1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 133 /* 134 * By default zfs will check to ensure it is not over the hard memory 135 * limit before each txg. If finer-grained control of this is needed 136 * this value can be set to 1 to enable checking before scanning each 137 * block. 138 */ 139 int zfs_scan_strict_mem_lim = B_FALSE; 140 141 /* 142 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 143 * to strike a balance here between keeping the vdev queues full of I/Os 144 * at all times and not overflowing the queues to cause long latency, 145 * which would cause long txg sync times. No matter what, we will not 146 * overload the drives with I/O, since that is protected by 147 * zfs_vdev_scrub_max_active. 148 */ 149 unsigned long zfs_scan_vdev_limit = 4 << 20; 150 151 int zfs_scan_issue_strategy = 0; 152 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 153 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 154 155 /* 156 * fill_weight is non-tunable at runtime, so we copy it at module init from 157 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 158 * break queue sorting. 159 */ 160 int zfs_scan_fill_weight = 3; 161 static uint64_t fill_weight; 162 163 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 164 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 165 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 166 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 167 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 168 169 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 170 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ 171 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 172 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ 173 int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 175 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 176 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 177 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 178 /* max number of blocks to free in a single TXG */ 179 unsigned long zfs_async_block_max_blocks = ULONG_MAX; 180 /* max number of dedup blocks to free in a single TXG */ 181 unsigned long zfs_max_async_dedup_frees = 100000; 182 183 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 184 185 /* 186 * We wait a few txgs after importing a pool to begin scanning so that 187 * the import / mounting code isn't held up by scrub / resilver IO. 188 * Unfortunately, it is a bit difficult to determine exactly how long 189 * this will take since userspace will trigger fs mounts asynchronously 190 * and the kernel will create zvol minors asynchronously. As a result, 191 * the value provided here is a bit arbitrary, but represents a 192 * reasonable estimate of how many txgs it will take to finish fully 193 * importing a pool 194 */ 195 #define SCAN_IMPORT_WAIT_TXGS 5 196 197 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 198 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 199 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 200 201 /* 202 * Enable/disable the processing of the free_bpobj object. 203 */ 204 int zfs_free_bpobj_enabled = 1; 205 206 /* the order has to match pool_scan_type */ 207 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 208 NULL, 209 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 210 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 211 }; 212 213 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 214 typedef struct { 215 uint64_t sds_dsobj; 216 uint64_t sds_txg; 217 avl_node_t sds_node; 218 } scan_ds_t; 219 220 /* 221 * This controls what conditions are placed on dsl_scan_sync_state(): 222 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 223 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 224 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 225 * write out the scn_phys_cached version. 226 * See dsl_scan_sync_state for details. 227 */ 228 typedef enum { 229 SYNC_OPTIONAL, 230 SYNC_MANDATORY, 231 SYNC_CACHED 232 } state_sync_type_t; 233 234 /* 235 * This struct represents the minimum information needed to reconstruct a 236 * zio for sequential scanning. This is useful because many of these will 237 * accumulate in the sequential IO queues before being issued, so saving 238 * memory matters here. 239 */ 240 typedef struct scan_io { 241 /* fields from blkptr_t */ 242 uint64_t sio_blk_prop; 243 uint64_t sio_phys_birth; 244 uint64_t sio_birth; 245 zio_cksum_t sio_cksum; 246 uint32_t sio_nr_dvas; 247 248 /* fields from zio_t */ 249 uint32_t sio_flags; 250 zbookmark_phys_t sio_zb; 251 252 /* members for queue sorting */ 253 union { 254 avl_node_t sio_addr_node; /* link into issuing queue */ 255 list_node_t sio_list_node; /* link for issuing to disk */ 256 } sio_nodes; 257 258 /* 259 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 260 * depending on how many were in the original bp. Only the 261 * first DVA is really used for sorting and issuing purposes. 262 * The other DVAs (if provided) simply exist so that the zio 263 * layer can find additional copies to repair from in the 264 * event of an error. This array must go at the end of the 265 * struct to allow this for the variable number of elements. 266 */ 267 dva_t sio_dva[0]; 268 } scan_io_t; 269 270 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 271 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 272 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 273 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 274 #define SIO_GET_END_OFFSET(sio) \ 275 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 276 #define SIO_GET_MUSED(sio) \ 277 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 278 279 struct dsl_scan_io_queue { 280 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 281 vdev_t *q_vd; /* top-level vdev that this queue represents */ 282 283 /* trees used for sorting I/Os and extents of I/Os */ 284 range_tree_t *q_exts_by_addr; 285 zfs_btree_t q_exts_by_size; 286 avl_tree_t q_sios_by_addr; 287 uint64_t q_sio_memused; 288 289 /* members for zio rate limiting */ 290 uint64_t q_maxinflight_bytes; 291 uint64_t q_inflight_bytes; 292 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 293 294 /* per txg statistics */ 295 uint64_t q_total_seg_size_this_txg; 296 uint64_t q_segs_this_txg; 297 uint64_t q_total_zio_size_this_txg; 298 uint64_t q_zios_this_txg; 299 }; 300 301 /* private data for dsl_scan_prefetch_cb() */ 302 typedef struct scan_prefetch_ctx { 303 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 304 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 305 boolean_t spc_root; /* is this prefetch for an objset? */ 306 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 307 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 308 } scan_prefetch_ctx_t; 309 310 /* private data for dsl_scan_prefetch() */ 311 typedef struct scan_prefetch_issue_ctx { 312 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 313 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 314 blkptr_t spic_bp; /* bp to prefetch */ 315 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 316 } scan_prefetch_issue_ctx_t; 317 318 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 319 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 320 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 321 scan_io_t *sio); 322 323 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 324 static void scan_io_queues_destroy(dsl_scan_t *scn); 325 326 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 327 328 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 329 static void 330 sio_free(scan_io_t *sio) 331 { 332 ASSERT3U(sio->sio_nr_dvas, >, 0); 333 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 334 335 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 336 } 337 338 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 339 static scan_io_t * 340 sio_alloc(unsigned short nr_dvas) 341 { 342 ASSERT3U(nr_dvas, >, 0); 343 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 344 345 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 346 } 347 348 void 349 scan_init(void) 350 { 351 /* 352 * This is used in ext_size_compare() to weight segments 353 * based on how sparse they are. This cannot be changed 354 * mid-scan and the tree comparison functions don't currently 355 * have a mechanism for passing additional context to the 356 * compare functions. Thus we store this value globally and 357 * we only allow it to be set at module initialization time 358 */ 359 fill_weight = zfs_scan_fill_weight; 360 361 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 362 char name[36]; 363 364 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 365 sio_cache[i] = kmem_cache_create(name, 366 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 367 0, NULL, NULL, NULL, NULL, NULL, 0); 368 } 369 } 370 371 void 372 scan_fini(void) 373 { 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 kmem_cache_destroy(sio_cache[i]); 376 } 377 } 378 379 static inline boolean_t 380 dsl_scan_is_running(const dsl_scan_t *scn) 381 { 382 return (scn->scn_phys.scn_state == DSS_SCANNING); 383 } 384 385 boolean_t 386 dsl_scan_resilvering(dsl_pool_t *dp) 387 { 388 return (dsl_scan_is_running(dp->dp_scan) && 389 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 390 } 391 392 static inline void 393 sio2bp(const scan_io_t *sio, blkptr_t *bp) 394 { 395 bzero(bp, sizeof (*bp)); 396 bp->blk_prop = sio->sio_blk_prop; 397 bp->blk_phys_birth = sio->sio_phys_birth; 398 bp->blk_birth = sio->sio_birth; 399 bp->blk_fill = 1; /* we always only work with data pointers */ 400 bp->blk_cksum = sio->sio_cksum; 401 402 ASSERT3U(sio->sio_nr_dvas, >, 0); 403 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 404 405 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 406 } 407 408 static inline void 409 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 410 { 411 sio->sio_blk_prop = bp->blk_prop; 412 sio->sio_phys_birth = bp->blk_phys_birth; 413 sio->sio_birth = bp->blk_birth; 414 sio->sio_cksum = bp->blk_cksum; 415 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 416 417 /* 418 * Copy the DVAs to the sio. We need all copies of the block so 419 * that the self healing code can use the alternate copies if the 420 * first is corrupted. We want the DVA at index dva_i to be first 421 * in the sio since this is the primary one that we want to issue. 422 */ 423 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 424 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 425 } 426 } 427 428 int 429 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 430 { 431 int err; 432 dsl_scan_t *scn; 433 spa_t *spa = dp->dp_spa; 434 uint64_t f; 435 436 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 437 scn->scn_dp = dp; 438 439 /* 440 * It's possible that we're resuming a scan after a reboot so 441 * make sure that the scan_async_destroying flag is initialized 442 * appropriately. 443 */ 444 ASSERT(!scn->scn_async_destroying); 445 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 446 SPA_FEATURE_ASYNC_DESTROY); 447 448 /* 449 * Calculate the max number of in-flight bytes for pool-wide 450 * scanning operations (minimum 1MB). Limits for the issuing 451 * phase are done per top-level vdev and are handled separately. 452 */ 453 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 454 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 455 456 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 457 offsetof(scan_ds_t, sds_node)); 458 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 459 sizeof (scan_prefetch_issue_ctx_t), 460 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 461 462 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 463 "scrub_func", sizeof (uint64_t), 1, &f); 464 if (err == 0) { 465 /* 466 * There was an old-style scrub in progress. Restart a 467 * new-style scrub from the beginning. 468 */ 469 scn->scn_restart_txg = txg; 470 zfs_dbgmsg("old-style scrub was in progress for %s; " 471 "restarting new-style scrub in txg %llu", 472 spa->spa_name, 473 (longlong_t)scn->scn_restart_txg); 474 475 /* 476 * Load the queue obj from the old location so that it 477 * can be freed by dsl_scan_done(). 478 */ 479 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 480 "scrub_queue", sizeof (uint64_t), 1, 481 &scn->scn_phys.scn_queue_obj); 482 } else { 483 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 485 &scn->scn_phys); 486 /* 487 * Detect if the pool contains the signature of #2094. If it 488 * does properly update the scn->scn_phys structure and notify 489 * the administrator by setting an errata for the pool. 490 */ 491 if (err == EOVERFLOW) { 492 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 493 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 494 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 495 (23 * sizeof (uint64_t))); 496 497 err = zap_lookup(dp->dp_meta_objset, 498 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 499 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 500 if (err == 0) { 501 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 502 503 if (overflow & ~DSL_SCAN_FLAGS_MASK || 504 scn->scn_async_destroying) { 505 spa->spa_errata = 506 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 507 return (EOVERFLOW); 508 } 509 510 bcopy(zaptmp, &scn->scn_phys, 511 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 512 scn->scn_phys.scn_flags = overflow; 513 514 /* Required scrub already in progress. */ 515 if (scn->scn_phys.scn_state == DSS_FINISHED || 516 scn->scn_phys.scn_state == DSS_CANCELED) 517 spa->spa_errata = 518 ZPOOL_ERRATA_ZOL_2094_SCRUB; 519 } 520 } 521 522 if (err == ENOENT) 523 return (0); 524 else if (err) 525 return (err); 526 527 /* 528 * We might be restarting after a reboot, so jump the issued 529 * counter to how far we've scanned. We know we're consistent 530 * up to here. 531 */ 532 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 533 534 if (dsl_scan_is_running(scn) && 535 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 536 /* 537 * A new-type scrub was in progress on an old 538 * pool, and the pool was accessed by old 539 * software. Restart from the beginning, since 540 * the old software may have changed the pool in 541 * the meantime. 542 */ 543 scn->scn_restart_txg = txg; 544 zfs_dbgmsg("new-style scrub for %s was modified " 545 "by old software; restarting in txg %llu", 546 spa->spa_name, 547 (longlong_t)scn->scn_restart_txg); 548 } else if (dsl_scan_resilvering(dp)) { 549 /* 550 * If a resilver is in progress and there are already 551 * errors, restart it instead of finishing this scan and 552 * then restarting it. If there haven't been any errors 553 * then remember that the incore DTL is valid. 554 */ 555 if (scn->scn_phys.scn_errors > 0) { 556 scn->scn_restart_txg = txg; 557 zfs_dbgmsg("resilver can't excise DTL_MISSING " 558 "when finished; restarting on %s in txg " 559 "%llu", 560 spa->spa_name, 561 (u_longlong_t)scn->scn_restart_txg); 562 } else { 563 /* it's safe to excise DTL when finished */ 564 spa->spa_scrub_started = B_TRUE; 565 } 566 } 567 } 568 569 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 570 571 /* reload the queue into the in-core state */ 572 if (scn->scn_phys.scn_queue_obj != 0) { 573 zap_cursor_t zc; 574 zap_attribute_t za; 575 576 for (zap_cursor_init(&zc, dp->dp_meta_objset, 577 scn->scn_phys.scn_queue_obj); 578 zap_cursor_retrieve(&zc, &za) == 0; 579 (void) zap_cursor_advance(&zc)) { 580 scan_ds_queue_insert(scn, 581 zfs_strtonum(za.za_name, NULL), 582 za.za_first_integer); 583 } 584 zap_cursor_fini(&zc); 585 } 586 587 spa_scan_stat_init(spa); 588 return (0); 589 } 590 591 void 592 dsl_scan_fini(dsl_pool_t *dp) 593 { 594 if (dp->dp_scan != NULL) { 595 dsl_scan_t *scn = dp->dp_scan; 596 597 if (scn->scn_taskq != NULL) 598 taskq_destroy(scn->scn_taskq); 599 600 scan_ds_queue_clear(scn); 601 avl_destroy(&scn->scn_queue); 602 scan_ds_prefetch_queue_clear(scn); 603 avl_destroy(&scn->scn_prefetch_queue); 604 605 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 606 dp->dp_scan = NULL; 607 } 608 } 609 610 static boolean_t 611 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 612 { 613 return (scn->scn_restart_txg != 0 && 614 scn->scn_restart_txg <= tx->tx_txg); 615 } 616 617 boolean_t 618 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 619 { 620 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 621 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 622 } 623 624 boolean_t 625 dsl_scan_scrubbing(const dsl_pool_t *dp) 626 { 627 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 628 629 return (scn_phys->scn_state == DSS_SCANNING && 630 scn_phys->scn_func == POOL_SCAN_SCRUB); 631 } 632 633 boolean_t 634 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 635 { 636 return (dsl_scan_scrubbing(scn->scn_dp) && 637 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 638 } 639 640 /* 641 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 642 * Because we can be running in the block sorting algorithm, we do not always 643 * want to write out the record, only when it is "safe" to do so. This safety 644 * condition is achieved by making sure that the sorting queues are empty 645 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 646 * is inconsistent with how much actual scanning progress has been made. The 647 * kind of sync to be performed is specified by the sync_type argument. If the 648 * sync is optional, we only sync if the queues are empty. If the sync is 649 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 650 * third possible state is a "cached" sync. This is done in response to: 651 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 652 * destroyed, so we wouldn't be able to restart scanning from it. 653 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 654 * superseded by a newer snapshot. 655 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 656 * swapped with its clone. 657 * In all cases, a cached sync simply rewrites the last record we've written, 658 * just slightly modified. For the modifications that are performed to the 659 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 660 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 661 */ 662 static void 663 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 664 { 665 int i; 666 spa_t *spa = scn->scn_dp->dp_spa; 667 668 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 669 if (scn->scn_bytes_pending == 0) { 670 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 671 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 672 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 673 674 if (q == NULL) 675 continue; 676 677 mutex_enter(&vd->vdev_scan_io_queue_lock); 678 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 679 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 680 NULL); 681 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 682 mutex_exit(&vd->vdev_scan_io_queue_lock); 683 } 684 685 if (scn->scn_phys.scn_queue_obj != 0) 686 scan_ds_queue_sync(scn, tx); 687 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 688 DMU_POOL_DIRECTORY_OBJECT, 689 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 690 &scn->scn_phys, tx)); 691 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 692 sizeof (scn->scn_phys)); 693 694 if (scn->scn_checkpointing) 695 zfs_dbgmsg("finish scan checkpoint for %s", 696 spa->spa_name); 697 698 scn->scn_checkpointing = B_FALSE; 699 scn->scn_last_checkpoint = ddi_get_lbolt(); 700 } else if (sync_type == SYNC_CACHED) { 701 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 702 DMU_POOL_DIRECTORY_OBJECT, 703 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 704 &scn->scn_phys_cached, tx)); 705 } 706 } 707 708 /* ARGSUSED */ 709 int 710 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 711 { 712 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 713 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 714 715 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 716 return (SET_ERROR(EBUSY)); 717 718 return (0); 719 } 720 721 void 722 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 723 { 724 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 725 pool_scan_func_t *funcp = arg; 726 dmu_object_type_t ot = 0; 727 dsl_pool_t *dp = scn->scn_dp; 728 spa_t *spa = dp->dp_spa; 729 730 ASSERT(!dsl_scan_is_running(scn)); 731 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 732 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 733 scn->scn_phys.scn_func = *funcp; 734 scn->scn_phys.scn_state = DSS_SCANNING; 735 scn->scn_phys.scn_min_txg = 0; 736 scn->scn_phys.scn_max_txg = tx->tx_txg; 737 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 738 scn->scn_phys.scn_start_time = gethrestime_sec(); 739 scn->scn_phys.scn_errors = 0; 740 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 741 scn->scn_issued_before_pass = 0; 742 scn->scn_restart_txg = 0; 743 scn->scn_done_txg = 0; 744 scn->scn_last_checkpoint = 0; 745 scn->scn_checkpointing = B_FALSE; 746 spa_scan_stat_init(spa); 747 748 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 749 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 750 751 /* rewrite all disk labels */ 752 vdev_config_dirty(spa->spa_root_vdev); 753 754 if (vdev_resilver_needed(spa->spa_root_vdev, 755 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 756 nvlist_t *aux = fnvlist_alloc(); 757 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 758 "healing"); 759 spa_event_notify(spa, NULL, aux, 760 ESC_ZFS_RESILVER_START); 761 nvlist_free(aux); 762 } else { 763 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 764 } 765 766 spa->spa_scrub_started = B_TRUE; 767 /* 768 * If this is an incremental scrub, limit the DDT scrub phase 769 * to just the auto-ditto class (for correctness); the rest 770 * of the scrub should go faster using top-down pruning. 771 */ 772 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 773 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 774 775 /* 776 * When starting a resilver clear any existing rebuild state. 777 * This is required to prevent stale rebuild status from 778 * being reported when a rebuild is run, then a resilver and 779 * finally a scrub. In which case only the scrub status 780 * should be reported by 'zpool status'. 781 */ 782 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 783 vdev_t *rvd = spa->spa_root_vdev; 784 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 785 vdev_t *vd = rvd->vdev_child[i]; 786 vdev_rebuild_clear_sync( 787 (void *)(uintptr_t)vd->vdev_id, tx); 788 } 789 } 790 } 791 792 /* back to the generic stuff */ 793 794 if (dp->dp_blkstats == NULL) { 795 dp->dp_blkstats = 796 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 797 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 798 MUTEX_DEFAULT, NULL); 799 } 800 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 801 802 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 803 ot = DMU_OT_ZAP_OTHER; 804 805 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 806 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 807 808 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 809 810 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 811 812 spa_history_log_internal(spa, "scan setup", tx, 813 "func=%u mintxg=%llu maxtxg=%llu", 814 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 815 (u_longlong_t)scn->scn_phys.scn_max_txg); 816 } 817 818 /* 819 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 820 * Can also be called to resume a paused scrub. 821 */ 822 int 823 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 824 { 825 spa_t *spa = dp->dp_spa; 826 dsl_scan_t *scn = dp->dp_scan; 827 828 /* 829 * Purge all vdev caches and probe all devices. We do this here 830 * rather than in sync context because this requires a writer lock 831 * on the spa_config lock, which we can't do from sync context. The 832 * spa_scrub_reopen flag indicates that vdev_open() should not 833 * attempt to start another scrub. 834 */ 835 spa_vdev_state_enter(spa, SCL_NONE); 836 spa->spa_scrub_reopen = B_TRUE; 837 vdev_reopen(spa->spa_root_vdev); 838 spa->spa_scrub_reopen = B_FALSE; 839 (void) spa_vdev_state_exit(spa, NULL, 0); 840 841 if (func == POOL_SCAN_RESILVER) { 842 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 843 return (0); 844 } 845 846 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 847 /* got scrub start cmd, resume paused scrub */ 848 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 849 POOL_SCRUB_NORMAL); 850 if (err == 0) { 851 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 852 return (SET_ERROR(ECANCELED)); 853 } 854 855 return (SET_ERROR(err)); 856 } 857 858 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 859 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 860 } 861 862 /* ARGSUSED */ 863 static void 864 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 865 { 866 static const char *old_names[] = { 867 "scrub_bookmark", 868 "scrub_ddt_bookmark", 869 "scrub_ddt_class_max", 870 "scrub_queue", 871 "scrub_min_txg", 872 "scrub_max_txg", 873 "scrub_func", 874 "scrub_errors", 875 NULL 876 }; 877 878 dsl_pool_t *dp = scn->scn_dp; 879 spa_t *spa = dp->dp_spa; 880 int i; 881 882 /* Remove any remnants of an old-style scrub. */ 883 for (i = 0; old_names[i]; i++) { 884 (void) zap_remove(dp->dp_meta_objset, 885 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 886 } 887 888 if (scn->scn_phys.scn_queue_obj != 0) { 889 VERIFY0(dmu_object_free(dp->dp_meta_objset, 890 scn->scn_phys.scn_queue_obj, tx)); 891 scn->scn_phys.scn_queue_obj = 0; 892 } 893 scan_ds_queue_clear(scn); 894 scan_ds_prefetch_queue_clear(scn); 895 896 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 897 898 /* 899 * If we were "restarted" from a stopped state, don't bother 900 * with anything else. 901 */ 902 if (!dsl_scan_is_running(scn)) { 903 ASSERT(!scn->scn_is_sorted); 904 return; 905 } 906 907 if (scn->scn_is_sorted) { 908 scan_io_queues_destroy(scn); 909 scn->scn_is_sorted = B_FALSE; 910 911 if (scn->scn_taskq != NULL) { 912 taskq_destroy(scn->scn_taskq); 913 scn->scn_taskq = NULL; 914 } 915 } 916 917 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 918 919 spa_notify_waiters(spa); 920 921 if (dsl_scan_restarting(scn, tx)) 922 spa_history_log_internal(spa, "scan aborted, restarting", tx, 923 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 924 else if (!complete) 925 spa_history_log_internal(spa, "scan cancelled", tx, 926 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 927 else 928 spa_history_log_internal(spa, "scan done", tx, 929 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 930 931 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 932 spa->spa_scrub_active = B_FALSE; 933 934 /* 935 * If the scrub/resilver completed, update all DTLs to 936 * reflect this. Whether it succeeded or not, vacate 937 * all temporary scrub DTLs. 938 * 939 * As the scrub does not currently support traversing 940 * data that have been freed but are part of a checkpoint, 941 * we don't mark the scrub as done in the DTLs as faults 942 * may still exist in those vdevs. 943 */ 944 if (complete && 945 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 946 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 947 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 948 949 if (scn->scn_phys.scn_min_txg) { 950 nvlist_t *aux = fnvlist_alloc(); 951 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 952 "healing"); 953 spa_event_notify(spa, NULL, aux, 954 ESC_ZFS_RESILVER_FINISH); 955 nvlist_free(aux); 956 } else { 957 spa_event_notify(spa, NULL, NULL, 958 ESC_ZFS_SCRUB_FINISH); 959 } 960 } else { 961 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 962 0, B_TRUE, B_FALSE); 963 } 964 spa_errlog_rotate(spa); 965 966 /* 967 * Don't clear flag until after vdev_dtl_reassess to ensure that 968 * DTL_MISSING will get updated when possible. 969 */ 970 spa->spa_scrub_started = B_FALSE; 971 972 /* 973 * We may have finished replacing a device. 974 * Let the async thread assess this and handle the detach. 975 */ 976 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 977 978 /* 979 * Clear any resilver_deferred flags in the config. 980 * If there are drives that need resilvering, kick 981 * off an asynchronous request to start resilver. 982 * vdev_clear_resilver_deferred() may update the config 983 * before the resilver can restart. In the event of 984 * a crash during this period, the spa loading code 985 * will find the drives that need to be resilvered 986 * and start the resilver then. 987 */ 988 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 989 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 990 spa_history_log_internal(spa, 991 "starting deferred resilver", tx, "errors=%llu", 992 (u_longlong_t)spa_get_errlog_size(spa)); 993 spa_async_request(spa, SPA_ASYNC_RESILVER); 994 } 995 996 /* Clear recent error events (i.e. duplicate events tracking) */ 997 if (complete) 998 zfs_ereport_clear(spa, NULL); 999 } 1000 1001 scn->scn_phys.scn_end_time = gethrestime_sec(); 1002 1003 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1004 spa->spa_errata = 0; 1005 1006 ASSERT(!dsl_scan_is_running(scn)); 1007 } 1008 1009 /* ARGSUSED */ 1010 static int 1011 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1012 { 1013 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1014 1015 if (!dsl_scan_is_running(scn)) 1016 return (SET_ERROR(ENOENT)); 1017 return (0); 1018 } 1019 1020 /* ARGSUSED */ 1021 static void 1022 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1023 { 1024 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1025 1026 dsl_scan_done(scn, B_FALSE, tx); 1027 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1028 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1029 } 1030 1031 int 1032 dsl_scan_cancel(dsl_pool_t *dp) 1033 { 1034 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1035 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1036 } 1037 1038 static int 1039 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1040 { 1041 pool_scrub_cmd_t *cmd = arg; 1042 dsl_pool_t *dp = dmu_tx_pool(tx); 1043 dsl_scan_t *scn = dp->dp_scan; 1044 1045 if (*cmd == POOL_SCRUB_PAUSE) { 1046 /* can't pause a scrub when there is no in-progress scrub */ 1047 if (!dsl_scan_scrubbing(dp)) 1048 return (SET_ERROR(ENOENT)); 1049 1050 /* can't pause a paused scrub */ 1051 if (dsl_scan_is_paused_scrub(scn)) 1052 return (SET_ERROR(EBUSY)); 1053 } else if (*cmd != POOL_SCRUB_NORMAL) { 1054 return (SET_ERROR(ENOTSUP)); 1055 } 1056 1057 return (0); 1058 } 1059 1060 static void 1061 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1062 { 1063 pool_scrub_cmd_t *cmd = arg; 1064 dsl_pool_t *dp = dmu_tx_pool(tx); 1065 spa_t *spa = dp->dp_spa; 1066 dsl_scan_t *scn = dp->dp_scan; 1067 1068 if (*cmd == POOL_SCRUB_PAUSE) { 1069 /* can't pause a scrub when there is no in-progress scrub */ 1070 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1071 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1072 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1073 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1074 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1075 spa_notify_waiters(spa); 1076 } else { 1077 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1078 if (dsl_scan_is_paused_scrub(scn)) { 1079 /* 1080 * We need to keep track of how much time we spend 1081 * paused per pass so that we can adjust the scrub rate 1082 * shown in the output of 'zpool status' 1083 */ 1084 spa->spa_scan_pass_scrub_spent_paused += 1085 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1086 spa->spa_scan_pass_scrub_pause = 0; 1087 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1088 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1089 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1090 } 1091 } 1092 } 1093 1094 /* 1095 * Set scrub pause/resume state if it makes sense to do so 1096 */ 1097 int 1098 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1099 { 1100 return (dsl_sync_task(spa_name(dp->dp_spa), 1101 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1102 ZFS_SPACE_CHECK_RESERVED)); 1103 } 1104 1105 1106 /* start a new scan, or restart an existing one. */ 1107 void 1108 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1109 { 1110 if (txg == 0) { 1111 dmu_tx_t *tx; 1112 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1113 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1114 1115 txg = dmu_tx_get_txg(tx); 1116 dp->dp_scan->scn_restart_txg = txg; 1117 dmu_tx_commit(tx); 1118 } else { 1119 dp->dp_scan->scn_restart_txg = txg; 1120 } 1121 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1122 dp->dp_spa->spa_name, (longlong_t)txg); 1123 } 1124 1125 void 1126 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1127 { 1128 zio_free(dp->dp_spa, txg, bp); 1129 } 1130 1131 void 1132 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1133 { 1134 ASSERT(dsl_pool_sync_context(dp)); 1135 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1136 } 1137 1138 static int 1139 scan_ds_queue_compare(const void *a, const void *b) 1140 { 1141 const scan_ds_t *sds_a = a, *sds_b = b; 1142 1143 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1144 return (-1); 1145 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1146 return (0); 1147 return (1); 1148 } 1149 1150 static void 1151 scan_ds_queue_clear(dsl_scan_t *scn) 1152 { 1153 void *cookie = NULL; 1154 scan_ds_t *sds; 1155 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1156 kmem_free(sds, sizeof (*sds)); 1157 } 1158 } 1159 1160 static boolean_t 1161 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1162 { 1163 scan_ds_t srch, *sds; 1164 1165 srch.sds_dsobj = dsobj; 1166 sds = avl_find(&scn->scn_queue, &srch, NULL); 1167 if (sds != NULL && txg != NULL) 1168 *txg = sds->sds_txg; 1169 return (sds != NULL); 1170 } 1171 1172 static void 1173 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1174 { 1175 scan_ds_t *sds; 1176 avl_index_t where; 1177 1178 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1179 sds->sds_dsobj = dsobj; 1180 sds->sds_txg = txg; 1181 1182 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1183 avl_insert(&scn->scn_queue, sds, where); 1184 } 1185 1186 static void 1187 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1188 { 1189 scan_ds_t srch, *sds; 1190 1191 srch.sds_dsobj = dsobj; 1192 1193 sds = avl_find(&scn->scn_queue, &srch, NULL); 1194 VERIFY(sds != NULL); 1195 avl_remove(&scn->scn_queue, sds); 1196 kmem_free(sds, sizeof (*sds)); 1197 } 1198 1199 static void 1200 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1201 { 1202 dsl_pool_t *dp = scn->scn_dp; 1203 spa_t *spa = dp->dp_spa; 1204 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1205 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1206 1207 ASSERT0(scn->scn_bytes_pending); 1208 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1209 1210 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1211 scn->scn_phys.scn_queue_obj, tx)); 1212 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1213 DMU_OT_NONE, 0, tx); 1214 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1215 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1216 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1217 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1218 sds->sds_txg, tx)); 1219 } 1220 } 1221 1222 /* 1223 * Computes the memory limit state that we're currently in. A sorted scan 1224 * needs quite a bit of memory to hold the sorting queue, so we need to 1225 * reasonably constrain the size so it doesn't impact overall system 1226 * performance. We compute two limits: 1227 * 1) Hard memory limit: if the amount of memory used by the sorting 1228 * queues on a pool gets above this value, we stop the metadata 1229 * scanning portion and start issuing the queued up and sorted 1230 * I/Os to reduce memory usage. 1231 * This limit is calculated as a fraction of physmem (by default 5%). 1232 * We constrain the lower bound of the hard limit to an absolute 1233 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1234 * the upper bound to 5% of the total pool size - no chance we'll 1235 * ever need that much memory, but just to keep the value in check. 1236 * 2) Soft memory limit: once we hit the hard memory limit, we start 1237 * issuing I/O to reduce queue memory usage, but we don't want to 1238 * completely empty out the queues, since we might be able to find I/Os 1239 * that will fill in the gaps of our non-sequential IOs at some point 1240 * in the future. So we stop the issuing of I/Os once the amount of 1241 * memory used drops below the soft limit (at which point we stop issuing 1242 * I/O and start scanning metadata again). 1243 * 1244 * This limit is calculated by subtracting a fraction of the hard 1245 * limit from the hard limit. By default this fraction is 5%, so 1246 * the soft limit is 95% of the hard limit. We cap the size of the 1247 * difference between the hard and soft limits at an absolute 1248 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1249 * sufficient to not cause too frequent switching between the 1250 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1251 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1252 * that should take at least a decent fraction of a second). 1253 */ 1254 static boolean_t 1255 dsl_scan_should_clear(dsl_scan_t *scn) 1256 { 1257 spa_t *spa = scn->scn_dp->dp_spa; 1258 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1259 uint64_t alloc, mlim_hard, mlim_soft, mused; 1260 1261 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1262 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1263 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1264 1265 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1266 zfs_scan_mem_lim_min); 1267 mlim_hard = MIN(mlim_hard, alloc / 20); 1268 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1269 zfs_scan_mem_lim_soft_max); 1270 mused = 0; 1271 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1272 vdev_t *tvd = rvd->vdev_child[i]; 1273 dsl_scan_io_queue_t *queue; 1274 1275 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1276 queue = tvd->vdev_scan_io_queue; 1277 if (queue != NULL) { 1278 /* # extents in exts_by_size = # in exts_by_addr */ 1279 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1280 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1281 } 1282 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1283 } 1284 1285 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1286 1287 if (mused == 0) 1288 ASSERT0(scn->scn_bytes_pending); 1289 1290 /* 1291 * If we are above our hard limit, we need to clear out memory. 1292 * If we are below our soft limit, we need to accumulate sequential IOs. 1293 * Otherwise, we should keep doing whatever we are currently doing. 1294 */ 1295 if (mused >= mlim_hard) 1296 return (B_TRUE); 1297 else if (mused < mlim_soft) 1298 return (B_FALSE); 1299 else 1300 return (scn->scn_clearing); 1301 } 1302 1303 static boolean_t 1304 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1305 { 1306 /* we never skip user/group accounting objects */ 1307 if (zb && (int64_t)zb->zb_object < 0) 1308 return (B_FALSE); 1309 1310 if (scn->scn_suspending) 1311 return (B_TRUE); /* we're already suspending */ 1312 1313 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1314 return (B_FALSE); /* we're resuming */ 1315 1316 /* We only know how to resume from level-0 and objset blocks. */ 1317 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1318 return (B_FALSE); 1319 1320 /* 1321 * We suspend if: 1322 * - we have scanned for at least the minimum time (default 1 sec 1323 * for scrub, 3 sec for resilver), and either we have sufficient 1324 * dirty data that we are starting to write more quickly 1325 * (default 30%), someone is explicitly waiting for this txg 1326 * to complete, or we have used up all of the time in the txg 1327 * timeout (default 5 sec). 1328 * or 1329 * - the spa is shutting down because this pool is being exported 1330 * or the machine is rebooting. 1331 * or 1332 * - the scan queue has reached its memory use limit 1333 */ 1334 uint64_t curr_time_ns = gethrtime(); 1335 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1336 uint64_t sync_time_ns = curr_time_ns - 1337 scn->scn_dp->dp_spa->spa_sync_starttime; 1338 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1339 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1340 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1341 1342 if ((NSEC2MSEC(scan_time_ns) > mintime && 1343 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1344 txg_sync_waiting(scn->scn_dp) || 1345 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1346 spa_shutting_down(scn->scn_dp->dp_spa) || 1347 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1348 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1349 dprintf("suspending at first available bookmark " 1350 "%llx/%llx/%llx/%llx\n", 1351 (longlong_t)zb->zb_objset, 1352 (longlong_t)zb->zb_object, 1353 (longlong_t)zb->zb_level, 1354 (longlong_t)zb->zb_blkid); 1355 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1356 zb->zb_objset, 0, 0, 0); 1357 } else if (zb != NULL) { 1358 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1359 (longlong_t)zb->zb_objset, 1360 (longlong_t)zb->zb_object, 1361 (longlong_t)zb->zb_level, 1362 (longlong_t)zb->zb_blkid); 1363 scn->scn_phys.scn_bookmark = *zb; 1364 } else { 1365 #ifdef ZFS_DEBUG 1366 dsl_scan_phys_t *scnp = &scn->scn_phys; 1367 dprintf("suspending at at DDT bookmark " 1368 "%llx/%llx/%llx/%llx\n", 1369 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1370 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1371 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1372 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1373 #endif 1374 } 1375 scn->scn_suspending = B_TRUE; 1376 return (B_TRUE); 1377 } 1378 return (B_FALSE); 1379 } 1380 1381 typedef struct zil_scan_arg { 1382 dsl_pool_t *zsa_dp; 1383 zil_header_t *zsa_zh; 1384 } zil_scan_arg_t; 1385 1386 /* ARGSUSED */ 1387 static int 1388 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1389 uint64_t claim_txg) 1390 { 1391 zil_scan_arg_t *zsa = arg; 1392 dsl_pool_t *dp = zsa->zsa_dp; 1393 dsl_scan_t *scn = dp->dp_scan; 1394 zil_header_t *zh = zsa->zsa_zh; 1395 zbookmark_phys_t zb; 1396 1397 ASSERT(!BP_IS_REDACTED(bp)); 1398 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1399 return (0); 1400 1401 /* 1402 * One block ("stubby") can be allocated a long time ago; we 1403 * want to visit that one because it has been allocated 1404 * (on-disk) even if it hasn't been claimed (even though for 1405 * scrub there's nothing to do to it). 1406 */ 1407 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1408 return (0); 1409 1410 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1411 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1412 1413 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1414 return (0); 1415 } 1416 1417 /* ARGSUSED */ 1418 static int 1419 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1420 uint64_t claim_txg) 1421 { 1422 if (lrc->lrc_txtype == TX_WRITE) { 1423 zil_scan_arg_t *zsa = arg; 1424 dsl_pool_t *dp = zsa->zsa_dp; 1425 dsl_scan_t *scn = dp->dp_scan; 1426 zil_header_t *zh = zsa->zsa_zh; 1427 const lr_write_t *lr = (const lr_write_t *)lrc; 1428 const blkptr_t *bp = &lr->lr_blkptr; 1429 zbookmark_phys_t zb; 1430 1431 ASSERT(!BP_IS_REDACTED(bp)); 1432 if (BP_IS_HOLE(bp) || 1433 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1434 return (0); 1435 1436 /* 1437 * birth can be < claim_txg if this record's txg is 1438 * already txg sync'ed (but this log block contains 1439 * other records that are not synced) 1440 */ 1441 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1442 return (0); 1443 1444 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1445 lr->lr_foid, ZB_ZIL_LEVEL, 1446 lr->lr_offset / BP_GET_LSIZE(bp)); 1447 1448 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1449 } 1450 return (0); 1451 } 1452 1453 static void 1454 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1455 { 1456 uint64_t claim_txg = zh->zh_claim_txg; 1457 zil_scan_arg_t zsa = { dp, zh }; 1458 zilog_t *zilog; 1459 1460 ASSERT(spa_writeable(dp->dp_spa)); 1461 1462 /* 1463 * We only want to visit blocks that have been claimed but not yet 1464 * replayed (or, in read-only mode, blocks that *would* be claimed). 1465 */ 1466 if (claim_txg == 0) 1467 return; 1468 1469 zilog = zil_alloc(dp->dp_meta_objset, zh); 1470 1471 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1472 claim_txg, B_FALSE); 1473 1474 zil_free(zilog); 1475 } 1476 1477 /* 1478 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1479 * here is to sort the AVL tree by the order each block will be needed. 1480 */ 1481 static int 1482 scan_prefetch_queue_compare(const void *a, const void *b) 1483 { 1484 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1485 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1486 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1487 1488 return (zbookmark_compare(spc_a->spc_datablkszsec, 1489 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1490 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1491 } 1492 1493 static void 1494 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1495 { 1496 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1497 zfs_refcount_destroy(&spc->spc_refcnt); 1498 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1499 } 1500 } 1501 1502 static scan_prefetch_ctx_t * 1503 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1504 { 1505 scan_prefetch_ctx_t *spc; 1506 1507 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1508 zfs_refcount_create(&spc->spc_refcnt); 1509 zfs_refcount_add(&spc->spc_refcnt, tag); 1510 spc->spc_scn = scn; 1511 if (dnp != NULL) { 1512 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1513 spc->spc_indblkshift = dnp->dn_indblkshift; 1514 spc->spc_root = B_FALSE; 1515 } else { 1516 spc->spc_datablkszsec = 0; 1517 spc->spc_indblkshift = 0; 1518 spc->spc_root = B_TRUE; 1519 } 1520 1521 return (spc); 1522 } 1523 1524 static void 1525 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1526 { 1527 zfs_refcount_add(&spc->spc_refcnt, tag); 1528 } 1529 1530 static void 1531 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1532 { 1533 spa_t *spa = scn->scn_dp->dp_spa; 1534 void *cookie = NULL; 1535 scan_prefetch_issue_ctx_t *spic = NULL; 1536 1537 mutex_enter(&spa->spa_scrub_lock); 1538 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1539 &cookie)) != NULL) { 1540 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1541 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1542 } 1543 mutex_exit(&spa->spa_scrub_lock); 1544 } 1545 1546 static boolean_t 1547 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1548 const zbookmark_phys_t *zb) 1549 { 1550 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1551 dnode_phys_t tmp_dnp; 1552 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1553 1554 if (zb->zb_objset != last_zb->zb_objset) 1555 return (B_TRUE); 1556 if ((int64_t)zb->zb_object < 0) 1557 return (B_FALSE); 1558 1559 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1560 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1561 1562 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1563 return (B_TRUE); 1564 1565 return (B_FALSE); 1566 } 1567 1568 static void 1569 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1570 { 1571 avl_index_t idx; 1572 dsl_scan_t *scn = spc->spc_scn; 1573 spa_t *spa = scn->scn_dp->dp_spa; 1574 scan_prefetch_issue_ctx_t *spic; 1575 1576 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1577 return; 1578 1579 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1580 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1581 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1582 return; 1583 1584 if (dsl_scan_check_prefetch_resume(spc, zb)) 1585 return; 1586 1587 scan_prefetch_ctx_add_ref(spc, scn); 1588 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1589 spic->spic_spc = spc; 1590 spic->spic_bp = *bp; 1591 spic->spic_zb = *zb; 1592 1593 /* 1594 * Add the IO to the queue of blocks to prefetch. This allows us to 1595 * prioritize blocks that we will need first for the main traversal 1596 * thread. 1597 */ 1598 mutex_enter(&spa->spa_scrub_lock); 1599 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1600 /* this block is already queued for prefetch */ 1601 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1602 scan_prefetch_ctx_rele(spc, scn); 1603 mutex_exit(&spa->spa_scrub_lock); 1604 return; 1605 } 1606 1607 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1608 cv_broadcast(&spa->spa_scrub_io_cv); 1609 mutex_exit(&spa->spa_scrub_lock); 1610 } 1611 1612 static void 1613 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1614 uint64_t objset, uint64_t object) 1615 { 1616 int i; 1617 zbookmark_phys_t zb; 1618 scan_prefetch_ctx_t *spc; 1619 1620 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1621 return; 1622 1623 SET_BOOKMARK(&zb, objset, object, 0, 0); 1624 1625 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1626 1627 for (i = 0; i < dnp->dn_nblkptr; i++) { 1628 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1629 zb.zb_blkid = i; 1630 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1631 } 1632 1633 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1634 zb.zb_level = 0; 1635 zb.zb_blkid = DMU_SPILL_BLKID; 1636 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1637 } 1638 1639 scan_prefetch_ctx_rele(spc, FTAG); 1640 } 1641 1642 static void 1643 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1644 arc_buf_t *buf, void *private) 1645 { 1646 scan_prefetch_ctx_t *spc = private; 1647 dsl_scan_t *scn = spc->spc_scn; 1648 spa_t *spa = scn->scn_dp->dp_spa; 1649 1650 /* broadcast that the IO has completed for rate limiting purposes */ 1651 mutex_enter(&spa->spa_scrub_lock); 1652 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1653 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1654 cv_broadcast(&spa->spa_scrub_io_cv); 1655 mutex_exit(&spa->spa_scrub_lock); 1656 1657 /* if there was an error or we are done prefetching, just cleanup */ 1658 if (buf == NULL || scn->scn_prefetch_stop) 1659 goto out; 1660 1661 if (BP_GET_LEVEL(bp) > 0) { 1662 int i; 1663 blkptr_t *cbp; 1664 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1665 zbookmark_phys_t czb; 1666 1667 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1668 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1669 zb->zb_level - 1, zb->zb_blkid * epb + i); 1670 dsl_scan_prefetch(spc, cbp, &czb); 1671 } 1672 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1673 dnode_phys_t *cdnp; 1674 int i; 1675 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1676 1677 for (i = 0, cdnp = buf->b_data; i < epb; 1678 i += cdnp->dn_extra_slots + 1, 1679 cdnp += cdnp->dn_extra_slots + 1) { 1680 dsl_scan_prefetch_dnode(scn, cdnp, 1681 zb->zb_objset, zb->zb_blkid * epb + i); 1682 } 1683 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1684 objset_phys_t *osp = buf->b_data; 1685 1686 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1687 zb->zb_objset, DMU_META_DNODE_OBJECT); 1688 1689 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1690 dsl_scan_prefetch_dnode(scn, 1691 &osp->os_groupused_dnode, zb->zb_objset, 1692 DMU_GROUPUSED_OBJECT); 1693 dsl_scan_prefetch_dnode(scn, 1694 &osp->os_userused_dnode, zb->zb_objset, 1695 DMU_USERUSED_OBJECT); 1696 } 1697 } 1698 1699 out: 1700 if (buf != NULL) 1701 arc_buf_destroy(buf, private); 1702 scan_prefetch_ctx_rele(spc, scn); 1703 } 1704 1705 /* ARGSUSED */ 1706 static void 1707 dsl_scan_prefetch_thread(void *arg) 1708 { 1709 dsl_scan_t *scn = arg; 1710 spa_t *spa = scn->scn_dp->dp_spa; 1711 scan_prefetch_issue_ctx_t *spic; 1712 1713 /* loop until we are told to stop */ 1714 while (!scn->scn_prefetch_stop) { 1715 arc_flags_t flags = ARC_FLAG_NOWAIT | 1716 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1717 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1718 1719 mutex_enter(&spa->spa_scrub_lock); 1720 1721 /* 1722 * Wait until we have an IO to issue and are not above our 1723 * maximum in flight limit. 1724 */ 1725 while (!scn->scn_prefetch_stop && 1726 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1727 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1728 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1729 } 1730 1731 /* recheck if we should stop since we waited for the cv */ 1732 if (scn->scn_prefetch_stop) { 1733 mutex_exit(&spa->spa_scrub_lock); 1734 break; 1735 } 1736 1737 /* remove the prefetch IO from the tree */ 1738 spic = avl_first(&scn->scn_prefetch_queue); 1739 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1740 avl_remove(&scn->scn_prefetch_queue, spic); 1741 1742 mutex_exit(&spa->spa_scrub_lock); 1743 1744 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1745 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1746 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1747 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1748 zio_flags |= ZIO_FLAG_RAW; 1749 } 1750 1751 /* issue the prefetch asynchronously */ 1752 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1753 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1754 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1755 1756 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1757 } 1758 1759 ASSERT(scn->scn_prefetch_stop); 1760 1761 /* free any prefetches we didn't get to complete */ 1762 mutex_enter(&spa->spa_scrub_lock); 1763 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1764 avl_remove(&scn->scn_prefetch_queue, spic); 1765 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1766 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1767 } 1768 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1769 mutex_exit(&spa->spa_scrub_lock); 1770 } 1771 1772 static boolean_t 1773 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1774 const zbookmark_phys_t *zb) 1775 { 1776 /* 1777 * We never skip over user/group accounting objects (obj<0) 1778 */ 1779 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1780 (int64_t)zb->zb_object >= 0) { 1781 /* 1782 * If we already visited this bp & everything below (in 1783 * a prior txg sync), don't bother doing it again. 1784 */ 1785 if (zbookmark_subtree_completed(dnp, zb, 1786 &scn->scn_phys.scn_bookmark)) 1787 return (B_TRUE); 1788 1789 /* 1790 * If we found the block we're trying to resume from, or 1791 * we went past it to a different object, zero it out to 1792 * indicate that it's OK to start checking for suspending 1793 * again. 1794 */ 1795 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1796 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1797 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1798 (longlong_t)zb->zb_objset, 1799 (longlong_t)zb->zb_object, 1800 (longlong_t)zb->zb_level, 1801 (longlong_t)zb->zb_blkid); 1802 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1803 } 1804 } 1805 return (B_FALSE); 1806 } 1807 1808 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1809 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1810 dmu_objset_type_t ostype, dmu_tx_t *tx); 1811 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1812 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1813 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1814 1815 /* 1816 * Return nonzero on i/o error. 1817 * Return new buf to write out in *bufp. 1818 */ 1819 inline __attribute__((always_inline)) static int 1820 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1821 dnode_phys_t *dnp, const blkptr_t *bp, 1822 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1823 { 1824 dsl_pool_t *dp = scn->scn_dp; 1825 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1826 int err; 1827 1828 ASSERT(!BP_IS_REDACTED(bp)); 1829 1830 if (BP_GET_LEVEL(bp) > 0) { 1831 arc_flags_t flags = ARC_FLAG_WAIT; 1832 int i; 1833 blkptr_t *cbp; 1834 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1835 arc_buf_t *buf; 1836 1837 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1838 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1839 if (err) { 1840 scn->scn_phys.scn_errors++; 1841 return (err); 1842 } 1843 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1844 zbookmark_phys_t czb; 1845 1846 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1847 zb->zb_level - 1, 1848 zb->zb_blkid * epb + i); 1849 dsl_scan_visitbp(cbp, &czb, dnp, 1850 ds, scn, ostype, tx); 1851 } 1852 arc_buf_destroy(buf, &buf); 1853 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1854 arc_flags_t flags = ARC_FLAG_WAIT; 1855 dnode_phys_t *cdnp; 1856 int i; 1857 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1858 arc_buf_t *buf; 1859 1860 if (BP_IS_PROTECTED(bp)) { 1861 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1862 zio_flags |= ZIO_FLAG_RAW; 1863 } 1864 1865 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1866 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1867 if (err) { 1868 scn->scn_phys.scn_errors++; 1869 return (err); 1870 } 1871 for (i = 0, cdnp = buf->b_data; i < epb; 1872 i += cdnp->dn_extra_slots + 1, 1873 cdnp += cdnp->dn_extra_slots + 1) { 1874 dsl_scan_visitdnode(scn, ds, ostype, 1875 cdnp, zb->zb_blkid * epb + i, tx); 1876 } 1877 1878 arc_buf_destroy(buf, &buf); 1879 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1880 arc_flags_t flags = ARC_FLAG_WAIT; 1881 objset_phys_t *osp; 1882 arc_buf_t *buf; 1883 1884 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1885 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1886 if (err) { 1887 scn->scn_phys.scn_errors++; 1888 return (err); 1889 } 1890 1891 osp = buf->b_data; 1892 1893 dsl_scan_visitdnode(scn, ds, osp->os_type, 1894 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1895 1896 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1897 /* 1898 * We also always visit user/group/project accounting 1899 * objects, and never skip them, even if we are 1900 * suspending. This is necessary so that the 1901 * space deltas from this txg get integrated. 1902 */ 1903 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1904 dsl_scan_visitdnode(scn, ds, osp->os_type, 1905 &osp->os_projectused_dnode, 1906 DMU_PROJECTUSED_OBJECT, tx); 1907 dsl_scan_visitdnode(scn, ds, osp->os_type, 1908 &osp->os_groupused_dnode, 1909 DMU_GROUPUSED_OBJECT, tx); 1910 dsl_scan_visitdnode(scn, ds, osp->os_type, 1911 &osp->os_userused_dnode, 1912 DMU_USERUSED_OBJECT, tx); 1913 } 1914 arc_buf_destroy(buf, &buf); 1915 } 1916 1917 return (0); 1918 } 1919 1920 inline __attribute__((always_inline)) static void 1921 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1922 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1923 uint64_t object, dmu_tx_t *tx) 1924 { 1925 int j; 1926 1927 for (j = 0; j < dnp->dn_nblkptr; j++) { 1928 zbookmark_phys_t czb; 1929 1930 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1931 dnp->dn_nlevels - 1, j); 1932 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1933 &czb, dnp, ds, scn, ostype, tx); 1934 } 1935 1936 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1937 zbookmark_phys_t czb; 1938 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1939 0, DMU_SPILL_BLKID); 1940 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1941 &czb, dnp, ds, scn, ostype, tx); 1942 } 1943 } 1944 1945 /* 1946 * The arguments are in this order because mdb can only print the 1947 * first 5; we want them to be useful. 1948 */ 1949 static void 1950 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1951 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1952 dmu_objset_type_t ostype, dmu_tx_t *tx) 1953 { 1954 dsl_pool_t *dp = scn->scn_dp; 1955 blkptr_t *bp_toread = NULL; 1956 1957 if (dsl_scan_check_suspend(scn, zb)) 1958 return; 1959 1960 if (dsl_scan_check_resume(scn, dnp, zb)) 1961 return; 1962 1963 scn->scn_visited_this_txg++; 1964 1965 /* 1966 * This debugging is commented out to conserve stack space. This 1967 * function is called recursively and the debugging adds several 1968 * bytes to the stack for each call. It can be commented back in 1969 * if required to debug an issue in dsl_scan_visitbp(). 1970 * 1971 * dprintf_bp(bp, 1972 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1973 * ds, ds ? ds->ds_object : 0, 1974 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1975 * bp); 1976 */ 1977 1978 if (BP_IS_HOLE(bp)) { 1979 scn->scn_holes_this_txg++; 1980 return; 1981 } 1982 1983 if (BP_IS_REDACTED(bp)) { 1984 ASSERT(dsl_dataset_feature_is_active(ds, 1985 SPA_FEATURE_REDACTED_DATASETS)); 1986 return; 1987 } 1988 1989 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1990 scn->scn_lt_min_this_txg++; 1991 return; 1992 } 1993 1994 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1995 *bp_toread = *bp; 1996 1997 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1998 goto out; 1999 2000 /* 2001 * If dsl_scan_ddt() has already visited this block, it will have 2002 * already done any translations or scrubbing, so don't call the 2003 * callback again. 2004 */ 2005 if (ddt_class_contains(dp->dp_spa, 2006 scn->scn_phys.scn_ddt_class_max, bp)) { 2007 scn->scn_ddt_contained_this_txg++; 2008 goto out; 2009 } 2010 2011 /* 2012 * If this block is from the future (after cur_max_txg), then we 2013 * are doing this on behalf of a deleted snapshot, and we will 2014 * revisit the future block on the next pass of this dataset. 2015 * Don't scan it now unless we need to because something 2016 * under it was modified. 2017 */ 2018 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2019 scn->scn_gt_max_this_txg++; 2020 goto out; 2021 } 2022 2023 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2024 2025 out: 2026 kmem_free(bp_toread, sizeof (blkptr_t)); 2027 } 2028 2029 static void 2030 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2031 dmu_tx_t *tx) 2032 { 2033 zbookmark_phys_t zb; 2034 scan_prefetch_ctx_t *spc; 2035 2036 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2037 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2038 2039 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2040 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2041 zb.zb_objset, 0, 0, 0); 2042 } else { 2043 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2044 } 2045 2046 scn->scn_objsets_visited_this_txg++; 2047 2048 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2049 dsl_scan_prefetch(spc, bp, &zb); 2050 scan_prefetch_ctx_rele(spc, FTAG); 2051 2052 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2053 2054 dprintf_ds(ds, "finished scan%s", ""); 2055 } 2056 2057 static void 2058 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2059 { 2060 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2061 if (ds->ds_is_snapshot) { 2062 /* 2063 * Note: 2064 * - scn_cur_{min,max}_txg stays the same. 2065 * - Setting the flag is not really necessary if 2066 * scn_cur_max_txg == scn_max_txg, because there 2067 * is nothing after this snapshot that we care 2068 * about. However, we set it anyway and then 2069 * ignore it when we retraverse it in 2070 * dsl_scan_visitds(). 2071 */ 2072 scn_phys->scn_bookmark.zb_objset = 2073 dsl_dataset_phys(ds)->ds_next_snap_obj; 2074 zfs_dbgmsg("destroying ds %llu on %s; currently " 2075 "traversing; reset zb_objset to %llu", 2076 (u_longlong_t)ds->ds_object, 2077 ds->ds_dir->dd_pool->dp_spa->spa_name, 2078 (u_longlong_t)dsl_dataset_phys(ds)-> 2079 ds_next_snap_obj); 2080 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2081 } else { 2082 SET_BOOKMARK(&scn_phys->scn_bookmark, 2083 ZB_DESTROYED_OBJSET, 0, 0, 0); 2084 zfs_dbgmsg("destroying ds %llu on %s; currently " 2085 "traversing; reset bookmark to -1,0,0,0", 2086 (u_longlong_t)ds->ds_object, 2087 ds->ds_dir->dd_pool->dp_spa->spa_name); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * Invoked when a dataset is destroyed. We need to make sure that: 2094 * 2095 * 1) If it is the dataset that was currently being scanned, we write 2096 * a new dsl_scan_phys_t and marking the objset reference in it 2097 * as destroyed. 2098 * 2) Remove it from the work queue, if it was present. 2099 * 2100 * If the dataset was actually a snapshot, instead of marking the dataset 2101 * as destroyed, we instead substitute the next snapshot in line. 2102 */ 2103 void 2104 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2105 { 2106 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2107 dsl_scan_t *scn = dp->dp_scan; 2108 uint64_t mintxg; 2109 2110 if (!dsl_scan_is_running(scn)) 2111 return; 2112 2113 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2114 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2115 2116 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2117 scan_ds_queue_remove(scn, ds->ds_object); 2118 if (ds->ds_is_snapshot) 2119 scan_ds_queue_insert(scn, 2120 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2121 } 2122 2123 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2124 ds->ds_object, &mintxg) == 0) { 2125 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2126 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2127 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2128 if (ds->ds_is_snapshot) { 2129 /* 2130 * We keep the same mintxg; it could be > 2131 * ds_creation_txg if the previous snapshot was 2132 * deleted too. 2133 */ 2134 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2135 scn->scn_phys.scn_queue_obj, 2136 dsl_dataset_phys(ds)->ds_next_snap_obj, 2137 mintxg, tx) == 0); 2138 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2139 "replacing with %llu", 2140 (u_longlong_t)ds->ds_object, 2141 dp->dp_spa->spa_name, 2142 (u_longlong_t)dsl_dataset_phys(ds)-> 2143 ds_next_snap_obj); 2144 } else { 2145 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2146 "removing", 2147 (u_longlong_t)ds->ds_object, 2148 dp->dp_spa->spa_name); 2149 } 2150 } 2151 2152 /* 2153 * dsl_scan_sync() should be called after this, and should sync 2154 * out our changed state, but just to be safe, do it here. 2155 */ 2156 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2157 } 2158 2159 static void 2160 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2161 { 2162 if (scn_bookmark->zb_objset == ds->ds_object) { 2163 scn_bookmark->zb_objset = 2164 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2165 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2166 "reset zb_objset to %llu", 2167 (u_longlong_t)ds->ds_object, 2168 ds->ds_dir->dd_pool->dp_spa->spa_name, 2169 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2170 } 2171 } 2172 2173 /* 2174 * Called when a dataset is snapshotted. If we were currently traversing 2175 * this snapshot, we reset our bookmark to point at the newly created 2176 * snapshot. We also modify our work queue to remove the old snapshot and 2177 * replace with the new one. 2178 */ 2179 void 2180 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2181 { 2182 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2183 dsl_scan_t *scn = dp->dp_scan; 2184 uint64_t mintxg; 2185 2186 if (!dsl_scan_is_running(scn)) 2187 return; 2188 2189 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2190 2191 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2192 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2193 2194 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2195 scan_ds_queue_remove(scn, ds->ds_object); 2196 scan_ds_queue_insert(scn, 2197 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2198 } 2199 2200 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2201 ds->ds_object, &mintxg) == 0) { 2202 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2203 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2204 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2205 scn->scn_phys.scn_queue_obj, 2206 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2207 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2208 "replacing with %llu", 2209 (u_longlong_t)ds->ds_object, 2210 dp->dp_spa->spa_name, 2211 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2212 } 2213 2214 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2215 } 2216 2217 static void 2218 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2219 zbookmark_phys_t *scn_bookmark) 2220 { 2221 if (scn_bookmark->zb_objset == ds1->ds_object) { 2222 scn_bookmark->zb_objset = ds2->ds_object; 2223 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2224 "reset zb_objset to %llu", 2225 (u_longlong_t)ds1->ds_object, 2226 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2227 (u_longlong_t)ds2->ds_object); 2228 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2229 scn_bookmark->zb_objset = ds1->ds_object; 2230 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2231 "reset zb_objset to %llu", 2232 (u_longlong_t)ds2->ds_object, 2233 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2234 (u_longlong_t)ds1->ds_object); 2235 } 2236 } 2237 2238 /* 2239 * Called when an origin dataset and its clone are swapped. If we were 2240 * currently traversing the dataset, we need to switch to traversing the 2241 * newly promoted clone. 2242 */ 2243 void 2244 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2245 { 2246 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2247 dsl_scan_t *scn = dp->dp_scan; 2248 uint64_t mintxg1, mintxg2; 2249 boolean_t ds1_queued, ds2_queued; 2250 2251 if (!dsl_scan_is_running(scn)) 2252 return; 2253 2254 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2255 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2256 2257 /* 2258 * Handle the in-memory scan queue. 2259 */ 2260 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2261 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2262 2263 /* Sanity checking. */ 2264 if (ds1_queued) { 2265 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2266 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2267 } 2268 if (ds2_queued) { 2269 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2270 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2271 } 2272 2273 if (ds1_queued && ds2_queued) { 2274 /* 2275 * If both are queued, we don't need to do anything. 2276 * The swapping code below would not handle this case correctly, 2277 * since we can't insert ds2 if it is already there. That's 2278 * because scan_ds_queue_insert() prohibits a duplicate insert 2279 * and panics. 2280 */ 2281 } else if (ds1_queued) { 2282 scan_ds_queue_remove(scn, ds1->ds_object); 2283 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2284 } else if (ds2_queued) { 2285 scan_ds_queue_remove(scn, ds2->ds_object); 2286 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2287 } 2288 2289 /* 2290 * Handle the on-disk scan queue. 2291 * The on-disk state is an out-of-date version of the in-memory state, 2292 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2293 * be different. Therefore we need to apply the swap logic to the 2294 * on-disk state independently of the in-memory state. 2295 */ 2296 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2297 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2298 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2299 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2300 2301 /* Sanity checking. */ 2302 if (ds1_queued) { 2303 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2304 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2305 } 2306 if (ds2_queued) { 2307 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2308 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2309 } 2310 2311 if (ds1_queued && ds2_queued) { 2312 /* 2313 * If both are queued, we don't need to do anything. 2314 * Alternatively, we could check for EEXIST from 2315 * zap_add_int_key() and back out to the original state, but 2316 * that would be more work than checking for this case upfront. 2317 */ 2318 } else if (ds1_queued) { 2319 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2320 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2321 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2322 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2323 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2324 "replacing with %llu", 2325 (u_longlong_t)ds1->ds_object, 2326 dp->dp_spa->spa_name, 2327 (u_longlong_t)ds2->ds_object); 2328 } else if (ds2_queued) { 2329 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2330 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2331 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2332 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2333 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2334 "replacing with %llu", 2335 (u_longlong_t)ds2->ds_object, 2336 dp->dp_spa->spa_name, 2337 (u_longlong_t)ds1->ds_object); 2338 } 2339 2340 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2341 } 2342 2343 /* ARGSUSED */ 2344 static int 2345 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2346 { 2347 uint64_t originobj = *(uint64_t *)arg; 2348 dsl_dataset_t *ds; 2349 int err; 2350 dsl_scan_t *scn = dp->dp_scan; 2351 2352 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2353 return (0); 2354 2355 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2356 if (err) 2357 return (err); 2358 2359 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2360 dsl_dataset_t *prev; 2361 err = dsl_dataset_hold_obj(dp, 2362 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2363 2364 dsl_dataset_rele(ds, FTAG); 2365 if (err) 2366 return (err); 2367 ds = prev; 2368 } 2369 scan_ds_queue_insert(scn, ds->ds_object, 2370 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2371 dsl_dataset_rele(ds, FTAG); 2372 return (0); 2373 } 2374 2375 static void 2376 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2377 { 2378 dsl_pool_t *dp = scn->scn_dp; 2379 dsl_dataset_t *ds; 2380 2381 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2382 2383 if (scn->scn_phys.scn_cur_min_txg >= 2384 scn->scn_phys.scn_max_txg) { 2385 /* 2386 * This can happen if this snapshot was created after the 2387 * scan started, and we already completed a previous snapshot 2388 * that was created after the scan started. This snapshot 2389 * only references blocks with: 2390 * 2391 * birth < our ds_creation_txg 2392 * cur_min_txg is no less than ds_creation_txg. 2393 * We have already visited these blocks. 2394 * or 2395 * birth > scn_max_txg 2396 * The scan requested not to visit these blocks. 2397 * 2398 * Subsequent snapshots (and clones) can reference our 2399 * blocks, or blocks with even higher birth times. 2400 * Therefore we do not need to visit them either, 2401 * so we do not add them to the work queue. 2402 * 2403 * Note that checking for cur_min_txg >= cur_max_txg 2404 * is not sufficient, because in that case we may need to 2405 * visit subsequent snapshots. This happens when min_txg > 0, 2406 * which raises cur_min_txg. In this case we will visit 2407 * this dataset but skip all of its blocks, because the 2408 * rootbp's birth time is < cur_min_txg. Then we will 2409 * add the next snapshots/clones to the work queue. 2410 */ 2411 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2412 dsl_dataset_name(ds, dsname); 2413 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2414 "cur_min_txg (%llu) >= max_txg (%llu)", 2415 (longlong_t)dsobj, dsname, 2416 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2417 (longlong_t)scn->scn_phys.scn_max_txg); 2418 kmem_free(dsname, MAXNAMELEN); 2419 2420 goto out; 2421 } 2422 2423 /* 2424 * Only the ZIL in the head (non-snapshot) is valid. Even though 2425 * snapshots can have ZIL block pointers (which may be the same 2426 * BP as in the head), they must be ignored. In addition, $ORIGIN 2427 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2428 * need to look for a ZIL in it either. So we traverse the ZIL here, 2429 * rather than in scan_recurse(), because the regular snapshot 2430 * block-sharing rules don't apply to it. 2431 */ 2432 if (!dsl_dataset_is_snapshot(ds) && 2433 (dp->dp_origin_snap == NULL || 2434 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2435 objset_t *os; 2436 if (dmu_objset_from_ds(ds, &os) != 0) { 2437 goto out; 2438 } 2439 dsl_scan_zil(dp, &os->os_zil_header); 2440 } 2441 2442 /* 2443 * Iterate over the bps in this ds. 2444 */ 2445 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2446 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2447 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2448 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2449 2450 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2451 dsl_dataset_name(ds, dsname); 2452 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2453 "suspending=%u", 2454 (longlong_t)dsobj, dsname, 2455 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2456 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2457 (int)scn->scn_suspending); 2458 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2459 2460 if (scn->scn_suspending) 2461 goto out; 2462 2463 /* 2464 * We've finished this pass over this dataset. 2465 */ 2466 2467 /* 2468 * If we did not completely visit this dataset, do another pass. 2469 */ 2470 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2471 zfs_dbgmsg("incomplete pass on %s; visiting again", 2472 dp->dp_spa->spa_name); 2473 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2474 scan_ds_queue_insert(scn, ds->ds_object, 2475 scn->scn_phys.scn_cur_max_txg); 2476 goto out; 2477 } 2478 2479 /* 2480 * Add descendant datasets to work queue. 2481 */ 2482 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2483 scan_ds_queue_insert(scn, 2484 dsl_dataset_phys(ds)->ds_next_snap_obj, 2485 dsl_dataset_phys(ds)->ds_creation_txg); 2486 } 2487 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2488 boolean_t usenext = B_FALSE; 2489 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2490 uint64_t count; 2491 /* 2492 * A bug in a previous version of the code could 2493 * cause upgrade_clones_cb() to not set 2494 * ds_next_snap_obj when it should, leading to a 2495 * missing entry. Therefore we can only use the 2496 * next_clones_obj when its count is correct. 2497 */ 2498 int err = zap_count(dp->dp_meta_objset, 2499 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2500 if (err == 0 && 2501 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2502 usenext = B_TRUE; 2503 } 2504 2505 if (usenext) { 2506 zap_cursor_t zc; 2507 zap_attribute_t za; 2508 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2509 dsl_dataset_phys(ds)->ds_next_clones_obj); 2510 zap_cursor_retrieve(&zc, &za) == 0; 2511 (void) zap_cursor_advance(&zc)) { 2512 scan_ds_queue_insert(scn, 2513 zfs_strtonum(za.za_name, NULL), 2514 dsl_dataset_phys(ds)->ds_creation_txg); 2515 } 2516 zap_cursor_fini(&zc); 2517 } else { 2518 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2519 enqueue_clones_cb, &ds->ds_object, 2520 DS_FIND_CHILDREN)); 2521 } 2522 } 2523 2524 out: 2525 dsl_dataset_rele(ds, FTAG); 2526 } 2527 2528 /* ARGSUSED */ 2529 static int 2530 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2531 { 2532 dsl_dataset_t *ds; 2533 int err; 2534 dsl_scan_t *scn = dp->dp_scan; 2535 2536 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2537 if (err) 2538 return (err); 2539 2540 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2541 dsl_dataset_t *prev; 2542 err = dsl_dataset_hold_obj(dp, 2543 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2544 if (err) { 2545 dsl_dataset_rele(ds, FTAG); 2546 return (err); 2547 } 2548 2549 /* 2550 * If this is a clone, we don't need to worry about it for now. 2551 */ 2552 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2553 dsl_dataset_rele(ds, FTAG); 2554 dsl_dataset_rele(prev, FTAG); 2555 return (0); 2556 } 2557 dsl_dataset_rele(ds, FTAG); 2558 ds = prev; 2559 } 2560 2561 scan_ds_queue_insert(scn, ds->ds_object, 2562 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2563 dsl_dataset_rele(ds, FTAG); 2564 return (0); 2565 } 2566 2567 /* ARGSUSED */ 2568 void 2569 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2570 ddt_entry_t *dde, dmu_tx_t *tx) 2571 { 2572 const ddt_key_t *ddk = &dde->dde_key; 2573 ddt_phys_t *ddp = dde->dde_phys; 2574 blkptr_t bp; 2575 zbookmark_phys_t zb = { 0 }; 2576 int p; 2577 2578 if (!dsl_scan_is_running(scn)) 2579 return; 2580 2581 /* 2582 * This function is special because it is the only thing 2583 * that can add scan_io_t's to the vdev scan queues from 2584 * outside dsl_scan_sync(). For the most part this is ok 2585 * as long as it is called from within syncing context. 2586 * However, dsl_scan_sync() expects that no new sio's will 2587 * be added between when all the work for a scan is done 2588 * and the next txg when the scan is actually marked as 2589 * completed. This check ensures we do not issue new sio's 2590 * during this period. 2591 */ 2592 if (scn->scn_done_txg != 0) 2593 return; 2594 2595 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2596 if (ddp->ddp_phys_birth == 0 || 2597 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2598 continue; 2599 ddt_bp_create(checksum, ddk, ddp, &bp); 2600 2601 scn->scn_visited_this_txg++; 2602 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2603 } 2604 } 2605 2606 /* 2607 * Scrub/dedup interaction. 2608 * 2609 * If there are N references to a deduped block, we don't want to scrub it 2610 * N times -- ideally, we should scrub it exactly once. 2611 * 2612 * We leverage the fact that the dde's replication class (enum ddt_class) 2613 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2614 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2615 * 2616 * To prevent excess scrubbing, the scrub begins by walking the DDT 2617 * to find all blocks with refcnt > 1, and scrubs each of these once. 2618 * Since there are two replication classes which contain blocks with 2619 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2620 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2621 * 2622 * There would be nothing more to say if a block's refcnt couldn't change 2623 * during a scrub, but of course it can so we must account for changes 2624 * in a block's replication class. 2625 * 2626 * Here's an example of what can occur: 2627 * 2628 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2629 * when visited during the top-down scrub phase, it will be scrubbed twice. 2630 * This negates our scrub optimization, but is otherwise harmless. 2631 * 2632 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2633 * on each visit during the top-down scrub phase, it will never be scrubbed. 2634 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2635 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2636 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2637 * while a scrub is in progress, it scrubs the block right then. 2638 */ 2639 static void 2640 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2641 { 2642 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2643 ddt_entry_t dde; 2644 int error; 2645 uint64_t n = 0; 2646 2647 bzero(&dde, sizeof (ddt_entry_t)); 2648 2649 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2650 ddt_t *ddt; 2651 2652 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2653 break; 2654 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2655 (longlong_t)ddb->ddb_class, 2656 (longlong_t)ddb->ddb_type, 2657 (longlong_t)ddb->ddb_checksum, 2658 (longlong_t)ddb->ddb_cursor); 2659 2660 /* There should be no pending changes to the dedup table */ 2661 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2662 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2663 2664 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2665 n++; 2666 2667 if (dsl_scan_check_suspend(scn, NULL)) 2668 break; 2669 } 2670 2671 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " 2672 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, 2673 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2674 2675 ASSERT(error == 0 || error == ENOENT); 2676 ASSERT(error != ENOENT || 2677 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2678 } 2679 2680 static uint64_t 2681 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2682 { 2683 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2684 if (ds->ds_is_snapshot) 2685 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2686 return (smt); 2687 } 2688 2689 static void 2690 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2691 { 2692 scan_ds_t *sds; 2693 dsl_pool_t *dp = scn->scn_dp; 2694 2695 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2696 scn->scn_phys.scn_ddt_class_max) { 2697 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2698 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2699 dsl_scan_ddt(scn, tx); 2700 if (scn->scn_suspending) 2701 return; 2702 } 2703 2704 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2705 /* First do the MOS & ORIGIN */ 2706 2707 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2708 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2709 dsl_scan_visit_rootbp(scn, NULL, 2710 &dp->dp_meta_rootbp, tx); 2711 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2712 if (scn->scn_suspending) 2713 return; 2714 2715 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2716 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2717 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2718 } else { 2719 dsl_scan_visitds(scn, 2720 dp->dp_origin_snap->ds_object, tx); 2721 } 2722 ASSERT(!scn->scn_suspending); 2723 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2724 ZB_DESTROYED_OBJSET) { 2725 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2726 /* 2727 * If we were suspended, continue from here. Note if the 2728 * ds we were suspended on was deleted, the zb_objset may 2729 * be -1, so we will skip this and find a new objset 2730 * below. 2731 */ 2732 dsl_scan_visitds(scn, dsobj, tx); 2733 if (scn->scn_suspending) 2734 return; 2735 } 2736 2737 /* 2738 * In case we suspended right at the end of the ds, zero the 2739 * bookmark so we don't think that we're still trying to resume. 2740 */ 2741 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2742 2743 /* 2744 * Keep pulling things out of the dataset avl queue. Updates to the 2745 * persistent zap-object-as-queue happen only at checkpoints. 2746 */ 2747 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2748 dsl_dataset_t *ds; 2749 uint64_t dsobj = sds->sds_dsobj; 2750 uint64_t txg = sds->sds_txg; 2751 2752 /* dequeue and free the ds from the queue */ 2753 scan_ds_queue_remove(scn, dsobj); 2754 sds = NULL; 2755 2756 /* set up min / max txg */ 2757 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2758 if (txg != 0) { 2759 scn->scn_phys.scn_cur_min_txg = 2760 MAX(scn->scn_phys.scn_min_txg, txg); 2761 } else { 2762 scn->scn_phys.scn_cur_min_txg = 2763 MAX(scn->scn_phys.scn_min_txg, 2764 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2765 } 2766 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2767 dsl_dataset_rele(ds, FTAG); 2768 2769 dsl_scan_visitds(scn, dsobj, tx); 2770 if (scn->scn_suspending) 2771 return; 2772 } 2773 2774 /* No more objsets to fetch, we're done */ 2775 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2776 ASSERT0(scn->scn_suspending); 2777 } 2778 2779 static uint64_t 2780 dsl_scan_count_data_disks(vdev_t *rvd) 2781 { 2782 uint64_t i, leaves = 0; 2783 2784 for (i = 0; i < rvd->vdev_children; i++) { 2785 vdev_t *vd = rvd->vdev_child[i]; 2786 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 2787 continue; 2788 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 2789 } 2790 return (leaves); 2791 } 2792 2793 static void 2794 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2795 { 2796 int i; 2797 uint64_t cur_size = 0; 2798 2799 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2800 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2801 } 2802 2803 q->q_total_zio_size_this_txg += cur_size; 2804 q->q_zios_this_txg++; 2805 } 2806 2807 static void 2808 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2809 uint64_t end) 2810 { 2811 q->q_total_seg_size_this_txg += end - start; 2812 q->q_segs_this_txg++; 2813 } 2814 2815 static boolean_t 2816 scan_io_queue_check_suspend(dsl_scan_t *scn) 2817 { 2818 /* See comment in dsl_scan_check_suspend() */ 2819 uint64_t curr_time_ns = gethrtime(); 2820 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2821 uint64_t sync_time_ns = curr_time_ns - 2822 scn->scn_dp->dp_spa->spa_sync_starttime; 2823 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2824 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2825 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2826 2827 return ((NSEC2MSEC(scan_time_ns) > mintime && 2828 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2829 txg_sync_waiting(scn->scn_dp) || 2830 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2831 spa_shutting_down(scn->scn_dp->dp_spa)); 2832 } 2833 2834 /* 2835 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2836 * disk. This consumes the io_list and frees the scan_io_t's. This is 2837 * called when emptying queues, either when we're up against the memory 2838 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2839 * processing the list before we finished. Any sios that were not issued 2840 * will remain in the io_list. 2841 */ 2842 static boolean_t 2843 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2844 { 2845 dsl_scan_t *scn = queue->q_scn; 2846 scan_io_t *sio; 2847 int64_t bytes_issued = 0; 2848 boolean_t suspended = B_FALSE; 2849 2850 while ((sio = list_head(io_list)) != NULL) { 2851 blkptr_t bp; 2852 2853 if (scan_io_queue_check_suspend(scn)) { 2854 suspended = B_TRUE; 2855 break; 2856 } 2857 2858 sio2bp(sio, &bp); 2859 bytes_issued += SIO_GET_ASIZE(sio); 2860 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2861 &sio->sio_zb, queue); 2862 (void) list_remove_head(io_list); 2863 scan_io_queues_update_zio_stats(queue, &bp); 2864 sio_free(sio); 2865 } 2866 2867 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2868 2869 return (suspended); 2870 } 2871 2872 /* 2873 * This function removes sios from an IO queue which reside within a given 2874 * range_seg_t and inserts them (in offset order) into a list. Note that 2875 * we only ever return a maximum of 32 sios at once. If there are more sios 2876 * to process within this segment that did not make it onto the list we 2877 * return B_TRUE and otherwise B_FALSE. 2878 */ 2879 static boolean_t 2880 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2881 { 2882 scan_io_t *srch_sio, *sio, *next_sio; 2883 avl_index_t idx; 2884 uint_t num_sios = 0; 2885 int64_t bytes_issued = 0; 2886 2887 ASSERT(rs != NULL); 2888 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2889 2890 srch_sio = sio_alloc(1); 2891 srch_sio->sio_nr_dvas = 1; 2892 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2893 2894 /* 2895 * The exact start of the extent might not contain any matching zios, 2896 * so if that's the case, examine the next one in the tree. 2897 */ 2898 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2899 sio_free(srch_sio); 2900 2901 if (sio == NULL) 2902 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2903 2904 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2905 queue->q_exts_by_addr) && num_sios <= 32) { 2906 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2907 queue->q_exts_by_addr)); 2908 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2909 queue->q_exts_by_addr)); 2910 2911 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2912 avl_remove(&queue->q_sios_by_addr, sio); 2913 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2914 2915 bytes_issued += SIO_GET_ASIZE(sio); 2916 num_sios++; 2917 list_insert_tail(list, sio); 2918 sio = next_sio; 2919 } 2920 2921 /* 2922 * We limit the number of sios we process at once to 32 to avoid 2923 * biting off more than we can chew. If we didn't take everything 2924 * in the segment we update it to reflect the work we were able to 2925 * complete. Otherwise, we remove it from the range tree entirely. 2926 */ 2927 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2928 queue->q_exts_by_addr)) { 2929 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2930 -bytes_issued); 2931 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2932 SIO_GET_OFFSET(sio), rs_get_end(rs, 2933 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2934 2935 return (B_TRUE); 2936 } else { 2937 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2938 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2939 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2940 return (B_FALSE); 2941 } 2942 } 2943 2944 /* 2945 * This is called from the queue emptying thread and selects the next 2946 * extent from which we are to issue I/Os. The behavior of this function 2947 * depends on the state of the scan, the current memory consumption and 2948 * whether or not we are performing a scan shutdown. 2949 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2950 * needs to perform a checkpoint 2951 * 2) We select the largest available extent if we are up against the 2952 * memory limit. 2953 * 3) Otherwise we don't select any extents. 2954 */ 2955 static range_seg_t * 2956 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2957 { 2958 dsl_scan_t *scn = queue->q_scn; 2959 range_tree_t *rt = queue->q_exts_by_addr; 2960 2961 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2962 ASSERT(scn->scn_is_sorted); 2963 2964 /* handle tunable overrides */ 2965 if (scn->scn_checkpointing || scn->scn_clearing) { 2966 if (zfs_scan_issue_strategy == 1) { 2967 return (range_tree_first(rt)); 2968 } else if (zfs_scan_issue_strategy == 2) { 2969 /* 2970 * We need to get the original entry in the by_addr 2971 * tree so we can modify it. 2972 */ 2973 range_seg_t *size_rs = 2974 zfs_btree_first(&queue->q_exts_by_size, NULL); 2975 if (size_rs == NULL) 2976 return (NULL); 2977 uint64_t start = rs_get_start(size_rs, rt); 2978 uint64_t size = rs_get_end(size_rs, rt) - start; 2979 range_seg_t *addr_rs = range_tree_find(rt, start, 2980 size); 2981 ASSERT3P(addr_rs, !=, NULL); 2982 ASSERT3U(rs_get_start(size_rs, rt), ==, 2983 rs_get_start(addr_rs, rt)); 2984 ASSERT3U(rs_get_end(size_rs, rt), ==, 2985 rs_get_end(addr_rs, rt)); 2986 return (addr_rs); 2987 } 2988 } 2989 2990 /* 2991 * During normal clearing, we want to issue our largest segments 2992 * first, keeping IO as sequential as possible, and leaving the 2993 * smaller extents for later with the hope that they might eventually 2994 * grow to larger sequential segments. However, when the scan is 2995 * checkpointing, no new extents will be added to the sorting queue, 2996 * so the way we are sorted now is as good as it will ever get. 2997 * In this case, we instead switch to issuing extents in LBA order. 2998 */ 2999 if (scn->scn_checkpointing) { 3000 return (range_tree_first(rt)); 3001 } else if (scn->scn_clearing) { 3002 /* 3003 * We need to get the original entry in the by_addr 3004 * tree so we can modify it. 3005 */ 3006 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 3007 NULL); 3008 if (size_rs == NULL) 3009 return (NULL); 3010 uint64_t start = rs_get_start(size_rs, rt); 3011 uint64_t size = rs_get_end(size_rs, rt) - start; 3012 range_seg_t *addr_rs = range_tree_find(rt, start, size); 3013 ASSERT3P(addr_rs, !=, NULL); 3014 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 3015 rt)); 3016 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 3017 return (addr_rs); 3018 } else { 3019 return (NULL); 3020 } 3021 } 3022 3023 static void 3024 scan_io_queues_run_one(void *arg) 3025 { 3026 dsl_scan_io_queue_t *queue = arg; 3027 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3028 boolean_t suspended = B_FALSE; 3029 range_seg_t *rs = NULL; 3030 scan_io_t *sio = NULL; 3031 list_t sio_list; 3032 3033 ASSERT(queue->q_scn->scn_is_sorted); 3034 3035 list_create(&sio_list, sizeof (scan_io_t), 3036 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3037 mutex_enter(q_lock); 3038 3039 /* Calculate maximum in-flight bytes for this vdev. */ 3040 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3041 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3042 3043 /* reset per-queue scan statistics for this txg */ 3044 queue->q_total_seg_size_this_txg = 0; 3045 queue->q_segs_this_txg = 0; 3046 queue->q_total_zio_size_this_txg = 0; 3047 queue->q_zios_this_txg = 0; 3048 3049 /* loop until we run out of time or sios */ 3050 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3051 uint64_t seg_start = 0, seg_end = 0; 3052 boolean_t more_left = B_TRUE; 3053 3054 ASSERT(list_is_empty(&sio_list)); 3055 3056 /* loop while we still have sios left to process in this rs */ 3057 while (more_left) { 3058 scan_io_t *first_sio, *last_sio; 3059 3060 /* 3061 * We have selected which extent needs to be 3062 * processed next. Gather up the corresponding sios. 3063 */ 3064 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3065 ASSERT(!list_is_empty(&sio_list)); 3066 first_sio = list_head(&sio_list); 3067 last_sio = list_tail(&sio_list); 3068 3069 seg_end = SIO_GET_END_OFFSET(last_sio); 3070 if (seg_start == 0) 3071 seg_start = SIO_GET_OFFSET(first_sio); 3072 3073 /* 3074 * Issuing sios can take a long time so drop the 3075 * queue lock. The sio queue won't be updated by 3076 * other threads since we're in syncing context so 3077 * we can be sure that our trees will remain exactly 3078 * as we left them. 3079 */ 3080 mutex_exit(q_lock); 3081 suspended = scan_io_queue_issue(queue, &sio_list); 3082 mutex_enter(q_lock); 3083 3084 if (suspended) 3085 break; 3086 } 3087 3088 /* update statistics for debugging purposes */ 3089 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3090 3091 if (suspended) 3092 break; 3093 } 3094 3095 /* 3096 * If we were suspended in the middle of processing, 3097 * requeue any unfinished sios and exit. 3098 */ 3099 while ((sio = list_head(&sio_list)) != NULL) { 3100 list_remove(&sio_list, sio); 3101 scan_io_queue_insert_impl(queue, sio); 3102 } 3103 3104 mutex_exit(q_lock); 3105 list_destroy(&sio_list); 3106 } 3107 3108 /* 3109 * Performs an emptying run on all scan queues in the pool. This just 3110 * punches out one thread per top-level vdev, each of which processes 3111 * only that vdev's scan queue. We can parallelize the I/O here because 3112 * we know that each queue's I/Os only affect its own top-level vdev. 3113 * 3114 * This function waits for the queue runs to complete, and must be 3115 * called from dsl_scan_sync (or in general, syncing context). 3116 */ 3117 static void 3118 scan_io_queues_run(dsl_scan_t *scn) 3119 { 3120 spa_t *spa = scn->scn_dp->dp_spa; 3121 3122 ASSERT(scn->scn_is_sorted); 3123 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3124 3125 if (scn->scn_bytes_pending == 0) 3126 return; 3127 3128 if (scn->scn_taskq == NULL) { 3129 int nthreads = spa->spa_root_vdev->vdev_children; 3130 3131 /* 3132 * We need to make this taskq *always* execute as many 3133 * threads in parallel as we have top-level vdevs and no 3134 * less, otherwise strange serialization of the calls to 3135 * scan_io_queues_run_one can occur during spa_sync runs 3136 * and that significantly impacts performance. 3137 */ 3138 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3139 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3140 } 3141 3142 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3143 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3144 3145 mutex_enter(&vd->vdev_scan_io_queue_lock); 3146 if (vd->vdev_scan_io_queue != NULL) { 3147 VERIFY(taskq_dispatch(scn->scn_taskq, 3148 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3149 TQ_SLEEP) != TASKQID_INVALID); 3150 } 3151 mutex_exit(&vd->vdev_scan_io_queue_lock); 3152 } 3153 3154 /* 3155 * Wait for the queues to finish issuing their IOs for this run 3156 * before we return. There may still be IOs in flight at this 3157 * point. 3158 */ 3159 taskq_wait(scn->scn_taskq); 3160 } 3161 3162 static boolean_t 3163 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3164 { 3165 uint64_t elapsed_nanosecs; 3166 3167 if (zfs_recover) 3168 return (B_FALSE); 3169 3170 if (zfs_async_block_max_blocks != 0 && 3171 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3172 return (B_TRUE); 3173 } 3174 3175 if (zfs_max_async_dedup_frees != 0 && 3176 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3177 return (B_TRUE); 3178 } 3179 3180 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3181 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3182 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3183 txg_sync_waiting(scn->scn_dp)) || 3184 spa_shutting_down(scn->scn_dp->dp_spa)); 3185 } 3186 3187 static int 3188 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3189 { 3190 dsl_scan_t *scn = arg; 3191 3192 if (!scn->scn_is_bptree || 3193 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3194 if (dsl_scan_async_block_should_pause(scn)) 3195 return (SET_ERROR(ERESTART)); 3196 } 3197 3198 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3199 dmu_tx_get_txg(tx), bp, 0)); 3200 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3201 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3202 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3203 scn->scn_visited_this_txg++; 3204 if (BP_GET_DEDUP(bp)) 3205 scn->scn_dedup_frees_this_txg++; 3206 return (0); 3207 } 3208 3209 static void 3210 dsl_scan_update_stats(dsl_scan_t *scn) 3211 { 3212 spa_t *spa = scn->scn_dp->dp_spa; 3213 uint64_t i; 3214 uint64_t seg_size_total = 0, zio_size_total = 0; 3215 uint64_t seg_count_total = 0, zio_count_total = 0; 3216 3217 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3218 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3219 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3220 3221 if (queue == NULL) 3222 continue; 3223 3224 seg_size_total += queue->q_total_seg_size_this_txg; 3225 zio_size_total += queue->q_total_zio_size_this_txg; 3226 seg_count_total += queue->q_segs_this_txg; 3227 zio_count_total += queue->q_zios_this_txg; 3228 } 3229 3230 if (seg_count_total == 0 || zio_count_total == 0) { 3231 scn->scn_avg_seg_size_this_txg = 0; 3232 scn->scn_avg_zio_size_this_txg = 0; 3233 scn->scn_segs_this_txg = 0; 3234 scn->scn_zios_this_txg = 0; 3235 return; 3236 } 3237 3238 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3239 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3240 scn->scn_segs_this_txg = seg_count_total; 3241 scn->scn_zios_this_txg = zio_count_total; 3242 } 3243 3244 static int 3245 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3246 dmu_tx_t *tx) 3247 { 3248 ASSERT(!bp_freed); 3249 return (dsl_scan_free_block_cb(arg, bp, tx)); 3250 } 3251 3252 static int 3253 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3254 dmu_tx_t *tx) 3255 { 3256 ASSERT(!bp_freed); 3257 dsl_scan_t *scn = arg; 3258 const dva_t *dva = &bp->blk_dva[0]; 3259 3260 if (dsl_scan_async_block_should_pause(scn)) 3261 return (SET_ERROR(ERESTART)); 3262 3263 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3264 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3265 DVA_GET_ASIZE(dva), tx); 3266 scn->scn_visited_this_txg++; 3267 return (0); 3268 } 3269 3270 boolean_t 3271 dsl_scan_active(dsl_scan_t *scn) 3272 { 3273 spa_t *spa = scn->scn_dp->dp_spa; 3274 uint64_t used = 0, comp, uncomp; 3275 boolean_t clones_left; 3276 3277 if (spa->spa_load_state != SPA_LOAD_NONE) 3278 return (B_FALSE); 3279 if (spa_shutting_down(spa)) 3280 return (B_FALSE); 3281 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3282 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3283 return (B_TRUE); 3284 3285 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3286 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3287 &used, &comp, &uncomp); 3288 } 3289 clones_left = spa_livelist_delete_check(spa); 3290 return ((used != 0) || (clones_left)); 3291 } 3292 3293 static boolean_t 3294 dsl_scan_check_deferred(vdev_t *vd) 3295 { 3296 boolean_t need_resilver = B_FALSE; 3297 3298 for (int c = 0; c < vd->vdev_children; c++) { 3299 need_resilver |= 3300 dsl_scan_check_deferred(vd->vdev_child[c]); 3301 } 3302 3303 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3304 !vd->vdev_ops->vdev_op_leaf) 3305 return (need_resilver); 3306 3307 if (!vd->vdev_resilver_deferred) 3308 need_resilver = B_TRUE; 3309 3310 return (need_resilver); 3311 } 3312 3313 static boolean_t 3314 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3315 uint64_t phys_birth) 3316 { 3317 vdev_t *vd; 3318 3319 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3320 3321 if (vd->vdev_ops == &vdev_indirect_ops) { 3322 /* 3323 * The indirect vdev can point to multiple 3324 * vdevs. For simplicity, always create 3325 * the resilver zio_t. zio_vdev_io_start() 3326 * will bypass the child resilver i/o's if 3327 * they are on vdevs that don't have DTL's. 3328 */ 3329 return (B_TRUE); 3330 } 3331 3332 if (DVA_GET_GANG(dva)) { 3333 /* 3334 * Gang members may be spread across multiple 3335 * vdevs, so the best estimate we have is the 3336 * scrub range, which has already been checked. 3337 * XXX -- it would be better to change our 3338 * allocation policy to ensure that all 3339 * gang members reside on the same vdev. 3340 */ 3341 return (B_TRUE); 3342 } 3343 3344 /* 3345 * Check if the top-level vdev must resilver this offset. 3346 * When the offset does not intersect with a dirty leaf DTL 3347 * then it may be possible to skip the resilver IO. The psize 3348 * is provided instead of asize to simplify the check for RAIDZ. 3349 */ 3350 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3351 return (B_FALSE); 3352 3353 /* 3354 * Check that this top-level vdev has a device under it which 3355 * is resilvering and is not deferred. 3356 */ 3357 if (!dsl_scan_check_deferred(vd)) 3358 return (B_FALSE); 3359 3360 return (B_TRUE); 3361 } 3362 3363 static int 3364 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3365 { 3366 dsl_scan_t *scn = dp->dp_scan; 3367 spa_t *spa = dp->dp_spa; 3368 int err = 0; 3369 3370 if (spa_suspend_async_destroy(spa)) 3371 return (0); 3372 3373 if (zfs_free_bpobj_enabled && 3374 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3375 scn->scn_is_bptree = B_FALSE; 3376 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3377 scn->scn_zio_root = zio_root(spa, NULL, 3378 NULL, ZIO_FLAG_MUSTSUCCEED); 3379 err = bpobj_iterate(&dp->dp_free_bpobj, 3380 bpobj_dsl_scan_free_block_cb, scn, tx); 3381 VERIFY0(zio_wait(scn->scn_zio_root)); 3382 scn->scn_zio_root = NULL; 3383 3384 if (err != 0 && err != ERESTART) 3385 zfs_panic_recover("error %u from bpobj_iterate()", err); 3386 } 3387 3388 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3389 ASSERT(scn->scn_async_destroying); 3390 scn->scn_is_bptree = B_TRUE; 3391 scn->scn_zio_root = zio_root(spa, NULL, 3392 NULL, ZIO_FLAG_MUSTSUCCEED); 3393 err = bptree_iterate(dp->dp_meta_objset, 3394 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3395 VERIFY0(zio_wait(scn->scn_zio_root)); 3396 scn->scn_zio_root = NULL; 3397 3398 if (err == EIO || err == ECKSUM) { 3399 err = 0; 3400 } else if (err != 0 && err != ERESTART) { 3401 zfs_panic_recover("error %u from " 3402 "traverse_dataset_destroyed()", err); 3403 } 3404 3405 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3406 /* finished; deactivate async destroy feature */ 3407 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3408 ASSERT(!spa_feature_is_active(spa, 3409 SPA_FEATURE_ASYNC_DESTROY)); 3410 VERIFY0(zap_remove(dp->dp_meta_objset, 3411 DMU_POOL_DIRECTORY_OBJECT, 3412 DMU_POOL_BPTREE_OBJ, tx)); 3413 VERIFY0(bptree_free(dp->dp_meta_objset, 3414 dp->dp_bptree_obj, tx)); 3415 dp->dp_bptree_obj = 0; 3416 scn->scn_async_destroying = B_FALSE; 3417 scn->scn_async_stalled = B_FALSE; 3418 } else { 3419 /* 3420 * If we didn't make progress, mark the async 3421 * destroy as stalled, so that we will not initiate 3422 * a spa_sync() on its behalf. Note that we only 3423 * check this if we are not finished, because if the 3424 * bptree had no blocks for us to visit, we can 3425 * finish without "making progress". 3426 */ 3427 scn->scn_async_stalled = 3428 (scn->scn_visited_this_txg == 0); 3429 } 3430 } 3431 if (scn->scn_visited_this_txg) { 3432 zfs_dbgmsg("freed %llu blocks in %llums from " 3433 "free_bpobj/bptree on %s in txg %llu; err=%u", 3434 (longlong_t)scn->scn_visited_this_txg, 3435 (longlong_t) 3436 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3437 spa->spa_name, (longlong_t)tx->tx_txg, err); 3438 scn->scn_visited_this_txg = 0; 3439 scn->scn_dedup_frees_this_txg = 0; 3440 3441 /* 3442 * Write out changes to the DDT that may be required as a 3443 * result of the blocks freed. This ensures that the DDT 3444 * is clean when a scrub/resilver runs. 3445 */ 3446 ddt_sync(spa, tx->tx_txg); 3447 } 3448 if (err != 0) 3449 return (err); 3450 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3451 zfs_free_leak_on_eio && 3452 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3453 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3454 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3455 /* 3456 * We have finished background destroying, but there is still 3457 * some space left in the dp_free_dir. Transfer this leaked 3458 * space to the dp_leak_dir. 3459 */ 3460 if (dp->dp_leak_dir == NULL) { 3461 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3462 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3463 LEAK_DIR_NAME, tx); 3464 VERIFY0(dsl_pool_open_special_dir(dp, 3465 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3466 rrw_exit(&dp->dp_config_rwlock, FTAG); 3467 } 3468 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3469 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3470 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3471 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3472 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3473 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3474 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3475 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3476 } 3477 3478 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3479 !spa_livelist_delete_check(spa)) { 3480 /* finished; verify that space accounting went to zero */ 3481 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3482 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3483 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3484 } 3485 3486 spa_notify_waiters(spa); 3487 3488 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3489 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3490 DMU_POOL_OBSOLETE_BPOBJ)); 3491 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3492 ASSERT(spa_feature_is_active(dp->dp_spa, 3493 SPA_FEATURE_OBSOLETE_COUNTS)); 3494 3495 scn->scn_is_bptree = B_FALSE; 3496 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3497 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3498 dsl_scan_obsolete_block_cb, scn, tx); 3499 if (err != 0 && err != ERESTART) 3500 zfs_panic_recover("error %u from bpobj_iterate()", err); 3501 3502 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3503 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3504 } 3505 return (0); 3506 } 3507 3508 /* 3509 * This is the primary entry point for scans that is called from syncing 3510 * context. Scans must happen entirely during syncing context so that we 3511 * can guarantee that blocks we are currently scanning will not change out 3512 * from under us. While a scan is active, this function controls how quickly 3513 * transaction groups proceed, instead of the normal handling provided by 3514 * txg_sync_thread(). 3515 */ 3516 void 3517 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3518 { 3519 int err = 0; 3520 dsl_scan_t *scn = dp->dp_scan; 3521 spa_t *spa = dp->dp_spa; 3522 state_sync_type_t sync_type = SYNC_OPTIONAL; 3523 3524 if (spa->spa_resilver_deferred && 3525 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3526 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3527 3528 /* 3529 * Check for scn_restart_txg before checking spa_load_state, so 3530 * that we can restart an old-style scan while the pool is being 3531 * imported (see dsl_scan_init). We also restart scans if there 3532 * is a deferred resilver and the user has manually disabled 3533 * deferred resilvers via the tunable. 3534 */ 3535 if (dsl_scan_restarting(scn, tx) || 3536 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3537 pool_scan_func_t func = POOL_SCAN_SCRUB; 3538 dsl_scan_done(scn, B_FALSE, tx); 3539 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3540 func = POOL_SCAN_RESILVER; 3541 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 3542 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 3543 dsl_scan_setup_sync(&func, tx); 3544 } 3545 3546 /* 3547 * Only process scans in sync pass 1. 3548 */ 3549 if (spa_sync_pass(spa) > 1) 3550 return; 3551 3552 /* 3553 * If the spa is shutting down, then stop scanning. This will 3554 * ensure that the scan does not dirty any new data during the 3555 * shutdown phase. 3556 */ 3557 if (spa_shutting_down(spa)) 3558 return; 3559 3560 /* 3561 * If the scan is inactive due to a stalled async destroy, try again. 3562 */ 3563 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3564 return; 3565 3566 /* reset scan statistics */ 3567 scn->scn_visited_this_txg = 0; 3568 scn->scn_dedup_frees_this_txg = 0; 3569 scn->scn_holes_this_txg = 0; 3570 scn->scn_lt_min_this_txg = 0; 3571 scn->scn_gt_max_this_txg = 0; 3572 scn->scn_ddt_contained_this_txg = 0; 3573 scn->scn_objsets_visited_this_txg = 0; 3574 scn->scn_avg_seg_size_this_txg = 0; 3575 scn->scn_segs_this_txg = 0; 3576 scn->scn_avg_zio_size_this_txg = 0; 3577 scn->scn_zios_this_txg = 0; 3578 scn->scn_suspending = B_FALSE; 3579 scn->scn_sync_start_time = gethrtime(); 3580 spa->spa_scrub_active = B_TRUE; 3581 3582 /* 3583 * First process the async destroys. If we suspend, don't do 3584 * any scrubbing or resilvering. This ensures that there are no 3585 * async destroys while we are scanning, so the scan code doesn't 3586 * have to worry about traversing it. It is also faster to free the 3587 * blocks than to scrub them. 3588 */ 3589 err = dsl_process_async_destroys(dp, tx); 3590 if (err != 0) 3591 return; 3592 3593 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3594 return; 3595 3596 /* 3597 * Wait a few txgs after importing to begin scanning so that 3598 * we can get the pool imported quickly. 3599 */ 3600 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3601 return; 3602 3603 /* 3604 * zfs_scan_suspend_progress can be set to disable scan progress. 3605 * We don't want to spin the txg_sync thread, so we add a delay 3606 * here to simulate the time spent doing a scan. This is mostly 3607 * useful for testing and debugging. 3608 */ 3609 if (zfs_scan_suspend_progress) { 3610 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3611 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3612 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3613 3614 while (zfs_scan_suspend_progress && 3615 !txg_sync_waiting(scn->scn_dp) && 3616 !spa_shutting_down(scn->scn_dp->dp_spa) && 3617 NSEC2MSEC(scan_time_ns) < mintime) { 3618 delay(hz); 3619 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3620 } 3621 return; 3622 } 3623 3624 /* 3625 * It is possible to switch from unsorted to sorted at any time, 3626 * but afterwards the scan will remain sorted unless reloaded from 3627 * a checkpoint after a reboot. 3628 */ 3629 if (!zfs_scan_legacy) { 3630 scn->scn_is_sorted = B_TRUE; 3631 if (scn->scn_last_checkpoint == 0) 3632 scn->scn_last_checkpoint = ddi_get_lbolt(); 3633 } 3634 3635 /* 3636 * For sorted scans, determine what kind of work we will be doing 3637 * this txg based on our memory limitations and whether or not we 3638 * need to perform a checkpoint. 3639 */ 3640 if (scn->scn_is_sorted) { 3641 /* 3642 * If we are over our checkpoint interval, set scn_clearing 3643 * so that we can begin checkpointing immediately. The 3644 * checkpoint allows us to save a consistent bookmark 3645 * representing how much data we have scrubbed so far. 3646 * Otherwise, use the memory limit to determine if we should 3647 * scan for metadata or start issue scrub IOs. We accumulate 3648 * metadata until we hit our hard memory limit at which point 3649 * we issue scrub IOs until we are at our soft memory limit. 3650 */ 3651 if (scn->scn_checkpointing || 3652 ddi_get_lbolt() - scn->scn_last_checkpoint > 3653 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3654 if (!scn->scn_checkpointing) 3655 zfs_dbgmsg("begin scan checkpoint for %s", 3656 spa->spa_name); 3657 3658 scn->scn_checkpointing = B_TRUE; 3659 scn->scn_clearing = B_TRUE; 3660 } else { 3661 boolean_t should_clear = dsl_scan_should_clear(scn); 3662 if (should_clear && !scn->scn_clearing) { 3663 zfs_dbgmsg("begin scan clearing for %s", 3664 spa->spa_name); 3665 scn->scn_clearing = B_TRUE; 3666 } else if (!should_clear && scn->scn_clearing) { 3667 zfs_dbgmsg("finish scan clearing for %s", 3668 spa->spa_name); 3669 scn->scn_clearing = B_FALSE; 3670 } 3671 } 3672 } else { 3673 ASSERT0(scn->scn_checkpointing); 3674 ASSERT0(scn->scn_clearing); 3675 } 3676 3677 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3678 /* Need to scan metadata for more blocks to scrub */ 3679 dsl_scan_phys_t *scnp = &scn->scn_phys; 3680 taskqid_t prefetch_tqid; 3681 3682 /* 3683 * Recalculate the max number of in-flight bytes for pool-wide 3684 * scanning operations (minimum 1MB). Limits for the issuing 3685 * phase are done per top-level vdev and are handled separately. 3686 */ 3687 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 3688 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 3689 3690 if (scnp->scn_ddt_bookmark.ddb_class <= 3691 scnp->scn_ddt_class_max) { 3692 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3693 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3694 "ddt bm=%llu/%llu/%llu/%llx", 3695 spa->spa_name, 3696 (longlong_t)tx->tx_txg, 3697 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3698 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3699 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3700 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3701 } else { 3702 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3703 "bm=%llu/%llu/%llu/%llu", 3704 spa->spa_name, 3705 (longlong_t)tx->tx_txg, 3706 (longlong_t)scnp->scn_bookmark.zb_objset, 3707 (longlong_t)scnp->scn_bookmark.zb_object, 3708 (longlong_t)scnp->scn_bookmark.zb_level, 3709 (longlong_t)scnp->scn_bookmark.zb_blkid); 3710 } 3711 3712 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3713 NULL, ZIO_FLAG_CANFAIL); 3714 3715 scn->scn_prefetch_stop = B_FALSE; 3716 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3717 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3718 ASSERT(prefetch_tqid != TASKQID_INVALID); 3719 3720 dsl_pool_config_enter(dp, FTAG); 3721 dsl_scan_visit(scn, tx); 3722 dsl_pool_config_exit(dp, FTAG); 3723 3724 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3725 scn->scn_prefetch_stop = B_TRUE; 3726 cv_broadcast(&spa->spa_scrub_io_cv); 3727 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3728 3729 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3730 (void) zio_wait(scn->scn_zio_root); 3731 scn->scn_zio_root = NULL; 3732 3733 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 3734 "(%llu os's, %llu holes, %llu < mintxg, " 3735 "%llu in ddt, %llu > maxtxg)", 3736 (longlong_t)scn->scn_visited_this_txg, 3737 spa->spa_name, 3738 (longlong_t)NSEC2MSEC(gethrtime() - 3739 scn->scn_sync_start_time), 3740 (longlong_t)scn->scn_objsets_visited_this_txg, 3741 (longlong_t)scn->scn_holes_this_txg, 3742 (longlong_t)scn->scn_lt_min_this_txg, 3743 (longlong_t)scn->scn_ddt_contained_this_txg, 3744 (longlong_t)scn->scn_gt_max_this_txg); 3745 3746 if (!scn->scn_suspending) { 3747 ASSERT0(avl_numnodes(&scn->scn_queue)); 3748 scn->scn_done_txg = tx->tx_txg + 1; 3749 if (scn->scn_is_sorted) { 3750 scn->scn_checkpointing = B_TRUE; 3751 scn->scn_clearing = B_TRUE; 3752 } 3753 zfs_dbgmsg("scan complete for %s txg %llu", 3754 spa->spa_name, 3755 (longlong_t)tx->tx_txg); 3756 } 3757 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3758 ASSERT(scn->scn_clearing); 3759 3760 /* need to issue scrubbing IOs from per-vdev queues */ 3761 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3762 NULL, ZIO_FLAG_CANFAIL); 3763 scan_io_queues_run(scn); 3764 (void) zio_wait(scn->scn_zio_root); 3765 scn->scn_zio_root = NULL; 3766 3767 /* calculate and dprintf the current memory usage */ 3768 (void) dsl_scan_should_clear(scn); 3769 dsl_scan_update_stats(scn); 3770 3771 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 3772 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 3773 (longlong_t)scn->scn_zios_this_txg, 3774 spa->spa_name, 3775 (longlong_t)scn->scn_segs_this_txg, 3776 (longlong_t)NSEC2MSEC(gethrtime() - 3777 scn->scn_sync_start_time), 3778 (longlong_t)scn->scn_avg_zio_size_this_txg, 3779 (longlong_t)scn->scn_avg_seg_size_this_txg); 3780 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3781 /* Finished with everything. Mark the scrub as complete */ 3782 zfs_dbgmsg("scan issuing complete txg %llu for %s", 3783 (longlong_t)tx->tx_txg, 3784 spa->spa_name); 3785 ASSERT3U(scn->scn_done_txg, !=, 0); 3786 ASSERT0(spa->spa_scrub_inflight); 3787 ASSERT0(scn->scn_bytes_pending); 3788 dsl_scan_done(scn, B_TRUE, tx); 3789 sync_type = SYNC_MANDATORY; 3790 } 3791 3792 dsl_scan_sync_state(scn, tx, sync_type); 3793 } 3794 3795 static void 3796 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3797 { 3798 int i; 3799 3800 /* 3801 * Don't count embedded bp's, since we already did the work of 3802 * scanning these when we scanned the containing block. 3803 */ 3804 if (BP_IS_EMBEDDED(bp)) 3805 return; 3806 3807 /* 3808 * Update the spa's stats on how many bytes we have issued. 3809 * Sequential scrubs create a zio for each DVA of the bp. Each 3810 * of these will include all DVAs for repair purposes, but the 3811 * zio code will only try the first one unless there is an issue. 3812 * Therefore, we should only count the first DVA for these IOs. 3813 */ 3814 if (scn->scn_is_sorted) { 3815 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3816 DVA_GET_ASIZE(&bp->blk_dva[0])); 3817 } else { 3818 spa_t *spa = scn->scn_dp->dp_spa; 3819 3820 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3821 atomic_add_64(&spa->spa_scan_pass_issued, 3822 DVA_GET_ASIZE(&bp->blk_dva[i])); 3823 } 3824 } 3825 3826 /* 3827 * If we resume after a reboot, zab will be NULL; don't record 3828 * incomplete stats in that case. 3829 */ 3830 if (zab == NULL) 3831 return; 3832 3833 mutex_enter(&zab->zab_lock); 3834 3835 for (i = 0; i < 4; i++) { 3836 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3837 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3838 3839 if (t & DMU_OT_NEWTYPE) 3840 t = DMU_OT_OTHER; 3841 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3842 int equal; 3843 3844 zb->zb_count++; 3845 zb->zb_asize += BP_GET_ASIZE(bp); 3846 zb->zb_lsize += BP_GET_LSIZE(bp); 3847 zb->zb_psize += BP_GET_PSIZE(bp); 3848 zb->zb_gangs += BP_COUNT_GANG(bp); 3849 3850 switch (BP_GET_NDVAS(bp)) { 3851 case 2: 3852 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3853 DVA_GET_VDEV(&bp->blk_dva[1])) 3854 zb->zb_ditto_2_of_2_samevdev++; 3855 break; 3856 case 3: 3857 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3858 DVA_GET_VDEV(&bp->blk_dva[1])) + 3859 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3860 DVA_GET_VDEV(&bp->blk_dva[2])) + 3861 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3862 DVA_GET_VDEV(&bp->blk_dva[2])); 3863 if (equal == 1) 3864 zb->zb_ditto_2_of_3_samevdev++; 3865 else if (equal == 3) 3866 zb->zb_ditto_3_of_3_samevdev++; 3867 break; 3868 } 3869 } 3870 3871 mutex_exit(&zab->zab_lock); 3872 } 3873 3874 static void 3875 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3876 { 3877 avl_index_t idx; 3878 int64_t asize = SIO_GET_ASIZE(sio); 3879 dsl_scan_t *scn = queue->q_scn; 3880 3881 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3882 3883 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3884 /* block is already scheduled for reading */ 3885 atomic_add_64(&scn->scn_bytes_pending, -asize); 3886 sio_free(sio); 3887 return; 3888 } 3889 avl_insert(&queue->q_sios_by_addr, sio, idx); 3890 queue->q_sio_memused += SIO_GET_MUSED(sio); 3891 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3892 } 3893 3894 /* 3895 * Given all the info we got from our metadata scanning process, we 3896 * construct a scan_io_t and insert it into the scan sorting queue. The 3897 * I/O must already be suitable for us to process. This is controlled 3898 * by dsl_scan_enqueue(). 3899 */ 3900 static void 3901 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3902 int zio_flags, const zbookmark_phys_t *zb) 3903 { 3904 dsl_scan_t *scn = queue->q_scn; 3905 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3906 3907 ASSERT0(BP_IS_GANG(bp)); 3908 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3909 3910 bp2sio(bp, sio, dva_i); 3911 sio->sio_flags = zio_flags; 3912 sio->sio_zb = *zb; 3913 3914 /* 3915 * Increment the bytes pending counter now so that we can't 3916 * get an integer underflow in case the worker processes the 3917 * zio before we get to incrementing this counter. 3918 */ 3919 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3920 3921 scan_io_queue_insert_impl(queue, sio); 3922 } 3923 3924 /* 3925 * Given a set of I/O parameters as discovered by the metadata traversal 3926 * process, attempts to place the I/O into the sorted queues (if allowed), 3927 * or immediately executes the I/O. 3928 */ 3929 static void 3930 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3931 const zbookmark_phys_t *zb) 3932 { 3933 spa_t *spa = dp->dp_spa; 3934 3935 ASSERT(!BP_IS_EMBEDDED(bp)); 3936 3937 /* 3938 * Gang blocks are hard to issue sequentially, so we just issue them 3939 * here immediately instead of queuing them. 3940 */ 3941 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3942 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3943 return; 3944 } 3945 3946 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3947 dva_t dva; 3948 vdev_t *vdev; 3949 3950 dva = bp->blk_dva[i]; 3951 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3952 ASSERT(vdev != NULL); 3953 3954 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3955 if (vdev->vdev_scan_io_queue == NULL) 3956 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3957 ASSERT(dp->dp_scan != NULL); 3958 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3959 i, zio_flags, zb); 3960 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3961 } 3962 } 3963 3964 static int 3965 dsl_scan_scrub_cb(dsl_pool_t *dp, 3966 const blkptr_t *bp, const zbookmark_phys_t *zb) 3967 { 3968 dsl_scan_t *scn = dp->dp_scan; 3969 spa_t *spa = dp->dp_spa; 3970 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3971 size_t psize = BP_GET_PSIZE(bp); 3972 boolean_t needs_io = B_FALSE; 3973 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3974 3975 3976 if (phys_birth <= scn->scn_phys.scn_min_txg || 3977 phys_birth >= scn->scn_phys.scn_max_txg) { 3978 count_block(scn, dp->dp_blkstats, bp); 3979 return (0); 3980 } 3981 3982 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3983 ASSERT(!BP_IS_EMBEDDED(bp)); 3984 3985 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3986 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3987 zio_flags |= ZIO_FLAG_SCRUB; 3988 needs_io = B_TRUE; 3989 } else { 3990 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3991 zio_flags |= ZIO_FLAG_RESILVER; 3992 needs_io = B_FALSE; 3993 } 3994 3995 /* If it's an intent log block, failure is expected. */ 3996 if (zb->zb_level == ZB_ZIL_LEVEL) 3997 zio_flags |= ZIO_FLAG_SPECULATIVE; 3998 3999 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4000 const dva_t *dva = &bp->blk_dva[d]; 4001 4002 /* 4003 * Keep track of how much data we've examined so that 4004 * zpool(8) status can make useful progress reports. 4005 */ 4006 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 4007 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 4008 4009 /* if it's a resilver, this may not be in the target range */ 4010 if (!needs_io) 4011 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4012 phys_birth); 4013 } 4014 4015 if (needs_io && !zfs_no_scrub_io) { 4016 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4017 } else { 4018 count_block(scn, dp->dp_blkstats, bp); 4019 } 4020 4021 /* do not relocate this block */ 4022 return (0); 4023 } 4024 4025 static void 4026 dsl_scan_scrub_done(zio_t *zio) 4027 { 4028 spa_t *spa = zio->io_spa; 4029 blkptr_t *bp = zio->io_bp; 4030 dsl_scan_io_queue_t *queue = zio->io_private; 4031 4032 abd_free(zio->io_abd); 4033 4034 if (queue == NULL) { 4035 mutex_enter(&spa->spa_scrub_lock); 4036 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4037 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4038 cv_broadcast(&spa->spa_scrub_io_cv); 4039 mutex_exit(&spa->spa_scrub_lock); 4040 } else { 4041 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4042 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4043 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4044 cv_broadcast(&queue->q_zio_cv); 4045 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4046 } 4047 4048 if (zio->io_error && (zio->io_error != ECKSUM || 4049 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4050 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4051 } 4052 } 4053 4054 /* 4055 * Given a scanning zio's information, executes the zio. The zio need 4056 * not necessarily be only sortable, this function simply executes the 4057 * zio, no matter what it is. The optional queue argument allows the 4058 * caller to specify that they want per top level vdev IO rate limiting 4059 * instead of the legacy global limiting. 4060 */ 4061 static void 4062 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4063 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4064 { 4065 spa_t *spa = dp->dp_spa; 4066 dsl_scan_t *scn = dp->dp_scan; 4067 size_t size = BP_GET_PSIZE(bp); 4068 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4069 4070 if (queue == NULL) { 4071 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4072 mutex_enter(&spa->spa_scrub_lock); 4073 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4074 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4075 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4076 mutex_exit(&spa->spa_scrub_lock); 4077 } else { 4078 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4079 4080 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4081 mutex_enter(q_lock); 4082 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4083 cv_wait(&queue->q_zio_cv, q_lock); 4084 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4085 mutex_exit(q_lock); 4086 } 4087 4088 count_block(scn, dp->dp_blkstats, bp); 4089 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size, 4090 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4091 } 4092 4093 /* 4094 * This is the primary extent sorting algorithm. We balance two parameters: 4095 * 1) how many bytes of I/O are in an extent 4096 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4097 * Since we allow extents to have gaps between their constituent I/Os, it's 4098 * possible to have a fairly large extent that contains the same amount of 4099 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4100 * The algorithm sorts based on a score calculated from the extent's size, 4101 * the relative fill volume (in %) and a "fill weight" parameter that controls 4102 * the split between whether we prefer larger extents or more well populated 4103 * extents: 4104 * 4105 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4106 * 4107 * Example: 4108 * 1) assume extsz = 64 MiB 4109 * 2) assume fill = 32 MiB (extent is half full) 4110 * 3) assume fill_weight = 3 4111 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4112 * SCORE = 32M + (50 * 3 * 32M) / 100 4113 * SCORE = 32M + (4800M / 100) 4114 * SCORE = 32M + 48M 4115 * ^ ^ 4116 * | +--- final total relative fill-based score 4117 * +--------- final total fill-based score 4118 * SCORE = 80M 4119 * 4120 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4121 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4122 * Note that as an optimization, we replace multiplication and division by 4123 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4124 */ 4125 static int 4126 ext_size_compare(const void *x, const void *y) 4127 { 4128 const range_seg_gap_t *rsa = x, *rsb = y; 4129 4130 uint64_t sa = rsa->rs_end - rsa->rs_start; 4131 uint64_t sb = rsb->rs_end - rsb->rs_start; 4132 uint64_t score_a, score_b; 4133 4134 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4135 fill_weight * rsa->rs_fill) >> 7); 4136 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4137 fill_weight * rsb->rs_fill) >> 7); 4138 4139 if (score_a > score_b) 4140 return (-1); 4141 if (score_a == score_b) { 4142 if (rsa->rs_start < rsb->rs_start) 4143 return (-1); 4144 if (rsa->rs_start == rsb->rs_start) 4145 return (0); 4146 return (1); 4147 } 4148 return (1); 4149 } 4150 4151 /* 4152 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4153 * based on LBA-order (from lowest to highest). 4154 */ 4155 static int 4156 sio_addr_compare(const void *x, const void *y) 4157 { 4158 const scan_io_t *a = x, *b = y; 4159 4160 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4161 } 4162 4163 /* IO queues are created on demand when they are needed. */ 4164 static dsl_scan_io_queue_t * 4165 scan_io_queue_create(vdev_t *vd) 4166 { 4167 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4168 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4169 4170 q->q_scn = scn; 4171 q->q_vd = vd; 4172 q->q_sio_memused = 0; 4173 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4174 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4175 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4176 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4177 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4178 4179 return (q); 4180 } 4181 4182 /* 4183 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4184 * No further execution of I/O occurs, anything pending in the queue is 4185 * simply freed without being executed. 4186 */ 4187 void 4188 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4189 { 4190 dsl_scan_t *scn = queue->q_scn; 4191 scan_io_t *sio; 4192 void *cookie = NULL; 4193 int64_t bytes_dequeued = 0; 4194 4195 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4196 4197 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4198 NULL) { 4199 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4200 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4201 bytes_dequeued += SIO_GET_ASIZE(sio); 4202 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4203 sio_free(sio); 4204 } 4205 4206 ASSERT0(queue->q_sio_memused); 4207 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4208 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4209 range_tree_destroy(queue->q_exts_by_addr); 4210 avl_destroy(&queue->q_sios_by_addr); 4211 cv_destroy(&queue->q_zio_cv); 4212 4213 kmem_free(queue, sizeof (*queue)); 4214 } 4215 4216 /* 4217 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4218 * called on behalf of vdev_top_transfer when creating or destroying 4219 * a mirror vdev due to zpool attach/detach. 4220 */ 4221 void 4222 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4223 { 4224 mutex_enter(&svd->vdev_scan_io_queue_lock); 4225 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4226 4227 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4228 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4229 svd->vdev_scan_io_queue = NULL; 4230 if (tvd->vdev_scan_io_queue != NULL) 4231 tvd->vdev_scan_io_queue->q_vd = tvd; 4232 4233 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4234 mutex_exit(&svd->vdev_scan_io_queue_lock); 4235 } 4236 4237 static void 4238 scan_io_queues_destroy(dsl_scan_t *scn) 4239 { 4240 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4241 4242 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4243 vdev_t *tvd = rvd->vdev_child[i]; 4244 4245 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4246 if (tvd->vdev_scan_io_queue != NULL) 4247 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4248 tvd->vdev_scan_io_queue = NULL; 4249 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4250 } 4251 } 4252 4253 static void 4254 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4255 { 4256 dsl_pool_t *dp = spa->spa_dsl_pool; 4257 dsl_scan_t *scn = dp->dp_scan; 4258 vdev_t *vdev; 4259 kmutex_t *q_lock; 4260 dsl_scan_io_queue_t *queue; 4261 scan_io_t *srch_sio, *sio; 4262 avl_index_t idx; 4263 uint64_t start, size; 4264 4265 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4266 ASSERT(vdev != NULL); 4267 q_lock = &vdev->vdev_scan_io_queue_lock; 4268 queue = vdev->vdev_scan_io_queue; 4269 4270 mutex_enter(q_lock); 4271 if (queue == NULL) { 4272 mutex_exit(q_lock); 4273 return; 4274 } 4275 4276 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4277 bp2sio(bp, srch_sio, dva_i); 4278 start = SIO_GET_OFFSET(srch_sio); 4279 size = SIO_GET_ASIZE(srch_sio); 4280 4281 /* 4282 * We can find the zio in two states: 4283 * 1) Cold, just sitting in the queue of zio's to be issued at 4284 * some point in the future. In this case, all we do is 4285 * remove the zio from the q_sios_by_addr tree, decrement 4286 * its data volume from the containing range_seg_t and 4287 * resort the q_exts_by_size tree to reflect that the 4288 * range_seg_t has lost some of its 'fill'. We don't shorten 4289 * the range_seg_t - this is usually rare enough not to be 4290 * worth the extra hassle of trying keep track of precise 4291 * extent boundaries. 4292 * 2) Hot, where the zio is currently in-flight in 4293 * dsl_scan_issue_ios. In this case, we can't simply 4294 * reach in and stop the in-flight zio's, so we instead 4295 * block the caller. Eventually, dsl_scan_issue_ios will 4296 * be done with issuing the zio's it gathered and will 4297 * signal us. 4298 */ 4299 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4300 sio_free(srch_sio); 4301 4302 if (sio != NULL) { 4303 int64_t asize = SIO_GET_ASIZE(sio); 4304 blkptr_t tmpbp; 4305 4306 /* Got it while it was cold in the queue */ 4307 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4308 ASSERT3U(size, ==, asize); 4309 avl_remove(&queue->q_sios_by_addr, sio); 4310 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4311 4312 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4313 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4314 4315 /* 4316 * We only update scn_bytes_pending in the cold path, 4317 * otherwise it will already have been accounted for as 4318 * part of the zio's execution. 4319 */ 4320 atomic_add_64(&scn->scn_bytes_pending, -asize); 4321 4322 /* count the block as though we issued it */ 4323 sio2bp(sio, &tmpbp); 4324 count_block(scn, dp->dp_blkstats, &tmpbp); 4325 4326 sio_free(sio); 4327 } 4328 mutex_exit(q_lock); 4329 } 4330 4331 /* 4332 * Callback invoked when a zio_free() zio is executing. This needs to be 4333 * intercepted to prevent the zio from deallocating a particular portion 4334 * of disk space and it then getting reallocated and written to, while we 4335 * still have it queued up for processing. 4336 */ 4337 void 4338 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4339 { 4340 dsl_pool_t *dp = spa->spa_dsl_pool; 4341 dsl_scan_t *scn = dp->dp_scan; 4342 4343 ASSERT(!BP_IS_EMBEDDED(bp)); 4344 ASSERT(scn != NULL); 4345 if (!dsl_scan_is_running(scn)) 4346 return; 4347 4348 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4349 dsl_scan_freed_dva(spa, bp, i); 4350 } 4351 4352 /* 4353 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4354 * not started, start it. Otherwise, only restart if max txg in DTL range is 4355 * greater than the max txg in the current scan. If the DTL max is less than 4356 * the scan max, then the vdev has not missed any new data since the resilver 4357 * started, so a restart is not needed. 4358 */ 4359 void 4360 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4361 { 4362 uint64_t min, max; 4363 4364 if (!vdev_resilver_needed(vd, &min, &max)) 4365 return; 4366 4367 if (!dsl_scan_resilvering(dp)) { 4368 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4369 return; 4370 } 4371 4372 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4373 return; 4374 4375 /* restart is needed, check if it can be deferred */ 4376 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4377 vdev_defer_resilver(vd); 4378 else 4379 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4380 } 4381 4382 /* BEGIN CSTYLED */ 4383 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4384 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4385 4386 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4387 "Min millisecs to scrub per txg"); 4388 4389 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4390 "Min millisecs to obsolete per txg"); 4391 4392 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4393 "Min millisecs to free per txg"); 4394 4395 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4396 "Min millisecs to resilver per txg"); 4397 4398 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4399 "Set to prevent scans from progressing"); 4400 4401 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4402 "Set to disable scrub I/O"); 4403 4404 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4405 "Set to disable scrub prefetching"); 4406 4407 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4408 "Max number of blocks freed in one txg"); 4409 4410 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4411 "Max number of dedup blocks freed in one txg"); 4412 4413 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4414 "Enable processing of the free_bpobj"); 4415 4416 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4417 "Fraction of RAM for scan hard limit"); 4418 4419 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4420 "IO issuing strategy during scrubbing. " 4421 "0 = default, 1 = LBA, 2 = size"); 4422 4423 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4424 "Scrub using legacy non-sequential method"); 4425 4426 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4427 "Scan progress on-disk checkpointing interval"); 4428 4429 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4430 "Max gap in bytes between sequential scrub / resilver I/Os"); 4431 4432 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4433 "Fraction of hard limit used as soft limit"); 4434 4435 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4436 "Tunable to attempt to reduce lock contention"); 4437 4438 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4439 "Tunable to adjust bias towards more filled segments during scans"); 4440 4441 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4442 "Process all resilvers immediately"); 4443 /* END CSTYLED */ 4444