xref: /freebsd/sys/contrib/openzfs/module/zfs/metaslab.c (revision 2c48331d28f16c0efce5a72a81e7d71668c4a158)
1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  * CDDL HEADER START
3eda14cbcSMatt Macy  *
4eda14cbcSMatt Macy  * The contents of this file are subject to the terms of the
5eda14cbcSMatt Macy  * Common Development and Distribution License (the "License").
6eda14cbcSMatt Macy  * You may not use this file except in compliance with the License.
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9eda14cbcSMatt Macy  * or http://www.opensolaris.org/os/licensing.
10eda14cbcSMatt Macy  * See the License for the specific language governing permissions
11eda14cbcSMatt Macy  * and limitations under the License.
12eda14cbcSMatt Macy  *
13eda14cbcSMatt Macy  * When distributing Covered Code, include this CDDL HEADER in each
14eda14cbcSMatt Macy  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15eda14cbcSMatt Macy  * If applicable, add the following below this CDDL HEADER, with the
16eda14cbcSMatt Macy  * fields enclosed by brackets "[]" replaced with your own identifying
17eda14cbcSMatt Macy  * information: Portions Copyright [yyyy] [name of copyright owner]
18eda14cbcSMatt Macy  *
19eda14cbcSMatt Macy  * CDDL HEADER END
20eda14cbcSMatt Macy  */
21eda14cbcSMatt Macy /*
22eda14cbcSMatt Macy  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23eda14cbcSMatt Macy  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24eda14cbcSMatt Macy  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25*2c48331dSMatt Macy  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26eda14cbcSMatt Macy  * Copyright (c) 2017, Intel Corporation.
27eda14cbcSMatt Macy  */
28eda14cbcSMatt Macy 
29eda14cbcSMatt Macy #include <sys/zfs_context.h>
30eda14cbcSMatt Macy #include <sys/dmu.h>
31eda14cbcSMatt Macy #include <sys/dmu_tx.h>
32eda14cbcSMatt Macy #include <sys/space_map.h>
33eda14cbcSMatt Macy #include <sys/metaslab_impl.h>
34eda14cbcSMatt Macy #include <sys/vdev_impl.h>
35eda14cbcSMatt Macy #include <sys/zio.h>
36eda14cbcSMatt Macy #include <sys/spa_impl.h>
37eda14cbcSMatt Macy #include <sys/zfeature.h>
38eda14cbcSMatt Macy #include <sys/vdev_indirect_mapping.h>
39eda14cbcSMatt Macy #include <sys/zap.h>
40eda14cbcSMatt Macy #include <sys/btree.h>
41eda14cbcSMatt Macy 
42eda14cbcSMatt Macy #define	WITH_DF_BLOCK_ALLOCATOR
43eda14cbcSMatt Macy 
44eda14cbcSMatt Macy #define	GANG_ALLOCATION(flags) \
45eda14cbcSMatt Macy 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
46eda14cbcSMatt Macy 
47eda14cbcSMatt Macy /*
48eda14cbcSMatt Macy  * Metaslab granularity, in bytes. This is roughly similar to what would be
49eda14cbcSMatt Macy  * referred to as the "stripe size" in traditional RAID arrays. In normal
50eda14cbcSMatt Macy  * operation, we will try to write this amount of data to a top-level vdev
51eda14cbcSMatt Macy  * before moving on to the next one.
52eda14cbcSMatt Macy  */
53eda14cbcSMatt Macy unsigned long metaslab_aliquot = 512 << 10;
54eda14cbcSMatt Macy 
55eda14cbcSMatt Macy /*
56eda14cbcSMatt Macy  * For testing, make some blocks above a certain size be gang blocks.
57eda14cbcSMatt Macy  */
58eda14cbcSMatt Macy unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
59eda14cbcSMatt Macy 
60eda14cbcSMatt Macy /*
61eda14cbcSMatt Macy  * In pools where the log space map feature is not enabled we touch
62eda14cbcSMatt Macy  * multiple metaslabs (and their respective space maps) with each
63eda14cbcSMatt Macy  * transaction group. Thus, we benefit from having a small space map
64eda14cbcSMatt Macy  * block size since it allows us to issue more I/O operations scattered
65eda14cbcSMatt Macy  * around the disk. So a sane default for the space map block size
66eda14cbcSMatt Macy  * is 8~16K.
67eda14cbcSMatt Macy  */
68eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_no_log = (1 << 14);
69eda14cbcSMatt Macy 
70eda14cbcSMatt Macy /*
71eda14cbcSMatt Macy  * When the log space map feature is enabled, we accumulate a lot of
72eda14cbcSMatt Macy  * changes per metaslab that are flushed once in a while so we benefit
73eda14cbcSMatt Macy  * from a bigger block size like 128K for the metaslab space maps.
74eda14cbcSMatt Macy  */
75eda14cbcSMatt Macy int zfs_metaslab_sm_blksz_with_log = (1 << 17);
76eda14cbcSMatt Macy 
77eda14cbcSMatt Macy /*
78eda14cbcSMatt Macy  * The in-core space map representation is more compact than its on-disk form.
79eda14cbcSMatt Macy  * The zfs_condense_pct determines how much more compact the in-core
80eda14cbcSMatt Macy  * space map representation must be before we compact it on-disk.
81eda14cbcSMatt Macy  * Values should be greater than or equal to 100.
82eda14cbcSMatt Macy  */
83eda14cbcSMatt Macy int zfs_condense_pct = 200;
84eda14cbcSMatt Macy 
85eda14cbcSMatt Macy /*
86eda14cbcSMatt Macy  * Condensing a metaslab is not guaranteed to actually reduce the amount of
87eda14cbcSMatt Macy  * space used on disk. In particular, a space map uses data in increments of
88eda14cbcSMatt Macy  * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
89eda14cbcSMatt Macy  * same number of blocks after condensing. Since the goal of condensing is to
90eda14cbcSMatt Macy  * reduce the number of IOPs required to read the space map, we only want to
91eda14cbcSMatt Macy  * condense when we can be sure we will reduce the number of blocks used by the
92eda14cbcSMatt Macy  * space map. Unfortunately, we cannot precisely compute whether or not this is
93eda14cbcSMatt Macy  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
94eda14cbcSMatt Macy  * we apply the following heuristic: do not condense a spacemap unless the
95eda14cbcSMatt Macy  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
96eda14cbcSMatt Macy  * blocks.
97eda14cbcSMatt Macy  */
98eda14cbcSMatt Macy int zfs_metaslab_condense_block_threshold = 4;
99eda14cbcSMatt Macy 
100eda14cbcSMatt Macy /*
101eda14cbcSMatt Macy  * The zfs_mg_noalloc_threshold defines which metaslab groups should
102eda14cbcSMatt Macy  * be eligible for allocation. The value is defined as a percentage of
103eda14cbcSMatt Macy  * free space. Metaslab groups that have more free space than
104eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
105eda14cbcSMatt Macy  * a metaslab group's free space is less than or equal to the
106eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
107eda14cbcSMatt Macy  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
108eda14cbcSMatt Macy  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
109eda14cbcSMatt Macy  * groups are allowed to accept allocations. Gang blocks are always
110eda14cbcSMatt Macy  * eligible to allocate on any metaslab group. The default value of 0 means
111eda14cbcSMatt Macy  * no metaslab group will be excluded based on this criterion.
112eda14cbcSMatt Macy  */
113eda14cbcSMatt Macy int zfs_mg_noalloc_threshold = 0;
114eda14cbcSMatt Macy 
115eda14cbcSMatt Macy /*
116eda14cbcSMatt Macy  * Metaslab groups are considered eligible for allocations if their
117eda14cbcSMatt Macy  * fragmentation metric (measured as a percentage) is less than or
118eda14cbcSMatt Macy  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
119eda14cbcSMatt Macy  * exceeds this threshold then it will be skipped unless all metaslab
120eda14cbcSMatt Macy  * groups within the metaslab class have also crossed this threshold.
121eda14cbcSMatt Macy  *
122eda14cbcSMatt Macy  * This tunable was introduced to avoid edge cases where we continue
123eda14cbcSMatt Macy  * allocating from very fragmented disks in our pool while other, less
124eda14cbcSMatt Macy  * fragmented disks, exists. On the other hand, if all disks in the
125eda14cbcSMatt Macy  * pool are uniformly approaching the threshold, the threshold can
126eda14cbcSMatt Macy  * be a speed bump in performance, where we keep switching the disks
127eda14cbcSMatt Macy  * that we allocate from (e.g. we allocate some segments from disk A
128eda14cbcSMatt Macy  * making it bypassing the threshold while freeing segments from disk
129eda14cbcSMatt Macy  * B getting its fragmentation below the threshold).
130eda14cbcSMatt Macy  *
131eda14cbcSMatt Macy  * Empirically, we've seen that our vdev selection for allocations is
132eda14cbcSMatt Macy  * good enough that fragmentation increases uniformly across all vdevs
133eda14cbcSMatt Macy  * the majority of the time. Thus we set the threshold percentage high
134eda14cbcSMatt Macy  * enough to avoid hitting the speed bump on pools that are being pushed
135eda14cbcSMatt Macy  * to the edge.
136eda14cbcSMatt Macy  */
137eda14cbcSMatt Macy int zfs_mg_fragmentation_threshold = 95;
138eda14cbcSMatt Macy 
139eda14cbcSMatt Macy /*
140eda14cbcSMatt Macy  * Allow metaslabs to keep their active state as long as their fragmentation
141eda14cbcSMatt Macy  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
142eda14cbcSMatt Macy  * active metaslab that exceeds this threshold will no longer keep its active
143eda14cbcSMatt Macy  * status allowing better metaslabs to be selected.
144eda14cbcSMatt Macy  */
145eda14cbcSMatt Macy int zfs_metaslab_fragmentation_threshold = 70;
146eda14cbcSMatt Macy 
147eda14cbcSMatt Macy /*
148eda14cbcSMatt Macy  * When set will load all metaslabs when pool is first opened.
149eda14cbcSMatt Macy  */
150eda14cbcSMatt Macy int metaslab_debug_load = 0;
151eda14cbcSMatt Macy 
152eda14cbcSMatt Macy /*
153eda14cbcSMatt Macy  * When set will prevent metaslabs from being unloaded.
154eda14cbcSMatt Macy  */
155eda14cbcSMatt Macy int metaslab_debug_unload = 0;
156eda14cbcSMatt Macy 
157eda14cbcSMatt Macy /*
158eda14cbcSMatt Macy  * Minimum size which forces the dynamic allocator to change
159eda14cbcSMatt Macy  * it's allocation strategy.  Once the space map cannot satisfy
160eda14cbcSMatt Macy  * an allocation of this size then it switches to using more
161eda14cbcSMatt Macy  * aggressive strategy (i.e search by size rather than offset).
162eda14cbcSMatt Macy  */
163eda14cbcSMatt Macy uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
164eda14cbcSMatt Macy 
165eda14cbcSMatt Macy /*
166eda14cbcSMatt Macy  * The minimum free space, in percent, which must be available
167eda14cbcSMatt Macy  * in a space map to continue allocations in a first-fit fashion.
168eda14cbcSMatt Macy  * Once the space map's free space drops below this level we dynamically
169eda14cbcSMatt Macy  * switch to using best-fit allocations.
170eda14cbcSMatt Macy  */
171eda14cbcSMatt Macy int metaslab_df_free_pct = 4;
172eda14cbcSMatt Macy 
173eda14cbcSMatt Macy /*
174eda14cbcSMatt Macy  * Maximum distance to search forward from the last offset. Without this
175eda14cbcSMatt Macy  * limit, fragmented pools can see >100,000 iterations and
176eda14cbcSMatt Macy  * metaslab_block_picker() becomes the performance limiting factor on
177eda14cbcSMatt Macy  * high-performance storage.
178eda14cbcSMatt Macy  *
179eda14cbcSMatt Macy  * With the default setting of 16MB, we typically see less than 500
180eda14cbcSMatt Macy  * iterations, even with very fragmented, ashift=9 pools. The maximum number
181eda14cbcSMatt Macy  * of iterations possible is:
182eda14cbcSMatt Macy  *     metaslab_df_max_search / (2 * (1<<ashift))
183eda14cbcSMatt Macy  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
184eda14cbcSMatt Macy  * 2048 (with ashift=12).
185eda14cbcSMatt Macy  */
186eda14cbcSMatt Macy int metaslab_df_max_search = 16 * 1024 * 1024;
187eda14cbcSMatt Macy 
188eda14cbcSMatt Macy /*
189eda14cbcSMatt Macy  * Forces the metaslab_block_picker function to search for at least this many
190eda14cbcSMatt Macy  * segments forwards until giving up on finding a segment that the allocation
191eda14cbcSMatt Macy  * will fit into.
192eda14cbcSMatt Macy  */
193eda14cbcSMatt Macy uint32_t metaslab_min_search_count = 100;
194eda14cbcSMatt Macy 
195eda14cbcSMatt Macy /*
196eda14cbcSMatt Macy  * If we are not searching forward (due to metaslab_df_max_search,
197eda14cbcSMatt Macy  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
198eda14cbcSMatt Macy  * controls what segment is used.  If it is set, we will use the largest free
199eda14cbcSMatt Macy  * segment.  If it is not set, we will use a segment of exactly the requested
200eda14cbcSMatt Macy  * size (or larger).
201eda14cbcSMatt Macy  */
202eda14cbcSMatt Macy int metaslab_df_use_largest_segment = B_FALSE;
203eda14cbcSMatt Macy 
204eda14cbcSMatt Macy /*
205eda14cbcSMatt Macy  * Percentage of all cpus that can be used by the metaslab taskq.
206eda14cbcSMatt Macy  */
207eda14cbcSMatt Macy int metaslab_load_pct = 50;
208eda14cbcSMatt Macy 
209eda14cbcSMatt Macy /*
210eda14cbcSMatt Macy  * These tunables control how long a metaslab will remain loaded after the
211eda14cbcSMatt Macy  * last allocation from it.  A metaslab can't be unloaded until at least
212eda14cbcSMatt Macy  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
213eda14cbcSMatt Macy  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
214eda14cbcSMatt Macy  * unloaded sooner.  These settings are intended to be generous -- to keep
215eda14cbcSMatt Macy  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
216eda14cbcSMatt Macy  */
217eda14cbcSMatt Macy int metaslab_unload_delay = 32;
218eda14cbcSMatt Macy int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
219eda14cbcSMatt Macy 
220eda14cbcSMatt Macy /*
221eda14cbcSMatt Macy  * Max number of metaslabs per group to preload.
222eda14cbcSMatt Macy  */
223eda14cbcSMatt Macy int metaslab_preload_limit = 10;
224eda14cbcSMatt Macy 
225eda14cbcSMatt Macy /*
226eda14cbcSMatt Macy  * Enable/disable preloading of metaslab.
227eda14cbcSMatt Macy  */
228eda14cbcSMatt Macy int metaslab_preload_enabled = B_TRUE;
229eda14cbcSMatt Macy 
230eda14cbcSMatt Macy /*
231eda14cbcSMatt Macy  * Enable/disable fragmentation weighting on metaslabs.
232eda14cbcSMatt Macy  */
233eda14cbcSMatt Macy int metaslab_fragmentation_factor_enabled = B_TRUE;
234eda14cbcSMatt Macy 
235eda14cbcSMatt Macy /*
236eda14cbcSMatt Macy  * Enable/disable lba weighting (i.e. outer tracks are given preference).
237eda14cbcSMatt Macy  */
238eda14cbcSMatt Macy int metaslab_lba_weighting_enabled = B_TRUE;
239eda14cbcSMatt Macy 
240eda14cbcSMatt Macy /*
241eda14cbcSMatt Macy  * Enable/disable metaslab group biasing.
242eda14cbcSMatt Macy  */
243eda14cbcSMatt Macy int metaslab_bias_enabled = B_TRUE;
244eda14cbcSMatt Macy 
245eda14cbcSMatt Macy /*
246eda14cbcSMatt Macy  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
247eda14cbcSMatt Macy  */
248eda14cbcSMatt Macy boolean_t zfs_remap_blkptr_enable = B_TRUE;
249eda14cbcSMatt Macy 
250eda14cbcSMatt Macy /*
251eda14cbcSMatt Macy  * Enable/disable segment-based metaslab selection.
252eda14cbcSMatt Macy  */
253eda14cbcSMatt Macy int zfs_metaslab_segment_weight_enabled = B_TRUE;
254eda14cbcSMatt Macy 
255eda14cbcSMatt Macy /*
256eda14cbcSMatt Macy  * When using segment-based metaslab selection, we will continue
257eda14cbcSMatt Macy  * allocating from the active metaslab until we have exhausted
258eda14cbcSMatt Macy  * zfs_metaslab_switch_threshold of its buckets.
259eda14cbcSMatt Macy  */
260eda14cbcSMatt Macy int zfs_metaslab_switch_threshold = 2;
261eda14cbcSMatt Macy 
262eda14cbcSMatt Macy /*
263eda14cbcSMatt Macy  * Internal switch to enable/disable the metaslab allocation tracing
264eda14cbcSMatt Macy  * facility.
265eda14cbcSMatt Macy  */
266eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
267eda14cbcSMatt Macy boolean_t metaslab_trace_enabled = B_TRUE;
268eda14cbcSMatt Macy #endif
269eda14cbcSMatt Macy 
270eda14cbcSMatt Macy /*
271eda14cbcSMatt Macy  * Maximum entries that the metaslab allocation tracing facility will keep
272eda14cbcSMatt Macy  * in a given list when running in non-debug mode. We limit the number
273eda14cbcSMatt Macy  * of entries in non-debug mode to prevent us from using up too much memory.
274eda14cbcSMatt Macy  * The limit should be sufficiently large that we don't expect any allocation
275eda14cbcSMatt Macy  * to every exceed this value. In debug mode, the system will panic if this
276eda14cbcSMatt Macy  * limit is ever reached allowing for further investigation.
277eda14cbcSMatt Macy  */
278eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
279eda14cbcSMatt Macy uint64_t metaslab_trace_max_entries = 5000;
280eda14cbcSMatt Macy #endif
281eda14cbcSMatt Macy 
282eda14cbcSMatt Macy /*
283eda14cbcSMatt Macy  * Maximum number of metaslabs per group that can be disabled
284eda14cbcSMatt Macy  * simultaneously.
285eda14cbcSMatt Macy  */
286eda14cbcSMatt Macy int max_disabled_ms = 3;
287eda14cbcSMatt Macy 
288eda14cbcSMatt Macy /*
289eda14cbcSMatt Macy  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
290eda14cbcSMatt Macy  * To avoid 64-bit overflow, don't set above UINT32_MAX.
291eda14cbcSMatt Macy  */
292eda14cbcSMatt Macy unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
293eda14cbcSMatt Macy 
294eda14cbcSMatt Macy /*
295eda14cbcSMatt Macy  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
296eda14cbcSMatt Macy  * a metaslab would take it over this percentage, the oldest selected metaslab
297eda14cbcSMatt Macy  * is automatically unloaded.
298eda14cbcSMatt Macy  */
299eda14cbcSMatt Macy int zfs_metaslab_mem_limit = 75;
300eda14cbcSMatt Macy 
301eda14cbcSMatt Macy /*
302eda14cbcSMatt Macy  * Force the per-metaslab range trees to use 64-bit integers to store
303eda14cbcSMatt Macy  * segments. Used for debugging purposes.
304eda14cbcSMatt Macy  */
305eda14cbcSMatt Macy boolean_t zfs_metaslab_force_large_segs = B_FALSE;
306eda14cbcSMatt Macy 
307eda14cbcSMatt Macy /*
308eda14cbcSMatt Macy  * By default we only store segments over a certain size in the size-sorted
309eda14cbcSMatt Macy  * metaslab trees (ms_allocatable_by_size and
310eda14cbcSMatt Macy  * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
311eda14cbcSMatt Macy  * improves load and unload times at the cost of causing us to use slightly
312eda14cbcSMatt Macy  * larger segments than we would otherwise in some cases.
313eda14cbcSMatt Macy  */
314eda14cbcSMatt Macy uint32_t metaslab_by_size_min_shift = 14;
315eda14cbcSMatt Macy 
316eda14cbcSMatt Macy static uint64_t metaslab_weight(metaslab_t *, boolean_t);
317eda14cbcSMatt Macy static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
318eda14cbcSMatt Macy static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
319eda14cbcSMatt Macy static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
320eda14cbcSMatt Macy 
321eda14cbcSMatt Macy static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
322eda14cbcSMatt Macy static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
323eda14cbcSMatt Macy static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
324eda14cbcSMatt Macy static unsigned int metaslab_idx_func(multilist_t *, void *);
325eda14cbcSMatt Macy static void metaslab_evict(metaslab_t *, uint64_t);
326eda14cbcSMatt Macy static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
327eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
328eda14cbcSMatt Macy kmem_cache_t *metaslab_alloc_trace_cache;
329eda14cbcSMatt Macy 
330eda14cbcSMatt Macy typedef struct metaslab_stats {
331eda14cbcSMatt Macy 	kstat_named_t metaslabstat_trace_over_limit;
332eda14cbcSMatt Macy 	kstat_named_t metaslabstat_df_find_under_floor;
333eda14cbcSMatt Macy 	kstat_named_t metaslabstat_reload_tree;
334eda14cbcSMatt Macy } metaslab_stats_t;
335eda14cbcSMatt Macy 
336eda14cbcSMatt Macy static metaslab_stats_t metaslab_stats = {
337eda14cbcSMatt Macy 	{ "trace_over_limit",		KSTAT_DATA_UINT64 },
338eda14cbcSMatt Macy 	{ "df_find_under_floor",	KSTAT_DATA_UINT64 },
339eda14cbcSMatt Macy 	{ "reload_tree",		KSTAT_DATA_UINT64 },
340eda14cbcSMatt Macy };
341eda14cbcSMatt Macy 
342eda14cbcSMatt Macy #define	METASLABSTAT_BUMP(stat) \
343eda14cbcSMatt Macy 	atomic_inc_64(&metaslab_stats.stat.value.ui64);
344eda14cbcSMatt Macy 
345eda14cbcSMatt Macy 
346eda14cbcSMatt Macy kstat_t *metaslab_ksp;
347eda14cbcSMatt Macy 
348eda14cbcSMatt Macy void
349eda14cbcSMatt Macy metaslab_stat_init(void)
350eda14cbcSMatt Macy {
351eda14cbcSMatt Macy 	ASSERT(metaslab_alloc_trace_cache == NULL);
352eda14cbcSMatt Macy 	metaslab_alloc_trace_cache = kmem_cache_create(
353eda14cbcSMatt Macy 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
354eda14cbcSMatt Macy 	    0, NULL, NULL, NULL, NULL, NULL, 0);
355eda14cbcSMatt Macy 	metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
356eda14cbcSMatt Macy 	    "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
357eda14cbcSMatt Macy 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
358eda14cbcSMatt Macy 	if (metaslab_ksp != NULL) {
359eda14cbcSMatt Macy 		metaslab_ksp->ks_data = &metaslab_stats;
360eda14cbcSMatt Macy 		kstat_install(metaslab_ksp);
361eda14cbcSMatt Macy 	}
362eda14cbcSMatt Macy }
363eda14cbcSMatt Macy 
364eda14cbcSMatt Macy void
365eda14cbcSMatt Macy metaslab_stat_fini(void)
366eda14cbcSMatt Macy {
367eda14cbcSMatt Macy 	if (metaslab_ksp != NULL) {
368eda14cbcSMatt Macy 		kstat_delete(metaslab_ksp);
369eda14cbcSMatt Macy 		metaslab_ksp = NULL;
370eda14cbcSMatt Macy 	}
371eda14cbcSMatt Macy 
372eda14cbcSMatt Macy 	kmem_cache_destroy(metaslab_alloc_trace_cache);
373eda14cbcSMatt Macy 	metaslab_alloc_trace_cache = NULL;
374eda14cbcSMatt Macy }
375eda14cbcSMatt Macy #else
376eda14cbcSMatt Macy 
377eda14cbcSMatt Macy void
378eda14cbcSMatt Macy metaslab_stat_init(void)
379eda14cbcSMatt Macy {
380eda14cbcSMatt Macy }
381eda14cbcSMatt Macy 
382eda14cbcSMatt Macy void
383eda14cbcSMatt Macy metaslab_stat_fini(void)
384eda14cbcSMatt Macy {
385eda14cbcSMatt Macy }
386eda14cbcSMatt Macy #endif
387eda14cbcSMatt Macy 
388eda14cbcSMatt Macy /*
389eda14cbcSMatt Macy  * ==========================================================================
390eda14cbcSMatt Macy  * Metaslab classes
391eda14cbcSMatt Macy  * ==========================================================================
392eda14cbcSMatt Macy  */
393eda14cbcSMatt Macy metaslab_class_t *
394eda14cbcSMatt Macy metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
395eda14cbcSMatt Macy {
396eda14cbcSMatt Macy 	metaslab_class_t *mc;
397eda14cbcSMatt Macy 
398eda14cbcSMatt Macy 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
399eda14cbcSMatt Macy 
400eda14cbcSMatt Macy 	mc->mc_spa = spa;
401eda14cbcSMatt Macy 	mc->mc_rotor = NULL;
402eda14cbcSMatt Macy 	mc->mc_ops = ops;
403eda14cbcSMatt Macy 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
404eda14cbcSMatt Macy 	mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t),
405eda14cbcSMatt Macy 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
406eda14cbcSMatt Macy 	mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
407eda14cbcSMatt Macy 	    sizeof (zfs_refcount_t), KM_SLEEP);
408eda14cbcSMatt Macy 	mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
409eda14cbcSMatt Macy 	    sizeof (uint64_t), KM_SLEEP);
410eda14cbcSMatt Macy 	for (int i = 0; i < spa->spa_alloc_count; i++)
411eda14cbcSMatt Macy 		zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
412eda14cbcSMatt Macy 
413eda14cbcSMatt Macy 	return (mc);
414eda14cbcSMatt Macy }
415eda14cbcSMatt Macy 
416eda14cbcSMatt Macy void
417eda14cbcSMatt Macy metaslab_class_destroy(metaslab_class_t *mc)
418eda14cbcSMatt Macy {
419eda14cbcSMatt Macy 	ASSERT(mc->mc_rotor == NULL);
420eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc == 0);
421eda14cbcSMatt Macy 	ASSERT(mc->mc_deferred == 0);
422eda14cbcSMatt Macy 	ASSERT(mc->mc_space == 0);
423eda14cbcSMatt Macy 	ASSERT(mc->mc_dspace == 0);
424eda14cbcSMatt Macy 
425eda14cbcSMatt Macy 	for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
426eda14cbcSMatt Macy 		zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
427eda14cbcSMatt Macy 	kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
428eda14cbcSMatt Macy 	    sizeof (zfs_refcount_t));
429eda14cbcSMatt Macy 	kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
430eda14cbcSMatt Macy 	    sizeof (uint64_t));
431eda14cbcSMatt Macy 	mutex_destroy(&mc->mc_lock);
432eda14cbcSMatt Macy 	multilist_destroy(mc->mc_metaslab_txg_list);
433eda14cbcSMatt Macy 	kmem_free(mc, sizeof (metaslab_class_t));
434eda14cbcSMatt Macy }
435eda14cbcSMatt Macy 
436eda14cbcSMatt Macy int
437eda14cbcSMatt Macy metaslab_class_validate(metaslab_class_t *mc)
438eda14cbcSMatt Macy {
439eda14cbcSMatt Macy 	metaslab_group_t *mg;
440eda14cbcSMatt Macy 	vdev_t *vd;
441eda14cbcSMatt Macy 
442eda14cbcSMatt Macy 	/*
443eda14cbcSMatt Macy 	 * Must hold one of the spa_config locks.
444eda14cbcSMatt Macy 	 */
445eda14cbcSMatt Macy 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
446eda14cbcSMatt Macy 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
447eda14cbcSMatt Macy 
448eda14cbcSMatt Macy 	if ((mg = mc->mc_rotor) == NULL)
449eda14cbcSMatt Macy 		return (0);
450eda14cbcSMatt Macy 
451eda14cbcSMatt Macy 	do {
452eda14cbcSMatt Macy 		vd = mg->mg_vd;
453eda14cbcSMatt Macy 		ASSERT(vd->vdev_mg != NULL);
454eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_top, ==, vd);
455eda14cbcSMatt Macy 		ASSERT3P(mg->mg_class, ==, mc);
456eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
457eda14cbcSMatt Macy 	} while ((mg = mg->mg_next) != mc->mc_rotor);
458eda14cbcSMatt Macy 
459eda14cbcSMatt Macy 	return (0);
460eda14cbcSMatt Macy }
461eda14cbcSMatt Macy 
462eda14cbcSMatt Macy static void
463eda14cbcSMatt Macy metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
464eda14cbcSMatt Macy     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
465eda14cbcSMatt Macy {
466eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_alloc, alloc_delta);
467eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_deferred, defer_delta);
468eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_space, space_delta);
469eda14cbcSMatt Macy 	atomic_add_64(&mc->mc_dspace, dspace_delta);
470eda14cbcSMatt Macy }
471eda14cbcSMatt Macy 
472eda14cbcSMatt Macy uint64_t
473eda14cbcSMatt Macy metaslab_class_get_alloc(metaslab_class_t *mc)
474eda14cbcSMatt Macy {
475eda14cbcSMatt Macy 	return (mc->mc_alloc);
476eda14cbcSMatt Macy }
477eda14cbcSMatt Macy 
478eda14cbcSMatt Macy uint64_t
479eda14cbcSMatt Macy metaslab_class_get_deferred(metaslab_class_t *mc)
480eda14cbcSMatt Macy {
481eda14cbcSMatt Macy 	return (mc->mc_deferred);
482eda14cbcSMatt Macy }
483eda14cbcSMatt Macy 
484eda14cbcSMatt Macy uint64_t
485eda14cbcSMatt Macy metaslab_class_get_space(metaslab_class_t *mc)
486eda14cbcSMatt Macy {
487eda14cbcSMatt Macy 	return (mc->mc_space);
488eda14cbcSMatt Macy }
489eda14cbcSMatt Macy 
490eda14cbcSMatt Macy uint64_t
491eda14cbcSMatt Macy metaslab_class_get_dspace(metaslab_class_t *mc)
492eda14cbcSMatt Macy {
493eda14cbcSMatt Macy 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
494eda14cbcSMatt Macy }
495eda14cbcSMatt Macy 
496eda14cbcSMatt Macy void
497eda14cbcSMatt Macy metaslab_class_histogram_verify(metaslab_class_t *mc)
498eda14cbcSMatt Macy {
499eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
500eda14cbcSMatt Macy 	vdev_t *rvd = spa->spa_root_vdev;
501eda14cbcSMatt Macy 	uint64_t *mc_hist;
502eda14cbcSMatt Macy 	int i;
503eda14cbcSMatt Macy 
504eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
505eda14cbcSMatt Macy 		return;
506eda14cbcSMatt Macy 
507eda14cbcSMatt Macy 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
508eda14cbcSMatt Macy 	    KM_SLEEP);
509eda14cbcSMatt Macy 
510eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
511eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
512eda14cbcSMatt Macy 		metaslab_group_t *mg = tvd->vdev_mg;
513eda14cbcSMatt Macy 
514eda14cbcSMatt Macy 		/*
515eda14cbcSMatt Macy 		 * Skip any holes, uninitialized top-levels, or
516eda14cbcSMatt Macy 		 * vdevs that are not in this metalab class.
517eda14cbcSMatt Macy 		 */
518eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
519eda14cbcSMatt Macy 		    mg->mg_class != mc) {
520eda14cbcSMatt Macy 			continue;
521eda14cbcSMatt Macy 		}
522eda14cbcSMatt Macy 
523eda14cbcSMatt Macy 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
524eda14cbcSMatt Macy 			mc_hist[i] += mg->mg_histogram[i];
525eda14cbcSMatt Macy 	}
526eda14cbcSMatt Macy 
527eda14cbcSMatt Macy 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
528eda14cbcSMatt Macy 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
529eda14cbcSMatt Macy 
530eda14cbcSMatt Macy 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
531eda14cbcSMatt Macy }
532eda14cbcSMatt Macy 
533eda14cbcSMatt Macy /*
534eda14cbcSMatt Macy  * Calculate the metaslab class's fragmentation metric. The metric
535eda14cbcSMatt Macy  * is weighted based on the space contribution of each metaslab group.
536eda14cbcSMatt Macy  * The return value will be a number between 0 and 100 (inclusive), or
537eda14cbcSMatt Macy  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
538eda14cbcSMatt Macy  * zfs_frag_table for more information about the metric.
539eda14cbcSMatt Macy  */
540eda14cbcSMatt Macy uint64_t
541eda14cbcSMatt Macy metaslab_class_fragmentation(metaslab_class_t *mc)
542eda14cbcSMatt Macy {
543eda14cbcSMatt Macy 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
544eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
545eda14cbcSMatt Macy 
546eda14cbcSMatt Macy 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
547eda14cbcSMatt Macy 
548eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
549eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
550eda14cbcSMatt Macy 		metaslab_group_t *mg = tvd->vdev_mg;
551eda14cbcSMatt Macy 
552eda14cbcSMatt Macy 		/*
553eda14cbcSMatt Macy 		 * Skip any holes, uninitialized top-levels,
554eda14cbcSMatt Macy 		 * or vdevs that are not in this metalab class.
555eda14cbcSMatt Macy 		 */
556eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
557eda14cbcSMatt Macy 		    mg->mg_class != mc) {
558eda14cbcSMatt Macy 			continue;
559eda14cbcSMatt Macy 		}
560eda14cbcSMatt Macy 
561eda14cbcSMatt Macy 		/*
562eda14cbcSMatt Macy 		 * If a metaslab group does not contain a fragmentation
563eda14cbcSMatt Macy 		 * metric then just bail out.
564eda14cbcSMatt Macy 		 */
565eda14cbcSMatt Macy 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
566eda14cbcSMatt Macy 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
567eda14cbcSMatt Macy 			return (ZFS_FRAG_INVALID);
568eda14cbcSMatt Macy 		}
569eda14cbcSMatt Macy 
570eda14cbcSMatt Macy 		/*
571eda14cbcSMatt Macy 		 * Determine how much this metaslab_group is contributing
572eda14cbcSMatt Macy 		 * to the overall pool fragmentation metric.
573eda14cbcSMatt Macy 		 */
574eda14cbcSMatt Macy 		fragmentation += mg->mg_fragmentation *
575eda14cbcSMatt Macy 		    metaslab_group_get_space(mg);
576eda14cbcSMatt Macy 	}
577eda14cbcSMatt Macy 	fragmentation /= metaslab_class_get_space(mc);
578eda14cbcSMatt Macy 
579eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
580eda14cbcSMatt Macy 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
581eda14cbcSMatt Macy 	return (fragmentation);
582eda14cbcSMatt Macy }
583eda14cbcSMatt Macy 
584eda14cbcSMatt Macy /*
585eda14cbcSMatt Macy  * Calculate the amount of expandable space that is available in
586eda14cbcSMatt Macy  * this metaslab class. If a device is expanded then its expandable
587eda14cbcSMatt Macy  * space will be the amount of allocatable space that is currently not
588eda14cbcSMatt Macy  * part of this metaslab class.
589eda14cbcSMatt Macy  */
590eda14cbcSMatt Macy uint64_t
591eda14cbcSMatt Macy metaslab_class_expandable_space(metaslab_class_t *mc)
592eda14cbcSMatt Macy {
593eda14cbcSMatt Macy 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
594eda14cbcSMatt Macy 	uint64_t space = 0;
595eda14cbcSMatt Macy 
596eda14cbcSMatt Macy 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
597eda14cbcSMatt Macy 	for (int c = 0; c < rvd->vdev_children; c++) {
598eda14cbcSMatt Macy 		vdev_t *tvd = rvd->vdev_child[c];
599eda14cbcSMatt Macy 		metaslab_group_t *mg = tvd->vdev_mg;
600eda14cbcSMatt Macy 
601eda14cbcSMatt Macy 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
602eda14cbcSMatt Macy 		    mg->mg_class != mc) {
603eda14cbcSMatt Macy 			continue;
604eda14cbcSMatt Macy 		}
605eda14cbcSMatt Macy 
606eda14cbcSMatt Macy 		/*
607eda14cbcSMatt Macy 		 * Calculate if we have enough space to add additional
608eda14cbcSMatt Macy 		 * metaslabs. We report the expandable space in terms
609eda14cbcSMatt Macy 		 * of the metaslab size since that's the unit of expansion.
610eda14cbcSMatt Macy 		 */
611eda14cbcSMatt Macy 		space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
612eda14cbcSMatt Macy 		    1ULL << tvd->vdev_ms_shift);
613eda14cbcSMatt Macy 	}
614eda14cbcSMatt Macy 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
615eda14cbcSMatt Macy 	return (space);
616eda14cbcSMatt Macy }
617eda14cbcSMatt Macy 
618eda14cbcSMatt Macy void
619eda14cbcSMatt Macy metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
620eda14cbcSMatt Macy {
621eda14cbcSMatt Macy 	multilist_t *ml = mc->mc_metaslab_txg_list;
622eda14cbcSMatt Macy 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
623eda14cbcSMatt Macy 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
624eda14cbcSMatt Macy 		metaslab_t *msp = multilist_sublist_head(mls);
625eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
626eda14cbcSMatt Macy 		while (msp != NULL) {
627eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
628eda14cbcSMatt Macy 
629eda14cbcSMatt Macy 			/*
630eda14cbcSMatt Macy 			 * If the metaslab has been removed from the list
631eda14cbcSMatt Macy 			 * (which could happen if we were at the memory limit
632eda14cbcSMatt Macy 			 * and it was evicted during this loop), then we can't
633eda14cbcSMatt Macy 			 * proceed and we should restart the sublist.
634eda14cbcSMatt Macy 			 */
635eda14cbcSMatt Macy 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
636eda14cbcSMatt Macy 				mutex_exit(&msp->ms_lock);
637eda14cbcSMatt Macy 				i--;
638eda14cbcSMatt Macy 				break;
639eda14cbcSMatt Macy 			}
640eda14cbcSMatt Macy 			mls = multilist_sublist_lock(ml, i);
641eda14cbcSMatt Macy 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
642eda14cbcSMatt Macy 			multilist_sublist_unlock(mls);
643eda14cbcSMatt Macy 			if (txg >
644eda14cbcSMatt Macy 			    msp->ms_selected_txg + metaslab_unload_delay &&
645eda14cbcSMatt Macy 			    gethrtime() > msp->ms_selected_time +
646eda14cbcSMatt Macy 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
647eda14cbcSMatt Macy 				metaslab_evict(msp, txg);
648eda14cbcSMatt Macy 			} else {
649eda14cbcSMatt Macy 				/*
650eda14cbcSMatt Macy 				 * Once we've hit a metaslab selected too
651eda14cbcSMatt Macy 				 * recently to evict, we're done evicting for
652eda14cbcSMatt Macy 				 * now.
653eda14cbcSMatt Macy 				 */
654eda14cbcSMatt Macy 				mutex_exit(&msp->ms_lock);
655eda14cbcSMatt Macy 				break;
656eda14cbcSMatt Macy 			}
657eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
658eda14cbcSMatt Macy 			msp = next_msp;
659eda14cbcSMatt Macy 		}
660eda14cbcSMatt Macy 	}
661eda14cbcSMatt Macy }
662eda14cbcSMatt Macy 
663eda14cbcSMatt Macy static int
664eda14cbcSMatt Macy metaslab_compare(const void *x1, const void *x2)
665eda14cbcSMatt Macy {
666eda14cbcSMatt Macy 	const metaslab_t *m1 = (const metaslab_t *)x1;
667eda14cbcSMatt Macy 	const metaslab_t *m2 = (const metaslab_t *)x2;
668eda14cbcSMatt Macy 
669eda14cbcSMatt Macy 	int sort1 = 0;
670eda14cbcSMatt Macy 	int sort2 = 0;
671eda14cbcSMatt Macy 	if (m1->ms_allocator != -1 && m1->ms_primary)
672eda14cbcSMatt Macy 		sort1 = 1;
673eda14cbcSMatt Macy 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
674eda14cbcSMatt Macy 		sort1 = 2;
675eda14cbcSMatt Macy 	if (m2->ms_allocator != -1 && m2->ms_primary)
676eda14cbcSMatt Macy 		sort2 = 1;
677eda14cbcSMatt Macy 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
678eda14cbcSMatt Macy 		sort2 = 2;
679eda14cbcSMatt Macy 
680eda14cbcSMatt Macy 	/*
681eda14cbcSMatt Macy 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
682eda14cbcSMatt Macy 	 * selecting a metaslab to allocate from, an allocator first tries its
683eda14cbcSMatt Macy 	 * primary, then secondary active metaslab. If it doesn't have active
684eda14cbcSMatt Macy 	 * metaslabs, or can't allocate from them, it searches for an inactive
685eda14cbcSMatt Macy 	 * metaslab to activate. If it can't find a suitable one, it will steal
686eda14cbcSMatt Macy 	 * a primary or secondary metaslab from another allocator.
687eda14cbcSMatt Macy 	 */
688eda14cbcSMatt Macy 	if (sort1 < sort2)
689eda14cbcSMatt Macy 		return (-1);
690eda14cbcSMatt Macy 	if (sort1 > sort2)
691eda14cbcSMatt Macy 		return (1);
692eda14cbcSMatt Macy 
693eda14cbcSMatt Macy 	int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
694eda14cbcSMatt Macy 	if (likely(cmp))
695eda14cbcSMatt Macy 		return (cmp);
696eda14cbcSMatt Macy 
697eda14cbcSMatt Macy 	IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
698eda14cbcSMatt Macy 
699eda14cbcSMatt Macy 	return (TREE_CMP(m1->ms_start, m2->ms_start));
700eda14cbcSMatt Macy }
701eda14cbcSMatt Macy 
702eda14cbcSMatt Macy /*
703eda14cbcSMatt Macy  * ==========================================================================
704eda14cbcSMatt Macy  * Metaslab groups
705eda14cbcSMatt Macy  * ==========================================================================
706eda14cbcSMatt Macy  */
707eda14cbcSMatt Macy /*
708eda14cbcSMatt Macy  * Update the allocatable flag and the metaslab group's capacity.
709eda14cbcSMatt Macy  * The allocatable flag is set to true if the capacity is below
710eda14cbcSMatt Macy  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
711eda14cbcSMatt Macy  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
712eda14cbcSMatt Macy  * transitions from allocatable to non-allocatable or vice versa then the
713eda14cbcSMatt Macy  * metaslab group's class is updated to reflect the transition.
714eda14cbcSMatt Macy  */
715eda14cbcSMatt Macy static void
716eda14cbcSMatt Macy metaslab_group_alloc_update(metaslab_group_t *mg)
717eda14cbcSMatt Macy {
718eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
719eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
720eda14cbcSMatt Macy 	vdev_stat_t *vs = &vd->vdev_stat;
721eda14cbcSMatt Macy 	boolean_t was_allocatable;
722eda14cbcSMatt Macy 	boolean_t was_initialized;
723eda14cbcSMatt Macy 
724eda14cbcSMatt Macy 	ASSERT(vd == vd->vdev_top);
725eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
726eda14cbcSMatt Macy 	    SCL_ALLOC);
727eda14cbcSMatt Macy 
728eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
729eda14cbcSMatt Macy 	was_allocatable = mg->mg_allocatable;
730eda14cbcSMatt Macy 	was_initialized = mg->mg_initialized;
731eda14cbcSMatt Macy 
732eda14cbcSMatt Macy 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
733eda14cbcSMatt Macy 	    (vs->vs_space + 1);
734eda14cbcSMatt Macy 
735eda14cbcSMatt Macy 	mutex_enter(&mc->mc_lock);
736eda14cbcSMatt Macy 
737eda14cbcSMatt Macy 	/*
738eda14cbcSMatt Macy 	 * If the metaslab group was just added then it won't
739eda14cbcSMatt Macy 	 * have any space until we finish syncing out this txg.
740eda14cbcSMatt Macy 	 * At that point we will consider it initialized and available
741eda14cbcSMatt Macy 	 * for allocations.  We also don't consider non-activated
742eda14cbcSMatt Macy 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
743eda14cbcSMatt Macy 	 * to be initialized, because they can't be used for allocation.
744eda14cbcSMatt Macy 	 */
745eda14cbcSMatt Macy 	mg->mg_initialized = metaslab_group_initialized(mg);
746eda14cbcSMatt Macy 	if (!was_initialized && mg->mg_initialized) {
747eda14cbcSMatt Macy 		mc->mc_groups++;
748eda14cbcSMatt Macy 	} else if (was_initialized && !mg->mg_initialized) {
749eda14cbcSMatt Macy 		ASSERT3U(mc->mc_groups, >, 0);
750eda14cbcSMatt Macy 		mc->mc_groups--;
751eda14cbcSMatt Macy 	}
752eda14cbcSMatt Macy 	if (mg->mg_initialized)
753eda14cbcSMatt Macy 		mg->mg_no_free_space = B_FALSE;
754eda14cbcSMatt Macy 
755eda14cbcSMatt Macy 	/*
756eda14cbcSMatt Macy 	 * A metaslab group is considered allocatable if it has plenty
757eda14cbcSMatt Macy 	 * of free space or is not heavily fragmented. We only take
758eda14cbcSMatt Macy 	 * fragmentation into account if the metaslab group has a valid
759eda14cbcSMatt Macy 	 * fragmentation metric (i.e. a value between 0 and 100).
760eda14cbcSMatt Macy 	 */
761eda14cbcSMatt Macy 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
762eda14cbcSMatt Macy 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
763eda14cbcSMatt Macy 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
764eda14cbcSMatt Macy 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
765eda14cbcSMatt Macy 
766eda14cbcSMatt Macy 	/*
767eda14cbcSMatt Macy 	 * The mc_alloc_groups maintains a count of the number of
768eda14cbcSMatt Macy 	 * groups in this metaslab class that are still above the
769eda14cbcSMatt Macy 	 * zfs_mg_noalloc_threshold. This is used by the allocating
770eda14cbcSMatt Macy 	 * threads to determine if they should avoid allocations to
771eda14cbcSMatt Macy 	 * a given group. The allocator will avoid allocations to a group
772eda14cbcSMatt Macy 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
773eda14cbcSMatt Macy 	 * and there are still other groups that are above the threshold.
774eda14cbcSMatt Macy 	 * When a group transitions from allocatable to non-allocatable or
775eda14cbcSMatt Macy 	 * vice versa we update the metaslab class to reflect that change.
776eda14cbcSMatt Macy 	 * When the mc_alloc_groups value drops to 0 that means that all
777eda14cbcSMatt Macy 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
778eda14cbcSMatt Macy 	 * eligible for allocations. This effectively means that all devices
779eda14cbcSMatt Macy 	 * are balanced again.
780eda14cbcSMatt Macy 	 */
781eda14cbcSMatt Macy 	if (was_allocatable && !mg->mg_allocatable)
782eda14cbcSMatt Macy 		mc->mc_alloc_groups--;
783eda14cbcSMatt Macy 	else if (!was_allocatable && mg->mg_allocatable)
784eda14cbcSMatt Macy 		mc->mc_alloc_groups++;
785eda14cbcSMatt Macy 	mutex_exit(&mc->mc_lock);
786eda14cbcSMatt Macy 
787eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
788eda14cbcSMatt Macy }
789eda14cbcSMatt Macy 
790eda14cbcSMatt Macy int
791eda14cbcSMatt Macy metaslab_sort_by_flushed(const void *va, const void *vb)
792eda14cbcSMatt Macy {
793eda14cbcSMatt Macy 	const metaslab_t *a = va;
794eda14cbcSMatt Macy 	const metaslab_t *b = vb;
795eda14cbcSMatt Macy 
796eda14cbcSMatt Macy 	int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
797eda14cbcSMatt Macy 	if (likely(cmp))
798eda14cbcSMatt Macy 		return (cmp);
799eda14cbcSMatt Macy 
800eda14cbcSMatt Macy 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
801eda14cbcSMatt Macy 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
802eda14cbcSMatt Macy 	cmp = TREE_CMP(a_vdev_id, b_vdev_id);
803eda14cbcSMatt Macy 	if (cmp)
804eda14cbcSMatt Macy 		return (cmp);
805eda14cbcSMatt Macy 
806eda14cbcSMatt Macy 	return (TREE_CMP(a->ms_id, b->ms_id));
807eda14cbcSMatt Macy }
808eda14cbcSMatt Macy 
809eda14cbcSMatt Macy metaslab_group_t *
810eda14cbcSMatt Macy metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
811eda14cbcSMatt Macy {
812eda14cbcSMatt Macy 	metaslab_group_t *mg;
813eda14cbcSMatt Macy 
814eda14cbcSMatt Macy 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
815eda14cbcSMatt Macy 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
816eda14cbcSMatt Macy 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
817eda14cbcSMatt Macy 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
818eda14cbcSMatt Macy 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
819eda14cbcSMatt Macy 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
820eda14cbcSMatt Macy 	mg->mg_vd = vd;
821eda14cbcSMatt Macy 	mg->mg_class = mc;
822eda14cbcSMatt Macy 	mg->mg_activation_count = 0;
823eda14cbcSMatt Macy 	mg->mg_initialized = B_FALSE;
824eda14cbcSMatt Macy 	mg->mg_no_free_space = B_TRUE;
825eda14cbcSMatt Macy 	mg->mg_allocators = allocators;
826eda14cbcSMatt Macy 
827eda14cbcSMatt Macy 	mg->mg_allocator = kmem_zalloc(allocators *
828eda14cbcSMatt Macy 	    sizeof (metaslab_group_allocator_t), KM_SLEEP);
829eda14cbcSMatt Macy 	for (int i = 0; i < allocators; i++) {
830eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
831eda14cbcSMatt Macy 		zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
832eda14cbcSMatt Macy 	}
833eda14cbcSMatt Macy 
834eda14cbcSMatt Macy 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
835eda14cbcSMatt Macy 	    maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
836eda14cbcSMatt Macy 
837eda14cbcSMatt Macy 	return (mg);
838eda14cbcSMatt Macy }
839eda14cbcSMatt Macy 
840eda14cbcSMatt Macy void
841eda14cbcSMatt Macy metaslab_group_destroy(metaslab_group_t *mg)
842eda14cbcSMatt Macy {
843eda14cbcSMatt Macy 	ASSERT(mg->mg_prev == NULL);
844eda14cbcSMatt Macy 	ASSERT(mg->mg_next == NULL);
845eda14cbcSMatt Macy 	/*
846eda14cbcSMatt Macy 	 * We may have gone below zero with the activation count
847eda14cbcSMatt Macy 	 * either because we never activated in the first place or
848eda14cbcSMatt Macy 	 * because we're done, and possibly removing the vdev.
849eda14cbcSMatt Macy 	 */
850eda14cbcSMatt Macy 	ASSERT(mg->mg_activation_count <= 0);
851eda14cbcSMatt Macy 
852eda14cbcSMatt Macy 	taskq_destroy(mg->mg_taskq);
853eda14cbcSMatt Macy 	avl_destroy(&mg->mg_metaslab_tree);
854eda14cbcSMatt Macy 	mutex_destroy(&mg->mg_lock);
855eda14cbcSMatt Macy 	mutex_destroy(&mg->mg_ms_disabled_lock);
856eda14cbcSMatt Macy 	cv_destroy(&mg->mg_ms_disabled_cv);
857eda14cbcSMatt Macy 
858eda14cbcSMatt Macy 	for (int i = 0; i < mg->mg_allocators; i++) {
859eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
860eda14cbcSMatt Macy 		zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
861eda14cbcSMatt Macy 	}
862eda14cbcSMatt Macy 	kmem_free(mg->mg_allocator, mg->mg_allocators *
863eda14cbcSMatt Macy 	    sizeof (metaslab_group_allocator_t));
864eda14cbcSMatt Macy 
865eda14cbcSMatt Macy 	kmem_free(mg, sizeof (metaslab_group_t));
866eda14cbcSMatt Macy }
867eda14cbcSMatt Macy 
868eda14cbcSMatt Macy void
869eda14cbcSMatt Macy metaslab_group_activate(metaslab_group_t *mg)
870eda14cbcSMatt Macy {
871eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
872eda14cbcSMatt Macy 	metaslab_group_t *mgprev, *mgnext;
873eda14cbcSMatt Macy 
874eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
875eda14cbcSMatt Macy 
876eda14cbcSMatt Macy 	ASSERT(mc->mc_rotor != mg);
877eda14cbcSMatt Macy 	ASSERT(mg->mg_prev == NULL);
878eda14cbcSMatt Macy 	ASSERT(mg->mg_next == NULL);
879eda14cbcSMatt Macy 	ASSERT(mg->mg_activation_count <= 0);
880eda14cbcSMatt Macy 
881eda14cbcSMatt Macy 	if (++mg->mg_activation_count <= 0)
882eda14cbcSMatt Macy 		return;
883eda14cbcSMatt Macy 
884eda14cbcSMatt Macy 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
885eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
886eda14cbcSMatt Macy 
887eda14cbcSMatt Macy 	if ((mgprev = mc->mc_rotor) == NULL) {
888eda14cbcSMatt Macy 		mg->mg_prev = mg;
889eda14cbcSMatt Macy 		mg->mg_next = mg;
890eda14cbcSMatt Macy 	} else {
891eda14cbcSMatt Macy 		mgnext = mgprev->mg_next;
892eda14cbcSMatt Macy 		mg->mg_prev = mgprev;
893eda14cbcSMatt Macy 		mg->mg_next = mgnext;
894eda14cbcSMatt Macy 		mgprev->mg_next = mg;
895eda14cbcSMatt Macy 		mgnext->mg_prev = mg;
896eda14cbcSMatt Macy 	}
897eda14cbcSMatt Macy 	mc->mc_rotor = mg;
898eda14cbcSMatt Macy }
899eda14cbcSMatt Macy 
900eda14cbcSMatt Macy /*
901eda14cbcSMatt Macy  * Passivate a metaslab group and remove it from the allocation rotor.
902eda14cbcSMatt Macy  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
903eda14cbcSMatt Macy  * a metaslab group. This function will momentarily drop spa_config_locks
904eda14cbcSMatt Macy  * that are lower than the SCL_ALLOC lock (see comment below).
905eda14cbcSMatt Macy  */
906eda14cbcSMatt Macy void
907eda14cbcSMatt Macy metaslab_group_passivate(metaslab_group_t *mg)
908eda14cbcSMatt Macy {
909eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
910eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
911eda14cbcSMatt Macy 	metaslab_group_t *mgprev, *mgnext;
912eda14cbcSMatt Macy 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
913eda14cbcSMatt Macy 
914eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
915eda14cbcSMatt Macy 	    (SCL_ALLOC | SCL_ZIO));
916eda14cbcSMatt Macy 
917eda14cbcSMatt Macy 	if (--mg->mg_activation_count != 0) {
918eda14cbcSMatt Macy 		ASSERT(mc->mc_rotor != mg);
919eda14cbcSMatt Macy 		ASSERT(mg->mg_prev == NULL);
920eda14cbcSMatt Macy 		ASSERT(mg->mg_next == NULL);
921eda14cbcSMatt Macy 		ASSERT(mg->mg_activation_count < 0);
922eda14cbcSMatt Macy 		return;
923eda14cbcSMatt Macy 	}
924eda14cbcSMatt Macy 
925eda14cbcSMatt Macy 	/*
926eda14cbcSMatt Macy 	 * The spa_config_lock is an array of rwlocks, ordered as
927eda14cbcSMatt Macy 	 * follows (from highest to lowest):
928eda14cbcSMatt Macy 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
929eda14cbcSMatt Macy 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
930eda14cbcSMatt Macy 	 * (For more information about the spa_config_lock see spa_misc.c)
931eda14cbcSMatt Macy 	 * The higher the lock, the broader its coverage. When we passivate
932eda14cbcSMatt Macy 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
933eda14cbcSMatt Macy 	 * config locks. However, the metaslab group's taskq might be trying
934eda14cbcSMatt Macy 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
935eda14cbcSMatt Macy 	 * lower locks to allow the I/O to complete. At a minimum,
936eda14cbcSMatt Macy 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
937eda14cbcSMatt Macy 	 * allocations from taking place and any changes to the vdev tree.
938eda14cbcSMatt Macy 	 */
939eda14cbcSMatt Macy 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
940eda14cbcSMatt Macy 	taskq_wait_outstanding(mg->mg_taskq, 0);
941eda14cbcSMatt Macy 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
942eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
943eda14cbcSMatt Macy 	for (int i = 0; i < mg->mg_allocators; i++) {
944eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
945eda14cbcSMatt Macy 		metaslab_t *msp = mga->mga_primary;
946eda14cbcSMatt Macy 		if (msp != NULL) {
947eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
948eda14cbcSMatt Macy 			metaslab_passivate(msp,
949eda14cbcSMatt Macy 			    metaslab_weight_from_range_tree(msp));
950eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
951eda14cbcSMatt Macy 		}
952eda14cbcSMatt Macy 		msp = mga->mga_secondary;
953eda14cbcSMatt Macy 		if (msp != NULL) {
954eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
955eda14cbcSMatt Macy 			metaslab_passivate(msp,
956eda14cbcSMatt Macy 			    metaslab_weight_from_range_tree(msp));
957eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
958eda14cbcSMatt Macy 		}
959eda14cbcSMatt Macy 	}
960eda14cbcSMatt Macy 
961eda14cbcSMatt Macy 	mgprev = mg->mg_prev;
962eda14cbcSMatt Macy 	mgnext = mg->mg_next;
963eda14cbcSMatt Macy 
964eda14cbcSMatt Macy 	if (mg == mgnext) {
965eda14cbcSMatt Macy 		mc->mc_rotor = NULL;
966eda14cbcSMatt Macy 	} else {
967eda14cbcSMatt Macy 		mc->mc_rotor = mgnext;
968eda14cbcSMatt Macy 		mgprev->mg_next = mgnext;
969eda14cbcSMatt Macy 		mgnext->mg_prev = mgprev;
970eda14cbcSMatt Macy 	}
971eda14cbcSMatt Macy 
972eda14cbcSMatt Macy 	mg->mg_prev = NULL;
973eda14cbcSMatt Macy 	mg->mg_next = NULL;
974eda14cbcSMatt Macy }
975eda14cbcSMatt Macy 
976eda14cbcSMatt Macy boolean_t
977eda14cbcSMatt Macy metaslab_group_initialized(metaslab_group_t *mg)
978eda14cbcSMatt Macy {
979eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
980eda14cbcSMatt Macy 	vdev_stat_t *vs = &vd->vdev_stat;
981eda14cbcSMatt Macy 
982eda14cbcSMatt Macy 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
983eda14cbcSMatt Macy }
984eda14cbcSMatt Macy 
985eda14cbcSMatt Macy uint64_t
986eda14cbcSMatt Macy metaslab_group_get_space(metaslab_group_t *mg)
987eda14cbcSMatt Macy {
988eda14cbcSMatt Macy 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
989eda14cbcSMatt Macy }
990eda14cbcSMatt Macy 
991eda14cbcSMatt Macy void
992eda14cbcSMatt Macy metaslab_group_histogram_verify(metaslab_group_t *mg)
993eda14cbcSMatt Macy {
994eda14cbcSMatt Macy 	uint64_t *mg_hist;
995eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
996eda14cbcSMatt Macy 	uint64_t ashift = vd->vdev_ashift;
997eda14cbcSMatt Macy 	int i;
998eda14cbcSMatt Macy 
999eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1000eda14cbcSMatt Macy 		return;
1001eda14cbcSMatt Macy 
1002eda14cbcSMatt Macy 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1003eda14cbcSMatt Macy 	    KM_SLEEP);
1004eda14cbcSMatt Macy 
1005eda14cbcSMatt Macy 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1006eda14cbcSMatt Macy 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
1007eda14cbcSMatt Macy 
1008eda14cbcSMatt Macy 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1009eda14cbcSMatt Macy 		metaslab_t *msp = vd->vdev_ms[m];
1010eda14cbcSMatt Macy 
1011eda14cbcSMatt Macy 		/* skip if not active or not a member */
1012eda14cbcSMatt Macy 		if (msp->ms_sm == NULL || msp->ms_group != mg)
1013eda14cbcSMatt Macy 			continue;
1014eda14cbcSMatt Macy 
1015eda14cbcSMatt Macy 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
1016eda14cbcSMatt Macy 			mg_hist[i + ashift] +=
1017eda14cbcSMatt Macy 			    msp->ms_sm->sm_phys->smp_histogram[i];
1018eda14cbcSMatt Macy 	}
1019eda14cbcSMatt Macy 
1020eda14cbcSMatt Macy 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1021eda14cbcSMatt Macy 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1022eda14cbcSMatt Macy 
1023eda14cbcSMatt Macy 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1024eda14cbcSMatt Macy }
1025eda14cbcSMatt Macy 
1026eda14cbcSMatt Macy static void
1027eda14cbcSMatt Macy metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1028eda14cbcSMatt Macy {
1029eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1030eda14cbcSMatt Macy 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1031eda14cbcSMatt Macy 
1032eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1033eda14cbcSMatt Macy 	if (msp->ms_sm == NULL)
1034eda14cbcSMatt Macy 		return;
1035eda14cbcSMatt Macy 
1036eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1037eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1038eda14cbcSMatt Macy 		mg->mg_histogram[i + ashift] +=
1039eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1040eda14cbcSMatt Macy 		mc->mc_histogram[i + ashift] +=
1041eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1042eda14cbcSMatt Macy 	}
1043eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1044eda14cbcSMatt Macy }
1045eda14cbcSMatt Macy 
1046eda14cbcSMatt Macy void
1047eda14cbcSMatt Macy metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1048eda14cbcSMatt Macy {
1049eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1050eda14cbcSMatt Macy 	uint64_t ashift = mg->mg_vd->vdev_ashift;
1051eda14cbcSMatt Macy 
1052eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1053eda14cbcSMatt Macy 	if (msp->ms_sm == NULL)
1054eda14cbcSMatt Macy 		return;
1055eda14cbcSMatt Macy 
1056eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1057eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1058eda14cbcSMatt Macy 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
1059eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1060eda14cbcSMatt Macy 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
1061eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i]);
1062eda14cbcSMatt Macy 
1063eda14cbcSMatt Macy 		mg->mg_histogram[i + ashift] -=
1064eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1065eda14cbcSMatt Macy 		mc->mc_histogram[i + ashift] -=
1066eda14cbcSMatt Macy 		    msp->ms_sm->sm_phys->smp_histogram[i];
1067eda14cbcSMatt Macy 	}
1068eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1069eda14cbcSMatt Macy }
1070eda14cbcSMatt Macy 
1071eda14cbcSMatt Macy static void
1072eda14cbcSMatt Macy metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1073eda14cbcSMatt Macy {
1074eda14cbcSMatt Macy 	ASSERT(msp->ms_group == NULL);
1075eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1076eda14cbcSMatt Macy 	msp->ms_group = mg;
1077eda14cbcSMatt Macy 	msp->ms_weight = 0;
1078eda14cbcSMatt Macy 	avl_add(&mg->mg_metaslab_tree, msp);
1079eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1080eda14cbcSMatt Macy 
1081eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
1082eda14cbcSMatt Macy 	metaslab_group_histogram_add(mg, msp);
1083eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
1084eda14cbcSMatt Macy }
1085eda14cbcSMatt Macy 
1086eda14cbcSMatt Macy static void
1087eda14cbcSMatt Macy metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1088eda14cbcSMatt Macy {
1089eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
1090eda14cbcSMatt Macy 	metaslab_group_histogram_remove(mg, msp);
1091eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
1092eda14cbcSMatt Macy 
1093eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1094eda14cbcSMatt Macy 	ASSERT(msp->ms_group == mg);
1095eda14cbcSMatt Macy 	avl_remove(&mg->mg_metaslab_tree, msp);
1096eda14cbcSMatt Macy 
1097eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
1098eda14cbcSMatt Macy 	multilist_sublist_t *mls =
1099eda14cbcSMatt Macy 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
1100eda14cbcSMatt Macy 	if (multilist_link_active(&msp->ms_class_txg_node))
1101eda14cbcSMatt Macy 		multilist_sublist_remove(mls, msp);
1102eda14cbcSMatt Macy 	multilist_sublist_unlock(mls);
1103eda14cbcSMatt Macy 
1104eda14cbcSMatt Macy 	msp->ms_group = NULL;
1105eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1106eda14cbcSMatt Macy }
1107eda14cbcSMatt Macy 
1108eda14cbcSMatt Macy static void
1109eda14cbcSMatt Macy metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1110eda14cbcSMatt Macy {
1111eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1112eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1113eda14cbcSMatt Macy 	ASSERT(msp->ms_group == mg);
1114eda14cbcSMatt Macy 
1115eda14cbcSMatt Macy 	avl_remove(&mg->mg_metaslab_tree, msp);
1116eda14cbcSMatt Macy 	msp->ms_weight = weight;
1117eda14cbcSMatt Macy 	avl_add(&mg->mg_metaslab_tree, msp);
1118eda14cbcSMatt Macy 
1119eda14cbcSMatt Macy }
1120eda14cbcSMatt Macy 
1121eda14cbcSMatt Macy static void
1122eda14cbcSMatt Macy metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1123eda14cbcSMatt Macy {
1124eda14cbcSMatt Macy 	/*
1125eda14cbcSMatt Macy 	 * Although in principle the weight can be any value, in
1126eda14cbcSMatt Macy 	 * practice we do not use values in the range [1, 511].
1127eda14cbcSMatt Macy 	 */
1128eda14cbcSMatt Macy 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1129eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1130eda14cbcSMatt Macy 
1131eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
1132eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp, weight);
1133eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
1134eda14cbcSMatt Macy }
1135eda14cbcSMatt Macy 
1136eda14cbcSMatt Macy /*
1137eda14cbcSMatt Macy  * Calculate the fragmentation for a given metaslab group. We can use
1138eda14cbcSMatt Macy  * a simple average here since all metaslabs within the group must have
1139eda14cbcSMatt Macy  * the same size. The return value will be a value between 0 and 100
1140eda14cbcSMatt Macy  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1141eda14cbcSMatt Macy  * group have a fragmentation metric.
1142eda14cbcSMatt Macy  */
1143eda14cbcSMatt Macy uint64_t
1144eda14cbcSMatt Macy metaslab_group_fragmentation(metaslab_group_t *mg)
1145eda14cbcSMatt Macy {
1146eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
1147eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
1148eda14cbcSMatt Macy 	uint64_t valid_ms = 0;
1149eda14cbcSMatt Macy 
1150eda14cbcSMatt Macy 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1151eda14cbcSMatt Macy 		metaslab_t *msp = vd->vdev_ms[m];
1152eda14cbcSMatt Macy 
1153eda14cbcSMatt Macy 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1154eda14cbcSMatt Macy 			continue;
1155eda14cbcSMatt Macy 		if (msp->ms_group != mg)
1156eda14cbcSMatt Macy 			continue;
1157eda14cbcSMatt Macy 
1158eda14cbcSMatt Macy 		valid_ms++;
1159eda14cbcSMatt Macy 		fragmentation += msp->ms_fragmentation;
1160eda14cbcSMatt Macy 	}
1161eda14cbcSMatt Macy 
1162eda14cbcSMatt Macy 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1163eda14cbcSMatt Macy 		return (ZFS_FRAG_INVALID);
1164eda14cbcSMatt Macy 
1165eda14cbcSMatt Macy 	fragmentation /= valid_ms;
1166eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
1167eda14cbcSMatt Macy 	return (fragmentation);
1168eda14cbcSMatt Macy }
1169eda14cbcSMatt Macy 
1170eda14cbcSMatt Macy /*
1171eda14cbcSMatt Macy  * Determine if a given metaslab group should skip allocations. A metaslab
1172eda14cbcSMatt Macy  * group should avoid allocations if its free capacity is less than the
1173eda14cbcSMatt Macy  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1174eda14cbcSMatt Macy  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1175eda14cbcSMatt Macy  * that can still handle allocations. If the allocation throttle is enabled
1176eda14cbcSMatt Macy  * then we skip allocations to devices that have reached their maximum
1177eda14cbcSMatt Macy  * allocation queue depth unless the selected metaslab group is the only
1178eda14cbcSMatt Macy  * eligible group remaining.
1179eda14cbcSMatt Macy  */
1180eda14cbcSMatt Macy static boolean_t
1181eda14cbcSMatt Macy metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1182eda14cbcSMatt Macy     uint64_t psize, int allocator, int d)
1183eda14cbcSMatt Macy {
1184eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
1185eda14cbcSMatt Macy 	metaslab_class_t *mc = mg->mg_class;
1186eda14cbcSMatt Macy 
1187eda14cbcSMatt Macy 	/*
1188eda14cbcSMatt Macy 	 * We can only consider skipping this metaslab group if it's
1189eda14cbcSMatt Macy 	 * in the normal metaslab class and there are other metaslab
1190eda14cbcSMatt Macy 	 * groups to select from. Otherwise, we always consider it eligible
1191eda14cbcSMatt Macy 	 * for allocations.
1192eda14cbcSMatt Macy 	 */
1193eda14cbcSMatt Macy 	if ((mc != spa_normal_class(spa) &&
1194eda14cbcSMatt Macy 	    mc != spa_special_class(spa) &&
1195eda14cbcSMatt Macy 	    mc != spa_dedup_class(spa)) ||
1196eda14cbcSMatt Macy 	    mc->mc_groups <= 1)
1197eda14cbcSMatt Macy 		return (B_TRUE);
1198eda14cbcSMatt Macy 
1199eda14cbcSMatt Macy 	/*
1200eda14cbcSMatt Macy 	 * If the metaslab group's mg_allocatable flag is set (see comments
1201eda14cbcSMatt Macy 	 * in metaslab_group_alloc_update() for more information) and
1202eda14cbcSMatt Macy 	 * the allocation throttle is disabled then allow allocations to this
1203eda14cbcSMatt Macy 	 * device. However, if the allocation throttle is enabled then
1204eda14cbcSMatt Macy 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1205eda14cbcSMatt Macy 	 * to determine if we should allow allocations to this metaslab group.
1206eda14cbcSMatt Macy 	 * If all metaslab groups are no longer considered allocatable
1207eda14cbcSMatt Macy 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1208eda14cbcSMatt Macy 	 * gang block size then we allow allocations on this metaslab group
1209eda14cbcSMatt Macy 	 * regardless of the mg_allocatable or throttle settings.
1210eda14cbcSMatt Macy 	 */
1211eda14cbcSMatt Macy 	if (mg->mg_allocatable) {
1212eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1213eda14cbcSMatt Macy 		int64_t qdepth;
1214eda14cbcSMatt Macy 		uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1215eda14cbcSMatt Macy 
1216eda14cbcSMatt Macy 		if (!mc->mc_alloc_throttle_enabled)
1217eda14cbcSMatt Macy 			return (B_TRUE);
1218eda14cbcSMatt Macy 
1219eda14cbcSMatt Macy 		/*
1220eda14cbcSMatt Macy 		 * If this metaslab group does not have any free space, then
1221eda14cbcSMatt Macy 		 * there is no point in looking further.
1222eda14cbcSMatt Macy 		 */
1223eda14cbcSMatt Macy 		if (mg->mg_no_free_space)
1224eda14cbcSMatt Macy 			return (B_FALSE);
1225eda14cbcSMatt Macy 
1226eda14cbcSMatt Macy 		/*
1227eda14cbcSMatt Macy 		 * Relax allocation throttling for ditto blocks.  Due to
1228eda14cbcSMatt Macy 		 * random imbalances in allocation it tends to push copies
1229eda14cbcSMatt Macy 		 * to one vdev, that looks a bit better at the moment.
1230eda14cbcSMatt Macy 		 */
1231eda14cbcSMatt Macy 		qmax = qmax * (4 + d) / 4;
1232eda14cbcSMatt Macy 
1233eda14cbcSMatt Macy 		qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1234eda14cbcSMatt Macy 
1235eda14cbcSMatt Macy 		/*
1236eda14cbcSMatt Macy 		 * If this metaslab group is below its qmax or it's
1237eda14cbcSMatt Macy 		 * the only allocatable metasable group, then attempt
1238eda14cbcSMatt Macy 		 * to allocate from it.
1239eda14cbcSMatt Macy 		 */
1240eda14cbcSMatt Macy 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1241eda14cbcSMatt Macy 			return (B_TRUE);
1242eda14cbcSMatt Macy 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1243eda14cbcSMatt Macy 
1244eda14cbcSMatt Macy 		/*
1245eda14cbcSMatt Macy 		 * Since this metaslab group is at or over its qmax, we
1246eda14cbcSMatt Macy 		 * need to determine if there are metaslab groups after this
1247eda14cbcSMatt Macy 		 * one that might be able to handle this allocation. This is
1248eda14cbcSMatt Macy 		 * racy since we can't hold the locks for all metaslab
1249eda14cbcSMatt Macy 		 * groups at the same time when we make this check.
1250eda14cbcSMatt Macy 		 */
1251eda14cbcSMatt Macy 		for (metaslab_group_t *mgp = mg->mg_next;
1252eda14cbcSMatt Macy 		    mgp != rotor; mgp = mgp->mg_next) {
1253eda14cbcSMatt Macy 			metaslab_group_allocator_t *mgap =
1254eda14cbcSMatt Macy 			    &mgp->mg_allocator[allocator];
1255eda14cbcSMatt Macy 			qmax = mgap->mga_cur_max_alloc_queue_depth;
1256eda14cbcSMatt Macy 			qmax = qmax * (4 + d) / 4;
1257eda14cbcSMatt Macy 			qdepth =
1258eda14cbcSMatt Macy 			    zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1259eda14cbcSMatt Macy 
1260eda14cbcSMatt Macy 			/*
1261eda14cbcSMatt Macy 			 * If there is another metaslab group that
1262eda14cbcSMatt Macy 			 * might be able to handle the allocation, then
1263eda14cbcSMatt Macy 			 * we return false so that we skip this group.
1264eda14cbcSMatt Macy 			 */
1265eda14cbcSMatt Macy 			if (qdepth < qmax && !mgp->mg_no_free_space)
1266eda14cbcSMatt Macy 				return (B_FALSE);
1267eda14cbcSMatt Macy 		}
1268eda14cbcSMatt Macy 
1269eda14cbcSMatt Macy 		/*
1270eda14cbcSMatt Macy 		 * We didn't find another group to handle the allocation
1271eda14cbcSMatt Macy 		 * so we can't skip this metaslab group even though
1272eda14cbcSMatt Macy 		 * we are at or over our qmax.
1273eda14cbcSMatt Macy 		 */
1274eda14cbcSMatt Macy 		return (B_TRUE);
1275eda14cbcSMatt Macy 
1276eda14cbcSMatt Macy 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1277eda14cbcSMatt Macy 		return (B_TRUE);
1278eda14cbcSMatt Macy 	}
1279eda14cbcSMatt Macy 	return (B_FALSE);
1280eda14cbcSMatt Macy }
1281eda14cbcSMatt Macy 
1282eda14cbcSMatt Macy /*
1283eda14cbcSMatt Macy  * ==========================================================================
1284eda14cbcSMatt Macy  * Range tree callbacks
1285eda14cbcSMatt Macy  * ==========================================================================
1286eda14cbcSMatt Macy  */
1287eda14cbcSMatt Macy 
1288eda14cbcSMatt Macy /*
1289eda14cbcSMatt Macy  * Comparison function for the private size-ordered tree using 32-bit
1290eda14cbcSMatt Macy  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1291eda14cbcSMatt Macy  */
1292eda14cbcSMatt Macy static int
1293eda14cbcSMatt Macy metaslab_rangesize32_compare(const void *x1, const void *x2)
1294eda14cbcSMatt Macy {
1295eda14cbcSMatt Macy 	const range_seg32_t *r1 = x1;
1296eda14cbcSMatt Macy 	const range_seg32_t *r2 = x2;
1297eda14cbcSMatt Macy 
1298eda14cbcSMatt Macy 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1299eda14cbcSMatt Macy 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1300eda14cbcSMatt Macy 
1301eda14cbcSMatt Macy 	int cmp = TREE_CMP(rs_size1, rs_size2);
1302eda14cbcSMatt Macy 	if (likely(cmp))
1303eda14cbcSMatt Macy 		return (cmp);
1304eda14cbcSMatt Macy 
1305eda14cbcSMatt Macy 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1306eda14cbcSMatt Macy }
1307eda14cbcSMatt Macy 
1308eda14cbcSMatt Macy /*
1309eda14cbcSMatt Macy  * Comparison function for the private size-ordered tree using 64-bit
1310eda14cbcSMatt Macy  * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1311eda14cbcSMatt Macy  */
1312eda14cbcSMatt Macy static int
1313eda14cbcSMatt Macy metaslab_rangesize64_compare(const void *x1, const void *x2)
1314eda14cbcSMatt Macy {
1315eda14cbcSMatt Macy 	const range_seg64_t *r1 = x1;
1316eda14cbcSMatt Macy 	const range_seg64_t *r2 = x2;
1317eda14cbcSMatt Macy 
1318eda14cbcSMatt Macy 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1319eda14cbcSMatt Macy 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1320eda14cbcSMatt Macy 
1321eda14cbcSMatt Macy 	int cmp = TREE_CMP(rs_size1, rs_size2);
1322eda14cbcSMatt Macy 	if (likely(cmp))
1323eda14cbcSMatt Macy 		return (cmp);
1324eda14cbcSMatt Macy 
1325eda14cbcSMatt Macy 	return (TREE_CMP(r1->rs_start, r2->rs_start));
1326eda14cbcSMatt Macy }
1327eda14cbcSMatt Macy typedef struct metaslab_rt_arg {
1328eda14cbcSMatt Macy 	zfs_btree_t *mra_bt;
1329eda14cbcSMatt Macy 	uint32_t mra_floor_shift;
1330eda14cbcSMatt Macy } metaslab_rt_arg_t;
1331eda14cbcSMatt Macy 
1332eda14cbcSMatt Macy struct mssa_arg {
1333eda14cbcSMatt Macy 	range_tree_t *rt;
1334eda14cbcSMatt Macy 	metaslab_rt_arg_t *mra;
1335eda14cbcSMatt Macy };
1336eda14cbcSMatt Macy 
1337eda14cbcSMatt Macy static void
1338eda14cbcSMatt Macy metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1339eda14cbcSMatt Macy {
1340eda14cbcSMatt Macy 	struct mssa_arg *mssap = arg;
1341eda14cbcSMatt Macy 	range_tree_t *rt = mssap->rt;
1342eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = mssap->mra;
1343eda14cbcSMatt Macy 	range_seg_max_t seg = {0};
1344eda14cbcSMatt Macy 	rs_set_start(&seg, rt, start);
1345eda14cbcSMatt Macy 	rs_set_end(&seg, rt, start + size);
1346eda14cbcSMatt Macy 	metaslab_rt_add(rt, &seg, mrap);
1347eda14cbcSMatt Macy }
1348eda14cbcSMatt Macy 
1349eda14cbcSMatt Macy static void
1350eda14cbcSMatt Macy metaslab_size_tree_full_load(range_tree_t *rt)
1351eda14cbcSMatt Macy {
1352eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = rt->rt_arg;
1353eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
1354eda14cbcSMatt Macy 	METASLABSTAT_BUMP(metaslabstat_reload_tree);
1355eda14cbcSMatt Macy #endif
1356eda14cbcSMatt Macy 	ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1357eda14cbcSMatt Macy 	mrap->mra_floor_shift = 0;
1358eda14cbcSMatt Macy 	struct mssa_arg arg = {0};
1359eda14cbcSMatt Macy 	arg.rt = rt;
1360eda14cbcSMatt Macy 	arg.mra = mrap;
1361eda14cbcSMatt Macy 	range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1362eda14cbcSMatt Macy }
1363eda14cbcSMatt Macy 
1364eda14cbcSMatt Macy /*
1365eda14cbcSMatt Macy  * Create any block allocator specific components. The current allocators
1366eda14cbcSMatt Macy  * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1367eda14cbcSMatt Macy  */
1368eda14cbcSMatt Macy /* ARGSUSED */
1369eda14cbcSMatt Macy static void
1370eda14cbcSMatt Macy metaslab_rt_create(range_tree_t *rt, void *arg)
1371eda14cbcSMatt Macy {
1372eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1373eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1374eda14cbcSMatt Macy 
1375eda14cbcSMatt Macy 	size_t size;
1376eda14cbcSMatt Macy 	int (*compare) (const void *, const void *);
1377eda14cbcSMatt Macy 	switch (rt->rt_type) {
1378eda14cbcSMatt Macy 	case RANGE_SEG32:
1379eda14cbcSMatt Macy 		size = sizeof (range_seg32_t);
1380eda14cbcSMatt Macy 		compare = metaslab_rangesize32_compare;
1381eda14cbcSMatt Macy 		break;
1382eda14cbcSMatt Macy 	case RANGE_SEG64:
1383eda14cbcSMatt Macy 		size = sizeof (range_seg64_t);
1384eda14cbcSMatt Macy 		compare = metaslab_rangesize64_compare;
1385eda14cbcSMatt Macy 		break;
1386eda14cbcSMatt Macy 	default:
1387eda14cbcSMatt Macy 		panic("Invalid range seg type %d", rt->rt_type);
1388eda14cbcSMatt Macy 	}
1389eda14cbcSMatt Macy 	zfs_btree_create(size_tree, compare, size);
1390eda14cbcSMatt Macy 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
1391eda14cbcSMatt Macy }
1392eda14cbcSMatt Macy 
1393eda14cbcSMatt Macy /* ARGSUSED */
1394eda14cbcSMatt Macy static void
1395eda14cbcSMatt Macy metaslab_rt_destroy(range_tree_t *rt, void *arg)
1396eda14cbcSMatt Macy {
1397eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1398eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1399eda14cbcSMatt Macy 
1400eda14cbcSMatt Macy 	zfs_btree_destroy(size_tree);
1401eda14cbcSMatt Macy 	kmem_free(mrap, sizeof (*mrap));
1402eda14cbcSMatt Macy }
1403eda14cbcSMatt Macy 
1404eda14cbcSMatt Macy /* ARGSUSED */
1405eda14cbcSMatt Macy static void
1406eda14cbcSMatt Macy metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1407eda14cbcSMatt Macy {
1408eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1409eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1410eda14cbcSMatt Macy 
1411eda14cbcSMatt Macy 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1412eda14cbcSMatt Macy 	    (1 << mrap->mra_floor_shift))
1413eda14cbcSMatt Macy 		return;
1414eda14cbcSMatt Macy 
1415eda14cbcSMatt Macy 	zfs_btree_add(size_tree, rs);
1416eda14cbcSMatt Macy }
1417eda14cbcSMatt Macy 
1418eda14cbcSMatt Macy /* ARGSUSED */
1419eda14cbcSMatt Macy static void
1420eda14cbcSMatt Macy metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1421eda14cbcSMatt Macy {
1422eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1423eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1424eda14cbcSMatt Macy 
1425eda14cbcSMatt Macy 	if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 <<
1426eda14cbcSMatt Macy 	    mrap->mra_floor_shift))
1427eda14cbcSMatt Macy 		return;
1428eda14cbcSMatt Macy 
1429eda14cbcSMatt Macy 	zfs_btree_remove(size_tree, rs);
1430eda14cbcSMatt Macy }
1431eda14cbcSMatt Macy 
1432eda14cbcSMatt Macy /* ARGSUSED */
1433eda14cbcSMatt Macy static void
1434eda14cbcSMatt Macy metaslab_rt_vacate(range_tree_t *rt, void *arg)
1435eda14cbcSMatt Macy {
1436eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap = arg;
1437eda14cbcSMatt Macy 	zfs_btree_t *size_tree = mrap->mra_bt;
1438eda14cbcSMatt Macy 	zfs_btree_clear(size_tree);
1439eda14cbcSMatt Macy 	zfs_btree_destroy(size_tree);
1440eda14cbcSMatt Macy 
1441eda14cbcSMatt Macy 	metaslab_rt_create(rt, arg);
1442eda14cbcSMatt Macy }
1443eda14cbcSMatt Macy 
1444eda14cbcSMatt Macy static range_tree_ops_t metaslab_rt_ops = {
1445eda14cbcSMatt Macy 	.rtop_create = metaslab_rt_create,
1446eda14cbcSMatt Macy 	.rtop_destroy = metaslab_rt_destroy,
1447eda14cbcSMatt Macy 	.rtop_add = metaslab_rt_add,
1448eda14cbcSMatt Macy 	.rtop_remove = metaslab_rt_remove,
1449eda14cbcSMatt Macy 	.rtop_vacate = metaslab_rt_vacate
1450eda14cbcSMatt Macy };
1451eda14cbcSMatt Macy 
1452eda14cbcSMatt Macy /*
1453eda14cbcSMatt Macy  * ==========================================================================
1454eda14cbcSMatt Macy  * Common allocator routines
1455eda14cbcSMatt Macy  * ==========================================================================
1456eda14cbcSMatt Macy  */
1457eda14cbcSMatt Macy 
1458eda14cbcSMatt Macy /*
1459eda14cbcSMatt Macy  * Return the maximum contiguous segment within the metaslab.
1460eda14cbcSMatt Macy  */
1461eda14cbcSMatt Macy uint64_t
1462eda14cbcSMatt Macy metaslab_largest_allocatable(metaslab_t *msp)
1463eda14cbcSMatt Macy {
1464eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1465eda14cbcSMatt Macy 	range_seg_t *rs;
1466eda14cbcSMatt Macy 
1467eda14cbcSMatt Macy 	if (t == NULL)
1468eda14cbcSMatt Macy 		return (0);
1469eda14cbcSMatt Macy 	if (zfs_btree_numnodes(t) == 0)
1470eda14cbcSMatt Macy 		metaslab_size_tree_full_load(msp->ms_allocatable);
1471eda14cbcSMatt Macy 
1472eda14cbcSMatt Macy 	rs = zfs_btree_last(t, NULL);
1473eda14cbcSMatt Macy 	if (rs == NULL)
1474eda14cbcSMatt Macy 		return (0);
1475eda14cbcSMatt Macy 
1476eda14cbcSMatt Macy 	return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1477eda14cbcSMatt Macy 	    msp->ms_allocatable));
1478eda14cbcSMatt Macy }
1479eda14cbcSMatt Macy 
1480eda14cbcSMatt Macy /*
1481eda14cbcSMatt Macy  * Return the maximum contiguous segment within the unflushed frees of this
1482eda14cbcSMatt Macy  * metaslab.
1483eda14cbcSMatt Macy  */
1484eda14cbcSMatt Macy static uint64_t
1485eda14cbcSMatt Macy metaslab_largest_unflushed_free(metaslab_t *msp)
1486eda14cbcSMatt Macy {
1487eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1488eda14cbcSMatt Macy 
1489eda14cbcSMatt Macy 	if (msp->ms_unflushed_frees == NULL)
1490eda14cbcSMatt Macy 		return (0);
1491eda14cbcSMatt Macy 
1492eda14cbcSMatt Macy 	if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1493eda14cbcSMatt Macy 		metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1494eda14cbcSMatt Macy 	range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1495eda14cbcSMatt Macy 	    NULL);
1496eda14cbcSMatt Macy 	if (rs == NULL)
1497eda14cbcSMatt Macy 		return (0);
1498eda14cbcSMatt Macy 
1499eda14cbcSMatt Macy 	/*
1500eda14cbcSMatt Macy 	 * When a range is freed from the metaslab, that range is added to
1501eda14cbcSMatt Macy 	 * both the unflushed frees and the deferred frees. While the block
1502eda14cbcSMatt Macy 	 * will eventually be usable, if the metaslab were loaded the range
1503eda14cbcSMatt Macy 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1504eda14cbcSMatt Macy 	 * txgs had passed.  As a result, when attempting to estimate an upper
1505eda14cbcSMatt Macy 	 * bound for the largest currently-usable free segment in the
1506eda14cbcSMatt Macy 	 * metaslab, we need to not consider any ranges currently in the defer
1507eda14cbcSMatt Macy 	 * trees. This algorithm approximates the largest available chunk in
1508eda14cbcSMatt Macy 	 * the largest range in the unflushed_frees tree by taking the first
1509eda14cbcSMatt Macy 	 * chunk.  While this may be a poor estimate, it should only remain so
1510eda14cbcSMatt Macy 	 * briefly and should eventually self-correct as frees are no longer
1511eda14cbcSMatt Macy 	 * deferred. Similar logic applies to the ms_freed tree. See
1512eda14cbcSMatt Macy 	 * metaslab_load() for more details.
1513eda14cbcSMatt Macy 	 *
1514eda14cbcSMatt Macy 	 * There are two primary sources of inaccuracy in this estimate. Both
1515eda14cbcSMatt Macy 	 * are tolerated for performance reasons. The first source is that we
1516eda14cbcSMatt Macy 	 * only check the largest segment for overlaps. Smaller segments may
1517eda14cbcSMatt Macy 	 * have more favorable overlaps with the other trees, resulting in
1518eda14cbcSMatt Macy 	 * larger usable chunks.  Second, we only look at the first chunk in
1519eda14cbcSMatt Macy 	 * the largest segment; there may be other usable chunks in the
1520eda14cbcSMatt Macy 	 * largest segment, but we ignore them.
1521eda14cbcSMatt Macy 	 */
1522eda14cbcSMatt Macy 	uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1523eda14cbcSMatt Macy 	uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1524eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1525eda14cbcSMatt Macy 		uint64_t start = 0;
1526eda14cbcSMatt Macy 		uint64_t size = 0;
1527eda14cbcSMatt Macy 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1528eda14cbcSMatt Macy 		    rsize, &start, &size);
1529eda14cbcSMatt Macy 		if (found) {
1530eda14cbcSMatt Macy 			if (rstart == start)
1531eda14cbcSMatt Macy 				return (0);
1532eda14cbcSMatt Macy 			rsize = start - rstart;
1533eda14cbcSMatt Macy 		}
1534eda14cbcSMatt Macy 	}
1535eda14cbcSMatt Macy 
1536eda14cbcSMatt Macy 	uint64_t start = 0;
1537eda14cbcSMatt Macy 	uint64_t size = 0;
1538eda14cbcSMatt Macy 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1539eda14cbcSMatt Macy 	    rsize, &start, &size);
1540eda14cbcSMatt Macy 	if (found)
1541eda14cbcSMatt Macy 		rsize = start - rstart;
1542eda14cbcSMatt Macy 
1543eda14cbcSMatt Macy 	return (rsize);
1544eda14cbcSMatt Macy }
1545eda14cbcSMatt Macy 
1546eda14cbcSMatt Macy static range_seg_t *
1547eda14cbcSMatt Macy metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1548eda14cbcSMatt Macy     uint64_t size, zfs_btree_index_t *where)
1549eda14cbcSMatt Macy {
1550eda14cbcSMatt Macy 	range_seg_t *rs;
1551eda14cbcSMatt Macy 	range_seg_max_t rsearch;
1552eda14cbcSMatt Macy 
1553eda14cbcSMatt Macy 	rs_set_start(&rsearch, rt, start);
1554eda14cbcSMatt Macy 	rs_set_end(&rsearch, rt, start + size);
1555eda14cbcSMatt Macy 
1556eda14cbcSMatt Macy 	rs = zfs_btree_find(t, &rsearch, where);
1557eda14cbcSMatt Macy 	if (rs == NULL) {
1558eda14cbcSMatt Macy 		rs = zfs_btree_next(t, where, where);
1559eda14cbcSMatt Macy 	}
1560eda14cbcSMatt Macy 
1561eda14cbcSMatt Macy 	return (rs);
1562eda14cbcSMatt Macy }
1563eda14cbcSMatt Macy 
1564eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1565eda14cbcSMatt Macy     defined(WITH_CF_BLOCK_ALLOCATOR)
1566eda14cbcSMatt Macy /*
1567eda14cbcSMatt Macy  * This is a helper function that can be used by the allocator to find a
1568eda14cbcSMatt Macy  * suitable block to allocate. This will search the specified B-tree looking
1569eda14cbcSMatt Macy  * for a block that matches the specified criteria.
1570eda14cbcSMatt Macy  */
1571eda14cbcSMatt Macy static uint64_t
1572eda14cbcSMatt Macy metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1573eda14cbcSMatt Macy     uint64_t max_search)
1574eda14cbcSMatt Macy {
1575eda14cbcSMatt Macy 	if (*cursor == 0)
1576eda14cbcSMatt Macy 		*cursor = rt->rt_start;
1577eda14cbcSMatt Macy 	zfs_btree_t *bt = &rt->rt_root;
1578eda14cbcSMatt Macy 	zfs_btree_index_t where;
1579eda14cbcSMatt Macy 	range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1580eda14cbcSMatt Macy 	uint64_t first_found;
1581eda14cbcSMatt Macy 	int count_searched = 0;
1582eda14cbcSMatt Macy 
1583eda14cbcSMatt Macy 	if (rs != NULL)
1584eda14cbcSMatt Macy 		first_found = rs_get_start(rs, rt);
1585eda14cbcSMatt Macy 
1586eda14cbcSMatt Macy 	while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1587eda14cbcSMatt Macy 	    max_search || count_searched < metaslab_min_search_count)) {
1588eda14cbcSMatt Macy 		uint64_t offset = rs_get_start(rs, rt);
1589eda14cbcSMatt Macy 		if (offset + size <= rs_get_end(rs, rt)) {
1590eda14cbcSMatt Macy 			*cursor = offset + size;
1591eda14cbcSMatt Macy 			return (offset);
1592eda14cbcSMatt Macy 		}
1593eda14cbcSMatt Macy 		rs = zfs_btree_next(bt, &where, &where);
1594eda14cbcSMatt Macy 		count_searched++;
1595eda14cbcSMatt Macy 	}
1596eda14cbcSMatt Macy 
1597eda14cbcSMatt Macy 	*cursor = 0;
1598eda14cbcSMatt Macy 	return (-1ULL);
1599eda14cbcSMatt Macy }
1600eda14cbcSMatt Macy #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1601eda14cbcSMatt Macy 
1602eda14cbcSMatt Macy #if defined(WITH_DF_BLOCK_ALLOCATOR)
1603eda14cbcSMatt Macy /*
1604eda14cbcSMatt Macy  * ==========================================================================
1605eda14cbcSMatt Macy  * Dynamic Fit (df) block allocator
1606eda14cbcSMatt Macy  *
1607eda14cbcSMatt Macy  * Search for a free chunk of at least this size, starting from the last
1608eda14cbcSMatt Macy  * offset (for this alignment of block) looking for up to
1609eda14cbcSMatt Macy  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1610eda14cbcSMatt Macy  * found within 16MB, then return a free chunk of exactly the requested size (or
1611eda14cbcSMatt Macy  * larger).
1612eda14cbcSMatt Macy  *
1613eda14cbcSMatt Macy  * If it seems like searching from the last offset will be unproductive, skip
1614eda14cbcSMatt Macy  * that and just return a free chunk of exactly the requested size (or larger).
1615eda14cbcSMatt Macy  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1616eda14cbcSMatt Macy  * mechanism is probably not very useful and may be removed in the future.
1617eda14cbcSMatt Macy  *
1618eda14cbcSMatt Macy  * The behavior when not searching can be changed to return the largest free
1619eda14cbcSMatt Macy  * chunk, instead of a free chunk of exactly the requested size, by setting
1620eda14cbcSMatt Macy  * metaslab_df_use_largest_segment.
1621eda14cbcSMatt Macy  * ==========================================================================
1622eda14cbcSMatt Macy  */
1623eda14cbcSMatt Macy static uint64_t
1624eda14cbcSMatt Macy metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1625eda14cbcSMatt Macy {
1626eda14cbcSMatt Macy 	/*
1627eda14cbcSMatt Macy 	 * Find the largest power of 2 block size that evenly divides the
1628eda14cbcSMatt Macy 	 * requested size. This is used to try to allocate blocks with similar
1629eda14cbcSMatt Macy 	 * alignment from the same area of the metaslab (i.e. same cursor
1630eda14cbcSMatt Macy 	 * bucket) but it does not guarantee that other allocations sizes
1631eda14cbcSMatt Macy 	 * may exist in the same region.
1632eda14cbcSMatt Macy 	 */
1633eda14cbcSMatt Macy 	uint64_t align = size & -size;
1634eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1635eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1636eda14cbcSMatt Macy 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1637eda14cbcSMatt Macy 	uint64_t offset;
1638eda14cbcSMatt Macy 
1639eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1640eda14cbcSMatt Macy 
1641eda14cbcSMatt Macy 	/*
1642eda14cbcSMatt Macy 	 * If we're running low on space, find a segment based on size,
1643eda14cbcSMatt Macy 	 * rather than iterating based on offset.
1644eda14cbcSMatt Macy 	 */
1645eda14cbcSMatt Macy 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1646eda14cbcSMatt Macy 	    free_pct < metaslab_df_free_pct) {
1647eda14cbcSMatt Macy 		offset = -1;
1648eda14cbcSMatt Macy 	} else {
1649eda14cbcSMatt Macy 		offset = metaslab_block_picker(rt,
1650eda14cbcSMatt Macy 		    cursor, size, metaslab_df_max_search);
1651eda14cbcSMatt Macy 	}
1652eda14cbcSMatt Macy 
1653eda14cbcSMatt Macy 	if (offset == -1) {
1654eda14cbcSMatt Macy 		range_seg_t *rs;
1655eda14cbcSMatt Macy 		if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1656eda14cbcSMatt Macy 			metaslab_size_tree_full_load(msp->ms_allocatable);
1657eda14cbcSMatt Macy 		if (metaslab_df_use_largest_segment) {
1658eda14cbcSMatt Macy 			/* use largest free segment */
1659eda14cbcSMatt Macy 			rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1660eda14cbcSMatt Macy 		} else {
1661eda14cbcSMatt Macy 			zfs_btree_index_t where;
1662eda14cbcSMatt Macy 			/* use segment of this size, or next largest */
1663eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
1664eda14cbcSMatt Macy 			metaslab_rt_arg_t *mrap = msp->ms_allocatable->rt_arg;
1665eda14cbcSMatt Macy 			if (size < (1 << mrap->mra_floor_shift)) {
1666eda14cbcSMatt Macy 				METASLABSTAT_BUMP(
1667eda14cbcSMatt Macy 				    metaslabstat_df_find_under_floor);
1668eda14cbcSMatt Macy 			}
1669eda14cbcSMatt Macy #endif
1670eda14cbcSMatt Macy 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1671eda14cbcSMatt Macy 			    rt, msp->ms_start, size, &where);
1672eda14cbcSMatt Macy 		}
1673eda14cbcSMatt Macy 		if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1674eda14cbcSMatt Macy 		    rt)) {
1675eda14cbcSMatt Macy 			offset = rs_get_start(rs, rt);
1676eda14cbcSMatt Macy 			*cursor = offset + size;
1677eda14cbcSMatt Macy 		}
1678eda14cbcSMatt Macy 	}
1679eda14cbcSMatt Macy 
1680eda14cbcSMatt Macy 	return (offset);
1681eda14cbcSMatt Macy }
1682eda14cbcSMatt Macy 
1683eda14cbcSMatt Macy static metaslab_ops_t metaslab_df_ops = {
1684eda14cbcSMatt Macy 	metaslab_df_alloc
1685eda14cbcSMatt Macy };
1686eda14cbcSMatt Macy 
1687eda14cbcSMatt Macy metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1688eda14cbcSMatt Macy #endif /* WITH_DF_BLOCK_ALLOCATOR */
1689eda14cbcSMatt Macy 
1690eda14cbcSMatt Macy #if defined(WITH_CF_BLOCK_ALLOCATOR)
1691eda14cbcSMatt Macy /*
1692eda14cbcSMatt Macy  * ==========================================================================
1693eda14cbcSMatt Macy  * Cursor fit block allocator -
1694eda14cbcSMatt Macy  * Select the largest region in the metaslab, set the cursor to the beginning
1695eda14cbcSMatt Macy  * of the range and the cursor_end to the end of the range. As allocations
1696eda14cbcSMatt Macy  * are made advance the cursor. Continue allocating from the cursor until
1697eda14cbcSMatt Macy  * the range is exhausted and then find a new range.
1698eda14cbcSMatt Macy  * ==========================================================================
1699eda14cbcSMatt Macy  */
1700eda14cbcSMatt Macy static uint64_t
1701eda14cbcSMatt Macy metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1702eda14cbcSMatt Macy {
1703eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1704eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1705eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[0];
1706eda14cbcSMatt Macy 	uint64_t *cursor_end = &msp->ms_lbas[1];
1707eda14cbcSMatt Macy 	uint64_t offset = 0;
1708eda14cbcSMatt Macy 
1709eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1710eda14cbcSMatt Macy 
1711eda14cbcSMatt Macy 	ASSERT3U(*cursor_end, >=, *cursor);
1712eda14cbcSMatt Macy 
1713eda14cbcSMatt Macy 	if ((*cursor + size) > *cursor_end) {
1714eda14cbcSMatt Macy 		range_seg_t *rs;
1715eda14cbcSMatt Macy 
1716eda14cbcSMatt Macy 		if (zfs_btree_numnodes(t) == 0)
1717eda14cbcSMatt Macy 			metaslab_size_tree_full_load(msp->ms_allocatable);
1718eda14cbcSMatt Macy 		rs = zfs_btree_last(t, NULL);
1719eda14cbcSMatt Macy 		if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1720eda14cbcSMatt Macy 		    size)
1721eda14cbcSMatt Macy 			return (-1ULL);
1722eda14cbcSMatt Macy 
1723eda14cbcSMatt Macy 		*cursor = rs_get_start(rs, rt);
1724eda14cbcSMatt Macy 		*cursor_end = rs_get_end(rs, rt);
1725eda14cbcSMatt Macy 	}
1726eda14cbcSMatt Macy 
1727eda14cbcSMatt Macy 	offset = *cursor;
1728eda14cbcSMatt Macy 	*cursor += size;
1729eda14cbcSMatt Macy 
1730eda14cbcSMatt Macy 	return (offset);
1731eda14cbcSMatt Macy }
1732eda14cbcSMatt Macy 
1733eda14cbcSMatt Macy static metaslab_ops_t metaslab_cf_ops = {
1734eda14cbcSMatt Macy 	metaslab_cf_alloc
1735eda14cbcSMatt Macy };
1736eda14cbcSMatt Macy 
1737eda14cbcSMatt Macy metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1738eda14cbcSMatt Macy #endif /* WITH_CF_BLOCK_ALLOCATOR */
1739eda14cbcSMatt Macy 
1740eda14cbcSMatt Macy #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1741eda14cbcSMatt Macy /*
1742eda14cbcSMatt Macy  * ==========================================================================
1743eda14cbcSMatt Macy  * New dynamic fit allocator -
1744eda14cbcSMatt Macy  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1745eda14cbcSMatt Macy  * contiguous blocks. If no region is found then just use the largest segment
1746eda14cbcSMatt Macy  * that remains.
1747eda14cbcSMatt Macy  * ==========================================================================
1748eda14cbcSMatt Macy  */
1749eda14cbcSMatt Macy 
1750eda14cbcSMatt Macy /*
1751eda14cbcSMatt Macy  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1752eda14cbcSMatt Macy  * to request from the allocator.
1753eda14cbcSMatt Macy  */
1754eda14cbcSMatt Macy uint64_t metaslab_ndf_clump_shift = 4;
1755eda14cbcSMatt Macy 
1756eda14cbcSMatt Macy static uint64_t
1757eda14cbcSMatt Macy metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1758eda14cbcSMatt Macy {
1759eda14cbcSMatt Macy 	zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1760eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
1761eda14cbcSMatt Macy 	zfs_btree_index_t where;
1762eda14cbcSMatt Macy 	range_seg_t *rs;
1763eda14cbcSMatt Macy 	range_seg_max_t rsearch;
1764eda14cbcSMatt Macy 	uint64_t hbit = highbit64(size);
1765eda14cbcSMatt Macy 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1766eda14cbcSMatt Macy 	uint64_t max_size = metaslab_largest_allocatable(msp);
1767eda14cbcSMatt Macy 
1768eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1769eda14cbcSMatt Macy 
1770eda14cbcSMatt Macy 	if (max_size < size)
1771eda14cbcSMatt Macy 		return (-1ULL);
1772eda14cbcSMatt Macy 
1773eda14cbcSMatt Macy 	rs_set_start(&rsearch, rt, *cursor);
1774eda14cbcSMatt Macy 	rs_set_end(&rsearch, rt, *cursor + size);
1775eda14cbcSMatt Macy 
1776eda14cbcSMatt Macy 	rs = zfs_btree_find(t, &rsearch, &where);
1777eda14cbcSMatt Macy 	if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1778eda14cbcSMatt Macy 		t = &msp->ms_allocatable_by_size;
1779eda14cbcSMatt Macy 
1780eda14cbcSMatt Macy 		rs_set_start(&rsearch, rt, 0);
1781eda14cbcSMatt Macy 		rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1782eda14cbcSMatt Macy 		    metaslab_ndf_clump_shift)));
1783eda14cbcSMatt Macy 
1784eda14cbcSMatt Macy 		rs = zfs_btree_find(t, &rsearch, &where);
1785eda14cbcSMatt Macy 		if (rs == NULL)
1786eda14cbcSMatt Macy 			rs = zfs_btree_next(t, &where, &where);
1787eda14cbcSMatt Macy 		ASSERT(rs != NULL);
1788eda14cbcSMatt Macy 	}
1789eda14cbcSMatt Macy 
1790eda14cbcSMatt Macy 	if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1791eda14cbcSMatt Macy 		*cursor = rs_get_start(rs, rt) + size;
1792eda14cbcSMatt Macy 		return (rs_get_start(rs, rt));
1793eda14cbcSMatt Macy 	}
1794eda14cbcSMatt Macy 	return (-1ULL);
1795eda14cbcSMatt Macy }
1796eda14cbcSMatt Macy 
1797eda14cbcSMatt Macy static metaslab_ops_t metaslab_ndf_ops = {
1798eda14cbcSMatt Macy 	metaslab_ndf_alloc
1799eda14cbcSMatt Macy };
1800eda14cbcSMatt Macy 
1801eda14cbcSMatt Macy metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1802eda14cbcSMatt Macy #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1803eda14cbcSMatt Macy 
1804eda14cbcSMatt Macy 
1805eda14cbcSMatt Macy /*
1806eda14cbcSMatt Macy  * ==========================================================================
1807eda14cbcSMatt Macy  * Metaslabs
1808eda14cbcSMatt Macy  * ==========================================================================
1809eda14cbcSMatt Macy  */
1810eda14cbcSMatt Macy 
1811eda14cbcSMatt Macy /*
1812eda14cbcSMatt Macy  * Wait for any in-progress metaslab loads to complete.
1813eda14cbcSMatt Macy  */
1814eda14cbcSMatt Macy static void
1815eda14cbcSMatt Macy metaslab_load_wait(metaslab_t *msp)
1816eda14cbcSMatt Macy {
1817eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1818eda14cbcSMatt Macy 
1819eda14cbcSMatt Macy 	while (msp->ms_loading) {
1820eda14cbcSMatt Macy 		ASSERT(!msp->ms_loaded);
1821eda14cbcSMatt Macy 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1822eda14cbcSMatt Macy 	}
1823eda14cbcSMatt Macy }
1824eda14cbcSMatt Macy 
1825eda14cbcSMatt Macy /*
1826eda14cbcSMatt Macy  * Wait for any in-progress flushing to complete.
1827eda14cbcSMatt Macy  */
1828eda14cbcSMatt Macy static void
1829eda14cbcSMatt Macy metaslab_flush_wait(metaslab_t *msp)
1830eda14cbcSMatt Macy {
1831eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1832eda14cbcSMatt Macy 
1833eda14cbcSMatt Macy 	while (msp->ms_flushing)
1834eda14cbcSMatt Macy 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1835eda14cbcSMatt Macy }
1836eda14cbcSMatt Macy 
1837eda14cbcSMatt Macy static unsigned int
1838eda14cbcSMatt Macy metaslab_idx_func(multilist_t *ml, void *arg)
1839eda14cbcSMatt Macy {
1840eda14cbcSMatt Macy 	metaslab_t *msp = arg;
1841eda14cbcSMatt Macy 	return (msp->ms_id % multilist_get_num_sublists(ml));
1842eda14cbcSMatt Macy }
1843eda14cbcSMatt Macy 
1844eda14cbcSMatt Macy uint64_t
1845eda14cbcSMatt Macy metaslab_allocated_space(metaslab_t *msp)
1846eda14cbcSMatt Macy {
1847eda14cbcSMatt Macy 	return (msp->ms_allocated_space);
1848eda14cbcSMatt Macy }
1849eda14cbcSMatt Macy 
1850eda14cbcSMatt Macy /*
1851eda14cbcSMatt Macy  * Verify that the space accounting on disk matches the in-core range_trees.
1852eda14cbcSMatt Macy  */
1853eda14cbcSMatt Macy static void
1854eda14cbcSMatt Macy metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1855eda14cbcSMatt Macy {
1856eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1857eda14cbcSMatt Macy 	uint64_t allocating = 0;
1858eda14cbcSMatt Macy 	uint64_t sm_free_space, msp_free_space;
1859eda14cbcSMatt Macy 
1860eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1861eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
1862eda14cbcSMatt Macy 
1863eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1864eda14cbcSMatt Macy 		return;
1865eda14cbcSMatt Macy 
1866eda14cbcSMatt Macy 	/*
1867eda14cbcSMatt Macy 	 * We can only verify the metaslab space when we're called
1868eda14cbcSMatt Macy 	 * from syncing context with a loaded metaslab that has an
1869eda14cbcSMatt Macy 	 * allocated space map. Calling this in non-syncing context
1870eda14cbcSMatt Macy 	 * does not provide a consistent view of the metaslab since
1871eda14cbcSMatt Macy 	 * we're performing allocations in the future.
1872eda14cbcSMatt Macy 	 */
1873eda14cbcSMatt Macy 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1874eda14cbcSMatt Macy 	    !msp->ms_loaded)
1875eda14cbcSMatt Macy 		return;
1876eda14cbcSMatt Macy 
1877eda14cbcSMatt Macy 	/*
1878eda14cbcSMatt Macy 	 * Even though the smp_alloc field can get negative,
1879eda14cbcSMatt Macy 	 * when it comes to a metaslab's space map, that should
1880eda14cbcSMatt Macy 	 * never be the case.
1881eda14cbcSMatt Macy 	 */
1882eda14cbcSMatt Macy 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1883eda14cbcSMatt Macy 
1884eda14cbcSMatt Macy 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1885eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_frees));
1886eda14cbcSMatt Macy 
1887eda14cbcSMatt Macy 	ASSERT3U(metaslab_allocated_space(msp), ==,
1888eda14cbcSMatt Macy 	    space_map_allocated(msp->ms_sm) +
1889eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_allocs) -
1890eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_frees));
1891eda14cbcSMatt Macy 
1892eda14cbcSMatt Macy 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1893eda14cbcSMatt Macy 
1894eda14cbcSMatt Macy 	/*
1895eda14cbcSMatt Macy 	 * Account for future allocations since we would have
1896eda14cbcSMatt Macy 	 * already deducted that space from the ms_allocatable.
1897eda14cbcSMatt Macy 	 */
1898eda14cbcSMatt Macy 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1899eda14cbcSMatt Macy 		allocating +=
1900eda14cbcSMatt Macy 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1901eda14cbcSMatt Macy 	}
1902eda14cbcSMatt Macy 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1903eda14cbcSMatt Macy 	    msp->ms_allocating_total);
1904eda14cbcSMatt Macy 
1905eda14cbcSMatt Macy 	ASSERT3U(msp->ms_deferspace, ==,
1906eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[0]) +
1907eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[1]));
1908eda14cbcSMatt Macy 
1909eda14cbcSMatt Macy 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1910eda14cbcSMatt Macy 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1911eda14cbcSMatt Macy 
1912eda14cbcSMatt Macy 	VERIFY3U(sm_free_space, ==, msp_free_space);
1913eda14cbcSMatt Macy }
1914eda14cbcSMatt Macy 
1915eda14cbcSMatt Macy static void
1916eda14cbcSMatt Macy metaslab_aux_histograms_clear(metaslab_t *msp)
1917eda14cbcSMatt Macy {
1918eda14cbcSMatt Macy 	/*
1919eda14cbcSMatt Macy 	 * Auxiliary histograms are only cleared when resetting them,
1920eda14cbcSMatt Macy 	 * which can only happen while the metaslab is loaded.
1921eda14cbcSMatt Macy 	 */
1922eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
1923eda14cbcSMatt Macy 
1924eda14cbcSMatt Macy 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1925eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1926eda14cbcSMatt Macy 		bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1927eda14cbcSMatt Macy }
1928eda14cbcSMatt Macy 
1929eda14cbcSMatt Macy static void
1930eda14cbcSMatt Macy metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1931eda14cbcSMatt Macy     range_tree_t *rt)
1932eda14cbcSMatt Macy {
1933eda14cbcSMatt Macy 	/*
1934eda14cbcSMatt Macy 	 * This is modeled after space_map_histogram_add(), so refer to that
1935eda14cbcSMatt Macy 	 * function for implementation details. We want this to work like
1936eda14cbcSMatt Macy 	 * the space map histogram, and not the range tree histogram, as we
1937eda14cbcSMatt Macy 	 * are essentially constructing a delta that will be later subtracted
1938eda14cbcSMatt Macy 	 * from the space map histogram.
1939eda14cbcSMatt Macy 	 */
1940eda14cbcSMatt Macy 	int idx = 0;
1941eda14cbcSMatt Macy 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1942eda14cbcSMatt Macy 		ASSERT3U(i, >=, idx + shift);
1943eda14cbcSMatt Macy 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1944eda14cbcSMatt Macy 
1945eda14cbcSMatt Macy 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1946eda14cbcSMatt Macy 			ASSERT3U(idx + shift, ==, i);
1947eda14cbcSMatt Macy 			idx++;
1948eda14cbcSMatt Macy 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1949eda14cbcSMatt Macy 		}
1950eda14cbcSMatt Macy 	}
1951eda14cbcSMatt Macy }
1952eda14cbcSMatt Macy 
1953eda14cbcSMatt Macy /*
1954eda14cbcSMatt Macy  * Called at every sync pass that the metaslab gets synced.
1955eda14cbcSMatt Macy  *
1956eda14cbcSMatt Macy  * The reason is that we want our auxiliary histograms to be updated
1957eda14cbcSMatt Macy  * wherever the metaslab's space map histogram is updated. This way
1958eda14cbcSMatt Macy  * we stay consistent on which parts of the metaslab space map's
1959eda14cbcSMatt Macy  * histogram are currently not available for allocations (e.g because
1960eda14cbcSMatt Macy  * they are in the defer, freed, and freeing trees).
1961eda14cbcSMatt Macy  */
1962eda14cbcSMatt Macy static void
1963eda14cbcSMatt Macy metaslab_aux_histograms_update(metaslab_t *msp)
1964eda14cbcSMatt Macy {
1965eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
1966eda14cbcSMatt Macy 	ASSERT(sm != NULL);
1967eda14cbcSMatt Macy 
1968eda14cbcSMatt Macy 	/*
1969eda14cbcSMatt Macy 	 * This is similar to the metaslab's space map histogram updates
1970eda14cbcSMatt Macy 	 * that take place in metaslab_sync(). The only difference is that
1971eda14cbcSMatt Macy 	 * we only care about segments that haven't made it into the
1972eda14cbcSMatt Macy 	 * ms_allocatable tree yet.
1973eda14cbcSMatt Macy 	 */
1974eda14cbcSMatt Macy 	if (msp->ms_loaded) {
1975eda14cbcSMatt Macy 		metaslab_aux_histograms_clear(msp);
1976eda14cbcSMatt Macy 
1977eda14cbcSMatt Macy 		metaslab_aux_histogram_add(msp->ms_synchist,
1978eda14cbcSMatt Macy 		    sm->sm_shift, msp->ms_freed);
1979eda14cbcSMatt Macy 
1980eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1981eda14cbcSMatt Macy 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
1982eda14cbcSMatt Macy 			    sm->sm_shift, msp->ms_defer[t]);
1983eda14cbcSMatt Macy 		}
1984eda14cbcSMatt Macy 	}
1985eda14cbcSMatt Macy 
1986eda14cbcSMatt Macy 	metaslab_aux_histogram_add(msp->ms_synchist,
1987eda14cbcSMatt Macy 	    sm->sm_shift, msp->ms_freeing);
1988eda14cbcSMatt Macy }
1989eda14cbcSMatt Macy 
1990eda14cbcSMatt Macy /*
1991eda14cbcSMatt Macy  * Called every time we are done syncing (writing to) the metaslab,
1992eda14cbcSMatt Macy  * i.e. at the end of each sync pass.
1993eda14cbcSMatt Macy  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1994eda14cbcSMatt Macy  */
1995eda14cbcSMatt Macy static void
1996eda14cbcSMatt Macy metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1997eda14cbcSMatt Macy {
1998eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1999eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
2000eda14cbcSMatt Macy 
2001eda14cbcSMatt Macy 	if (sm == NULL) {
2002eda14cbcSMatt Macy 		/*
2003eda14cbcSMatt Macy 		 * We came here from metaslab_init() when creating/opening a
2004eda14cbcSMatt Macy 		 * pool, looking at a metaslab that hasn't had any allocations
2005eda14cbcSMatt Macy 		 * yet.
2006eda14cbcSMatt Macy 		 */
2007eda14cbcSMatt Macy 		return;
2008eda14cbcSMatt Macy 	}
2009eda14cbcSMatt Macy 
2010eda14cbcSMatt Macy 	/*
2011eda14cbcSMatt Macy 	 * This is similar to the actions that we take for the ms_freed
2012eda14cbcSMatt Macy 	 * and ms_defer trees in metaslab_sync_done().
2013eda14cbcSMatt Macy 	 */
2014eda14cbcSMatt Macy 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2015eda14cbcSMatt Macy 	if (defer_allowed) {
2016eda14cbcSMatt Macy 		bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
2017eda14cbcSMatt Macy 		    sizeof (msp->ms_synchist));
2018eda14cbcSMatt Macy 	} else {
2019eda14cbcSMatt Macy 		bzero(msp->ms_deferhist[hist_index],
2020eda14cbcSMatt Macy 		    sizeof (msp->ms_deferhist[hist_index]));
2021eda14cbcSMatt Macy 	}
2022eda14cbcSMatt Macy 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
2023eda14cbcSMatt Macy }
2024eda14cbcSMatt Macy 
2025eda14cbcSMatt Macy /*
2026eda14cbcSMatt Macy  * Ensure that the metaslab's weight and fragmentation are consistent
2027eda14cbcSMatt Macy  * with the contents of the histogram (either the range tree's histogram
2028eda14cbcSMatt Macy  * or the space map's depending whether the metaslab is loaded).
2029eda14cbcSMatt Macy  */
2030eda14cbcSMatt Macy static void
2031eda14cbcSMatt Macy metaslab_verify_weight_and_frag(metaslab_t *msp)
2032eda14cbcSMatt Macy {
2033eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2034eda14cbcSMatt Macy 
2035eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2036eda14cbcSMatt Macy 		return;
2037eda14cbcSMatt Macy 
2038eda14cbcSMatt Macy 	/*
2039eda14cbcSMatt Macy 	 * We can end up here from vdev_remove_complete(), in which case we
2040eda14cbcSMatt Macy 	 * cannot do these assertions because we hold spa config locks and
2041eda14cbcSMatt Macy 	 * thus we are not allowed to read from the DMU.
2042eda14cbcSMatt Macy 	 *
2043eda14cbcSMatt Macy 	 * We check if the metaslab group has been removed and if that's
2044eda14cbcSMatt Macy 	 * the case we return immediately as that would mean that we are
2045eda14cbcSMatt Macy 	 * here from the aforementioned code path.
2046eda14cbcSMatt Macy 	 */
2047eda14cbcSMatt Macy 	if (msp->ms_group == NULL)
2048eda14cbcSMatt Macy 		return;
2049eda14cbcSMatt Macy 
2050eda14cbcSMatt Macy 	/*
2051eda14cbcSMatt Macy 	 * Devices being removed always return a weight of 0 and leave
2052eda14cbcSMatt Macy 	 * fragmentation and ms_max_size as is - there is nothing for
2053eda14cbcSMatt Macy 	 * us to verify here.
2054eda14cbcSMatt Macy 	 */
2055eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
2056eda14cbcSMatt Macy 	if (vd->vdev_removing)
2057eda14cbcSMatt Macy 		return;
2058eda14cbcSMatt Macy 
2059eda14cbcSMatt Macy 	/*
2060eda14cbcSMatt Macy 	 * If the metaslab is dirty it probably means that we've done
2061eda14cbcSMatt Macy 	 * some allocations or frees that have changed our histograms
2062eda14cbcSMatt Macy 	 * and thus the weight.
2063eda14cbcSMatt Macy 	 */
2064eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++) {
2065eda14cbcSMatt Macy 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
2066eda14cbcSMatt Macy 			return;
2067eda14cbcSMatt Macy 	}
2068eda14cbcSMatt Macy 
2069eda14cbcSMatt Macy 	/*
2070eda14cbcSMatt Macy 	 * This verification checks that our in-memory state is consistent
2071eda14cbcSMatt Macy 	 * with what's on disk. If the pool is read-only then there aren't
2072eda14cbcSMatt Macy 	 * any changes and we just have the initially-loaded state.
2073eda14cbcSMatt Macy 	 */
2074eda14cbcSMatt Macy 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2075eda14cbcSMatt Macy 		return;
2076eda14cbcSMatt Macy 
2077eda14cbcSMatt Macy 	/* some extra verification for in-core tree if you can */
2078eda14cbcSMatt Macy 	if (msp->ms_loaded) {
2079eda14cbcSMatt Macy 		range_tree_stat_verify(msp->ms_allocatable);
2080eda14cbcSMatt Macy 		VERIFY(space_map_histogram_verify(msp->ms_sm,
2081eda14cbcSMatt Macy 		    msp->ms_allocatable));
2082eda14cbcSMatt Macy 	}
2083eda14cbcSMatt Macy 
2084eda14cbcSMatt Macy 	uint64_t weight = msp->ms_weight;
2085eda14cbcSMatt Macy 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2086eda14cbcSMatt Macy 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2087eda14cbcSMatt Macy 	uint64_t frag = msp->ms_fragmentation;
2088eda14cbcSMatt Macy 	uint64_t max_segsize = msp->ms_max_size;
2089eda14cbcSMatt Macy 
2090eda14cbcSMatt Macy 	msp->ms_weight = 0;
2091eda14cbcSMatt Macy 	msp->ms_fragmentation = 0;
2092eda14cbcSMatt Macy 
2093eda14cbcSMatt Macy 	/*
2094eda14cbcSMatt Macy 	 * This function is used for verification purposes and thus should
2095eda14cbcSMatt Macy 	 * not introduce any side-effects/mutations on the system's state.
2096eda14cbcSMatt Macy 	 *
2097eda14cbcSMatt Macy 	 * Regardless of whether metaslab_weight() thinks this metaslab
2098eda14cbcSMatt Macy 	 * should be active or not, we want to ensure that the actual weight
2099eda14cbcSMatt Macy 	 * (and therefore the value of ms_weight) would be the same if it
2100eda14cbcSMatt Macy 	 * was to be recalculated at this point.
2101eda14cbcSMatt Macy 	 *
2102eda14cbcSMatt Macy 	 * In addition we set the nodirty flag so metaslab_weight() does
2103eda14cbcSMatt Macy 	 * not dirty the metaslab for future TXGs (e.g. when trying to
2104eda14cbcSMatt Macy 	 * force condensing to upgrade the metaslab spacemaps).
2105eda14cbcSMatt Macy 	 */
2106eda14cbcSMatt Macy 	msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2107eda14cbcSMatt Macy 
2108eda14cbcSMatt Macy 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
2109eda14cbcSMatt Macy 
2110eda14cbcSMatt Macy 	/*
2111eda14cbcSMatt Macy 	 * If the weight type changed then there is no point in doing
2112eda14cbcSMatt Macy 	 * verification. Revert fields to their original values.
2113eda14cbcSMatt Macy 	 */
2114eda14cbcSMatt Macy 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2115eda14cbcSMatt Macy 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2116eda14cbcSMatt Macy 		msp->ms_fragmentation = frag;
2117eda14cbcSMatt Macy 		msp->ms_weight = weight;
2118eda14cbcSMatt Macy 		return;
2119eda14cbcSMatt Macy 	}
2120eda14cbcSMatt Macy 
2121eda14cbcSMatt Macy 	VERIFY3U(msp->ms_fragmentation, ==, frag);
2122eda14cbcSMatt Macy 	VERIFY3U(msp->ms_weight, ==, weight);
2123eda14cbcSMatt Macy }
2124eda14cbcSMatt Macy 
2125eda14cbcSMatt Macy /*
2126eda14cbcSMatt Macy  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2127eda14cbcSMatt Macy  * this class that was used longest ago, and attempt to unload it.  We don't
2128eda14cbcSMatt Macy  * want to spend too much time in this loop to prevent performance
2129eda14cbcSMatt Macy  * degradation, and we expect that most of the time this operation will
2130eda14cbcSMatt Macy  * succeed. Between that and the normal unloading processing during txg sync,
2131eda14cbcSMatt Macy  * we expect this to keep the metaslab memory usage under control.
2132eda14cbcSMatt Macy  */
2133eda14cbcSMatt Macy static void
2134eda14cbcSMatt Macy metaslab_potentially_evict(metaslab_class_t *mc)
2135eda14cbcSMatt Macy {
2136eda14cbcSMatt Macy #ifdef _KERNEL
2137eda14cbcSMatt Macy 	uint64_t allmem = arc_all_memory();
2138eda14cbcSMatt Macy 	uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2139eda14cbcSMatt Macy 	uint64_t size =	spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2140eda14cbcSMatt Macy 	int tries = 0;
2141eda14cbcSMatt Macy 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2142eda14cbcSMatt Macy 	    tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2;
2143eda14cbcSMatt Macy 	    tries++) {
2144eda14cbcSMatt Macy 		unsigned int idx = multilist_get_random_index(
2145eda14cbcSMatt Macy 		    mc->mc_metaslab_txg_list);
2146eda14cbcSMatt Macy 		multilist_sublist_t *mls =
2147eda14cbcSMatt Macy 		    multilist_sublist_lock(mc->mc_metaslab_txg_list, idx);
2148eda14cbcSMatt Macy 		metaslab_t *msp = multilist_sublist_head(mls);
2149eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
2150eda14cbcSMatt Macy 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2151eda14cbcSMatt Macy 		    inuse * size) {
2152eda14cbcSMatt Macy 			VERIFY3P(mls, ==, multilist_sublist_lock(
2153eda14cbcSMatt Macy 			    mc->mc_metaslab_txg_list, idx));
2154eda14cbcSMatt Macy 			ASSERT3U(idx, ==,
2155eda14cbcSMatt Macy 			    metaslab_idx_func(mc->mc_metaslab_txg_list, msp));
2156eda14cbcSMatt Macy 
2157eda14cbcSMatt Macy 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
2158eda14cbcSMatt Macy 				multilist_sublist_unlock(mls);
2159eda14cbcSMatt Macy 				break;
2160eda14cbcSMatt Macy 			}
2161eda14cbcSMatt Macy 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2162eda14cbcSMatt Macy 			multilist_sublist_unlock(mls);
2163eda14cbcSMatt Macy 			/*
2164eda14cbcSMatt Macy 			 * If the metaslab is currently loading there are two
2165eda14cbcSMatt Macy 			 * cases. If it's the metaslab we're evicting, we
2166eda14cbcSMatt Macy 			 * can't continue on or we'll panic when we attempt to
2167eda14cbcSMatt Macy 			 * recursively lock the mutex. If it's another
2168eda14cbcSMatt Macy 			 * metaslab that's loading, it can be safely skipped,
2169eda14cbcSMatt Macy 			 * since we know it's very new and therefore not a
2170eda14cbcSMatt Macy 			 * good eviction candidate. We check later once the
2171eda14cbcSMatt Macy 			 * lock is held that the metaslab is fully loaded
2172eda14cbcSMatt Macy 			 * before actually unloading it.
2173eda14cbcSMatt Macy 			 */
2174eda14cbcSMatt Macy 			if (msp->ms_loading) {
2175eda14cbcSMatt Macy 				msp = next_msp;
2176eda14cbcSMatt Macy 				inuse =
2177eda14cbcSMatt Macy 				    spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2178eda14cbcSMatt Macy 				continue;
2179eda14cbcSMatt Macy 			}
2180eda14cbcSMatt Macy 			/*
2181eda14cbcSMatt Macy 			 * We can't unload metaslabs with no spacemap because
2182eda14cbcSMatt Macy 			 * they're not ready to be unloaded yet. We can't
2183eda14cbcSMatt Macy 			 * unload metaslabs with outstanding allocations
2184eda14cbcSMatt Macy 			 * because doing so could cause the metaslab's weight
2185eda14cbcSMatt Macy 			 * to decrease while it's unloaded, which violates an
2186eda14cbcSMatt Macy 			 * invariant that we use to prevent unnecessary
2187eda14cbcSMatt Macy 			 * loading. We also don't unload metaslabs that are
2188eda14cbcSMatt Macy 			 * currently active because they are high-weight
2189eda14cbcSMatt Macy 			 * metaslabs that are likely to be used in the near
2190eda14cbcSMatt Macy 			 * future.
2191eda14cbcSMatt Macy 			 */
2192eda14cbcSMatt Macy 			mutex_enter(&msp->ms_lock);
2193eda14cbcSMatt Macy 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2194eda14cbcSMatt Macy 			    msp->ms_allocating_total == 0) {
2195eda14cbcSMatt Macy 				metaslab_unload(msp);
2196eda14cbcSMatt Macy 			}
2197eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
2198eda14cbcSMatt Macy 			msp = next_msp;
2199eda14cbcSMatt Macy 			inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2200eda14cbcSMatt Macy 		}
2201eda14cbcSMatt Macy 	}
2202eda14cbcSMatt Macy #endif
2203eda14cbcSMatt Macy }
2204eda14cbcSMatt Macy 
2205eda14cbcSMatt Macy static int
2206eda14cbcSMatt Macy metaslab_load_impl(metaslab_t *msp)
2207eda14cbcSMatt Macy {
2208eda14cbcSMatt Macy 	int error = 0;
2209eda14cbcSMatt Macy 
2210eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2211eda14cbcSMatt Macy 	ASSERT(msp->ms_loading);
2212eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2213eda14cbcSMatt Macy 
2214eda14cbcSMatt Macy 	/*
2215eda14cbcSMatt Macy 	 * We temporarily drop the lock to unblock other operations while we
2216eda14cbcSMatt Macy 	 * are reading the space map. Therefore, metaslab_sync() and
2217eda14cbcSMatt Macy 	 * metaslab_sync_done() can run at the same time as we do.
2218eda14cbcSMatt Macy 	 *
2219eda14cbcSMatt Macy 	 * If we are using the log space maps, metaslab_sync() can't write to
2220eda14cbcSMatt Macy 	 * the metaslab's space map while we are loading as we only write to
2221eda14cbcSMatt Macy 	 * it when we are flushing the metaslab, and that can't happen while
2222eda14cbcSMatt Macy 	 * we are loading it.
2223eda14cbcSMatt Macy 	 *
2224eda14cbcSMatt Macy 	 * If we are not using log space maps though, metaslab_sync() can
2225eda14cbcSMatt Macy 	 * append to the space map while we are loading. Therefore we load
2226eda14cbcSMatt Macy 	 * only entries that existed when we started the load. Additionally,
2227eda14cbcSMatt Macy 	 * metaslab_sync_done() has to wait for the load to complete because
2228eda14cbcSMatt Macy 	 * there are potential races like metaslab_load() loading parts of the
2229eda14cbcSMatt Macy 	 * space map that are currently being appended by metaslab_sync(). If
2230eda14cbcSMatt Macy 	 * we didn't, the ms_allocatable would have entries that
2231eda14cbcSMatt Macy 	 * metaslab_sync_done() would try to re-add later.
2232eda14cbcSMatt Macy 	 *
2233eda14cbcSMatt Macy 	 * That's why before dropping the lock we remember the synced length
2234eda14cbcSMatt Macy 	 * of the metaslab and read up to that point of the space map,
2235eda14cbcSMatt Macy 	 * ignoring entries appended by metaslab_sync() that happen after we
2236eda14cbcSMatt Macy 	 * drop the lock.
2237eda14cbcSMatt Macy 	 */
2238eda14cbcSMatt Macy 	uint64_t length = msp->ms_synced_length;
2239eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
2240eda14cbcSMatt Macy 
2241eda14cbcSMatt Macy 	hrtime_t load_start = gethrtime();
2242eda14cbcSMatt Macy 	metaslab_rt_arg_t *mrap;
2243eda14cbcSMatt Macy 	if (msp->ms_allocatable->rt_arg == NULL) {
2244eda14cbcSMatt Macy 		mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2245eda14cbcSMatt Macy 	} else {
2246eda14cbcSMatt Macy 		mrap = msp->ms_allocatable->rt_arg;
2247eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = NULL;
2248eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = NULL;
2249eda14cbcSMatt Macy 	}
2250eda14cbcSMatt Macy 	mrap->mra_bt = &msp->ms_allocatable_by_size;
2251eda14cbcSMatt Macy 	mrap->mra_floor_shift = metaslab_by_size_min_shift;
2252eda14cbcSMatt Macy 
2253eda14cbcSMatt Macy 	if (msp->ms_sm != NULL) {
2254eda14cbcSMatt Macy 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2255eda14cbcSMatt Macy 		    SM_FREE, length);
2256eda14cbcSMatt Macy 
2257eda14cbcSMatt Macy 		/* Now, populate the size-sorted tree. */
2258eda14cbcSMatt Macy 		metaslab_rt_create(msp->ms_allocatable, mrap);
2259eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2260eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = mrap;
2261eda14cbcSMatt Macy 
2262eda14cbcSMatt Macy 		struct mssa_arg arg = {0};
2263eda14cbcSMatt Macy 		arg.rt = msp->ms_allocatable;
2264eda14cbcSMatt Macy 		arg.mra = mrap;
2265eda14cbcSMatt Macy 		range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2266eda14cbcSMatt Macy 		    &arg);
2267eda14cbcSMatt Macy 	} else {
2268eda14cbcSMatt Macy 		/*
2269eda14cbcSMatt Macy 		 * Add the size-sorted tree first, since we don't need to load
2270eda14cbcSMatt Macy 		 * the metaslab from the spacemap.
2271eda14cbcSMatt Macy 		 */
2272eda14cbcSMatt Macy 		metaslab_rt_create(msp->ms_allocatable, mrap);
2273eda14cbcSMatt Macy 		msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2274eda14cbcSMatt Macy 		msp->ms_allocatable->rt_arg = mrap;
2275eda14cbcSMatt Macy 		/*
2276eda14cbcSMatt Macy 		 * The space map has not been allocated yet, so treat
2277eda14cbcSMatt Macy 		 * all the space in the metaslab as free and add it to the
2278eda14cbcSMatt Macy 		 * ms_allocatable tree.
2279eda14cbcSMatt Macy 		 */
2280eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocatable,
2281eda14cbcSMatt Macy 		    msp->ms_start, msp->ms_size);
2282eda14cbcSMatt Macy 
2283eda14cbcSMatt Macy 		if (msp->ms_freed != NULL) {
2284eda14cbcSMatt Macy 			/*
2285eda14cbcSMatt Macy 			 * If the ms_sm doesn't exist, this means that this
2286eda14cbcSMatt Macy 			 * metaslab hasn't gone through metaslab_sync() and
2287eda14cbcSMatt Macy 			 * thus has never been dirtied. So we shouldn't
2288eda14cbcSMatt Macy 			 * expect any unflushed allocs or frees from previous
2289eda14cbcSMatt Macy 			 * TXGs.
2290eda14cbcSMatt Macy 			 *
2291eda14cbcSMatt Macy 			 * Note: ms_freed and all the other trees except for
2292eda14cbcSMatt Macy 			 * the ms_allocatable, can be NULL at this point only
2293eda14cbcSMatt Macy 			 * if this is a new metaslab of a vdev that just got
2294eda14cbcSMatt Macy 			 * expanded.
2295eda14cbcSMatt Macy 			 */
2296eda14cbcSMatt Macy 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2297eda14cbcSMatt Macy 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2298eda14cbcSMatt Macy 		}
2299eda14cbcSMatt Macy 	}
2300eda14cbcSMatt Macy 
2301eda14cbcSMatt Macy 	/*
2302eda14cbcSMatt Macy 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2303eda14cbcSMatt Macy 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2304eda14cbcSMatt Macy 	 * while we are about to use them and populate the ms_allocatable.
2305eda14cbcSMatt Macy 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2306eda14cbcSMatt Macy 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2307eda14cbcSMatt Macy 	 */
2308eda14cbcSMatt Macy 	mutex_enter(&msp->ms_sync_lock);
2309eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
2310eda14cbcSMatt Macy 
2311eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2312eda14cbcSMatt Macy 	ASSERT(!msp->ms_flushing);
2313eda14cbcSMatt Macy 
2314eda14cbcSMatt Macy 	if (error != 0) {
2315eda14cbcSMatt Macy 		mutex_exit(&msp->ms_sync_lock);
2316eda14cbcSMatt Macy 		return (error);
2317eda14cbcSMatt Macy 	}
2318eda14cbcSMatt Macy 
2319eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, !=, NULL);
2320eda14cbcSMatt Macy 	msp->ms_loaded = B_TRUE;
2321eda14cbcSMatt Macy 
2322eda14cbcSMatt Macy 	/*
2323eda14cbcSMatt Macy 	 * Apply all the unflushed changes to ms_allocatable right
2324eda14cbcSMatt Macy 	 * away so any manipulations we do below have a clear view
2325eda14cbcSMatt Macy 	 * of what is allocated and what is free.
2326eda14cbcSMatt Macy 	 */
2327eda14cbcSMatt Macy 	range_tree_walk(msp->ms_unflushed_allocs,
2328eda14cbcSMatt Macy 	    range_tree_remove, msp->ms_allocatable);
2329eda14cbcSMatt Macy 	range_tree_walk(msp->ms_unflushed_frees,
2330eda14cbcSMatt Macy 	    range_tree_add, msp->ms_allocatable);
2331eda14cbcSMatt Macy 
2332eda14cbcSMatt Macy 	msp->ms_loaded = B_TRUE;
2333eda14cbcSMatt Macy 
2334eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, !=, NULL);
2335eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2336eda14cbcSMatt Macy 	if (spa_syncing_log_sm(spa) != NULL) {
2337eda14cbcSMatt Macy 		ASSERT(spa_feature_is_enabled(spa,
2338eda14cbcSMatt Macy 		    SPA_FEATURE_LOG_SPACEMAP));
2339eda14cbcSMatt Macy 
2340eda14cbcSMatt Macy 		/*
2341eda14cbcSMatt Macy 		 * If we use a log space map we add all the segments
2342eda14cbcSMatt Macy 		 * that are in ms_unflushed_frees so they are available
2343eda14cbcSMatt Macy 		 * for allocation.
2344eda14cbcSMatt Macy 		 *
2345eda14cbcSMatt Macy 		 * ms_allocatable needs to contain all free segments
2346eda14cbcSMatt Macy 		 * that are ready for allocations (thus not segments
2347eda14cbcSMatt Macy 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2348eda14cbcSMatt Macy 		 * But if we grab the lock in this code path at a sync
2349eda14cbcSMatt Macy 		 * pass later that 1, then it also contains the
2350eda14cbcSMatt Macy 		 * segments of ms_freed (they were added to it earlier
2351eda14cbcSMatt Macy 		 * in this path through ms_unflushed_frees). So we
2352eda14cbcSMatt Macy 		 * need to remove all the segments that exist in
2353eda14cbcSMatt Macy 		 * ms_freed from ms_allocatable as they will be added
2354eda14cbcSMatt Macy 		 * later in metaslab_sync_done().
2355eda14cbcSMatt Macy 		 *
2356eda14cbcSMatt Macy 		 * When there's no log space map, the ms_allocatable
2357eda14cbcSMatt Macy 		 * correctly doesn't contain any segments that exist
2358eda14cbcSMatt Macy 		 * in ms_freed [see ms_synced_length].
2359eda14cbcSMatt Macy 		 */
2360eda14cbcSMatt Macy 		range_tree_walk(msp->ms_freed,
2361eda14cbcSMatt Macy 		    range_tree_remove, msp->ms_allocatable);
2362eda14cbcSMatt Macy 	}
2363eda14cbcSMatt Macy 
2364eda14cbcSMatt Macy 	/*
2365eda14cbcSMatt Macy 	 * If we are not using the log space map, ms_allocatable
2366eda14cbcSMatt Macy 	 * contains the segments that exist in the ms_defer trees
2367eda14cbcSMatt Macy 	 * [see ms_synced_length]. Thus we need to remove them
2368eda14cbcSMatt Macy 	 * from ms_allocatable as they will be added again in
2369eda14cbcSMatt Macy 	 * metaslab_sync_done().
2370eda14cbcSMatt Macy 	 *
2371eda14cbcSMatt Macy 	 * If we are using the log space map, ms_allocatable still
2372eda14cbcSMatt Macy 	 * contains the segments that exist in the ms_defer trees.
2373eda14cbcSMatt Macy 	 * Not because it read them through the ms_sm though. But
2374eda14cbcSMatt Macy 	 * because these segments are part of ms_unflushed_frees
2375eda14cbcSMatt Macy 	 * whose segments we add to ms_allocatable earlier in this
2376eda14cbcSMatt Macy 	 * code path.
2377eda14cbcSMatt Macy 	 */
2378eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2379eda14cbcSMatt Macy 		range_tree_walk(msp->ms_defer[t],
2380eda14cbcSMatt Macy 		    range_tree_remove, msp->ms_allocatable);
2381eda14cbcSMatt Macy 	}
2382eda14cbcSMatt Macy 
2383eda14cbcSMatt Macy 	/*
2384eda14cbcSMatt Macy 	 * Call metaslab_recalculate_weight_and_sort() now that the
2385eda14cbcSMatt Macy 	 * metaslab is loaded so we get the metaslab's real weight.
2386eda14cbcSMatt Macy 	 *
2387eda14cbcSMatt Macy 	 * Unless this metaslab was created with older software and
2388eda14cbcSMatt Macy 	 * has not yet been converted to use segment-based weight, we
2389eda14cbcSMatt Macy 	 * expect the new weight to be better or equal to the weight
2390eda14cbcSMatt Macy 	 * that the metaslab had while it was not loaded. This is
2391eda14cbcSMatt Macy 	 * because the old weight does not take into account the
2392eda14cbcSMatt Macy 	 * consolidation of adjacent segments between TXGs. [see
2393eda14cbcSMatt Macy 	 * comment for ms_synchist and ms_deferhist[] for more info]
2394eda14cbcSMatt Macy 	 */
2395eda14cbcSMatt Macy 	uint64_t weight = msp->ms_weight;
2396eda14cbcSMatt Macy 	uint64_t max_size = msp->ms_max_size;
2397eda14cbcSMatt Macy 	metaslab_recalculate_weight_and_sort(msp);
2398eda14cbcSMatt Macy 	if (!WEIGHT_IS_SPACEBASED(weight))
2399eda14cbcSMatt Macy 		ASSERT3U(weight, <=, msp->ms_weight);
2400eda14cbcSMatt Macy 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2401eda14cbcSMatt Macy 	ASSERT3U(max_size, <=, msp->ms_max_size);
2402eda14cbcSMatt Macy 	hrtime_t load_end = gethrtime();
2403eda14cbcSMatt Macy 	msp->ms_load_time = load_end;
2404eda14cbcSMatt Macy 	zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2405eda14cbcSMatt Macy 	    "ms_id %llu, smp_length %llu, "
2406eda14cbcSMatt Macy 	    "unflushed_allocs %llu, unflushed_frees %llu, "
2407eda14cbcSMatt Macy 	    "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2408eda14cbcSMatt Macy 	    "loading_time %lld ms, ms_max_size %llu, "
2409eda14cbcSMatt Macy 	    "max size error %lld, "
2410eda14cbcSMatt Macy 	    "old_weight %llx, new_weight %llx",
2411eda14cbcSMatt Macy 	    spa_syncing_txg(spa), spa_name(spa),
2412eda14cbcSMatt Macy 	    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2413eda14cbcSMatt Macy 	    space_map_length(msp->ms_sm),
2414eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_allocs),
2415eda14cbcSMatt Macy 	    range_tree_space(msp->ms_unflushed_frees),
2416eda14cbcSMatt Macy 	    range_tree_space(msp->ms_freed),
2417eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[0]),
2418eda14cbcSMatt Macy 	    range_tree_space(msp->ms_defer[1]),
2419eda14cbcSMatt Macy 	    (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2420eda14cbcSMatt Macy 	    (longlong_t)((load_end - load_start) / 1000000),
2421eda14cbcSMatt Macy 	    msp->ms_max_size, msp->ms_max_size - max_size,
2422eda14cbcSMatt Macy 	    weight, msp->ms_weight);
2423eda14cbcSMatt Macy 
2424eda14cbcSMatt Macy 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2425eda14cbcSMatt Macy 	mutex_exit(&msp->ms_sync_lock);
2426eda14cbcSMatt Macy 	return (0);
2427eda14cbcSMatt Macy }
2428eda14cbcSMatt Macy 
2429eda14cbcSMatt Macy int
2430eda14cbcSMatt Macy metaslab_load(metaslab_t *msp)
2431eda14cbcSMatt Macy {
2432eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2433eda14cbcSMatt Macy 
2434eda14cbcSMatt Macy 	/*
2435eda14cbcSMatt Macy 	 * There may be another thread loading the same metaslab, if that's
2436eda14cbcSMatt Macy 	 * the case just wait until the other thread is done and return.
2437eda14cbcSMatt Macy 	 */
2438eda14cbcSMatt Macy 	metaslab_load_wait(msp);
2439eda14cbcSMatt Macy 	if (msp->ms_loaded)
2440eda14cbcSMatt Macy 		return (0);
2441eda14cbcSMatt Macy 	VERIFY(!msp->ms_loading);
2442eda14cbcSMatt Macy 	ASSERT(!msp->ms_condensing);
2443eda14cbcSMatt Macy 
2444eda14cbcSMatt Macy 	/*
2445eda14cbcSMatt Macy 	 * We set the loading flag BEFORE potentially dropping the lock to
2446eda14cbcSMatt Macy 	 * wait for an ongoing flush (see ms_flushing below). This way other
2447eda14cbcSMatt Macy 	 * threads know that there is already a thread that is loading this
2448eda14cbcSMatt Macy 	 * metaslab.
2449eda14cbcSMatt Macy 	 */
2450eda14cbcSMatt Macy 	msp->ms_loading = B_TRUE;
2451eda14cbcSMatt Macy 
2452eda14cbcSMatt Macy 	/*
2453eda14cbcSMatt Macy 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2454eda14cbcSMatt Macy 	 * both here (during space_map_load()) and in metaslab_flush() (when
2455eda14cbcSMatt Macy 	 * we flush our changes to the ms_sm).
2456eda14cbcSMatt Macy 	 */
2457eda14cbcSMatt Macy 	if (msp->ms_flushing)
2458eda14cbcSMatt Macy 		metaslab_flush_wait(msp);
2459eda14cbcSMatt Macy 
2460eda14cbcSMatt Macy 	/*
2461eda14cbcSMatt Macy 	 * In the possibility that we were waiting for the metaslab to be
2462eda14cbcSMatt Macy 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2463eda14cbcSMatt Macy 	 * no one else loaded the metaslab somehow.
2464eda14cbcSMatt Macy 	 */
2465eda14cbcSMatt Macy 	ASSERT(!msp->ms_loaded);
2466eda14cbcSMatt Macy 
2467eda14cbcSMatt Macy 	/*
2468eda14cbcSMatt Macy 	 * If we're loading a metaslab in the normal class, consider evicting
2469eda14cbcSMatt Macy 	 * another one to keep our memory usage under the limit defined by the
2470eda14cbcSMatt Macy 	 * zfs_metaslab_mem_limit tunable.
2471eda14cbcSMatt Macy 	 */
2472eda14cbcSMatt Macy 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2473eda14cbcSMatt Macy 	    msp->ms_group->mg_class) {
2474eda14cbcSMatt Macy 		metaslab_potentially_evict(msp->ms_group->mg_class);
2475eda14cbcSMatt Macy 	}
2476eda14cbcSMatt Macy 
2477eda14cbcSMatt Macy 	int error = metaslab_load_impl(msp);
2478eda14cbcSMatt Macy 
2479eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2480eda14cbcSMatt Macy 	msp->ms_loading = B_FALSE;
2481eda14cbcSMatt Macy 	cv_broadcast(&msp->ms_load_cv);
2482eda14cbcSMatt Macy 
2483eda14cbcSMatt Macy 	return (error);
2484eda14cbcSMatt Macy }
2485eda14cbcSMatt Macy 
2486eda14cbcSMatt Macy void
2487eda14cbcSMatt Macy metaslab_unload(metaslab_t *msp)
2488eda14cbcSMatt Macy {
2489eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2490eda14cbcSMatt Macy 
2491eda14cbcSMatt Macy 	/*
2492eda14cbcSMatt Macy 	 * This can happen if a metaslab is selected for eviction (in
2493eda14cbcSMatt Macy 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2494eda14cbcSMatt Macy 	 * metaslab_class_evict_old).
2495eda14cbcSMatt Macy 	 */
2496eda14cbcSMatt Macy 	if (!msp->ms_loaded)
2497eda14cbcSMatt Macy 		return;
2498eda14cbcSMatt Macy 
2499eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2500eda14cbcSMatt Macy 	msp->ms_loaded = B_FALSE;
2501eda14cbcSMatt Macy 	msp->ms_unload_time = gethrtime();
2502eda14cbcSMatt Macy 
2503eda14cbcSMatt Macy 	msp->ms_activation_weight = 0;
2504eda14cbcSMatt Macy 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2505eda14cbcSMatt Macy 
2506eda14cbcSMatt Macy 	if (msp->ms_group != NULL) {
2507eda14cbcSMatt Macy 		metaslab_class_t *mc = msp->ms_group->mg_class;
2508eda14cbcSMatt Macy 		multilist_sublist_t *mls =
2509eda14cbcSMatt Macy 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2510eda14cbcSMatt Macy 		if (multilist_link_active(&msp->ms_class_txg_node))
2511eda14cbcSMatt Macy 			multilist_sublist_remove(mls, msp);
2512eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
2513eda14cbcSMatt Macy 
2514eda14cbcSMatt Macy 		spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2515eda14cbcSMatt Macy 		zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2516eda14cbcSMatt Macy 		    "ms_id %llu, weight %llx, "
2517eda14cbcSMatt Macy 		    "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2518eda14cbcSMatt Macy 		    "loaded %llu ms ago, max_size %llu",
2519eda14cbcSMatt Macy 		    spa_syncing_txg(spa), spa_name(spa),
2520eda14cbcSMatt Macy 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2521eda14cbcSMatt Macy 		    msp->ms_weight,
2522eda14cbcSMatt Macy 		    msp->ms_selected_txg,
2523eda14cbcSMatt Macy 		    (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000,
2524eda14cbcSMatt Macy 		    msp->ms_alloc_txg,
2525eda14cbcSMatt Macy 		    (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000,
2526eda14cbcSMatt Macy 		    msp->ms_max_size);
2527eda14cbcSMatt Macy 	}
2528eda14cbcSMatt Macy 
2529eda14cbcSMatt Macy 	/*
2530eda14cbcSMatt Macy 	 * We explicitly recalculate the metaslab's weight based on its space
2531eda14cbcSMatt Macy 	 * map (as it is now not loaded). We want unload metaslabs to always
2532eda14cbcSMatt Macy 	 * have their weights calculated from the space map histograms, while
2533eda14cbcSMatt Macy 	 * loaded ones have it calculated from their in-core range tree
2534eda14cbcSMatt Macy 	 * [see metaslab_load()]. This way, the weight reflects the information
2535eda14cbcSMatt Macy 	 * available in-core, whether it is loaded or not.
2536eda14cbcSMatt Macy 	 *
2537eda14cbcSMatt Macy 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2538eda14cbcSMatt Macy 	 * at which point it doesn't make sense for us to do the recalculation
2539eda14cbcSMatt Macy 	 * and the sorting.
2540eda14cbcSMatt Macy 	 */
2541eda14cbcSMatt Macy 	if (msp->ms_group != NULL)
2542eda14cbcSMatt Macy 		metaslab_recalculate_weight_and_sort(msp);
2543eda14cbcSMatt Macy }
2544eda14cbcSMatt Macy 
2545eda14cbcSMatt Macy /*
2546eda14cbcSMatt Macy  * We want to optimize the memory use of the per-metaslab range
2547eda14cbcSMatt Macy  * trees. To do this, we store the segments in the range trees in
2548eda14cbcSMatt Macy  * units of sectors, zero-indexing from the start of the metaslab. If
2549eda14cbcSMatt Macy  * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2550eda14cbcSMatt Macy  * the ranges using two uint32_ts, rather than two uint64_ts.
2551eda14cbcSMatt Macy  */
2552eda14cbcSMatt Macy range_seg_type_t
2553eda14cbcSMatt Macy metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2554eda14cbcSMatt Macy     uint64_t *start, uint64_t *shift)
2555eda14cbcSMatt Macy {
2556eda14cbcSMatt Macy 	if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2557eda14cbcSMatt Macy 	    !zfs_metaslab_force_large_segs) {
2558eda14cbcSMatt Macy 		*shift = vdev->vdev_ashift;
2559eda14cbcSMatt Macy 		*start = msp->ms_start;
2560eda14cbcSMatt Macy 		return (RANGE_SEG32);
2561eda14cbcSMatt Macy 	} else {
2562eda14cbcSMatt Macy 		*shift = 0;
2563eda14cbcSMatt Macy 		*start = 0;
2564eda14cbcSMatt Macy 		return (RANGE_SEG64);
2565eda14cbcSMatt Macy 	}
2566eda14cbcSMatt Macy }
2567eda14cbcSMatt Macy 
2568eda14cbcSMatt Macy void
2569eda14cbcSMatt Macy metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2570eda14cbcSMatt Macy {
2571eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2572eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
2573eda14cbcSMatt Macy 	multilist_sublist_t *mls =
2574eda14cbcSMatt Macy 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2575eda14cbcSMatt Macy 	if (multilist_link_active(&msp->ms_class_txg_node))
2576eda14cbcSMatt Macy 		multilist_sublist_remove(mls, msp);
2577eda14cbcSMatt Macy 	msp->ms_selected_txg = txg;
2578eda14cbcSMatt Macy 	msp->ms_selected_time = gethrtime();
2579eda14cbcSMatt Macy 	multilist_sublist_insert_tail(mls, msp);
2580eda14cbcSMatt Macy 	multilist_sublist_unlock(mls);
2581eda14cbcSMatt Macy }
2582eda14cbcSMatt Macy 
2583eda14cbcSMatt Macy void
2584eda14cbcSMatt Macy metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2585eda14cbcSMatt Macy     int64_t defer_delta, int64_t space_delta)
2586eda14cbcSMatt Macy {
2587eda14cbcSMatt Macy 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2588eda14cbcSMatt Macy 
2589eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2590eda14cbcSMatt Macy 	ASSERT(vd->vdev_ms_count != 0);
2591eda14cbcSMatt Macy 
2592eda14cbcSMatt Macy 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2593eda14cbcSMatt Macy 	    vdev_deflated_space(vd, space_delta));
2594eda14cbcSMatt Macy }
2595eda14cbcSMatt Macy 
2596eda14cbcSMatt Macy int
2597eda14cbcSMatt Macy metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2598eda14cbcSMatt Macy     uint64_t txg, metaslab_t **msp)
2599eda14cbcSMatt Macy {
2600eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2601eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
2602eda14cbcSMatt Macy 	objset_t *mos = spa->spa_meta_objset;
2603eda14cbcSMatt Macy 	metaslab_t *ms;
2604eda14cbcSMatt Macy 	int error;
2605eda14cbcSMatt Macy 
2606eda14cbcSMatt Macy 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2607eda14cbcSMatt Macy 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2608eda14cbcSMatt Macy 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2609eda14cbcSMatt Macy 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2610eda14cbcSMatt Macy 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2611eda14cbcSMatt Macy 	multilist_link_init(&ms->ms_class_txg_node);
2612eda14cbcSMatt Macy 
2613eda14cbcSMatt Macy 	ms->ms_id = id;
2614eda14cbcSMatt Macy 	ms->ms_start = id << vd->vdev_ms_shift;
2615eda14cbcSMatt Macy 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2616eda14cbcSMatt Macy 	ms->ms_allocator = -1;
2617eda14cbcSMatt Macy 	ms->ms_new = B_TRUE;
2618eda14cbcSMatt Macy 
2619eda14cbcSMatt Macy 	/*
2620eda14cbcSMatt Macy 	 * We only open space map objects that already exist. All others
2621eda14cbcSMatt Macy 	 * will be opened when we finally allocate an object for it.
2622eda14cbcSMatt Macy 	 *
2623eda14cbcSMatt Macy 	 * Note:
2624eda14cbcSMatt Macy 	 * When called from vdev_expand(), we can't call into the DMU as
2625eda14cbcSMatt Macy 	 * we are holding the spa_config_lock as a writer and we would
2626eda14cbcSMatt Macy 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2627eda14cbcSMatt Macy 	 * that case, the object parameter is zero though, so we won't
2628eda14cbcSMatt Macy 	 * call into the DMU.
2629eda14cbcSMatt Macy 	 */
2630eda14cbcSMatt Macy 	if (object != 0) {
2631eda14cbcSMatt Macy 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2632eda14cbcSMatt Macy 		    ms->ms_size, vd->vdev_ashift);
2633eda14cbcSMatt Macy 
2634eda14cbcSMatt Macy 		if (error != 0) {
2635eda14cbcSMatt Macy 			kmem_free(ms, sizeof (metaslab_t));
2636eda14cbcSMatt Macy 			return (error);
2637eda14cbcSMatt Macy 		}
2638eda14cbcSMatt Macy 
2639eda14cbcSMatt Macy 		ASSERT(ms->ms_sm != NULL);
2640eda14cbcSMatt Macy 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2641eda14cbcSMatt Macy 	}
2642eda14cbcSMatt Macy 
2643eda14cbcSMatt Macy 	range_seg_type_t type;
2644eda14cbcSMatt Macy 	uint64_t shift, start;
2645eda14cbcSMatt Macy 	type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2646eda14cbcSMatt Macy 
2647eda14cbcSMatt Macy 	/*
2648eda14cbcSMatt Macy 	 * We create the ms_allocatable here, but we don't create the
2649eda14cbcSMatt Macy 	 * other range trees until metaslab_sync_done().  This serves
2650eda14cbcSMatt Macy 	 * two purposes: it allows metaslab_sync_done() to detect the
2651eda14cbcSMatt Macy 	 * addition of new space; and for debugging, it ensures that
2652eda14cbcSMatt Macy 	 * we'd data fault on any attempt to use this metaslab before
2653eda14cbcSMatt Macy 	 * it's ready.
2654eda14cbcSMatt Macy 	 */
2655eda14cbcSMatt Macy 	ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2656eda14cbcSMatt Macy 
2657eda14cbcSMatt Macy 	ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2658eda14cbcSMatt Macy 
2659eda14cbcSMatt Macy 	metaslab_group_add(mg, ms);
2660eda14cbcSMatt Macy 	metaslab_set_fragmentation(ms, B_FALSE);
2661eda14cbcSMatt Macy 
2662eda14cbcSMatt Macy 	/*
2663eda14cbcSMatt Macy 	 * If we're opening an existing pool (txg == 0) or creating
2664eda14cbcSMatt Macy 	 * a new one (txg == TXG_INITIAL), all space is available now.
2665eda14cbcSMatt Macy 	 * If we're adding space to an existing pool, the new space
2666eda14cbcSMatt Macy 	 * does not become available until after this txg has synced.
2667eda14cbcSMatt Macy 	 * The metaslab's weight will also be initialized when we sync
2668eda14cbcSMatt Macy 	 * out this txg. This ensures that we don't attempt to allocate
2669eda14cbcSMatt Macy 	 * from it before we have initialized it completely.
2670eda14cbcSMatt Macy 	 */
2671eda14cbcSMatt Macy 	if (txg <= TXG_INITIAL) {
2672eda14cbcSMatt Macy 		metaslab_sync_done(ms, 0);
2673eda14cbcSMatt Macy 		metaslab_space_update(vd, mg->mg_class,
2674eda14cbcSMatt Macy 		    metaslab_allocated_space(ms), 0, 0);
2675eda14cbcSMatt Macy 	}
2676eda14cbcSMatt Macy 
2677eda14cbcSMatt Macy 	if (txg != 0) {
2678eda14cbcSMatt Macy 		vdev_dirty(vd, 0, NULL, txg);
2679eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2680eda14cbcSMatt Macy 	}
2681eda14cbcSMatt Macy 
2682eda14cbcSMatt Macy 	*msp = ms;
2683eda14cbcSMatt Macy 
2684eda14cbcSMatt Macy 	return (0);
2685eda14cbcSMatt Macy }
2686eda14cbcSMatt Macy 
2687eda14cbcSMatt Macy static void
2688eda14cbcSMatt Macy metaslab_fini_flush_data(metaslab_t *msp)
2689eda14cbcSMatt Macy {
2690eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2691eda14cbcSMatt Macy 
2692eda14cbcSMatt Macy 	if (metaslab_unflushed_txg(msp) == 0) {
2693eda14cbcSMatt Macy 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2694eda14cbcSMatt Macy 		    ==, NULL);
2695eda14cbcSMatt Macy 		return;
2696eda14cbcSMatt Macy 	}
2697eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2698eda14cbcSMatt Macy 
2699eda14cbcSMatt Macy 	mutex_enter(&spa->spa_flushed_ms_lock);
2700eda14cbcSMatt Macy 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2701eda14cbcSMatt Macy 	mutex_exit(&spa->spa_flushed_ms_lock);
2702eda14cbcSMatt Macy 
2703eda14cbcSMatt Macy 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2704eda14cbcSMatt Macy 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2705eda14cbcSMatt Macy }
2706eda14cbcSMatt Macy 
2707eda14cbcSMatt Macy uint64_t
2708eda14cbcSMatt Macy metaslab_unflushed_changes_memused(metaslab_t *ms)
2709eda14cbcSMatt Macy {
2710eda14cbcSMatt Macy 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2711eda14cbcSMatt Macy 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2712eda14cbcSMatt Macy 	    ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2713eda14cbcSMatt Macy }
2714eda14cbcSMatt Macy 
2715eda14cbcSMatt Macy void
2716eda14cbcSMatt Macy metaslab_fini(metaslab_t *msp)
2717eda14cbcSMatt Macy {
2718eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
2719eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2720eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
2721eda14cbcSMatt Macy 
2722eda14cbcSMatt Macy 	metaslab_fini_flush_data(msp);
2723eda14cbcSMatt Macy 
2724eda14cbcSMatt Macy 	metaslab_group_remove(mg, msp);
2725eda14cbcSMatt Macy 
2726eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
2727eda14cbcSMatt Macy 	VERIFY(msp->ms_group == NULL);
2728eda14cbcSMatt Macy 	metaslab_space_update(vd, mg->mg_class,
2729eda14cbcSMatt Macy 	    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2730eda14cbcSMatt Macy 
2731eda14cbcSMatt Macy 	space_map_close(msp->ms_sm);
2732eda14cbcSMatt Macy 	msp->ms_sm = NULL;
2733eda14cbcSMatt Macy 
2734eda14cbcSMatt Macy 	metaslab_unload(msp);
2735eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_allocatable);
2736eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_freeing);
2737eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_freed);
2738eda14cbcSMatt Macy 
2739eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2740eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
2741eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
2742eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
2743eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2744eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_unflushed_allocs);
2745eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2746eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_unflushed_frees);
2747eda14cbcSMatt Macy 
2748eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++) {
2749eda14cbcSMatt Macy 		range_tree_destroy(msp->ms_allocating[t]);
2750eda14cbcSMatt Macy 	}
2751eda14cbcSMatt Macy 
2752eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2753eda14cbcSMatt Macy 		range_tree_destroy(msp->ms_defer[t]);
2754eda14cbcSMatt Macy 	}
2755eda14cbcSMatt Macy 	ASSERT0(msp->ms_deferspace);
2756eda14cbcSMatt Macy 
2757eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_checkpointing);
2758eda14cbcSMatt Macy 
2759eda14cbcSMatt Macy 	for (int t = 0; t < TXG_SIZE; t++)
2760eda14cbcSMatt Macy 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2761eda14cbcSMatt Macy 
2762eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2763eda14cbcSMatt Macy 	range_tree_destroy(msp->ms_trim);
2764eda14cbcSMatt Macy 
2765eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
2766eda14cbcSMatt Macy 	cv_destroy(&msp->ms_load_cv);
2767eda14cbcSMatt Macy 	cv_destroy(&msp->ms_flush_cv);
2768eda14cbcSMatt Macy 	mutex_destroy(&msp->ms_lock);
2769eda14cbcSMatt Macy 	mutex_destroy(&msp->ms_sync_lock);
2770eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocator, ==, -1);
2771eda14cbcSMatt Macy 
2772eda14cbcSMatt Macy 	kmem_free(msp, sizeof (metaslab_t));
2773eda14cbcSMatt Macy }
2774eda14cbcSMatt Macy 
2775eda14cbcSMatt Macy #define	FRAGMENTATION_TABLE_SIZE	17
2776eda14cbcSMatt Macy 
2777eda14cbcSMatt Macy /*
2778eda14cbcSMatt Macy  * This table defines a segment size based fragmentation metric that will
2779eda14cbcSMatt Macy  * allow each metaslab to derive its own fragmentation value. This is done
2780eda14cbcSMatt Macy  * by calculating the space in each bucket of the spacemap histogram and
2781eda14cbcSMatt Macy  * multiplying that by the fragmentation metric in this table. Doing
2782eda14cbcSMatt Macy  * this for all buckets and dividing it by the total amount of free
2783eda14cbcSMatt Macy  * space in this metaslab (i.e. the total free space in all buckets) gives
2784eda14cbcSMatt Macy  * us the fragmentation metric. This means that a high fragmentation metric
2785eda14cbcSMatt Macy  * equates to most of the free space being comprised of small segments.
2786eda14cbcSMatt Macy  * Conversely, if the metric is low, then most of the free space is in
2787eda14cbcSMatt Macy  * large segments. A 10% change in fragmentation equates to approximately
2788eda14cbcSMatt Macy  * double the number of segments.
2789eda14cbcSMatt Macy  *
2790eda14cbcSMatt Macy  * This table defines 0% fragmented space using 16MB segments. Testing has
2791eda14cbcSMatt Macy  * shown that segments that are greater than or equal to 16MB do not suffer
2792eda14cbcSMatt Macy  * from drastic performance problems. Using this value, we derive the rest
2793eda14cbcSMatt Macy  * of the table. Since the fragmentation value is never stored on disk, it
2794eda14cbcSMatt Macy  * is possible to change these calculations in the future.
2795eda14cbcSMatt Macy  */
2796eda14cbcSMatt Macy int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2797eda14cbcSMatt Macy 	100,	/* 512B	*/
2798eda14cbcSMatt Macy 	100,	/* 1K	*/
2799eda14cbcSMatt Macy 	98,	/* 2K	*/
2800eda14cbcSMatt Macy 	95,	/* 4K	*/
2801eda14cbcSMatt Macy 	90,	/* 8K	*/
2802eda14cbcSMatt Macy 	80,	/* 16K	*/
2803eda14cbcSMatt Macy 	70,	/* 32K	*/
2804eda14cbcSMatt Macy 	60,	/* 64K	*/
2805eda14cbcSMatt Macy 	50,	/* 128K	*/
2806eda14cbcSMatt Macy 	40,	/* 256K	*/
2807eda14cbcSMatt Macy 	30,	/* 512K	*/
2808eda14cbcSMatt Macy 	20,	/* 1M	*/
2809eda14cbcSMatt Macy 	15,	/* 2M	*/
2810eda14cbcSMatt Macy 	10,	/* 4M	*/
2811eda14cbcSMatt Macy 	5,	/* 8M	*/
2812eda14cbcSMatt Macy 	0	/* 16M	*/
2813eda14cbcSMatt Macy };
2814eda14cbcSMatt Macy 
2815eda14cbcSMatt Macy /*
2816eda14cbcSMatt Macy  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2817eda14cbcSMatt Macy  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2818eda14cbcSMatt Macy  * been upgraded and does not support this metric. Otherwise, the return
2819eda14cbcSMatt Macy  * value should be in the range [0, 100].
2820eda14cbcSMatt Macy  */
2821eda14cbcSMatt Macy static void
2822eda14cbcSMatt Macy metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2823eda14cbcSMatt Macy {
2824eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2825eda14cbcSMatt Macy 	uint64_t fragmentation = 0;
2826eda14cbcSMatt Macy 	uint64_t total = 0;
2827eda14cbcSMatt Macy 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2828eda14cbcSMatt Macy 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2829eda14cbcSMatt Macy 
2830eda14cbcSMatt Macy 	if (!feature_enabled) {
2831eda14cbcSMatt Macy 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2832eda14cbcSMatt Macy 		return;
2833eda14cbcSMatt Macy 	}
2834eda14cbcSMatt Macy 
2835eda14cbcSMatt Macy 	/*
2836eda14cbcSMatt Macy 	 * A null space map means that the entire metaslab is free
2837eda14cbcSMatt Macy 	 * and thus is not fragmented.
2838eda14cbcSMatt Macy 	 */
2839eda14cbcSMatt Macy 	if (msp->ms_sm == NULL) {
2840eda14cbcSMatt Macy 		msp->ms_fragmentation = 0;
2841eda14cbcSMatt Macy 		return;
2842eda14cbcSMatt Macy 	}
2843eda14cbcSMatt Macy 
2844eda14cbcSMatt Macy 	/*
2845eda14cbcSMatt Macy 	 * If this metaslab's space map has not been upgraded, flag it
2846eda14cbcSMatt Macy 	 * so that we upgrade next time we encounter it.
2847eda14cbcSMatt Macy 	 */
2848eda14cbcSMatt Macy 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2849eda14cbcSMatt Macy 		uint64_t txg = spa_syncing_txg(spa);
2850eda14cbcSMatt Macy 		vdev_t *vd = msp->ms_group->mg_vd;
2851eda14cbcSMatt Macy 
2852eda14cbcSMatt Macy 		/*
2853eda14cbcSMatt Macy 		 * If we've reached the final dirty txg, then we must
2854eda14cbcSMatt Macy 		 * be shutting down the pool. We don't want to dirty
2855eda14cbcSMatt Macy 		 * any data past this point so skip setting the condense
2856eda14cbcSMatt Macy 		 * flag. We can retry this action the next time the pool
2857eda14cbcSMatt Macy 		 * is imported. We also skip marking this metaslab for
2858eda14cbcSMatt Macy 		 * condensing if the caller has explicitly set nodirty.
2859eda14cbcSMatt Macy 		 */
2860eda14cbcSMatt Macy 		if (!nodirty &&
2861eda14cbcSMatt Macy 		    spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2862eda14cbcSMatt Macy 			msp->ms_condense_wanted = B_TRUE;
2863eda14cbcSMatt Macy 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2864eda14cbcSMatt Macy 			zfs_dbgmsg("txg %llu, requesting force condense: "
2865eda14cbcSMatt Macy 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2866eda14cbcSMatt Macy 			    vd->vdev_id);
2867eda14cbcSMatt Macy 		}
2868eda14cbcSMatt Macy 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2869eda14cbcSMatt Macy 		return;
2870eda14cbcSMatt Macy 	}
2871eda14cbcSMatt Macy 
2872eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2873eda14cbcSMatt Macy 		uint64_t space = 0;
2874eda14cbcSMatt Macy 		uint8_t shift = msp->ms_sm->sm_shift;
2875eda14cbcSMatt Macy 
2876eda14cbcSMatt Macy 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2877eda14cbcSMatt Macy 		    FRAGMENTATION_TABLE_SIZE - 1);
2878eda14cbcSMatt Macy 
2879eda14cbcSMatt Macy 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2880eda14cbcSMatt Macy 			continue;
2881eda14cbcSMatt Macy 
2882eda14cbcSMatt Macy 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2883eda14cbcSMatt Macy 		total += space;
2884eda14cbcSMatt Macy 
2885eda14cbcSMatt Macy 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2886eda14cbcSMatt Macy 		fragmentation += space * zfs_frag_table[idx];
2887eda14cbcSMatt Macy 	}
2888eda14cbcSMatt Macy 
2889eda14cbcSMatt Macy 	if (total > 0)
2890eda14cbcSMatt Macy 		fragmentation /= total;
2891eda14cbcSMatt Macy 	ASSERT3U(fragmentation, <=, 100);
2892eda14cbcSMatt Macy 
2893eda14cbcSMatt Macy 	msp->ms_fragmentation = fragmentation;
2894eda14cbcSMatt Macy }
2895eda14cbcSMatt Macy 
2896eda14cbcSMatt Macy /*
2897eda14cbcSMatt Macy  * Compute a weight -- a selection preference value -- for the given metaslab.
2898eda14cbcSMatt Macy  * This is based on the amount of free space, the level of fragmentation,
2899eda14cbcSMatt Macy  * the LBA range, and whether the metaslab is loaded.
2900eda14cbcSMatt Macy  */
2901eda14cbcSMatt Macy static uint64_t
2902eda14cbcSMatt Macy metaslab_space_weight(metaslab_t *msp)
2903eda14cbcSMatt Macy {
2904eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
2905eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
2906eda14cbcSMatt Macy 	uint64_t weight, space;
2907eda14cbcSMatt Macy 
2908eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2909eda14cbcSMatt Macy 
2910eda14cbcSMatt Macy 	/*
2911eda14cbcSMatt Macy 	 * The baseline weight is the metaslab's free space.
2912eda14cbcSMatt Macy 	 */
2913eda14cbcSMatt Macy 	space = msp->ms_size - metaslab_allocated_space(msp);
2914eda14cbcSMatt Macy 
2915eda14cbcSMatt Macy 	if (metaslab_fragmentation_factor_enabled &&
2916eda14cbcSMatt Macy 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2917eda14cbcSMatt Macy 		/*
2918eda14cbcSMatt Macy 		 * Use the fragmentation information to inversely scale
2919eda14cbcSMatt Macy 		 * down the baseline weight. We need to ensure that we
2920eda14cbcSMatt Macy 		 * don't exclude this metaslab completely when it's 100%
2921eda14cbcSMatt Macy 		 * fragmented. To avoid this we reduce the fragmented value
2922eda14cbcSMatt Macy 		 * by 1.
2923eda14cbcSMatt Macy 		 */
2924eda14cbcSMatt Macy 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2925eda14cbcSMatt Macy 
2926eda14cbcSMatt Macy 		/*
2927eda14cbcSMatt Macy 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2928eda14cbcSMatt Macy 		 * this metaslab again. The fragmentation metric may have
2929eda14cbcSMatt Macy 		 * decreased the space to something smaller than
2930eda14cbcSMatt Macy 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2931eda14cbcSMatt Macy 		 * so that we can consume any remaining space.
2932eda14cbcSMatt Macy 		 */
2933eda14cbcSMatt Macy 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2934eda14cbcSMatt Macy 			space = SPA_MINBLOCKSIZE;
2935eda14cbcSMatt Macy 	}
2936eda14cbcSMatt Macy 	weight = space;
2937eda14cbcSMatt Macy 
2938eda14cbcSMatt Macy 	/*
2939eda14cbcSMatt Macy 	 * Modern disks have uniform bit density and constant angular velocity.
2940eda14cbcSMatt Macy 	 * Therefore, the outer recording zones are faster (higher bandwidth)
2941eda14cbcSMatt Macy 	 * than the inner zones by the ratio of outer to inner track diameter,
2942eda14cbcSMatt Macy 	 * which is typically around 2:1.  We account for this by assigning
2943eda14cbcSMatt Macy 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2944eda14cbcSMatt Macy 	 * In effect, this means that we'll select the metaslab with the most
2945eda14cbcSMatt Macy 	 * free bandwidth rather than simply the one with the most free space.
2946eda14cbcSMatt Macy 	 */
2947eda14cbcSMatt Macy 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2948eda14cbcSMatt Macy 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2949eda14cbcSMatt Macy 		ASSERT(weight >= space && weight <= 2 * space);
2950eda14cbcSMatt Macy 	}
2951eda14cbcSMatt Macy 
2952eda14cbcSMatt Macy 	/*
2953eda14cbcSMatt Macy 	 * If this metaslab is one we're actively using, adjust its
2954eda14cbcSMatt Macy 	 * weight to make it preferable to any inactive metaslab so
2955eda14cbcSMatt Macy 	 * we'll polish it off. If the fragmentation on this metaslab
2956eda14cbcSMatt Macy 	 * has exceed our threshold, then don't mark it active.
2957eda14cbcSMatt Macy 	 */
2958eda14cbcSMatt Macy 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2959eda14cbcSMatt Macy 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2960eda14cbcSMatt Macy 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2961eda14cbcSMatt Macy 	}
2962eda14cbcSMatt Macy 
2963eda14cbcSMatt Macy 	WEIGHT_SET_SPACEBASED(weight);
2964eda14cbcSMatt Macy 	return (weight);
2965eda14cbcSMatt Macy }
2966eda14cbcSMatt Macy 
2967eda14cbcSMatt Macy /*
2968eda14cbcSMatt Macy  * Return the weight of the specified metaslab, according to the segment-based
2969eda14cbcSMatt Macy  * weighting algorithm. The metaslab must be loaded. This function can
2970eda14cbcSMatt Macy  * be called within a sync pass since it relies only on the metaslab's
2971eda14cbcSMatt Macy  * range tree which is always accurate when the metaslab is loaded.
2972eda14cbcSMatt Macy  */
2973eda14cbcSMatt Macy static uint64_t
2974eda14cbcSMatt Macy metaslab_weight_from_range_tree(metaslab_t *msp)
2975eda14cbcSMatt Macy {
2976eda14cbcSMatt Macy 	uint64_t weight = 0;
2977eda14cbcSMatt Macy 	uint32_t segments = 0;
2978eda14cbcSMatt Macy 
2979eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
2980eda14cbcSMatt Macy 
2981eda14cbcSMatt Macy 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2982eda14cbcSMatt Macy 	    i--) {
2983eda14cbcSMatt Macy 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2984eda14cbcSMatt Macy 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2985eda14cbcSMatt Macy 
2986eda14cbcSMatt Macy 		segments <<= 1;
2987eda14cbcSMatt Macy 		segments += msp->ms_allocatable->rt_histogram[i];
2988eda14cbcSMatt Macy 
2989eda14cbcSMatt Macy 		/*
2990eda14cbcSMatt Macy 		 * The range tree provides more precision than the space map
2991eda14cbcSMatt Macy 		 * and must be downgraded so that all values fit within the
2992eda14cbcSMatt Macy 		 * space map's histogram. This allows us to compare loaded
2993eda14cbcSMatt Macy 		 * vs. unloaded metaslabs to determine which metaslab is
2994eda14cbcSMatt Macy 		 * considered "best".
2995eda14cbcSMatt Macy 		 */
2996eda14cbcSMatt Macy 		if (i > max_idx)
2997eda14cbcSMatt Macy 			continue;
2998eda14cbcSMatt Macy 
2999eda14cbcSMatt Macy 		if (segments != 0) {
3000eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, segments);
3001eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, i);
3002eda14cbcSMatt Macy 			WEIGHT_SET_ACTIVE(weight, 0);
3003eda14cbcSMatt Macy 			break;
3004eda14cbcSMatt Macy 		}
3005eda14cbcSMatt Macy 	}
3006eda14cbcSMatt Macy 	return (weight);
3007eda14cbcSMatt Macy }
3008eda14cbcSMatt Macy 
3009eda14cbcSMatt Macy /*
3010eda14cbcSMatt Macy  * Calculate the weight based on the on-disk histogram. Should be applied
3011eda14cbcSMatt Macy  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
3012eda14cbcSMatt Macy  * give results consistent with the on-disk state
3013eda14cbcSMatt Macy  */
3014eda14cbcSMatt Macy static uint64_t
3015eda14cbcSMatt Macy metaslab_weight_from_spacemap(metaslab_t *msp)
3016eda14cbcSMatt Macy {
3017eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3018eda14cbcSMatt Macy 	ASSERT(!msp->ms_loaded);
3019eda14cbcSMatt Macy 	ASSERT(sm != NULL);
3020eda14cbcSMatt Macy 	ASSERT3U(space_map_object(sm), !=, 0);
3021eda14cbcSMatt Macy 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3022eda14cbcSMatt Macy 
3023eda14cbcSMatt Macy 	/*
3024eda14cbcSMatt Macy 	 * Create a joint histogram from all the segments that have made
3025eda14cbcSMatt Macy 	 * it to the metaslab's space map histogram, that are not yet
3026eda14cbcSMatt Macy 	 * available for allocation because they are still in the freeing
3027eda14cbcSMatt Macy 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3028eda14cbcSMatt Macy 	 * these segments from the space map's histogram to get a more
3029eda14cbcSMatt Macy 	 * accurate weight.
3030eda14cbcSMatt Macy 	 */
3031eda14cbcSMatt Macy 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3032eda14cbcSMatt Macy 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3033eda14cbcSMatt Macy 		deferspace_histogram[i] += msp->ms_synchist[i];
3034eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3035eda14cbcSMatt Macy 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3036eda14cbcSMatt Macy 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
3037eda14cbcSMatt Macy 		}
3038eda14cbcSMatt Macy 	}
3039eda14cbcSMatt Macy 
3040eda14cbcSMatt Macy 	uint64_t weight = 0;
3041eda14cbcSMatt Macy 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3042eda14cbcSMatt Macy 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3043eda14cbcSMatt Macy 		    deferspace_histogram[i]);
3044eda14cbcSMatt Macy 		uint64_t count =
3045eda14cbcSMatt Macy 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3046eda14cbcSMatt Macy 		if (count != 0) {
3047eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, count);
3048eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3049eda14cbcSMatt Macy 			WEIGHT_SET_ACTIVE(weight, 0);
3050eda14cbcSMatt Macy 			break;
3051eda14cbcSMatt Macy 		}
3052eda14cbcSMatt Macy 	}
3053eda14cbcSMatt Macy 	return (weight);
3054eda14cbcSMatt Macy }
3055eda14cbcSMatt Macy 
3056eda14cbcSMatt Macy /*
3057eda14cbcSMatt Macy  * Compute a segment-based weight for the specified metaslab. The weight
3058eda14cbcSMatt Macy  * is determined by highest bucket in the histogram. The information
3059eda14cbcSMatt Macy  * for the highest bucket is encoded into the weight value.
3060eda14cbcSMatt Macy  */
3061eda14cbcSMatt Macy static uint64_t
3062eda14cbcSMatt Macy metaslab_segment_weight(metaslab_t *msp)
3063eda14cbcSMatt Macy {
3064eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3065eda14cbcSMatt Macy 	uint64_t weight = 0;
3066eda14cbcSMatt Macy 	uint8_t shift = mg->mg_vd->vdev_ashift;
3067eda14cbcSMatt Macy 
3068eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3069eda14cbcSMatt Macy 
3070eda14cbcSMatt Macy 	/*
3071eda14cbcSMatt Macy 	 * The metaslab is completely free.
3072eda14cbcSMatt Macy 	 */
3073eda14cbcSMatt Macy 	if (metaslab_allocated_space(msp) == 0) {
3074eda14cbcSMatt Macy 		int idx = highbit64(msp->ms_size) - 1;
3075eda14cbcSMatt Macy 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3076eda14cbcSMatt Macy 
3077eda14cbcSMatt Macy 		if (idx < max_idx) {
3078eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, 1ULL);
3079eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, idx);
3080eda14cbcSMatt Macy 		} else {
3081eda14cbcSMatt Macy 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3082eda14cbcSMatt Macy 			WEIGHT_SET_INDEX(weight, max_idx);
3083eda14cbcSMatt Macy 		}
3084eda14cbcSMatt Macy 		WEIGHT_SET_ACTIVE(weight, 0);
3085eda14cbcSMatt Macy 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3086eda14cbcSMatt Macy 		return (weight);
3087eda14cbcSMatt Macy 	}
3088eda14cbcSMatt Macy 
3089eda14cbcSMatt Macy 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3090eda14cbcSMatt Macy 
3091eda14cbcSMatt Macy 	/*
3092eda14cbcSMatt Macy 	 * If the metaslab is fully allocated then just make the weight 0.
3093eda14cbcSMatt Macy 	 */
3094eda14cbcSMatt Macy 	if (metaslab_allocated_space(msp) == msp->ms_size)
3095eda14cbcSMatt Macy 		return (0);
3096eda14cbcSMatt Macy 	/*
3097eda14cbcSMatt Macy 	 * If the metaslab is already loaded, then use the range tree to
3098eda14cbcSMatt Macy 	 * determine the weight. Otherwise, we rely on the space map information
3099eda14cbcSMatt Macy 	 * to generate the weight.
3100eda14cbcSMatt Macy 	 */
3101eda14cbcSMatt Macy 	if (msp->ms_loaded) {
3102eda14cbcSMatt Macy 		weight = metaslab_weight_from_range_tree(msp);
3103eda14cbcSMatt Macy 	} else {
3104eda14cbcSMatt Macy 		weight = metaslab_weight_from_spacemap(msp);
3105eda14cbcSMatt Macy 	}
3106eda14cbcSMatt Macy 
3107eda14cbcSMatt Macy 	/*
3108eda14cbcSMatt Macy 	 * If the metaslab was active the last time we calculated its weight
3109eda14cbcSMatt Macy 	 * then keep it active. We want to consume the entire region that
3110eda14cbcSMatt Macy 	 * is associated with this weight.
3111eda14cbcSMatt Macy 	 */
3112eda14cbcSMatt Macy 	if (msp->ms_activation_weight != 0 && weight != 0)
3113eda14cbcSMatt Macy 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3114eda14cbcSMatt Macy 	return (weight);
3115eda14cbcSMatt Macy }
3116eda14cbcSMatt Macy 
3117eda14cbcSMatt Macy /*
3118eda14cbcSMatt Macy  * Determine if we should attempt to allocate from this metaslab. If the
3119eda14cbcSMatt Macy  * metaslab is loaded, then we can determine if the desired allocation
3120eda14cbcSMatt Macy  * can be satisfied by looking at the size of the maximum free segment
3121eda14cbcSMatt Macy  * on that metaslab. Otherwise, we make our decision based on the metaslab's
3122eda14cbcSMatt Macy  * weight. For segment-based weighting we can determine the maximum
3123eda14cbcSMatt Macy  * allocation based on the index encoded in its value. For space-based
3124eda14cbcSMatt Macy  * weights we rely on the entire weight (excluding the weight-type bit).
3125eda14cbcSMatt Macy  */
3126eda14cbcSMatt Macy static boolean_t
3127eda14cbcSMatt Macy metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3128eda14cbcSMatt Macy {
3129eda14cbcSMatt Macy 	/*
3130eda14cbcSMatt Macy 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
3131eda14cbcSMatt Macy 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
3132eda14cbcSMatt Macy 	 * set), and we should use the fast check as long as we're not in
3133eda14cbcSMatt Macy 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3134eda14cbcSMatt Macy 	 * seconds since the metaslab was unloaded.
3135eda14cbcSMatt Macy 	 */
3136eda14cbcSMatt Macy 	if (msp->ms_loaded ||
3137eda14cbcSMatt Macy 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3138eda14cbcSMatt Macy 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3139eda14cbcSMatt Macy 		return (msp->ms_max_size >= asize);
3140eda14cbcSMatt Macy 
3141eda14cbcSMatt Macy 	boolean_t should_allocate;
3142eda14cbcSMatt Macy 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3143eda14cbcSMatt Macy 		/*
3144eda14cbcSMatt Macy 		 * The metaslab segment weight indicates segments in the
3145eda14cbcSMatt Macy 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
3146eda14cbcSMatt Macy 		 * Since the asize might be in the middle of the range, we
3147eda14cbcSMatt Macy 		 * should attempt the allocation if asize < 2^(i+1).
3148eda14cbcSMatt Macy 		 */
3149eda14cbcSMatt Macy 		should_allocate = (asize <
3150eda14cbcSMatt Macy 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3151eda14cbcSMatt Macy 	} else {
3152eda14cbcSMatt Macy 		should_allocate = (asize <=
3153eda14cbcSMatt Macy 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3154eda14cbcSMatt Macy 	}
3155eda14cbcSMatt Macy 
3156eda14cbcSMatt Macy 	return (should_allocate);
3157eda14cbcSMatt Macy }
3158eda14cbcSMatt Macy 
3159eda14cbcSMatt Macy static uint64_t
3160eda14cbcSMatt Macy metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3161eda14cbcSMatt Macy {
3162eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
3163eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
3164eda14cbcSMatt Macy 	uint64_t weight;
3165eda14cbcSMatt Macy 
3166eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3167eda14cbcSMatt Macy 
3168eda14cbcSMatt Macy 	metaslab_set_fragmentation(msp, nodirty);
3169eda14cbcSMatt Macy 
3170eda14cbcSMatt Macy 	/*
3171eda14cbcSMatt Macy 	 * Update the maximum size. If the metaslab is loaded, this will
3172eda14cbcSMatt Macy 	 * ensure that we get an accurate maximum size if newly freed space
3173eda14cbcSMatt Macy 	 * has been added back into the free tree. If the metaslab is
3174eda14cbcSMatt Macy 	 * unloaded, we check if there's a larger free segment in the
3175eda14cbcSMatt Macy 	 * unflushed frees. This is a lower bound on the largest allocatable
3176eda14cbcSMatt Macy 	 * segment size. Coalescing of adjacent entries may reveal larger
3177eda14cbcSMatt Macy 	 * allocatable segments, but we aren't aware of those until loading
3178eda14cbcSMatt Macy 	 * the space map into a range tree.
3179eda14cbcSMatt Macy 	 */
3180eda14cbcSMatt Macy 	if (msp->ms_loaded) {
3181eda14cbcSMatt Macy 		msp->ms_max_size = metaslab_largest_allocatable(msp);
3182eda14cbcSMatt Macy 	} else {
3183eda14cbcSMatt Macy 		msp->ms_max_size = MAX(msp->ms_max_size,
3184eda14cbcSMatt Macy 		    metaslab_largest_unflushed_free(msp));
3185eda14cbcSMatt Macy 	}
3186eda14cbcSMatt Macy 
3187eda14cbcSMatt Macy 	/*
3188eda14cbcSMatt Macy 	 * Segment-based weighting requires space map histogram support.
3189eda14cbcSMatt Macy 	 */
3190eda14cbcSMatt Macy 	if (zfs_metaslab_segment_weight_enabled &&
3191eda14cbcSMatt Macy 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3192eda14cbcSMatt Macy 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3193eda14cbcSMatt Macy 	    sizeof (space_map_phys_t))) {
3194eda14cbcSMatt Macy 		weight = metaslab_segment_weight(msp);
3195eda14cbcSMatt Macy 	} else {
3196eda14cbcSMatt Macy 		weight = metaslab_space_weight(msp);
3197eda14cbcSMatt Macy 	}
3198eda14cbcSMatt Macy 	return (weight);
3199eda14cbcSMatt Macy }
3200eda14cbcSMatt Macy 
3201eda14cbcSMatt Macy void
3202eda14cbcSMatt Macy metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3203eda14cbcSMatt Macy {
3204eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3205eda14cbcSMatt Macy 
3206eda14cbcSMatt Macy 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
3207eda14cbcSMatt Macy 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3208eda14cbcSMatt Macy 	metaslab_group_sort(msp->ms_group, msp,
3209eda14cbcSMatt Macy 	    metaslab_weight(msp, B_FALSE) | was_active);
3210eda14cbcSMatt Macy }
3211eda14cbcSMatt Macy 
3212eda14cbcSMatt Macy static int
3213eda14cbcSMatt Macy metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3214eda14cbcSMatt Macy     int allocator, uint64_t activation_weight)
3215eda14cbcSMatt Macy {
3216eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3217eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3218eda14cbcSMatt Macy 
3219eda14cbcSMatt Macy 	/*
3220eda14cbcSMatt Macy 	 * If we're activating for the claim code, we don't want to actually
3221eda14cbcSMatt Macy 	 * set the metaslab up for a specific allocator.
3222eda14cbcSMatt Macy 	 */
3223eda14cbcSMatt Macy 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3224eda14cbcSMatt Macy 		ASSERT0(msp->ms_activation_weight);
3225eda14cbcSMatt Macy 		msp->ms_activation_weight = msp->ms_weight;
3226eda14cbcSMatt Macy 		metaslab_group_sort(mg, msp, msp->ms_weight |
3227eda14cbcSMatt Macy 		    activation_weight);
3228eda14cbcSMatt Macy 		return (0);
3229eda14cbcSMatt Macy 	}
3230eda14cbcSMatt Macy 
3231eda14cbcSMatt Macy 	metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3232eda14cbcSMatt Macy 	    &mga->mga_primary : &mga->mga_secondary);
3233eda14cbcSMatt Macy 
3234eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3235eda14cbcSMatt Macy 	if (*mspp != NULL) {
3236eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
3237eda14cbcSMatt Macy 		return (EEXIST);
3238eda14cbcSMatt Macy 	}
3239eda14cbcSMatt Macy 
3240eda14cbcSMatt Macy 	*mspp = msp;
3241eda14cbcSMatt Macy 	ASSERT3S(msp->ms_allocator, ==, -1);
3242eda14cbcSMatt Macy 	msp->ms_allocator = allocator;
3243eda14cbcSMatt Macy 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3244eda14cbcSMatt Macy 
3245eda14cbcSMatt Macy 	ASSERT0(msp->ms_activation_weight);
3246eda14cbcSMatt Macy 	msp->ms_activation_weight = msp->ms_weight;
3247eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp,
3248eda14cbcSMatt Macy 	    msp->ms_weight | activation_weight);
3249eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3250eda14cbcSMatt Macy 
3251eda14cbcSMatt Macy 	return (0);
3252eda14cbcSMatt Macy }
3253eda14cbcSMatt Macy 
3254eda14cbcSMatt Macy static int
3255eda14cbcSMatt Macy metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3256eda14cbcSMatt Macy {
3257eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3258eda14cbcSMatt Macy 
3259eda14cbcSMatt Macy 	/*
3260eda14cbcSMatt Macy 	 * The current metaslab is already activated for us so there
3261eda14cbcSMatt Macy 	 * is nothing to do. Already activated though, doesn't mean
3262eda14cbcSMatt Macy 	 * that this metaslab is activated for our allocator nor our
3263eda14cbcSMatt Macy 	 * requested activation weight. The metaslab could have started
3264eda14cbcSMatt Macy 	 * as an active one for our allocator but changed allocators
3265eda14cbcSMatt Macy 	 * while we were waiting to grab its ms_lock or we stole it
3266eda14cbcSMatt Macy 	 * [see find_valid_metaslab()]. This means that there is a
3267eda14cbcSMatt Macy 	 * possibility of passivating a metaslab of another allocator
3268eda14cbcSMatt Macy 	 * or from a different activation mask, from this thread.
3269eda14cbcSMatt Macy 	 */
3270eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3271eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
3272eda14cbcSMatt Macy 		return (0);
3273eda14cbcSMatt Macy 	}
3274eda14cbcSMatt Macy 
3275eda14cbcSMatt Macy 	int error = metaslab_load(msp);
3276eda14cbcSMatt Macy 	if (error != 0) {
3277eda14cbcSMatt Macy 		metaslab_group_sort(msp->ms_group, msp, 0);
3278eda14cbcSMatt Macy 		return (error);
3279eda14cbcSMatt Macy 	}
3280eda14cbcSMatt Macy 
3281eda14cbcSMatt Macy 	/*
3282eda14cbcSMatt Macy 	 * When entering metaslab_load() we may have dropped the
3283eda14cbcSMatt Macy 	 * ms_lock because we were loading this metaslab, or we
3284eda14cbcSMatt Macy 	 * were waiting for another thread to load it for us. In
3285eda14cbcSMatt Macy 	 * that scenario, we recheck the weight of the metaslab
3286eda14cbcSMatt Macy 	 * to see if it was activated by another thread.
3287eda14cbcSMatt Macy 	 *
3288eda14cbcSMatt Macy 	 * If the metaslab was activated for another allocator or
3289eda14cbcSMatt Macy 	 * it was activated with a different activation weight (e.g.
3290eda14cbcSMatt Macy 	 * we wanted to make it a primary but it was activated as
3291eda14cbcSMatt Macy 	 * secondary) we return error (EBUSY).
3292eda14cbcSMatt Macy 	 *
3293eda14cbcSMatt Macy 	 * If the metaslab was activated for the same allocator
3294eda14cbcSMatt Macy 	 * and requested activation mask, skip activating it.
3295eda14cbcSMatt Macy 	 */
3296eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3297eda14cbcSMatt Macy 		if (msp->ms_allocator != allocator)
3298eda14cbcSMatt Macy 			return (EBUSY);
3299eda14cbcSMatt Macy 
3300eda14cbcSMatt Macy 		if ((msp->ms_weight & activation_weight) == 0)
3301eda14cbcSMatt Macy 			return (SET_ERROR(EBUSY));
3302eda14cbcSMatt Macy 
3303eda14cbcSMatt Macy 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3304eda14cbcSMatt Macy 		    msp->ms_primary);
3305eda14cbcSMatt Macy 		return (0);
3306eda14cbcSMatt Macy 	}
3307eda14cbcSMatt Macy 
3308eda14cbcSMatt Macy 	/*
3309eda14cbcSMatt Macy 	 * If the metaslab has literally 0 space, it will have weight 0. In
3310eda14cbcSMatt Macy 	 * that case, don't bother activating it. This can happen if the
3311eda14cbcSMatt Macy 	 * metaslab had space during find_valid_metaslab, but another thread
3312eda14cbcSMatt Macy 	 * loaded it and used all that space while we were waiting to grab the
3313eda14cbcSMatt Macy 	 * lock.
3314eda14cbcSMatt Macy 	 */
3315eda14cbcSMatt Macy 	if (msp->ms_weight == 0) {
3316eda14cbcSMatt Macy 		ASSERT0(range_tree_space(msp->ms_allocatable));
3317eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
3318eda14cbcSMatt Macy 	}
3319eda14cbcSMatt Macy 
3320eda14cbcSMatt Macy 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3321eda14cbcSMatt Macy 	    allocator, activation_weight)) != 0) {
3322eda14cbcSMatt Macy 		return (error);
3323eda14cbcSMatt Macy 	}
3324eda14cbcSMatt Macy 
3325eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3326eda14cbcSMatt Macy 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3327eda14cbcSMatt Macy 
3328eda14cbcSMatt Macy 	return (0);
3329eda14cbcSMatt Macy }
3330eda14cbcSMatt Macy 
3331eda14cbcSMatt Macy static void
3332eda14cbcSMatt Macy metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3333eda14cbcSMatt Macy     uint64_t weight)
3334eda14cbcSMatt Macy {
3335eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3336eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3337eda14cbcSMatt Macy 
3338eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3339eda14cbcSMatt Macy 		metaslab_group_sort(mg, msp, weight);
3340eda14cbcSMatt Macy 		return;
3341eda14cbcSMatt Macy 	}
3342eda14cbcSMatt Macy 
3343eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3344eda14cbcSMatt Macy 	ASSERT3P(msp->ms_group, ==, mg);
3345eda14cbcSMatt Macy 	ASSERT3S(0, <=, msp->ms_allocator);
3346eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3347eda14cbcSMatt Macy 
3348eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3349eda14cbcSMatt Macy 	if (msp->ms_primary) {
3350eda14cbcSMatt Macy 		ASSERT3P(mga->mga_primary, ==, msp);
3351eda14cbcSMatt Macy 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3352eda14cbcSMatt Macy 		mga->mga_primary = NULL;
3353eda14cbcSMatt Macy 	} else {
3354eda14cbcSMatt Macy 		ASSERT3P(mga->mga_secondary, ==, msp);
3355eda14cbcSMatt Macy 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3356eda14cbcSMatt Macy 		mga->mga_secondary = NULL;
3357eda14cbcSMatt Macy 	}
3358eda14cbcSMatt Macy 	msp->ms_allocator = -1;
3359eda14cbcSMatt Macy 	metaslab_group_sort_impl(mg, msp, weight);
3360eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3361eda14cbcSMatt Macy }
3362eda14cbcSMatt Macy 
3363eda14cbcSMatt Macy static void
3364eda14cbcSMatt Macy metaslab_passivate(metaslab_t *msp, uint64_t weight)
3365eda14cbcSMatt Macy {
3366eda14cbcSMatt Macy 	uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3367eda14cbcSMatt Macy 
3368eda14cbcSMatt Macy 	/*
3369eda14cbcSMatt Macy 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3370eda14cbcSMatt Macy 	 * this metaslab again.  In that case, it had better be empty,
3371eda14cbcSMatt Macy 	 * or we would be leaving space on the table.
3372eda14cbcSMatt Macy 	 */
3373eda14cbcSMatt Macy 	ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3374eda14cbcSMatt Macy 	    size >= SPA_MINBLOCKSIZE ||
3375eda14cbcSMatt Macy 	    range_tree_space(msp->ms_allocatable) == 0);
3376eda14cbcSMatt Macy 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3377eda14cbcSMatt Macy 
3378eda14cbcSMatt Macy 	ASSERT(msp->ms_activation_weight != 0);
3379eda14cbcSMatt Macy 	msp->ms_activation_weight = 0;
3380eda14cbcSMatt Macy 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3381eda14cbcSMatt Macy 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3382eda14cbcSMatt Macy }
3383eda14cbcSMatt Macy 
3384eda14cbcSMatt Macy /*
3385eda14cbcSMatt Macy  * Segment-based metaslabs are activated once and remain active until
3386eda14cbcSMatt Macy  * we either fail an allocation attempt (similar to space-based metaslabs)
3387eda14cbcSMatt Macy  * or have exhausted the free space in zfs_metaslab_switch_threshold
3388eda14cbcSMatt Macy  * buckets since the metaslab was activated. This function checks to see
3389eda14cbcSMatt Macy  * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3390eda14cbcSMatt Macy  * metaslab and passivates it proactively. This will allow us to select a
3391eda14cbcSMatt Macy  * metaslab with a larger contiguous region, if any, remaining within this
3392eda14cbcSMatt Macy  * metaslab group. If we're in sync pass > 1, then we continue using this
3393eda14cbcSMatt Macy  * metaslab so that we don't dirty more block and cause more sync passes.
3394eda14cbcSMatt Macy  */
3395eda14cbcSMatt Macy static void
3396eda14cbcSMatt Macy metaslab_segment_may_passivate(metaslab_t *msp)
3397eda14cbcSMatt Macy {
3398eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3399eda14cbcSMatt Macy 
3400eda14cbcSMatt Macy 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3401eda14cbcSMatt Macy 		return;
3402eda14cbcSMatt Macy 
3403eda14cbcSMatt Macy 	/*
3404eda14cbcSMatt Macy 	 * Since we are in the middle of a sync pass, the most accurate
3405eda14cbcSMatt Macy 	 * information that is accessible to us is the in-core range tree
3406eda14cbcSMatt Macy 	 * histogram; calculate the new weight based on that information.
3407eda14cbcSMatt Macy 	 */
3408eda14cbcSMatt Macy 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3409eda14cbcSMatt Macy 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3410eda14cbcSMatt Macy 	int current_idx = WEIGHT_GET_INDEX(weight);
3411eda14cbcSMatt Macy 
3412eda14cbcSMatt Macy 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3413eda14cbcSMatt Macy 		metaslab_passivate(msp, weight);
3414eda14cbcSMatt Macy }
3415eda14cbcSMatt Macy 
3416eda14cbcSMatt Macy static void
3417eda14cbcSMatt Macy metaslab_preload(void *arg)
3418eda14cbcSMatt Macy {
3419eda14cbcSMatt Macy 	metaslab_t *msp = arg;
3420eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
3421eda14cbcSMatt Macy 	spa_t *spa = mc->mc_spa;
3422eda14cbcSMatt Macy 	fstrans_cookie_t cookie = spl_fstrans_mark();
3423eda14cbcSMatt Macy 
3424eda14cbcSMatt Macy 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3425eda14cbcSMatt Macy 
3426eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3427eda14cbcSMatt Macy 	(void) metaslab_load(msp);
3428eda14cbcSMatt Macy 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3429eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3430eda14cbcSMatt Macy 	spl_fstrans_unmark(cookie);
3431eda14cbcSMatt Macy }
3432eda14cbcSMatt Macy 
3433eda14cbcSMatt Macy static void
3434eda14cbcSMatt Macy metaslab_group_preload(metaslab_group_t *mg)
3435eda14cbcSMatt Macy {
3436eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
3437eda14cbcSMatt Macy 	metaslab_t *msp;
3438eda14cbcSMatt Macy 	avl_tree_t *t = &mg->mg_metaslab_tree;
3439eda14cbcSMatt Macy 	int m = 0;
3440eda14cbcSMatt Macy 
3441eda14cbcSMatt Macy 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3442eda14cbcSMatt Macy 		taskq_wait_outstanding(mg->mg_taskq, 0);
3443eda14cbcSMatt Macy 		return;
3444eda14cbcSMatt Macy 	}
3445eda14cbcSMatt Macy 
3446eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
3447eda14cbcSMatt Macy 
3448eda14cbcSMatt Macy 	/*
3449eda14cbcSMatt Macy 	 * Load the next potential metaslabs
3450eda14cbcSMatt Macy 	 */
3451eda14cbcSMatt Macy 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3452eda14cbcSMatt Macy 		ASSERT3P(msp->ms_group, ==, mg);
3453eda14cbcSMatt Macy 
3454eda14cbcSMatt Macy 		/*
3455eda14cbcSMatt Macy 		 * We preload only the maximum number of metaslabs specified
3456eda14cbcSMatt Macy 		 * by metaslab_preload_limit. If a metaslab is being forced
3457eda14cbcSMatt Macy 		 * to condense then we preload it too. This will ensure
3458eda14cbcSMatt Macy 		 * that force condensing happens in the next txg.
3459eda14cbcSMatt Macy 		 */
3460eda14cbcSMatt Macy 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3461eda14cbcSMatt Macy 			continue;
3462eda14cbcSMatt Macy 		}
3463eda14cbcSMatt Macy 
3464eda14cbcSMatt Macy 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3465eda14cbcSMatt Macy 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3466eda14cbcSMatt Macy 	}
3467eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
3468eda14cbcSMatt Macy }
3469eda14cbcSMatt Macy 
3470eda14cbcSMatt Macy /*
3471eda14cbcSMatt Macy  * Determine if the space map's on-disk footprint is past our tolerance for
3472eda14cbcSMatt Macy  * inefficiency. We would like to use the following criteria to make our
3473eda14cbcSMatt Macy  * decision:
3474eda14cbcSMatt Macy  *
3475eda14cbcSMatt Macy  * 1. Do not condense if the size of the space map object would dramatically
3476eda14cbcSMatt Macy  *    increase as a result of writing out the free space range tree.
3477eda14cbcSMatt Macy  *
3478eda14cbcSMatt Macy  * 2. Condense if the on on-disk space map representation is at least
3479eda14cbcSMatt Macy  *    zfs_condense_pct/100 times the size of the optimal representation
3480eda14cbcSMatt Macy  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3481eda14cbcSMatt Macy  *
3482eda14cbcSMatt Macy  * 3. Do not condense if the on-disk size of the space map does not actually
3483eda14cbcSMatt Macy  *    decrease.
3484eda14cbcSMatt Macy  *
3485eda14cbcSMatt Macy  * Unfortunately, we cannot compute the on-disk size of the space map in this
3486eda14cbcSMatt Macy  * context because we cannot accurately compute the effects of compression, etc.
3487eda14cbcSMatt Macy  * Instead, we apply the heuristic described in the block comment for
3488eda14cbcSMatt Macy  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3489eda14cbcSMatt Macy  * is greater than a threshold number of blocks.
3490eda14cbcSMatt Macy  */
3491eda14cbcSMatt Macy static boolean_t
3492eda14cbcSMatt Macy metaslab_should_condense(metaslab_t *msp)
3493eda14cbcSMatt Macy {
3494eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3495eda14cbcSMatt Macy 	vdev_t *vd = msp->ms_group->mg_vd;
3496eda14cbcSMatt Macy 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3497eda14cbcSMatt Macy 
3498eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3499eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3500eda14cbcSMatt Macy 	ASSERT(sm != NULL);
3501eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3502eda14cbcSMatt Macy 
3503eda14cbcSMatt Macy 	/*
3504eda14cbcSMatt Macy 	 * We always condense metaslabs that are empty and metaslabs for
3505eda14cbcSMatt Macy 	 * which a condense request has been made.
3506eda14cbcSMatt Macy 	 */
3507eda14cbcSMatt Macy 	if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3508eda14cbcSMatt Macy 	    msp->ms_condense_wanted)
3509eda14cbcSMatt Macy 		return (B_TRUE);
3510eda14cbcSMatt Macy 
3511eda14cbcSMatt Macy 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3512eda14cbcSMatt Macy 	uint64_t object_size = space_map_length(sm);
3513eda14cbcSMatt Macy 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3514eda14cbcSMatt Macy 	    msp->ms_allocatable, SM_NO_VDEVID);
3515eda14cbcSMatt Macy 
3516eda14cbcSMatt Macy 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3517eda14cbcSMatt Macy 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3518eda14cbcSMatt Macy }
3519eda14cbcSMatt Macy 
3520eda14cbcSMatt Macy /*
3521eda14cbcSMatt Macy  * Condense the on-disk space map representation to its minimized form.
3522eda14cbcSMatt Macy  * The minimized form consists of a small number of allocations followed
3523eda14cbcSMatt Macy  * by the entries of the free range tree (ms_allocatable). The condensed
3524eda14cbcSMatt Macy  * spacemap contains all the entries of previous TXGs (including those in
3525eda14cbcSMatt Macy  * the pool-wide log spacemaps; thus this is effectively a superset of
3526eda14cbcSMatt Macy  * metaslab_flush()), but this TXG's entries still need to be written.
3527eda14cbcSMatt Macy  */
3528eda14cbcSMatt Macy static void
3529eda14cbcSMatt Macy metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3530eda14cbcSMatt Macy {
3531eda14cbcSMatt Macy 	range_tree_t *condense_tree;
3532eda14cbcSMatt Macy 	space_map_t *sm = msp->ms_sm;
3533eda14cbcSMatt Macy 	uint64_t txg = dmu_tx_get_txg(tx);
3534eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3535eda14cbcSMatt Macy 
3536eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3537eda14cbcSMatt Macy 	ASSERT(msp->ms_loaded);
3538eda14cbcSMatt Macy 	ASSERT(msp->ms_sm != NULL);
3539eda14cbcSMatt Macy 
3540eda14cbcSMatt Macy 	/*
3541eda14cbcSMatt Macy 	 * In order to condense the space map, we need to change it so it
3542eda14cbcSMatt Macy 	 * only describes which segments are currently allocated and free.
3543eda14cbcSMatt Macy 	 *
3544eda14cbcSMatt Macy 	 * All the current free space resides in the ms_allocatable, all
3545eda14cbcSMatt Macy 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3546eda14cbcSMatt Macy 	 * ms_freed because it is empty because we're in sync pass 1. We
3547eda14cbcSMatt Macy 	 * ignore ms_freeing because these changes are not yet reflected
3548eda14cbcSMatt Macy 	 * in the spacemap (they will be written later this txg).
3549eda14cbcSMatt Macy 	 *
3550eda14cbcSMatt Macy 	 * So to truncate the space map to represent all the entries of
3551eda14cbcSMatt Macy 	 * previous TXGs we do the following:
3552eda14cbcSMatt Macy 	 *
3553eda14cbcSMatt Macy 	 * 1] We create a range tree (condense tree) that is 100% empty.
3554eda14cbcSMatt Macy 	 * 2] We add to it all segments found in the ms_defer trees
3555eda14cbcSMatt Macy 	 *    as those segments are marked as free in the original space
3556eda14cbcSMatt Macy 	 *    map. We do the same with the ms_allocating trees for the same
3557eda14cbcSMatt Macy 	 *    reason. Adding these segments should be a relatively
3558eda14cbcSMatt Macy 	 *    inexpensive operation since we expect these trees to have a
3559eda14cbcSMatt Macy 	 *    small number of nodes.
3560eda14cbcSMatt Macy 	 * 3] We vacate any unflushed allocs, since they are not frees we
3561eda14cbcSMatt Macy 	 *    need to add to the condense tree. Then we vacate any
3562eda14cbcSMatt Macy 	 *    unflushed frees as they should already be part of ms_allocatable.
3563eda14cbcSMatt Macy 	 * 4] At this point, we would ideally like to add all segments
3564eda14cbcSMatt Macy 	 *    in the ms_allocatable tree from the condense tree. This way
3565eda14cbcSMatt Macy 	 *    we would write all the entries of the condense tree as the
3566eda14cbcSMatt Macy 	 *    condensed space map, which would only contain freed
3567eda14cbcSMatt Macy 	 *    segments with everything else assumed to be allocated.
3568eda14cbcSMatt Macy 	 *
3569eda14cbcSMatt Macy 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3570eda14cbcSMatt Macy 	 *    be large, and therefore computationally expensive to add to
3571eda14cbcSMatt Macy 	 *    the condense_tree. Instead we first sync out an entry marking
3572eda14cbcSMatt Macy 	 *    everything as allocated, then the condense_tree and then the
3573eda14cbcSMatt Macy 	 *    ms_allocatable, in the condensed space map. While this is not
3574eda14cbcSMatt Macy 	 *    optimal, it is typically close to optimal and more importantly
3575eda14cbcSMatt Macy 	 *    much cheaper to compute.
3576eda14cbcSMatt Macy 	 *
3577eda14cbcSMatt Macy 	 * 5] Finally, as both of the unflushed trees were written to our
3578eda14cbcSMatt Macy 	 *    new and condensed metaslab space map, we basically flushed
3579eda14cbcSMatt Macy 	 *    all the unflushed changes to disk, thus we call
3580eda14cbcSMatt Macy 	 *    metaslab_flush_update().
3581eda14cbcSMatt Macy 	 */
3582eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3583eda14cbcSMatt Macy 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3584eda14cbcSMatt Macy 
3585eda14cbcSMatt Macy 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3586eda14cbcSMatt Macy 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
3587eda14cbcSMatt Macy 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
3588eda14cbcSMatt Macy 	    spa->spa_name, space_map_length(msp->ms_sm),
3589eda14cbcSMatt Macy 	    range_tree_numsegs(msp->ms_allocatable),
3590eda14cbcSMatt Macy 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3591eda14cbcSMatt Macy 
3592eda14cbcSMatt Macy 	msp->ms_condense_wanted = B_FALSE;
3593eda14cbcSMatt Macy 
3594eda14cbcSMatt Macy 	range_seg_type_t type;
3595eda14cbcSMatt Macy 	uint64_t shift, start;
3596eda14cbcSMatt Macy 	type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3597eda14cbcSMatt Macy 	    &start, &shift);
3598eda14cbcSMatt Macy 
3599eda14cbcSMatt Macy 	condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3600eda14cbcSMatt Macy 
3601eda14cbcSMatt Macy 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3602eda14cbcSMatt Macy 		range_tree_walk(msp->ms_defer[t],
3603eda14cbcSMatt Macy 		    range_tree_add, condense_tree);
3604eda14cbcSMatt Macy 	}
3605eda14cbcSMatt Macy 
3606eda14cbcSMatt Macy 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3607eda14cbcSMatt Macy 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3608eda14cbcSMatt Macy 		    range_tree_add, condense_tree);
3609eda14cbcSMatt Macy 	}
3610eda14cbcSMatt Macy 
3611eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3612eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
3613eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
3614eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
3615eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3616eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3617eda14cbcSMatt Macy 
3618eda14cbcSMatt Macy 	/*
3619eda14cbcSMatt Macy 	 * We're about to drop the metaslab's lock thus allowing other
3620eda14cbcSMatt Macy 	 * consumers to change it's content. Set the metaslab's ms_condensing
3621eda14cbcSMatt Macy 	 * flag to ensure that allocations on this metaslab do not occur
3622eda14cbcSMatt Macy 	 * while we're in the middle of committing it to disk. This is only
3623eda14cbcSMatt Macy 	 * critical for ms_allocatable as all other range trees use per TXG
3624eda14cbcSMatt Macy 	 * views of their content.
3625eda14cbcSMatt Macy 	 */
3626eda14cbcSMatt Macy 	msp->ms_condensing = B_TRUE;
3627eda14cbcSMatt Macy 
3628eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3629eda14cbcSMatt Macy 	uint64_t object = space_map_object(msp->ms_sm);
3630eda14cbcSMatt Macy 	space_map_truncate(sm,
3631eda14cbcSMatt Macy 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3632eda14cbcSMatt Macy 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3633eda14cbcSMatt Macy 
3634eda14cbcSMatt Macy 	/*
3635eda14cbcSMatt Macy 	 * space_map_truncate() may have reallocated the spacemap object.
3636eda14cbcSMatt Macy 	 * If so, update the vdev_ms_array.
3637eda14cbcSMatt Macy 	 */
3638eda14cbcSMatt Macy 	if (space_map_object(msp->ms_sm) != object) {
3639eda14cbcSMatt Macy 		object = space_map_object(msp->ms_sm);
3640eda14cbcSMatt Macy 		dmu_write(spa->spa_meta_objset,
3641eda14cbcSMatt Macy 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3642eda14cbcSMatt Macy 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3643eda14cbcSMatt Macy 	}
3644eda14cbcSMatt Macy 
3645eda14cbcSMatt Macy 	/*
3646eda14cbcSMatt Macy 	 * Note:
3647eda14cbcSMatt Macy 	 * When the log space map feature is enabled, each space map will
3648eda14cbcSMatt Macy 	 * always have ALLOCS followed by FREES for each sync pass. This is
3649eda14cbcSMatt Macy 	 * typically true even when the log space map feature is disabled,
3650eda14cbcSMatt Macy 	 * except from the case where a metaslab goes through metaslab_sync()
3651eda14cbcSMatt Macy 	 * and gets condensed. In that case the metaslab's space map will have
3652eda14cbcSMatt Macy 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3653eda14cbcSMatt Macy 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3654eda14cbcSMatt Macy 	 * sync pass 1.
3655eda14cbcSMatt Macy 	 */
3656eda14cbcSMatt Macy 	range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3657eda14cbcSMatt Macy 	    shift);
3658eda14cbcSMatt Macy 	range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3659eda14cbcSMatt Macy 	space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3660eda14cbcSMatt Macy 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3661eda14cbcSMatt Macy 	space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3662eda14cbcSMatt Macy 
3663eda14cbcSMatt Macy 	range_tree_vacate(condense_tree, NULL, NULL);
3664eda14cbcSMatt Macy 	range_tree_destroy(condense_tree);
3665eda14cbcSMatt Macy 	range_tree_vacate(tmp_tree, NULL, NULL);
3666eda14cbcSMatt Macy 	range_tree_destroy(tmp_tree);
3667eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3668eda14cbcSMatt Macy 
3669eda14cbcSMatt Macy 	msp->ms_condensing = B_FALSE;
3670eda14cbcSMatt Macy 	metaslab_flush_update(msp, tx);
3671eda14cbcSMatt Macy }
3672eda14cbcSMatt Macy 
3673eda14cbcSMatt Macy /*
3674eda14cbcSMatt Macy  * Called when the metaslab has been flushed (its own spacemap now reflects
3675eda14cbcSMatt Macy  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3676eda14cbcSMatt Macy  * metadata and any pool-wide related log space map data (e.g. summary,
3677eda14cbcSMatt Macy  * obsolete logs, etc..) to reflect that.
3678eda14cbcSMatt Macy  */
3679eda14cbcSMatt Macy static void
3680eda14cbcSMatt Macy metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3681eda14cbcSMatt Macy {
3682eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3683eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
3684eda14cbcSMatt Macy 
3685eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3686eda14cbcSMatt Macy 
3687eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3688eda14cbcSMatt Macy 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3689eda14cbcSMatt Macy 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3690eda14cbcSMatt Macy 
3691eda14cbcSMatt Macy 	/*
3692eda14cbcSMatt Macy 	 * Just because a metaslab got flushed, that doesn't mean that
3693eda14cbcSMatt Macy 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3694eda14cbcSMatt Macy 	 * update ms_synced_length here in case it doesn't.
3695eda14cbcSMatt Macy 	 */
3696eda14cbcSMatt Macy 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3697eda14cbcSMatt Macy 
3698eda14cbcSMatt Macy 	/*
3699eda14cbcSMatt Macy 	 * We may end up here from metaslab_condense() without the
3700eda14cbcSMatt Macy 	 * feature being active. In that case this is a no-op.
3701eda14cbcSMatt Macy 	 */
3702eda14cbcSMatt Macy 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
3703eda14cbcSMatt Macy 		return;
3704eda14cbcSMatt Macy 
3705eda14cbcSMatt Macy 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3706eda14cbcSMatt Macy 	ASSERT(msp->ms_sm != NULL);
3707eda14cbcSMatt Macy 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3708eda14cbcSMatt Macy 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3709eda14cbcSMatt Macy 
3710eda14cbcSMatt Macy 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3711eda14cbcSMatt Macy 
3712eda14cbcSMatt Macy 	/* update metaslab's position in our flushing tree */
3713eda14cbcSMatt Macy 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3714eda14cbcSMatt Macy 	mutex_enter(&spa->spa_flushed_ms_lock);
3715eda14cbcSMatt Macy 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3716eda14cbcSMatt Macy 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3717eda14cbcSMatt Macy 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3718eda14cbcSMatt Macy 	mutex_exit(&spa->spa_flushed_ms_lock);
3719eda14cbcSMatt Macy 
3720eda14cbcSMatt Macy 	/* update metaslab counts of spa_log_sm_t nodes */
3721eda14cbcSMatt Macy 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3722eda14cbcSMatt Macy 	spa_log_sm_increment_current_mscount(spa);
3723eda14cbcSMatt Macy 
3724eda14cbcSMatt Macy 	/* cleanup obsolete logs if any */
3725eda14cbcSMatt Macy 	uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3726eda14cbcSMatt Macy 	spa_cleanup_old_sm_logs(spa, tx);
3727eda14cbcSMatt Macy 	uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3728eda14cbcSMatt Macy 	VERIFY3U(log_blocks_after, <=, log_blocks_before);
3729eda14cbcSMatt Macy 
3730eda14cbcSMatt Macy 	/* update log space map summary */
3731eda14cbcSMatt Macy 	uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3732eda14cbcSMatt Macy 	spa_log_summary_add_flushed_metaslab(spa);
3733eda14cbcSMatt Macy 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3734eda14cbcSMatt Macy 	spa_log_summary_decrement_blkcount(spa, blocks_gone);
3735eda14cbcSMatt Macy }
3736eda14cbcSMatt Macy 
3737eda14cbcSMatt Macy boolean_t
3738eda14cbcSMatt Macy metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3739eda14cbcSMatt Macy {
3740eda14cbcSMatt Macy 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3741eda14cbcSMatt Macy 
3742eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3743eda14cbcSMatt Macy 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3744eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3745eda14cbcSMatt Macy 
3746eda14cbcSMatt Macy 	ASSERT(msp->ms_sm != NULL);
3747eda14cbcSMatt Macy 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3748eda14cbcSMatt Macy 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3749eda14cbcSMatt Macy 
3750eda14cbcSMatt Macy 	/*
3751eda14cbcSMatt Macy 	 * There is nothing wrong with flushing the same metaslab twice, as
3752eda14cbcSMatt Macy 	 * this codepath should work on that case. However, the current
3753eda14cbcSMatt Macy 	 * flushing scheme makes sure to avoid this situation as we would be
3754eda14cbcSMatt Macy 	 * making all these calls without having anything meaningful to write
3755eda14cbcSMatt Macy 	 * to disk. We assert this behavior here.
3756eda14cbcSMatt Macy 	 */
3757eda14cbcSMatt Macy 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3758eda14cbcSMatt Macy 
3759eda14cbcSMatt Macy 	/*
3760eda14cbcSMatt Macy 	 * We can not flush while loading, because then we would
3761eda14cbcSMatt Macy 	 * not load the ms_unflushed_{allocs,frees}.
3762eda14cbcSMatt Macy 	 */
3763eda14cbcSMatt Macy 	if (msp->ms_loading)
3764eda14cbcSMatt Macy 		return (B_FALSE);
3765eda14cbcSMatt Macy 
3766eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3767eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3768eda14cbcSMatt Macy 
3769eda14cbcSMatt Macy 	/*
3770eda14cbcSMatt Macy 	 * Metaslab condensing is effectively flushing. Therefore if the
3771eda14cbcSMatt Macy 	 * metaslab can be condensed we can just condense it instead of
3772eda14cbcSMatt Macy 	 * flushing it.
3773eda14cbcSMatt Macy 	 *
3774eda14cbcSMatt Macy 	 * Note that metaslab_condense() does call metaslab_flush_update()
3775eda14cbcSMatt Macy 	 * so we can just return immediately after condensing. We also
3776eda14cbcSMatt Macy 	 * don't need to care about setting ms_flushing or broadcasting
3777eda14cbcSMatt Macy 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3778eda14cbcSMatt Macy 	 * metaslab_condense(), as the metaslab is already loaded.
3779eda14cbcSMatt Macy 	 */
3780eda14cbcSMatt Macy 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3781eda14cbcSMatt Macy 		metaslab_group_t *mg = msp->ms_group;
3782eda14cbcSMatt Macy 
3783eda14cbcSMatt Macy 		/*
3784eda14cbcSMatt Macy 		 * For all histogram operations below refer to the
3785eda14cbcSMatt Macy 		 * comments of metaslab_sync() where we follow a
3786eda14cbcSMatt Macy 		 * similar procedure.
3787eda14cbcSMatt Macy 		 */
3788eda14cbcSMatt Macy 		metaslab_group_histogram_verify(mg);
3789eda14cbcSMatt Macy 		metaslab_class_histogram_verify(mg->mg_class);
3790eda14cbcSMatt Macy 		metaslab_group_histogram_remove(mg, msp);
3791eda14cbcSMatt Macy 
3792eda14cbcSMatt Macy 		metaslab_condense(msp, tx);
3793eda14cbcSMatt Macy 
3794eda14cbcSMatt Macy 		space_map_histogram_clear(msp->ms_sm);
3795eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3796eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_freed));
3797eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3798eda14cbcSMatt Macy 			space_map_histogram_add(msp->ms_sm,
3799eda14cbcSMatt Macy 			    msp->ms_defer[t], tx);
3800eda14cbcSMatt Macy 		}
3801eda14cbcSMatt Macy 		metaslab_aux_histograms_update(msp);
3802eda14cbcSMatt Macy 
3803eda14cbcSMatt Macy 		metaslab_group_histogram_add(mg, msp);
3804eda14cbcSMatt Macy 		metaslab_group_histogram_verify(mg);
3805eda14cbcSMatt Macy 		metaslab_class_histogram_verify(mg->mg_class);
3806eda14cbcSMatt Macy 
3807eda14cbcSMatt Macy 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3808eda14cbcSMatt Macy 
3809eda14cbcSMatt Macy 		/*
3810eda14cbcSMatt Macy 		 * Since we recreated the histogram (and potentially
3811eda14cbcSMatt Macy 		 * the ms_sm too while condensing) ensure that the
3812eda14cbcSMatt Macy 		 * weight is updated too because we are not guaranteed
3813eda14cbcSMatt Macy 		 * that this metaslab is dirty and will go through
3814eda14cbcSMatt Macy 		 * metaslab_sync_done().
3815eda14cbcSMatt Macy 		 */
3816eda14cbcSMatt Macy 		metaslab_recalculate_weight_and_sort(msp);
3817eda14cbcSMatt Macy 		return (B_TRUE);
3818eda14cbcSMatt Macy 	}
3819eda14cbcSMatt Macy 
3820eda14cbcSMatt Macy 	msp->ms_flushing = B_TRUE;
3821eda14cbcSMatt Macy 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3822eda14cbcSMatt Macy 
3823eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
3824eda14cbcSMatt Macy 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3825eda14cbcSMatt Macy 	    SM_NO_VDEVID, tx);
3826eda14cbcSMatt Macy 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3827eda14cbcSMatt Macy 	    SM_NO_VDEVID, tx);
3828eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3829eda14cbcSMatt Macy 
3830eda14cbcSMatt Macy 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3831eda14cbcSMatt Macy 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3832eda14cbcSMatt Macy 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3833eda14cbcSMatt Macy 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3834eda14cbcSMatt Macy 		    "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
3835eda14cbcSMatt Macy 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
3836eda14cbcSMatt Macy 		    range_tree_space(msp->ms_unflushed_allocs),
3837eda14cbcSMatt Macy 		    range_tree_space(msp->ms_unflushed_frees),
3838eda14cbcSMatt Macy 		    (sm_len_after - sm_len_before));
3839eda14cbcSMatt Macy 	}
3840eda14cbcSMatt Macy 
3841eda14cbcSMatt Macy 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3842eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp));
3843eda14cbcSMatt Macy 	spa->spa_unflushed_stats.sus_memused -=
3844eda14cbcSMatt Macy 	    metaslab_unflushed_changes_memused(msp);
3845eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3846eda14cbcSMatt Macy 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3847eda14cbcSMatt Macy 
3848eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3849eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3850eda14cbcSMatt Macy 
3851eda14cbcSMatt Macy 	metaslab_flush_update(msp, tx);
3852eda14cbcSMatt Macy 
3853eda14cbcSMatt Macy 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3854eda14cbcSMatt Macy 	metaslab_verify_weight_and_frag(msp);
3855eda14cbcSMatt Macy 
3856eda14cbcSMatt Macy 	msp->ms_flushing = B_FALSE;
3857eda14cbcSMatt Macy 	cv_broadcast(&msp->ms_flush_cv);
3858eda14cbcSMatt Macy 	return (B_TRUE);
3859eda14cbcSMatt Macy }
3860eda14cbcSMatt Macy 
3861eda14cbcSMatt Macy /*
3862eda14cbcSMatt Macy  * Write a metaslab to disk in the context of the specified transaction group.
3863eda14cbcSMatt Macy  */
3864eda14cbcSMatt Macy void
3865eda14cbcSMatt Macy metaslab_sync(metaslab_t *msp, uint64_t txg)
3866eda14cbcSMatt Macy {
3867eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
3868eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
3869eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
3870eda14cbcSMatt Macy 	objset_t *mos = spa_meta_objset(spa);
3871eda14cbcSMatt Macy 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3872eda14cbcSMatt Macy 	dmu_tx_t *tx;
3873eda14cbcSMatt Macy 
3874eda14cbcSMatt Macy 	ASSERT(!vd->vdev_ishole);
3875eda14cbcSMatt Macy 
3876eda14cbcSMatt Macy 	/*
3877eda14cbcSMatt Macy 	 * This metaslab has just been added so there's no work to do now.
3878eda14cbcSMatt Macy 	 */
3879eda14cbcSMatt Macy 	if (msp->ms_freeing == NULL) {
3880eda14cbcSMatt Macy 		ASSERT3P(alloctree, ==, NULL);
3881eda14cbcSMatt Macy 		return;
3882eda14cbcSMatt Macy 	}
3883eda14cbcSMatt Macy 
3884eda14cbcSMatt Macy 	ASSERT3P(alloctree, !=, NULL);
3885eda14cbcSMatt Macy 	ASSERT3P(msp->ms_freeing, !=, NULL);
3886eda14cbcSMatt Macy 	ASSERT3P(msp->ms_freed, !=, NULL);
3887eda14cbcSMatt Macy 	ASSERT3P(msp->ms_checkpointing, !=, NULL);
3888eda14cbcSMatt Macy 	ASSERT3P(msp->ms_trim, !=, NULL);
3889eda14cbcSMatt Macy 
3890eda14cbcSMatt Macy 	/*
3891eda14cbcSMatt Macy 	 * Normally, we don't want to process a metaslab if there are no
3892eda14cbcSMatt Macy 	 * allocations or frees to perform. However, if the metaslab is being
3893eda14cbcSMatt Macy 	 * forced to condense, it's loaded and we're not beyond the final
3894eda14cbcSMatt Macy 	 * dirty txg, we need to let it through. Not condensing beyond the
3895eda14cbcSMatt Macy 	 * final dirty txg prevents an issue where metaslabs that need to be
3896eda14cbcSMatt Macy 	 * condensed but were loaded for other reasons could cause a panic
3897eda14cbcSMatt Macy 	 * here. By only checking the txg in that branch of the conditional,
3898eda14cbcSMatt Macy 	 * we preserve the utility of the VERIFY statements in all other
3899eda14cbcSMatt Macy 	 * cases.
3900eda14cbcSMatt Macy 	 */
3901eda14cbcSMatt Macy 	if (range_tree_is_empty(alloctree) &&
3902eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_freeing) &&
3903eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_checkpointing) &&
3904eda14cbcSMatt Macy 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3905eda14cbcSMatt Macy 	    txg <= spa_final_dirty_txg(spa)))
3906eda14cbcSMatt Macy 		return;
3907eda14cbcSMatt Macy 
3908eda14cbcSMatt Macy 
3909eda14cbcSMatt Macy 	VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
3910eda14cbcSMatt Macy 
3911eda14cbcSMatt Macy 	/*
3912eda14cbcSMatt Macy 	 * The only state that can actually be changing concurrently
3913eda14cbcSMatt Macy 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3914eda14cbcSMatt Macy 	 * other thread can be modifying this txg's alloc, freeing,
3915eda14cbcSMatt Macy 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
3916eda14cbcSMatt Macy 	 * could call into the DMU, because the DMU can call down to
3917eda14cbcSMatt Macy 	 * us (e.g. via zio_free()) at any time.
3918eda14cbcSMatt Macy 	 *
3919eda14cbcSMatt Macy 	 * The spa_vdev_remove_thread() can be reading metaslab state
3920eda14cbcSMatt Macy 	 * concurrently, and it is locked out by the ms_sync_lock.
3921eda14cbcSMatt Macy 	 * Note that the ms_lock is insufficient for this, because it
3922eda14cbcSMatt Macy 	 * is dropped by space_map_write().
3923eda14cbcSMatt Macy 	 */
3924eda14cbcSMatt Macy 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3925eda14cbcSMatt Macy 
3926eda14cbcSMatt Macy 	/*
3927eda14cbcSMatt Macy 	 * Generate a log space map if one doesn't exist already.
3928eda14cbcSMatt Macy 	 */
3929eda14cbcSMatt Macy 	spa_generate_syncing_log_sm(spa, tx);
3930eda14cbcSMatt Macy 
3931eda14cbcSMatt Macy 	if (msp->ms_sm == NULL) {
3932eda14cbcSMatt Macy 		uint64_t new_object = space_map_alloc(mos,
3933eda14cbcSMatt Macy 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3934eda14cbcSMatt Macy 		    zfs_metaslab_sm_blksz_with_log :
3935eda14cbcSMatt Macy 		    zfs_metaslab_sm_blksz_no_log, tx);
3936eda14cbcSMatt Macy 		VERIFY3U(new_object, !=, 0);
3937eda14cbcSMatt Macy 
3938eda14cbcSMatt Macy 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3939eda14cbcSMatt Macy 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
3940eda14cbcSMatt Macy 
3941eda14cbcSMatt Macy 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
3942eda14cbcSMatt Macy 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
3943eda14cbcSMatt Macy 		ASSERT(msp->ms_sm != NULL);
3944eda14cbcSMatt Macy 
3945eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3946eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3947eda14cbcSMatt Macy 		ASSERT0(metaslab_allocated_space(msp));
3948eda14cbcSMatt Macy 	}
3949eda14cbcSMatt Macy 
3950eda14cbcSMatt Macy 	if (metaslab_unflushed_txg(msp) == 0 &&
3951eda14cbcSMatt Macy 	    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
3952eda14cbcSMatt Macy 		ASSERT(spa_syncing_log_sm(spa) != NULL);
3953eda14cbcSMatt Macy 
3954eda14cbcSMatt Macy 		metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3955eda14cbcSMatt Macy 		spa_log_sm_increment_current_mscount(spa);
3956eda14cbcSMatt Macy 		spa_log_summary_add_flushed_metaslab(spa);
3957eda14cbcSMatt Macy 
3958eda14cbcSMatt Macy 		ASSERT(msp->ms_sm != NULL);
3959eda14cbcSMatt Macy 		mutex_enter(&spa->spa_flushed_ms_lock);
3960eda14cbcSMatt Macy 		avl_add(&spa->spa_metaslabs_by_flushed, msp);
3961eda14cbcSMatt Macy 		mutex_exit(&spa->spa_flushed_ms_lock);
3962eda14cbcSMatt Macy 
3963eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3964eda14cbcSMatt Macy 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3965eda14cbcSMatt Macy 	}
3966eda14cbcSMatt Macy 
3967eda14cbcSMatt Macy 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
3968eda14cbcSMatt Macy 	    vd->vdev_checkpoint_sm == NULL) {
3969eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
3970eda14cbcSMatt Macy 
3971eda14cbcSMatt Macy 		uint64_t new_object = space_map_alloc(mos,
3972eda14cbcSMatt Macy 		    zfs_vdev_standard_sm_blksz, tx);
3973eda14cbcSMatt Macy 		VERIFY3U(new_object, !=, 0);
3974eda14cbcSMatt Macy 
3975eda14cbcSMatt Macy 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
3976eda14cbcSMatt Macy 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
3977eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3978eda14cbcSMatt Macy 
3979eda14cbcSMatt Macy 		/*
3980eda14cbcSMatt Macy 		 * We save the space map object as an entry in vdev_top_zap
3981eda14cbcSMatt Macy 		 * so it can be retrieved when the pool is reopened after an
3982eda14cbcSMatt Macy 		 * export or through zdb.
3983eda14cbcSMatt Macy 		 */
3984eda14cbcSMatt Macy 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
3985eda14cbcSMatt Macy 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
3986eda14cbcSMatt Macy 		    sizeof (new_object), 1, &new_object, tx));
3987eda14cbcSMatt Macy 	}
3988eda14cbcSMatt Macy 
3989eda14cbcSMatt Macy 	mutex_enter(&msp->ms_sync_lock);
3990eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
3991eda14cbcSMatt Macy 
3992eda14cbcSMatt Macy 	/*
3993eda14cbcSMatt Macy 	 * Note: metaslab_condense() clears the space map's histogram.
3994eda14cbcSMatt Macy 	 * Therefore we must verify and remove this histogram before
3995eda14cbcSMatt Macy 	 * condensing.
3996eda14cbcSMatt Macy 	 */
3997eda14cbcSMatt Macy 	metaslab_group_histogram_verify(mg);
3998eda14cbcSMatt Macy 	metaslab_class_histogram_verify(mg->mg_class);
3999eda14cbcSMatt Macy 	metaslab_group_histogram_remove(mg, msp);
4000eda14cbcSMatt Macy 
4001eda14cbcSMatt Macy 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4002eda14cbcSMatt Macy 	    metaslab_should_condense(msp))
4003eda14cbcSMatt Macy 		metaslab_condense(msp, tx);
4004eda14cbcSMatt Macy 
4005eda14cbcSMatt Macy 	/*
4006eda14cbcSMatt Macy 	 * We'll be going to disk to sync our space accounting, thus we
4007eda14cbcSMatt Macy 	 * drop the ms_lock during that time so allocations coming from
4008eda14cbcSMatt Macy 	 * open-context (ZIL) for future TXGs do not block.
4009eda14cbcSMatt Macy 	 */
4010eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4011eda14cbcSMatt Macy 	space_map_t *log_sm = spa_syncing_log_sm(spa);
4012eda14cbcSMatt Macy 	if (log_sm != NULL) {
4013eda14cbcSMatt Macy 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4014eda14cbcSMatt Macy 
4015eda14cbcSMatt Macy 		space_map_write(log_sm, alloctree, SM_ALLOC,
4016eda14cbcSMatt Macy 		    vd->vdev_id, tx);
4017eda14cbcSMatt Macy 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4018eda14cbcSMatt Macy 		    vd->vdev_id, tx);
4019eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4020eda14cbcSMatt Macy 
4021eda14cbcSMatt Macy 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4022eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp));
4023eda14cbcSMatt Macy 		spa->spa_unflushed_stats.sus_memused -=
4024eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp);
4025eda14cbcSMatt Macy 		range_tree_remove_xor_add(alloctree,
4026eda14cbcSMatt Macy 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4027eda14cbcSMatt Macy 		range_tree_remove_xor_add(msp->ms_freeing,
4028eda14cbcSMatt Macy 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4029eda14cbcSMatt Macy 		spa->spa_unflushed_stats.sus_memused +=
4030eda14cbcSMatt Macy 		    metaslab_unflushed_changes_memused(msp);
4031eda14cbcSMatt Macy 	} else {
4032eda14cbcSMatt Macy 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4033eda14cbcSMatt Macy 
4034eda14cbcSMatt Macy 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4035eda14cbcSMatt Macy 		    SM_NO_VDEVID, tx);
4036eda14cbcSMatt Macy 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4037eda14cbcSMatt Macy 		    SM_NO_VDEVID, tx);
4038eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4039eda14cbcSMatt Macy 	}
4040eda14cbcSMatt Macy 
4041eda14cbcSMatt Macy 	msp->ms_allocated_space += range_tree_space(alloctree);
4042eda14cbcSMatt Macy 	ASSERT3U(msp->ms_allocated_space, >=,
4043eda14cbcSMatt Macy 	    range_tree_space(msp->ms_freeing));
4044eda14cbcSMatt Macy 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4045eda14cbcSMatt Macy 
4046eda14cbcSMatt Macy 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
4047eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
4048eda14cbcSMatt Macy 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4049eda14cbcSMatt Macy 
4050eda14cbcSMatt Macy 		/*
4051eda14cbcSMatt Macy 		 * Since we are doing writes to disk and the ms_checkpointing
4052eda14cbcSMatt Macy 		 * tree won't be changing during that time, we drop the
4053eda14cbcSMatt Macy 		 * ms_lock while writing to the checkpoint space map, for the
4054eda14cbcSMatt Macy 		 * same reason mentioned above.
4055eda14cbcSMatt Macy 		 */
4056eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
4057eda14cbcSMatt Macy 		space_map_write(vd->vdev_checkpoint_sm,
4058eda14cbcSMatt Macy 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4059eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4060eda14cbcSMatt Macy 
4061eda14cbcSMatt Macy 		spa->spa_checkpoint_info.sci_dspace +=
4062eda14cbcSMatt Macy 		    range_tree_space(msp->ms_checkpointing);
4063eda14cbcSMatt Macy 		vd->vdev_stat.vs_checkpoint_space +=
4064eda14cbcSMatt Macy 		    range_tree_space(msp->ms_checkpointing);
4065eda14cbcSMatt Macy 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4066eda14cbcSMatt Macy 		    -space_map_allocated(vd->vdev_checkpoint_sm));
4067eda14cbcSMatt Macy 
4068eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4069eda14cbcSMatt Macy 	}
4070eda14cbcSMatt Macy 
4071eda14cbcSMatt Macy 	if (msp->ms_loaded) {
4072eda14cbcSMatt Macy 		/*
4073eda14cbcSMatt Macy 		 * When the space map is loaded, we have an accurate
4074eda14cbcSMatt Macy 		 * histogram in the range tree. This gives us an opportunity
4075eda14cbcSMatt Macy 		 * to bring the space map's histogram up-to-date so we clear
4076eda14cbcSMatt Macy 		 * it first before updating it.
4077eda14cbcSMatt Macy 		 */
4078eda14cbcSMatt Macy 		space_map_histogram_clear(msp->ms_sm);
4079eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4080eda14cbcSMatt Macy 
4081eda14cbcSMatt Macy 		/*
4082eda14cbcSMatt Macy 		 * Since we've cleared the histogram we need to add back
4083eda14cbcSMatt Macy 		 * any free space that has already been processed, plus
4084eda14cbcSMatt Macy 		 * any deferred space. This allows the on-disk histogram
4085eda14cbcSMatt Macy 		 * to accurately reflect all free space even if some space
4086eda14cbcSMatt Macy 		 * is not yet available for allocation (i.e. deferred).
4087eda14cbcSMatt Macy 		 */
4088eda14cbcSMatt Macy 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4089eda14cbcSMatt Macy 
4090eda14cbcSMatt Macy 		/*
4091eda14cbcSMatt Macy 		 * Add back any deferred free space that has not been
4092eda14cbcSMatt Macy 		 * added back into the in-core free tree yet. This will
4093eda14cbcSMatt Macy 		 * ensure that we don't end up with a space map histogram
4094eda14cbcSMatt Macy 		 * that is completely empty unless the metaslab is fully
4095eda14cbcSMatt Macy 		 * allocated.
4096eda14cbcSMatt Macy 		 */
4097eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4098eda14cbcSMatt Macy 			space_map_histogram_add(msp->ms_sm,
4099eda14cbcSMatt Macy 			    msp->ms_defer[t], tx);
4100eda14cbcSMatt Macy 		}
4101eda14cbcSMatt Macy 	}
4102eda14cbcSMatt Macy 
4103eda14cbcSMatt Macy 	/*
4104eda14cbcSMatt Macy 	 * Always add the free space from this sync pass to the space
4105eda14cbcSMatt Macy 	 * map histogram. We want to make sure that the on-disk histogram
4106eda14cbcSMatt Macy 	 * accounts for all free space. If the space map is not loaded,
4107eda14cbcSMatt Macy 	 * then we will lose some accuracy but will correct it the next
4108eda14cbcSMatt Macy 	 * time we load the space map.
4109eda14cbcSMatt Macy 	 */
4110eda14cbcSMatt Macy 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4111eda14cbcSMatt Macy 	metaslab_aux_histograms_update(msp);
4112eda14cbcSMatt Macy 
4113eda14cbcSMatt Macy 	metaslab_group_histogram_add(mg, msp);
4114eda14cbcSMatt Macy 	metaslab_group_histogram_verify(mg);
4115eda14cbcSMatt Macy 	metaslab_class_histogram_verify(mg->mg_class);
4116eda14cbcSMatt Macy 
4117eda14cbcSMatt Macy 	/*
4118eda14cbcSMatt Macy 	 * For sync pass 1, we avoid traversing this txg's free range tree
4119eda14cbcSMatt Macy 	 * and instead will just swap the pointers for freeing and freed.
4120eda14cbcSMatt Macy 	 * We can safely do this since the freed_tree is guaranteed to be
4121eda14cbcSMatt Macy 	 * empty on the initial pass.
4122eda14cbcSMatt Macy 	 *
4123eda14cbcSMatt Macy 	 * Keep in mind that even if we are currently using a log spacemap
4124eda14cbcSMatt Macy 	 * we want current frees to end up in the ms_allocatable (but not
4125eda14cbcSMatt Macy 	 * get appended to the ms_sm) so their ranges can be reused as usual.
4126eda14cbcSMatt Macy 	 */
4127eda14cbcSMatt Macy 	if (spa_sync_pass(spa) == 1) {
4128eda14cbcSMatt Macy 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4129eda14cbcSMatt Macy 		ASSERT0(msp->ms_allocated_this_txg);
4130eda14cbcSMatt Macy 	} else {
4131eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_freeing,
4132eda14cbcSMatt Macy 		    range_tree_add, msp->ms_freed);
4133eda14cbcSMatt Macy 	}
4134eda14cbcSMatt Macy 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
4135eda14cbcSMatt Macy 	range_tree_vacate(alloctree, NULL, NULL);
4136eda14cbcSMatt Macy 
4137eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4138eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4139eda14cbcSMatt Macy 	    & TXG_MASK]));
4140eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4141eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4142eda14cbcSMatt Macy 
4143eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4144eda14cbcSMatt Macy 
4145eda14cbcSMatt Macy 	/*
4146eda14cbcSMatt Macy 	 * Verify that the space map object ID has been recorded in the
4147eda14cbcSMatt Macy 	 * vdev_ms_array.
4148eda14cbcSMatt Macy 	 */
4149eda14cbcSMatt Macy 	uint64_t object;
4150eda14cbcSMatt Macy 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4151eda14cbcSMatt Macy 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4152eda14cbcSMatt Macy 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4153eda14cbcSMatt Macy 
4154eda14cbcSMatt Macy 	mutex_exit(&msp->ms_sync_lock);
4155eda14cbcSMatt Macy 	dmu_tx_commit(tx);
4156eda14cbcSMatt Macy }
4157eda14cbcSMatt Macy 
4158eda14cbcSMatt Macy static void
4159eda14cbcSMatt Macy metaslab_evict(metaslab_t *msp, uint64_t txg)
4160eda14cbcSMatt Macy {
4161eda14cbcSMatt Macy 	if (!msp->ms_loaded || msp->ms_disabled != 0)
4162eda14cbcSMatt Macy 		return;
4163eda14cbcSMatt Macy 
4164eda14cbcSMatt Macy 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4165eda14cbcSMatt Macy 		VERIFY0(range_tree_space(
4166eda14cbcSMatt Macy 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
4167eda14cbcSMatt Macy 	}
4168eda14cbcSMatt Macy 	if (msp->ms_allocator != -1)
4169eda14cbcSMatt Macy 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4170eda14cbcSMatt Macy 
4171eda14cbcSMatt Macy 	if (!metaslab_debug_unload)
4172eda14cbcSMatt Macy 		metaslab_unload(msp);
4173eda14cbcSMatt Macy }
4174eda14cbcSMatt Macy 
4175eda14cbcSMatt Macy /*
4176eda14cbcSMatt Macy  * Called after a transaction group has completely synced to mark
4177eda14cbcSMatt Macy  * all of the metaslab's free space as usable.
4178eda14cbcSMatt Macy  */
4179eda14cbcSMatt Macy void
4180eda14cbcSMatt Macy metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4181eda14cbcSMatt Macy {
4182eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
4183eda14cbcSMatt Macy 	vdev_t *vd = mg->mg_vd;
4184eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
4185eda14cbcSMatt Macy 	range_tree_t **defer_tree;
4186eda14cbcSMatt Macy 	int64_t alloc_delta, defer_delta;
4187eda14cbcSMatt Macy 	boolean_t defer_allowed = B_TRUE;
4188eda14cbcSMatt Macy 
4189eda14cbcSMatt Macy 	ASSERT(!vd->vdev_ishole);
4190eda14cbcSMatt Macy 
4191eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
4192eda14cbcSMatt Macy 
4193eda14cbcSMatt Macy 	/*
4194eda14cbcSMatt Macy 	 * If this metaslab is just becoming available, initialize its
4195eda14cbcSMatt Macy 	 * range trees and add its capacity to the vdev.
4196eda14cbcSMatt Macy 	 */
4197eda14cbcSMatt Macy 	if (msp->ms_freed == NULL) {
4198eda14cbcSMatt Macy 		range_seg_type_t type;
4199eda14cbcSMatt Macy 		uint64_t shift, start;
4200eda14cbcSMatt Macy 		type = metaslab_calculate_range_tree_type(vd, msp, &start,
4201eda14cbcSMatt Macy 		    &shift);
4202eda14cbcSMatt Macy 
4203eda14cbcSMatt Macy 		for (int t = 0; t < TXG_SIZE; t++) {
4204eda14cbcSMatt Macy 			ASSERT(msp->ms_allocating[t] == NULL);
4205eda14cbcSMatt Macy 
4206eda14cbcSMatt Macy 			msp->ms_allocating[t] = range_tree_create(NULL, type,
4207eda14cbcSMatt Macy 			    NULL, start, shift);
4208eda14cbcSMatt Macy 		}
4209eda14cbcSMatt Macy 
4210eda14cbcSMatt Macy 		ASSERT3P(msp->ms_freeing, ==, NULL);
4211eda14cbcSMatt Macy 		msp->ms_freeing = range_tree_create(NULL, type, NULL, start,
4212eda14cbcSMatt Macy 		    shift);
4213eda14cbcSMatt Macy 
4214eda14cbcSMatt Macy 		ASSERT3P(msp->ms_freed, ==, NULL);
4215eda14cbcSMatt Macy 		msp->ms_freed = range_tree_create(NULL, type, NULL, start,
4216eda14cbcSMatt Macy 		    shift);
4217eda14cbcSMatt Macy 
4218eda14cbcSMatt Macy 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4219eda14cbcSMatt Macy 			ASSERT3P(msp->ms_defer[t], ==, NULL);
4220eda14cbcSMatt Macy 			msp->ms_defer[t] = range_tree_create(NULL, type, NULL,
4221eda14cbcSMatt Macy 			    start, shift);
4222eda14cbcSMatt Macy 		}
4223eda14cbcSMatt Macy 
4224eda14cbcSMatt Macy 		ASSERT3P(msp->ms_checkpointing, ==, NULL);
4225eda14cbcSMatt Macy 		msp->ms_checkpointing = range_tree_create(NULL, type, NULL,
4226eda14cbcSMatt Macy 		    start, shift);
4227eda14cbcSMatt Macy 
4228eda14cbcSMatt Macy 		ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
4229eda14cbcSMatt Macy 		msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL,
4230eda14cbcSMatt Macy 		    start, shift);
4231eda14cbcSMatt Macy 
4232eda14cbcSMatt Macy 		metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
4233eda14cbcSMatt Macy 		mrap->mra_bt = &msp->ms_unflushed_frees_by_size;
4234eda14cbcSMatt Macy 		mrap->mra_floor_shift = metaslab_by_size_min_shift;
4235eda14cbcSMatt Macy 		ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
4236eda14cbcSMatt Macy 		msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
4237eda14cbcSMatt Macy 		    type, mrap, start, shift);
4238eda14cbcSMatt Macy 
4239eda14cbcSMatt Macy 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4240eda14cbcSMatt Macy 	}
4241eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4242eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4243eda14cbcSMatt Macy 
4244eda14cbcSMatt Macy 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4245eda14cbcSMatt Macy 
4246eda14cbcSMatt Macy 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4247eda14cbcSMatt Macy 	    metaslab_class_get_alloc(spa_normal_class(spa));
4248eda14cbcSMatt Macy 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4249eda14cbcSMatt Macy 		defer_allowed = B_FALSE;
4250eda14cbcSMatt Macy 	}
4251eda14cbcSMatt Macy 
4252eda14cbcSMatt Macy 	defer_delta = 0;
4253eda14cbcSMatt Macy 	alloc_delta = msp->ms_allocated_this_txg -
4254eda14cbcSMatt Macy 	    range_tree_space(msp->ms_freed);
4255eda14cbcSMatt Macy 
4256eda14cbcSMatt Macy 	if (defer_allowed) {
4257eda14cbcSMatt Macy 		defer_delta = range_tree_space(msp->ms_freed) -
4258eda14cbcSMatt Macy 		    range_tree_space(*defer_tree);
4259eda14cbcSMatt Macy 	} else {
4260eda14cbcSMatt Macy 		defer_delta -= range_tree_space(*defer_tree);
4261eda14cbcSMatt Macy 	}
4262eda14cbcSMatt Macy 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4263eda14cbcSMatt Macy 	    defer_delta, 0);
4264eda14cbcSMatt Macy 
4265eda14cbcSMatt Macy 	if (spa_syncing_log_sm(spa) == NULL) {
4266eda14cbcSMatt Macy 		/*
4267eda14cbcSMatt Macy 		 * If there's a metaslab_load() in progress and we don't have
4268eda14cbcSMatt Macy 		 * a log space map, it means that we probably wrote to the
4269eda14cbcSMatt Macy 		 * metaslab's space map. If this is the case, we need to
4270eda14cbcSMatt Macy 		 * make sure that we wait for the load to complete so that we
4271eda14cbcSMatt Macy 		 * have a consistent view at the in-core side of the metaslab.
4272eda14cbcSMatt Macy 		 */
4273eda14cbcSMatt Macy 		metaslab_load_wait(msp);
4274eda14cbcSMatt Macy 	} else {
4275eda14cbcSMatt Macy 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4276eda14cbcSMatt Macy 	}
4277eda14cbcSMatt Macy 
4278eda14cbcSMatt Macy 	/*
4279eda14cbcSMatt Macy 	 * When auto-trimming is enabled, free ranges which are added to
4280eda14cbcSMatt Macy 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
4281eda14cbcSMatt Macy 	 * periodically consumed by the vdev_autotrim_thread() which issues
4282eda14cbcSMatt Macy 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
4283eda14cbcSMatt Macy 	 * can be discarded at any time with the sole consequence of recent
4284eda14cbcSMatt Macy 	 * frees not being trimmed.
4285eda14cbcSMatt Macy 	 */
4286eda14cbcSMatt Macy 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4287eda14cbcSMatt Macy 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4288eda14cbcSMatt Macy 		if (!defer_allowed) {
4289eda14cbcSMatt Macy 			range_tree_walk(msp->ms_freed, range_tree_add,
4290eda14cbcSMatt Macy 			    msp->ms_trim);
4291eda14cbcSMatt Macy 		}
4292eda14cbcSMatt Macy 	} else {
4293eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_trim, NULL, NULL);
4294eda14cbcSMatt Macy 	}
4295eda14cbcSMatt Macy 
4296eda14cbcSMatt Macy 	/*
4297eda14cbcSMatt Macy 	 * Move the frees from the defer_tree back to the free
4298eda14cbcSMatt Macy 	 * range tree (if it's loaded). Swap the freed_tree and
4299eda14cbcSMatt Macy 	 * the defer_tree -- this is safe to do because we've
4300eda14cbcSMatt Macy 	 * just emptied out the defer_tree.
4301eda14cbcSMatt Macy 	 */
4302eda14cbcSMatt Macy 	range_tree_vacate(*defer_tree,
4303eda14cbcSMatt Macy 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4304eda14cbcSMatt Macy 	if (defer_allowed) {
4305eda14cbcSMatt Macy 		range_tree_swap(&msp->ms_freed, defer_tree);
4306eda14cbcSMatt Macy 	} else {
4307eda14cbcSMatt Macy 		range_tree_vacate(msp->ms_freed,
4308eda14cbcSMatt Macy 		    msp->ms_loaded ? range_tree_add : NULL,
4309eda14cbcSMatt Macy 		    msp->ms_allocatable);
4310eda14cbcSMatt Macy 	}
4311eda14cbcSMatt Macy 
4312eda14cbcSMatt Macy 	msp->ms_synced_length = space_map_length(msp->ms_sm);
4313eda14cbcSMatt Macy 
4314eda14cbcSMatt Macy 	msp->ms_deferspace += defer_delta;
4315eda14cbcSMatt Macy 	ASSERT3S(msp->ms_deferspace, >=, 0);
4316eda14cbcSMatt Macy 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4317eda14cbcSMatt Macy 	if (msp->ms_deferspace != 0) {
4318eda14cbcSMatt Macy 		/*
4319eda14cbcSMatt Macy 		 * Keep syncing this metaslab until all deferred frees
4320eda14cbcSMatt Macy 		 * are back in circulation.
4321eda14cbcSMatt Macy 		 */
4322eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4323eda14cbcSMatt Macy 	}
4324eda14cbcSMatt Macy 	metaslab_aux_histograms_update_done(msp, defer_allowed);
4325eda14cbcSMatt Macy 
4326eda14cbcSMatt Macy 	if (msp->ms_new) {
4327eda14cbcSMatt Macy 		msp->ms_new = B_FALSE;
4328eda14cbcSMatt Macy 		mutex_enter(&mg->mg_lock);
4329eda14cbcSMatt Macy 		mg->mg_ms_ready++;
4330eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
4331eda14cbcSMatt Macy 	}
4332eda14cbcSMatt Macy 
4333eda14cbcSMatt Macy 	/*
4334eda14cbcSMatt Macy 	 * Re-sort metaslab within its group now that we've adjusted
4335eda14cbcSMatt Macy 	 * its allocatable space.
4336eda14cbcSMatt Macy 	 */
4337eda14cbcSMatt Macy 	metaslab_recalculate_weight_and_sort(msp);
4338eda14cbcSMatt Macy 
4339eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4340eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freeing));
4341eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_freed));
4342eda14cbcSMatt Macy 	ASSERT0(range_tree_space(msp->ms_checkpointing));
4343eda14cbcSMatt Macy 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4344eda14cbcSMatt Macy 	msp->ms_allocated_this_txg = 0;
4345eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
4346eda14cbcSMatt Macy }
4347eda14cbcSMatt Macy 
4348eda14cbcSMatt Macy void
4349eda14cbcSMatt Macy metaslab_sync_reassess(metaslab_group_t *mg)
4350eda14cbcSMatt Macy {
4351eda14cbcSMatt Macy 	spa_t *spa = mg->mg_class->mc_spa;
4352eda14cbcSMatt Macy 
4353eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4354eda14cbcSMatt Macy 	metaslab_group_alloc_update(mg);
4355eda14cbcSMatt Macy 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4356eda14cbcSMatt Macy 
4357eda14cbcSMatt Macy 	/*
4358eda14cbcSMatt Macy 	 * Preload the next potential metaslabs but only on active
4359eda14cbcSMatt Macy 	 * metaslab groups. We can get into a state where the metaslab
4360eda14cbcSMatt Macy 	 * is no longer active since we dirty metaslabs as we remove a
4361eda14cbcSMatt Macy 	 * a device, thus potentially making the metaslab group eligible
4362eda14cbcSMatt Macy 	 * for preloading.
4363eda14cbcSMatt Macy 	 */
4364eda14cbcSMatt Macy 	if (mg->mg_activation_count > 0) {
4365eda14cbcSMatt Macy 		metaslab_group_preload(mg);
4366eda14cbcSMatt Macy 	}
4367eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4368eda14cbcSMatt Macy }
4369eda14cbcSMatt Macy 
4370eda14cbcSMatt Macy /*
4371eda14cbcSMatt Macy  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4372eda14cbcSMatt Macy  * the same vdev as an existing DVA of this BP, then try to allocate it
4373eda14cbcSMatt Macy  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4374eda14cbcSMatt Macy  */
4375eda14cbcSMatt Macy static boolean_t
4376eda14cbcSMatt Macy metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4377eda14cbcSMatt Macy {
4378eda14cbcSMatt Macy 	uint64_t dva_ms_id;
4379eda14cbcSMatt Macy 
4380eda14cbcSMatt Macy 	if (DVA_GET_ASIZE(dva) == 0)
4381eda14cbcSMatt Macy 		return (B_TRUE);
4382eda14cbcSMatt Macy 
4383eda14cbcSMatt Macy 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4384eda14cbcSMatt Macy 		return (B_TRUE);
4385eda14cbcSMatt Macy 
4386eda14cbcSMatt Macy 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4387eda14cbcSMatt Macy 
4388eda14cbcSMatt Macy 	return (msp->ms_id != dva_ms_id);
4389eda14cbcSMatt Macy }
4390eda14cbcSMatt Macy 
4391eda14cbcSMatt Macy /*
4392eda14cbcSMatt Macy  * ==========================================================================
4393eda14cbcSMatt Macy  * Metaslab allocation tracing facility
4394eda14cbcSMatt Macy  * ==========================================================================
4395eda14cbcSMatt Macy  */
4396eda14cbcSMatt Macy #ifdef _METASLAB_TRACING
4397eda14cbcSMatt Macy 
4398eda14cbcSMatt Macy /*
4399eda14cbcSMatt Macy  * Add an allocation trace element to the allocation tracing list.
4400eda14cbcSMatt Macy  */
4401eda14cbcSMatt Macy static void
4402eda14cbcSMatt Macy metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4403eda14cbcSMatt Macy     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4404eda14cbcSMatt Macy     int allocator)
4405eda14cbcSMatt Macy {
4406eda14cbcSMatt Macy 	metaslab_alloc_trace_t *mat;
4407eda14cbcSMatt Macy 
4408eda14cbcSMatt Macy 	if (!metaslab_trace_enabled)
4409eda14cbcSMatt Macy 		return;
4410eda14cbcSMatt Macy 
4411eda14cbcSMatt Macy 	/*
4412eda14cbcSMatt Macy 	 * When the tracing list reaches its maximum we remove
4413eda14cbcSMatt Macy 	 * the second element in the list before adding a new one.
4414eda14cbcSMatt Macy 	 * By removing the second element we preserve the original
4415eda14cbcSMatt Macy 	 * entry as a clue to what allocations steps have already been
4416eda14cbcSMatt Macy 	 * performed.
4417eda14cbcSMatt Macy 	 */
4418eda14cbcSMatt Macy 	if (zal->zal_size == metaslab_trace_max_entries) {
4419eda14cbcSMatt Macy 		metaslab_alloc_trace_t *mat_next;
4420eda14cbcSMatt Macy #ifdef ZFS_DEBUG
4421eda14cbcSMatt Macy 		panic("too many entries in allocation list");
4422eda14cbcSMatt Macy #endif
4423eda14cbcSMatt Macy 		METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4424eda14cbcSMatt Macy 		zal->zal_size--;
4425eda14cbcSMatt Macy 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4426eda14cbcSMatt Macy 		list_remove(&zal->zal_list, mat_next);
4427eda14cbcSMatt Macy 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4428eda14cbcSMatt Macy 	}
4429eda14cbcSMatt Macy 
4430eda14cbcSMatt Macy 	mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4431eda14cbcSMatt Macy 	list_link_init(&mat->mat_list_node);
4432eda14cbcSMatt Macy 	mat->mat_mg = mg;
4433eda14cbcSMatt Macy 	mat->mat_msp = msp;
4434eda14cbcSMatt Macy 	mat->mat_size = psize;
4435eda14cbcSMatt Macy 	mat->mat_dva_id = dva_id;
4436eda14cbcSMatt Macy 	mat->mat_offset = offset;
4437eda14cbcSMatt Macy 	mat->mat_weight = 0;
4438eda14cbcSMatt Macy 	mat->mat_allocator = allocator;
4439eda14cbcSMatt Macy 
4440eda14cbcSMatt Macy 	if (msp != NULL)
4441eda14cbcSMatt Macy 		mat->mat_weight = msp->ms_weight;
4442eda14cbcSMatt Macy 
4443eda14cbcSMatt Macy 	/*
4444eda14cbcSMatt Macy 	 * The list is part of the zio so locking is not required. Only
4445eda14cbcSMatt Macy 	 * a single thread will perform allocations for a given zio.
4446eda14cbcSMatt Macy 	 */
4447eda14cbcSMatt Macy 	list_insert_tail(&zal->zal_list, mat);
4448eda14cbcSMatt Macy 	zal->zal_size++;
4449eda14cbcSMatt Macy 
4450eda14cbcSMatt Macy 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4451eda14cbcSMatt Macy }
4452eda14cbcSMatt Macy 
4453eda14cbcSMatt Macy void
4454eda14cbcSMatt Macy metaslab_trace_init(zio_alloc_list_t *zal)
4455eda14cbcSMatt Macy {
4456eda14cbcSMatt Macy 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4457eda14cbcSMatt Macy 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4458eda14cbcSMatt Macy 	zal->zal_size = 0;
4459eda14cbcSMatt Macy }
4460eda14cbcSMatt Macy 
4461eda14cbcSMatt Macy void
4462eda14cbcSMatt Macy metaslab_trace_fini(zio_alloc_list_t *zal)
4463eda14cbcSMatt Macy {
4464eda14cbcSMatt Macy 	metaslab_alloc_trace_t *mat;
4465eda14cbcSMatt Macy 
4466eda14cbcSMatt Macy 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4467eda14cbcSMatt Macy 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4468eda14cbcSMatt Macy 	list_destroy(&zal->zal_list);
4469eda14cbcSMatt Macy 	zal->zal_size = 0;
4470eda14cbcSMatt Macy }
4471eda14cbcSMatt Macy #else
4472eda14cbcSMatt Macy 
4473eda14cbcSMatt Macy #define	metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
4474eda14cbcSMatt Macy 
4475eda14cbcSMatt Macy void
4476eda14cbcSMatt Macy metaslab_trace_init(zio_alloc_list_t *zal)
4477eda14cbcSMatt Macy {
4478eda14cbcSMatt Macy }
4479eda14cbcSMatt Macy 
4480eda14cbcSMatt Macy void
4481eda14cbcSMatt Macy metaslab_trace_fini(zio_alloc_list_t *zal)
4482eda14cbcSMatt Macy {
4483eda14cbcSMatt Macy }
4484eda14cbcSMatt Macy 
4485eda14cbcSMatt Macy #endif /* _METASLAB_TRACING */
4486eda14cbcSMatt Macy 
4487eda14cbcSMatt Macy /*
4488eda14cbcSMatt Macy  * ==========================================================================
4489eda14cbcSMatt Macy  * Metaslab block operations
4490eda14cbcSMatt Macy  * ==========================================================================
4491eda14cbcSMatt Macy  */
4492eda14cbcSMatt Macy 
4493eda14cbcSMatt Macy static void
4494eda14cbcSMatt Macy metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
4495eda14cbcSMatt Macy     int allocator)
4496eda14cbcSMatt Macy {
4497eda14cbcSMatt Macy 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4498eda14cbcSMatt Macy 	    (flags & METASLAB_DONT_THROTTLE))
4499eda14cbcSMatt Macy 		return;
4500eda14cbcSMatt Macy 
4501eda14cbcSMatt Macy 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4502eda14cbcSMatt Macy 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4503eda14cbcSMatt Macy 		return;
4504eda14cbcSMatt Macy 
4505eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4506eda14cbcSMatt Macy 	(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4507eda14cbcSMatt Macy }
4508eda14cbcSMatt Macy 
4509eda14cbcSMatt Macy static void
4510eda14cbcSMatt Macy metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4511eda14cbcSMatt Macy {
4512eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4513eda14cbcSMatt Macy 	uint64_t max = mg->mg_max_alloc_queue_depth;
4514eda14cbcSMatt Macy 	uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4515eda14cbcSMatt Macy 	while (cur < max) {
4516eda14cbcSMatt Macy 		if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4517eda14cbcSMatt Macy 		    cur, cur + 1) == cur) {
4518eda14cbcSMatt Macy 			atomic_inc_64(
4519eda14cbcSMatt Macy 			    &mg->mg_class->mc_alloc_max_slots[allocator]);
4520eda14cbcSMatt Macy 			return;
4521eda14cbcSMatt Macy 		}
4522eda14cbcSMatt Macy 		cur = mga->mga_cur_max_alloc_queue_depth;
4523eda14cbcSMatt Macy 	}
4524eda14cbcSMatt Macy }
4525eda14cbcSMatt Macy 
4526eda14cbcSMatt Macy void
4527eda14cbcSMatt Macy metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
4528eda14cbcSMatt Macy     int allocator, boolean_t io_complete)
4529eda14cbcSMatt Macy {
4530eda14cbcSMatt Macy 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4531eda14cbcSMatt Macy 	    (flags & METASLAB_DONT_THROTTLE))
4532eda14cbcSMatt Macy 		return;
4533eda14cbcSMatt Macy 
4534eda14cbcSMatt Macy 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4535eda14cbcSMatt Macy 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4536eda14cbcSMatt Macy 		return;
4537eda14cbcSMatt Macy 
4538eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4539eda14cbcSMatt Macy 	(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4540eda14cbcSMatt Macy 	if (io_complete)
4541eda14cbcSMatt Macy 		metaslab_group_increment_qdepth(mg, allocator);
4542eda14cbcSMatt Macy }
4543eda14cbcSMatt Macy 
4544eda14cbcSMatt Macy void
4545eda14cbcSMatt Macy metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
4546eda14cbcSMatt Macy     int allocator)
4547eda14cbcSMatt Macy {
4548eda14cbcSMatt Macy #ifdef ZFS_DEBUG
4549eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
4550eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
4551eda14cbcSMatt Macy 
4552eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
4553eda14cbcSMatt Macy 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4554eda14cbcSMatt Macy 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4555eda14cbcSMatt Macy 		metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4556eda14cbcSMatt Macy 		VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4557eda14cbcSMatt Macy 	}
4558eda14cbcSMatt Macy #endif
4559eda14cbcSMatt Macy }
4560eda14cbcSMatt Macy 
4561eda14cbcSMatt Macy static uint64_t
4562eda14cbcSMatt Macy metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4563eda14cbcSMatt Macy {
4564eda14cbcSMatt Macy 	uint64_t start;
4565eda14cbcSMatt Macy 	range_tree_t *rt = msp->ms_allocatable;
4566eda14cbcSMatt Macy 	metaslab_class_t *mc = msp->ms_group->mg_class;
4567eda14cbcSMatt Macy 
4568eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4569eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
4570eda14cbcSMatt Macy 	VERIFY0(msp->ms_disabled);
4571eda14cbcSMatt Macy 
4572eda14cbcSMatt Macy 	start = mc->mc_ops->msop_alloc(msp, size);
4573eda14cbcSMatt Macy 	if (start != -1ULL) {
4574eda14cbcSMatt Macy 		metaslab_group_t *mg = msp->ms_group;
4575eda14cbcSMatt Macy 		vdev_t *vd = mg->mg_vd;
4576eda14cbcSMatt Macy 
4577eda14cbcSMatt Macy 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4578eda14cbcSMatt Macy 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4579eda14cbcSMatt Macy 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4580eda14cbcSMatt Macy 		range_tree_remove(rt, start, size);
4581eda14cbcSMatt Macy 		range_tree_clear(msp->ms_trim, start, size);
4582eda14cbcSMatt Macy 
4583eda14cbcSMatt Macy 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4584eda14cbcSMatt Macy 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4585eda14cbcSMatt Macy 
4586eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4587eda14cbcSMatt Macy 		msp->ms_allocating_total += size;
4588eda14cbcSMatt Macy 
4589eda14cbcSMatt Macy 		/* Track the last successful allocation */
4590eda14cbcSMatt Macy 		msp->ms_alloc_txg = txg;
4591eda14cbcSMatt Macy 		metaslab_verify_space(msp, txg);
4592eda14cbcSMatt Macy 	}
4593eda14cbcSMatt Macy 
4594eda14cbcSMatt Macy 	/*
4595eda14cbcSMatt Macy 	 * Now that we've attempted the allocation we need to update the
4596eda14cbcSMatt Macy 	 * metaslab's maximum block size since it may have changed.
4597eda14cbcSMatt Macy 	 */
4598eda14cbcSMatt Macy 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4599eda14cbcSMatt Macy 	return (start);
4600eda14cbcSMatt Macy }
4601eda14cbcSMatt Macy 
4602eda14cbcSMatt Macy /*
4603eda14cbcSMatt Macy  * Find the metaslab with the highest weight that is less than what we've
4604eda14cbcSMatt Macy  * already tried.  In the common case, this means that we will examine each
4605eda14cbcSMatt Macy  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4606eda14cbcSMatt Macy  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4607eda14cbcSMatt Macy  * activated by another thread, and we fail to allocate from the metaslab we
4608eda14cbcSMatt Macy  * have selected, we may not try the newly-activated metaslab, and instead
4609eda14cbcSMatt Macy  * activate another metaslab.  This is not optimal, but generally does not cause
4610eda14cbcSMatt Macy  * any problems (a possible exception being if every metaslab is completely full
4611eda14cbcSMatt Macy  * except for the newly-activated metaslab which we fail to examine).
4612eda14cbcSMatt Macy  */
4613eda14cbcSMatt Macy static metaslab_t *
4614eda14cbcSMatt Macy find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4615eda14cbcSMatt Macy     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4616eda14cbcSMatt Macy     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4617eda14cbcSMatt Macy     boolean_t *was_active)
4618eda14cbcSMatt Macy {
4619eda14cbcSMatt Macy 	avl_index_t idx;
4620eda14cbcSMatt Macy 	avl_tree_t *t = &mg->mg_metaslab_tree;
4621eda14cbcSMatt Macy 	metaslab_t *msp = avl_find(t, search, &idx);
4622eda14cbcSMatt Macy 	if (msp == NULL)
4623eda14cbcSMatt Macy 		msp = avl_nearest(t, idx, AVL_AFTER);
4624eda14cbcSMatt Macy 
4625eda14cbcSMatt Macy 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4626eda14cbcSMatt Macy 		int i;
4627eda14cbcSMatt Macy 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4628eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4629eda14cbcSMatt Macy 			    TRACE_TOO_SMALL, allocator);
4630eda14cbcSMatt Macy 			continue;
4631eda14cbcSMatt Macy 		}
4632eda14cbcSMatt Macy 
4633eda14cbcSMatt Macy 		/*
4634eda14cbcSMatt Macy 		 * If the selected metaslab is condensing or disabled,
4635eda14cbcSMatt Macy 		 * skip it.
4636eda14cbcSMatt Macy 		 */
4637eda14cbcSMatt Macy 		if (msp->ms_condensing || msp->ms_disabled > 0)
4638eda14cbcSMatt Macy 			continue;
4639eda14cbcSMatt Macy 
4640eda14cbcSMatt Macy 		*was_active = msp->ms_allocator != -1;
4641eda14cbcSMatt Macy 		/*
4642eda14cbcSMatt Macy 		 * If we're activating as primary, this is our first allocation
4643eda14cbcSMatt Macy 		 * from this disk, so we don't need to check how close we are.
4644eda14cbcSMatt Macy 		 * If the metaslab under consideration was already active,
4645eda14cbcSMatt Macy 		 * we're getting desperate enough to steal another allocator's
4646eda14cbcSMatt Macy 		 * metaslab, so we still don't care about distances.
4647eda14cbcSMatt Macy 		 */
4648eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4649eda14cbcSMatt Macy 			break;
4650eda14cbcSMatt Macy 
4651eda14cbcSMatt Macy 		for (i = 0; i < d; i++) {
4652eda14cbcSMatt Macy 			if (want_unique &&
4653eda14cbcSMatt Macy 			    !metaslab_is_unique(msp, &dva[i]))
4654eda14cbcSMatt Macy 				break;  /* try another metaslab */
4655eda14cbcSMatt Macy 		}
4656eda14cbcSMatt Macy 		if (i == d)
4657eda14cbcSMatt Macy 			break;
4658eda14cbcSMatt Macy 	}
4659eda14cbcSMatt Macy 
4660eda14cbcSMatt Macy 	if (msp != NULL) {
4661eda14cbcSMatt Macy 		search->ms_weight = msp->ms_weight;
4662eda14cbcSMatt Macy 		search->ms_start = msp->ms_start + 1;
4663eda14cbcSMatt Macy 		search->ms_allocator = msp->ms_allocator;
4664eda14cbcSMatt Macy 		search->ms_primary = msp->ms_primary;
4665eda14cbcSMatt Macy 	}
4666eda14cbcSMatt Macy 	return (msp);
4667eda14cbcSMatt Macy }
4668eda14cbcSMatt Macy 
4669eda14cbcSMatt Macy static void
4670eda14cbcSMatt Macy metaslab_active_mask_verify(metaslab_t *msp)
4671eda14cbcSMatt Macy {
4672eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4673eda14cbcSMatt Macy 
4674eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4675eda14cbcSMatt Macy 		return;
4676eda14cbcSMatt Macy 
4677eda14cbcSMatt Macy 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4678eda14cbcSMatt Macy 		return;
4679eda14cbcSMatt Macy 
4680eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4681eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4682eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4683eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, !=, -1);
4684eda14cbcSMatt Macy 		VERIFY(msp->ms_primary);
4685eda14cbcSMatt Macy 		return;
4686eda14cbcSMatt Macy 	}
4687eda14cbcSMatt Macy 
4688eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4689eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4690eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4691eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, !=, -1);
4692eda14cbcSMatt Macy 		VERIFY(!msp->ms_primary);
4693eda14cbcSMatt Macy 		return;
4694eda14cbcSMatt Macy 	}
4695eda14cbcSMatt Macy 
4696eda14cbcSMatt Macy 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4697eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4698eda14cbcSMatt Macy 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4699eda14cbcSMatt Macy 		VERIFY3S(msp->ms_allocator, ==, -1);
4700eda14cbcSMatt Macy 		return;
4701eda14cbcSMatt Macy 	}
4702eda14cbcSMatt Macy }
4703eda14cbcSMatt Macy 
4704eda14cbcSMatt Macy /* ARGSUSED */
4705eda14cbcSMatt Macy static uint64_t
4706eda14cbcSMatt Macy metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4707eda14cbcSMatt Macy     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4708eda14cbcSMatt Macy     int allocator, boolean_t try_hard)
4709eda14cbcSMatt Macy {
4710eda14cbcSMatt Macy 	metaslab_t *msp = NULL;
4711eda14cbcSMatt Macy 	uint64_t offset = -1ULL;
4712eda14cbcSMatt Macy 
4713eda14cbcSMatt Macy 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4714eda14cbcSMatt Macy 	for (int i = 0; i < d; i++) {
4715eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4716eda14cbcSMatt Macy 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4717eda14cbcSMatt Macy 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4718eda14cbcSMatt Macy 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4719eda14cbcSMatt Macy 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4720eda14cbcSMatt Macy 			activation_weight = METASLAB_WEIGHT_CLAIM;
4721eda14cbcSMatt Macy 			break;
4722eda14cbcSMatt Macy 		}
4723eda14cbcSMatt Macy 	}
4724eda14cbcSMatt Macy 
4725eda14cbcSMatt Macy 	/*
4726eda14cbcSMatt Macy 	 * If we don't have enough metaslabs active to fill the entire array, we
4727eda14cbcSMatt Macy 	 * just use the 0th slot.
4728eda14cbcSMatt Macy 	 */
4729eda14cbcSMatt Macy 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4730eda14cbcSMatt Macy 		allocator = 0;
4731eda14cbcSMatt Macy 	metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4732eda14cbcSMatt Macy 
4733eda14cbcSMatt Macy 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4734eda14cbcSMatt Macy 
4735eda14cbcSMatt Macy 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4736eda14cbcSMatt Macy 	search->ms_weight = UINT64_MAX;
4737eda14cbcSMatt Macy 	search->ms_start = 0;
4738eda14cbcSMatt Macy 	/*
4739eda14cbcSMatt Macy 	 * At the end of the metaslab tree are the already-active metaslabs,
4740eda14cbcSMatt Macy 	 * first the primaries, then the secondaries. When we resume searching
4741eda14cbcSMatt Macy 	 * through the tree, we need to consider ms_allocator and ms_primary so
4742eda14cbcSMatt Macy 	 * we start in the location right after where we left off, and don't
4743eda14cbcSMatt Macy 	 * accidentally loop forever considering the same metaslabs.
4744eda14cbcSMatt Macy 	 */
4745eda14cbcSMatt Macy 	search->ms_allocator = -1;
4746eda14cbcSMatt Macy 	search->ms_primary = B_TRUE;
4747eda14cbcSMatt Macy 	for (;;) {
4748eda14cbcSMatt Macy 		boolean_t was_active = B_FALSE;
4749eda14cbcSMatt Macy 
4750eda14cbcSMatt Macy 		mutex_enter(&mg->mg_lock);
4751eda14cbcSMatt Macy 
4752eda14cbcSMatt Macy 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4753eda14cbcSMatt Macy 		    mga->mga_primary != NULL) {
4754eda14cbcSMatt Macy 			msp = mga->mga_primary;
4755eda14cbcSMatt Macy 
4756eda14cbcSMatt Macy 			/*
4757eda14cbcSMatt Macy 			 * Even though we don't hold the ms_lock for the
4758eda14cbcSMatt Macy 			 * primary metaslab, those fields should not
4759eda14cbcSMatt Macy 			 * change while we hold the mg_lock. Thus it is
4760eda14cbcSMatt Macy 			 * safe to make assertions on them.
4761eda14cbcSMatt Macy 			 */
4762eda14cbcSMatt Macy 			ASSERT(msp->ms_primary);
4763eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, allocator);
4764eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4765eda14cbcSMatt Macy 
4766eda14cbcSMatt Macy 			was_active = B_TRUE;
4767eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4768eda14cbcSMatt Macy 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4769eda14cbcSMatt Macy 		    mga->mga_secondary != NULL) {
4770eda14cbcSMatt Macy 			msp = mga->mga_secondary;
4771eda14cbcSMatt Macy 
4772eda14cbcSMatt Macy 			/*
4773eda14cbcSMatt Macy 			 * See comment above about the similar assertions
4774eda14cbcSMatt Macy 			 * for the primary metaslab.
4775eda14cbcSMatt Macy 			 */
4776eda14cbcSMatt Macy 			ASSERT(!msp->ms_primary);
4777eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, allocator);
4778eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4779eda14cbcSMatt Macy 
4780eda14cbcSMatt Macy 			was_active = B_TRUE;
4781eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4782eda14cbcSMatt Macy 		} else {
4783eda14cbcSMatt Macy 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4784eda14cbcSMatt Macy 			    want_unique, asize, allocator, try_hard, zal,
4785eda14cbcSMatt Macy 			    search, &was_active);
4786eda14cbcSMatt Macy 		}
4787eda14cbcSMatt Macy 
4788eda14cbcSMatt Macy 		mutex_exit(&mg->mg_lock);
4789eda14cbcSMatt Macy 		if (msp == NULL) {
4790eda14cbcSMatt Macy 			kmem_free(search, sizeof (*search));
4791eda14cbcSMatt Macy 			return (-1ULL);
4792eda14cbcSMatt Macy 		}
4793eda14cbcSMatt Macy 		mutex_enter(&msp->ms_lock);
4794eda14cbcSMatt Macy 
4795eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
4796eda14cbcSMatt Macy 
4797eda14cbcSMatt Macy 		/*
4798eda14cbcSMatt Macy 		 * This code is disabled out because of issues with
4799eda14cbcSMatt Macy 		 * tracepoints in non-gpl kernel modules.
4800eda14cbcSMatt Macy 		 */
4801eda14cbcSMatt Macy #if 0
4802eda14cbcSMatt Macy 		DTRACE_PROBE3(ms__activation__attempt,
4803eda14cbcSMatt Macy 		    metaslab_t *, msp, uint64_t, activation_weight,
4804eda14cbcSMatt Macy 		    boolean_t, was_active);
4805eda14cbcSMatt Macy #endif
4806eda14cbcSMatt Macy 
4807eda14cbcSMatt Macy 		/*
4808eda14cbcSMatt Macy 		 * Ensure that the metaslab we have selected is still
4809eda14cbcSMatt Macy 		 * capable of handling our request. It's possible that
4810eda14cbcSMatt Macy 		 * another thread may have changed the weight while we
4811eda14cbcSMatt Macy 		 * were blocked on the metaslab lock. We check the
4812eda14cbcSMatt Macy 		 * active status first to see if we need to set_selected_txg
4813eda14cbcSMatt Macy 		 * a new metaslab.
4814eda14cbcSMatt Macy 		 */
4815eda14cbcSMatt Macy 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4816eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, -1);
4817eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4818eda14cbcSMatt Macy 			continue;
4819eda14cbcSMatt Macy 		}
4820eda14cbcSMatt Macy 
4821eda14cbcSMatt Macy 		/*
4822eda14cbcSMatt Macy 		 * If the metaslab was activated for another allocator
4823eda14cbcSMatt Macy 		 * while we were waiting in the ms_lock above, or it's
4824eda14cbcSMatt Macy 		 * a primary and we're seeking a secondary (or vice versa),
4825eda14cbcSMatt Macy 		 * we go back and select a new metaslab.
4826eda14cbcSMatt Macy 		 */
4827eda14cbcSMatt Macy 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4828eda14cbcSMatt Macy 		    (msp->ms_allocator != -1) &&
4829eda14cbcSMatt Macy 		    (msp->ms_allocator != allocator || ((activation_weight ==
4830eda14cbcSMatt Macy 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4831eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4832eda14cbcSMatt Macy 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4833eda14cbcSMatt Macy 			    msp->ms_allocator != -1);
4834eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4835eda14cbcSMatt Macy 			continue;
4836eda14cbcSMatt Macy 		}
4837eda14cbcSMatt Macy 
4838eda14cbcSMatt Macy 		/*
4839eda14cbcSMatt Macy 		 * This metaslab was used for claiming regions allocated
4840eda14cbcSMatt Macy 		 * by the ZIL during pool import. Once these regions are
4841eda14cbcSMatt Macy 		 * claimed we don't need to keep the CLAIM bit set
4842eda14cbcSMatt Macy 		 * anymore. Passivate this metaslab to zero its activation
4843eda14cbcSMatt Macy 		 * mask.
4844eda14cbcSMatt Macy 		 */
4845eda14cbcSMatt Macy 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4846eda14cbcSMatt Macy 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4847eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
4848eda14cbcSMatt Macy 			ASSERT3S(msp->ms_allocator, ==, -1);
4849eda14cbcSMatt Macy 			metaslab_passivate(msp, msp->ms_weight &
4850eda14cbcSMatt Macy 			    ~METASLAB_WEIGHT_CLAIM);
4851eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4852eda14cbcSMatt Macy 			continue;
4853eda14cbcSMatt Macy 		}
4854eda14cbcSMatt Macy 
4855eda14cbcSMatt Macy 		metaslab_set_selected_txg(msp, txg);
4856eda14cbcSMatt Macy 
4857eda14cbcSMatt Macy 		int activation_error =
4858eda14cbcSMatt Macy 		    metaslab_activate(msp, allocator, activation_weight);
4859eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
4860eda14cbcSMatt Macy 
4861eda14cbcSMatt Macy 		/*
4862eda14cbcSMatt Macy 		 * If the metaslab was activated by another thread for
4863eda14cbcSMatt Macy 		 * another allocator or activation_weight (EBUSY), or it
4864eda14cbcSMatt Macy 		 * failed because another metaslab was assigned as primary
4865eda14cbcSMatt Macy 		 * for this allocator (EEXIST) we continue using this
4866eda14cbcSMatt Macy 		 * metaslab for our allocation, rather than going on to a
4867eda14cbcSMatt Macy 		 * worse metaslab (we waited for that metaslab to be loaded
4868eda14cbcSMatt Macy 		 * after all).
4869eda14cbcSMatt Macy 		 *
4870eda14cbcSMatt Macy 		 * If the activation failed due to an I/O error or ENOSPC we
4871eda14cbcSMatt Macy 		 * skip to the next metaslab.
4872eda14cbcSMatt Macy 		 */
4873eda14cbcSMatt Macy 		boolean_t activated;
4874eda14cbcSMatt Macy 		if (activation_error == 0) {
4875eda14cbcSMatt Macy 			activated = B_TRUE;
4876eda14cbcSMatt Macy 		} else if (activation_error == EBUSY ||
4877eda14cbcSMatt Macy 		    activation_error == EEXIST) {
4878eda14cbcSMatt Macy 			activated = B_FALSE;
4879eda14cbcSMatt Macy 		} else {
4880eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4881eda14cbcSMatt Macy 			continue;
4882eda14cbcSMatt Macy 		}
4883eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
4884eda14cbcSMatt Macy 
4885eda14cbcSMatt Macy 		/*
4886eda14cbcSMatt Macy 		 * Now that we have the lock, recheck to see if we should
4887eda14cbcSMatt Macy 		 * continue to use this metaslab for this allocation. The
4888eda14cbcSMatt Macy 		 * the metaslab is now loaded so metaslab_should_allocate()
4889eda14cbcSMatt Macy 		 * can accurately determine if the allocation attempt should
4890eda14cbcSMatt Macy 		 * proceed.
4891eda14cbcSMatt Macy 		 */
4892eda14cbcSMatt Macy 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4893eda14cbcSMatt Macy 			/* Passivate this metaslab and select a new one. */
4894eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4895eda14cbcSMatt Macy 			    TRACE_TOO_SMALL, allocator);
4896eda14cbcSMatt Macy 			goto next;
4897eda14cbcSMatt Macy 		}
4898eda14cbcSMatt Macy 
4899eda14cbcSMatt Macy 		/*
4900eda14cbcSMatt Macy 		 * If this metaslab is currently condensing then pick again
4901eda14cbcSMatt Macy 		 * as we can't manipulate this metaslab until it's committed
4902eda14cbcSMatt Macy 		 * to disk. If this metaslab is being initialized, we shouldn't
4903eda14cbcSMatt Macy 		 * allocate from it since the allocated region might be
4904eda14cbcSMatt Macy 		 * overwritten after allocation.
4905eda14cbcSMatt Macy 		 */
4906eda14cbcSMatt Macy 		if (msp->ms_condensing) {
4907eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4908eda14cbcSMatt Macy 			    TRACE_CONDENSING, allocator);
4909eda14cbcSMatt Macy 			if (activated) {
4910eda14cbcSMatt Macy 				metaslab_passivate(msp, msp->ms_weight &
4911eda14cbcSMatt Macy 				    ~METASLAB_ACTIVE_MASK);
4912eda14cbcSMatt Macy 			}
4913eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4914eda14cbcSMatt Macy 			continue;
4915eda14cbcSMatt Macy 		} else if (msp->ms_disabled > 0) {
4916eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, msp, asize, d,
4917eda14cbcSMatt Macy 			    TRACE_DISABLED, allocator);
4918eda14cbcSMatt Macy 			if (activated) {
4919eda14cbcSMatt Macy 				metaslab_passivate(msp, msp->ms_weight &
4920eda14cbcSMatt Macy 				    ~METASLAB_ACTIVE_MASK);
4921eda14cbcSMatt Macy 			}
4922eda14cbcSMatt Macy 			mutex_exit(&msp->ms_lock);
4923eda14cbcSMatt Macy 			continue;
4924eda14cbcSMatt Macy 		}
4925eda14cbcSMatt Macy 
4926eda14cbcSMatt Macy 		offset = metaslab_block_alloc(msp, asize, txg);
4927eda14cbcSMatt Macy 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4928eda14cbcSMatt Macy 
4929eda14cbcSMatt Macy 		if (offset != -1ULL) {
4930eda14cbcSMatt Macy 			/* Proactively passivate the metaslab, if needed */
4931eda14cbcSMatt Macy 			if (activated)
4932eda14cbcSMatt Macy 				metaslab_segment_may_passivate(msp);
4933eda14cbcSMatt Macy 			break;
4934eda14cbcSMatt Macy 		}
4935eda14cbcSMatt Macy next:
4936eda14cbcSMatt Macy 		ASSERT(msp->ms_loaded);
4937eda14cbcSMatt Macy 
4938eda14cbcSMatt Macy 		/*
4939eda14cbcSMatt Macy 		 * This code is disabled out because of issues with
4940eda14cbcSMatt Macy 		 * tracepoints in non-gpl kernel modules.
4941eda14cbcSMatt Macy 		 */
4942eda14cbcSMatt Macy #if 0
4943eda14cbcSMatt Macy 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4944eda14cbcSMatt Macy 		    uint64_t, asize);
4945eda14cbcSMatt Macy #endif
4946eda14cbcSMatt Macy 
4947eda14cbcSMatt Macy 		/*
4948eda14cbcSMatt Macy 		 * We were unable to allocate from this metaslab so determine
4949eda14cbcSMatt Macy 		 * a new weight for this metaslab. Now that we have loaded
4950eda14cbcSMatt Macy 		 * the metaslab we can provide a better hint to the metaslab
4951eda14cbcSMatt Macy 		 * selector.
4952eda14cbcSMatt Macy 		 *
4953eda14cbcSMatt Macy 		 * For space-based metaslabs, we use the maximum block size.
4954eda14cbcSMatt Macy 		 * This information is only available when the metaslab
4955eda14cbcSMatt Macy 		 * is loaded and is more accurate than the generic free
4956eda14cbcSMatt Macy 		 * space weight that was calculated by metaslab_weight().
4957eda14cbcSMatt Macy 		 * This information allows us to quickly compare the maximum
4958eda14cbcSMatt Macy 		 * available allocation in the metaslab to the allocation
4959eda14cbcSMatt Macy 		 * size being requested.
4960eda14cbcSMatt Macy 		 *
4961eda14cbcSMatt Macy 		 * For segment-based metaslabs, determine the new weight
4962eda14cbcSMatt Macy 		 * based on the highest bucket in the range tree. We
4963eda14cbcSMatt Macy 		 * explicitly use the loaded segment weight (i.e. the range
4964eda14cbcSMatt Macy 		 * tree histogram) since it contains the space that is
4965eda14cbcSMatt Macy 		 * currently available for allocation and is accurate
4966eda14cbcSMatt Macy 		 * even within a sync pass.
4967eda14cbcSMatt Macy 		 */
4968eda14cbcSMatt Macy 		uint64_t weight;
4969eda14cbcSMatt Macy 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4970eda14cbcSMatt Macy 			weight = metaslab_largest_allocatable(msp);
4971eda14cbcSMatt Macy 			WEIGHT_SET_SPACEBASED(weight);
4972eda14cbcSMatt Macy 		} else {
4973eda14cbcSMatt Macy 			weight = metaslab_weight_from_range_tree(msp);
4974eda14cbcSMatt Macy 		}
4975eda14cbcSMatt Macy 
4976eda14cbcSMatt Macy 		if (activated) {
4977eda14cbcSMatt Macy 			metaslab_passivate(msp, weight);
4978eda14cbcSMatt Macy 		} else {
4979eda14cbcSMatt Macy 			/*
4980eda14cbcSMatt Macy 			 * For the case where we use the metaslab that is
4981eda14cbcSMatt Macy 			 * active for another allocator we want to make
4982eda14cbcSMatt Macy 			 * sure that we retain the activation mask.
4983eda14cbcSMatt Macy 			 *
4984eda14cbcSMatt Macy 			 * Note that we could attempt to use something like
4985eda14cbcSMatt Macy 			 * metaslab_recalculate_weight_and_sort() that
4986eda14cbcSMatt Macy 			 * retains the activation mask here. That function
4987eda14cbcSMatt Macy 			 * uses metaslab_weight() to set the weight though
4988eda14cbcSMatt Macy 			 * which is not as accurate as the calculations
4989eda14cbcSMatt Macy 			 * above.
4990eda14cbcSMatt Macy 			 */
4991eda14cbcSMatt Macy 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
4992eda14cbcSMatt Macy 			metaslab_group_sort(mg, msp, weight);
4993eda14cbcSMatt Macy 		}
4994eda14cbcSMatt Macy 		metaslab_active_mask_verify(msp);
4995eda14cbcSMatt Macy 
4996eda14cbcSMatt Macy 		/*
4997eda14cbcSMatt Macy 		 * We have just failed an allocation attempt, check
4998eda14cbcSMatt Macy 		 * that metaslab_should_allocate() agrees. Otherwise,
4999eda14cbcSMatt Macy 		 * we may end up in an infinite loop retrying the same
5000eda14cbcSMatt Macy 		 * metaslab.
5001eda14cbcSMatt Macy 		 */
5002eda14cbcSMatt Macy 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5003eda14cbcSMatt Macy 
5004eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
5005eda14cbcSMatt Macy 	}
5006eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5007eda14cbcSMatt Macy 	kmem_free(search, sizeof (*search));
5008eda14cbcSMatt Macy 	return (offset);
5009eda14cbcSMatt Macy }
5010eda14cbcSMatt Macy 
5011eda14cbcSMatt Macy static uint64_t
5012eda14cbcSMatt Macy metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5013eda14cbcSMatt Macy     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5014eda14cbcSMatt Macy     int allocator, boolean_t try_hard)
5015eda14cbcSMatt Macy {
5016eda14cbcSMatt Macy 	uint64_t offset;
5017eda14cbcSMatt Macy 	ASSERT(mg->mg_initialized);
5018eda14cbcSMatt Macy 
5019eda14cbcSMatt Macy 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5020eda14cbcSMatt Macy 	    dva, d, allocator, try_hard);
5021eda14cbcSMatt Macy 
5022eda14cbcSMatt Macy 	mutex_enter(&mg->mg_lock);
5023eda14cbcSMatt Macy 	if (offset == -1ULL) {
5024eda14cbcSMatt Macy 		mg->mg_failed_allocations++;
5025eda14cbcSMatt Macy 		metaslab_trace_add(zal, mg, NULL, asize, d,
5026eda14cbcSMatt Macy 		    TRACE_GROUP_FAILURE, allocator);
5027eda14cbcSMatt Macy 		if (asize == SPA_GANGBLOCKSIZE) {
5028eda14cbcSMatt Macy 			/*
5029eda14cbcSMatt Macy 			 * This metaslab group was unable to allocate
5030eda14cbcSMatt Macy 			 * the minimum gang block size so it must be out of
5031eda14cbcSMatt Macy 			 * space. We must notify the allocation throttle
5032eda14cbcSMatt Macy 			 * to start skipping allocation attempts to this
5033eda14cbcSMatt Macy 			 * metaslab group until more space becomes available.
5034eda14cbcSMatt Macy 			 * Note: this failure cannot be caused by the
5035eda14cbcSMatt Macy 			 * allocation throttle since the allocation throttle
5036eda14cbcSMatt Macy 			 * is only responsible for skipping devices and
5037eda14cbcSMatt Macy 			 * not failing block allocations.
5038eda14cbcSMatt Macy 			 */
5039eda14cbcSMatt Macy 			mg->mg_no_free_space = B_TRUE;
5040eda14cbcSMatt Macy 		}
5041eda14cbcSMatt Macy 	}
5042eda14cbcSMatt Macy 	mg->mg_allocations++;
5043eda14cbcSMatt Macy 	mutex_exit(&mg->mg_lock);
5044eda14cbcSMatt Macy 	return (offset);
5045eda14cbcSMatt Macy }
5046eda14cbcSMatt Macy 
5047eda14cbcSMatt Macy /*
5048eda14cbcSMatt Macy  * Allocate a block for the specified i/o.
5049eda14cbcSMatt Macy  */
5050eda14cbcSMatt Macy int
5051eda14cbcSMatt Macy metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5052eda14cbcSMatt Macy     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5053eda14cbcSMatt Macy     zio_alloc_list_t *zal, int allocator)
5054eda14cbcSMatt Macy {
5055eda14cbcSMatt Macy 	metaslab_group_t *mg, *fast_mg, *rotor;
5056eda14cbcSMatt Macy 	vdev_t *vd;
5057eda14cbcSMatt Macy 	boolean_t try_hard = B_FALSE;
5058eda14cbcSMatt Macy 
5059eda14cbcSMatt Macy 	ASSERT(!DVA_IS_VALID(&dva[d]));
5060eda14cbcSMatt Macy 
5061eda14cbcSMatt Macy 	/*
5062eda14cbcSMatt Macy 	 * For testing, make some blocks above a certain size be gang blocks.
5063eda14cbcSMatt Macy 	 * This will result in more split blocks when using device removal,
5064eda14cbcSMatt Macy 	 * and a large number of split blocks coupled with ztest-induced
5065eda14cbcSMatt Macy 	 * damage can result in extremely long reconstruction times.  This
5066eda14cbcSMatt Macy 	 * will also test spilling from special to normal.
5067eda14cbcSMatt Macy 	 */
5068eda14cbcSMatt Macy 	if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
5069eda14cbcSMatt Macy 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5070eda14cbcSMatt Macy 		    allocator);
5071eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
5072eda14cbcSMatt Macy 	}
5073eda14cbcSMatt Macy 
5074eda14cbcSMatt Macy 	/*
5075eda14cbcSMatt Macy 	 * Start at the rotor and loop through all mgs until we find something.
5076eda14cbcSMatt Macy 	 * Note that there's no locking on mc_rotor or mc_aliquot because
5077eda14cbcSMatt Macy 	 * nothing actually breaks if we miss a few updates -- we just won't
5078eda14cbcSMatt Macy 	 * allocate quite as evenly.  It all balances out over time.
5079eda14cbcSMatt Macy 	 *
5080eda14cbcSMatt Macy 	 * If we are doing ditto or log blocks, try to spread them across
5081eda14cbcSMatt Macy 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
5082eda14cbcSMatt Macy 	 * allocated all of our ditto blocks, then try and spread them out on
5083eda14cbcSMatt Macy 	 * that vdev as much as possible.  If it turns out to not be possible,
5084eda14cbcSMatt Macy 	 * gradually lower our standards until anything becomes acceptable.
5085eda14cbcSMatt Macy 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5086eda14cbcSMatt Macy 	 * gives us hope of containing our fault domains to something we're
5087eda14cbcSMatt Macy 	 * able to reason about.  Otherwise, any two top-level vdev failures
5088eda14cbcSMatt Macy 	 * will guarantee the loss of data.  With consecutive allocation,
5089eda14cbcSMatt Macy 	 * only two adjacent top-level vdev failures will result in data loss.
5090eda14cbcSMatt Macy 	 *
5091eda14cbcSMatt Macy 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5092eda14cbcSMatt Macy 	 * ourselves on the same vdev as our gang block header.  That
5093eda14cbcSMatt Macy 	 * way, we can hope for locality in vdev_cache, plus it makes our
5094eda14cbcSMatt Macy 	 * fault domains something tractable.
5095eda14cbcSMatt Macy 	 */
5096eda14cbcSMatt Macy 	if (hintdva) {
5097eda14cbcSMatt Macy 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5098eda14cbcSMatt Macy 
5099eda14cbcSMatt Macy 		/*
5100eda14cbcSMatt Macy 		 * It's possible the vdev we're using as the hint no
5101eda14cbcSMatt Macy 		 * longer exists or its mg has been closed (e.g. by
5102eda14cbcSMatt Macy 		 * device removal).  Consult the rotor when
5103eda14cbcSMatt Macy 		 * all else fails.
5104eda14cbcSMatt Macy 		 */
5105eda14cbcSMatt Macy 		if (vd != NULL && vd->vdev_mg != NULL) {
5106eda14cbcSMatt Macy 			mg = vd->vdev_mg;
5107eda14cbcSMatt Macy 
5108eda14cbcSMatt Macy 			if (flags & METASLAB_HINTBP_AVOID &&
5109eda14cbcSMatt Macy 			    mg->mg_next != NULL)
5110eda14cbcSMatt Macy 				mg = mg->mg_next;
5111eda14cbcSMatt Macy 		} else {
5112eda14cbcSMatt Macy 			mg = mc->mc_rotor;
5113eda14cbcSMatt Macy 		}
5114eda14cbcSMatt Macy 	} else if (d != 0) {
5115eda14cbcSMatt Macy 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5116eda14cbcSMatt Macy 		mg = vd->vdev_mg->mg_next;
5117eda14cbcSMatt Macy 	} else if (flags & METASLAB_FASTWRITE) {
5118eda14cbcSMatt Macy 		mg = fast_mg = mc->mc_rotor;
5119eda14cbcSMatt Macy 
5120eda14cbcSMatt Macy 		do {
5121eda14cbcSMatt Macy 			if (fast_mg->mg_vd->vdev_pending_fastwrite <
5122eda14cbcSMatt Macy 			    mg->mg_vd->vdev_pending_fastwrite)
5123eda14cbcSMatt Macy 				mg = fast_mg;
5124eda14cbcSMatt Macy 		} while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
5125eda14cbcSMatt Macy 
5126eda14cbcSMatt Macy 	} else {
5127eda14cbcSMatt Macy 		ASSERT(mc->mc_rotor != NULL);
5128eda14cbcSMatt Macy 		mg = mc->mc_rotor;
5129eda14cbcSMatt Macy 	}
5130eda14cbcSMatt Macy 
5131eda14cbcSMatt Macy 	/*
5132eda14cbcSMatt Macy 	 * If the hint put us into the wrong metaslab class, or into a
5133eda14cbcSMatt Macy 	 * metaslab group that has been passivated, just follow the rotor.
5134eda14cbcSMatt Macy 	 */
5135eda14cbcSMatt Macy 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5136eda14cbcSMatt Macy 		mg = mc->mc_rotor;
5137eda14cbcSMatt Macy 
5138eda14cbcSMatt Macy 	rotor = mg;
5139eda14cbcSMatt Macy top:
5140eda14cbcSMatt Macy 	do {
5141eda14cbcSMatt Macy 		boolean_t allocatable;
5142eda14cbcSMatt Macy 
5143eda14cbcSMatt Macy 		ASSERT(mg->mg_activation_count == 1);
5144eda14cbcSMatt Macy 		vd = mg->mg_vd;
5145eda14cbcSMatt Macy 
5146eda14cbcSMatt Macy 		/*
5147eda14cbcSMatt Macy 		 * Don't allocate from faulted devices.
5148eda14cbcSMatt Macy 		 */
5149eda14cbcSMatt Macy 		if (try_hard) {
5150eda14cbcSMatt Macy 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5151eda14cbcSMatt Macy 			allocatable = vdev_allocatable(vd);
5152eda14cbcSMatt Macy 			spa_config_exit(spa, SCL_ZIO, FTAG);
5153eda14cbcSMatt Macy 		} else {
5154eda14cbcSMatt Macy 			allocatable = vdev_allocatable(vd);
5155eda14cbcSMatt Macy 		}
5156eda14cbcSMatt Macy 
5157eda14cbcSMatt Macy 		/*
5158eda14cbcSMatt Macy 		 * Determine if the selected metaslab group is eligible
5159eda14cbcSMatt Macy 		 * for allocations. If we're ganging then don't allow
5160eda14cbcSMatt Macy 		 * this metaslab group to skip allocations since that would
5161eda14cbcSMatt Macy 		 * inadvertently return ENOSPC and suspend the pool
5162eda14cbcSMatt Macy 		 * even though space is still available.
5163eda14cbcSMatt Macy 		 */
5164eda14cbcSMatt Macy 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5165eda14cbcSMatt Macy 			allocatable = metaslab_group_allocatable(mg, rotor,
5166eda14cbcSMatt Macy 			    psize, allocator, d);
5167eda14cbcSMatt Macy 		}
5168eda14cbcSMatt Macy 
5169eda14cbcSMatt Macy 		if (!allocatable) {
5170eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, NULL, psize, d,
5171eda14cbcSMatt Macy 			    TRACE_NOT_ALLOCATABLE, allocator);
5172eda14cbcSMatt Macy 			goto next;
5173eda14cbcSMatt Macy 		}
5174eda14cbcSMatt Macy 
5175eda14cbcSMatt Macy 		ASSERT(mg->mg_initialized);
5176eda14cbcSMatt Macy 
5177eda14cbcSMatt Macy 		/*
5178eda14cbcSMatt Macy 		 * Avoid writing single-copy data to a failing,
5179eda14cbcSMatt Macy 		 * non-redundant vdev, unless we've already tried all
5180eda14cbcSMatt Macy 		 * other vdevs.
5181eda14cbcSMatt Macy 		 */
5182eda14cbcSMatt Macy 		if ((vd->vdev_stat.vs_write_errors > 0 ||
5183eda14cbcSMatt Macy 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
5184eda14cbcSMatt Macy 		    d == 0 && !try_hard && vd->vdev_children == 0) {
5185eda14cbcSMatt Macy 			metaslab_trace_add(zal, mg, NULL, psize, d,
5186eda14cbcSMatt Macy 			    TRACE_VDEV_ERROR, allocator);
5187eda14cbcSMatt Macy 			goto next;
5188eda14cbcSMatt Macy 		}
5189eda14cbcSMatt Macy 
5190eda14cbcSMatt Macy 		ASSERT(mg->mg_class == mc);
5191eda14cbcSMatt Macy 
5192eda14cbcSMatt Macy 		uint64_t asize = vdev_psize_to_asize(vd, psize);
5193eda14cbcSMatt Macy 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5194eda14cbcSMatt Macy 
5195eda14cbcSMatt Macy 		/*
5196eda14cbcSMatt Macy 		 * If we don't need to try hard, then require that the
5197eda14cbcSMatt Macy 		 * block be on a different metaslab from any other DVAs
5198eda14cbcSMatt Macy 		 * in this BP (unique=true).  If we are trying hard, then
5199eda14cbcSMatt Macy 		 * allow any metaslab to be used (unique=false).
5200eda14cbcSMatt Macy 		 */
5201eda14cbcSMatt Macy 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5202eda14cbcSMatt Macy 		    !try_hard, dva, d, allocator, try_hard);
5203eda14cbcSMatt Macy 
5204eda14cbcSMatt Macy 		if (offset != -1ULL) {
5205eda14cbcSMatt Macy 			/*
5206eda14cbcSMatt Macy 			 * If we've just selected this metaslab group,
5207eda14cbcSMatt Macy 			 * figure out whether the corresponding vdev is
5208eda14cbcSMatt Macy 			 * over- or under-used relative to the pool,
5209eda14cbcSMatt Macy 			 * and set an allocation bias to even it out.
5210eda14cbcSMatt Macy 			 *
5211eda14cbcSMatt Macy 			 * Bias is also used to compensate for unequally
5212eda14cbcSMatt Macy 			 * sized vdevs so that space is allocated fairly.
5213eda14cbcSMatt Macy 			 */
5214eda14cbcSMatt Macy 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
5215eda14cbcSMatt Macy 				vdev_stat_t *vs = &vd->vdev_stat;
5216eda14cbcSMatt Macy 				int64_t vs_free = vs->vs_space - vs->vs_alloc;
5217eda14cbcSMatt Macy 				int64_t mc_free = mc->mc_space - mc->mc_alloc;
5218eda14cbcSMatt Macy 				int64_t ratio;
5219eda14cbcSMatt Macy 
5220eda14cbcSMatt Macy 				/*
5221eda14cbcSMatt Macy 				 * Calculate how much more or less we should
5222eda14cbcSMatt Macy 				 * try to allocate from this device during
5223eda14cbcSMatt Macy 				 * this iteration around the rotor.
5224eda14cbcSMatt Macy 				 *
5225eda14cbcSMatt Macy 				 * This basically introduces a zero-centered
5226eda14cbcSMatt Macy 				 * bias towards the devices with the most
5227eda14cbcSMatt Macy 				 * free space, while compensating for vdev
5228eda14cbcSMatt Macy 				 * size differences.
5229eda14cbcSMatt Macy 				 *
5230eda14cbcSMatt Macy 				 * Examples:
5231eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5232eda14cbcSMatt Macy 				 *  vdev V2 = 16M/128M
5233eda14cbcSMatt Macy 				 *  ratio(V1) = 100% ratio(V2) = 100%
5234eda14cbcSMatt Macy 				 *
5235eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5236eda14cbcSMatt Macy 				 *  vdev V2 = 64M/128M
5237eda14cbcSMatt Macy 				 *  ratio(V1) = 127% ratio(V2) =  72%
5238eda14cbcSMatt Macy 				 *
5239eda14cbcSMatt Macy 				 *  vdev V1 = 16M/128M
5240eda14cbcSMatt Macy 				 *  vdev V2 = 64M/512M
5241eda14cbcSMatt Macy 				 *  ratio(V1) =  40% ratio(V2) = 160%
5242eda14cbcSMatt Macy 				 */
5243eda14cbcSMatt Macy 				ratio = (vs_free * mc->mc_alloc_groups * 100) /
5244eda14cbcSMatt Macy 				    (mc_free + 1);
5245eda14cbcSMatt Macy 				mg->mg_bias = ((ratio - 100) *
5246eda14cbcSMatt Macy 				    (int64_t)mg->mg_aliquot) / 100;
5247eda14cbcSMatt Macy 			} else if (!metaslab_bias_enabled) {
5248eda14cbcSMatt Macy 				mg->mg_bias = 0;
5249eda14cbcSMatt Macy 			}
5250eda14cbcSMatt Macy 
5251eda14cbcSMatt Macy 			if ((flags & METASLAB_FASTWRITE) ||
5252eda14cbcSMatt Macy 			    atomic_add_64_nv(&mc->mc_aliquot, asize) >=
5253eda14cbcSMatt Macy 			    mg->mg_aliquot + mg->mg_bias) {
5254eda14cbcSMatt Macy 				mc->mc_rotor = mg->mg_next;
5255eda14cbcSMatt Macy 				mc->mc_aliquot = 0;
5256eda14cbcSMatt Macy 			}
5257eda14cbcSMatt Macy 
5258eda14cbcSMatt Macy 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
5259eda14cbcSMatt Macy 			DVA_SET_OFFSET(&dva[d], offset);
5260eda14cbcSMatt Macy 			DVA_SET_GANG(&dva[d],
5261eda14cbcSMatt Macy 			    ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5262eda14cbcSMatt Macy 			DVA_SET_ASIZE(&dva[d], asize);
5263eda14cbcSMatt Macy 
5264eda14cbcSMatt Macy 			if (flags & METASLAB_FASTWRITE) {
5265eda14cbcSMatt Macy 				atomic_add_64(&vd->vdev_pending_fastwrite,
5266eda14cbcSMatt Macy 				    psize);
5267eda14cbcSMatt Macy 			}
5268eda14cbcSMatt Macy 
5269eda14cbcSMatt Macy 			return (0);
5270eda14cbcSMatt Macy 		}
5271eda14cbcSMatt Macy next:
5272eda14cbcSMatt Macy 		mc->mc_rotor = mg->mg_next;
5273eda14cbcSMatt Macy 		mc->mc_aliquot = 0;
5274eda14cbcSMatt Macy 	} while ((mg = mg->mg_next) != rotor);
5275eda14cbcSMatt Macy 
5276eda14cbcSMatt Macy 	/*
5277eda14cbcSMatt Macy 	 * If we haven't tried hard, do so now.
5278eda14cbcSMatt Macy 	 */
5279eda14cbcSMatt Macy 	if (!try_hard) {
5280eda14cbcSMatt Macy 		try_hard = B_TRUE;
5281eda14cbcSMatt Macy 		goto top;
5282eda14cbcSMatt Macy 	}
5283eda14cbcSMatt Macy 
5284eda14cbcSMatt Macy 	bzero(&dva[d], sizeof (dva_t));
5285eda14cbcSMatt Macy 
5286eda14cbcSMatt Macy 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5287eda14cbcSMatt Macy 	return (SET_ERROR(ENOSPC));
5288eda14cbcSMatt Macy }
5289eda14cbcSMatt Macy 
5290eda14cbcSMatt Macy void
5291eda14cbcSMatt Macy metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5292eda14cbcSMatt Macy     boolean_t checkpoint)
5293eda14cbcSMatt Macy {
5294eda14cbcSMatt Macy 	metaslab_t *msp;
5295eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5296eda14cbcSMatt Macy 
5297eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
5298eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5299eda14cbcSMatt Macy 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5300eda14cbcSMatt Macy 
5301eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5302eda14cbcSMatt Macy 
5303eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5304eda14cbcSMatt Macy 	VERIFY3U(offset, >=, msp->ms_start);
5305eda14cbcSMatt Macy 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5306eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5307eda14cbcSMatt Macy 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5308eda14cbcSMatt Macy 
5309eda14cbcSMatt Macy 	metaslab_check_free_impl(vd, offset, asize);
5310eda14cbcSMatt Macy 
5311eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5312eda14cbcSMatt Macy 	if (range_tree_is_empty(msp->ms_freeing) &&
5313eda14cbcSMatt Macy 	    range_tree_is_empty(msp->ms_checkpointing)) {
5314eda14cbcSMatt Macy 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5315eda14cbcSMatt Macy 	}
5316eda14cbcSMatt Macy 
5317eda14cbcSMatt Macy 	if (checkpoint) {
5318eda14cbcSMatt Macy 		ASSERT(spa_has_checkpoint(spa));
5319eda14cbcSMatt Macy 		range_tree_add(msp->ms_checkpointing, offset, asize);
5320eda14cbcSMatt Macy 	} else {
5321eda14cbcSMatt Macy 		range_tree_add(msp->ms_freeing, offset, asize);
5322eda14cbcSMatt Macy 	}
5323eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5324eda14cbcSMatt Macy }
5325eda14cbcSMatt Macy 
5326eda14cbcSMatt Macy /* ARGSUSED */
5327eda14cbcSMatt Macy void
5328eda14cbcSMatt Macy metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5329eda14cbcSMatt Macy     uint64_t size, void *arg)
5330eda14cbcSMatt Macy {
5331eda14cbcSMatt Macy 	boolean_t *checkpoint = arg;
5332eda14cbcSMatt Macy 
5333eda14cbcSMatt Macy 	ASSERT3P(checkpoint, !=, NULL);
5334eda14cbcSMatt Macy 
5335eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL)
5336eda14cbcSMatt Macy 		vdev_indirect_mark_obsolete(vd, offset, size);
5337eda14cbcSMatt Macy 	else
5338eda14cbcSMatt Macy 		metaslab_free_impl(vd, offset, size, *checkpoint);
5339eda14cbcSMatt Macy }
5340eda14cbcSMatt Macy 
5341eda14cbcSMatt Macy static void
5342eda14cbcSMatt Macy metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5343eda14cbcSMatt Macy     boolean_t checkpoint)
5344eda14cbcSMatt Macy {
5345eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5346eda14cbcSMatt Macy 
5347eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5348eda14cbcSMatt Macy 
5349eda14cbcSMatt Macy 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5350eda14cbcSMatt Macy 		return;
5351eda14cbcSMatt Macy 
5352eda14cbcSMatt Macy 	if (spa->spa_vdev_removal != NULL &&
5353eda14cbcSMatt Macy 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5354eda14cbcSMatt Macy 	    vdev_is_concrete(vd)) {
5355eda14cbcSMatt Macy 		/*
5356eda14cbcSMatt Macy 		 * Note: we check if the vdev is concrete because when
5357eda14cbcSMatt Macy 		 * we complete the removal, we first change the vdev to be
5358eda14cbcSMatt Macy 		 * an indirect vdev (in open context), and then (in syncing
5359eda14cbcSMatt Macy 		 * context) clear spa_vdev_removal.
5360eda14cbcSMatt Macy 		 */
5361eda14cbcSMatt Macy 		free_from_removing_vdev(vd, offset, size);
5362eda14cbcSMatt Macy 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
5363eda14cbcSMatt Macy 		vdev_indirect_mark_obsolete(vd, offset, size);
5364eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5365eda14cbcSMatt Macy 		    metaslab_free_impl_cb, &checkpoint);
5366eda14cbcSMatt Macy 	} else {
5367eda14cbcSMatt Macy 		metaslab_free_concrete(vd, offset, size, checkpoint);
5368eda14cbcSMatt Macy 	}
5369eda14cbcSMatt Macy }
5370eda14cbcSMatt Macy 
5371eda14cbcSMatt Macy typedef struct remap_blkptr_cb_arg {
5372eda14cbcSMatt Macy 	blkptr_t *rbca_bp;
5373eda14cbcSMatt Macy 	spa_remap_cb_t rbca_cb;
5374eda14cbcSMatt Macy 	vdev_t *rbca_remap_vd;
5375eda14cbcSMatt Macy 	uint64_t rbca_remap_offset;
5376eda14cbcSMatt Macy 	void *rbca_cb_arg;
5377eda14cbcSMatt Macy } remap_blkptr_cb_arg_t;
5378eda14cbcSMatt Macy 
5379eda14cbcSMatt Macy static void
5380eda14cbcSMatt Macy remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5381eda14cbcSMatt Macy     uint64_t size, void *arg)
5382eda14cbcSMatt Macy {
5383eda14cbcSMatt Macy 	remap_blkptr_cb_arg_t *rbca = arg;
5384eda14cbcSMatt Macy 	blkptr_t *bp = rbca->rbca_bp;
5385eda14cbcSMatt Macy 
5386eda14cbcSMatt Macy 	/* We can not remap split blocks. */
5387eda14cbcSMatt Macy 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5388eda14cbcSMatt Macy 		return;
5389eda14cbcSMatt Macy 	ASSERT0(inner_offset);
5390eda14cbcSMatt Macy 
5391eda14cbcSMatt Macy 	if (rbca->rbca_cb != NULL) {
5392eda14cbcSMatt Macy 		/*
5393eda14cbcSMatt Macy 		 * At this point we know that we are not handling split
5394eda14cbcSMatt Macy 		 * blocks and we invoke the callback on the previous
5395eda14cbcSMatt Macy 		 * vdev which must be indirect.
5396eda14cbcSMatt Macy 		 */
5397eda14cbcSMatt Macy 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5398eda14cbcSMatt Macy 
5399eda14cbcSMatt Macy 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5400eda14cbcSMatt Macy 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5401eda14cbcSMatt Macy 
5402eda14cbcSMatt Macy 		/* set up remap_blkptr_cb_arg for the next call */
5403eda14cbcSMatt Macy 		rbca->rbca_remap_vd = vd;
5404eda14cbcSMatt Macy 		rbca->rbca_remap_offset = offset;
5405eda14cbcSMatt Macy 	}
5406eda14cbcSMatt Macy 
5407eda14cbcSMatt Macy 	/*
5408eda14cbcSMatt Macy 	 * The phys birth time is that of dva[0].  This ensures that we know
5409eda14cbcSMatt Macy 	 * when each dva was written, so that resilver can determine which
5410eda14cbcSMatt Macy 	 * blocks need to be scrubbed (i.e. those written during the time
5411eda14cbcSMatt Macy 	 * the vdev was offline).  It also ensures that the key used in
5412eda14cbcSMatt Macy 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5413eda14cbcSMatt Macy 	 * we didn't change the phys_birth, a lookup in the ARC for a
5414eda14cbcSMatt Macy 	 * remapped BP could find the data that was previously stored at
5415eda14cbcSMatt Macy 	 * this vdev + offset.
5416eda14cbcSMatt Macy 	 */
5417eda14cbcSMatt Macy 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5418eda14cbcSMatt Macy 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5419eda14cbcSMatt Macy 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5420eda14cbcSMatt Macy 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5421eda14cbcSMatt Macy 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5422eda14cbcSMatt Macy 
5423eda14cbcSMatt Macy 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5424eda14cbcSMatt Macy 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5425eda14cbcSMatt Macy }
5426eda14cbcSMatt Macy 
5427eda14cbcSMatt Macy /*
5428eda14cbcSMatt Macy  * If the block pointer contains any indirect DVAs, modify them to refer to
5429eda14cbcSMatt Macy  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5430eda14cbcSMatt Macy  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5431eda14cbcSMatt Macy  * segments in the mapping (i.e. it is a "split block").
5432eda14cbcSMatt Macy  *
5433eda14cbcSMatt Macy  * If the BP was remapped, calls the callback on the original dva (note the
5434eda14cbcSMatt Macy  * callback can be called multiple times if the original indirect DVA refers
5435eda14cbcSMatt Macy  * to another indirect DVA, etc).
5436eda14cbcSMatt Macy  *
5437eda14cbcSMatt Macy  * Returns TRUE if the BP was remapped.
5438eda14cbcSMatt Macy  */
5439eda14cbcSMatt Macy boolean_t
5440eda14cbcSMatt Macy spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5441eda14cbcSMatt Macy {
5442eda14cbcSMatt Macy 	remap_blkptr_cb_arg_t rbca;
5443eda14cbcSMatt Macy 
5444eda14cbcSMatt Macy 	if (!zfs_remap_blkptr_enable)
5445eda14cbcSMatt Macy 		return (B_FALSE);
5446eda14cbcSMatt Macy 
5447eda14cbcSMatt Macy 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5448eda14cbcSMatt Macy 		return (B_FALSE);
5449eda14cbcSMatt Macy 
5450eda14cbcSMatt Macy 	/*
5451eda14cbcSMatt Macy 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5452eda14cbcSMatt Macy 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5453eda14cbcSMatt Macy 	 */
5454eda14cbcSMatt Macy 	if (BP_GET_DEDUP(bp))
5455eda14cbcSMatt Macy 		return (B_FALSE);
5456eda14cbcSMatt Macy 
5457eda14cbcSMatt Macy 	/*
5458eda14cbcSMatt Macy 	 * Gang blocks can not be remapped, because
5459eda14cbcSMatt Macy 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5460eda14cbcSMatt Macy 	 * the BP used to read the gang block header (GBH) being the same
5461eda14cbcSMatt Macy 	 * as the DVA[0] that we allocated for the GBH.
5462eda14cbcSMatt Macy 	 */
5463eda14cbcSMatt Macy 	if (BP_IS_GANG(bp))
5464eda14cbcSMatt Macy 		return (B_FALSE);
5465eda14cbcSMatt Macy 
5466eda14cbcSMatt Macy 	/*
5467eda14cbcSMatt Macy 	 * Embedded BP's have no DVA to remap.
5468eda14cbcSMatt Macy 	 */
5469eda14cbcSMatt Macy 	if (BP_GET_NDVAS(bp) < 1)
5470eda14cbcSMatt Macy 		return (B_FALSE);
5471eda14cbcSMatt Macy 
5472eda14cbcSMatt Macy 	/*
5473eda14cbcSMatt Macy 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5474eda14cbcSMatt Macy 	 * would no longer know what their phys birth txg is.
5475eda14cbcSMatt Macy 	 */
5476eda14cbcSMatt Macy 	dva_t *dva = &bp->blk_dva[0];
5477eda14cbcSMatt Macy 
5478eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5479eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5480eda14cbcSMatt Macy 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5481eda14cbcSMatt Macy 
5482eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap == NULL)
5483eda14cbcSMatt Macy 		return (B_FALSE);
5484eda14cbcSMatt Macy 
5485eda14cbcSMatt Macy 	rbca.rbca_bp = bp;
5486eda14cbcSMatt Macy 	rbca.rbca_cb = callback;
5487eda14cbcSMatt Macy 	rbca.rbca_remap_vd = vd;
5488eda14cbcSMatt Macy 	rbca.rbca_remap_offset = offset;
5489eda14cbcSMatt Macy 	rbca.rbca_cb_arg = arg;
5490eda14cbcSMatt Macy 
5491eda14cbcSMatt Macy 	/*
5492eda14cbcSMatt Macy 	 * remap_blkptr_cb() will be called in order for each level of
5493eda14cbcSMatt Macy 	 * indirection, until a concrete vdev is reached or a split block is
5494eda14cbcSMatt Macy 	 * encountered. old_vd and old_offset are updated within the callback
5495eda14cbcSMatt Macy 	 * as we go from the one indirect vdev to the next one (either concrete
5496eda14cbcSMatt Macy 	 * or indirect again) in that order.
5497eda14cbcSMatt Macy 	 */
5498eda14cbcSMatt Macy 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5499eda14cbcSMatt Macy 
5500eda14cbcSMatt Macy 	/* Check if the DVA wasn't remapped because it is a split block */
5501eda14cbcSMatt Macy 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5502eda14cbcSMatt Macy 		return (B_FALSE);
5503eda14cbcSMatt Macy 
5504eda14cbcSMatt Macy 	return (B_TRUE);
5505eda14cbcSMatt Macy }
5506eda14cbcSMatt Macy 
5507eda14cbcSMatt Macy /*
5508eda14cbcSMatt Macy  * Undo the allocation of a DVA which happened in the given transaction group.
5509eda14cbcSMatt Macy  */
5510eda14cbcSMatt Macy void
5511eda14cbcSMatt Macy metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5512eda14cbcSMatt Macy {
5513eda14cbcSMatt Macy 	metaslab_t *msp;
5514eda14cbcSMatt Macy 	vdev_t *vd;
5515eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5516eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5517eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5518eda14cbcSMatt Macy 
5519eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5520eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5521eda14cbcSMatt Macy 
5522eda14cbcSMatt Macy 	if (txg > spa_freeze_txg(spa))
5523eda14cbcSMatt Macy 		return;
5524eda14cbcSMatt Macy 
5525eda14cbcSMatt Macy 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5526eda14cbcSMatt Macy 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5527eda14cbcSMatt Macy 		zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5528eda14cbcSMatt Macy 		    (u_longlong_t)vdev, (u_longlong_t)offset,
5529eda14cbcSMatt Macy 		    (u_longlong_t)size);
5530eda14cbcSMatt Macy 		return;
5531eda14cbcSMatt Macy 	}
5532eda14cbcSMatt Macy 
5533eda14cbcSMatt Macy 	ASSERT(!vd->vdev_removing);
5534eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
5535eda14cbcSMatt Macy 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5536eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5537eda14cbcSMatt Macy 
5538eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva))
5539eda14cbcSMatt Macy 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5540eda14cbcSMatt Macy 
5541eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5542eda14cbcSMatt Macy 
5543eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5544eda14cbcSMatt Macy 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5545eda14cbcSMatt Macy 	    offset, size);
5546eda14cbcSMatt Macy 	msp->ms_allocating_total -= size;
5547eda14cbcSMatt Macy 
5548eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5549eda14cbcSMatt Macy 	VERIFY3U(offset, >=, msp->ms_start);
5550eda14cbcSMatt Macy 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5551eda14cbcSMatt Macy 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5552eda14cbcSMatt Macy 	    msp->ms_size);
5553eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5554eda14cbcSMatt Macy 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5555eda14cbcSMatt Macy 	range_tree_add(msp->ms_allocatable, offset, size);
5556eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5557eda14cbcSMatt Macy }
5558eda14cbcSMatt Macy 
5559eda14cbcSMatt Macy /*
5560eda14cbcSMatt Macy  * Free the block represented by the given DVA.
5561eda14cbcSMatt Macy  */
5562eda14cbcSMatt Macy void
5563eda14cbcSMatt Macy metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5564eda14cbcSMatt Macy {
5565eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5566eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5567eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5568eda14cbcSMatt Macy 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5569eda14cbcSMatt Macy 
5570eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5571eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5572eda14cbcSMatt Macy 
5573eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva)) {
5574eda14cbcSMatt Macy 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5575eda14cbcSMatt Macy 	}
5576eda14cbcSMatt Macy 
5577eda14cbcSMatt Macy 	metaslab_free_impl(vd, offset, size, checkpoint);
5578eda14cbcSMatt Macy }
5579eda14cbcSMatt Macy 
5580eda14cbcSMatt Macy /*
5581eda14cbcSMatt Macy  * Reserve some allocation slots. The reservation system must be called
5582eda14cbcSMatt Macy  * before we call into the allocator. If there aren't any available slots
5583eda14cbcSMatt Macy  * then the I/O will be throttled until an I/O completes and its slots are
5584eda14cbcSMatt Macy  * freed up. The function returns true if it was successful in placing
5585eda14cbcSMatt Macy  * the reservation.
5586eda14cbcSMatt Macy  */
5587eda14cbcSMatt Macy boolean_t
5588eda14cbcSMatt Macy metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5589eda14cbcSMatt Macy     zio_t *zio, int flags)
5590eda14cbcSMatt Macy {
5591eda14cbcSMatt Macy 	uint64_t available_slots = 0;
5592eda14cbcSMatt Macy 	boolean_t slot_reserved = B_FALSE;
5593eda14cbcSMatt Macy 	uint64_t max = mc->mc_alloc_max_slots[allocator];
5594eda14cbcSMatt Macy 
5595eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc_throttle_enabled);
5596eda14cbcSMatt Macy 	mutex_enter(&mc->mc_lock);
5597eda14cbcSMatt Macy 
5598eda14cbcSMatt Macy 	uint64_t reserved_slots =
5599eda14cbcSMatt Macy 	    zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
5600eda14cbcSMatt Macy 	if (reserved_slots < max)
5601eda14cbcSMatt Macy 		available_slots = max - reserved_slots;
5602eda14cbcSMatt Macy 
5603eda14cbcSMatt Macy 	if (slots <= available_slots || GANG_ALLOCATION(flags) ||
5604eda14cbcSMatt Macy 	    flags & METASLAB_MUST_RESERVE) {
5605eda14cbcSMatt Macy 		/*
5606eda14cbcSMatt Macy 		 * We reserve the slots individually so that we can unreserve
5607eda14cbcSMatt Macy 		 * them individually when an I/O completes.
5608eda14cbcSMatt Macy 		 */
5609eda14cbcSMatt Macy 		for (int d = 0; d < slots; d++) {
5610eda14cbcSMatt Macy 			reserved_slots =
5611eda14cbcSMatt Macy 			    zfs_refcount_add(&mc->mc_alloc_slots[allocator],
5612eda14cbcSMatt Macy 			    zio);
5613eda14cbcSMatt Macy 		}
5614eda14cbcSMatt Macy 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5615eda14cbcSMatt Macy 		slot_reserved = B_TRUE;
5616eda14cbcSMatt Macy 	}
5617eda14cbcSMatt Macy 
5618eda14cbcSMatt Macy 	mutex_exit(&mc->mc_lock);
5619eda14cbcSMatt Macy 	return (slot_reserved);
5620eda14cbcSMatt Macy }
5621eda14cbcSMatt Macy 
5622eda14cbcSMatt Macy void
5623eda14cbcSMatt Macy metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5624eda14cbcSMatt Macy     int allocator, zio_t *zio)
5625eda14cbcSMatt Macy {
5626eda14cbcSMatt Macy 	ASSERT(mc->mc_alloc_throttle_enabled);
5627eda14cbcSMatt Macy 	mutex_enter(&mc->mc_lock);
5628eda14cbcSMatt Macy 	for (int d = 0; d < slots; d++) {
5629eda14cbcSMatt Macy 		(void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
5630eda14cbcSMatt Macy 		    zio);
5631eda14cbcSMatt Macy 	}
5632eda14cbcSMatt Macy 	mutex_exit(&mc->mc_lock);
5633eda14cbcSMatt Macy }
5634eda14cbcSMatt Macy 
5635eda14cbcSMatt Macy static int
5636eda14cbcSMatt Macy metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5637eda14cbcSMatt Macy     uint64_t txg)
5638eda14cbcSMatt Macy {
5639eda14cbcSMatt Macy 	metaslab_t *msp;
5640eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
5641eda14cbcSMatt Macy 	int error = 0;
5642eda14cbcSMatt Macy 
5643eda14cbcSMatt Macy 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5644eda14cbcSMatt Macy 		return (SET_ERROR(ENXIO));
5645eda14cbcSMatt Macy 
5646eda14cbcSMatt Macy 	ASSERT3P(vd->vdev_ms, !=, NULL);
5647eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5648eda14cbcSMatt Macy 
5649eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5650eda14cbcSMatt Macy 
5651eda14cbcSMatt Macy 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5652eda14cbcSMatt Macy 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5653eda14cbcSMatt Macy 		if (error == EBUSY) {
5654eda14cbcSMatt Macy 			ASSERT(msp->ms_loaded);
5655eda14cbcSMatt Macy 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5656eda14cbcSMatt Macy 			error = 0;
5657eda14cbcSMatt Macy 		}
5658eda14cbcSMatt Macy 	}
5659eda14cbcSMatt Macy 
5660eda14cbcSMatt Macy 	if (error == 0 &&
5661eda14cbcSMatt Macy 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5662eda14cbcSMatt Macy 		error = SET_ERROR(ENOENT);
5663eda14cbcSMatt Macy 
5664eda14cbcSMatt Macy 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5665eda14cbcSMatt Macy 		mutex_exit(&msp->ms_lock);
5666eda14cbcSMatt Macy 		return (error);
5667eda14cbcSMatt Macy 	}
5668eda14cbcSMatt Macy 
5669eda14cbcSMatt Macy 	VERIFY(!msp->ms_condensing);
5670eda14cbcSMatt Macy 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5671eda14cbcSMatt Macy 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5672eda14cbcSMatt Macy 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5673eda14cbcSMatt Macy 	    msp->ms_size);
5674eda14cbcSMatt Macy 	range_tree_remove(msp->ms_allocatable, offset, size);
5675eda14cbcSMatt Macy 	range_tree_clear(msp->ms_trim, offset, size);
5676eda14cbcSMatt Macy 
5677eda14cbcSMatt Macy 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
5678eda14cbcSMatt Macy 		metaslab_class_t *mc = msp->ms_group->mg_class;
5679eda14cbcSMatt Macy 		multilist_sublist_t *mls =
5680eda14cbcSMatt Macy 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
5681eda14cbcSMatt Macy 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5682eda14cbcSMatt Macy 			msp->ms_selected_txg = txg;
5683eda14cbcSMatt Macy 			multilist_sublist_insert_head(mls, msp);
5684eda14cbcSMatt Macy 		}
5685eda14cbcSMatt Macy 		multilist_sublist_unlock(mls);
5686eda14cbcSMatt Macy 
5687eda14cbcSMatt Macy 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5688eda14cbcSMatt Macy 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5689eda14cbcSMatt Macy 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5690eda14cbcSMatt Macy 		    offset, size);
5691eda14cbcSMatt Macy 		msp->ms_allocating_total += size;
5692eda14cbcSMatt Macy 	}
5693eda14cbcSMatt Macy 
5694eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
5695eda14cbcSMatt Macy 
5696eda14cbcSMatt Macy 	return (0);
5697eda14cbcSMatt Macy }
5698eda14cbcSMatt Macy 
5699eda14cbcSMatt Macy typedef struct metaslab_claim_cb_arg_t {
5700eda14cbcSMatt Macy 	uint64_t	mcca_txg;
5701eda14cbcSMatt Macy 	int		mcca_error;
5702eda14cbcSMatt Macy } metaslab_claim_cb_arg_t;
5703eda14cbcSMatt Macy 
5704eda14cbcSMatt Macy /* ARGSUSED */
5705eda14cbcSMatt Macy static void
5706eda14cbcSMatt Macy metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5707eda14cbcSMatt Macy     uint64_t size, void *arg)
5708eda14cbcSMatt Macy {
5709eda14cbcSMatt Macy 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5710eda14cbcSMatt Macy 
5711eda14cbcSMatt Macy 	if (mcca_arg->mcca_error == 0) {
5712eda14cbcSMatt Macy 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5713eda14cbcSMatt Macy 		    size, mcca_arg->mcca_txg);
5714eda14cbcSMatt Macy 	}
5715eda14cbcSMatt Macy }
5716eda14cbcSMatt Macy 
5717eda14cbcSMatt Macy int
5718eda14cbcSMatt Macy metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5719eda14cbcSMatt Macy {
5720eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5721eda14cbcSMatt Macy 		metaslab_claim_cb_arg_t arg;
5722eda14cbcSMatt Macy 
5723eda14cbcSMatt Macy 		/*
5724eda14cbcSMatt Macy 		 * Only zdb(1M) can claim on indirect vdevs.  This is used
5725eda14cbcSMatt Macy 		 * to detect leaks of mapped space (that are not accounted
5726eda14cbcSMatt Macy 		 * for in the obsolete counts, spacemap, or bpobj).
5727eda14cbcSMatt Macy 		 */
5728eda14cbcSMatt Macy 		ASSERT(!spa_writeable(vd->vdev_spa));
5729eda14cbcSMatt Macy 		arg.mcca_error = 0;
5730eda14cbcSMatt Macy 		arg.mcca_txg = txg;
5731eda14cbcSMatt Macy 
5732eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5733eda14cbcSMatt Macy 		    metaslab_claim_impl_cb, &arg);
5734eda14cbcSMatt Macy 
5735eda14cbcSMatt Macy 		if (arg.mcca_error == 0) {
5736eda14cbcSMatt Macy 			arg.mcca_error = metaslab_claim_concrete(vd,
5737eda14cbcSMatt Macy 			    offset, size, txg);
5738eda14cbcSMatt Macy 		}
5739eda14cbcSMatt Macy 		return (arg.mcca_error);
5740eda14cbcSMatt Macy 	} else {
5741eda14cbcSMatt Macy 		return (metaslab_claim_concrete(vd, offset, size, txg));
5742eda14cbcSMatt Macy 	}
5743eda14cbcSMatt Macy }
5744eda14cbcSMatt Macy 
5745eda14cbcSMatt Macy /*
5746eda14cbcSMatt Macy  * Intent log support: upon opening the pool after a crash, notify the SPA
5747eda14cbcSMatt Macy  * of blocks that the intent log has allocated for immediate write, but
5748eda14cbcSMatt Macy  * which are still considered free by the SPA because the last transaction
5749eda14cbcSMatt Macy  * group didn't commit yet.
5750eda14cbcSMatt Macy  */
5751eda14cbcSMatt Macy static int
5752eda14cbcSMatt Macy metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5753eda14cbcSMatt Macy {
5754eda14cbcSMatt Macy 	uint64_t vdev = DVA_GET_VDEV(dva);
5755eda14cbcSMatt Macy 	uint64_t offset = DVA_GET_OFFSET(dva);
5756eda14cbcSMatt Macy 	uint64_t size = DVA_GET_ASIZE(dva);
5757eda14cbcSMatt Macy 	vdev_t *vd;
5758eda14cbcSMatt Macy 
5759eda14cbcSMatt Macy 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5760eda14cbcSMatt Macy 		return (SET_ERROR(ENXIO));
5761eda14cbcSMatt Macy 	}
5762eda14cbcSMatt Macy 
5763eda14cbcSMatt Macy 	ASSERT(DVA_IS_VALID(dva));
5764eda14cbcSMatt Macy 
5765eda14cbcSMatt Macy 	if (DVA_GET_GANG(dva))
5766eda14cbcSMatt Macy 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5767eda14cbcSMatt Macy 
5768eda14cbcSMatt Macy 	return (metaslab_claim_impl(vd, offset, size, txg));
5769eda14cbcSMatt Macy }
5770eda14cbcSMatt Macy 
5771eda14cbcSMatt Macy int
5772eda14cbcSMatt Macy metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5773eda14cbcSMatt Macy     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5774eda14cbcSMatt Macy     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5775eda14cbcSMatt Macy {
5776eda14cbcSMatt Macy 	dva_t *dva = bp->blk_dva;
5777eda14cbcSMatt Macy 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5778eda14cbcSMatt Macy 	int error = 0;
5779eda14cbcSMatt Macy 
5780eda14cbcSMatt Macy 	ASSERT(bp->blk_birth == 0);
5781eda14cbcSMatt Macy 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5782eda14cbcSMatt Macy 
5783eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5784eda14cbcSMatt Macy 
5785eda14cbcSMatt Macy 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
5786eda14cbcSMatt Macy 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5787eda14cbcSMatt Macy 		return (SET_ERROR(ENOSPC));
5788eda14cbcSMatt Macy 	}
5789eda14cbcSMatt Macy 
5790eda14cbcSMatt Macy 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5791eda14cbcSMatt Macy 	ASSERT(BP_GET_NDVAS(bp) == 0);
5792eda14cbcSMatt Macy 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5793eda14cbcSMatt Macy 	ASSERT3P(zal, !=, NULL);
5794eda14cbcSMatt Macy 
5795eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5796eda14cbcSMatt Macy 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5797eda14cbcSMatt Macy 		    txg, flags, zal, allocator);
5798eda14cbcSMatt Macy 		if (error != 0) {
5799eda14cbcSMatt Macy 			for (d--; d >= 0; d--) {
5800eda14cbcSMatt Macy 				metaslab_unalloc_dva(spa, &dva[d], txg);
5801eda14cbcSMatt Macy 				metaslab_group_alloc_decrement(spa,
5802eda14cbcSMatt Macy 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5803eda14cbcSMatt Macy 				    allocator, B_FALSE);
5804eda14cbcSMatt Macy 				bzero(&dva[d], sizeof (dva_t));
5805eda14cbcSMatt Macy 			}
5806eda14cbcSMatt Macy 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5807eda14cbcSMatt Macy 			return (error);
5808eda14cbcSMatt Macy 		} else {
5809eda14cbcSMatt Macy 			/*
5810eda14cbcSMatt Macy 			 * Update the metaslab group's queue depth
5811eda14cbcSMatt Macy 			 * based on the newly allocated dva.
5812eda14cbcSMatt Macy 			 */
5813eda14cbcSMatt Macy 			metaslab_group_alloc_increment(spa,
5814eda14cbcSMatt Macy 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5815eda14cbcSMatt Macy 		}
5816eda14cbcSMatt Macy 
5817eda14cbcSMatt Macy 	}
5818eda14cbcSMatt Macy 	ASSERT(error == 0);
5819eda14cbcSMatt Macy 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5820eda14cbcSMatt Macy 
5821eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5822eda14cbcSMatt Macy 
5823eda14cbcSMatt Macy 	BP_SET_BIRTH(bp, txg, 0);
5824eda14cbcSMatt Macy 
5825eda14cbcSMatt Macy 	return (0);
5826eda14cbcSMatt Macy }
5827eda14cbcSMatt Macy 
5828eda14cbcSMatt Macy void
5829eda14cbcSMatt Macy metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5830eda14cbcSMatt Macy {
5831eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5832eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5833eda14cbcSMatt Macy 
5834eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5835eda14cbcSMatt Macy 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5836eda14cbcSMatt Macy 
5837eda14cbcSMatt Macy 	/*
5838eda14cbcSMatt Macy 	 * If we have a checkpoint for the pool we need to make sure that
5839eda14cbcSMatt Macy 	 * the blocks that we free that are part of the checkpoint won't be
5840eda14cbcSMatt Macy 	 * reused until the checkpoint is discarded or we revert to it.
5841eda14cbcSMatt Macy 	 *
5842eda14cbcSMatt Macy 	 * The checkpoint flag is passed down the metaslab_free code path
5843eda14cbcSMatt Macy 	 * and is set whenever we want to add a block to the checkpoint's
5844eda14cbcSMatt Macy 	 * accounting. That is, we "checkpoint" blocks that existed at the
5845eda14cbcSMatt Macy 	 * time the checkpoint was created and are therefore referenced by
5846eda14cbcSMatt Macy 	 * the checkpointed uberblock.
5847eda14cbcSMatt Macy 	 *
5848eda14cbcSMatt Macy 	 * Note that, we don't checkpoint any blocks if the current
5849eda14cbcSMatt Macy 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5850eda14cbcSMatt Macy 	 * normally as they will be referenced by the checkpointed uberblock.
5851eda14cbcSMatt Macy 	 */
5852eda14cbcSMatt Macy 	boolean_t checkpoint = B_FALSE;
5853eda14cbcSMatt Macy 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5854eda14cbcSMatt Macy 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5855eda14cbcSMatt Macy 		/*
5856eda14cbcSMatt Macy 		 * At this point, if the block is part of the checkpoint
5857eda14cbcSMatt Macy 		 * there is no way it was created in the current txg.
5858eda14cbcSMatt Macy 		 */
5859eda14cbcSMatt Macy 		ASSERT(!now);
5860eda14cbcSMatt Macy 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5861eda14cbcSMatt Macy 		checkpoint = B_TRUE;
5862eda14cbcSMatt Macy 	}
5863eda14cbcSMatt Macy 
5864eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5865eda14cbcSMatt Macy 
5866eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5867eda14cbcSMatt Macy 		if (now) {
5868eda14cbcSMatt Macy 			metaslab_unalloc_dva(spa, &dva[d], txg);
5869eda14cbcSMatt Macy 		} else {
5870eda14cbcSMatt Macy 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5871eda14cbcSMatt Macy 			metaslab_free_dva(spa, &dva[d], checkpoint);
5872eda14cbcSMatt Macy 		}
5873eda14cbcSMatt Macy 	}
5874eda14cbcSMatt Macy 
5875eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_FREE, FTAG);
5876eda14cbcSMatt Macy }
5877eda14cbcSMatt Macy 
5878eda14cbcSMatt Macy int
5879eda14cbcSMatt Macy metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5880eda14cbcSMatt Macy {
5881eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5882eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5883eda14cbcSMatt Macy 	int error = 0;
5884eda14cbcSMatt Macy 
5885eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5886eda14cbcSMatt Macy 
5887eda14cbcSMatt Macy 	if (txg != 0) {
5888eda14cbcSMatt Macy 		/*
5889eda14cbcSMatt Macy 		 * First do a dry run to make sure all DVAs are claimable,
5890eda14cbcSMatt Macy 		 * so we don't have to unwind from partial failures below.
5891eda14cbcSMatt Macy 		 */
5892eda14cbcSMatt Macy 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5893eda14cbcSMatt Macy 			return (error);
5894eda14cbcSMatt Macy 	}
5895eda14cbcSMatt Macy 
5896eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5897eda14cbcSMatt Macy 
5898eda14cbcSMatt Macy 	for (int d = 0; d < ndvas; d++) {
5899eda14cbcSMatt Macy 		error = metaslab_claim_dva(spa, &dva[d], txg);
5900eda14cbcSMatt Macy 		if (error != 0)
5901eda14cbcSMatt Macy 			break;
5902eda14cbcSMatt Macy 	}
5903eda14cbcSMatt Macy 
5904eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5905eda14cbcSMatt Macy 
5906eda14cbcSMatt Macy 	ASSERT(error == 0 || txg == 0);
5907eda14cbcSMatt Macy 
5908eda14cbcSMatt Macy 	return (error);
5909eda14cbcSMatt Macy }
5910eda14cbcSMatt Macy 
5911eda14cbcSMatt Macy void
5912eda14cbcSMatt Macy metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
5913eda14cbcSMatt Macy {
5914eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5915eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5916eda14cbcSMatt Macy 	uint64_t psize = BP_GET_PSIZE(bp);
5917eda14cbcSMatt Macy 	int d;
5918eda14cbcSMatt Macy 	vdev_t *vd;
5919eda14cbcSMatt Macy 
5920eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5921eda14cbcSMatt Macy 	ASSERT(!BP_IS_EMBEDDED(bp));
5922eda14cbcSMatt Macy 	ASSERT(psize > 0);
5923eda14cbcSMatt Macy 
5924eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5925eda14cbcSMatt Macy 
5926eda14cbcSMatt Macy 	for (d = 0; d < ndvas; d++) {
5927eda14cbcSMatt Macy 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5928eda14cbcSMatt Macy 			continue;
5929eda14cbcSMatt Macy 		atomic_add_64(&vd->vdev_pending_fastwrite, psize);
5930eda14cbcSMatt Macy 	}
5931eda14cbcSMatt Macy 
5932eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
5933eda14cbcSMatt Macy }
5934eda14cbcSMatt Macy 
5935eda14cbcSMatt Macy void
5936eda14cbcSMatt Macy metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
5937eda14cbcSMatt Macy {
5938eda14cbcSMatt Macy 	const dva_t *dva = bp->blk_dva;
5939eda14cbcSMatt Macy 	int ndvas = BP_GET_NDVAS(bp);
5940eda14cbcSMatt Macy 	uint64_t psize = BP_GET_PSIZE(bp);
5941eda14cbcSMatt Macy 	int d;
5942eda14cbcSMatt Macy 	vdev_t *vd;
5943eda14cbcSMatt Macy 
5944eda14cbcSMatt Macy 	ASSERT(!BP_IS_HOLE(bp));
5945eda14cbcSMatt Macy 	ASSERT(!BP_IS_EMBEDDED(bp));
5946eda14cbcSMatt Macy 	ASSERT(psize > 0);
5947eda14cbcSMatt Macy 
5948eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5949eda14cbcSMatt Macy 
5950eda14cbcSMatt Macy 	for (d = 0; d < ndvas; d++) {
5951eda14cbcSMatt Macy 		if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
5952eda14cbcSMatt Macy 			continue;
5953eda14cbcSMatt Macy 		ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
5954eda14cbcSMatt Macy 		atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
5955eda14cbcSMatt Macy 	}
5956eda14cbcSMatt Macy 
5957eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
5958eda14cbcSMatt Macy }
5959eda14cbcSMatt Macy 
5960eda14cbcSMatt Macy /* ARGSUSED */
5961eda14cbcSMatt Macy static void
5962eda14cbcSMatt Macy metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5963eda14cbcSMatt Macy     uint64_t size, void *arg)
5964eda14cbcSMatt Macy {
5965eda14cbcSMatt Macy 	if (vd->vdev_ops == &vdev_indirect_ops)
5966eda14cbcSMatt Macy 		return;
5967eda14cbcSMatt Macy 
5968eda14cbcSMatt Macy 	metaslab_check_free_impl(vd, offset, size);
5969eda14cbcSMatt Macy }
5970eda14cbcSMatt Macy 
5971eda14cbcSMatt Macy static void
5972eda14cbcSMatt Macy metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5973eda14cbcSMatt Macy {
5974eda14cbcSMatt Macy 	metaslab_t *msp;
5975eda14cbcSMatt Macy 	spa_t *spa __maybe_unused = vd->vdev_spa;
5976eda14cbcSMatt Macy 
5977eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5978eda14cbcSMatt Macy 		return;
5979eda14cbcSMatt Macy 
5980eda14cbcSMatt Macy 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5981eda14cbcSMatt Macy 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5982eda14cbcSMatt Macy 		    metaslab_check_free_impl_cb, NULL);
5983eda14cbcSMatt Macy 		return;
5984eda14cbcSMatt Macy 	}
5985eda14cbcSMatt Macy 
5986eda14cbcSMatt Macy 	ASSERT(vdev_is_concrete(vd));
5987eda14cbcSMatt Macy 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5988eda14cbcSMatt Macy 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5989eda14cbcSMatt Macy 
5990eda14cbcSMatt Macy 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5991eda14cbcSMatt Macy 
5992eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
5993eda14cbcSMatt Macy 	if (msp->ms_loaded) {
5994eda14cbcSMatt Macy 		range_tree_verify_not_present(msp->ms_allocatable,
5995eda14cbcSMatt Macy 		    offset, size);
5996eda14cbcSMatt Macy 	}
5997eda14cbcSMatt Macy 
5998eda14cbcSMatt Macy 	/*
5999eda14cbcSMatt Macy 	 * Check all segments that currently exist in the freeing pipeline.
6000eda14cbcSMatt Macy 	 *
6001eda14cbcSMatt Macy 	 * It would intuitively make sense to also check the current allocating
6002eda14cbcSMatt Macy 	 * tree since metaslab_unalloc_dva() exists for extents that are
6003eda14cbcSMatt Macy 	 * allocated and freed in the same sync pass within the same txg.
6004eda14cbcSMatt Macy 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6005eda14cbcSMatt Macy 	 * segment but then we free part of it within the same txg
6006eda14cbcSMatt Macy 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6007eda14cbcSMatt Macy 	 * current allocating tree.
6008eda14cbcSMatt Macy 	 */
6009eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
6010eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6011eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_freed, offset, size);
6012eda14cbcSMatt Macy 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
6013eda14cbcSMatt Macy 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6014eda14cbcSMatt Macy 	range_tree_verify_not_present(msp->ms_trim, offset, size);
6015eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6016eda14cbcSMatt Macy }
6017eda14cbcSMatt Macy 
6018eda14cbcSMatt Macy void
6019eda14cbcSMatt Macy metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6020eda14cbcSMatt Macy {
6021eda14cbcSMatt Macy 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6022eda14cbcSMatt Macy 		return;
6023eda14cbcSMatt Macy 
6024eda14cbcSMatt Macy 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6025eda14cbcSMatt Macy 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6026eda14cbcSMatt Macy 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6027eda14cbcSMatt Macy 		vdev_t *vd = vdev_lookup_top(spa, vdev);
6028eda14cbcSMatt Macy 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6029eda14cbcSMatt Macy 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6030eda14cbcSMatt Macy 
6031eda14cbcSMatt Macy 		if (DVA_GET_GANG(&bp->blk_dva[i]))
6032eda14cbcSMatt Macy 			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
6033eda14cbcSMatt Macy 
6034eda14cbcSMatt Macy 		ASSERT3P(vd, !=, NULL);
6035eda14cbcSMatt Macy 
6036eda14cbcSMatt Macy 		metaslab_check_free_impl(vd, offset, size);
6037eda14cbcSMatt Macy 	}
6038eda14cbcSMatt Macy 	spa_config_exit(spa, SCL_VDEV, FTAG);
6039eda14cbcSMatt Macy }
6040eda14cbcSMatt Macy 
6041eda14cbcSMatt Macy static void
6042eda14cbcSMatt Macy metaslab_group_disable_wait(metaslab_group_t *mg)
6043eda14cbcSMatt Macy {
6044eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6045eda14cbcSMatt Macy 	while (mg->mg_disabled_updating) {
6046eda14cbcSMatt Macy 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6047eda14cbcSMatt Macy 	}
6048eda14cbcSMatt Macy }
6049eda14cbcSMatt Macy 
6050eda14cbcSMatt Macy static void
6051eda14cbcSMatt Macy metaslab_group_disabled_increment(metaslab_group_t *mg)
6052eda14cbcSMatt Macy {
6053eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6054eda14cbcSMatt Macy 	ASSERT(mg->mg_disabled_updating);
6055eda14cbcSMatt Macy 
6056eda14cbcSMatt Macy 	while (mg->mg_ms_disabled >= max_disabled_ms) {
6057eda14cbcSMatt Macy 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6058eda14cbcSMatt Macy 	}
6059eda14cbcSMatt Macy 	mg->mg_ms_disabled++;
6060eda14cbcSMatt Macy 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6061eda14cbcSMatt Macy }
6062eda14cbcSMatt Macy 
6063eda14cbcSMatt Macy /*
6064eda14cbcSMatt Macy  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6065eda14cbcSMatt Macy  * We must also track how many metaslabs are currently disabled within a
6066eda14cbcSMatt Macy  * metaslab group and limit them to prevent allocation failures from
6067eda14cbcSMatt Macy  * occurring because all metaslabs are disabled.
6068eda14cbcSMatt Macy  */
6069eda14cbcSMatt Macy void
6070eda14cbcSMatt Macy metaslab_disable(metaslab_t *msp)
6071eda14cbcSMatt Macy {
6072eda14cbcSMatt Macy 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
6073eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
6074eda14cbcSMatt Macy 
6075eda14cbcSMatt Macy 	mutex_enter(&mg->mg_ms_disabled_lock);
6076eda14cbcSMatt Macy 
6077eda14cbcSMatt Macy 	/*
6078eda14cbcSMatt Macy 	 * To keep an accurate count of how many threads have disabled
6079eda14cbcSMatt Macy 	 * a specific metaslab group, we only allow one thread to mark
6080eda14cbcSMatt Macy 	 * the metaslab group at a time. This ensures that the value of
6081eda14cbcSMatt Macy 	 * ms_disabled will be accurate when we decide to mark a metaslab
6082eda14cbcSMatt Macy 	 * group as disabled. To do this we force all other threads
6083eda14cbcSMatt Macy 	 * to wait till the metaslab's mg_disabled_updating flag is no
6084eda14cbcSMatt Macy 	 * longer set.
6085eda14cbcSMatt Macy 	 */
6086eda14cbcSMatt Macy 	metaslab_group_disable_wait(mg);
6087eda14cbcSMatt Macy 	mg->mg_disabled_updating = B_TRUE;
6088eda14cbcSMatt Macy 	if (msp->ms_disabled == 0) {
6089eda14cbcSMatt Macy 		metaslab_group_disabled_increment(mg);
6090eda14cbcSMatt Macy 	}
6091eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
6092eda14cbcSMatt Macy 	msp->ms_disabled++;
6093eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6094eda14cbcSMatt Macy 
6095eda14cbcSMatt Macy 	mg->mg_disabled_updating = B_FALSE;
6096eda14cbcSMatt Macy 	cv_broadcast(&mg->mg_ms_disabled_cv);
6097eda14cbcSMatt Macy 	mutex_exit(&mg->mg_ms_disabled_lock);
6098eda14cbcSMatt Macy }
6099eda14cbcSMatt Macy 
6100eda14cbcSMatt Macy void
6101eda14cbcSMatt Macy metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6102eda14cbcSMatt Macy {
6103eda14cbcSMatt Macy 	metaslab_group_t *mg = msp->ms_group;
6104eda14cbcSMatt Macy 	spa_t *spa = mg->mg_vd->vdev_spa;
6105eda14cbcSMatt Macy 
6106eda14cbcSMatt Macy 	/*
6107eda14cbcSMatt Macy 	 * Wait for the outstanding IO to be synced to prevent newly
6108eda14cbcSMatt Macy 	 * allocated blocks from being overwritten.  This used by
6109eda14cbcSMatt Macy 	 * initialize and TRIM which are modifying unallocated space.
6110eda14cbcSMatt Macy 	 */
6111eda14cbcSMatt Macy 	if (sync)
6112eda14cbcSMatt Macy 		txg_wait_synced(spa_get_dsl(spa), 0);
6113eda14cbcSMatt Macy 
6114eda14cbcSMatt Macy 	mutex_enter(&mg->mg_ms_disabled_lock);
6115eda14cbcSMatt Macy 	mutex_enter(&msp->ms_lock);
6116eda14cbcSMatt Macy 	if (--msp->ms_disabled == 0) {
6117eda14cbcSMatt Macy 		mg->mg_ms_disabled--;
6118eda14cbcSMatt Macy 		cv_broadcast(&mg->mg_ms_disabled_cv);
6119eda14cbcSMatt Macy 		if (unload)
6120eda14cbcSMatt Macy 			metaslab_unload(msp);
6121eda14cbcSMatt Macy 	}
6122eda14cbcSMatt Macy 	mutex_exit(&msp->ms_lock);
6123eda14cbcSMatt Macy 	mutex_exit(&mg->mg_ms_disabled_lock);
6124eda14cbcSMatt Macy }
6125eda14cbcSMatt Macy 
6126eda14cbcSMatt Macy static void
6127eda14cbcSMatt Macy metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6128eda14cbcSMatt Macy {
6129eda14cbcSMatt Macy 	vdev_t *vd = ms->ms_group->mg_vd;
6130eda14cbcSMatt Macy 	spa_t *spa = vd->vdev_spa;
6131eda14cbcSMatt Macy 	objset_t *mos = spa_meta_objset(spa);
6132eda14cbcSMatt Macy 
6133eda14cbcSMatt Macy 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6134eda14cbcSMatt Macy 
6135eda14cbcSMatt Macy 	metaslab_unflushed_phys_t entry = {
6136eda14cbcSMatt Macy 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
6137eda14cbcSMatt Macy 	};
6138eda14cbcSMatt Macy 	uint64_t entry_size = sizeof (entry);
6139eda14cbcSMatt Macy 	uint64_t entry_offset = ms->ms_id * entry_size;
6140eda14cbcSMatt Macy 
6141eda14cbcSMatt Macy 	uint64_t object = 0;
6142eda14cbcSMatt Macy 	int err = zap_lookup(mos, vd->vdev_top_zap,
6143eda14cbcSMatt Macy 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6144eda14cbcSMatt Macy 	    &object);
6145eda14cbcSMatt Macy 	if (err == ENOENT) {
6146eda14cbcSMatt Macy 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6147eda14cbcSMatt Macy 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6148eda14cbcSMatt Macy 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
6149eda14cbcSMatt Macy 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6150eda14cbcSMatt Macy 		    &object, tx));
6151eda14cbcSMatt Macy 	} else {
6152eda14cbcSMatt Macy 		VERIFY0(err);
6153eda14cbcSMatt Macy 	}
6154eda14cbcSMatt Macy 
6155eda14cbcSMatt Macy 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6156eda14cbcSMatt Macy 	    &entry, tx);
6157eda14cbcSMatt Macy }
6158eda14cbcSMatt Macy 
6159eda14cbcSMatt Macy void
6160eda14cbcSMatt Macy metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6161eda14cbcSMatt Macy {
6162eda14cbcSMatt Macy 	spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
6163eda14cbcSMatt Macy 
6164eda14cbcSMatt Macy 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
6165eda14cbcSMatt Macy 		return;
6166eda14cbcSMatt Macy 
6167eda14cbcSMatt Macy 	ms->ms_unflushed_txg = txg;
6168eda14cbcSMatt Macy 	metaslab_update_ondisk_flush_data(ms, tx);
6169eda14cbcSMatt Macy }
6170eda14cbcSMatt Macy 
6171eda14cbcSMatt Macy uint64_t
6172eda14cbcSMatt Macy metaslab_unflushed_txg(metaslab_t *ms)
6173eda14cbcSMatt Macy {
6174eda14cbcSMatt Macy 	return (ms->ms_unflushed_txg);
6175eda14cbcSMatt Macy }
6176eda14cbcSMatt Macy 
6177eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW,
6178eda14cbcSMatt Macy 	"Allocation granularity (a.k.a. stripe size)");
6179eda14cbcSMatt Macy 
6180eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6181eda14cbcSMatt Macy 	"Load all metaslabs when pool is first opened");
6182eda14cbcSMatt Macy 
6183eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6184eda14cbcSMatt Macy 	"Prevent metaslabs from being unloaded");
6185eda14cbcSMatt Macy 
6186eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6187eda14cbcSMatt Macy 	"Preload potential metaslabs during reassessment");
6188eda14cbcSMatt Macy 
6189eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW,
6190eda14cbcSMatt Macy 	"Delay in txgs after metaslab was last used before unloading");
6191eda14cbcSMatt Macy 
6192eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW,
6193eda14cbcSMatt Macy 	"Delay in milliseconds after metaslab was last used before unloading");
6194eda14cbcSMatt Macy 
6195eda14cbcSMatt Macy /* BEGIN CSTYLED */
6196eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW,
6197eda14cbcSMatt Macy 	"Percentage of metaslab group size that should be free to make it "
6198eda14cbcSMatt Macy 	"eligible for allocation");
6199eda14cbcSMatt Macy 
6200eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW,
6201eda14cbcSMatt Macy 	"Percentage of metaslab group size that should be considered eligible "
6202eda14cbcSMatt Macy 	"for allocations unless all metaslab groups within the metaslab class "
6203eda14cbcSMatt Macy 	"have also crossed this threshold");
6204eda14cbcSMatt Macy 
6205eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT,
6206eda14cbcSMatt Macy 	 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6207eda14cbcSMatt Macy 
6208eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW,
6209eda14cbcSMatt Macy 	"Use the fragmentation metric to prefer less fragmented metaslabs");
6210eda14cbcSMatt Macy /* END CSTYLED */
6211eda14cbcSMatt Macy 
6212eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6213eda14cbcSMatt Macy 	"Prefer metaslabs with lower LBAs");
6214eda14cbcSMatt Macy 
6215eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6216eda14cbcSMatt Macy 	"Enable metaslab group biasing");
6217eda14cbcSMatt Macy 
6218eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6219eda14cbcSMatt Macy 	ZMOD_RW, "Enable segment-based metaslab selection");
6220eda14cbcSMatt Macy 
6221eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6222eda14cbcSMatt Macy 	"Segment-based metaslab selection maximum buckets before switching");
6223eda14cbcSMatt Macy 
6224eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW,
6225eda14cbcSMatt Macy 	"Blocks larger than this size are forced to be gang blocks");
6226eda14cbcSMatt Macy 
6227eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW,
6228eda14cbcSMatt Macy 	"Max distance (bytes) to search forward before using size tree");
6229eda14cbcSMatt Macy 
6230eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6231eda14cbcSMatt Macy 	"When looking in size tree, use largest segment instead of exact fit");
6232eda14cbcSMatt Macy 
6233eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG,
6234eda14cbcSMatt Macy 	ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6235eda14cbcSMatt Macy 
6236eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW,
6237eda14cbcSMatt Macy 	"Percentage of memory that can be used to store metaslab range trees");
6238