1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2016 Gary Mills 26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 28 * Copyright 2019 Joyent, Inc. 29 */ 30 31 #include <sys/dsl_scan.h> 32 #include <sys/dsl_pool.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_prop.h> 35 #include <sys/dsl_dir.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dnode.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/arc.h> 41 #include <sys/arc_impl.h> 42 #include <sys/zap.h> 43 #include <sys/zio.h> 44 #include <sys/zfs_context.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/spa_impl.h> 48 #include <sys/vdev_impl.h> 49 #include <sys/zil_impl.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/brt.h> 52 #include <sys/ddt.h> 53 #include <sys/sa.h> 54 #include <sys/sa_impl.h> 55 #include <sys/zfeature.h> 56 #include <sys/abd.h> 57 #include <sys/range_tree.h> 58 #include <sys/dbuf.h> 59 #ifdef _KERNEL 60 #include <sys/zfs_vfsops.h> 61 #endif 62 63 /* 64 * Grand theory statement on scan queue sorting 65 * 66 * Scanning is implemented by recursively traversing all indirection levels 67 * in an object and reading all blocks referenced from said objects. This 68 * results in us approximately traversing the object from lowest logical 69 * offset to the highest. For best performance, we would want the logical 70 * blocks to be physically contiguous. However, this is frequently not the 71 * case with pools given the allocation patterns of copy-on-write filesystems. 72 * So instead, we put the I/Os into a reordering queue and issue them in a 73 * way that will most benefit physical disks (LBA-order). 74 * 75 * Queue management: 76 * 77 * Ideally, we would want to scan all metadata and queue up all block I/O 78 * prior to starting to issue it, because that allows us to do an optimal 79 * sorting job. This can however consume large amounts of memory. Therefore 80 * we continuously monitor the size of the queues and constrain them to 5% 81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 82 * limit, we clear out a few of the largest extents at the head of the queues 83 * to make room for more scanning. Hopefully, these extents will be fairly 84 * large and contiguous, allowing us to approach sequential I/O throughput 85 * even without a fully sorted tree. 86 * 87 * Metadata scanning takes place in dsl_scan_visit(), which is called from 88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 89 * metadata on the pool, or we need to make room in memory because our 90 * queues are too large, dsl_scan_visit() is postponed and 91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 92 * that metadata scanning and queued I/O issuing are mutually exclusive. This 93 * allows us to provide maximum sequential I/O throughput for the majority of 94 * I/O's issued since sequential I/O performance is significantly negatively 95 * impacted if it is interleaved with random I/O. 96 * 97 * Implementation Notes 98 * 99 * One side effect of the queued scanning algorithm is that the scanning code 100 * needs to be notified whenever a block is freed. This is needed to allow 101 * the scanning code to remove these I/Os from the issuing queue. Additionally, 102 * we do not attempt to queue gang blocks to be issued sequentially since this 103 * is very hard to do and would have an extremely limited performance benefit. 104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 105 * algorithm. 106 * 107 * Backwards compatibility 108 * 109 * This new algorithm is backwards compatible with the legacy on-disk data 110 * structures (and therefore does not require a new feature flag). 111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 112 * will stop scanning metadata (in logical order) and wait for all outstanding 113 * sorted I/O to complete. Once this is done, we write out a checkpoint 114 * bookmark, indicating that we have scanned everything logically before it. 115 * If the pool is imported on a machine without the new sorting algorithm, 116 * the scan simply resumes from the last checkpoint using the legacy algorithm. 117 */ 118 119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 120 const zbookmark_phys_t *); 121 122 static scan_cb_t dsl_scan_scrub_cb; 123 124 static int scan_ds_queue_compare(const void *a, const void *b); 125 static int scan_prefetch_queue_compare(const void *a, const void *b); 126 static void scan_ds_queue_clear(dsl_scan_t *scn); 127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 129 uint64_t *txg); 130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 133 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 135 136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 137 static int zfs_scan_blkstats = 0; 138 139 /* 140 * 'zpool status' uses bytes processed per pass to report throughput and 141 * estimate time remaining. We define a pass to start when the scanning 142 * phase completes for a sequential resilver. Optionally, this value 143 * may be used to reset the pass statistics every N txgs to provide an 144 * estimated completion time based on currently observed performance. 145 */ 146 static uint_t zfs_scan_report_txgs = 0; 147 148 /* 149 * By default zfs will check to ensure it is not over the hard memory 150 * limit before each txg. If finer-grained control of this is needed 151 * this value can be set to 1 to enable checking before scanning each 152 * block. 153 */ 154 static int zfs_scan_strict_mem_lim = B_FALSE; 155 156 /* 157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 158 * to strike a balance here between keeping the vdev queues full of I/Os 159 * at all times and not overflowing the queues to cause long latency, 160 * which would cause long txg sync times. No matter what, we will not 161 * overload the drives with I/O, since that is protected by 162 * zfs_vdev_scrub_max_active. 163 */ 164 static uint64_t zfs_scan_vdev_limit = 16 << 20; 165 166 static uint_t zfs_scan_issue_strategy = 0; 167 168 /* don't queue & sort zios, go direct */ 169 static int zfs_scan_legacy = B_FALSE; 170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 171 172 /* 173 * fill_weight is non-tunable at runtime, so we copy it at module init from 174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 175 * break queue sorting. 176 */ 177 static uint_t zfs_scan_fill_weight = 3; 178 static uint64_t fill_weight; 179 180 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 183 184 185 /* fraction of physmem */ 186 static uint_t zfs_scan_mem_lim_fact = 20; 187 188 /* fraction of mem lim above */ 189 static uint_t zfs_scan_mem_lim_soft_fact = 20; 190 191 /* minimum milliseconds to scrub per txg */ 192 static uint_t zfs_scrub_min_time_ms = 1000; 193 194 /* minimum milliseconds to obsolete per txg */ 195 static uint_t zfs_obsolete_min_time_ms = 500; 196 197 /* minimum milliseconds to free per txg */ 198 static uint_t zfs_free_min_time_ms = 1000; 199 200 /* minimum milliseconds to resilver per txg */ 201 static uint_t zfs_resilver_min_time_ms = 3000; 202 203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 208 /* max number of blocks to free in a single TXG */ 209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 210 /* max number of dedup blocks to free in a single TXG */ 211 static uint64_t zfs_max_async_dedup_frees = 100000; 212 213 /* set to disable resilver deferring */ 214 static int zfs_resilver_disable_defer = B_FALSE; 215 216 /* Don't defer a resilver if the one in progress only got this far: */ 217 static uint_t zfs_resilver_defer_percent = 10; 218 219 /* 220 * We wait a few txgs after importing a pool to begin scanning so that 221 * the import / mounting code isn't held up by scrub / resilver IO. 222 * Unfortunately, it is a bit difficult to determine exactly how long 223 * this will take since userspace will trigger fs mounts asynchronously 224 * and the kernel will create zvol minors asynchronously. As a result, 225 * the value provided here is a bit arbitrary, but represents a 226 * reasonable estimate of how many txgs it will take to finish fully 227 * importing a pool 228 */ 229 #define SCAN_IMPORT_WAIT_TXGS 5 230 231 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 232 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 233 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 234 235 #define DSL_SCAN_IS_SCRUB(scn) \ 236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB) 237 238 /* 239 * Enable/disable the processing of the free_bpobj object. 240 */ 241 static int zfs_free_bpobj_enabled = 1; 242 243 /* Error blocks to be scrubbed in one txg. */ 244 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 245 246 /* the order has to match pool_scan_type */ 247 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 248 NULL, 249 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 250 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 251 }; 252 253 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 254 typedef struct { 255 uint64_t sds_dsobj; 256 uint64_t sds_txg; 257 avl_node_t sds_node; 258 } scan_ds_t; 259 260 /* 261 * This controls what conditions are placed on dsl_scan_sync_state(): 262 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 263 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 264 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 265 * write out the scn_phys_cached version. 266 * See dsl_scan_sync_state for details. 267 */ 268 typedef enum { 269 SYNC_OPTIONAL, 270 SYNC_MANDATORY, 271 SYNC_CACHED 272 } state_sync_type_t; 273 274 /* 275 * This struct represents the minimum information needed to reconstruct a 276 * zio for sequential scanning. This is useful because many of these will 277 * accumulate in the sequential IO queues before being issued, so saving 278 * memory matters here. 279 */ 280 typedef struct scan_io { 281 /* fields from blkptr_t */ 282 uint64_t sio_blk_prop; 283 uint64_t sio_phys_birth; 284 uint64_t sio_birth; 285 zio_cksum_t sio_cksum; 286 uint32_t sio_nr_dvas; 287 288 /* fields from zio_t */ 289 uint32_t sio_flags; 290 zbookmark_phys_t sio_zb; 291 292 /* members for queue sorting */ 293 union { 294 avl_node_t sio_addr_node; /* link into issuing queue */ 295 list_node_t sio_list_node; /* link for issuing to disk */ 296 } sio_nodes; 297 298 /* 299 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 300 * depending on how many were in the original bp. Only the 301 * first DVA is really used for sorting and issuing purposes. 302 * The other DVAs (if provided) simply exist so that the zio 303 * layer can find additional copies to repair from in the 304 * event of an error. This array must go at the end of the 305 * struct to allow this for the variable number of elements. 306 */ 307 dva_t sio_dva[]; 308 } scan_io_t; 309 310 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 311 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 312 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 313 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 314 #define SIO_GET_END_OFFSET(sio) \ 315 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 316 #define SIO_GET_MUSED(sio) \ 317 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 318 319 struct dsl_scan_io_queue { 320 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 321 vdev_t *q_vd; /* top-level vdev that this queue represents */ 322 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 323 324 /* trees used for sorting I/Os and extents of I/Os */ 325 zfs_range_tree_t *q_exts_by_addr; 326 zfs_btree_t q_exts_by_size; 327 avl_tree_t q_sios_by_addr; 328 uint64_t q_sio_memused; 329 uint64_t q_last_ext_addr; 330 331 /* members for zio rate limiting */ 332 uint64_t q_maxinflight_bytes; 333 uint64_t q_inflight_bytes; 334 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 335 336 /* per txg statistics */ 337 uint64_t q_total_seg_size_this_txg; 338 uint64_t q_segs_this_txg; 339 uint64_t q_total_zio_size_this_txg; 340 uint64_t q_zios_this_txg; 341 }; 342 343 /* private data for dsl_scan_prefetch_cb() */ 344 typedef struct scan_prefetch_ctx { 345 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 346 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 347 boolean_t spc_root; /* is this prefetch for an objset? */ 348 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 349 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 350 } scan_prefetch_ctx_t; 351 352 /* private data for dsl_scan_prefetch() */ 353 typedef struct scan_prefetch_issue_ctx { 354 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 355 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 356 blkptr_t spic_bp; /* bp to prefetch */ 357 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 358 } scan_prefetch_issue_ctx_t; 359 360 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 361 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 362 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 363 scan_io_t *sio); 364 365 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 366 static void scan_io_queues_destroy(dsl_scan_t *scn); 367 368 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 369 370 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 371 static void 372 sio_free(scan_io_t *sio) 373 { 374 ASSERT3U(sio->sio_nr_dvas, >, 0); 375 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 376 377 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 378 } 379 380 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 381 static scan_io_t * 382 sio_alloc(unsigned short nr_dvas) 383 { 384 ASSERT3U(nr_dvas, >, 0); 385 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 386 387 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 388 } 389 390 void 391 scan_init(void) 392 { 393 /* 394 * This is used in ext_size_compare() to weight segments 395 * based on how sparse they are. This cannot be changed 396 * mid-scan and the tree comparison functions don't currently 397 * have a mechanism for passing additional context to the 398 * compare functions. Thus we store this value globally and 399 * we only allow it to be set at module initialization time 400 */ 401 fill_weight = zfs_scan_fill_weight; 402 403 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 404 char name[36]; 405 406 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 407 sio_cache[i] = kmem_cache_create(name, 408 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 409 0, NULL, NULL, NULL, NULL, NULL, 0); 410 } 411 } 412 413 void 414 scan_fini(void) 415 { 416 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 417 kmem_cache_destroy(sio_cache[i]); 418 } 419 } 420 421 static inline boolean_t 422 dsl_scan_is_running(const dsl_scan_t *scn) 423 { 424 return (scn->scn_phys.scn_state == DSS_SCANNING); 425 } 426 427 boolean_t 428 dsl_scan_resilvering(dsl_pool_t *dp) 429 { 430 return (dsl_scan_is_running(dp->dp_scan) && 431 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 432 } 433 434 static inline void 435 sio2bp(const scan_io_t *sio, blkptr_t *bp) 436 { 437 memset(bp, 0, sizeof (*bp)); 438 bp->blk_prop = sio->sio_blk_prop; 439 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 440 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 441 bp->blk_fill = 1; /* we always only work with data pointers */ 442 bp->blk_cksum = sio->sio_cksum; 443 444 ASSERT3U(sio->sio_nr_dvas, >, 0); 445 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 446 447 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 448 } 449 450 static inline void 451 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 452 { 453 sio->sio_blk_prop = bp->blk_prop; 454 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 455 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 456 sio->sio_cksum = bp->blk_cksum; 457 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 458 459 /* 460 * Copy the DVAs to the sio. We need all copies of the block so 461 * that the self healing code can use the alternate copies if the 462 * first is corrupted. We want the DVA at index dva_i to be first 463 * in the sio since this is the primary one that we want to issue. 464 */ 465 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 466 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 467 } 468 } 469 470 int 471 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 472 { 473 int err; 474 dsl_scan_t *scn; 475 spa_t *spa = dp->dp_spa; 476 uint64_t f; 477 478 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 479 scn->scn_dp = dp; 480 481 /* 482 * It's possible that we're resuming a scan after a reboot so 483 * make sure that the scan_async_destroying flag is initialized 484 * appropriately. 485 */ 486 ASSERT(!scn->scn_async_destroying); 487 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 488 SPA_FEATURE_ASYNC_DESTROY); 489 490 /* 491 * Calculate the max number of in-flight bytes for pool-wide 492 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 493 * Limits for the issuing phase are done per top-level vdev and 494 * are handled separately. 495 */ 496 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 497 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 498 499 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 500 offsetof(scan_ds_t, sds_node)); 501 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 502 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 503 sizeof (scan_prefetch_issue_ctx_t), 504 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 505 506 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 507 "scrub_func", sizeof (uint64_t), 1, &f); 508 if (err == 0) { 509 /* 510 * There was an old-style scrub in progress. Restart a 511 * new-style scrub from the beginning. 512 */ 513 scn->scn_restart_txg = txg; 514 zfs_dbgmsg("old-style scrub was in progress for %s; " 515 "restarting new-style scrub in txg %llu", 516 spa->spa_name, 517 (longlong_t)scn->scn_restart_txg); 518 519 /* 520 * Load the queue obj from the old location so that it 521 * can be freed by dsl_scan_done(). 522 */ 523 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 524 "scrub_queue", sizeof (uint64_t), 1, 525 &scn->scn_phys.scn_queue_obj); 526 } else { 527 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 528 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 529 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 530 531 if (err != 0 && err != ENOENT) 532 return (err); 533 534 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 535 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 536 &scn->scn_phys); 537 538 /* 539 * Detect if the pool contains the signature of #2094. If it 540 * does properly update the scn->scn_phys structure and notify 541 * the administrator by setting an errata for the pool. 542 */ 543 if (err == EOVERFLOW) { 544 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 545 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 546 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 547 (23 * sizeof (uint64_t))); 548 549 err = zap_lookup(dp->dp_meta_objset, 550 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 551 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 552 if (err == 0) { 553 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 554 555 if (overflow & ~DSL_SCAN_FLAGS_MASK || 556 scn->scn_async_destroying) { 557 spa->spa_errata = 558 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 559 return (EOVERFLOW); 560 } 561 562 memcpy(&scn->scn_phys, zaptmp, 563 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 564 scn->scn_phys.scn_flags = overflow; 565 566 /* Required scrub already in progress. */ 567 if (scn->scn_phys.scn_state == DSS_FINISHED || 568 scn->scn_phys.scn_state == DSS_CANCELED) 569 spa->spa_errata = 570 ZPOOL_ERRATA_ZOL_2094_SCRUB; 571 } 572 } 573 574 if (err == ENOENT) 575 return (0); 576 else if (err) 577 return (err); 578 579 /* 580 * We might be restarting after a reboot, so jump the issued 581 * counter to how far we've scanned. We know we're consistent 582 * up to here. 583 */ 584 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 585 scn->scn_phys.scn_skipped; 586 587 if (dsl_scan_is_running(scn) && 588 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 589 /* 590 * A new-type scrub was in progress on an old 591 * pool, and the pool was accessed by old 592 * software. Restart from the beginning, since 593 * the old software may have changed the pool in 594 * the meantime. 595 */ 596 scn->scn_restart_txg = txg; 597 zfs_dbgmsg("new-style scrub for %s was modified " 598 "by old software; restarting in txg %llu", 599 spa->spa_name, 600 (longlong_t)scn->scn_restart_txg); 601 } else if (dsl_scan_resilvering(dp)) { 602 /* 603 * If a resilver is in progress and there are already 604 * errors, restart it instead of finishing this scan and 605 * then restarting it. If there haven't been any errors 606 * then remember that the incore DTL is valid. 607 */ 608 if (scn->scn_phys.scn_errors > 0) { 609 scn->scn_restart_txg = txg; 610 zfs_dbgmsg("resilver can't excise DTL_MISSING " 611 "when finished; restarting on %s in txg " 612 "%llu", 613 spa->spa_name, 614 (u_longlong_t)scn->scn_restart_txg); 615 } else { 616 /* it's safe to excise DTL when finished */ 617 spa->spa_scrub_started = B_TRUE; 618 } 619 } 620 } 621 622 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 623 624 /* reload the queue into the in-core state */ 625 if (scn->scn_phys.scn_queue_obj != 0) { 626 zap_cursor_t zc; 627 zap_attribute_t *za = zap_attribute_alloc(); 628 629 for (zap_cursor_init(&zc, dp->dp_meta_objset, 630 scn->scn_phys.scn_queue_obj); 631 zap_cursor_retrieve(&zc, za) == 0; 632 (void) zap_cursor_advance(&zc)) { 633 scan_ds_queue_insert(scn, 634 zfs_strtonum(za->za_name, NULL), 635 za->za_first_integer); 636 } 637 zap_cursor_fini(&zc); 638 zap_attribute_free(za); 639 } 640 641 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 642 643 spa_scan_stat_init(spa); 644 vdev_scan_stat_init(spa->spa_root_vdev); 645 646 return (0); 647 } 648 649 void 650 dsl_scan_fini(dsl_pool_t *dp) 651 { 652 if (dp->dp_scan != NULL) { 653 dsl_scan_t *scn = dp->dp_scan; 654 655 if (scn->scn_taskq != NULL) 656 taskq_destroy(scn->scn_taskq); 657 658 scan_ds_queue_clear(scn); 659 avl_destroy(&scn->scn_queue); 660 mutex_destroy(&scn->scn_queue_lock); 661 scan_ds_prefetch_queue_clear(scn); 662 avl_destroy(&scn->scn_prefetch_queue); 663 664 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 665 dp->dp_scan = NULL; 666 } 667 } 668 669 static boolean_t 670 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 671 { 672 return (scn->scn_restart_txg != 0 && 673 scn->scn_restart_txg <= tx->tx_txg); 674 } 675 676 boolean_t 677 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 678 { 679 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 680 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 681 } 682 683 boolean_t 684 dsl_scan_scrubbing(const dsl_pool_t *dp) 685 { 686 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 687 688 return (scn_phys->scn_state == DSS_SCANNING && 689 scn_phys->scn_func == POOL_SCAN_SCRUB); 690 } 691 692 boolean_t 693 dsl_errorscrubbing(const dsl_pool_t *dp) 694 { 695 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 696 697 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 698 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 699 } 700 701 boolean_t 702 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 703 { 704 return (dsl_errorscrubbing(scn->scn_dp) && 705 scn->errorscrub_phys.dep_paused_flags); 706 } 707 708 boolean_t 709 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 710 { 711 return (dsl_scan_scrubbing(scn->scn_dp) && 712 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 713 } 714 715 static void 716 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 717 { 718 scn->errorscrub_phys.dep_cursor = 719 zap_cursor_serialize(&scn->errorscrub_cursor); 720 721 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 722 DMU_POOL_DIRECTORY_OBJECT, 723 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 724 &scn->errorscrub_phys, tx)); 725 } 726 727 static void 728 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 729 { 730 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 731 pool_scan_func_t *funcp = arg; 732 dsl_pool_t *dp = scn->scn_dp; 733 spa_t *spa = dp->dp_spa; 734 735 ASSERT(!dsl_scan_is_running(scn)); 736 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 737 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 738 739 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 740 scn->errorscrub_phys.dep_func = *funcp; 741 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 742 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 743 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 744 scn->errorscrub_phys.dep_examined = 0; 745 scn->errorscrub_phys.dep_errors = 0; 746 scn->errorscrub_phys.dep_cursor = 0; 747 zap_cursor_init_serialized(&scn->errorscrub_cursor, 748 spa->spa_meta_objset, spa->spa_errlog_last, 749 scn->errorscrub_phys.dep_cursor); 750 751 vdev_config_dirty(spa->spa_root_vdev); 752 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 753 754 dsl_errorscrub_sync_state(scn, tx); 755 756 spa_history_log_internal(spa, "error scrub setup", tx, 757 "func=%u mintxg=%u maxtxg=%llu", 758 *funcp, 0, (u_longlong_t)tx->tx_txg); 759 } 760 761 static int 762 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 763 { 764 (void) arg; 765 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 766 767 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 768 return (SET_ERROR(EBUSY)); 769 } 770 771 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 772 return (ECANCELED); 773 } 774 return (0); 775 } 776 777 /* 778 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 779 * Because we can be running in the block sorting algorithm, we do not always 780 * want to write out the record, only when it is "safe" to do so. This safety 781 * condition is achieved by making sure that the sorting queues are empty 782 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 783 * is inconsistent with how much actual scanning progress has been made. The 784 * kind of sync to be performed is specified by the sync_type argument. If the 785 * sync is optional, we only sync if the queues are empty. If the sync is 786 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 787 * third possible state is a "cached" sync. This is done in response to: 788 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 789 * destroyed, so we wouldn't be able to restart scanning from it. 790 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 791 * superseded by a newer snapshot. 792 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 793 * swapped with its clone. 794 * In all cases, a cached sync simply rewrites the last record we've written, 795 * just slightly modified. For the modifications that are performed to the 796 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 797 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 798 */ 799 static void 800 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 801 { 802 int i; 803 spa_t *spa = scn->scn_dp->dp_spa; 804 805 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 806 if (scn->scn_queues_pending == 0) { 807 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 808 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 809 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 810 811 if (q == NULL) 812 continue; 813 814 mutex_enter(&vd->vdev_scan_io_queue_lock); 815 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 816 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 817 NULL); 818 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==, 819 NULL); 820 mutex_exit(&vd->vdev_scan_io_queue_lock); 821 } 822 823 if (scn->scn_phys.scn_queue_obj != 0) 824 scan_ds_queue_sync(scn, tx); 825 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 826 DMU_POOL_DIRECTORY_OBJECT, 827 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 828 &scn->scn_phys, tx)); 829 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 830 sizeof (scn->scn_phys)); 831 832 if (scn->scn_checkpointing) 833 zfs_dbgmsg("finish scan checkpoint for %s", 834 spa->spa_name); 835 836 scn->scn_checkpointing = B_FALSE; 837 scn->scn_last_checkpoint = ddi_get_lbolt(); 838 } else if (sync_type == SYNC_CACHED) { 839 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 840 DMU_POOL_DIRECTORY_OBJECT, 841 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 842 &scn->scn_phys_cached, tx)); 843 } 844 } 845 846 int 847 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 848 { 849 (void) arg; 850 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 851 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 852 853 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 854 dsl_errorscrubbing(scn->scn_dp)) 855 return (SET_ERROR(EBUSY)); 856 857 return (0); 858 } 859 860 void 861 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 862 { 863 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg; 864 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 865 dmu_object_type_t ot = 0; 866 dsl_pool_t *dp = scn->scn_dp; 867 spa_t *spa = dp->dp_spa; 868 869 ASSERT(!dsl_scan_is_running(scn)); 870 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE); 871 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS); 872 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 873 874 /* 875 * If we are starting a fresh scrub, we erase the error scrub 876 * information from disk. 877 */ 878 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 879 dsl_errorscrub_sync_state(scn, tx); 880 881 scn->scn_phys.scn_func = setup_sync_arg->func; 882 scn->scn_phys.scn_state = DSS_SCANNING; 883 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart; 884 if (setup_sync_arg->txgend == 0) { 885 scn->scn_phys.scn_max_txg = tx->tx_txg; 886 } else { 887 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend; 888 } 889 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 890 scn->scn_phys.scn_start_time = gethrestime_sec(); 891 scn->scn_phys.scn_errors = 0; 892 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 893 scn->scn_issued_before_pass = 0; 894 scn->scn_restart_txg = 0; 895 scn->scn_done_txg = 0; 896 scn->scn_last_checkpoint = 0; 897 scn->scn_checkpointing = B_FALSE; 898 spa_scan_stat_init(spa); 899 vdev_scan_stat_init(spa->spa_root_vdev); 900 901 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 902 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 903 904 /* rewrite all disk labels */ 905 vdev_config_dirty(spa->spa_root_vdev); 906 907 if (vdev_resilver_needed(spa->spa_root_vdev, 908 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 909 nvlist_t *aux = fnvlist_alloc(); 910 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 911 "healing"); 912 spa_event_notify(spa, NULL, aux, 913 ESC_ZFS_RESILVER_START); 914 nvlist_free(aux); 915 } else { 916 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 917 } 918 919 spa->spa_scrub_started = B_TRUE; 920 /* 921 * If this is an incremental scrub, limit the DDT scrub phase 922 * to just the auto-ditto class (for correctness); the rest 923 * of the scrub should go faster using top-down pruning. 924 */ 925 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 926 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 927 928 /* 929 * When starting a resilver clear any existing rebuild state. 930 * This is required to prevent stale rebuild status from 931 * being reported when a rebuild is run, then a resilver and 932 * finally a scrub. In which case only the scrub status 933 * should be reported by 'zpool status'. 934 */ 935 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 936 vdev_t *rvd = spa->spa_root_vdev; 937 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 938 vdev_t *vd = rvd->vdev_child[i]; 939 vdev_rebuild_clear_sync( 940 (void *)(uintptr_t)vd->vdev_id, tx); 941 } 942 } 943 } 944 945 /* back to the generic stuff */ 946 947 if (zfs_scan_blkstats) { 948 if (dp->dp_blkstats == NULL) { 949 dp->dp_blkstats = 950 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 951 } 952 memset(&dp->dp_blkstats->zab_type, 0, 953 sizeof (dp->dp_blkstats->zab_type)); 954 } else { 955 if (dp->dp_blkstats) { 956 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 957 dp->dp_blkstats = NULL; 958 } 959 } 960 961 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 962 ot = DMU_OT_ZAP_OTHER; 963 964 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 965 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 966 967 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 968 969 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 970 971 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 972 973 spa_history_log_internal(spa, "scan setup", tx, 974 "func=%u mintxg=%llu maxtxg=%llu", 975 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg, 976 (u_longlong_t)scn->scn_phys.scn_max_txg); 977 } 978 979 /* 980 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 981 * error scrub or resilver. Can also be called to resume a paused scrub or 982 * error scrub. 983 */ 984 int 985 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart, 986 uint64_t txgend) 987 { 988 spa_t *spa = dp->dp_spa; 989 dsl_scan_t *scn = dp->dp_scan; 990 setup_sync_arg_t setup_sync_arg; 991 992 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) { 993 return (EINVAL); 994 } 995 996 /* 997 * Purge all vdev caches and probe all devices. We do this here 998 * rather than in sync context because this requires a writer lock 999 * on the spa_config lock, which we can't do from sync context. The 1000 * spa_scrub_reopen flag indicates that vdev_open() should not 1001 * attempt to start another scrub. 1002 */ 1003 spa_vdev_state_enter(spa, SCL_NONE); 1004 spa->spa_scrub_reopen = B_TRUE; 1005 vdev_reopen(spa->spa_root_vdev); 1006 spa->spa_scrub_reopen = B_FALSE; 1007 (void) spa_vdev_state_exit(spa, NULL, 0); 1008 1009 if (func == POOL_SCAN_RESILVER) { 1010 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 1011 return (0); 1012 } 1013 1014 if (func == POOL_SCAN_ERRORSCRUB) { 1015 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 1016 /* 1017 * got error scrub start cmd, resume paused error scrub. 1018 */ 1019 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1020 POOL_SCRUB_NORMAL); 1021 if (err == 0) { 1022 spa_event_notify(spa, NULL, NULL, 1023 ESC_ZFS_ERRORSCRUB_RESUME); 1024 return (ECANCELED); 1025 } 1026 return (SET_ERROR(err)); 1027 } 1028 1029 return (dsl_sync_task(spa_name(dp->dp_spa), 1030 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1031 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1032 } 1033 1034 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1035 /* got scrub start cmd, resume paused scrub */ 1036 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1037 POOL_SCRUB_NORMAL); 1038 if (err == 0) { 1039 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1040 return (SET_ERROR(ECANCELED)); 1041 } 1042 return (SET_ERROR(err)); 1043 } 1044 1045 setup_sync_arg.func = func; 1046 setup_sync_arg.txgstart = txgstart; 1047 setup_sync_arg.txgend = txgend; 1048 1049 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1050 dsl_scan_setup_sync, &setup_sync_arg, 0, 1051 ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1052 } 1053 1054 static void 1055 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1056 { 1057 dsl_pool_t *dp = scn->scn_dp; 1058 spa_t *spa = dp->dp_spa; 1059 1060 if (complete) { 1061 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1062 spa_history_log_internal(spa, "error scrub done", tx, 1063 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1064 } else { 1065 spa_history_log_internal(spa, "error scrub canceled", tx, 1066 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1067 } 1068 1069 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1070 spa->spa_scrub_active = B_FALSE; 1071 spa_errlog_rotate(spa); 1072 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1073 zap_cursor_fini(&scn->errorscrub_cursor); 1074 1075 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1076 spa->spa_errata = 0; 1077 1078 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1079 } 1080 1081 static void 1082 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1083 { 1084 static const char *old_names[] = { 1085 "scrub_bookmark", 1086 "scrub_ddt_bookmark", 1087 "scrub_ddt_class_max", 1088 "scrub_queue", 1089 "scrub_min_txg", 1090 "scrub_max_txg", 1091 "scrub_func", 1092 "scrub_errors", 1093 NULL 1094 }; 1095 1096 dsl_pool_t *dp = scn->scn_dp; 1097 spa_t *spa = dp->dp_spa; 1098 int i; 1099 1100 /* Remove any remnants of an old-style scrub. */ 1101 for (i = 0; old_names[i]; i++) { 1102 (void) zap_remove(dp->dp_meta_objset, 1103 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1104 } 1105 1106 if (scn->scn_phys.scn_queue_obj != 0) { 1107 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1108 scn->scn_phys.scn_queue_obj, tx)); 1109 scn->scn_phys.scn_queue_obj = 0; 1110 } 1111 scan_ds_queue_clear(scn); 1112 scan_ds_prefetch_queue_clear(scn); 1113 1114 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1115 1116 /* 1117 * If we were "restarted" from a stopped state, don't bother 1118 * with anything else. 1119 */ 1120 if (!dsl_scan_is_running(scn)) { 1121 ASSERT(!scn->scn_is_sorted); 1122 return; 1123 } 1124 1125 if (scn->scn_is_sorted) { 1126 scan_io_queues_destroy(scn); 1127 scn->scn_is_sorted = B_FALSE; 1128 1129 if (scn->scn_taskq != NULL) { 1130 taskq_destroy(scn->scn_taskq); 1131 scn->scn_taskq = NULL; 1132 } 1133 } 1134 1135 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 1136 1137 spa_notify_waiters(spa); 1138 1139 if (dsl_scan_restarting(scn, tx)) { 1140 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1141 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1142 } else if (!complete) { 1143 spa_history_log_internal(spa, "scan cancelled", tx, 1144 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1145 } else { 1146 spa_history_log_internal(spa, "scan done", tx, 1147 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1148 if (DSL_SCAN_IS_SCRUB(scn)) { 1149 VERIFY0(zap_update(dp->dp_meta_objset, 1150 DMU_POOL_DIRECTORY_OBJECT, 1151 DMU_POOL_LAST_SCRUBBED_TXG, 1152 sizeof (uint64_t), 1, 1153 &scn->scn_phys.scn_max_txg, tx)); 1154 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg; 1155 } 1156 } 1157 1158 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1159 spa->spa_scrub_active = B_FALSE; 1160 1161 /* 1162 * If the scrub/resilver completed, update all DTLs to 1163 * reflect this. Whether it succeeded or not, vacate 1164 * all temporary scrub DTLs. 1165 * 1166 * As the scrub does not currently support traversing 1167 * data that have been freed but are part of a checkpoint, 1168 * we don't mark the scrub as done in the DTLs as faults 1169 * may still exist in those vdevs. 1170 */ 1171 if (complete && 1172 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1173 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1174 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1175 1176 if (scn->scn_phys.scn_min_txg) { 1177 nvlist_t *aux = fnvlist_alloc(); 1178 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1179 "healing"); 1180 spa_event_notify(spa, NULL, aux, 1181 ESC_ZFS_RESILVER_FINISH); 1182 nvlist_free(aux); 1183 } else { 1184 spa_event_notify(spa, NULL, NULL, 1185 ESC_ZFS_SCRUB_FINISH); 1186 } 1187 } else { 1188 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1189 0, B_TRUE, B_FALSE); 1190 } 1191 spa_errlog_rotate(spa); 1192 1193 /* 1194 * Don't clear flag until after vdev_dtl_reassess to ensure that 1195 * DTL_MISSING will get updated when possible. 1196 */ 1197 spa->spa_scrub_started = B_FALSE; 1198 1199 /* 1200 * We may have finished replacing a device. 1201 * Let the async thread assess this and handle the detach. 1202 */ 1203 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1204 1205 /* 1206 * Clear any resilver_deferred flags in the config. 1207 * If there are drives that need resilvering, kick 1208 * off an asynchronous request to start resilver. 1209 * vdev_clear_resilver_deferred() may update the config 1210 * before the resilver can restart. In the event of 1211 * a crash during this period, the spa loading code 1212 * will find the drives that need to be resilvered 1213 * and start the resilver then. 1214 */ 1215 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1216 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1217 spa_history_log_internal(spa, 1218 "starting deferred resilver", tx, "errors=%llu", 1219 (u_longlong_t)spa_approx_errlog_size(spa)); 1220 spa_async_request(spa, SPA_ASYNC_RESILVER); 1221 } 1222 1223 /* Clear recent error events (i.e. duplicate events tracking) */ 1224 if (complete) 1225 zfs_ereport_clear(spa, NULL); 1226 } 1227 1228 scn->scn_phys.scn_end_time = gethrestime_sec(); 1229 1230 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1231 spa->spa_errata = 0; 1232 1233 ASSERT(!dsl_scan_is_running(scn)); 1234 } 1235 1236 static int 1237 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1238 { 1239 pool_scrub_cmd_t *cmd = arg; 1240 dsl_pool_t *dp = dmu_tx_pool(tx); 1241 dsl_scan_t *scn = dp->dp_scan; 1242 1243 if (*cmd == POOL_SCRUB_PAUSE) { 1244 /* 1245 * can't pause a error scrub when there is no in-progress 1246 * error scrub. 1247 */ 1248 if (!dsl_errorscrubbing(dp)) 1249 return (SET_ERROR(ENOENT)); 1250 1251 /* can't pause a paused error scrub */ 1252 if (dsl_errorscrub_is_paused(scn)) 1253 return (SET_ERROR(EBUSY)); 1254 } else if (*cmd != POOL_SCRUB_NORMAL) { 1255 return (SET_ERROR(ENOTSUP)); 1256 } 1257 1258 return (0); 1259 } 1260 1261 static void 1262 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1263 { 1264 pool_scrub_cmd_t *cmd = arg; 1265 dsl_pool_t *dp = dmu_tx_pool(tx); 1266 spa_t *spa = dp->dp_spa; 1267 dsl_scan_t *scn = dp->dp_scan; 1268 1269 if (*cmd == POOL_SCRUB_PAUSE) { 1270 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1271 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1272 dsl_errorscrub_sync_state(scn, tx); 1273 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1274 } else { 1275 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1276 if (dsl_errorscrub_is_paused(scn)) { 1277 /* 1278 * We need to keep track of how much time we spend 1279 * paused per pass so that we can adjust the error scrub 1280 * rate shown in the output of 'zpool status'. 1281 */ 1282 spa->spa_scan_pass_errorscrub_spent_paused += 1283 gethrestime_sec() - 1284 spa->spa_scan_pass_errorscrub_pause; 1285 1286 spa->spa_scan_pass_errorscrub_pause = 0; 1287 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1288 1289 zap_cursor_init_serialized( 1290 &scn->errorscrub_cursor, 1291 spa->spa_meta_objset, spa->spa_errlog_last, 1292 scn->errorscrub_phys.dep_cursor); 1293 1294 dsl_errorscrub_sync_state(scn, tx); 1295 } 1296 } 1297 } 1298 1299 static int 1300 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1301 { 1302 (void) arg; 1303 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1304 /* can't cancel a error scrub when there is no one in-progress */ 1305 if (!dsl_errorscrubbing(scn->scn_dp)) 1306 return (SET_ERROR(ENOENT)); 1307 return (0); 1308 } 1309 1310 static void 1311 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1312 { 1313 (void) arg; 1314 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1315 1316 dsl_errorscrub_done(scn, B_FALSE, tx); 1317 dsl_errorscrub_sync_state(scn, tx); 1318 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1319 ESC_ZFS_ERRORSCRUB_ABORT); 1320 } 1321 1322 static int 1323 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1324 { 1325 (void) arg; 1326 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1327 1328 if (!dsl_scan_is_running(scn)) 1329 return (SET_ERROR(ENOENT)); 1330 return (0); 1331 } 1332 1333 static void 1334 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1335 { 1336 (void) arg; 1337 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1338 1339 dsl_scan_done(scn, B_FALSE, tx); 1340 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1341 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1342 } 1343 1344 int 1345 dsl_scan_cancel(dsl_pool_t *dp) 1346 { 1347 if (dsl_errorscrubbing(dp)) { 1348 return (dsl_sync_task(spa_name(dp->dp_spa), 1349 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1350 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1351 } 1352 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1353 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1354 } 1355 1356 static int 1357 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1358 { 1359 pool_scrub_cmd_t *cmd = arg; 1360 dsl_pool_t *dp = dmu_tx_pool(tx); 1361 dsl_scan_t *scn = dp->dp_scan; 1362 1363 if (*cmd == POOL_SCRUB_PAUSE) { 1364 /* can't pause a scrub when there is no in-progress scrub */ 1365 if (!dsl_scan_scrubbing(dp)) 1366 return (SET_ERROR(ENOENT)); 1367 1368 /* can't pause a paused scrub */ 1369 if (dsl_scan_is_paused_scrub(scn)) 1370 return (SET_ERROR(EBUSY)); 1371 } else if (*cmd != POOL_SCRUB_NORMAL) { 1372 return (SET_ERROR(ENOTSUP)); 1373 } 1374 1375 return (0); 1376 } 1377 1378 static void 1379 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1380 { 1381 pool_scrub_cmd_t *cmd = arg; 1382 dsl_pool_t *dp = dmu_tx_pool(tx); 1383 spa_t *spa = dp->dp_spa; 1384 dsl_scan_t *scn = dp->dp_scan; 1385 1386 if (*cmd == POOL_SCRUB_PAUSE) { 1387 /* can't pause a scrub when there is no in-progress scrub */ 1388 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1389 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1390 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1391 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1392 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1393 spa_notify_waiters(spa); 1394 } else { 1395 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1396 if (dsl_scan_is_paused_scrub(scn)) { 1397 /* 1398 * We need to keep track of how much time we spend 1399 * paused per pass so that we can adjust the scrub rate 1400 * shown in the output of 'zpool status' 1401 */ 1402 spa->spa_scan_pass_scrub_spent_paused += 1403 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1404 spa->spa_scan_pass_scrub_pause = 0; 1405 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1406 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1407 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1408 } 1409 } 1410 } 1411 1412 /* 1413 * Set scrub pause/resume state if it makes sense to do so 1414 */ 1415 int 1416 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1417 { 1418 if (dsl_errorscrubbing(dp)) { 1419 return (dsl_sync_task(spa_name(dp->dp_spa), 1420 dsl_errorscrub_pause_resume_check, 1421 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1422 ZFS_SPACE_CHECK_RESERVED)); 1423 } 1424 return (dsl_sync_task(spa_name(dp->dp_spa), 1425 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1426 ZFS_SPACE_CHECK_RESERVED)); 1427 } 1428 1429 1430 /* start a new scan, or restart an existing one. */ 1431 void 1432 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1433 { 1434 if (txg == 0) { 1435 dmu_tx_t *tx; 1436 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1437 VERIFY(0 == dmu_tx_assign(tx, DMU_TX_WAIT)); 1438 1439 txg = dmu_tx_get_txg(tx); 1440 dp->dp_scan->scn_restart_txg = txg; 1441 dmu_tx_commit(tx); 1442 } else { 1443 dp->dp_scan->scn_restart_txg = txg; 1444 } 1445 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1446 dp->dp_spa->spa_name, (longlong_t)txg); 1447 } 1448 1449 void 1450 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1451 { 1452 zio_free(dp->dp_spa, txg, bp); 1453 } 1454 1455 void 1456 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1457 { 1458 ASSERT(dsl_pool_sync_context(dp)); 1459 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1460 } 1461 1462 static int 1463 scan_ds_queue_compare(const void *a, const void *b) 1464 { 1465 const scan_ds_t *sds_a = a, *sds_b = b; 1466 1467 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1468 return (-1); 1469 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1470 return (0); 1471 return (1); 1472 } 1473 1474 static void 1475 scan_ds_queue_clear(dsl_scan_t *scn) 1476 { 1477 void *cookie = NULL; 1478 scan_ds_t *sds; 1479 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1480 kmem_free(sds, sizeof (*sds)); 1481 } 1482 } 1483 1484 static boolean_t 1485 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1486 { 1487 scan_ds_t srch, *sds; 1488 1489 srch.sds_dsobj = dsobj; 1490 sds = avl_find(&scn->scn_queue, &srch, NULL); 1491 if (sds != NULL && txg != NULL) 1492 *txg = sds->sds_txg; 1493 return (sds != NULL); 1494 } 1495 1496 static void 1497 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1498 { 1499 scan_ds_t *sds; 1500 avl_index_t where; 1501 1502 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1503 sds->sds_dsobj = dsobj; 1504 sds->sds_txg = txg; 1505 1506 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1507 avl_insert(&scn->scn_queue, sds, where); 1508 } 1509 1510 static void 1511 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1512 { 1513 scan_ds_t srch, *sds; 1514 1515 srch.sds_dsobj = dsobj; 1516 1517 sds = avl_find(&scn->scn_queue, &srch, NULL); 1518 VERIFY(sds != NULL); 1519 avl_remove(&scn->scn_queue, sds); 1520 kmem_free(sds, sizeof (*sds)); 1521 } 1522 1523 static void 1524 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1525 { 1526 dsl_pool_t *dp = scn->scn_dp; 1527 spa_t *spa = dp->dp_spa; 1528 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1529 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1530 1531 ASSERT0(scn->scn_queues_pending); 1532 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1533 1534 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1535 scn->scn_phys.scn_queue_obj, tx)); 1536 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1537 DMU_OT_NONE, 0, tx); 1538 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1539 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1540 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1541 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1542 sds->sds_txg, tx)); 1543 } 1544 } 1545 1546 /* 1547 * Computes the memory limit state that we're currently in. A sorted scan 1548 * needs quite a bit of memory to hold the sorting queue, so we need to 1549 * reasonably constrain the size so it doesn't impact overall system 1550 * performance. We compute two limits: 1551 * 1) Hard memory limit: if the amount of memory used by the sorting 1552 * queues on a pool gets above this value, we stop the metadata 1553 * scanning portion and start issuing the queued up and sorted 1554 * I/Os to reduce memory usage. 1555 * This limit is calculated as a fraction of physmem (by default 5%). 1556 * We constrain the lower bound of the hard limit to an absolute 1557 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1558 * the upper bound to 5% of the total pool size - no chance we'll 1559 * ever need that much memory, but just to keep the value in check. 1560 * 2) Soft memory limit: once we hit the hard memory limit, we start 1561 * issuing I/O to reduce queue memory usage, but we don't want to 1562 * completely empty out the queues, since we might be able to find I/Os 1563 * that will fill in the gaps of our non-sequential IOs at some point 1564 * in the future. So we stop the issuing of I/Os once the amount of 1565 * memory used drops below the soft limit (at which point we stop issuing 1566 * I/O and start scanning metadata again). 1567 * 1568 * This limit is calculated by subtracting a fraction of the hard 1569 * limit from the hard limit. By default this fraction is 5%, so 1570 * the soft limit is 95% of the hard limit. We cap the size of the 1571 * difference between the hard and soft limits at an absolute 1572 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1573 * sufficient to not cause too frequent switching between the 1574 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1575 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1576 * that should take at least a decent fraction of a second). 1577 */ 1578 static boolean_t 1579 dsl_scan_should_clear(dsl_scan_t *scn) 1580 { 1581 spa_t *spa = scn->scn_dp->dp_spa; 1582 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1583 uint64_t alloc, mlim_hard, mlim_soft, mused; 1584 1585 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1586 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1587 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1588 1589 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1590 zfs_scan_mem_lim_min); 1591 mlim_hard = MIN(mlim_hard, alloc / 20); 1592 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1593 zfs_scan_mem_lim_soft_max); 1594 mused = 0; 1595 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1596 vdev_t *tvd = rvd->vdev_child[i]; 1597 dsl_scan_io_queue_t *queue; 1598 1599 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1600 queue = tvd->vdev_scan_io_queue; 1601 if (queue != NULL) { 1602 /* 1603 * # of extents in exts_by_addr = # in exts_by_size. 1604 * B-tree efficiency is ~75%, but can be as low as 50%. 1605 */ 1606 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * (( 1607 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) * 1608 3 / 2) + queue->q_sio_memused; 1609 } 1610 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1611 } 1612 1613 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1614 1615 if (mused == 0) 1616 ASSERT0(scn->scn_queues_pending); 1617 1618 /* 1619 * If we are above our hard limit, we need to clear out memory. 1620 * If we are below our soft limit, we need to accumulate sequential IOs. 1621 * Otherwise, we should keep doing whatever we are currently doing. 1622 */ 1623 if (mused >= mlim_hard) 1624 return (B_TRUE); 1625 else if (mused < mlim_soft) 1626 return (B_FALSE); 1627 else 1628 return (scn->scn_clearing); 1629 } 1630 1631 static boolean_t 1632 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1633 { 1634 /* we never skip user/group accounting objects */ 1635 if (zb && (int64_t)zb->zb_object < 0) 1636 return (B_FALSE); 1637 1638 if (scn->scn_suspending) 1639 return (B_TRUE); /* we're already suspending */ 1640 1641 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1642 return (B_FALSE); /* we're resuming */ 1643 1644 /* We only know how to resume from level-0 and objset blocks. */ 1645 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1646 return (B_FALSE); 1647 1648 /* 1649 * We suspend if: 1650 * - we have scanned for at least the minimum time (default 1 sec 1651 * for scrub, 3 sec for resilver), and either we have sufficient 1652 * dirty data that we are starting to write more quickly 1653 * (default 30%), someone is explicitly waiting for this txg 1654 * to complete, or we have used up all of the time in the txg 1655 * timeout (default 5 sec). 1656 * or 1657 * - the spa is shutting down because this pool is being exported 1658 * or the machine is rebooting. 1659 * or 1660 * - the scan queue has reached its memory use limit 1661 */ 1662 uint64_t curr_time_ns = gethrtime(); 1663 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1664 uint64_t sync_time_ns = curr_time_ns - 1665 scn->scn_dp->dp_spa->spa_sync_starttime; 1666 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1667 zfs_vdev_async_write_active_min_dirty_percent / 100; 1668 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1669 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1670 1671 if ((NSEC2MSEC(scan_time_ns) > mintime && 1672 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1673 txg_sync_waiting(scn->scn_dp) || 1674 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1675 spa_shutting_down(scn->scn_dp->dp_spa) || 1676 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1677 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1678 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1679 dprintf("suspending at first available bookmark " 1680 "%llx/%llx/%llx/%llx\n", 1681 (longlong_t)zb->zb_objset, 1682 (longlong_t)zb->zb_object, 1683 (longlong_t)zb->zb_level, 1684 (longlong_t)zb->zb_blkid); 1685 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1686 zb->zb_objset, 0, 0, 0); 1687 } else if (zb != NULL) { 1688 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1689 (longlong_t)zb->zb_objset, 1690 (longlong_t)zb->zb_object, 1691 (longlong_t)zb->zb_level, 1692 (longlong_t)zb->zb_blkid); 1693 scn->scn_phys.scn_bookmark = *zb; 1694 } else { 1695 #ifdef ZFS_DEBUG 1696 dsl_scan_phys_t *scnp = &scn->scn_phys; 1697 dprintf("suspending at at DDT bookmark " 1698 "%llx/%llx/%llx/%llx\n", 1699 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1700 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1701 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1702 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1703 #endif 1704 } 1705 scn->scn_suspending = B_TRUE; 1706 return (B_TRUE); 1707 } 1708 return (B_FALSE); 1709 } 1710 1711 static boolean_t 1712 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1713 { 1714 /* 1715 * We suspend if: 1716 * - we have scrubbed for at least the minimum time (default 1 sec 1717 * for error scrub), someone is explicitly waiting for this txg 1718 * to complete, or we have used up all of the time in the txg 1719 * timeout (default 5 sec). 1720 * or 1721 * - the spa is shutting down because this pool is being exported 1722 * or the machine is rebooting. 1723 */ 1724 uint64_t curr_time_ns = gethrtime(); 1725 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1726 uint64_t sync_time_ns = curr_time_ns - 1727 scn->scn_dp->dp_spa->spa_sync_starttime; 1728 int mintime = zfs_scrub_min_time_ms; 1729 1730 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1731 (txg_sync_waiting(scn->scn_dp) || 1732 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1733 spa_shutting_down(scn->scn_dp->dp_spa)) { 1734 if (zb) { 1735 dprintf("error scrub suspending at bookmark " 1736 "%llx/%llx/%llx/%llx\n", 1737 (longlong_t)zb->zb_objset, 1738 (longlong_t)zb->zb_object, 1739 (longlong_t)zb->zb_level, 1740 (longlong_t)zb->zb_blkid); 1741 } 1742 return (B_TRUE); 1743 } 1744 return (B_FALSE); 1745 } 1746 1747 typedef struct zil_scan_arg { 1748 dsl_pool_t *zsa_dp; 1749 zil_header_t *zsa_zh; 1750 } zil_scan_arg_t; 1751 1752 static int 1753 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1754 uint64_t claim_txg) 1755 { 1756 (void) zilog; 1757 zil_scan_arg_t *zsa = arg; 1758 dsl_pool_t *dp = zsa->zsa_dp; 1759 dsl_scan_t *scn = dp->dp_scan; 1760 zil_header_t *zh = zsa->zsa_zh; 1761 zbookmark_phys_t zb; 1762 1763 ASSERT(!BP_IS_REDACTED(bp)); 1764 if (BP_IS_HOLE(bp) || 1765 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1766 return (0); 1767 1768 /* 1769 * One block ("stubby") can be allocated a long time ago; we 1770 * want to visit that one because it has been allocated 1771 * (on-disk) even if it hasn't been claimed (even though for 1772 * scrub there's nothing to do to it). 1773 */ 1774 if (claim_txg == 0 && 1775 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1776 return (0); 1777 1778 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1779 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1780 1781 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1782 return (0); 1783 } 1784 1785 static int 1786 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1787 uint64_t claim_txg) 1788 { 1789 (void) zilog; 1790 if (lrc->lrc_txtype == TX_WRITE) { 1791 zil_scan_arg_t *zsa = arg; 1792 dsl_pool_t *dp = zsa->zsa_dp; 1793 dsl_scan_t *scn = dp->dp_scan; 1794 zil_header_t *zh = zsa->zsa_zh; 1795 const lr_write_t *lr = (const lr_write_t *)lrc; 1796 const blkptr_t *bp = &lr->lr_blkptr; 1797 zbookmark_phys_t zb; 1798 1799 ASSERT(!BP_IS_REDACTED(bp)); 1800 if (BP_IS_HOLE(bp) || 1801 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1802 return (0); 1803 1804 /* 1805 * birth can be < claim_txg if this record's txg is 1806 * already txg sync'ed (but this log block contains 1807 * other records that are not synced) 1808 */ 1809 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg) 1810 return (0); 1811 1812 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1813 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1814 lr->lr_foid, ZB_ZIL_LEVEL, 1815 lr->lr_offset / BP_GET_LSIZE(bp)); 1816 1817 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1818 } 1819 return (0); 1820 } 1821 1822 static void 1823 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1824 { 1825 uint64_t claim_txg = zh->zh_claim_txg; 1826 zil_scan_arg_t zsa = { dp, zh }; 1827 zilog_t *zilog; 1828 1829 ASSERT(spa_writeable(dp->dp_spa)); 1830 1831 /* 1832 * We only want to visit blocks that have been claimed but not yet 1833 * replayed (or, in read-only mode, blocks that *would* be claimed). 1834 */ 1835 if (claim_txg == 0) 1836 return; 1837 1838 zilog = zil_alloc(dp->dp_meta_objset, zh); 1839 1840 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1841 claim_txg, B_FALSE); 1842 1843 zil_free(zilog); 1844 } 1845 1846 /* 1847 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1848 * here is to sort the AVL tree by the order each block will be needed. 1849 */ 1850 static int 1851 scan_prefetch_queue_compare(const void *a, const void *b) 1852 { 1853 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1854 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1855 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1856 1857 return (zbookmark_compare(spc_a->spc_datablkszsec, 1858 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1859 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1860 } 1861 1862 static void 1863 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1864 { 1865 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1866 zfs_refcount_destroy(&spc->spc_refcnt); 1867 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1868 } 1869 } 1870 1871 static scan_prefetch_ctx_t * 1872 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1873 { 1874 scan_prefetch_ctx_t *spc; 1875 1876 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1877 zfs_refcount_create(&spc->spc_refcnt); 1878 zfs_refcount_add(&spc->spc_refcnt, tag); 1879 spc->spc_scn = scn; 1880 if (dnp != NULL) { 1881 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1882 spc->spc_indblkshift = dnp->dn_indblkshift; 1883 spc->spc_root = B_FALSE; 1884 } else { 1885 spc->spc_datablkszsec = 0; 1886 spc->spc_indblkshift = 0; 1887 spc->spc_root = B_TRUE; 1888 } 1889 1890 return (spc); 1891 } 1892 1893 static void 1894 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1895 { 1896 zfs_refcount_add(&spc->spc_refcnt, tag); 1897 } 1898 1899 static void 1900 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1901 { 1902 spa_t *spa = scn->scn_dp->dp_spa; 1903 void *cookie = NULL; 1904 scan_prefetch_issue_ctx_t *spic = NULL; 1905 1906 mutex_enter(&spa->spa_scrub_lock); 1907 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1908 &cookie)) != NULL) { 1909 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1910 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1911 } 1912 mutex_exit(&spa->spa_scrub_lock); 1913 } 1914 1915 static boolean_t 1916 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1917 const zbookmark_phys_t *zb) 1918 { 1919 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1920 dnode_phys_t tmp_dnp; 1921 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1922 1923 if (zb->zb_objset != last_zb->zb_objset) 1924 return (B_TRUE); 1925 if ((int64_t)zb->zb_object < 0) 1926 return (B_FALSE); 1927 1928 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1929 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1930 1931 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1932 return (B_TRUE); 1933 1934 return (B_FALSE); 1935 } 1936 1937 static void 1938 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1939 { 1940 avl_index_t idx; 1941 dsl_scan_t *scn = spc->spc_scn; 1942 spa_t *spa = scn->scn_dp->dp_spa; 1943 scan_prefetch_issue_ctx_t *spic; 1944 1945 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1946 return; 1947 1948 if (BP_IS_HOLE(bp) || 1949 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1950 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1951 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1952 return; 1953 1954 if (dsl_scan_check_prefetch_resume(spc, zb)) 1955 return; 1956 1957 scan_prefetch_ctx_add_ref(spc, scn); 1958 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1959 spic->spic_spc = spc; 1960 spic->spic_bp = *bp; 1961 spic->spic_zb = *zb; 1962 1963 /* 1964 * Add the IO to the queue of blocks to prefetch. This allows us to 1965 * prioritize blocks that we will need first for the main traversal 1966 * thread. 1967 */ 1968 mutex_enter(&spa->spa_scrub_lock); 1969 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1970 /* this block is already queued for prefetch */ 1971 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1972 scan_prefetch_ctx_rele(spc, scn); 1973 mutex_exit(&spa->spa_scrub_lock); 1974 return; 1975 } 1976 1977 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1978 cv_broadcast(&spa->spa_scrub_io_cv); 1979 mutex_exit(&spa->spa_scrub_lock); 1980 } 1981 1982 static void 1983 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1984 uint64_t objset, uint64_t object) 1985 { 1986 int i; 1987 zbookmark_phys_t zb; 1988 scan_prefetch_ctx_t *spc; 1989 1990 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1991 return; 1992 1993 SET_BOOKMARK(&zb, objset, object, 0, 0); 1994 1995 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1996 1997 for (i = 0; i < dnp->dn_nblkptr; i++) { 1998 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1999 zb.zb_blkid = i; 2000 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 2001 } 2002 2003 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2004 zb.zb_level = 0; 2005 zb.zb_blkid = DMU_SPILL_BLKID; 2006 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 2007 } 2008 2009 scan_prefetch_ctx_rele(spc, FTAG); 2010 } 2011 2012 static void 2013 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 2014 arc_buf_t *buf, void *private) 2015 { 2016 (void) zio; 2017 scan_prefetch_ctx_t *spc = private; 2018 dsl_scan_t *scn = spc->spc_scn; 2019 spa_t *spa = scn->scn_dp->dp_spa; 2020 2021 /* broadcast that the IO has completed for rate limiting purposes */ 2022 mutex_enter(&spa->spa_scrub_lock); 2023 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 2024 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 2025 cv_broadcast(&spa->spa_scrub_io_cv); 2026 mutex_exit(&spa->spa_scrub_lock); 2027 2028 /* if there was an error or we are done prefetching, just cleanup */ 2029 if (buf == NULL || scn->scn_prefetch_stop) 2030 goto out; 2031 2032 if (BP_GET_LEVEL(bp) > 0) { 2033 int i; 2034 blkptr_t *cbp; 2035 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2036 zbookmark_phys_t czb; 2037 2038 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2039 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2040 zb->zb_level - 1, zb->zb_blkid * epb + i); 2041 dsl_scan_prefetch(spc, cbp, &czb); 2042 } 2043 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2044 dnode_phys_t *cdnp; 2045 int i; 2046 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2047 2048 for (i = 0, cdnp = buf->b_data; i < epb; 2049 i += cdnp->dn_extra_slots + 1, 2050 cdnp += cdnp->dn_extra_slots + 1) { 2051 dsl_scan_prefetch_dnode(scn, cdnp, 2052 zb->zb_objset, zb->zb_blkid * epb + i); 2053 } 2054 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2055 objset_phys_t *osp = buf->b_data; 2056 2057 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2058 zb->zb_objset, DMU_META_DNODE_OBJECT); 2059 2060 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2061 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2062 dsl_scan_prefetch_dnode(scn, 2063 &osp->os_projectused_dnode, zb->zb_objset, 2064 DMU_PROJECTUSED_OBJECT); 2065 } 2066 dsl_scan_prefetch_dnode(scn, 2067 &osp->os_groupused_dnode, zb->zb_objset, 2068 DMU_GROUPUSED_OBJECT); 2069 dsl_scan_prefetch_dnode(scn, 2070 &osp->os_userused_dnode, zb->zb_objset, 2071 DMU_USERUSED_OBJECT); 2072 } 2073 } 2074 2075 out: 2076 if (buf != NULL) 2077 arc_buf_destroy(buf, private); 2078 scan_prefetch_ctx_rele(spc, scn); 2079 } 2080 2081 static void 2082 dsl_scan_prefetch_thread(void *arg) 2083 { 2084 dsl_scan_t *scn = arg; 2085 spa_t *spa = scn->scn_dp->dp_spa; 2086 scan_prefetch_issue_ctx_t *spic; 2087 2088 /* loop until we are told to stop */ 2089 while (!scn->scn_prefetch_stop) { 2090 arc_flags_t flags = ARC_FLAG_NOWAIT | 2091 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2092 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2093 2094 mutex_enter(&spa->spa_scrub_lock); 2095 2096 /* 2097 * Wait until we have an IO to issue and are not above our 2098 * maximum in flight limit. 2099 */ 2100 while (!scn->scn_prefetch_stop && 2101 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2102 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2103 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2104 } 2105 2106 /* recheck if we should stop since we waited for the cv */ 2107 if (scn->scn_prefetch_stop) { 2108 mutex_exit(&spa->spa_scrub_lock); 2109 break; 2110 } 2111 2112 /* remove the prefetch IO from the tree */ 2113 spic = avl_first(&scn->scn_prefetch_queue); 2114 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2115 avl_remove(&scn->scn_prefetch_queue, spic); 2116 2117 mutex_exit(&spa->spa_scrub_lock); 2118 2119 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2120 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2121 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2122 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2123 zio_flags |= ZIO_FLAG_RAW; 2124 } 2125 2126 /* We don't need data L1 buffer since we do not prefetch L0. */ 2127 blkptr_t *bp = &spic->spic_bp; 2128 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2129 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2130 flags |= ARC_FLAG_NO_BUF; 2131 2132 /* issue the prefetch asynchronously */ 2133 (void) arc_read(scn->scn_zio_root, spa, bp, 2134 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2135 zio_flags, &flags, &spic->spic_zb); 2136 2137 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2138 } 2139 2140 ASSERT(scn->scn_prefetch_stop); 2141 2142 /* free any prefetches we didn't get to complete */ 2143 mutex_enter(&spa->spa_scrub_lock); 2144 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2145 avl_remove(&scn->scn_prefetch_queue, spic); 2146 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2147 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2148 } 2149 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2150 mutex_exit(&spa->spa_scrub_lock); 2151 } 2152 2153 static boolean_t 2154 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2155 const zbookmark_phys_t *zb) 2156 { 2157 /* 2158 * We never skip over user/group accounting objects (obj<0) 2159 */ 2160 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2161 (int64_t)zb->zb_object >= 0) { 2162 /* 2163 * If we already visited this bp & everything below (in 2164 * a prior txg sync), don't bother doing it again. 2165 */ 2166 if (zbookmark_subtree_completed(dnp, zb, 2167 &scn->scn_phys.scn_bookmark)) 2168 return (B_TRUE); 2169 2170 /* 2171 * If we found the block we're trying to resume from, or 2172 * we went past it, zero it out to indicate that it's OK 2173 * to start checking for suspending again. 2174 */ 2175 if (zbookmark_subtree_tbd(dnp, zb, 2176 &scn->scn_phys.scn_bookmark)) { 2177 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2178 (longlong_t)zb->zb_objset, 2179 (longlong_t)zb->zb_object, 2180 (longlong_t)zb->zb_level, 2181 (longlong_t)zb->zb_blkid); 2182 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2183 } 2184 } 2185 return (B_FALSE); 2186 } 2187 2188 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2189 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2190 dmu_objset_type_t ostype, dmu_tx_t *tx); 2191 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2192 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2193 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2194 2195 /* 2196 * Return nonzero on i/o error. 2197 * Return new buf to write out in *bufp. 2198 */ 2199 inline __attribute__((always_inline)) static int 2200 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2201 dnode_phys_t *dnp, const blkptr_t *bp, 2202 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2203 { 2204 dsl_pool_t *dp = scn->scn_dp; 2205 spa_t *spa = dp->dp_spa; 2206 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2207 int err; 2208 2209 ASSERT(!BP_IS_REDACTED(bp)); 2210 2211 /* 2212 * There is an unlikely case of encountering dnodes with contradicting 2213 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2214 * or modified before commit 4254acb was merged. As it is not possible 2215 * to know which of the two is correct, report an error. 2216 */ 2217 if (dnp != NULL && 2218 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2219 scn->scn_phys.scn_errors++; 2220 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2221 return (SET_ERROR(EINVAL)); 2222 } 2223 2224 if (BP_GET_LEVEL(bp) > 0) { 2225 arc_flags_t flags = ARC_FLAG_WAIT; 2226 int i; 2227 blkptr_t *cbp; 2228 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2229 arc_buf_t *buf; 2230 2231 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2232 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2233 if (err) { 2234 scn->scn_phys.scn_errors++; 2235 return (err); 2236 } 2237 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2238 zbookmark_phys_t czb; 2239 2240 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2241 zb->zb_level - 1, 2242 zb->zb_blkid * epb + i); 2243 dsl_scan_visitbp(cbp, &czb, dnp, 2244 ds, scn, ostype, tx); 2245 } 2246 arc_buf_destroy(buf, &buf); 2247 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2248 arc_flags_t flags = ARC_FLAG_WAIT; 2249 dnode_phys_t *cdnp; 2250 int i; 2251 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2252 arc_buf_t *buf; 2253 2254 if (BP_IS_PROTECTED(bp)) { 2255 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2256 zio_flags |= ZIO_FLAG_RAW; 2257 } 2258 2259 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2260 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2261 if (err) { 2262 scn->scn_phys.scn_errors++; 2263 return (err); 2264 } 2265 for (i = 0, cdnp = buf->b_data; i < epb; 2266 i += cdnp->dn_extra_slots + 1, 2267 cdnp += cdnp->dn_extra_slots + 1) { 2268 dsl_scan_visitdnode(scn, ds, ostype, 2269 cdnp, zb->zb_blkid * epb + i, tx); 2270 } 2271 2272 arc_buf_destroy(buf, &buf); 2273 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2274 arc_flags_t flags = ARC_FLAG_WAIT; 2275 objset_phys_t *osp; 2276 arc_buf_t *buf; 2277 2278 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2279 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2280 if (err) { 2281 scn->scn_phys.scn_errors++; 2282 return (err); 2283 } 2284 2285 osp = buf->b_data; 2286 2287 dsl_scan_visitdnode(scn, ds, osp->os_type, 2288 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2289 2290 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2291 /* 2292 * We also always visit user/group/project accounting 2293 * objects, and never skip them, even if we are 2294 * suspending. This is necessary so that the 2295 * space deltas from this txg get integrated. 2296 */ 2297 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2298 dsl_scan_visitdnode(scn, ds, osp->os_type, 2299 &osp->os_projectused_dnode, 2300 DMU_PROJECTUSED_OBJECT, tx); 2301 dsl_scan_visitdnode(scn, ds, osp->os_type, 2302 &osp->os_groupused_dnode, 2303 DMU_GROUPUSED_OBJECT, tx); 2304 dsl_scan_visitdnode(scn, ds, osp->os_type, 2305 &osp->os_userused_dnode, 2306 DMU_USERUSED_OBJECT, tx); 2307 } 2308 arc_buf_destroy(buf, &buf); 2309 } else if (zfs_blkptr_verify(spa, bp, 2310 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2311 /* 2312 * Sanity check the block pointer contents, this is handled 2313 * by arc_read() for the cases above. 2314 */ 2315 scn->scn_phys.scn_errors++; 2316 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2317 return (SET_ERROR(EINVAL)); 2318 } 2319 2320 return (0); 2321 } 2322 2323 inline __attribute__((always_inline)) static void 2324 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2325 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2326 uint64_t object, dmu_tx_t *tx) 2327 { 2328 int j; 2329 2330 for (j = 0; j < dnp->dn_nblkptr; j++) { 2331 zbookmark_phys_t czb; 2332 2333 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2334 dnp->dn_nlevels - 1, j); 2335 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2336 &czb, dnp, ds, scn, ostype, tx); 2337 } 2338 2339 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2340 zbookmark_phys_t czb; 2341 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2342 0, DMU_SPILL_BLKID); 2343 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2344 &czb, dnp, ds, scn, ostype, tx); 2345 } 2346 } 2347 2348 /* 2349 * The arguments are in this order because mdb can only print the 2350 * first 5; we want them to be useful. 2351 */ 2352 static void 2353 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2354 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2355 dmu_objset_type_t ostype, dmu_tx_t *tx) 2356 { 2357 dsl_pool_t *dp = scn->scn_dp; 2358 2359 if (dsl_scan_check_suspend(scn, zb)) 2360 return; 2361 2362 if (dsl_scan_check_resume(scn, dnp, zb)) 2363 return; 2364 2365 scn->scn_visited_this_txg++; 2366 2367 if (BP_IS_HOLE(bp)) { 2368 scn->scn_holes_this_txg++; 2369 return; 2370 } 2371 2372 if (BP_IS_REDACTED(bp)) { 2373 ASSERT(dsl_dataset_feature_is_active(ds, 2374 SPA_FEATURE_REDACTED_DATASETS)); 2375 return; 2376 } 2377 2378 /* 2379 * Check if this block contradicts any filesystem flags. 2380 */ 2381 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2382 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2383 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2384 2385 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2386 if (f != SPA_FEATURE_NONE) 2387 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2388 2389 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2390 if (f != SPA_FEATURE_NONE) 2391 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2392 2393 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2394 scn->scn_lt_min_this_txg++; 2395 return; 2396 } 2397 2398 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2399 return; 2400 2401 /* 2402 * If dsl_scan_ddt() has already visited this block, it will have 2403 * already done any translations or scrubbing, so don't call the 2404 * callback again. 2405 */ 2406 if (ddt_class_contains(dp->dp_spa, 2407 scn->scn_phys.scn_ddt_class_max, bp)) { 2408 scn->scn_ddt_contained_this_txg++; 2409 return; 2410 } 2411 2412 /* 2413 * If this block is from the future (after cur_max_txg), then we 2414 * are doing this on behalf of a deleted snapshot, and we will 2415 * revisit the future block on the next pass of this dataset. 2416 * Don't scan it now unless we need to because something 2417 * under it was modified. 2418 */ 2419 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2420 scn->scn_gt_max_this_txg++; 2421 return; 2422 } 2423 2424 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2425 } 2426 2427 static void 2428 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2429 dmu_tx_t *tx) 2430 { 2431 zbookmark_phys_t zb; 2432 scan_prefetch_ctx_t *spc; 2433 2434 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2435 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2436 2437 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2438 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2439 zb.zb_objset, 0, 0, 0); 2440 } else { 2441 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2442 } 2443 2444 scn->scn_objsets_visited_this_txg++; 2445 2446 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2447 dsl_scan_prefetch(spc, bp, &zb); 2448 scan_prefetch_ctx_rele(spc, FTAG); 2449 2450 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2451 2452 dprintf_ds(ds, "finished scan%s", ""); 2453 } 2454 2455 static void 2456 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2457 { 2458 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2459 if (ds->ds_is_snapshot) { 2460 /* 2461 * Note: 2462 * - scn_cur_{min,max}_txg stays the same. 2463 * - Setting the flag is not really necessary if 2464 * scn_cur_max_txg == scn_max_txg, because there 2465 * is nothing after this snapshot that we care 2466 * about. However, we set it anyway and then 2467 * ignore it when we retraverse it in 2468 * dsl_scan_visitds(). 2469 */ 2470 scn_phys->scn_bookmark.zb_objset = 2471 dsl_dataset_phys(ds)->ds_next_snap_obj; 2472 zfs_dbgmsg("destroying ds %llu on %s; currently " 2473 "traversing; reset zb_objset to %llu", 2474 (u_longlong_t)ds->ds_object, 2475 ds->ds_dir->dd_pool->dp_spa->spa_name, 2476 (u_longlong_t)dsl_dataset_phys(ds)-> 2477 ds_next_snap_obj); 2478 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2479 } else { 2480 SET_BOOKMARK(&scn_phys->scn_bookmark, 2481 ZB_DESTROYED_OBJSET, 0, 0, 0); 2482 zfs_dbgmsg("destroying ds %llu on %s; currently " 2483 "traversing; reset bookmark to -1,0,0,0", 2484 (u_longlong_t)ds->ds_object, 2485 ds->ds_dir->dd_pool->dp_spa->spa_name); 2486 } 2487 } 2488 } 2489 2490 /* 2491 * Invoked when a dataset is destroyed. We need to make sure that: 2492 * 2493 * 1) If it is the dataset that was currently being scanned, we write 2494 * a new dsl_scan_phys_t and marking the objset reference in it 2495 * as destroyed. 2496 * 2) Remove it from the work queue, if it was present. 2497 * 2498 * If the dataset was actually a snapshot, instead of marking the dataset 2499 * as destroyed, we instead substitute the next snapshot in line. 2500 */ 2501 void 2502 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2503 { 2504 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2505 dsl_scan_t *scn = dp->dp_scan; 2506 uint64_t mintxg; 2507 2508 if (!dsl_scan_is_running(scn)) 2509 return; 2510 2511 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2512 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2513 2514 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2515 scan_ds_queue_remove(scn, ds->ds_object); 2516 if (ds->ds_is_snapshot) 2517 scan_ds_queue_insert(scn, 2518 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2519 } 2520 2521 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2522 ds->ds_object, &mintxg) == 0) { 2523 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2524 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2525 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2526 if (ds->ds_is_snapshot) { 2527 /* 2528 * We keep the same mintxg; it could be > 2529 * ds_creation_txg if the previous snapshot was 2530 * deleted too. 2531 */ 2532 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2533 scn->scn_phys.scn_queue_obj, 2534 dsl_dataset_phys(ds)->ds_next_snap_obj, 2535 mintxg, tx) == 0); 2536 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2537 "replacing with %llu", 2538 (u_longlong_t)ds->ds_object, 2539 dp->dp_spa->spa_name, 2540 (u_longlong_t)dsl_dataset_phys(ds)-> 2541 ds_next_snap_obj); 2542 } else { 2543 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2544 "removing", 2545 (u_longlong_t)ds->ds_object, 2546 dp->dp_spa->spa_name); 2547 } 2548 } 2549 2550 /* 2551 * dsl_scan_sync() should be called after this, and should sync 2552 * out our changed state, but just to be safe, do it here. 2553 */ 2554 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2555 } 2556 2557 static void 2558 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2559 { 2560 if (scn_bookmark->zb_objset == ds->ds_object) { 2561 scn_bookmark->zb_objset = 2562 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2563 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2564 "reset zb_objset to %llu", 2565 (u_longlong_t)ds->ds_object, 2566 ds->ds_dir->dd_pool->dp_spa->spa_name, 2567 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2568 } 2569 } 2570 2571 /* 2572 * Called when a dataset is snapshotted. If we were currently traversing 2573 * this snapshot, we reset our bookmark to point at the newly created 2574 * snapshot. We also modify our work queue to remove the old snapshot and 2575 * replace with the new one. 2576 */ 2577 void 2578 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2579 { 2580 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2581 dsl_scan_t *scn = dp->dp_scan; 2582 uint64_t mintxg; 2583 2584 if (!dsl_scan_is_running(scn)) 2585 return; 2586 2587 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2588 2589 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2590 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2591 2592 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2593 scan_ds_queue_remove(scn, ds->ds_object); 2594 scan_ds_queue_insert(scn, 2595 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2596 } 2597 2598 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2599 ds->ds_object, &mintxg) == 0) { 2600 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2601 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2602 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2603 scn->scn_phys.scn_queue_obj, 2604 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2605 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2606 "replacing with %llu", 2607 (u_longlong_t)ds->ds_object, 2608 dp->dp_spa->spa_name, 2609 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2610 } 2611 2612 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2613 } 2614 2615 static void 2616 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2617 zbookmark_phys_t *scn_bookmark) 2618 { 2619 if (scn_bookmark->zb_objset == ds1->ds_object) { 2620 scn_bookmark->zb_objset = ds2->ds_object; 2621 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2622 "reset zb_objset to %llu", 2623 (u_longlong_t)ds1->ds_object, 2624 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2625 (u_longlong_t)ds2->ds_object); 2626 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2627 scn_bookmark->zb_objset = ds1->ds_object; 2628 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2629 "reset zb_objset to %llu", 2630 (u_longlong_t)ds2->ds_object, 2631 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2632 (u_longlong_t)ds1->ds_object); 2633 } 2634 } 2635 2636 /* 2637 * Called when an origin dataset and its clone are swapped. If we were 2638 * currently traversing the dataset, we need to switch to traversing the 2639 * newly promoted clone. 2640 */ 2641 void 2642 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2643 { 2644 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2645 dsl_scan_t *scn = dp->dp_scan; 2646 uint64_t mintxg1, mintxg2; 2647 boolean_t ds1_queued, ds2_queued; 2648 2649 if (!dsl_scan_is_running(scn)) 2650 return; 2651 2652 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2653 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2654 2655 /* 2656 * Handle the in-memory scan queue. 2657 */ 2658 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2659 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2660 2661 /* Sanity checking. */ 2662 if (ds1_queued) { 2663 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2664 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2665 } 2666 if (ds2_queued) { 2667 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2668 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2669 } 2670 2671 if (ds1_queued && ds2_queued) { 2672 /* 2673 * If both are queued, we don't need to do anything. 2674 * The swapping code below would not handle this case correctly, 2675 * since we can't insert ds2 if it is already there. That's 2676 * because scan_ds_queue_insert() prohibits a duplicate insert 2677 * and panics. 2678 */ 2679 } else if (ds1_queued) { 2680 scan_ds_queue_remove(scn, ds1->ds_object); 2681 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2682 } else if (ds2_queued) { 2683 scan_ds_queue_remove(scn, ds2->ds_object); 2684 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2685 } 2686 2687 /* 2688 * Handle the on-disk scan queue. 2689 * The on-disk state is an out-of-date version of the in-memory state, 2690 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2691 * be different. Therefore we need to apply the swap logic to the 2692 * on-disk state independently of the in-memory state. 2693 */ 2694 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2695 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2696 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2697 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2698 2699 /* Sanity checking. */ 2700 if (ds1_queued) { 2701 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2702 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2703 } 2704 if (ds2_queued) { 2705 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2706 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2707 } 2708 2709 if (ds1_queued && ds2_queued) { 2710 /* 2711 * If both are queued, we don't need to do anything. 2712 * Alternatively, we could check for EEXIST from 2713 * zap_add_int_key() and back out to the original state, but 2714 * that would be more work than checking for this case upfront. 2715 */ 2716 } else if (ds1_queued) { 2717 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2718 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2719 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2720 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2721 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2722 "replacing with %llu", 2723 (u_longlong_t)ds1->ds_object, 2724 dp->dp_spa->spa_name, 2725 (u_longlong_t)ds2->ds_object); 2726 } else if (ds2_queued) { 2727 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2728 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2729 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2730 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2731 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2732 "replacing with %llu", 2733 (u_longlong_t)ds2->ds_object, 2734 dp->dp_spa->spa_name, 2735 (u_longlong_t)ds1->ds_object); 2736 } 2737 2738 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2739 } 2740 2741 static int 2742 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2743 { 2744 uint64_t originobj = *(uint64_t *)arg; 2745 dsl_dataset_t *ds; 2746 int err; 2747 dsl_scan_t *scn = dp->dp_scan; 2748 2749 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2750 return (0); 2751 2752 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2753 if (err) 2754 return (err); 2755 2756 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2757 dsl_dataset_t *prev; 2758 err = dsl_dataset_hold_obj(dp, 2759 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2760 2761 dsl_dataset_rele(ds, FTAG); 2762 if (err) 2763 return (err); 2764 ds = prev; 2765 } 2766 mutex_enter(&scn->scn_queue_lock); 2767 scan_ds_queue_insert(scn, ds->ds_object, 2768 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2769 mutex_exit(&scn->scn_queue_lock); 2770 dsl_dataset_rele(ds, FTAG); 2771 return (0); 2772 } 2773 2774 static void 2775 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2776 { 2777 dsl_pool_t *dp = scn->scn_dp; 2778 dsl_dataset_t *ds; 2779 2780 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2781 2782 if (scn->scn_phys.scn_cur_min_txg >= 2783 scn->scn_phys.scn_max_txg) { 2784 /* 2785 * This can happen if this snapshot was created after the 2786 * scan started, and we already completed a previous snapshot 2787 * that was created after the scan started. This snapshot 2788 * only references blocks with: 2789 * 2790 * birth < our ds_creation_txg 2791 * cur_min_txg is no less than ds_creation_txg. 2792 * We have already visited these blocks. 2793 * or 2794 * birth > scn_max_txg 2795 * The scan requested not to visit these blocks. 2796 * 2797 * Subsequent snapshots (and clones) can reference our 2798 * blocks, or blocks with even higher birth times. 2799 * Therefore we do not need to visit them either, 2800 * so we do not add them to the work queue. 2801 * 2802 * Note that checking for cur_min_txg >= cur_max_txg 2803 * is not sufficient, because in that case we may need to 2804 * visit subsequent snapshots. This happens when min_txg > 0, 2805 * which raises cur_min_txg. In this case we will visit 2806 * this dataset but skip all of its blocks, because the 2807 * rootbp's birth time is < cur_min_txg. Then we will 2808 * add the next snapshots/clones to the work queue. 2809 */ 2810 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2811 dsl_dataset_name(ds, dsname); 2812 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2813 "cur_min_txg (%llu) >= max_txg (%llu)", 2814 (longlong_t)dsobj, dsname, 2815 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2816 (longlong_t)scn->scn_phys.scn_max_txg); 2817 kmem_free(dsname, MAXNAMELEN); 2818 2819 goto out; 2820 } 2821 2822 /* 2823 * Only the ZIL in the head (non-snapshot) is valid. Even though 2824 * snapshots can have ZIL block pointers (which may be the same 2825 * BP as in the head), they must be ignored. In addition, $ORIGIN 2826 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2827 * need to look for a ZIL in it either. So we traverse the ZIL here, 2828 * rather than in scan_recurse(), because the regular snapshot 2829 * block-sharing rules don't apply to it. 2830 */ 2831 if (!dsl_dataset_is_snapshot(ds) && 2832 (dp->dp_origin_snap == NULL || 2833 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2834 objset_t *os; 2835 if (dmu_objset_from_ds(ds, &os) != 0) { 2836 goto out; 2837 } 2838 dsl_scan_zil(dp, &os->os_zil_header); 2839 } 2840 2841 /* 2842 * Iterate over the bps in this ds. 2843 */ 2844 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2845 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2846 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2847 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2848 2849 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2850 dsl_dataset_name(ds, dsname); 2851 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2852 "suspending=%u", 2853 (longlong_t)dsobj, dsname, 2854 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2855 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2856 (int)scn->scn_suspending); 2857 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2858 2859 if (scn->scn_suspending) 2860 goto out; 2861 2862 /* 2863 * We've finished this pass over this dataset. 2864 */ 2865 2866 /* 2867 * If we did not completely visit this dataset, do another pass. 2868 */ 2869 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2870 zfs_dbgmsg("incomplete pass on %s; visiting again", 2871 dp->dp_spa->spa_name); 2872 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2873 scan_ds_queue_insert(scn, ds->ds_object, 2874 scn->scn_phys.scn_cur_max_txg); 2875 goto out; 2876 } 2877 2878 /* 2879 * Add descendant datasets to work queue. 2880 */ 2881 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2882 scan_ds_queue_insert(scn, 2883 dsl_dataset_phys(ds)->ds_next_snap_obj, 2884 dsl_dataset_phys(ds)->ds_creation_txg); 2885 } 2886 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2887 boolean_t usenext = B_FALSE; 2888 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2889 uint64_t count; 2890 /* 2891 * A bug in a previous version of the code could 2892 * cause upgrade_clones_cb() to not set 2893 * ds_next_snap_obj when it should, leading to a 2894 * missing entry. Therefore we can only use the 2895 * next_clones_obj when its count is correct. 2896 */ 2897 int err = zap_count(dp->dp_meta_objset, 2898 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2899 if (err == 0 && 2900 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2901 usenext = B_TRUE; 2902 } 2903 2904 if (usenext) { 2905 zap_cursor_t zc; 2906 zap_attribute_t *za = zap_attribute_alloc(); 2907 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2908 dsl_dataset_phys(ds)->ds_next_clones_obj); 2909 zap_cursor_retrieve(&zc, za) == 0; 2910 (void) zap_cursor_advance(&zc)) { 2911 scan_ds_queue_insert(scn, 2912 zfs_strtonum(za->za_name, NULL), 2913 dsl_dataset_phys(ds)->ds_creation_txg); 2914 } 2915 zap_cursor_fini(&zc); 2916 zap_attribute_free(za); 2917 } else { 2918 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2919 enqueue_clones_cb, &ds->ds_object, 2920 DS_FIND_CHILDREN)); 2921 } 2922 } 2923 2924 out: 2925 dsl_dataset_rele(ds, FTAG); 2926 } 2927 2928 static int 2929 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2930 { 2931 (void) arg; 2932 dsl_dataset_t *ds; 2933 int err; 2934 dsl_scan_t *scn = dp->dp_scan; 2935 2936 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2937 if (err) 2938 return (err); 2939 2940 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2941 dsl_dataset_t *prev; 2942 err = dsl_dataset_hold_obj(dp, 2943 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2944 if (err) { 2945 dsl_dataset_rele(ds, FTAG); 2946 return (err); 2947 } 2948 2949 /* 2950 * If this is a clone, we don't need to worry about it for now. 2951 */ 2952 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2953 dsl_dataset_rele(ds, FTAG); 2954 dsl_dataset_rele(prev, FTAG); 2955 return (0); 2956 } 2957 dsl_dataset_rele(ds, FTAG); 2958 ds = prev; 2959 } 2960 2961 mutex_enter(&scn->scn_queue_lock); 2962 scan_ds_queue_insert(scn, ds->ds_object, 2963 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2964 mutex_exit(&scn->scn_queue_lock); 2965 dsl_dataset_rele(ds, FTAG); 2966 return (0); 2967 } 2968 2969 void 2970 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2971 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2972 { 2973 (void) tx; 2974 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2975 blkptr_t bp; 2976 zbookmark_phys_t zb = { 0 }; 2977 2978 if (!dsl_scan_is_running(scn)) 2979 return; 2980 2981 /* 2982 * This function is special because it is the only thing 2983 * that can add scan_io_t's to the vdev scan queues from 2984 * outside dsl_scan_sync(). For the most part this is ok 2985 * as long as it is called from within syncing context. 2986 * However, dsl_scan_sync() expects that no new sio's will 2987 * be added between when all the work for a scan is done 2988 * and the next txg when the scan is actually marked as 2989 * completed. This check ensures we do not issue new sio's 2990 * during this period. 2991 */ 2992 if (scn->scn_done_txg != 0) 2993 return; 2994 2995 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 2996 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2997 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 2998 2999 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 3000 continue; 3001 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 3002 3003 scn->scn_visited_this_txg++; 3004 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 3005 } 3006 } 3007 3008 /* 3009 * Scrub/dedup interaction. 3010 * 3011 * If there are N references to a deduped block, we don't want to scrub it 3012 * N times -- ideally, we should scrub it exactly once. 3013 * 3014 * We leverage the fact that the dde's replication class (ddt_class_t) 3015 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 3016 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 3017 * 3018 * To prevent excess scrubbing, the scrub begins by walking the DDT 3019 * to find all blocks with refcnt > 1, and scrubs each of these once. 3020 * Since there are two replication classes which contain blocks with 3021 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 3022 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 3023 * 3024 * There would be nothing more to say if a block's refcnt couldn't change 3025 * during a scrub, but of course it can so we must account for changes 3026 * in a block's replication class. 3027 * 3028 * Here's an example of what can occur: 3029 * 3030 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 3031 * when visited during the top-down scrub phase, it will be scrubbed twice. 3032 * This negates our scrub optimization, but is otherwise harmless. 3033 * 3034 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3035 * on each visit during the top-down scrub phase, it will never be scrubbed. 3036 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3037 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3038 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3039 * while a scrub is in progress, it scrubs the block right then. 3040 */ 3041 static void 3042 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3043 { 3044 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3045 ddt_lightweight_entry_t ddlwe = {0}; 3046 int error; 3047 uint64_t n = 0; 3048 3049 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3050 ddt_t *ddt; 3051 3052 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3053 break; 3054 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3055 (longlong_t)ddb->ddb_class, 3056 (longlong_t)ddb->ddb_type, 3057 (longlong_t)ddb->ddb_checksum, 3058 (longlong_t)ddb->ddb_cursor); 3059 3060 /* There should be no pending changes to the dedup table */ 3061 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3062 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3063 3064 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3065 n++; 3066 3067 if (dsl_scan_check_suspend(scn, NULL)) 3068 break; 3069 } 3070 3071 if (error == EAGAIN) { 3072 dsl_scan_check_suspend(scn, NULL); 3073 error = 0; 3074 3075 zfs_dbgmsg("waiting for ddt to become ready for scan " 3076 "on %s with class_max = %u; suspending=%u", 3077 scn->scn_dp->dp_spa->spa_name, 3078 (int)scn->scn_phys.scn_ddt_class_max, 3079 (int)scn->scn_suspending); 3080 } else 3081 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3082 "class_max = %u; suspending=%u", (longlong_t)n, 3083 scn->scn_dp->dp_spa->spa_name, 3084 (int)scn->scn_phys.scn_ddt_class_max, 3085 (int)scn->scn_suspending); 3086 3087 ASSERT(error == 0 || error == ENOENT); 3088 ASSERT(error != ENOENT || 3089 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3090 } 3091 3092 static uint64_t 3093 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3094 { 3095 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3096 if (ds->ds_is_snapshot) 3097 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3098 return (smt); 3099 } 3100 3101 static void 3102 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3103 { 3104 scan_ds_t *sds; 3105 dsl_pool_t *dp = scn->scn_dp; 3106 3107 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3108 scn->scn_phys.scn_ddt_class_max) { 3109 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3110 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3111 dsl_scan_ddt(scn, tx); 3112 if (scn->scn_suspending) 3113 return; 3114 } 3115 3116 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3117 /* First do the MOS & ORIGIN */ 3118 3119 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3120 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3121 dsl_scan_visit_rootbp(scn, NULL, 3122 &dp->dp_meta_rootbp, tx); 3123 if (scn->scn_suspending) 3124 return; 3125 3126 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3127 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3128 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3129 } else { 3130 dsl_scan_visitds(scn, 3131 dp->dp_origin_snap->ds_object, tx); 3132 } 3133 ASSERT(!scn->scn_suspending); 3134 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3135 ZB_DESTROYED_OBJSET) { 3136 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3137 /* 3138 * If we were suspended, continue from here. Note if the 3139 * ds we were suspended on was deleted, the zb_objset may 3140 * be -1, so we will skip this and find a new objset 3141 * below. 3142 */ 3143 dsl_scan_visitds(scn, dsobj, tx); 3144 if (scn->scn_suspending) 3145 return; 3146 } 3147 3148 /* 3149 * In case we suspended right at the end of the ds, zero the 3150 * bookmark so we don't think that we're still trying to resume. 3151 */ 3152 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3153 3154 /* 3155 * Keep pulling things out of the dataset avl queue. Updates to the 3156 * persistent zap-object-as-queue happen only at checkpoints. 3157 */ 3158 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3159 dsl_dataset_t *ds; 3160 uint64_t dsobj = sds->sds_dsobj; 3161 uint64_t txg = sds->sds_txg; 3162 3163 /* dequeue and free the ds from the queue */ 3164 scan_ds_queue_remove(scn, dsobj); 3165 sds = NULL; 3166 3167 /* set up min / max txg */ 3168 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3169 if (txg != 0) { 3170 scn->scn_phys.scn_cur_min_txg = 3171 MAX(scn->scn_phys.scn_min_txg, txg); 3172 } else { 3173 scn->scn_phys.scn_cur_min_txg = 3174 MAX(scn->scn_phys.scn_min_txg, 3175 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3176 } 3177 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3178 dsl_dataset_rele(ds, FTAG); 3179 3180 dsl_scan_visitds(scn, dsobj, tx); 3181 if (scn->scn_suspending) 3182 return; 3183 } 3184 3185 /* No more objsets to fetch, we're done */ 3186 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3187 ASSERT0(scn->scn_suspending); 3188 } 3189 3190 static uint64_t 3191 dsl_scan_count_data_disks(spa_t *spa) 3192 { 3193 vdev_t *rvd = spa->spa_root_vdev; 3194 uint64_t i, leaves = 0; 3195 3196 for (i = 0; i < rvd->vdev_children; i++) { 3197 vdev_t *vd = rvd->vdev_child[i]; 3198 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3199 continue; 3200 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3201 } 3202 return (leaves); 3203 } 3204 3205 static void 3206 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3207 { 3208 int i; 3209 uint64_t cur_size = 0; 3210 3211 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3212 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3213 } 3214 3215 q->q_total_zio_size_this_txg += cur_size; 3216 q->q_zios_this_txg++; 3217 } 3218 3219 static void 3220 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3221 uint64_t end) 3222 { 3223 q->q_total_seg_size_this_txg += end - start; 3224 q->q_segs_this_txg++; 3225 } 3226 3227 static boolean_t 3228 scan_io_queue_check_suspend(dsl_scan_t *scn) 3229 { 3230 /* See comment in dsl_scan_check_suspend() */ 3231 uint64_t curr_time_ns = gethrtime(); 3232 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3233 uint64_t sync_time_ns = curr_time_ns - 3234 scn->scn_dp->dp_spa->spa_sync_starttime; 3235 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3236 zfs_vdev_async_write_active_min_dirty_percent / 100; 3237 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3238 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3239 3240 return ((NSEC2MSEC(scan_time_ns) > mintime && 3241 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3242 txg_sync_waiting(scn->scn_dp) || 3243 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3244 spa_shutting_down(scn->scn_dp->dp_spa)); 3245 } 3246 3247 /* 3248 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3249 * disk. This consumes the io_list and frees the scan_io_t's. This is 3250 * called when emptying queues, either when we're up against the memory 3251 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3252 * processing the list before we finished. Any sios that were not issued 3253 * will remain in the io_list. 3254 */ 3255 static boolean_t 3256 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3257 { 3258 dsl_scan_t *scn = queue->q_scn; 3259 scan_io_t *sio; 3260 boolean_t suspended = B_FALSE; 3261 3262 while ((sio = list_head(io_list)) != NULL) { 3263 blkptr_t bp; 3264 3265 if (scan_io_queue_check_suspend(scn)) { 3266 suspended = B_TRUE; 3267 break; 3268 } 3269 3270 sio2bp(sio, &bp); 3271 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3272 &sio->sio_zb, queue); 3273 (void) list_remove_head(io_list); 3274 scan_io_queues_update_zio_stats(queue, &bp); 3275 sio_free(sio); 3276 } 3277 return (suspended); 3278 } 3279 3280 /* 3281 * This function removes sios from an IO queue which reside within a given 3282 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that 3283 * we only ever return a maximum of 32 sios at once. If there are more sios 3284 * to process within this segment that did not make it onto the list we 3285 * return B_TRUE and otherwise B_FALSE. 3286 */ 3287 static boolean_t 3288 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs, 3289 list_t *list) 3290 { 3291 scan_io_t *srch_sio, *sio, *next_sio; 3292 avl_index_t idx; 3293 uint_t num_sios = 0; 3294 int64_t bytes_issued = 0; 3295 3296 ASSERT(rs != NULL); 3297 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3298 3299 srch_sio = sio_alloc(1); 3300 srch_sio->sio_nr_dvas = 1; 3301 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr)); 3302 3303 /* 3304 * The exact start of the extent might not contain any matching zios, 3305 * so if that's the case, examine the next one in the tree. 3306 */ 3307 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3308 sio_free(srch_sio); 3309 3310 if (sio == NULL) 3311 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3312 3313 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3314 queue->q_exts_by_addr) && num_sios <= 32) { 3315 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs, 3316 queue->q_exts_by_addr)); 3317 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs, 3318 queue->q_exts_by_addr)); 3319 3320 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3321 avl_remove(&queue->q_sios_by_addr, sio); 3322 if (avl_is_empty(&queue->q_sios_by_addr)) 3323 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3324 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3325 3326 bytes_issued += SIO_GET_ASIZE(sio); 3327 num_sios++; 3328 list_insert_tail(list, sio); 3329 sio = next_sio; 3330 } 3331 3332 /* 3333 * We limit the number of sios we process at once to 32 to avoid 3334 * biting off more than we can chew. If we didn't take everything 3335 * in the segment we update it to reflect the work we were able to 3336 * complete. Otherwise, we remove it from the range tree entirely. 3337 */ 3338 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs, 3339 queue->q_exts_by_addr)) { 3340 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3341 -bytes_issued); 3342 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs, 3343 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs, 3344 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3345 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3346 return (B_TRUE); 3347 } else { 3348 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr); 3349 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr); 3350 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend - 3351 rstart); 3352 queue->q_last_ext_addr = -1; 3353 return (B_FALSE); 3354 } 3355 } 3356 3357 /* 3358 * This is called from the queue emptying thread and selects the next 3359 * extent from which we are to issue I/Os. The behavior of this function 3360 * depends on the state of the scan, the current memory consumption and 3361 * whether or not we are performing a scan shutdown. 3362 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3363 * needs to perform a checkpoint 3364 * 2) We select the largest available extent if we are up against the 3365 * memory limit. 3366 * 3) Otherwise we don't select any extents. 3367 */ 3368 static zfs_range_seg_t * 3369 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3370 { 3371 dsl_scan_t *scn = queue->q_scn; 3372 zfs_range_tree_t *rt = queue->q_exts_by_addr; 3373 3374 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3375 ASSERT(scn->scn_is_sorted); 3376 3377 if (!scn->scn_checkpointing && !scn->scn_clearing) 3378 return (NULL); 3379 3380 /* 3381 * During normal clearing, we want to issue our largest segments 3382 * first, keeping IO as sequential as possible, and leaving the 3383 * smaller extents for later with the hope that they might eventually 3384 * grow to larger sequential segments. However, when the scan is 3385 * checkpointing, no new extents will be added to the sorting queue, 3386 * so the way we are sorted now is as good as it will ever get. 3387 * In this case, we instead switch to issuing extents in LBA order. 3388 */ 3389 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3390 zfs_scan_issue_strategy == 1) 3391 return (zfs_range_tree_first(rt)); 3392 3393 /* 3394 * Try to continue previous extent if it is not completed yet. After 3395 * shrink in scan_io_queue_gather() it may no longer be the best, but 3396 * otherwise we leave shorter remnant every txg. 3397 */ 3398 uint64_t start; 3399 uint64_t size = 1ULL << rt->rt_shift; 3400 zfs_range_seg_t *addr_rs; 3401 if (queue->q_last_ext_addr != -1) { 3402 start = queue->q_last_ext_addr; 3403 addr_rs = zfs_range_tree_find(rt, start, size); 3404 if (addr_rs != NULL) 3405 return (addr_rs); 3406 } 3407 3408 /* 3409 * Nothing to continue, so find new best extent. 3410 */ 3411 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3412 if (v == NULL) 3413 return (NULL); 3414 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3415 3416 /* 3417 * We need to get the original entry in the by_addr tree so we can 3418 * modify it. 3419 */ 3420 addr_rs = zfs_range_tree_find(rt, start, size); 3421 ASSERT3P(addr_rs, !=, NULL); 3422 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start); 3423 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start); 3424 return (addr_rs); 3425 } 3426 3427 static void 3428 scan_io_queues_run_one(void *arg) 3429 { 3430 dsl_scan_io_queue_t *queue = arg; 3431 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3432 boolean_t suspended = B_FALSE; 3433 zfs_range_seg_t *rs; 3434 scan_io_t *sio; 3435 zio_t *zio; 3436 list_t sio_list; 3437 3438 ASSERT(queue->q_scn->scn_is_sorted); 3439 3440 list_create(&sio_list, sizeof (scan_io_t), 3441 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3442 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3443 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3444 mutex_enter(q_lock); 3445 queue->q_zio = zio; 3446 3447 /* Calculate maximum in-flight bytes for this vdev. */ 3448 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3449 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3450 3451 /* reset per-queue scan statistics for this txg */ 3452 queue->q_total_seg_size_this_txg = 0; 3453 queue->q_segs_this_txg = 0; 3454 queue->q_total_zio_size_this_txg = 0; 3455 queue->q_zios_this_txg = 0; 3456 3457 /* loop until we run out of time or sios */ 3458 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3459 uint64_t seg_start = 0, seg_end = 0; 3460 boolean_t more_left; 3461 3462 ASSERT(list_is_empty(&sio_list)); 3463 3464 /* loop while we still have sios left to process in this rs */ 3465 do { 3466 scan_io_t *first_sio, *last_sio; 3467 3468 /* 3469 * We have selected which extent needs to be 3470 * processed next. Gather up the corresponding sios. 3471 */ 3472 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3473 ASSERT(!list_is_empty(&sio_list)); 3474 first_sio = list_head(&sio_list); 3475 last_sio = list_tail(&sio_list); 3476 3477 seg_end = SIO_GET_END_OFFSET(last_sio); 3478 if (seg_start == 0) 3479 seg_start = SIO_GET_OFFSET(first_sio); 3480 3481 /* 3482 * Issuing sios can take a long time so drop the 3483 * queue lock. The sio queue won't be updated by 3484 * other threads since we're in syncing context so 3485 * we can be sure that our trees will remain exactly 3486 * as we left them. 3487 */ 3488 mutex_exit(q_lock); 3489 suspended = scan_io_queue_issue(queue, &sio_list); 3490 mutex_enter(q_lock); 3491 3492 if (suspended) 3493 break; 3494 } while (more_left); 3495 3496 /* update statistics for debugging purposes */ 3497 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3498 3499 if (suspended) 3500 break; 3501 } 3502 3503 /* 3504 * If we were suspended in the middle of processing, 3505 * requeue any unfinished sios and exit. 3506 */ 3507 while ((sio = list_remove_head(&sio_list)) != NULL) 3508 scan_io_queue_insert_impl(queue, sio); 3509 3510 queue->q_zio = NULL; 3511 mutex_exit(q_lock); 3512 zio_nowait(zio); 3513 list_destroy(&sio_list); 3514 } 3515 3516 /* 3517 * Performs an emptying run on all scan queues in the pool. This just 3518 * punches out one thread per top-level vdev, each of which processes 3519 * only that vdev's scan queue. We can parallelize the I/O here because 3520 * we know that each queue's I/Os only affect its own top-level vdev. 3521 * 3522 * This function waits for the queue runs to complete, and must be 3523 * called from dsl_scan_sync (or in general, syncing context). 3524 */ 3525 static void 3526 scan_io_queues_run(dsl_scan_t *scn) 3527 { 3528 spa_t *spa = scn->scn_dp->dp_spa; 3529 3530 ASSERT(scn->scn_is_sorted); 3531 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3532 3533 if (scn->scn_queues_pending == 0) 3534 return; 3535 3536 if (scn->scn_taskq == NULL) { 3537 int nthreads = spa->spa_root_vdev->vdev_children; 3538 3539 /* 3540 * We need to make this taskq *always* execute as many 3541 * threads in parallel as we have top-level vdevs and no 3542 * less, otherwise strange serialization of the calls to 3543 * scan_io_queues_run_one can occur during spa_sync runs 3544 * and that significantly impacts performance. 3545 */ 3546 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3547 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3548 } 3549 3550 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3551 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3552 3553 mutex_enter(&vd->vdev_scan_io_queue_lock); 3554 if (vd->vdev_scan_io_queue != NULL) { 3555 VERIFY(taskq_dispatch(scn->scn_taskq, 3556 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3557 TQ_SLEEP) != TASKQID_INVALID); 3558 } 3559 mutex_exit(&vd->vdev_scan_io_queue_lock); 3560 } 3561 3562 /* 3563 * Wait for the queues to finish issuing their IOs for this run 3564 * before we return. There may still be IOs in flight at this 3565 * point. 3566 */ 3567 taskq_wait(scn->scn_taskq); 3568 } 3569 3570 static boolean_t 3571 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3572 { 3573 uint64_t elapsed_nanosecs; 3574 3575 if (zfs_recover) 3576 return (B_FALSE); 3577 3578 if (zfs_async_block_max_blocks != 0 && 3579 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3580 return (B_TRUE); 3581 } 3582 3583 if (zfs_max_async_dedup_frees != 0 && 3584 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3585 return (B_TRUE); 3586 } 3587 3588 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3589 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3590 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3591 txg_sync_waiting(scn->scn_dp)) || 3592 spa_shutting_down(scn->scn_dp->dp_spa)); 3593 } 3594 3595 static int 3596 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3597 { 3598 dsl_scan_t *scn = arg; 3599 3600 if (!scn->scn_is_bptree || 3601 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3602 if (dsl_scan_async_block_should_pause(scn)) 3603 return (SET_ERROR(ERESTART)); 3604 } 3605 3606 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3607 dmu_tx_get_txg(tx), bp, 0)); 3608 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3609 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3610 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3611 scn->scn_visited_this_txg++; 3612 if (BP_GET_DEDUP(bp)) 3613 scn->scn_dedup_frees_this_txg++; 3614 return (0); 3615 } 3616 3617 static void 3618 dsl_scan_update_stats(dsl_scan_t *scn) 3619 { 3620 spa_t *spa = scn->scn_dp->dp_spa; 3621 uint64_t i; 3622 uint64_t seg_size_total = 0, zio_size_total = 0; 3623 uint64_t seg_count_total = 0, zio_count_total = 0; 3624 3625 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3626 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3627 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3628 3629 if (queue == NULL) 3630 continue; 3631 3632 seg_size_total += queue->q_total_seg_size_this_txg; 3633 zio_size_total += queue->q_total_zio_size_this_txg; 3634 seg_count_total += queue->q_segs_this_txg; 3635 zio_count_total += queue->q_zios_this_txg; 3636 } 3637 3638 if (seg_count_total == 0 || zio_count_total == 0) { 3639 scn->scn_avg_seg_size_this_txg = 0; 3640 scn->scn_avg_zio_size_this_txg = 0; 3641 scn->scn_segs_this_txg = 0; 3642 scn->scn_zios_this_txg = 0; 3643 return; 3644 } 3645 3646 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3647 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3648 scn->scn_segs_this_txg = seg_count_total; 3649 scn->scn_zios_this_txg = zio_count_total; 3650 } 3651 3652 static int 3653 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3654 dmu_tx_t *tx) 3655 { 3656 ASSERT(!bp_freed); 3657 return (dsl_scan_free_block_cb(arg, bp, tx)); 3658 } 3659 3660 static int 3661 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3662 dmu_tx_t *tx) 3663 { 3664 ASSERT(!bp_freed); 3665 dsl_scan_t *scn = arg; 3666 const dva_t *dva = &bp->blk_dva[0]; 3667 3668 if (dsl_scan_async_block_should_pause(scn)) 3669 return (SET_ERROR(ERESTART)); 3670 3671 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3672 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3673 DVA_GET_ASIZE(dva), tx); 3674 scn->scn_visited_this_txg++; 3675 return (0); 3676 } 3677 3678 boolean_t 3679 dsl_scan_active(dsl_scan_t *scn) 3680 { 3681 spa_t *spa = scn->scn_dp->dp_spa; 3682 uint64_t used = 0, comp, uncomp; 3683 boolean_t clones_left; 3684 3685 if (spa->spa_load_state != SPA_LOAD_NONE) 3686 return (B_FALSE); 3687 if (spa_shutting_down(spa)) 3688 return (B_FALSE); 3689 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3690 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3691 return (B_TRUE); 3692 3693 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3694 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3695 &used, &comp, &uncomp); 3696 } 3697 clones_left = spa_livelist_delete_check(spa); 3698 return ((used != 0) || (clones_left)); 3699 } 3700 3701 boolean_t 3702 dsl_errorscrub_active(dsl_scan_t *scn) 3703 { 3704 spa_t *spa = scn->scn_dp->dp_spa; 3705 if (spa->spa_load_state != SPA_LOAD_NONE) 3706 return (B_FALSE); 3707 if (spa_shutting_down(spa)) 3708 return (B_FALSE); 3709 if (dsl_errorscrubbing(scn->scn_dp)) 3710 return (B_TRUE); 3711 return (B_FALSE); 3712 } 3713 3714 static boolean_t 3715 dsl_scan_check_deferred(vdev_t *vd) 3716 { 3717 boolean_t need_resilver = B_FALSE; 3718 3719 for (int c = 0; c < vd->vdev_children; c++) { 3720 need_resilver |= 3721 dsl_scan_check_deferred(vd->vdev_child[c]); 3722 } 3723 3724 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3725 !vd->vdev_ops->vdev_op_leaf) 3726 return (need_resilver); 3727 3728 if (!vd->vdev_resilver_deferred) 3729 need_resilver = B_TRUE; 3730 3731 return (need_resilver); 3732 } 3733 3734 static boolean_t 3735 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3736 uint64_t phys_birth) 3737 { 3738 vdev_t *vd; 3739 3740 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3741 3742 if (vd->vdev_ops == &vdev_indirect_ops) { 3743 /* 3744 * The indirect vdev can point to multiple 3745 * vdevs. For simplicity, always create 3746 * the resilver zio_t. zio_vdev_io_start() 3747 * will bypass the child resilver i/o's if 3748 * they are on vdevs that don't have DTL's. 3749 */ 3750 return (B_TRUE); 3751 } 3752 3753 if (DVA_GET_GANG(dva)) { 3754 /* 3755 * Gang members may be spread across multiple 3756 * vdevs, so the best estimate we have is the 3757 * scrub range, which has already been checked. 3758 * XXX -- it would be better to change our 3759 * allocation policy to ensure that all 3760 * gang members reside on the same vdev. 3761 */ 3762 return (B_TRUE); 3763 } 3764 3765 /* 3766 * Check if the top-level vdev must resilver this offset. 3767 * When the offset does not intersect with a dirty leaf DTL 3768 * then it may be possible to skip the resilver IO. The psize 3769 * is provided instead of asize to simplify the check for RAIDZ. 3770 */ 3771 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3772 return (B_FALSE); 3773 3774 /* 3775 * Check that this top-level vdev has a device under it which 3776 * is resilvering and is not deferred. 3777 */ 3778 if (!dsl_scan_check_deferred(vd)) 3779 return (B_FALSE); 3780 3781 return (B_TRUE); 3782 } 3783 3784 static int 3785 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3786 { 3787 dsl_scan_t *scn = dp->dp_scan; 3788 spa_t *spa = dp->dp_spa; 3789 int err = 0; 3790 3791 if (spa_suspend_async_destroy(spa)) 3792 return (0); 3793 3794 if (zfs_free_bpobj_enabled && 3795 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3796 scn->scn_is_bptree = B_FALSE; 3797 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3798 scn->scn_zio_root = zio_root(spa, NULL, 3799 NULL, ZIO_FLAG_MUSTSUCCEED); 3800 err = bpobj_iterate(&dp->dp_free_bpobj, 3801 bpobj_dsl_scan_free_block_cb, scn, tx); 3802 VERIFY0(zio_wait(scn->scn_zio_root)); 3803 scn->scn_zio_root = NULL; 3804 3805 if (err != 0 && err != ERESTART) 3806 zfs_panic_recover("error %u from bpobj_iterate()", err); 3807 } 3808 3809 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3810 ASSERT(scn->scn_async_destroying); 3811 scn->scn_is_bptree = B_TRUE; 3812 scn->scn_zio_root = zio_root(spa, NULL, 3813 NULL, ZIO_FLAG_MUSTSUCCEED); 3814 err = bptree_iterate(dp->dp_meta_objset, 3815 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3816 VERIFY0(zio_wait(scn->scn_zio_root)); 3817 scn->scn_zio_root = NULL; 3818 3819 if (err == EIO || err == ECKSUM) { 3820 err = 0; 3821 } else if (err != 0 && err != ERESTART) { 3822 zfs_panic_recover("error %u from " 3823 "traverse_dataset_destroyed()", err); 3824 } 3825 3826 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3827 /* finished; deactivate async destroy feature */ 3828 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3829 ASSERT(!spa_feature_is_active(spa, 3830 SPA_FEATURE_ASYNC_DESTROY)); 3831 VERIFY0(zap_remove(dp->dp_meta_objset, 3832 DMU_POOL_DIRECTORY_OBJECT, 3833 DMU_POOL_BPTREE_OBJ, tx)); 3834 VERIFY0(bptree_free(dp->dp_meta_objset, 3835 dp->dp_bptree_obj, tx)); 3836 dp->dp_bptree_obj = 0; 3837 scn->scn_async_destroying = B_FALSE; 3838 scn->scn_async_stalled = B_FALSE; 3839 } else { 3840 /* 3841 * If we didn't make progress, mark the async 3842 * destroy as stalled, so that we will not initiate 3843 * a spa_sync() on its behalf. Note that we only 3844 * check this if we are not finished, because if the 3845 * bptree had no blocks for us to visit, we can 3846 * finish without "making progress". 3847 */ 3848 scn->scn_async_stalled = 3849 (scn->scn_visited_this_txg == 0); 3850 } 3851 } 3852 if (scn->scn_visited_this_txg) { 3853 zfs_dbgmsg("freed %llu blocks in %llums from " 3854 "free_bpobj/bptree on %s in txg %llu; err=%u", 3855 (longlong_t)scn->scn_visited_this_txg, 3856 (longlong_t) 3857 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3858 spa->spa_name, (longlong_t)tx->tx_txg, err); 3859 scn->scn_visited_this_txg = 0; 3860 scn->scn_dedup_frees_this_txg = 0; 3861 3862 /* 3863 * Write out changes to the DDT and the BRT that may be required 3864 * as a result of the blocks freed. This ensures that the DDT 3865 * and the BRT are clean when a scrub/resilver runs. 3866 */ 3867 ddt_sync(spa, tx->tx_txg); 3868 brt_sync(spa, tx->tx_txg); 3869 } 3870 if (err != 0) 3871 return (err); 3872 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3873 zfs_free_leak_on_eio && 3874 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3875 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3876 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3877 /* 3878 * We have finished background destroying, but there is still 3879 * some space left in the dp_free_dir. Transfer this leaked 3880 * space to the dp_leak_dir. 3881 */ 3882 if (dp->dp_leak_dir == NULL) { 3883 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3884 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3885 LEAK_DIR_NAME, tx); 3886 VERIFY0(dsl_pool_open_special_dir(dp, 3887 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3888 rrw_exit(&dp->dp_config_rwlock, FTAG); 3889 } 3890 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3891 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3892 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3893 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3894 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3895 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3896 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3897 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3898 } 3899 3900 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3901 !spa_livelist_delete_check(spa)) { 3902 /* finished; verify that space accounting went to zero */ 3903 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3904 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3905 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3906 } 3907 3908 spa_notify_waiters(spa); 3909 3910 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3911 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3912 DMU_POOL_OBSOLETE_BPOBJ)); 3913 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3914 ASSERT(spa_feature_is_active(dp->dp_spa, 3915 SPA_FEATURE_OBSOLETE_COUNTS)); 3916 3917 scn->scn_is_bptree = B_FALSE; 3918 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3919 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3920 dsl_scan_obsolete_block_cb, scn, tx); 3921 if (err != 0 && err != ERESTART) 3922 zfs_panic_recover("error %u from bpobj_iterate()", err); 3923 3924 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3925 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3926 } 3927 return (0); 3928 } 3929 3930 static void 3931 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3932 { 3933 zb->zb_objset = zfs_strtonum(buf, &buf); 3934 ASSERT(*buf == ':'); 3935 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3936 ASSERT(*buf == ':'); 3937 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3938 ASSERT(*buf == ':'); 3939 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3940 ASSERT(*buf == '\0'); 3941 } 3942 3943 static void 3944 name_to_object(char *buf, uint64_t *obj) 3945 { 3946 *obj = zfs_strtonum(buf, &buf); 3947 ASSERT(*buf == '\0'); 3948 } 3949 3950 static void 3951 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3952 { 3953 dsl_pool_t *dp = scn->scn_dp; 3954 dsl_dataset_t *ds; 3955 objset_t *os; 3956 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3957 return; 3958 3959 if (dmu_objset_from_ds(ds, &os) != 0) { 3960 dsl_dataset_rele(ds, FTAG); 3961 return; 3962 } 3963 3964 /* 3965 * If the key is not loaded dbuf_dnode_findbp() will error out with 3966 * EACCES. However in that case dnode_hold() will eventually call 3967 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 3968 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 3969 * Avoid this by checking here if the keys are loaded, if not return. 3970 * If the keys are not loaded the head_errlog feature is meaningless 3971 * as we cannot figure out the birth txg of the block pointer. 3972 */ 3973 if (dsl_dataset_get_keystatus(ds->ds_dir) == 3974 ZFS_KEYSTATUS_UNAVAILABLE) { 3975 dsl_dataset_rele(ds, FTAG); 3976 return; 3977 } 3978 3979 dnode_t *dn; 3980 blkptr_t bp; 3981 3982 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 3983 dsl_dataset_rele(ds, FTAG); 3984 return; 3985 } 3986 3987 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3988 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 3989 NULL); 3990 3991 if (error) { 3992 rw_exit(&dn->dn_struct_rwlock); 3993 dnode_rele(dn, FTAG); 3994 dsl_dataset_rele(ds, FTAG); 3995 return; 3996 } 3997 3998 if (!error && BP_IS_HOLE(&bp)) { 3999 rw_exit(&dn->dn_struct_rwlock); 4000 dnode_rele(dn, FTAG); 4001 dsl_dataset_rele(ds, FTAG); 4002 return; 4003 } 4004 4005 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 4006 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 4007 4008 /* If it's an intent log block, failure is expected. */ 4009 if (zb.zb_level == ZB_ZIL_LEVEL) 4010 zio_flags |= ZIO_FLAG_SPECULATIVE; 4011 4012 ASSERT(!BP_IS_EMBEDDED(&bp)); 4013 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 4014 rw_exit(&dn->dn_struct_rwlock); 4015 dnode_rele(dn, FTAG); 4016 dsl_dataset_rele(ds, FTAG); 4017 } 4018 4019 /* 4020 * We keep track of the scrubbed error blocks in "count". This will be used 4021 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 4022 * function is modelled after check_filesystem(). 4023 */ 4024 static int 4025 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 4026 int *count) 4027 { 4028 dsl_dataset_t *ds; 4029 dsl_pool_t *dp = spa->spa_dsl_pool; 4030 dsl_scan_t *scn = dp->dp_scan; 4031 4032 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 4033 if (error != 0) 4034 return (error); 4035 4036 uint64_t latest_txg; 4037 uint64_t txg_to_consider = spa->spa_syncing_txg; 4038 boolean_t check_snapshot = B_TRUE; 4039 4040 error = find_birth_txg(ds, zep, &latest_txg); 4041 4042 /* 4043 * If find_birth_txg() errors out, then err on the side of caution and 4044 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4045 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4046 * scrub all objects. 4047 */ 4048 if (error == 0 && zep->zb_birth == latest_txg) { 4049 /* Block neither free nor re written. */ 4050 zbookmark_phys_t zb; 4051 zep_to_zb(fs, zep, &zb); 4052 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4053 ZIO_FLAG_CANFAIL); 4054 /* We have already acquired the config lock for spa */ 4055 read_by_block_level(scn, zb); 4056 4057 (void) zio_wait(scn->scn_zio_root); 4058 scn->scn_zio_root = NULL; 4059 4060 scn->errorscrub_phys.dep_examined++; 4061 scn->errorscrub_phys.dep_to_examine--; 4062 (*count)++; 4063 if ((*count) == zfs_scrub_error_blocks_per_txg || 4064 dsl_error_scrub_check_suspend(scn, &zb)) { 4065 dsl_dataset_rele(ds, FTAG); 4066 return (SET_ERROR(EFAULT)); 4067 } 4068 4069 check_snapshot = B_FALSE; 4070 } else if (error == 0) { 4071 txg_to_consider = latest_txg; 4072 } 4073 4074 /* 4075 * Retrieve the number of snapshots if the dataset is not a snapshot. 4076 */ 4077 uint64_t snap_count = 0; 4078 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4079 4080 error = zap_count(spa->spa_meta_objset, 4081 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4082 4083 if (error != 0) { 4084 dsl_dataset_rele(ds, FTAG); 4085 return (error); 4086 } 4087 } 4088 4089 if (snap_count == 0) { 4090 /* Filesystem without snapshots. */ 4091 dsl_dataset_rele(ds, FTAG); 4092 return (0); 4093 } 4094 4095 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4096 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4097 4098 dsl_dataset_rele(ds, FTAG); 4099 4100 /* Check only snapshots created from this file system. */ 4101 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4102 snap_obj_txg <= txg_to_consider) { 4103 4104 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4105 if (error != 0) 4106 return (error); 4107 4108 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4109 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4110 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4111 dsl_dataset_rele(ds, FTAG); 4112 continue; 4113 } 4114 4115 boolean_t affected = B_TRUE; 4116 if (check_snapshot) { 4117 uint64_t blk_txg; 4118 error = find_birth_txg(ds, zep, &blk_txg); 4119 4120 /* 4121 * Scrub the snapshot also when zb_birth == 0 or when 4122 * find_birth_txg() returns an error. 4123 */ 4124 affected = (error == 0 && zep->zb_birth == blk_txg) || 4125 (error != 0) || (zep->zb_birth == 0); 4126 } 4127 4128 /* Scrub snapshots. */ 4129 if (affected) { 4130 zbookmark_phys_t zb; 4131 zep_to_zb(snap_obj, zep, &zb); 4132 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4133 ZIO_FLAG_CANFAIL); 4134 /* We have already acquired the config lock for spa */ 4135 read_by_block_level(scn, zb); 4136 4137 (void) zio_wait(scn->scn_zio_root); 4138 scn->scn_zio_root = NULL; 4139 4140 scn->errorscrub_phys.dep_examined++; 4141 scn->errorscrub_phys.dep_to_examine--; 4142 (*count)++; 4143 if ((*count) == zfs_scrub_error_blocks_per_txg || 4144 dsl_error_scrub_check_suspend(scn, &zb)) { 4145 dsl_dataset_rele(ds, FTAG); 4146 return (EFAULT); 4147 } 4148 } 4149 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4150 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4151 dsl_dataset_rele(ds, FTAG); 4152 } 4153 return (0); 4154 } 4155 4156 void 4157 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4158 { 4159 spa_t *spa = dp->dp_spa; 4160 dsl_scan_t *scn = dp->dp_scan; 4161 4162 /* 4163 * Only process scans in sync pass 1. 4164 */ 4165 4166 if (spa_sync_pass(spa) > 1) 4167 return; 4168 4169 /* 4170 * If the spa is shutting down, then stop scanning. This will 4171 * ensure that the scan does not dirty any new data during the 4172 * shutdown phase. 4173 */ 4174 if (spa_shutting_down(spa)) 4175 return; 4176 4177 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4178 return; 4179 } 4180 4181 if (dsl_scan_resilvering(scn->scn_dp)) { 4182 /* cancel the error scrub if resilver started */ 4183 dsl_scan_cancel(scn->scn_dp); 4184 return; 4185 } 4186 4187 spa->spa_scrub_active = B_TRUE; 4188 scn->scn_sync_start_time = gethrtime(); 4189 4190 /* 4191 * zfs_scan_suspend_progress can be set to disable scrub progress. 4192 * See more detailed comment in dsl_scan_sync(). 4193 */ 4194 if (zfs_scan_suspend_progress) { 4195 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4196 int mintime = zfs_scrub_min_time_ms; 4197 4198 while (zfs_scan_suspend_progress && 4199 !txg_sync_waiting(scn->scn_dp) && 4200 !spa_shutting_down(scn->scn_dp->dp_spa) && 4201 NSEC2MSEC(scan_time_ns) < mintime) { 4202 delay(hz); 4203 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4204 } 4205 return; 4206 } 4207 4208 int i = 0; 4209 zap_attribute_t *za; 4210 zbookmark_phys_t *zb; 4211 boolean_t limit_exceeded = B_FALSE; 4212 4213 za = zap_attribute_alloc(); 4214 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4215 4216 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4217 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4218 zap_cursor_advance(&scn->errorscrub_cursor)) { 4219 name_to_bookmark(za->za_name, zb); 4220 4221 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4222 NULL, ZIO_FLAG_CANFAIL); 4223 dsl_pool_config_enter(dp, FTAG); 4224 read_by_block_level(scn, *zb); 4225 dsl_pool_config_exit(dp, FTAG); 4226 4227 (void) zio_wait(scn->scn_zio_root); 4228 scn->scn_zio_root = NULL; 4229 4230 scn->errorscrub_phys.dep_examined += 1; 4231 scn->errorscrub_phys.dep_to_examine -= 1; 4232 i++; 4233 if (i == zfs_scrub_error_blocks_per_txg || 4234 dsl_error_scrub_check_suspend(scn, zb)) { 4235 limit_exceeded = B_TRUE; 4236 break; 4237 } 4238 } 4239 4240 if (!limit_exceeded) 4241 dsl_errorscrub_done(scn, B_TRUE, tx); 4242 4243 dsl_errorscrub_sync_state(scn, tx); 4244 zap_attribute_free(za); 4245 kmem_free(zb, sizeof (*zb)); 4246 return; 4247 } 4248 4249 int error = 0; 4250 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4251 zap_cursor_advance(&scn->errorscrub_cursor)) { 4252 4253 zap_cursor_t *head_ds_cursor; 4254 zap_attribute_t *head_ds_attr; 4255 zbookmark_err_phys_t head_ds_block; 4256 4257 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4258 head_ds_attr = zap_attribute_alloc(); 4259 4260 uint64_t head_ds_err_obj = za->za_first_integer; 4261 uint64_t head_ds; 4262 name_to_object(za->za_name, &head_ds); 4263 boolean_t config_held = B_FALSE; 4264 uint64_t top_affected_fs; 4265 4266 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4267 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4268 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4269 4270 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4271 4272 /* 4273 * In case we are called from spa_sync the pool 4274 * config is already held. 4275 */ 4276 if (!dsl_pool_config_held(dp)) { 4277 dsl_pool_config_enter(dp, FTAG); 4278 config_held = B_TRUE; 4279 } 4280 4281 error = find_top_affected_fs(spa, 4282 head_ds, &head_ds_block, &top_affected_fs); 4283 if (error) 4284 break; 4285 4286 error = scrub_filesystem(spa, top_affected_fs, 4287 &head_ds_block, &i); 4288 4289 if (error == SET_ERROR(EFAULT)) { 4290 limit_exceeded = B_TRUE; 4291 break; 4292 } 4293 } 4294 4295 zap_cursor_fini(head_ds_cursor); 4296 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4297 zap_attribute_free(head_ds_attr); 4298 4299 if (config_held) 4300 dsl_pool_config_exit(dp, FTAG); 4301 } 4302 4303 zap_attribute_free(za); 4304 kmem_free(zb, sizeof (*zb)); 4305 if (!limit_exceeded) 4306 dsl_errorscrub_done(scn, B_TRUE, tx); 4307 4308 dsl_errorscrub_sync_state(scn, tx); 4309 } 4310 4311 /* 4312 * This is the primary entry point for scans that is called from syncing 4313 * context. Scans must happen entirely during syncing context so that we 4314 * can guarantee that blocks we are currently scanning will not change out 4315 * from under us. While a scan is active, this function controls how quickly 4316 * transaction groups proceed, instead of the normal handling provided by 4317 * txg_sync_thread(). 4318 */ 4319 void 4320 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4321 { 4322 int err = 0; 4323 dsl_scan_t *scn = dp->dp_scan; 4324 spa_t *spa = dp->dp_spa; 4325 state_sync_type_t sync_type = SYNC_OPTIONAL; 4326 int restart_early = 0; 4327 4328 if (spa->spa_resilver_deferred) { 4329 uint64_t to_issue, issued; 4330 4331 if (!spa_feature_is_active(dp->dp_spa, 4332 SPA_FEATURE_RESILVER_DEFER)) 4333 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4334 4335 /* 4336 * See print_scan_scrub_resilver_status() issued/total_i 4337 * @ cmd/zpool/zpool_main.c 4338 */ 4339 to_issue = 4340 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped; 4341 issued = 4342 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 4343 restart_early = 4344 zfs_resilver_disable_defer || 4345 (issued < (to_issue * zfs_resilver_defer_percent / 100)); 4346 } 4347 4348 /* 4349 * Only process scans in sync pass 1. 4350 */ 4351 if (spa_sync_pass(spa) > 1) 4352 return; 4353 4354 4355 /* 4356 * Check for scn_restart_txg before checking spa_load_state, so 4357 * that we can restart an old-style scan while the pool is being 4358 * imported (see dsl_scan_init). We also restart scans if there 4359 * is a deferred resilver and the user has manually disabled 4360 * deferred resilvers via zfs_resilver_disable_defer, or if the 4361 * current scan progress is below zfs_resilver_defer_percent. 4362 */ 4363 if (dsl_scan_restarting(scn, tx) || restart_early) { 4364 setup_sync_arg_t setup_sync_arg = { 4365 .func = POOL_SCAN_SCRUB, 4366 .txgstart = 0, 4367 .txgend = 0, 4368 }; 4369 dsl_scan_done(scn, B_FALSE, tx); 4370 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4371 setup_sync_arg.func = POOL_SCAN_RESILVER; 4372 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d", 4373 setup_sync_arg.func, dp->dp_spa->spa_name, 4374 (longlong_t)tx->tx_txg, restart_early); 4375 dsl_scan_setup_sync(&setup_sync_arg, tx); 4376 } 4377 4378 /* 4379 * If the spa is shutting down, then stop scanning. This will 4380 * ensure that the scan does not dirty any new data during the 4381 * shutdown phase. 4382 */ 4383 if (spa_shutting_down(spa)) 4384 return; 4385 4386 /* 4387 * If the scan is inactive due to a stalled async destroy, try again. 4388 */ 4389 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4390 return; 4391 4392 /* reset scan statistics */ 4393 scn->scn_visited_this_txg = 0; 4394 scn->scn_dedup_frees_this_txg = 0; 4395 scn->scn_holes_this_txg = 0; 4396 scn->scn_lt_min_this_txg = 0; 4397 scn->scn_gt_max_this_txg = 0; 4398 scn->scn_ddt_contained_this_txg = 0; 4399 scn->scn_objsets_visited_this_txg = 0; 4400 scn->scn_avg_seg_size_this_txg = 0; 4401 scn->scn_segs_this_txg = 0; 4402 scn->scn_avg_zio_size_this_txg = 0; 4403 scn->scn_zios_this_txg = 0; 4404 scn->scn_suspending = B_FALSE; 4405 scn->scn_sync_start_time = gethrtime(); 4406 spa->spa_scrub_active = B_TRUE; 4407 4408 /* 4409 * First process the async destroys. If we suspend, don't do 4410 * any scrubbing or resilvering. This ensures that there are no 4411 * async destroys while we are scanning, so the scan code doesn't 4412 * have to worry about traversing it. It is also faster to free the 4413 * blocks than to scrub them. 4414 */ 4415 err = dsl_process_async_destroys(dp, tx); 4416 if (err != 0) 4417 return; 4418 4419 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4420 return; 4421 4422 /* 4423 * Wait a few txgs after importing to begin scanning so that 4424 * we can get the pool imported quickly. 4425 */ 4426 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 4427 return; 4428 4429 /* 4430 * zfs_scan_suspend_progress can be set to disable scan progress. 4431 * We don't want to spin the txg_sync thread, so we add a delay 4432 * here to simulate the time spent doing a scan. This is mostly 4433 * useful for testing and debugging. 4434 */ 4435 if (zfs_scan_suspend_progress) { 4436 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4437 uint_t mintime = (scn->scn_phys.scn_func == 4438 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4439 zfs_scrub_min_time_ms; 4440 4441 while (zfs_scan_suspend_progress && 4442 !txg_sync_waiting(scn->scn_dp) && 4443 !spa_shutting_down(scn->scn_dp->dp_spa) && 4444 NSEC2MSEC(scan_time_ns) < mintime) { 4445 delay(hz); 4446 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4447 } 4448 return; 4449 } 4450 4451 /* 4452 * Disabled by default, set zfs_scan_report_txgs to report 4453 * average performance over the last zfs_scan_report_txgs TXGs. 4454 */ 4455 if (zfs_scan_report_txgs != 0 && 4456 tx->tx_txg % zfs_scan_report_txgs == 0) { 4457 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4458 spa_scan_stat_init(spa); 4459 } 4460 4461 /* 4462 * It is possible to switch from unsorted to sorted at any time, 4463 * but afterwards the scan will remain sorted unless reloaded from 4464 * a checkpoint after a reboot. 4465 */ 4466 if (!zfs_scan_legacy) { 4467 scn->scn_is_sorted = B_TRUE; 4468 if (scn->scn_last_checkpoint == 0) 4469 scn->scn_last_checkpoint = ddi_get_lbolt(); 4470 } 4471 4472 /* 4473 * For sorted scans, determine what kind of work we will be doing 4474 * this txg based on our memory limitations and whether or not we 4475 * need to perform a checkpoint. 4476 */ 4477 if (scn->scn_is_sorted) { 4478 /* 4479 * If we are over our checkpoint interval, set scn_clearing 4480 * so that we can begin checkpointing immediately. The 4481 * checkpoint allows us to save a consistent bookmark 4482 * representing how much data we have scrubbed so far. 4483 * Otherwise, use the memory limit to determine if we should 4484 * scan for metadata or start issue scrub IOs. We accumulate 4485 * metadata until we hit our hard memory limit at which point 4486 * we issue scrub IOs until we are at our soft memory limit. 4487 */ 4488 if (scn->scn_checkpointing || 4489 ddi_get_lbolt() - scn->scn_last_checkpoint > 4490 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4491 if (!scn->scn_checkpointing) 4492 zfs_dbgmsg("begin scan checkpoint for %s", 4493 spa->spa_name); 4494 4495 scn->scn_checkpointing = B_TRUE; 4496 scn->scn_clearing = B_TRUE; 4497 } else { 4498 boolean_t should_clear = dsl_scan_should_clear(scn); 4499 if (should_clear && !scn->scn_clearing) { 4500 zfs_dbgmsg("begin scan clearing for %s", 4501 spa->spa_name); 4502 scn->scn_clearing = B_TRUE; 4503 } else if (!should_clear && scn->scn_clearing) { 4504 zfs_dbgmsg("finish scan clearing for %s", 4505 spa->spa_name); 4506 scn->scn_clearing = B_FALSE; 4507 } 4508 } 4509 } else { 4510 ASSERT0(scn->scn_checkpointing); 4511 ASSERT0(scn->scn_clearing); 4512 } 4513 4514 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4515 /* Need to scan metadata for more blocks to scrub */ 4516 dsl_scan_phys_t *scnp = &scn->scn_phys; 4517 taskqid_t prefetch_tqid; 4518 4519 /* 4520 * Calculate the max number of in-flight bytes for pool-wide 4521 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4522 * Limits for the issuing phase are done per top-level vdev and 4523 * are handled separately. 4524 */ 4525 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4526 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4527 4528 if (scnp->scn_ddt_bookmark.ddb_class <= 4529 scnp->scn_ddt_class_max) { 4530 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4531 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4532 "ddt bm=%llu/%llu/%llu/%llx", 4533 spa->spa_name, 4534 (longlong_t)tx->tx_txg, 4535 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4536 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4537 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4538 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4539 } else { 4540 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4541 "bm=%llu/%llu/%llu/%llu", 4542 spa->spa_name, 4543 (longlong_t)tx->tx_txg, 4544 (longlong_t)scnp->scn_bookmark.zb_objset, 4545 (longlong_t)scnp->scn_bookmark.zb_object, 4546 (longlong_t)scnp->scn_bookmark.zb_level, 4547 (longlong_t)scnp->scn_bookmark.zb_blkid); 4548 } 4549 4550 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4551 NULL, ZIO_FLAG_CANFAIL); 4552 4553 scn->scn_prefetch_stop = B_FALSE; 4554 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4555 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4556 ASSERT(prefetch_tqid != TASKQID_INVALID); 4557 4558 dsl_pool_config_enter(dp, FTAG); 4559 dsl_scan_visit(scn, tx); 4560 dsl_pool_config_exit(dp, FTAG); 4561 4562 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4563 scn->scn_prefetch_stop = B_TRUE; 4564 cv_broadcast(&spa->spa_scrub_io_cv); 4565 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4566 4567 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4568 (void) zio_wait(scn->scn_zio_root); 4569 scn->scn_zio_root = NULL; 4570 4571 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4572 "(%llu os's, %llu holes, %llu < mintxg, " 4573 "%llu in ddt, %llu > maxtxg)", 4574 (longlong_t)scn->scn_visited_this_txg, 4575 spa->spa_name, 4576 (longlong_t)NSEC2MSEC(gethrtime() - 4577 scn->scn_sync_start_time), 4578 (longlong_t)scn->scn_objsets_visited_this_txg, 4579 (longlong_t)scn->scn_holes_this_txg, 4580 (longlong_t)scn->scn_lt_min_this_txg, 4581 (longlong_t)scn->scn_ddt_contained_this_txg, 4582 (longlong_t)scn->scn_gt_max_this_txg); 4583 4584 if (!scn->scn_suspending) { 4585 ASSERT0(avl_numnodes(&scn->scn_queue)); 4586 scn->scn_done_txg = tx->tx_txg + 1; 4587 if (scn->scn_is_sorted) { 4588 scn->scn_checkpointing = B_TRUE; 4589 scn->scn_clearing = B_TRUE; 4590 scn->scn_issued_before_pass += 4591 spa->spa_scan_pass_issued; 4592 spa_scan_stat_init(spa); 4593 } 4594 zfs_dbgmsg("scan complete for %s txg %llu", 4595 spa->spa_name, 4596 (longlong_t)tx->tx_txg); 4597 } 4598 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4599 ASSERT(scn->scn_clearing); 4600 4601 /* need to issue scrubbing IOs from per-vdev queues */ 4602 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4603 NULL, ZIO_FLAG_CANFAIL); 4604 scan_io_queues_run(scn); 4605 (void) zio_wait(scn->scn_zio_root); 4606 scn->scn_zio_root = NULL; 4607 4608 /* calculate and dprintf the current memory usage */ 4609 (void) dsl_scan_should_clear(scn); 4610 dsl_scan_update_stats(scn); 4611 4612 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4613 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4614 (longlong_t)scn->scn_zios_this_txg, 4615 spa->spa_name, 4616 (longlong_t)scn->scn_segs_this_txg, 4617 (longlong_t)NSEC2MSEC(gethrtime() - 4618 scn->scn_sync_start_time), 4619 (longlong_t)scn->scn_avg_zio_size_this_txg, 4620 (longlong_t)scn->scn_avg_seg_size_this_txg); 4621 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4622 /* Finished with everything. Mark the scrub as complete */ 4623 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4624 (longlong_t)tx->tx_txg, 4625 spa->spa_name); 4626 ASSERT3U(scn->scn_done_txg, !=, 0); 4627 ASSERT0(spa->spa_scrub_inflight); 4628 ASSERT0(scn->scn_queues_pending); 4629 dsl_scan_done(scn, B_TRUE, tx); 4630 sync_type = SYNC_MANDATORY; 4631 } 4632 4633 dsl_scan_sync_state(scn, tx, sync_type); 4634 } 4635 4636 static void 4637 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4638 { 4639 /* 4640 * Don't count embedded bp's, since we already did the work of 4641 * scanning these when we scanned the containing block. 4642 */ 4643 if (BP_IS_EMBEDDED(bp)) 4644 return; 4645 4646 /* 4647 * Update the spa's stats on how many bytes we have issued. 4648 * Sequential scrubs create a zio for each DVA of the bp. Each 4649 * of these will include all DVAs for repair purposes, but the 4650 * zio code will only try the first one unless there is an issue. 4651 * Therefore, we should only count the first DVA for these IOs. 4652 */ 4653 atomic_add_64(&spa->spa_scan_pass_issued, 4654 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4655 } 4656 4657 static void 4658 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4659 { 4660 if (BP_IS_EMBEDDED(bp)) 4661 return; 4662 atomic_add_64(&scn->scn_phys.scn_skipped, 4663 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4664 } 4665 4666 static void 4667 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4668 { 4669 /* 4670 * If we resume after a reboot, zab will be NULL; don't record 4671 * incomplete stats in that case. 4672 */ 4673 if (zab == NULL) 4674 return; 4675 4676 for (int i = 0; i < 4; i++) { 4677 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4678 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4679 4680 if (t & DMU_OT_NEWTYPE) 4681 t = DMU_OT_OTHER; 4682 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4683 int equal; 4684 4685 zb->zb_count++; 4686 zb->zb_asize += BP_GET_ASIZE(bp); 4687 zb->zb_lsize += BP_GET_LSIZE(bp); 4688 zb->zb_psize += BP_GET_PSIZE(bp); 4689 zb->zb_gangs += BP_COUNT_GANG(bp); 4690 4691 switch (BP_GET_NDVAS(bp)) { 4692 case 2: 4693 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4694 DVA_GET_VDEV(&bp->blk_dva[1])) 4695 zb->zb_ditto_2_of_2_samevdev++; 4696 break; 4697 case 3: 4698 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4699 DVA_GET_VDEV(&bp->blk_dva[1])) + 4700 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4701 DVA_GET_VDEV(&bp->blk_dva[2])) + 4702 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4703 DVA_GET_VDEV(&bp->blk_dva[2])); 4704 if (equal == 1) 4705 zb->zb_ditto_2_of_3_samevdev++; 4706 else if (equal == 3) 4707 zb->zb_ditto_3_of_3_samevdev++; 4708 break; 4709 } 4710 } 4711 } 4712 4713 static void 4714 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4715 { 4716 avl_index_t idx; 4717 dsl_scan_t *scn = queue->q_scn; 4718 4719 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4720 4721 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4722 atomic_add_64(&scn->scn_queues_pending, 1); 4723 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4724 /* block is already scheduled for reading */ 4725 sio_free(sio); 4726 return; 4727 } 4728 avl_insert(&queue->q_sios_by_addr, sio, idx); 4729 queue->q_sio_memused += SIO_GET_MUSED(sio); 4730 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4731 SIO_GET_ASIZE(sio)); 4732 } 4733 4734 /* 4735 * Given all the info we got from our metadata scanning process, we 4736 * construct a scan_io_t and insert it into the scan sorting queue. The 4737 * I/O must already be suitable for us to process. This is controlled 4738 * by dsl_scan_enqueue(). 4739 */ 4740 static void 4741 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4742 int zio_flags, const zbookmark_phys_t *zb) 4743 { 4744 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4745 4746 ASSERT0(BP_IS_GANG(bp)); 4747 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4748 4749 bp2sio(bp, sio, dva_i); 4750 sio->sio_flags = zio_flags; 4751 sio->sio_zb = *zb; 4752 4753 queue->q_last_ext_addr = -1; 4754 scan_io_queue_insert_impl(queue, sio); 4755 } 4756 4757 /* 4758 * Given a set of I/O parameters as discovered by the metadata traversal 4759 * process, attempts to place the I/O into the sorted queues (if allowed), 4760 * or immediately executes the I/O. 4761 */ 4762 static void 4763 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4764 const zbookmark_phys_t *zb) 4765 { 4766 spa_t *spa = dp->dp_spa; 4767 4768 ASSERT(!BP_IS_EMBEDDED(bp)); 4769 4770 /* 4771 * Gang blocks are hard to issue sequentially, so we just issue them 4772 * here immediately instead of queuing them. 4773 */ 4774 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4775 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4776 return; 4777 } 4778 4779 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4780 dva_t dva; 4781 vdev_t *vdev; 4782 4783 dva = bp->blk_dva[i]; 4784 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4785 ASSERT(vdev != NULL); 4786 4787 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4788 if (vdev->vdev_scan_io_queue == NULL) 4789 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4790 ASSERT(dp->dp_scan != NULL); 4791 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4792 i, zio_flags, zb); 4793 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4794 } 4795 } 4796 4797 static int 4798 dsl_scan_scrub_cb(dsl_pool_t *dp, 4799 const blkptr_t *bp, const zbookmark_phys_t *zb) 4800 { 4801 dsl_scan_t *scn = dp->dp_scan; 4802 spa_t *spa = dp->dp_spa; 4803 uint64_t phys_birth = BP_GET_BIRTH(bp); 4804 size_t psize = BP_GET_PSIZE(bp); 4805 boolean_t needs_io = B_FALSE; 4806 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4807 4808 count_block(dp->dp_blkstats, bp); 4809 if (phys_birth <= scn->scn_phys.scn_min_txg || 4810 phys_birth >= scn->scn_phys.scn_max_txg) { 4811 count_block_skipped(scn, bp, B_TRUE); 4812 return (0); 4813 } 4814 4815 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4816 ASSERT(!BP_IS_EMBEDDED(bp)); 4817 4818 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4819 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4820 zio_flags |= ZIO_FLAG_SCRUB; 4821 needs_io = B_TRUE; 4822 } else { 4823 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4824 zio_flags |= ZIO_FLAG_RESILVER; 4825 needs_io = B_FALSE; 4826 } 4827 4828 /* If it's an intent log block, failure is expected. */ 4829 if (zb->zb_level == ZB_ZIL_LEVEL) 4830 zio_flags |= ZIO_FLAG_SPECULATIVE; 4831 4832 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4833 const dva_t *dva = &bp->blk_dva[d]; 4834 4835 /* 4836 * Keep track of how much data we've examined so that 4837 * zpool(8) status can make useful progress reports. 4838 */ 4839 uint64_t asize = DVA_GET_ASIZE(dva); 4840 scn->scn_phys.scn_examined += asize; 4841 spa->spa_scan_pass_exam += asize; 4842 4843 /* if it's a resilver, this may not be in the target range */ 4844 if (!needs_io) 4845 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4846 phys_birth); 4847 } 4848 4849 if (needs_io && !zfs_no_scrub_io) { 4850 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4851 } else { 4852 count_block_skipped(scn, bp, B_TRUE); 4853 } 4854 4855 /* do not relocate this block */ 4856 return (0); 4857 } 4858 4859 static void 4860 dsl_scan_scrub_done(zio_t *zio) 4861 { 4862 spa_t *spa = zio->io_spa; 4863 blkptr_t *bp = zio->io_bp; 4864 dsl_scan_io_queue_t *queue = zio->io_private; 4865 4866 abd_free(zio->io_abd); 4867 4868 if (queue == NULL) { 4869 mutex_enter(&spa->spa_scrub_lock); 4870 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4871 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4872 cv_broadcast(&spa->spa_scrub_io_cv); 4873 mutex_exit(&spa->spa_scrub_lock); 4874 } else { 4875 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4876 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4877 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4878 cv_broadcast(&queue->q_zio_cv); 4879 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4880 } 4881 4882 if (zio->io_error && (zio->io_error != ECKSUM || 4883 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4884 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4885 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4886 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4887 ->errorscrub_phys.dep_errors); 4888 } else { 4889 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4890 .scn_errors); 4891 } 4892 } 4893 } 4894 4895 /* 4896 * Given a scanning zio's information, executes the zio. The zio need 4897 * not necessarily be only sortable, this function simply executes the 4898 * zio, no matter what it is. The optional queue argument allows the 4899 * caller to specify that they want per top level vdev IO rate limiting 4900 * instead of the legacy global limiting. 4901 */ 4902 static void 4903 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4904 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4905 { 4906 spa_t *spa = dp->dp_spa; 4907 dsl_scan_t *scn = dp->dp_scan; 4908 size_t size = BP_GET_PSIZE(bp); 4909 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4910 zio_t *pio; 4911 4912 if (queue == NULL) { 4913 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4914 mutex_enter(&spa->spa_scrub_lock); 4915 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4916 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4917 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4918 mutex_exit(&spa->spa_scrub_lock); 4919 pio = scn->scn_zio_root; 4920 } else { 4921 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4922 4923 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4924 mutex_enter(q_lock); 4925 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4926 cv_wait(&queue->q_zio_cv, q_lock); 4927 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4928 pio = queue->q_zio; 4929 mutex_exit(q_lock); 4930 } 4931 4932 ASSERT(pio != NULL); 4933 count_block_issued(spa, bp, queue == NULL); 4934 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4935 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4936 } 4937 4938 /* 4939 * This is the primary extent sorting algorithm. We balance two parameters: 4940 * 1) how many bytes of I/O are in an extent 4941 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4942 * Since we allow extents to have gaps between their constituent I/Os, it's 4943 * possible to have a fairly large extent that contains the same amount of 4944 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4945 * The algorithm sorts based on a score calculated from the extent's size, 4946 * the relative fill volume (in %) and a "fill weight" parameter that controls 4947 * the split between whether we prefer larger extents or more well populated 4948 * extents: 4949 * 4950 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4951 * 4952 * Example: 4953 * 1) assume extsz = 64 MiB 4954 * 2) assume fill = 32 MiB (extent is half full) 4955 * 3) assume fill_weight = 3 4956 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4957 * SCORE = 32M + (50 * 3 * 32M) / 100 4958 * SCORE = 32M + (4800M / 100) 4959 * SCORE = 32M + 48M 4960 * ^ ^ 4961 * | +--- final total relative fill-based score 4962 * +--------- final total fill-based score 4963 * SCORE = 80M 4964 * 4965 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4966 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4967 * Note that as an optimization, we replace multiplication and division by 4968 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4969 * 4970 * Since we do not care if one extent is only few percent better than another, 4971 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4972 * put into otherwise unused due to ashift high bits of offset. This allows 4973 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4974 * with single operation. Plus it makes scrubs more sequential and reduces 4975 * chances that minor extent change move it within the B-tree. 4976 */ 4977 __attribute__((always_inline)) inline 4978 static int 4979 ext_size_compare(const void *x, const void *y) 4980 { 4981 const uint64_t *a = x, *b = y; 4982 4983 return (TREE_CMP(*a, *b)); 4984 } 4985 4986 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 4987 ext_size_compare) 4988 4989 static void 4990 ext_size_create(zfs_range_tree_t *rt, void *arg) 4991 { 4992 (void) rt; 4993 zfs_btree_t *size_tree = arg; 4994 4995 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 4996 sizeof (uint64_t)); 4997 } 4998 4999 static void 5000 ext_size_destroy(zfs_range_tree_t *rt, void *arg) 5001 { 5002 (void) rt; 5003 zfs_btree_t *size_tree = arg; 5004 ASSERT0(zfs_btree_numnodes(size_tree)); 5005 5006 zfs_btree_destroy(size_tree); 5007 } 5008 5009 static uint64_t 5010 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg) 5011 { 5012 (void) rt; 5013 uint64_t size = rsg->rs_end - rsg->rs_start; 5014 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 5015 fill_weight * rsg->rs_fill) >> 7); 5016 ASSERT3U(rt->rt_shift, >=, 8); 5017 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 5018 } 5019 5020 static void 5021 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5022 { 5023 zfs_btree_t *size_tree = arg; 5024 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5025 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5026 zfs_btree_add(size_tree, &v); 5027 } 5028 5029 static void 5030 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg) 5031 { 5032 zfs_btree_t *size_tree = arg; 5033 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP); 5034 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs); 5035 zfs_btree_remove(size_tree, &v); 5036 } 5037 5038 static void 5039 ext_size_vacate(zfs_range_tree_t *rt, void *arg) 5040 { 5041 zfs_btree_t *size_tree = arg; 5042 zfs_btree_clear(size_tree); 5043 zfs_btree_destroy(size_tree); 5044 5045 ext_size_create(rt, arg); 5046 } 5047 5048 static const zfs_range_tree_ops_t ext_size_ops = { 5049 .rtop_create = ext_size_create, 5050 .rtop_destroy = ext_size_destroy, 5051 .rtop_add = ext_size_add, 5052 .rtop_remove = ext_size_remove, 5053 .rtop_vacate = ext_size_vacate 5054 }; 5055 5056 /* 5057 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 5058 * based on LBA-order (from lowest to highest). 5059 */ 5060 static int 5061 sio_addr_compare(const void *x, const void *y) 5062 { 5063 const scan_io_t *a = x, *b = y; 5064 5065 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5066 } 5067 5068 /* IO queues are created on demand when they are needed. */ 5069 static dsl_scan_io_queue_t * 5070 scan_io_queue_create(vdev_t *vd) 5071 { 5072 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5073 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5074 5075 q->q_scn = scn; 5076 q->q_vd = vd; 5077 q->q_sio_memused = 0; 5078 q->q_last_ext_addr = -1; 5079 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5080 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops, 5081 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift, 5082 zfs_scan_max_ext_gap); 5083 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5084 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5085 5086 return (q); 5087 } 5088 5089 /* 5090 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5091 * No further execution of I/O occurs, anything pending in the queue is 5092 * simply freed without being executed. 5093 */ 5094 void 5095 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5096 { 5097 dsl_scan_t *scn = queue->q_scn; 5098 scan_io_t *sio; 5099 void *cookie = NULL; 5100 5101 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5102 5103 if (!avl_is_empty(&queue->q_sios_by_addr)) 5104 atomic_add_64(&scn->scn_queues_pending, -1); 5105 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5106 NULL) { 5107 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, 5108 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5109 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5110 sio_free(sio); 5111 } 5112 5113 ASSERT0(queue->q_sio_memused); 5114 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5115 zfs_range_tree_destroy(queue->q_exts_by_addr); 5116 avl_destroy(&queue->q_sios_by_addr); 5117 cv_destroy(&queue->q_zio_cv); 5118 5119 kmem_free(queue, sizeof (*queue)); 5120 } 5121 5122 /* 5123 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5124 * called on behalf of vdev_top_transfer when creating or destroying 5125 * a mirror vdev due to zpool attach/detach. 5126 */ 5127 void 5128 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5129 { 5130 mutex_enter(&svd->vdev_scan_io_queue_lock); 5131 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5132 5133 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 5134 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5135 svd->vdev_scan_io_queue = NULL; 5136 if (tvd->vdev_scan_io_queue != NULL) 5137 tvd->vdev_scan_io_queue->q_vd = tvd; 5138 5139 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5140 mutex_exit(&svd->vdev_scan_io_queue_lock); 5141 } 5142 5143 static void 5144 scan_io_queues_destroy(dsl_scan_t *scn) 5145 { 5146 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5147 5148 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5149 vdev_t *tvd = rvd->vdev_child[i]; 5150 5151 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5152 if (tvd->vdev_scan_io_queue != NULL) 5153 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5154 tvd->vdev_scan_io_queue = NULL; 5155 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5156 } 5157 } 5158 5159 static void 5160 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5161 { 5162 dsl_pool_t *dp = spa->spa_dsl_pool; 5163 dsl_scan_t *scn = dp->dp_scan; 5164 vdev_t *vdev; 5165 kmutex_t *q_lock; 5166 dsl_scan_io_queue_t *queue; 5167 scan_io_t *srch_sio, *sio; 5168 avl_index_t idx; 5169 uint64_t start, size; 5170 5171 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5172 ASSERT(vdev != NULL); 5173 q_lock = &vdev->vdev_scan_io_queue_lock; 5174 queue = vdev->vdev_scan_io_queue; 5175 5176 mutex_enter(q_lock); 5177 if (queue == NULL) { 5178 mutex_exit(q_lock); 5179 return; 5180 } 5181 5182 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5183 bp2sio(bp, srch_sio, dva_i); 5184 start = SIO_GET_OFFSET(srch_sio); 5185 size = SIO_GET_ASIZE(srch_sio); 5186 5187 /* 5188 * We can find the zio in two states: 5189 * 1) Cold, just sitting in the queue of zio's to be issued at 5190 * some point in the future. In this case, all we do is 5191 * remove the zio from the q_sios_by_addr tree, decrement 5192 * its data volume from the containing zfs_range_seg_t and 5193 * resort the q_exts_by_size tree to reflect that the 5194 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten 5195 * the zfs_range_seg_t - this is usually rare enough not to be 5196 * worth the extra hassle of trying keep track of precise 5197 * extent boundaries. 5198 * 2) Hot, where the zio is currently in-flight in 5199 * dsl_scan_issue_ios. In this case, we can't simply 5200 * reach in and stop the in-flight zio's, so we instead 5201 * block the caller. Eventually, dsl_scan_issue_ios will 5202 * be done with issuing the zio's it gathered and will 5203 * signal us. 5204 */ 5205 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5206 sio_free(srch_sio); 5207 5208 if (sio != NULL) { 5209 blkptr_t tmpbp; 5210 5211 /* Got it while it was cold in the queue */ 5212 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5213 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5214 avl_remove(&queue->q_sios_by_addr, sio); 5215 if (avl_is_empty(&queue->q_sios_by_addr)) 5216 atomic_add_64(&scn->scn_queues_pending, -1); 5217 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5218 5219 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start, 5220 size)); 5221 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5222 5223 /* count the block as though we skipped it */ 5224 sio2bp(sio, &tmpbp); 5225 count_block_skipped(scn, &tmpbp, B_FALSE); 5226 5227 sio_free(sio); 5228 } 5229 mutex_exit(q_lock); 5230 } 5231 5232 /* 5233 * Callback invoked when a zio_free() zio is executing. This needs to be 5234 * intercepted to prevent the zio from deallocating a particular portion 5235 * of disk space and it then getting reallocated and written to, while we 5236 * still have it queued up for processing. 5237 */ 5238 void 5239 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5240 { 5241 dsl_pool_t *dp = spa->spa_dsl_pool; 5242 dsl_scan_t *scn = dp->dp_scan; 5243 5244 ASSERT(!BP_IS_EMBEDDED(bp)); 5245 ASSERT(scn != NULL); 5246 if (!dsl_scan_is_running(scn)) 5247 return; 5248 5249 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5250 dsl_scan_freed_dva(spa, bp, i); 5251 } 5252 5253 /* 5254 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5255 * not started, start it. Otherwise, only restart if max txg in DTL range is 5256 * greater than the max txg in the current scan. If the DTL max is less than 5257 * the scan max, then the vdev has not missed any new data since the resilver 5258 * started, so a restart is not needed. 5259 */ 5260 void 5261 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5262 { 5263 uint64_t min, max; 5264 5265 if (!vdev_resilver_needed(vd, &min, &max)) 5266 return; 5267 5268 if (!dsl_scan_resilvering(dp)) { 5269 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5270 return; 5271 } 5272 5273 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5274 return; 5275 5276 /* restart is needed, check if it can be deferred */ 5277 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5278 vdev_defer_resilver(vd); 5279 else 5280 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5281 } 5282 5283 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5284 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5285 5286 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5287 "Min millisecs to scrub per txg"); 5288 5289 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5290 "Min millisecs to obsolete per txg"); 5291 5292 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5293 "Min millisecs to free per txg"); 5294 5295 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5296 "Min millisecs to resilver per txg"); 5297 5298 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5299 "Set to prevent scans from progressing"); 5300 5301 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5302 "Set to disable scrub I/O"); 5303 5304 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5305 "Set to disable scrub prefetching"); 5306 5307 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5308 "Max number of blocks freed in one txg"); 5309 5310 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5311 "Max number of dedup blocks freed in one txg"); 5312 5313 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5314 "Enable processing of the free_bpobj"); 5315 5316 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5317 "Enable block statistics calculation during scrub"); 5318 5319 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5320 "Fraction of RAM for scan hard limit"); 5321 5322 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5323 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5324 5325 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5326 "Scrub using legacy non-sequential method"); 5327 5328 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5329 "Scan progress on-disk checkpointing interval"); 5330 5331 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5332 "Max gap in bytes between sequential scrub / resilver I/Os"); 5333 5334 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5335 "Fraction of hard limit used as soft limit"); 5336 5337 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5338 "Tunable to attempt to reduce lock contention"); 5339 5340 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5341 "Tunable to adjust bias towards more filled segments during scans"); 5342 5343 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5344 "Tunable to report resilver performance over the last N txgs"); 5345 5346 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5347 "Process all resilvers immediately"); 5348 5349 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW, 5350 "Issued IO percent complete after which resilvers are deferred"); 5351 5352 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5353 "Error blocks to be scrubbed in one txg"); 5354