cbcSMatt Macy 
1037eda14cbcSMatt Macy 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1038eda14cbcSMatt Macy 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1039eda14cbcSMatt Macy 
1040184c1b94SMartin Matuska 	mutex_enter(&mg->mg_lock);
1041184c1b94SMartin Matuska 	for (metaslab_t *msp = avl_first(t);
1042184c1b94SMartin Matuska 	    msp != NULL; msp = AVL_NEXT(t, msp)) {
1043184c1b94SMartin Matuska 		VERIFY3P(msp->ms_group, ==, mg);
1044184c1b94SMartin Matuska 		/* skip if not active */
1045184c1b94SMartin Matuska 		if (msp->ms_sm == NULL)
1046eda14cbcSMatt Macy 			continue;
1047eda14cbcSMatt Macy 
1048184c1b94SMartin Matuska 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1049eda14cbcSMatt Macy 			mg_hist[i + ashift] +=
1050eda14cbcSMatt Macy 			    msp->ms_sm->sm_phys->smp_histogram[i];
1051eda14cbcSMatt Macy 		}
1052184c1b94SMartin Matuska 	}
1053eda14cbcSMatt Macy 
1054184c1b94SMartin Matuska 	for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1055eda14cbcSMatt Macy 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1056eda14cbcSMatt Macy 
1057184c1b94SMartin Matuska 	mutex_exit(&mg->mg_lock);
1058184c1b94SMartin Matuska 
1059eda14cbcSMatt Macy 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1060eda14cbcSMatt Macy }
1061eda14cbcSMatt Macy 
1062eda14cbcSMatt Macy static void
1063eda14cbcSMatt Macy metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1064eda14cbcSMatt Macy {
1065eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1066eda14cbcSMatt Macy 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1067eda14cbcSMatt Macy 
1068eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1069eda14cbcSMatt Macy 	if (msp->ms_sm == NULL)
1070eda14cbcSMatt Macy 		return;
1071eda14cbcSMatt Macy 
1072eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1073184c1b94SMartin Matuska 	mutex_enter(&mc->mc_lock);
1074eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1075184c1b94SMartin Matuska 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1076184c1b94SMartin Matuska 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1077eda14cbcSMatt Macy 		mg->mg_histogram[i + ashift] +=
1078eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1079eda14cbcSMatt Macy 		mc->mc_histogram[i + ashift] +=
1080eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1081eda14cbcSMatt Macy 	}
1082184c1b94SMartin Matuska 	mutex_exit(&mc->mc_lock);
1083eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1084eda14cbcSMatt Macy }
1085eda14cbcSMatt Macy 
1086eda14cbcSMatt Macy void
1087eda14cbcSMatt Macy metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1088eda14cbcSMatt Macy {
1089eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1090eda14cbcSMatt Macy 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1091eda14cbcSMatt Macy 
1092eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1093eda14cbcSMatt Macy 	if (msp->ms_sm == NULL)
1094eda14cbcSMatt Macy 		return;
1095eda14cbcSMatt Macy 
1096eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1097184c1b94SMartin Matuska 	mutex_enter(&mc->mc_lock);
1098eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1099eda14cbcSMatt Macy 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1100eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1101eda14cbcSMatt Macy 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1102eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1103184c1b94SMartin Matuska 		IMPLY(mg == mg->mg_vd->vdev_log_mg,
1104184c1b94SMartin Matuska 		    mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1105eda14cbcSMatt Macy 
1106eda14cbcSMatt Macy 		mg->mg_histogram[i + ashift] -=
1107eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1108eda14cbcSMatt Macy 		mc->mc_histogram[i + ashift] -=
1109eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1110eda14cbcSMatt Macy 	}
1111184c1b94SMartin Matuska 	mutex_exit(&mc->mc_lock);
1112eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1113eda14cbcSMatt Macy }
1114eda14cbcSMatt Macy 
1115eda14cbcSMatt Macy static void
1116eda14cbcSMatt Macy metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1117eda14cbcSMatt Macy {
1118eda14cbcSMatt Macy 	ASSERT(msp->ms_group == NULL);
1119eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1120eda14cbcSMatt Macy 	msp->ms_group = mg;
1121eda14cbcSMatt Macy 	msp->ms_weight = 0;
1122eda14cbcSMatt Macy 	avl_add(&mg->mg_metaslab_tree, msp);
1123eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1124eda14cbcSMatt Macy 
1125eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
1126eda14cbcSMatt Macy 	metaslab_group_histogram_add(mg, msp);
1127eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
1128eda14cbcSMatt Macy }
1129eda14cbcSMatt Macy 
1130eda14cbcSMatt Macy static void
1131eda14cbcSMatt Macy metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1132eda14cbcSMatt Macy {
1133eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
1134eda14cbcSMatt Macy 	metaslab_group_histogram_remove(mg, msp);
1135eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
1136eda14cbcSMatt Macy 
1137eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1138eda14cbcSMatt Macy 	ASSERT(msp->ms_group == mg);
1139eda14cbcSMatt Macy 	avl_remove(&mg->mg_metaslab_tree, msp);
1140eda14cbcSMatt Macy 
1141eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
1142eda14cbcSMatt Macy 	multilist_sublist_t *mls =
11433ff01b23SMartin Matuska 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1144eda14cbcSMatt Macy 	if (multilist_link_active(&msp->ms_class_txg_node))
1145eda14cbcSMatt Macy 		multilist_sublist_remove(mls, msp);
1146eda14cbcSMatt Macy 	multilist_sublist_unlock(mls);
1147eda14cbcSMatt Macy 
1148eda14cbcSMatt Macy 	msp->ms_group = NULL;
1149eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1150eda14cbcSMatt Macy }
1151eda14cbcSMatt Macy 
1152eda14cbcSMatt Macy static void
1153eda14cbcSMatt Macy metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1154eda14cbcSMatt Macy {
1155eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1156eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1157eda14cbcSMatt Macy 	ASSERT(msp->ms_group == mg);
1158eda14cbcSMatt Macy 
1159eda14cbcSMatt Macy 	avl_remove(&mg->mg_metaslab_tree, msp);
1160eda14cbcSMatt Macy 	msp->ms_weight = weight;
1161eda14cbcSMatt Macy 	avl_add(&mg->mg_metaslab_tree, msp);
1162eda14cbcSMatt Macy 
1163eda14cbcSMatt Macy }
1164eda14cbcSMatt Macy 
1165eda14cbcSMatt Macy static void
1166eda14cbcSMatt Macy metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1167eda14cbcSMatt Macy {
1168eda14cbcSMatt Macy 	/*
1169eda14cbcSMatt Macy 	 * Although in principle the weight can be any value, in
1170eda14cbcSMatt Macy 	 * practice we do not use values in the range [1, 511].
1171eda14cbcSMatt Macy 	 */
1172eda14cbcSMatt Macy 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1173eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1174eda14cbcSMatt Macy 
1175eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1176eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp, weight);
1177eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1178eda14cbcSMatt Macy }
1179eda14cbcSMatt Macy 
1180eda14cbcSMatt Macy /*
1181eda14cbcSMatt Macy  * Calculate the fragmentation for a given metaslab group. We can use
1182eda14cbcSMatt Macy  * a simple average here since all metaslabs within the group must have
1183eda14cbcSMatt Macy  * the same size. The return value will be a value between 0 and 100
1184eda14cbcSMatt Macy  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1185eda14cbcSMatt Macy  * group have a fragmentation metric.
1186eda14cbcSMatt Macy  */
1187eda14cbcSMatt Macy uint64_t
1188eda14cbcSMatt Macy metaslab_group_fragmentation(metaslab_group_t *mg)
1189eda14cbcSMatt Macy {
1190eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
1191eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
1192eda14cbcSMatt Macy 	uint64_t valid_ms = 0;
1193eda14cbcSMatt Macy 
1194eda14cbcSMatt Macy 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1195eda14cbcSMatt Macy 		metaslab_t *msp = vd->vdev_ms[m];
1196eda14cbcSMatt Macy 
1197eda14cbcSMatt Macy 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1198eda14cbcSMatt Macy 			continue;
1199eda14cbcSMatt Macy 		if (msp->ms_group != mg)
1200eda14cbcSMatt Macy 			continue;
1201eda14cbcSMatt Macy 
1202eda14cbcSMatt Macy 		valid_ms++;
1203eda14cbcSMatt Macy 		fragmentation += msp->ms_fragmentation;
1204eda14cbcSMatt Macy 	}
1205eda14cbcSMatt Macy 
1206eda14cbcSMatt Macy 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1207eda14cbcSMatt Macy 		return (ZFS_FRAG_INVALID);
1208eda14cbcSMatt Macy 
1209eda14cbcSMatt Macy 	fragmentation /= valid_ms;
1210eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
1211eda14cbcSMatt Macy 	return (fragmentation);
1212eda14cbcSMatt Macy }
1213eda14cbcSMatt Macy 
1214eda14cbcSMatt Macy /*
1215eda14cbcSMatt Macy  * Determine if a given metaslab group should skip allocations. A metaslab
1216eda14cbcSMatt Macy  * group should avoid allocations if its free capacity is less than the
1217eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1218eda14cbcSMatt Macy  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1219eda14cbcSMatt Macy  * that can still handle allocations. If the allocation throttle is enabled
1220eda14cbcSMatt Macy  * then we skip allocations to devices that have reached their maximum
1221eda14cbcSMatt Macy  * allocation queue depth unless the selected metaslab group is the only
1222eda14cbcSMatt Macy  * eligible group remaining.
1223eda14cbcSMatt Macy  */
1224eda14cbcSMatt Macy static boolean_t
1225eda14cbcSMatt Macy metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1226eda14cbcSMatt Macy     uint64_t psize, int allocator, int d)
1227eda14cbcSMatt Macy {
1228eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
1229eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1230eda14cbcSMatt Macy 
1231eda14cbcSMatt Macy 	/*
1232eda14cbcSMatt Macy 	 * We can only consider skipping this metaslab group if it's
1233eda14cbcSMatt Macy 	 * in the normal metaslab class and there are other metaslab
1234eda14cbcSMatt Macy 	 * groups to select from. Otherwise, we always consider it eligible
1235eda14cbcSMatt Macy 	 * for allocations.
1236eda14cbcSMatt Macy 	 */
1237eda14cbcSMatt Macy 	if ((mc != spa_normal_class(spa) &&
1238eda14cbcSMatt Macy 	    mc != spa_special_class(spa) &&
1239eda14cbcSMatt Macy 	    mc != spa_dedup_class(spa)) ||
1240eda14cbcSMatt Macy 	    mc->mc_groups <= 1)
1241eda14cbcSMatt Macy 		return (B_TRUE);
1242eda14cbcSMatt Macy 
1243eda14cbcSMatt Macy 	/*
1244eda14cbcSMatt Macy 	 * If the metaslab group's mg_allocatable flag is set (see comments
1245eda14cbcSMatt Macy 	 * in metaslab_group_alloc_update() for more information) and
1246eda14cbcSMatt Macy 	 * the allocation throttle is disabled then allow allocations to this
1247eda14cbcSMatt Macy 	 * device. However, if the allocation throttle is enabled then
12487877fdebSMatt Macy 	 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1249eda14cbcSMatt Macy 	 * to determine if we should allow allocations to this metaslab group.
1250eda14cbcSMatt Macy 	 * If all metaslab groups are no longer considered allocatable
1251eda14cbcSMatt Macy 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1252eda14cbcSMatt Macy 	 * gang block size then we allow allocations on this metaslab group
1253eda14cbcSMatt Macy 	 * regardless of the mg_allocatable or throttle settings.
1254eda14cbcSMatt Macy 	 */
1255eda14cbcSMatt Macy 	if (mg->mg_allocatable) {
1256eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1257eda14cbcSMatt Macy 		int64_t qdepth;
1258eda14cbcSMatt Macy 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1259eda14cbcSMatt Macy 
1260eda14cbcSMatt Macy 		if (!mc->mc_alloc_throttle_enabled)
1261eda14cbcSMatt Macy 			return (B_TRUE);
1262eda14cbcSMatt Macy 
1263eda14cbcSMatt Macy 		/*
1264eda14cbcSMatt Macy 		 * If this metaslab group does not have any free space, then
1265eda14cbcSMatt Macy 		 * there is no point in looking further.
1266eda14cbcSMatt Macy 		 */
1267eda14cbcSMatt Macy 		if (mg->mg_no_free_space)
1268eda14cbcSMatt Macy 			return (B_FALSE);
1269eda14cbcSMatt Macy 
1270eda14cbcSMatt Macy 		/*
1271eda14cbcSMatt Macy 		 * Relax allocation throttling for ditto blocks.  Due to
1272eda14cbcSMatt Macy 		 * random imbalances in allocation it tends to push copies
1273eda14cbcSMatt Macy 		 * to one vdev, that looks a bit better at the moment.
1274eda14cbcSMatt Macy 		 */
1275eda14cbcSMatt Macy 		qmax = qmax * (4 + d) / 4;
1276eda14cbcSMatt Macy 
1277eda14cbcSMatt Macy 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1278eda14cbcSMatt Macy 
1279eda14cbcSMatt Macy 		/*
1280eda14cbcSMatt Macy 		 * If this metaslab group is below its qmax or it's
1281eda14cbcSMatt Macy 		 * the only allocatable metasable group, then attempt
1282eda14cbcSMatt Macy 		 * to allocate from it.
1283eda14cbcSMatt Macy 		 */
1284eda14cbcSMatt Macy 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1285eda14cbcSMatt Macy 			return (B_TRUE);
1286eda14cbcSMatt Macy 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1287eda14cbcSMatt Macy 
1288eda14cbcSMatt Macy 		/*
1289eda14cbcSMatt Macy 		 * Since this metaslab group is at or over its qmax, we
1290eda14cbcSMatt Macy 		 * need to determine if there are metaslab groups after this
1291eda14cbcSMatt Macy 		 * one that might be able to handle this allocation. This is
1292eda14cbcSMatt Macy 		 * racy since we can't hold the locks for all metaslab
1293eda14cbcSMatt Macy 		 * groups at the same time when we make this check.
1294eda14cbcSMatt Macy 		 */
1295eda14cbcSMatt Macy 		for (metaslab_group_t *mgp = mg->mg_next;
1296eda14cbcSMatt Macy 		    mgp != rotor; mgp = mgp->mg_next) {
1297eda14cbcSMatt Macy 			metaslab_group_allocator_t *mgap =
1298eda14cbcSMatt Macy 			    &mgp->mg_allocator[allocator];
1299eda14cbcSMatt Macy 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1300eda14cbcSMatt Macy 			qmax = qmax * (4 + d) / 4;
1301eda14cbcSMatt Macy 			qdepth =
1302eda14cbcSMatt Macy 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1303eda14cbcSMatt Macy 
1304eda14cbcSMatt Macy 			/*
1305eda14cbcSMatt Macy 			 * If there is another metaslab group that
1306eda14cbcSMatt Macy 			 * might be able to handle the allocation, then
1307eda14cbcSMatt Macy 			 * we return false so that we skip this group.
1308eda14cbcSMatt Macy 			 */
1309eda14cbcSMatt Macy 			if (qdepth < qmax && !mgp->mg_no_free_space)
1310eda14cbcSMatt Macy 				return (B_FALSE);
1311eda14cbcSMatt Macy 		}
1312eda14cbcSMatt Macy 
1313eda14cbcSMatt Macy 		/*
1314eda14cbcSMatt Macy 		 * We didn't find another group to handle the allocation
1315eda14cbcSMatt Macy 		 * so we can't skip this metaslab group even though
1316eda14cbcSMatt Macy 		 * we are at or over our qmax.
1317eda14cbcSMatt Macy 		 */
1318eda14cbcSMatt Macy 		return (B_TRUE);
1319eda14cbcSMatt Macy 
1320eda14cbcSMatt Macy 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1321eda14cbcSMatt Macy 		return (B_TRUE);
1322eda14cbcSMatt Macy 	}
1323eda14cbcSMatt Macy 	return (B_FALSE);
1324eda14cbcSMatt Macy }
1325eda14cbcSMatt Macy 
1326eda14cbcSMatt Macy /*
1327eda14cbcSMatt Macy  * ==========================================================================
1328eda14cbcSMatt Macy  * Range tree callbacks
1329eda14cbcSMatt Macy  * ==========================================================================
1330eda14cbcSMatt Macy  */
1331eda14cbcSMatt Macy 
1332eda14cbcSMatt Macy /*
1333eda14cbcSMatt Macy  * Comparison function for the private size-ordered tree using 32-bit
1334eda14cbcSMatt Macy  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1335eda14cbcSMatt Macy  */
1336eda14cbcSMatt Macy static int
1337eda14cbcSMatt Macy metaslab_rangesize32_compare(const void *x1, const void *x2)
1338eda14cbcSMatt Macy {
1339eda14cbcSMatt Macy 	const range_seg32_t *r1 = x1;
1340eda14cbcSMatt Macy 	const range_seg32_t *r2 = x2;
1341eda14cbcSMatt Macy 
1342eda14cbcSMatt Macy 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1343eda14cbcSMatt Macy 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1344eda14cbcSMatt Macy 
1345eda14cbcSMatt Macy 	int cmp = TREE_CMP(rs_size1, rs_size2);
1346eda14cbcSMatt Macy 	if (likely(cmp))
1347eda14cbcSMatt Macy 		return (cmp);
1348eda14cbcSMatt Macy 
1349eda14cbcSMatt Macy 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1350eda14cbcSMatt Macy }
1351eda14cbcSMatt Macy 
1352eda14cbcSMatt Macy /*
1353eda14cbcSMatt Macy  * Comparison function for the private size-ordered tree using 64-bit
1354eda14cbcSMatt Macy  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1355eda14cbcSMatt Macy  */
1356eda14cbcSMatt Macy static int
1357eda14cbcSMatt Macy metaslab_rangesize64_compare(const void *x1, const void *x2)
1358eda14cbcSMatt Macy {
1359eda14cbcSMatt Macy 	const range_seg64_t *r1 = x1;
1360eda14cbcSMatt Macy 	const range_seg64_t *r2 = x2;
1361eda14cbcSMatt Macy 
1362eda14cbcSMatt Macy 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1363eda14cbcSMatt Macy 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1364eda14cbcSMatt Macy 
1365eda14cbcSMatt Macy 	int cmp = TREE_CMP(rs_size1, rs_size2);
1366eda14cbcSMatt Macy 	if (likely(cmp))
1367eda14cbcSMatt Macy 		return (cmp);
1368eda14cbcSMatt Macy 
1369eda14cbcSMatt Macy 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1370eda14cbcSMatt Macy }
1371eda14cbcSMatt Macy typedef struct metaslab_rt_arg {
1372eda14cbcSMatt Macy 	zfs_btree_t *mra_bt;
1373eda14cbcSMatt Macy 	uint32_t mra_floor_shift;
1374eda14cbcSMatt Macy } metaslab_rt_arg_t;
1375eda14cbcSMatt Macy 
1376eda14cbcSMatt Macy struct mssa_arg {
1377eda14cbcSMatt Macy 	range_tree_t *rt;
1378eda14cbcSMatt Macy 	metaslab_rt_arg_t *mra;
1379eda14cbcSMatt Macy };
1380eda14cbcSMatt Macy 
1381eda14cbcSMatt Macy static void
1382eda14cbcSMatt Macy metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1383eda14cbcSMatt Macy {
1384eda14cbcSMatt Macy 	struct mssa_arg *mssap = arg;
1385eda14cbcSMatt Macy 	range_tree_t *rt = mssap->rt;
1386eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = mssap->mra;
1387eda14cbcSMatt Macy 	range_seg_max_t seg = {0};
1388eda14cbcSMatt Macy 	rs_set_start(&seg, rt, start);
1389eda14cbcSMatt Macy 	rs_set_end(&seg, rt, start + size);
1390eda14cbcSMatt Macy 	metaslab_rt_add(rt, &seg, mrap);
1391eda14cbcSMatt Macy }
1392eda14cbcSMatt Macy 
1393eda14cbcSMatt Macy static void
1394eda14cbcSMatt Macy metaslab_size_tree_full_load(range_tree_t *rt)
1395eda14cbcSMatt Macy {
1396eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1397eda14cbcSMatt Macy 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1398eda14cbcSMatt Macy 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1399eda14cbcSMatt Macy 	mrap->mra_floor_shift = 0;
1400eda14cbcSMatt Macy 	struct mssa_arg arg = {0};
1401eda14cbcSMatt Macy 	arg.rt = rt;
1402eda14cbcSMatt Macy 	arg.mra = mrap;
1403eda14cbcSMatt Macy 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1404eda14cbcSMatt Macy }
1405eda14cbcSMatt Macy 
1406eda14cbcSMatt Macy /*
1407eda14cbcSMatt Macy  * Create any block allocator specific components. The current allocators
1408eda14cbcSMatt Macy  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1409eda14cbcSMatt Macy  */
1410eda14cbcSMatt Macy static void
1411eda14cbcSMatt Macy metaslab_rt_create(range_tree_t *rt, void *arg)
1412eda14cbcSMatt Macy {
1413eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1414eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1415eda14cbcSMatt Macy 
1416eda14cbcSMatt Macy 	size_t size;
1417eda14cbcSMatt Macy 	int (*compare) (const void *, const void *);
1418eda14cbcSMatt Macy 	switch (rt->rt_type) {
1419eda14cbcSMatt Macy 	case RANGE_SEG32:
1420eda14cbcSMatt Macy 		size = sizeof (range_seg32_t);
1421eda14cbcSMatt Macy 		compare = metaslab_rangesize32_compare;
1422eda14cbcSMatt Macy 		break;
1423eda14cbcSMatt Macy 	case RANGE_SEG64:
1424eda14cbcSMatt Macy 		size = sizeof (range_seg64_t);
1425eda14cbcSMatt Macy 		compare = metaslab_rangesize64_compare;
1426eda14cbcSMatt Macy 		break;
1427eda14cbcSMatt Macy 	default:
1428eda14cbcSMatt Macy 		panic("Invalid range seg type %d", rt->rt_type);
1429eda14cbcSMatt Macy 	}
1430eda14cbcSMatt Macy 	zfs_btree_create(size_tree, compare, size);
1431eda14cbcSMatt Macy 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1432eda14cbcSMatt Macy }
1433eda14cbcSMatt Macy 
1434eda14cbcSMatt Macy static void
1435eda14cbcSMatt Macy metaslab_rt_destroy(range_tree_t *rt, void *arg)
1436eda14cbcSMatt Macy {
1437e92ffd9bSMartin Matuska 	(void) rt;
1438eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1439eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1440eda14cbcSMatt Macy 
1441eda14cbcSMatt Macy 	zfs_btree_destroy(size_tree);
1442eda14cbcSMatt Macy 	kmem_free(mrap, sizeof (*mrap));
1443eda14cbcSMatt Macy }
1444eda14cbcSMatt Macy 
1445eda14cbcSMatt Macy static void
1446eda14cbcSMatt Macy metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1447eda14cbcSMatt Macy {
1448eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1449eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1450eda14cbcSMatt Macy 
1451eda14cbcSMatt Macy 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1452*be181ee2SMartin Matuska 	    (1ULL << mrap->mra_floor_shift))
1453eda14cbcSMatt Macy 		return;
1454eda14cbcSMatt Macy 
1455eda14cbcSMatt Macy 	zfs_btree_add(size_tree, rs);
1456eda14cbcSMatt Macy }
1457eda14cbcSMatt Macy 
1458eda14cbcSMatt Macy static void
1459eda14cbcSMatt Macy metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1460eda14cbcSMatt Macy {
1461eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1462eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1463eda14cbcSMatt Macy 
1464*be181ee2SMartin Matuska 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1465eda14cbcSMatt Macy 	    mrap->mra_floor_shift))
1466eda14cbcSMatt Macy 		return;
1467eda14cbcSMatt Macy 
1468eda14cbcSMatt Macy 	zfs_btree_remove(size_tree, rs);
1469eda14cbcSMatt Macy }
1470eda14cbcSMatt Macy 
1471eda14cbcSMatt Macy static void
1472eda14cbcSMatt Macy metaslab_rt_vacate(range_tree_t *rt, void *arg)
1473eda14cbcSMatt Macy {
1474eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1475eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1476eda14cbcSMatt Macy 	zfs_btree_clear(size_tree);
1477eda14cbcSMatt Macy 	zfs_btree_destroy(size_tree);
1478eda14cbcSMatt Macy 
1479eda14cbcSMatt Macy 	metaslab_rt_create(rt, arg);
1480eda14cbcSMatt Macy }
1481eda14cbcSMatt Macy 
1482e92ffd9bSMartin Matuska static const range_tree_ops_t metaslab_rt_ops = {
1483eda14cbcSMatt Macy 	.rtop_create = metaslab_rt_create,
1484eda14cbcSMatt Macy 	.rtop_destroy = metaslab_rt_destroy,
1485eda14cbcSMatt Macy 	.rtop_add = metaslab_rt_add,
1486eda14cbcSMatt Macy 	.rtop_remove = metaslab_rt_remove,
1487eda14cbcSMatt Macy 	.rtop_vacate = metaslab_rt_vacate
1488eda14cbcSMatt Macy };
1489eda14cbcSMatt Macy 
1490eda14cbcSMatt Macy /*
1491eda14cbcSMatt Macy  * ==========================================================================
1492eda14cbcSMatt Macy  * Common allocator routines
1493eda14cbcSMatt Macy  * ==========================================================================
1494eda14cbcSMatt Macy  */
1495eda14cbcSMatt Macy 
1496eda14cbcSMatt Macy /*
1497eda14cbcSMatt Macy  * Return the maximum contiguous segment within the metaslab.
1498eda14cbcSMatt Macy  */
1499eda14cbcSMatt Macy uint64_t
1500eda14cbcSMatt Macy metaslab_largest_allocatable(metaslab_t *msp)
1501eda14cbcSMatt Macy {
1502eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1503eda14cbcSMatt Macy 	range_seg_t *rs;
1504eda14cbcSMatt Macy 
1505eda14cbcSMatt Macy 	if (t == NULL)
1506eda14cbcSMatt Macy 		return (0);
1507eda14cbcSMatt Macy 	if (zfs_btree_numnodes(t) == 0)
1508eda14cbcSMatt Macy 		metaslab_size_tree_full_load(msp->ms_allocatable);
1509eda14cbcSMatt Macy 
1510eda14cbcSMatt Macy 	rs = zfs_btree_last(t, NULL);
1511eda14cbcSMatt Macy 	if (rs == NULL)
1512eda14cbcSMatt Macy 		return (0);
1513eda14cbcSMatt Macy 
1514eda14cbcSMatt Macy 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1515eda14cbcSMatt Macy 	    msp->ms_allocatable));
1516eda14cbcSMatt Macy }
1517eda14cbcSMatt Macy 
1518eda14cbcSMatt Macy /*
1519eda14cbcSMatt Macy  * Return the maximum contiguous segment within the unflushed frees of this
1520eda14cbcSMatt Macy  * metaslab.
1521eda14cbcSMatt Macy  */
1522eda14cbcSMatt Macy static uint64_t
1523eda14cbcSMatt Macy metaslab_largest_unflushed_free(metaslab_t *msp)
1524eda14cbcSMatt Macy {
1525eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1526eda14cbcSMatt Macy 
1527eda14cbcSMatt Macy 	if (msp->ms_unflushed_frees == NULL)
1528eda14cbcSMatt Macy 		return (0);
1529eda14cbcSMatt Macy 
1530eda14cbcSMatt Macy 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1531eda14cbcSMatt Macy 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1532eda14cbcSMatt Macy 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1533eda14cbcSMatt Macy 	    NULL);
1534eda14cbcSMatt Macy 	if (rs == NULL)
1535eda14cbcSMatt Macy 		return (0);
1536eda14cbcSMatt Macy 
1537eda14cbcSMatt Macy 	/*
1538eda14cbcSMatt Macy 	 * When a range is freed from the metaslab, that range is added to
1539eda14cbcSMatt Macy 	 * both the unflushed frees and the deferred frees. While the block
1540eda14cbcSMatt Macy 	 * will eventually be usable, if the metaslab were loaded the range
1541eda14cbcSMatt Macy 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1542eda14cbcSMatt Macy 	 * txgs had passed.  As a result, when attempting to estimate an upper
1543eda14cbcSMatt Macy 	 * bound for the largest currently-usable free segment in the
1544eda14cbcSMatt Macy 	 * metaslab, we need to not consider any ranges currently in the defer
1545eda14cbcSMatt Macy 	 * trees. This algorithm approximates the largest available chunk in
1546eda14cbcSMatt Macy 	 * the largest range in the unflushed_frees tree by taking the first
1547eda14cbcSMatt Macy 	 * chunk.  While this may be a poor estimate, it should only remain so
1548eda14cbcSMatt Macy 	 * briefly and should eventually self-correct as frees are no longer
1549eda14cbcSMatt Macy 	 * deferred. Similar logic applies to the ms_freed tree. See
1550eda14cbcSMatt Macy 	 * metaslab_load() for more details.
1551eda14cbcSMatt Macy 	 *
1552eda14cbcSMatt Macy 	 * There are two primary sources of inaccuracy in this estimate. Both
1553eda14cbcSMatt Macy 	 * are tolerated for performance reasons. The first source is that we
1554eda14cbcSMatt Macy 	 * only check the largest segment for overlaps. Smaller segments may
1555eda14cbcSMatt Macy 	 * have more favorable overlaps with the other trees, resulting in
1556eda14cbcSMatt Macy 	 * larger usable chunks.  Second, we only look at the first chunk in
1557eda14cbcSMatt Macy 	 * the largest segment; there may be other usable chunks in the
1558eda14cbcSMatt Macy 	 * largest segment, but we ignore them.
1559eda14cbcSMatt Macy 	 */
1560eda14cbcSMatt Macy 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1561eda14cbcSMatt Macy 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1562eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1563eda14cbcSMatt Macy 		uint64_t start = 0;
1564eda14cbcSMatt Macy 		uint64_t size = 0;
1565eda14cbcSMatt Macy 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1566eda14cbcSMatt Macy 		    rsize, &start, &size);
1567eda14cbcSMatt Macy 		if (found) {
1568eda14cbcSMatt Macy 			if (rstart == start)
1569eda14cbcSMatt Macy 				return (0);
1570eda14cbcSMatt Macy 			rsize = start - rstart;
1571eda14cbcSMatt Macy 		}
1572eda14cbcSMatt Macy 	}
1573eda14cbcSMatt Macy 
1574eda14cbcSMatt Macy 	uint64_t start = 0;
1575eda14cbcSMatt Macy 	uint64_t size = 0;
1576eda14cbcSMatt Macy 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1577eda14cbcSMatt Macy 	    rsize, &start, &size);
1578eda14cbcSMatt Macy 	if (found)
1579eda14cbcSMatt Macy 		rsize = start - rstart;
1580eda14cbcSMatt Macy 
1581eda14cbcSMatt Macy 	return (rsize);
1582eda14cbcSMatt Macy }
1583eda14cbcSMatt Macy 
1584eda14cbcSMatt Macy static range_seg_t *
1585eda14cbcSMatt Macy metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1586eda14cbcSMatt Macy     uint64_t size, zfs_btree_index_t *where)
1587eda14cbcSMatt Macy {
1588eda14cbcSMatt Macy 	range_seg_t *rs;
1589eda14cbcSMatt Macy 	range_seg_max_t rsearch;
1590eda14cbcSMatt Macy 
1591eda14cbcSMatt Macy 	rs_set_start(&rsearch, rt, start);
1592eda14cbcSMatt Macy 	rs_set_end(&rsearch, rt, start + size);
1593eda14cbcSMatt Macy 
1594eda14cbcSMatt Macy 	rs = zfs_btree_find(t, &rsearch, where);
1595eda14cbcSMatt Macy 	if (rs == NULL) {
1596eda14cbcSMatt Macy 		rs = zfs_btree_next(t, where, where);
1597eda14cbcSMatt Macy 	}
1598eda14cbcSMatt Macy 
1599eda14cbcSMatt Macy 	return (rs);
1600eda14cbcSMatt Macy }
1601eda14cbcSMatt Macy 
1602eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1603eda14cbcSMatt Macy     defined(WITH_CF_BLOCK_ALLOCATOR)
16047877fdebSMatt Macy 
1605eda14cbcSMatt Macy /*
1606eda14cbcSMatt Macy  * This is a helper function that can be used by the allocator to find a
1607eda14cbcSMatt Macy  * suitable block to allocate. This will search the specified B-tree looking
1608eda14cbcSMatt Macy  * for a block that matches the specified criteria.
1609eda14cbcSMatt Macy  */
1610eda14cbcSMatt Macy static uint64_t
1611eda14cbcSMatt Macy metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1612eda14cbcSMatt Macy     uint64_t max_search)
1613eda14cbcSMatt Macy {
1614eda14cbcSMatt Macy 	if (*cursor == 0)
1615eda14cbcSMatt Macy 		*cursor = rt->rt_start;
1616eda14cbcSMatt Macy 	zfs_btree_t *bt = &rt->rt_root;
1617eda14cbcSMatt Macy 	zfs_btree_index_t where;
1618eda14cbcSMatt Macy 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1619eda14cbcSMatt Macy 	uint64_t first_found;
1620eda14cbcSMatt Macy 	int count_searched = 0;
1621eda14cbcSMatt Macy 
1622eda14cbcSMatt Macy 	if (rs != NULL)
1623eda14cbcSMatt Macy 		first_found = rs_get_start(rs, rt);
1624eda14cbcSMatt Macy 
1625eda14cbcSMatt Macy 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1626eda14cbcSMatt Macy 	    max_search || count_searched < metaslab_min_search_count)) {
1627eda14cbcSMatt Macy 		uint64_t offset = rs_get_start(rs, rt);
1628eda14cbcSMatt Macy 		if (offset + size <= rs_get_end(rs, rt)) {
1629eda14cbcSMatt Macy 			*cursor = offset + size;
1630eda14cbcSMatt Macy 			return (offset);
1631eda14cbcSMatt Macy 		}
1632eda14cbcSMatt Macy 		rs = zfs_btree_next(bt, &where, &where);
1633eda14cbcSMatt Macy 		count_searched++;
1634eda14cbcSMatt Macy 	}
1635eda14cbcSMatt Macy 
1636eda14cbcSMatt Macy 	*cursor = 0;
1637eda14cbcSMatt Macy 	return (-1ULL);
1638eda14cbcSMatt Macy }
1639eda14cbcSMatt Macy #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1640eda14cbcSMatt Macy 
1641eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR)
1642eda14cbcSMatt Macy /*
1643eda14cbcSMatt Macy  * ==========================================================================
1644eda14cbcSMatt Macy  * Dynamic Fit (df) block allocator
1645eda14cbcSMatt Macy  *
1646eda14cbcSMatt Macy  * Search for a free chunk of at least this size, starting from the last
1647eda14cbcSMatt Macy  * offset (for this alignment of block) looking for up to
1648eda14cbcSMatt Macy  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1649eda14cbcSMatt Macy  * found within 16MB, then return a free chunk of exactly the requested size (or
1650eda14cbcSMatt Macy  * larger).
1651eda14cbcSMatt Macy  *
1652eda14cbcSMatt Macy  * If it seems like searching from the last offset will be unproductive, skip
1653eda14cbcSMatt Macy  * that and just return a free chunk of exactly the requested size (or larger).
1654eda14cbcSMatt Macy  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1655eda14cbcSMatt Macy  * mechanism is probably not very useful and may be removed in the future.
1656eda14cbcSMatt Macy  *
1657eda14cbcSMatt Macy  * The behavior when not searching can be changed to return the largest free
1658eda14cbcSMatt Macy  * chunk, instead of a free chunk of exactly the requested size, by setting
1659eda14cbcSMatt Macy  * metaslab_df_use_largest_segment.
1660eda14cbcSMatt Macy  * ==========================================================================
1661eda14cbcSMatt Macy  */
1662eda14cbcSMatt Macy static uint64_t
1663eda14cbcSMatt Macy metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1664eda14cbcSMatt Macy {
1665eda14cbcSMatt Macy 	/*
1666eda14cbcSMatt Macy 	 * Find the largest power of 2 block size that evenly divides the
1667eda14cbcSMatt Macy 	 * requested size. This is used to try to allocate blocks with similar
1668eda14cbcSMatt Macy 	 * alignment from the same area of the metaslab (i.e. same cursor
1669eda14cbcSMatt Macy 	 * bucket) but it does not guarantee that other allocations sizes
1670eda14cbcSMatt Macy 	 * may exist in the same region.
1671eda14cbcSMatt Macy 	 */
1672eda14cbcSMatt Macy 	uint64_t align = size & -size;
1673eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1674eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1675*be181ee2SMartin Matuska 	uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1676eda14cbcSMatt Macy 	uint64_t offset;
1677eda14cbcSMatt Macy 
1678eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1679eda14cbcSMatt Macy 
1680eda14cbcSMatt Macy 	/*
1681eda14cbcSMatt Macy 	 * If we're running low on space, find a segment based on size,
1682eda14cbcSMatt Macy 	 * rather than iterating based on offset.
1683eda14cbcSMatt Macy 	 */
1684eda14cbcSMatt Macy 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1685eda14cbcSMatt Macy 	    free_pct < metaslab_df_free_pct) {
1686eda14cbcSMatt Macy 		offset = -1;
1687eda14cbcSMatt Macy 	} else {
1688eda14cbcSMatt Macy 		offset = metaslab_block_picker(rt,
1689eda14cbcSMatt Macy 		    cursor, size, metaslab_df_max_search);
1690eda14cbcSMatt Macy 	}
1691eda14cbcSMatt Macy 
1692eda14cbcSMatt Macy 	if (offset == -1) {
1693eda14cbcSMatt Macy 		range_seg_t *rs;
1694eda14cbcSMatt Macy 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1695eda14cbcSMatt Macy 			metaslab_size_tree_full_load(msp->ms_allocatable);
16967877fdebSMatt Macy 
1697eda14cbcSMatt Macy 		if (metaslab_df_use_largest_segment) {
1698eda14cbcSMatt Macy 			/* use largest free segment */
1699eda14cbcSMatt Macy 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1700eda14cbcSMatt Macy 		} else {
1701eda14cbcSMatt Macy 			zfs_btree_index_t where;
1702eda14cbcSMatt Macy 			/* use segment of this size, or next largest */
1703eda14cbcSMatt Macy 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1704eda14cbcSMatt Macy 			    rt, msp->ms_start, size, &where);
1705eda14cbcSMatt Macy 		}
1706eda14cbcSMatt Macy 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1707eda14cbcSMatt Macy 		    rt)) {
1708eda14cbcSMatt Macy 			offset = rs_get_start(rs, rt);
1709eda14cbcSMatt Macy 			*cursor = offset + size;
1710eda14cbcSMatt Macy 		}
1711eda14cbcSMatt Macy 	}
1712eda14cbcSMatt Macy 
1713eda14cbcSMatt Macy 	return (offset);
1714eda14cbcSMatt Macy }
1715eda14cbcSMatt Macy 
1716e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = {
1717eda14cbcSMatt Macy 	metaslab_df_alloc
1718eda14cbcSMatt Macy };
1719eda14cbcSMatt Macy #endif /* WITH_DF_BLOCK_ALLOCATOR */
1720eda14cbcSMatt Macy 
1721eda14cbcSMatt Macy #if defined(WITH_CF_BLOCK_ALLOCATOR)
1722eda14cbcSMatt Macy /*
1723eda14cbcSMatt Macy  * ==========================================================================
1724eda14cbcSMatt Macy  * Cursor fit block allocator -
1725eda14cbcSMatt Macy  * Select the largest region in the metaslab, set the cursor to the beginning
1726eda14cbcSMatt Macy  * of the range and the cursor_end to the end of the range. As allocations
1727eda14cbcSMatt Macy  * are made advance the cursor. Continue allocating from the cursor until
1728eda14cbcSMatt Macy  * the range is exhausted and then find a new range.
1729eda14cbcSMatt Macy  * ==========================================================================
1730eda14cbcSMatt Macy  */
1731eda14cbcSMatt Macy static uint64_t
1732eda14cbcSMatt Macy metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1733eda14cbcSMatt Macy {
1734eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1735eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1736eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[0];
1737eda14cbcSMatt Macy 	uint64_t *cursor_end = &msp->ms_lbas[1];
1738eda14cbcSMatt Macy 	uint64_t offset = 0;
1739eda14cbcSMatt Macy 
1740eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1741eda14cbcSMatt Macy 
1742eda14cbcSMatt Macy 	ASSERT3U(*cursor_end, >=, *cursor);
1743eda14cbcSMatt Macy 
1744eda14cbcSMatt Macy 	if ((*cursor + size) > *cursor_end) {
1745eda14cbcSMatt Macy 		range_seg_t *rs;
1746eda14cbcSMatt Macy 
1747eda14cbcSMatt Macy 		if (zfs_btree_numnodes(t) == 0)
1748eda14cbcSMatt Macy 			metaslab_size_tree_full_load(msp->ms_allocatable);
1749eda14cbcSMatt Macy 		rs = zfs_btree_last(t, NULL);
1750eda14cbcSMatt Macy 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1751eda14cbcSMatt Macy 		    size)
1752eda14cbcSMatt Macy 			return (-1ULL);
1753eda14cbcSMatt Macy 
1754eda14cbcSMatt Macy 		*cursor = rs_get_start(rs, rt);
1755eda14cbcSMatt Macy 		*cursor_end = rs_get_end(rs, rt);
1756eda14cbcSMatt Macy 	}
1757eda14cbcSMatt Macy 
1758eda14cbcSMatt Macy 	offset = *cursor;
1759eda14cbcSMatt Macy 	*cursor += size;
1760eda14cbcSMatt Macy 
1761eda14cbcSMatt Macy 	return (offset);
1762eda14cbcSMatt Macy }
1763eda14cbcSMatt Macy 
1764e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = {
1765eda14cbcSMatt Macy 	metaslab_cf_alloc
1766eda14cbcSMatt Macy };
1767eda14cbcSMatt Macy #endif /* WITH_CF_BLOCK_ALLOCATOR */
1768eda14cbcSMatt Macy 
1769eda14cbcSMatt Macy #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1770eda14cbcSMatt Macy /*
1771eda14cbcSMatt Macy  * ==========================================================================
1772eda14cbcSMatt Macy  * New dynamic fit allocator -
1773eda14cbcSMatt Macy  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1774eda14cbcSMatt Macy  * contiguous blocks. If no region is found then just use the largest segment
1775eda14cbcSMatt Macy  * that remains.
1776eda14cbcSMatt Macy  * ==========================================================================
1777eda14cbcSMatt Macy  */
1778eda14cbcSMatt Macy 
1779eda14cbcSMatt Macy /*
1780eda14cbcSMatt Macy  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1781eda14cbcSMatt Macy  * to request from the allocator.
1782eda14cbcSMatt Macy  */
1783eda14cbcSMatt Macy uint64_t metaslab_ndf_clump_shift = 4;
1784eda14cbcSMatt Macy 
1785eda14cbcSMatt Macy static uint64_t
1786eda14cbcSMatt Macy metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1787eda14cbcSMatt Macy {
1788eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1789eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1790eda14cbcSMatt Macy 	zfs_btree_index_t where;
1791eda14cbcSMatt Macy 	range_seg_t *rs;
1792eda14cbcSMatt Macy 	range_seg_max_t rsearch;
1793eda14cbcSMatt Macy 	uint64_t hbit = highbit64(size);
1794eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1795eda14cbcSMatt Macy 	uint64_t max_size = metaslab_largest_allocatable(msp);
1796eda14cbcSMatt Macy 
1797eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1798eda14cbcSMatt Macy 
1799eda14cbcSMatt Macy 	if (max_size < size)
1800eda14cbcSMatt Macy 		return (-1ULL);
1801eda14cbcSMatt Macy 
1802eda14cbcSMatt Macy 	rs_set_start(&rsearch, rt, *cursor);
1803eda14cbcSMatt Macy 	rs_set_end(&rsearch, rt, *cursor + size);
1804eda14cbcSMatt Macy 
1805eda14cbcSMatt Macy 	rs = zfs_btree_find(t, &rsearch, &where);
1806eda14cbcSMatt Macy 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1807eda14cbcSMatt Macy 		t = &msp->ms_allocatable_by_size;
1808eda14cbcSMatt Macy 
1809eda14cbcSMatt Macy 		rs_set_start(&rsearch, rt, 0);
1810eda14cbcSMatt Macy 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1811eda14cbcSMatt Macy 		    metaslab_ndf_clump_shift)));
1812eda14cbcSMatt Macy 
1813eda14cbcSMatt Macy 		rs = zfs_btree_find(t, &rsearch, &where);
1814eda14cbcSMatt Macy 		if (rs == NULL)
1815eda14cbcSMatt Macy 			rs = zfs_btree_next(t, &where, &where);
1816eda14cbcSMatt Macy 		ASSERT(rs != NULL);
1817eda14cbcSMatt Macy 	}
1818eda14cbcSMatt Macy 
1819eda14cbcSMatt Macy 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1820eda14cbcSMatt Macy 		*cursor = rs_get_start(rs, rt) + size;
1821eda14cbcSMatt Macy 		return (rs_get_start(rs, rt));
1822eda14cbcSMatt Macy 	}
1823eda14cbcSMatt Macy 	return (-1ULL);
1824eda14cbcSMatt Macy }
1825eda14cbcSMatt Macy 
1826e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = {
1827eda14cbcSMatt Macy 	metaslab_ndf_alloc
1828eda14cbcSMatt Macy };
1829eda14cbcSMatt Macy #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1830eda14cbcSMatt Macy 
1831eda14cbcSMatt Macy 
1832eda14cbcSMatt Macy /*
1833eda14cbcSMatt Macy  * ==========================================================================
1834eda14cbcSMatt Macy  * Metaslabs
1835eda14cbcSMatt Macy  * ==========================================================================
1836eda14cbcSMatt Macy  */
1837eda14cbcSMatt Macy 
1838eda14cbcSMatt Macy /*
1839eda14cbcSMatt Macy  * Wait for any in-progress metaslab loads to complete.
1840eda14cbcSMatt Macy  */
1841eda14cbcSMatt Macy static void
1842eda14cbcSMatt Macy metaslab_load_wait(metaslab_t *msp)
1843eda14cbcSMatt Macy {
1844eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1845eda14cbcSMatt Macy 
1846eda14cbcSMatt Macy 	while (msp->ms_loading) {
1847eda14cbcSMatt Macy 		ASSERT(!msp->ms_loaded);
1848eda14cbcSMatt Macy 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1849eda14cbcSMatt Macy 	}
1850eda14cbcSMatt Macy }
1851eda14cbcSMatt Macy 
1852eda14cbcSMatt Macy /*
1853eda14cbcSMatt Macy  * Wait for any in-progress flushing to complete.
1854eda14cbcSMatt Macy  */
1855eda14cbcSMatt Macy static void
1856eda14cbcSMatt Macy metaslab_flush_wait(metaslab_t *msp)
1857eda14cbcSMatt Macy {
1858eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1859eda14cbcSMatt Macy 
1860eda14cbcSMatt Macy 	while (msp->ms_flushing)
1861eda14cbcSMatt Macy 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1862eda14cbcSMatt Macy }
1863eda14cbcSMatt Macy 
1864eda14cbcSMatt Macy static unsigned int
1865eda14cbcSMatt Macy metaslab_idx_func(multilist_t *ml, void *arg)
1866eda14cbcSMatt Macy {
1867eda14cbcSMatt Macy 	metaslab_t *msp = arg;
18682617128aSMartin Matuska 
18692617128aSMartin Matuska 	/*
18702617128aSMartin Matuska 	 * ms_id values are allocated sequentially, so full 64bit
18712617128aSMartin Matuska 	 * division would be a waste of time, so limit it to 32 bits.
18722617128aSMartin Matuska 	 */
18732617128aSMartin Matuska 	return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1874eda14cbcSMatt Macy }
1875eda14cbcSMatt Macy 
1876eda14cbcSMatt Macy uint64_t
1877eda14cbcSMatt Macy metaslab_allocated_space(metaslab_t *msp)
1878eda14cbcSMatt Macy {
1879eda14cbcSMatt Macy 	return (msp->ms_allocated_space);
1880eda14cbcSMatt Macy }
1881eda14cbcSMatt Macy 
1882eda14cbcSMatt Macy /*
1883eda14cbcSMatt Macy  * Verify that the space accounting on disk matches the in-core range_trees.
1884eda14cbcSMatt Macy  */
1885eda14cbcSMatt Macy static void
1886eda14cbcSMatt Macy metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1887eda14cbcSMatt Macy {
1888eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1889eda14cbcSMatt Macy 	uint64_t allocating = 0;
1890eda14cbcSMatt Macy 	uint64_t sm_free_space, msp_free_space;
1891eda14cbcSMatt Macy 
1892eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1893eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
1894eda14cbcSMatt Macy 
1895eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1896eda14cbcSMatt Macy 		return;
1897eda14cbcSMatt Macy 
1898eda14cbcSMatt Macy 	/*
1899eda14cbcSMatt Macy 	 * We can only verify the metaslab space when we're called
1900eda14cbcSMatt Macy 	 * from syncing context with a loaded metaslab that has an
1901eda14cbcSMatt Macy 	 * allocated space map. Calling this in non-syncing context
1902eda14cbcSMatt Macy 	 * does not provide a consistent view of the metaslab since
1903eda14cbcSMatt Macy 	 * we're performing allocations in the future.
1904eda14cbcSMatt Macy 	 */
1905eda14cbcSMatt Macy 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1906eda14cbcSMatt Macy 	    !msp->ms_loaded)
1907eda14cbcSMatt Macy 		return;
1908eda14cbcSMatt Macy 
1909eda14cbcSMatt Macy 	/*
1910eda14cbcSMatt Macy 	 * Even though the smp_alloc field can get negative,
1911eda14cbcSMatt Macy 	 * when it comes to a metaslab's space map, that should
1912eda14cbcSMatt Macy 	 * never be the case.
1913eda14cbcSMatt Macy 	 */
1914eda14cbcSMatt Macy 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1915eda14cbcSMatt Macy 
1916eda14cbcSMatt Macy 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1917eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_frees));
1918eda14cbcSMatt Macy 
1919eda14cbcSMatt Macy 	ASSERT3U(metaslab_allocated_space(msp), ==,
1920eda14cbcSMatt Macy 	    space_map_allocated(msp->ms_sm) +
1921eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_allocs) -
1922eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_frees));
1923eda14cbcSMatt Macy 
1924eda14cbcSMatt Macy 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1925eda14cbcSMatt Macy 
1926eda14cbcSMatt Macy 	/*
1927eda14cbcSMatt Macy 	 * Account for future allocations since we would have
1928eda14cbcSMatt Macy 	 * already deducted that space from the ms_allocatable.
1929eda14cbcSMatt Macy 	 */
1930eda14cbcSMatt Macy 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1931eda14cbcSMatt Macy 		allocating +=
1932eda14cbcSMatt Macy 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1933eda14cbcSMatt Macy 	}
1934eda14cbcSMatt Macy 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1935eda14cbcSMatt Macy 	    msp->ms_allocating_total);
1936eda14cbcSMatt Macy 
1937eda14cbcSMatt Macy 	ASSERT3U(msp->ms_deferspace, ==,
1938eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[0]) +
1939eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[1]));
1940eda14cbcSMatt Macy 
1941eda14cbcSMatt Macy 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1942eda14cbcSMatt Macy 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1943eda14cbcSMatt Macy 
1944eda14cbcSMatt Macy 	VERIFY3U(sm_free_space, ==, msp_free_space);
1945eda14cbcSMatt Macy }
1946eda14cbcSMatt Macy 
1947eda14cbcSMatt Macy static void
1948eda14cbcSMatt Macy metaslab_aux_histograms_clear(metaslab_t *msp)
1949eda14cbcSMatt Macy {
1950eda14cbcSMatt Macy 	/*
1951eda14cbcSMatt Macy 	 * Auxiliary histograms are only cleared when resetting them,
1952eda14cbcSMatt Macy 	 * which can only happen while the metaslab is loaded.
1953eda14cbcSMatt Macy 	 */
1954eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
1955eda14cbcSMatt Macy 
1956da5137abSMartin Matuska 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1957eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1958da5137abSMartin Matuska 		memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1959eda14cbcSMatt Macy }
1960eda14cbcSMatt Macy 
1961eda14cbcSMatt Macy static void
1962eda14cbcSMatt Macy metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1963eda14cbcSMatt Macy     range_tree_t *rt)
1964eda14cbcSMatt Macy {
1965eda14cbcSMatt Macy 	/*
1966eda14cbcSMatt Macy 	 * This is modeled after space_map_histogram_add(), so refer to that
1967eda14cbcSMatt Macy 	 * function for implementation details. We want this to work like
1968eda14cbcSMatt Macy 	 * the space map histogram, and not the range tree histogram, as we
1969eda14cbcSMatt Macy 	 * are essentially constructing a delta that will be later subtracted
1970eda14cbcSMatt Macy 	 * from the space map histogram.
1971eda14cbcSMatt Macy 	 */
1972eda14cbcSMatt Macy 	int idx = 0;
1973eda14cbcSMatt Macy 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1974eda14cbcSMatt Macy 		ASSERT3U(i, >=, idx + shift);
1975eda14cbcSMatt Macy 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1976eda14cbcSMatt Macy 
1977eda14cbcSMatt Macy 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1978eda14cbcSMatt Macy 			ASSERT3U(idx + shift, ==, i);
1979eda14cbcSMatt Macy 			idx++;
1980eda14cbcSMatt Macy 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1981eda14cbcSMatt Macy 		}
1982eda14cbcSMatt Macy 	}
1983eda14cbcSMatt Macy }
1984eda14cbcSMatt Macy 
1985eda14cbcSMatt Macy /*
1986eda14cbcSMatt Macy  * Called at every sync pass that the metaslab gets synced.
1987eda14cbcSMatt Macy  *
1988eda14cbcSMatt Macy  * The reason is that we want our auxiliary histograms to be updated
1989eda14cbcSMatt Macy  * wherever the metaslab's space map histogram is updated. This way
1990eda14cbcSMatt Macy  * we stay consistent on which parts of the metaslab space map's
1991eda14cbcSMatt Macy  * histogram are currently not available for allocations (e.g because
1992eda14cbcSMatt Macy  * they are in the defer, freed, and freeing trees).
1993eda14cbcSMatt Macy  */
1994eda14cbcSMatt Macy static void
1995eda14cbcSMatt Macy metaslab_aux_histograms_update(metaslab_t *msp)
1996eda14cbcSMatt Macy {
1997eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
1998eda14cbcSMatt Macy 	ASSERT(sm != NULL);
1999eda14cbcSMatt Macy 
2000eda14cbcSMatt Macy 	/*
2001eda14cbcSMatt Macy 	 * This is similar to the metaslab's space map histogram updates
2002eda14cbcSMatt Macy 	 * that take place in metaslab_sync(). The only difference is that
2003eda14cbcSMatt Macy 	 * we only care about segments that haven't made it into the
2004eda14cbcSMatt Macy 	 * ms_allocatable tree yet.
2005eda14cbcSMatt Macy 	 */
2006eda14cbcSMatt Macy 	if (msp->ms_loaded) {
2007eda14cbcSMatt Macy 		metaslab_aux_histograms_clear(msp);
2008eda14cbcSMatt Macy 
2009eda14cbcSMatt Macy 		metaslab_aux_histogram_add(msp->ms_synchist,
2010eda14cbcSMatt Macy 		    sm->sm_shift, msp->ms_freed);
2011eda14cbcSMatt Macy 
2012eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2013eda14cbcSMatt Macy 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
2014eda14cbcSMatt Macy 			    sm->sm_shift, msp->ms_defer[t]);
2015eda14cbcSMatt Macy 		}
2016eda14cbcSMatt Macy 	}
2017eda14cbcSMatt Macy 
2018eda14cbcSMatt Macy 	metaslab_aux_histogram_add(msp->ms_synchist,
2019eda14cbcSMatt Macy 	    sm->sm_shift, msp->ms_freeing);
2020eda14cbcSMatt Macy }
2021eda14cbcSMatt Macy 
2022eda14cbcSMatt Macy /*
2023eda14cbcSMatt Macy  * Called every time we are done syncing (writing to) the metaslab,
2024eda14cbcSMatt Macy  * i.e. at the end of each sync pass.
2025eda14cbcSMatt Macy  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2026eda14cbcSMatt Macy  */
2027eda14cbcSMatt Macy static void
2028eda14cbcSMatt Macy metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2029eda14cbcSMatt Macy {
2030eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2031eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
2032eda14cbcSMatt Macy 
2033eda14cbcSMatt Macy 	if (sm == NULL) {
2034eda14cbcSMatt Macy 		/*
2035eda14cbcSMatt Macy 		 * We came here from metaslab_init() when creating/opening a
2036eda14cbcSMatt Macy 		 * pool, looking at a metaslab that hasn't had any allocations
2037eda14cbcSMatt Macy 		 * yet.
2038eda14cbcSMatt Macy 		 */
2039eda14cbcSMatt Macy 		return;
2040eda14cbcSMatt Macy 	}
2041eda14cbcSMatt Macy 
2042eda14cbcSMatt Macy 	/*
2043eda14cbcSMatt Macy 	 * This is similar to the actions that we take for the ms_freed
2044eda14cbcSMatt Macy 	 * and ms_defer trees in metaslab_sync_done().
2045eda14cbcSMatt Macy 	 */
2046eda14cbcSMatt Macy 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2047eda14cbcSMatt Macy 	if (defer_allowed) {
2048da5137abSMartin Matuska 		memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2049eda14cbcSMatt Macy 		    sizeof (msp->ms_synchist));
2050eda14cbcSMatt Macy 	} else {
2051da5137abSMartin Matuska 		memset(msp->ms_deferhist[hist_index], 0,
2052eda14cbcSMatt Macy 		    sizeof (msp->ms_deferhist[hist_index]));
2053eda14cbcSMatt Macy 	}
2054da5137abSMartin Matuska 	memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2055eda14cbcSMatt Macy }
2056eda14cbcSMatt Macy 
2057eda14cbcSMatt Macy /*
2058eda14cbcSMatt Macy  * Ensure that the metaslab's weight and fragmentation are consistent
2059eda14cbcSMatt Macy  * with the contents of the histogram (either the range tree's histogram
2060eda14cbcSMatt Macy  * or the space map's depending whether the metaslab is loaded).
2061eda14cbcSMatt Macy  */
2062eda14cbcSMatt Macy static void
2063eda14cbcSMatt Macy metaslab_verify_weight_and_frag(metaslab_t *msp)
2064eda14cbcSMatt Macy {
2065eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2066eda14cbcSMatt Macy 
2067eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2068eda14cbcSMatt Macy 		return;
2069eda14cbcSMatt Macy 
2070eda14cbcSMatt Macy 	/*
2071eda14cbcSMatt Macy 	 * We can end up here from vdev_remove_complete(), in which case we
2072eda14cbcSMatt Macy 	 * cannot do these assertions because we hold spa config locks and
2073eda14cbcSMatt Macy 	 * thus we are not allowed to read from the DMU.
2074eda14cbcSMatt Macy 	 *
2075eda14cbcSMatt Macy 	 * We check if the metaslab group has been removed and if that's
2076eda14cbcSMatt Macy 	 * the case we return immediately as that would mean that we are
2077eda14cbcSMatt Macy 	 * here from the aforementioned code path.
2078eda14cbcSMatt Macy 	 */
2079eda14cbcSMatt Macy 	if (msp->ms_group == NULL)
2080eda14cbcSMatt Macy 		return;
2081eda14cbcSMatt Macy 
2082eda14cbcSMatt Macy 	/*
2083eda14cbcSMatt Macy 	 * Devices being removed always return a weight of 0 and leave
2084eda14cbcSMatt Macy 	 * fragmentation and ms_max_size as is - there is nothing for
2085eda14cbcSMatt Macy 	 * us to verify here.
2086eda14cbcSMatt Macy 	 */
2087eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
2088eda14cbcSMatt Macy 	if (vd->vdev_removing)
2089eda14cbcSMatt Macy 		return;
2090eda14cbcSMatt Macy 
2091eda14cbcSMatt Macy 	/*
2092eda14cbcSMatt Macy 	 * If the metaslab is dirty it probably means that we've done
2093eda14cbcSMatt Macy 	 * some allocations or frees that have changed our histograms
2094eda14cbcSMatt Macy 	 * and thus the weight.
2095eda14cbcSMatt Macy 	 */
2096eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++) {
2097eda14cbcSMatt Macy 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2098eda14cbcSMatt Macy 			return;
2099eda14cbcSMatt Macy 	}
2100eda14cbcSMatt Macy 
2101eda14cbcSMatt Macy 	/*
2102eda14cbcSMatt Macy 	 * This verification checks that our in-memory state is consistent
2103eda14cbcSMatt Macy 	 * with what's on disk. If the pool is read-only then there aren't
2104eda14cbcSMatt Macy 	 * any changes and we just have the initially-loaded state.
2105eda14cbcSMatt Macy 	 */
2106eda14cbcSMatt Macy 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2107eda14cbcSMatt Macy 		return;
2108eda14cbcSMatt Macy 
2109eda14cbcSMatt Macy 	/* some extra verification for in-core tree if you can */
2110eda14cbcSMatt Macy 	if (msp->ms_loaded) {
2111eda14cbcSMatt Macy 		range_tree_stat_verify(msp->ms_allocatable);
2112eda14cbcSMatt Macy 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2113eda14cbcSMatt Macy 		    msp->ms_allocatable));
2114eda14cbcSMatt Macy 	}
2115eda14cbcSMatt Macy 
2116eda14cbcSMatt Macy 	uint64_t weight = msp->ms_weight;
2117eda14cbcSMatt Macy 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2118eda14cbcSMatt Macy 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2119eda14cbcSMatt Macy 	uint64_t frag = msp->ms_fragmentation;
2120eda14cbcSMatt Macy 	uint64_t max_segsize = msp->ms_max_size;
2121eda14cbcSMatt Macy 
2122eda14cbcSMatt Macy 	msp->ms_weight = 0;
2123eda14cbcSMatt Macy 	msp->ms_fragmentation = 0;
2124eda14cbcSMatt Macy 
2125eda14cbcSMatt Macy 	/*
2126eda14cbcSMatt Macy 	 * This function is used for verification purposes and thus should
2127eda14cbcSMatt Macy 	 * not introduce any side-effects/mutations on the system's state.
2128eda14cbcSMatt Macy 	 *
2129eda14cbcSMatt Macy 	 * Regardless of whether metaslab_weight() thinks this metaslab
2130eda14cbcSMatt Macy 	 * should be active or not, we want to ensure that the actual weight
2131eda14cbcSMatt Macy 	 * (and therefore the value of ms_weight) would be the same if it
2132eda14cbcSMatt Macy 	 * was to be recalculated at this point.
2133eda14cbcSMatt Macy 	 *
2134eda14cbcSMatt Macy 	 * In addition we set the nodirty flag so metaslab_weight() does
2135eda14cbcSMatt Macy 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2136eda14cbcSMatt Macy 	 * force condensing to upgrade the metaslab spacemaps).
2137eda14cbcSMatt Macy 	 */
2138eda14cbcSMatt Macy 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2139eda14cbcSMatt Macy 
2140eda14cbcSMatt Macy 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2141eda14cbcSMatt Macy 
2142eda14cbcSMatt Macy 	/*
2143eda14cbcSMatt Macy 	 * If the weight type changed then there is no point in doing
2144eda14cbcSMatt Macy 	 * verification. Revert fields to their original values.
2145eda14cbcSMatt Macy 	 */
2146eda14cbcSMatt Macy 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2147eda14cbcSMatt Macy 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2148eda14cbcSMatt Macy 		msp->ms_fragmentation = frag;
2149eda14cbcSMatt Macy 		msp->ms_weight = weight;
2150eda14cbcSMatt Macy 		return;
2151eda14cbcSMatt Macy 	}
2152eda14cbcSMatt Macy 
2153eda14cbcSMatt Macy 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2154eda14cbcSMatt Macy 	VERIFY3U(msp->ms_weight, ==, weight);
2155eda14cbcSMatt Macy }
2156eda14cbcSMatt Macy 
2157eda14cbcSMatt Macy /*
2158eda14cbcSMatt Macy  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2159eda14cbcSMatt Macy  * this class that was used longest ago, and attempt to unload it.  We don't
2160eda14cbcSMatt Macy  * want to spend too much time in this loop to prevent performance
2161eda14cbcSMatt Macy  * degradation, and we expect that most of the time this operation will
2162eda14cbcSMatt Macy  * succeed. Between that and the normal unloading processing during txg sync,
2163eda14cbcSMatt Macy  * we expect this to keep the metaslab memory usage under control.
2164eda14cbcSMatt Macy  */
2165eda14cbcSMatt Macy static void
2166eda14cbcSMatt Macy metaslab_potentially_evict(metaslab_class_t *mc)
2167eda14cbcSMatt Macy {
2168eda14cbcSMatt Macy #ifdef _KERNEL
2169eda14cbcSMatt Macy 	uint64_t allmem = arc_all_memory();
2170eda14cbcSMatt Macy 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2171eda14cbcSMatt Macy 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2172*be181ee2SMartin Matuska 	uint_t tries = 0;
2173eda14cbcSMatt Macy 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
21743ff01b23SMartin Matuska 	    tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2175eda14cbcSMatt Macy 	    tries++) {
2176eda14cbcSMatt Macy 		unsigned int idx = multilist_get_random_index(
21773ff01b23SMartin Matuska 		    &mc->mc_metaslab_txg_list);
2178eda14cbcSMatt Macy 		multilist_sublist_t *mls =
21793ff01b23SMartin Matuska 		    multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2180eda14cbcSMatt Macy 		metaslab_t *msp = multilist_sublist_head(mls);
2181eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
2182eda14cbcSMatt Macy 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2183eda14cbcSMatt Macy 		    inuse * size) {
2184eda14cbcSMatt Macy 			VERIFY3P(mls, ==, multilist_sublist_lock(
21853ff01b23SMartin Matuska 			    &mc->mc_metaslab_txg_list, idx));
2186eda14cbcSMatt Macy 			ASSERT3U(idx, ==,
21873ff01b23SMartin Matuska 			    metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2188eda14cbcSMatt Macy 
2189eda14cbcSMatt Macy 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2190eda14cbcSMatt Macy 				multilist_sublist_unlock(mls);
2191eda14cbcSMatt Macy 				break;
2192eda14cbcSMatt Macy 			}
2193eda14cbcSMatt Macy 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2194eda14cbcSMatt Macy 			multilist_sublist_unlock(mls);
2195eda14cbcSMatt Macy 			/*
2196eda14cbcSMatt Macy 			 * If the metaslab is currently loading there are two
2197eda14cbcSMatt Macy 			 * cases. If it's the metaslab we're evicting, we
2198eda14cbcSMatt Macy 			 * can't continue on or we'll panic when we attempt to
2199eda14cbcSMatt Macy 			 * recursively lock the mutex. If it's another
2200eda14cbcSMatt Macy 			 * metaslab that's loading, it can be safely skipped,
2201eda14cbcSMatt Macy 			 * since we know it's very new and therefore not a
2202eda14cbcSMatt Macy 			 * good eviction candidate. We check later once the
2203eda14cbcSMatt Macy 			 * lock is held that the metaslab is fully loaded
2204eda14cbcSMatt Macy 			 * before actually unloading it.
2205eda14cbcSMatt Macy 			 */
2206eda14cbcSMatt Macy 			if (msp->ms_loading) {
2207eda14cbcSMatt Macy 				msp = next_msp;
2208eda14cbcSMatt Macy 				inuse =
2209eda14cbcSMatt Macy 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2210eda14cbcSMatt Macy 				continue;
2211eda14cbcSMatt Macy 			}
2212eda14cbcSMatt Macy 			/*
2213eda14cbcSMatt Macy 			 * We can't unload metaslabs with no spacemap because
2214eda14cbcSMatt Macy 			 * they're not ready to be unloaded yet. We can't
2215eda14cbcSMatt Macy 			 * unload metaslabs with outstanding allocations
2216eda14cbcSMatt Macy 			 * because doing so could cause the metaslab's weight
2217eda14cbcSMatt Macy 			 * to decrease while it's unloaded, which violates an
2218eda14cbcSMatt Macy 			 * invariant that we use to prevent unnecessary
2219eda14cbcSMatt Macy 			 * loading. We also don't unload metaslabs that are
2220eda14cbcSMatt Macy 			 * currently active because they are high-weight
2221eda14cbcSMatt Macy 			 * metaslabs that are likely to be used in the near
2222eda14cbcSMatt Macy 			 * future.
2223eda14cbcSMatt Macy 			 */
2224eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
2225eda14cbcSMatt Macy 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2226eda14cbcSMatt Macy 			    msp->ms_allocating_total == 0) {
2227eda14cbcSMatt Macy 				metaslab_unload(msp);
2228eda14cbcSMatt Macy 			}
2229eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
2230eda14cbcSMatt Macy 			msp = next_msp;
2231eda14cbcSMatt Macy 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2232eda14cbcSMatt Macy 		}
2233eda14cbcSMatt Macy 	}
2234e92ffd9bSMartin Matuska #else
2235e92ffd9bSMartin Matuska 	(void) mc, (void) zfs_metaslab_mem_limit;
2236eda14cbcSMatt Macy #endif
2237eda14cbcSMatt Macy }
2238eda14cbcSMatt Macy 
2239eda14cbcSMatt Macy static int
2240eda14cbcSMatt Macy metaslab_load_impl(metaslab_t *msp)
2241eda14cbcSMatt Macy {
2242eda14cbcSMatt Macy 	int error = 0;
2243eda14cbcSMatt Macy 
2244eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2245eda14cbcSMatt Macy 	ASSERT(msp->ms_loading);
2246eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2247eda14cbcSMatt Macy 
2248eda14cbcSMatt Macy 	/*
2249eda14cbcSMatt Macy 	 * We temporarily drop the lock to unblock other operations while we
2250eda14cbcSMatt Macy 	 * are reading the space map. Therefore, metaslab_sync() and
2251eda14cbcSMatt Macy 	 * metaslab_sync_done() can run at the same time as we do.
2252eda14cbcSMatt Macy 	 *
2253eda14cbcSMatt Macy 	 * If we are using the log space maps, metaslab_sync() can't write to
2254eda14cbcSMatt Macy 	 * the metaslab's space map while we are loading as we only write to
2255eda14cbcSMatt Macy 	 * it when we are flushing the metaslab, and that can't happen while
2256eda14cbcSMatt Macy 	 * we are loading it.
2257eda14cbcSMatt Macy 	 *
2258eda14cbcSMatt Macy 	 * If we are not using log space maps though, metaslab_sync() can
2259eda14cbcSMatt Macy 	 * append to the space map while we are loading. Therefore we load
2260eda14cbcSMatt Macy 	 * only entries that existed when we started the load. Additionally,
2261eda14cbcSMatt Macy 	 * metaslab_sync_done() has to wait for the load to complete because
2262eda14cbcSMatt Macy 	 * there are potential races like metaslab_load() loading parts of the
2263eda14cbcSMatt Macy 	 * space map that are currently being appended by metaslab_sync(). If
2264eda14cbcSMatt Macy 	 * we didn't, the ms_allocatable would have entries that
2265eda14cbcSMatt Macy 	 * metaslab_sync_done() would try to re-add later.
2266eda14cbcSMatt Macy 	 *
2267eda14cbcSMatt Macy 	 * That's why before dropping the lock we remember the synced length
2268eda14cbcSMatt Macy 	 * of the metaslab and read up to that point of the space map,
2269eda14cbcSMatt Macy 	 * ignoring entries appended by metaslab_sync() that happen after we
2270eda14cbcSMatt Macy 	 * drop the lock.
2271eda14cbcSMatt Macy 	 */
2272eda14cbcSMatt Macy 	uint64_t length = msp->ms_synced_length;
2273eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
2274eda14cbcSMatt Macy 
2275eda14cbcSMatt Macy 	hrtime_t load_start = gethrtime();
2276eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap;
2277eda14cbcSMatt Macy 	if (msp->ms_allocatable->rt_arg == NULL) {
2278eda14cbcSMatt Macy 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2279eda14cbcSMatt Macy 	} else {
2280eda14cbcSMatt Macy 		mrap = msp->ms_allocatable->rt_arg;
2281eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = NULL;
2282eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = NULL;
2283eda14cbcSMatt Macy 	}
2284eda14cbcSMatt Macy 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2285eda14cbcSMatt Macy 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2286eda14cbcSMatt Macy 
2287eda14cbcSMatt Macy 	if (msp->ms_sm != NULL) {
2288eda14cbcSMatt Macy 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2289eda14cbcSMatt Macy 		    SM_FREE, length);
2290eda14cbcSMatt Macy 
2291eda14cbcSMatt Macy 		/* Now, populate the size-sorted tree. */
2292eda14cbcSMatt Macy 		metaslab_rt_create(msp->ms_allocatable, mrap);
2293eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2294eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = mrap;
2295eda14cbcSMatt Macy 
2296eda14cbcSMatt Macy 		struct mssa_arg arg = {0};
2297eda14cbcSMatt Macy 		arg.rt = msp->ms_allocatable;
2298eda14cbcSMatt Macy 		arg.mra = mrap;
2299eda14cbcSMatt Macy 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2300eda14cbcSMatt Macy 		    &arg);
2301eda14cbcSMatt Macy 	} else {
2302eda14cbcSMatt Macy 		/*
2303eda14cbcSMatt Macy 		 * Add the size-sorted tree first, since we don't need to load
2304eda14cbcSMatt Macy 		 * the metaslab from the spacemap.
2305eda14cbcSMatt Macy 		 */
2306eda14cbcSMatt Macy 		metaslab_rt_create(msp->ms_allocatable, mrap);
2307eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2308eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = mrap;
2309eda14cbcSMatt Macy 		/*
2310eda14cbcSMatt Macy 		 * The space map has not been allocated yet, so treat
2311eda14cbcSMatt Macy 		 * all the space in the metaslab as free and add it to the
2312eda14cbcSMatt Macy 		 * ms_allocatable tree.
2313eda14cbcSMatt Macy 		 */
2314eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocatable,
2315eda14cbcSMatt Macy 		    msp->ms_start, msp->ms_size);
2316eda14cbcSMatt Macy 
2317f9693befSMartin Matuska 		if (msp->ms_new) {
2318eda14cbcSMatt Macy 			/*
2319eda14cbcSMatt Macy 			 * If the ms_sm doesn't exist, this means that this
2320eda14cbcSMatt Macy 			 * metaslab hasn't gone through metaslab_sync() and
2321eda14cbcSMatt Macy 			 * thus has never been dirtied. So we shouldn't
2322eda14cbcSMatt Macy 			 * expect any unflushed allocs or frees from previous
2323eda14cbcSMatt Macy 			 * TXGs.
2324eda14cbcSMatt Macy 			 */
2325eda14cbcSMatt Macy 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2326eda14cbcSMatt Macy 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2327eda14cbcSMatt Macy 		}
2328eda14cbcSMatt Macy 	}
2329eda14cbcSMatt Macy 
2330eda14cbcSMatt Macy 	/*
2331eda14cbcSMatt Macy 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2332eda14cbcSMatt Macy 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2333eda14cbcSMatt Macy 	 * while we are about to use them and populate the ms_allocatable.
2334eda14cbcSMatt Macy 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2335eda14cbcSMatt Macy 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2336eda14cbcSMatt Macy 	 */
2337eda14cbcSMatt Macy 	mutex_enter(&msp->ms_sync_lock);
2338eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
2339eda14cbcSMatt Macy 
2340eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2341eda14cbcSMatt Macy 	ASSERT(!msp->ms_flushing);
2342eda14cbcSMatt Macy 
2343eda14cbcSMatt Macy 	if (error != 0) {
2344eda14cbcSMatt Macy 		mutex_exit(&msp->ms_sync_lock);
2345eda14cbcSMatt Macy 		return (error);
2346eda14cbcSMatt Macy 	}
2347eda14cbcSMatt Macy 
2348eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, !=, NULL);
2349eda14cbcSMatt Macy 	msp->ms_loaded = B_TRUE;
2350eda14cbcSMatt Macy 
2351eda14cbcSMatt Macy 	/*
2352eda14cbcSMatt Macy 	 * Apply all the unflushed changes to ms_allocatable right
2353eda14cbcSMatt Macy 	 * away so any manipulations we do below have a clear view
2354eda14cbcSMatt Macy 	 * of what is allocated and what is free.
2355eda14cbcSMatt Macy 	 */
2356eda14cbcSMatt Macy 	range_tree_walk(msp->ms_unflushed_allocs,
2357eda14cbcSMatt Macy 	    range_tree_remove, msp->ms_allocatable);
2358eda14cbcSMatt Macy 	range_tree_walk(msp->ms_unflushed_frees,
2359eda14cbcSMatt Macy 	    range_tree_add, msp->ms_allocatable);
2360eda14cbcSMatt Macy 
2361eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, !=, NULL);
2362eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2363eda14cbcSMatt Macy 	if (spa_syncing_log_sm(spa) != NULL) {
2364eda14cbcSMatt Macy 		ASSERT(spa_feature_is_enabled(spa,
2365eda14cbcSMatt Macy 		    SPA_FEATURE_LOG_SPACEMAP));
2366eda14cbcSMatt Macy 
2367eda14cbcSMatt Macy 		/*
2368eda14cbcSMatt Macy 		 * If we use a log space map we add all the segments
2369eda14cbcSMatt Macy 		 * that are in ms_unflushed_frees so they are available
2370eda14cbcSMatt Macy 		 * for allocation.
2371eda14cbcSMatt Macy 		 *
2372eda14cbcSMatt Macy 		 * ms_allocatable needs to contain all free segments
2373eda14cbcSMatt Macy 		 * that are ready for allocations (thus not segments
2374eda14cbcSMatt Macy 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2375eda14cbcSMatt Macy 		 * But if we grab the lock in this code path at a sync
2376eda14cbcSMatt Macy 		 * pass later that 1, then it also contains the
2377eda14cbcSMatt Macy 		 * segments of ms_freed (they were added to it earlier
2378eda14cbcSMatt Macy 		 * in this path through ms_unflushed_frees). So we
2379eda14cbcSMatt Macy 		 * need to remove all the segments that exist in
2380eda14cbcSMatt Macy 		 * ms_freed from ms_allocatable as they will be added
2381eda14cbcSMatt Macy 		 * later in metaslab_sync_done().
2382eda14cbcSMatt Macy 		 *
2383eda14cbcSMatt Macy 		 * When there's no log space map, the ms_allocatable
2384eda14cbcSMatt Macy 		 * correctly doesn't contain any segments that exist
2385eda14cbcSMatt Macy 		 * in ms_freed [see ms_synced_length].
2386eda14cbcSMatt Macy 		 */
2387eda14cbcSMatt Macy 		range_tree_walk(msp->ms_freed,
2388eda14cbcSMatt Macy 		    range_tree_remove, msp->ms_allocatable);
2389eda14cbcSMatt Macy 	}
2390eda14cbcSMatt Macy 
2391eda14cbcSMatt Macy 	/*
2392eda14cbcSMatt Macy 	 * If we are not using the log space map, ms_allocatable
2393eda14cbcSMatt Macy 	 * contains the segments that exist in the ms_defer trees
2394eda14cbcSMatt Macy 	 * [see ms_synced_length]. Thus we need to remove them
2395eda14cbcSMatt Macy 	 * from ms_allocatable as they will be added again in
2396eda14cbcSMatt Macy 	 * metaslab_sync_done().
2397eda14cbcSMatt Macy 	 *
2398eda14cbcSMatt Macy 	 * If we are using the log space map, ms_allocatable still
2399eda14cbcSMatt Macy 	 * contains the segments that exist in the ms_defer trees.
2400eda14cbcSMatt Macy 	 * Not because it read them through the ms_sm though. But
2401eda14cbcSMatt Macy 	 * because these segments are part of ms_unflushed_frees
2402eda14cbcSMatt Macy 	 * whose segments we add to ms_allocatable earlier in this
2403eda14cbcSMatt Macy 	 * code path.
2404eda14cbcSMatt Macy 	 */
2405eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2406eda14cbcSMatt Macy 		range_tree_walk(msp->ms_defer[t],
2407eda14cbcSMatt Macy 		    range_tree_remove, msp->ms_allocatable);
2408eda14cbcSMatt Macy 	}
2409eda14cbcSMatt Macy 
2410eda14cbcSMatt Macy 	/*
2411eda14cbcSMatt Macy 	 * Call metaslab_recalculate_weight_and_sort() now that the
2412eda14cbcSMatt Macy 	 * metaslab is loaded so we get the metaslab's real weight.
2413eda14cbcSMatt Macy 	 *
2414eda14cbcSMatt Macy 	 * Unless this metaslab was created with older software and
2415eda14cbcSMatt Macy 	 * has not yet been converted to use segment-based weight, we
2416eda14cbcSMatt Macy 	 * expect the new weight to be better or equal to the weight
2417eda14cbcSMatt Macy 	 * that the metaslab had while it was not loaded. This is
2418eda14cbcSMatt Macy 	 * because the old weight does not take into account the
2419eda14cbcSMatt Macy 	 * consolidation of adjacent segments between TXGs. [see
2420eda14cbcSMatt Macy 	 * comment for ms_synchist and ms_deferhist[] for more info]
2421eda14cbcSMatt Macy 	 */
2422eda14cbcSMatt Macy 	uint64_t weight = msp->ms_weight;
2423eda14cbcSMatt Macy 	uint64_t max_size = msp->ms_max_size;
2424eda14cbcSMatt Macy 	metaslab_recalculate_weight_and_sort(msp);
2425eda14cbcSMatt Macy 	if (!WEIGHT_IS_SPACEBASED(weight))
2426eda14cbcSMatt Macy 		ASSERT3U(weight, <=, msp->ms_weight);
2427eda14cbcSMatt Macy 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2428eda14cbcSMatt Macy 	ASSERT3U(max_size, <=, msp->ms_max_size);
2429eda14cbcSMatt Macy 	hrtime_t load_end = gethrtime();
2430eda14cbcSMatt Macy 	msp->ms_load_time = load_end;
2431eda14cbcSMatt Macy 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2432eda14cbcSMatt Macy 	    "ms_id %llu, smp_length %llu, "
2433eda14cbcSMatt Macy 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2434eda14cbcSMatt Macy 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2435eda14cbcSMatt Macy 	    "loading_time %lld ms, ms_max_size %llu, "
2436eda14cbcSMatt Macy 	    "max size error %lld, "
2437eda14cbcSMatt Macy 	    "old_weight %llx, new_weight %llx",
243833b8c039SMartin Matuska 	    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
243933b8c039SMartin Matuska 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
244033b8c039SMartin Matuska 	    (u_longlong_t)msp->ms_id,
244133b8c039SMartin Matuska 	    (u_longlong_t)space_map_length(msp->ms_sm),
244233b8c039SMartin Matuska 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
244333b8c039SMartin Matuska 	    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
244433b8c039SMartin Matuska 	    (u_longlong_t)range_tree_space(msp->ms_freed),
244533b8c039SMartin Matuska 	    (u_longlong_t)range_tree_space(msp->ms_defer[0]),
244633b8c039SMartin Matuska 	    (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2447eda14cbcSMatt Macy 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2448eda14cbcSMatt Macy 	    (longlong_t)((load_end - load_start) / 1000000),
244933b8c039SMartin Matuska 	    (u_longlong_t)msp->ms_max_size,
245033b8c039SMartin Matuska 	    (u_longlong_t)msp->ms_max_size - max_size,
245133b8c039SMartin Matuska 	    (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2452eda14cbcSMatt Macy 
2453eda14cbcSMatt Macy 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2454eda14cbcSMatt Macy 	mutex_exit(&msp->ms_sync_lock);
2455eda14cbcSMatt Macy 	return (0);
2456eda14cbcSMatt Macy }
2457eda14cbcSMatt Macy 
2458eda14cbcSMatt Macy int
2459eda14cbcSMatt Macy metaslab_load(metaslab_t *msp)
2460eda14cbcSMatt Macy {
2461eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2462eda14cbcSMatt Macy 
2463eda14cbcSMatt Macy 	/*
2464eda14cbcSMatt Macy 	 * There may be another thread loading the same metaslab, if that's
2465eda14cbcSMatt Macy 	 * the case just wait until the other thread is done and return.
2466eda14cbcSMatt Macy 	 */
2467eda14cbcSMatt Macy 	metaslab_load_wait(msp);
2468eda14cbcSMatt Macy 	if (msp->ms_loaded)
2469eda14cbcSMatt Macy 		return (0);
2470eda14cbcSMatt Macy 	VERIFY(!msp->ms_loading);
2471eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2472eda14cbcSMatt Macy 
2473eda14cbcSMatt Macy 	/*
2474eda14cbcSMatt Macy 	 * We set the loading flag BEFORE potentially dropping the lock to
2475eda14cbcSMatt Macy 	 * wait for an ongoing flush (see ms_flushing below). This way other
2476eda14cbcSMatt Macy 	 * threads know that there is already a thread that is loading this
2477eda14cbcSMatt Macy 	 * metaslab.
2478eda14cbcSMatt Macy 	 */
2479eda14cbcSMatt Macy 	msp->ms_loading = B_TRUE;
2480eda14cbcSMatt Macy 
2481eda14cbcSMatt Macy 	/*
2482eda14cbcSMatt Macy 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2483eda14cbcSMatt Macy 	 * both here (during space_map_load()) and in metaslab_flush() (when
2484eda14cbcSMatt Macy 	 * we flush our changes to the ms_sm).
2485eda14cbcSMatt Macy 	 */
2486eda14cbcSMatt Macy 	if (msp->ms_flushing)
2487eda14cbcSMatt Macy 		metaslab_flush_wait(msp);
2488eda14cbcSMatt Macy 
2489eda14cbcSMatt Macy 	/*
2490eda14cbcSMatt Macy 	 * In the possibility that we were waiting for the metaslab to be
2491eda14cbcSMatt Macy 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2492eda14cbcSMatt Macy 	 * no one else loaded the metaslab somehow.
2493eda14cbcSMatt Macy 	 */
2494eda14cbcSMatt Macy 	ASSERT(!msp->ms_loaded);
2495eda14cbcSMatt Macy 
2496eda14cbcSMatt Macy 	/*
2497eda14cbcSMatt Macy 	 * If we're loading a metaslab in the normal class, consider evicting
2498eda14cbcSMatt Macy 	 * another one to keep our memory usage under the limit defined by the
2499eda14cbcSMatt Macy 	 * zfs_metaslab_mem_limit tunable.
2500eda14cbcSMatt Macy 	 */
2501eda14cbcSMatt Macy 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2502eda14cbcSMatt Macy 	    msp->ms_group->mg_class) {
2503eda14cbcSMatt Macy 		metaslab_potentially_evict(msp->ms_group->mg_class);
2504eda14cbcSMatt Macy 	}
2505eda14cbcSMatt Macy 
2506eda14cbcSMatt Macy 	int error = metaslab_load_impl(msp);
2507eda14cbcSMatt Macy 
2508eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2509eda14cbcSMatt Macy 	msp->ms_loading = B_FALSE;
2510eda14cbcSMatt Macy 	cv_broadcast(&msp->ms_load_cv);
2511eda14cbcSMatt Macy 
2512eda14cbcSMatt Macy 	return (error);
2513eda14cbcSMatt Macy }
2514eda14cbcSMatt Macy 
2515eda14cbcSMatt Macy void
2516eda14cbcSMatt Macy metaslab_unload(metaslab_t *msp)
2517eda14cbcSMatt Macy {
2518eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2519eda14cbcSMatt Macy 
2520eda14cbcSMatt Macy 	/*
2521eda14cbcSMatt Macy 	 * This can happen if a metaslab is selected for eviction (in
2522eda14cbcSMatt Macy 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2523eda14cbcSMatt Macy 	 * metaslab_class_evict_old).
2524eda14cbcSMatt Macy 	 */
2525eda14cbcSMatt Macy 	if (!msp->ms_loaded)
2526eda14cbcSMatt Macy 		return;
2527eda14cbcSMatt Macy 
2528eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2529eda14cbcSMatt Macy 	msp->ms_loaded = B_FALSE;
2530eda14cbcSMatt Macy 	msp->ms_unload_time = gethrtime();
2531eda14cbcSMatt Macy 
2532eda14cbcSMatt Macy 	msp->ms_activation_weight = 0;
2533eda14cbcSMatt Macy 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2534eda14cbcSMatt Macy 
2535eda14cbcSMatt Macy 	if (msp->ms_group != NULL) {
2536eda14cbcSMatt Macy 		metaslab_class_t *mc = msp->ms_group->mg_class;
2537eda14cbcSMatt Macy 		multilist_sublist_t *mls =
25383ff01b23SMartin Matuska 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2539eda14cbcSMatt Macy 		if (multilist_link_active(&msp->ms_class_txg_node))
2540eda14cbcSMatt Macy 			multilist_sublist_remove(mls, msp);
2541eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
2542eda14cbcSMatt Macy 
2543eda14cbcSMatt Macy 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2544eda14cbcSMatt Macy 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2545eda14cbcSMatt Macy 		    "ms_id %llu, weight %llx, "
2546eda14cbcSMatt Macy 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2547eda14cbcSMatt Macy 		    "loaded %llu ms ago, max_size %llu",
254833b8c039SMartin Matuska 		    (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
254933b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
255033b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_id,
255133b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_weight,
255233b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_selected_txg,
255333b8c039SMartin Matuska 		    (u_longlong_t)(msp->ms_unload_time -
255433b8c039SMartin Matuska 		    msp->ms_selected_time) / 1000 / 1000,
255533b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_alloc_txg,
255633b8c039SMartin Matuska 		    (u_longlong_t)(msp->ms_unload_time -
255733b8c039SMartin Matuska 		    msp->ms_load_time) / 1000 / 1000,
255833b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_max_size);
2559eda14cbcSMatt Macy 	}
2560eda14cbcSMatt Macy 
2561eda14cbcSMatt Macy 	/*
2562eda14cbcSMatt Macy 	 * We explicitly recalculate the metaslab's weight based on its space
2563eda14cbcSMatt Macy 	 * map (as it is now not loaded). We want unload metaslabs to always
2564eda14cbcSMatt Macy 	 * have their weights calculated from the space map histograms, while
2565eda14cbcSMatt Macy 	 * loaded ones have it calculated from their in-core range tree
2566eda14cbcSMatt Macy 	 * [see metaslab_load()]. This way, the weight reflects the information
2567eda14cbcSMatt Macy 	 * available in-core, whether it is loaded or not.
2568eda14cbcSMatt Macy 	 *
2569eda14cbcSMatt Macy 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2570eda14cbcSMatt Macy 	 * at which point it doesn't make sense for us to do the recalculation
2571eda14cbcSMatt Macy 	 * and the sorting.
2572eda14cbcSMatt Macy 	 */
2573eda14cbcSMatt Macy 	if (msp->ms_group != NULL)
2574eda14cbcSMatt Macy 		metaslab_recalculate_weight_and_sort(msp);
2575eda14cbcSMatt Macy }
2576eda14cbcSMatt Macy 
2577eda14cbcSMatt Macy /*
2578eda14cbcSMatt Macy  * We want to optimize the memory use of the per-metaslab range
2579eda14cbcSMatt Macy  * trees. To do this, we store the segments in the range trees in
2580eda14cbcSMatt Macy  * units of sectors, zero-indexing from the start of the metaslab. If
2581eda14cbcSMatt Macy  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2582eda14cbcSMatt Macy  * the ranges using two uint32_ts, rather than two uint64_ts.
2583eda14cbcSMatt Macy  */
2584eda14cbcSMatt Macy range_seg_type_t
2585eda14cbcSMatt Macy metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2586eda14cbcSMatt Macy     uint64_t *start, uint64_t *shift)
2587eda14cbcSMatt Macy {
2588eda14cbcSMatt Macy 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2589eda14cbcSMatt Macy 	    !zfs_metaslab_force_large_segs) {
2590eda14cbcSMatt Macy 		*shift = vdev->vdev_ashift;
2591eda14cbcSMatt Macy 		*start = msp->ms_start;
2592eda14cbcSMatt Macy 		return (RANGE_SEG32);
2593eda14cbcSMatt Macy 	} else {
2594eda14cbcSMatt Macy 		*shift = 0;
2595eda14cbcSMatt Macy 		*start = 0;
2596eda14cbcSMatt Macy 		return (RANGE_SEG64);
2597eda14cbcSMatt Macy 	}
2598eda14cbcSMatt Macy }
2599eda14cbcSMatt Macy 
2600eda14cbcSMatt Macy void
2601eda14cbcSMatt Macy metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2602eda14cbcSMatt Macy {
2603eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2604eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
2605eda14cbcSMatt Macy 	multilist_sublist_t *mls =
26063ff01b23SMartin Matuska 	    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2607eda14cbcSMatt Macy 	if (multilist_link_active(&msp->ms_class_txg_node))
2608eda14cbcSMatt Macy 		multilist_sublist_remove(mls, msp);
2609eda14cbcSMatt Macy 	msp->ms_selected_txg = txg;
2610eda14cbcSMatt Macy 	msp->ms_selected_time = gethrtime();
2611eda14cbcSMatt Macy 	multilist_sublist_insert_tail(mls, msp);
2612eda14cbcSMatt Macy 	multilist_sublist_unlock(mls);
2613eda14cbcSMatt Macy }
2614eda14cbcSMatt Macy 
2615eda14cbcSMatt Macy void
2616eda14cbcSMatt Macy metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2617eda14cbcSMatt Macy     int64_t defer_delta, int64_t space_delta)
2618eda14cbcSMatt Macy {
2619eda14cbcSMatt Macy 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2620eda14cbcSMatt Macy 
2621eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2622eda14cbcSMatt Macy 	ASSERT(vd->vdev_ms_count != 0);
2623eda14cbcSMatt Macy 
2624eda14cbcSMatt Macy 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2625eda14cbcSMatt Macy 	    vdev_deflated_space(vd, space_delta));
2626eda14cbcSMatt Macy }
2627eda14cbcSMatt Macy 
2628eda14cbcSMatt Macy int
2629eda14cbcSMatt Macy metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2630eda14cbcSMatt Macy     uint64_t txg, metaslab_t **msp)
2631eda14cbcSMatt Macy {
2632eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2633eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
2634eda14cbcSMatt Macy 	objset_t *mos = spa->spa_meta_objset;
2635eda14cbcSMatt Macy 	metaslab_t *ms;
2636eda14cbcSMatt Macy 	int error;
2637eda14cbcSMatt Macy 
2638eda14cbcSMatt Macy 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2639eda14cbcSMatt Macy 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2640eda14cbcSMatt Macy 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2641eda14cbcSMatt Macy 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2642eda14cbcSMatt Macy 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2643eda14cbcSMatt Macy 	multilist_link_init(&ms->ms_class_txg_node);
2644eda14cbcSMatt Macy 
2645eda14cbcSMatt Macy 	ms->ms_id = id;
2646eda14cbcSMatt Macy 	ms->ms_start = id << vd->vdev_ms_shift;
2647eda14cbcSMatt Macy 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2648eda14cbcSMatt Macy 	ms->ms_allocator = -1;
2649eda14cbcSMatt Macy 	ms->ms_new = B_TRUE;
2650eda14cbcSMatt Macy 
26517877fdebSMatt Macy 	vdev_ops_t *ops = vd->vdev_ops;
26527877fdebSMatt Macy 	if (ops->vdev_op_metaslab_init != NULL)
26537877fdebSMatt Macy 		ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
26547877fdebSMatt Macy 
2655eda14cbcSMatt Macy 	/*
2656eda14cbcSMatt Macy 	 * We only open space map objects that already exist. All others
265781b22a98SMartin Matuska 	 * will be opened when we finally allocate an object for it. For
265881b22a98SMartin Matuska 	 * readonly pools there is no need to open the space map object.
2659eda14cbcSMatt Macy 	 *
2660eda14cbcSMatt Macy 	 * Note:
2661eda14cbcSMatt Macy 	 * When called from vdev_expand(), we can't call into the DMU as
2662eda14cbcSMatt Macy 	 * we are holding the spa_config_lock as a writer and we would
2663eda14cbcSMatt Macy 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2664eda14cbcSMatt Macy 	 * that case, the object parameter is zero though, so we won't
2665eda14cbcSMatt Macy 	 * call into the DMU.
2666eda14cbcSMatt Macy 	 */
266781b22a98SMartin Matuska 	if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
266881b22a98SMartin Matuska 	    !spa->spa_read_spacemaps)) {
2669eda14cbcSMatt Macy 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2670eda14cbcSMatt Macy 		    ms->ms_size, vd->vdev_ashift);
2671eda14cbcSMatt Macy 
2672eda14cbcSMatt Macy 		if (error != 0) {
2673eda14cbcSMatt Macy 			kmem_free(ms, sizeof (metaslab_t));
2674eda14cbcSMatt Macy 			return (error);
2675eda14cbcSMatt Macy 		}
2676eda14cbcSMatt Macy 
2677eda14cbcSMatt Macy 		ASSERT(ms->ms_sm != NULL);
2678eda14cbcSMatt Macy 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2679eda14cbcSMatt Macy 	}
2680eda14cbcSMatt Macy 
2681eda14cbcSMatt Macy 	uint64_t shift, start;
2682f9693befSMartin Matuska 	range_seg_type_t type =
2683f9693befSMartin Matuska 	    metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2684eda14cbcSMatt Macy 
2685eda14cbcSMatt Macy 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2686f9693befSMartin Matuska 	for (int t = 0; t < TXG_SIZE; t++) {
2687f9693befSMartin Matuska 		ms->ms_allocating[t] = range_tree_create(NULL, type,
2688f9693befSMartin Matuska 		    NULL, start, shift);
2689f9693befSMartin Matuska 	}
2690f9693befSMartin Matuska 	ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2691f9693befSMartin Matuska 	ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2692f9693befSMartin Matuska 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2693f9693befSMartin Matuska 		ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2694f9693befSMartin Matuska 		    start, shift);
2695f9693befSMartin Matuska 	}
2696f9693befSMartin Matuska 	ms->ms_checkpointing =
2697f9693befSMartin Matuska 	    range_tree_create(NULL, type, NULL, start, shift);
2698f9693befSMartin Matuska 	ms->ms_unflushed_allocs =
2699f9693befSMartin Matuska 	    range_tree_create(NULL, type, NULL, start, shift);
2700f9693befSMartin Matuska 
2701f9693befSMartin Matuska 	metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2702f9693befSMartin Matuska 	mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2703f9693befSMartin Matuska 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2704f9693befSMartin Matuska 	ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2705f9693befSMartin Matuska 	    type, mrap, start, shift);
2706eda14cbcSMatt Macy 
2707eda14cbcSMatt Macy 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2708eda14cbcSMatt Macy 
2709eda14cbcSMatt Macy 	metaslab_group_add(mg, ms);
2710eda14cbcSMatt Macy 	metaslab_set_fragmentation(ms, B_FALSE);
2711eda14cbcSMatt Macy 
2712eda14cbcSMatt Macy 	/*
2713eda14cbcSMatt Macy 	 * If we're opening an existing pool (txg == 0) or creating
2714eda14cbcSMatt Macy 	 * a new one (txg == TXG_INITIAL), all space is available now.
2715eda14cbcSMatt Macy 	 * If we're adding space to an existing pool, the new space
2716eda14cbcSMatt Macy 	 * does not become available until after this txg has synced.
2717eda14cbcSMatt Macy 	 * The metaslab's weight will also be initialized when we sync
2718eda14cbcSMatt Macy 	 * out this txg. This ensures that we don't attempt to allocate
2719eda14cbcSMatt Macy 	 * from it before we have initialized it completely.
2720eda14cbcSMatt Macy 	 */
2721eda14cbcSMatt Macy 	if (txg <= TXG_INITIAL) {
2722eda14cbcSMatt Macy 		metaslab_sync_done(ms, 0);
2723eda14cbcSMatt Macy 		metaslab_space_update(vd, mg->mg_class,
2724eda14cbcSMatt Macy 		    metaslab_allocated_space(ms), 0, 0);
2725eda14cbcSMatt Macy 	}
2726eda14cbcSMatt Macy 
2727eda14cbcSMatt Macy 	if (txg != 0) {
2728eda14cbcSMatt Macy 		vdev_dirty(vd, 0, NULL, txg);
2729eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2730eda14cbcSMatt Macy 	}
2731eda14cbcSMatt Macy 
2732eda14cbcSMatt Macy 	*msp = ms;
2733eda14cbcSMatt Macy 
2734eda14cbcSMatt Macy 	return (0);
2735eda14cbcSMatt Macy }
2736eda14cbcSMatt Macy 
2737eda14cbcSMatt Macy static void
2738eda14cbcSMatt Macy metaslab_fini_flush_data(metaslab_t *msp)
2739eda14cbcSMatt Macy {
2740eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2741eda14cbcSMatt Macy 
2742eda14cbcSMatt Macy 	if (metaslab_unflushed_txg(msp) == 0) {
2743eda14cbcSMatt Macy 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2744eda14cbcSMatt Macy 		    ==, NULL);
2745eda14cbcSMatt Macy 		return;
2746eda14cbcSMatt Macy 	}
2747eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2748eda14cbcSMatt Macy 
2749eda14cbcSMatt Macy 	mutex_enter(&spa->spa_flushed_ms_lock);
2750eda14cbcSMatt Macy 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2751eda14cbcSMatt Macy 	mutex_exit(&spa->spa_flushed_ms_lock);
2752eda14cbcSMatt Macy 
2753eda14cbcSMatt Macy 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2754716fd348SMartin Matuska 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2755716fd348SMartin Matuska 	    metaslab_unflushed_dirty(msp));
2756eda14cbcSMatt Macy }
2757eda14cbcSMatt Macy 
2758eda14cbcSMatt Macy uint64_t
2759eda14cbcSMatt Macy metaslab_unflushed_changes_memused(metaslab_t *ms)
2760eda14cbcSMatt Macy {
2761eda14cbcSMatt Macy 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2762eda14cbcSMatt Macy 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2763eda14cbcSMatt Macy 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2764eda14cbcSMatt Macy }
2765eda14cbcSMatt Macy 
2766eda14cbcSMatt Macy void
2767eda14cbcSMatt Macy metaslab_fini(metaslab_t *msp)
2768eda14cbcSMatt Macy {
2769eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
2770eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2771eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
2772eda14cbcSMatt Macy 
2773eda14cbcSMatt Macy 	metaslab_fini_flush_data(msp);
2774eda14cbcSMatt Macy 
2775eda14cbcSMatt Macy 	metaslab_group_remove(mg, msp);
2776eda14cbcSMatt Macy 
2777eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
2778eda14cbcSMatt Macy 	VERIFY(msp->ms_group == NULL);
2779f9693befSMartin Matuska 
2780184c1b94SMartin Matuska 	/*
2781f9693befSMartin Matuska 	 * If this metaslab hasn't been through metaslab_sync_done() yet its
2782184c1b94SMartin Matuska 	 * space hasn't been accounted for in its vdev and doesn't need to be
2783184c1b94SMartin Matuska 	 * subtracted.
2784184c1b94SMartin Matuska 	 */
2785f9693befSMartin Matuska 	if (!msp->ms_new) {
2786eda14cbcSMatt Macy 		metaslab_space_update(vd, mg->mg_class,
2787eda14cbcSMatt Macy 		    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2788eda14cbcSMatt Macy 
2789184c1b94SMartin Matuska 	}
2790eda14cbcSMatt Macy 	space_map_close(msp->ms_sm);
2791eda14cbcSMatt Macy 	msp->ms_sm = NULL;
2792eda14cbcSMatt Macy 
2793eda14cbcSMatt Macy 	metaslab_unload(msp);
2794184c1b94SMartin Matuska 
2795eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_allocatable);
2796eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_freeing);
2797eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_freed);
2798eda14cbcSMatt Macy 
2799eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2800eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
2801eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
2802eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
2803eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2804eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_unflushed_allocs);
2805184c1b94SMartin Matuska 	range_tree_destroy(msp->ms_checkpointing);
2806eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2807eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_unflushed_frees);
2808eda14cbcSMatt Macy 
2809eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++) {
2810eda14cbcSMatt Macy 		range_tree_destroy(msp->ms_allocating[t]);
2811eda14cbcSMatt Macy 	}
2812eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2813eda14cbcSMatt Macy 		range_tree_destroy(msp->ms_defer[t]);
2814eda14cbcSMatt Macy 	}
2815eda14cbcSMatt Macy 	ASSERT0(msp->ms_deferspace);
2816eda14cbcSMatt Macy 
2817eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++)
2818eda14cbcSMatt Macy 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2819eda14cbcSMatt Macy 
2820eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2821eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_trim);
2822eda14cbcSMatt Macy 
2823eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
2824eda14cbcSMatt Macy 	cv_destroy(&msp->ms_load_cv);
2825eda14cbcSMatt Macy 	cv_destroy(&msp->ms_flush_cv);
2826eda14cbcSMatt Macy 	mutex_destroy(&msp->ms_lock);
2827eda14cbcSMatt Macy 	mutex_destroy(&msp->ms_sync_lock);
2828eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocator, ==, -1);
2829eda14cbcSMatt Macy 
2830eda14cbcSMatt Macy 	kmem_free(msp, sizeof (metaslab_t));
2831eda14cbcSMatt Macy }
2832eda14cbcSMatt Macy 
2833eda14cbcSMatt Macy #define	FRAGMENTATION_TABLE_SIZE	17
2834eda14cbcSMatt Macy 
2835eda14cbcSMatt Macy /*
2836eda14cbcSMatt Macy  * This table defines a segment size based fragmentation metric that will
2837eda14cbcSMatt Macy  * allow each metaslab to derive its own fragmentation value. This is done
2838eda14cbcSMatt Macy  * by calculating the space in each bucket of the spacemap histogram and
2839eda14cbcSMatt Macy  * multiplying that by the fragmentation metric in this table. Doing
2840eda14cbcSMatt Macy  * this for all buckets and dividing it by the total amount of free
2841eda14cbcSMatt Macy  * space in this metaslab (i.e. the total free space in all buckets) gives
2842eda14cbcSMatt Macy  * us the fragmentation metric. This means that a high fragmentation metric
2843eda14cbcSMatt Macy  * equates to most of the free space being comprised of small segments.
2844eda14cbcSMatt Macy  * Conversely, if the metric is low, then most of the free space is in
2845eda14cbcSMatt Macy  * large segments. A 10% change in fragmentation equates to approximately
2846eda14cbcSMatt Macy  * double the number of segments.
2847eda14cbcSMatt Macy  *
2848eda14cbcSMatt Macy  * This table defines 0% fragmented space using 16MB segments. Testing has
2849eda14cbcSMatt Macy  * shown that segments that are greater than or equal to 16MB do not suffer
2850eda14cbcSMatt Macy  * from drastic performance problems. Using this value, we derive the rest
2851eda14cbcSMatt Macy  * of the table. Since the fragmentation value is never stored on disk, it
2852eda14cbcSMatt Macy  * is possible to change these calculations in the future.
2853eda14cbcSMatt Macy  */
2854e92ffd9bSMartin Matuska static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2855eda14cbcSMatt Macy 	100,	/* 512B	*/
2856eda14cbcSMatt Macy 	100,	/* 1K	*/
2857eda14cbcSMatt Macy 	98,	/* 2K	*/
2858eda14cbcSMatt Macy 	95,	/* 4K	*/
2859eda14cbcSMatt Macy 	90,	/* 8K	*/
2860eda14cbcSMatt Macy 	80,	/* 16K	*/
2861eda14cbcSMatt Macy 	70,	/* 32K	*/
2862eda14cbcSMatt Macy 	60,	/* 64K	*/
2863eda14cbcSMatt Macy 	50,	/* 128K	*/
2864eda14cbcSMatt Macy 	40,	/* 256K	*/
2865eda14cbcSMatt Macy 	30,	/* 512K	*/
2866eda14cbcSMatt Macy 	20,	/* 1M	*/
2867eda14cbcSMatt Macy 	15,	/* 2M	*/
2868eda14cbcSMatt Macy 	10,	/* 4M	*/
2869eda14cbcSMatt Macy 	5,	/* 8M	*/
2870eda14cbcSMatt Macy 	0	/* 16M	*/
2871eda14cbcSMatt Macy };
2872eda14cbcSMatt Macy 
2873eda14cbcSMatt Macy /*
2874eda14cbcSMatt Macy  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2875eda14cbcSMatt Macy  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2876eda14cbcSMatt Macy  * been upgraded and does not support this metric. Otherwise, the return
2877eda14cbcSMatt Macy  * value should be in the range [0, 100].
2878eda14cbcSMatt Macy  */
2879eda14cbcSMatt Macy static void
2880eda14cbcSMatt Macy metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2881eda14cbcSMatt Macy {
2882eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2883eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
2884eda14cbcSMatt Macy 	uint64_t total = 0;
2885eda14cbcSMatt Macy 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2886eda14cbcSMatt Macy 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2887eda14cbcSMatt Macy 
2888eda14cbcSMatt Macy 	if (!feature_enabled) {
2889eda14cbcSMatt Macy 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2890eda14cbcSMatt Macy 		return;
2891eda14cbcSMatt Macy 	}
2892eda14cbcSMatt Macy 
2893eda14cbcSMatt Macy 	/*
2894eda14cbcSMatt Macy 	 * A null space map means that the entire metaslab is free
2895eda14cbcSMatt Macy 	 * and thus is not fragmented.
2896eda14cbcSMatt Macy 	 */
2897eda14cbcSMatt Macy 	if (msp->ms_sm == NULL) {
2898eda14cbcSMatt Macy 		msp->ms_fragmentation = 0;
2899eda14cbcSMatt Macy 		return;
2900eda14cbcSMatt Macy 	}
2901eda14cbcSMatt Macy 
2902eda14cbcSMatt Macy 	/*
2903eda14cbcSMatt Macy 	 * If this metaslab's space map has not been upgraded, flag it
2904eda14cbcSMatt Macy 	 * so that we upgrade next time we encounter it.
2905eda14cbcSMatt Macy 	 */
2906eda14cbcSMatt Macy 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2907eda14cbcSMatt Macy 		uint64_t txg = spa_syncing_txg(spa);
2908eda14cbcSMatt Macy 		vdev_t *vd = msp->ms_group->mg_vd;
2909eda14cbcSMatt Macy 
2910eda14cbcSMatt Macy 		/*
2911eda14cbcSMatt Macy 		 * If we've reached the final dirty txg, then we must
2912eda14cbcSMatt Macy 		 * be shutting down the pool. We don't want to dirty
2913eda14cbcSMatt Macy 		 * any data past this point so skip setting the condense
2914eda14cbcSMatt Macy 		 * flag. We can retry this action the next time the pool
2915eda14cbcSMatt Macy 		 * is imported. We also skip marking this metaslab for
2916eda14cbcSMatt Macy 		 * condensing if the caller has explicitly set nodirty.
2917eda14cbcSMatt Macy 		 */
2918eda14cbcSMatt Macy 		if (!nodirty &&
2919eda14cbcSMatt Macy 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2920eda14cbcSMatt Macy 			msp->ms_condense_wanted = B_TRUE;
2921eda14cbcSMatt Macy 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2922eda14cbcSMatt Macy 			zfs_dbgmsg("txg %llu, requesting force condense: "
292333b8c039SMartin Matuska 			    "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
292433b8c039SMartin Matuska 			    (u_longlong_t)msp->ms_id,
292533b8c039SMartin Matuska 			    (u_longlong_t)vd->vdev_id);
2926eda14cbcSMatt Macy 		}
2927eda14cbcSMatt Macy 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2928eda14cbcSMatt Macy 		return;
2929eda14cbcSMatt Macy 	}
2930eda14cbcSMatt Macy 
2931eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2932eda14cbcSMatt Macy 		uint64_t space = 0;
2933eda14cbcSMatt Macy 		uint8_t shift = msp->ms_sm->sm_shift;
2934eda14cbcSMatt Macy 
2935eda14cbcSMatt Macy 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2936eda14cbcSMatt Macy 		    FRAGMENTATION_TABLE_SIZE - 1);
2937eda14cbcSMatt Macy 
2938eda14cbcSMatt Macy 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2939eda14cbcSMatt Macy 			continue;
2940eda14cbcSMatt Macy 
2941eda14cbcSMatt Macy 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2942eda14cbcSMatt Macy 		total += space;
2943eda14cbcSMatt Macy 
2944eda14cbcSMatt Macy 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2945eda14cbcSMatt Macy 		fragmentation += space * zfs_frag_table[idx];
2946eda14cbcSMatt Macy 	}
2947eda14cbcSMatt Macy 
2948eda14cbcSMatt Macy 	if (total > 0)
2949eda14cbcSMatt Macy 		fragmentation /= total;
2950eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
2951eda14cbcSMatt Macy 
2952eda14cbcSMatt Macy 	msp->ms_fragmentation = fragmentation;
2953eda14cbcSMatt Macy }
2954eda14cbcSMatt Macy 
2955eda14cbcSMatt Macy /*
2956eda14cbcSMatt Macy  * Compute a weight -- a selection preference value -- for the given metaslab.
2957eda14cbcSMatt Macy  * This is based on the amount of free space, the level of fragmentation,
2958eda14cbcSMatt Macy  * the LBA range, and whether the metaslab is loaded.
2959eda14cbcSMatt Macy  */
2960eda14cbcSMatt Macy static uint64_t
2961eda14cbcSMatt Macy metaslab_space_weight(metaslab_t *msp)
2962eda14cbcSMatt Macy {
2963eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
2964eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2965eda14cbcSMatt Macy 	uint64_t weight, space;
2966eda14cbcSMatt Macy 
2967eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2968eda14cbcSMatt Macy 
2969eda14cbcSMatt Macy 	/*
2970eda14cbcSMatt Macy 	 * The baseline weight is the metaslab's free space.
2971eda14cbcSMatt Macy 	 */
2972eda14cbcSMatt Macy 	space = msp->ms_size - metaslab_allocated_space(msp);
2973eda14cbcSMatt Macy 
2974eda14cbcSMatt Macy 	if (metaslab_fragmentation_factor_enabled &&
2975eda14cbcSMatt Macy 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2976eda14cbcSMatt Macy 		/*
2977eda14cbcSMatt Macy 		 * Use the fragmentation information to inversely scale
2978eda14cbcSMatt Macy 		 * down the baseline weight. We need to ensure that we
2979eda14cbcSMatt Macy 		 * don't exclude this metaslab completely when it's 100%
2980eda14cbcSMatt Macy 		 * fragmented. To avoid this we reduce the fragmented value
2981eda14cbcSMatt Macy 		 * by 1.
2982eda14cbcSMatt Macy 		 */
2983eda14cbcSMatt Macy 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2984eda14cbcSMatt Macy 
2985eda14cbcSMatt Macy 		/*
2986eda14cbcSMatt Macy 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2987eda14cbcSMatt Macy 		 * this metaslab again. The fragmentation metric may have
2988eda14cbcSMatt Macy 		 * decreased the space to something smaller than
2989eda14cbcSMatt Macy 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2990eda14cbcSMatt Macy 		 * so that we can consume any remaining space.
2991eda14cbcSMatt Macy 		 */
2992eda14cbcSMatt Macy 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2993eda14cbcSMatt Macy 			space = SPA_MINBLOCKSIZE;
2994eda14cbcSMatt Macy 	}
2995eda14cbcSMatt Macy 	weight = space;
2996eda14cbcSMatt Macy 
2997eda14cbcSMatt Macy 	/*
2998eda14cbcSMatt Macy 	 * Modern disks have uniform bit density and constant angular velocity.
2999eda14cbcSMatt Macy 	 * Therefore, the outer recording zones are faster (higher bandwidth)
3000eda14cbcSMatt Macy 	 * than the inner zones by the ratio of outer to inner track diameter,
3001eda14cbcSMatt Macy 	 * which is typically around 2:1.  We account for this by assigning
3002eda14cbcSMatt Macy 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3003eda14cbcSMatt Macy 	 * In effect, this means that we'll select the metaslab with the most
3004eda14cbcSMatt Macy 	 * free bandwidth rather than simply the one with the most free space.
3005eda14cbcSMatt Macy 	 */
3006eda14cbcSMatt Macy 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3007eda14cbcSMatt Macy 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3008eda14cbcSMatt Macy 		ASSERT(weight >= space && weight <= 2 * space);
3009eda14cbcSMatt Macy 	}
3010eda14cbcSMatt Macy 
3011eda14cbcSMatt Macy 	/*
3012eda14cbcSMatt Macy 	 * If this metaslab is one we're actively using, adjust its
3013eda14cbcSMatt Macy 	 * weight to make it preferable to any inactive metaslab so
3014eda14cbcSMatt Macy 	 * we'll polish it off. If the fragmentation on this metaslab
3015eda14cbcSMatt Macy 	 * has exceed our threshold, then don't mark it active.
3016eda14cbcSMatt Macy 	 */
3017eda14cbcSMatt Macy 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3018eda14cbcSMatt Macy 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3019eda14cbcSMatt Macy 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3020eda14cbcSMatt Macy 	}
3021eda14cbcSMatt Macy 
3022eda14cbcSMatt Macy 	WEIGHT_SET_SPACEBASED(weight);
3023eda14cbcSMatt Macy 	return (weight);
3024eda14cbcSMatt Macy }
3025eda14cbcSMatt Macy 
3026eda14cbcSMatt Macy /*
3027eda14cbcSMatt Macy  * Return the weight of the specified metaslab, according to the segment-based
3028eda14cbcSMatt Macy  * weighting algorithm. The metaslab must be loaded. This function can
3029eda14cbcSMatt Macy  * be called within a sync pass since it relies only on the metaslab's
3030eda14cbcSMatt Macy  * range tree which is always accurate when the metaslab is loaded.
3031eda14cbcSMatt Macy  */
3032eda14cbcSMatt Macy static uint64_t
3033eda14cbcSMatt Macy metaslab_weight_from_range_tree(metaslab_t *msp)
3034eda14cbcSMatt Macy {
3035eda14cbcSMatt Macy 	uint64_t weight = 0;
3036eda14cbcSMatt Macy 	uint32_t segments = 0;
3037eda14cbcSMatt Macy 
3038eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3039eda14cbcSMatt Macy 
3040eda14cbcSMatt Macy 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3041eda14cbcSMatt Macy 	    i--) {
3042eda14cbcSMatt Macy 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3043eda14cbcSMatt Macy 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3044eda14cbcSMatt Macy 
3045eda14cbcSMatt Macy 		segments <<= 1;
3046eda14cbcSMatt Macy 		segments += msp->ms_allocatable->rt_histogram[i];
3047eda14cbcSMatt Macy 
3048eda14cbcSMatt Macy 		/*
3049eda14cbcSMatt Macy 		 * The range tree provides more precision than the space map
3050eda14cbcSMatt Macy 		 * and must be downgraded so that all values fit within the
3051eda14cbcSMatt Macy 		 * space map's histogram. This allows us to compare loaded
3052eda14cbcSMatt Macy 		 * vs. unloaded metaslabs to determine which metaslab is
3053eda14cbcSMatt Macy 		 * considered "best".
3054eda14cbcSMatt Macy 		 */
3055eda14cbcSMatt Macy 		if (i > max_idx)
3056eda14cbcSMatt Macy 			continue;
3057eda14cbcSMatt Macy 
3058eda14cbcSMatt Macy 		if (segments != 0) {
3059eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, segments);
3060eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, i);
3061eda14cbcSMatt Macy 			WEIGHT_SET_ACTIVE(weight, 0);
3062eda14cbcSMatt Macy 			break;
3063eda14cbcSMatt Macy 		}
3064eda14cbcSMatt Macy 	}
3065eda14cbcSMatt Macy 	return (weight);
3066eda14cbcSMatt Macy }
3067eda14cbcSMatt Macy 
3068eda14cbcSMatt Macy /*
3069eda14cbcSMatt Macy  * Calculate the weight based on the on-disk histogram. Should be applied
3070eda14cbcSMatt Macy  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3071eda14cbcSMatt Macy  * give results consistent with the on-disk state
3072eda14cbcSMatt Macy  */
3073eda14cbcSMatt Macy static uint64_t
3074eda14cbcSMatt Macy metaslab_weight_from_spacemap(metaslab_t *msp)
3075eda14cbcSMatt Macy {
3076eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3077eda14cbcSMatt Macy 	ASSERT(!msp->ms_loaded);
3078eda14cbcSMatt Macy 	ASSERT(sm != NULL);
3079eda14cbcSMatt Macy 	ASSERT3U(space_map_object(sm), !=, 0);
3080eda14cbcSMatt Macy 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3081eda14cbcSMatt Macy 
3082eda14cbcSMatt Macy 	/*
3083eda14cbcSMatt Macy 	 * Create a joint histogram from all the segments that have made
3084eda14cbcSMatt Macy 	 * it to the metaslab's space map histogram, that are not yet
3085eda14cbcSMatt Macy 	 * available for allocation because they are still in the freeing
3086eda14cbcSMatt Macy 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3087eda14cbcSMatt Macy 	 * these segments from the space map's histogram to get a more
3088eda14cbcSMatt Macy 	 * accurate weight.
3089eda14cbcSMatt Macy 	 */
3090eda14cbcSMatt Macy 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3091eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3092eda14cbcSMatt Macy 		deferspace_histogram[i] += msp->ms_synchist[i];
3093eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3094eda14cbcSMatt Macy 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3095eda14cbcSMatt Macy 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3096eda14cbcSMatt Macy 		}
3097eda14cbcSMatt Macy 	}
3098eda14cbcSMatt Macy 
3099eda14cbcSMatt Macy 	uint64_t weight = 0;
3100eda14cbcSMatt Macy 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3101eda14cbcSMatt Macy 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3102eda14cbcSMatt Macy 		    deferspace_histogram[i]);
3103eda14cbcSMatt Macy 		uint64_t count =
3104eda14cbcSMatt Macy 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3105eda14cbcSMatt Macy 		if (count != 0) {
3106eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, count);
3107eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3108eda14cbcSMatt Macy 			WEIGHT_SET_ACTIVE(weight, 0);
3109eda14cbcSMatt Macy 			break;
3110eda14cbcSMatt Macy 		}
3111eda14cbcSMatt Macy 	}
3112eda14cbcSMatt Macy 	return (weight);
3113eda14cbcSMatt Macy }
3114eda14cbcSMatt Macy 
3115eda14cbcSMatt Macy /*
3116eda14cbcSMatt Macy  * Compute a segment-based weight for the specified metaslab. The weight
3117eda14cbcSMatt Macy  * is determined by highest bucket in the histogram. The information
3118eda14cbcSMatt Macy  * for the highest bucket is encoded into the weight value.
3119eda14cbcSMatt Macy  */
3120eda14cbcSMatt Macy static uint64_t
3121eda14cbcSMatt Macy metaslab_segment_weight(metaslab_t *msp)
3122eda14cbcSMatt Macy {
3123eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3124eda14cbcSMatt Macy 	uint64_t weight = 0;
3125eda14cbcSMatt Macy 	uint8_t shift = mg->mg_vd->vdev_ashift;
3126eda14cbcSMatt Macy 
3127eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3128eda14cbcSMatt Macy 
3129eda14cbcSMatt Macy 	/*
3130eda14cbcSMatt Macy 	 * The metaslab is completely free.
3131eda14cbcSMatt Macy 	 */
3132eda14cbcSMatt Macy 	if (metaslab_allocated_space(msp) == 0) {
3133eda14cbcSMatt Macy 		int idx = highbit64(msp->ms_size) - 1;
3134eda14cbcSMatt Macy 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3135eda14cbcSMatt Macy 
3136eda14cbcSMatt Macy 		if (idx < max_idx) {
3137eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, 1ULL);
3138eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, idx);
3139eda14cbcSMatt Macy 		} else {
3140eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3141eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, max_idx);
3142eda14cbcSMatt Macy 		}
3143eda14cbcSMatt Macy 		WEIGHT_SET_ACTIVE(weight, 0);
3144eda14cbcSMatt Macy 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3145eda14cbcSMatt Macy 		return (weight);
3146eda14cbcSMatt Macy 	}
3147eda14cbcSMatt Macy 
3148eda14cbcSMatt Macy 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3149eda14cbcSMatt Macy 
3150eda14cbcSMatt Macy 	/*
3151eda14cbcSMatt Macy 	 * If the metaslab is fully allocated then just make the weight 0.
3152eda14cbcSMatt Macy 	 */
3153eda14cbcSMatt Macy 	if (metaslab_allocated_space(msp) == msp->ms_size)
3154eda14cbcSMatt Macy 		return (0);
3155eda14cbcSMatt Macy 	/*
3156eda14cbcSMatt Macy 	 * If the metaslab is already loaded, then use the range tree to
3157eda14cbcSMatt Macy 	 * determine the weight. Otherwise, we rely on the space map information
3158eda14cbcSMatt Macy 	 * to generate the weight.
3159eda14cbcSMatt Macy 	 */
3160eda14cbcSMatt Macy 	if (msp->ms_loaded) {
3161eda14cbcSMatt Macy 		weight = metaslab_weight_from_range_tree(msp);
3162eda14cbcSMatt Macy 	} else {
3163eda14cbcSMatt Macy 		weight = metaslab_weight_from_spacemap(msp);
3164eda14cbcSMatt Macy 	}
3165eda14cbcSMatt Macy 
3166eda14cbcSMatt Macy 	/*
3167eda14cbcSMatt Macy 	 * If the metaslab was active the last time we calculated its weight
3168eda14cbcSMatt Macy 	 * then keep it active. We want to consume the entire region that
3169eda14cbcSMatt Macy 	 * is associated with this weight.
3170eda14cbcSMatt Macy 	 */
3171eda14cbcSMatt Macy 	if (msp->ms_activation_weight != 0 && weight != 0)
3172eda14cbcSMatt Macy 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3173eda14cbcSMatt Macy 	return (weight);
3174eda14cbcSMatt Macy }
3175eda14cbcSMatt Macy 
3176eda14cbcSMatt Macy /*
3177eda14cbcSMatt Macy  * Determine if we should attempt to allocate from this metaslab. If the
3178eda14cbcSMatt Macy  * metaslab is loaded, then we can determine if the desired allocation
3179eda14cbcSMatt Macy  * can be satisfied by looking at the size of the maximum free segment
3180eda14cbcSMatt Macy  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3181eda14cbcSMatt Macy  * weight. For segment-based weighting we can determine the maximum
3182eda14cbcSMatt Macy  * allocation based on the index encoded in its value. For space-based
3183eda14cbcSMatt Macy  * weights we rely on the entire weight (excluding the weight-type bit).
3184eda14cbcSMatt Macy  */
3185eda14cbcSMatt Macy static boolean_t
3186eda14cbcSMatt Macy metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3187eda14cbcSMatt Macy {
3188eda14cbcSMatt Macy 	/*
3189eda14cbcSMatt Macy 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3190eda14cbcSMatt Macy 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3191eda14cbcSMatt Macy 	 * set), and we should use the fast check as long as we're not in
3192eda14cbcSMatt Macy 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3193eda14cbcSMatt Macy 	 * seconds since the metaslab was unloaded.
3194eda14cbcSMatt Macy 	 */
3195eda14cbcSMatt Macy 	if (msp->ms_loaded ||
3196eda14cbcSMatt Macy 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3197eda14cbcSMatt Macy 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3198eda14cbcSMatt Macy 		return (msp->ms_max_size >= asize);
3199eda14cbcSMatt Macy 
3200eda14cbcSMatt Macy 	boolean_t should_allocate;
3201eda14cbcSMatt Macy 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3202eda14cbcSMatt Macy 		/*
3203eda14cbcSMatt Macy 		 * The metaslab segment weight indicates segments in the
3204eda14cbcSMatt Macy 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3205eda14cbcSMatt Macy 		 * Since the asize might be in the middle of the range, we
3206eda14cbcSMatt Macy 		 * should attempt the allocation if asize < 2^(i+1).
3207eda14cbcSMatt Macy 		 */
3208eda14cbcSMatt Macy 		should_allocate = (asize <
3209eda14cbcSMatt Macy 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3210eda14cbcSMatt Macy 	} else {
3211eda14cbcSMatt Macy 		should_allocate = (asize <=
3212eda14cbcSMatt Macy 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3213eda14cbcSMatt Macy 	}
3214eda14cbcSMatt Macy 
3215eda14cbcSMatt Macy 	return (should_allocate);
3216eda14cbcSMatt Macy }
3217eda14cbcSMatt Macy 
3218eda14cbcSMatt Macy static uint64_t
3219eda14cbcSMatt Macy metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3220eda14cbcSMatt Macy {
3221eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
3222eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
3223eda14cbcSMatt Macy 	uint64_t weight;
3224eda14cbcSMatt Macy 
3225eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3226eda14cbcSMatt Macy 
3227eda14cbcSMatt Macy 	metaslab_set_fragmentation(msp, nodirty);
3228eda14cbcSMatt Macy 
3229eda14cbcSMatt Macy 	/*
3230eda14cbcSMatt Macy 	 * Update the maximum size. If the metaslab is loaded, this will
3231eda14cbcSMatt Macy 	 * ensure that we get an accurate maximum size if newly freed space
3232eda14cbcSMatt Macy 	 * has been added back into the free tree. If the metaslab is
3233eda14cbcSMatt Macy 	 * unloaded, we check if there's a larger free segment in the
3234eda14cbcSMatt Macy 	 * unflushed frees. This is a lower bound on the largest allocatable
3235eda14cbcSMatt Macy 	 * segment size. Coalescing of adjacent entries may reveal larger
3236eda14cbcSMatt Macy 	 * allocatable segments, but we aren't aware of those until loading
3237eda14cbcSMatt Macy 	 * the space map into a range tree.
3238eda14cbcSMatt Macy 	 */
3239eda14cbcSMatt Macy 	if (msp->ms_loaded) {
3240eda14cbcSMatt Macy 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3241eda14cbcSMatt Macy 	} else {
3242eda14cbcSMatt Macy 		msp->ms_max_size = MAX(msp->ms_max_size,
3243eda14cbcSMatt Macy 		    metaslab_largest_unflushed_free(msp));
3244eda14cbcSMatt Macy 	}
3245eda14cbcSMatt Macy 
3246eda14cbcSMatt Macy 	/*
3247eda14cbcSMatt Macy 	 * Segment-based weighting requires space map histogram support.
3248eda14cbcSMatt Macy 	 */
3249eda14cbcSMatt Macy 	if (zfs_metaslab_segment_weight_enabled &&
3250eda14cbcSMatt Macy 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3251eda14cbcSMatt Macy 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3252eda14cbcSMatt Macy 	    sizeof (space_map_phys_t))) {
3253eda14cbcSMatt Macy 		weight = metaslab_segment_weight(msp);
3254eda14cbcSMatt Macy 	} else {
3255eda14cbcSMatt Macy 		weight = metaslab_space_weight(msp);
3256eda14cbcSMatt Macy 	}
3257eda14cbcSMatt Macy 	return (weight);
3258eda14cbcSMatt Macy }
3259eda14cbcSMatt Macy 
3260eda14cbcSMatt Macy void
3261eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3262eda14cbcSMatt Macy {
3263eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3264eda14cbcSMatt Macy 
3265eda14cbcSMatt Macy 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3266eda14cbcSMatt Macy 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3267eda14cbcSMatt Macy 	metaslab_group_sort(msp->ms_group, msp,
3268eda14cbcSMatt Macy 	    metaslab_weight(msp, B_FALSE) | was_active);
3269eda14cbcSMatt Macy }
3270eda14cbcSMatt Macy 
3271eda14cbcSMatt Macy static int
3272eda14cbcSMatt Macy metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3273eda14cbcSMatt Macy     int allocator, uint64_t activation_weight)
3274eda14cbcSMatt Macy {
3275eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3276eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3277eda14cbcSMatt Macy 
3278eda14cbcSMatt Macy 	/*
3279eda14cbcSMatt Macy 	 * If we're activating for the claim code, we don't want to actually
3280eda14cbcSMatt Macy 	 * set the metaslab up for a specific allocator.
3281eda14cbcSMatt Macy 	 */
3282eda14cbcSMatt Macy 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3283eda14cbcSMatt Macy 		ASSERT0(msp->ms_activation_weight);
3284eda14cbcSMatt Macy 		msp->ms_activation_weight = msp->ms_weight;
3285eda14cbcSMatt Macy 		metaslab_group_sort(mg, msp, msp->ms_weight |
3286eda14cbcSMatt Macy 		    activation_weight);
3287eda14cbcSMatt Macy 		return (0);
3288eda14cbcSMatt Macy 	}
3289eda14cbcSMatt Macy 
3290eda14cbcSMatt Macy 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3291eda14cbcSMatt Macy 	    &mga->mga_primary : &mga->mga_secondary);
3292eda14cbcSMatt Macy 
3293eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3294eda14cbcSMatt Macy 	if (*mspp != NULL) {
3295eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
3296eda14cbcSMatt Macy 		return (EEXIST);
3297eda14cbcSMatt Macy 	}
3298eda14cbcSMatt Macy 
3299eda14cbcSMatt Macy 	*mspp = msp;
3300eda14cbcSMatt Macy 	ASSERT3S(msp->ms_allocator, ==, -1);
3301eda14cbcSMatt Macy 	msp->ms_allocator = allocator;
3302eda14cbcSMatt Macy 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3303eda14cbcSMatt Macy 
3304eda14cbcSMatt Macy 	ASSERT0(msp->ms_activation_weight);
3305eda14cbcSMatt Macy 	msp->ms_activation_weight = msp->ms_weight;
3306eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp,
3307eda14cbcSMatt Macy 	    msp->ms_weight | activation_weight);
3308eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3309eda14cbcSMatt Macy 
3310eda14cbcSMatt Macy 	return (0);
3311eda14cbcSMatt Macy }
3312eda14cbcSMatt Macy 
3313eda14cbcSMatt Macy static int
3314eda14cbcSMatt Macy metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3315eda14cbcSMatt Macy {
3316eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3317eda14cbcSMatt Macy 
3318eda14cbcSMatt Macy 	/*
3319eda14cbcSMatt Macy 	 * The current metaslab is already activated for us so there
3320eda14cbcSMatt Macy 	 * is nothing to do. Already activated though, doesn't mean
3321eda14cbcSMatt Macy 	 * that this metaslab is activated for our allocator nor our
3322eda14cbcSMatt Macy 	 * requested activation weight. The metaslab could have started
3323eda14cbcSMatt Macy 	 * as an active one for our allocator but changed allocators
3324eda14cbcSMatt Macy 	 * while we were waiting to grab its ms_lock or we stole it
3325eda14cbcSMatt Macy 	 * [see find_valid_metaslab()]. This means that there is a
3326eda14cbcSMatt Macy 	 * possibility of passivating a metaslab of another allocator
3327eda14cbcSMatt Macy 	 * or from a different activation mask, from this thread.
3328eda14cbcSMatt Macy 	 */
3329eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3330eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
3331eda14cbcSMatt Macy 		return (0);
3332eda14cbcSMatt Macy 	}
3333eda14cbcSMatt Macy 
3334eda14cbcSMatt Macy 	int error = metaslab_load(msp);
3335eda14cbcSMatt Macy 	if (error != 0) {
3336eda14cbcSMatt Macy 		metaslab_group_sort(msp->ms_group, msp, 0);
3337eda14cbcSMatt Macy 		return (error);
3338eda14cbcSMatt Macy 	}
3339eda14cbcSMatt Macy 
3340eda14cbcSMatt Macy 	/*
3341eda14cbcSMatt Macy 	 * When entering metaslab_load() we may have dropped the
3342eda14cbcSMatt Macy 	 * ms_lock because we were loading this metaslab, or we
3343eda14cbcSMatt Macy 	 * were waiting for another thread to load it for us. In
3344eda14cbcSMatt Macy 	 * that scenario, we recheck the weight of the metaslab
3345eda14cbcSMatt Macy 	 * to see if it was activated by another thread.
3346eda14cbcSMatt Macy 	 *
3347eda14cbcSMatt Macy 	 * If the metaslab was activated for another allocator or
3348eda14cbcSMatt Macy 	 * it was activated with a different activation weight (e.g.
3349eda14cbcSMatt Macy 	 * we wanted to make it a primary but it was activated as
3350eda14cbcSMatt Macy 	 * secondary) we return error (EBUSY).
3351eda14cbcSMatt Macy 	 *
3352eda14cbcSMatt Macy 	 * If the metaslab was activated for the same allocator
3353eda14cbcSMatt Macy 	 * and requested activation mask, skip activating it.
3354eda14cbcSMatt Macy 	 */
3355eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3356eda14cbcSMatt Macy 		if (msp->ms_allocator != allocator)
3357eda14cbcSMatt Macy 			return (EBUSY);
3358eda14cbcSMatt Macy 
3359eda14cbcSMatt Macy 		if ((msp->ms_weight & activation_weight) == 0)
3360eda14cbcSMatt Macy 			return (SET_ERROR(EBUSY));
3361eda14cbcSMatt Macy 
3362eda14cbcSMatt Macy 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3363eda14cbcSMatt Macy 		    msp->ms_primary);
3364eda14cbcSMatt Macy 		return (0);
3365eda14cbcSMatt Macy 	}
3366eda14cbcSMatt Macy 
3367eda14cbcSMatt Macy 	/*
3368eda14cbcSMatt Macy 	 * If the metaslab has literally 0 space, it will have weight 0. In
3369eda14cbcSMatt Macy 	 * that case, don't bother activating it. This can happen if the
3370eda14cbcSMatt Macy 	 * metaslab had space during find_valid_metaslab, but another thread
3371eda14cbcSMatt Macy 	 * loaded it and used all that space while we were waiting to grab the
3372eda14cbcSMatt Macy 	 * lock.
3373eda14cbcSMatt Macy 	 */
3374eda14cbcSMatt Macy 	if (msp->ms_weight == 0) {
3375eda14cbcSMatt Macy 		ASSERT0(range_tree_space(msp->ms_allocatable));
3376eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
3377eda14cbcSMatt Macy 	}
3378eda14cbcSMatt Macy 
3379eda14cbcSMatt Macy 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3380eda14cbcSMatt Macy 	    allocator, activation_weight)) != 0) {
3381eda14cbcSMatt Macy 		return (error);
3382eda14cbcSMatt Macy 	}
3383eda14cbcSMatt Macy 
3384eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3385eda14cbcSMatt Macy 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3386eda14cbcSMatt Macy 
3387eda14cbcSMatt Macy 	return (0);
3388eda14cbcSMatt Macy }
3389eda14cbcSMatt Macy 
3390eda14cbcSMatt Macy static void
3391eda14cbcSMatt Macy metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3392eda14cbcSMatt Macy     uint64_t weight)
3393eda14cbcSMatt Macy {
3394eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3395eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3396eda14cbcSMatt Macy 
3397eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3398eda14cbcSMatt Macy 		metaslab_group_sort(mg, msp, weight);
3399eda14cbcSMatt Macy 		return;
3400eda14cbcSMatt Macy 	}
3401eda14cbcSMatt Macy 
3402eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3403eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, ==, mg);
3404eda14cbcSMatt Macy 	ASSERT3S(0, <=, msp->ms_allocator);
3405eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3406eda14cbcSMatt Macy 
3407eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3408eda14cbcSMatt Macy 	if (msp->ms_primary) {
3409eda14cbcSMatt Macy 		ASSERT3P(mga->mga_primary, ==, msp);
3410eda14cbcSMatt Macy 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3411eda14cbcSMatt Macy 		mga->mga_primary = NULL;
3412eda14cbcSMatt Macy 	} else {
3413eda14cbcSMatt Macy 		ASSERT3P(mga->mga_secondary, ==, msp);
3414eda14cbcSMatt Macy 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3415eda14cbcSMatt Macy 		mga->mga_secondary = NULL;
3416eda14cbcSMatt Macy 	}
3417eda14cbcSMatt Macy 	msp->ms_allocator = -1;
3418eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp, weight);
3419eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3420eda14cbcSMatt Macy }
3421eda14cbcSMatt Macy 
3422eda14cbcSMatt Macy static void
3423eda14cbcSMatt Macy metaslab_passivate(metaslab_t *msp, uint64_t weight)
3424eda14cbcSMatt Macy {
3425eda14cbcSMatt Macy 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3426eda14cbcSMatt Macy 
3427eda14cbcSMatt Macy 	/*
3428eda14cbcSMatt Macy 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3429eda14cbcSMatt Macy 	 * this metaslab again.  In that case, it had better be empty,
3430eda14cbcSMatt Macy 	 * or we would be leaving space on the table.
3431eda14cbcSMatt Macy 	 */
3432eda14cbcSMatt Macy 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3433eda14cbcSMatt Macy 	    size >= SPA_MINBLOCKSIZE ||
3434eda14cbcSMatt Macy 	    range_tree_space(msp->ms_allocatable) == 0);
3435eda14cbcSMatt Macy 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3436eda14cbcSMatt Macy 
3437eda14cbcSMatt Macy 	ASSERT(msp->ms_activation_weight != 0);
3438eda14cbcSMatt Macy 	msp->ms_activation_weight = 0;
3439eda14cbcSMatt Macy 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3440eda14cbcSMatt Macy 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3441eda14cbcSMatt Macy }
3442eda14cbcSMatt Macy 
3443eda14cbcSMatt Macy /*
3444eda14cbcSMatt Macy  * Segment-based metaslabs are activated once and remain active until
3445eda14cbcSMatt Macy  * we either fail an allocation attempt (similar to space-based metaslabs)
3446eda14cbcSMatt Macy  * or have exhausted the free space in zfs_metaslab_switch_threshold
3447eda14cbcSMatt Macy  * buckets since the metaslab was activated. This function checks to see
3448eda14cbcSMatt Macy  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3449eda14cbcSMatt Macy  * metaslab and passivates it proactively. This will allow us to select a
3450eda14cbcSMatt Macy  * metaslab with a larger contiguous region, if any, remaining within this
3451eda14cbcSMatt Macy  * metaslab group. If we're in sync pass > 1, then we continue using this
3452eda14cbcSMatt Macy  * metaslab so that we don't dirty more block and cause more sync passes.
3453eda14cbcSMatt Macy  */
3454eda14cbcSMatt Macy static void
3455eda14cbcSMatt Macy metaslab_segment_may_passivate(metaslab_t *msp)
3456eda14cbcSMatt Macy {
3457eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3458eda14cbcSMatt Macy 
3459eda14cbcSMatt Macy 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3460eda14cbcSMatt Macy 		return;
3461eda14cbcSMatt Macy 
3462eda14cbcSMatt Macy 	/*
3463eda14cbcSMatt Macy 	 * Since we are in the middle of a sync pass, the most accurate
3464eda14cbcSMatt Macy 	 * information that is accessible to us is the in-core range tree
3465eda14cbcSMatt Macy 	 * histogram; calculate the new weight based on that information.
3466eda14cbcSMatt Macy 	 */
3467eda14cbcSMatt Macy 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3468eda14cbcSMatt Macy 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3469eda14cbcSMatt Macy 	int current_idx = WEIGHT_GET_INDEX(weight);
3470eda14cbcSMatt Macy 
3471eda14cbcSMatt Macy 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3472eda14cbcSMatt Macy 		metaslab_passivate(msp, weight);
3473eda14cbcSMatt Macy }
3474eda14cbcSMatt Macy 
3475eda14cbcSMatt Macy static void
3476eda14cbcSMatt Macy metaslab_preload(void *arg)
3477eda14cbcSMatt Macy {
3478eda14cbcSMatt Macy 	metaslab_t *msp = arg;
3479eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
3480eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
3481eda14cbcSMatt Macy 	fstrans_cookie_t cookie = spl_fstrans_mark();
3482eda14cbcSMatt Macy 
3483eda14cbcSMatt Macy 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3484eda14cbcSMatt Macy 
3485eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3486eda14cbcSMatt Macy 	(void) metaslab_load(msp);
3487eda14cbcSMatt Macy 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3488eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3489eda14cbcSMatt Macy 	spl_fstrans_unmark(cookie);
3490eda14cbcSMatt Macy }
3491eda14cbcSMatt Macy 
3492eda14cbcSMatt Macy static void
3493eda14cbcSMatt Macy metaslab_group_preload(metaslab_group_t *mg)
3494eda14cbcSMatt Macy {
3495eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
3496eda14cbcSMatt Macy 	metaslab_t *msp;
3497eda14cbcSMatt Macy 	avl_tree_t *t = &mg->mg_metaslab_tree;
3498eda14cbcSMatt Macy 	int m = 0;
3499eda14cbcSMatt Macy 
3500eda14cbcSMatt Macy 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3501eda14cbcSMatt Macy 		taskq_wait_outstanding(mg->mg_taskq, 0);
3502eda14cbcSMatt Macy 		return;
3503eda14cbcSMatt Macy 	}
3504eda14cbcSMatt Macy 
3505eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3506eda14cbcSMatt Macy 
3507eda14cbcSMatt Macy 	/*
3508eda14cbcSMatt Macy 	 * Load the next potential metaslabs
3509eda14cbcSMatt Macy 	 */
3510eda14cbcSMatt Macy 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3511eda14cbcSMatt Macy 		ASSERT3P(msp->ms_group, ==, mg);
3512eda14cbcSMatt Macy 
3513eda14cbcSMatt Macy 		/*
3514eda14cbcSMatt Macy 		 * We preload only the maximum number of metaslabs specified
3515eda14cbcSMatt Macy 		 * by metaslab_preload_limit. If a metaslab is being forced
3516eda14cbcSMatt Macy 		 * to condense then we preload it too. This will ensure
3517eda14cbcSMatt Macy 		 * that force condensing happens in the next txg.
3518eda14cbcSMatt Macy 		 */
3519eda14cbcSMatt Macy 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3520eda14cbcSMatt Macy 			continue;
3521eda14cbcSMatt Macy 		}
3522eda14cbcSMatt Macy 
3523eda14cbcSMatt Macy 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3524eda14cbcSMatt Macy 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3525eda14cbcSMatt Macy 	}
3526eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3527eda14cbcSMatt Macy }
3528eda14cbcSMatt Macy 
3529eda14cbcSMatt Macy /*
3530eda14cbcSMatt Macy  * Determine if the space map's on-disk footprint is past our tolerance for
3531eda14cbcSMatt Macy  * inefficiency. We would like to use the following criteria to make our
3532eda14cbcSMatt Macy  * decision:
3533eda14cbcSMatt Macy  *
3534eda14cbcSMatt Macy  * 1. Do not condense if the size of the space map object would dramatically
3535eda14cbcSMatt Macy  *    increase as a result of writing out the free space range tree.
3536eda14cbcSMatt Macy  *
3537eda14cbcSMatt Macy  * 2. Condense if the on on-disk space map representation is at least
3538eda14cbcSMatt Macy  *    zfs_condense_pct/100 times the size of the optimal representation
3539eda14cbcSMatt Macy  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3540eda14cbcSMatt Macy  *
3541eda14cbcSMatt Macy  * 3. Do not condense if the on-disk size of the space map does not actually
3542eda14cbcSMatt Macy  *    decrease.
3543eda14cbcSMatt Macy  *
3544eda14cbcSMatt Macy  * Unfortunately, we cannot compute the on-disk size of the space map in this
3545eda14cbcSMatt Macy  * context because we cannot accurately compute the effects of compression, etc.
3546eda14cbcSMatt Macy  * Instead, we apply the heuristic described in the block comment for
3547eda14cbcSMatt Macy  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3548eda14cbcSMatt Macy  * is greater than a threshold number of blocks.
3549eda14cbcSMatt Macy  */
3550eda14cbcSMatt Macy static boolean_t
3551eda14cbcSMatt Macy metaslab_should_condense(metaslab_t *msp)
3552eda14cbcSMatt Macy {
3553eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3554eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
3555*be181ee2SMartin Matuska 	uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3556eda14cbcSMatt Macy 
3557eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3558eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3559eda14cbcSMatt Macy 	ASSERT(sm != NULL);
3560eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3561eda14cbcSMatt Macy 
3562eda14cbcSMatt Macy 	/*
3563eda14cbcSMatt Macy 	 * We always condense metaslabs that are empty and metaslabs for
3564eda14cbcSMatt Macy 	 * which a condense request has been made.
3565eda14cbcSMatt Macy 	 */
3566eda14cbcSMatt Macy 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3567eda14cbcSMatt Macy 	    msp->ms_condense_wanted)
3568eda14cbcSMatt Macy 		return (B_TRUE);
3569eda14cbcSMatt Macy 
3570eda14cbcSMatt Macy 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3571eda14cbcSMatt Macy 	uint64_t object_size = space_map_length(sm);
3572eda14cbcSMatt Macy 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3573eda14cbcSMatt Macy 	    msp->ms_allocatable, SM_NO_VDEVID);
3574eda14cbcSMatt Macy 
3575eda14cbcSMatt Macy 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3576eda14cbcSMatt Macy 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3577eda14cbcSMatt Macy }
3578eda14cbcSMatt Macy 
3579eda14cbcSMatt Macy /*
3580eda14cbcSMatt Macy  * Condense the on-disk space map representation to its minimized form.
3581eda14cbcSMatt Macy  * The minimized form consists of a small number of allocations followed
3582eda14cbcSMatt Macy  * by the entries of the free range tree (ms_allocatable). The condensed
3583eda14cbcSMatt Macy  * spacemap contains all the entries of previous TXGs (including those in
3584eda14cbcSMatt Macy  * the pool-wide log spacemaps; thus this is effectively a superset of
3585eda14cbcSMatt Macy  * metaslab_flush()), but this TXG's entries still need to be written.
3586eda14cbcSMatt Macy  */
3587eda14cbcSMatt Macy static void
3588eda14cbcSMatt Macy metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3589eda14cbcSMatt Macy {
3590eda14cbcSMatt Macy 	range_tree_t *condense_tree;
3591eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3592eda14cbcSMatt Macy 	uint64_t txg = dmu_tx_get_txg(tx);
3593eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3594eda14cbcSMatt Macy 
3595eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3596eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3597eda14cbcSMatt Macy 	ASSERT(msp->ms_sm != NULL);
3598eda14cbcSMatt Macy 
3599eda14cbcSMatt Macy 	/*
3600eda14cbcSMatt Macy 	 * In order to condense the space map, we need to change it so it
3601eda14cbcSMatt Macy 	 * only describes which segments are currently allocated and free.
3602eda14cbcSMatt Macy 	 *
3603eda14cbcSMatt Macy 	 * All the current free space resides in the ms_allocatable, all
3604eda14cbcSMatt Macy 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3605eda14cbcSMatt Macy 	 * ms_freed because it is empty because we're in sync pass 1. We
3606eda14cbcSMatt Macy 	 * ignore ms_freeing because these changes are not yet reflected
3607eda14cbcSMatt Macy 	 * in the spacemap (they will be written later this txg).
3608eda14cbcSMatt Macy 	 *
3609eda14cbcSMatt Macy 	 * So to truncate the space map to represent all the entries of
3610eda14cbcSMatt Macy 	 * previous TXGs we do the following:
3611eda14cbcSMatt Macy 	 *
3612eda14cbcSMatt Macy 	 * 1] We create a range tree (condense tree) that is 100% empty.
3613eda14cbcSMatt Macy 	 * 2] We add to it all segments found in the ms_defer trees
3614eda14cbcSMatt Macy 	 *    as those segments are marked as free in the original space
3615eda14cbcSMatt Macy 	 *    map. We do the same with the ms_allocating trees for the same
3616eda14cbcSMatt Macy 	 *    reason. Adding these segments should be a relatively
3617eda14cbcSMatt Macy 	 *    inexpensive operation since we expect these trees to have a
3618eda14cbcSMatt Macy 	 *    small number of nodes.
3619eda14cbcSMatt Macy 	 * 3] We vacate any unflushed allocs, since they are not frees we
3620eda14cbcSMatt Macy 	 *    need to add to the condense tree. Then we vacate any
3621eda14cbcSMatt Macy 	 *    unflushed frees as they should already be part of ms_allocatable.
3622eda14cbcSMatt Macy 	 * 4] At this point, we would ideally like to add all segments
3623eda14cbcSMatt Macy 	 *    in the ms_allocatable tree from the condense tree. This way
3624eda14cbcSMatt Macy 	 *    we would write all the entries of the condense tree as the
3625eda14cbcSMatt Macy 	 *    condensed space map, which would only contain freed
3626eda14cbcSMatt Macy 	 *    segments with everything else assumed to be allocated.
3627eda14cbcSMatt Macy 	 *
3628eda14cbcSMatt Macy 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3629eda14cbcSMatt Macy 	 *    be large, and therefore computationally expensive to add to
3630eda14cbcSMatt Macy 	 *    the condense_tree. Instead we first sync out an entry marking
3631eda14cbcSMatt Macy 	 *    everything as allocated, then the condense_tree and then the
3632eda14cbcSMatt Macy 	 *    ms_allocatable, in the condensed space map. While this is not
3633eda14cbcSMatt Macy 	 *    optimal, it is typically close to optimal and more importantly
3634eda14cbcSMatt Macy 	 *    much cheaper to compute.
3635eda14cbcSMatt Macy 	 *
3636eda14cbcSMatt Macy 	 * 5] Finally, as both of the unflushed trees were written to our
3637eda14cbcSMatt Macy 	 *    new and condensed metaslab space map, we basically flushed
3638eda14cbcSMatt Macy 	 *    all the unflushed changes to disk, thus we call
3639eda14cbcSMatt Macy 	 *    metaslab_flush_update().
3640eda14cbcSMatt Macy 	 */
3641eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3642eda14cbcSMatt Macy 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3643eda14cbcSMatt Macy 
3644eda14cbcSMatt Macy 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
364533b8c039SMartin Matuska 	    "spa %s, smp size %llu, segments %llu, forcing condense=%s",
364633b8c039SMartin Matuska 	    (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
364733b8c039SMartin Matuska 	    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
364833b8c039SMartin Matuska 	    spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
364933b8c039SMartin Matuska 	    (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3650eda14cbcSMatt Macy 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3651eda14cbcSMatt Macy 
3652eda14cbcSMatt Macy 	msp->ms_condense_wanted = B_FALSE;
3653eda14cbcSMatt Macy 
3654eda14cbcSMatt Macy 	range_seg_type_t type;
3655eda14cbcSMatt Macy 	uint64_t shift, start;
3656eda14cbcSMatt Macy 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3657eda14cbcSMatt Macy 	    &start, &shift);
3658eda14cbcSMatt Macy 
3659eda14cbcSMatt Macy 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3660eda14cbcSMatt Macy 
3661eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3662eda14cbcSMatt Macy 		range_tree_walk(msp->ms_defer[t],
3663eda14cbcSMatt Macy 		    range_tree_add, condense_tree);
3664eda14cbcSMatt Macy 	}
3665eda14cbcSMatt Macy 
3666eda14cbcSMatt Macy 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3667eda14cbcSMatt Macy 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3668eda14cbcSMatt Macy 		    range_tree_add, condense_tree);
3669eda14cbcSMatt Macy 	}
3670eda14cbcSMatt Macy 
3671eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3672eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
3673eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
3674eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
3675eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3676eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3677eda14cbcSMatt Macy 
3678eda14cbcSMatt Macy 	/*
3679eda14cbcSMatt Macy 	 * We're about to drop the metaslab's lock thus allowing other
3680eda14cbcSMatt Macy 	 * consumers to change it's content. Set the metaslab's ms_condensing
3681eda14cbcSMatt Macy 	 * flag to ensure that allocations on this metaslab do not occur
3682eda14cbcSMatt Macy 	 * while we're in the middle of committing it to disk. This is only
3683eda14cbcSMatt Macy 	 * critical for ms_allocatable as all other range trees use per TXG
3684eda14cbcSMatt Macy 	 * views of their content.
3685eda14cbcSMatt Macy 	 */
3686eda14cbcSMatt Macy 	msp->ms_condensing = B_TRUE;
3687eda14cbcSMatt Macy 
3688eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3689eda14cbcSMatt Macy 	uint64_t object = space_map_object(msp->ms_sm);
3690eda14cbcSMatt Macy 	space_map_truncate(sm,
3691eda14cbcSMatt Macy 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3692eda14cbcSMatt Macy 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3693eda14cbcSMatt Macy 
3694eda14cbcSMatt Macy 	/*
3695eda14cbcSMatt Macy 	 * space_map_truncate() may have reallocated the spacemap object.
3696eda14cbcSMatt Macy 	 * If so, update the vdev_ms_array.
3697eda14cbcSMatt Macy 	 */
3698eda14cbcSMatt Macy 	if (space_map_object(msp->ms_sm) != object) {
3699eda14cbcSMatt Macy 		object = space_map_object(msp->ms_sm);
3700eda14cbcSMatt Macy 		dmu_write(spa->spa_meta_objset,
3701eda14cbcSMatt Macy 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3702eda14cbcSMatt Macy 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3703eda14cbcSMatt Macy 	}
3704eda14cbcSMatt Macy 
3705eda14cbcSMatt Macy 	/*
3706eda14cbcSMatt Macy 	 * Note:
3707eda14cbcSMatt Macy 	 * When the log space map feature is enabled, each space map will
3708eda14cbcSMatt Macy 	 * always have ALLOCS followed by FREES for each sync pass. This is
3709eda14cbcSMatt Macy 	 * typically true even when the log space map feature is disabled,
3710eda14cbcSMatt Macy 	 * except from the case where a metaslab goes through metaslab_sync()
3711eda14cbcSMatt Macy 	 * and gets condensed. In that case the metaslab's space map will have
3712eda14cbcSMatt Macy 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3713eda14cbcSMatt Macy 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3714eda14cbcSMatt Macy 	 * sync pass 1.
3715eda14cbcSMatt Macy 	 */
3716eda14cbcSMatt Macy 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3717eda14cbcSMatt Macy 	    shift);
3718eda14cbcSMatt Macy 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3719eda14cbcSMatt Macy 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3720eda14cbcSMatt Macy 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3721eda14cbcSMatt Macy 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3722eda14cbcSMatt Macy 
3723eda14cbcSMatt Macy 	range_tree_vacate(condense_tree, NULL, NULL);
3724eda14cbcSMatt Macy 	range_tree_destroy(condense_tree);
3725eda14cbcSMatt Macy 	range_tree_vacate(tmp_tree, NULL, NULL);
3726eda14cbcSMatt Macy 	range_tree_destroy(tmp_tree);
3727eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3728eda14cbcSMatt Macy 
3729eda14cbcSMatt Macy 	msp->ms_condensing = B_FALSE;
3730eda14cbcSMatt Macy 	metaslab_flush_update(msp, tx);
3731eda14cbcSMatt Macy }
3732eda14cbcSMatt Macy 
3733716fd348SMartin Matuska static void
3734716fd348SMartin Matuska metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3735716fd348SMartin Matuska {
3736716fd348SMartin Matuska 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3737716fd348SMartin Matuska 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3738716fd348SMartin Matuska 	ASSERT(msp->ms_sm != NULL);
3739716fd348SMartin Matuska 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3740716fd348SMartin Matuska 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3741716fd348SMartin Matuska 
3742716fd348SMartin Matuska 	mutex_enter(&spa->spa_flushed_ms_lock);
3743716fd348SMartin Matuska 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3744716fd348SMartin Matuska 	metaslab_set_unflushed_dirty(msp, B_TRUE);
3745716fd348SMartin Matuska 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3746716fd348SMartin Matuska 	mutex_exit(&spa->spa_flushed_ms_lock);
3747716fd348SMartin Matuska 
3748716fd348SMartin Matuska 	spa_log_sm_increment_current_mscount(spa);
3749716fd348SMartin Matuska 	spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3750716fd348SMartin Matuska }
3751716fd348SMartin Matuska 
3752716fd348SMartin Matuska void
3753716fd348SMartin Matuska metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3754716fd348SMartin Matuska {
3755716fd348SMartin Matuska 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3756716fd348SMartin Matuska 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3757716fd348SMartin Matuska 	ASSERT(msp->ms_sm != NULL);
3758716fd348SMartin Matuska 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3759716fd348SMartin Matuska 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3760716fd348SMartin Matuska 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3761716fd348SMartin Matuska 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3762716fd348SMartin Matuska 
3763716fd348SMartin Matuska 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3764716fd348SMartin Matuska 
3765716fd348SMartin Matuska 	/* update metaslab's position in our flushing tree */
3766716fd348SMartin Matuska 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3767716fd348SMartin Matuska 	boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3768716fd348SMartin Matuska 	mutex_enter(&spa->spa_flushed_ms_lock);
3769716fd348SMartin Matuska 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3770716fd348SMartin Matuska 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3771716fd348SMartin Matuska 	metaslab_set_unflushed_dirty(msp, dirty);
3772716fd348SMartin Matuska 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3773716fd348SMartin Matuska 	mutex_exit(&spa->spa_flushed_ms_lock);
3774716fd348SMartin Matuska 
3775716fd348SMartin Matuska 	/* update metaslab counts of spa_log_sm_t nodes */
3776716fd348SMartin Matuska 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3777716fd348SMartin Matuska 	spa_log_sm_increment_current_mscount(spa);
3778716fd348SMartin Matuska 
3779716fd348SMartin Matuska 	/* update log space map summary */
3780716fd348SMartin Matuska 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3781716fd348SMartin Matuska 	    ms_prev_flushed_dirty);
3782716fd348SMartin Matuska 	spa_log_summary_add_flushed_metaslab(spa, dirty);
3783716fd348SMartin Matuska 
3784716fd348SMartin Matuska 	/* cleanup obsolete logs if any */
3785716fd348SMartin Matuska 	spa_cleanup_old_sm_logs(spa, tx);
3786716fd348SMartin Matuska }
3787716fd348SMartin Matuska 
3788eda14cbcSMatt Macy /*
3789eda14cbcSMatt Macy  * Called when the metaslab has been flushed (its own spacemap now reflects
3790eda14cbcSMatt Macy  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3791eda14cbcSMatt Macy  * metadata and any pool-wide related log space map data (e.g. summary,
3792eda14cbcSMatt Macy  * obsolete logs, etc..) to reflect that.
3793eda14cbcSMatt Macy  */
3794eda14cbcSMatt Macy static void
3795eda14cbcSMatt Macy metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3796eda14cbcSMatt Macy {
3797eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3798eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
3799eda14cbcSMatt Macy 
3800eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3801eda14cbcSMatt Macy 
3802eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3803eda14cbcSMatt Macy 
3804eda14cbcSMatt Macy 	/*
3805eda14cbcSMatt Macy 	 * Just because a metaslab got flushed, that doesn't mean that
3806eda14cbcSMatt Macy 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3807eda14cbcSMatt Macy 	 * update ms_synced_length here in case it doesn't.
3808eda14cbcSMatt Macy 	 */
3809eda14cbcSMatt Macy 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3810eda14cbcSMatt Macy 
3811eda14cbcSMatt Macy 	/*
3812eda14cbcSMatt Macy 	 * We may end up here from metaslab_condense() without the
3813eda14cbcSMatt Macy 	 * feature being active. In that case this is a no-op.
3814eda14cbcSMatt Macy 	 */
3815716fd348SMartin Matuska 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3816716fd348SMartin Matuska 	    metaslab_unflushed_txg(msp) == 0)
3817eda14cbcSMatt Macy 		return;
3818eda14cbcSMatt Macy 
3819716fd348SMartin Matuska 	metaslab_unflushed_bump(msp, tx, B_FALSE);
3820eda14cbcSMatt Macy }
3821eda14cbcSMatt Macy 
3822eda14cbcSMatt Macy boolean_t
3823eda14cbcSMatt Macy metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3824eda14cbcSMatt Macy {
3825eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3826eda14cbcSMatt Macy 
3827eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3828eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3829eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3830eda14cbcSMatt Macy 
3831eda14cbcSMatt Macy 	ASSERT(msp->ms_sm != NULL);
3832eda14cbcSMatt Macy 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3833eda14cbcSMatt Macy 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3834eda14cbcSMatt Macy 
3835eda14cbcSMatt Macy 	/*
3836eda14cbcSMatt Macy 	 * There is nothing wrong with flushing the same metaslab twice, as
3837eda14cbcSMatt Macy 	 * this codepath should work on that case. However, the current
3838eda14cbcSMatt Macy 	 * flushing scheme makes sure to avoid this situation as we would be
3839eda14cbcSMatt Macy 	 * making all these calls without having anything meaningful to write
3840eda14cbcSMatt Macy 	 * to disk. We assert this behavior here.
3841eda14cbcSMatt Macy 	 */
3842eda14cbcSMatt Macy 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3843eda14cbcSMatt Macy 
3844eda14cbcSMatt Macy 	/*
3845eda14cbcSMatt Macy 	 * We can not flush while loading, because then we would
3846eda14cbcSMatt Macy 	 * not load the ms_unflushed_{allocs,frees}.
3847eda14cbcSMatt Macy 	 */
3848eda14cbcSMatt Macy 	if (msp->ms_loading)
3849eda14cbcSMatt Macy 		return (B_FALSE);
3850eda14cbcSMatt Macy 
3851eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3852eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3853eda14cbcSMatt Macy 
3854eda14cbcSMatt Macy 	/*
3855eda14cbcSMatt Macy 	 * Metaslab condensing is effectively flushing. Therefore if the
3856eda14cbcSMatt Macy 	 * metaslab can be condensed we can just condense it instead of
3857eda14cbcSMatt Macy 	 * flushing it.
3858eda14cbcSMatt Macy 	 *
3859eda14cbcSMatt Macy 	 * Note that metaslab_condense() does call metaslab_flush_update()
3860eda14cbcSMatt Macy 	 * so we can just return immediately after condensing. We also
3861eda14cbcSMatt Macy 	 * don't need to care about setting ms_flushing or broadcasting
3862eda14cbcSMatt Macy 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3863eda14cbcSMatt Macy 	 * metaslab_condense(), as the metaslab is already loaded.
3864eda14cbcSMatt Macy 	 */
3865eda14cbcSMatt Macy 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3866eda14cbcSMatt Macy 		metaslab_group_t *mg = msp->ms_group;
3867eda14cbcSMatt Macy 
3868eda14cbcSMatt Macy 		/*
3869eda14cbcSMatt Macy 		 * For all histogram operations below refer to the
3870eda14cbcSMatt Macy 		 * comments of metaslab_sync() where we follow a
3871eda14cbcSMatt Macy 		 * similar procedure.
3872eda14cbcSMatt Macy 		 */
3873eda14cbcSMatt Macy 		metaslab_group_histogram_verify(mg);
3874eda14cbcSMatt Macy 		metaslab_class_histogram_verify(mg->mg_class);
3875eda14cbcSMatt Macy 		metaslab_group_histogram_remove(mg, msp);
3876eda14cbcSMatt Macy 
3877eda14cbcSMatt Macy 		metaslab_condense(msp, tx);
3878eda14cbcSMatt Macy 
3879eda14cbcSMatt Macy 		space_map_histogram_clear(msp->ms_sm);
3880eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3881eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_freed));
3882eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3883eda14cbcSMatt Macy 			space_map_histogram_add(msp->ms_sm,
3884eda14cbcSMatt Macy 			    msp->ms_defer[t], tx);
3885eda14cbcSMatt Macy 		}
3886eda14cbcSMatt Macy 		metaslab_aux_histograms_update(msp);
3887eda14cbcSMatt Macy 
3888eda14cbcSMatt Macy 		metaslab_group_histogram_add(mg, msp);
3889eda14cbcSMatt Macy 		metaslab_group_histogram_verify(mg);
3890eda14cbcSMatt Macy 		metaslab_class_histogram_verify(mg->mg_class);
3891eda14cbcSMatt Macy 
3892eda14cbcSMatt Macy 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3893eda14cbcSMatt Macy 
3894eda14cbcSMatt Macy 		/*
3895eda14cbcSMatt Macy 		 * Since we recreated the histogram (and potentially
3896eda14cbcSMatt Macy 		 * the ms_sm too while condensing) ensure that the
3897eda14cbcSMatt Macy 		 * weight is updated too because we are not guaranteed
3898eda14cbcSMatt Macy 		 * that this metaslab is dirty and will go through
3899eda14cbcSMatt Macy 		 * metaslab_sync_done().
3900eda14cbcSMatt Macy 		 */
3901eda14cbcSMatt Macy 		metaslab_recalculate_weight_and_sort(msp);
3902eda14cbcSMatt Macy 		return (B_TRUE);
3903eda14cbcSMatt Macy 	}
3904eda14cbcSMatt Macy 
3905eda14cbcSMatt Macy 	msp->ms_flushing = B_TRUE;
3906eda14cbcSMatt Macy 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3907eda14cbcSMatt Macy 
3908eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3909eda14cbcSMatt Macy 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3910eda14cbcSMatt Macy 	    SM_NO_VDEVID, tx);
3911eda14cbcSMatt Macy 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3912eda14cbcSMatt Macy 	    SM_NO_VDEVID, tx);
3913eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3914eda14cbcSMatt Macy 
3915eda14cbcSMatt Macy 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3916eda14cbcSMatt Macy 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3917eda14cbcSMatt Macy 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3918eda14cbcSMatt Macy 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
391933b8c039SMartin Matuska 		    "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
392033b8c039SMartin Matuska 		    spa_name(spa),
392133b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
392233b8c039SMartin Matuska 		    (u_longlong_t)msp->ms_id,
392333b8c039SMartin Matuska 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
392433b8c039SMartin Matuska 		    (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
392533b8c039SMartin Matuska 		    (u_longlong_t)(sm_len_after - sm_len_before));
3926eda14cbcSMatt Macy 	}
3927eda14cbcSMatt Macy 
3928eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3929eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
3930eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
3931eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
3932eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3933eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3934eda14cbcSMatt Macy 
3935eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3936eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3937eda14cbcSMatt Macy 
3938eda14cbcSMatt Macy 	metaslab_flush_update(msp, tx);
3939eda14cbcSMatt Macy 
3940eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3941eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3942eda14cbcSMatt Macy 
3943eda14cbcSMatt Macy 	msp->ms_flushing = B_FALSE;
3944eda14cbcSMatt Macy 	cv_broadcast(&msp->ms_flush_cv);
3945eda14cbcSMatt Macy 	return (B_TRUE);
3946eda14cbcSMatt Macy }
3947eda14cbcSMatt Macy 
3948eda14cbcSMatt Macy /*
3949eda14cbcSMatt Macy  * Write a metaslab to disk in the context of the specified transaction group.
3950eda14cbcSMatt Macy  */
3951eda14cbcSMatt Macy void
3952eda14cbcSMatt Macy metaslab_sync(metaslab_t *msp, uint64_t txg)
3953eda14cbcSMatt Macy {
3954eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3955eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
3956eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
3957eda14cbcSMatt Macy 	objset_t *mos = spa_meta_objset(spa);
3958eda14cbcSMatt Macy 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3959eda14cbcSMatt Macy 	dmu_tx_t *tx;
3960eda14cbcSMatt Macy 
3961eda14cbcSMatt Macy 	ASSERT(!vd->vdev_ishole);
3962eda14cbcSMatt Macy 
3963eda14cbcSMatt Macy 	/*
3964eda14cbcSMatt Macy 	 * This metaslab has just been added so there's no work to do now.
3965eda14cbcSMatt Macy 	 */
3966f9693befSMartin Matuska 	if (msp->ms_new) {
3967f9693befSMartin Matuska 		ASSERT0(range_tree_space(alloctree));
3968f9693befSMartin Matuska 		ASSERT0(range_tree_space(msp->ms_freeing));
3969f9693befSMartin Matuska 		ASSERT0(range_tree_space(msp->ms_freed));
3970f9693befSMartin Matuska 		ASSERT0(range_tree_space(msp->ms_checkpointing));
3971f9693befSMartin Matuska 		ASSERT0(range_tree_space(msp->ms_trim));
3972eda14cbcSMatt Macy 		return;
3973eda14cbcSMatt Macy 	}
3974eda14cbcSMatt Macy 
3975eda14cbcSMatt Macy 	/*
3976eda14cbcSMatt Macy 	 * Normally, we don't want to process a metaslab if there are no
3977eda14cbcSMatt Macy 	 * allocations or frees to perform. However, if the metaslab is being
3978eda14cbcSMatt Macy 	 * forced to condense, it's loaded and we're not beyond the final
3979eda14cbcSMatt Macy 	 * dirty txg, we need to let it through. Not condensing beyond the
3980eda14cbcSMatt Macy 	 * final dirty txg prevents an issue where metaslabs that need to be
3981eda14cbcSMatt Macy 	 * condensed but were loaded for other reasons could cause a panic
3982eda14cbcSMatt Macy 	 * here. By only checking the txg in that branch of the conditional,
3983eda14cbcSMatt Macy 	 * we preserve the utility of the VERIFY statements in all other
3984eda14cbcSMatt Macy 	 * cases.
3985eda14cbcSMatt Macy 	 */
3986eda14cbcSMatt Macy 	if (range_tree_is_empty(alloctree) &&
3987eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_freeing) &&
3988eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_checkpointing) &&
3989eda14cbcSMatt Macy 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3990eda14cbcSMatt Macy 	    txg <= spa_final_dirty_txg(spa)))
3991eda14cbcSMatt Macy 		return;
3992eda14cbcSMatt Macy 
3993eda14cbcSMatt Macy 
3994eda14cbcSMatt Macy 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3995eda14cbcSMatt Macy 
3996eda14cbcSMatt Macy 	/*
3997eda14cbcSMatt Macy 	 * The only state that can actually be changing concurrently
3998eda14cbcSMatt Macy 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3999eda14cbcSMatt Macy 	 * other thread can be modifying this txg's alloc, freeing,
4000eda14cbcSMatt Macy 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
4001eda14cbcSMatt Macy 	 * could call into the DMU, because the DMU can call down to
4002eda14cbcSMatt Macy 	 * us (e.g. via zio_free()) at any time.
4003eda14cbcSMatt Macy 	 *
4004eda14cbcSMatt Macy 	 * The spa_vdev_remove_thread() can be reading metaslab state
4005eda14cbcSMatt Macy 	 * concurrently, and it is locked out by the ms_sync_lock.
4006eda14cbcSMatt Macy 	 * Note that the ms_lock is insufficient for this, because it
4007eda14cbcSMatt Macy 	 * is dropped by space_map_write().
4008eda14cbcSMatt Macy 	 */
4009eda14cbcSMatt Macy 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4010eda14cbcSMatt Macy 
4011eda14cbcSMatt Macy 	/*
4012eda14cbcSMatt Macy 	 * Generate a log space map if one doesn't exist already.
4013eda14cbcSMatt Macy 	 */
4014eda14cbcSMatt Macy 	spa_generate_syncing_log_sm(spa, tx);
4015eda14cbcSMatt Macy 
4016eda14cbcSMatt Macy 	if (msp->ms_sm == NULL) {
4017eda14cbcSMatt Macy 		uint64_t new_object = space_map_alloc(mos,
4018eda14cbcSMatt Macy 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4019eda14cbcSMatt Macy 		    zfs_metaslab_sm_blksz_with_log :
4020eda14cbcSMatt Macy 		    zfs_metaslab_sm_blksz_no_log, tx);
4021eda14cbcSMatt Macy 		VERIFY3U(new_object, !=, 0);
4022eda14cbcSMatt Macy 
4023eda14cbcSMatt Macy 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4024eda14cbcSMatt Macy 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
4025eda14cbcSMatt Macy 
4026eda14cbcSMatt Macy 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4027eda14cbcSMatt Macy 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
4028eda14cbcSMatt Macy 		ASSERT(msp->ms_sm != NULL);
4029eda14cbcSMatt Macy 
4030eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4031eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4032eda14cbcSMatt Macy 		ASSERT0(metaslab_allocated_space(msp));
4033eda14cbcSMatt Macy 	}
4034eda14cbcSMatt Macy 
4035eda14cbcSMatt Macy 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
4036eda14cbcSMatt Macy 	    vd->vdev_checkpoint_sm == NULL) {
4037eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
4038eda14cbcSMatt Macy 
4039eda14cbcSMatt Macy 		uint64_t new_object = space_map_alloc(mos,
4040eda14cbcSMatt Macy 		    zfs_vdev_standard_sm_blksz, tx);
4041eda14cbcSMatt Macy 		VERIFY3U(new_object, !=, 0);
4042eda14cbcSMatt Macy 
4043eda14cbcSMatt Macy 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4044eda14cbcSMatt Macy 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4045eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4046eda14cbcSMatt Macy 
4047eda14cbcSMatt Macy 		/*
4048eda14cbcSMatt Macy 		 * We save the space map object as an entry in vdev_top_zap
4049eda14cbcSMatt Macy 		 * so it can be retrieved when the pool is reopened after an
4050eda14cbcSMatt Macy 		 * export or through zdb.
4051eda14cbcSMatt Macy 		 */
4052eda14cbcSMatt Macy 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4053eda14cbcSMatt Macy 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4054eda14cbcSMatt Macy 		    sizeof (new_object), 1, &new_object, tx));
4055eda14cbcSMatt Macy 	}
4056eda14cbcSMatt Macy 
4057eda14cbcSMatt Macy 	mutex_enter(&msp->ms_sync_lock);
4058eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
4059eda14cbcSMatt Macy 
4060eda14cbcSMatt Macy 	/*
4061eda14cbcSMatt Macy 	 * Note: metaslab_condense() clears the space map's histogram.
4062eda14cbcSMatt Macy 	 * Therefore we must verify and remove this histogram before
4063eda14cbcSMatt Macy 	 * condensing.
4064eda14cbcSMatt Macy 	 */
4065eda14cbcSMatt Macy 	metaslab_group_histogram_verify(mg);
4066eda14cbcSMatt Macy 	metaslab_class_histogram_verify(mg->mg_class);
4067eda14cbcSMatt Macy 	metaslab_group_histogram_remove(mg, msp);
4068eda14cbcSMatt Macy 
4069eda14cbcSMatt Macy 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4070eda14cbcSMatt Macy 	    metaslab_should_condense(msp))
4071eda14cbcSMatt Macy 		metaslab_condense(msp, tx);
4072eda14cbcSMatt Macy 
4073eda14cbcSMatt Macy 	/*
4074eda14cbcSMatt Macy 	 * We'll be going to disk to sync our space accounting, thus we
4075eda14cbcSMatt Macy 	 * drop the ms_lock during that time so allocations coming from
4076eda14cbcSMatt Macy 	 * open-context (ZIL) for future TXGs do not block.
4077eda14cbcSMatt Macy 	 */
4078eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4079eda14cbcSMatt Macy 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4080eda14cbcSMatt Macy 	if (log_sm != NULL) {
4081eda14cbcSMatt Macy 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4082716fd348SMartin Matuska 		if (metaslab_unflushed_txg(msp) == 0)
4083716fd348SMartin Matuska 			metaslab_unflushed_add(msp, tx);
4084716fd348SMartin Matuska 		else if (!metaslab_unflushed_dirty(msp))
4085716fd348SMartin Matuska 			metaslab_unflushed_bump(msp, tx, B_TRUE);
4086eda14cbcSMatt Macy 
4087eda14cbcSMatt Macy 		space_map_write(log_sm, alloctree, SM_ALLOC,
4088eda14cbcSMatt Macy 		    vd->vdev_id, tx);
4089eda14cbcSMatt Macy 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4090eda14cbcSMatt Macy 		    vd->vdev_id, tx);
4091eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4092eda14cbcSMatt Macy 
4093eda14cbcSMatt Macy 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4094eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp));
4095eda14cbcSMatt Macy 		spa->spa_unflushed_stats.sus_memused -=
4096eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp);
4097eda14cbcSMatt Macy 		range_tree_remove_xor_add(alloctree,
4098eda14cbcSMatt Macy 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4099eda14cbcSMatt Macy 		range_tree_remove_xor_add(msp->ms_freeing,
4100eda14cbcSMatt Macy 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4101eda14cbcSMatt Macy 		spa->spa_unflushed_stats.sus_memused +=
4102eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp);
4103eda14cbcSMatt Macy 	} else {
4104eda14cbcSMatt Macy 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4105eda14cbcSMatt Macy 
4106eda14cbcSMatt Macy 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4107eda14cbcSMatt Macy 		    SM_NO_VDEVID, tx);
4108eda14cbcSMatt Macy 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4109eda14cbcSMatt Macy 		    SM_NO_VDEVID, tx);
4110eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4111eda14cbcSMatt Macy 	}
4112eda14cbcSMatt Macy 
4113eda14cbcSMatt Macy 	msp->ms_allocated_space += range_tree_space(alloctree);
4114eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocated_space, >=,
4115eda14cbcSMatt Macy 	    range_tree_space(msp->ms_freeing));
4116eda14cbcSMatt Macy 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4117eda14cbcSMatt Macy 
4118eda14cbcSMatt Macy 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4119eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
4120eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4121eda14cbcSMatt Macy 
4122eda14cbcSMatt Macy 		/*
4123eda14cbcSMatt Macy 		 * Since we are doing writes to disk and the ms_checkpointing
4124eda14cbcSMatt Macy 		 * tree won't be changing during that time, we drop the
4125eda14cbcSMatt Macy 		 * ms_lock while writing to the checkpoint space map, for the
4126eda14cbcSMatt Macy 		 * same reason mentioned above.
4127eda14cbcSMatt Macy 		 */
4128eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
4129eda14cbcSMatt Macy 		space_map_write(vd->vdev_checkpoint_sm,
4130eda14cbcSMatt Macy 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4131eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4132eda14cbcSMatt Macy 
4133eda14cbcSMatt Macy 		spa->spa_checkpoint_info.sci_dspace +=
4134eda14cbcSMatt Macy 		    range_tree_space(msp->ms_checkpointing);
4135eda14cbcSMatt Macy 		vd->vdev_stat.vs_checkpoint_space +=
4136eda14cbcSMatt Macy 		    range_tree_space(msp->ms_checkpointing);
4137eda14cbcSMatt Macy 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4138eda14cbcSMatt Macy 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4139eda14cbcSMatt Macy 
4140eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4141eda14cbcSMatt Macy 	}
4142eda14cbcSMatt Macy 
4143eda14cbcSMatt Macy 	if (msp->ms_loaded) {
4144eda14cbcSMatt Macy 		/*
4145eda14cbcSMatt Macy 		 * When the space map is loaded, we have an accurate
4146eda14cbcSMatt Macy 		 * histogram in the range tree. This gives us an opportunity
4147eda14cbcSMatt Macy 		 * to bring the space map's histogram up-to-date so we clear
4148eda14cbcSMatt Macy 		 * it first before updating it.
4149eda14cbcSMatt Macy 		 */
4150eda14cbcSMatt Macy 		space_map_histogram_clear(msp->ms_sm);
4151eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4152eda14cbcSMatt Macy 
4153eda14cbcSMatt Macy 		/*
4154eda14cbcSMatt Macy 		 * Since we've cleared the histogram we need to add back
4155eda14cbcSMatt Macy 		 * any free space that has already been processed, plus
4156eda14cbcSMatt Macy 		 * any deferred space. This allows the on-disk histogram
4157eda14cbcSMatt Macy 		 * to accurately reflect all free space even if some space
4158eda14cbcSMatt Macy 		 * is not yet available for allocation (i.e. deferred).
4159eda14cbcSMatt Macy 		 */
4160eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4161eda14cbcSMatt Macy 
4162eda14cbcSMatt Macy 		/*
4163eda14cbcSMatt Macy 		 * Add back any deferred free space that has not been
4164eda14cbcSMatt Macy 		 * added back into the in-core free tree yet. This will
4165eda14cbcSMatt Macy 		 * ensure that we don't end up with a space map histogram
4166eda14cbcSMatt Macy 		 * that is completely empty unless the metaslab is fully
4167eda14cbcSMatt Macy 		 * allocated.
4168eda14cbcSMatt Macy 		 */
4169eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4170eda14cbcSMatt Macy 			space_map_histogram_add(msp->ms_sm,
4171eda14cbcSMatt Macy 			    msp->ms_defer[t], tx);
4172eda14cbcSMatt Macy 		}
4173eda14cbcSMatt Macy 	}
4174eda14cbcSMatt Macy 
4175eda14cbcSMatt Macy 	/*
4176eda14cbcSMatt Macy 	 * Always add the free space from this sync pass to the space
4177eda14cbcSMatt Macy 	 * map histogram. We want to make sure that the on-disk histogram
4178eda14cbcSMatt Macy 	 * accounts for all free space. If the space map is not loaded,
4179eda14cbcSMatt Macy 	 * then we will lose some accuracy but will correct it the next
4180eda14cbcSMatt Macy 	 * time we load the space map.
4181eda14cbcSMatt Macy 	 */
4182eda14cbcSMatt Macy 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4183eda14cbcSMatt Macy 	metaslab_aux_histograms_update(msp);
4184eda14cbcSMatt Macy 
4185eda14cbcSMatt Macy 	metaslab_group_histogram_add(mg, msp);
4186eda14cbcSMatt Macy 	metaslab_group_histogram_verify(mg);
4187eda14cbcSMatt Macy 	metaslab_class_histogram_verify(mg->mg_class);
4188eda14cbcSMatt Macy 
4189eda14cbcSMatt Macy 	/*
4190eda14cbcSMatt Macy 	 * For sync pass 1, we avoid traversing this txg's free range tree
4191eda14cbcSMatt Macy 	 * and instead will just swap the pointers for freeing and freed.
4192eda14cbcSMatt Macy 	 * We can safely do this since the freed_tree is guaranteed to be
4193eda14cbcSMatt Macy 	 * empty on the initial pass.
4194eda14cbcSMatt Macy 	 *
4195eda14cbcSMatt Macy 	 * Keep in mind that even if we are currently using a log spacemap
4196eda14cbcSMatt Macy 	 * we want current frees to end up in the ms_allocatable (but not
4197eda14cbcSMatt Macy 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4198eda14cbcSMatt Macy 	 */
4199eda14cbcSMatt Macy 	if (spa_sync_pass(spa) == 1) {
4200eda14cbcSMatt Macy 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4201eda14cbcSMatt Macy 		ASSERT0(msp->ms_allocated_this_txg);
4202eda14cbcSMatt Macy 	} else {
4203eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_freeing,
4204eda14cbcSMatt Macy 		    range_tree_add, msp->ms_freed);
4205eda14cbcSMatt Macy 	}
4206eda14cbcSMatt Macy 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4207eda14cbcSMatt Macy 	range_tree_vacate(alloctree, NULL, NULL);
4208eda14cbcSMatt Macy 
4209eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4210eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4211eda14cbcSMatt Macy 	    & TXG_MASK]));
4212eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4213eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4214eda14cbcSMatt Macy 
4215eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4216eda14cbcSMatt Macy 
4217eda14cbcSMatt Macy 	/*
4218eda14cbcSMatt Macy 	 * Verify that the space map object ID has been recorded in the
4219eda14cbcSMatt Macy 	 * vdev_ms_array.
4220eda14cbcSMatt Macy 	 */
4221eda14cbcSMatt Macy 	uint64_t object;
4222eda14cbcSMatt Macy 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4223eda14cbcSMatt Macy 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4224eda14cbcSMatt Macy 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4225eda14cbcSMatt Macy 
4226eda14cbcSMatt Macy 	mutex_exit(&msp->ms_sync_lock);
4227eda14cbcSMatt Macy 	dmu_tx_commit(tx);
4228eda14cbcSMatt Macy }
4229eda14cbcSMatt Macy 
4230eda14cbcSMatt Macy static void
4231eda14cbcSMatt Macy metaslab_evict(metaslab_t *msp, uint64_t txg)
4232eda14cbcSMatt Macy {
4233eda14cbcSMatt Macy 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4234eda14cbcSMatt Macy 		return;
4235eda14cbcSMatt Macy 
4236eda14cbcSMatt Macy 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4237eda14cbcSMatt Macy 		VERIFY0(range_tree_space(
4238eda14cbcSMatt Macy 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4239eda14cbcSMatt Macy 	}
4240eda14cbcSMatt Macy 	if (msp->ms_allocator != -1)
4241eda14cbcSMatt Macy 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4242eda14cbcSMatt Macy 
4243eda14cbcSMatt Macy 	if (!metaslab_debug_unload)
4244eda14cbcSMatt Macy 		metaslab_unload(msp);
4245eda14cbcSMatt Macy }
4246eda14cbcSMatt Macy 
4247eda14cbcSMatt Macy /*
4248eda14cbcSMatt Macy  * Called after a transaction group has completely synced to mark
4249eda14cbcSMatt Macy  * all of the metaslab's free space as usable.
4250eda14cbcSMatt Macy  */
4251eda14cbcSMatt Macy void
4252eda14cbcSMatt Macy metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4253eda14cbcSMatt Macy {
4254eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
4255eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
4256eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
4257eda14cbcSMatt Macy 	range_tree_t **defer_tree;
4258eda14cbcSMatt Macy 	int64_t alloc_delta, defer_delta;
4259eda14cbcSMatt Macy 	boolean_t defer_allowed = B_TRUE;
4260eda14cbcSMatt Macy 
4261eda14cbcSMatt Macy 	ASSERT(!vd->vdev_ishole);
4262eda14cbcSMatt Macy 
4263eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
4264eda14cbcSMatt Macy 
4265f9693befSMartin Matuska 	if (msp->ms_new) {
4266f9693befSMartin Matuska 		/* this is a new metaslab, add its capacity to the vdev */
4267eda14cbcSMatt Macy 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4268f9693befSMartin Matuska 
4269f9693befSMartin Matuska 		/* there should be no allocations nor frees at this point */
4270f9693befSMartin Matuska 		VERIFY0(msp->ms_allocated_this_txg);
4271f9693befSMartin Matuska 		VERIFY0(range_tree_space(msp->ms_freed));
4272eda14cbcSMatt Macy 	}
4273f9693befSMartin Matuska 
4274eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4275eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4276eda14cbcSMatt Macy 
4277eda14cbcSMatt Macy 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4278eda14cbcSMatt Macy 
4279eda14cbcSMatt Macy 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4280eda14cbcSMatt Macy 	    metaslab_class_get_alloc(spa_normal_class(spa));
4281eda14cbcSMatt Macy 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4282eda14cbcSMatt Macy 		defer_allowed = B_FALSE;
4283eda14cbcSMatt Macy 	}
4284eda14cbcSMatt Macy 
4285eda14cbcSMatt Macy 	defer_delta = 0;
4286eda14cbcSMatt Macy 	alloc_delta = msp->ms_allocated_this_txg -
4287eda14cbcSMatt Macy 	    range_tree_space(msp->ms_freed);
4288eda14cbcSMatt Macy 
4289eda14cbcSMatt Macy 	if (defer_allowed) {
4290eda14cbcSMatt Macy 		defer_delta = range_tree_space(msp->ms_freed) -
4291eda14cbcSMatt Macy 		    range_tree_space(*defer_tree);
4292eda14cbcSMatt Macy 	} else {
4293eda14cbcSMatt Macy 		defer_delta -= range_tree_space(*defer_tree);
4294eda14cbcSMatt Macy 	}
4295eda14cbcSMatt Macy 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4296eda14cbcSMatt Macy 	    defer_delta, 0);
4297eda14cbcSMatt Macy 
4298eda14cbcSMatt Macy 	if (spa_syncing_log_sm(spa) == NULL) {
4299eda14cbcSMatt Macy 		/*
4300eda14cbcSMatt Macy 		 * If there's a metaslab_load() in progress and we don't have
4301eda14cbcSMatt Macy 		 * a log space map, it means that we probably wrote to the
4302eda14cbcSMatt Macy 		 * metaslab's space map. If this is the case, we need to
4303eda14cbcSMatt Macy 		 * make sure that we wait for the load to complete so that we
4304eda14cbcSMatt Macy 		 * have a consistent view at the in-core side of the metaslab.
4305eda14cbcSMatt Macy 		 */
4306eda14cbcSMatt Macy 		metaslab_load_wait(msp);
4307eda14cbcSMatt Macy 	} else {
4308eda14cbcSMatt Macy 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4309eda14cbcSMatt Macy 	}
4310eda14cbcSMatt Macy 
4311eda14cbcSMatt Macy 	/*
4312eda14cbcSMatt Macy 	 * When auto-trimming is enabled, free ranges which are added to
4313eda14cbcSMatt Macy 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4314eda14cbcSMatt Macy 	 * periodically consumed by the vdev_autotrim_thread() which issues
4315eda14cbcSMatt Macy 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4316eda14cbcSMatt Macy 	 * can be discarded at any time with the sole consequence of recent
4317eda14cbcSMatt Macy 	 * frees not being trimmed.
4318eda14cbcSMatt Macy 	 */
4319eda14cbcSMatt Macy 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4320eda14cbcSMatt Macy 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4321eda14cbcSMatt Macy 		if (!defer_allowed) {
4322eda14cbcSMatt Macy 			range_tree_walk(msp->ms_freed, range_tree_add,
4323eda14cbcSMatt Macy 			    msp->ms_trim);
4324eda14cbcSMatt Macy 		}
4325eda14cbcSMatt Macy 	} else {
4326eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4327eda14cbcSMatt Macy 	}
4328eda14cbcSMatt Macy 
4329eda14cbcSMatt Macy 	/*
4330eda14cbcSMatt Macy 	 * Move the frees from the defer_tree back to the free
4331eda14cbcSMatt Macy 	 * range tree (if it's loaded). Swap the freed_tree and
4332eda14cbcSMatt Macy 	 * the defer_tree -- this is safe to do because we've
4333eda14cbcSMatt Macy 	 * just emptied out the defer_tree.
4334eda14cbcSMatt Macy 	 */
4335eda14cbcSMatt Macy 	range_tree_vacate(*defer_tree,
4336eda14cbcSMatt Macy 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4337eda14cbcSMatt Macy 	if (defer_allowed) {
4338eda14cbcSMatt Macy 		range_tree_swap(&msp->ms_freed, defer_tree);
4339eda14cbcSMatt Macy 	} else {
4340eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_freed,
4341eda14cbcSMatt Macy 		    msp->ms_loaded ? range_tree_add : NULL,
4342eda14cbcSMatt Macy 		    msp->ms_allocatable);
4343eda14cbcSMatt Macy 	}
4344eda14cbcSMatt Macy 
4345eda14cbcSMatt Macy 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4346eda14cbcSMatt Macy 
4347eda14cbcSMatt Macy 	msp->ms_deferspace += defer_delta;
4348eda14cbcSMatt Macy 	ASSERT3S(msp->ms_deferspace, >=, 0);
4349eda14cbcSMatt Macy 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4350eda14cbcSMatt Macy 	if (msp->ms_deferspace != 0) {
4351eda14cbcSMatt Macy 		/*
4352eda14cbcSMatt Macy 		 * Keep syncing this metaslab until all deferred frees
4353eda14cbcSMatt Macy 		 * are back in circulation.
4354eda14cbcSMatt Macy 		 */
4355eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4356eda14cbcSMatt Macy 	}
4357eda14cbcSMatt Macy 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4358eda14cbcSMatt Macy 
4359eda14cbcSMatt Macy 	if (msp->ms_new) {
4360eda14cbcSMatt Macy 		msp->ms_new = B_FALSE;
4361eda14cbcSMatt Macy 		mutex_enter(&mg->mg_lock);
4362eda14cbcSMatt Macy 		mg->mg_ms_ready++;
4363eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
4364eda14cbcSMatt Macy 	}
4365eda14cbcSMatt Macy 
4366eda14cbcSMatt Macy 	/*
4367eda14cbcSMatt Macy 	 * Re-sort metaslab within its group now that we've adjusted
4368eda14cbcSMatt Macy 	 * its allocatable space.
4369eda14cbcSMatt Macy 	 */
4370eda14cbcSMatt Macy 	metaslab_recalculate_weight_and_sort(msp);
4371eda14cbcSMatt Macy 
4372eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4373eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4374eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freed));
4375eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4376eda14cbcSMatt Macy 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4377eda14cbcSMatt Macy 	msp->ms_allocated_this_txg = 0;
4378eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4379eda14cbcSMatt Macy }
4380eda14cbcSMatt Macy 
4381eda14cbcSMatt Macy void
4382eda14cbcSMatt Macy metaslab_sync_reassess(metaslab_group_t *mg)
4383eda14cbcSMatt Macy {
4384eda14cbcSMatt Macy 	spa_t *spa = mg->mg_class->mc_spa;
4385eda14cbcSMatt Macy 
4386eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4387eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
4388eda14cbcSMatt Macy 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4389eda14cbcSMatt Macy 
4390eda14cbcSMatt Macy 	/*
4391eda14cbcSMatt Macy 	 * Preload the next potential metaslabs but only on active
4392eda14cbcSMatt Macy 	 * metaslab groups. We can get into a state where the metaslab
4393eda14cbcSMatt Macy 	 * is no longer active since we dirty metaslabs as we remove a
4394eda14cbcSMatt Macy 	 * a device, thus potentially making the metaslab group eligible
4395eda14cbcSMatt Macy 	 * for preloading.
4396eda14cbcSMatt Macy 	 */
4397eda14cbcSMatt Macy 	if (mg->mg_activation_count > 0) {
4398eda14cbcSMatt Macy 		metaslab_group_preload(mg);
4399eda14cbcSMatt Macy 	}
4400eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4401eda14cbcSMatt Macy }
4402eda14cbcSMatt Macy 
4403eda14cbcSMatt Macy /*
4404eda14cbcSMatt Macy  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4405eda14cbcSMatt Macy  * the same vdev as an existing DVA of this BP, then try to allocate it
4406eda14cbcSMatt Macy  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4407eda14cbcSMatt Macy  */
4408eda14cbcSMatt Macy static boolean_t
4409eda14cbcSMatt Macy metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4410eda14cbcSMatt Macy {
4411eda14cbcSMatt Macy 	uint64_t dva_ms_id;
4412eda14cbcSMatt Macy 
4413eda14cbcSMatt Macy 	if (DVA_GET_ASIZE(dva) == 0)
4414eda14cbcSMatt Macy 		return (B_TRUE);
4415eda14cbcSMatt Macy 
4416eda14cbcSMatt Macy 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4417eda14cbcSMatt Macy 		return (B_TRUE);
4418eda14cbcSMatt Macy 
4419eda14cbcSMatt Macy 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4420eda14cbcSMatt Macy 
4421eda14cbcSMatt Macy 	return (msp->ms_id != dva_ms_id);
4422eda14cbcSMatt Macy }
4423eda14cbcSMatt Macy 
4424eda14cbcSMatt Macy /*
4425eda14cbcSMatt Macy  * ==========================================================================
4426eda14cbcSMatt Macy  * Metaslab allocation tracing facility
4427eda14cbcSMatt Macy  * ==========================================================================
4428eda14cbcSMatt Macy  */
4429eda14cbcSMatt Macy 
4430eda14cbcSMatt Macy /*
4431eda14cbcSMatt Macy  * Add an allocation trace element to the allocation tracing list.
4432eda14cbcSMatt Macy  */
4433eda14cbcSMatt Macy static void
4434eda14cbcSMatt Macy metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4435eda14cbcSMatt Macy     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4436eda14cbcSMatt Macy     int allocator)
4437eda14cbcSMatt Macy {
4438eda14cbcSMatt Macy 	metaslab_alloc_trace_t *mat;
4439eda14cbcSMatt Macy 
4440eda14cbcSMatt Macy 	if (!metaslab_trace_enabled)
4441eda14cbcSMatt Macy 		return;
4442eda14cbcSMatt Macy 
4443eda14cbcSMatt Macy 	/*
4444eda14cbcSMatt Macy 	 * When the tracing list reaches its maximum we remove
4445eda14cbcSMatt Macy 	 * the second element in the list before adding a new one.
4446eda14cbcSMatt Macy 	 * By removing the second element we preserve the original
4447eda14cbcSMatt Macy 	 * entry as a clue to what allocations steps have already been
4448eda14cbcSMatt Macy 	 * performed.
4449eda14cbcSMatt Macy 	 */
4450eda14cbcSMatt Macy 	if (zal->zal_size == metaslab_trace_max_entries) {
4451eda14cbcSMatt Macy 		metaslab_alloc_trace_t *mat_next;
4452eda14cbcSMatt Macy #ifdef ZFS_DEBUG
4453eda14cbcSMatt Macy 		panic("too many entries in allocation list");
4454eda14cbcSMatt Macy #endif
4455eda14cbcSMatt Macy 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4456eda14cbcSMatt Macy 		zal->zal_size--;
4457eda14cbcSMatt Macy 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4458eda14cbcSMatt Macy 		list_remove(&zal->zal_list, mat_next);
4459eda14cbcSMatt Macy 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4460eda14cbcSMatt Macy 	}
4461eda14cbcSMatt Macy 
4462eda14cbcSMatt Macy 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4463eda14cbcSMatt Macy 	list_link_init(&mat->mat_list_node);
4464eda14cbcSMatt Macy 	mat->mat_mg = mg;
4465eda14cbcSMatt Macy 	mat->mat_msp = msp;
4466eda14cbcSMatt Macy 	mat->mat_size = psize;
4467eda14cbcSMatt Macy 	mat->mat_dva_id = dva_id;
4468eda14cbcSMatt Macy 	mat->mat_offset = offset;
4469eda14cbcSMatt Macy 	mat->mat_weight = 0;
4470eda14cbcSMatt Macy 	mat->mat_allocator = allocator;
4471eda14cbcSMatt Macy 
4472eda14cbcSMatt Macy 	if (msp != NULL)
4473eda14cbcSMatt Macy 		mat->mat_weight = msp->ms_weight;
4474eda14cbcSMatt Macy 
4475eda14cbcSMatt Macy 	/*
4476eda14cbcSMatt Macy 	 * The list is part of the zio so locking is not required. Only
4477eda14cbcSMatt Macy 	 * a single thread will perform allocations for a given zio.
4478eda14cbcSMatt Macy 	 */
4479eda14cbcSMatt Macy 	list_insert_tail(&zal->zal_list, mat);
4480eda14cbcSMatt Macy 	zal->zal_size++;
4481eda14cbcSMatt Macy 
4482eda14cbcSMatt Macy 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4483eda14cbcSMatt Macy }
4484eda14cbcSMatt Macy 
4485eda14cbcSMatt Macy void
4486eda14cbcSMatt Macy metaslab_trace_init(zio_alloc_list_t *zal)
4487eda14cbcSMatt Macy {
4488eda14cbcSMatt Macy 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4489eda14cbcSMatt Macy 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4490eda14cbcSMatt Macy 	zal->zal_size = 0;
4491eda14cbcSMatt Macy }
4492eda14cbcSMatt Macy 
4493eda14cbcSMatt Macy void
4494eda14cbcSMatt Macy metaslab_trace_fini(zio_alloc_list_t *zal)
4495eda14cbcSMatt Macy {
4496eda14cbcSMatt Macy 	metaslab_alloc_trace_t *mat;
4497eda14cbcSMatt Macy 
4498eda14cbcSMatt Macy 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4499eda14cbcSMatt Macy 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4500eda14cbcSMatt Macy 	list_destroy(&zal->zal_list);
4501eda14cbcSMatt Macy 	zal->zal_size = 0;
4502eda14cbcSMatt Macy }
4503eda14cbcSMatt Macy 
4504eda14cbcSMatt Macy /*
4505eda14cbcSMatt Macy  * ==========================================================================
4506eda14cbcSMatt Macy  * Metaslab block operations
4507eda14cbcSMatt Macy  * ==========================================================================
4508eda14cbcSMatt Macy  */
4509eda14cbcSMatt Macy 
4510eda14cbcSMatt Macy static void
4511a0b956f5SMartin Matuska metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4512a0b956f5SMartin Matuska     int flags, int allocator)
4513eda14cbcSMatt Macy {
4514eda14cbcSMatt Macy 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4515eda14cbcSMatt Macy 	    (flags & METASLAB_DONT_THROTTLE))
4516eda14cbcSMatt Macy 		return;
4517eda14cbcSMatt Macy 
4518eda14cbcSMatt Macy 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4519eda14cbcSMatt Macy 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4520eda14cbcSMatt Macy 		return;
4521eda14cbcSMatt Macy 
4522eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4523eda14cbcSMatt Macy 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4524eda14cbcSMatt Macy }
4525eda14cbcSMatt Macy 
4526eda14cbcSMatt Macy static void
4527eda14cbcSMatt Macy metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4528eda14cbcSMatt Macy {
4529eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
45307877fdebSMatt Macy 	metaslab_class_allocator_t *mca =
45317877fdebSMatt Macy 	    &mg->mg_class->mc_allocator[allocator];
4532eda14cbcSMatt Macy 	uint64_t max = mg->mg_max_alloc_queue_depth;
4533eda14cbcSMatt Macy 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4534eda14cbcSMatt Macy 	while (cur < max) {
4535eda14cbcSMatt Macy 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4536eda14cbcSMatt Macy 		    cur, cur + 1) == cur) {
45377877fdebSMatt Macy 			atomic_inc_64(&mca->mca_alloc_max_slots);
4538eda14cbcSMatt Macy 			return;
4539eda14cbcSMatt Macy 		}
4540eda14cbcSMatt Macy 		cur = mga->mga_cur_max_alloc_queue_depth;
4541eda14cbcSMatt Macy 	}
4542eda14cbcSMatt Macy }
4543eda14cbcSMatt Macy 
4544eda14cbcSMatt Macy void
4545a0b956f5SMartin Matuska metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4546a0b956f5SMartin Matuska     int flags, int allocator, boolean_t io_complete)
4547eda14cbcSMatt Macy {
4548eda14cbcSMatt Macy 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4549eda14cbcSMatt Macy 	    (flags & METASLAB_DONT_THROTTLE))
4550eda14cbcSMatt Macy 		return;
4551eda14cbcSMatt Macy 
4552eda14cbcSMatt Macy 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4553eda14cbcSMatt Macy 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4554eda14cbcSMatt Macy 		return;
4555eda14cbcSMatt Macy 
4556eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4557eda14cbcSMatt Macy 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4558eda14cbcSMatt Macy 	if (io_complete)
4559eda14cbcSMatt Macy 		metaslab_group_increment_qdepth(mg, allocator);
4560eda14cbcSMatt Macy }
4561eda14cbcSMatt Macy 
4562eda14cbcSMatt Macy void
4563a0b956f5SMartin Matuska metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4564eda14cbcSMatt Macy     int allocator)
4565eda14cbcSMatt Macy {
4566eda14cbcSMatt Macy #ifdef ZFS_DEBUG
4567eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
4568eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
4569eda14cbcSMatt Macy 
4570eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
4571eda14cbcSMatt Macy 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4572eda14cbcSMatt Macy 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4573eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4574eda14cbcSMatt Macy 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4575eda14cbcSMatt Macy 	}
4576eda14cbcSMatt Macy #endif
4577eda14cbcSMatt Macy }
4578eda14cbcSMatt Macy 
4579eda14cbcSMatt Macy static uint64_t
4580eda14cbcSMatt Macy metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4581eda14cbcSMatt Macy {
4582eda14cbcSMatt Macy 	uint64_t start;
4583eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
4584eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
4585eda14cbcSMatt Macy 
4586eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4587eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
4588eda14cbcSMatt Macy 	VERIFY0(msp->ms_disabled);
4589eda14cbcSMatt Macy 
4590eda14cbcSMatt Macy 	start = mc->mc_ops->msop_alloc(msp, size);
4591eda14cbcSMatt Macy 	if (start != -1ULL) {
4592eda14cbcSMatt Macy 		metaslab_group_t *mg = msp->ms_group;
4593eda14cbcSMatt Macy 		vdev_t *vd = mg->mg_vd;
4594eda14cbcSMatt Macy 
4595eda14cbcSMatt Macy 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4596eda14cbcSMatt Macy 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4597eda14cbcSMatt Macy 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4598eda14cbcSMatt Macy 		range_tree_remove(rt, start, size);
4599eda14cbcSMatt Macy 		range_tree_clear(msp->ms_trim, start, size);
4600eda14cbcSMatt Macy 
4601eda14cbcSMatt Macy 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4602eda14cbcSMatt Macy 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4603eda14cbcSMatt Macy 
4604eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4605eda14cbcSMatt Macy 		msp->ms_allocating_total += size;
4606eda14cbcSMatt Macy 
4607eda14cbcSMatt Macy 		/* Track the last successful allocation */
4608eda14cbcSMatt Macy 		msp->ms_alloc_txg = txg;
4609eda14cbcSMatt Macy 		metaslab_verify_space(msp, txg);
4610eda14cbcSMatt Macy 	}
4611eda14cbcSMatt Macy 
4612eda14cbcSMatt Macy 	/*
4613eda14cbcSMatt Macy 	 * Now that we've attempted the allocation we need to update the
4614eda14cbcSMatt Macy 	 * metaslab's maximum block size since it may have changed.
4615eda14cbcSMatt Macy 	 */
4616eda14cbcSMatt Macy 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4617eda14cbcSMatt Macy 	return (start);
4618eda14cbcSMatt Macy }
4619eda14cbcSMatt Macy 
4620eda14cbcSMatt Macy /*
4621eda14cbcSMatt Macy  * Find the metaslab with the highest weight that is less than what we've
4622eda14cbcSMatt Macy  * already tried.  In the common case, this means that we will examine each
4623eda14cbcSMatt Macy  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4624eda14cbcSMatt Macy  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4625eda14cbcSMatt Macy  * activated by another thread, and we fail to allocate from the metaslab we
4626eda14cbcSMatt Macy  * have selected, we may not try the newly-activated metaslab, and instead
4627eda14cbcSMatt Macy  * activate another metaslab.  This is not optimal, but generally does not cause
4628eda14cbcSMatt Macy  * any problems (a possible exception being if every metaslab is completely full
4629eda14cbcSMatt Macy  * except for the newly-activated metaslab which we fail to examine).
4630eda14cbcSMatt Macy  */
4631eda14cbcSMatt Macy static metaslab_t *
4632eda14cbcSMatt Macy find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4633eda14cbcSMatt Macy     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4634eda14cbcSMatt Macy     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4635eda14cbcSMatt Macy     boolean_t *was_active)
4636eda14cbcSMatt Macy {
4637eda14cbcSMatt Macy 	avl_index_t idx;
4638eda14cbcSMatt Macy 	avl_tree_t *t = &mg->mg_metaslab_tree;
4639eda14cbcSMatt Macy 	metaslab_t *msp = avl_find(t, search, &idx);
4640eda14cbcSMatt Macy 	if (msp == NULL)
4641eda14cbcSMatt Macy 		msp = avl_nearest(t, idx, AVL_AFTER);
4642eda14cbcSMatt Macy 
4643*be181ee2SMartin Matuska 	uint_t tries = 0;
4644eda14cbcSMatt Macy 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4645eda14cbcSMatt Macy 		int i;
46467877fdebSMatt Macy 
46477877fdebSMatt Macy 		if (!try_hard && tries > zfs_metaslab_find_max_tries) {
46487877fdebSMatt Macy 			METASLABSTAT_BUMP(metaslabstat_too_many_tries);
46497877fdebSMatt Macy 			return (NULL);
46507877fdebSMatt Macy 		}
46517877fdebSMatt Macy 		tries++;
46527877fdebSMatt Macy 
4653eda14cbcSMatt Macy 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4654eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4655eda14cbcSMatt Macy 			    TRACE_TOO_SMALL, allocator);
4656eda14cbcSMatt Macy 			continue;
4657eda14cbcSMatt Macy 		}
4658eda14cbcSMatt Macy 
4659eda14cbcSMatt Macy 		/*
4660eda14cbcSMatt Macy 		 * If the selected metaslab is condensing or disabled,
4661eda14cbcSMatt Macy 		 * skip it.
4662eda14cbcSMatt Macy 		 */
4663eda14cbcSMatt Macy 		if (msp->ms_condensing || msp->ms_disabled > 0)
4664eda14cbcSMatt Macy 			continue;
4665eda14cbcSMatt Macy 
4666eda14cbcSMatt Macy 		*was_active = msp->ms_allocator != -1;
4667eda14cbcSMatt Macy 		/*
4668eda14cbcSMatt Macy 		 * If we're activating as primary, this is our first allocation
4669eda14cbcSMatt Macy 		 * from this disk, so we don't need to check how close we are.
4670eda14cbcSMatt Macy 		 * If the metaslab under consideration was already active,
4671eda14cbcSMatt Macy 		 * we're getting desperate enough to steal another allocator's
4672eda14cbcSMatt Macy 		 * metaslab, so we still don't care about distances.
4673eda14cbcSMatt Macy 		 */
4674eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4675eda14cbcSMatt Macy 			break;
4676eda14cbcSMatt Macy 
4677eda14cbcSMatt Macy 		for (i = 0; i < d; i++) {
4678eda14cbcSMatt Macy 			if (want_unique &&
4679eda14cbcSMatt Macy 			    !metaslab_is_unique(msp, &dva[i]))
4680eda14cbcSMatt Macy 				break;  /* try another metaslab */
4681eda14cbcSMatt Macy 		}
4682eda14cbcSMatt Macy 		if (i == d)
4683eda14cbcSMatt Macy 			break;
4684eda14cbcSMatt Macy 	}
4685eda14cbcSMatt Macy 
4686eda14cbcSMatt Macy 	if (msp != NULL) {
4687eda14cbcSMatt Macy 		search->ms_weight = msp->ms_weight;
4688eda14cbcSMatt Macy 		search->ms_start = msp->ms_start + 1;
4689eda14cbcSMatt Macy 		search->ms_allocator = msp->ms_allocator;
4690eda14cbcSMatt Macy 		search->ms_primary = msp->ms_primary;
4691eda14cbcSMatt Macy 	}
4692eda14cbcSMatt Macy 	return (msp);
4693eda14cbcSMatt Macy }
4694eda14cbcSMatt Macy 
4695eda14cbcSMatt Macy static void
4696eda14cbcSMatt Macy metaslab_active_mask_verify(metaslab_t *msp)
4697eda14cbcSMatt Macy {
4698eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4699eda14cbcSMatt Macy 
4700eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4701eda14cbcSMatt Macy 		return;
4702eda14cbcSMatt Macy 
4703eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4704eda14cbcSMatt Macy 		return;
4705eda14cbcSMatt Macy 
4706eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4707eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4708eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4709eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, !=, -1);
4710eda14cbcSMatt Macy 		VERIFY(msp->ms_primary);
4711eda14cbcSMatt Macy 		return;
4712eda14cbcSMatt Macy 	}
4713eda14cbcSMatt Macy 
4714eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4715eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4716eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4717eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, !=, -1);
4718eda14cbcSMatt Macy 		VERIFY(!msp->ms_primary);
4719eda14cbcSMatt Macy 		return;
4720eda14cbcSMatt Macy 	}
4721eda14cbcSMatt Macy 
4722eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4723eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4724eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4725eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, ==, -1);
4726eda14cbcSMatt Macy 		return;
4727eda14cbcSMatt Macy 	}
4728eda14cbcSMatt Macy }
4729eda14cbcSMatt Macy 
4730eda14cbcSMatt Macy static uint64_t
4731eda14cbcSMatt Macy metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4732eda14cbcSMatt Macy     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4733eda14cbcSMatt Macy     int allocator, boolean_t try_hard)
4734eda14cbcSMatt Macy {
4735eda14cbcSMatt Macy 	metaslab_t *msp = NULL;
4736eda14cbcSMatt Macy 	uint64_t offset = -1ULL;
4737eda14cbcSMatt Macy 
4738eda14cbcSMatt Macy 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4739eda14cbcSMatt Macy 	for (int i = 0; i < d; i++) {
4740eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4741eda14cbcSMatt Macy 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4742eda14cbcSMatt Macy 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4743eda14cbcSMatt Macy 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4744eda14cbcSMatt Macy 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4745eda14cbcSMatt Macy 			activation_weight = METASLAB_WEIGHT_CLAIM;
4746eda14cbcSMatt Macy 			break;
4747eda14cbcSMatt Macy 		}
4748eda14cbcSMatt Macy 	}
4749eda14cbcSMatt Macy 
4750eda14cbcSMatt Macy 	/*
4751eda14cbcSMatt Macy 	 * If we don't have enough metaslabs active to fill the entire array, we
4752eda14cbcSMatt Macy 	 * just use the 0th slot.
4753eda14cbcSMatt Macy 	 */
4754eda14cbcSMatt Macy 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4755eda14cbcSMatt Macy 		allocator = 0;
4756eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4757eda14cbcSMatt Macy 
4758eda14cbcSMatt Macy 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4759eda14cbcSMatt Macy 
4760eda14cbcSMatt Macy 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4761eda14cbcSMatt Macy 	search->ms_weight = UINT64_MAX;
4762eda14cbcSMatt Macy 	search->ms_start = 0;
4763eda14cbcSMatt Macy 	/*
4764eda14cbcSMatt Macy 	 * At the end of the metaslab tree are the already-active metaslabs,
4765eda14cbcSMatt Macy 	 * first the primaries, then the secondaries. When we resume searching
4766eda14cbcSMatt Macy 	 * through the tree, we need to consider ms_allocator and ms_primary so
4767eda14cbcSMatt Macy 	 * we start in the location right after where we left off, and don't
4768eda14cbcSMatt Macy 	 * accidentally loop forever considering the same metaslabs.
4769eda14cbcSMatt Macy 	 */
4770eda14cbcSMatt Macy 	search->ms_allocator = -1;
4771eda14cbcSMatt Macy 	search->ms_primary = B_TRUE;
4772eda14cbcSMatt Macy 	for (;;) {
4773eda14cbcSMatt Macy 		boolean_t was_active = B_FALSE;
4774eda14cbcSMatt Macy 
4775eda14cbcSMatt Macy 		mutex_enter(&mg->mg_lock);
4776eda14cbcSMatt Macy 
4777eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4778eda14cbcSMatt Macy 		    mga->mga_primary != NULL) {
4779eda14cbcSMatt Macy 			msp = mga->mga_primary;
4780eda14cbcSMatt Macy 
4781eda14cbcSMatt Macy 			/*
4782eda14cbcSMatt Macy 			 * Even though we don't hold the ms_lock for the
4783eda14cbcSMatt Macy 			 * primary metaslab, those fields should not
4784eda14cbcSMatt Macy 			 * change while we hold the mg_lock. Thus it is
4785eda14cbcSMatt Macy 			 * safe to make assertions on them.
4786eda14cbcSMatt Macy 			 */
4787eda14cbcSMatt Macy 			ASSERT(msp->ms_primary);
4788eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, allocator);
4789eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4790eda14cbcSMatt Macy 
4791eda14cbcSMatt Macy 			was_active = B_TRUE;
4792eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4793eda14cbcSMatt Macy 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4794eda14cbcSMatt Macy 		    mga->mga_secondary != NULL) {
4795eda14cbcSMatt Macy 			msp = mga->mga_secondary;
4796eda14cbcSMatt Macy 
4797eda14cbcSMatt Macy 			/*
4798eda14cbcSMatt Macy 			 * See comment above about the similar assertions
4799eda14cbcSMatt Macy 			 * for the primary metaslab.
4800eda14cbcSMatt Macy 			 */
4801eda14cbcSMatt Macy 			ASSERT(!msp->ms_primary);
4802eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, allocator);
4803eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4804eda14cbcSMatt Macy 
4805eda14cbcSMatt Macy 			was_active = B_TRUE;
4806eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4807eda14cbcSMatt Macy 		} else {
4808eda14cbcSMatt Macy 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4809eda14cbcSMatt Macy 			    want_unique, asize, allocator, try_hard, zal,
4810eda14cbcSMatt Macy 			    search, &was_active);
4811eda14cbcSMatt Macy 		}
4812eda14cbcSMatt Macy 
4813eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
4814eda14cbcSMatt Macy 		if (msp == NULL) {
4815eda14cbcSMatt Macy 			kmem_free(search, sizeof (*search));
4816eda14cbcSMatt Macy 			return (-1ULL);
4817eda14cbcSMatt Macy 		}
4818eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4819eda14cbcSMatt Macy 
4820eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
4821eda14cbcSMatt Macy 
4822eda14cbcSMatt Macy 		/*
4823eda14cbcSMatt Macy 		 * This code is disabled out because of issues with
4824eda14cbcSMatt Macy 		 * tracepoints in non-gpl kernel modules.
4825eda14cbcSMatt Macy 		 */
4826eda14cbcSMatt Macy #if 0
4827eda14cbcSMatt Macy 		DTRACE_PROBE3(ms__activation__attempt,
4828eda14cbcSMatt Macy 		    metaslab_t *, msp, uint64_t, activation_weight,
4829eda14cbcSMatt Macy 		    boolean_t, was_active);
4830eda14cbcSMatt Macy #endif
4831eda14cbcSMatt Macy 
4832eda14cbcSMatt Macy 		/*
4833eda14cbcSMatt Macy 		 * Ensure that the metaslab we have selected is still
4834eda14cbcSMatt Macy 		 * capable of handling our request. It's possible that
4835eda14cbcSMatt Macy 		 * another thread may have changed the weight while we
4836eda14cbcSMatt Macy 		 * were blocked on the metaslab lock. We check the
4837eda14cbcSMatt Macy 		 * active status first to see if we need to set_selected_txg
4838eda14cbcSMatt Macy 		 * a new metaslab.
4839eda14cbcSMatt Macy 		 */
4840eda14cbcSMatt Macy 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4841eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, -1);
4842eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4843eda14cbcSMatt Macy 			continue;
4844eda14cbcSMatt Macy 		}
4845eda14cbcSMatt Macy 
4846eda14cbcSMatt Macy 		/*
4847eda14cbcSMatt Macy 		 * If the metaslab was activated for another allocator
4848eda14cbcSMatt Macy 		 * while we were waiting in the ms_lock above, or it's
4849eda14cbcSMatt Macy 		 * a primary and we're seeking a secondary (or vice versa),
4850eda14cbcSMatt Macy 		 * we go back and select a new metaslab.
4851eda14cbcSMatt Macy 		 */
4852eda14cbcSMatt Macy 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4853eda14cbcSMatt Macy 		    (msp->ms_allocator != -1) &&
4854eda14cbcSMatt Macy 		    (msp->ms_allocator != allocator || ((activation_weight ==
4855eda14cbcSMatt Macy 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4856eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4857eda14cbcSMatt Macy 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4858eda14cbcSMatt Macy 			    msp->ms_allocator != -1);
4859eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4860eda14cbcSMatt Macy 			continue;
4861eda14cbcSMatt Macy 		}
4862eda14cbcSMatt Macy 
4863eda14cbcSMatt Macy 		/*
4864eda14cbcSMatt Macy 		 * This metaslab was used for claiming regions allocated
4865eda14cbcSMatt Macy 		 * by the ZIL during pool import. Once these regions are
4866eda14cbcSMatt Macy 		 * claimed we don't need to keep the CLAIM bit set
4867eda14cbcSMatt Macy 		 * anymore. Passivate this metaslab to zero its activation
4868eda14cbcSMatt Macy 		 * mask.
4869eda14cbcSMatt Macy 		 */
4870eda14cbcSMatt Macy 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4871eda14cbcSMatt Macy 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4872eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4873eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, -1);
4874eda14cbcSMatt Macy 			metaslab_passivate(msp, msp->ms_weight &
4875eda14cbcSMatt Macy 			    ~METASLAB_WEIGHT_CLAIM);
4876eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4877eda14cbcSMatt Macy 			continue;
4878eda14cbcSMatt Macy 		}
4879eda14cbcSMatt Macy 
4880eda14cbcSMatt Macy 		metaslab_set_selected_txg(msp, txg);
4881eda14cbcSMatt Macy 
4882eda14cbcSMatt Macy 		int activation_error =
4883eda14cbcSMatt Macy 		    metaslab_activate(msp, allocator, activation_weight);
4884eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
4885eda14cbcSMatt Macy 
4886eda14cbcSMatt Macy 		/*
4887eda14cbcSMatt Macy 		 * If the metaslab was activated by another thread for
4888eda14cbcSMatt Macy 		 * another allocator or activation_weight (EBUSY), or it
4889eda14cbcSMatt Macy 		 * failed because another metaslab was assigned as primary
4890eda14cbcSMatt Macy 		 * for this allocator (EEXIST) we continue using this
4891eda14cbcSMatt Macy 		 * metaslab for our allocation, rather than going on to a
4892eda14cbcSMatt Macy 		 * worse metaslab (we waited for that metaslab to be loaded
4893eda14cbcSMatt Macy 		 * after all).
4894eda14cbcSMatt Macy 		 *
4895eda14cbcSMatt Macy 		 * If the activation failed due to an I/O error or ENOSPC we
4896eda14cbcSMatt Macy 		 * skip to the next metaslab.
4897eda14cbcSMatt Macy 		 */
4898eda14cbcSMatt Macy 		boolean_t activated;
4899eda14cbcSMatt Macy 		if (activation_error == 0) {
4900eda14cbcSMatt Macy 			activated = B_TRUE;
4901eda14cbcSMatt Macy 		} else if (activation_error == EBUSY ||
4902eda14cbcSMatt Macy 		    activation_error == EEXIST) {
4903eda14cbcSMatt Macy 			activated = B_FALSE;
4904eda14cbcSMatt Macy 		} else {
4905eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4906eda14cbcSMatt Macy 			continue;
4907eda14cbcSMatt Macy 		}
4908eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
4909eda14cbcSMatt Macy 
4910eda14cbcSMatt Macy 		/*
4911eda14cbcSMatt Macy 		 * Now that we have the lock, recheck to see if we should
4912eda14cbcSMatt Macy 		 * continue to use this metaslab for this allocation. The
4913eda14cbcSMatt Macy 		 * the metaslab is now loaded so metaslab_should_allocate()
4914eda14cbcSMatt Macy 		 * can accurately determine if the allocation attempt should
4915eda14cbcSMatt Macy 		 * proceed.
4916eda14cbcSMatt Macy 		 */
4917eda14cbcSMatt Macy 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4918eda14cbcSMatt Macy 			/* Passivate this metaslab and select a new one. */
4919eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4920eda14cbcSMatt Macy 			    TRACE_TOO_SMALL, allocator);
4921eda14cbcSMatt Macy 			goto next;
4922eda14cbcSMatt Macy 		}
4923eda14cbcSMatt Macy 
4924eda14cbcSMatt Macy 		/*
4925eda14cbcSMatt Macy 		 * If this metaslab is currently condensing then pick again
4926eda14cbcSMatt Macy 		 * as we can't manipulate this metaslab until it's committed
4927eda14cbcSMatt Macy 		 * to disk. If this metaslab is being initialized, we shouldn't
4928eda14cbcSMatt Macy 		 * allocate from it since the allocated region might be
4929eda14cbcSMatt Macy 		 * overwritten after allocation.
4930eda14cbcSMatt Macy 		 */
4931eda14cbcSMatt Macy 		if (msp->ms_condensing) {
4932eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4933eda14cbcSMatt Macy 			    TRACE_CONDENSING, allocator);
4934eda14cbcSMatt Macy 			if (activated) {
4935eda14cbcSMatt Macy 				metaslab_passivate(msp, msp->ms_weight &
4936eda14cbcSMatt Macy 				    ~METASLAB_ACTIVE_MASK);
4937eda14cbcSMatt Macy 			}
4938eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4939eda14cbcSMatt Macy 			continue;
4940eda14cbcSMatt Macy 		} else if (msp->ms_disabled > 0) {
4941eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4942eda14cbcSMatt Macy 			    TRACE_DISABLED, allocator);
4943eda14cbcSMatt Macy 			if (activated) {
4944eda14cbcSMatt Macy 				metaslab_passivate(msp, msp->ms_weight &
4945eda14cbcSMatt Macy 				    ~METASLAB_ACTIVE_MASK);
4946eda14cbcSMatt Macy 			}
4947eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4948eda14cbcSMatt Macy 			continue;
4949eda14cbcSMatt Macy 		}
4950eda14cbcSMatt Macy 
4951eda14cbcSMatt Macy 		offset = metaslab_block_alloc(msp, asize, txg);
4952eda14cbcSMatt Macy 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4953eda14cbcSMatt Macy 
4954eda14cbcSMatt Macy 		if (offset != -1ULL) {
4955eda14cbcSMatt Macy 			/* Proactively passivate the metaslab, if needed */
4956eda14cbcSMatt Macy 			if (activated)
4957eda14cbcSMatt Macy 				metaslab_segment_may_passivate(msp);
4958eda14cbcSMatt Macy 			break;
4959eda14cbcSMatt Macy 		}
4960eda14cbcSMatt Macy next:
4961eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
4962eda14cbcSMatt Macy 
4963eda14cbcSMatt Macy 		/*
4964eda14cbcSMatt Macy 		 * This code is disabled out because of issues with
4965eda14cbcSMatt Macy 		 * tracepoints in non-gpl kernel modules.
4966eda14cbcSMatt Macy 		 */
4967eda14cbcSMatt Macy #if 0
4968eda14cbcSMatt Macy 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4969eda14cbcSMatt Macy 		    uint64_t, asize);
4970eda14cbcSMatt Macy #endif
4971eda14cbcSMatt Macy 
4972eda14cbcSMatt Macy 		/*
4973eda14cbcSMatt Macy 		 * We were unable to allocate from this metaslab so determine
4974eda14cbcSMatt Macy 		 * a new weight for this metaslab. Now that we have loaded
4975eda14cbcSMatt Macy 		 * the metaslab we can provide a better hint to the metaslab
4976eda14cbcSMatt Macy 		 * selector.
4977eda14cbcSMatt Macy 		 *
4978eda14cbcSMatt Macy 		 * For space-based metaslabs, we use the maximum block size.
4979eda14cbcSMatt Macy 		 * This information is only available when the metaslab
4980eda14cbcSMatt Macy 		 * is loaded and is more accurate than the generic free
4981eda14cbcSMatt Macy 		 * space weight that was calculated by metaslab_weight().
4982eda14cbcSMatt Macy 		 * This information allows us to quickly compare the maximum
4983eda14cbcSMatt Macy 		 * available allocation in the metaslab to the allocation
4984eda14cbcSMatt Macy 		 * size being requested.
4985eda14cbcSMatt Macy 		 *
4986eda14cbcSMatt Macy 		 * For segment-based metaslabs, determine the new weight
4987eda14cbcSMatt Macy 		 * based on the highest bucket in the range tree. We
4988eda14cbcSMatt Macy 		 * explicitly use the loaded segment weight (i.e. the range
4989eda14cbcSMatt Macy 		 * tree histogram) since it contains the space that is
4990eda14cbcSMatt Macy 		 * currently available for allocation and is accurate
4991eda14cbcSMatt Macy 		 * even within a sync pass.
4992eda14cbcSMatt Macy 		 */
4993eda14cbcSMatt Macy 		uint64_t weight;
4994eda14cbcSMatt Macy 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4995eda14cbcSMatt Macy 			weight = metaslab_largest_allocatable(msp);
4996eda14cbcSMatt Macy 			WEIGHT_SET_SPACEBASED(weight);
4997eda14cbcSMatt Macy 		} else {
4998eda14cbcSMatt Macy 			weight = metaslab_weight_from_range_tree(msp);
4999eda14cbcSMatt Macy 		}
5000eda14cbcSMatt Macy 
5001eda14cbcSMatt Macy 		if (activated) {
5002eda14cbcSMatt Macy 			metaslab_passivate(msp, weight);
5003eda14cbcSMatt Macy 		} else {
5004eda14cbcSMatt Macy 			/*
5005eda14cbcSMatt Macy 			 * For the case where we use the metaslab that is
5006eda14cbcSMatt Macy 			 * active for another allocator we want to make
5007eda14cbcSMatt Macy 			 * sure that we retain the activation mask.
5008eda14cbcSMatt Macy 			 *
5009eda14cbcSMatt Macy 			 * Note that we could attempt to use something like
5010eda14cbcSMatt Macy 			 * metaslab_recalculate_weight_and_sort() that
5011eda14cbcSMatt Macy 			 * retains the activation mask here. That function
5012eda14cbcSMatt Macy 			 * uses metaslab_weight() to set the weight though
5013eda14cbcSMatt Macy 			 * which is not as accurate as the calculations
5014eda14cbcSMatt Macy 			 * above.
5015eda14cbcSMatt Macy 			 */
5016eda14cbcSMatt Macy 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5017eda14cbcSMatt Macy 			metaslab_group_sort(mg, msp, weight);
5018eda14cbcSMatt Macy 		}
5019eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
5020eda14cbcSMatt Macy 
5021eda14cbcSMatt Macy 		/*
5022eda14cbcSMatt Macy 		 * We have just failed an allocation attempt, check
5023eda14cbcSMatt Macy 		 * that metaslab_should_allocate() agrees. Otherwise,
5024eda14cbcSMatt Macy 		 * we may end up in an infinite loop retrying the same
5025eda14cbcSMatt Macy 		 * metaslab.
5026eda14cbcSMatt Macy 		 */
5027eda14cbcSMatt Macy 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5028eda14cbcSMatt Macy 
5029eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
5030eda14cbcSMatt Macy 	}
5031eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5032eda14cbcSMatt Macy 	kmem_free(search, sizeof (*search));
5033eda14cbcSMatt Macy 	return (offset);
5034eda14cbcSMatt Macy }
5035eda14cbcSMatt Macy 
5036eda14cbcSMatt Macy static uint64_t
5037eda14cbcSMatt Macy metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5038eda14cbcSMatt Macy     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5039eda14cbcSMatt Macy     int allocator, boolean_t try_hard)
5040eda14cbcSMatt Macy {
5041eda14cbcSMatt Macy 	uint64_t offset;
5042eda14cbcSMatt Macy 	ASSERT(mg->mg_initialized);
5043eda14cbcSMatt Macy 
5044eda14cbcSMatt Macy 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5045eda14cbcSMatt Macy 	    dva, d, allocator, try_hard);
5046eda14cbcSMatt Macy 
5047eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
5048eda14cbcSMatt Macy 	if (offset == -1ULL) {
5049eda14cbcSMatt Macy 		mg->mg_failed_allocations++;
5050eda14cbcSMatt Macy 		metaslab_trace_add(zal, mg, NULL, asize, d,
5051eda14cbcSMatt Macy 		    TRACE_GROUP_FAILURE, allocator);
5052eda14cbcSMatt Macy 		if (asize == SPA_GANGBLOCKSIZE) {
5053eda14cbcSMatt Macy 			/*
5054eda14cbcSMatt Macy 			 * This metaslab group was unable to allocate
5055eda14cbcSMatt Macy 			 * the minimum gang block size so it must be out of
5056eda14cbcSMatt Macy 			 * space. We must notify the allocation throttle
5057eda14cbcSMatt Macy 			 * to start skipping allocation attempts to this
5058eda14cbcSMatt Macy 			 * metaslab group until more space becomes available.
5059eda14cbcSMatt Macy 			 * Note: this failure cannot be caused by the
5060eda14cbcSMatt Macy 			 * allocation throttle since the allocation throttle
5061eda14cbcSMatt Macy 			 * is only responsible for skipping devices and
5062eda14cbcSMatt Macy 			 * not failing block allocations.
5063eda14cbcSMatt Macy 			 */
5064eda14cbcSMatt Macy 			mg->mg_no_free_space = B_TRUE;
5065eda14cbcSMatt Macy 		}
5066eda14cbcSMatt Macy 	}
5067eda14cbcSMatt Macy 	mg->mg_allocations++;
5068eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
5069eda14cbcSMatt Macy 	return (offset);
5070eda14cbcSMatt Macy }
5071eda14cbcSMatt Macy 
5072eda14cbcSMatt Macy /*
5073eda14cbcSMatt Macy  * Allocate a block for the specified i/o.
5074eda14cbcSMatt Macy  */
5075eda14cbcSMatt Macy int
5076eda14cbcSMatt Macy metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5077eda14cbcSMatt Macy     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5078eda14cbcSMatt Macy     zio_alloc_list_t *zal, int allocator)
5079eda14cbcSMatt Macy {
50807877fdebSMatt Macy 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5081eda14cbcSMatt Macy 	metaslab_group_t *mg, *fast_mg, *rotor;
5082eda14cbcSMatt Macy 	vdev_t *vd;
5083eda14cbcSMatt Macy 	boolean_t try_hard = B_FALSE;
5084eda14cbcSMatt Macy 
5085eda14cbcSMatt Macy 	ASSERT(!DVA_IS_VALID(&dva[d]));
5086eda14cbcSMatt Macy 
5087eda14cbcSMatt Macy 	/*
5088eda14cbcSMatt Macy 	 * For testing, make some blocks above a certain size be gang blocks.
5089eda14cbcSMatt Macy 	 * This will result in more split blocks when using device removal,
5090eda14cbcSMatt Macy 	 * and a large number of split blocks coupled with ztest-induced
5091eda14cbcSMatt Macy 	 * damage can result in extremely long reconstruction times.  This
5092eda14cbcSMatt Macy 	 * will also test spilling from special to normal.
5093eda14cbcSMatt Macy 	 */
509433b8c039SMartin Matuska 	if (psize >= metaslab_force_ganging && (random_in_range(100) < 3)) {
5095eda14cbcSMatt Macy 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5096eda14cbcSMatt Macy 		    allocator);
5097eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
5098eda14cbcSMatt Macy 	}
5099eda14cbcSMatt Macy 
5100eda14cbcSMatt Macy 	/*
5101eda14cbcSMatt Macy 	 * Start at the rotor and loop through all mgs until we find something.
51027877fdebSMatt Macy 	 * Note that there's no locking on mca_rotor or mca_aliquot because
5103eda14cbcSMatt Macy 	 * nothing actually breaks if we miss a few updates -- we just won't
5104eda14cbcSMatt Macy 	 * allocate quite as evenly.  It all balances out over time.
5105eda14cbcSMatt Macy 	 *
5106eda14cbcSMatt Macy 	 * If we are doing ditto or log blocks, try to spread them across
5107eda14cbcSMatt Macy 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5108eda14cbcSMatt Macy 	 * allocated all of our ditto blocks, then try and spread them out on
5109eda14cbcSMatt Macy 	 * that vdev as much as possible.  If it turns out to not be possible,
5110eda14cbcSMatt Macy 	 * gradually lower our standards until anything becomes acceptable.
5111eda14cbcSMatt Macy 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5112eda14cbcSMatt Macy 	 * gives us hope of containing our fault domains to something we're
5113eda14cbcSMatt Macy 	 * able to reason about.  Otherwise, any two top-level vdev failures
5114eda14cbcSMatt Macy 	 * will guarantee the loss of data.  With consecutive allocation,
5115eda14cbcSMatt Macy 	 * only two adjacent top-level vdev failures will result in data loss.
5116eda14cbcSMatt Macy 	 *
5117eda14cbcSMatt Macy 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5118eda14cbcSMatt Macy 	 * ourselves on the same vdev as our gang block header.  That
5119eda14cbcSMatt Macy 	 * way, we can hope for locality in vdev_cache, plus it makes our
5120eda14cbcSMatt Macy 	 * fault domains something tractable.
5121eda14cbcSMatt Macy 	 */
5122eda14cbcSMatt Macy 	if (hintdva) {
5123eda14cbcSMatt Macy 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5124eda14cbcSMatt Macy 
5125eda14cbcSMatt Macy 		/*
5126eda14cbcSMatt Macy 		 * It's possible the vdev we're using as the hint no
5127eda14cbcSMatt Macy 		 * longer exists or its mg has been closed (e.g. by
5128eda14cbcSMatt Macy 		 * device removal).  Consult the rotor when
5129eda14cbcSMatt Macy 		 * all else fails.
5130eda14cbcSMatt Macy 		 */
5131eda14cbcSMatt Macy 		if (vd != NULL && vd->vdev_mg != NULL) {
5132184c1b94SMartin Matuska 			mg = vdev_get_mg(vd, mc);
5133eda14cbcSMatt Macy 
5134eda14cbcSMatt Macy 			if (flags & METASLAB_HINTBP_AVOID &&
5135eda14cbcSMatt Macy 			    mg->mg_next != NULL)
5136eda14cbcSMatt Macy 				mg = mg->mg_next;
5137eda14cbcSMatt Macy 		} else {
51387877fdebSMatt Macy 			mg = mca->mca_rotor;
5139eda14cbcSMatt Macy 		}
5140eda14cbcSMatt Macy 	} else if (d != 0) {
5141eda14cbcSMatt Macy 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5142eda14cbcSMatt Macy 		mg = vd->vdev_mg->mg_next;
5143eda14cbcSMatt Macy 	} else if (flags & METASLAB_FASTWRITE) {
51447877fdebSMatt Macy 		mg = fast_mg = mca->mca_rotor;
5145eda14cbcSMatt Macy 
5146eda14cbcSMatt Macy 		do {
5147eda14cbcSMatt Macy 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5148eda14cbcSMatt Macy 			    mg->mg_vd->vdev_pending_fastwrite)
5149eda14cbcSMatt Macy 				mg = fast_mg;
51507877fdebSMatt Macy 		} while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor);
5151eda14cbcSMatt Macy 
5152eda14cbcSMatt Macy 	} else {
51537877fdebSMatt Macy 		ASSERT(mca->mca_rotor != NULL);
51547877fdebSMatt Macy 		mg = mca->mca_rotor;
5155eda14cbcSMatt Macy 	}
5156eda14cbcSMatt Macy 
5157eda14cbcSMatt Macy 	/*
5158eda14cbcSMatt Macy 	 * If the hint put us into the wrong metaslab class, or into a
5159eda14cbcSMatt Macy 	 * metaslab group that has been passivated, just follow the rotor.
5160eda14cbcSMatt Macy 	 */
5161eda14cbcSMatt Macy 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
51627877fdebSMatt Macy 		mg = mca->mca_rotor;
5163eda14cbcSMatt Macy 
5164eda14cbcSMatt Macy 	rotor = mg;
5165eda14cbcSMatt Macy top:
5166eda14cbcSMatt Macy 	do {
5167eda14cbcSMatt Macy 		boolean_t allocatable;
5168eda14cbcSMatt Macy 
5169eda14cbcSMatt Macy 		ASSERT(mg->mg_activation_count == 1);
5170eda14cbcSMatt Macy 		vd = mg->mg_vd;
5171eda14cbcSMatt Macy 
5172eda14cbcSMatt Macy 		/*
5173eda14cbcSMatt Macy 		 * Don't allocate from faulted devices.
5174eda14cbcSMatt Macy 		 */
5175eda14cbcSMatt Macy 		if (try_hard) {
5176eda14cbcSMatt Macy 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5177eda14cbcSMatt Macy 			allocatable = vdev_allocatable(vd);
5178eda14cbcSMatt Macy 			spa_config_exit(spa, SCL_ZIO, FTAG);
5179eda14cbcSMatt Macy 		} else {
5180eda14cbcSMatt Macy 			allocatable = vdev_allocatable(vd);
5181eda14cbcSMatt Macy 		}
5182eda14cbcSMatt Macy 
5183eda14cbcSMatt Macy 		/*
5184eda14cbcSMatt Macy 		 * Determine if the selected metaslab group is eligible
5185eda14cbcSMatt Macy 		 * for allocations. If we're ganging then don't allow
5186eda14cbcSMatt Macy 		 * this metaslab group to skip allocations since that would
5187eda14cbcSMatt Macy 		 * inadvertently return ENOSPC and suspend the pool
5188eda14cbcSMatt Macy 		 * even though space is still available.
5189eda14cbcSMatt Macy 		 */
5190eda14cbcSMatt Macy 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5191eda14cbcSMatt Macy 			allocatable = metaslab_group_allocatable(mg, rotor,
5192eda14cbcSMatt Macy 			    psize, allocator, d);
5193eda14cbcSMatt Macy 		}
5194eda14cbcSMatt Macy 
5195eda14cbcSMatt Macy 		if (!allocatable) {
5196eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, NULL, psize, d,
5197eda14cbcSMatt Macy 			    TRACE_NOT_ALLOCATABLE, allocator);
5198eda14cbcSMatt Macy 			goto next;
5199eda14cbcSMatt Macy 		}
5200eda14cbcSMatt Macy 
5201eda14cbcSMatt Macy 		ASSERT(mg->mg_initialized);
5202eda14cbcSMatt Macy 
5203eda14cbcSMatt Macy 		/*
5204eda14cbcSMatt Macy 		 * Avoid writing single-copy data to a failing,
5205eda14cbcSMatt Macy 		 * non-redundant vdev, unless we've already tried all
5206eda14cbcSMatt Macy 		 * other vdevs.
5207eda14cbcSMatt Macy 		 */
5208eda14cbcSMatt Macy 		if ((vd->vdev_stat.vs_write_errors > 0 ||
5209eda14cbcSMatt Macy 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
5210eda14cbcSMatt Macy 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5211eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, NULL, psize, d,
5212eda14cbcSMatt Macy 			    TRACE_VDEV_ERROR, allocator);
5213eda14cbcSMatt Macy 			goto next;
5214eda14cbcSMatt Macy 		}
5215eda14cbcSMatt Macy 
5216eda14cbcSMatt Macy 		ASSERT(mg->mg_class == mc);
5217eda14cbcSMatt Macy 
5218eda14cbcSMatt Macy 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5219eda14cbcSMatt Macy 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5220eda14cbcSMatt Macy 
5221eda14cbcSMatt Macy 		/*
5222eda14cbcSMatt Macy 		 * If we don't need to try hard, then require that the
5223eda14cbcSMatt Macy 		 * block be on a different metaslab from any other DVAs
5224eda14cbcSMatt Macy 		 * in this BP (unique=true).  If we are trying hard, then
5225eda14cbcSMatt Macy 		 * allow any metaslab to be used (unique=false).
5226eda14cbcSMatt Macy 		 */
5227eda14cbcSMatt Macy 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5228eda14cbcSMatt Macy 		    !try_hard, dva, d, allocator, try_hard);
5229eda14cbcSMatt Macy 
5230eda14cbcSMatt Macy 		if (offset != -1ULL) {
5231eda14cbcSMatt Macy 			/*
5232eda14cbcSMatt Macy 			 * If we've just selected this metaslab group,
5233eda14cbcSMatt Macy 			 * figure out whether the corresponding vdev is
5234eda14cbcSMatt Macy 			 * over- or under-used relative to the pool,
5235eda14cbcSMatt Macy 			 * and set an allocation bias to even it out.
5236eda14cbcSMatt Macy 			 *
5237eda14cbcSMatt Macy 			 * Bias is also used to compensate for unequally
5238eda14cbcSMatt Macy 			 * sized vdevs so that space is allocated fairly.
5239eda14cbcSMatt Macy 			 */
52407877fdebSMatt Macy 			if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5241eda14cbcSMatt Macy 				vdev_stat_t *vs = &vd->vdev_stat;
5242eda14cbcSMatt Macy 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5243eda14cbcSMatt Macy 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5244eda14cbcSMatt Macy 				int64_t ratio;
5245eda14cbcSMatt Macy 
5246eda14cbcSMatt Macy 				/*
5247eda14cbcSMatt Macy 				 * Calculate how much more or less we should
5248eda14cbcSMatt Macy 				 * try to allocate from this device during
5249eda14cbcSMatt Macy 				 * this iteration around the rotor.
5250eda14cbcSMatt Macy 				 *
5251eda14cbcSMatt Macy 				 * This basically introduces a zero-centered
5252eda14cbcSMatt Macy 				 * bias towards the devices with the most
5253eda14cbcSMatt Macy 				 * free space, while compensating for vdev
5254eda14cbcSMatt Macy 				 * size differences.
5255eda14cbcSMatt Macy 				 *
5256eda14cbcSMatt Macy 				 * Examples:
5257eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5258eda14cbcSMatt Macy 				 *  vdev V2 = 16M/128M
5259eda14cbcSMatt Macy 				 *  ratio(V1) = 100% ratio(V2) = 100%
5260eda14cbcSMatt Macy 				 *
5261eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5262eda14cbcSMatt Macy 				 *  vdev V2 = 64M/128M
5263eda14cbcSMatt Macy 				 *  ratio(V1) = 127% ratio(V2) =  72%
5264eda14cbcSMatt Macy 				 *
5265eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5266eda14cbcSMatt Macy 				 *  vdev V2 = 64M/512M
5267eda14cbcSMatt Macy 				 *  ratio(V1) =  40% ratio(V2) = 160%
5268eda14cbcSMatt Macy 				 */
5269eda14cbcSMatt Macy 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5270eda14cbcSMatt Macy 				    (mc_free + 1);
5271eda14cbcSMatt Macy 				mg->mg_bias = ((ratio - 100) *
5272eda14cbcSMatt Macy 				    (int64_t)mg->mg_aliquot) / 100;
5273eda14cbcSMatt Macy 			} else if (!metaslab_bias_enabled) {
5274eda14cbcSMatt Macy 				mg->mg_bias = 0;
5275eda14cbcSMatt Macy 			}
5276eda14cbcSMatt Macy 
5277eda14cbcSMatt Macy 			if ((flags & METASLAB_FASTWRITE) ||
52787877fdebSMatt Macy 			    atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5279eda14cbcSMatt Macy 			    mg->mg_aliquot + mg->mg_bias) {
52807877fdebSMatt Macy 				mca->mca_rotor = mg->mg_next;
52817877fdebSMatt Macy 				mca->mca_aliquot = 0;
5282eda14cbcSMatt Macy 			}
5283eda14cbcSMatt Macy 
5284eda14cbcSMatt Macy 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5285eda14cbcSMatt Macy 			DVA_SET_OFFSET(&dva[d], offset);
5286eda14cbcSMatt Macy 			DVA_SET_GANG(&dva[d],
5287eda14cbcSMatt Macy 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5288eda14cbcSMatt Macy 			DVA_SET_ASIZE(&dva[d], asize);
5289eda14cbcSMatt Macy 
5290eda14cbcSMatt Macy 			if (flags & METASLAB_FASTWRITE) {
5291eda14cbcSMatt Macy 				atomic_add_64(&vd->vdev_pending_fastwrite,
5292eda14cbcSMatt Macy 				    psize);
5293eda14cbcSMatt Macy 			}
5294eda14cbcSMatt Macy 
5295eda14cbcSMatt Macy 			return (0);
5296eda14cbcSMatt Macy 		}
5297eda14cbcSMatt Macy next:
52987877fdebSMatt Macy 		mca->mca_rotor = mg->mg_next;
52997877fdebSMatt Macy 		mca->mca_aliquot = 0;
5300eda14cbcSMatt Macy 	} while ((mg = mg->mg_next) != rotor);
5301eda14cbcSMatt Macy 
5302eda14cbcSMatt Macy 	/*
53037877fdebSMatt Macy 	 * If we haven't tried hard, perhaps do so now.
5304eda14cbcSMatt Macy 	 */
53057877fdebSMatt Macy 	if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
53067877fdebSMatt Macy 	    GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
53077877fdebSMatt Macy 	    psize <= 1 << spa->spa_min_ashift)) {
53087877fdebSMatt Macy 		METASLABSTAT_BUMP(metaslabstat_try_hard);
5309eda14cbcSMatt Macy 		try_hard = B_TRUE;
5310eda14cbcSMatt Macy 		goto top;
5311eda14cbcSMatt Macy 	}
5312eda14cbcSMatt Macy 
5313da5137abSMartin Matuska 	memset(&dva[d], 0, sizeof (dva_t));
5314eda14cbcSMatt Macy 
5315eda14cbcSMatt Macy 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5316eda14cbcSMatt Macy 	return (SET_ERROR(ENOSPC));
5317eda14cbcSMatt Macy }
5318eda14cbcSMatt Macy 
5319eda14cbcSMatt Macy void
5320eda14cbcSMatt Macy metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5321eda14cbcSMatt Macy     boolean_t checkpoint)
5322eda14cbcSMatt Macy {
5323eda14cbcSMatt Macy 	metaslab_t *msp;
5324eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5325eda14cbcSMatt Macy 
5326eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
5327eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5328eda14cbcSMatt Macy 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5329eda14cbcSMatt Macy 
5330eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5331eda14cbcSMatt Macy 
5332eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5333eda14cbcSMatt Macy 	VERIFY3U(offset, >=, msp->ms_start);
5334eda14cbcSMatt Macy 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5335eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5336eda14cbcSMatt Macy 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5337eda14cbcSMatt Macy 
5338eda14cbcSMatt Macy 	metaslab_check_free_impl(vd, offset, asize);
5339eda14cbcSMatt Macy 
5340eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5341eda14cbcSMatt Macy 	if (range_tree_is_empty(msp->ms_freeing) &&
5342eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_checkpointing)) {
5343eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5344eda14cbcSMatt Macy 	}
5345eda14cbcSMatt Macy 
5346eda14cbcSMatt Macy 	if (checkpoint) {
5347eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
5348eda14cbcSMatt Macy 		range_tree_add(msp->ms_checkpointing, offset, asize);
5349eda14cbcSMatt Macy 	} else {
5350eda14cbcSMatt Macy 		range_tree_add(msp->ms_freeing, offset, asize);
5351eda14cbcSMatt Macy 	}
5352eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5353eda14cbcSMatt Macy }
5354eda14cbcSMatt Macy 
5355eda14cbcSMatt Macy void
5356eda14cbcSMatt Macy metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5357eda14cbcSMatt Macy     uint64_t size, void *arg)
5358eda14cbcSMatt Macy {
5359e92ffd9bSMartin Matuska 	(void) inner_offset;
5360eda14cbcSMatt Macy 	boolean_t *checkpoint = arg;
5361eda14cbcSMatt Macy 
5362eda14cbcSMatt Macy 	ASSERT3P(checkpoint, !=, NULL);
5363eda14cbcSMatt Macy 
5364eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL)
5365eda14cbcSMatt Macy 		vdev_indirect_mark_obsolete(vd, offset, size);
5366eda14cbcSMatt Macy 	else
5367eda14cbcSMatt Macy 		metaslab_free_impl(vd, offset, size, *checkpoint);
5368eda14cbcSMatt Macy }
5369eda14cbcSMatt Macy 
5370eda14cbcSMatt Macy static void
5371eda14cbcSMatt Macy metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5372eda14cbcSMatt Macy     boolean_t checkpoint)
5373eda14cbcSMatt Macy {
5374eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5375eda14cbcSMatt Macy 
5376eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5377eda14cbcSMatt Macy 
5378eda14cbcSMatt Macy 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5379eda14cbcSMatt Macy 		return;
5380eda14cbcSMatt Macy 
5381eda14cbcSMatt Macy 	if (spa->spa_vdev_removal != NULL &&
5382eda14cbcSMatt Macy 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5383eda14cbcSMatt Macy 	    vdev_is_concrete(vd)) {
5384eda14cbcSMatt Macy 		/*
5385eda14cbcSMatt Macy 		 * Note: we check if the vdev is concrete because when
5386eda14cbcSMatt Macy 		 * we complete the removal, we first change the vdev to be
5387eda14cbcSMatt Macy 		 * an indirect vdev (in open context), and then (in syncing
5388eda14cbcSMatt Macy 		 * context) clear spa_vdev_removal.
5389eda14cbcSMatt Macy 		 */
5390eda14cbcSMatt Macy 		free_from_removing_vdev(vd, offset, size);
5391eda14cbcSMatt Macy 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5392eda14cbcSMatt Macy 		vdev_indirect_mark_obsolete(vd, offset, size);
5393eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5394eda14cbcSMatt Macy 		    metaslab_free_impl_cb, &checkpoint);
5395eda14cbcSMatt Macy 	} else {
5396eda14cbcSMatt Macy 		metaslab_free_concrete(vd, offset, size, checkpoint);
5397eda14cbcSMatt Macy 	}
5398eda14cbcSMatt Macy }
5399eda14cbcSMatt Macy 
5400eda14cbcSMatt Macy typedef struct remap_blkptr_cb_arg {
5401eda14cbcSMatt Macy 	blkptr_t *rbca_bp;
5402eda14cbcSMatt Macy 	spa_remap_cb_t rbca_cb;
5403eda14cbcSMatt Macy 	vdev_t *rbca_remap_vd;
5404eda14cbcSMatt Macy 	uint64_t rbca_remap_offset;
5405eda14cbcSMatt Macy 	void *rbca_cb_arg;
5406eda14cbcSMatt Macy } remap_blkptr_cb_arg_t;
5407eda14cbcSMatt Macy 
5408eda14cbcSMatt Macy static void
5409eda14cbcSMatt Macy remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5410eda14cbcSMatt Macy     uint64_t size, void *arg)
5411eda14cbcSMatt Macy {
5412eda14cbcSMatt Macy 	remap_blkptr_cb_arg_t *rbca = arg;
5413eda14cbcSMatt Macy 	blkptr_t *bp = rbca->rbca_bp;
5414eda14cbcSMatt Macy 
5415eda14cbcSMatt Macy 	/* We can not remap split blocks. */
5416eda14cbcSMatt Macy 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5417eda14cbcSMatt Macy 		return;
5418eda14cbcSMatt Macy 	ASSERT0(inner_offset);
5419eda14cbcSMatt Macy 
5420eda14cbcSMatt Macy 	if (rbca->rbca_cb != NULL) {
5421eda14cbcSMatt Macy 		/*
5422eda14cbcSMatt Macy 		 * At this point we know that we are not handling split
5423eda14cbcSMatt Macy 		 * blocks and we invoke the callback on the previous
5424eda14cbcSMatt Macy 		 * vdev which must be indirect.
5425eda14cbcSMatt Macy 		 */
5426eda14cbcSMatt Macy 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5427eda14cbcSMatt Macy 
5428eda14cbcSMatt Macy 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5429eda14cbcSMatt Macy 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5430eda14cbcSMatt Macy 
5431eda14cbcSMatt Macy 		/* set up remap_blkptr_cb_arg for the next call */
5432eda14cbcSMatt Macy 		rbca->rbca_remap_vd = vd;
5433eda14cbcSMatt Macy 		rbca->rbca_remap_offset = offset;
5434eda14cbcSMatt Macy 	}
5435eda14cbcSMatt Macy 
5436eda14cbcSMatt Macy 	/*
5437eda14cbcSMatt Macy 	 * The phys birth time is that of dva[0].  This ensures that we know
5438eda14cbcSMatt Macy 	 * when each dva was written, so that resilver can determine which
5439eda14cbcSMatt Macy 	 * blocks need to be scrubbed (i.e. those written during the time
5440eda14cbcSMatt Macy 	 * the vdev was offline).  It also ensures that the key used in
5441eda14cbcSMatt Macy 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5442eda14cbcSMatt Macy 	 * we didn't change the phys_birth, a lookup in the ARC for a
5443eda14cbcSMatt Macy 	 * remapped BP could find the data that was previously stored at
5444eda14cbcSMatt Macy 	 * this vdev + offset.
5445eda14cbcSMatt Macy 	 */
5446eda14cbcSMatt Macy 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5447eda14cbcSMatt Macy 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5448eda14cbcSMatt Macy 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5449eda14cbcSMatt Macy 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5450eda14cbcSMatt Macy 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5451eda14cbcSMatt Macy 
5452eda14cbcSMatt Macy 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5453eda14cbcSMatt Macy 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5454eda14cbcSMatt Macy }
5455eda14cbcSMatt Macy 
5456eda14cbcSMatt Macy /*
5457eda14cbcSMatt Macy  * If the block pointer contains any indirect DVAs, modify them to refer to
5458eda14cbcSMatt Macy  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5459eda14cbcSMatt Macy  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5460eda14cbcSMatt Macy  * segments in the mapping (i.e. it is a "split block").
5461eda14cbcSMatt Macy  *
5462eda14cbcSMatt Macy  * If the BP was remapped, calls the callback on the original dva (note the
5463eda14cbcSMatt Macy  * callback can be called multiple times if the original indirect DVA refers
5464eda14cbcSMatt Macy  * to another indirect DVA, etc).
5465eda14cbcSMatt Macy  *
5466eda14cbcSMatt Macy  * Returns TRUE if the BP was remapped.
5467eda14cbcSMatt Macy  */
5468eda14cbcSMatt Macy boolean_t
5469eda14cbcSMatt Macy spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5470eda14cbcSMatt Macy {
5471eda14cbcSMatt Macy 	remap_blkptr_cb_arg_t rbca;
5472eda14cbcSMatt Macy 
5473eda14cbcSMatt Macy 	if (!zfs_remap_blkptr_enable)
5474eda14cbcSMatt Macy 		return (B_FALSE);
5475eda14cbcSMatt Macy 
5476eda14cbcSMatt Macy 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5477eda14cbcSMatt Macy 		return (B_FALSE);
5478eda14cbcSMatt Macy 
5479eda14cbcSMatt Macy 	/*
5480eda14cbcSMatt Macy 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5481eda14cbcSMatt Macy 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5482eda14cbcSMatt Macy 	 */
5483eda14cbcSMatt Macy 	if (BP_GET_DEDUP(bp))
5484eda14cbcSMatt Macy 		return (B_FALSE);
5485eda14cbcSMatt Macy 
5486eda14cbcSMatt Macy 	/*
5487eda14cbcSMatt Macy 	 * Gang blocks can not be remapped, because
5488eda14cbcSMatt Macy 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5489eda14cbcSMatt Macy 	 * the BP used to read the gang block header (GBH) being the same
5490eda14cbcSMatt Macy 	 * as the DVA[0] that we allocated for the GBH.
5491eda14cbcSMatt Macy 	 */
5492eda14cbcSMatt Macy 	if (BP_IS_GANG(bp))
5493eda14cbcSMatt Macy 		return (B_FALSE);
5494eda14cbcSMatt Macy 
5495eda14cbcSMatt Macy 	/*
5496eda14cbcSMatt Macy 	 * Embedded BP's have no DVA to remap.
5497eda14cbcSMatt Macy 	 */
5498eda14cbcSMatt Macy 	if (BP_GET_NDVAS(bp) < 1)
5499eda14cbcSMatt Macy 		return (B_FALSE);
5500eda14cbcSMatt Macy 
5501eda14cbcSMatt Macy 	/*
5502eda14cbcSMatt Macy 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5503eda14cbcSMatt Macy 	 * would no longer know what their phys birth txg is.
5504eda14cbcSMatt Macy 	 */
5505eda14cbcSMatt Macy 	dva_t *dva = &bp->blk_dva[0];
5506eda14cbcSMatt Macy 
5507eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5508eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5509eda14cbcSMatt Macy 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5510eda14cbcSMatt Macy 
5511eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap == NULL)
5512eda14cbcSMatt Macy 		return (B_FALSE);
5513eda14cbcSMatt Macy 
5514eda14cbcSMatt Macy 	rbca.rbca_bp = bp;
5515eda14cbcSMatt Macy 	rbca.rbca_cb = callback;
5516eda14cbcSMatt Macy 	rbca.rbca_remap_vd = vd;
5517eda14cbcSMatt Macy 	rbca.rbca_remap_offset = offset;
5518eda14cbcSMatt Macy 	rbca.rbca_cb_arg = arg;
5519eda14cbcSMatt Macy 
5520eda14cbcSMatt Macy 	/*
5521eda14cbcSMatt Macy 	 * remap_blkptr_cb() will be called in order for each level of
5522eda14cbcSMatt Macy 	 * indirection, until a concrete vdev is reached or a split block is
5523eda14cbcSMatt Macy 	 * encountered. old_vd and old_offset are updated within the callback
5524eda14cbcSMatt Macy 	 * as we go from the one indirect vdev to the next one (either concrete
5525eda14cbcSMatt Macy 	 * or indirect again) in that order.
5526eda14cbcSMatt Macy 	 */
5527eda14cbcSMatt Macy 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5528eda14cbcSMatt Macy 
5529eda14cbcSMatt Macy 	/* Check if the DVA wasn't remapped because it is a split block */
5530eda14cbcSMatt Macy 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5531eda14cbcSMatt Macy 		return (B_FALSE);
5532eda14cbcSMatt Macy 
5533eda14cbcSMatt Macy 	return (B_TRUE);
5534eda14cbcSMatt Macy }
5535eda14cbcSMatt Macy 
5536eda14cbcSMatt Macy /*
5537eda14cbcSMatt Macy  * Undo the allocation of a DVA which happened in the given transaction group.
5538eda14cbcSMatt Macy  */
5539eda14cbcSMatt Macy void
5540eda14cbcSMatt Macy metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5541eda14cbcSMatt Macy {
5542eda14cbcSMatt Macy 	metaslab_t *msp;
5543eda14cbcSMatt Macy 	vdev_t *vd;
5544eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5545eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5546eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5547eda14cbcSMatt Macy 
5548eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5549eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5550eda14cbcSMatt Macy 
5551eda14cbcSMatt Macy 	if (txg > spa_freeze_txg(spa))
5552eda14cbcSMatt Macy 		return;
5553eda14cbcSMatt Macy 
5554eda14cbcSMatt Macy 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5555eda14cbcSMatt Macy 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5556eda14cbcSMatt Macy 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5557eda14cbcSMatt Macy 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5558eda14cbcSMatt Macy 		    (u_longlong_t)size);
5559eda14cbcSMatt Macy 		return;
5560eda14cbcSMatt Macy 	}
5561eda14cbcSMatt Macy 
5562eda14cbcSMatt Macy 	ASSERT(!vd->vdev_removing);
5563eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
5564eda14cbcSMatt Macy 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5565eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5566eda14cbcSMatt Macy 
5567eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva))
55686db169e9SMartin Matuska 		size = vdev_gang_header_asize(vd);
5569eda14cbcSMatt Macy 
5570eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5571eda14cbcSMatt Macy 
5572eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5573eda14cbcSMatt Macy 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5574eda14cbcSMatt Macy 	    offset, size);
5575eda14cbcSMatt Macy 	msp->ms_allocating_total -= size;
5576eda14cbcSMatt Macy 
5577eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5578eda14cbcSMatt Macy 	VERIFY3U(offset, >=, msp->ms_start);
5579eda14cbcSMatt Macy 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5580eda14cbcSMatt Macy 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5581eda14cbcSMatt Macy 	    msp->ms_size);
5582eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5583eda14cbcSMatt Macy 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5584eda14cbcSMatt Macy 	range_tree_add(msp->ms_allocatable, offset, size);
5585eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5586eda14cbcSMatt Macy }
5587eda14cbcSMatt Macy 
5588eda14cbcSMatt Macy /*
5589eda14cbcSMatt Macy  * Free the block represented by the given DVA.
5590eda14cbcSMatt Macy  */
5591eda14cbcSMatt Macy void
5592eda14cbcSMatt Macy metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5593eda14cbcSMatt Macy {
5594eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5595eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5596eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5597eda14cbcSMatt Macy 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5598eda14cbcSMatt Macy 
5599eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5600eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5601eda14cbcSMatt Macy 
5602eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva)) {
56036db169e9SMartin Matuska 		size = vdev_gang_header_asize(vd);
5604eda14cbcSMatt Macy 	}
5605eda14cbcSMatt Macy 
5606eda14cbcSMatt Macy 	metaslab_free_impl(vd, offset, size, checkpoint);
5607eda14cbcSMatt Macy }
5608eda14cbcSMatt Macy 
5609eda14cbcSMatt Macy /*
5610eda14cbcSMatt Macy  * Reserve some allocation slots. The reservation system must be called
5611eda14cbcSMatt Macy  * before we call into the allocator. If there aren't any available slots
5612eda14cbcSMatt Macy  * then the I/O will be throttled until an I/O completes and its slots are
5613eda14cbcSMatt Macy  * freed up. The function returns true if it was successful in placing
5614eda14cbcSMatt Macy  * the reservation.
5615eda14cbcSMatt Macy  */
5616eda14cbcSMatt Macy boolean_t
5617eda14cbcSMatt Macy metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5618eda14cbcSMatt Macy     zio_t *zio, int flags)
5619eda14cbcSMatt Macy {
56207877fdebSMatt Macy 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
56217877fdebSMatt Macy 	uint64_t max = mca->mca_alloc_max_slots;
5622eda14cbcSMatt Macy 
5623eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc_throttle_enabled);
56243f9d360cSMartin Matuska 	if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
56253f9d360cSMartin Matuska 	    zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5626eda14cbcSMatt Macy 		/*
56271f88aa09SMartin Matuska 		 * The potential race between _count() and _add() is covered
56281f88aa09SMartin Matuska 		 * by the allocator lock in most cases, or irrelevant due to
56291f88aa09SMartin Matuska 		 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
56301f88aa09SMartin Matuska 		 * But even if we assume some other non-existing scenario, the
56311f88aa09SMartin Matuska 		 * worst that can happen is few more I/Os get to allocation
56321f88aa09SMartin Matuska 		 * earlier, that is not a problem.
56331f88aa09SMartin Matuska 		 *
5634eda14cbcSMatt Macy 		 * We reserve the slots individually so that we can unreserve
5635eda14cbcSMatt Macy 		 * them individually when an I/O completes.
5636eda14cbcSMatt Macy 		 */
56377877fdebSMatt Macy 		for (int d = 0; d < slots; d++)
56387877fdebSMatt Macy 			zfs_refcount_add(&mca->mca_alloc_slots, zio);
5639eda14cbcSMatt Macy 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
56403f9d360cSMartin Matuska 		return (B_TRUE);
5641eda14cbcSMatt Macy 	}
56423f9d360cSMartin Matuska 	return (B_FALSE);
5643eda14cbcSMatt Macy }
5644eda14cbcSMatt Macy 
5645eda14cbcSMatt Macy void
5646eda14cbcSMatt Macy metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5647eda14cbcSMatt Macy     int allocator, zio_t *zio)
5648eda14cbcSMatt Macy {
56497877fdebSMatt Macy 	metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
56507877fdebSMatt Macy 
5651eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc_throttle_enabled);
56527877fdebSMatt Macy 	for (int d = 0; d < slots; d++)
56537877fdebSMatt Macy 		zfs_refcount_remove(&mca->mca_alloc_slots, zio);
5654eda14cbcSMatt Macy }
5655eda14cbcSMatt Macy 
5656eda14cbcSMatt Macy static int
5657eda14cbcSMatt Macy metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5658eda14cbcSMatt Macy     uint64_t txg)
5659eda14cbcSMatt Macy {
5660eda14cbcSMatt Macy 	metaslab_t *msp;
5661eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5662eda14cbcSMatt Macy 	int error = 0;
5663eda14cbcSMatt Macy 
5664eda14cbcSMatt Macy 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5665eda14cbcSMatt Macy 		return (SET_ERROR(ENXIO));
5666eda14cbcSMatt Macy 
5667eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_ms, !=, NULL);
5668eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5669eda14cbcSMatt Macy 
5670eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5671eda14cbcSMatt Macy 
5672eda14cbcSMatt Macy 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5673eda14cbcSMatt Macy 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5674eda14cbcSMatt Macy 		if (error == EBUSY) {
5675eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
5676eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5677eda14cbcSMatt Macy 			error = 0;
5678eda14cbcSMatt Macy 		}
5679eda14cbcSMatt Macy 	}
5680eda14cbcSMatt Macy 
5681eda14cbcSMatt Macy 	if (error == 0 &&
5682eda14cbcSMatt Macy 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5683eda14cbcSMatt Macy 		error = SET_ERROR(ENOENT);
5684eda14cbcSMatt Macy 
5685eda14cbcSMatt Macy 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5686eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
5687eda14cbcSMatt Macy 		return (error);
5688eda14cbcSMatt Macy 	}
5689eda14cbcSMatt Macy 
5690eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5691eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5692eda14cbcSMatt Macy 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5693eda14cbcSMatt Macy 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5694eda14cbcSMatt Macy 	    msp->ms_size);
5695eda14cbcSMatt Macy 	range_tree_remove(msp->ms_allocatable, offset, size);
5696eda14cbcSMatt Macy 	range_tree_clear(msp->ms_trim, offset, size);
5697eda14cbcSMatt Macy 
56987877fdebSMatt Macy 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(8) */
5699eda14cbcSMatt Macy 		metaslab_class_t *mc = msp->ms_group->mg_class;
5700eda14cbcSMatt Macy 		multilist_sublist_t *mls =
57013ff01b23SMartin Matuska 		    multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5702eda14cbcSMatt Macy 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5703eda14cbcSMatt Macy 			msp->ms_selected_txg = txg;
5704eda14cbcSMatt Macy 			multilist_sublist_insert_head(mls, msp);
5705eda14cbcSMatt Macy 		}
5706eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
5707eda14cbcSMatt Macy 
5708eda14cbcSMatt Macy 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5709eda14cbcSMatt Macy 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5710eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5711eda14cbcSMatt Macy 		    offset, size);
5712eda14cbcSMatt Macy 		msp->ms_allocating_total += size;
5713eda14cbcSMatt Macy 	}
5714eda14cbcSMatt Macy 
5715eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5716eda14cbcSMatt Macy 
5717eda14cbcSMatt Macy 	return (0);
5718eda14cbcSMatt Macy }
5719eda14cbcSMatt Macy 
5720eda14cbcSMatt Macy typedef struct metaslab_claim_cb_arg_t {
5721eda14cbcSMatt Macy 	uint64_t	mcca_txg;
5722eda14cbcSMatt Macy 	int		mcca_error;
5723eda14cbcSMatt Macy } metaslab_claim_cb_arg_t;
5724eda14cbcSMatt Macy 
5725eda14cbcSMatt Macy static void
5726eda14cbcSMatt Macy metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5727eda14cbcSMatt Macy     uint64_t size, void *arg)
5728eda14cbcSMatt Macy {
5729e92ffd9bSMartin Matuska 	(void) inner_offset;
5730eda14cbcSMatt Macy 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5731eda14cbcSMatt Macy 
5732eda14cbcSMatt Macy 	if (mcca_arg->mcca_error == 0) {
5733eda14cbcSMatt Macy 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5734eda14cbcSMatt Macy 		    size, mcca_arg->mcca_txg);
5735eda14cbcSMatt Macy 	}
5736eda14cbcSMatt Macy }
5737eda14cbcSMatt Macy 
5738eda14cbcSMatt Macy int
5739eda14cbcSMatt Macy metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5740eda14cbcSMatt Macy {
5741eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5742eda14cbcSMatt Macy 		metaslab_claim_cb_arg_t arg;
5743eda14cbcSMatt Macy 
5744eda14cbcSMatt Macy 		/*
57457877fdebSMatt Macy 		 * Only zdb(8) can claim on indirect vdevs.  This is used
5746eda14cbcSMatt Macy 		 * to detect leaks of mapped space (that are not accounted
5747eda14cbcSMatt Macy 		 * for in the obsolete counts, spacemap, or bpobj).
5748eda14cbcSMatt Macy 		 */
5749eda14cbcSMatt Macy 		ASSERT(!spa_writeable(vd->vdev_spa));
5750eda14cbcSMatt Macy 		arg.mcca_error = 0;
5751eda14cbcSMatt Macy 		arg.mcca_txg = txg;
5752eda14cbcSMatt Macy 
5753eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5754eda14cbcSMatt Macy 		    metaslab_claim_impl_cb, &arg);
5755eda14cbcSMatt Macy 
5756eda14cbcSMatt Macy 		if (arg.mcca_error == 0) {
5757eda14cbcSMatt Macy 			arg.mcca_error = metaslab_claim_concrete(vd,
5758eda14cbcSMatt Macy 			    offset, size, txg);
5759eda14cbcSMatt Macy 		}
5760eda14cbcSMatt Macy 		return (arg.mcca_error);
5761eda14cbcSMatt Macy 	} else {
5762eda14cbcSMatt Macy 		return (metaslab_claim_concrete(vd, offset, size, txg));
5763eda14cbcSMatt Macy 	}
5764eda14cbcSMatt Macy }
5765eda14cbcSMatt Macy 
5766eda14cbcSMatt Macy /*
5767eda14cbcSMatt Macy  * Intent log support: upon opening the pool after a crash, notify the SPA
5768eda14cbcSMatt Macy  * of blocks that the intent log has allocated for immediate write, but
5769eda14cbcSMatt Macy  * which are still considered free by the SPA because the last transaction
5770eda14cbcSMatt Macy  * group didn't commit yet.
5771eda14cbcSMatt Macy  */
5772eda14cbcSMatt Macy static int
5773eda14cbcSMatt Macy metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5774eda14cbcSMatt Macy {
5775eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5776eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5777eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5778eda14cbcSMatt Macy 	vdev_t *vd;
5779eda14cbcSMatt Macy 
5780eda14cbcSMatt Macy 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5781eda14cbcSMatt Macy 		return (SET_ERROR(ENXIO));
5782eda14cbcSMatt Macy 	}
5783eda14cbcSMatt Macy 
5784eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5785eda14cbcSMatt Macy 
5786eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva))
57876db169e9SMartin Matuska 		size = vdev_gang_header_asize(vd);
5788eda14cbcSMatt Macy 
5789eda14cbcSMatt Macy 	return (metaslab_claim_impl(vd, offset, size, txg));
5790eda14cbcSMatt Macy }
5791eda14cbcSMatt Macy 
5792eda14cbcSMatt Macy int
5793eda14cbcSMatt Macy metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5794eda14cbcSMatt Macy     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5795eda14cbcSMatt Macy     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5796eda14cbcSMatt Macy {
5797eda14cbcSMatt Macy 	dva_t *dva = bp->blk_dva;
5798eda14cbcSMatt Macy 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5799eda14cbcSMatt Macy 	int error = 0;
5800eda14cbcSMatt Macy 
5801eda14cbcSMatt Macy 	ASSERT(bp->blk_birth == 0);
5802eda14cbcSMatt Macy 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5803eda14cbcSMatt Macy 
5804eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5805eda14cbcSMatt Macy 
58067877fdebSMatt Macy 	if (mc->mc_allocator[allocator].mca_rotor == NULL) {
58077877fdebSMatt Macy 		/* no vdevs in this class */
5808eda14cbcSMatt Macy 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5809eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
5810eda14cbcSMatt Macy 	}
5811eda14cbcSMatt Macy 
5812eda14cbcSMatt Macy 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5813eda14cbcSMatt Macy 	ASSERT(BP_GET_NDVAS(bp) == 0);
5814eda14cbcSMatt Macy 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5815eda14cbcSMatt Macy 	ASSERT3P(zal, !=, NULL);
5816eda14cbcSMatt Macy 
5817eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5818eda14cbcSMatt Macy 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5819eda14cbcSMatt Macy 		    txg, flags, zal, allocator);
5820eda14cbcSMatt Macy 		if (error != 0) {
5821eda14cbcSMatt Macy 			for (d--; d >= 0; d--) {
5822eda14cbcSMatt Macy 				metaslab_unalloc_dva(spa, &dva[d], txg);
5823eda14cbcSMatt Macy 				metaslab_group_alloc_decrement(spa,
5824eda14cbcSMatt Macy 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5825eda14cbcSMatt Macy 				    allocator, B_FALSE);
5826da5137abSMartin Matuska 				memset(&dva[d], 0, sizeof (dva_t));
5827eda14cbcSMatt Macy 			}
5828eda14cbcSMatt Macy 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5829eda14cbcSMatt Macy 			return (error);
5830eda14cbcSMatt Macy 		} else {
5831eda14cbcSMatt Macy 			/*
5832eda14cbcSMatt Macy 			 * Update the metaslab group's queue depth
5833eda14cbcSMatt Macy 			 * based on the newly allocated dva.
5834eda14cbcSMatt Macy 			 */
5835eda14cbcSMatt Macy 			metaslab_group_alloc_increment(spa,
5836eda14cbcSMatt Macy 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5837eda14cbcSMatt Macy 		}
5838eda14cbcSMatt Macy 	}
5839eda14cbcSMatt Macy 	ASSERT(error == 0);
5840eda14cbcSMatt Macy 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5841eda14cbcSMatt Macy 
5842eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5843eda14cbcSMatt Macy 
5844eda14cbcSMatt Macy 	BP_SET_BIRTH(bp, txg, 0);
5845eda14cbcSMatt Macy 
5846eda14cbcSMatt Macy 	return (0);
5847eda14cbcSMatt Macy }
5848eda14cbcSMatt Macy 
5849eda14cbcSMatt Macy void
5850eda14cbcSMatt Macy metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5851eda14cbcSMatt Macy {
5852eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5853eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5854eda14cbcSMatt Macy 
5855eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5856eda14cbcSMatt Macy 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5857eda14cbcSMatt Macy 
5858eda14cbcSMatt Macy 	/*
5859eda14cbcSMatt Macy 	 * If we have a checkpoint for the pool we need to make sure that
5860eda14cbcSMatt Macy 	 * the blocks that we free that are part of the checkpoint won't be
5861eda14cbcSMatt Macy 	 * reused until the checkpoint is discarded or we revert to it.
5862eda14cbcSMatt Macy 	 *
5863eda14cbcSMatt Macy 	 * The checkpoint flag is passed down the metaslab_free code path
5864eda14cbcSMatt Macy 	 * and is set whenever we want to add a block to the checkpoint's
5865eda14cbcSMatt Macy 	 * accounting. That is, we "checkpoint" blocks that existed at the
5866eda14cbcSMatt Macy 	 * time the checkpoint was created and are therefore referenced by
5867eda14cbcSMatt Macy 	 * the checkpointed uberblock.
5868eda14cbcSMatt Macy 	 *
5869eda14cbcSMatt Macy 	 * Note that, we don't checkpoint any blocks if the current
5870eda14cbcSMatt Macy 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5871eda14cbcSMatt Macy 	 * normally as they will be referenced by the checkpointed uberblock.
5872eda14cbcSMatt Macy 	 */
5873eda14cbcSMatt Macy 	boolean_t checkpoint = B_FALSE;
5874eda14cbcSMatt Macy 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5875eda14cbcSMatt Macy 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5876eda14cbcSMatt Macy 		/*
5877eda14cbcSMatt Macy 		 * At this point, if the block is part of the checkpoint
5878eda14cbcSMatt Macy 		 * there is no way it was created in the current txg.
5879eda14cbcSMatt Macy 		 */
5880eda14cbcSMatt Macy 		ASSERT(!now);
5881eda14cbcSMatt Macy 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5882eda14cbcSMatt Macy 		checkpoint = B_TRUE;
5883eda14cbcSMatt Macy 	}
5884eda14cbcSMatt Macy 
5885eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5886eda14cbcSMatt Macy 
5887eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5888eda14cbcSMatt Macy 		if (now) {
5889eda14cbcSMatt Macy 			metaslab_unalloc_dva(spa, &dva[d], txg);
5890eda14cbcSMatt Macy 		} else {
5891eda14cbcSMatt Macy 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5892eda14cbcSMatt Macy 			metaslab_free_dva(spa, &dva[d], checkpoint);
5893eda14cbcSMatt Macy 		}
5894eda14cbcSMatt Macy 	}
5895eda14cbcSMatt Macy 
5896eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_FREE, FTAG);
5897eda14cbcSMatt Macy }
5898eda14cbcSMatt Macy 
5899eda14cbcSMatt Macy int
5900eda14cbcSMatt Macy metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5901eda14cbcSMatt Macy {
5902eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5903eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5904eda14cbcSMatt Macy 	int error = 0;
5905eda14cbcSMatt Macy 
5906eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5907eda14cbcSMatt Macy 
5908eda14cbcSMatt Macy 	if (txg != 0) {
5909eda14cbcSMatt Macy 		/*
5910eda14cbcSMatt Macy 		 * First do a dry run to make sure all DVAs are claimable,
5911eda14cbcSMatt Macy 		 * so we don't have to unwind from partial failures below.
5912eda14cbcSMatt Macy 		 */
5913eda14cbcSMatt Macy 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5914eda14cbcSMatt Macy 			return (error);
5915eda14cbcSMatt Macy 	}
5916eda14cbcSMatt Macy 
5917eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5918eda14cbcSMatt Macy 
5919eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5920eda14cbcSMatt Macy 		error = metaslab_claim_dva(spa, &dva[d], txg);
5921eda14cbcSMatt Macy 		if (error != 0)
5922eda14cbcSMatt Macy 			break;
5923eda14cbcSMatt Macy 	}
5924eda14cbcSMatt Macy 
5925eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5926eda14cbcSMatt Macy 
5927eda14cbcSMatt Macy 	ASSERT(error == 0 || txg == 0);
5928eda14cbcSMatt Macy 
5929eda14cbcSMatt Macy 	return (error);
5930eda14cbcSMatt Macy }
5931eda14cbcSMatt Macy 
5932eda14cbcSMatt Macy void
5933eda14cbcSMatt Macy metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5934eda14cbcSMatt Macy {
5935eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5936eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5937eda14cbcSMatt Macy 	uint64_t psize = BP_GET_PSIZE(bp);
5938eda14cbcSMatt Macy 	int d;
5939eda14cbcSMatt Macy 	vdev_t *vd;
5940eda14cbcSMatt Macy 
5941eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5942eda14cbcSMatt Macy 	ASSERT(!BP_IS_EMBEDDED(bp));
5943eda14cbcSMatt Macy 	ASSERT(psize > 0);
5944eda14cbcSMatt Macy 
5945eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5946eda14cbcSMatt Macy 
5947eda14cbcSMatt Macy 	for (d = 0; d < ndvas; d++) {
5948eda14cbcSMatt Macy 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5949eda14cbcSMatt Macy 			continue;
5950eda14cbcSMatt Macy 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5951eda14cbcSMatt Macy 	}
5952eda14cbcSMatt Macy 
5953eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
5954eda14cbcSMatt Macy }
5955eda14cbcSMatt Macy 
5956eda14cbcSMatt Macy void
5957eda14cbcSMatt Macy metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5958eda14cbcSMatt Macy {
5959eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5960eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5961eda14cbcSMatt Macy 	uint64_t psize = BP_GET_PSIZE(bp);
5962eda14cbcSMatt Macy 	int d;
5963eda14cbcSMatt Macy 	vdev_t *vd;
5964eda14cbcSMatt Macy 
5965eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5966eda14cbcSMatt Macy 	ASSERT(!BP_IS_EMBEDDED(bp));
5967eda14cbcSMatt Macy 	ASSERT(psize > 0);
5968eda14cbcSMatt Macy 
5969eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5970eda14cbcSMatt Macy 
5971eda14cbcSMatt Macy 	for (d = 0; d < ndvas; d++) {
5972eda14cbcSMatt Macy 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5973eda14cbcSMatt Macy 			continue;
5974eda14cbcSMatt Macy 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5975eda14cbcSMatt Macy 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5976eda14cbcSMatt Macy 	}
5977eda14cbcSMatt Macy 
5978eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
5979eda14cbcSMatt Macy }
5980eda14cbcSMatt Macy 
5981eda14cbcSMatt Macy static void
5982eda14cbcSMatt Macy metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5983eda14cbcSMatt Macy     uint64_t size, void *arg)
5984eda14cbcSMatt Macy {
5985e92ffd9bSMartin Matuska 	(void) inner, (void) arg;
5986e92ffd9bSMartin Matuska 
5987eda14cbcSMatt Macy 	if (vd->vdev_ops == &vdev_indirect_ops)
5988eda14cbcSMatt Macy 		return;
5989eda14cbcSMatt Macy 
5990eda14cbcSMatt Macy 	metaslab_check_free_impl(vd, offset, size);
5991eda14cbcSMatt Macy }
5992eda14cbcSMatt Macy 
5993eda14cbcSMatt Macy static void
5994eda14cbcSMatt Macy metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5995eda14cbcSMatt Macy {
5996eda14cbcSMatt Macy 	metaslab_t *msp;
5997eda14cbcSMatt Macy 	spa_t *spa __maybe_unused = vd->vdev_spa;
5998eda14cbcSMatt Macy 
5999eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6000eda14cbcSMatt Macy 		return;
6001eda14cbcSMatt Macy 
6002eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL) {
6003eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
6004eda14cbcSMatt Macy 		    metaslab_check_free_impl_cb, NULL);
6005eda14cbcSMatt Macy 		return;
6006eda14cbcSMatt Macy 	}
6007eda14cbcSMatt Macy 
6008eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
6009eda14cbcSMatt Macy 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6010eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6011eda14cbcSMatt Macy 
6012eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6013eda14cbcSMatt Macy 
6014eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
6015eda14cbcSMatt Macy 	if (msp->ms_loaded) {
6016eda14cbcSMatt Macy 		range_tree_verify_not_present(msp->ms_allocatable,
6017eda14cbcSMatt Macy 		    offset, size);
6018eda14cbcSMatt Macy 	}
6019eda14cbcSMatt Macy 
6020eda14cbcSMatt Macy 	/*
6021eda14cbcSMatt Macy 	 * Check all segments that currently exist in the freeing pipeline.
6022eda14cbcSMatt Macy 	 *
6023eda14cbcSMatt Macy 	 * It would intuitively make sense to also check the current allocating
6024eda14cbcSMatt Macy 	 * tree since metaslab_unalloc_dva() exists for extents that are
6025eda14cbcSMatt Macy 	 * allocated and freed in the same sync pass within the same txg.
6026eda14cbcSMatt Macy 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6027eda14cbcSMatt Macy 	 * segment but then we free part of it within the same txg
6028eda14cbcSMatt Macy 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6029eda14cbcSMatt Macy 	 * current allocating tree.
6030eda14cbcSMatt Macy 	 */
6031eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6032eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6033eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6034eda14cbcSMatt Macy 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6035eda14cbcSMatt Macy 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6036eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6037eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6038eda14cbcSMatt Macy }
6039eda14cbcSMatt Macy 
6040eda14cbcSMatt Macy void
6041eda14cbcSMatt Macy metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6042eda14cbcSMatt Macy {
6043eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6044eda14cbcSMatt Macy 		return;
6045eda14cbcSMatt Macy 
6046eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6047eda14cbcSMatt Macy 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6048eda14cbcSMatt Macy 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6049eda14cbcSMatt Macy 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6050eda14cbcSMatt Macy 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6051eda14cbcSMatt Macy 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6052eda14cbcSMatt Macy 
6053eda14cbcSMatt Macy 		if (DVA_GET_GANG(&bp->blk_dva[i]))
60546db169e9SMartin Matuska 			size = vdev_gang_header_asize(vd);
6055eda14cbcSMatt Macy 
6056eda14cbcSMatt Macy 		ASSERT3P(vd, !=, NULL);
6057eda14cbcSMatt Macy 
6058eda14cbcSMatt Macy 		metaslab_check_free_impl(vd, offset, size);
6059eda14cbcSMatt Macy 	}
6060eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
6061eda14cbcSMatt Macy }
6062eda14cbcSMatt Macy 
6063eda14cbcSMatt Macy static void
6064eda14cbcSMatt Macy metaslab_group_disable_wait(metaslab_group_t *mg)
6065eda14cbcSMatt Macy {
6066eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6067eda14cbcSMatt Macy 	while (mg->mg_disabled_updating) {
6068eda14cbcSMatt Macy 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6069eda14cbcSMatt Macy 	}
6070eda14cbcSMatt Macy }
6071eda14cbcSMatt Macy 
6072eda14cbcSMatt Macy static void
6073eda14cbcSMatt Macy metaslab_group_disabled_increment(metaslab_group_t *mg)
6074eda14cbcSMatt Macy {
6075eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6076eda14cbcSMatt Macy 	ASSERT(mg->mg_disabled_updating);
6077eda14cbcSMatt Macy 
6078eda14cbcSMatt Macy 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6079eda14cbcSMatt Macy 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6080eda14cbcSMatt Macy 	}
6081eda14cbcSMatt Macy 	mg->mg_ms_disabled++;
6082eda14cbcSMatt Macy 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6083eda14cbcSMatt Macy }
6084eda14cbcSMatt Macy 
6085eda14cbcSMatt Macy /*
6086eda14cbcSMatt Macy  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6087eda14cbcSMatt Macy  * We must also track how many metaslabs are currently disabled within a
6088eda14cbcSMatt Macy  * metaslab group and limit them to prevent allocation failures from
6089eda14cbcSMatt Macy  * occurring because all metaslabs are disabled.
6090eda14cbcSMatt Macy  */
6091eda14cbcSMatt Macy void
6092eda14cbcSMatt Macy metaslab_disable(metaslab_t *msp)
6093eda14cbcSMatt Macy {
6094eda14cbcSMatt Macy 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6095eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
6096eda14cbcSMatt Macy 
6097eda14cbcSMatt Macy 	mutex_enter(&mg->mg_ms_disabled_lock);
6098eda14cbcSMatt Macy 
6099eda14cbcSMatt Macy 	/*
6100eda14cbcSMatt Macy 	 * To keep an accurate count of how many threads have disabled
6101eda14cbcSMatt Macy 	 * a specific metaslab group, we only allow one thread to mark
6102eda14cbcSMatt Macy 	 * the metaslab group at a time. This ensures that the value of
6103eda14cbcSMatt Macy 	 * ms_disabled will be accurate when we decide to mark a metaslab
6104eda14cbcSMatt Macy 	 * group as disabled. To do this we force all other threads
6105eda14cbcSMatt Macy 	 * to wait till the metaslab's mg_disabled_updating flag is no
6106eda14cbcSMatt Macy 	 * longer set.
6107eda14cbcSMatt Macy 	 */
6108eda14cbcSMatt Macy 	metaslab_group_disable_wait(mg);
6109eda14cbcSMatt Macy 	mg->mg_disabled_updating = B_TRUE;
6110eda14cbcSMatt Macy 	if (msp->ms_disabled == 0) {
6111eda14cbcSMatt Macy 		metaslab_group_disabled_increment(mg);
6112eda14cbcSMatt Macy 	}
6113eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
6114eda14cbcSMatt Macy 	msp->ms_disabled++;
6115eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6116eda14cbcSMatt Macy 
6117eda14cbcSMatt Macy 	mg->mg_disabled_updating = B_FALSE;
6118eda14cbcSMatt Macy 	cv_broadcast(&mg->mg_ms_disabled_cv);
6119eda14cbcSMatt Macy 	mutex_exit(&mg->mg_ms_disabled_lock);
6120eda14cbcSMatt Macy }
6121eda14cbcSMatt Macy 
6122eda14cbcSMatt Macy void
6123eda14cbcSMatt Macy metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6124eda14cbcSMatt Macy {
6125eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
6126eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
6127eda14cbcSMatt Macy 
6128eda14cbcSMatt Macy 	/*
6129eda14cbcSMatt Macy 	 * Wait for the outstanding IO to be synced to prevent newly
6130eda14cbcSMatt Macy 	 * allocated blocks from being overwritten.  This used by
6131eda14cbcSMatt Macy 	 * initialize and TRIM which are modifying unallocated space.
6132eda14cbcSMatt Macy 	 */
6133eda14cbcSMatt Macy 	if (sync)
6134eda14cbcSMatt Macy 		txg_wait_synced(spa_get_dsl(spa), 0);
6135eda14cbcSMatt Macy 
6136eda14cbcSMatt Macy 	mutex_enter(&mg->mg_ms_disabled_lock);
6137eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
6138eda14cbcSMatt Macy 	if (--msp->ms_disabled == 0) {
6139eda14cbcSMatt Macy 		mg->mg_ms_disabled--;
6140eda14cbcSMatt Macy 		cv_broadcast(&mg->mg_ms_disabled_cv);
6141eda14cbcSMatt Macy 		if (unload)
6142eda14cbcSMatt Macy 			metaslab_unload(msp);
6143eda14cbcSMatt Macy 	}
6144eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6145eda14cbcSMatt Macy 	mutex_exit(&mg->mg_ms_disabled_lock);
6146eda14cbcSMatt Macy }
6147eda14cbcSMatt Macy 
6148716fd348SMartin Matuska void
6149716fd348SMartin Matuska metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6150716fd348SMartin Matuska {
6151716fd348SMartin Matuska 	ms->ms_unflushed_dirty = dirty;
6152716fd348SMartin Matuska }
6153716fd348SMartin Matuska 
6154eda14cbcSMatt Macy static void
6155eda14cbcSMatt Macy metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6156eda14cbcSMatt Macy {
6157eda14cbcSMatt Macy 	vdev_t *vd = ms->ms_group->mg_vd;
6158eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
6159eda14cbcSMatt Macy 	objset_t *mos = spa_meta_objset(spa);
6160eda14cbcSMatt Macy 
6161eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6162eda14cbcSMatt Macy 
6163eda14cbcSMatt Macy 	metaslab_unflushed_phys_t entry = {
6164eda14cbcSMatt Macy 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6165eda14cbcSMatt Macy 	};
6166eda14cbcSMatt Macy 	uint64_t entry_size = sizeof (entry);
6167eda14cbcSMatt Macy 	uint64_t entry_offset = ms->ms_id * entry_size;
6168eda14cbcSMatt Macy 
6169eda14cbcSMatt Macy 	uint64_t object = 0;
6170eda14cbcSMatt Macy 	int err = zap_lookup(mos, vd->vdev_top_zap,
6171eda14cbcSMatt Macy 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6172eda14cbcSMatt Macy 	    &object);
6173eda14cbcSMatt Macy 	if (err == ENOENT) {
6174eda14cbcSMatt Macy 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6175eda14cbcSMatt Macy 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6176eda14cbcSMatt Macy 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6177eda14cbcSMatt Macy 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6178eda14cbcSMatt Macy 		    &object, tx));
6179eda14cbcSMatt Macy 	} else {
6180eda14cbcSMatt Macy 		VERIFY0(err);
6181eda14cbcSMatt Macy 	}
6182eda14cbcSMatt Macy 
6183eda14cbcSMatt Macy 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6184eda14cbcSMatt Macy 	    &entry, tx);
6185eda14cbcSMatt Macy }
6186eda14cbcSMatt Macy 
6187eda14cbcSMatt Macy void
6188eda14cbcSMatt Macy metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6189eda14cbcSMatt Macy {
6190eda14cbcSMatt Macy 	ms->ms_unflushed_txg = txg;
6191eda14cbcSMatt Macy 	metaslab_update_ondisk_flush_data(ms, tx);
6192eda14cbcSMatt Macy }
6193eda14cbcSMatt Macy 
6194716fd348SMartin Matuska boolean_t
6195716fd348SMartin Matuska metaslab_unflushed_dirty(metaslab_t *ms)
6196716fd348SMartin Matuska {
6197716fd348SMartin Matuska 	return (ms->ms_unflushed_dirty);
6198716fd348SMartin Matuska }
6199716fd348SMartin Matuska 
6200eda14cbcSMatt Macy uint64_t
6201eda14cbcSMatt Macy metaslab_unflushed_txg(metaslab_t *ms)
6202eda14cbcSMatt Macy {
6203eda14cbcSMatt Macy 	return (ms->ms_unflushed_txg);
6204eda14cbcSMatt Macy }
6205eda14cbcSMatt Macy 
6206eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6207eda14cbcSMatt Macy 	"Allocation granularity (a.k.a. stripe size)");
6208eda14cbcSMatt Macy 
6209eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6210eda14cbcSMatt Macy 	"Load all metaslabs when pool is first opened");
6211eda14cbcSMatt Macy 
6212eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6213eda14cbcSMatt Macy 	"Prevent metaslabs from being unloaded");
6214eda14cbcSMatt Macy 
6215eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6216eda14cbcSMatt Macy 	"Preload potential metaslabs during reassessment");
6217eda14cbcSMatt Macy 
6218*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6219eda14cbcSMatt Macy 	"Delay in txgs after metaslab was last used before unloading");
6220eda14cbcSMatt Macy 
6221*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6222eda14cbcSMatt Macy 	"Delay in milliseconds after metaslab was last used before unloading");
6223eda14cbcSMatt Macy 
6224eda14cbcSMatt Macy /* BEGIN CSTYLED */
6225*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6226eda14cbcSMatt Macy 	"Percentage of metaslab group size that should be free to make it "
6227eda14cbcSMatt Macy 	"eligible for allocation");
6228eda14cbcSMatt Macy 
6229*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6230eda14cbcSMatt Macy 	"Percentage of metaslab group size that should be considered eligible "
6231eda14cbcSMatt Macy 	"for allocations unless all metaslab groups within the metaslab class "
6232eda14cbcSMatt Macy 	"have also crossed this threshold");
6233eda14cbcSMatt Macy 
6234c03c5b1cSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6235c03c5b1cSMartin Matuska 	ZMOD_RW,
6236eda14cbcSMatt Macy 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6237eda14cbcSMatt Macy /* END CSTYLED */
6238eda14cbcSMatt Macy 
6239*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6240c03c5b1cSMartin Matuska 	ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6241c03c5b1cSMartin Matuska 
6242eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6243eda14cbcSMatt Macy 	"Prefer metaslabs with lower LBAs");
6244eda14cbcSMatt Macy 
6245eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6246eda14cbcSMatt Macy 	"Enable metaslab group biasing");
6247eda14cbcSMatt Macy 
6248eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6249eda14cbcSMatt Macy 	ZMOD_RW, "Enable segment-based metaslab selection");
6250eda14cbcSMatt Macy 
6251eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6252eda14cbcSMatt Macy 	"Segment-based metaslab selection maximum buckets before switching");
6253eda14cbcSMatt Macy 
6254eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6255eda14cbcSMatt Macy 	"Blocks larger than this size are forced to be gang blocks");
6256eda14cbcSMatt Macy 
6257*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6258eda14cbcSMatt Macy 	"Max distance (bytes) to search forward before using size tree");
6259eda14cbcSMatt Macy 
6260eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6261eda14cbcSMatt Macy 	"When looking in size tree, use largest segment instead of exact fit");
6262eda14cbcSMatt Macy 
6263eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6264eda14cbcSMatt Macy 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6265eda14cbcSMatt Macy 
6266*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6267eda14cbcSMatt Macy 	"Percentage of memory that can be used to store metaslab range trees");
62687877fdebSMatt Macy 
62697877fdebSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
62707877fdebSMatt Macy 	ZMOD_RW, "Try hard to allocate before ganging");
62717877fdebSMatt Macy 
6272*be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
62737877fdebSMatt Macy 	"Normally only consider this many of the best metaslabs in each vdev");
6274