1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9271171e0SMartin Matuska * or https://opensource.org/licenses/CDDL-1.0. 10eda14cbcSMatt Macy * See the License for the specific language governing permissions 11eda14cbcSMatt Macy * and limitations under the License. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18eda14cbcSMatt Macy * 19eda14cbcSMatt Macy * CDDL HEADER END 20eda14cbcSMatt Macy */ 21eda14cbcSMatt Macy /* 22eda14cbcSMatt Macy * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23eda14cbcSMatt Macy * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24eda14cbcSMatt Macy * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 252c48331dSMatt Macy * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26eda14cbcSMatt Macy * Copyright (c) 2017, Intel Corporation. 27eda14cbcSMatt Macy */ 28eda14cbcSMatt Macy 29eda14cbcSMatt Macy #include <sys/zfs_context.h> 30eda14cbcSMatt Macy #include <sys/dmu.h> 31eda14cbcSMatt Macy #include <sys/dmu_tx.h> 32eda14cbcSMatt Macy #include <sys/space_map.h> 33eda14cbcSMatt Macy #include <sys/metaslab_impl.h> 34eda14cbcSMatt Macy #include <sys/vdev_impl.h> 357877fdebSMatt Macy #include <sys/vdev_draid.h> 36eda14cbcSMatt Macy #include <sys/zio.h> 37eda14cbcSMatt Macy #include <sys/spa_impl.h> 38eda14cbcSMatt Macy #include <sys/zfeature.h> 39eda14cbcSMatt Macy #include <sys/vdev_indirect_mapping.h> 40eda14cbcSMatt Macy #include <sys/zap.h> 41eda14cbcSMatt Macy #include <sys/btree.h> 42eda14cbcSMatt Macy 43eda14cbcSMatt Macy #define WITH_DF_BLOCK_ALLOCATOR 44eda14cbcSMatt Macy 45eda14cbcSMatt Macy #define GANG_ALLOCATION(flags) \ 46eda14cbcSMatt Macy ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47eda14cbcSMatt Macy 48eda14cbcSMatt Macy /* 49eda14cbcSMatt Macy * Metaslab granularity, in bytes. This is roughly similar to what would be 50eda14cbcSMatt Macy * referred to as the "stripe size" in traditional RAID arrays. In normal 51716fd348SMartin Matuska * operation, we will try to write this amount of data to each disk before 52716fd348SMartin Matuska * moving on to the next top-level vdev. 53eda14cbcSMatt Macy */ 54dbd5678dSMartin Matuska static uint64_t metaslab_aliquot = 1024 * 1024; 55eda14cbcSMatt Macy 56eda14cbcSMatt Macy /* 57eda14cbcSMatt Macy * For testing, make some blocks above a certain size be gang blocks. 58eda14cbcSMatt Macy */ 59dbd5678dSMartin Matuska uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60eda14cbcSMatt Macy 61eda14cbcSMatt Macy /* 62*315ee00fSMartin Matuska * Of blocks of size >= metaslab_force_ganging, actually gang them this often. 63*315ee00fSMartin Matuska */ 64*315ee00fSMartin Matuska uint_t metaslab_force_ganging_pct = 3; 65*315ee00fSMartin Matuska 66*315ee00fSMartin Matuska /* 67eda14cbcSMatt Macy * In pools where the log space map feature is not enabled we touch 68eda14cbcSMatt Macy * multiple metaslabs (and their respective space maps) with each 69eda14cbcSMatt Macy * transaction group. Thus, we benefit from having a small space map 70eda14cbcSMatt Macy * block size since it allows us to issue more I/O operations scattered 71eda14cbcSMatt Macy * around the disk. So a sane default for the space map block size 72eda14cbcSMatt Macy * is 8~16K. 73eda14cbcSMatt Macy */ 74eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_no_log = (1 << 14); 75eda14cbcSMatt Macy 76eda14cbcSMatt Macy /* 77eda14cbcSMatt Macy * When the log space map feature is enabled, we accumulate a lot of 78eda14cbcSMatt Macy * changes per metaslab that are flushed once in a while so we benefit 79eda14cbcSMatt Macy * from a bigger block size like 128K for the metaslab space maps. 80eda14cbcSMatt Macy */ 81eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_with_log = (1 << 17); 82eda14cbcSMatt Macy 83eda14cbcSMatt Macy /* 84eda14cbcSMatt Macy * The in-core space map representation is more compact than its on-disk form. 85eda14cbcSMatt Macy * The zfs_condense_pct determines how much more compact the in-core 86eda14cbcSMatt Macy * space map representation must be before we compact it on-disk. 87eda14cbcSMatt Macy * Values should be greater than or equal to 100. 88eda14cbcSMatt Macy */ 89be181ee2SMartin Matuska uint_t zfs_condense_pct = 200; 90eda14cbcSMatt Macy 91eda14cbcSMatt Macy /* 92eda14cbcSMatt Macy * Condensing a metaslab is not guaranteed to actually reduce the amount of 93eda14cbcSMatt Macy * space used on disk. In particular, a space map uses data in increments of 94eda14cbcSMatt Macy * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 95eda14cbcSMatt Macy * same number of blocks after condensing. Since the goal of condensing is to 96eda14cbcSMatt Macy * reduce the number of IOPs required to read the space map, we only want to 97eda14cbcSMatt Macy * condense when we can be sure we will reduce the number of blocks used by the 98eda14cbcSMatt Macy * space map. Unfortunately, we cannot precisely compute whether or not this is 99eda14cbcSMatt Macy * the case in metaslab_should_condense since we are holding ms_lock. Instead, 100eda14cbcSMatt Macy * we apply the following heuristic: do not condense a spacemap unless the 101eda14cbcSMatt Macy * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 102eda14cbcSMatt Macy * blocks. 103eda14cbcSMatt Macy */ 104e92ffd9bSMartin Matuska static const int zfs_metaslab_condense_block_threshold = 4; 105eda14cbcSMatt Macy 106eda14cbcSMatt Macy /* 107eda14cbcSMatt Macy * The zfs_mg_noalloc_threshold defines which metaslab groups should 108eda14cbcSMatt Macy * be eligible for allocation. The value is defined as a percentage of 109eda14cbcSMatt Macy * free space. Metaslab groups that have more free space than 110eda14cbcSMatt Macy * zfs_mg_noalloc_threshold are always eligible for allocations. Once 111eda14cbcSMatt Macy * a metaslab group's free space is less than or equal to the 112eda14cbcSMatt Macy * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 113eda14cbcSMatt Macy * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 114eda14cbcSMatt Macy * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 115eda14cbcSMatt Macy * groups are allowed to accept allocations. Gang blocks are always 116eda14cbcSMatt Macy * eligible to allocate on any metaslab group. The default value of 0 means 117eda14cbcSMatt Macy * no metaslab group will be excluded based on this criterion. 118eda14cbcSMatt Macy */ 119be181ee2SMartin Matuska static uint_t zfs_mg_noalloc_threshold = 0; 120eda14cbcSMatt Macy 121eda14cbcSMatt Macy /* 122eda14cbcSMatt Macy * Metaslab groups are considered eligible for allocations if their 123eda14cbcSMatt Macy * fragmentation metric (measured as a percentage) is less than or 124eda14cbcSMatt Macy * equal to zfs_mg_fragmentation_threshold. If a metaslab group 125eda14cbcSMatt Macy * exceeds this threshold then it will be skipped unless all metaslab 126eda14cbcSMatt Macy * groups within the metaslab class have also crossed this threshold. 127eda14cbcSMatt Macy * 128eda14cbcSMatt Macy * This tunable was introduced to avoid edge cases where we continue 129eda14cbcSMatt Macy * allocating from very fragmented disks in our pool while other, less 130eda14cbcSMatt Macy * fragmented disks, exists. On the other hand, if all disks in the 131eda14cbcSMatt Macy * pool are uniformly approaching the threshold, the threshold can 132eda14cbcSMatt Macy * be a speed bump in performance, where we keep switching the disks 133eda14cbcSMatt Macy * that we allocate from (e.g. we allocate some segments from disk A 134eda14cbcSMatt Macy * making it bypassing the threshold while freeing segments from disk 135eda14cbcSMatt Macy * B getting its fragmentation below the threshold). 136eda14cbcSMatt Macy * 137eda14cbcSMatt Macy * Empirically, we've seen that our vdev selection for allocations is 138eda14cbcSMatt Macy * good enough that fragmentation increases uniformly across all vdevs 139eda14cbcSMatt Macy * the majority of the time. Thus we set the threshold percentage high 140eda14cbcSMatt Macy * enough to avoid hitting the speed bump on pools that are being pushed 141eda14cbcSMatt Macy * to the edge. 142eda14cbcSMatt Macy */ 143be181ee2SMartin Matuska static uint_t zfs_mg_fragmentation_threshold = 95; 144eda14cbcSMatt Macy 145eda14cbcSMatt Macy /* 146eda14cbcSMatt Macy * Allow metaslabs to keep their active state as long as their fragmentation 147eda14cbcSMatt Macy * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 148eda14cbcSMatt Macy * active metaslab that exceeds this threshold will no longer keep its active 149eda14cbcSMatt Macy * status allowing better metaslabs to be selected. 150eda14cbcSMatt Macy */ 151be181ee2SMartin Matuska static uint_t zfs_metaslab_fragmentation_threshold = 70; 152eda14cbcSMatt Macy 153eda14cbcSMatt Macy /* 154eda14cbcSMatt Macy * When set will load all metaslabs when pool is first opened. 155eda14cbcSMatt Macy */ 156e92ffd9bSMartin Matuska int metaslab_debug_load = B_FALSE; 157eda14cbcSMatt Macy 158eda14cbcSMatt Macy /* 159eda14cbcSMatt Macy * When set will prevent metaslabs from being unloaded. 160eda14cbcSMatt Macy */ 161e92ffd9bSMartin Matuska static int metaslab_debug_unload = B_FALSE; 162eda14cbcSMatt Macy 163eda14cbcSMatt Macy /* 164eda14cbcSMatt Macy * Minimum size which forces the dynamic allocator to change 165eda14cbcSMatt Macy * it's allocation strategy. Once the space map cannot satisfy 166eda14cbcSMatt Macy * an allocation of this size then it switches to using more 167eda14cbcSMatt Macy * aggressive strategy (i.e search by size rather than offset). 168eda14cbcSMatt Macy */ 169eda14cbcSMatt Macy uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 170eda14cbcSMatt Macy 171eda14cbcSMatt Macy /* 172eda14cbcSMatt Macy * The minimum free space, in percent, which must be available 173eda14cbcSMatt Macy * in a space map to continue allocations in a first-fit fashion. 174eda14cbcSMatt Macy * Once the space map's free space drops below this level we dynamically 175eda14cbcSMatt Macy * switch to using best-fit allocations. 176eda14cbcSMatt Macy */ 177be181ee2SMartin Matuska uint_t metaslab_df_free_pct = 4; 178eda14cbcSMatt Macy 179eda14cbcSMatt Macy /* 180eda14cbcSMatt Macy * Maximum distance to search forward from the last offset. Without this 181eda14cbcSMatt Macy * limit, fragmented pools can see >100,000 iterations and 182eda14cbcSMatt Macy * metaslab_block_picker() becomes the performance limiting factor on 183eda14cbcSMatt Macy * high-performance storage. 184eda14cbcSMatt Macy * 185eda14cbcSMatt Macy * With the default setting of 16MB, we typically see less than 500 186eda14cbcSMatt Macy * iterations, even with very fragmented, ashift=9 pools. The maximum number 187eda14cbcSMatt Macy * of iterations possible is: 188eda14cbcSMatt Macy * metaslab_df_max_search / (2 * (1<<ashift)) 189eda14cbcSMatt Macy * With the default setting of 16MB this is 16*1024 (with ashift=9) or 190eda14cbcSMatt Macy * 2048 (with ashift=12). 191eda14cbcSMatt Macy */ 192be181ee2SMartin Matuska static uint_t metaslab_df_max_search = 16 * 1024 * 1024; 193eda14cbcSMatt Macy 194eda14cbcSMatt Macy /* 195eda14cbcSMatt Macy * Forces the metaslab_block_picker function to search for at least this many 196eda14cbcSMatt Macy * segments forwards until giving up on finding a segment that the allocation 197eda14cbcSMatt Macy * will fit into. 198eda14cbcSMatt Macy */ 199e92ffd9bSMartin Matuska static const uint32_t metaslab_min_search_count = 100; 200eda14cbcSMatt Macy 201eda14cbcSMatt Macy /* 202eda14cbcSMatt Macy * If we are not searching forward (due to metaslab_df_max_search, 203eda14cbcSMatt Macy * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 204eda14cbcSMatt Macy * controls what segment is used. If it is set, we will use the largest free 205eda14cbcSMatt Macy * segment. If it is not set, we will use a segment of exactly the requested 206eda14cbcSMatt Macy * size (or larger). 207eda14cbcSMatt Macy */ 208e92ffd9bSMartin Matuska static int metaslab_df_use_largest_segment = B_FALSE; 209eda14cbcSMatt Macy 210eda14cbcSMatt Macy /* 211eda14cbcSMatt Macy * Percentage of all cpus that can be used by the metaslab taskq. 212eda14cbcSMatt Macy */ 213eda14cbcSMatt Macy int metaslab_load_pct = 50; 214eda14cbcSMatt Macy 215eda14cbcSMatt Macy /* 216eda14cbcSMatt Macy * These tunables control how long a metaslab will remain loaded after the 217eda14cbcSMatt Macy * last allocation from it. A metaslab can't be unloaded until at least 218eda14cbcSMatt Macy * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 219eda14cbcSMatt Macy * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 220eda14cbcSMatt Macy * unloaded sooner. These settings are intended to be generous -- to keep 221eda14cbcSMatt Macy * metaslabs loaded for a long time, reducing the rate of metaslab loading. 222eda14cbcSMatt Macy */ 223be181ee2SMartin Matuska static uint_t metaslab_unload_delay = 32; 224be181ee2SMartin Matuska static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 225eda14cbcSMatt Macy 226eda14cbcSMatt Macy /* 227eda14cbcSMatt Macy * Max number of metaslabs per group to preload. 228eda14cbcSMatt Macy */ 229be181ee2SMartin Matuska uint_t metaslab_preload_limit = 10; 230eda14cbcSMatt Macy 231eda14cbcSMatt Macy /* 232eda14cbcSMatt Macy * Enable/disable preloading of metaslab. 233eda14cbcSMatt Macy */ 234e92ffd9bSMartin Matuska static int metaslab_preload_enabled = B_TRUE; 235eda14cbcSMatt Macy 236eda14cbcSMatt Macy /* 237eda14cbcSMatt Macy * Enable/disable fragmentation weighting on metaslabs. 238eda14cbcSMatt Macy */ 239e92ffd9bSMartin Matuska static int metaslab_fragmentation_factor_enabled = B_TRUE; 240eda14cbcSMatt Macy 241eda14cbcSMatt Macy /* 242eda14cbcSMatt Macy * Enable/disable lba weighting (i.e. outer tracks are given preference). 243eda14cbcSMatt Macy */ 244e92ffd9bSMartin Matuska static int metaslab_lba_weighting_enabled = B_TRUE; 245eda14cbcSMatt Macy 246eda14cbcSMatt Macy /* 247eda14cbcSMatt Macy * Enable/disable metaslab group biasing. 248eda14cbcSMatt Macy */ 249e92ffd9bSMartin Matuska static int metaslab_bias_enabled = B_TRUE; 250eda14cbcSMatt Macy 251eda14cbcSMatt Macy /* 252eda14cbcSMatt Macy * Enable/disable remapping of indirect DVAs to their concrete vdevs. 253eda14cbcSMatt Macy */ 254e92ffd9bSMartin Matuska static const boolean_t zfs_remap_blkptr_enable = B_TRUE; 255eda14cbcSMatt Macy 256eda14cbcSMatt Macy /* 257eda14cbcSMatt Macy * Enable/disable segment-based metaslab selection. 258eda14cbcSMatt Macy */ 259e92ffd9bSMartin Matuska static int zfs_metaslab_segment_weight_enabled = B_TRUE; 260eda14cbcSMatt Macy 261eda14cbcSMatt Macy /* 262eda14cbcSMatt Macy * When using segment-based metaslab selection, we will continue 263eda14cbcSMatt Macy * allocating from the active metaslab until we have exhausted 264eda14cbcSMatt Macy * zfs_metaslab_switch_threshold of its buckets. 265eda14cbcSMatt Macy */ 266e92ffd9bSMartin Matuska static int zfs_metaslab_switch_threshold = 2; 267eda14cbcSMatt Macy 268eda14cbcSMatt Macy /* 269eda14cbcSMatt Macy * Internal switch to enable/disable the metaslab allocation tracing 270eda14cbcSMatt Macy * facility. 271eda14cbcSMatt Macy */ 272e92ffd9bSMartin Matuska static const boolean_t metaslab_trace_enabled = B_FALSE; 273eda14cbcSMatt Macy 274eda14cbcSMatt Macy /* 275eda14cbcSMatt Macy * Maximum entries that the metaslab allocation tracing facility will keep 276eda14cbcSMatt Macy * in a given list when running in non-debug mode. We limit the number 277eda14cbcSMatt Macy * of entries in non-debug mode to prevent us from using up too much memory. 278eda14cbcSMatt Macy * The limit should be sufficiently large that we don't expect any allocation 279eda14cbcSMatt Macy * to every exceed this value. In debug mode, the system will panic if this 280eda14cbcSMatt Macy * limit is ever reached allowing for further investigation. 281eda14cbcSMatt Macy */ 282e92ffd9bSMartin Matuska static const uint64_t metaslab_trace_max_entries = 5000; 283eda14cbcSMatt Macy 284eda14cbcSMatt Macy /* 285eda14cbcSMatt Macy * Maximum number of metaslabs per group that can be disabled 286eda14cbcSMatt Macy * simultaneously. 287eda14cbcSMatt Macy */ 288e92ffd9bSMartin Matuska static const int max_disabled_ms = 3; 289eda14cbcSMatt Macy 290eda14cbcSMatt Macy /* 291eda14cbcSMatt Macy * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 292eda14cbcSMatt Macy * To avoid 64-bit overflow, don't set above UINT32_MAX. 293eda14cbcSMatt Macy */ 294dbd5678dSMartin Matuska static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */ 295eda14cbcSMatt Macy 296eda14cbcSMatt Macy /* 297eda14cbcSMatt Macy * Maximum percentage of memory to use on storing loaded metaslabs. If loading 298eda14cbcSMatt Macy * a metaslab would take it over this percentage, the oldest selected metaslab 299eda14cbcSMatt Macy * is automatically unloaded. 300eda14cbcSMatt Macy */ 301be181ee2SMartin Matuska static uint_t zfs_metaslab_mem_limit = 25; 302eda14cbcSMatt Macy 303eda14cbcSMatt Macy /* 304eda14cbcSMatt Macy * Force the per-metaslab range trees to use 64-bit integers to store 305eda14cbcSMatt Macy * segments. Used for debugging purposes. 306eda14cbcSMatt Macy */ 307e92ffd9bSMartin Matuska static const boolean_t zfs_metaslab_force_large_segs = B_FALSE; 308eda14cbcSMatt Macy 309eda14cbcSMatt Macy /* 310eda14cbcSMatt Macy * By default we only store segments over a certain size in the size-sorted 311eda14cbcSMatt Macy * metaslab trees (ms_allocatable_by_size and 312eda14cbcSMatt Macy * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 313eda14cbcSMatt Macy * improves load and unload times at the cost of causing us to use slightly 314eda14cbcSMatt Macy * larger segments than we would otherwise in some cases. 315eda14cbcSMatt Macy */ 316e92ffd9bSMartin Matuska static const uint32_t metaslab_by_size_min_shift = 14; 317eda14cbcSMatt Macy 3187877fdebSMatt Macy /* 3197877fdebSMatt Macy * If not set, we will first try normal allocation. If that fails then 3207877fdebSMatt Macy * we will do a gang allocation. If that fails then we will do a "try hard" 3217877fdebSMatt Macy * gang allocation. If that fails then we will have a multi-layer gang 3227877fdebSMatt Macy * block. 3237877fdebSMatt Macy * 3247877fdebSMatt Macy * If set, we will first try normal allocation. If that fails then 3257877fdebSMatt Macy * we will do a "try hard" allocation. If that fails we will do a gang 3267877fdebSMatt Macy * allocation. If that fails we will do a "try hard" gang allocation. If 3277877fdebSMatt Macy * that fails then we will have a multi-layer gang block. 3287877fdebSMatt Macy */ 329e92ffd9bSMartin Matuska static int zfs_metaslab_try_hard_before_gang = B_FALSE; 3307877fdebSMatt Macy 3317877fdebSMatt Macy /* 3327877fdebSMatt Macy * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 3337877fdebSMatt Macy * metaslabs. This improves performance, especially when there are many 3347877fdebSMatt Macy * metaslabs per vdev and the allocation can't actually be satisfied (so we 3357877fdebSMatt Macy * would otherwise iterate all the metaslabs). If there is a metaslab with a 3367877fdebSMatt Macy * worse weight but it can actually satisfy the allocation, we won't find it 3377877fdebSMatt Macy * until trying hard. This may happen if the worse metaslab is not loaded 3387877fdebSMatt Macy * (and the true weight is better than we have calculated), or due to weight 3397877fdebSMatt Macy * bucketization. E.g. we are looking for a 60K segment, and the best 3407877fdebSMatt Macy * metaslabs all have free segments in the 32-63K bucket, but the best 3417877fdebSMatt Macy * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 3427877fdebSMatt Macy * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 3437877fdebSMatt Macy * bucket, and therefore a lower weight). 3447877fdebSMatt Macy */ 345be181ee2SMartin Matuska static uint_t zfs_metaslab_find_max_tries = 100; 3467877fdebSMatt Macy 347eda14cbcSMatt Macy static uint64_t metaslab_weight(metaslab_t *, boolean_t); 348eda14cbcSMatt Macy static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 349eda14cbcSMatt Macy static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 350eda14cbcSMatt Macy static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 351eda14cbcSMatt Macy 352eda14cbcSMatt Macy static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 353eda14cbcSMatt Macy static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 354eda14cbcSMatt Macy static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 355eda14cbcSMatt Macy static unsigned int metaslab_idx_func(multilist_t *, void *); 356eda14cbcSMatt Macy static void metaslab_evict(metaslab_t *, uint64_t); 357eda14cbcSMatt Macy static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 358eda14cbcSMatt Macy kmem_cache_t *metaslab_alloc_trace_cache; 359eda14cbcSMatt Macy 360eda14cbcSMatt Macy typedef struct metaslab_stats { 361eda14cbcSMatt Macy kstat_named_t metaslabstat_trace_over_limit; 362eda14cbcSMatt Macy kstat_named_t metaslabstat_reload_tree; 3637877fdebSMatt Macy kstat_named_t metaslabstat_too_many_tries; 3647877fdebSMatt Macy kstat_named_t metaslabstat_try_hard; 365eda14cbcSMatt Macy } metaslab_stats_t; 366eda14cbcSMatt Macy 367eda14cbcSMatt Macy static metaslab_stats_t metaslab_stats = { 368eda14cbcSMatt Macy { "trace_over_limit", KSTAT_DATA_UINT64 }, 369eda14cbcSMatt Macy { "reload_tree", KSTAT_DATA_UINT64 }, 3707877fdebSMatt Macy { "too_many_tries", KSTAT_DATA_UINT64 }, 3717877fdebSMatt Macy { "try_hard", KSTAT_DATA_UINT64 }, 372eda14cbcSMatt Macy }; 373eda14cbcSMatt Macy 374eda14cbcSMatt Macy #define METASLABSTAT_BUMP(stat) \ 375eda14cbcSMatt Macy atomic_inc_64(&metaslab_stats.stat.value.ui64); 376eda14cbcSMatt Macy 377eda14cbcSMatt Macy 378e92ffd9bSMartin Matuska static kstat_t *metaslab_ksp; 379eda14cbcSMatt Macy 380eda14cbcSMatt Macy void 381eda14cbcSMatt Macy metaslab_stat_init(void) 382eda14cbcSMatt Macy { 383eda14cbcSMatt Macy ASSERT(metaslab_alloc_trace_cache == NULL); 384eda14cbcSMatt Macy metaslab_alloc_trace_cache = kmem_cache_create( 385eda14cbcSMatt Macy "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 386eda14cbcSMatt Macy 0, NULL, NULL, NULL, NULL, NULL, 0); 387eda14cbcSMatt Macy metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 388eda14cbcSMatt Macy "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 389eda14cbcSMatt Macy sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 390eda14cbcSMatt Macy if (metaslab_ksp != NULL) { 391eda14cbcSMatt Macy metaslab_ksp->ks_data = &metaslab_stats; 392eda14cbcSMatt Macy kstat_install(metaslab_ksp); 393eda14cbcSMatt Macy } 394eda14cbcSMatt Macy } 395eda14cbcSMatt Macy 396eda14cbcSMatt Macy void 397eda14cbcSMatt Macy metaslab_stat_fini(void) 398eda14cbcSMatt Macy { 399eda14cbcSMatt Macy if (metaslab_ksp != NULL) { 400eda14cbcSMatt Macy kstat_delete(metaslab_ksp); 401eda14cbcSMatt Macy metaslab_ksp = NULL; 402eda14cbcSMatt Macy } 403eda14cbcSMatt Macy 404eda14cbcSMatt Macy kmem_cache_destroy(metaslab_alloc_trace_cache); 405eda14cbcSMatt Macy metaslab_alloc_trace_cache = NULL; 406eda14cbcSMatt Macy } 407eda14cbcSMatt Macy 408eda14cbcSMatt Macy /* 409eda14cbcSMatt Macy * ========================================================================== 410eda14cbcSMatt Macy * Metaslab classes 411eda14cbcSMatt Macy * ========================================================================== 412eda14cbcSMatt Macy */ 413eda14cbcSMatt Macy metaslab_class_t * 414e92ffd9bSMartin Matuska metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops) 415eda14cbcSMatt Macy { 416eda14cbcSMatt Macy metaslab_class_t *mc; 417eda14cbcSMatt Macy 4187877fdebSMatt Macy mc = kmem_zalloc(offsetof(metaslab_class_t, 4197877fdebSMatt Macy mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 420eda14cbcSMatt Macy 421eda14cbcSMatt Macy mc->mc_spa = spa; 422eda14cbcSMatt Macy mc->mc_ops = ops; 423eda14cbcSMatt Macy mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 4243ff01b23SMartin Matuska multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t), 425eda14cbcSMatt Macy offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 4267877fdebSMatt Macy for (int i = 0; i < spa->spa_alloc_count; i++) { 4277877fdebSMatt Macy metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 4287877fdebSMatt Macy mca->mca_rotor = NULL; 4297877fdebSMatt Macy zfs_refcount_create_tracked(&mca->mca_alloc_slots); 4307877fdebSMatt Macy } 431eda14cbcSMatt Macy 432eda14cbcSMatt Macy return (mc); 433eda14cbcSMatt Macy } 434eda14cbcSMatt Macy 435eda14cbcSMatt Macy void 436eda14cbcSMatt Macy metaslab_class_destroy(metaslab_class_t *mc) 437eda14cbcSMatt Macy { 4387877fdebSMatt Macy spa_t *spa = mc->mc_spa; 4397877fdebSMatt Macy 440eda14cbcSMatt Macy ASSERT(mc->mc_alloc == 0); 441eda14cbcSMatt Macy ASSERT(mc->mc_deferred == 0); 442eda14cbcSMatt Macy ASSERT(mc->mc_space == 0); 443eda14cbcSMatt Macy ASSERT(mc->mc_dspace == 0); 444eda14cbcSMatt Macy 4457877fdebSMatt Macy for (int i = 0; i < spa->spa_alloc_count; i++) { 4467877fdebSMatt Macy metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 4477877fdebSMatt Macy ASSERT(mca->mca_rotor == NULL); 4487877fdebSMatt Macy zfs_refcount_destroy(&mca->mca_alloc_slots); 4497877fdebSMatt Macy } 450eda14cbcSMatt Macy mutex_destroy(&mc->mc_lock); 4513ff01b23SMartin Matuska multilist_destroy(&mc->mc_metaslab_txg_list); 4527877fdebSMatt Macy kmem_free(mc, offsetof(metaslab_class_t, 4537877fdebSMatt Macy mc_allocator[spa->spa_alloc_count])); 454eda14cbcSMatt Macy } 455eda14cbcSMatt Macy 456eda14cbcSMatt Macy int 457eda14cbcSMatt Macy metaslab_class_validate(metaslab_class_t *mc) 458eda14cbcSMatt Macy { 459eda14cbcSMatt Macy metaslab_group_t *mg; 460eda14cbcSMatt Macy vdev_t *vd; 461eda14cbcSMatt Macy 462eda14cbcSMatt Macy /* 463eda14cbcSMatt Macy * Must hold one of the spa_config locks. 464eda14cbcSMatt Macy */ 465eda14cbcSMatt Macy ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 466eda14cbcSMatt Macy spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 467eda14cbcSMatt Macy 4687877fdebSMatt Macy if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 469eda14cbcSMatt Macy return (0); 470eda14cbcSMatt Macy 471eda14cbcSMatt Macy do { 472eda14cbcSMatt Macy vd = mg->mg_vd; 473eda14cbcSMatt Macy ASSERT(vd->vdev_mg != NULL); 474eda14cbcSMatt Macy ASSERT3P(vd->vdev_top, ==, vd); 475eda14cbcSMatt Macy ASSERT3P(mg->mg_class, ==, mc); 476eda14cbcSMatt Macy ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 4777877fdebSMatt Macy } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 478eda14cbcSMatt Macy 479eda14cbcSMatt Macy return (0); 480eda14cbcSMatt Macy } 481eda14cbcSMatt Macy 482eda14cbcSMatt Macy static void 483eda14cbcSMatt Macy metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 484eda14cbcSMatt Macy int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 485eda14cbcSMatt Macy { 486eda14cbcSMatt Macy atomic_add_64(&mc->mc_alloc, alloc_delta); 487eda14cbcSMatt Macy atomic_add_64(&mc->mc_deferred, defer_delta); 488eda14cbcSMatt Macy atomic_add_64(&mc->mc_space, space_delta); 489eda14cbcSMatt Macy atomic_add_64(&mc->mc_dspace, dspace_delta); 490eda14cbcSMatt Macy } 491eda14cbcSMatt Macy 492eda14cbcSMatt Macy uint64_t 493eda14cbcSMatt Macy metaslab_class_get_alloc(metaslab_class_t *mc) 494eda14cbcSMatt Macy { 495eda14cbcSMatt Macy return (mc->mc_alloc); 496eda14cbcSMatt Macy } 497eda14cbcSMatt Macy 498eda14cbcSMatt Macy uint64_t 499eda14cbcSMatt Macy metaslab_class_get_deferred(metaslab_class_t *mc) 500eda14cbcSMatt Macy { 501eda14cbcSMatt Macy return (mc->mc_deferred); 502eda14cbcSMatt Macy } 503eda14cbcSMatt Macy 504eda14cbcSMatt Macy uint64_t 505eda14cbcSMatt Macy metaslab_class_get_space(metaslab_class_t *mc) 506eda14cbcSMatt Macy { 507eda14cbcSMatt Macy return (mc->mc_space); 508eda14cbcSMatt Macy } 509eda14cbcSMatt Macy 510eda14cbcSMatt Macy uint64_t 511eda14cbcSMatt Macy metaslab_class_get_dspace(metaslab_class_t *mc) 512eda14cbcSMatt Macy { 513eda14cbcSMatt Macy return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 514eda14cbcSMatt Macy } 515eda14cbcSMatt Macy 516eda14cbcSMatt Macy void 517eda14cbcSMatt Macy metaslab_class_histogram_verify(metaslab_class_t *mc) 518eda14cbcSMatt Macy { 519eda14cbcSMatt Macy spa_t *spa = mc->mc_spa; 520eda14cbcSMatt Macy vdev_t *rvd = spa->spa_root_vdev; 521eda14cbcSMatt Macy uint64_t *mc_hist; 522eda14cbcSMatt Macy int i; 523eda14cbcSMatt Macy 524eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 525eda14cbcSMatt Macy return; 526eda14cbcSMatt Macy 527eda14cbcSMatt Macy mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 528eda14cbcSMatt Macy KM_SLEEP); 529eda14cbcSMatt Macy 530184c1b94SMartin Matuska mutex_enter(&mc->mc_lock); 531eda14cbcSMatt Macy for (int c = 0; c < rvd->vdev_children; c++) { 532eda14cbcSMatt Macy vdev_t *tvd = rvd->vdev_child[c]; 533184c1b94SMartin Matuska metaslab_group_t *mg = vdev_get_mg(tvd, mc); 534eda14cbcSMatt Macy 535eda14cbcSMatt Macy /* 536eda14cbcSMatt Macy * Skip any holes, uninitialized top-levels, or 537eda14cbcSMatt Macy * vdevs that are not in this metalab class. 538eda14cbcSMatt Macy */ 539eda14cbcSMatt Macy if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 540eda14cbcSMatt Macy mg->mg_class != mc) { 541eda14cbcSMatt Macy continue; 542eda14cbcSMatt Macy } 543eda14cbcSMatt Macy 544184c1b94SMartin Matuska IMPLY(mg == mg->mg_vd->vdev_log_mg, 545184c1b94SMartin Matuska mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 546184c1b94SMartin Matuska 547eda14cbcSMatt Macy for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 548eda14cbcSMatt Macy mc_hist[i] += mg->mg_histogram[i]; 549eda14cbcSMatt Macy } 550eda14cbcSMatt Macy 551184c1b94SMartin Matuska for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 552eda14cbcSMatt Macy VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 553184c1b94SMartin Matuska } 554eda14cbcSMatt Macy 555184c1b94SMartin Matuska mutex_exit(&mc->mc_lock); 556eda14cbcSMatt Macy kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 557eda14cbcSMatt Macy } 558eda14cbcSMatt Macy 559eda14cbcSMatt Macy /* 560eda14cbcSMatt Macy * Calculate the metaslab class's fragmentation metric. The metric 561eda14cbcSMatt Macy * is weighted based on the space contribution of each metaslab group. 562eda14cbcSMatt Macy * The return value will be a number between 0 and 100 (inclusive), or 563eda14cbcSMatt Macy * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 564eda14cbcSMatt Macy * zfs_frag_table for more information about the metric. 565eda14cbcSMatt Macy */ 566eda14cbcSMatt Macy uint64_t 567eda14cbcSMatt Macy metaslab_class_fragmentation(metaslab_class_t *mc) 568eda14cbcSMatt Macy { 569eda14cbcSMatt Macy vdev_t *rvd = mc->mc_spa->spa_root_vdev; 570eda14cbcSMatt Macy uint64_t fragmentation = 0; 571eda14cbcSMatt Macy 572eda14cbcSMatt Macy spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 573eda14cbcSMatt Macy 574eda14cbcSMatt Macy for (int c = 0; c < rvd->vdev_children; c++) { 575eda14cbcSMatt Macy vdev_t *tvd = rvd->vdev_child[c]; 576eda14cbcSMatt Macy metaslab_group_t *mg = tvd->vdev_mg; 577eda14cbcSMatt Macy 578eda14cbcSMatt Macy /* 579eda14cbcSMatt Macy * Skip any holes, uninitialized top-levels, 580eda14cbcSMatt Macy * or vdevs that are not in this metalab class. 581eda14cbcSMatt Macy */ 582eda14cbcSMatt Macy if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 583eda14cbcSMatt Macy mg->mg_class != mc) { 584eda14cbcSMatt Macy continue; 585eda14cbcSMatt Macy } 586eda14cbcSMatt Macy 587eda14cbcSMatt Macy /* 588eda14cbcSMatt Macy * If a metaslab group does not contain a fragmentation 589eda14cbcSMatt Macy * metric then just bail out. 590eda14cbcSMatt Macy */ 591eda14cbcSMatt Macy if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 592eda14cbcSMatt Macy spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 593eda14cbcSMatt Macy return (ZFS_FRAG_INVALID); 594eda14cbcSMatt Macy } 595eda14cbcSMatt Macy 596eda14cbcSMatt Macy /* 597eda14cbcSMatt Macy * Determine how much this metaslab_group is contributing 598eda14cbcSMatt Macy * to the overall pool fragmentation metric. 599eda14cbcSMatt Macy */ 600eda14cbcSMatt Macy fragmentation += mg->mg_fragmentation * 601eda14cbcSMatt Macy metaslab_group_get_space(mg); 602eda14cbcSMatt Macy } 603eda14cbcSMatt Macy fragmentation /= metaslab_class_get_space(mc); 604eda14cbcSMatt Macy 605eda14cbcSMatt Macy ASSERT3U(fragmentation, <=, 100); 606eda14cbcSMatt Macy spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 607eda14cbcSMatt Macy return (fragmentation); 608eda14cbcSMatt Macy } 609eda14cbcSMatt Macy 610eda14cbcSMatt Macy /* 611eda14cbcSMatt Macy * Calculate the amount of expandable space that is available in 612eda14cbcSMatt Macy * this metaslab class. If a device is expanded then its expandable 613eda14cbcSMatt Macy * space will be the amount of allocatable space that is currently not 614eda14cbcSMatt Macy * part of this metaslab class. 615eda14cbcSMatt Macy */ 616eda14cbcSMatt Macy uint64_t 617eda14cbcSMatt Macy metaslab_class_expandable_space(metaslab_class_t *mc) 618eda14cbcSMatt Macy { 619eda14cbcSMatt Macy vdev_t *rvd = mc->mc_spa->spa_root_vdev; 620eda14cbcSMatt Macy uint64_t space = 0; 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 623eda14cbcSMatt Macy for (int c = 0; c < rvd->vdev_children; c++) { 624eda14cbcSMatt Macy vdev_t *tvd = rvd->vdev_child[c]; 625eda14cbcSMatt Macy metaslab_group_t *mg = tvd->vdev_mg; 626eda14cbcSMatt Macy 627eda14cbcSMatt Macy if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 628eda14cbcSMatt Macy mg->mg_class != mc) { 629eda14cbcSMatt Macy continue; 630eda14cbcSMatt Macy } 631eda14cbcSMatt Macy 632eda14cbcSMatt Macy /* 633eda14cbcSMatt Macy * Calculate if we have enough space to add additional 634eda14cbcSMatt Macy * metaslabs. We report the expandable space in terms 635eda14cbcSMatt Macy * of the metaslab size since that's the unit of expansion. 636eda14cbcSMatt Macy */ 637eda14cbcSMatt Macy space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 638eda14cbcSMatt Macy 1ULL << tvd->vdev_ms_shift); 639eda14cbcSMatt Macy } 640eda14cbcSMatt Macy spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 641eda14cbcSMatt Macy return (space); 642eda14cbcSMatt Macy } 643eda14cbcSMatt Macy 644eda14cbcSMatt Macy void 645eda14cbcSMatt Macy metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 646eda14cbcSMatt Macy { 6473ff01b23SMartin Matuska multilist_t *ml = &mc->mc_metaslab_txg_list; 648eda14cbcSMatt Macy for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 649eda14cbcSMatt Macy multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 650eda14cbcSMatt Macy metaslab_t *msp = multilist_sublist_head(mls); 651eda14cbcSMatt Macy multilist_sublist_unlock(mls); 652eda14cbcSMatt Macy while (msp != NULL) { 653eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 654eda14cbcSMatt Macy 655eda14cbcSMatt Macy /* 656eda14cbcSMatt Macy * If the metaslab has been removed from the list 657eda14cbcSMatt Macy * (which could happen if we were at the memory limit 658eda14cbcSMatt Macy * and it was evicted during this loop), then we can't 659eda14cbcSMatt Macy * proceed and we should restart the sublist. 660eda14cbcSMatt Macy */ 661eda14cbcSMatt Macy if (!multilist_link_active(&msp->ms_class_txg_node)) { 662eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 663eda14cbcSMatt Macy i--; 664eda14cbcSMatt Macy break; 665eda14cbcSMatt Macy } 666eda14cbcSMatt Macy mls = multilist_sublist_lock(ml, i); 667eda14cbcSMatt Macy metaslab_t *next_msp = multilist_sublist_next(mls, msp); 668eda14cbcSMatt Macy multilist_sublist_unlock(mls); 669eda14cbcSMatt Macy if (txg > 670eda14cbcSMatt Macy msp->ms_selected_txg + metaslab_unload_delay && 671eda14cbcSMatt Macy gethrtime() > msp->ms_selected_time + 672eda14cbcSMatt Macy (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 673eda14cbcSMatt Macy metaslab_evict(msp, txg); 674eda14cbcSMatt Macy } else { 675eda14cbcSMatt Macy /* 676eda14cbcSMatt Macy * Once we've hit a metaslab selected too 677eda14cbcSMatt Macy * recently to evict, we're done evicting for 678eda14cbcSMatt Macy * now. 679eda14cbcSMatt Macy */ 680eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 681eda14cbcSMatt Macy break; 682eda14cbcSMatt Macy } 683eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 684eda14cbcSMatt Macy msp = next_msp; 685eda14cbcSMatt Macy } 686eda14cbcSMatt Macy } 687eda14cbcSMatt Macy } 688eda14cbcSMatt Macy 689eda14cbcSMatt Macy static int 690eda14cbcSMatt Macy metaslab_compare(const void *x1, const void *x2) 691eda14cbcSMatt Macy { 692eda14cbcSMatt Macy const metaslab_t *m1 = (const metaslab_t *)x1; 693eda14cbcSMatt Macy const metaslab_t *m2 = (const metaslab_t *)x2; 694eda14cbcSMatt Macy 695eda14cbcSMatt Macy int sort1 = 0; 696eda14cbcSMatt Macy int sort2 = 0; 697eda14cbcSMatt Macy if (m1->ms_allocator != -1 && m1->ms_primary) 698eda14cbcSMatt Macy sort1 = 1; 699eda14cbcSMatt Macy else if (m1->ms_allocator != -1 && !m1->ms_primary) 700eda14cbcSMatt Macy sort1 = 2; 701eda14cbcSMatt Macy if (m2->ms_allocator != -1 && m2->ms_primary) 702eda14cbcSMatt Macy sort2 = 1; 703eda14cbcSMatt Macy else if (m2->ms_allocator != -1 && !m2->ms_primary) 704eda14cbcSMatt Macy sort2 = 2; 705eda14cbcSMatt Macy 706eda14cbcSMatt Macy /* 707eda14cbcSMatt Macy * Sort inactive metaslabs first, then primaries, then secondaries. When 708eda14cbcSMatt Macy * selecting a metaslab to allocate from, an allocator first tries its 709eda14cbcSMatt Macy * primary, then secondary active metaslab. If it doesn't have active 710eda14cbcSMatt Macy * metaslabs, or can't allocate from them, it searches for an inactive 711eda14cbcSMatt Macy * metaslab to activate. If it can't find a suitable one, it will steal 712eda14cbcSMatt Macy * a primary or secondary metaslab from another allocator. 713eda14cbcSMatt Macy */ 714eda14cbcSMatt Macy if (sort1 < sort2) 715eda14cbcSMatt Macy return (-1); 716eda14cbcSMatt Macy if (sort1 > sort2) 717eda14cbcSMatt Macy return (1); 718eda14cbcSMatt Macy 719eda14cbcSMatt Macy int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 720eda14cbcSMatt Macy if (likely(cmp)) 721eda14cbcSMatt Macy return (cmp); 722eda14cbcSMatt Macy 723eda14cbcSMatt Macy IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 724eda14cbcSMatt Macy 725eda14cbcSMatt Macy return (TREE_CMP(m1->ms_start, m2->ms_start)); 726eda14cbcSMatt Macy } 727eda14cbcSMatt Macy 728eda14cbcSMatt Macy /* 729eda14cbcSMatt Macy * ========================================================================== 730eda14cbcSMatt Macy * Metaslab groups 731eda14cbcSMatt Macy * ========================================================================== 732eda14cbcSMatt Macy */ 733eda14cbcSMatt Macy /* 734eda14cbcSMatt Macy * Update the allocatable flag and the metaslab group's capacity. 735eda14cbcSMatt Macy * The allocatable flag is set to true if the capacity is below 736eda14cbcSMatt Macy * the zfs_mg_noalloc_threshold or has a fragmentation value that is 737eda14cbcSMatt Macy * greater than zfs_mg_fragmentation_threshold. If a metaslab group 738eda14cbcSMatt Macy * transitions from allocatable to non-allocatable or vice versa then the 739eda14cbcSMatt Macy * metaslab group's class is updated to reflect the transition. 740eda14cbcSMatt Macy */ 741eda14cbcSMatt Macy static void 742eda14cbcSMatt Macy metaslab_group_alloc_update(metaslab_group_t *mg) 743eda14cbcSMatt Macy { 744eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 745eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 746eda14cbcSMatt Macy vdev_stat_t *vs = &vd->vdev_stat; 747eda14cbcSMatt Macy boolean_t was_allocatable; 748eda14cbcSMatt Macy boolean_t was_initialized; 749eda14cbcSMatt Macy 750eda14cbcSMatt Macy ASSERT(vd == vd->vdev_top); 751eda14cbcSMatt Macy ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 752eda14cbcSMatt Macy SCL_ALLOC); 753eda14cbcSMatt Macy 754eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 755eda14cbcSMatt Macy was_allocatable = mg->mg_allocatable; 756eda14cbcSMatt Macy was_initialized = mg->mg_initialized; 757eda14cbcSMatt Macy 758eda14cbcSMatt Macy mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 759eda14cbcSMatt Macy (vs->vs_space + 1); 760eda14cbcSMatt Macy 761eda14cbcSMatt Macy mutex_enter(&mc->mc_lock); 762eda14cbcSMatt Macy 763eda14cbcSMatt Macy /* 764eda14cbcSMatt Macy * If the metaslab group was just added then it won't 765eda14cbcSMatt Macy * have any space until we finish syncing out this txg. 766eda14cbcSMatt Macy * At that point we will consider it initialized and available 767eda14cbcSMatt Macy * for allocations. We also don't consider non-activated 768eda14cbcSMatt Macy * metaslab groups (e.g. vdevs that are in the middle of being removed) 769eda14cbcSMatt Macy * to be initialized, because they can't be used for allocation. 770eda14cbcSMatt Macy */ 771eda14cbcSMatt Macy mg->mg_initialized = metaslab_group_initialized(mg); 772eda14cbcSMatt Macy if (!was_initialized && mg->mg_initialized) { 773eda14cbcSMatt Macy mc->mc_groups++; 774eda14cbcSMatt Macy } else if (was_initialized && !mg->mg_initialized) { 775eda14cbcSMatt Macy ASSERT3U(mc->mc_groups, >, 0); 776eda14cbcSMatt Macy mc->mc_groups--; 777eda14cbcSMatt Macy } 778eda14cbcSMatt Macy if (mg->mg_initialized) 779eda14cbcSMatt Macy mg->mg_no_free_space = B_FALSE; 780eda14cbcSMatt Macy 781eda14cbcSMatt Macy /* 782eda14cbcSMatt Macy * A metaslab group is considered allocatable if it has plenty 783eda14cbcSMatt Macy * of free space or is not heavily fragmented. We only take 784eda14cbcSMatt Macy * fragmentation into account if the metaslab group has a valid 785eda14cbcSMatt Macy * fragmentation metric (i.e. a value between 0 and 100). 786eda14cbcSMatt Macy */ 787eda14cbcSMatt Macy mg->mg_allocatable = (mg->mg_activation_count > 0 && 788eda14cbcSMatt Macy mg->mg_free_capacity > zfs_mg_noalloc_threshold && 789eda14cbcSMatt Macy (mg->mg_fragmentation == ZFS_FRAG_INVALID || 790eda14cbcSMatt Macy mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 791eda14cbcSMatt Macy 792eda14cbcSMatt Macy /* 793eda14cbcSMatt Macy * The mc_alloc_groups maintains a count of the number of 794eda14cbcSMatt Macy * groups in this metaslab class that are still above the 795eda14cbcSMatt Macy * zfs_mg_noalloc_threshold. This is used by the allocating 796eda14cbcSMatt Macy * threads to determine if they should avoid allocations to 797eda14cbcSMatt Macy * a given group. The allocator will avoid allocations to a group 798eda14cbcSMatt Macy * if that group has reached or is below the zfs_mg_noalloc_threshold 799eda14cbcSMatt Macy * and there are still other groups that are above the threshold. 800eda14cbcSMatt Macy * When a group transitions from allocatable to non-allocatable or 801eda14cbcSMatt Macy * vice versa we update the metaslab class to reflect that change. 802eda14cbcSMatt Macy * When the mc_alloc_groups value drops to 0 that means that all 803eda14cbcSMatt Macy * groups have reached the zfs_mg_noalloc_threshold making all groups 804eda14cbcSMatt Macy * eligible for allocations. This effectively means that all devices 805eda14cbcSMatt Macy * are balanced again. 806eda14cbcSMatt Macy */ 807eda14cbcSMatt Macy if (was_allocatable && !mg->mg_allocatable) 808eda14cbcSMatt Macy mc->mc_alloc_groups--; 809eda14cbcSMatt Macy else if (!was_allocatable && mg->mg_allocatable) 810eda14cbcSMatt Macy mc->mc_alloc_groups++; 811eda14cbcSMatt Macy mutex_exit(&mc->mc_lock); 812eda14cbcSMatt Macy 813eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 814eda14cbcSMatt Macy } 815eda14cbcSMatt Macy 816eda14cbcSMatt Macy int 817eda14cbcSMatt Macy metaslab_sort_by_flushed(const void *va, const void *vb) 818eda14cbcSMatt Macy { 819eda14cbcSMatt Macy const metaslab_t *a = va; 820eda14cbcSMatt Macy const metaslab_t *b = vb; 821eda14cbcSMatt Macy 822eda14cbcSMatt Macy int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 823eda14cbcSMatt Macy if (likely(cmp)) 824eda14cbcSMatt Macy return (cmp); 825eda14cbcSMatt Macy 826eda14cbcSMatt Macy uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 827eda14cbcSMatt Macy uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 828eda14cbcSMatt Macy cmp = TREE_CMP(a_vdev_id, b_vdev_id); 829eda14cbcSMatt Macy if (cmp) 830eda14cbcSMatt Macy return (cmp); 831eda14cbcSMatt Macy 832eda14cbcSMatt Macy return (TREE_CMP(a->ms_id, b->ms_id)); 833eda14cbcSMatt Macy } 834eda14cbcSMatt Macy 835eda14cbcSMatt Macy metaslab_group_t * 836eda14cbcSMatt Macy metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 837eda14cbcSMatt Macy { 838eda14cbcSMatt Macy metaslab_group_t *mg; 839eda14cbcSMatt Macy 8407877fdebSMatt Macy mg = kmem_zalloc(offsetof(metaslab_group_t, 8417877fdebSMatt Macy mg_allocator[allocators]), KM_SLEEP); 842eda14cbcSMatt Macy mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 843eda14cbcSMatt Macy mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 844eda14cbcSMatt Macy cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 845eda14cbcSMatt Macy avl_create(&mg->mg_metaslab_tree, metaslab_compare, 846eda14cbcSMatt Macy sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 847eda14cbcSMatt Macy mg->mg_vd = vd; 848eda14cbcSMatt Macy mg->mg_class = mc; 849eda14cbcSMatt Macy mg->mg_activation_count = 0; 850eda14cbcSMatt Macy mg->mg_initialized = B_FALSE; 851eda14cbcSMatt Macy mg->mg_no_free_space = B_TRUE; 852eda14cbcSMatt Macy mg->mg_allocators = allocators; 853eda14cbcSMatt Macy 854eda14cbcSMatt Macy for (int i = 0; i < allocators; i++) { 855eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 856eda14cbcSMatt Macy zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 857eda14cbcSMatt Macy } 858eda14cbcSMatt Macy 859eda14cbcSMatt Macy mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 860eda14cbcSMatt Macy maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 861eda14cbcSMatt Macy 862eda14cbcSMatt Macy return (mg); 863eda14cbcSMatt Macy } 864eda14cbcSMatt Macy 865eda14cbcSMatt Macy void 866eda14cbcSMatt Macy metaslab_group_destroy(metaslab_group_t *mg) 867eda14cbcSMatt Macy { 868eda14cbcSMatt Macy ASSERT(mg->mg_prev == NULL); 869eda14cbcSMatt Macy ASSERT(mg->mg_next == NULL); 870eda14cbcSMatt Macy /* 871eda14cbcSMatt Macy * We may have gone below zero with the activation count 872eda14cbcSMatt Macy * either because we never activated in the first place or 873eda14cbcSMatt Macy * because we're done, and possibly removing the vdev. 874eda14cbcSMatt Macy */ 875eda14cbcSMatt Macy ASSERT(mg->mg_activation_count <= 0); 876eda14cbcSMatt Macy 877eda14cbcSMatt Macy taskq_destroy(mg->mg_taskq); 878eda14cbcSMatt Macy avl_destroy(&mg->mg_metaslab_tree); 879eda14cbcSMatt Macy mutex_destroy(&mg->mg_lock); 880eda14cbcSMatt Macy mutex_destroy(&mg->mg_ms_disabled_lock); 881eda14cbcSMatt Macy cv_destroy(&mg->mg_ms_disabled_cv); 882eda14cbcSMatt Macy 883eda14cbcSMatt Macy for (int i = 0; i < mg->mg_allocators; i++) { 884eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 885eda14cbcSMatt Macy zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 886eda14cbcSMatt Macy } 8877877fdebSMatt Macy kmem_free(mg, offsetof(metaslab_group_t, 8887877fdebSMatt Macy mg_allocator[mg->mg_allocators])); 889eda14cbcSMatt Macy } 890eda14cbcSMatt Macy 891eda14cbcSMatt Macy void 892eda14cbcSMatt Macy metaslab_group_activate(metaslab_group_t *mg) 893eda14cbcSMatt Macy { 894eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 8957877fdebSMatt Macy spa_t *spa = mc->mc_spa; 896eda14cbcSMatt Macy metaslab_group_t *mgprev, *mgnext; 897eda14cbcSMatt Macy 8987877fdebSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 899eda14cbcSMatt Macy 900eda14cbcSMatt Macy ASSERT(mg->mg_prev == NULL); 901eda14cbcSMatt Macy ASSERT(mg->mg_next == NULL); 902eda14cbcSMatt Macy ASSERT(mg->mg_activation_count <= 0); 903eda14cbcSMatt Macy 904eda14cbcSMatt Macy if (++mg->mg_activation_count <= 0) 905eda14cbcSMatt Macy return; 906eda14cbcSMatt Macy 907716fd348SMartin Matuska mg->mg_aliquot = metaslab_aliquot * MAX(1, 908716fd348SMartin Matuska vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd)); 909eda14cbcSMatt Macy metaslab_group_alloc_update(mg); 910eda14cbcSMatt Macy 9117877fdebSMatt Macy if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 912eda14cbcSMatt Macy mg->mg_prev = mg; 913eda14cbcSMatt Macy mg->mg_next = mg; 914eda14cbcSMatt Macy } else { 915eda14cbcSMatt Macy mgnext = mgprev->mg_next; 916eda14cbcSMatt Macy mg->mg_prev = mgprev; 917eda14cbcSMatt Macy mg->mg_next = mgnext; 918eda14cbcSMatt Macy mgprev->mg_next = mg; 919eda14cbcSMatt Macy mgnext->mg_prev = mg; 920eda14cbcSMatt Macy } 9217877fdebSMatt Macy for (int i = 0; i < spa->spa_alloc_count; i++) { 9227877fdebSMatt Macy mc->mc_allocator[i].mca_rotor = mg; 9237877fdebSMatt Macy mg = mg->mg_next; 9247877fdebSMatt Macy } 925eda14cbcSMatt Macy } 926eda14cbcSMatt Macy 927eda14cbcSMatt Macy /* 928eda14cbcSMatt Macy * Passivate a metaslab group and remove it from the allocation rotor. 929eda14cbcSMatt Macy * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 930eda14cbcSMatt Macy * a metaslab group. This function will momentarily drop spa_config_locks 931eda14cbcSMatt Macy * that are lower than the SCL_ALLOC lock (see comment below). 932eda14cbcSMatt Macy */ 933eda14cbcSMatt Macy void 934eda14cbcSMatt Macy metaslab_group_passivate(metaslab_group_t *mg) 935eda14cbcSMatt Macy { 936eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 937eda14cbcSMatt Macy spa_t *spa = mc->mc_spa; 938eda14cbcSMatt Macy metaslab_group_t *mgprev, *mgnext; 939eda14cbcSMatt Macy int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 940eda14cbcSMatt Macy 941eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 942eda14cbcSMatt Macy (SCL_ALLOC | SCL_ZIO)); 943eda14cbcSMatt Macy 944eda14cbcSMatt Macy if (--mg->mg_activation_count != 0) { 9457877fdebSMatt Macy for (int i = 0; i < spa->spa_alloc_count; i++) 9467877fdebSMatt Macy ASSERT(mc->mc_allocator[i].mca_rotor != mg); 947eda14cbcSMatt Macy ASSERT(mg->mg_prev == NULL); 948eda14cbcSMatt Macy ASSERT(mg->mg_next == NULL); 949eda14cbcSMatt Macy ASSERT(mg->mg_activation_count < 0); 950eda14cbcSMatt Macy return; 951eda14cbcSMatt Macy } 952eda14cbcSMatt Macy 953eda14cbcSMatt Macy /* 954eda14cbcSMatt Macy * The spa_config_lock is an array of rwlocks, ordered as 955eda14cbcSMatt Macy * follows (from highest to lowest): 956eda14cbcSMatt Macy * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 957eda14cbcSMatt Macy * SCL_ZIO > SCL_FREE > SCL_VDEV 958eda14cbcSMatt Macy * (For more information about the spa_config_lock see spa_misc.c) 959eda14cbcSMatt Macy * The higher the lock, the broader its coverage. When we passivate 960eda14cbcSMatt Macy * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 961eda14cbcSMatt Macy * config locks. However, the metaslab group's taskq might be trying 962eda14cbcSMatt Macy * to preload metaslabs so we must drop the SCL_ZIO lock and any 963eda14cbcSMatt Macy * lower locks to allow the I/O to complete. At a minimum, 964eda14cbcSMatt Macy * we continue to hold the SCL_ALLOC lock, which prevents any future 965eda14cbcSMatt Macy * allocations from taking place and any changes to the vdev tree. 966eda14cbcSMatt Macy */ 967eda14cbcSMatt Macy spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 968eda14cbcSMatt Macy taskq_wait_outstanding(mg->mg_taskq, 0); 969eda14cbcSMatt Macy spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 970eda14cbcSMatt Macy metaslab_group_alloc_update(mg); 971eda14cbcSMatt Macy for (int i = 0; i < mg->mg_allocators; i++) { 972eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 973eda14cbcSMatt Macy metaslab_t *msp = mga->mga_primary; 974eda14cbcSMatt Macy if (msp != NULL) { 975eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 976eda14cbcSMatt Macy metaslab_passivate(msp, 977eda14cbcSMatt Macy metaslab_weight_from_range_tree(msp)); 978eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 979eda14cbcSMatt Macy } 980eda14cbcSMatt Macy msp = mga->mga_secondary; 981eda14cbcSMatt Macy if (msp != NULL) { 982eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 983eda14cbcSMatt Macy metaslab_passivate(msp, 984eda14cbcSMatt Macy metaslab_weight_from_range_tree(msp)); 985eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 986eda14cbcSMatt Macy } 987eda14cbcSMatt Macy } 988eda14cbcSMatt Macy 989eda14cbcSMatt Macy mgprev = mg->mg_prev; 990eda14cbcSMatt Macy mgnext = mg->mg_next; 991eda14cbcSMatt Macy 992eda14cbcSMatt Macy if (mg == mgnext) { 9937877fdebSMatt Macy mgnext = NULL; 994eda14cbcSMatt Macy } else { 995eda14cbcSMatt Macy mgprev->mg_next = mgnext; 996eda14cbcSMatt Macy mgnext->mg_prev = mgprev; 997eda14cbcSMatt Macy } 9987877fdebSMatt Macy for (int i = 0; i < spa->spa_alloc_count; i++) { 9997877fdebSMatt Macy if (mc->mc_allocator[i].mca_rotor == mg) 10007877fdebSMatt Macy mc->mc_allocator[i].mca_rotor = mgnext; 10017877fdebSMatt Macy } 1002eda14cbcSMatt Macy 1003eda14cbcSMatt Macy mg->mg_prev = NULL; 1004eda14cbcSMatt Macy mg->mg_next = NULL; 1005eda14cbcSMatt Macy } 1006eda14cbcSMatt Macy 1007eda14cbcSMatt Macy boolean_t 1008eda14cbcSMatt Macy metaslab_group_initialized(metaslab_group_t *mg) 1009eda14cbcSMatt Macy { 1010eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 1011eda14cbcSMatt Macy vdev_stat_t *vs = &vd->vdev_stat; 1012eda14cbcSMatt Macy 1013eda14cbcSMatt Macy return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1014eda14cbcSMatt Macy } 1015eda14cbcSMatt Macy 1016eda14cbcSMatt Macy uint64_t 1017eda14cbcSMatt Macy metaslab_group_get_space(metaslab_group_t *mg) 1018eda14cbcSMatt Macy { 1019184c1b94SMartin Matuska /* 1020184c1b94SMartin Matuska * Note that the number of nodes in mg_metaslab_tree may be one less 1021184c1b94SMartin Matuska * than vdev_ms_count, due to the embedded log metaslab. 1022184c1b94SMartin Matuska */ 1023184c1b94SMartin Matuska mutex_enter(&mg->mg_lock); 1024184c1b94SMartin Matuska uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1025184c1b94SMartin Matuska mutex_exit(&mg->mg_lock); 1026184c1b94SMartin Matuska return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1027eda14cbcSMatt Macy } 1028eda14cbcSMatt Macy 1029eda14cbcSMatt Macy void 1030eda14cbcSMatt Macy metaslab_group_histogram_verify(metaslab_group_t *mg) 1031eda14cbcSMatt Macy { 1032eda14cbcSMatt Macy uint64_t *mg_hist; 1033184c1b94SMartin Matuska avl_tree_t *t = &mg->mg_metaslab_tree; 1034184c1b94SMartin Matuska uint64_t ashift = mg->mg_vd->vdev_ashift; 1035eda14cbcSMatt Macy 1036eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1037eda14cbcSMatt Macy return; 1038eda14cbcSMatt Macy 1039eda14cbcSMatt Macy mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1040eda14cbcSMatt Macy KM_SLEEP); 1041eda14cbcSMatt Macy 1042eda14cbcSMatt Macy ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1043eda14cbcSMatt Macy SPACE_MAP_HISTOGRAM_SIZE + ashift); 1044eda14cbcSMatt Macy 1045184c1b94SMartin Matuska mutex_enter(&mg->mg_lock); 1046184c1b94SMartin Matuska for (metaslab_t *msp = avl_first(t); 1047184c1b94SMartin Matuska msp != NULL; msp = AVL_NEXT(t, msp)) { 1048184c1b94SMartin Matuska VERIFY3P(msp->ms_group, ==, mg); 1049184c1b94SMartin Matuska /* skip if not active */ 1050184c1b94SMartin Matuska if (msp->ms_sm == NULL) 1051eda14cbcSMatt Macy continue; 1052eda14cbcSMatt Macy 1053184c1b94SMartin Matuska for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1054eda14cbcSMatt Macy mg_hist[i + ashift] += 1055eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]; 1056eda14cbcSMatt Macy } 1057184c1b94SMartin Matuska } 1058eda14cbcSMatt Macy 1059184c1b94SMartin Matuska for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1060eda14cbcSMatt Macy VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1061eda14cbcSMatt Macy 1062184c1b94SMartin Matuska mutex_exit(&mg->mg_lock); 1063184c1b94SMartin Matuska 1064eda14cbcSMatt Macy kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1065eda14cbcSMatt Macy } 1066eda14cbcSMatt Macy 1067eda14cbcSMatt Macy static void 1068eda14cbcSMatt Macy metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1069eda14cbcSMatt Macy { 1070eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 1071eda14cbcSMatt Macy uint64_t ashift = mg->mg_vd->vdev_ashift; 1072eda14cbcSMatt Macy 1073eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1074eda14cbcSMatt Macy if (msp->ms_sm == NULL) 1075eda14cbcSMatt Macy return; 1076eda14cbcSMatt Macy 1077eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 1078184c1b94SMartin Matuska mutex_enter(&mc->mc_lock); 1079eda14cbcSMatt Macy for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1080184c1b94SMartin Matuska IMPLY(mg == mg->mg_vd->vdev_log_mg, 1081184c1b94SMartin Matuska mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1082eda14cbcSMatt Macy mg->mg_histogram[i + ashift] += 1083eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]; 1084eda14cbcSMatt Macy mc->mc_histogram[i + ashift] += 1085eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]; 1086eda14cbcSMatt Macy } 1087184c1b94SMartin Matuska mutex_exit(&mc->mc_lock); 1088eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 1089eda14cbcSMatt Macy } 1090eda14cbcSMatt Macy 1091eda14cbcSMatt Macy void 1092eda14cbcSMatt Macy metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1093eda14cbcSMatt Macy { 1094eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 1095eda14cbcSMatt Macy uint64_t ashift = mg->mg_vd->vdev_ashift; 1096eda14cbcSMatt Macy 1097eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1098eda14cbcSMatt Macy if (msp->ms_sm == NULL) 1099eda14cbcSMatt Macy return; 1100eda14cbcSMatt Macy 1101eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 1102184c1b94SMartin Matuska mutex_enter(&mc->mc_lock); 1103eda14cbcSMatt Macy for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1104eda14cbcSMatt Macy ASSERT3U(mg->mg_histogram[i + ashift], >=, 1105eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]); 1106eda14cbcSMatt Macy ASSERT3U(mc->mc_histogram[i + ashift], >=, 1107eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]); 1108184c1b94SMartin Matuska IMPLY(mg == mg->mg_vd->vdev_log_mg, 1109184c1b94SMartin Matuska mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1110eda14cbcSMatt Macy 1111eda14cbcSMatt Macy mg->mg_histogram[i + ashift] -= 1112eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]; 1113eda14cbcSMatt Macy mc->mc_histogram[i + ashift] -= 1114eda14cbcSMatt Macy msp->ms_sm->sm_phys->smp_histogram[i]; 1115eda14cbcSMatt Macy } 1116184c1b94SMartin Matuska mutex_exit(&mc->mc_lock); 1117eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 1118eda14cbcSMatt Macy } 1119eda14cbcSMatt Macy 1120eda14cbcSMatt Macy static void 1121eda14cbcSMatt Macy metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1122eda14cbcSMatt Macy { 1123eda14cbcSMatt Macy ASSERT(msp->ms_group == NULL); 1124eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 1125eda14cbcSMatt Macy msp->ms_group = mg; 1126eda14cbcSMatt Macy msp->ms_weight = 0; 1127eda14cbcSMatt Macy avl_add(&mg->mg_metaslab_tree, msp); 1128eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 1129eda14cbcSMatt Macy 1130eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 1131eda14cbcSMatt Macy metaslab_group_histogram_add(mg, msp); 1132eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 1133eda14cbcSMatt Macy } 1134eda14cbcSMatt Macy 1135eda14cbcSMatt Macy static void 1136eda14cbcSMatt Macy metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1137eda14cbcSMatt Macy { 1138eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 1139eda14cbcSMatt Macy metaslab_group_histogram_remove(mg, msp); 1140eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 1141eda14cbcSMatt Macy 1142eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 1143eda14cbcSMatt Macy ASSERT(msp->ms_group == mg); 1144eda14cbcSMatt Macy avl_remove(&mg->mg_metaslab_tree, msp); 1145eda14cbcSMatt Macy 1146eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 1147eda14cbcSMatt Macy multilist_sublist_t *mls = 11483ff01b23SMartin Matuska multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 1149eda14cbcSMatt Macy if (multilist_link_active(&msp->ms_class_txg_node)) 1150eda14cbcSMatt Macy multilist_sublist_remove(mls, msp); 1151eda14cbcSMatt Macy multilist_sublist_unlock(mls); 1152eda14cbcSMatt Macy 1153eda14cbcSMatt Macy msp->ms_group = NULL; 1154eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 1155eda14cbcSMatt Macy } 1156eda14cbcSMatt Macy 1157eda14cbcSMatt Macy static void 1158eda14cbcSMatt Macy metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1159eda14cbcSMatt Macy { 1160eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1161eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&mg->mg_lock)); 1162eda14cbcSMatt Macy ASSERT(msp->ms_group == mg); 1163eda14cbcSMatt Macy 1164eda14cbcSMatt Macy avl_remove(&mg->mg_metaslab_tree, msp); 1165eda14cbcSMatt Macy msp->ms_weight = weight; 1166eda14cbcSMatt Macy avl_add(&mg->mg_metaslab_tree, msp); 1167eda14cbcSMatt Macy 1168eda14cbcSMatt Macy } 1169eda14cbcSMatt Macy 1170eda14cbcSMatt Macy static void 1171eda14cbcSMatt Macy metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1172eda14cbcSMatt Macy { 1173eda14cbcSMatt Macy /* 1174eda14cbcSMatt Macy * Although in principle the weight can be any value, in 1175eda14cbcSMatt Macy * practice we do not use values in the range [1, 511]. 1176eda14cbcSMatt Macy */ 1177eda14cbcSMatt Macy ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1178eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1179eda14cbcSMatt Macy 1180eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 1181eda14cbcSMatt Macy metaslab_group_sort_impl(mg, msp, weight); 1182eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 1183eda14cbcSMatt Macy } 1184eda14cbcSMatt Macy 1185eda14cbcSMatt Macy /* 1186eda14cbcSMatt Macy * Calculate the fragmentation for a given metaslab group. We can use 1187eda14cbcSMatt Macy * a simple average here since all metaslabs within the group must have 1188eda14cbcSMatt Macy * the same size. The return value will be a value between 0 and 100 1189eda14cbcSMatt Macy * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1190eda14cbcSMatt Macy * group have a fragmentation metric. 1191eda14cbcSMatt Macy */ 1192eda14cbcSMatt Macy uint64_t 1193eda14cbcSMatt Macy metaslab_group_fragmentation(metaslab_group_t *mg) 1194eda14cbcSMatt Macy { 1195eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 1196eda14cbcSMatt Macy uint64_t fragmentation = 0; 1197eda14cbcSMatt Macy uint64_t valid_ms = 0; 1198eda14cbcSMatt Macy 1199eda14cbcSMatt Macy for (int m = 0; m < vd->vdev_ms_count; m++) { 1200eda14cbcSMatt Macy metaslab_t *msp = vd->vdev_ms[m]; 1201eda14cbcSMatt Macy 1202eda14cbcSMatt Macy if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1203eda14cbcSMatt Macy continue; 1204eda14cbcSMatt Macy if (msp->ms_group != mg) 1205eda14cbcSMatt Macy continue; 1206eda14cbcSMatt Macy 1207eda14cbcSMatt Macy valid_ms++; 1208eda14cbcSMatt Macy fragmentation += msp->ms_fragmentation; 1209eda14cbcSMatt Macy } 1210eda14cbcSMatt Macy 1211eda14cbcSMatt Macy if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1212eda14cbcSMatt Macy return (ZFS_FRAG_INVALID); 1213eda14cbcSMatt Macy 1214eda14cbcSMatt Macy fragmentation /= valid_ms; 1215eda14cbcSMatt Macy ASSERT3U(fragmentation, <=, 100); 1216eda14cbcSMatt Macy return (fragmentation); 1217eda14cbcSMatt Macy } 1218eda14cbcSMatt Macy 1219eda14cbcSMatt Macy /* 1220eda14cbcSMatt Macy * Determine if a given metaslab group should skip allocations. A metaslab 1221eda14cbcSMatt Macy * group should avoid allocations if its free capacity is less than the 1222eda14cbcSMatt Macy * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1223eda14cbcSMatt Macy * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1224eda14cbcSMatt Macy * that can still handle allocations. If the allocation throttle is enabled 1225eda14cbcSMatt Macy * then we skip allocations to devices that have reached their maximum 1226eda14cbcSMatt Macy * allocation queue depth unless the selected metaslab group is the only 1227eda14cbcSMatt Macy * eligible group remaining. 1228eda14cbcSMatt Macy */ 1229eda14cbcSMatt Macy static boolean_t 1230eda14cbcSMatt Macy metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 123115f0b8c3SMartin Matuska int flags, uint64_t psize, int allocator, int d) 1232eda14cbcSMatt Macy { 1233eda14cbcSMatt Macy spa_t *spa = mg->mg_vd->vdev_spa; 1234eda14cbcSMatt Macy metaslab_class_t *mc = mg->mg_class; 1235eda14cbcSMatt Macy 1236eda14cbcSMatt Macy /* 1237eda14cbcSMatt Macy * We can only consider skipping this metaslab group if it's 1238eda14cbcSMatt Macy * in the normal metaslab class and there are other metaslab 1239eda14cbcSMatt Macy * groups to select from. Otherwise, we always consider it eligible 1240eda14cbcSMatt Macy * for allocations. 1241eda14cbcSMatt Macy */ 1242eda14cbcSMatt Macy if ((mc != spa_normal_class(spa) && 1243eda14cbcSMatt Macy mc != spa_special_class(spa) && 1244eda14cbcSMatt Macy mc != spa_dedup_class(spa)) || 1245eda14cbcSMatt Macy mc->mc_groups <= 1) 1246eda14cbcSMatt Macy return (B_TRUE); 1247eda14cbcSMatt Macy 1248eda14cbcSMatt Macy /* 1249eda14cbcSMatt Macy * If the metaslab group's mg_allocatable flag is set (see comments 1250eda14cbcSMatt Macy * in metaslab_group_alloc_update() for more information) and 1251eda14cbcSMatt Macy * the allocation throttle is disabled then allow allocations to this 1252eda14cbcSMatt Macy * device. However, if the allocation throttle is enabled then 12537877fdebSMatt Macy * check if we have reached our allocation limit (mga_alloc_queue_depth) 1254eda14cbcSMatt Macy * to determine if we should allow allocations to this metaslab group. 1255eda14cbcSMatt Macy * If all metaslab groups are no longer considered allocatable 1256eda14cbcSMatt Macy * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1257eda14cbcSMatt Macy * gang block size then we allow allocations on this metaslab group 1258eda14cbcSMatt Macy * regardless of the mg_allocatable or throttle settings. 1259eda14cbcSMatt Macy */ 1260eda14cbcSMatt Macy if (mg->mg_allocatable) { 1261eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1262eda14cbcSMatt Macy int64_t qdepth; 1263eda14cbcSMatt Macy uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1264eda14cbcSMatt Macy 1265eda14cbcSMatt Macy if (!mc->mc_alloc_throttle_enabled) 1266eda14cbcSMatt Macy return (B_TRUE); 1267eda14cbcSMatt Macy 1268eda14cbcSMatt Macy /* 1269eda14cbcSMatt Macy * If this metaslab group does not have any free space, then 1270eda14cbcSMatt Macy * there is no point in looking further. 1271eda14cbcSMatt Macy */ 1272eda14cbcSMatt Macy if (mg->mg_no_free_space) 1273eda14cbcSMatt Macy return (B_FALSE); 1274eda14cbcSMatt Macy 1275eda14cbcSMatt Macy /* 127615f0b8c3SMartin Matuska * Some allocations (e.g., those coming from device removal 127715f0b8c3SMartin Matuska * where the * allocations are not even counted in the 127815f0b8c3SMartin Matuska * metaslab * allocation queues) are allowed to bypass 127915f0b8c3SMartin Matuska * the throttle. 128015f0b8c3SMartin Matuska */ 128115f0b8c3SMartin Matuska if (flags & METASLAB_DONT_THROTTLE) 128215f0b8c3SMartin Matuska return (B_TRUE); 128315f0b8c3SMartin Matuska 128415f0b8c3SMartin Matuska /* 1285eda14cbcSMatt Macy * Relax allocation throttling for ditto blocks. Due to 1286eda14cbcSMatt Macy * random imbalances in allocation it tends to push copies 1287eda14cbcSMatt Macy * to one vdev, that looks a bit better at the moment. 1288eda14cbcSMatt Macy */ 1289eda14cbcSMatt Macy qmax = qmax * (4 + d) / 4; 1290eda14cbcSMatt Macy 1291eda14cbcSMatt Macy qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1292eda14cbcSMatt Macy 1293eda14cbcSMatt Macy /* 1294eda14cbcSMatt Macy * If this metaslab group is below its qmax or it's 1295*315ee00fSMartin Matuska * the only allocatable metaslab group, then attempt 1296eda14cbcSMatt Macy * to allocate from it. 1297eda14cbcSMatt Macy */ 1298eda14cbcSMatt Macy if (qdepth < qmax || mc->mc_alloc_groups == 1) 1299eda14cbcSMatt Macy return (B_TRUE); 1300eda14cbcSMatt Macy ASSERT3U(mc->mc_alloc_groups, >, 1); 1301eda14cbcSMatt Macy 1302eda14cbcSMatt Macy /* 1303eda14cbcSMatt Macy * Since this metaslab group is at or over its qmax, we 1304eda14cbcSMatt Macy * need to determine if there are metaslab groups after this 1305eda14cbcSMatt Macy * one that might be able to handle this allocation. This is 1306eda14cbcSMatt Macy * racy since we can't hold the locks for all metaslab 1307eda14cbcSMatt Macy * groups at the same time when we make this check. 1308eda14cbcSMatt Macy */ 1309eda14cbcSMatt Macy for (metaslab_group_t *mgp = mg->mg_next; 1310eda14cbcSMatt Macy mgp != rotor; mgp = mgp->mg_next) { 1311eda14cbcSMatt Macy metaslab_group_allocator_t *mgap = 1312eda14cbcSMatt Macy &mgp->mg_allocator[allocator]; 1313eda14cbcSMatt Macy qmax = mgap->mga_cur_max_alloc_queue_depth; 1314eda14cbcSMatt Macy qmax = qmax * (4 + d) / 4; 1315eda14cbcSMatt Macy qdepth = 1316eda14cbcSMatt Macy zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1317eda14cbcSMatt Macy 1318eda14cbcSMatt Macy /* 1319eda14cbcSMatt Macy * If there is another metaslab group that 1320eda14cbcSMatt Macy * might be able to handle the allocation, then 1321eda14cbcSMatt Macy * we return false so that we skip this group. 1322eda14cbcSMatt Macy */ 1323eda14cbcSMatt Macy if (qdepth < qmax && !mgp->mg_no_free_space) 1324eda14cbcSMatt Macy return (B_FALSE); 1325eda14cbcSMatt Macy } 1326eda14cbcSMatt Macy 1327eda14cbcSMatt Macy /* 1328eda14cbcSMatt Macy * We didn't find another group to handle the allocation 1329eda14cbcSMatt Macy * so we can't skip this metaslab group even though 1330eda14cbcSMatt Macy * we are at or over our qmax. 1331eda14cbcSMatt Macy */ 1332eda14cbcSMatt Macy return (B_TRUE); 1333eda14cbcSMatt Macy 1334eda14cbcSMatt Macy } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1335eda14cbcSMatt Macy return (B_TRUE); 1336eda14cbcSMatt Macy } 1337eda14cbcSMatt Macy return (B_FALSE); 1338eda14cbcSMatt Macy } 1339eda14cbcSMatt Macy 1340eda14cbcSMatt Macy /* 1341eda14cbcSMatt Macy * ========================================================================== 1342eda14cbcSMatt Macy * Range tree callbacks 1343eda14cbcSMatt Macy * ========================================================================== 1344eda14cbcSMatt Macy */ 1345eda14cbcSMatt Macy 1346eda14cbcSMatt Macy /* 1347eda14cbcSMatt Macy * Comparison function for the private size-ordered tree using 32-bit 1348eda14cbcSMatt Macy * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1349eda14cbcSMatt Macy */ 13504e8d558cSMartin Matuska __attribute__((always_inline)) inline 1351eda14cbcSMatt Macy static int 1352eda14cbcSMatt Macy metaslab_rangesize32_compare(const void *x1, const void *x2) 1353eda14cbcSMatt Macy { 1354eda14cbcSMatt Macy const range_seg32_t *r1 = x1; 1355eda14cbcSMatt Macy const range_seg32_t *r2 = x2; 1356eda14cbcSMatt Macy 1357eda14cbcSMatt Macy uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1358eda14cbcSMatt Macy uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1359eda14cbcSMatt Macy 1360eda14cbcSMatt Macy int cmp = TREE_CMP(rs_size1, rs_size2); 1361eda14cbcSMatt Macy 13624e8d558cSMartin Matuska return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1363eda14cbcSMatt Macy } 1364eda14cbcSMatt Macy 1365eda14cbcSMatt Macy /* 1366eda14cbcSMatt Macy * Comparison function for the private size-ordered tree using 64-bit 1367eda14cbcSMatt Macy * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1368eda14cbcSMatt Macy */ 13694e8d558cSMartin Matuska __attribute__((always_inline)) inline 1370eda14cbcSMatt Macy static int 1371eda14cbcSMatt Macy metaslab_rangesize64_compare(const void *x1, const void *x2) 1372eda14cbcSMatt Macy { 1373eda14cbcSMatt Macy const range_seg64_t *r1 = x1; 1374eda14cbcSMatt Macy const range_seg64_t *r2 = x2; 1375eda14cbcSMatt Macy 1376eda14cbcSMatt Macy uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1377eda14cbcSMatt Macy uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1378eda14cbcSMatt Macy 1379eda14cbcSMatt Macy int cmp = TREE_CMP(rs_size1, rs_size2); 1380eda14cbcSMatt Macy 13814e8d558cSMartin Matuska return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start)); 1382eda14cbcSMatt Macy } 13834e8d558cSMartin Matuska 1384eda14cbcSMatt Macy typedef struct metaslab_rt_arg { 1385eda14cbcSMatt Macy zfs_btree_t *mra_bt; 1386eda14cbcSMatt Macy uint32_t mra_floor_shift; 1387eda14cbcSMatt Macy } metaslab_rt_arg_t; 1388eda14cbcSMatt Macy 1389eda14cbcSMatt Macy struct mssa_arg { 1390eda14cbcSMatt Macy range_tree_t *rt; 1391eda14cbcSMatt Macy metaslab_rt_arg_t *mra; 1392eda14cbcSMatt Macy }; 1393eda14cbcSMatt Macy 1394eda14cbcSMatt Macy static void 1395eda14cbcSMatt Macy metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1396eda14cbcSMatt Macy { 1397eda14cbcSMatt Macy struct mssa_arg *mssap = arg; 1398eda14cbcSMatt Macy range_tree_t *rt = mssap->rt; 1399eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = mssap->mra; 1400eda14cbcSMatt Macy range_seg_max_t seg = {0}; 1401eda14cbcSMatt Macy rs_set_start(&seg, rt, start); 1402eda14cbcSMatt Macy rs_set_end(&seg, rt, start + size); 1403eda14cbcSMatt Macy metaslab_rt_add(rt, &seg, mrap); 1404eda14cbcSMatt Macy } 1405eda14cbcSMatt Macy 1406eda14cbcSMatt Macy static void 1407eda14cbcSMatt Macy metaslab_size_tree_full_load(range_tree_t *rt) 1408eda14cbcSMatt Macy { 1409eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = rt->rt_arg; 1410eda14cbcSMatt Macy METASLABSTAT_BUMP(metaslabstat_reload_tree); 1411eda14cbcSMatt Macy ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1412eda14cbcSMatt Macy mrap->mra_floor_shift = 0; 1413eda14cbcSMatt Macy struct mssa_arg arg = {0}; 1414eda14cbcSMatt Macy arg.rt = rt; 1415eda14cbcSMatt Macy arg.mra = mrap; 1416eda14cbcSMatt Macy range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1417eda14cbcSMatt Macy } 1418eda14cbcSMatt Macy 14194e8d558cSMartin Matuska 14204e8d558cSMartin Matuska ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf, 14214e8d558cSMartin Matuska range_seg32_t, metaslab_rangesize32_compare) 14224e8d558cSMartin Matuska 14234e8d558cSMartin Matuska ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf, 14244e8d558cSMartin Matuska range_seg64_t, metaslab_rangesize64_compare) 14254e8d558cSMartin Matuska 1426eda14cbcSMatt Macy /* 1427eda14cbcSMatt Macy * Create any block allocator specific components. The current allocators 1428eda14cbcSMatt Macy * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1429eda14cbcSMatt Macy */ 1430eda14cbcSMatt Macy static void 1431eda14cbcSMatt Macy metaslab_rt_create(range_tree_t *rt, void *arg) 1432eda14cbcSMatt Macy { 1433eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = arg; 1434eda14cbcSMatt Macy zfs_btree_t *size_tree = mrap->mra_bt; 1435eda14cbcSMatt Macy 1436eda14cbcSMatt Macy size_t size; 1437eda14cbcSMatt Macy int (*compare) (const void *, const void *); 14384e8d558cSMartin Matuska bt_find_in_buf_f bt_find; 1439eda14cbcSMatt Macy switch (rt->rt_type) { 1440eda14cbcSMatt Macy case RANGE_SEG32: 1441eda14cbcSMatt Macy size = sizeof (range_seg32_t); 1442eda14cbcSMatt Macy compare = metaslab_rangesize32_compare; 14434e8d558cSMartin Matuska bt_find = metaslab_rt_find_rangesize32_in_buf; 1444eda14cbcSMatt Macy break; 1445eda14cbcSMatt Macy case RANGE_SEG64: 1446eda14cbcSMatt Macy size = sizeof (range_seg64_t); 1447eda14cbcSMatt Macy compare = metaslab_rangesize64_compare; 14484e8d558cSMartin Matuska bt_find = metaslab_rt_find_rangesize64_in_buf; 1449eda14cbcSMatt Macy break; 1450eda14cbcSMatt Macy default: 1451eda14cbcSMatt Macy panic("Invalid range seg type %d", rt->rt_type); 1452eda14cbcSMatt Macy } 14534e8d558cSMartin Matuska zfs_btree_create(size_tree, compare, bt_find, size); 1454eda14cbcSMatt Macy mrap->mra_floor_shift = metaslab_by_size_min_shift; 1455eda14cbcSMatt Macy } 1456eda14cbcSMatt Macy 1457eda14cbcSMatt Macy static void 1458eda14cbcSMatt Macy metaslab_rt_destroy(range_tree_t *rt, void *arg) 1459eda14cbcSMatt Macy { 1460e92ffd9bSMartin Matuska (void) rt; 1461eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = arg; 1462eda14cbcSMatt Macy zfs_btree_t *size_tree = mrap->mra_bt; 1463eda14cbcSMatt Macy 1464eda14cbcSMatt Macy zfs_btree_destroy(size_tree); 1465eda14cbcSMatt Macy kmem_free(mrap, sizeof (*mrap)); 1466eda14cbcSMatt Macy } 1467eda14cbcSMatt Macy 1468eda14cbcSMatt Macy static void 1469eda14cbcSMatt Macy metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1470eda14cbcSMatt Macy { 1471eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = arg; 1472eda14cbcSMatt Macy zfs_btree_t *size_tree = mrap->mra_bt; 1473eda14cbcSMatt Macy 1474eda14cbcSMatt Macy if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1475be181ee2SMartin Matuska (1ULL << mrap->mra_floor_shift)) 1476eda14cbcSMatt Macy return; 1477eda14cbcSMatt Macy 1478eda14cbcSMatt Macy zfs_btree_add(size_tree, rs); 1479eda14cbcSMatt Macy } 1480eda14cbcSMatt Macy 1481eda14cbcSMatt Macy static void 1482eda14cbcSMatt Macy metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1483eda14cbcSMatt Macy { 1484eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = arg; 1485eda14cbcSMatt Macy zfs_btree_t *size_tree = mrap->mra_bt; 1486eda14cbcSMatt Macy 1487be181ee2SMartin Matuska if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL << 1488eda14cbcSMatt Macy mrap->mra_floor_shift)) 1489eda14cbcSMatt Macy return; 1490eda14cbcSMatt Macy 1491eda14cbcSMatt Macy zfs_btree_remove(size_tree, rs); 1492eda14cbcSMatt Macy } 1493eda14cbcSMatt Macy 1494eda14cbcSMatt Macy static void 1495eda14cbcSMatt Macy metaslab_rt_vacate(range_tree_t *rt, void *arg) 1496eda14cbcSMatt Macy { 1497eda14cbcSMatt Macy metaslab_rt_arg_t *mrap = arg; 1498eda14cbcSMatt Macy zfs_btree_t *size_tree = mrap->mra_bt; 1499eda14cbcSMatt Macy zfs_btree_clear(size_tree); 1500eda14cbcSMatt Macy zfs_btree_destroy(size_tree); 1501eda14cbcSMatt Macy 1502eda14cbcSMatt Macy metaslab_rt_create(rt, arg); 1503eda14cbcSMatt Macy } 1504eda14cbcSMatt Macy 1505e92ffd9bSMartin Matuska static const range_tree_ops_t metaslab_rt_ops = { 1506eda14cbcSMatt Macy .rtop_create = metaslab_rt_create, 1507eda14cbcSMatt Macy .rtop_destroy = metaslab_rt_destroy, 1508eda14cbcSMatt Macy .rtop_add = metaslab_rt_add, 1509eda14cbcSMatt Macy .rtop_remove = metaslab_rt_remove, 1510eda14cbcSMatt Macy .rtop_vacate = metaslab_rt_vacate 1511eda14cbcSMatt Macy }; 1512eda14cbcSMatt Macy 1513eda14cbcSMatt Macy /* 1514eda14cbcSMatt Macy * ========================================================================== 1515eda14cbcSMatt Macy * Common allocator routines 1516eda14cbcSMatt Macy * ========================================================================== 1517eda14cbcSMatt Macy */ 1518eda14cbcSMatt Macy 1519eda14cbcSMatt Macy /* 1520eda14cbcSMatt Macy * Return the maximum contiguous segment within the metaslab. 1521eda14cbcSMatt Macy */ 1522eda14cbcSMatt Macy uint64_t 1523eda14cbcSMatt Macy metaslab_largest_allocatable(metaslab_t *msp) 1524eda14cbcSMatt Macy { 1525eda14cbcSMatt Macy zfs_btree_t *t = &msp->ms_allocatable_by_size; 1526eda14cbcSMatt Macy range_seg_t *rs; 1527eda14cbcSMatt Macy 1528eda14cbcSMatt Macy if (t == NULL) 1529eda14cbcSMatt Macy return (0); 1530eda14cbcSMatt Macy if (zfs_btree_numnodes(t) == 0) 1531eda14cbcSMatt Macy metaslab_size_tree_full_load(msp->ms_allocatable); 1532eda14cbcSMatt Macy 1533eda14cbcSMatt Macy rs = zfs_btree_last(t, NULL); 1534eda14cbcSMatt Macy if (rs == NULL) 1535eda14cbcSMatt Macy return (0); 1536eda14cbcSMatt Macy 1537eda14cbcSMatt Macy return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1538eda14cbcSMatt Macy msp->ms_allocatable)); 1539eda14cbcSMatt Macy } 1540eda14cbcSMatt Macy 1541eda14cbcSMatt Macy /* 1542eda14cbcSMatt Macy * Return the maximum contiguous segment within the unflushed frees of this 1543eda14cbcSMatt Macy * metaslab. 1544eda14cbcSMatt Macy */ 1545eda14cbcSMatt Macy static uint64_t 1546eda14cbcSMatt Macy metaslab_largest_unflushed_free(metaslab_t *msp) 1547eda14cbcSMatt Macy { 1548eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1549eda14cbcSMatt Macy 1550eda14cbcSMatt Macy if (msp->ms_unflushed_frees == NULL) 1551eda14cbcSMatt Macy return (0); 1552eda14cbcSMatt Macy 1553eda14cbcSMatt Macy if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1554eda14cbcSMatt Macy metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1555eda14cbcSMatt Macy range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1556eda14cbcSMatt Macy NULL); 1557eda14cbcSMatt Macy if (rs == NULL) 1558eda14cbcSMatt Macy return (0); 1559eda14cbcSMatt Macy 1560eda14cbcSMatt Macy /* 1561eda14cbcSMatt Macy * When a range is freed from the metaslab, that range is added to 1562eda14cbcSMatt Macy * both the unflushed frees and the deferred frees. While the block 1563eda14cbcSMatt Macy * will eventually be usable, if the metaslab were loaded the range 1564eda14cbcSMatt Macy * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1565eda14cbcSMatt Macy * txgs had passed. As a result, when attempting to estimate an upper 1566eda14cbcSMatt Macy * bound for the largest currently-usable free segment in the 1567eda14cbcSMatt Macy * metaslab, we need to not consider any ranges currently in the defer 1568eda14cbcSMatt Macy * trees. This algorithm approximates the largest available chunk in 1569eda14cbcSMatt Macy * the largest range in the unflushed_frees tree by taking the first 1570eda14cbcSMatt Macy * chunk. While this may be a poor estimate, it should only remain so 1571eda14cbcSMatt Macy * briefly and should eventually self-correct as frees are no longer 1572eda14cbcSMatt Macy * deferred. Similar logic applies to the ms_freed tree. See 1573eda14cbcSMatt Macy * metaslab_load() for more details. 1574eda14cbcSMatt Macy * 1575eda14cbcSMatt Macy * There are two primary sources of inaccuracy in this estimate. Both 1576eda14cbcSMatt Macy * are tolerated for performance reasons. The first source is that we 1577eda14cbcSMatt Macy * only check the largest segment for overlaps. Smaller segments may 1578eda14cbcSMatt Macy * have more favorable overlaps with the other trees, resulting in 1579eda14cbcSMatt Macy * larger usable chunks. Second, we only look at the first chunk in 1580eda14cbcSMatt Macy * the largest segment; there may be other usable chunks in the 1581eda14cbcSMatt Macy * largest segment, but we ignore them. 1582eda14cbcSMatt Macy */ 1583eda14cbcSMatt Macy uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1584eda14cbcSMatt Macy uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1585eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1586eda14cbcSMatt Macy uint64_t start = 0; 1587eda14cbcSMatt Macy uint64_t size = 0; 1588eda14cbcSMatt Macy boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1589eda14cbcSMatt Macy rsize, &start, &size); 1590eda14cbcSMatt Macy if (found) { 1591eda14cbcSMatt Macy if (rstart == start) 1592eda14cbcSMatt Macy return (0); 1593eda14cbcSMatt Macy rsize = start - rstart; 1594eda14cbcSMatt Macy } 1595eda14cbcSMatt Macy } 1596eda14cbcSMatt Macy 1597eda14cbcSMatt Macy uint64_t start = 0; 1598eda14cbcSMatt Macy uint64_t size = 0; 1599eda14cbcSMatt Macy boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1600eda14cbcSMatt Macy rsize, &start, &size); 1601eda14cbcSMatt Macy if (found) 1602eda14cbcSMatt Macy rsize = start - rstart; 1603eda14cbcSMatt Macy 1604eda14cbcSMatt Macy return (rsize); 1605eda14cbcSMatt Macy } 1606eda14cbcSMatt Macy 1607eda14cbcSMatt Macy static range_seg_t * 1608eda14cbcSMatt Macy metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1609eda14cbcSMatt Macy uint64_t size, zfs_btree_index_t *where) 1610eda14cbcSMatt Macy { 1611eda14cbcSMatt Macy range_seg_t *rs; 1612eda14cbcSMatt Macy range_seg_max_t rsearch; 1613eda14cbcSMatt Macy 1614eda14cbcSMatt Macy rs_set_start(&rsearch, rt, start); 1615eda14cbcSMatt Macy rs_set_end(&rsearch, rt, start + size); 1616eda14cbcSMatt Macy 1617eda14cbcSMatt Macy rs = zfs_btree_find(t, &rsearch, where); 1618eda14cbcSMatt Macy if (rs == NULL) { 1619eda14cbcSMatt Macy rs = zfs_btree_next(t, where, where); 1620eda14cbcSMatt Macy } 1621eda14cbcSMatt Macy 1622eda14cbcSMatt Macy return (rs); 1623eda14cbcSMatt Macy } 1624eda14cbcSMatt Macy 1625eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1626eda14cbcSMatt Macy defined(WITH_CF_BLOCK_ALLOCATOR) 16277877fdebSMatt Macy 1628eda14cbcSMatt Macy /* 1629eda14cbcSMatt Macy * This is a helper function that can be used by the allocator to find a 1630eda14cbcSMatt Macy * suitable block to allocate. This will search the specified B-tree looking 1631eda14cbcSMatt Macy * for a block that matches the specified criteria. 1632eda14cbcSMatt Macy */ 1633eda14cbcSMatt Macy static uint64_t 1634eda14cbcSMatt Macy metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1635eda14cbcSMatt Macy uint64_t max_search) 1636eda14cbcSMatt Macy { 1637eda14cbcSMatt Macy if (*cursor == 0) 1638eda14cbcSMatt Macy *cursor = rt->rt_start; 1639eda14cbcSMatt Macy zfs_btree_t *bt = &rt->rt_root; 1640eda14cbcSMatt Macy zfs_btree_index_t where; 1641eda14cbcSMatt Macy range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1642eda14cbcSMatt Macy uint64_t first_found; 1643eda14cbcSMatt Macy int count_searched = 0; 1644eda14cbcSMatt Macy 1645eda14cbcSMatt Macy if (rs != NULL) 1646eda14cbcSMatt Macy first_found = rs_get_start(rs, rt); 1647eda14cbcSMatt Macy 1648eda14cbcSMatt Macy while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1649eda14cbcSMatt Macy max_search || count_searched < metaslab_min_search_count)) { 1650eda14cbcSMatt Macy uint64_t offset = rs_get_start(rs, rt); 1651eda14cbcSMatt Macy if (offset + size <= rs_get_end(rs, rt)) { 1652eda14cbcSMatt Macy *cursor = offset + size; 1653eda14cbcSMatt Macy return (offset); 1654eda14cbcSMatt Macy } 1655eda14cbcSMatt Macy rs = zfs_btree_next(bt, &where, &where); 1656eda14cbcSMatt Macy count_searched++; 1657eda14cbcSMatt Macy } 1658eda14cbcSMatt Macy 1659eda14cbcSMatt Macy *cursor = 0; 1660eda14cbcSMatt Macy return (-1ULL); 1661eda14cbcSMatt Macy } 1662eda14cbcSMatt Macy #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1663eda14cbcSMatt Macy 1664eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR) 1665eda14cbcSMatt Macy /* 1666eda14cbcSMatt Macy * ========================================================================== 1667eda14cbcSMatt Macy * Dynamic Fit (df) block allocator 1668eda14cbcSMatt Macy * 1669eda14cbcSMatt Macy * Search for a free chunk of at least this size, starting from the last 1670eda14cbcSMatt Macy * offset (for this alignment of block) looking for up to 1671eda14cbcSMatt Macy * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1672eda14cbcSMatt Macy * found within 16MB, then return a free chunk of exactly the requested size (or 1673eda14cbcSMatt Macy * larger). 1674eda14cbcSMatt Macy * 1675eda14cbcSMatt Macy * If it seems like searching from the last offset will be unproductive, skip 1676eda14cbcSMatt Macy * that and just return a free chunk of exactly the requested size (or larger). 1677eda14cbcSMatt Macy * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1678eda14cbcSMatt Macy * mechanism is probably not very useful and may be removed in the future. 1679eda14cbcSMatt Macy * 1680eda14cbcSMatt Macy * The behavior when not searching can be changed to return the largest free 1681eda14cbcSMatt Macy * chunk, instead of a free chunk of exactly the requested size, by setting 1682eda14cbcSMatt Macy * metaslab_df_use_largest_segment. 1683eda14cbcSMatt Macy * ========================================================================== 1684eda14cbcSMatt Macy */ 1685eda14cbcSMatt Macy static uint64_t 1686eda14cbcSMatt Macy metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1687eda14cbcSMatt Macy { 1688eda14cbcSMatt Macy /* 1689eda14cbcSMatt Macy * Find the largest power of 2 block size that evenly divides the 1690eda14cbcSMatt Macy * requested size. This is used to try to allocate blocks with similar 1691eda14cbcSMatt Macy * alignment from the same area of the metaslab (i.e. same cursor 1692eda14cbcSMatt Macy * bucket) but it does not guarantee that other allocations sizes 1693eda14cbcSMatt Macy * may exist in the same region. 1694eda14cbcSMatt Macy */ 1695eda14cbcSMatt Macy uint64_t align = size & -size; 1696eda14cbcSMatt Macy uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1697eda14cbcSMatt Macy range_tree_t *rt = msp->ms_allocatable; 1698be181ee2SMartin Matuska uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1699eda14cbcSMatt Macy uint64_t offset; 1700eda14cbcSMatt Macy 1701eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1702eda14cbcSMatt Macy 1703eda14cbcSMatt Macy /* 1704eda14cbcSMatt Macy * If we're running low on space, find a segment based on size, 1705eda14cbcSMatt Macy * rather than iterating based on offset. 1706eda14cbcSMatt Macy */ 1707eda14cbcSMatt Macy if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1708eda14cbcSMatt Macy free_pct < metaslab_df_free_pct) { 1709eda14cbcSMatt Macy offset = -1; 1710eda14cbcSMatt Macy } else { 1711eda14cbcSMatt Macy offset = metaslab_block_picker(rt, 1712eda14cbcSMatt Macy cursor, size, metaslab_df_max_search); 1713eda14cbcSMatt Macy } 1714eda14cbcSMatt Macy 1715eda14cbcSMatt Macy if (offset == -1) { 1716eda14cbcSMatt Macy range_seg_t *rs; 1717eda14cbcSMatt Macy if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1718eda14cbcSMatt Macy metaslab_size_tree_full_load(msp->ms_allocatable); 17197877fdebSMatt Macy 1720eda14cbcSMatt Macy if (metaslab_df_use_largest_segment) { 1721eda14cbcSMatt Macy /* use largest free segment */ 1722eda14cbcSMatt Macy rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1723eda14cbcSMatt Macy } else { 1724eda14cbcSMatt Macy zfs_btree_index_t where; 1725eda14cbcSMatt Macy /* use segment of this size, or next largest */ 1726eda14cbcSMatt Macy rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1727eda14cbcSMatt Macy rt, msp->ms_start, size, &where); 1728eda14cbcSMatt Macy } 1729eda14cbcSMatt Macy if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1730eda14cbcSMatt Macy rt)) { 1731eda14cbcSMatt Macy offset = rs_get_start(rs, rt); 1732eda14cbcSMatt Macy *cursor = offset + size; 1733eda14cbcSMatt Macy } 1734eda14cbcSMatt Macy } 1735eda14cbcSMatt Macy 1736eda14cbcSMatt Macy return (offset); 1737eda14cbcSMatt Macy } 1738eda14cbcSMatt Macy 1739e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = { 1740eda14cbcSMatt Macy metaslab_df_alloc 1741eda14cbcSMatt Macy }; 1742eda14cbcSMatt Macy #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1743eda14cbcSMatt Macy 1744eda14cbcSMatt Macy #if defined(WITH_CF_BLOCK_ALLOCATOR) 1745eda14cbcSMatt Macy /* 1746eda14cbcSMatt Macy * ========================================================================== 1747eda14cbcSMatt Macy * Cursor fit block allocator - 1748eda14cbcSMatt Macy * Select the largest region in the metaslab, set the cursor to the beginning 1749eda14cbcSMatt Macy * of the range and the cursor_end to the end of the range. As allocations 1750eda14cbcSMatt Macy * are made advance the cursor. Continue allocating from the cursor until 1751eda14cbcSMatt Macy * the range is exhausted and then find a new range. 1752eda14cbcSMatt Macy * ========================================================================== 1753eda14cbcSMatt Macy */ 1754eda14cbcSMatt Macy static uint64_t 1755eda14cbcSMatt Macy metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1756eda14cbcSMatt Macy { 1757eda14cbcSMatt Macy range_tree_t *rt = msp->ms_allocatable; 1758eda14cbcSMatt Macy zfs_btree_t *t = &msp->ms_allocatable_by_size; 1759eda14cbcSMatt Macy uint64_t *cursor = &msp->ms_lbas[0]; 1760eda14cbcSMatt Macy uint64_t *cursor_end = &msp->ms_lbas[1]; 1761eda14cbcSMatt Macy uint64_t offset = 0; 1762eda14cbcSMatt Macy 1763eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1764eda14cbcSMatt Macy 1765eda14cbcSMatt Macy ASSERT3U(*cursor_end, >=, *cursor); 1766eda14cbcSMatt Macy 1767eda14cbcSMatt Macy if ((*cursor + size) > *cursor_end) { 1768eda14cbcSMatt Macy range_seg_t *rs; 1769eda14cbcSMatt Macy 1770eda14cbcSMatt Macy if (zfs_btree_numnodes(t) == 0) 1771eda14cbcSMatt Macy metaslab_size_tree_full_load(msp->ms_allocatable); 1772eda14cbcSMatt Macy rs = zfs_btree_last(t, NULL); 1773eda14cbcSMatt Macy if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1774eda14cbcSMatt Macy size) 1775eda14cbcSMatt Macy return (-1ULL); 1776eda14cbcSMatt Macy 1777eda14cbcSMatt Macy *cursor = rs_get_start(rs, rt); 1778eda14cbcSMatt Macy *cursor_end = rs_get_end(rs, rt); 1779eda14cbcSMatt Macy } 1780eda14cbcSMatt Macy 1781eda14cbcSMatt Macy offset = *cursor; 1782eda14cbcSMatt Macy *cursor += size; 1783eda14cbcSMatt Macy 1784eda14cbcSMatt Macy return (offset); 1785eda14cbcSMatt Macy } 1786eda14cbcSMatt Macy 1787e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = { 1788eda14cbcSMatt Macy metaslab_cf_alloc 1789eda14cbcSMatt Macy }; 1790eda14cbcSMatt Macy #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1791eda14cbcSMatt Macy 1792eda14cbcSMatt Macy #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1793eda14cbcSMatt Macy /* 1794eda14cbcSMatt Macy * ========================================================================== 1795eda14cbcSMatt Macy * New dynamic fit allocator - 1796eda14cbcSMatt Macy * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1797eda14cbcSMatt Macy * contiguous blocks. If no region is found then just use the largest segment 1798eda14cbcSMatt Macy * that remains. 1799eda14cbcSMatt Macy * ========================================================================== 1800eda14cbcSMatt Macy */ 1801eda14cbcSMatt Macy 1802eda14cbcSMatt Macy /* 1803eda14cbcSMatt Macy * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1804eda14cbcSMatt Macy * to request from the allocator. 1805eda14cbcSMatt Macy */ 1806eda14cbcSMatt Macy uint64_t metaslab_ndf_clump_shift = 4; 1807eda14cbcSMatt Macy 1808eda14cbcSMatt Macy static uint64_t 1809eda14cbcSMatt Macy metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1810eda14cbcSMatt Macy { 1811eda14cbcSMatt Macy zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1812eda14cbcSMatt Macy range_tree_t *rt = msp->ms_allocatable; 1813eda14cbcSMatt Macy zfs_btree_index_t where; 1814eda14cbcSMatt Macy range_seg_t *rs; 1815eda14cbcSMatt Macy range_seg_max_t rsearch; 1816eda14cbcSMatt Macy uint64_t hbit = highbit64(size); 1817eda14cbcSMatt Macy uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1818eda14cbcSMatt Macy uint64_t max_size = metaslab_largest_allocatable(msp); 1819eda14cbcSMatt Macy 1820eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1821eda14cbcSMatt Macy 1822eda14cbcSMatt Macy if (max_size < size) 1823eda14cbcSMatt Macy return (-1ULL); 1824eda14cbcSMatt Macy 1825eda14cbcSMatt Macy rs_set_start(&rsearch, rt, *cursor); 1826eda14cbcSMatt Macy rs_set_end(&rsearch, rt, *cursor + size); 1827eda14cbcSMatt Macy 1828eda14cbcSMatt Macy rs = zfs_btree_find(t, &rsearch, &where); 1829eda14cbcSMatt Macy if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1830eda14cbcSMatt Macy t = &msp->ms_allocatable_by_size; 1831eda14cbcSMatt Macy 1832eda14cbcSMatt Macy rs_set_start(&rsearch, rt, 0); 1833eda14cbcSMatt Macy rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1834eda14cbcSMatt Macy metaslab_ndf_clump_shift))); 1835eda14cbcSMatt Macy 1836eda14cbcSMatt Macy rs = zfs_btree_find(t, &rsearch, &where); 1837eda14cbcSMatt Macy if (rs == NULL) 1838eda14cbcSMatt Macy rs = zfs_btree_next(t, &where, &where); 1839eda14cbcSMatt Macy ASSERT(rs != NULL); 1840eda14cbcSMatt Macy } 1841eda14cbcSMatt Macy 1842eda14cbcSMatt Macy if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1843eda14cbcSMatt Macy *cursor = rs_get_start(rs, rt) + size; 1844eda14cbcSMatt Macy return (rs_get_start(rs, rt)); 1845eda14cbcSMatt Macy } 1846eda14cbcSMatt Macy return (-1ULL); 1847eda14cbcSMatt Macy } 1848eda14cbcSMatt Macy 1849e92ffd9bSMartin Matuska const metaslab_ops_t zfs_metaslab_ops = { 1850eda14cbcSMatt Macy metaslab_ndf_alloc 1851eda14cbcSMatt Macy }; 1852eda14cbcSMatt Macy #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1853eda14cbcSMatt Macy 1854eda14cbcSMatt Macy 1855eda14cbcSMatt Macy /* 1856eda14cbcSMatt Macy * ========================================================================== 1857eda14cbcSMatt Macy * Metaslabs 1858eda14cbcSMatt Macy * ========================================================================== 1859eda14cbcSMatt Macy */ 1860eda14cbcSMatt Macy 1861eda14cbcSMatt Macy /* 1862eda14cbcSMatt Macy * Wait for any in-progress metaslab loads to complete. 1863eda14cbcSMatt Macy */ 1864eda14cbcSMatt Macy static void 1865eda14cbcSMatt Macy metaslab_load_wait(metaslab_t *msp) 1866eda14cbcSMatt Macy { 1867eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868eda14cbcSMatt Macy 1869eda14cbcSMatt Macy while (msp->ms_loading) { 1870eda14cbcSMatt Macy ASSERT(!msp->ms_loaded); 1871eda14cbcSMatt Macy cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1872eda14cbcSMatt Macy } 1873eda14cbcSMatt Macy } 1874eda14cbcSMatt Macy 1875eda14cbcSMatt Macy /* 1876eda14cbcSMatt Macy * Wait for any in-progress flushing to complete. 1877eda14cbcSMatt Macy */ 1878eda14cbcSMatt Macy static void 1879eda14cbcSMatt Macy metaslab_flush_wait(metaslab_t *msp) 1880eda14cbcSMatt Macy { 1881eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1882eda14cbcSMatt Macy 1883eda14cbcSMatt Macy while (msp->ms_flushing) 1884eda14cbcSMatt Macy cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1885eda14cbcSMatt Macy } 1886eda14cbcSMatt Macy 1887eda14cbcSMatt Macy static unsigned int 1888eda14cbcSMatt Macy metaslab_idx_func(multilist_t *ml, void *arg) 1889eda14cbcSMatt Macy { 1890eda14cbcSMatt Macy metaslab_t *msp = arg; 18912617128aSMartin Matuska 18922617128aSMartin Matuska /* 18932617128aSMartin Matuska * ms_id values are allocated sequentially, so full 64bit 18942617128aSMartin Matuska * division would be a waste of time, so limit it to 32 bits. 18952617128aSMartin Matuska */ 18962617128aSMartin Matuska return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml)); 1897eda14cbcSMatt Macy } 1898eda14cbcSMatt Macy 1899eda14cbcSMatt Macy uint64_t 1900eda14cbcSMatt Macy metaslab_allocated_space(metaslab_t *msp) 1901eda14cbcSMatt Macy { 1902eda14cbcSMatt Macy return (msp->ms_allocated_space); 1903eda14cbcSMatt Macy } 1904eda14cbcSMatt Macy 1905eda14cbcSMatt Macy /* 1906eda14cbcSMatt Macy * Verify that the space accounting on disk matches the in-core range_trees. 1907eda14cbcSMatt Macy */ 1908eda14cbcSMatt Macy static void 1909eda14cbcSMatt Macy metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1910eda14cbcSMatt Macy { 1911eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1912eda14cbcSMatt Macy uint64_t allocating = 0; 1913eda14cbcSMatt Macy uint64_t sm_free_space, msp_free_space; 1914eda14cbcSMatt Macy 1915eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 1916eda14cbcSMatt Macy ASSERT(!msp->ms_condensing); 1917eda14cbcSMatt Macy 1918eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1919eda14cbcSMatt Macy return; 1920eda14cbcSMatt Macy 1921eda14cbcSMatt Macy /* 1922eda14cbcSMatt Macy * We can only verify the metaslab space when we're called 1923eda14cbcSMatt Macy * from syncing context with a loaded metaslab that has an 1924eda14cbcSMatt Macy * allocated space map. Calling this in non-syncing context 1925eda14cbcSMatt Macy * does not provide a consistent view of the metaslab since 1926eda14cbcSMatt Macy * we're performing allocations in the future. 1927eda14cbcSMatt Macy */ 1928eda14cbcSMatt Macy if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1929eda14cbcSMatt Macy !msp->ms_loaded) 1930eda14cbcSMatt Macy return; 1931eda14cbcSMatt Macy 1932eda14cbcSMatt Macy /* 1933eda14cbcSMatt Macy * Even though the smp_alloc field can get negative, 1934eda14cbcSMatt Macy * when it comes to a metaslab's space map, that should 1935eda14cbcSMatt Macy * never be the case. 1936eda14cbcSMatt Macy */ 1937eda14cbcSMatt Macy ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1938eda14cbcSMatt Macy 1939eda14cbcSMatt Macy ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1940eda14cbcSMatt Macy range_tree_space(msp->ms_unflushed_frees)); 1941eda14cbcSMatt Macy 1942eda14cbcSMatt Macy ASSERT3U(metaslab_allocated_space(msp), ==, 1943eda14cbcSMatt Macy space_map_allocated(msp->ms_sm) + 1944eda14cbcSMatt Macy range_tree_space(msp->ms_unflushed_allocs) - 1945eda14cbcSMatt Macy range_tree_space(msp->ms_unflushed_frees)); 1946eda14cbcSMatt Macy 1947eda14cbcSMatt Macy sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1948eda14cbcSMatt Macy 1949eda14cbcSMatt Macy /* 1950eda14cbcSMatt Macy * Account for future allocations since we would have 1951eda14cbcSMatt Macy * already deducted that space from the ms_allocatable. 1952eda14cbcSMatt Macy */ 1953eda14cbcSMatt Macy for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1954eda14cbcSMatt Macy allocating += 1955eda14cbcSMatt Macy range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1956eda14cbcSMatt Macy } 1957eda14cbcSMatt Macy ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1958eda14cbcSMatt Macy msp->ms_allocating_total); 1959eda14cbcSMatt Macy 1960eda14cbcSMatt Macy ASSERT3U(msp->ms_deferspace, ==, 1961eda14cbcSMatt Macy range_tree_space(msp->ms_defer[0]) + 1962eda14cbcSMatt Macy range_tree_space(msp->ms_defer[1])); 1963eda14cbcSMatt Macy 1964eda14cbcSMatt Macy msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1965eda14cbcSMatt Macy msp->ms_deferspace + range_tree_space(msp->ms_freed); 1966eda14cbcSMatt Macy 1967eda14cbcSMatt Macy VERIFY3U(sm_free_space, ==, msp_free_space); 1968eda14cbcSMatt Macy } 1969eda14cbcSMatt Macy 1970eda14cbcSMatt Macy static void 1971eda14cbcSMatt Macy metaslab_aux_histograms_clear(metaslab_t *msp) 1972eda14cbcSMatt Macy { 1973eda14cbcSMatt Macy /* 1974eda14cbcSMatt Macy * Auxiliary histograms are only cleared when resetting them, 1975eda14cbcSMatt Macy * which can only happen while the metaslab is loaded. 1976eda14cbcSMatt Macy */ 1977eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 1978eda14cbcSMatt Macy 1979da5137abSMartin Matuska memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 1980eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) 1981da5137abSMartin Matuska memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t])); 1982eda14cbcSMatt Macy } 1983eda14cbcSMatt Macy 1984eda14cbcSMatt Macy static void 1985eda14cbcSMatt Macy metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1986eda14cbcSMatt Macy range_tree_t *rt) 1987eda14cbcSMatt Macy { 1988eda14cbcSMatt Macy /* 1989eda14cbcSMatt Macy * This is modeled after space_map_histogram_add(), so refer to that 1990eda14cbcSMatt Macy * function for implementation details. We want this to work like 1991eda14cbcSMatt Macy * the space map histogram, and not the range tree histogram, as we 1992eda14cbcSMatt Macy * are essentially constructing a delta that will be later subtracted 1993eda14cbcSMatt Macy * from the space map histogram. 1994eda14cbcSMatt Macy */ 1995eda14cbcSMatt Macy int idx = 0; 1996eda14cbcSMatt Macy for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1997eda14cbcSMatt Macy ASSERT3U(i, >=, idx + shift); 1998eda14cbcSMatt Macy histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1999eda14cbcSMatt Macy 2000eda14cbcSMatt Macy if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 2001eda14cbcSMatt Macy ASSERT3U(idx + shift, ==, i); 2002eda14cbcSMatt Macy idx++; 2003eda14cbcSMatt Macy ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 2004eda14cbcSMatt Macy } 2005eda14cbcSMatt Macy } 2006eda14cbcSMatt Macy } 2007eda14cbcSMatt Macy 2008eda14cbcSMatt Macy /* 2009eda14cbcSMatt Macy * Called at every sync pass that the metaslab gets synced. 2010eda14cbcSMatt Macy * 2011eda14cbcSMatt Macy * The reason is that we want our auxiliary histograms to be updated 2012eda14cbcSMatt Macy * wherever the metaslab's space map histogram is updated. This way 2013eda14cbcSMatt Macy * we stay consistent on which parts of the metaslab space map's 2014eda14cbcSMatt Macy * histogram are currently not available for allocations (e.g because 2015eda14cbcSMatt Macy * they are in the defer, freed, and freeing trees). 2016eda14cbcSMatt Macy */ 2017eda14cbcSMatt Macy static void 2018eda14cbcSMatt Macy metaslab_aux_histograms_update(metaslab_t *msp) 2019eda14cbcSMatt Macy { 2020eda14cbcSMatt Macy space_map_t *sm = msp->ms_sm; 2021eda14cbcSMatt Macy ASSERT(sm != NULL); 2022eda14cbcSMatt Macy 2023eda14cbcSMatt Macy /* 2024eda14cbcSMatt Macy * This is similar to the metaslab's space map histogram updates 2025eda14cbcSMatt Macy * that take place in metaslab_sync(). The only difference is that 2026eda14cbcSMatt Macy * we only care about segments that haven't made it into the 2027eda14cbcSMatt Macy * ms_allocatable tree yet. 2028eda14cbcSMatt Macy */ 2029eda14cbcSMatt Macy if (msp->ms_loaded) { 2030eda14cbcSMatt Macy metaslab_aux_histograms_clear(msp); 2031eda14cbcSMatt Macy 2032eda14cbcSMatt Macy metaslab_aux_histogram_add(msp->ms_synchist, 2033eda14cbcSMatt Macy sm->sm_shift, msp->ms_freed); 2034eda14cbcSMatt Macy 2035eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2036eda14cbcSMatt Macy metaslab_aux_histogram_add(msp->ms_deferhist[t], 2037eda14cbcSMatt Macy sm->sm_shift, msp->ms_defer[t]); 2038eda14cbcSMatt Macy } 2039eda14cbcSMatt Macy } 2040eda14cbcSMatt Macy 2041eda14cbcSMatt Macy metaslab_aux_histogram_add(msp->ms_synchist, 2042eda14cbcSMatt Macy sm->sm_shift, msp->ms_freeing); 2043eda14cbcSMatt Macy } 2044eda14cbcSMatt Macy 2045eda14cbcSMatt Macy /* 2046eda14cbcSMatt Macy * Called every time we are done syncing (writing to) the metaslab, 2047eda14cbcSMatt Macy * i.e. at the end of each sync pass. 2048eda14cbcSMatt Macy * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2049eda14cbcSMatt Macy */ 2050eda14cbcSMatt Macy static void 2051eda14cbcSMatt Macy metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2052eda14cbcSMatt Macy { 2053eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2054eda14cbcSMatt Macy space_map_t *sm = msp->ms_sm; 2055eda14cbcSMatt Macy 2056eda14cbcSMatt Macy if (sm == NULL) { 2057eda14cbcSMatt Macy /* 2058eda14cbcSMatt Macy * We came here from metaslab_init() when creating/opening a 2059eda14cbcSMatt Macy * pool, looking at a metaslab that hasn't had any allocations 2060eda14cbcSMatt Macy * yet. 2061eda14cbcSMatt Macy */ 2062eda14cbcSMatt Macy return; 2063eda14cbcSMatt Macy } 2064eda14cbcSMatt Macy 2065eda14cbcSMatt Macy /* 2066eda14cbcSMatt Macy * This is similar to the actions that we take for the ms_freed 2067eda14cbcSMatt Macy * and ms_defer trees in metaslab_sync_done(). 2068eda14cbcSMatt Macy */ 2069eda14cbcSMatt Macy uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2070eda14cbcSMatt Macy if (defer_allowed) { 2071da5137abSMartin Matuska memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist, 2072eda14cbcSMatt Macy sizeof (msp->ms_synchist)); 2073eda14cbcSMatt Macy } else { 2074da5137abSMartin Matuska memset(msp->ms_deferhist[hist_index], 0, 2075eda14cbcSMatt Macy sizeof (msp->ms_deferhist[hist_index])); 2076eda14cbcSMatt Macy } 2077da5137abSMartin Matuska memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist)); 2078eda14cbcSMatt Macy } 2079eda14cbcSMatt Macy 2080eda14cbcSMatt Macy /* 2081eda14cbcSMatt Macy * Ensure that the metaslab's weight and fragmentation are consistent 2082eda14cbcSMatt Macy * with the contents of the histogram (either the range tree's histogram 2083eda14cbcSMatt Macy * or the space map's depending whether the metaslab is loaded). 2084eda14cbcSMatt Macy */ 2085eda14cbcSMatt Macy static void 2086eda14cbcSMatt Macy metaslab_verify_weight_and_frag(metaslab_t *msp) 2087eda14cbcSMatt Macy { 2088eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2089eda14cbcSMatt Macy 2090eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2091eda14cbcSMatt Macy return; 2092eda14cbcSMatt Macy 2093eda14cbcSMatt Macy /* 2094eda14cbcSMatt Macy * We can end up here from vdev_remove_complete(), in which case we 2095eda14cbcSMatt Macy * cannot do these assertions because we hold spa config locks and 2096eda14cbcSMatt Macy * thus we are not allowed to read from the DMU. 2097eda14cbcSMatt Macy * 2098eda14cbcSMatt Macy * We check if the metaslab group has been removed and if that's 2099eda14cbcSMatt Macy * the case we return immediately as that would mean that we are 2100eda14cbcSMatt Macy * here from the aforementioned code path. 2101eda14cbcSMatt Macy */ 2102eda14cbcSMatt Macy if (msp->ms_group == NULL) 2103eda14cbcSMatt Macy return; 2104eda14cbcSMatt Macy 2105eda14cbcSMatt Macy /* 2106eda14cbcSMatt Macy * Devices being removed always return a weight of 0 and leave 2107eda14cbcSMatt Macy * fragmentation and ms_max_size as is - there is nothing for 2108eda14cbcSMatt Macy * us to verify here. 2109eda14cbcSMatt Macy */ 2110eda14cbcSMatt Macy vdev_t *vd = msp->ms_group->mg_vd; 2111eda14cbcSMatt Macy if (vd->vdev_removing) 2112eda14cbcSMatt Macy return; 2113eda14cbcSMatt Macy 2114eda14cbcSMatt Macy /* 2115eda14cbcSMatt Macy * If the metaslab is dirty it probably means that we've done 2116eda14cbcSMatt Macy * some allocations or frees that have changed our histograms 2117eda14cbcSMatt Macy * and thus the weight. 2118eda14cbcSMatt Macy */ 2119eda14cbcSMatt Macy for (int t = 0; t < TXG_SIZE; t++) { 2120eda14cbcSMatt Macy if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2121eda14cbcSMatt Macy return; 2122eda14cbcSMatt Macy } 2123eda14cbcSMatt Macy 2124eda14cbcSMatt Macy /* 2125eda14cbcSMatt Macy * This verification checks that our in-memory state is consistent 2126eda14cbcSMatt Macy * with what's on disk. If the pool is read-only then there aren't 2127eda14cbcSMatt Macy * any changes and we just have the initially-loaded state. 2128eda14cbcSMatt Macy */ 2129eda14cbcSMatt Macy if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2130eda14cbcSMatt Macy return; 2131eda14cbcSMatt Macy 2132eda14cbcSMatt Macy /* some extra verification for in-core tree if you can */ 2133eda14cbcSMatt Macy if (msp->ms_loaded) { 2134eda14cbcSMatt Macy range_tree_stat_verify(msp->ms_allocatable); 2135eda14cbcSMatt Macy VERIFY(space_map_histogram_verify(msp->ms_sm, 2136eda14cbcSMatt Macy msp->ms_allocatable)); 2137eda14cbcSMatt Macy } 2138eda14cbcSMatt Macy 2139eda14cbcSMatt Macy uint64_t weight = msp->ms_weight; 2140eda14cbcSMatt Macy uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2141eda14cbcSMatt Macy boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2142eda14cbcSMatt Macy uint64_t frag = msp->ms_fragmentation; 2143eda14cbcSMatt Macy uint64_t max_segsize = msp->ms_max_size; 2144eda14cbcSMatt Macy 2145eda14cbcSMatt Macy msp->ms_weight = 0; 2146eda14cbcSMatt Macy msp->ms_fragmentation = 0; 2147eda14cbcSMatt Macy 2148eda14cbcSMatt Macy /* 2149eda14cbcSMatt Macy * This function is used for verification purposes and thus should 2150eda14cbcSMatt Macy * not introduce any side-effects/mutations on the system's state. 2151eda14cbcSMatt Macy * 2152eda14cbcSMatt Macy * Regardless of whether metaslab_weight() thinks this metaslab 2153eda14cbcSMatt Macy * should be active or not, we want to ensure that the actual weight 2154eda14cbcSMatt Macy * (and therefore the value of ms_weight) would be the same if it 2155eda14cbcSMatt Macy * was to be recalculated at this point. 2156eda14cbcSMatt Macy * 2157eda14cbcSMatt Macy * In addition we set the nodirty flag so metaslab_weight() does 2158eda14cbcSMatt Macy * not dirty the metaslab for future TXGs (e.g. when trying to 2159eda14cbcSMatt Macy * force condensing to upgrade the metaslab spacemaps). 2160eda14cbcSMatt Macy */ 2161eda14cbcSMatt Macy msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2162eda14cbcSMatt Macy 2163eda14cbcSMatt Macy VERIFY3U(max_segsize, ==, msp->ms_max_size); 2164eda14cbcSMatt Macy 2165eda14cbcSMatt Macy /* 2166eda14cbcSMatt Macy * If the weight type changed then there is no point in doing 2167eda14cbcSMatt Macy * verification. Revert fields to their original values. 2168eda14cbcSMatt Macy */ 2169eda14cbcSMatt Macy if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2170eda14cbcSMatt Macy (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2171eda14cbcSMatt Macy msp->ms_fragmentation = frag; 2172eda14cbcSMatt Macy msp->ms_weight = weight; 2173eda14cbcSMatt Macy return; 2174eda14cbcSMatt Macy } 2175eda14cbcSMatt Macy 2176eda14cbcSMatt Macy VERIFY3U(msp->ms_fragmentation, ==, frag); 2177eda14cbcSMatt Macy VERIFY3U(msp->ms_weight, ==, weight); 2178eda14cbcSMatt Macy } 2179eda14cbcSMatt Macy 2180eda14cbcSMatt Macy /* 2181eda14cbcSMatt Macy * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2182eda14cbcSMatt Macy * this class that was used longest ago, and attempt to unload it. We don't 2183eda14cbcSMatt Macy * want to spend too much time in this loop to prevent performance 2184eda14cbcSMatt Macy * degradation, and we expect that most of the time this operation will 2185eda14cbcSMatt Macy * succeed. Between that and the normal unloading processing during txg sync, 2186eda14cbcSMatt Macy * we expect this to keep the metaslab memory usage under control. 2187eda14cbcSMatt Macy */ 2188eda14cbcSMatt Macy static void 2189eda14cbcSMatt Macy metaslab_potentially_evict(metaslab_class_t *mc) 2190eda14cbcSMatt Macy { 2191eda14cbcSMatt Macy #ifdef _KERNEL 2192eda14cbcSMatt Macy uint64_t allmem = arc_all_memory(); 2193eda14cbcSMatt Macy uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2194eda14cbcSMatt Macy uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2195be181ee2SMartin Matuska uint_t tries = 0; 2196eda14cbcSMatt Macy for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 21973ff01b23SMartin Matuska tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2; 2198eda14cbcSMatt Macy tries++) { 2199eda14cbcSMatt Macy unsigned int idx = multilist_get_random_index( 22003ff01b23SMartin Matuska &mc->mc_metaslab_txg_list); 2201eda14cbcSMatt Macy multilist_sublist_t *mls = 22023ff01b23SMartin Matuska multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx); 2203eda14cbcSMatt Macy metaslab_t *msp = multilist_sublist_head(mls); 2204eda14cbcSMatt Macy multilist_sublist_unlock(mls); 2205eda14cbcSMatt Macy while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2206eda14cbcSMatt Macy inuse * size) { 2207eda14cbcSMatt Macy VERIFY3P(mls, ==, multilist_sublist_lock( 22083ff01b23SMartin Matuska &mc->mc_metaslab_txg_list, idx)); 2209eda14cbcSMatt Macy ASSERT3U(idx, ==, 22103ff01b23SMartin Matuska metaslab_idx_func(&mc->mc_metaslab_txg_list, msp)); 2211eda14cbcSMatt Macy 2212eda14cbcSMatt Macy if (!multilist_link_active(&msp->ms_class_txg_node)) { 2213eda14cbcSMatt Macy multilist_sublist_unlock(mls); 2214eda14cbcSMatt Macy break; 2215eda14cbcSMatt Macy } 2216eda14cbcSMatt Macy metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2217eda14cbcSMatt Macy multilist_sublist_unlock(mls); 2218eda14cbcSMatt Macy /* 2219eda14cbcSMatt Macy * If the metaslab is currently loading there are two 2220eda14cbcSMatt Macy * cases. If it's the metaslab we're evicting, we 2221eda14cbcSMatt Macy * can't continue on or we'll panic when we attempt to 2222eda14cbcSMatt Macy * recursively lock the mutex. If it's another 2223eda14cbcSMatt Macy * metaslab that's loading, it can be safely skipped, 2224eda14cbcSMatt Macy * since we know it's very new and therefore not a 2225eda14cbcSMatt Macy * good eviction candidate. We check later once the 2226eda14cbcSMatt Macy * lock is held that the metaslab is fully loaded 2227eda14cbcSMatt Macy * before actually unloading it. 2228eda14cbcSMatt Macy */ 2229eda14cbcSMatt Macy if (msp->ms_loading) { 2230eda14cbcSMatt Macy msp = next_msp; 2231eda14cbcSMatt Macy inuse = 2232eda14cbcSMatt Macy spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2233eda14cbcSMatt Macy continue; 2234eda14cbcSMatt Macy } 2235eda14cbcSMatt Macy /* 2236eda14cbcSMatt Macy * We can't unload metaslabs with no spacemap because 2237eda14cbcSMatt Macy * they're not ready to be unloaded yet. We can't 2238eda14cbcSMatt Macy * unload metaslabs with outstanding allocations 2239eda14cbcSMatt Macy * because doing so could cause the metaslab's weight 2240eda14cbcSMatt Macy * to decrease while it's unloaded, which violates an 2241eda14cbcSMatt Macy * invariant that we use to prevent unnecessary 2242eda14cbcSMatt Macy * loading. We also don't unload metaslabs that are 2243eda14cbcSMatt Macy * currently active because they are high-weight 2244eda14cbcSMatt Macy * metaslabs that are likely to be used in the near 2245eda14cbcSMatt Macy * future. 2246eda14cbcSMatt Macy */ 2247eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 2248eda14cbcSMatt Macy if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2249eda14cbcSMatt Macy msp->ms_allocating_total == 0) { 2250eda14cbcSMatt Macy metaslab_unload(msp); 2251eda14cbcSMatt Macy } 2252eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 2253eda14cbcSMatt Macy msp = next_msp; 2254eda14cbcSMatt Macy inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2255eda14cbcSMatt Macy } 2256eda14cbcSMatt Macy } 2257e92ffd9bSMartin Matuska #else 2258e92ffd9bSMartin Matuska (void) mc, (void) zfs_metaslab_mem_limit; 2259eda14cbcSMatt Macy #endif 2260eda14cbcSMatt Macy } 2261eda14cbcSMatt Macy 2262eda14cbcSMatt Macy static int 2263eda14cbcSMatt Macy metaslab_load_impl(metaslab_t *msp) 2264eda14cbcSMatt Macy { 2265eda14cbcSMatt Macy int error = 0; 2266eda14cbcSMatt Macy 2267eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2268eda14cbcSMatt Macy ASSERT(msp->ms_loading); 2269eda14cbcSMatt Macy ASSERT(!msp->ms_condensing); 2270eda14cbcSMatt Macy 2271eda14cbcSMatt Macy /* 2272eda14cbcSMatt Macy * We temporarily drop the lock to unblock other operations while we 2273eda14cbcSMatt Macy * are reading the space map. Therefore, metaslab_sync() and 2274eda14cbcSMatt Macy * metaslab_sync_done() can run at the same time as we do. 2275eda14cbcSMatt Macy * 2276eda14cbcSMatt Macy * If we are using the log space maps, metaslab_sync() can't write to 2277eda14cbcSMatt Macy * the metaslab's space map while we are loading as we only write to 2278eda14cbcSMatt Macy * it when we are flushing the metaslab, and that can't happen while 2279eda14cbcSMatt Macy * we are loading it. 2280eda14cbcSMatt Macy * 2281eda14cbcSMatt Macy * If we are not using log space maps though, metaslab_sync() can 2282eda14cbcSMatt Macy * append to the space map while we are loading. Therefore we load 2283eda14cbcSMatt Macy * only entries that existed when we started the load. Additionally, 2284eda14cbcSMatt Macy * metaslab_sync_done() has to wait for the load to complete because 2285eda14cbcSMatt Macy * there are potential races like metaslab_load() loading parts of the 2286eda14cbcSMatt Macy * space map that are currently being appended by metaslab_sync(). If 2287eda14cbcSMatt Macy * we didn't, the ms_allocatable would have entries that 2288eda14cbcSMatt Macy * metaslab_sync_done() would try to re-add later. 2289eda14cbcSMatt Macy * 2290eda14cbcSMatt Macy * That's why before dropping the lock we remember the synced length 2291eda14cbcSMatt Macy * of the metaslab and read up to that point of the space map, 2292eda14cbcSMatt Macy * ignoring entries appended by metaslab_sync() that happen after we 2293eda14cbcSMatt Macy * drop the lock. 2294eda14cbcSMatt Macy */ 2295eda14cbcSMatt Macy uint64_t length = msp->ms_synced_length; 2296eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 2297eda14cbcSMatt Macy 2298eda14cbcSMatt Macy hrtime_t load_start = gethrtime(); 2299eda14cbcSMatt Macy metaslab_rt_arg_t *mrap; 2300eda14cbcSMatt Macy if (msp->ms_allocatable->rt_arg == NULL) { 2301eda14cbcSMatt Macy mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2302eda14cbcSMatt Macy } else { 2303eda14cbcSMatt Macy mrap = msp->ms_allocatable->rt_arg; 2304eda14cbcSMatt Macy msp->ms_allocatable->rt_ops = NULL; 2305eda14cbcSMatt Macy msp->ms_allocatable->rt_arg = NULL; 2306eda14cbcSMatt Macy } 2307eda14cbcSMatt Macy mrap->mra_bt = &msp->ms_allocatable_by_size; 2308eda14cbcSMatt Macy mrap->mra_floor_shift = metaslab_by_size_min_shift; 2309eda14cbcSMatt Macy 2310eda14cbcSMatt Macy if (msp->ms_sm != NULL) { 2311eda14cbcSMatt Macy error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2312eda14cbcSMatt Macy SM_FREE, length); 2313eda14cbcSMatt Macy 2314eda14cbcSMatt Macy /* Now, populate the size-sorted tree. */ 2315eda14cbcSMatt Macy metaslab_rt_create(msp->ms_allocatable, mrap); 2316eda14cbcSMatt Macy msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2317eda14cbcSMatt Macy msp->ms_allocatable->rt_arg = mrap; 2318eda14cbcSMatt Macy 2319eda14cbcSMatt Macy struct mssa_arg arg = {0}; 2320eda14cbcSMatt Macy arg.rt = msp->ms_allocatable; 2321eda14cbcSMatt Macy arg.mra = mrap; 2322eda14cbcSMatt Macy range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2323eda14cbcSMatt Macy &arg); 2324eda14cbcSMatt Macy } else { 2325eda14cbcSMatt Macy /* 2326eda14cbcSMatt Macy * Add the size-sorted tree first, since we don't need to load 2327eda14cbcSMatt Macy * the metaslab from the spacemap. 2328eda14cbcSMatt Macy */ 2329eda14cbcSMatt Macy metaslab_rt_create(msp->ms_allocatable, mrap); 2330eda14cbcSMatt Macy msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2331eda14cbcSMatt Macy msp->ms_allocatable->rt_arg = mrap; 2332eda14cbcSMatt Macy /* 2333eda14cbcSMatt Macy * The space map has not been allocated yet, so treat 2334eda14cbcSMatt Macy * all the space in the metaslab as free and add it to the 2335eda14cbcSMatt Macy * ms_allocatable tree. 2336eda14cbcSMatt Macy */ 2337eda14cbcSMatt Macy range_tree_add(msp->ms_allocatable, 2338eda14cbcSMatt Macy msp->ms_start, msp->ms_size); 2339eda14cbcSMatt Macy 2340f9693befSMartin Matuska if (msp->ms_new) { 2341eda14cbcSMatt Macy /* 2342eda14cbcSMatt Macy * If the ms_sm doesn't exist, this means that this 2343eda14cbcSMatt Macy * metaslab hasn't gone through metaslab_sync() and 2344eda14cbcSMatt Macy * thus has never been dirtied. So we shouldn't 2345eda14cbcSMatt Macy * expect any unflushed allocs or frees from previous 2346eda14cbcSMatt Macy * TXGs. 2347eda14cbcSMatt Macy */ 2348eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2349eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2350eda14cbcSMatt Macy } 2351eda14cbcSMatt Macy } 2352eda14cbcSMatt Macy 2353eda14cbcSMatt Macy /* 2354eda14cbcSMatt Macy * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2355eda14cbcSMatt Macy * changing the ms_sm (or log_sm) and the metaslab's range trees 2356eda14cbcSMatt Macy * while we are about to use them and populate the ms_allocatable. 2357eda14cbcSMatt Macy * The ms_lock is insufficient for this because metaslab_sync() doesn't 2358eda14cbcSMatt Macy * hold the ms_lock while writing the ms_checkpointing tree to disk. 2359eda14cbcSMatt Macy */ 2360eda14cbcSMatt Macy mutex_enter(&msp->ms_sync_lock); 2361eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 2362eda14cbcSMatt Macy 2363eda14cbcSMatt Macy ASSERT(!msp->ms_condensing); 2364eda14cbcSMatt Macy ASSERT(!msp->ms_flushing); 2365eda14cbcSMatt Macy 2366eda14cbcSMatt Macy if (error != 0) { 2367eda14cbcSMatt Macy mutex_exit(&msp->ms_sync_lock); 2368eda14cbcSMatt Macy return (error); 2369eda14cbcSMatt Macy } 2370eda14cbcSMatt Macy 2371eda14cbcSMatt Macy ASSERT3P(msp->ms_group, !=, NULL); 2372eda14cbcSMatt Macy msp->ms_loaded = B_TRUE; 2373eda14cbcSMatt Macy 2374eda14cbcSMatt Macy /* 2375eda14cbcSMatt Macy * Apply all the unflushed changes to ms_allocatable right 2376eda14cbcSMatt Macy * away so any manipulations we do below have a clear view 2377eda14cbcSMatt Macy * of what is allocated and what is free. 2378eda14cbcSMatt Macy */ 2379eda14cbcSMatt Macy range_tree_walk(msp->ms_unflushed_allocs, 2380eda14cbcSMatt Macy range_tree_remove, msp->ms_allocatable); 2381eda14cbcSMatt Macy range_tree_walk(msp->ms_unflushed_frees, 2382eda14cbcSMatt Macy range_tree_add, msp->ms_allocatable); 2383eda14cbcSMatt Macy 2384eda14cbcSMatt Macy ASSERT3P(msp->ms_group, !=, NULL); 2385eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2386eda14cbcSMatt Macy if (spa_syncing_log_sm(spa) != NULL) { 2387eda14cbcSMatt Macy ASSERT(spa_feature_is_enabled(spa, 2388eda14cbcSMatt Macy SPA_FEATURE_LOG_SPACEMAP)); 2389eda14cbcSMatt Macy 2390eda14cbcSMatt Macy /* 2391eda14cbcSMatt Macy * If we use a log space map we add all the segments 2392eda14cbcSMatt Macy * that are in ms_unflushed_frees so they are available 2393eda14cbcSMatt Macy * for allocation. 2394eda14cbcSMatt Macy * 2395eda14cbcSMatt Macy * ms_allocatable needs to contain all free segments 2396eda14cbcSMatt Macy * that are ready for allocations (thus not segments 2397eda14cbcSMatt Macy * from ms_freeing, ms_freed, and the ms_defer trees). 2398eda14cbcSMatt Macy * But if we grab the lock in this code path at a sync 2399eda14cbcSMatt Macy * pass later that 1, then it also contains the 2400eda14cbcSMatt Macy * segments of ms_freed (they were added to it earlier 2401eda14cbcSMatt Macy * in this path through ms_unflushed_frees). So we 2402eda14cbcSMatt Macy * need to remove all the segments that exist in 2403eda14cbcSMatt Macy * ms_freed from ms_allocatable as they will be added 2404eda14cbcSMatt Macy * later in metaslab_sync_done(). 2405eda14cbcSMatt Macy * 2406eda14cbcSMatt Macy * When there's no log space map, the ms_allocatable 2407eda14cbcSMatt Macy * correctly doesn't contain any segments that exist 2408eda14cbcSMatt Macy * in ms_freed [see ms_synced_length]. 2409eda14cbcSMatt Macy */ 2410eda14cbcSMatt Macy range_tree_walk(msp->ms_freed, 2411eda14cbcSMatt Macy range_tree_remove, msp->ms_allocatable); 2412eda14cbcSMatt Macy } 2413eda14cbcSMatt Macy 2414eda14cbcSMatt Macy /* 2415eda14cbcSMatt Macy * If we are not using the log space map, ms_allocatable 2416eda14cbcSMatt Macy * contains the segments that exist in the ms_defer trees 2417eda14cbcSMatt Macy * [see ms_synced_length]. Thus we need to remove them 2418eda14cbcSMatt Macy * from ms_allocatable as they will be added again in 2419eda14cbcSMatt Macy * metaslab_sync_done(). 2420eda14cbcSMatt Macy * 2421eda14cbcSMatt Macy * If we are using the log space map, ms_allocatable still 2422eda14cbcSMatt Macy * contains the segments that exist in the ms_defer trees. 2423eda14cbcSMatt Macy * Not because it read them through the ms_sm though. But 2424eda14cbcSMatt Macy * because these segments are part of ms_unflushed_frees 2425eda14cbcSMatt Macy * whose segments we add to ms_allocatable earlier in this 2426eda14cbcSMatt Macy * code path. 2427eda14cbcSMatt Macy */ 2428eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2429eda14cbcSMatt Macy range_tree_walk(msp->ms_defer[t], 2430eda14cbcSMatt Macy range_tree_remove, msp->ms_allocatable); 2431eda14cbcSMatt Macy } 2432eda14cbcSMatt Macy 2433eda14cbcSMatt Macy /* 2434eda14cbcSMatt Macy * Call metaslab_recalculate_weight_and_sort() now that the 2435eda14cbcSMatt Macy * metaslab is loaded so we get the metaslab's real weight. 2436eda14cbcSMatt Macy * 2437eda14cbcSMatt Macy * Unless this metaslab was created with older software and 2438eda14cbcSMatt Macy * has not yet been converted to use segment-based weight, we 2439eda14cbcSMatt Macy * expect the new weight to be better or equal to the weight 2440eda14cbcSMatt Macy * that the metaslab had while it was not loaded. This is 2441eda14cbcSMatt Macy * because the old weight does not take into account the 2442eda14cbcSMatt Macy * consolidation of adjacent segments between TXGs. [see 2443eda14cbcSMatt Macy * comment for ms_synchist and ms_deferhist[] for more info] 2444eda14cbcSMatt Macy */ 2445eda14cbcSMatt Macy uint64_t weight = msp->ms_weight; 2446eda14cbcSMatt Macy uint64_t max_size = msp->ms_max_size; 2447eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(msp); 2448eda14cbcSMatt Macy if (!WEIGHT_IS_SPACEBASED(weight)) 2449eda14cbcSMatt Macy ASSERT3U(weight, <=, msp->ms_weight); 2450eda14cbcSMatt Macy msp->ms_max_size = metaslab_largest_allocatable(msp); 2451eda14cbcSMatt Macy ASSERT3U(max_size, <=, msp->ms_max_size); 2452eda14cbcSMatt Macy hrtime_t load_end = gethrtime(); 2453eda14cbcSMatt Macy msp->ms_load_time = load_end; 2454eda14cbcSMatt Macy zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2455eda14cbcSMatt Macy "ms_id %llu, smp_length %llu, " 2456eda14cbcSMatt Macy "unflushed_allocs %llu, unflushed_frees %llu, " 2457eda14cbcSMatt Macy "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2458eda14cbcSMatt Macy "loading_time %lld ms, ms_max_size %llu, " 2459eda14cbcSMatt Macy "max size error %lld, " 2460eda14cbcSMatt Macy "old_weight %llx, new_weight %llx", 246133b8c039SMartin Matuska (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 246233b8c039SMartin Matuska (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 246333b8c039SMartin Matuska (u_longlong_t)msp->ms_id, 246433b8c039SMartin Matuska (u_longlong_t)space_map_length(msp->ms_sm), 246533b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 246633b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 246733b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_freed), 246833b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_defer[0]), 246933b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_defer[1]), 2470eda14cbcSMatt Macy (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2471eda14cbcSMatt Macy (longlong_t)((load_end - load_start) / 1000000), 247233b8c039SMartin Matuska (u_longlong_t)msp->ms_max_size, 247333b8c039SMartin Matuska (u_longlong_t)msp->ms_max_size - max_size, 247433b8c039SMartin Matuska (u_longlong_t)weight, (u_longlong_t)msp->ms_weight); 2475eda14cbcSMatt Macy 2476eda14cbcSMatt Macy metaslab_verify_space(msp, spa_syncing_txg(spa)); 2477eda14cbcSMatt Macy mutex_exit(&msp->ms_sync_lock); 2478eda14cbcSMatt Macy return (0); 2479eda14cbcSMatt Macy } 2480eda14cbcSMatt Macy 2481eda14cbcSMatt Macy int 2482eda14cbcSMatt Macy metaslab_load(metaslab_t *msp) 2483eda14cbcSMatt Macy { 2484eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2485eda14cbcSMatt Macy 2486eda14cbcSMatt Macy /* 2487eda14cbcSMatt Macy * There may be another thread loading the same metaslab, if that's 2488eda14cbcSMatt Macy * the case just wait until the other thread is done and return. 2489eda14cbcSMatt Macy */ 2490eda14cbcSMatt Macy metaslab_load_wait(msp); 2491eda14cbcSMatt Macy if (msp->ms_loaded) 2492eda14cbcSMatt Macy return (0); 2493eda14cbcSMatt Macy VERIFY(!msp->ms_loading); 2494eda14cbcSMatt Macy ASSERT(!msp->ms_condensing); 2495eda14cbcSMatt Macy 2496eda14cbcSMatt Macy /* 2497eda14cbcSMatt Macy * We set the loading flag BEFORE potentially dropping the lock to 2498eda14cbcSMatt Macy * wait for an ongoing flush (see ms_flushing below). This way other 2499eda14cbcSMatt Macy * threads know that there is already a thread that is loading this 2500eda14cbcSMatt Macy * metaslab. 2501eda14cbcSMatt Macy */ 2502eda14cbcSMatt Macy msp->ms_loading = B_TRUE; 2503eda14cbcSMatt Macy 2504eda14cbcSMatt Macy /* 2505eda14cbcSMatt Macy * Wait for any in-progress flushing to finish as we drop the ms_lock 2506eda14cbcSMatt Macy * both here (during space_map_load()) and in metaslab_flush() (when 2507eda14cbcSMatt Macy * we flush our changes to the ms_sm). 2508eda14cbcSMatt Macy */ 2509eda14cbcSMatt Macy if (msp->ms_flushing) 2510eda14cbcSMatt Macy metaslab_flush_wait(msp); 2511eda14cbcSMatt Macy 2512eda14cbcSMatt Macy /* 2513eda14cbcSMatt Macy * In the possibility that we were waiting for the metaslab to be 2514eda14cbcSMatt Macy * flushed (where we temporarily dropped the ms_lock), ensure that 2515eda14cbcSMatt Macy * no one else loaded the metaslab somehow. 2516eda14cbcSMatt Macy */ 2517eda14cbcSMatt Macy ASSERT(!msp->ms_loaded); 2518eda14cbcSMatt Macy 2519eda14cbcSMatt Macy /* 2520eda14cbcSMatt Macy * If we're loading a metaslab in the normal class, consider evicting 2521eda14cbcSMatt Macy * another one to keep our memory usage under the limit defined by the 2522eda14cbcSMatt Macy * zfs_metaslab_mem_limit tunable. 2523eda14cbcSMatt Macy */ 2524eda14cbcSMatt Macy if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2525eda14cbcSMatt Macy msp->ms_group->mg_class) { 2526eda14cbcSMatt Macy metaslab_potentially_evict(msp->ms_group->mg_class); 2527eda14cbcSMatt Macy } 2528eda14cbcSMatt Macy 2529eda14cbcSMatt Macy int error = metaslab_load_impl(msp); 2530eda14cbcSMatt Macy 2531eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2532eda14cbcSMatt Macy msp->ms_loading = B_FALSE; 2533eda14cbcSMatt Macy cv_broadcast(&msp->ms_load_cv); 2534eda14cbcSMatt Macy 2535eda14cbcSMatt Macy return (error); 2536eda14cbcSMatt Macy } 2537eda14cbcSMatt Macy 2538eda14cbcSMatt Macy void 2539eda14cbcSMatt Macy metaslab_unload(metaslab_t *msp) 2540eda14cbcSMatt Macy { 2541eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2542eda14cbcSMatt Macy 2543eda14cbcSMatt Macy /* 2544eda14cbcSMatt Macy * This can happen if a metaslab is selected for eviction (in 2545eda14cbcSMatt Macy * metaslab_potentially_evict) and then unloaded during spa_sync (via 2546eda14cbcSMatt Macy * metaslab_class_evict_old). 2547eda14cbcSMatt Macy */ 2548eda14cbcSMatt Macy if (!msp->ms_loaded) 2549eda14cbcSMatt Macy return; 2550eda14cbcSMatt Macy 2551eda14cbcSMatt Macy range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2552eda14cbcSMatt Macy msp->ms_loaded = B_FALSE; 2553eda14cbcSMatt Macy msp->ms_unload_time = gethrtime(); 2554eda14cbcSMatt Macy 2555eda14cbcSMatt Macy msp->ms_activation_weight = 0; 2556eda14cbcSMatt Macy msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2557eda14cbcSMatt Macy 2558eda14cbcSMatt Macy if (msp->ms_group != NULL) { 2559eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 2560eda14cbcSMatt Macy multilist_sublist_t *mls = 25613ff01b23SMartin Matuska multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2562eda14cbcSMatt Macy if (multilist_link_active(&msp->ms_class_txg_node)) 2563eda14cbcSMatt Macy multilist_sublist_remove(mls, msp); 2564eda14cbcSMatt Macy multilist_sublist_unlock(mls); 2565eda14cbcSMatt Macy 2566eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2567eda14cbcSMatt Macy zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2568eda14cbcSMatt Macy "ms_id %llu, weight %llx, " 2569eda14cbcSMatt Macy "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2570eda14cbcSMatt Macy "loaded %llu ms ago, max_size %llu", 257133b8c039SMartin Matuska (u_longlong_t)spa_syncing_txg(spa), spa_name(spa), 257233b8c039SMartin Matuska (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 257333b8c039SMartin Matuska (u_longlong_t)msp->ms_id, 257433b8c039SMartin Matuska (u_longlong_t)msp->ms_weight, 257533b8c039SMartin Matuska (u_longlong_t)msp->ms_selected_txg, 257633b8c039SMartin Matuska (u_longlong_t)(msp->ms_unload_time - 257733b8c039SMartin Matuska msp->ms_selected_time) / 1000 / 1000, 257833b8c039SMartin Matuska (u_longlong_t)msp->ms_alloc_txg, 257933b8c039SMartin Matuska (u_longlong_t)(msp->ms_unload_time - 258033b8c039SMartin Matuska msp->ms_load_time) / 1000 / 1000, 258133b8c039SMartin Matuska (u_longlong_t)msp->ms_max_size); 2582eda14cbcSMatt Macy } 2583eda14cbcSMatt Macy 2584eda14cbcSMatt Macy /* 2585eda14cbcSMatt Macy * We explicitly recalculate the metaslab's weight based on its space 2586eda14cbcSMatt Macy * map (as it is now not loaded). We want unload metaslabs to always 2587eda14cbcSMatt Macy * have their weights calculated from the space map histograms, while 2588eda14cbcSMatt Macy * loaded ones have it calculated from their in-core range tree 2589eda14cbcSMatt Macy * [see metaslab_load()]. This way, the weight reflects the information 2590eda14cbcSMatt Macy * available in-core, whether it is loaded or not. 2591eda14cbcSMatt Macy * 2592eda14cbcSMatt Macy * If ms_group == NULL means that we came here from metaslab_fini(), 2593eda14cbcSMatt Macy * at which point it doesn't make sense for us to do the recalculation 2594eda14cbcSMatt Macy * and the sorting. 2595eda14cbcSMatt Macy */ 2596eda14cbcSMatt Macy if (msp->ms_group != NULL) 2597eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(msp); 2598eda14cbcSMatt Macy } 2599eda14cbcSMatt Macy 2600eda14cbcSMatt Macy /* 2601eda14cbcSMatt Macy * We want to optimize the memory use of the per-metaslab range 2602eda14cbcSMatt Macy * trees. To do this, we store the segments in the range trees in 2603eda14cbcSMatt Macy * units of sectors, zero-indexing from the start of the metaslab. If 2604eda14cbcSMatt Macy * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2605eda14cbcSMatt Macy * the ranges using two uint32_ts, rather than two uint64_ts. 2606eda14cbcSMatt Macy */ 2607eda14cbcSMatt Macy range_seg_type_t 2608eda14cbcSMatt Macy metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2609eda14cbcSMatt Macy uint64_t *start, uint64_t *shift) 2610eda14cbcSMatt Macy { 2611eda14cbcSMatt Macy if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2612eda14cbcSMatt Macy !zfs_metaslab_force_large_segs) { 2613eda14cbcSMatt Macy *shift = vdev->vdev_ashift; 2614eda14cbcSMatt Macy *start = msp->ms_start; 2615eda14cbcSMatt Macy return (RANGE_SEG32); 2616eda14cbcSMatt Macy } else { 2617eda14cbcSMatt Macy *shift = 0; 2618eda14cbcSMatt Macy *start = 0; 2619eda14cbcSMatt Macy return (RANGE_SEG64); 2620eda14cbcSMatt Macy } 2621eda14cbcSMatt Macy } 2622eda14cbcSMatt Macy 2623eda14cbcSMatt Macy void 2624eda14cbcSMatt Macy metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2625eda14cbcSMatt Macy { 2626eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2627eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 2628eda14cbcSMatt Macy multilist_sublist_t *mls = 26293ff01b23SMartin Matuska multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 2630eda14cbcSMatt Macy if (multilist_link_active(&msp->ms_class_txg_node)) 2631eda14cbcSMatt Macy multilist_sublist_remove(mls, msp); 2632eda14cbcSMatt Macy msp->ms_selected_txg = txg; 2633eda14cbcSMatt Macy msp->ms_selected_time = gethrtime(); 2634eda14cbcSMatt Macy multilist_sublist_insert_tail(mls, msp); 2635eda14cbcSMatt Macy multilist_sublist_unlock(mls); 2636eda14cbcSMatt Macy } 2637eda14cbcSMatt Macy 2638eda14cbcSMatt Macy void 2639eda14cbcSMatt Macy metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2640eda14cbcSMatt Macy int64_t defer_delta, int64_t space_delta) 2641eda14cbcSMatt Macy { 2642eda14cbcSMatt Macy vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2643eda14cbcSMatt Macy 2644eda14cbcSMatt Macy ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2645eda14cbcSMatt Macy ASSERT(vd->vdev_ms_count != 0); 2646eda14cbcSMatt Macy 2647eda14cbcSMatt Macy metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2648eda14cbcSMatt Macy vdev_deflated_space(vd, space_delta)); 2649eda14cbcSMatt Macy } 2650eda14cbcSMatt Macy 2651eda14cbcSMatt Macy int 2652eda14cbcSMatt Macy metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2653eda14cbcSMatt Macy uint64_t txg, metaslab_t **msp) 2654eda14cbcSMatt Macy { 2655eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 2656eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 2657eda14cbcSMatt Macy objset_t *mos = spa->spa_meta_objset; 2658eda14cbcSMatt Macy metaslab_t *ms; 2659eda14cbcSMatt Macy int error; 2660eda14cbcSMatt Macy 2661eda14cbcSMatt Macy ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2662eda14cbcSMatt Macy mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2663eda14cbcSMatt Macy mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2664eda14cbcSMatt Macy cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2665eda14cbcSMatt Macy cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2666eda14cbcSMatt Macy multilist_link_init(&ms->ms_class_txg_node); 2667eda14cbcSMatt Macy 2668eda14cbcSMatt Macy ms->ms_id = id; 2669eda14cbcSMatt Macy ms->ms_start = id << vd->vdev_ms_shift; 2670eda14cbcSMatt Macy ms->ms_size = 1ULL << vd->vdev_ms_shift; 2671eda14cbcSMatt Macy ms->ms_allocator = -1; 2672eda14cbcSMatt Macy ms->ms_new = B_TRUE; 2673eda14cbcSMatt Macy 26747877fdebSMatt Macy vdev_ops_t *ops = vd->vdev_ops; 26757877fdebSMatt Macy if (ops->vdev_op_metaslab_init != NULL) 26767877fdebSMatt Macy ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 26777877fdebSMatt Macy 2678eda14cbcSMatt Macy /* 2679eda14cbcSMatt Macy * We only open space map objects that already exist. All others 268081b22a98SMartin Matuska * will be opened when we finally allocate an object for it. For 268181b22a98SMartin Matuska * readonly pools there is no need to open the space map object. 2682eda14cbcSMatt Macy * 2683eda14cbcSMatt Macy * Note: 2684eda14cbcSMatt Macy * When called from vdev_expand(), we can't call into the DMU as 2685eda14cbcSMatt Macy * we are holding the spa_config_lock as a writer and we would 2686eda14cbcSMatt Macy * deadlock [see relevant comment in vdev_metaslab_init()]. in 2687eda14cbcSMatt Macy * that case, the object parameter is zero though, so we won't 2688eda14cbcSMatt Macy * call into the DMU. 2689eda14cbcSMatt Macy */ 269081b22a98SMartin Matuska if (object != 0 && !(spa->spa_mode == SPA_MODE_READ && 269181b22a98SMartin Matuska !spa->spa_read_spacemaps)) { 2692eda14cbcSMatt Macy error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2693eda14cbcSMatt Macy ms->ms_size, vd->vdev_ashift); 2694eda14cbcSMatt Macy 2695eda14cbcSMatt Macy if (error != 0) { 2696eda14cbcSMatt Macy kmem_free(ms, sizeof (metaslab_t)); 2697eda14cbcSMatt Macy return (error); 2698eda14cbcSMatt Macy } 2699eda14cbcSMatt Macy 2700eda14cbcSMatt Macy ASSERT(ms->ms_sm != NULL); 2701eda14cbcSMatt Macy ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2702eda14cbcSMatt Macy } 2703eda14cbcSMatt Macy 2704eda14cbcSMatt Macy uint64_t shift, start; 2705f9693befSMartin Matuska range_seg_type_t type = 2706f9693befSMartin Matuska metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2707eda14cbcSMatt Macy 2708eda14cbcSMatt Macy ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2709f9693befSMartin Matuska for (int t = 0; t < TXG_SIZE; t++) { 2710f9693befSMartin Matuska ms->ms_allocating[t] = range_tree_create(NULL, type, 2711f9693befSMartin Matuska NULL, start, shift); 2712f9693befSMartin Matuska } 2713f9693befSMartin Matuska ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift); 2714f9693befSMartin Matuska ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift); 2715f9693befSMartin Matuska for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2716f9693befSMartin Matuska ms->ms_defer[t] = range_tree_create(NULL, type, NULL, 2717f9693befSMartin Matuska start, shift); 2718f9693befSMartin Matuska } 2719f9693befSMartin Matuska ms->ms_checkpointing = 2720f9693befSMartin Matuska range_tree_create(NULL, type, NULL, start, shift); 2721f9693befSMartin Matuska ms->ms_unflushed_allocs = 2722f9693befSMartin Matuska range_tree_create(NULL, type, NULL, start, shift); 2723f9693befSMartin Matuska 2724f9693befSMartin Matuska metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2725f9693befSMartin Matuska mrap->mra_bt = &ms->ms_unflushed_frees_by_size; 2726f9693befSMartin Matuska mrap->mra_floor_shift = metaslab_by_size_min_shift; 2727f9693befSMartin Matuska ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 2728f9693befSMartin Matuska type, mrap, start, shift); 2729eda14cbcSMatt Macy 2730eda14cbcSMatt Macy ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2731eda14cbcSMatt Macy 2732eda14cbcSMatt Macy metaslab_group_add(mg, ms); 2733eda14cbcSMatt Macy metaslab_set_fragmentation(ms, B_FALSE); 2734eda14cbcSMatt Macy 2735eda14cbcSMatt Macy /* 2736eda14cbcSMatt Macy * If we're opening an existing pool (txg == 0) or creating 2737eda14cbcSMatt Macy * a new one (txg == TXG_INITIAL), all space is available now. 2738eda14cbcSMatt Macy * If we're adding space to an existing pool, the new space 2739eda14cbcSMatt Macy * does not become available until after this txg has synced. 2740eda14cbcSMatt Macy * The metaslab's weight will also be initialized when we sync 2741eda14cbcSMatt Macy * out this txg. This ensures that we don't attempt to allocate 2742eda14cbcSMatt Macy * from it before we have initialized it completely. 2743eda14cbcSMatt Macy */ 2744eda14cbcSMatt Macy if (txg <= TXG_INITIAL) { 2745eda14cbcSMatt Macy metaslab_sync_done(ms, 0); 2746eda14cbcSMatt Macy metaslab_space_update(vd, mg->mg_class, 2747eda14cbcSMatt Macy metaslab_allocated_space(ms), 0, 0); 2748eda14cbcSMatt Macy } 2749eda14cbcSMatt Macy 2750eda14cbcSMatt Macy if (txg != 0) { 2751eda14cbcSMatt Macy vdev_dirty(vd, 0, NULL, txg); 2752eda14cbcSMatt Macy vdev_dirty(vd, VDD_METASLAB, ms, txg); 2753eda14cbcSMatt Macy } 2754eda14cbcSMatt Macy 2755eda14cbcSMatt Macy *msp = ms; 2756eda14cbcSMatt Macy 2757eda14cbcSMatt Macy return (0); 2758eda14cbcSMatt Macy } 2759eda14cbcSMatt Macy 2760eda14cbcSMatt Macy static void 2761eda14cbcSMatt Macy metaslab_fini_flush_data(metaslab_t *msp) 2762eda14cbcSMatt Macy { 2763eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2764eda14cbcSMatt Macy 2765eda14cbcSMatt Macy if (metaslab_unflushed_txg(msp) == 0) { 2766eda14cbcSMatt Macy ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2767eda14cbcSMatt Macy ==, NULL); 2768eda14cbcSMatt Macy return; 2769eda14cbcSMatt Macy } 2770eda14cbcSMatt Macy ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2771eda14cbcSMatt Macy 2772eda14cbcSMatt Macy mutex_enter(&spa->spa_flushed_ms_lock); 2773eda14cbcSMatt Macy avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2774eda14cbcSMatt Macy mutex_exit(&spa->spa_flushed_ms_lock); 2775eda14cbcSMatt Macy 2776eda14cbcSMatt Macy spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2777716fd348SMartin Matuska spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp), 2778716fd348SMartin Matuska metaslab_unflushed_dirty(msp)); 2779eda14cbcSMatt Macy } 2780eda14cbcSMatt Macy 2781eda14cbcSMatt Macy uint64_t 2782eda14cbcSMatt Macy metaslab_unflushed_changes_memused(metaslab_t *ms) 2783eda14cbcSMatt Macy { 2784eda14cbcSMatt Macy return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2785eda14cbcSMatt Macy range_tree_numsegs(ms->ms_unflushed_frees)) * 2786eda14cbcSMatt Macy ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2787eda14cbcSMatt Macy } 2788eda14cbcSMatt Macy 2789eda14cbcSMatt Macy void 2790eda14cbcSMatt Macy metaslab_fini(metaslab_t *msp) 2791eda14cbcSMatt Macy { 2792eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 2793eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 2794eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 2795eda14cbcSMatt Macy 2796eda14cbcSMatt Macy metaslab_fini_flush_data(msp); 2797eda14cbcSMatt Macy 2798eda14cbcSMatt Macy metaslab_group_remove(mg, msp); 2799eda14cbcSMatt Macy 2800eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 2801eda14cbcSMatt Macy VERIFY(msp->ms_group == NULL); 2802f9693befSMartin Matuska 2803184c1b94SMartin Matuska /* 2804f9693befSMartin Matuska * If this metaslab hasn't been through metaslab_sync_done() yet its 2805184c1b94SMartin Matuska * space hasn't been accounted for in its vdev and doesn't need to be 2806184c1b94SMartin Matuska * subtracted. 2807184c1b94SMartin Matuska */ 2808f9693befSMartin Matuska if (!msp->ms_new) { 2809eda14cbcSMatt Macy metaslab_space_update(vd, mg->mg_class, 2810eda14cbcSMatt Macy -metaslab_allocated_space(msp), 0, -msp->ms_size); 2811eda14cbcSMatt Macy 2812184c1b94SMartin Matuska } 2813eda14cbcSMatt Macy space_map_close(msp->ms_sm); 2814eda14cbcSMatt Macy msp->ms_sm = NULL; 2815eda14cbcSMatt Macy 2816eda14cbcSMatt Macy metaslab_unload(msp); 2817184c1b94SMartin Matuska 2818eda14cbcSMatt Macy range_tree_destroy(msp->ms_allocatable); 2819eda14cbcSMatt Macy range_tree_destroy(msp->ms_freeing); 2820eda14cbcSMatt Macy range_tree_destroy(msp->ms_freed); 2821eda14cbcSMatt Macy 2822eda14cbcSMatt Macy ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2823eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp)); 2824eda14cbcSMatt Macy spa->spa_unflushed_stats.sus_memused -= 2825eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp); 2826eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2827eda14cbcSMatt Macy range_tree_destroy(msp->ms_unflushed_allocs); 2828184c1b94SMartin Matuska range_tree_destroy(msp->ms_checkpointing); 2829eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2830eda14cbcSMatt Macy range_tree_destroy(msp->ms_unflushed_frees); 2831eda14cbcSMatt Macy 2832eda14cbcSMatt Macy for (int t = 0; t < TXG_SIZE; t++) { 2833eda14cbcSMatt Macy range_tree_destroy(msp->ms_allocating[t]); 2834eda14cbcSMatt Macy } 2835eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2836eda14cbcSMatt Macy range_tree_destroy(msp->ms_defer[t]); 2837eda14cbcSMatt Macy } 2838eda14cbcSMatt Macy ASSERT0(msp->ms_deferspace); 2839eda14cbcSMatt Macy 2840eda14cbcSMatt Macy for (int t = 0; t < TXG_SIZE; t++) 2841eda14cbcSMatt Macy ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2842eda14cbcSMatt Macy 2843eda14cbcSMatt Macy range_tree_vacate(msp->ms_trim, NULL, NULL); 2844eda14cbcSMatt Macy range_tree_destroy(msp->ms_trim); 2845eda14cbcSMatt Macy 2846eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 2847eda14cbcSMatt Macy cv_destroy(&msp->ms_load_cv); 2848eda14cbcSMatt Macy cv_destroy(&msp->ms_flush_cv); 2849eda14cbcSMatt Macy mutex_destroy(&msp->ms_lock); 2850eda14cbcSMatt Macy mutex_destroy(&msp->ms_sync_lock); 2851eda14cbcSMatt Macy ASSERT3U(msp->ms_allocator, ==, -1); 2852eda14cbcSMatt Macy 2853eda14cbcSMatt Macy kmem_free(msp, sizeof (metaslab_t)); 2854eda14cbcSMatt Macy } 2855eda14cbcSMatt Macy 2856eda14cbcSMatt Macy #define FRAGMENTATION_TABLE_SIZE 17 2857eda14cbcSMatt Macy 2858eda14cbcSMatt Macy /* 2859eda14cbcSMatt Macy * This table defines a segment size based fragmentation metric that will 2860eda14cbcSMatt Macy * allow each metaslab to derive its own fragmentation value. This is done 2861eda14cbcSMatt Macy * by calculating the space in each bucket of the spacemap histogram and 2862eda14cbcSMatt Macy * multiplying that by the fragmentation metric in this table. Doing 2863eda14cbcSMatt Macy * this for all buckets and dividing it by the total amount of free 2864eda14cbcSMatt Macy * space in this metaslab (i.e. the total free space in all buckets) gives 2865eda14cbcSMatt Macy * us the fragmentation metric. This means that a high fragmentation metric 2866eda14cbcSMatt Macy * equates to most of the free space being comprised of small segments. 2867eda14cbcSMatt Macy * Conversely, if the metric is low, then most of the free space is in 2868eda14cbcSMatt Macy * large segments. A 10% change in fragmentation equates to approximately 2869eda14cbcSMatt Macy * double the number of segments. 2870eda14cbcSMatt Macy * 2871eda14cbcSMatt Macy * This table defines 0% fragmented space using 16MB segments. Testing has 2872eda14cbcSMatt Macy * shown that segments that are greater than or equal to 16MB do not suffer 2873eda14cbcSMatt Macy * from drastic performance problems. Using this value, we derive the rest 2874eda14cbcSMatt Macy * of the table. Since the fragmentation value is never stored on disk, it 2875eda14cbcSMatt Macy * is possible to change these calculations in the future. 2876eda14cbcSMatt Macy */ 2877e92ffd9bSMartin Matuska static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2878eda14cbcSMatt Macy 100, /* 512B */ 2879eda14cbcSMatt Macy 100, /* 1K */ 2880eda14cbcSMatt Macy 98, /* 2K */ 2881eda14cbcSMatt Macy 95, /* 4K */ 2882eda14cbcSMatt Macy 90, /* 8K */ 2883eda14cbcSMatt Macy 80, /* 16K */ 2884eda14cbcSMatt Macy 70, /* 32K */ 2885eda14cbcSMatt Macy 60, /* 64K */ 2886eda14cbcSMatt Macy 50, /* 128K */ 2887eda14cbcSMatt Macy 40, /* 256K */ 2888eda14cbcSMatt Macy 30, /* 512K */ 2889eda14cbcSMatt Macy 20, /* 1M */ 2890eda14cbcSMatt Macy 15, /* 2M */ 2891eda14cbcSMatt Macy 10, /* 4M */ 2892eda14cbcSMatt Macy 5, /* 8M */ 2893eda14cbcSMatt Macy 0 /* 16M */ 2894eda14cbcSMatt Macy }; 2895eda14cbcSMatt Macy 2896eda14cbcSMatt Macy /* 2897eda14cbcSMatt Macy * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2898eda14cbcSMatt Macy * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2899eda14cbcSMatt Macy * been upgraded and does not support this metric. Otherwise, the return 2900eda14cbcSMatt Macy * value should be in the range [0, 100]. 2901eda14cbcSMatt Macy */ 2902eda14cbcSMatt Macy static void 2903eda14cbcSMatt Macy metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2904eda14cbcSMatt Macy { 2905eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2906eda14cbcSMatt Macy uint64_t fragmentation = 0; 2907eda14cbcSMatt Macy uint64_t total = 0; 2908eda14cbcSMatt Macy boolean_t feature_enabled = spa_feature_is_enabled(spa, 2909eda14cbcSMatt Macy SPA_FEATURE_SPACEMAP_HISTOGRAM); 2910eda14cbcSMatt Macy 2911eda14cbcSMatt Macy if (!feature_enabled) { 2912eda14cbcSMatt Macy msp->ms_fragmentation = ZFS_FRAG_INVALID; 2913eda14cbcSMatt Macy return; 2914eda14cbcSMatt Macy } 2915eda14cbcSMatt Macy 2916eda14cbcSMatt Macy /* 2917eda14cbcSMatt Macy * A null space map means that the entire metaslab is free 2918eda14cbcSMatt Macy * and thus is not fragmented. 2919eda14cbcSMatt Macy */ 2920eda14cbcSMatt Macy if (msp->ms_sm == NULL) { 2921eda14cbcSMatt Macy msp->ms_fragmentation = 0; 2922eda14cbcSMatt Macy return; 2923eda14cbcSMatt Macy } 2924eda14cbcSMatt Macy 2925eda14cbcSMatt Macy /* 2926eda14cbcSMatt Macy * If this metaslab's space map has not been upgraded, flag it 2927eda14cbcSMatt Macy * so that we upgrade next time we encounter it. 2928eda14cbcSMatt Macy */ 2929eda14cbcSMatt Macy if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2930eda14cbcSMatt Macy uint64_t txg = spa_syncing_txg(spa); 2931eda14cbcSMatt Macy vdev_t *vd = msp->ms_group->mg_vd; 2932eda14cbcSMatt Macy 2933eda14cbcSMatt Macy /* 2934eda14cbcSMatt Macy * If we've reached the final dirty txg, then we must 2935eda14cbcSMatt Macy * be shutting down the pool. We don't want to dirty 2936eda14cbcSMatt Macy * any data past this point so skip setting the condense 2937eda14cbcSMatt Macy * flag. We can retry this action the next time the pool 2938eda14cbcSMatt Macy * is imported. We also skip marking this metaslab for 2939eda14cbcSMatt Macy * condensing if the caller has explicitly set nodirty. 2940eda14cbcSMatt Macy */ 2941eda14cbcSMatt Macy if (!nodirty && 2942eda14cbcSMatt Macy spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2943eda14cbcSMatt Macy msp->ms_condense_wanted = B_TRUE; 2944eda14cbcSMatt Macy vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2945eda14cbcSMatt Macy zfs_dbgmsg("txg %llu, requesting force condense: " 294633b8c039SMartin Matuska "ms_id %llu, vdev_id %llu", (u_longlong_t)txg, 294733b8c039SMartin Matuska (u_longlong_t)msp->ms_id, 294833b8c039SMartin Matuska (u_longlong_t)vd->vdev_id); 2949eda14cbcSMatt Macy } 2950eda14cbcSMatt Macy msp->ms_fragmentation = ZFS_FRAG_INVALID; 2951eda14cbcSMatt Macy return; 2952eda14cbcSMatt Macy } 2953eda14cbcSMatt Macy 2954eda14cbcSMatt Macy for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2955eda14cbcSMatt Macy uint64_t space = 0; 2956eda14cbcSMatt Macy uint8_t shift = msp->ms_sm->sm_shift; 2957eda14cbcSMatt Macy 2958eda14cbcSMatt Macy int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2959eda14cbcSMatt Macy FRAGMENTATION_TABLE_SIZE - 1); 2960eda14cbcSMatt Macy 2961eda14cbcSMatt Macy if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2962eda14cbcSMatt Macy continue; 2963eda14cbcSMatt Macy 2964eda14cbcSMatt Macy space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2965eda14cbcSMatt Macy total += space; 2966eda14cbcSMatt Macy 2967eda14cbcSMatt Macy ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2968eda14cbcSMatt Macy fragmentation += space * zfs_frag_table[idx]; 2969eda14cbcSMatt Macy } 2970eda14cbcSMatt Macy 2971eda14cbcSMatt Macy if (total > 0) 2972eda14cbcSMatt Macy fragmentation /= total; 2973eda14cbcSMatt Macy ASSERT3U(fragmentation, <=, 100); 2974eda14cbcSMatt Macy 2975eda14cbcSMatt Macy msp->ms_fragmentation = fragmentation; 2976eda14cbcSMatt Macy } 2977eda14cbcSMatt Macy 2978eda14cbcSMatt Macy /* 2979eda14cbcSMatt Macy * Compute a weight -- a selection preference value -- for the given metaslab. 2980eda14cbcSMatt Macy * This is based on the amount of free space, the level of fragmentation, 2981eda14cbcSMatt Macy * the LBA range, and whether the metaslab is loaded. 2982eda14cbcSMatt Macy */ 2983eda14cbcSMatt Macy static uint64_t 2984eda14cbcSMatt Macy metaslab_space_weight(metaslab_t *msp) 2985eda14cbcSMatt Macy { 2986eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 2987eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 2988eda14cbcSMatt Macy uint64_t weight, space; 2989eda14cbcSMatt Macy 2990eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 2991eda14cbcSMatt Macy 2992eda14cbcSMatt Macy /* 2993eda14cbcSMatt Macy * The baseline weight is the metaslab's free space. 2994eda14cbcSMatt Macy */ 2995eda14cbcSMatt Macy space = msp->ms_size - metaslab_allocated_space(msp); 2996eda14cbcSMatt Macy 2997eda14cbcSMatt Macy if (metaslab_fragmentation_factor_enabled && 2998eda14cbcSMatt Macy msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2999eda14cbcSMatt Macy /* 3000eda14cbcSMatt Macy * Use the fragmentation information to inversely scale 3001eda14cbcSMatt Macy * down the baseline weight. We need to ensure that we 3002eda14cbcSMatt Macy * don't exclude this metaslab completely when it's 100% 3003eda14cbcSMatt Macy * fragmented. To avoid this we reduce the fragmented value 3004eda14cbcSMatt Macy * by 1. 3005eda14cbcSMatt Macy */ 3006eda14cbcSMatt Macy space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 3007eda14cbcSMatt Macy 3008eda14cbcSMatt Macy /* 3009eda14cbcSMatt Macy * If space < SPA_MINBLOCKSIZE, then we will not allocate from 3010eda14cbcSMatt Macy * this metaslab again. The fragmentation metric may have 3011eda14cbcSMatt Macy * decreased the space to something smaller than 3012eda14cbcSMatt Macy * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 3013eda14cbcSMatt Macy * so that we can consume any remaining space. 3014eda14cbcSMatt Macy */ 3015eda14cbcSMatt Macy if (space > 0 && space < SPA_MINBLOCKSIZE) 3016eda14cbcSMatt Macy space = SPA_MINBLOCKSIZE; 3017eda14cbcSMatt Macy } 3018eda14cbcSMatt Macy weight = space; 3019eda14cbcSMatt Macy 3020eda14cbcSMatt Macy /* 3021eda14cbcSMatt Macy * Modern disks have uniform bit density and constant angular velocity. 3022eda14cbcSMatt Macy * Therefore, the outer recording zones are faster (higher bandwidth) 3023eda14cbcSMatt Macy * than the inner zones by the ratio of outer to inner track diameter, 3024eda14cbcSMatt Macy * which is typically around 2:1. We account for this by assigning 3025eda14cbcSMatt Macy * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 3026eda14cbcSMatt Macy * In effect, this means that we'll select the metaslab with the most 3027eda14cbcSMatt Macy * free bandwidth rather than simply the one with the most free space. 3028eda14cbcSMatt Macy */ 3029eda14cbcSMatt Macy if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 3030eda14cbcSMatt Macy weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 3031eda14cbcSMatt Macy ASSERT(weight >= space && weight <= 2 * space); 3032eda14cbcSMatt Macy } 3033eda14cbcSMatt Macy 3034eda14cbcSMatt Macy /* 3035eda14cbcSMatt Macy * If this metaslab is one we're actively using, adjust its 3036eda14cbcSMatt Macy * weight to make it preferable to any inactive metaslab so 3037eda14cbcSMatt Macy * we'll polish it off. If the fragmentation on this metaslab 3038eda14cbcSMatt Macy * has exceed our threshold, then don't mark it active. 3039eda14cbcSMatt Macy */ 3040eda14cbcSMatt Macy if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3041eda14cbcSMatt Macy msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3042eda14cbcSMatt Macy weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3043eda14cbcSMatt Macy } 3044eda14cbcSMatt Macy 3045eda14cbcSMatt Macy WEIGHT_SET_SPACEBASED(weight); 3046eda14cbcSMatt Macy return (weight); 3047eda14cbcSMatt Macy } 3048eda14cbcSMatt Macy 3049eda14cbcSMatt Macy /* 3050eda14cbcSMatt Macy * Return the weight of the specified metaslab, according to the segment-based 3051eda14cbcSMatt Macy * weighting algorithm. The metaslab must be loaded. This function can 3052eda14cbcSMatt Macy * be called within a sync pass since it relies only on the metaslab's 3053eda14cbcSMatt Macy * range tree which is always accurate when the metaslab is loaded. 3054eda14cbcSMatt Macy */ 3055eda14cbcSMatt Macy static uint64_t 3056eda14cbcSMatt Macy metaslab_weight_from_range_tree(metaslab_t *msp) 3057eda14cbcSMatt Macy { 3058eda14cbcSMatt Macy uint64_t weight = 0; 3059eda14cbcSMatt Macy uint32_t segments = 0; 3060eda14cbcSMatt Macy 3061eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3062eda14cbcSMatt Macy 3063eda14cbcSMatt Macy for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3064eda14cbcSMatt Macy i--) { 3065eda14cbcSMatt Macy uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3066eda14cbcSMatt Macy int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3067eda14cbcSMatt Macy 3068eda14cbcSMatt Macy segments <<= 1; 3069eda14cbcSMatt Macy segments += msp->ms_allocatable->rt_histogram[i]; 3070eda14cbcSMatt Macy 3071eda14cbcSMatt Macy /* 3072eda14cbcSMatt Macy * The range tree provides more precision than the space map 3073eda14cbcSMatt Macy * and must be downgraded so that all values fit within the 3074eda14cbcSMatt Macy * space map's histogram. This allows us to compare loaded 3075eda14cbcSMatt Macy * vs. unloaded metaslabs to determine which metaslab is 3076eda14cbcSMatt Macy * considered "best". 3077eda14cbcSMatt Macy */ 3078eda14cbcSMatt Macy if (i > max_idx) 3079eda14cbcSMatt Macy continue; 3080eda14cbcSMatt Macy 3081eda14cbcSMatt Macy if (segments != 0) { 3082eda14cbcSMatt Macy WEIGHT_SET_COUNT(weight, segments); 3083eda14cbcSMatt Macy WEIGHT_SET_INDEX(weight, i); 3084eda14cbcSMatt Macy WEIGHT_SET_ACTIVE(weight, 0); 3085eda14cbcSMatt Macy break; 3086eda14cbcSMatt Macy } 3087eda14cbcSMatt Macy } 3088eda14cbcSMatt Macy return (weight); 3089eda14cbcSMatt Macy } 3090eda14cbcSMatt Macy 3091eda14cbcSMatt Macy /* 3092eda14cbcSMatt Macy * Calculate the weight based on the on-disk histogram. Should be applied 3093eda14cbcSMatt Macy * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3094eda14cbcSMatt Macy * give results consistent with the on-disk state 3095eda14cbcSMatt Macy */ 3096eda14cbcSMatt Macy static uint64_t 3097eda14cbcSMatt Macy metaslab_weight_from_spacemap(metaslab_t *msp) 3098eda14cbcSMatt Macy { 3099eda14cbcSMatt Macy space_map_t *sm = msp->ms_sm; 3100eda14cbcSMatt Macy ASSERT(!msp->ms_loaded); 3101eda14cbcSMatt Macy ASSERT(sm != NULL); 3102eda14cbcSMatt Macy ASSERT3U(space_map_object(sm), !=, 0); 3103eda14cbcSMatt Macy ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3104eda14cbcSMatt Macy 3105eda14cbcSMatt Macy /* 3106eda14cbcSMatt Macy * Create a joint histogram from all the segments that have made 3107eda14cbcSMatt Macy * it to the metaslab's space map histogram, that are not yet 3108eda14cbcSMatt Macy * available for allocation because they are still in the freeing 3109eda14cbcSMatt Macy * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3110eda14cbcSMatt Macy * these segments from the space map's histogram to get a more 3111eda14cbcSMatt Macy * accurate weight. 3112eda14cbcSMatt Macy */ 3113eda14cbcSMatt Macy uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3114eda14cbcSMatt Macy for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3115eda14cbcSMatt Macy deferspace_histogram[i] += msp->ms_synchist[i]; 3116eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3117eda14cbcSMatt Macy for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3118eda14cbcSMatt Macy deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3119eda14cbcSMatt Macy } 3120eda14cbcSMatt Macy } 3121eda14cbcSMatt Macy 3122eda14cbcSMatt Macy uint64_t weight = 0; 3123eda14cbcSMatt Macy for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3124eda14cbcSMatt Macy ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3125eda14cbcSMatt Macy deferspace_histogram[i]); 3126eda14cbcSMatt Macy uint64_t count = 3127eda14cbcSMatt Macy sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3128eda14cbcSMatt Macy if (count != 0) { 3129eda14cbcSMatt Macy WEIGHT_SET_COUNT(weight, count); 3130eda14cbcSMatt Macy WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3131eda14cbcSMatt Macy WEIGHT_SET_ACTIVE(weight, 0); 3132eda14cbcSMatt Macy break; 3133eda14cbcSMatt Macy } 3134eda14cbcSMatt Macy } 3135eda14cbcSMatt Macy return (weight); 3136eda14cbcSMatt Macy } 3137eda14cbcSMatt Macy 3138eda14cbcSMatt Macy /* 3139eda14cbcSMatt Macy * Compute a segment-based weight for the specified metaslab. The weight 3140eda14cbcSMatt Macy * is determined by highest bucket in the histogram. The information 3141eda14cbcSMatt Macy * for the highest bucket is encoded into the weight value. 3142eda14cbcSMatt Macy */ 3143eda14cbcSMatt Macy static uint64_t 3144eda14cbcSMatt Macy metaslab_segment_weight(metaslab_t *msp) 3145eda14cbcSMatt Macy { 3146eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 3147eda14cbcSMatt Macy uint64_t weight = 0; 3148eda14cbcSMatt Macy uint8_t shift = mg->mg_vd->vdev_ashift; 3149eda14cbcSMatt Macy 3150eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3151eda14cbcSMatt Macy 3152eda14cbcSMatt Macy /* 3153eda14cbcSMatt Macy * The metaslab is completely free. 3154eda14cbcSMatt Macy */ 3155eda14cbcSMatt Macy if (metaslab_allocated_space(msp) == 0) { 3156eda14cbcSMatt Macy int idx = highbit64(msp->ms_size) - 1; 3157eda14cbcSMatt Macy int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3158eda14cbcSMatt Macy 3159eda14cbcSMatt Macy if (idx < max_idx) { 3160eda14cbcSMatt Macy WEIGHT_SET_COUNT(weight, 1ULL); 3161eda14cbcSMatt Macy WEIGHT_SET_INDEX(weight, idx); 3162eda14cbcSMatt Macy } else { 3163eda14cbcSMatt Macy WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3164eda14cbcSMatt Macy WEIGHT_SET_INDEX(weight, max_idx); 3165eda14cbcSMatt Macy } 3166eda14cbcSMatt Macy WEIGHT_SET_ACTIVE(weight, 0); 3167eda14cbcSMatt Macy ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3168eda14cbcSMatt Macy return (weight); 3169eda14cbcSMatt Macy } 3170eda14cbcSMatt Macy 3171eda14cbcSMatt Macy ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3172eda14cbcSMatt Macy 3173eda14cbcSMatt Macy /* 3174eda14cbcSMatt Macy * If the metaslab is fully allocated then just make the weight 0. 3175eda14cbcSMatt Macy */ 3176eda14cbcSMatt Macy if (metaslab_allocated_space(msp) == msp->ms_size) 3177eda14cbcSMatt Macy return (0); 3178eda14cbcSMatt Macy /* 3179eda14cbcSMatt Macy * If the metaslab is already loaded, then use the range tree to 3180eda14cbcSMatt Macy * determine the weight. Otherwise, we rely on the space map information 3181eda14cbcSMatt Macy * to generate the weight. 3182eda14cbcSMatt Macy */ 3183eda14cbcSMatt Macy if (msp->ms_loaded) { 3184eda14cbcSMatt Macy weight = metaslab_weight_from_range_tree(msp); 3185eda14cbcSMatt Macy } else { 3186eda14cbcSMatt Macy weight = metaslab_weight_from_spacemap(msp); 3187eda14cbcSMatt Macy } 3188eda14cbcSMatt Macy 3189eda14cbcSMatt Macy /* 3190eda14cbcSMatt Macy * If the metaslab was active the last time we calculated its weight 3191eda14cbcSMatt Macy * then keep it active. We want to consume the entire region that 3192eda14cbcSMatt Macy * is associated with this weight. 3193eda14cbcSMatt Macy */ 3194eda14cbcSMatt Macy if (msp->ms_activation_weight != 0 && weight != 0) 3195eda14cbcSMatt Macy WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3196eda14cbcSMatt Macy return (weight); 3197eda14cbcSMatt Macy } 3198eda14cbcSMatt Macy 3199eda14cbcSMatt Macy /* 3200eda14cbcSMatt Macy * Determine if we should attempt to allocate from this metaslab. If the 3201eda14cbcSMatt Macy * metaslab is loaded, then we can determine if the desired allocation 3202eda14cbcSMatt Macy * can be satisfied by looking at the size of the maximum free segment 3203eda14cbcSMatt Macy * on that metaslab. Otherwise, we make our decision based on the metaslab's 3204eda14cbcSMatt Macy * weight. For segment-based weighting we can determine the maximum 3205eda14cbcSMatt Macy * allocation based on the index encoded in its value. For space-based 3206eda14cbcSMatt Macy * weights we rely on the entire weight (excluding the weight-type bit). 3207eda14cbcSMatt Macy */ 3208eda14cbcSMatt Macy static boolean_t 3209eda14cbcSMatt Macy metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3210eda14cbcSMatt Macy { 3211eda14cbcSMatt Macy /* 3212eda14cbcSMatt Macy * If the metaslab is loaded, ms_max_size is definitive and we can use 3213eda14cbcSMatt Macy * the fast check. If it's not, the ms_max_size is a lower bound (once 3214eda14cbcSMatt Macy * set), and we should use the fast check as long as we're not in 3215eda14cbcSMatt Macy * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3216eda14cbcSMatt Macy * seconds since the metaslab was unloaded. 3217eda14cbcSMatt Macy */ 3218eda14cbcSMatt Macy if (msp->ms_loaded || 3219eda14cbcSMatt Macy (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3220eda14cbcSMatt Macy msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3221eda14cbcSMatt Macy return (msp->ms_max_size >= asize); 3222eda14cbcSMatt Macy 3223eda14cbcSMatt Macy boolean_t should_allocate; 3224eda14cbcSMatt Macy if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3225eda14cbcSMatt Macy /* 3226eda14cbcSMatt Macy * The metaslab segment weight indicates segments in the 3227eda14cbcSMatt Macy * range [2^i, 2^(i+1)), where i is the index in the weight. 3228eda14cbcSMatt Macy * Since the asize might be in the middle of the range, we 3229eda14cbcSMatt Macy * should attempt the allocation if asize < 2^(i+1). 3230eda14cbcSMatt Macy */ 3231eda14cbcSMatt Macy should_allocate = (asize < 3232eda14cbcSMatt Macy 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3233eda14cbcSMatt Macy } else { 3234eda14cbcSMatt Macy should_allocate = (asize <= 3235eda14cbcSMatt Macy (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3236eda14cbcSMatt Macy } 3237eda14cbcSMatt Macy 3238eda14cbcSMatt Macy return (should_allocate); 3239eda14cbcSMatt Macy } 3240eda14cbcSMatt Macy 3241eda14cbcSMatt Macy static uint64_t 3242eda14cbcSMatt Macy metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3243eda14cbcSMatt Macy { 3244eda14cbcSMatt Macy vdev_t *vd = msp->ms_group->mg_vd; 3245eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 3246eda14cbcSMatt Macy uint64_t weight; 3247eda14cbcSMatt Macy 3248eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3249eda14cbcSMatt Macy 3250eda14cbcSMatt Macy metaslab_set_fragmentation(msp, nodirty); 3251eda14cbcSMatt Macy 3252eda14cbcSMatt Macy /* 3253eda14cbcSMatt Macy * Update the maximum size. If the metaslab is loaded, this will 3254eda14cbcSMatt Macy * ensure that we get an accurate maximum size if newly freed space 3255eda14cbcSMatt Macy * has been added back into the free tree. If the metaslab is 3256eda14cbcSMatt Macy * unloaded, we check if there's a larger free segment in the 3257eda14cbcSMatt Macy * unflushed frees. This is a lower bound on the largest allocatable 3258eda14cbcSMatt Macy * segment size. Coalescing of adjacent entries may reveal larger 3259eda14cbcSMatt Macy * allocatable segments, but we aren't aware of those until loading 3260eda14cbcSMatt Macy * the space map into a range tree. 3261eda14cbcSMatt Macy */ 3262eda14cbcSMatt Macy if (msp->ms_loaded) { 3263eda14cbcSMatt Macy msp->ms_max_size = metaslab_largest_allocatable(msp); 3264eda14cbcSMatt Macy } else { 3265eda14cbcSMatt Macy msp->ms_max_size = MAX(msp->ms_max_size, 3266eda14cbcSMatt Macy metaslab_largest_unflushed_free(msp)); 3267eda14cbcSMatt Macy } 3268eda14cbcSMatt Macy 3269eda14cbcSMatt Macy /* 3270eda14cbcSMatt Macy * Segment-based weighting requires space map histogram support. 3271eda14cbcSMatt Macy */ 3272eda14cbcSMatt Macy if (zfs_metaslab_segment_weight_enabled && 3273eda14cbcSMatt Macy spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3274eda14cbcSMatt Macy (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3275eda14cbcSMatt Macy sizeof (space_map_phys_t))) { 3276eda14cbcSMatt Macy weight = metaslab_segment_weight(msp); 3277eda14cbcSMatt Macy } else { 3278eda14cbcSMatt Macy weight = metaslab_space_weight(msp); 3279eda14cbcSMatt Macy } 3280eda14cbcSMatt Macy return (weight); 3281eda14cbcSMatt Macy } 3282eda14cbcSMatt Macy 3283eda14cbcSMatt Macy void 3284eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3285eda14cbcSMatt Macy { 3286eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3287eda14cbcSMatt Macy 3288eda14cbcSMatt Macy /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3289eda14cbcSMatt Macy uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3290eda14cbcSMatt Macy metaslab_group_sort(msp->ms_group, msp, 3291eda14cbcSMatt Macy metaslab_weight(msp, B_FALSE) | was_active); 3292eda14cbcSMatt Macy } 3293eda14cbcSMatt Macy 3294eda14cbcSMatt Macy static int 3295eda14cbcSMatt Macy metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3296eda14cbcSMatt Macy int allocator, uint64_t activation_weight) 3297eda14cbcSMatt Macy { 3298eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3299eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3300eda14cbcSMatt Macy 3301eda14cbcSMatt Macy /* 3302eda14cbcSMatt Macy * If we're activating for the claim code, we don't want to actually 3303eda14cbcSMatt Macy * set the metaslab up for a specific allocator. 3304eda14cbcSMatt Macy */ 3305eda14cbcSMatt Macy if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3306eda14cbcSMatt Macy ASSERT0(msp->ms_activation_weight); 3307eda14cbcSMatt Macy msp->ms_activation_weight = msp->ms_weight; 3308eda14cbcSMatt Macy metaslab_group_sort(mg, msp, msp->ms_weight | 3309eda14cbcSMatt Macy activation_weight); 3310eda14cbcSMatt Macy return (0); 3311eda14cbcSMatt Macy } 3312eda14cbcSMatt Macy 3313eda14cbcSMatt Macy metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3314eda14cbcSMatt Macy &mga->mga_primary : &mga->mga_secondary); 3315eda14cbcSMatt Macy 3316eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 3317eda14cbcSMatt Macy if (*mspp != NULL) { 3318eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 3319eda14cbcSMatt Macy return (EEXIST); 3320eda14cbcSMatt Macy } 3321eda14cbcSMatt Macy 3322eda14cbcSMatt Macy *mspp = msp; 3323eda14cbcSMatt Macy ASSERT3S(msp->ms_allocator, ==, -1); 3324eda14cbcSMatt Macy msp->ms_allocator = allocator; 3325eda14cbcSMatt Macy msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3326eda14cbcSMatt Macy 3327eda14cbcSMatt Macy ASSERT0(msp->ms_activation_weight); 3328eda14cbcSMatt Macy msp->ms_activation_weight = msp->ms_weight; 3329eda14cbcSMatt Macy metaslab_group_sort_impl(mg, msp, 3330eda14cbcSMatt Macy msp->ms_weight | activation_weight); 3331eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 3332eda14cbcSMatt Macy 3333eda14cbcSMatt Macy return (0); 3334eda14cbcSMatt Macy } 3335eda14cbcSMatt Macy 3336eda14cbcSMatt Macy static int 3337eda14cbcSMatt Macy metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3338eda14cbcSMatt Macy { 3339eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3340eda14cbcSMatt Macy 3341eda14cbcSMatt Macy /* 3342eda14cbcSMatt Macy * The current metaslab is already activated for us so there 3343eda14cbcSMatt Macy * is nothing to do. Already activated though, doesn't mean 3344eda14cbcSMatt Macy * that this metaslab is activated for our allocator nor our 3345eda14cbcSMatt Macy * requested activation weight. The metaslab could have started 3346eda14cbcSMatt Macy * as an active one for our allocator but changed allocators 3347eda14cbcSMatt Macy * while we were waiting to grab its ms_lock or we stole it 3348eda14cbcSMatt Macy * [see find_valid_metaslab()]. This means that there is a 3349eda14cbcSMatt Macy * possibility of passivating a metaslab of another allocator 3350eda14cbcSMatt Macy * or from a different activation mask, from this thread. 3351eda14cbcSMatt Macy */ 3352eda14cbcSMatt Macy if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3353eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3354eda14cbcSMatt Macy return (0); 3355eda14cbcSMatt Macy } 3356eda14cbcSMatt Macy 3357eda14cbcSMatt Macy int error = metaslab_load(msp); 3358eda14cbcSMatt Macy if (error != 0) { 3359eda14cbcSMatt Macy metaslab_group_sort(msp->ms_group, msp, 0); 3360eda14cbcSMatt Macy return (error); 3361eda14cbcSMatt Macy } 3362eda14cbcSMatt Macy 3363eda14cbcSMatt Macy /* 3364eda14cbcSMatt Macy * When entering metaslab_load() we may have dropped the 3365eda14cbcSMatt Macy * ms_lock because we were loading this metaslab, or we 3366eda14cbcSMatt Macy * were waiting for another thread to load it for us. In 3367eda14cbcSMatt Macy * that scenario, we recheck the weight of the metaslab 3368eda14cbcSMatt Macy * to see if it was activated by another thread. 3369eda14cbcSMatt Macy * 3370eda14cbcSMatt Macy * If the metaslab was activated for another allocator or 3371eda14cbcSMatt Macy * it was activated with a different activation weight (e.g. 3372eda14cbcSMatt Macy * we wanted to make it a primary but it was activated as 3373eda14cbcSMatt Macy * secondary) we return error (EBUSY). 3374eda14cbcSMatt Macy * 3375eda14cbcSMatt Macy * If the metaslab was activated for the same allocator 3376eda14cbcSMatt Macy * and requested activation mask, skip activating it. 3377eda14cbcSMatt Macy */ 3378eda14cbcSMatt Macy if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3379eda14cbcSMatt Macy if (msp->ms_allocator != allocator) 3380eda14cbcSMatt Macy return (EBUSY); 3381eda14cbcSMatt Macy 3382eda14cbcSMatt Macy if ((msp->ms_weight & activation_weight) == 0) 3383eda14cbcSMatt Macy return (SET_ERROR(EBUSY)); 3384eda14cbcSMatt Macy 3385eda14cbcSMatt Macy EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3386eda14cbcSMatt Macy msp->ms_primary); 3387eda14cbcSMatt Macy return (0); 3388eda14cbcSMatt Macy } 3389eda14cbcSMatt Macy 3390eda14cbcSMatt Macy /* 3391eda14cbcSMatt Macy * If the metaslab has literally 0 space, it will have weight 0. In 3392eda14cbcSMatt Macy * that case, don't bother activating it. This can happen if the 3393eda14cbcSMatt Macy * metaslab had space during find_valid_metaslab, but another thread 3394eda14cbcSMatt Macy * loaded it and used all that space while we were waiting to grab the 3395eda14cbcSMatt Macy * lock. 3396eda14cbcSMatt Macy */ 3397eda14cbcSMatt Macy if (msp->ms_weight == 0) { 3398eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_allocatable)); 3399eda14cbcSMatt Macy return (SET_ERROR(ENOSPC)); 3400eda14cbcSMatt Macy } 3401eda14cbcSMatt Macy 3402eda14cbcSMatt Macy if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3403eda14cbcSMatt Macy allocator, activation_weight)) != 0) { 3404eda14cbcSMatt Macy return (error); 3405eda14cbcSMatt Macy } 3406eda14cbcSMatt Macy 3407eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3408eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3409eda14cbcSMatt Macy 3410eda14cbcSMatt Macy return (0); 3411eda14cbcSMatt Macy } 3412eda14cbcSMatt Macy 3413eda14cbcSMatt Macy static void 3414eda14cbcSMatt Macy metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3415eda14cbcSMatt Macy uint64_t weight) 3416eda14cbcSMatt Macy { 3417eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3418eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3419eda14cbcSMatt Macy 3420eda14cbcSMatt Macy if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3421eda14cbcSMatt Macy metaslab_group_sort(mg, msp, weight); 3422eda14cbcSMatt Macy return; 3423eda14cbcSMatt Macy } 3424eda14cbcSMatt Macy 3425eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 3426eda14cbcSMatt Macy ASSERT3P(msp->ms_group, ==, mg); 3427eda14cbcSMatt Macy ASSERT3S(0, <=, msp->ms_allocator); 3428eda14cbcSMatt Macy ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3429eda14cbcSMatt Macy 3430eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3431eda14cbcSMatt Macy if (msp->ms_primary) { 3432eda14cbcSMatt Macy ASSERT3P(mga->mga_primary, ==, msp); 3433eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3434eda14cbcSMatt Macy mga->mga_primary = NULL; 3435eda14cbcSMatt Macy } else { 3436eda14cbcSMatt Macy ASSERT3P(mga->mga_secondary, ==, msp); 3437eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3438eda14cbcSMatt Macy mga->mga_secondary = NULL; 3439eda14cbcSMatt Macy } 3440eda14cbcSMatt Macy msp->ms_allocator = -1; 3441eda14cbcSMatt Macy metaslab_group_sort_impl(mg, msp, weight); 3442eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 3443eda14cbcSMatt Macy } 3444eda14cbcSMatt Macy 3445eda14cbcSMatt Macy static void 3446eda14cbcSMatt Macy metaslab_passivate(metaslab_t *msp, uint64_t weight) 3447eda14cbcSMatt Macy { 3448eda14cbcSMatt Macy uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3449eda14cbcSMatt Macy 3450eda14cbcSMatt Macy /* 3451eda14cbcSMatt Macy * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3452eda14cbcSMatt Macy * this metaslab again. In that case, it had better be empty, 3453eda14cbcSMatt Macy * or we would be leaving space on the table. 3454eda14cbcSMatt Macy */ 3455eda14cbcSMatt Macy ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3456eda14cbcSMatt Macy size >= SPA_MINBLOCKSIZE || 3457eda14cbcSMatt Macy range_tree_space(msp->ms_allocatable) == 0); 3458eda14cbcSMatt Macy ASSERT0(weight & METASLAB_ACTIVE_MASK); 3459eda14cbcSMatt Macy 3460eda14cbcSMatt Macy ASSERT(msp->ms_activation_weight != 0); 3461eda14cbcSMatt Macy msp->ms_activation_weight = 0; 3462eda14cbcSMatt Macy metaslab_passivate_allocator(msp->ms_group, msp, weight); 3463eda14cbcSMatt Macy ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3464eda14cbcSMatt Macy } 3465eda14cbcSMatt Macy 3466eda14cbcSMatt Macy /* 3467eda14cbcSMatt Macy * Segment-based metaslabs are activated once and remain active until 3468eda14cbcSMatt Macy * we either fail an allocation attempt (similar to space-based metaslabs) 3469eda14cbcSMatt Macy * or have exhausted the free space in zfs_metaslab_switch_threshold 3470eda14cbcSMatt Macy * buckets since the metaslab was activated. This function checks to see 3471eda14cbcSMatt Macy * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3472eda14cbcSMatt Macy * metaslab and passivates it proactively. This will allow us to select a 3473eda14cbcSMatt Macy * metaslab with a larger contiguous region, if any, remaining within this 3474eda14cbcSMatt Macy * metaslab group. If we're in sync pass > 1, then we continue using this 3475eda14cbcSMatt Macy * metaslab so that we don't dirty more block and cause more sync passes. 3476eda14cbcSMatt Macy */ 3477eda14cbcSMatt Macy static void 3478eda14cbcSMatt Macy metaslab_segment_may_passivate(metaslab_t *msp) 3479eda14cbcSMatt Macy { 3480eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3481eda14cbcSMatt Macy 3482eda14cbcSMatt Macy if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3483eda14cbcSMatt Macy return; 3484eda14cbcSMatt Macy 3485eda14cbcSMatt Macy /* 3486eda14cbcSMatt Macy * Since we are in the middle of a sync pass, the most accurate 3487eda14cbcSMatt Macy * information that is accessible to us is the in-core range tree 3488eda14cbcSMatt Macy * histogram; calculate the new weight based on that information. 3489eda14cbcSMatt Macy */ 3490eda14cbcSMatt Macy uint64_t weight = metaslab_weight_from_range_tree(msp); 3491eda14cbcSMatt Macy int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3492eda14cbcSMatt Macy int current_idx = WEIGHT_GET_INDEX(weight); 3493eda14cbcSMatt Macy 3494eda14cbcSMatt Macy if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3495eda14cbcSMatt Macy metaslab_passivate(msp, weight); 3496eda14cbcSMatt Macy } 3497eda14cbcSMatt Macy 3498eda14cbcSMatt Macy static void 3499eda14cbcSMatt Macy metaslab_preload(void *arg) 3500eda14cbcSMatt Macy { 3501eda14cbcSMatt Macy metaslab_t *msp = arg; 3502eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 3503eda14cbcSMatt Macy spa_t *spa = mc->mc_spa; 3504eda14cbcSMatt Macy fstrans_cookie_t cookie = spl_fstrans_mark(); 3505eda14cbcSMatt Macy 3506eda14cbcSMatt Macy ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3507eda14cbcSMatt Macy 3508eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 3509eda14cbcSMatt Macy (void) metaslab_load(msp); 3510eda14cbcSMatt Macy metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3511eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 3512eda14cbcSMatt Macy spl_fstrans_unmark(cookie); 3513eda14cbcSMatt Macy } 3514eda14cbcSMatt Macy 3515eda14cbcSMatt Macy static void 3516eda14cbcSMatt Macy metaslab_group_preload(metaslab_group_t *mg) 3517eda14cbcSMatt Macy { 3518eda14cbcSMatt Macy spa_t *spa = mg->mg_vd->vdev_spa; 3519eda14cbcSMatt Macy metaslab_t *msp; 3520eda14cbcSMatt Macy avl_tree_t *t = &mg->mg_metaslab_tree; 3521eda14cbcSMatt Macy int m = 0; 3522eda14cbcSMatt Macy 3523eda14cbcSMatt Macy if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3524eda14cbcSMatt Macy taskq_wait_outstanding(mg->mg_taskq, 0); 3525eda14cbcSMatt Macy return; 3526eda14cbcSMatt Macy } 3527eda14cbcSMatt Macy 3528eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 3529eda14cbcSMatt Macy 3530eda14cbcSMatt Macy /* 3531eda14cbcSMatt Macy * Load the next potential metaslabs 3532eda14cbcSMatt Macy */ 3533eda14cbcSMatt Macy for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3534eda14cbcSMatt Macy ASSERT3P(msp->ms_group, ==, mg); 3535eda14cbcSMatt Macy 3536eda14cbcSMatt Macy /* 3537eda14cbcSMatt Macy * We preload only the maximum number of metaslabs specified 3538eda14cbcSMatt Macy * by metaslab_preload_limit. If a metaslab is being forced 3539eda14cbcSMatt Macy * to condense then we preload it too. This will ensure 3540eda14cbcSMatt Macy * that force condensing happens in the next txg. 3541eda14cbcSMatt Macy */ 3542eda14cbcSMatt Macy if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3543eda14cbcSMatt Macy continue; 3544eda14cbcSMatt Macy } 3545eda14cbcSMatt Macy 3546eda14cbcSMatt Macy VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3547eda14cbcSMatt Macy msp, TQ_SLEEP) != TASKQID_INVALID); 3548eda14cbcSMatt Macy } 3549eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 3550eda14cbcSMatt Macy } 3551eda14cbcSMatt Macy 3552eda14cbcSMatt Macy /* 3553eda14cbcSMatt Macy * Determine if the space map's on-disk footprint is past our tolerance for 3554eda14cbcSMatt Macy * inefficiency. We would like to use the following criteria to make our 3555eda14cbcSMatt Macy * decision: 3556eda14cbcSMatt Macy * 3557eda14cbcSMatt Macy * 1. Do not condense if the size of the space map object would dramatically 3558eda14cbcSMatt Macy * increase as a result of writing out the free space range tree. 3559eda14cbcSMatt Macy * 3560eda14cbcSMatt Macy * 2. Condense if the on on-disk space map representation is at least 3561eda14cbcSMatt Macy * zfs_condense_pct/100 times the size of the optimal representation 3562eda14cbcSMatt Macy * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3563eda14cbcSMatt Macy * 3564eda14cbcSMatt Macy * 3. Do not condense if the on-disk size of the space map does not actually 3565eda14cbcSMatt Macy * decrease. 3566eda14cbcSMatt Macy * 3567eda14cbcSMatt Macy * Unfortunately, we cannot compute the on-disk size of the space map in this 3568eda14cbcSMatt Macy * context because we cannot accurately compute the effects of compression, etc. 3569eda14cbcSMatt Macy * Instead, we apply the heuristic described in the block comment for 3570eda14cbcSMatt Macy * zfs_metaslab_condense_block_threshold - we only condense if the space used 3571eda14cbcSMatt Macy * is greater than a threshold number of blocks. 3572eda14cbcSMatt Macy */ 3573eda14cbcSMatt Macy static boolean_t 3574eda14cbcSMatt Macy metaslab_should_condense(metaslab_t *msp) 3575eda14cbcSMatt Macy { 3576eda14cbcSMatt Macy space_map_t *sm = msp->ms_sm; 3577eda14cbcSMatt Macy vdev_t *vd = msp->ms_group->mg_vd; 3578be181ee2SMartin Matuska uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift; 3579eda14cbcSMatt Macy 3580eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3581eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3582eda14cbcSMatt Macy ASSERT(sm != NULL); 3583eda14cbcSMatt Macy ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3584eda14cbcSMatt Macy 3585eda14cbcSMatt Macy /* 3586eda14cbcSMatt Macy * We always condense metaslabs that are empty and metaslabs for 3587eda14cbcSMatt Macy * which a condense request has been made. 3588eda14cbcSMatt Macy */ 3589eda14cbcSMatt Macy if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3590eda14cbcSMatt Macy msp->ms_condense_wanted) 3591eda14cbcSMatt Macy return (B_TRUE); 3592eda14cbcSMatt Macy 3593eda14cbcSMatt Macy uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3594eda14cbcSMatt Macy uint64_t object_size = space_map_length(sm); 3595eda14cbcSMatt Macy uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3596eda14cbcSMatt Macy msp->ms_allocatable, SM_NO_VDEVID); 3597eda14cbcSMatt Macy 3598eda14cbcSMatt Macy return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3599eda14cbcSMatt Macy object_size > zfs_metaslab_condense_block_threshold * record_size); 3600eda14cbcSMatt Macy } 3601eda14cbcSMatt Macy 3602eda14cbcSMatt Macy /* 3603eda14cbcSMatt Macy * Condense the on-disk space map representation to its minimized form. 3604eda14cbcSMatt Macy * The minimized form consists of a small number of allocations followed 3605eda14cbcSMatt Macy * by the entries of the free range tree (ms_allocatable). The condensed 3606eda14cbcSMatt Macy * spacemap contains all the entries of previous TXGs (including those in 3607eda14cbcSMatt Macy * the pool-wide log spacemaps; thus this is effectively a superset of 3608eda14cbcSMatt Macy * metaslab_flush()), but this TXG's entries still need to be written. 3609eda14cbcSMatt Macy */ 3610eda14cbcSMatt Macy static void 3611eda14cbcSMatt Macy metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3612eda14cbcSMatt Macy { 3613eda14cbcSMatt Macy range_tree_t *condense_tree; 3614eda14cbcSMatt Macy space_map_t *sm = msp->ms_sm; 3615eda14cbcSMatt Macy uint64_t txg = dmu_tx_get_txg(tx); 3616eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3617eda14cbcSMatt Macy 3618eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3619eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 3620eda14cbcSMatt Macy ASSERT(msp->ms_sm != NULL); 3621eda14cbcSMatt Macy 3622eda14cbcSMatt Macy /* 3623eda14cbcSMatt Macy * In order to condense the space map, we need to change it so it 3624eda14cbcSMatt Macy * only describes which segments are currently allocated and free. 3625eda14cbcSMatt Macy * 3626eda14cbcSMatt Macy * All the current free space resides in the ms_allocatable, all 3627eda14cbcSMatt Macy * the ms_defer trees, and all the ms_allocating trees. We ignore 3628eda14cbcSMatt Macy * ms_freed because it is empty because we're in sync pass 1. We 3629eda14cbcSMatt Macy * ignore ms_freeing because these changes are not yet reflected 3630eda14cbcSMatt Macy * in the spacemap (they will be written later this txg). 3631eda14cbcSMatt Macy * 3632eda14cbcSMatt Macy * So to truncate the space map to represent all the entries of 3633eda14cbcSMatt Macy * previous TXGs we do the following: 3634eda14cbcSMatt Macy * 3635eda14cbcSMatt Macy * 1] We create a range tree (condense tree) that is 100% empty. 3636eda14cbcSMatt Macy * 2] We add to it all segments found in the ms_defer trees 3637eda14cbcSMatt Macy * as those segments are marked as free in the original space 3638eda14cbcSMatt Macy * map. We do the same with the ms_allocating trees for the same 3639eda14cbcSMatt Macy * reason. Adding these segments should be a relatively 3640eda14cbcSMatt Macy * inexpensive operation since we expect these trees to have a 3641eda14cbcSMatt Macy * small number of nodes. 3642eda14cbcSMatt Macy * 3] We vacate any unflushed allocs, since they are not frees we 3643eda14cbcSMatt Macy * need to add to the condense tree. Then we vacate any 3644eda14cbcSMatt Macy * unflushed frees as they should already be part of ms_allocatable. 3645eda14cbcSMatt Macy * 4] At this point, we would ideally like to add all segments 3646eda14cbcSMatt Macy * in the ms_allocatable tree from the condense tree. This way 3647eda14cbcSMatt Macy * we would write all the entries of the condense tree as the 3648eda14cbcSMatt Macy * condensed space map, which would only contain freed 3649eda14cbcSMatt Macy * segments with everything else assumed to be allocated. 3650eda14cbcSMatt Macy * 3651eda14cbcSMatt Macy * Doing so can be prohibitively expensive as ms_allocatable can 3652eda14cbcSMatt Macy * be large, and therefore computationally expensive to add to 3653eda14cbcSMatt Macy * the condense_tree. Instead we first sync out an entry marking 3654eda14cbcSMatt Macy * everything as allocated, then the condense_tree and then the 3655eda14cbcSMatt Macy * ms_allocatable, in the condensed space map. While this is not 3656eda14cbcSMatt Macy * optimal, it is typically close to optimal and more importantly 3657eda14cbcSMatt Macy * much cheaper to compute. 3658eda14cbcSMatt Macy * 3659eda14cbcSMatt Macy * 5] Finally, as both of the unflushed trees were written to our 3660eda14cbcSMatt Macy * new and condensed metaslab space map, we basically flushed 3661eda14cbcSMatt Macy * all the unflushed changes to disk, thus we call 3662eda14cbcSMatt Macy * metaslab_flush_update(). 3663eda14cbcSMatt Macy */ 3664eda14cbcSMatt Macy ASSERT3U(spa_sync_pass(spa), ==, 1); 3665eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3666eda14cbcSMatt Macy 3667eda14cbcSMatt Macy zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 366833b8c039SMartin Matuska "spa %s, smp size %llu, segments %llu, forcing condense=%s", 366933b8c039SMartin Matuska (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp, 367033b8c039SMartin Matuska (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 367133b8c039SMartin Matuska spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm), 367233b8c039SMartin Matuska (u_longlong_t)range_tree_numsegs(msp->ms_allocatable), 3673eda14cbcSMatt Macy msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3674eda14cbcSMatt Macy 3675eda14cbcSMatt Macy msp->ms_condense_wanted = B_FALSE; 3676eda14cbcSMatt Macy 3677eda14cbcSMatt Macy range_seg_type_t type; 3678eda14cbcSMatt Macy uint64_t shift, start; 3679eda14cbcSMatt Macy type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3680eda14cbcSMatt Macy &start, &shift); 3681eda14cbcSMatt Macy 3682eda14cbcSMatt Macy condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3683eda14cbcSMatt Macy 3684eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3685eda14cbcSMatt Macy range_tree_walk(msp->ms_defer[t], 3686eda14cbcSMatt Macy range_tree_add, condense_tree); 3687eda14cbcSMatt Macy } 3688eda14cbcSMatt Macy 3689eda14cbcSMatt Macy for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3690eda14cbcSMatt Macy range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3691eda14cbcSMatt Macy range_tree_add, condense_tree); 3692eda14cbcSMatt Macy } 3693eda14cbcSMatt Macy 3694eda14cbcSMatt Macy ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3695eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp)); 3696eda14cbcSMatt Macy spa->spa_unflushed_stats.sus_memused -= 3697eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp); 3698eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3699eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3700eda14cbcSMatt Macy 3701eda14cbcSMatt Macy /* 3702eda14cbcSMatt Macy * We're about to drop the metaslab's lock thus allowing other 3703eda14cbcSMatt Macy * consumers to change it's content. Set the metaslab's ms_condensing 3704eda14cbcSMatt Macy * flag to ensure that allocations on this metaslab do not occur 3705eda14cbcSMatt Macy * while we're in the middle of committing it to disk. This is only 3706eda14cbcSMatt Macy * critical for ms_allocatable as all other range trees use per TXG 3707eda14cbcSMatt Macy * views of their content. 3708eda14cbcSMatt Macy */ 3709eda14cbcSMatt Macy msp->ms_condensing = B_TRUE; 3710eda14cbcSMatt Macy 3711eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 3712eda14cbcSMatt Macy uint64_t object = space_map_object(msp->ms_sm); 3713eda14cbcSMatt Macy space_map_truncate(sm, 3714eda14cbcSMatt Macy spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3715eda14cbcSMatt Macy zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3716eda14cbcSMatt Macy 3717eda14cbcSMatt Macy /* 3718eda14cbcSMatt Macy * space_map_truncate() may have reallocated the spacemap object. 3719eda14cbcSMatt Macy * If so, update the vdev_ms_array. 3720eda14cbcSMatt Macy */ 3721eda14cbcSMatt Macy if (space_map_object(msp->ms_sm) != object) { 3722eda14cbcSMatt Macy object = space_map_object(msp->ms_sm); 3723eda14cbcSMatt Macy dmu_write(spa->spa_meta_objset, 3724eda14cbcSMatt Macy msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3725eda14cbcSMatt Macy msp->ms_id, sizeof (uint64_t), &object, tx); 3726eda14cbcSMatt Macy } 3727eda14cbcSMatt Macy 3728eda14cbcSMatt Macy /* 3729eda14cbcSMatt Macy * Note: 3730eda14cbcSMatt Macy * When the log space map feature is enabled, each space map will 3731eda14cbcSMatt Macy * always have ALLOCS followed by FREES for each sync pass. This is 3732eda14cbcSMatt Macy * typically true even when the log space map feature is disabled, 3733eda14cbcSMatt Macy * except from the case where a metaslab goes through metaslab_sync() 3734eda14cbcSMatt Macy * and gets condensed. In that case the metaslab's space map will have 3735eda14cbcSMatt Macy * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3736eda14cbcSMatt Macy * followed by FREES (due to space_map_write() in metaslab_sync()) for 3737eda14cbcSMatt Macy * sync pass 1. 3738eda14cbcSMatt Macy */ 3739eda14cbcSMatt Macy range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3740eda14cbcSMatt Macy shift); 3741eda14cbcSMatt Macy range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3742eda14cbcSMatt Macy space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3743eda14cbcSMatt Macy space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3744eda14cbcSMatt Macy space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3745eda14cbcSMatt Macy 3746eda14cbcSMatt Macy range_tree_vacate(condense_tree, NULL, NULL); 3747eda14cbcSMatt Macy range_tree_destroy(condense_tree); 3748eda14cbcSMatt Macy range_tree_vacate(tmp_tree, NULL, NULL); 3749eda14cbcSMatt Macy range_tree_destroy(tmp_tree); 3750eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 3751eda14cbcSMatt Macy 3752eda14cbcSMatt Macy msp->ms_condensing = B_FALSE; 3753eda14cbcSMatt Macy metaslab_flush_update(msp, tx); 3754eda14cbcSMatt Macy } 3755eda14cbcSMatt Macy 3756716fd348SMartin Matuska static void 3757716fd348SMartin Matuska metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx) 3758716fd348SMartin Matuska { 3759716fd348SMartin Matuska spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3760716fd348SMartin Matuska ASSERT(spa_syncing_log_sm(spa) != NULL); 3761716fd348SMartin Matuska ASSERT(msp->ms_sm != NULL); 3762716fd348SMartin Matuska ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3763716fd348SMartin Matuska ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3764716fd348SMartin Matuska 3765716fd348SMartin Matuska mutex_enter(&spa->spa_flushed_ms_lock); 3766716fd348SMartin Matuska metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3767716fd348SMartin Matuska metaslab_set_unflushed_dirty(msp, B_TRUE); 3768716fd348SMartin Matuska avl_add(&spa->spa_metaslabs_by_flushed, msp); 3769716fd348SMartin Matuska mutex_exit(&spa->spa_flushed_ms_lock); 3770716fd348SMartin Matuska 3771716fd348SMartin Matuska spa_log_sm_increment_current_mscount(spa); 3772716fd348SMartin Matuska spa_log_summary_add_flushed_metaslab(spa, B_TRUE); 3773716fd348SMartin Matuska } 3774716fd348SMartin Matuska 3775716fd348SMartin Matuska void 3776716fd348SMartin Matuska metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty) 3777716fd348SMartin Matuska { 3778716fd348SMartin Matuska spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3779716fd348SMartin Matuska ASSERT(spa_syncing_log_sm(spa) != NULL); 3780716fd348SMartin Matuska ASSERT(msp->ms_sm != NULL); 3781716fd348SMartin Matuska ASSERT(metaslab_unflushed_txg(msp) != 0); 3782716fd348SMartin Matuska ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3783716fd348SMartin Matuska ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3784716fd348SMartin Matuska ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3785716fd348SMartin Matuska 3786716fd348SMartin Matuska VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3787716fd348SMartin Matuska 3788716fd348SMartin Matuska /* update metaslab's position in our flushing tree */ 3789716fd348SMartin Matuska uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3790716fd348SMartin Matuska boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp); 3791716fd348SMartin Matuska mutex_enter(&spa->spa_flushed_ms_lock); 3792716fd348SMartin Matuska avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3793716fd348SMartin Matuska metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3794716fd348SMartin Matuska metaslab_set_unflushed_dirty(msp, dirty); 3795716fd348SMartin Matuska avl_add(&spa->spa_metaslabs_by_flushed, msp); 3796716fd348SMartin Matuska mutex_exit(&spa->spa_flushed_ms_lock); 3797716fd348SMartin Matuska 3798716fd348SMartin Matuska /* update metaslab counts of spa_log_sm_t nodes */ 3799716fd348SMartin Matuska spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3800716fd348SMartin Matuska spa_log_sm_increment_current_mscount(spa); 3801716fd348SMartin Matuska 3802716fd348SMartin Matuska /* update log space map summary */ 3803716fd348SMartin Matuska spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg, 3804716fd348SMartin Matuska ms_prev_flushed_dirty); 3805716fd348SMartin Matuska spa_log_summary_add_flushed_metaslab(spa, dirty); 3806716fd348SMartin Matuska 3807716fd348SMartin Matuska /* cleanup obsolete logs if any */ 3808716fd348SMartin Matuska spa_cleanup_old_sm_logs(spa, tx); 3809716fd348SMartin Matuska } 3810716fd348SMartin Matuska 3811eda14cbcSMatt Macy /* 3812eda14cbcSMatt Macy * Called when the metaslab has been flushed (its own spacemap now reflects 3813eda14cbcSMatt Macy * all the contents of the pool-wide spacemap log). Updates the metaslab's 3814eda14cbcSMatt Macy * metadata and any pool-wide related log space map data (e.g. summary, 3815eda14cbcSMatt Macy * obsolete logs, etc..) to reflect that. 3816eda14cbcSMatt Macy */ 3817eda14cbcSMatt Macy static void 3818eda14cbcSMatt Macy metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3819eda14cbcSMatt Macy { 3820eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 3821eda14cbcSMatt Macy spa_t *spa = mg->mg_vd->vdev_spa; 3822eda14cbcSMatt Macy 3823eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3824eda14cbcSMatt Macy 3825eda14cbcSMatt Macy ASSERT3U(spa_sync_pass(spa), ==, 1); 3826eda14cbcSMatt Macy 3827eda14cbcSMatt Macy /* 3828eda14cbcSMatt Macy * Just because a metaslab got flushed, that doesn't mean that 3829eda14cbcSMatt Macy * it will pass through metaslab_sync_done(). Thus, make sure to 3830eda14cbcSMatt Macy * update ms_synced_length here in case it doesn't. 3831eda14cbcSMatt Macy */ 3832eda14cbcSMatt Macy msp->ms_synced_length = space_map_length(msp->ms_sm); 3833eda14cbcSMatt Macy 3834eda14cbcSMatt Macy /* 3835eda14cbcSMatt Macy * We may end up here from metaslab_condense() without the 3836eda14cbcSMatt Macy * feature being active. In that case this is a no-op. 3837eda14cbcSMatt Macy */ 3838716fd348SMartin Matuska if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) || 3839716fd348SMartin Matuska metaslab_unflushed_txg(msp) == 0) 3840eda14cbcSMatt Macy return; 3841eda14cbcSMatt Macy 3842716fd348SMartin Matuska metaslab_unflushed_bump(msp, tx, B_FALSE); 3843eda14cbcSMatt Macy } 3844eda14cbcSMatt Macy 3845eda14cbcSMatt Macy boolean_t 3846eda14cbcSMatt Macy metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3847eda14cbcSMatt Macy { 3848eda14cbcSMatt Macy spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3849eda14cbcSMatt Macy 3850eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 3851eda14cbcSMatt Macy ASSERT3U(spa_sync_pass(spa), ==, 1); 3852eda14cbcSMatt Macy ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3853eda14cbcSMatt Macy 3854eda14cbcSMatt Macy ASSERT(msp->ms_sm != NULL); 3855eda14cbcSMatt Macy ASSERT(metaslab_unflushed_txg(msp) != 0); 3856eda14cbcSMatt Macy ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3857eda14cbcSMatt Macy 3858eda14cbcSMatt Macy /* 3859eda14cbcSMatt Macy * There is nothing wrong with flushing the same metaslab twice, as 3860eda14cbcSMatt Macy * this codepath should work on that case. However, the current 3861eda14cbcSMatt Macy * flushing scheme makes sure to avoid this situation as we would be 3862eda14cbcSMatt Macy * making all these calls without having anything meaningful to write 3863eda14cbcSMatt Macy * to disk. We assert this behavior here. 3864eda14cbcSMatt Macy */ 3865eda14cbcSMatt Macy ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3866eda14cbcSMatt Macy 3867eda14cbcSMatt Macy /* 3868eda14cbcSMatt Macy * We can not flush while loading, because then we would 3869eda14cbcSMatt Macy * not load the ms_unflushed_{allocs,frees}. 3870eda14cbcSMatt Macy */ 3871eda14cbcSMatt Macy if (msp->ms_loading) 3872eda14cbcSMatt Macy return (B_FALSE); 3873eda14cbcSMatt Macy 3874eda14cbcSMatt Macy metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3875eda14cbcSMatt Macy metaslab_verify_weight_and_frag(msp); 3876eda14cbcSMatt Macy 3877eda14cbcSMatt Macy /* 3878eda14cbcSMatt Macy * Metaslab condensing is effectively flushing. Therefore if the 3879eda14cbcSMatt Macy * metaslab can be condensed we can just condense it instead of 3880eda14cbcSMatt Macy * flushing it. 3881eda14cbcSMatt Macy * 3882eda14cbcSMatt Macy * Note that metaslab_condense() does call metaslab_flush_update() 3883eda14cbcSMatt Macy * so we can just return immediately after condensing. We also 3884eda14cbcSMatt Macy * don't need to care about setting ms_flushing or broadcasting 3885eda14cbcSMatt Macy * ms_flush_cv, even if we temporarily drop the ms_lock in 3886eda14cbcSMatt Macy * metaslab_condense(), as the metaslab is already loaded. 3887eda14cbcSMatt Macy */ 3888eda14cbcSMatt Macy if (msp->ms_loaded && metaslab_should_condense(msp)) { 3889eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 3890eda14cbcSMatt Macy 3891eda14cbcSMatt Macy /* 3892eda14cbcSMatt Macy * For all histogram operations below refer to the 3893eda14cbcSMatt Macy * comments of metaslab_sync() where we follow a 3894eda14cbcSMatt Macy * similar procedure. 3895eda14cbcSMatt Macy */ 3896eda14cbcSMatt Macy metaslab_group_histogram_verify(mg); 3897eda14cbcSMatt Macy metaslab_class_histogram_verify(mg->mg_class); 3898eda14cbcSMatt Macy metaslab_group_histogram_remove(mg, msp); 3899eda14cbcSMatt Macy 3900eda14cbcSMatt Macy metaslab_condense(msp, tx); 3901eda14cbcSMatt Macy 3902eda14cbcSMatt Macy space_map_histogram_clear(msp->ms_sm); 3903eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3904eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_freed)); 3905eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3906eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, 3907eda14cbcSMatt Macy msp->ms_defer[t], tx); 3908eda14cbcSMatt Macy } 3909eda14cbcSMatt Macy metaslab_aux_histograms_update(msp); 3910eda14cbcSMatt Macy 3911eda14cbcSMatt Macy metaslab_group_histogram_add(mg, msp); 3912eda14cbcSMatt Macy metaslab_group_histogram_verify(mg); 3913eda14cbcSMatt Macy metaslab_class_histogram_verify(mg->mg_class); 3914eda14cbcSMatt Macy 3915eda14cbcSMatt Macy metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3916eda14cbcSMatt Macy 3917eda14cbcSMatt Macy /* 3918eda14cbcSMatt Macy * Since we recreated the histogram (and potentially 3919eda14cbcSMatt Macy * the ms_sm too while condensing) ensure that the 3920eda14cbcSMatt Macy * weight is updated too because we are not guaranteed 3921eda14cbcSMatt Macy * that this metaslab is dirty and will go through 3922eda14cbcSMatt Macy * metaslab_sync_done(). 3923eda14cbcSMatt Macy */ 3924eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(msp); 3925eda14cbcSMatt Macy return (B_TRUE); 3926eda14cbcSMatt Macy } 3927eda14cbcSMatt Macy 3928eda14cbcSMatt Macy msp->ms_flushing = B_TRUE; 3929eda14cbcSMatt Macy uint64_t sm_len_before = space_map_length(msp->ms_sm); 3930eda14cbcSMatt Macy 3931eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 3932eda14cbcSMatt Macy space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3933eda14cbcSMatt Macy SM_NO_VDEVID, tx); 3934eda14cbcSMatt Macy space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3935eda14cbcSMatt Macy SM_NO_VDEVID, tx); 3936eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 3937eda14cbcSMatt Macy 3938eda14cbcSMatt Macy uint64_t sm_len_after = space_map_length(msp->ms_sm); 3939eda14cbcSMatt Macy if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3940eda14cbcSMatt Macy zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3941eda14cbcSMatt Macy "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 394233b8c039SMartin Matuska "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx), 394333b8c039SMartin Matuska spa_name(spa), 394433b8c039SMartin Matuska (u_longlong_t)msp->ms_group->mg_vd->vdev_id, 394533b8c039SMartin Matuska (u_longlong_t)msp->ms_id, 394633b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs), 394733b8c039SMartin Matuska (u_longlong_t)range_tree_space(msp->ms_unflushed_frees), 394833b8c039SMartin Matuska (u_longlong_t)(sm_len_after - sm_len_before)); 3949eda14cbcSMatt Macy } 3950eda14cbcSMatt Macy 3951eda14cbcSMatt Macy ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3952eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp)); 3953eda14cbcSMatt Macy spa->spa_unflushed_stats.sus_memused -= 3954eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp); 3955eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3956eda14cbcSMatt Macy range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3957eda14cbcSMatt Macy 3958eda14cbcSMatt Macy metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3959eda14cbcSMatt Macy metaslab_verify_weight_and_frag(msp); 3960eda14cbcSMatt Macy 3961eda14cbcSMatt Macy metaslab_flush_update(msp, tx); 3962eda14cbcSMatt Macy 3963eda14cbcSMatt Macy metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3964eda14cbcSMatt Macy metaslab_verify_weight_and_frag(msp); 3965eda14cbcSMatt Macy 3966eda14cbcSMatt Macy msp->ms_flushing = B_FALSE; 3967eda14cbcSMatt Macy cv_broadcast(&msp->ms_flush_cv); 3968eda14cbcSMatt Macy return (B_TRUE); 3969eda14cbcSMatt Macy } 3970eda14cbcSMatt Macy 3971eda14cbcSMatt Macy /* 3972eda14cbcSMatt Macy * Write a metaslab to disk in the context of the specified transaction group. 3973eda14cbcSMatt Macy */ 3974eda14cbcSMatt Macy void 3975eda14cbcSMatt Macy metaslab_sync(metaslab_t *msp, uint64_t txg) 3976eda14cbcSMatt Macy { 3977eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 3978eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 3979eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 3980eda14cbcSMatt Macy objset_t *mos = spa_meta_objset(spa); 3981eda14cbcSMatt Macy range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3982eda14cbcSMatt Macy dmu_tx_t *tx; 3983eda14cbcSMatt Macy 3984eda14cbcSMatt Macy ASSERT(!vd->vdev_ishole); 3985eda14cbcSMatt Macy 3986eda14cbcSMatt Macy /* 3987eda14cbcSMatt Macy * This metaslab has just been added so there's no work to do now. 3988eda14cbcSMatt Macy */ 3989f9693befSMartin Matuska if (msp->ms_new) { 3990f9693befSMartin Matuska ASSERT0(range_tree_space(alloctree)); 3991f9693befSMartin Matuska ASSERT0(range_tree_space(msp->ms_freeing)); 3992f9693befSMartin Matuska ASSERT0(range_tree_space(msp->ms_freed)); 3993f9693befSMartin Matuska ASSERT0(range_tree_space(msp->ms_checkpointing)); 3994f9693befSMartin Matuska ASSERT0(range_tree_space(msp->ms_trim)); 3995eda14cbcSMatt Macy return; 3996eda14cbcSMatt Macy } 3997eda14cbcSMatt Macy 3998eda14cbcSMatt Macy /* 3999eda14cbcSMatt Macy * Normally, we don't want to process a metaslab if there are no 4000eda14cbcSMatt Macy * allocations or frees to perform. However, if the metaslab is being 4001eda14cbcSMatt Macy * forced to condense, it's loaded and we're not beyond the final 4002eda14cbcSMatt Macy * dirty txg, we need to let it through. Not condensing beyond the 4003eda14cbcSMatt Macy * final dirty txg prevents an issue where metaslabs that need to be 4004eda14cbcSMatt Macy * condensed but were loaded for other reasons could cause a panic 4005eda14cbcSMatt Macy * here. By only checking the txg in that branch of the conditional, 4006eda14cbcSMatt Macy * we preserve the utility of the VERIFY statements in all other 4007eda14cbcSMatt Macy * cases. 4008eda14cbcSMatt Macy */ 4009eda14cbcSMatt Macy if (range_tree_is_empty(alloctree) && 4010eda14cbcSMatt Macy range_tree_is_empty(msp->ms_freeing) && 4011eda14cbcSMatt Macy range_tree_is_empty(msp->ms_checkpointing) && 4012eda14cbcSMatt Macy !(msp->ms_loaded && msp->ms_condense_wanted && 4013eda14cbcSMatt Macy txg <= spa_final_dirty_txg(spa))) 4014eda14cbcSMatt Macy return; 4015eda14cbcSMatt Macy 4016eda14cbcSMatt Macy 4017eda14cbcSMatt Macy VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 4018eda14cbcSMatt Macy 4019eda14cbcSMatt Macy /* 4020eda14cbcSMatt Macy * The only state that can actually be changing concurrently 4021eda14cbcSMatt Macy * with metaslab_sync() is the metaslab's ms_allocatable. No 4022eda14cbcSMatt Macy * other thread can be modifying this txg's alloc, freeing, 4023eda14cbcSMatt Macy * freed, or space_map_phys_t. We drop ms_lock whenever we 4024eda14cbcSMatt Macy * could call into the DMU, because the DMU can call down to 4025eda14cbcSMatt Macy * us (e.g. via zio_free()) at any time. 4026eda14cbcSMatt Macy * 4027eda14cbcSMatt Macy * The spa_vdev_remove_thread() can be reading metaslab state 4028eda14cbcSMatt Macy * concurrently, and it is locked out by the ms_sync_lock. 4029eda14cbcSMatt Macy * Note that the ms_lock is insufficient for this, because it 4030eda14cbcSMatt Macy * is dropped by space_map_write(). 4031eda14cbcSMatt Macy */ 4032eda14cbcSMatt Macy tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 4033eda14cbcSMatt Macy 4034eda14cbcSMatt Macy /* 4035eda14cbcSMatt Macy * Generate a log space map if one doesn't exist already. 4036eda14cbcSMatt Macy */ 4037eda14cbcSMatt Macy spa_generate_syncing_log_sm(spa, tx); 4038eda14cbcSMatt Macy 4039eda14cbcSMatt Macy if (msp->ms_sm == NULL) { 4040eda14cbcSMatt Macy uint64_t new_object = space_map_alloc(mos, 4041eda14cbcSMatt Macy spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 4042eda14cbcSMatt Macy zfs_metaslab_sm_blksz_with_log : 4043eda14cbcSMatt Macy zfs_metaslab_sm_blksz_no_log, tx); 4044eda14cbcSMatt Macy VERIFY3U(new_object, !=, 0); 4045eda14cbcSMatt Macy 4046eda14cbcSMatt Macy dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 4047eda14cbcSMatt Macy msp->ms_id, sizeof (uint64_t), &new_object, tx); 4048eda14cbcSMatt Macy 4049eda14cbcSMatt Macy VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 4050eda14cbcSMatt Macy msp->ms_start, msp->ms_size, vd->vdev_ashift)); 4051eda14cbcSMatt Macy ASSERT(msp->ms_sm != NULL); 4052eda14cbcSMatt Macy 4053eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4054eda14cbcSMatt Macy ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4055eda14cbcSMatt Macy ASSERT0(metaslab_allocated_space(msp)); 4056eda14cbcSMatt Macy } 4057eda14cbcSMatt Macy 4058eda14cbcSMatt Macy if (!range_tree_is_empty(msp->ms_checkpointing) && 4059eda14cbcSMatt Macy vd->vdev_checkpoint_sm == NULL) { 4060eda14cbcSMatt Macy ASSERT(spa_has_checkpoint(spa)); 4061eda14cbcSMatt Macy 4062eda14cbcSMatt Macy uint64_t new_object = space_map_alloc(mos, 4063eda14cbcSMatt Macy zfs_vdev_standard_sm_blksz, tx); 4064eda14cbcSMatt Macy VERIFY3U(new_object, !=, 0); 4065eda14cbcSMatt Macy 4066eda14cbcSMatt Macy VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4067eda14cbcSMatt Macy mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4068eda14cbcSMatt Macy ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4069eda14cbcSMatt Macy 4070eda14cbcSMatt Macy /* 4071eda14cbcSMatt Macy * We save the space map object as an entry in vdev_top_zap 4072eda14cbcSMatt Macy * so it can be retrieved when the pool is reopened after an 4073eda14cbcSMatt Macy * export or through zdb. 4074eda14cbcSMatt Macy */ 4075eda14cbcSMatt Macy VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4076eda14cbcSMatt Macy vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4077eda14cbcSMatt Macy sizeof (new_object), 1, &new_object, tx)); 4078eda14cbcSMatt Macy } 4079eda14cbcSMatt Macy 4080eda14cbcSMatt Macy mutex_enter(&msp->ms_sync_lock); 4081eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4082eda14cbcSMatt Macy 4083eda14cbcSMatt Macy /* 4084eda14cbcSMatt Macy * Note: metaslab_condense() clears the space map's histogram. 4085eda14cbcSMatt Macy * Therefore we must verify and remove this histogram before 4086eda14cbcSMatt Macy * condensing. 4087eda14cbcSMatt Macy */ 4088eda14cbcSMatt Macy metaslab_group_histogram_verify(mg); 4089eda14cbcSMatt Macy metaslab_class_histogram_verify(mg->mg_class); 4090eda14cbcSMatt Macy metaslab_group_histogram_remove(mg, msp); 4091eda14cbcSMatt Macy 4092eda14cbcSMatt Macy if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4093eda14cbcSMatt Macy metaslab_should_condense(msp)) 4094eda14cbcSMatt Macy metaslab_condense(msp, tx); 4095eda14cbcSMatt Macy 4096eda14cbcSMatt Macy /* 4097eda14cbcSMatt Macy * We'll be going to disk to sync our space accounting, thus we 4098eda14cbcSMatt Macy * drop the ms_lock during that time so allocations coming from 4099eda14cbcSMatt Macy * open-context (ZIL) for future TXGs do not block. 4100eda14cbcSMatt Macy */ 4101eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4102eda14cbcSMatt Macy space_map_t *log_sm = spa_syncing_log_sm(spa); 4103eda14cbcSMatt Macy if (log_sm != NULL) { 4104eda14cbcSMatt Macy ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4105716fd348SMartin Matuska if (metaslab_unflushed_txg(msp) == 0) 4106716fd348SMartin Matuska metaslab_unflushed_add(msp, tx); 4107716fd348SMartin Matuska else if (!metaslab_unflushed_dirty(msp)) 4108716fd348SMartin Matuska metaslab_unflushed_bump(msp, tx, B_TRUE); 4109eda14cbcSMatt Macy 4110eda14cbcSMatt Macy space_map_write(log_sm, alloctree, SM_ALLOC, 4111eda14cbcSMatt Macy vd->vdev_id, tx); 4112eda14cbcSMatt Macy space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4113eda14cbcSMatt Macy vd->vdev_id, tx); 4114eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4115eda14cbcSMatt Macy 4116eda14cbcSMatt Macy ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4117eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp)); 4118eda14cbcSMatt Macy spa->spa_unflushed_stats.sus_memused -= 4119eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp); 4120eda14cbcSMatt Macy range_tree_remove_xor_add(alloctree, 4121eda14cbcSMatt Macy msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4122eda14cbcSMatt Macy range_tree_remove_xor_add(msp->ms_freeing, 4123eda14cbcSMatt Macy msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4124eda14cbcSMatt Macy spa->spa_unflushed_stats.sus_memused += 4125eda14cbcSMatt Macy metaslab_unflushed_changes_memused(msp); 4126eda14cbcSMatt Macy } else { 4127eda14cbcSMatt Macy ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4128eda14cbcSMatt Macy 4129eda14cbcSMatt Macy space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4130eda14cbcSMatt Macy SM_NO_VDEVID, tx); 4131eda14cbcSMatt Macy space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4132eda14cbcSMatt Macy SM_NO_VDEVID, tx); 4133eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4134eda14cbcSMatt Macy } 4135eda14cbcSMatt Macy 4136eda14cbcSMatt Macy msp->ms_allocated_space += range_tree_space(alloctree); 4137eda14cbcSMatt Macy ASSERT3U(msp->ms_allocated_space, >=, 4138eda14cbcSMatt Macy range_tree_space(msp->ms_freeing)); 4139eda14cbcSMatt Macy msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4140eda14cbcSMatt Macy 4141eda14cbcSMatt Macy if (!range_tree_is_empty(msp->ms_checkpointing)) { 4142eda14cbcSMatt Macy ASSERT(spa_has_checkpoint(spa)); 4143eda14cbcSMatt Macy ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4144eda14cbcSMatt Macy 4145eda14cbcSMatt Macy /* 4146eda14cbcSMatt Macy * Since we are doing writes to disk and the ms_checkpointing 4147eda14cbcSMatt Macy * tree won't be changing during that time, we drop the 4148eda14cbcSMatt Macy * ms_lock while writing to the checkpoint space map, for the 4149eda14cbcSMatt Macy * same reason mentioned above. 4150eda14cbcSMatt Macy */ 4151eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4152eda14cbcSMatt Macy space_map_write(vd->vdev_checkpoint_sm, 4153eda14cbcSMatt Macy msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4154eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4155eda14cbcSMatt Macy 4156eda14cbcSMatt Macy spa->spa_checkpoint_info.sci_dspace += 4157eda14cbcSMatt Macy range_tree_space(msp->ms_checkpointing); 4158eda14cbcSMatt Macy vd->vdev_stat.vs_checkpoint_space += 4159eda14cbcSMatt Macy range_tree_space(msp->ms_checkpointing); 4160eda14cbcSMatt Macy ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4161eda14cbcSMatt Macy -space_map_allocated(vd->vdev_checkpoint_sm)); 4162eda14cbcSMatt Macy 4163eda14cbcSMatt Macy range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4164eda14cbcSMatt Macy } 4165eda14cbcSMatt Macy 4166eda14cbcSMatt Macy if (msp->ms_loaded) { 4167eda14cbcSMatt Macy /* 4168eda14cbcSMatt Macy * When the space map is loaded, we have an accurate 4169eda14cbcSMatt Macy * histogram in the range tree. This gives us an opportunity 4170eda14cbcSMatt Macy * to bring the space map's histogram up-to-date so we clear 4171eda14cbcSMatt Macy * it first before updating it. 4172eda14cbcSMatt Macy */ 4173eda14cbcSMatt Macy space_map_histogram_clear(msp->ms_sm); 4174eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4175eda14cbcSMatt Macy 4176eda14cbcSMatt Macy /* 4177eda14cbcSMatt Macy * Since we've cleared the histogram we need to add back 4178eda14cbcSMatt Macy * any free space that has already been processed, plus 4179eda14cbcSMatt Macy * any deferred space. This allows the on-disk histogram 4180eda14cbcSMatt Macy * to accurately reflect all free space even if some space 4181eda14cbcSMatt Macy * is not yet available for allocation (i.e. deferred). 4182eda14cbcSMatt Macy */ 4183eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4184eda14cbcSMatt Macy 4185eda14cbcSMatt Macy /* 4186eda14cbcSMatt Macy * Add back any deferred free space that has not been 4187eda14cbcSMatt Macy * added back into the in-core free tree yet. This will 4188eda14cbcSMatt Macy * ensure that we don't end up with a space map histogram 4189eda14cbcSMatt Macy * that is completely empty unless the metaslab is fully 4190eda14cbcSMatt Macy * allocated. 4191eda14cbcSMatt Macy */ 4192eda14cbcSMatt Macy for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4193eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, 4194eda14cbcSMatt Macy msp->ms_defer[t], tx); 4195eda14cbcSMatt Macy } 4196eda14cbcSMatt Macy } 4197eda14cbcSMatt Macy 4198eda14cbcSMatt Macy /* 4199eda14cbcSMatt Macy * Always add the free space from this sync pass to the space 4200eda14cbcSMatt Macy * map histogram. We want to make sure that the on-disk histogram 4201eda14cbcSMatt Macy * accounts for all free space. If the space map is not loaded, 4202eda14cbcSMatt Macy * then we will lose some accuracy but will correct it the next 4203eda14cbcSMatt Macy * time we load the space map. 4204eda14cbcSMatt Macy */ 4205eda14cbcSMatt Macy space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4206eda14cbcSMatt Macy metaslab_aux_histograms_update(msp); 4207eda14cbcSMatt Macy 4208eda14cbcSMatt Macy metaslab_group_histogram_add(mg, msp); 4209eda14cbcSMatt Macy metaslab_group_histogram_verify(mg); 4210eda14cbcSMatt Macy metaslab_class_histogram_verify(mg->mg_class); 4211eda14cbcSMatt Macy 4212eda14cbcSMatt Macy /* 4213eda14cbcSMatt Macy * For sync pass 1, we avoid traversing this txg's free range tree 4214eda14cbcSMatt Macy * and instead will just swap the pointers for freeing and freed. 4215eda14cbcSMatt Macy * We can safely do this since the freed_tree is guaranteed to be 4216eda14cbcSMatt Macy * empty on the initial pass. 4217eda14cbcSMatt Macy * 4218eda14cbcSMatt Macy * Keep in mind that even if we are currently using a log spacemap 4219eda14cbcSMatt Macy * we want current frees to end up in the ms_allocatable (but not 4220eda14cbcSMatt Macy * get appended to the ms_sm) so their ranges can be reused as usual. 4221eda14cbcSMatt Macy */ 4222eda14cbcSMatt Macy if (spa_sync_pass(spa) == 1) { 4223eda14cbcSMatt Macy range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4224eda14cbcSMatt Macy ASSERT0(msp->ms_allocated_this_txg); 4225eda14cbcSMatt Macy } else { 4226eda14cbcSMatt Macy range_tree_vacate(msp->ms_freeing, 4227eda14cbcSMatt Macy range_tree_add, msp->ms_freed); 4228eda14cbcSMatt Macy } 4229eda14cbcSMatt Macy msp->ms_allocated_this_txg += range_tree_space(alloctree); 4230eda14cbcSMatt Macy range_tree_vacate(alloctree, NULL, NULL); 4231eda14cbcSMatt Macy 4232eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4233eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4234eda14cbcSMatt Macy & TXG_MASK])); 4235eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_freeing)); 4236eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_checkpointing)); 4237eda14cbcSMatt Macy 4238eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4239eda14cbcSMatt Macy 4240eda14cbcSMatt Macy /* 4241eda14cbcSMatt Macy * Verify that the space map object ID has been recorded in the 4242eda14cbcSMatt Macy * vdev_ms_array. 4243eda14cbcSMatt Macy */ 4244eda14cbcSMatt Macy uint64_t object; 4245eda14cbcSMatt Macy VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4246eda14cbcSMatt Macy msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4247eda14cbcSMatt Macy VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4248eda14cbcSMatt Macy 4249eda14cbcSMatt Macy mutex_exit(&msp->ms_sync_lock); 4250eda14cbcSMatt Macy dmu_tx_commit(tx); 4251eda14cbcSMatt Macy } 4252eda14cbcSMatt Macy 4253eda14cbcSMatt Macy static void 4254eda14cbcSMatt Macy metaslab_evict(metaslab_t *msp, uint64_t txg) 4255eda14cbcSMatt Macy { 4256eda14cbcSMatt Macy if (!msp->ms_loaded || msp->ms_disabled != 0) 4257eda14cbcSMatt Macy return; 4258eda14cbcSMatt Macy 4259eda14cbcSMatt Macy for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4260eda14cbcSMatt Macy VERIFY0(range_tree_space( 4261eda14cbcSMatt Macy msp->ms_allocating[(txg + t) & TXG_MASK])); 4262eda14cbcSMatt Macy } 4263eda14cbcSMatt Macy if (msp->ms_allocator != -1) 4264eda14cbcSMatt Macy metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4265eda14cbcSMatt Macy 4266eda14cbcSMatt Macy if (!metaslab_debug_unload) 4267eda14cbcSMatt Macy metaslab_unload(msp); 4268eda14cbcSMatt Macy } 4269eda14cbcSMatt Macy 4270eda14cbcSMatt Macy /* 4271eda14cbcSMatt Macy * Called after a transaction group has completely synced to mark 4272eda14cbcSMatt Macy * all of the metaslab's free space as usable. 4273eda14cbcSMatt Macy */ 4274eda14cbcSMatt Macy void 4275eda14cbcSMatt Macy metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4276eda14cbcSMatt Macy { 4277eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 4278eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 4279eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 4280eda14cbcSMatt Macy range_tree_t **defer_tree; 4281eda14cbcSMatt Macy int64_t alloc_delta, defer_delta; 4282eda14cbcSMatt Macy boolean_t defer_allowed = B_TRUE; 4283eda14cbcSMatt Macy 4284eda14cbcSMatt Macy ASSERT(!vd->vdev_ishole); 4285eda14cbcSMatt Macy 4286eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4287eda14cbcSMatt Macy 4288f9693befSMartin Matuska if (msp->ms_new) { 4289f9693befSMartin Matuska /* this is a new metaslab, add its capacity to the vdev */ 4290eda14cbcSMatt Macy metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4291f9693befSMartin Matuska 4292f9693befSMartin Matuska /* there should be no allocations nor frees at this point */ 4293f9693befSMartin Matuska VERIFY0(msp->ms_allocated_this_txg); 4294f9693befSMartin Matuska VERIFY0(range_tree_space(msp->ms_freed)); 4295eda14cbcSMatt Macy } 4296f9693befSMartin Matuska 4297eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_freeing)); 4298eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_checkpointing)); 4299eda14cbcSMatt Macy 4300eda14cbcSMatt Macy defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4301eda14cbcSMatt Macy 4302eda14cbcSMatt Macy uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4303eda14cbcSMatt Macy metaslab_class_get_alloc(spa_normal_class(spa)); 4304eda14cbcSMatt Macy if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4305eda14cbcSMatt Macy defer_allowed = B_FALSE; 4306eda14cbcSMatt Macy } 4307eda14cbcSMatt Macy 4308eda14cbcSMatt Macy defer_delta = 0; 4309eda14cbcSMatt Macy alloc_delta = msp->ms_allocated_this_txg - 4310eda14cbcSMatt Macy range_tree_space(msp->ms_freed); 4311eda14cbcSMatt Macy 4312eda14cbcSMatt Macy if (defer_allowed) { 4313eda14cbcSMatt Macy defer_delta = range_tree_space(msp->ms_freed) - 4314eda14cbcSMatt Macy range_tree_space(*defer_tree); 4315eda14cbcSMatt Macy } else { 4316eda14cbcSMatt Macy defer_delta -= range_tree_space(*defer_tree); 4317eda14cbcSMatt Macy } 4318eda14cbcSMatt Macy metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4319eda14cbcSMatt Macy defer_delta, 0); 4320eda14cbcSMatt Macy 4321eda14cbcSMatt Macy if (spa_syncing_log_sm(spa) == NULL) { 4322eda14cbcSMatt Macy /* 4323eda14cbcSMatt Macy * If there's a metaslab_load() in progress and we don't have 4324eda14cbcSMatt Macy * a log space map, it means that we probably wrote to the 4325eda14cbcSMatt Macy * metaslab's space map. If this is the case, we need to 4326eda14cbcSMatt Macy * make sure that we wait for the load to complete so that we 4327eda14cbcSMatt Macy * have a consistent view at the in-core side of the metaslab. 4328eda14cbcSMatt Macy */ 4329eda14cbcSMatt Macy metaslab_load_wait(msp); 4330eda14cbcSMatt Macy } else { 4331eda14cbcSMatt Macy ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4332eda14cbcSMatt Macy } 4333eda14cbcSMatt Macy 4334eda14cbcSMatt Macy /* 4335eda14cbcSMatt Macy * When auto-trimming is enabled, free ranges which are added to 4336eda14cbcSMatt Macy * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4337eda14cbcSMatt Macy * periodically consumed by the vdev_autotrim_thread() which issues 4338eda14cbcSMatt Macy * trims for all ranges and then vacates the tree. The ms_trim tree 4339eda14cbcSMatt Macy * can be discarded at any time with the sole consequence of recent 4340eda14cbcSMatt Macy * frees not being trimmed. 4341eda14cbcSMatt Macy */ 4342eda14cbcSMatt Macy if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4343eda14cbcSMatt Macy range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4344eda14cbcSMatt Macy if (!defer_allowed) { 4345eda14cbcSMatt Macy range_tree_walk(msp->ms_freed, range_tree_add, 4346eda14cbcSMatt Macy msp->ms_trim); 4347eda14cbcSMatt Macy } 4348eda14cbcSMatt Macy } else { 4349eda14cbcSMatt Macy range_tree_vacate(msp->ms_trim, NULL, NULL); 4350eda14cbcSMatt Macy } 4351eda14cbcSMatt Macy 4352eda14cbcSMatt Macy /* 4353eda14cbcSMatt Macy * Move the frees from the defer_tree back to the free 4354eda14cbcSMatt Macy * range tree (if it's loaded). Swap the freed_tree and 4355eda14cbcSMatt Macy * the defer_tree -- this is safe to do because we've 4356eda14cbcSMatt Macy * just emptied out the defer_tree. 4357eda14cbcSMatt Macy */ 4358eda14cbcSMatt Macy range_tree_vacate(*defer_tree, 4359eda14cbcSMatt Macy msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4360eda14cbcSMatt Macy if (defer_allowed) { 4361eda14cbcSMatt Macy range_tree_swap(&msp->ms_freed, defer_tree); 4362eda14cbcSMatt Macy } else { 4363eda14cbcSMatt Macy range_tree_vacate(msp->ms_freed, 4364eda14cbcSMatt Macy msp->ms_loaded ? range_tree_add : NULL, 4365eda14cbcSMatt Macy msp->ms_allocatable); 4366eda14cbcSMatt Macy } 4367eda14cbcSMatt Macy 4368eda14cbcSMatt Macy msp->ms_synced_length = space_map_length(msp->ms_sm); 4369eda14cbcSMatt Macy 4370eda14cbcSMatt Macy msp->ms_deferspace += defer_delta; 4371eda14cbcSMatt Macy ASSERT3S(msp->ms_deferspace, >=, 0); 4372eda14cbcSMatt Macy ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4373eda14cbcSMatt Macy if (msp->ms_deferspace != 0) { 4374eda14cbcSMatt Macy /* 4375eda14cbcSMatt Macy * Keep syncing this metaslab until all deferred frees 4376eda14cbcSMatt Macy * are back in circulation. 4377eda14cbcSMatt Macy */ 4378eda14cbcSMatt Macy vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4379eda14cbcSMatt Macy } 4380eda14cbcSMatt Macy metaslab_aux_histograms_update_done(msp, defer_allowed); 4381eda14cbcSMatt Macy 4382eda14cbcSMatt Macy if (msp->ms_new) { 4383eda14cbcSMatt Macy msp->ms_new = B_FALSE; 4384eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 4385eda14cbcSMatt Macy mg->mg_ms_ready++; 4386eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 4387eda14cbcSMatt Macy } 4388eda14cbcSMatt Macy 4389eda14cbcSMatt Macy /* 4390eda14cbcSMatt Macy * Re-sort metaslab within its group now that we've adjusted 4391eda14cbcSMatt Macy * its allocatable space. 4392eda14cbcSMatt Macy */ 4393eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(msp); 4394eda14cbcSMatt Macy 4395eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4396eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_freeing)); 4397eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_freed)); 4398eda14cbcSMatt Macy ASSERT0(range_tree_space(msp->ms_checkpointing)); 4399eda14cbcSMatt Macy msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4400eda14cbcSMatt Macy msp->ms_allocated_this_txg = 0; 4401eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4402eda14cbcSMatt Macy } 4403eda14cbcSMatt Macy 4404eda14cbcSMatt Macy void 4405eda14cbcSMatt Macy metaslab_sync_reassess(metaslab_group_t *mg) 4406eda14cbcSMatt Macy { 4407eda14cbcSMatt Macy spa_t *spa = mg->mg_class->mc_spa; 4408eda14cbcSMatt Macy 4409eda14cbcSMatt Macy spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4410eda14cbcSMatt Macy metaslab_group_alloc_update(mg); 4411eda14cbcSMatt Macy mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4412eda14cbcSMatt Macy 4413eda14cbcSMatt Macy /* 4414eda14cbcSMatt Macy * Preload the next potential metaslabs but only on active 4415eda14cbcSMatt Macy * metaslab groups. We can get into a state where the metaslab 4416eda14cbcSMatt Macy * is no longer active since we dirty metaslabs as we remove a 4417eda14cbcSMatt Macy * a device, thus potentially making the metaslab group eligible 4418eda14cbcSMatt Macy * for preloading. 4419eda14cbcSMatt Macy */ 4420eda14cbcSMatt Macy if (mg->mg_activation_count > 0) { 4421eda14cbcSMatt Macy metaslab_group_preload(mg); 4422eda14cbcSMatt Macy } 4423eda14cbcSMatt Macy spa_config_exit(spa, SCL_ALLOC, FTAG); 4424eda14cbcSMatt Macy } 4425eda14cbcSMatt Macy 4426eda14cbcSMatt Macy /* 4427eda14cbcSMatt Macy * When writing a ditto block (i.e. more than one DVA for a given BP) on 4428eda14cbcSMatt Macy * the same vdev as an existing DVA of this BP, then try to allocate it 4429eda14cbcSMatt Macy * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4430eda14cbcSMatt Macy */ 4431eda14cbcSMatt Macy static boolean_t 4432eda14cbcSMatt Macy metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4433eda14cbcSMatt Macy { 4434eda14cbcSMatt Macy uint64_t dva_ms_id; 4435eda14cbcSMatt Macy 4436eda14cbcSMatt Macy if (DVA_GET_ASIZE(dva) == 0) 4437eda14cbcSMatt Macy return (B_TRUE); 4438eda14cbcSMatt Macy 4439eda14cbcSMatt Macy if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4440eda14cbcSMatt Macy return (B_TRUE); 4441eda14cbcSMatt Macy 4442eda14cbcSMatt Macy dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4443eda14cbcSMatt Macy 4444eda14cbcSMatt Macy return (msp->ms_id != dva_ms_id); 4445eda14cbcSMatt Macy } 4446eda14cbcSMatt Macy 4447eda14cbcSMatt Macy /* 4448eda14cbcSMatt Macy * ========================================================================== 4449eda14cbcSMatt Macy * Metaslab allocation tracing facility 4450eda14cbcSMatt Macy * ========================================================================== 4451eda14cbcSMatt Macy */ 4452eda14cbcSMatt Macy 4453eda14cbcSMatt Macy /* 4454eda14cbcSMatt Macy * Add an allocation trace element to the allocation tracing list. 4455eda14cbcSMatt Macy */ 4456eda14cbcSMatt Macy static void 4457eda14cbcSMatt Macy metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4458eda14cbcSMatt Macy metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4459eda14cbcSMatt Macy int allocator) 4460eda14cbcSMatt Macy { 4461eda14cbcSMatt Macy metaslab_alloc_trace_t *mat; 4462eda14cbcSMatt Macy 4463eda14cbcSMatt Macy if (!metaslab_trace_enabled) 4464eda14cbcSMatt Macy return; 4465eda14cbcSMatt Macy 4466eda14cbcSMatt Macy /* 4467eda14cbcSMatt Macy * When the tracing list reaches its maximum we remove 4468eda14cbcSMatt Macy * the second element in the list before adding a new one. 4469eda14cbcSMatt Macy * By removing the second element we preserve the original 4470eda14cbcSMatt Macy * entry as a clue to what allocations steps have already been 4471eda14cbcSMatt Macy * performed. 4472eda14cbcSMatt Macy */ 4473eda14cbcSMatt Macy if (zal->zal_size == metaslab_trace_max_entries) { 4474eda14cbcSMatt Macy metaslab_alloc_trace_t *mat_next; 4475eda14cbcSMatt Macy #ifdef ZFS_DEBUG 4476eda14cbcSMatt Macy panic("too many entries in allocation list"); 4477eda14cbcSMatt Macy #endif 4478eda14cbcSMatt Macy METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4479eda14cbcSMatt Macy zal->zal_size--; 4480eda14cbcSMatt Macy mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4481eda14cbcSMatt Macy list_remove(&zal->zal_list, mat_next); 4482eda14cbcSMatt Macy kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4483eda14cbcSMatt Macy } 4484eda14cbcSMatt Macy 4485eda14cbcSMatt Macy mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4486eda14cbcSMatt Macy list_link_init(&mat->mat_list_node); 4487eda14cbcSMatt Macy mat->mat_mg = mg; 4488eda14cbcSMatt Macy mat->mat_msp = msp; 4489eda14cbcSMatt Macy mat->mat_size = psize; 4490eda14cbcSMatt Macy mat->mat_dva_id = dva_id; 4491eda14cbcSMatt Macy mat->mat_offset = offset; 4492eda14cbcSMatt Macy mat->mat_weight = 0; 4493eda14cbcSMatt Macy mat->mat_allocator = allocator; 4494eda14cbcSMatt Macy 4495eda14cbcSMatt Macy if (msp != NULL) 4496eda14cbcSMatt Macy mat->mat_weight = msp->ms_weight; 4497eda14cbcSMatt Macy 4498eda14cbcSMatt Macy /* 4499eda14cbcSMatt Macy * The list is part of the zio so locking is not required. Only 4500eda14cbcSMatt Macy * a single thread will perform allocations for a given zio. 4501eda14cbcSMatt Macy */ 4502eda14cbcSMatt Macy list_insert_tail(&zal->zal_list, mat); 4503eda14cbcSMatt Macy zal->zal_size++; 4504eda14cbcSMatt Macy 4505eda14cbcSMatt Macy ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4506eda14cbcSMatt Macy } 4507eda14cbcSMatt Macy 4508eda14cbcSMatt Macy void 4509eda14cbcSMatt Macy metaslab_trace_init(zio_alloc_list_t *zal) 4510eda14cbcSMatt Macy { 4511eda14cbcSMatt Macy list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4512eda14cbcSMatt Macy offsetof(metaslab_alloc_trace_t, mat_list_node)); 4513eda14cbcSMatt Macy zal->zal_size = 0; 4514eda14cbcSMatt Macy } 4515eda14cbcSMatt Macy 4516eda14cbcSMatt Macy void 4517eda14cbcSMatt Macy metaslab_trace_fini(zio_alloc_list_t *zal) 4518eda14cbcSMatt Macy { 4519eda14cbcSMatt Macy metaslab_alloc_trace_t *mat; 4520eda14cbcSMatt Macy 4521eda14cbcSMatt Macy while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4522eda14cbcSMatt Macy kmem_cache_free(metaslab_alloc_trace_cache, mat); 4523eda14cbcSMatt Macy list_destroy(&zal->zal_list); 4524eda14cbcSMatt Macy zal->zal_size = 0; 4525eda14cbcSMatt Macy } 4526eda14cbcSMatt Macy 4527eda14cbcSMatt Macy /* 4528eda14cbcSMatt Macy * ========================================================================== 4529eda14cbcSMatt Macy * Metaslab block operations 4530eda14cbcSMatt Macy * ========================================================================== 4531eda14cbcSMatt Macy */ 4532eda14cbcSMatt Macy 4533eda14cbcSMatt Macy static void 4534a0b956f5SMartin Matuska metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag, 4535a0b956f5SMartin Matuska int flags, int allocator) 4536eda14cbcSMatt Macy { 4537eda14cbcSMatt Macy if (!(flags & METASLAB_ASYNC_ALLOC) || 4538eda14cbcSMatt Macy (flags & METASLAB_DONT_THROTTLE)) 4539eda14cbcSMatt Macy return; 4540eda14cbcSMatt Macy 4541eda14cbcSMatt Macy metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4542eda14cbcSMatt Macy if (!mg->mg_class->mc_alloc_throttle_enabled) 4543eda14cbcSMatt Macy return; 4544eda14cbcSMatt Macy 4545eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4546eda14cbcSMatt Macy (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4547eda14cbcSMatt Macy } 4548eda14cbcSMatt Macy 4549eda14cbcSMatt Macy static void 4550eda14cbcSMatt Macy metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4551eda14cbcSMatt Macy { 4552eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 45537877fdebSMatt Macy metaslab_class_allocator_t *mca = 45547877fdebSMatt Macy &mg->mg_class->mc_allocator[allocator]; 4555eda14cbcSMatt Macy uint64_t max = mg->mg_max_alloc_queue_depth; 4556eda14cbcSMatt Macy uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4557eda14cbcSMatt Macy while (cur < max) { 4558eda14cbcSMatt Macy if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4559eda14cbcSMatt Macy cur, cur + 1) == cur) { 45607877fdebSMatt Macy atomic_inc_64(&mca->mca_alloc_max_slots); 4561eda14cbcSMatt Macy return; 4562eda14cbcSMatt Macy } 4563eda14cbcSMatt Macy cur = mga->mga_cur_max_alloc_queue_depth; 4564eda14cbcSMatt Macy } 4565eda14cbcSMatt Macy } 4566eda14cbcSMatt Macy 4567eda14cbcSMatt Macy void 4568a0b956f5SMartin Matuska metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag, 4569a0b956f5SMartin Matuska int flags, int allocator, boolean_t io_complete) 4570eda14cbcSMatt Macy { 4571eda14cbcSMatt Macy if (!(flags & METASLAB_ASYNC_ALLOC) || 4572eda14cbcSMatt Macy (flags & METASLAB_DONT_THROTTLE)) 4573eda14cbcSMatt Macy return; 4574eda14cbcSMatt Macy 4575eda14cbcSMatt Macy metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4576eda14cbcSMatt Macy if (!mg->mg_class->mc_alloc_throttle_enabled) 4577eda14cbcSMatt Macy return; 4578eda14cbcSMatt Macy 4579eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4580eda14cbcSMatt Macy (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4581eda14cbcSMatt Macy if (io_complete) 4582eda14cbcSMatt Macy metaslab_group_increment_qdepth(mg, allocator); 4583eda14cbcSMatt Macy } 4584eda14cbcSMatt Macy 4585eda14cbcSMatt Macy void 4586a0b956f5SMartin Matuska metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag, 4587eda14cbcSMatt Macy int allocator) 4588eda14cbcSMatt Macy { 4589eda14cbcSMatt Macy #ifdef ZFS_DEBUG 4590eda14cbcSMatt Macy const dva_t *dva = bp->blk_dva; 4591eda14cbcSMatt Macy int ndvas = BP_GET_NDVAS(bp); 4592eda14cbcSMatt Macy 4593eda14cbcSMatt Macy for (int d = 0; d < ndvas; d++) { 4594eda14cbcSMatt Macy uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4595eda14cbcSMatt Macy metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4596eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4597eda14cbcSMatt Macy VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4598eda14cbcSMatt Macy } 4599eda14cbcSMatt Macy #endif 4600eda14cbcSMatt Macy } 4601eda14cbcSMatt Macy 4602eda14cbcSMatt Macy static uint64_t 4603eda14cbcSMatt Macy metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4604eda14cbcSMatt Macy { 4605eda14cbcSMatt Macy uint64_t start; 4606eda14cbcSMatt Macy range_tree_t *rt = msp->ms_allocatable; 4607eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 4608eda14cbcSMatt Macy 4609eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 4610eda14cbcSMatt Macy VERIFY(!msp->ms_condensing); 4611eda14cbcSMatt Macy VERIFY0(msp->ms_disabled); 4612eda14cbcSMatt Macy 4613eda14cbcSMatt Macy start = mc->mc_ops->msop_alloc(msp, size); 4614eda14cbcSMatt Macy if (start != -1ULL) { 4615eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 4616eda14cbcSMatt Macy vdev_t *vd = mg->mg_vd; 4617eda14cbcSMatt Macy 4618eda14cbcSMatt Macy VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4619eda14cbcSMatt Macy VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4620eda14cbcSMatt Macy VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4621eda14cbcSMatt Macy range_tree_remove(rt, start, size); 4622eda14cbcSMatt Macy range_tree_clear(msp->ms_trim, start, size); 4623eda14cbcSMatt Macy 4624eda14cbcSMatt Macy if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4625eda14cbcSMatt Macy vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4626eda14cbcSMatt Macy 4627eda14cbcSMatt Macy range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4628eda14cbcSMatt Macy msp->ms_allocating_total += size; 4629eda14cbcSMatt Macy 4630eda14cbcSMatt Macy /* Track the last successful allocation */ 4631eda14cbcSMatt Macy msp->ms_alloc_txg = txg; 4632eda14cbcSMatt Macy metaslab_verify_space(msp, txg); 4633eda14cbcSMatt Macy } 4634eda14cbcSMatt Macy 4635eda14cbcSMatt Macy /* 4636eda14cbcSMatt Macy * Now that we've attempted the allocation we need to update the 4637eda14cbcSMatt Macy * metaslab's maximum block size since it may have changed. 4638eda14cbcSMatt Macy */ 4639eda14cbcSMatt Macy msp->ms_max_size = metaslab_largest_allocatable(msp); 4640eda14cbcSMatt Macy return (start); 4641eda14cbcSMatt Macy } 4642eda14cbcSMatt Macy 4643eda14cbcSMatt Macy /* 4644eda14cbcSMatt Macy * Find the metaslab with the highest weight that is less than what we've 4645eda14cbcSMatt Macy * already tried. In the common case, this means that we will examine each 4646eda14cbcSMatt Macy * metaslab at most once. Note that concurrent callers could reorder metaslabs 4647eda14cbcSMatt Macy * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4648eda14cbcSMatt Macy * activated by another thread, and we fail to allocate from the metaslab we 4649eda14cbcSMatt Macy * have selected, we may not try the newly-activated metaslab, and instead 4650eda14cbcSMatt Macy * activate another metaslab. This is not optimal, but generally does not cause 4651eda14cbcSMatt Macy * any problems (a possible exception being if every metaslab is completely full 4652eda14cbcSMatt Macy * except for the newly-activated metaslab which we fail to examine). 4653eda14cbcSMatt Macy */ 4654eda14cbcSMatt Macy static metaslab_t * 4655eda14cbcSMatt Macy find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4656eda14cbcSMatt Macy dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4657eda14cbcSMatt Macy boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4658eda14cbcSMatt Macy boolean_t *was_active) 4659eda14cbcSMatt Macy { 4660eda14cbcSMatt Macy avl_index_t idx; 4661eda14cbcSMatt Macy avl_tree_t *t = &mg->mg_metaslab_tree; 4662eda14cbcSMatt Macy metaslab_t *msp = avl_find(t, search, &idx); 4663eda14cbcSMatt Macy if (msp == NULL) 4664eda14cbcSMatt Macy msp = avl_nearest(t, idx, AVL_AFTER); 4665eda14cbcSMatt Macy 4666be181ee2SMartin Matuska uint_t tries = 0; 4667eda14cbcSMatt Macy for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4668eda14cbcSMatt Macy int i; 46697877fdebSMatt Macy 46707877fdebSMatt Macy if (!try_hard && tries > zfs_metaslab_find_max_tries) { 46717877fdebSMatt Macy METASLABSTAT_BUMP(metaslabstat_too_many_tries); 46727877fdebSMatt Macy return (NULL); 46737877fdebSMatt Macy } 46747877fdebSMatt Macy tries++; 46757877fdebSMatt Macy 4676eda14cbcSMatt Macy if (!metaslab_should_allocate(msp, asize, try_hard)) { 4677eda14cbcSMatt Macy metaslab_trace_add(zal, mg, msp, asize, d, 4678eda14cbcSMatt Macy TRACE_TOO_SMALL, allocator); 4679eda14cbcSMatt Macy continue; 4680eda14cbcSMatt Macy } 4681eda14cbcSMatt Macy 4682eda14cbcSMatt Macy /* 4683eda14cbcSMatt Macy * If the selected metaslab is condensing or disabled, 4684eda14cbcSMatt Macy * skip it. 4685eda14cbcSMatt Macy */ 4686eda14cbcSMatt Macy if (msp->ms_condensing || msp->ms_disabled > 0) 4687eda14cbcSMatt Macy continue; 4688eda14cbcSMatt Macy 4689eda14cbcSMatt Macy *was_active = msp->ms_allocator != -1; 4690eda14cbcSMatt Macy /* 4691eda14cbcSMatt Macy * If we're activating as primary, this is our first allocation 4692eda14cbcSMatt Macy * from this disk, so we don't need to check how close we are. 4693eda14cbcSMatt Macy * If the metaslab under consideration was already active, 4694eda14cbcSMatt Macy * we're getting desperate enough to steal another allocator's 4695eda14cbcSMatt Macy * metaslab, so we still don't care about distances. 4696eda14cbcSMatt Macy */ 4697eda14cbcSMatt Macy if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4698eda14cbcSMatt Macy break; 4699eda14cbcSMatt Macy 4700eda14cbcSMatt Macy for (i = 0; i < d; i++) { 4701eda14cbcSMatt Macy if (want_unique && 4702eda14cbcSMatt Macy !metaslab_is_unique(msp, &dva[i])) 4703eda14cbcSMatt Macy break; /* try another metaslab */ 4704eda14cbcSMatt Macy } 4705eda14cbcSMatt Macy if (i == d) 4706eda14cbcSMatt Macy break; 4707eda14cbcSMatt Macy } 4708eda14cbcSMatt Macy 4709eda14cbcSMatt Macy if (msp != NULL) { 4710eda14cbcSMatt Macy search->ms_weight = msp->ms_weight; 4711eda14cbcSMatt Macy search->ms_start = msp->ms_start + 1; 4712eda14cbcSMatt Macy search->ms_allocator = msp->ms_allocator; 4713eda14cbcSMatt Macy search->ms_primary = msp->ms_primary; 4714eda14cbcSMatt Macy } 4715eda14cbcSMatt Macy return (msp); 4716eda14cbcSMatt Macy } 4717eda14cbcSMatt Macy 4718eda14cbcSMatt Macy static void 4719eda14cbcSMatt Macy metaslab_active_mask_verify(metaslab_t *msp) 4720eda14cbcSMatt Macy { 4721eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&msp->ms_lock)); 4722eda14cbcSMatt Macy 4723eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4724eda14cbcSMatt Macy return; 4725eda14cbcSMatt Macy 4726eda14cbcSMatt Macy if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4727eda14cbcSMatt Macy return; 4728eda14cbcSMatt Macy 4729eda14cbcSMatt Macy if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4730eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4731eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4732eda14cbcSMatt Macy VERIFY3S(msp->ms_allocator, !=, -1); 4733eda14cbcSMatt Macy VERIFY(msp->ms_primary); 4734eda14cbcSMatt Macy return; 4735eda14cbcSMatt Macy } 4736eda14cbcSMatt Macy 4737eda14cbcSMatt Macy if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4738eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4739eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4740eda14cbcSMatt Macy VERIFY3S(msp->ms_allocator, !=, -1); 4741eda14cbcSMatt Macy VERIFY(!msp->ms_primary); 4742eda14cbcSMatt Macy return; 4743eda14cbcSMatt Macy } 4744eda14cbcSMatt Macy 4745eda14cbcSMatt Macy if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4746eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4747eda14cbcSMatt Macy VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4748eda14cbcSMatt Macy VERIFY3S(msp->ms_allocator, ==, -1); 4749eda14cbcSMatt Macy return; 4750eda14cbcSMatt Macy } 4751eda14cbcSMatt Macy } 4752eda14cbcSMatt Macy 4753eda14cbcSMatt Macy static uint64_t 4754eda14cbcSMatt Macy metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4755eda14cbcSMatt Macy uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4756eda14cbcSMatt Macy int allocator, boolean_t try_hard) 4757eda14cbcSMatt Macy { 4758eda14cbcSMatt Macy metaslab_t *msp = NULL; 4759eda14cbcSMatt Macy uint64_t offset = -1ULL; 4760eda14cbcSMatt Macy 4761eda14cbcSMatt Macy uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4762eda14cbcSMatt Macy for (int i = 0; i < d; i++) { 4763eda14cbcSMatt Macy if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4764eda14cbcSMatt Macy DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4765eda14cbcSMatt Macy activation_weight = METASLAB_WEIGHT_SECONDARY; 4766eda14cbcSMatt Macy } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4767eda14cbcSMatt Macy DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4768eda14cbcSMatt Macy activation_weight = METASLAB_WEIGHT_CLAIM; 4769eda14cbcSMatt Macy break; 4770eda14cbcSMatt Macy } 4771eda14cbcSMatt Macy } 4772eda14cbcSMatt Macy 4773eda14cbcSMatt Macy /* 4774eda14cbcSMatt Macy * If we don't have enough metaslabs active to fill the entire array, we 4775eda14cbcSMatt Macy * just use the 0th slot. 4776eda14cbcSMatt Macy */ 4777eda14cbcSMatt Macy if (mg->mg_ms_ready < mg->mg_allocators * 3) 4778eda14cbcSMatt Macy allocator = 0; 4779eda14cbcSMatt Macy metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4780eda14cbcSMatt Macy 4781eda14cbcSMatt Macy ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4782eda14cbcSMatt Macy 4783eda14cbcSMatt Macy metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4784eda14cbcSMatt Macy search->ms_weight = UINT64_MAX; 4785eda14cbcSMatt Macy search->ms_start = 0; 4786eda14cbcSMatt Macy /* 4787eda14cbcSMatt Macy * At the end of the metaslab tree are the already-active metaslabs, 4788eda14cbcSMatt Macy * first the primaries, then the secondaries. When we resume searching 4789eda14cbcSMatt Macy * through the tree, we need to consider ms_allocator and ms_primary so 4790eda14cbcSMatt Macy * we start in the location right after where we left off, and don't 4791eda14cbcSMatt Macy * accidentally loop forever considering the same metaslabs. 4792eda14cbcSMatt Macy */ 4793eda14cbcSMatt Macy search->ms_allocator = -1; 4794eda14cbcSMatt Macy search->ms_primary = B_TRUE; 4795eda14cbcSMatt Macy for (;;) { 4796eda14cbcSMatt Macy boolean_t was_active = B_FALSE; 4797eda14cbcSMatt Macy 4798eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 4799eda14cbcSMatt Macy 4800eda14cbcSMatt Macy if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4801eda14cbcSMatt Macy mga->mga_primary != NULL) { 4802eda14cbcSMatt Macy msp = mga->mga_primary; 4803eda14cbcSMatt Macy 4804eda14cbcSMatt Macy /* 4805eda14cbcSMatt Macy * Even though we don't hold the ms_lock for the 4806eda14cbcSMatt Macy * primary metaslab, those fields should not 4807eda14cbcSMatt Macy * change while we hold the mg_lock. Thus it is 4808eda14cbcSMatt Macy * safe to make assertions on them. 4809eda14cbcSMatt Macy */ 4810eda14cbcSMatt Macy ASSERT(msp->ms_primary); 4811eda14cbcSMatt Macy ASSERT3S(msp->ms_allocator, ==, allocator); 4812eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4813eda14cbcSMatt Macy 4814eda14cbcSMatt Macy was_active = B_TRUE; 4815eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4816eda14cbcSMatt Macy } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4817eda14cbcSMatt Macy mga->mga_secondary != NULL) { 4818eda14cbcSMatt Macy msp = mga->mga_secondary; 4819eda14cbcSMatt Macy 4820eda14cbcSMatt Macy /* 4821eda14cbcSMatt Macy * See comment above about the similar assertions 4822eda14cbcSMatt Macy * for the primary metaslab. 4823eda14cbcSMatt Macy */ 4824eda14cbcSMatt Macy ASSERT(!msp->ms_primary); 4825eda14cbcSMatt Macy ASSERT3S(msp->ms_allocator, ==, allocator); 4826eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4827eda14cbcSMatt Macy 4828eda14cbcSMatt Macy was_active = B_TRUE; 4829eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4830eda14cbcSMatt Macy } else { 4831eda14cbcSMatt Macy msp = find_valid_metaslab(mg, activation_weight, dva, d, 4832eda14cbcSMatt Macy want_unique, asize, allocator, try_hard, zal, 4833eda14cbcSMatt Macy search, &was_active); 4834eda14cbcSMatt Macy } 4835eda14cbcSMatt Macy 4836eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 4837eda14cbcSMatt Macy if (msp == NULL) { 4838eda14cbcSMatt Macy kmem_free(search, sizeof (*search)); 4839eda14cbcSMatt Macy return (-1ULL); 4840eda14cbcSMatt Macy } 4841eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 4842eda14cbcSMatt Macy 4843eda14cbcSMatt Macy metaslab_active_mask_verify(msp); 4844eda14cbcSMatt Macy 4845eda14cbcSMatt Macy /* 4846eda14cbcSMatt Macy * This code is disabled out because of issues with 4847eda14cbcSMatt Macy * tracepoints in non-gpl kernel modules. 4848eda14cbcSMatt Macy */ 4849eda14cbcSMatt Macy #if 0 4850eda14cbcSMatt Macy DTRACE_PROBE3(ms__activation__attempt, 4851eda14cbcSMatt Macy metaslab_t *, msp, uint64_t, activation_weight, 4852eda14cbcSMatt Macy boolean_t, was_active); 4853eda14cbcSMatt Macy #endif 4854eda14cbcSMatt Macy 4855eda14cbcSMatt Macy /* 4856eda14cbcSMatt Macy * Ensure that the metaslab we have selected is still 4857eda14cbcSMatt Macy * capable of handling our request. It's possible that 4858eda14cbcSMatt Macy * another thread may have changed the weight while we 4859eda14cbcSMatt Macy * were blocked on the metaslab lock. We check the 4860eda14cbcSMatt Macy * active status first to see if we need to set_selected_txg 4861eda14cbcSMatt Macy * a new metaslab. 4862eda14cbcSMatt Macy */ 4863eda14cbcSMatt Macy if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4864eda14cbcSMatt Macy ASSERT3S(msp->ms_allocator, ==, -1); 4865eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4866eda14cbcSMatt Macy continue; 4867eda14cbcSMatt Macy } 4868eda14cbcSMatt Macy 4869eda14cbcSMatt Macy /* 4870eda14cbcSMatt Macy * If the metaslab was activated for another allocator 4871eda14cbcSMatt Macy * while we were waiting in the ms_lock above, or it's 4872eda14cbcSMatt Macy * a primary and we're seeking a secondary (or vice versa), 4873eda14cbcSMatt Macy * we go back and select a new metaslab. 4874eda14cbcSMatt Macy */ 4875eda14cbcSMatt Macy if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4876eda14cbcSMatt Macy (msp->ms_allocator != -1) && 4877eda14cbcSMatt Macy (msp->ms_allocator != allocator || ((activation_weight == 4878eda14cbcSMatt Macy METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4879eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4880eda14cbcSMatt Macy ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4881eda14cbcSMatt Macy msp->ms_allocator != -1); 4882eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4883eda14cbcSMatt Macy continue; 4884eda14cbcSMatt Macy } 4885eda14cbcSMatt Macy 4886eda14cbcSMatt Macy /* 4887eda14cbcSMatt Macy * This metaslab was used for claiming regions allocated 4888eda14cbcSMatt Macy * by the ZIL during pool import. Once these regions are 4889eda14cbcSMatt Macy * claimed we don't need to keep the CLAIM bit set 4890eda14cbcSMatt Macy * anymore. Passivate this metaslab to zero its activation 4891eda14cbcSMatt Macy * mask. 4892eda14cbcSMatt Macy */ 4893eda14cbcSMatt Macy if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4894eda14cbcSMatt Macy activation_weight != METASLAB_WEIGHT_CLAIM) { 4895eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4896eda14cbcSMatt Macy ASSERT3S(msp->ms_allocator, ==, -1); 4897eda14cbcSMatt Macy metaslab_passivate(msp, msp->ms_weight & 4898eda14cbcSMatt Macy ~METASLAB_WEIGHT_CLAIM); 4899eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4900eda14cbcSMatt Macy continue; 4901eda14cbcSMatt Macy } 4902eda14cbcSMatt Macy 4903eda14cbcSMatt Macy metaslab_set_selected_txg(msp, txg); 4904eda14cbcSMatt Macy 4905eda14cbcSMatt Macy int activation_error = 4906eda14cbcSMatt Macy metaslab_activate(msp, allocator, activation_weight); 4907eda14cbcSMatt Macy metaslab_active_mask_verify(msp); 4908eda14cbcSMatt Macy 4909eda14cbcSMatt Macy /* 4910eda14cbcSMatt Macy * If the metaslab was activated by another thread for 4911eda14cbcSMatt Macy * another allocator or activation_weight (EBUSY), or it 4912eda14cbcSMatt Macy * failed because another metaslab was assigned as primary 4913eda14cbcSMatt Macy * for this allocator (EEXIST) we continue using this 4914eda14cbcSMatt Macy * metaslab for our allocation, rather than going on to a 4915eda14cbcSMatt Macy * worse metaslab (we waited for that metaslab to be loaded 4916eda14cbcSMatt Macy * after all). 4917eda14cbcSMatt Macy * 4918eda14cbcSMatt Macy * If the activation failed due to an I/O error or ENOSPC we 4919eda14cbcSMatt Macy * skip to the next metaslab. 4920eda14cbcSMatt Macy */ 4921eda14cbcSMatt Macy boolean_t activated; 4922eda14cbcSMatt Macy if (activation_error == 0) { 4923eda14cbcSMatt Macy activated = B_TRUE; 4924eda14cbcSMatt Macy } else if (activation_error == EBUSY || 4925eda14cbcSMatt Macy activation_error == EEXIST) { 4926eda14cbcSMatt Macy activated = B_FALSE; 4927eda14cbcSMatt Macy } else { 4928eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4929eda14cbcSMatt Macy continue; 4930eda14cbcSMatt Macy } 4931eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4932eda14cbcSMatt Macy 4933eda14cbcSMatt Macy /* 4934eda14cbcSMatt Macy * Now that we have the lock, recheck to see if we should 4935eda14cbcSMatt Macy * continue to use this metaslab for this allocation. The 4936eda14cbcSMatt Macy * the metaslab is now loaded so metaslab_should_allocate() 4937eda14cbcSMatt Macy * can accurately determine if the allocation attempt should 4938eda14cbcSMatt Macy * proceed. 4939eda14cbcSMatt Macy */ 4940eda14cbcSMatt Macy if (!metaslab_should_allocate(msp, asize, try_hard)) { 4941eda14cbcSMatt Macy /* Passivate this metaslab and select a new one. */ 4942eda14cbcSMatt Macy metaslab_trace_add(zal, mg, msp, asize, d, 4943eda14cbcSMatt Macy TRACE_TOO_SMALL, allocator); 4944eda14cbcSMatt Macy goto next; 4945eda14cbcSMatt Macy } 4946eda14cbcSMatt Macy 4947eda14cbcSMatt Macy /* 4948eda14cbcSMatt Macy * If this metaslab is currently condensing then pick again 4949eda14cbcSMatt Macy * as we can't manipulate this metaslab until it's committed 4950eda14cbcSMatt Macy * to disk. If this metaslab is being initialized, we shouldn't 4951eda14cbcSMatt Macy * allocate from it since the allocated region might be 4952eda14cbcSMatt Macy * overwritten after allocation. 4953eda14cbcSMatt Macy */ 4954eda14cbcSMatt Macy if (msp->ms_condensing) { 4955eda14cbcSMatt Macy metaslab_trace_add(zal, mg, msp, asize, d, 4956eda14cbcSMatt Macy TRACE_CONDENSING, allocator); 4957eda14cbcSMatt Macy if (activated) { 4958eda14cbcSMatt Macy metaslab_passivate(msp, msp->ms_weight & 4959eda14cbcSMatt Macy ~METASLAB_ACTIVE_MASK); 4960eda14cbcSMatt Macy } 4961eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4962eda14cbcSMatt Macy continue; 4963eda14cbcSMatt Macy } else if (msp->ms_disabled > 0) { 4964eda14cbcSMatt Macy metaslab_trace_add(zal, mg, msp, asize, d, 4965eda14cbcSMatt Macy TRACE_DISABLED, allocator); 4966eda14cbcSMatt Macy if (activated) { 4967eda14cbcSMatt Macy metaslab_passivate(msp, msp->ms_weight & 4968eda14cbcSMatt Macy ~METASLAB_ACTIVE_MASK); 4969eda14cbcSMatt Macy } 4970eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 4971eda14cbcSMatt Macy continue; 4972eda14cbcSMatt Macy } 4973eda14cbcSMatt Macy 4974eda14cbcSMatt Macy offset = metaslab_block_alloc(msp, asize, txg); 4975eda14cbcSMatt Macy metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4976eda14cbcSMatt Macy 4977eda14cbcSMatt Macy if (offset != -1ULL) { 4978eda14cbcSMatt Macy /* Proactively passivate the metaslab, if needed */ 4979eda14cbcSMatt Macy if (activated) 4980eda14cbcSMatt Macy metaslab_segment_may_passivate(msp); 4981eda14cbcSMatt Macy break; 4982eda14cbcSMatt Macy } 4983eda14cbcSMatt Macy next: 4984eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 4985eda14cbcSMatt Macy 4986eda14cbcSMatt Macy /* 4987eda14cbcSMatt Macy * This code is disabled out because of issues with 4988eda14cbcSMatt Macy * tracepoints in non-gpl kernel modules. 4989eda14cbcSMatt Macy */ 4990eda14cbcSMatt Macy #if 0 4991eda14cbcSMatt Macy DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4992eda14cbcSMatt Macy uint64_t, asize); 4993eda14cbcSMatt Macy #endif 4994eda14cbcSMatt Macy 4995eda14cbcSMatt Macy /* 4996eda14cbcSMatt Macy * We were unable to allocate from this metaslab so determine 4997eda14cbcSMatt Macy * a new weight for this metaslab. Now that we have loaded 4998eda14cbcSMatt Macy * the metaslab we can provide a better hint to the metaslab 4999eda14cbcSMatt Macy * selector. 5000eda14cbcSMatt Macy * 5001eda14cbcSMatt Macy * For space-based metaslabs, we use the maximum block size. 5002eda14cbcSMatt Macy * This information is only available when the metaslab 5003eda14cbcSMatt Macy * is loaded and is more accurate than the generic free 5004eda14cbcSMatt Macy * space weight that was calculated by metaslab_weight(). 5005eda14cbcSMatt Macy * This information allows us to quickly compare the maximum 5006eda14cbcSMatt Macy * available allocation in the metaslab to the allocation 5007eda14cbcSMatt Macy * size being requested. 5008eda14cbcSMatt Macy * 5009eda14cbcSMatt Macy * For segment-based metaslabs, determine the new weight 5010eda14cbcSMatt Macy * based on the highest bucket in the range tree. We 5011eda14cbcSMatt Macy * explicitly use the loaded segment weight (i.e. the range 5012eda14cbcSMatt Macy * tree histogram) since it contains the space that is 5013eda14cbcSMatt Macy * currently available for allocation and is accurate 5014eda14cbcSMatt Macy * even within a sync pass. 5015eda14cbcSMatt Macy */ 5016eda14cbcSMatt Macy uint64_t weight; 5017eda14cbcSMatt Macy if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5018eda14cbcSMatt Macy weight = metaslab_largest_allocatable(msp); 5019eda14cbcSMatt Macy WEIGHT_SET_SPACEBASED(weight); 5020eda14cbcSMatt Macy } else { 5021eda14cbcSMatt Macy weight = metaslab_weight_from_range_tree(msp); 5022eda14cbcSMatt Macy } 5023eda14cbcSMatt Macy 5024eda14cbcSMatt Macy if (activated) { 5025eda14cbcSMatt Macy metaslab_passivate(msp, weight); 5026eda14cbcSMatt Macy } else { 5027eda14cbcSMatt Macy /* 5028eda14cbcSMatt Macy * For the case where we use the metaslab that is 5029eda14cbcSMatt Macy * active for another allocator we want to make 5030eda14cbcSMatt Macy * sure that we retain the activation mask. 5031eda14cbcSMatt Macy * 5032eda14cbcSMatt Macy * Note that we could attempt to use something like 5033eda14cbcSMatt Macy * metaslab_recalculate_weight_and_sort() that 5034eda14cbcSMatt Macy * retains the activation mask here. That function 5035eda14cbcSMatt Macy * uses metaslab_weight() to set the weight though 5036eda14cbcSMatt Macy * which is not as accurate as the calculations 5037eda14cbcSMatt Macy * above. 5038eda14cbcSMatt Macy */ 5039eda14cbcSMatt Macy weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5040eda14cbcSMatt Macy metaslab_group_sort(mg, msp, weight); 5041eda14cbcSMatt Macy } 5042eda14cbcSMatt Macy metaslab_active_mask_verify(msp); 5043eda14cbcSMatt Macy 5044eda14cbcSMatt Macy /* 5045eda14cbcSMatt Macy * We have just failed an allocation attempt, check 5046eda14cbcSMatt Macy * that metaslab_should_allocate() agrees. Otherwise, 5047eda14cbcSMatt Macy * we may end up in an infinite loop retrying the same 5048eda14cbcSMatt Macy * metaslab. 5049eda14cbcSMatt Macy */ 5050eda14cbcSMatt Macy ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5051eda14cbcSMatt Macy 5052eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5053eda14cbcSMatt Macy } 5054eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5055eda14cbcSMatt Macy kmem_free(search, sizeof (*search)); 5056eda14cbcSMatt Macy return (offset); 5057eda14cbcSMatt Macy } 5058eda14cbcSMatt Macy 5059eda14cbcSMatt Macy static uint64_t 5060eda14cbcSMatt Macy metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5061eda14cbcSMatt Macy uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5062eda14cbcSMatt Macy int allocator, boolean_t try_hard) 5063eda14cbcSMatt Macy { 5064eda14cbcSMatt Macy uint64_t offset; 5065eda14cbcSMatt Macy ASSERT(mg->mg_initialized); 5066eda14cbcSMatt Macy 5067eda14cbcSMatt Macy offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5068eda14cbcSMatt Macy dva, d, allocator, try_hard); 5069eda14cbcSMatt Macy 5070eda14cbcSMatt Macy mutex_enter(&mg->mg_lock); 5071eda14cbcSMatt Macy if (offset == -1ULL) { 5072eda14cbcSMatt Macy mg->mg_failed_allocations++; 5073eda14cbcSMatt Macy metaslab_trace_add(zal, mg, NULL, asize, d, 5074eda14cbcSMatt Macy TRACE_GROUP_FAILURE, allocator); 5075eda14cbcSMatt Macy if (asize == SPA_GANGBLOCKSIZE) { 5076eda14cbcSMatt Macy /* 5077eda14cbcSMatt Macy * This metaslab group was unable to allocate 5078eda14cbcSMatt Macy * the minimum gang block size so it must be out of 5079eda14cbcSMatt Macy * space. We must notify the allocation throttle 5080eda14cbcSMatt Macy * to start skipping allocation attempts to this 5081eda14cbcSMatt Macy * metaslab group until more space becomes available. 5082eda14cbcSMatt Macy * Note: this failure cannot be caused by the 5083eda14cbcSMatt Macy * allocation throttle since the allocation throttle 5084eda14cbcSMatt Macy * is only responsible for skipping devices and 5085eda14cbcSMatt Macy * not failing block allocations. 5086eda14cbcSMatt Macy */ 5087eda14cbcSMatt Macy mg->mg_no_free_space = B_TRUE; 5088eda14cbcSMatt Macy } 5089eda14cbcSMatt Macy } 5090eda14cbcSMatt Macy mg->mg_allocations++; 5091eda14cbcSMatt Macy mutex_exit(&mg->mg_lock); 5092eda14cbcSMatt Macy return (offset); 5093eda14cbcSMatt Macy } 5094eda14cbcSMatt Macy 5095eda14cbcSMatt Macy /* 5096eda14cbcSMatt Macy * Allocate a block for the specified i/o. 5097eda14cbcSMatt Macy */ 5098eda14cbcSMatt Macy int 5099eda14cbcSMatt Macy metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5100eda14cbcSMatt Macy dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5101eda14cbcSMatt Macy zio_alloc_list_t *zal, int allocator) 5102eda14cbcSMatt Macy { 51037877fdebSMatt Macy metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5104*315ee00fSMartin Matuska metaslab_group_t *mg, *rotor; 5105eda14cbcSMatt Macy vdev_t *vd; 5106eda14cbcSMatt Macy boolean_t try_hard = B_FALSE; 5107eda14cbcSMatt Macy 5108eda14cbcSMatt Macy ASSERT(!DVA_IS_VALID(&dva[d])); 5109eda14cbcSMatt Macy 5110eda14cbcSMatt Macy /* 5111eda14cbcSMatt Macy * For testing, make some blocks above a certain size be gang blocks. 5112eda14cbcSMatt Macy * This will result in more split blocks when using device removal, 5113eda14cbcSMatt Macy * and a large number of split blocks coupled with ztest-induced 5114eda14cbcSMatt Macy * damage can result in extremely long reconstruction times. This 5115eda14cbcSMatt Macy * will also test spilling from special to normal. 5116eda14cbcSMatt Macy */ 5117*315ee00fSMartin Matuska if (psize >= metaslab_force_ganging && 5118*315ee00fSMartin Matuska metaslab_force_ganging_pct > 0 && 5119*315ee00fSMartin Matuska (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) { 5120eda14cbcSMatt Macy metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5121eda14cbcSMatt Macy allocator); 5122eda14cbcSMatt Macy return (SET_ERROR(ENOSPC)); 5123eda14cbcSMatt Macy } 5124eda14cbcSMatt Macy 5125eda14cbcSMatt Macy /* 5126eda14cbcSMatt Macy * Start at the rotor and loop through all mgs until we find something. 51277877fdebSMatt Macy * Note that there's no locking on mca_rotor or mca_aliquot because 5128eda14cbcSMatt Macy * nothing actually breaks if we miss a few updates -- we just won't 5129eda14cbcSMatt Macy * allocate quite as evenly. It all balances out over time. 5130eda14cbcSMatt Macy * 5131eda14cbcSMatt Macy * If we are doing ditto or log blocks, try to spread them across 5132eda14cbcSMatt Macy * consecutive vdevs. If we're forced to reuse a vdev before we've 5133eda14cbcSMatt Macy * allocated all of our ditto blocks, then try and spread them out on 5134eda14cbcSMatt Macy * that vdev as much as possible. If it turns out to not be possible, 5135eda14cbcSMatt Macy * gradually lower our standards until anything becomes acceptable. 5136eda14cbcSMatt Macy * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5137eda14cbcSMatt Macy * gives us hope of containing our fault domains to something we're 5138eda14cbcSMatt Macy * able to reason about. Otherwise, any two top-level vdev failures 5139eda14cbcSMatt Macy * will guarantee the loss of data. With consecutive allocation, 5140eda14cbcSMatt Macy * only two adjacent top-level vdev failures will result in data loss. 5141eda14cbcSMatt Macy * 5142eda14cbcSMatt Macy * If we are doing gang blocks (hintdva is non-NULL), try to keep 5143eda14cbcSMatt Macy * ourselves on the same vdev as our gang block header. That 5144eda14cbcSMatt Macy * way, we can hope for locality in vdev_cache, plus it makes our 5145eda14cbcSMatt Macy * fault domains something tractable. 5146eda14cbcSMatt Macy */ 5147eda14cbcSMatt Macy if (hintdva) { 5148eda14cbcSMatt Macy vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5149eda14cbcSMatt Macy 5150eda14cbcSMatt Macy /* 5151eda14cbcSMatt Macy * It's possible the vdev we're using as the hint no 5152eda14cbcSMatt Macy * longer exists or its mg has been closed (e.g. by 5153eda14cbcSMatt Macy * device removal). Consult the rotor when 5154eda14cbcSMatt Macy * all else fails. 5155eda14cbcSMatt Macy */ 5156eda14cbcSMatt Macy if (vd != NULL && vd->vdev_mg != NULL) { 5157184c1b94SMartin Matuska mg = vdev_get_mg(vd, mc); 5158eda14cbcSMatt Macy 5159dbd5678dSMartin Matuska if (flags & METASLAB_HINTBP_AVOID) 5160eda14cbcSMatt Macy mg = mg->mg_next; 5161eda14cbcSMatt Macy } else { 51627877fdebSMatt Macy mg = mca->mca_rotor; 5163eda14cbcSMatt Macy } 5164eda14cbcSMatt Macy } else if (d != 0) { 5165eda14cbcSMatt Macy vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5166eda14cbcSMatt Macy mg = vd->vdev_mg->mg_next; 5167eda14cbcSMatt Macy } else { 51687877fdebSMatt Macy ASSERT(mca->mca_rotor != NULL); 51697877fdebSMatt Macy mg = mca->mca_rotor; 5170eda14cbcSMatt Macy } 5171eda14cbcSMatt Macy 5172eda14cbcSMatt Macy /* 5173eda14cbcSMatt Macy * If the hint put us into the wrong metaslab class, or into a 5174eda14cbcSMatt Macy * metaslab group that has been passivated, just follow the rotor. 5175eda14cbcSMatt Macy */ 5176eda14cbcSMatt Macy if (mg->mg_class != mc || mg->mg_activation_count <= 0) 51777877fdebSMatt Macy mg = mca->mca_rotor; 5178eda14cbcSMatt Macy 5179eda14cbcSMatt Macy rotor = mg; 5180eda14cbcSMatt Macy top: 5181eda14cbcSMatt Macy do { 5182eda14cbcSMatt Macy boolean_t allocatable; 5183eda14cbcSMatt Macy 5184eda14cbcSMatt Macy ASSERT(mg->mg_activation_count == 1); 5185eda14cbcSMatt Macy vd = mg->mg_vd; 5186eda14cbcSMatt Macy 5187eda14cbcSMatt Macy /* 5188eda14cbcSMatt Macy * Don't allocate from faulted devices. 5189eda14cbcSMatt Macy */ 5190eda14cbcSMatt Macy if (try_hard) { 5191eda14cbcSMatt Macy spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5192eda14cbcSMatt Macy allocatable = vdev_allocatable(vd); 5193eda14cbcSMatt Macy spa_config_exit(spa, SCL_ZIO, FTAG); 5194eda14cbcSMatt Macy } else { 5195eda14cbcSMatt Macy allocatable = vdev_allocatable(vd); 5196eda14cbcSMatt Macy } 5197eda14cbcSMatt Macy 5198eda14cbcSMatt Macy /* 5199eda14cbcSMatt Macy * Determine if the selected metaslab group is eligible 5200eda14cbcSMatt Macy * for allocations. If we're ganging then don't allow 5201eda14cbcSMatt Macy * this metaslab group to skip allocations since that would 5202eda14cbcSMatt Macy * inadvertently return ENOSPC and suspend the pool 5203eda14cbcSMatt Macy * even though space is still available. 5204eda14cbcSMatt Macy */ 5205eda14cbcSMatt Macy if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5206eda14cbcSMatt Macy allocatable = metaslab_group_allocatable(mg, rotor, 520715f0b8c3SMartin Matuska flags, psize, allocator, d); 5208eda14cbcSMatt Macy } 5209eda14cbcSMatt Macy 5210eda14cbcSMatt Macy if (!allocatable) { 5211eda14cbcSMatt Macy metaslab_trace_add(zal, mg, NULL, psize, d, 5212eda14cbcSMatt Macy TRACE_NOT_ALLOCATABLE, allocator); 5213eda14cbcSMatt Macy goto next; 5214eda14cbcSMatt Macy } 5215eda14cbcSMatt Macy 5216eda14cbcSMatt Macy ASSERT(mg->mg_initialized); 5217eda14cbcSMatt Macy 5218eda14cbcSMatt Macy /* 5219dbd5678dSMartin Matuska * Avoid writing single-copy data to an unhealthy, 5220eda14cbcSMatt Macy * non-redundant vdev, unless we've already tried all 5221eda14cbcSMatt Macy * other vdevs. 5222eda14cbcSMatt Macy */ 5223dbd5678dSMartin Matuska if (vd->vdev_state < VDEV_STATE_HEALTHY && 5224eda14cbcSMatt Macy d == 0 && !try_hard && vd->vdev_children == 0) { 5225eda14cbcSMatt Macy metaslab_trace_add(zal, mg, NULL, psize, d, 5226eda14cbcSMatt Macy TRACE_VDEV_ERROR, allocator); 5227eda14cbcSMatt Macy goto next; 5228eda14cbcSMatt Macy } 5229eda14cbcSMatt Macy 5230eda14cbcSMatt Macy ASSERT(mg->mg_class == mc); 5231eda14cbcSMatt Macy 5232eda14cbcSMatt Macy uint64_t asize = vdev_psize_to_asize(vd, psize); 5233eda14cbcSMatt Macy ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5234eda14cbcSMatt Macy 5235eda14cbcSMatt Macy /* 5236eda14cbcSMatt Macy * If we don't need to try hard, then require that the 5237eda14cbcSMatt Macy * block be on a different metaslab from any other DVAs 5238eda14cbcSMatt Macy * in this BP (unique=true). If we are trying hard, then 5239eda14cbcSMatt Macy * allow any metaslab to be used (unique=false). 5240eda14cbcSMatt Macy */ 5241eda14cbcSMatt Macy uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5242eda14cbcSMatt Macy !try_hard, dva, d, allocator, try_hard); 5243eda14cbcSMatt Macy 5244eda14cbcSMatt Macy if (offset != -1ULL) { 5245eda14cbcSMatt Macy /* 5246eda14cbcSMatt Macy * If we've just selected this metaslab group, 5247eda14cbcSMatt Macy * figure out whether the corresponding vdev is 5248eda14cbcSMatt Macy * over- or under-used relative to the pool, 5249eda14cbcSMatt Macy * and set an allocation bias to even it out. 5250eda14cbcSMatt Macy * 5251eda14cbcSMatt Macy * Bias is also used to compensate for unequally 5252eda14cbcSMatt Macy * sized vdevs so that space is allocated fairly. 5253eda14cbcSMatt Macy */ 52547877fdebSMatt Macy if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5255eda14cbcSMatt Macy vdev_stat_t *vs = &vd->vdev_stat; 5256eda14cbcSMatt Macy int64_t vs_free = vs->vs_space - vs->vs_alloc; 5257eda14cbcSMatt Macy int64_t mc_free = mc->mc_space - mc->mc_alloc; 5258eda14cbcSMatt Macy int64_t ratio; 5259eda14cbcSMatt Macy 5260eda14cbcSMatt Macy /* 5261eda14cbcSMatt Macy * Calculate how much more or less we should 5262eda14cbcSMatt Macy * try to allocate from this device during 5263eda14cbcSMatt Macy * this iteration around the rotor. 5264eda14cbcSMatt Macy * 5265eda14cbcSMatt Macy * This basically introduces a zero-centered 5266eda14cbcSMatt Macy * bias towards the devices with the most 5267eda14cbcSMatt Macy * free space, while compensating for vdev 5268eda14cbcSMatt Macy * size differences. 5269eda14cbcSMatt Macy * 5270eda14cbcSMatt Macy * Examples: 5271eda14cbcSMatt Macy * vdev V1 = 16M/128M 5272eda14cbcSMatt Macy * vdev V2 = 16M/128M 5273eda14cbcSMatt Macy * ratio(V1) = 100% ratio(V2) = 100% 5274eda14cbcSMatt Macy * 5275eda14cbcSMatt Macy * vdev V1 = 16M/128M 5276eda14cbcSMatt Macy * vdev V2 = 64M/128M 5277eda14cbcSMatt Macy * ratio(V1) = 127% ratio(V2) = 72% 5278eda14cbcSMatt Macy * 5279eda14cbcSMatt Macy * vdev V1 = 16M/128M 5280eda14cbcSMatt Macy * vdev V2 = 64M/512M 5281eda14cbcSMatt Macy * ratio(V1) = 40% ratio(V2) = 160% 5282eda14cbcSMatt Macy */ 5283eda14cbcSMatt Macy ratio = (vs_free * mc->mc_alloc_groups * 100) / 5284eda14cbcSMatt Macy (mc_free + 1); 5285eda14cbcSMatt Macy mg->mg_bias = ((ratio - 100) * 5286eda14cbcSMatt Macy (int64_t)mg->mg_aliquot) / 100; 5287eda14cbcSMatt Macy } else if (!metaslab_bias_enabled) { 5288eda14cbcSMatt Macy mg->mg_bias = 0; 5289eda14cbcSMatt Macy } 5290eda14cbcSMatt Macy 5291*315ee00fSMartin Matuska if ((flags & METASLAB_ZIL) || 52927877fdebSMatt Macy atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5293eda14cbcSMatt Macy mg->mg_aliquot + mg->mg_bias) { 52947877fdebSMatt Macy mca->mca_rotor = mg->mg_next; 52957877fdebSMatt Macy mca->mca_aliquot = 0; 5296eda14cbcSMatt Macy } 5297eda14cbcSMatt Macy 5298eda14cbcSMatt Macy DVA_SET_VDEV(&dva[d], vd->vdev_id); 5299eda14cbcSMatt Macy DVA_SET_OFFSET(&dva[d], offset); 5300eda14cbcSMatt Macy DVA_SET_GANG(&dva[d], 5301eda14cbcSMatt Macy ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5302eda14cbcSMatt Macy DVA_SET_ASIZE(&dva[d], asize); 5303eda14cbcSMatt Macy 5304eda14cbcSMatt Macy return (0); 5305eda14cbcSMatt Macy } 5306eda14cbcSMatt Macy next: 53077877fdebSMatt Macy mca->mca_rotor = mg->mg_next; 53087877fdebSMatt Macy mca->mca_aliquot = 0; 5309eda14cbcSMatt Macy } while ((mg = mg->mg_next) != rotor); 5310eda14cbcSMatt Macy 5311eda14cbcSMatt Macy /* 53127877fdebSMatt Macy * If we haven't tried hard, perhaps do so now. 5313eda14cbcSMatt Macy */ 53147877fdebSMatt Macy if (!try_hard && (zfs_metaslab_try_hard_before_gang || 53157877fdebSMatt Macy GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 53167877fdebSMatt Macy psize <= 1 << spa->spa_min_ashift)) { 53177877fdebSMatt Macy METASLABSTAT_BUMP(metaslabstat_try_hard); 5318eda14cbcSMatt Macy try_hard = B_TRUE; 5319eda14cbcSMatt Macy goto top; 5320eda14cbcSMatt Macy } 5321eda14cbcSMatt Macy 5322da5137abSMartin Matuska memset(&dva[d], 0, sizeof (dva_t)); 5323eda14cbcSMatt Macy 5324eda14cbcSMatt Macy metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5325eda14cbcSMatt Macy return (SET_ERROR(ENOSPC)); 5326eda14cbcSMatt Macy } 5327eda14cbcSMatt Macy 5328eda14cbcSMatt Macy void 5329eda14cbcSMatt Macy metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5330eda14cbcSMatt Macy boolean_t checkpoint) 5331eda14cbcSMatt Macy { 5332eda14cbcSMatt Macy metaslab_t *msp; 5333eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 5334eda14cbcSMatt Macy 5335eda14cbcSMatt Macy ASSERT(vdev_is_concrete(vd)); 5336eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5337eda14cbcSMatt Macy ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5338eda14cbcSMatt Macy 5339eda14cbcSMatt Macy msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5340eda14cbcSMatt Macy 5341eda14cbcSMatt Macy VERIFY(!msp->ms_condensing); 5342eda14cbcSMatt Macy VERIFY3U(offset, >=, msp->ms_start); 5343eda14cbcSMatt Macy VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5344eda14cbcSMatt Macy VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5345eda14cbcSMatt Macy VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5346eda14cbcSMatt Macy 5347eda14cbcSMatt Macy metaslab_check_free_impl(vd, offset, asize); 5348eda14cbcSMatt Macy 5349eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 5350eda14cbcSMatt Macy if (range_tree_is_empty(msp->ms_freeing) && 5351eda14cbcSMatt Macy range_tree_is_empty(msp->ms_checkpointing)) { 5352eda14cbcSMatt Macy vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5353eda14cbcSMatt Macy } 5354eda14cbcSMatt Macy 5355eda14cbcSMatt Macy if (checkpoint) { 5356eda14cbcSMatt Macy ASSERT(spa_has_checkpoint(spa)); 5357eda14cbcSMatt Macy range_tree_add(msp->ms_checkpointing, offset, asize); 5358eda14cbcSMatt Macy } else { 5359eda14cbcSMatt Macy range_tree_add(msp->ms_freeing, offset, asize); 5360eda14cbcSMatt Macy } 5361eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5362eda14cbcSMatt Macy } 5363eda14cbcSMatt Macy 5364eda14cbcSMatt Macy void 5365eda14cbcSMatt Macy metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5366eda14cbcSMatt Macy uint64_t size, void *arg) 5367eda14cbcSMatt Macy { 5368e92ffd9bSMartin Matuska (void) inner_offset; 5369eda14cbcSMatt Macy boolean_t *checkpoint = arg; 5370eda14cbcSMatt Macy 5371eda14cbcSMatt Macy ASSERT3P(checkpoint, !=, NULL); 5372eda14cbcSMatt Macy 5373eda14cbcSMatt Macy if (vd->vdev_ops->vdev_op_remap != NULL) 5374eda14cbcSMatt Macy vdev_indirect_mark_obsolete(vd, offset, size); 5375eda14cbcSMatt Macy else 5376eda14cbcSMatt Macy metaslab_free_impl(vd, offset, size, *checkpoint); 5377eda14cbcSMatt Macy } 5378eda14cbcSMatt Macy 5379eda14cbcSMatt Macy static void 5380eda14cbcSMatt Macy metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5381eda14cbcSMatt Macy boolean_t checkpoint) 5382eda14cbcSMatt Macy { 5383eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 5384eda14cbcSMatt Macy 5385eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5386eda14cbcSMatt Macy 5387eda14cbcSMatt Macy if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5388eda14cbcSMatt Macy return; 5389eda14cbcSMatt Macy 5390eda14cbcSMatt Macy if (spa->spa_vdev_removal != NULL && 5391eda14cbcSMatt Macy spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5392eda14cbcSMatt Macy vdev_is_concrete(vd)) { 5393eda14cbcSMatt Macy /* 5394eda14cbcSMatt Macy * Note: we check if the vdev is concrete because when 5395eda14cbcSMatt Macy * we complete the removal, we first change the vdev to be 5396eda14cbcSMatt Macy * an indirect vdev (in open context), and then (in syncing 5397eda14cbcSMatt Macy * context) clear spa_vdev_removal. 5398eda14cbcSMatt Macy */ 5399eda14cbcSMatt Macy free_from_removing_vdev(vd, offset, size); 5400eda14cbcSMatt Macy } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5401eda14cbcSMatt Macy vdev_indirect_mark_obsolete(vd, offset, size); 5402eda14cbcSMatt Macy vd->vdev_ops->vdev_op_remap(vd, offset, size, 5403eda14cbcSMatt Macy metaslab_free_impl_cb, &checkpoint); 5404eda14cbcSMatt Macy } else { 5405eda14cbcSMatt Macy metaslab_free_concrete(vd, offset, size, checkpoint); 5406eda14cbcSMatt Macy } 5407eda14cbcSMatt Macy } 5408eda14cbcSMatt Macy 5409eda14cbcSMatt Macy typedef struct remap_blkptr_cb_arg { 5410eda14cbcSMatt Macy blkptr_t *rbca_bp; 5411eda14cbcSMatt Macy spa_remap_cb_t rbca_cb; 5412eda14cbcSMatt Macy vdev_t *rbca_remap_vd; 5413eda14cbcSMatt Macy uint64_t rbca_remap_offset; 5414eda14cbcSMatt Macy void *rbca_cb_arg; 5415eda14cbcSMatt Macy } remap_blkptr_cb_arg_t; 5416eda14cbcSMatt Macy 5417eda14cbcSMatt Macy static void 5418eda14cbcSMatt Macy remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5419eda14cbcSMatt Macy uint64_t size, void *arg) 5420eda14cbcSMatt Macy { 5421eda14cbcSMatt Macy remap_blkptr_cb_arg_t *rbca = arg; 5422eda14cbcSMatt Macy blkptr_t *bp = rbca->rbca_bp; 5423eda14cbcSMatt Macy 5424eda14cbcSMatt Macy /* We can not remap split blocks. */ 5425eda14cbcSMatt Macy if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5426eda14cbcSMatt Macy return; 5427eda14cbcSMatt Macy ASSERT0(inner_offset); 5428eda14cbcSMatt Macy 5429eda14cbcSMatt Macy if (rbca->rbca_cb != NULL) { 5430eda14cbcSMatt Macy /* 5431eda14cbcSMatt Macy * At this point we know that we are not handling split 5432eda14cbcSMatt Macy * blocks and we invoke the callback on the previous 5433eda14cbcSMatt Macy * vdev which must be indirect. 5434eda14cbcSMatt Macy */ 5435eda14cbcSMatt Macy ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5436eda14cbcSMatt Macy 5437eda14cbcSMatt Macy rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5438eda14cbcSMatt Macy rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5439eda14cbcSMatt Macy 5440eda14cbcSMatt Macy /* set up remap_blkptr_cb_arg for the next call */ 5441eda14cbcSMatt Macy rbca->rbca_remap_vd = vd; 5442eda14cbcSMatt Macy rbca->rbca_remap_offset = offset; 5443eda14cbcSMatt Macy } 5444eda14cbcSMatt Macy 5445eda14cbcSMatt Macy /* 5446eda14cbcSMatt Macy * The phys birth time is that of dva[0]. This ensures that we know 5447eda14cbcSMatt Macy * when each dva was written, so that resilver can determine which 5448eda14cbcSMatt Macy * blocks need to be scrubbed (i.e. those written during the time 5449eda14cbcSMatt Macy * the vdev was offline). It also ensures that the key used in 5450eda14cbcSMatt Macy * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5451eda14cbcSMatt Macy * we didn't change the phys_birth, a lookup in the ARC for a 5452eda14cbcSMatt Macy * remapped BP could find the data that was previously stored at 5453eda14cbcSMatt Macy * this vdev + offset. 5454eda14cbcSMatt Macy */ 5455eda14cbcSMatt Macy vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5456eda14cbcSMatt Macy DVA_GET_VDEV(&bp->blk_dva[0])); 5457eda14cbcSMatt Macy vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5458eda14cbcSMatt Macy bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5459eda14cbcSMatt Macy DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5460eda14cbcSMatt Macy 5461eda14cbcSMatt Macy DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5462eda14cbcSMatt Macy DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5463eda14cbcSMatt Macy } 5464eda14cbcSMatt Macy 5465eda14cbcSMatt Macy /* 5466eda14cbcSMatt Macy * If the block pointer contains any indirect DVAs, modify them to refer to 5467eda14cbcSMatt Macy * concrete DVAs. Note that this will sometimes not be possible, leaving 5468eda14cbcSMatt Macy * the indirect DVA in place. This happens if the indirect DVA spans multiple 5469eda14cbcSMatt Macy * segments in the mapping (i.e. it is a "split block"). 5470eda14cbcSMatt Macy * 5471eda14cbcSMatt Macy * If the BP was remapped, calls the callback on the original dva (note the 5472eda14cbcSMatt Macy * callback can be called multiple times if the original indirect DVA refers 5473eda14cbcSMatt Macy * to another indirect DVA, etc). 5474eda14cbcSMatt Macy * 5475eda14cbcSMatt Macy * Returns TRUE if the BP was remapped. 5476eda14cbcSMatt Macy */ 5477eda14cbcSMatt Macy boolean_t 5478eda14cbcSMatt Macy spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5479eda14cbcSMatt Macy { 5480eda14cbcSMatt Macy remap_blkptr_cb_arg_t rbca; 5481eda14cbcSMatt Macy 5482eda14cbcSMatt Macy if (!zfs_remap_blkptr_enable) 5483eda14cbcSMatt Macy return (B_FALSE); 5484eda14cbcSMatt Macy 5485eda14cbcSMatt Macy if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5486eda14cbcSMatt Macy return (B_FALSE); 5487eda14cbcSMatt Macy 5488eda14cbcSMatt Macy /* 5489eda14cbcSMatt Macy * Dedup BP's can not be remapped, because ddt_phys_select() depends 5490eda14cbcSMatt Macy * on DVA[0] being the same in the BP as in the DDT (dedup table). 5491eda14cbcSMatt Macy */ 5492eda14cbcSMatt Macy if (BP_GET_DEDUP(bp)) 5493eda14cbcSMatt Macy return (B_FALSE); 5494eda14cbcSMatt Macy 5495eda14cbcSMatt Macy /* 5496eda14cbcSMatt Macy * Gang blocks can not be remapped, because 5497eda14cbcSMatt Macy * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5498eda14cbcSMatt Macy * the BP used to read the gang block header (GBH) being the same 5499eda14cbcSMatt Macy * as the DVA[0] that we allocated for the GBH. 5500eda14cbcSMatt Macy */ 5501eda14cbcSMatt Macy if (BP_IS_GANG(bp)) 5502eda14cbcSMatt Macy return (B_FALSE); 5503eda14cbcSMatt Macy 5504eda14cbcSMatt Macy /* 5505eda14cbcSMatt Macy * Embedded BP's have no DVA to remap. 5506eda14cbcSMatt Macy */ 5507eda14cbcSMatt Macy if (BP_GET_NDVAS(bp) < 1) 5508eda14cbcSMatt Macy return (B_FALSE); 5509eda14cbcSMatt Macy 5510eda14cbcSMatt Macy /* 5511eda14cbcSMatt Macy * Note: we only remap dva[0]. If we remapped other dvas, we 5512eda14cbcSMatt Macy * would no longer know what their phys birth txg is. 5513eda14cbcSMatt Macy */ 5514eda14cbcSMatt Macy dva_t *dva = &bp->blk_dva[0]; 5515eda14cbcSMatt Macy 5516eda14cbcSMatt Macy uint64_t offset = DVA_GET_OFFSET(dva); 5517eda14cbcSMatt Macy uint64_t size = DVA_GET_ASIZE(dva); 5518eda14cbcSMatt Macy vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5519eda14cbcSMatt Macy 5520eda14cbcSMatt Macy if (vd->vdev_ops->vdev_op_remap == NULL) 5521eda14cbcSMatt Macy return (B_FALSE); 5522eda14cbcSMatt Macy 5523eda14cbcSMatt Macy rbca.rbca_bp = bp; 5524eda14cbcSMatt Macy rbca.rbca_cb = callback; 5525eda14cbcSMatt Macy rbca.rbca_remap_vd = vd; 5526eda14cbcSMatt Macy rbca.rbca_remap_offset = offset; 5527eda14cbcSMatt Macy rbca.rbca_cb_arg = arg; 5528eda14cbcSMatt Macy 5529eda14cbcSMatt Macy /* 5530eda14cbcSMatt Macy * remap_blkptr_cb() will be called in order for each level of 5531eda14cbcSMatt Macy * indirection, until a concrete vdev is reached or a split block is 5532eda14cbcSMatt Macy * encountered. old_vd and old_offset are updated within the callback 5533eda14cbcSMatt Macy * as we go from the one indirect vdev to the next one (either concrete 5534eda14cbcSMatt Macy * or indirect again) in that order. 5535eda14cbcSMatt Macy */ 5536eda14cbcSMatt Macy vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5537eda14cbcSMatt Macy 5538eda14cbcSMatt Macy /* Check if the DVA wasn't remapped because it is a split block */ 5539eda14cbcSMatt Macy if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5540eda14cbcSMatt Macy return (B_FALSE); 5541eda14cbcSMatt Macy 5542eda14cbcSMatt Macy return (B_TRUE); 5543eda14cbcSMatt Macy } 5544eda14cbcSMatt Macy 5545eda14cbcSMatt Macy /* 5546eda14cbcSMatt Macy * Undo the allocation of a DVA which happened in the given transaction group. 5547eda14cbcSMatt Macy */ 5548eda14cbcSMatt Macy void 5549eda14cbcSMatt Macy metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5550eda14cbcSMatt Macy { 5551eda14cbcSMatt Macy metaslab_t *msp; 5552eda14cbcSMatt Macy vdev_t *vd; 5553eda14cbcSMatt Macy uint64_t vdev = DVA_GET_VDEV(dva); 5554eda14cbcSMatt Macy uint64_t offset = DVA_GET_OFFSET(dva); 5555eda14cbcSMatt Macy uint64_t size = DVA_GET_ASIZE(dva); 5556eda14cbcSMatt Macy 5557eda14cbcSMatt Macy ASSERT(DVA_IS_VALID(dva)); 5558eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5559eda14cbcSMatt Macy 5560eda14cbcSMatt Macy if (txg > spa_freeze_txg(spa)) 5561eda14cbcSMatt Macy return; 5562eda14cbcSMatt Macy 5563eda14cbcSMatt Macy if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5564eda14cbcSMatt Macy (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5565eda14cbcSMatt Macy zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5566eda14cbcSMatt Macy (u_longlong_t)vdev, (u_longlong_t)offset, 5567eda14cbcSMatt Macy (u_longlong_t)size); 5568eda14cbcSMatt Macy return; 5569eda14cbcSMatt Macy } 5570eda14cbcSMatt Macy 5571eda14cbcSMatt Macy ASSERT(!vd->vdev_removing); 5572eda14cbcSMatt Macy ASSERT(vdev_is_concrete(vd)); 5573eda14cbcSMatt Macy ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5574eda14cbcSMatt Macy ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5575eda14cbcSMatt Macy 5576eda14cbcSMatt Macy if (DVA_GET_GANG(dva)) 55776db169e9SMartin Matuska size = vdev_gang_header_asize(vd); 5578eda14cbcSMatt Macy 5579eda14cbcSMatt Macy msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5580eda14cbcSMatt Macy 5581eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 5582eda14cbcSMatt Macy range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5583eda14cbcSMatt Macy offset, size); 5584eda14cbcSMatt Macy msp->ms_allocating_total -= size; 5585eda14cbcSMatt Macy 5586eda14cbcSMatt Macy VERIFY(!msp->ms_condensing); 5587eda14cbcSMatt Macy VERIFY3U(offset, >=, msp->ms_start); 5588eda14cbcSMatt Macy VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5589eda14cbcSMatt Macy VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5590eda14cbcSMatt Macy msp->ms_size); 5591eda14cbcSMatt Macy VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5592eda14cbcSMatt Macy VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5593eda14cbcSMatt Macy range_tree_add(msp->ms_allocatable, offset, size); 5594eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5595eda14cbcSMatt Macy } 5596eda14cbcSMatt Macy 5597eda14cbcSMatt Macy /* 5598eda14cbcSMatt Macy * Free the block represented by the given DVA. 5599eda14cbcSMatt Macy */ 5600eda14cbcSMatt Macy void 5601eda14cbcSMatt Macy metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5602eda14cbcSMatt Macy { 5603eda14cbcSMatt Macy uint64_t vdev = DVA_GET_VDEV(dva); 5604eda14cbcSMatt Macy uint64_t offset = DVA_GET_OFFSET(dva); 5605eda14cbcSMatt Macy uint64_t size = DVA_GET_ASIZE(dva); 5606eda14cbcSMatt Macy vdev_t *vd = vdev_lookup_top(spa, vdev); 5607eda14cbcSMatt Macy 5608eda14cbcSMatt Macy ASSERT(DVA_IS_VALID(dva)); 5609eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5610eda14cbcSMatt Macy 5611eda14cbcSMatt Macy if (DVA_GET_GANG(dva)) { 56126db169e9SMartin Matuska size = vdev_gang_header_asize(vd); 5613eda14cbcSMatt Macy } 5614eda14cbcSMatt Macy 5615eda14cbcSMatt Macy metaslab_free_impl(vd, offset, size, checkpoint); 5616eda14cbcSMatt Macy } 5617eda14cbcSMatt Macy 5618eda14cbcSMatt Macy /* 5619eda14cbcSMatt Macy * Reserve some allocation slots. The reservation system must be called 5620eda14cbcSMatt Macy * before we call into the allocator. If there aren't any available slots 5621eda14cbcSMatt Macy * then the I/O will be throttled until an I/O completes and its slots are 5622eda14cbcSMatt Macy * freed up. The function returns true if it was successful in placing 5623eda14cbcSMatt Macy * the reservation. 5624eda14cbcSMatt Macy */ 5625eda14cbcSMatt Macy boolean_t 5626eda14cbcSMatt Macy metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5627eda14cbcSMatt Macy zio_t *zio, int flags) 5628eda14cbcSMatt Macy { 56297877fdebSMatt Macy metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 56307877fdebSMatt Macy uint64_t max = mca->mca_alloc_max_slots; 5631eda14cbcSMatt Macy 5632eda14cbcSMatt Macy ASSERT(mc->mc_alloc_throttle_enabled); 56333f9d360cSMartin Matuska if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) || 56343f9d360cSMartin Matuska zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) { 5635eda14cbcSMatt Macy /* 56361f88aa09SMartin Matuska * The potential race between _count() and _add() is covered 56371f88aa09SMartin Matuska * by the allocator lock in most cases, or irrelevant due to 56381f88aa09SMartin Matuska * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others. 56391f88aa09SMartin Matuska * But even if we assume some other non-existing scenario, the 56401f88aa09SMartin Matuska * worst that can happen is few more I/Os get to allocation 56411f88aa09SMartin Matuska * earlier, that is not a problem. 56421f88aa09SMartin Matuska * 5643eda14cbcSMatt Macy * We reserve the slots individually so that we can unreserve 5644eda14cbcSMatt Macy * them individually when an I/O completes. 5645eda14cbcSMatt Macy */ 56464e8d558cSMartin Matuska zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio); 5647eda14cbcSMatt Macy zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 56483f9d360cSMartin Matuska return (B_TRUE); 5649eda14cbcSMatt Macy } 56503f9d360cSMartin Matuska return (B_FALSE); 5651eda14cbcSMatt Macy } 5652eda14cbcSMatt Macy 5653eda14cbcSMatt Macy void 5654eda14cbcSMatt Macy metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5655eda14cbcSMatt Macy int allocator, zio_t *zio) 5656eda14cbcSMatt Macy { 56577877fdebSMatt Macy metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 56587877fdebSMatt Macy 5659eda14cbcSMatt Macy ASSERT(mc->mc_alloc_throttle_enabled); 56604e8d558cSMartin Matuska zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio); 5661eda14cbcSMatt Macy } 5662eda14cbcSMatt Macy 5663eda14cbcSMatt Macy static int 5664eda14cbcSMatt Macy metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5665eda14cbcSMatt Macy uint64_t txg) 5666eda14cbcSMatt Macy { 5667eda14cbcSMatt Macy metaslab_t *msp; 5668eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 5669eda14cbcSMatt Macy int error = 0; 5670eda14cbcSMatt Macy 5671eda14cbcSMatt Macy if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5672eda14cbcSMatt Macy return (SET_ERROR(ENXIO)); 5673eda14cbcSMatt Macy 5674eda14cbcSMatt Macy ASSERT3P(vd->vdev_ms, !=, NULL); 5675eda14cbcSMatt Macy msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5676eda14cbcSMatt Macy 5677eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 5678eda14cbcSMatt Macy 5679eda14cbcSMatt Macy if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5680eda14cbcSMatt Macy error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5681eda14cbcSMatt Macy if (error == EBUSY) { 5682eda14cbcSMatt Macy ASSERT(msp->ms_loaded); 5683eda14cbcSMatt Macy ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5684eda14cbcSMatt Macy error = 0; 5685eda14cbcSMatt Macy } 5686eda14cbcSMatt Macy } 5687eda14cbcSMatt Macy 5688eda14cbcSMatt Macy if (error == 0 && 5689eda14cbcSMatt Macy !range_tree_contains(msp->ms_allocatable, offset, size)) 5690eda14cbcSMatt Macy error = SET_ERROR(ENOENT); 5691eda14cbcSMatt Macy 5692eda14cbcSMatt Macy if (error || txg == 0) { /* txg == 0 indicates dry run */ 5693eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5694eda14cbcSMatt Macy return (error); 5695eda14cbcSMatt Macy } 5696eda14cbcSMatt Macy 5697eda14cbcSMatt Macy VERIFY(!msp->ms_condensing); 5698eda14cbcSMatt Macy VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5699eda14cbcSMatt Macy VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5700eda14cbcSMatt Macy VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5701eda14cbcSMatt Macy msp->ms_size); 5702eda14cbcSMatt Macy range_tree_remove(msp->ms_allocatable, offset, size); 5703eda14cbcSMatt Macy range_tree_clear(msp->ms_trim, offset, size); 5704eda14cbcSMatt Macy 57057877fdebSMatt Macy if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5706eda14cbcSMatt Macy metaslab_class_t *mc = msp->ms_group->mg_class; 5707eda14cbcSMatt Macy multilist_sublist_t *mls = 57083ff01b23SMartin Matuska multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp); 5709eda14cbcSMatt Macy if (!multilist_link_active(&msp->ms_class_txg_node)) { 5710eda14cbcSMatt Macy msp->ms_selected_txg = txg; 5711eda14cbcSMatt Macy multilist_sublist_insert_head(mls, msp); 5712eda14cbcSMatt Macy } 5713eda14cbcSMatt Macy multilist_sublist_unlock(mls); 5714eda14cbcSMatt Macy 5715eda14cbcSMatt Macy if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5716eda14cbcSMatt Macy vdev_dirty(vd, VDD_METASLAB, msp, txg); 5717eda14cbcSMatt Macy range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5718eda14cbcSMatt Macy offset, size); 5719eda14cbcSMatt Macy msp->ms_allocating_total += size; 5720eda14cbcSMatt Macy } 5721eda14cbcSMatt Macy 5722eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5723eda14cbcSMatt Macy 5724eda14cbcSMatt Macy return (0); 5725eda14cbcSMatt Macy } 5726eda14cbcSMatt Macy 5727eda14cbcSMatt Macy typedef struct metaslab_claim_cb_arg_t { 5728eda14cbcSMatt Macy uint64_t mcca_txg; 5729eda14cbcSMatt Macy int mcca_error; 5730eda14cbcSMatt Macy } metaslab_claim_cb_arg_t; 5731eda14cbcSMatt Macy 5732eda14cbcSMatt Macy static void 5733eda14cbcSMatt Macy metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5734eda14cbcSMatt Macy uint64_t size, void *arg) 5735eda14cbcSMatt Macy { 5736e92ffd9bSMartin Matuska (void) inner_offset; 5737eda14cbcSMatt Macy metaslab_claim_cb_arg_t *mcca_arg = arg; 5738eda14cbcSMatt Macy 5739eda14cbcSMatt Macy if (mcca_arg->mcca_error == 0) { 5740eda14cbcSMatt Macy mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5741eda14cbcSMatt Macy size, mcca_arg->mcca_txg); 5742eda14cbcSMatt Macy } 5743eda14cbcSMatt Macy } 5744eda14cbcSMatt Macy 5745eda14cbcSMatt Macy int 5746eda14cbcSMatt Macy metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5747eda14cbcSMatt Macy { 5748eda14cbcSMatt Macy if (vd->vdev_ops->vdev_op_remap != NULL) { 5749eda14cbcSMatt Macy metaslab_claim_cb_arg_t arg; 5750eda14cbcSMatt Macy 5751eda14cbcSMatt Macy /* 57527877fdebSMatt Macy * Only zdb(8) can claim on indirect vdevs. This is used 5753eda14cbcSMatt Macy * to detect leaks of mapped space (that are not accounted 5754eda14cbcSMatt Macy * for in the obsolete counts, spacemap, or bpobj). 5755eda14cbcSMatt Macy */ 5756eda14cbcSMatt Macy ASSERT(!spa_writeable(vd->vdev_spa)); 5757eda14cbcSMatt Macy arg.mcca_error = 0; 5758eda14cbcSMatt Macy arg.mcca_txg = txg; 5759eda14cbcSMatt Macy 5760eda14cbcSMatt Macy vd->vdev_ops->vdev_op_remap(vd, offset, size, 5761eda14cbcSMatt Macy metaslab_claim_impl_cb, &arg); 5762eda14cbcSMatt Macy 5763eda14cbcSMatt Macy if (arg.mcca_error == 0) { 5764eda14cbcSMatt Macy arg.mcca_error = metaslab_claim_concrete(vd, 5765eda14cbcSMatt Macy offset, size, txg); 5766eda14cbcSMatt Macy } 5767eda14cbcSMatt Macy return (arg.mcca_error); 5768eda14cbcSMatt Macy } else { 5769eda14cbcSMatt Macy return (metaslab_claim_concrete(vd, offset, size, txg)); 5770eda14cbcSMatt Macy } 5771eda14cbcSMatt Macy } 5772eda14cbcSMatt Macy 5773eda14cbcSMatt Macy /* 5774eda14cbcSMatt Macy * Intent log support: upon opening the pool after a crash, notify the SPA 5775eda14cbcSMatt Macy * of blocks that the intent log has allocated for immediate write, but 5776eda14cbcSMatt Macy * which are still considered free by the SPA because the last transaction 5777eda14cbcSMatt Macy * group didn't commit yet. 5778eda14cbcSMatt Macy */ 5779eda14cbcSMatt Macy static int 5780eda14cbcSMatt Macy metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5781eda14cbcSMatt Macy { 5782eda14cbcSMatt Macy uint64_t vdev = DVA_GET_VDEV(dva); 5783eda14cbcSMatt Macy uint64_t offset = DVA_GET_OFFSET(dva); 5784eda14cbcSMatt Macy uint64_t size = DVA_GET_ASIZE(dva); 5785eda14cbcSMatt Macy vdev_t *vd; 5786eda14cbcSMatt Macy 5787eda14cbcSMatt Macy if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5788eda14cbcSMatt Macy return (SET_ERROR(ENXIO)); 5789eda14cbcSMatt Macy } 5790eda14cbcSMatt Macy 5791eda14cbcSMatt Macy ASSERT(DVA_IS_VALID(dva)); 5792eda14cbcSMatt Macy 5793eda14cbcSMatt Macy if (DVA_GET_GANG(dva)) 57946db169e9SMartin Matuska size = vdev_gang_header_asize(vd); 5795eda14cbcSMatt Macy 5796eda14cbcSMatt Macy return (metaslab_claim_impl(vd, offset, size, txg)); 5797eda14cbcSMatt Macy } 5798eda14cbcSMatt Macy 5799eda14cbcSMatt Macy int 5800eda14cbcSMatt Macy metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5801eda14cbcSMatt Macy int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5802eda14cbcSMatt Macy zio_alloc_list_t *zal, zio_t *zio, int allocator) 5803eda14cbcSMatt Macy { 5804eda14cbcSMatt Macy dva_t *dva = bp->blk_dva; 5805eda14cbcSMatt Macy dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5806eda14cbcSMatt Macy int error = 0; 5807eda14cbcSMatt Macy 5808eda14cbcSMatt Macy ASSERT(bp->blk_birth == 0); 5809eda14cbcSMatt Macy ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5810eda14cbcSMatt Macy 5811eda14cbcSMatt Macy spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5812eda14cbcSMatt Macy 58137877fdebSMatt Macy if (mc->mc_allocator[allocator].mca_rotor == NULL) { 58147877fdebSMatt Macy /* no vdevs in this class */ 5815eda14cbcSMatt Macy spa_config_exit(spa, SCL_ALLOC, FTAG); 5816eda14cbcSMatt Macy return (SET_ERROR(ENOSPC)); 5817eda14cbcSMatt Macy } 5818eda14cbcSMatt Macy 5819eda14cbcSMatt Macy ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5820eda14cbcSMatt Macy ASSERT(BP_GET_NDVAS(bp) == 0); 5821eda14cbcSMatt Macy ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5822eda14cbcSMatt Macy ASSERT3P(zal, !=, NULL); 5823eda14cbcSMatt Macy 5824eda14cbcSMatt Macy for (int d = 0; d < ndvas; d++) { 5825eda14cbcSMatt Macy error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5826eda14cbcSMatt Macy txg, flags, zal, allocator); 5827eda14cbcSMatt Macy if (error != 0) { 5828eda14cbcSMatt Macy for (d--; d >= 0; d--) { 5829eda14cbcSMatt Macy metaslab_unalloc_dva(spa, &dva[d], txg); 5830eda14cbcSMatt Macy metaslab_group_alloc_decrement(spa, 5831eda14cbcSMatt Macy DVA_GET_VDEV(&dva[d]), zio, flags, 5832eda14cbcSMatt Macy allocator, B_FALSE); 5833da5137abSMartin Matuska memset(&dva[d], 0, sizeof (dva_t)); 5834eda14cbcSMatt Macy } 5835eda14cbcSMatt Macy spa_config_exit(spa, SCL_ALLOC, FTAG); 5836eda14cbcSMatt Macy return (error); 5837eda14cbcSMatt Macy } else { 5838eda14cbcSMatt Macy /* 5839eda14cbcSMatt Macy * Update the metaslab group's queue depth 5840eda14cbcSMatt Macy * based on the newly allocated dva. 5841eda14cbcSMatt Macy */ 5842eda14cbcSMatt Macy metaslab_group_alloc_increment(spa, 5843eda14cbcSMatt Macy DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5844eda14cbcSMatt Macy } 5845eda14cbcSMatt Macy } 5846eda14cbcSMatt Macy ASSERT(error == 0); 5847eda14cbcSMatt Macy ASSERT(BP_GET_NDVAS(bp) == ndvas); 5848eda14cbcSMatt Macy 5849eda14cbcSMatt Macy spa_config_exit(spa, SCL_ALLOC, FTAG); 5850eda14cbcSMatt Macy 5851eda14cbcSMatt Macy BP_SET_BIRTH(bp, txg, 0); 5852eda14cbcSMatt Macy 5853eda14cbcSMatt Macy return (0); 5854eda14cbcSMatt Macy } 5855eda14cbcSMatt Macy 5856eda14cbcSMatt Macy void 5857eda14cbcSMatt Macy metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5858eda14cbcSMatt Macy { 5859eda14cbcSMatt Macy const dva_t *dva = bp->blk_dva; 5860eda14cbcSMatt Macy int ndvas = BP_GET_NDVAS(bp); 5861eda14cbcSMatt Macy 5862eda14cbcSMatt Macy ASSERT(!BP_IS_HOLE(bp)); 5863eda14cbcSMatt Macy ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5864eda14cbcSMatt Macy 5865eda14cbcSMatt Macy /* 5866eda14cbcSMatt Macy * If we have a checkpoint for the pool we need to make sure that 5867eda14cbcSMatt Macy * the blocks that we free that are part of the checkpoint won't be 5868eda14cbcSMatt Macy * reused until the checkpoint is discarded or we revert to it. 5869eda14cbcSMatt Macy * 5870eda14cbcSMatt Macy * The checkpoint flag is passed down the metaslab_free code path 5871eda14cbcSMatt Macy * and is set whenever we want to add a block to the checkpoint's 5872eda14cbcSMatt Macy * accounting. That is, we "checkpoint" blocks that existed at the 5873eda14cbcSMatt Macy * time the checkpoint was created and are therefore referenced by 5874eda14cbcSMatt Macy * the checkpointed uberblock. 5875eda14cbcSMatt Macy * 5876eda14cbcSMatt Macy * Note that, we don't checkpoint any blocks if the current 5877eda14cbcSMatt Macy * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5878eda14cbcSMatt Macy * normally as they will be referenced by the checkpointed uberblock. 5879eda14cbcSMatt Macy */ 5880eda14cbcSMatt Macy boolean_t checkpoint = B_FALSE; 5881eda14cbcSMatt Macy if (bp->blk_birth <= spa->spa_checkpoint_txg && 5882eda14cbcSMatt Macy spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5883eda14cbcSMatt Macy /* 5884eda14cbcSMatt Macy * At this point, if the block is part of the checkpoint 5885eda14cbcSMatt Macy * there is no way it was created in the current txg. 5886eda14cbcSMatt Macy */ 5887eda14cbcSMatt Macy ASSERT(!now); 5888eda14cbcSMatt Macy ASSERT3U(spa_syncing_txg(spa), ==, txg); 5889eda14cbcSMatt Macy checkpoint = B_TRUE; 5890eda14cbcSMatt Macy } 5891eda14cbcSMatt Macy 5892eda14cbcSMatt Macy spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5893eda14cbcSMatt Macy 5894eda14cbcSMatt Macy for (int d = 0; d < ndvas; d++) { 5895eda14cbcSMatt Macy if (now) { 5896eda14cbcSMatt Macy metaslab_unalloc_dva(spa, &dva[d], txg); 5897eda14cbcSMatt Macy } else { 5898eda14cbcSMatt Macy ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5899eda14cbcSMatt Macy metaslab_free_dva(spa, &dva[d], checkpoint); 5900eda14cbcSMatt Macy } 5901eda14cbcSMatt Macy } 5902eda14cbcSMatt Macy 5903eda14cbcSMatt Macy spa_config_exit(spa, SCL_FREE, FTAG); 5904eda14cbcSMatt Macy } 5905eda14cbcSMatt Macy 5906eda14cbcSMatt Macy int 5907eda14cbcSMatt Macy metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5908eda14cbcSMatt Macy { 5909eda14cbcSMatt Macy const dva_t *dva = bp->blk_dva; 5910eda14cbcSMatt Macy int ndvas = BP_GET_NDVAS(bp); 5911eda14cbcSMatt Macy int error = 0; 5912eda14cbcSMatt Macy 5913eda14cbcSMatt Macy ASSERT(!BP_IS_HOLE(bp)); 5914eda14cbcSMatt Macy 5915eda14cbcSMatt Macy if (txg != 0) { 5916eda14cbcSMatt Macy /* 5917eda14cbcSMatt Macy * First do a dry run to make sure all DVAs are claimable, 5918eda14cbcSMatt Macy * so we don't have to unwind from partial failures below. 5919eda14cbcSMatt Macy */ 5920eda14cbcSMatt Macy if ((error = metaslab_claim(spa, bp, 0)) != 0) 5921eda14cbcSMatt Macy return (error); 5922eda14cbcSMatt Macy } 5923eda14cbcSMatt Macy 5924eda14cbcSMatt Macy spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5925eda14cbcSMatt Macy 5926eda14cbcSMatt Macy for (int d = 0; d < ndvas; d++) { 5927eda14cbcSMatt Macy error = metaslab_claim_dva(spa, &dva[d], txg); 5928eda14cbcSMatt Macy if (error != 0) 5929eda14cbcSMatt Macy break; 5930eda14cbcSMatt Macy } 5931eda14cbcSMatt Macy 5932eda14cbcSMatt Macy spa_config_exit(spa, SCL_ALLOC, FTAG); 5933eda14cbcSMatt Macy 5934eda14cbcSMatt Macy ASSERT(error == 0 || txg == 0); 5935eda14cbcSMatt Macy 5936eda14cbcSMatt Macy return (error); 5937eda14cbcSMatt Macy } 5938eda14cbcSMatt Macy 5939eda14cbcSMatt Macy static void 5940eda14cbcSMatt Macy metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5941eda14cbcSMatt Macy uint64_t size, void *arg) 5942eda14cbcSMatt Macy { 5943e92ffd9bSMartin Matuska (void) inner, (void) arg; 5944e92ffd9bSMartin Matuska 5945eda14cbcSMatt Macy if (vd->vdev_ops == &vdev_indirect_ops) 5946eda14cbcSMatt Macy return; 5947eda14cbcSMatt Macy 5948eda14cbcSMatt Macy metaslab_check_free_impl(vd, offset, size); 5949eda14cbcSMatt Macy } 5950eda14cbcSMatt Macy 5951eda14cbcSMatt Macy static void 5952eda14cbcSMatt Macy metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5953eda14cbcSMatt Macy { 5954eda14cbcSMatt Macy metaslab_t *msp; 5955eda14cbcSMatt Macy spa_t *spa __maybe_unused = vd->vdev_spa; 5956eda14cbcSMatt Macy 5957eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5958eda14cbcSMatt Macy return; 5959eda14cbcSMatt Macy 5960eda14cbcSMatt Macy if (vd->vdev_ops->vdev_op_remap != NULL) { 5961eda14cbcSMatt Macy vd->vdev_ops->vdev_op_remap(vd, offset, size, 5962eda14cbcSMatt Macy metaslab_check_free_impl_cb, NULL); 5963eda14cbcSMatt Macy return; 5964eda14cbcSMatt Macy } 5965eda14cbcSMatt Macy 5966eda14cbcSMatt Macy ASSERT(vdev_is_concrete(vd)); 5967eda14cbcSMatt Macy ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5968eda14cbcSMatt Macy ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5969eda14cbcSMatt Macy 5970eda14cbcSMatt Macy msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5971eda14cbcSMatt Macy 5972eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 5973eda14cbcSMatt Macy if (msp->ms_loaded) { 5974eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_allocatable, 5975eda14cbcSMatt Macy offset, size); 5976eda14cbcSMatt Macy } 5977eda14cbcSMatt Macy 5978eda14cbcSMatt Macy /* 5979eda14cbcSMatt Macy * Check all segments that currently exist in the freeing pipeline. 5980eda14cbcSMatt Macy * 5981eda14cbcSMatt Macy * It would intuitively make sense to also check the current allocating 5982eda14cbcSMatt Macy * tree since metaslab_unalloc_dva() exists for extents that are 5983eda14cbcSMatt Macy * allocated and freed in the same sync pass within the same txg. 5984eda14cbcSMatt Macy * Unfortunately there are places (e.g. the ZIL) where we allocate a 5985eda14cbcSMatt Macy * segment but then we free part of it within the same txg 5986eda14cbcSMatt Macy * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 5987eda14cbcSMatt Macy * current allocating tree. 5988eda14cbcSMatt Macy */ 5989eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_freeing, offset, size); 5990eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 5991eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_freed, offset, size); 5992eda14cbcSMatt Macy for (int j = 0; j < TXG_DEFER_SIZE; j++) 5993eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_defer[j], offset, size); 5994eda14cbcSMatt Macy range_tree_verify_not_present(msp->ms_trim, offset, size); 5995eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 5996eda14cbcSMatt Macy } 5997eda14cbcSMatt Macy 5998eda14cbcSMatt Macy void 5999eda14cbcSMatt Macy metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6000eda14cbcSMatt Macy { 6001eda14cbcSMatt Macy if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6002eda14cbcSMatt Macy return; 6003eda14cbcSMatt Macy 6004eda14cbcSMatt Macy spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6005eda14cbcSMatt Macy for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6006eda14cbcSMatt Macy uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6007eda14cbcSMatt Macy vdev_t *vd = vdev_lookup_top(spa, vdev); 6008eda14cbcSMatt Macy uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6009eda14cbcSMatt Macy uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6010eda14cbcSMatt Macy 6011eda14cbcSMatt Macy if (DVA_GET_GANG(&bp->blk_dva[i])) 60126db169e9SMartin Matuska size = vdev_gang_header_asize(vd); 6013eda14cbcSMatt Macy 6014eda14cbcSMatt Macy ASSERT3P(vd, !=, NULL); 6015eda14cbcSMatt Macy 6016eda14cbcSMatt Macy metaslab_check_free_impl(vd, offset, size); 6017eda14cbcSMatt Macy } 6018eda14cbcSMatt Macy spa_config_exit(spa, SCL_VDEV, FTAG); 6019eda14cbcSMatt Macy } 6020eda14cbcSMatt Macy 6021eda14cbcSMatt Macy static void 6022eda14cbcSMatt Macy metaslab_group_disable_wait(metaslab_group_t *mg) 6023eda14cbcSMatt Macy { 6024eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6025eda14cbcSMatt Macy while (mg->mg_disabled_updating) { 6026eda14cbcSMatt Macy cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6027eda14cbcSMatt Macy } 6028eda14cbcSMatt Macy } 6029eda14cbcSMatt Macy 6030eda14cbcSMatt Macy static void 6031eda14cbcSMatt Macy metaslab_group_disabled_increment(metaslab_group_t *mg) 6032eda14cbcSMatt Macy { 6033eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6034eda14cbcSMatt Macy ASSERT(mg->mg_disabled_updating); 6035eda14cbcSMatt Macy 6036eda14cbcSMatt Macy while (mg->mg_ms_disabled >= max_disabled_ms) { 6037eda14cbcSMatt Macy cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6038eda14cbcSMatt Macy } 6039eda14cbcSMatt Macy mg->mg_ms_disabled++; 6040eda14cbcSMatt Macy ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6041eda14cbcSMatt Macy } 6042eda14cbcSMatt Macy 6043eda14cbcSMatt Macy /* 6044eda14cbcSMatt Macy * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6045eda14cbcSMatt Macy * We must also track how many metaslabs are currently disabled within a 6046eda14cbcSMatt Macy * metaslab group and limit them to prevent allocation failures from 6047eda14cbcSMatt Macy * occurring because all metaslabs are disabled. 6048eda14cbcSMatt Macy */ 6049eda14cbcSMatt Macy void 6050eda14cbcSMatt Macy metaslab_disable(metaslab_t *msp) 6051eda14cbcSMatt Macy { 6052eda14cbcSMatt Macy ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6053eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 6054eda14cbcSMatt Macy 6055eda14cbcSMatt Macy mutex_enter(&mg->mg_ms_disabled_lock); 6056eda14cbcSMatt Macy 6057eda14cbcSMatt Macy /* 6058eda14cbcSMatt Macy * To keep an accurate count of how many threads have disabled 6059eda14cbcSMatt Macy * a specific metaslab group, we only allow one thread to mark 6060eda14cbcSMatt Macy * the metaslab group at a time. This ensures that the value of 6061eda14cbcSMatt Macy * ms_disabled will be accurate when we decide to mark a metaslab 6062eda14cbcSMatt Macy * group as disabled. To do this we force all other threads 6063eda14cbcSMatt Macy * to wait till the metaslab's mg_disabled_updating flag is no 6064eda14cbcSMatt Macy * longer set. 6065eda14cbcSMatt Macy */ 6066eda14cbcSMatt Macy metaslab_group_disable_wait(mg); 6067eda14cbcSMatt Macy mg->mg_disabled_updating = B_TRUE; 6068eda14cbcSMatt Macy if (msp->ms_disabled == 0) { 6069eda14cbcSMatt Macy metaslab_group_disabled_increment(mg); 6070eda14cbcSMatt Macy } 6071eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 6072eda14cbcSMatt Macy msp->ms_disabled++; 6073eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 6074eda14cbcSMatt Macy 6075eda14cbcSMatt Macy mg->mg_disabled_updating = B_FALSE; 6076eda14cbcSMatt Macy cv_broadcast(&mg->mg_ms_disabled_cv); 6077eda14cbcSMatt Macy mutex_exit(&mg->mg_ms_disabled_lock); 6078eda14cbcSMatt Macy } 6079eda14cbcSMatt Macy 6080eda14cbcSMatt Macy void 6081eda14cbcSMatt Macy metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6082eda14cbcSMatt Macy { 6083eda14cbcSMatt Macy metaslab_group_t *mg = msp->ms_group; 6084eda14cbcSMatt Macy spa_t *spa = mg->mg_vd->vdev_spa; 6085eda14cbcSMatt Macy 6086eda14cbcSMatt Macy /* 6087eda14cbcSMatt Macy * Wait for the outstanding IO to be synced to prevent newly 6088eda14cbcSMatt Macy * allocated blocks from being overwritten. This used by 6089eda14cbcSMatt Macy * initialize and TRIM which are modifying unallocated space. 6090eda14cbcSMatt Macy */ 6091eda14cbcSMatt Macy if (sync) 6092eda14cbcSMatt Macy txg_wait_synced(spa_get_dsl(spa), 0); 6093eda14cbcSMatt Macy 6094eda14cbcSMatt Macy mutex_enter(&mg->mg_ms_disabled_lock); 6095eda14cbcSMatt Macy mutex_enter(&msp->ms_lock); 6096eda14cbcSMatt Macy if (--msp->ms_disabled == 0) { 6097eda14cbcSMatt Macy mg->mg_ms_disabled--; 6098eda14cbcSMatt Macy cv_broadcast(&mg->mg_ms_disabled_cv); 6099eda14cbcSMatt Macy if (unload) 6100eda14cbcSMatt Macy metaslab_unload(msp); 6101eda14cbcSMatt Macy } 6102eda14cbcSMatt Macy mutex_exit(&msp->ms_lock); 6103eda14cbcSMatt Macy mutex_exit(&mg->mg_ms_disabled_lock); 6104eda14cbcSMatt Macy } 6105eda14cbcSMatt Macy 6106716fd348SMartin Matuska void 6107716fd348SMartin Matuska metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty) 6108716fd348SMartin Matuska { 6109716fd348SMartin Matuska ms->ms_unflushed_dirty = dirty; 6110716fd348SMartin Matuska } 6111716fd348SMartin Matuska 6112eda14cbcSMatt Macy static void 6113eda14cbcSMatt Macy metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6114eda14cbcSMatt Macy { 6115eda14cbcSMatt Macy vdev_t *vd = ms->ms_group->mg_vd; 6116eda14cbcSMatt Macy spa_t *spa = vd->vdev_spa; 6117eda14cbcSMatt Macy objset_t *mos = spa_meta_objset(spa); 6118eda14cbcSMatt Macy 6119eda14cbcSMatt Macy ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6120eda14cbcSMatt Macy 6121eda14cbcSMatt Macy metaslab_unflushed_phys_t entry = { 6122eda14cbcSMatt Macy .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6123eda14cbcSMatt Macy }; 6124eda14cbcSMatt Macy uint64_t entry_size = sizeof (entry); 6125eda14cbcSMatt Macy uint64_t entry_offset = ms->ms_id * entry_size; 6126eda14cbcSMatt Macy 6127eda14cbcSMatt Macy uint64_t object = 0; 6128eda14cbcSMatt Macy int err = zap_lookup(mos, vd->vdev_top_zap, 6129eda14cbcSMatt Macy VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6130eda14cbcSMatt Macy &object); 6131eda14cbcSMatt Macy if (err == ENOENT) { 6132eda14cbcSMatt Macy object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6133eda14cbcSMatt Macy SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6134eda14cbcSMatt Macy VERIFY0(zap_add(mos, vd->vdev_top_zap, 6135eda14cbcSMatt Macy VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6136eda14cbcSMatt Macy &object, tx)); 6137eda14cbcSMatt Macy } else { 6138eda14cbcSMatt Macy VERIFY0(err); 6139eda14cbcSMatt Macy } 6140eda14cbcSMatt Macy 6141eda14cbcSMatt Macy dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6142eda14cbcSMatt Macy &entry, tx); 6143eda14cbcSMatt Macy } 6144eda14cbcSMatt Macy 6145eda14cbcSMatt Macy void 6146eda14cbcSMatt Macy metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6147eda14cbcSMatt Macy { 6148eda14cbcSMatt Macy ms->ms_unflushed_txg = txg; 6149eda14cbcSMatt Macy metaslab_update_ondisk_flush_data(ms, tx); 6150eda14cbcSMatt Macy } 6151eda14cbcSMatt Macy 6152716fd348SMartin Matuska boolean_t 6153716fd348SMartin Matuska metaslab_unflushed_dirty(metaslab_t *ms) 6154716fd348SMartin Matuska { 6155716fd348SMartin Matuska return (ms->ms_unflushed_dirty); 6156716fd348SMartin Matuska } 6157716fd348SMartin Matuska 6158eda14cbcSMatt Macy uint64_t 6159eda14cbcSMatt Macy metaslab_unflushed_txg(metaslab_t *ms) 6160eda14cbcSMatt Macy { 6161eda14cbcSMatt Macy return (ms->ms_unflushed_txg); 6162eda14cbcSMatt Macy } 6163eda14cbcSMatt Macy 6164dbd5678dSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW, 6165eda14cbcSMatt Macy "Allocation granularity (a.k.a. stripe size)"); 6166eda14cbcSMatt Macy 6167eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6168eda14cbcSMatt Macy "Load all metaslabs when pool is first opened"); 6169eda14cbcSMatt Macy 6170eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6171eda14cbcSMatt Macy "Prevent metaslabs from being unloaded"); 6172eda14cbcSMatt Macy 6173eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6174eda14cbcSMatt Macy "Preload potential metaslabs during reassessment"); 6175eda14cbcSMatt Macy 6176be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW, 6177eda14cbcSMatt Macy "Delay in txgs after metaslab was last used before unloading"); 6178eda14cbcSMatt Macy 6179be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW, 6180eda14cbcSMatt Macy "Delay in milliseconds after metaslab was last used before unloading"); 6181eda14cbcSMatt Macy 6182eda14cbcSMatt Macy /* BEGIN CSTYLED */ 6183be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW, 6184eda14cbcSMatt Macy "Percentage of metaslab group size that should be free to make it " 6185eda14cbcSMatt Macy "eligible for allocation"); 6186eda14cbcSMatt Macy 6187be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW, 6188eda14cbcSMatt Macy "Percentage of metaslab group size that should be considered eligible " 6189eda14cbcSMatt Macy "for allocations unless all metaslab groups within the metaslab class " 6190eda14cbcSMatt Macy "have also crossed this threshold"); 6191eda14cbcSMatt Macy 6192c03c5b1cSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, 6193c03c5b1cSMartin Matuska ZMOD_RW, 6194eda14cbcSMatt Macy "Use the fragmentation metric to prefer less fragmented metaslabs"); 6195eda14cbcSMatt Macy /* END CSTYLED */ 6196eda14cbcSMatt Macy 6197be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT, 6198c03c5b1cSMartin Matuska ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6199c03c5b1cSMartin Matuska 6200eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6201eda14cbcSMatt Macy "Prefer metaslabs with lower LBAs"); 6202eda14cbcSMatt Macy 6203eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6204eda14cbcSMatt Macy "Enable metaslab group biasing"); 6205eda14cbcSMatt Macy 6206eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6207eda14cbcSMatt Macy ZMOD_RW, "Enable segment-based metaslab selection"); 6208eda14cbcSMatt Macy 6209eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6210eda14cbcSMatt Macy "Segment-based metaslab selection maximum buckets before switching"); 6211eda14cbcSMatt Macy 6212dbd5678dSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW, 6213*315ee00fSMartin Matuska "Blocks larger than this size are sometimes forced to be gang blocks"); 6214*315ee00fSMartin Matuska 6215*315ee00fSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW, 6216*315ee00fSMartin Matuska "Percentage of large blocks that will be forced to be gang blocks"); 6217eda14cbcSMatt Macy 6218be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW, 6219eda14cbcSMatt Macy "Max distance (bytes) to search forward before using size tree"); 6220eda14cbcSMatt Macy 6221eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6222eda14cbcSMatt Macy "When looking in size tree, use largest segment instead of exact fit"); 6223eda14cbcSMatt Macy 6224dbd5678dSMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64, 6225eda14cbcSMatt Macy ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6226eda14cbcSMatt Macy 6227be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW, 6228eda14cbcSMatt Macy "Percentage of memory that can be used to store metaslab range trees"); 62297877fdebSMatt Macy 62307877fdebSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 62317877fdebSMatt Macy ZMOD_RW, "Try hard to allocate before ganging"); 62327877fdebSMatt Macy 6233be181ee2SMartin Matuska ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW, 62347877fdebSMatt Macy "Normally only consider this many of the best metaslabs in each vdev"); 6235