1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/arc_impl.h> 41 #include <sys/zap.h> 42 #include <sys/zio.h> 43 #include <sys/zfs_context.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/zfs_znode.h> 46 #include <sys/spa_impl.h> 47 #include <sys/vdev_impl.h> 48 #include <sys/zil_impl.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/brt.h> 51 #include <sys/ddt.h> 52 #include <sys/sa.h> 53 #include <sys/sa_impl.h> 54 #include <sys/zfeature.h> 55 #include <sys/abd.h> 56 #include <sys/range_tree.h> 57 #include <sys/dbuf.h> 58 #ifdef _KERNEL 59 #include <sys/zfs_vfsops.h> 60 #endif 61 62 /* 63 * Grand theory statement on scan queue sorting 64 * 65 * Scanning is implemented by recursively traversing all indirection levels 66 * in an object and reading all blocks referenced from said objects. This 67 * results in us approximately traversing the object from lowest logical 68 * offset to the highest. For best performance, we would want the logical 69 * blocks to be physically contiguous. However, this is frequently not the 70 * case with pools given the allocation patterns of copy-on-write filesystems. 71 * So instead, we put the I/Os into a reordering queue and issue them in a 72 * way that will most benefit physical disks (LBA-order). 73 * 74 * Queue management: 75 * 76 * Ideally, we would want to scan all metadata and queue up all block I/O 77 * prior to starting to issue it, because that allows us to do an optimal 78 * sorting job. This can however consume large amounts of memory. Therefore 79 * we continuously monitor the size of the queues and constrain them to 5% 80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 81 * limit, we clear out a few of the largest extents at the head of the queues 82 * to make room for more scanning. Hopefully, these extents will be fairly 83 * large and contiguous, allowing us to approach sequential I/O throughput 84 * even without a fully sorted tree. 85 * 86 * Metadata scanning takes place in dsl_scan_visit(), which is called from 87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 88 * metadata on the pool, or we need to make room in memory because our 89 * queues are too large, dsl_scan_visit() is postponed and 90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 91 * that metadata scanning and queued I/O issuing are mutually exclusive. This 92 * allows us to provide maximum sequential I/O throughput for the majority of 93 * I/O's issued since sequential I/O performance is significantly negatively 94 * impacted if it is interleaved with random I/O. 95 * 96 * Implementation Notes 97 * 98 * One side effect of the queued scanning algorithm is that the scanning code 99 * needs to be notified whenever a block is freed. This is needed to allow 100 * the scanning code to remove these I/Os from the issuing queue. Additionally, 101 * we do not attempt to queue gang blocks to be issued sequentially since this 102 * is very hard to do and would have an extremely limited performance benefit. 103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 104 * algorithm. 105 * 106 * Backwards compatibility 107 * 108 * This new algorithm is backwards compatible with the legacy on-disk data 109 * structures (and therefore does not require a new feature flag). 110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 111 * will stop scanning metadata (in logical order) and wait for all outstanding 112 * sorted I/O to complete. Once this is done, we write out a checkpoint 113 * bookmark, indicating that we have scanned everything logically before it. 114 * If the pool is imported on a machine without the new sorting algorithm, 115 * the scan simply resumes from the last checkpoint using the legacy algorithm. 116 */ 117 118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 119 const zbookmark_phys_t *); 120 121 static scan_cb_t dsl_scan_scrub_cb; 122 123 static int scan_ds_queue_compare(const void *a, const void *b); 124 static int scan_prefetch_queue_compare(const void *a, const void *b); 125 static void scan_ds_queue_clear(dsl_scan_t *scn); 126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 128 uint64_t *txg); 129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 132 static uint64_t dsl_scan_count_data_disks(spa_t *spa); 133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb); 134 135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent; 136 static int zfs_scan_blkstats = 0; 137 138 /* 139 * 'zpool status' uses bytes processed per pass to report throughput and 140 * estimate time remaining. We define a pass to start when the scanning 141 * phase completes for a sequential resilver. Optionally, this value 142 * may be used to reset the pass statistics every N txgs to provide an 143 * estimated completion time based on currently observed performance. 144 */ 145 static uint_t zfs_scan_report_txgs = 0; 146 147 /* 148 * By default zfs will check to ensure it is not over the hard memory 149 * limit before each txg. If finer-grained control of this is needed 150 * this value can be set to 1 to enable checking before scanning each 151 * block. 152 */ 153 static int zfs_scan_strict_mem_lim = B_FALSE; 154 155 /* 156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 157 * to strike a balance here between keeping the vdev queues full of I/Os 158 * at all times and not overflowing the queues to cause long latency, 159 * which would cause long txg sync times. No matter what, we will not 160 * overload the drives with I/O, since that is protected by 161 * zfs_vdev_scrub_max_active. 162 */ 163 static uint64_t zfs_scan_vdev_limit = 16 << 20; 164 165 static uint_t zfs_scan_issue_strategy = 0; 166 167 /* don't queue & sort zios, go direct */ 168 static int zfs_scan_legacy = B_FALSE; 169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 170 171 /* 172 * fill_weight is non-tunable at runtime, so we copy it at module init from 173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 174 * break queue sorting. 175 */ 176 static uint_t zfs_scan_fill_weight = 3; 177 static uint64_t fill_weight; 178 179 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 182 183 184 /* fraction of physmem */ 185 static uint_t zfs_scan_mem_lim_fact = 20; 186 187 /* fraction of mem lim above */ 188 static uint_t zfs_scan_mem_lim_soft_fact = 20; 189 190 /* minimum milliseconds to scrub per txg */ 191 static uint_t zfs_scrub_min_time_ms = 1000; 192 193 /* minimum milliseconds to obsolete per txg */ 194 static uint_t zfs_obsolete_min_time_ms = 500; 195 196 /* minimum milliseconds to free per txg */ 197 static uint_t zfs_free_min_time_ms = 1000; 198 199 /* minimum milliseconds to resilver per txg */ 200 static uint_t zfs_resilver_min_time_ms = 3000; 201 202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */ 203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 207 /* max number of blocks to free in a single TXG */ 208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX; 209 /* max number of dedup blocks to free in a single TXG */ 210 static uint64_t zfs_max_async_dedup_frees = 100000; 211 212 /* set to disable resilver deferring */ 213 static int zfs_resilver_disable_defer = B_FALSE; 214 215 /* 216 * We wait a few txgs after importing a pool to begin scanning so that 217 * the import / mounting code isn't held up by scrub / resilver IO. 218 * Unfortunately, it is a bit difficult to determine exactly how long 219 * this will take since userspace will trigger fs mounts asynchronously 220 * and the kernel will create zvol minors asynchronously. As a result, 221 * the value provided here is a bit arbitrary, but represents a 222 * reasonable estimate of how many txgs it will take to finish fully 223 * importing a pool 224 */ 225 #define SCAN_IMPORT_WAIT_TXGS 5 226 227 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 228 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 229 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 230 231 /* 232 * Enable/disable the processing of the free_bpobj object. 233 */ 234 static int zfs_free_bpobj_enabled = 1; 235 236 /* Error blocks to be scrubbed in one txg. */ 237 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12; 238 239 /* the order has to match pool_scan_type */ 240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 241 NULL, 242 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 243 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 244 }; 245 246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 247 typedef struct { 248 uint64_t sds_dsobj; 249 uint64_t sds_txg; 250 avl_node_t sds_node; 251 } scan_ds_t; 252 253 /* 254 * This controls what conditions are placed on dsl_scan_sync_state(): 255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 258 * write out the scn_phys_cached version. 259 * See dsl_scan_sync_state for details. 260 */ 261 typedef enum { 262 SYNC_OPTIONAL, 263 SYNC_MANDATORY, 264 SYNC_CACHED 265 } state_sync_type_t; 266 267 /* 268 * This struct represents the minimum information needed to reconstruct a 269 * zio for sequential scanning. This is useful because many of these will 270 * accumulate in the sequential IO queues before being issued, so saving 271 * memory matters here. 272 */ 273 typedef struct scan_io { 274 /* fields from blkptr_t */ 275 uint64_t sio_blk_prop; 276 uint64_t sio_phys_birth; 277 uint64_t sio_birth; 278 zio_cksum_t sio_cksum; 279 uint32_t sio_nr_dvas; 280 281 /* fields from zio_t */ 282 uint32_t sio_flags; 283 zbookmark_phys_t sio_zb; 284 285 /* members for queue sorting */ 286 union { 287 avl_node_t sio_addr_node; /* link into issuing queue */ 288 list_node_t sio_list_node; /* link for issuing to disk */ 289 } sio_nodes; 290 291 /* 292 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 293 * depending on how many were in the original bp. Only the 294 * first DVA is really used for sorting and issuing purposes. 295 * The other DVAs (if provided) simply exist so that the zio 296 * layer can find additional copies to repair from in the 297 * event of an error. This array must go at the end of the 298 * struct to allow this for the variable number of elements. 299 */ 300 dva_t sio_dva[]; 301 } scan_io_t; 302 303 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 304 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 305 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 306 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 307 #define SIO_GET_END_OFFSET(sio) \ 308 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 309 #define SIO_GET_MUSED(sio) \ 310 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 311 312 struct dsl_scan_io_queue { 313 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 314 vdev_t *q_vd; /* top-level vdev that this queue represents */ 315 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 316 317 /* trees used for sorting I/Os and extents of I/Os */ 318 range_tree_t *q_exts_by_addr; 319 zfs_btree_t q_exts_by_size; 320 avl_tree_t q_sios_by_addr; 321 uint64_t q_sio_memused; 322 uint64_t q_last_ext_addr; 323 324 /* members for zio rate limiting */ 325 uint64_t q_maxinflight_bytes; 326 uint64_t q_inflight_bytes; 327 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 328 329 /* per txg statistics */ 330 uint64_t q_total_seg_size_this_txg; 331 uint64_t q_segs_this_txg; 332 uint64_t q_total_zio_size_this_txg; 333 uint64_t q_zios_this_txg; 334 }; 335 336 /* private data for dsl_scan_prefetch_cb() */ 337 typedef struct scan_prefetch_ctx { 338 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 339 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 340 boolean_t spc_root; /* is this prefetch for an objset? */ 341 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 342 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 343 } scan_prefetch_ctx_t; 344 345 /* private data for dsl_scan_prefetch() */ 346 typedef struct scan_prefetch_issue_ctx { 347 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 348 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 349 blkptr_t spic_bp; /* bp to prefetch */ 350 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 351 } scan_prefetch_issue_ctx_t; 352 353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 354 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 356 scan_io_t *sio); 357 358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 359 static void scan_io_queues_destroy(dsl_scan_t *scn); 360 361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 362 363 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 364 static void 365 sio_free(scan_io_t *sio) 366 { 367 ASSERT3U(sio->sio_nr_dvas, >, 0); 368 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 369 370 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 371 } 372 373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 374 static scan_io_t * 375 sio_alloc(unsigned short nr_dvas) 376 { 377 ASSERT3U(nr_dvas, >, 0); 378 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 379 380 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 381 } 382 383 void 384 scan_init(void) 385 { 386 /* 387 * This is used in ext_size_compare() to weight segments 388 * based on how sparse they are. This cannot be changed 389 * mid-scan and the tree comparison functions don't currently 390 * have a mechanism for passing additional context to the 391 * compare functions. Thus we store this value globally and 392 * we only allow it to be set at module initialization time 393 */ 394 fill_weight = zfs_scan_fill_weight; 395 396 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 397 char name[36]; 398 399 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 400 sio_cache[i] = kmem_cache_create(name, 401 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 402 0, NULL, NULL, NULL, NULL, NULL, 0); 403 } 404 } 405 406 void 407 scan_fini(void) 408 { 409 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 410 kmem_cache_destroy(sio_cache[i]); 411 } 412 } 413 414 static inline boolean_t 415 dsl_scan_is_running(const dsl_scan_t *scn) 416 { 417 return (scn->scn_phys.scn_state == DSS_SCANNING); 418 } 419 420 boolean_t 421 dsl_scan_resilvering(dsl_pool_t *dp) 422 { 423 return (dsl_scan_is_running(dp->dp_scan) && 424 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 425 } 426 427 static inline void 428 sio2bp(const scan_io_t *sio, blkptr_t *bp) 429 { 430 memset(bp, 0, sizeof (*bp)); 431 bp->blk_prop = sio->sio_blk_prop; 432 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth); 433 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth); 434 bp->blk_fill = 1; /* we always only work with data pointers */ 435 bp->blk_cksum = sio->sio_cksum; 436 437 ASSERT3U(sio->sio_nr_dvas, >, 0); 438 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 439 440 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 441 } 442 443 static inline void 444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 445 { 446 sio->sio_blk_prop = bp->blk_prop; 447 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp); 448 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp); 449 sio->sio_cksum = bp->blk_cksum; 450 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 451 452 /* 453 * Copy the DVAs to the sio. We need all copies of the block so 454 * that the self healing code can use the alternate copies if the 455 * first is corrupted. We want the DVA at index dva_i to be first 456 * in the sio since this is the primary one that we want to issue. 457 */ 458 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 459 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 460 } 461 } 462 463 int 464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 465 { 466 int err; 467 dsl_scan_t *scn; 468 spa_t *spa = dp->dp_spa; 469 uint64_t f; 470 471 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 472 scn->scn_dp = dp; 473 474 /* 475 * It's possible that we're resuming a scan after a reboot so 476 * make sure that the scan_async_destroying flag is initialized 477 * appropriately. 478 */ 479 ASSERT(!scn->scn_async_destroying); 480 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 481 SPA_FEATURE_ASYNC_DESTROY); 482 483 /* 484 * Calculate the max number of in-flight bytes for pool-wide 485 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 486 * Limits for the issuing phase are done per top-level vdev and 487 * are handled separately. 488 */ 489 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 490 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 491 492 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 493 offsetof(scan_ds_t, sds_node)); 494 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL); 495 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 496 sizeof (scan_prefetch_issue_ctx_t), 497 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 498 499 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 500 "scrub_func", sizeof (uint64_t), 1, &f); 501 if (err == 0) { 502 /* 503 * There was an old-style scrub in progress. Restart a 504 * new-style scrub from the beginning. 505 */ 506 scn->scn_restart_txg = txg; 507 zfs_dbgmsg("old-style scrub was in progress for %s; " 508 "restarting new-style scrub in txg %llu", 509 spa->spa_name, 510 (longlong_t)scn->scn_restart_txg); 511 512 /* 513 * Load the queue obj from the old location so that it 514 * can be freed by dsl_scan_done(). 515 */ 516 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 517 "scrub_queue", sizeof (uint64_t), 1, 518 &scn->scn_phys.scn_queue_obj); 519 } else { 520 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 521 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), 522 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys); 523 524 if (err != 0 && err != ENOENT) 525 return (err); 526 527 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 528 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 529 &scn->scn_phys); 530 531 /* 532 * Detect if the pool contains the signature of #2094. If it 533 * does properly update the scn->scn_phys structure and notify 534 * the administrator by setting an errata for the pool. 535 */ 536 if (err == EOVERFLOW) { 537 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 538 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 539 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 540 (23 * sizeof (uint64_t))); 541 542 err = zap_lookup(dp->dp_meta_objset, 543 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 544 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 545 if (err == 0) { 546 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 547 548 if (overflow & ~DSL_SCAN_FLAGS_MASK || 549 scn->scn_async_destroying) { 550 spa->spa_errata = 551 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 552 return (EOVERFLOW); 553 } 554 555 memcpy(&scn->scn_phys, zaptmp, 556 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 557 scn->scn_phys.scn_flags = overflow; 558 559 /* Required scrub already in progress. */ 560 if (scn->scn_phys.scn_state == DSS_FINISHED || 561 scn->scn_phys.scn_state == DSS_CANCELED) 562 spa->spa_errata = 563 ZPOOL_ERRATA_ZOL_2094_SCRUB; 564 } 565 } 566 567 if (err == ENOENT) 568 return (0); 569 else if (err) 570 return (err); 571 572 /* 573 * We might be restarting after a reboot, so jump the issued 574 * counter to how far we've scanned. We know we're consistent 575 * up to here. 576 */ 577 scn->scn_issued_before_pass = scn->scn_phys.scn_examined - 578 scn->scn_phys.scn_skipped; 579 580 if (dsl_scan_is_running(scn) && 581 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 582 /* 583 * A new-type scrub was in progress on an old 584 * pool, and the pool was accessed by old 585 * software. Restart from the beginning, since 586 * the old software may have changed the pool in 587 * the meantime. 588 */ 589 scn->scn_restart_txg = txg; 590 zfs_dbgmsg("new-style scrub for %s was modified " 591 "by old software; restarting in txg %llu", 592 spa->spa_name, 593 (longlong_t)scn->scn_restart_txg); 594 } else if (dsl_scan_resilvering(dp)) { 595 /* 596 * If a resilver is in progress and there are already 597 * errors, restart it instead of finishing this scan and 598 * then restarting it. If there haven't been any errors 599 * then remember that the incore DTL is valid. 600 */ 601 if (scn->scn_phys.scn_errors > 0) { 602 scn->scn_restart_txg = txg; 603 zfs_dbgmsg("resilver can't excise DTL_MISSING " 604 "when finished; restarting on %s in txg " 605 "%llu", 606 spa->spa_name, 607 (u_longlong_t)scn->scn_restart_txg); 608 } else { 609 /* it's safe to excise DTL when finished */ 610 spa->spa_scrub_started = B_TRUE; 611 } 612 } 613 } 614 615 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 616 617 /* reload the queue into the in-core state */ 618 if (scn->scn_phys.scn_queue_obj != 0) { 619 zap_cursor_t zc; 620 zap_attribute_t za; 621 622 for (zap_cursor_init(&zc, dp->dp_meta_objset, 623 scn->scn_phys.scn_queue_obj); 624 zap_cursor_retrieve(&zc, &za) == 0; 625 (void) zap_cursor_advance(&zc)) { 626 scan_ds_queue_insert(scn, 627 zfs_strtonum(za.za_name, NULL), 628 za.za_first_integer); 629 } 630 zap_cursor_fini(&zc); 631 } 632 633 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 634 635 spa_scan_stat_init(spa); 636 vdev_scan_stat_init(spa->spa_root_vdev); 637 638 return (0); 639 } 640 641 void 642 dsl_scan_fini(dsl_pool_t *dp) 643 { 644 if (dp->dp_scan != NULL) { 645 dsl_scan_t *scn = dp->dp_scan; 646 647 if (scn->scn_taskq != NULL) 648 taskq_destroy(scn->scn_taskq); 649 650 scan_ds_queue_clear(scn); 651 avl_destroy(&scn->scn_queue); 652 mutex_destroy(&scn->scn_queue_lock); 653 scan_ds_prefetch_queue_clear(scn); 654 avl_destroy(&scn->scn_prefetch_queue); 655 656 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 657 dp->dp_scan = NULL; 658 } 659 } 660 661 static boolean_t 662 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 663 { 664 return (scn->scn_restart_txg != 0 && 665 scn->scn_restart_txg <= tx->tx_txg); 666 } 667 668 boolean_t 669 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 670 { 671 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 672 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 673 } 674 675 boolean_t 676 dsl_scan_scrubbing(const dsl_pool_t *dp) 677 { 678 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 679 680 return (scn_phys->scn_state == DSS_SCANNING && 681 scn_phys->scn_func == POOL_SCAN_SCRUB); 682 } 683 684 boolean_t 685 dsl_errorscrubbing(const dsl_pool_t *dp) 686 { 687 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys; 688 689 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING && 690 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB); 691 } 692 693 boolean_t 694 dsl_errorscrub_is_paused(const dsl_scan_t *scn) 695 { 696 return (dsl_errorscrubbing(scn->scn_dp) && 697 scn->errorscrub_phys.dep_paused_flags); 698 } 699 700 boolean_t 701 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 702 { 703 return (dsl_scan_scrubbing(scn->scn_dp) && 704 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 705 } 706 707 static void 708 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx) 709 { 710 scn->errorscrub_phys.dep_cursor = 711 zap_cursor_serialize(&scn->errorscrub_cursor); 712 713 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 714 DMU_POOL_DIRECTORY_OBJECT, 715 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS, 716 &scn->errorscrub_phys, tx)); 717 } 718 719 static void 720 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx) 721 { 722 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 723 pool_scan_func_t *funcp = arg; 724 dsl_pool_t *dp = scn->scn_dp; 725 spa_t *spa = dp->dp_spa; 726 727 ASSERT(!dsl_scan_is_running(scn)); 728 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 729 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 730 731 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 732 scn->errorscrub_phys.dep_func = *funcp; 733 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING; 734 scn->errorscrub_phys.dep_start_time = gethrestime_sec(); 735 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa); 736 scn->errorscrub_phys.dep_examined = 0; 737 scn->errorscrub_phys.dep_errors = 0; 738 scn->errorscrub_phys.dep_cursor = 0; 739 zap_cursor_init_serialized(&scn->errorscrub_cursor, 740 spa->spa_meta_objset, spa->spa_errlog_last, 741 scn->errorscrub_phys.dep_cursor); 742 743 vdev_config_dirty(spa->spa_root_vdev); 744 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START); 745 746 dsl_errorscrub_sync_state(scn, tx); 747 748 spa_history_log_internal(spa, "error scrub setup", tx, 749 "func=%u mintxg=%u maxtxg=%llu", 750 *funcp, 0, (u_longlong_t)tx->tx_txg); 751 } 752 753 static int 754 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx) 755 { 756 (void) arg; 757 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 758 759 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) { 760 return (SET_ERROR(EBUSY)); 761 } 762 763 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) { 764 return (ECANCELED); 765 } 766 return (0); 767 } 768 769 /* 770 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 771 * Because we can be running in the block sorting algorithm, we do not always 772 * want to write out the record, only when it is "safe" to do so. This safety 773 * condition is achieved by making sure that the sorting queues are empty 774 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 775 * is inconsistent with how much actual scanning progress has been made. The 776 * kind of sync to be performed is specified by the sync_type argument. If the 777 * sync is optional, we only sync if the queues are empty. If the sync is 778 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 779 * third possible state is a "cached" sync. This is done in response to: 780 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 781 * destroyed, so we wouldn't be able to restart scanning from it. 782 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 783 * superseded by a newer snapshot. 784 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 785 * swapped with its clone. 786 * In all cases, a cached sync simply rewrites the last record we've written, 787 * just slightly modified. For the modifications that are performed to the 788 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 789 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 790 */ 791 static void 792 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 793 { 794 int i; 795 spa_t *spa = scn->scn_dp->dp_spa; 796 797 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 798 if (scn->scn_queues_pending == 0) { 799 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 800 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 801 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 802 803 if (q == NULL) 804 continue; 805 806 mutex_enter(&vd->vdev_scan_io_queue_lock); 807 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 808 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 809 NULL); 810 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 811 mutex_exit(&vd->vdev_scan_io_queue_lock); 812 } 813 814 if (scn->scn_phys.scn_queue_obj != 0) 815 scan_ds_queue_sync(scn, tx); 816 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 817 DMU_POOL_DIRECTORY_OBJECT, 818 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 819 &scn->scn_phys, tx)); 820 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 821 sizeof (scn->scn_phys)); 822 823 if (scn->scn_checkpointing) 824 zfs_dbgmsg("finish scan checkpoint for %s", 825 spa->spa_name); 826 827 scn->scn_checkpointing = B_FALSE; 828 scn->scn_last_checkpoint = ddi_get_lbolt(); 829 } else if (sync_type == SYNC_CACHED) { 830 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 831 DMU_POOL_DIRECTORY_OBJECT, 832 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 833 &scn->scn_phys_cached, tx)); 834 } 835 } 836 837 int 838 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 839 { 840 (void) arg; 841 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 842 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 843 844 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) || 845 dsl_errorscrubbing(scn->scn_dp)) 846 return (SET_ERROR(EBUSY)); 847 848 return (0); 849 } 850 851 void 852 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 853 { 854 (void) arg; 855 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 856 pool_scan_func_t *funcp = arg; 857 dmu_object_type_t ot = 0; 858 dsl_pool_t *dp = scn->scn_dp; 859 spa_t *spa = dp->dp_spa; 860 861 ASSERT(!dsl_scan_is_running(scn)); 862 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 863 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 864 865 /* 866 * If we are starting a fresh scrub, we erase the error scrub 867 * information from disk. 868 */ 869 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys)); 870 dsl_errorscrub_sync_state(scn, tx); 871 872 scn->scn_phys.scn_func = *funcp; 873 scn->scn_phys.scn_state = DSS_SCANNING; 874 scn->scn_phys.scn_min_txg = 0; 875 scn->scn_phys.scn_max_txg = tx->tx_txg; 876 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 877 scn->scn_phys.scn_start_time = gethrestime_sec(); 878 scn->scn_phys.scn_errors = 0; 879 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 880 scn->scn_issued_before_pass = 0; 881 scn->scn_restart_txg = 0; 882 scn->scn_done_txg = 0; 883 scn->scn_last_checkpoint = 0; 884 scn->scn_checkpointing = B_FALSE; 885 spa_scan_stat_init(spa); 886 vdev_scan_stat_init(spa->spa_root_vdev); 887 888 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 889 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 890 891 /* rewrite all disk labels */ 892 vdev_config_dirty(spa->spa_root_vdev); 893 894 if (vdev_resilver_needed(spa->spa_root_vdev, 895 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 896 nvlist_t *aux = fnvlist_alloc(); 897 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 898 "healing"); 899 spa_event_notify(spa, NULL, aux, 900 ESC_ZFS_RESILVER_START); 901 nvlist_free(aux); 902 } else { 903 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 904 } 905 906 spa->spa_scrub_started = B_TRUE; 907 /* 908 * If this is an incremental scrub, limit the DDT scrub phase 909 * to just the auto-ditto class (for correctness); the rest 910 * of the scrub should go faster using top-down pruning. 911 */ 912 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 913 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 914 915 /* 916 * When starting a resilver clear any existing rebuild state. 917 * This is required to prevent stale rebuild status from 918 * being reported when a rebuild is run, then a resilver and 919 * finally a scrub. In which case only the scrub status 920 * should be reported by 'zpool status'. 921 */ 922 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 923 vdev_t *rvd = spa->spa_root_vdev; 924 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 925 vdev_t *vd = rvd->vdev_child[i]; 926 vdev_rebuild_clear_sync( 927 (void *)(uintptr_t)vd->vdev_id, tx); 928 } 929 } 930 } 931 932 /* back to the generic stuff */ 933 934 if (zfs_scan_blkstats) { 935 if (dp->dp_blkstats == NULL) { 936 dp->dp_blkstats = 937 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 938 } 939 memset(&dp->dp_blkstats->zab_type, 0, 940 sizeof (dp->dp_blkstats->zab_type)); 941 } else { 942 if (dp->dp_blkstats) { 943 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 944 dp->dp_blkstats = NULL; 945 } 946 } 947 948 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 949 ot = DMU_OT_ZAP_OTHER; 950 951 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 952 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 953 954 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 955 956 ddt_walk_init(spa, scn->scn_phys.scn_max_txg); 957 958 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 959 960 spa_history_log_internal(spa, "scan setup", tx, 961 "func=%u mintxg=%llu maxtxg=%llu", 962 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 963 (u_longlong_t)scn->scn_phys.scn_max_txg); 964 } 965 966 /* 967 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub, 968 * error scrub or resilver. Can also be called to resume a paused scrub or 969 * error scrub. 970 */ 971 int 972 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 973 { 974 spa_t *spa = dp->dp_spa; 975 dsl_scan_t *scn = dp->dp_scan; 976 977 /* 978 * Purge all vdev caches and probe all devices. We do this here 979 * rather than in sync context because this requires a writer lock 980 * on the spa_config lock, which we can't do from sync context. The 981 * spa_scrub_reopen flag indicates that vdev_open() should not 982 * attempt to start another scrub. 983 */ 984 spa_vdev_state_enter(spa, SCL_NONE); 985 spa->spa_scrub_reopen = B_TRUE; 986 vdev_reopen(spa->spa_root_vdev); 987 spa->spa_scrub_reopen = B_FALSE; 988 (void) spa_vdev_state_exit(spa, NULL, 0); 989 990 if (func == POOL_SCAN_RESILVER) { 991 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 992 return (0); 993 } 994 995 if (func == POOL_SCAN_ERRORSCRUB) { 996 if (dsl_errorscrub_is_paused(dp->dp_scan)) { 997 /* 998 * got error scrub start cmd, resume paused error scrub. 999 */ 1000 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1001 POOL_SCRUB_NORMAL); 1002 if (err == 0) { 1003 spa_event_notify(spa, NULL, NULL, 1004 ESC_ZFS_ERRORSCRUB_RESUME); 1005 return (ECANCELED); 1006 } 1007 return (SET_ERROR(err)); 1008 } 1009 1010 return (dsl_sync_task(spa_name(dp->dp_spa), 1011 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync, 1012 &func, 0, ZFS_SPACE_CHECK_RESERVED)); 1013 } 1014 1015 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 1016 /* got scrub start cmd, resume paused scrub */ 1017 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 1018 POOL_SCRUB_NORMAL); 1019 if (err == 0) { 1020 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 1021 return (SET_ERROR(ECANCELED)); 1022 } 1023 return (SET_ERROR(err)); 1024 } 1025 1026 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 1027 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 1028 } 1029 1030 static void 1031 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1032 { 1033 dsl_pool_t *dp = scn->scn_dp; 1034 spa_t *spa = dp->dp_spa; 1035 1036 if (complete) { 1037 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH); 1038 spa_history_log_internal(spa, "error scrub done", tx, 1039 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1040 } else { 1041 spa_history_log_internal(spa, "error scrub canceled", tx, 1042 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1043 } 1044 1045 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED; 1046 spa->spa_scrub_active = B_FALSE; 1047 spa_errlog_rotate(spa); 1048 scn->errorscrub_phys.dep_end_time = gethrestime_sec(); 1049 zap_cursor_fini(&scn->errorscrub_cursor); 1050 1051 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1052 spa->spa_errata = 0; 1053 1054 ASSERT(!dsl_errorscrubbing(scn->scn_dp)); 1055 } 1056 1057 static void 1058 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 1059 { 1060 static const char *old_names[] = { 1061 "scrub_bookmark", 1062 "scrub_ddt_bookmark", 1063 "scrub_ddt_class_max", 1064 "scrub_queue", 1065 "scrub_min_txg", 1066 "scrub_max_txg", 1067 "scrub_func", 1068 "scrub_errors", 1069 NULL 1070 }; 1071 1072 dsl_pool_t *dp = scn->scn_dp; 1073 spa_t *spa = dp->dp_spa; 1074 int i; 1075 1076 /* Remove any remnants of an old-style scrub. */ 1077 for (i = 0; old_names[i]; i++) { 1078 (void) zap_remove(dp->dp_meta_objset, 1079 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 1080 } 1081 1082 if (scn->scn_phys.scn_queue_obj != 0) { 1083 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1084 scn->scn_phys.scn_queue_obj, tx)); 1085 scn->scn_phys.scn_queue_obj = 0; 1086 } 1087 scan_ds_queue_clear(scn); 1088 scan_ds_prefetch_queue_clear(scn); 1089 1090 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1091 1092 /* 1093 * If we were "restarted" from a stopped state, don't bother 1094 * with anything else. 1095 */ 1096 if (!dsl_scan_is_running(scn)) { 1097 ASSERT(!scn->scn_is_sorted); 1098 return; 1099 } 1100 1101 if (scn->scn_is_sorted) { 1102 scan_io_queues_destroy(scn); 1103 scn->scn_is_sorted = B_FALSE; 1104 1105 if (scn->scn_taskq != NULL) { 1106 taskq_destroy(scn->scn_taskq); 1107 scn->scn_taskq = NULL; 1108 } 1109 } 1110 1111 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 1112 1113 spa_notify_waiters(spa); 1114 1115 if (dsl_scan_restarting(scn, tx)) 1116 spa_history_log_internal(spa, "scan aborted, restarting", tx, 1117 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1118 else if (!complete) 1119 spa_history_log_internal(spa, "scan cancelled", tx, 1120 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1121 else 1122 spa_history_log_internal(spa, "scan done", tx, 1123 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa)); 1124 1125 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 1126 spa->spa_scrub_active = B_FALSE; 1127 1128 /* 1129 * If the scrub/resilver completed, update all DTLs to 1130 * reflect this. Whether it succeeded or not, vacate 1131 * all temporary scrub DTLs. 1132 * 1133 * As the scrub does not currently support traversing 1134 * data that have been freed but are part of a checkpoint, 1135 * we don't mark the scrub as done in the DTLs as faults 1136 * may still exist in those vdevs. 1137 */ 1138 if (complete && 1139 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 1140 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1141 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 1142 1143 if (scn->scn_phys.scn_min_txg) { 1144 nvlist_t *aux = fnvlist_alloc(); 1145 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 1146 "healing"); 1147 spa_event_notify(spa, NULL, aux, 1148 ESC_ZFS_RESILVER_FINISH); 1149 nvlist_free(aux); 1150 } else { 1151 spa_event_notify(spa, NULL, NULL, 1152 ESC_ZFS_SCRUB_FINISH); 1153 } 1154 } else { 1155 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 1156 0, B_TRUE, B_FALSE); 1157 } 1158 spa_errlog_rotate(spa); 1159 1160 /* 1161 * Don't clear flag until after vdev_dtl_reassess to ensure that 1162 * DTL_MISSING will get updated when possible. 1163 */ 1164 spa->spa_scrub_started = B_FALSE; 1165 1166 /* 1167 * We may have finished replacing a device. 1168 * Let the async thread assess this and handle the detach. 1169 */ 1170 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 1171 1172 /* 1173 * Clear any resilver_deferred flags in the config. 1174 * If there are drives that need resilvering, kick 1175 * off an asynchronous request to start resilver. 1176 * vdev_clear_resilver_deferred() may update the config 1177 * before the resilver can restart. In the event of 1178 * a crash during this period, the spa loading code 1179 * will find the drives that need to be resilvered 1180 * and start the resilver then. 1181 */ 1182 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 1183 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 1184 spa_history_log_internal(spa, 1185 "starting deferred resilver", tx, "errors=%llu", 1186 (u_longlong_t)spa_approx_errlog_size(spa)); 1187 spa_async_request(spa, SPA_ASYNC_RESILVER); 1188 } 1189 1190 /* Clear recent error events (i.e. duplicate events tracking) */ 1191 if (complete) 1192 zfs_ereport_clear(spa, NULL); 1193 } 1194 1195 scn->scn_phys.scn_end_time = gethrestime_sec(); 1196 1197 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1198 spa->spa_errata = 0; 1199 1200 ASSERT(!dsl_scan_is_running(scn)); 1201 } 1202 1203 static int 1204 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1205 { 1206 pool_scrub_cmd_t *cmd = arg; 1207 dsl_pool_t *dp = dmu_tx_pool(tx); 1208 dsl_scan_t *scn = dp->dp_scan; 1209 1210 if (*cmd == POOL_SCRUB_PAUSE) { 1211 /* 1212 * can't pause a error scrub when there is no in-progress 1213 * error scrub. 1214 */ 1215 if (!dsl_errorscrubbing(dp)) 1216 return (SET_ERROR(ENOENT)); 1217 1218 /* can't pause a paused error scrub */ 1219 if (dsl_errorscrub_is_paused(scn)) 1220 return (SET_ERROR(EBUSY)); 1221 } else if (*cmd != POOL_SCRUB_NORMAL) { 1222 return (SET_ERROR(ENOTSUP)); 1223 } 1224 1225 return (0); 1226 } 1227 1228 static void 1229 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1230 { 1231 pool_scrub_cmd_t *cmd = arg; 1232 dsl_pool_t *dp = dmu_tx_pool(tx); 1233 spa_t *spa = dp->dp_spa; 1234 dsl_scan_t *scn = dp->dp_scan; 1235 1236 if (*cmd == POOL_SCRUB_PAUSE) { 1237 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec(); 1238 scn->errorscrub_phys.dep_paused_flags = B_TRUE; 1239 dsl_errorscrub_sync_state(scn, tx); 1240 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED); 1241 } else { 1242 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1243 if (dsl_errorscrub_is_paused(scn)) { 1244 /* 1245 * We need to keep track of how much time we spend 1246 * paused per pass so that we can adjust the error scrub 1247 * rate shown in the output of 'zpool status'. 1248 */ 1249 spa->spa_scan_pass_errorscrub_spent_paused += 1250 gethrestime_sec() - 1251 spa->spa_scan_pass_errorscrub_pause; 1252 1253 spa->spa_scan_pass_errorscrub_pause = 0; 1254 scn->errorscrub_phys.dep_paused_flags = B_FALSE; 1255 1256 zap_cursor_init_serialized( 1257 &scn->errorscrub_cursor, 1258 spa->spa_meta_objset, spa->spa_errlog_last, 1259 scn->errorscrub_phys.dep_cursor); 1260 1261 dsl_errorscrub_sync_state(scn, tx); 1262 } 1263 } 1264 } 1265 1266 static int 1267 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx) 1268 { 1269 (void) arg; 1270 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1271 /* can't cancel a error scrub when there is no one in-progress */ 1272 if (!dsl_errorscrubbing(scn->scn_dp)) 1273 return (SET_ERROR(ENOENT)); 1274 return (0); 1275 } 1276 1277 static void 1278 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx) 1279 { 1280 (void) arg; 1281 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1282 1283 dsl_errorscrub_done(scn, B_FALSE, tx); 1284 dsl_errorscrub_sync_state(scn, tx); 1285 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, 1286 ESC_ZFS_ERRORSCRUB_ABORT); 1287 } 1288 1289 static int 1290 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1291 { 1292 (void) arg; 1293 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1294 1295 if (!dsl_scan_is_running(scn)) 1296 return (SET_ERROR(ENOENT)); 1297 return (0); 1298 } 1299 1300 static void 1301 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1302 { 1303 (void) arg; 1304 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1305 1306 dsl_scan_done(scn, B_FALSE, tx); 1307 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1308 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1309 } 1310 1311 int 1312 dsl_scan_cancel(dsl_pool_t *dp) 1313 { 1314 if (dsl_errorscrubbing(dp)) { 1315 return (dsl_sync_task(spa_name(dp->dp_spa), 1316 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync, 1317 NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1318 } 1319 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1320 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1321 } 1322 1323 static int 1324 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1325 { 1326 pool_scrub_cmd_t *cmd = arg; 1327 dsl_pool_t *dp = dmu_tx_pool(tx); 1328 dsl_scan_t *scn = dp->dp_scan; 1329 1330 if (*cmd == POOL_SCRUB_PAUSE) { 1331 /* can't pause a scrub when there is no in-progress scrub */ 1332 if (!dsl_scan_scrubbing(dp)) 1333 return (SET_ERROR(ENOENT)); 1334 1335 /* can't pause a paused scrub */ 1336 if (dsl_scan_is_paused_scrub(scn)) 1337 return (SET_ERROR(EBUSY)); 1338 } else if (*cmd != POOL_SCRUB_NORMAL) { 1339 return (SET_ERROR(ENOTSUP)); 1340 } 1341 1342 return (0); 1343 } 1344 1345 static void 1346 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1347 { 1348 pool_scrub_cmd_t *cmd = arg; 1349 dsl_pool_t *dp = dmu_tx_pool(tx); 1350 spa_t *spa = dp->dp_spa; 1351 dsl_scan_t *scn = dp->dp_scan; 1352 1353 if (*cmd == POOL_SCRUB_PAUSE) { 1354 /* can't pause a scrub when there is no in-progress scrub */ 1355 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1356 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1357 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1358 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1359 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1360 spa_notify_waiters(spa); 1361 } else { 1362 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1363 if (dsl_scan_is_paused_scrub(scn)) { 1364 /* 1365 * We need to keep track of how much time we spend 1366 * paused per pass so that we can adjust the scrub rate 1367 * shown in the output of 'zpool status' 1368 */ 1369 spa->spa_scan_pass_scrub_spent_paused += 1370 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1371 spa->spa_scan_pass_scrub_pause = 0; 1372 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1373 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1374 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1375 } 1376 } 1377 } 1378 1379 /* 1380 * Set scrub pause/resume state if it makes sense to do so 1381 */ 1382 int 1383 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1384 { 1385 if (dsl_errorscrubbing(dp)) { 1386 return (dsl_sync_task(spa_name(dp->dp_spa), 1387 dsl_errorscrub_pause_resume_check, 1388 dsl_errorscrub_pause_resume_sync, &cmd, 3, 1389 ZFS_SPACE_CHECK_RESERVED)); 1390 } 1391 return (dsl_sync_task(spa_name(dp->dp_spa), 1392 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1393 ZFS_SPACE_CHECK_RESERVED)); 1394 } 1395 1396 1397 /* start a new scan, or restart an existing one. */ 1398 void 1399 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1400 { 1401 if (txg == 0) { 1402 dmu_tx_t *tx; 1403 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1404 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1405 1406 txg = dmu_tx_get_txg(tx); 1407 dp->dp_scan->scn_restart_txg = txg; 1408 dmu_tx_commit(tx); 1409 } else { 1410 dp->dp_scan->scn_restart_txg = txg; 1411 } 1412 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1413 dp->dp_spa->spa_name, (longlong_t)txg); 1414 } 1415 1416 void 1417 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1418 { 1419 zio_free(dp->dp_spa, txg, bp); 1420 } 1421 1422 void 1423 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1424 { 1425 ASSERT(dsl_pool_sync_context(dp)); 1426 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1427 } 1428 1429 static int 1430 scan_ds_queue_compare(const void *a, const void *b) 1431 { 1432 const scan_ds_t *sds_a = a, *sds_b = b; 1433 1434 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1435 return (-1); 1436 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1437 return (0); 1438 return (1); 1439 } 1440 1441 static void 1442 scan_ds_queue_clear(dsl_scan_t *scn) 1443 { 1444 void *cookie = NULL; 1445 scan_ds_t *sds; 1446 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1447 kmem_free(sds, sizeof (*sds)); 1448 } 1449 } 1450 1451 static boolean_t 1452 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1453 { 1454 scan_ds_t srch, *sds; 1455 1456 srch.sds_dsobj = dsobj; 1457 sds = avl_find(&scn->scn_queue, &srch, NULL); 1458 if (sds != NULL && txg != NULL) 1459 *txg = sds->sds_txg; 1460 return (sds != NULL); 1461 } 1462 1463 static void 1464 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1465 { 1466 scan_ds_t *sds; 1467 avl_index_t where; 1468 1469 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1470 sds->sds_dsobj = dsobj; 1471 sds->sds_txg = txg; 1472 1473 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1474 avl_insert(&scn->scn_queue, sds, where); 1475 } 1476 1477 static void 1478 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1479 { 1480 scan_ds_t srch, *sds; 1481 1482 srch.sds_dsobj = dsobj; 1483 1484 sds = avl_find(&scn->scn_queue, &srch, NULL); 1485 VERIFY(sds != NULL); 1486 avl_remove(&scn->scn_queue, sds); 1487 kmem_free(sds, sizeof (*sds)); 1488 } 1489 1490 static void 1491 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1492 { 1493 dsl_pool_t *dp = scn->scn_dp; 1494 spa_t *spa = dp->dp_spa; 1495 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1496 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1497 1498 ASSERT0(scn->scn_queues_pending); 1499 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1500 1501 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1502 scn->scn_phys.scn_queue_obj, tx)); 1503 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1504 DMU_OT_NONE, 0, tx); 1505 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1506 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1507 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1508 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1509 sds->sds_txg, tx)); 1510 } 1511 } 1512 1513 /* 1514 * Computes the memory limit state that we're currently in. A sorted scan 1515 * needs quite a bit of memory to hold the sorting queue, so we need to 1516 * reasonably constrain the size so it doesn't impact overall system 1517 * performance. We compute two limits: 1518 * 1) Hard memory limit: if the amount of memory used by the sorting 1519 * queues on a pool gets above this value, we stop the metadata 1520 * scanning portion and start issuing the queued up and sorted 1521 * I/Os to reduce memory usage. 1522 * This limit is calculated as a fraction of physmem (by default 5%). 1523 * We constrain the lower bound of the hard limit to an absolute 1524 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1525 * the upper bound to 5% of the total pool size - no chance we'll 1526 * ever need that much memory, but just to keep the value in check. 1527 * 2) Soft memory limit: once we hit the hard memory limit, we start 1528 * issuing I/O to reduce queue memory usage, but we don't want to 1529 * completely empty out the queues, since we might be able to find I/Os 1530 * that will fill in the gaps of our non-sequential IOs at some point 1531 * in the future. So we stop the issuing of I/Os once the amount of 1532 * memory used drops below the soft limit (at which point we stop issuing 1533 * I/O and start scanning metadata again). 1534 * 1535 * This limit is calculated by subtracting a fraction of the hard 1536 * limit from the hard limit. By default this fraction is 5%, so 1537 * the soft limit is 95% of the hard limit. We cap the size of the 1538 * difference between the hard and soft limits at an absolute 1539 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1540 * sufficient to not cause too frequent switching between the 1541 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1542 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1543 * that should take at least a decent fraction of a second). 1544 */ 1545 static boolean_t 1546 dsl_scan_should_clear(dsl_scan_t *scn) 1547 { 1548 spa_t *spa = scn->scn_dp->dp_spa; 1549 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1550 uint64_t alloc, mlim_hard, mlim_soft, mused; 1551 1552 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1553 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1554 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1555 1556 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1557 zfs_scan_mem_lim_min); 1558 mlim_hard = MIN(mlim_hard, alloc / 20); 1559 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1560 zfs_scan_mem_lim_soft_max); 1561 mused = 0; 1562 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1563 vdev_t *tvd = rvd->vdev_child[i]; 1564 dsl_scan_io_queue_t *queue; 1565 1566 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1567 queue = tvd->vdev_scan_io_queue; 1568 if (queue != NULL) { 1569 /* 1570 * # of extents in exts_by_addr = # in exts_by_size. 1571 * B-tree efficiency is ~75%, but can be as low as 50%. 1572 */ 1573 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1574 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1575 3 / 2) + queue->q_sio_memused; 1576 } 1577 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1578 } 1579 1580 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1581 1582 if (mused == 0) 1583 ASSERT0(scn->scn_queues_pending); 1584 1585 /* 1586 * If we are above our hard limit, we need to clear out memory. 1587 * If we are below our soft limit, we need to accumulate sequential IOs. 1588 * Otherwise, we should keep doing whatever we are currently doing. 1589 */ 1590 if (mused >= mlim_hard) 1591 return (B_TRUE); 1592 else if (mused < mlim_soft) 1593 return (B_FALSE); 1594 else 1595 return (scn->scn_clearing); 1596 } 1597 1598 static boolean_t 1599 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1600 { 1601 /* we never skip user/group accounting objects */ 1602 if (zb && (int64_t)zb->zb_object < 0) 1603 return (B_FALSE); 1604 1605 if (scn->scn_suspending) 1606 return (B_TRUE); /* we're already suspending */ 1607 1608 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1609 return (B_FALSE); /* we're resuming */ 1610 1611 /* We only know how to resume from level-0 and objset blocks. */ 1612 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1613 return (B_FALSE); 1614 1615 /* 1616 * We suspend if: 1617 * - we have scanned for at least the minimum time (default 1 sec 1618 * for scrub, 3 sec for resilver), and either we have sufficient 1619 * dirty data that we are starting to write more quickly 1620 * (default 30%), someone is explicitly waiting for this txg 1621 * to complete, or we have used up all of the time in the txg 1622 * timeout (default 5 sec). 1623 * or 1624 * - the spa is shutting down because this pool is being exported 1625 * or the machine is rebooting. 1626 * or 1627 * - the scan queue has reached its memory use limit 1628 */ 1629 uint64_t curr_time_ns = gethrtime(); 1630 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1631 uint64_t sync_time_ns = curr_time_ns - 1632 scn->scn_dp->dp_spa->spa_sync_starttime; 1633 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1634 zfs_vdev_async_write_active_min_dirty_percent / 100; 1635 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1636 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1637 1638 if ((NSEC2MSEC(scan_time_ns) > mintime && 1639 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1640 txg_sync_waiting(scn->scn_dp) || 1641 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1642 spa_shutting_down(scn->scn_dp->dp_spa) || 1643 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) || 1644 !ddt_walk_ready(scn->scn_dp->dp_spa)) { 1645 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1646 dprintf("suspending at first available bookmark " 1647 "%llx/%llx/%llx/%llx\n", 1648 (longlong_t)zb->zb_objset, 1649 (longlong_t)zb->zb_object, 1650 (longlong_t)zb->zb_level, 1651 (longlong_t)zb->zb_blkid); 1652 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1653 zb->zb_objset, 0, 0, 0); 1654 } else if (zb != NULL) { 1655 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1656 (longlong_t)zb->zb_objset, 1657 (longlong_t)zb->zb_object, 1658 (longlong_t)zb->zb_level, 1659 (longlong_t)zb->zb_blkid); 1660 scn->scn_phys.scn_bookmark = *zb; 1661 } else { 1662 #ifdef ZFS_DEBUG 1663 dsl_scan_phys_t *scnp = &scn->scn_phys; 1664 dprintf("suspending at at DDT bookmark " 1665 "%llx/%llx/%llx/%llx\n", 1666 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1667 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1668 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1669 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1670 #endif 1671 } 1672 scn->scn_suspending = B_TRUE; 1673 return (B_TRUE); 1674 } 1675 return (B_FALSE); 1676 } 1677 1678 static boolean_t 1679 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1680 { 1681 /* 1682 * We suspend if: 1683 * - we have scrubbed for at least the minimum time (default 1 sec 1684 * for error scrub), someone is explicitly waiting for this txg 1685 * to complete, or we have used up all of the time in the txg 1686 * timeout (default 5 sec). 1687 * or 1688 * - the spa is shutting down because this pool is being exported 1689 * or the machine is rebooting. 1690 */ 1691 uint64_t curr_time_ns = gethrtime(); 1692 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time; 1693 uint64_t sync_time_ns = curr_time_ns - 1694 scn->scn_dp->dp_spa->spa_sync_starttime; 1695 int mintime = zfs_scrub_min_time_ms; 1696 1697 if ((NSEC2MSEC(error_scrub_time_ns) > mintime && 1698 (txg_sync_waiting(scn->scn_dp) || 1699 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1700 spa_shutting_down(scn->scn_dp->dp_spa)) { 1701 if (zb) { 1702 dprintf("error scrub suspending at bookmark " 1703 "%llx/%llx/%llx/%llx\n", 1704 (longlong_t)zb->zb_objset, 1705 (longlong_t)zb->zb_object, 1706 (longlong_t)zb->zb_level, 1707 (longlong_t)zb->zb_blkid); 1708 } 1709 return (B_TRUE); 1710 } 1711 return (B_FALSE); 1712 } 1713 1714 typedef struct zil_scan_arg { 1715 dsl_pool_t *zsa_dp; 1716 zil_header_t *zsa_zh; 1717 } zil_scan_arg_t; 1718 1719 static int 1720 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1721 uint64_t claim_txg) 1722 { 1723 (void) zilog; 1724 zil_scan_arg_t *zsa = arg; 1725 dsl_pool_t *dp = zsa->zsa_dp; 1726 dsl_scan_t *scn = dp->dp_scan; 1727 zil_header_t *zh = zsa->zsa_zh; 1728 zbookmark_phys_t zb; 1729 1730 ASSERT(!BP_IS_REDACTED(bp)); 1731 if (BP_IS_HOLE(bp) || 1732 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1733 return (0); 1734 1735 /* 1736 * One block ("stubby") can be allocated a long time ago; we 1737 * want to visit that one because it has been allocated 1738 * (on-disk) even if it hasn't been claimed (even though for 1739 * scrub there's nothing to do to it). 1740 */ 1741 if (claim_txg == 0 && 1742 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa)) 1743 return (0); 1744 1745 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1746 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1747 1748 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1749 return (0); 1750 } 1751 1752 static int 1753 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1754 uint64_t claim_txg) 1755 { 1756 (void) zilog; 1757 if (lrc->lrc_txtype == TX_WRITE) { 1758 zil_scan_arg_t *zsa = arg; 1759 dsl_pool_t *dp = zsa->zsa_dp; 1760 dsl_scan_t *scn = dp->dp_scan; 1761 zil_header_t *zh = zsa->zsa_zh; 1762 const lr_write_t *lr = (const lr_write_t *)lrc; 1763 const blkptr_t *bp = &lr->lr_blkptr; 1764 zbookmark_phys_t zb; 1765 1766 ASSERT(!BP_IS_REDACTED(bp)); 1767 if (BP_IS_HOLE(bp) || 1768 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) 1769 return (0); 1770 1771 /* 1772 * birth can be < claim_txg if this record's txg is 1773 * already txg sync'ed (but this log block contains 1774 * other records that are not synced) 1775 */ 1776 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg) 1777 return (0); 1778 1779 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 1780 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1781 lr->lr_foid, ZB_ZIL_LEVEL, 1782 lr->lr_offset / BP_GET_LSIZE(bp)); 1783 1784 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1785 } 1786 return (0); 1787 } 1788 1789 static void 1790 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1791 { 1792 uint64_t claim_txg = zh->zh_claim_txg; 1793 zil_scan_arg_t zsa = { dp, zh }; 1794 zilog_t *zilog; 1795 1796 ASSERT(spa_writeable(dp->dp_spa)); 1797 1798 /* 1799 * We only want to visit blocks that have been claimed but not yet 1800 * replayed (or, in read-only mode, blocks that *would* be claimed). 1801 */ 1802 if (claim_txg == 0) 1803 return; 1804 1805 zilog = zil_alloc(dp->dp_meta_objset, zh); 1806 1807 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1808 claim_txg, B_FALSE); 1809 1810 zil_free(zilog); 1811 } 1812 1813 /* 1814 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1815 * here is to sort the AVL tree by the order each block will be needed. 1816 */ 1817 static int 1818 scan_prefetch_queue_compare(const void *a, const void *b) 1819 { 1820 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1821 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1822 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1823 1824 return (zbookmark_compare(spc_a->spc_datablkszsec, 1825 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1826 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1827 } 1828 1829 static void 1830 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1831 { 1832 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1833 zfs_refcount_destroy(&spc->spc_refcnt); 1834 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1835 } 1836 } 1837 1838 static scan_prefetch_ctx_t * 1839 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1840 { 1841 scan_prefetch_ctx_t *spc; 1842 1843 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1844 zfs_refcount_create(&spc->spc_refcnt); 1845 zfs_refcount_add(&spc->spc_refcnt, tag); 1846 spc->spc_scn = scn; 1847 if (dnp != NULL) { 1848 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1849 spc->spc_indblkshift = dnp->dn_indblkshift; 1850 spc->spc_root = B_FALSE; 1851 } else { 1852 spc->spc_datablkszsec = 0; 1853 spc->spc_indblkshift = 0; 1854 spc->spc_root = B_TRUE; 1855 } 1856 1857 return (spc); 1858 } 1859 1860 static void 1861 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1862 { 1863 zfs_refcount_add(&spc->spc_refcnt, tag); 1864 } 1865 1866 static void 1867 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1868 { 1869 spa_t *spa = scn->scn_dp->dp_spa; 1870 void *cookie = NULL; 1871 scan_prefetch_issue_ctx_t *spic = NULL; 1872 1873 mutex_enter(&spa->spa_scrub_lock); 1874 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1875 &cookie)) != NULL) { 1876 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1877 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1878 } 1879 mutex_exit(&spa->spa_scrub_lock); 1880 } 1881 1882 static boolean_t 1883 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1884 const zbookmark_phys_t *zb) 1885 { 1886 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1887 dnode_phys_t tmp_dnp; 1888 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1889 1890 if (zb->zb_objset != last_zb->zb_objset) 1891 return (B_TRUE); 1892 if ((int64_t)zb->zb_object < 0) 1893 return (B_FALSE); 1894 1895 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1896 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1897 1898 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1899 return (B_TRUE); 1900 1901 return (B_FALSE); 1902 } 1903 1904 static void 1905 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1906 { 1907 avl_index_t idx; 1908 dsl_scan_t *scn = spc->spc_scn; 1909 spa_t *spa = scn->scn_dp->dp_spa; 1910 scan_prefetch_issue_ctx_t *spic; 1911 1912 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1913 return; 1914 1915 if (BP_IS_HOLE(bp) || 1916 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg || 1917 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1918 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1919 return; 1920 1921 if (dsl_scan_check_prefetch_resume(spc, zb)) 1922 return; 1923 1924 scan_prefetch_ctx_add_ref(spc, scn); 1925 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1926 spic->spic_spc = spc; 1927 spic->spic_bp = *bp; 1928 spic->spic_zb = *zb; 1929 1930 /* 1931 * Add the IO to the queue of blocks to prefetch. This allows us to 1932 * prioritize blocks that we will need first for the main traversal 1933 * thread. 1934 */ 1935 mutex_enter(&spa->spa_scrub_lock); 1936 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1937 /* this block is already queued for prefetch */ 1938 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1939 scan_prefetch_ctx_rele(spc, scn); 1940 mutex_exit(&spa->spa_scrub_lock); 1941 return; 1942 } 1943 1944 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1945 cv_broadcast(&spa->spa_scrub_io_cv); 1946 mutex_exit(&spa->spa_scrub_lock); 1947 } 1948 1949 static void 1950 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1951 uint64_t objset, uint64_t object) 1952 { 1953 int i; 1954 zbookmark_phys_t zb; 1955 scan_prefetch_ctx_t *spc; 1956 1957 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1958 return; 1959 1960 SET_BOOKMARK(&zb, objset, object, 0, 0); 1961 1962 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1963 1964 for (i = 0; i < dnp->dn_nblkptr; i++) { 1965 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1966 zb.zb_blkid = i; 1967 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1968 } 1969 1970 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1971 zb.zb_level = 0; 1972 zb.zb_blkid = DMU_SPILL_BLKID; 1973 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1974 } 1975 1976 scan_prefetch_ctx_rele(spc, FTAG); 1977 } 1978 1979 static void 1980 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1981 arc_buf_t *buf, void *private) 1982 { 1983 (void) zio; 1984 scan_prefetch_ctx_t *spc = private; 1985 dsl_scan_t *scn = spc->spc_scn; 1986 spa_t *spa = scn->scn_dp->dp_spa; 1987 1988 /* broadcast that the IO has completed for rate limiting purposes */ 1989 mutex_enter(&spa->spa_scrub_lock); 1990 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1991 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1992 cv_broadcast(&spa->spa_scrub_io_cv); 1993 mutex_exit(&spa->spa_scrub_lock); 1994 1995 /* if there was an error or we are done prefetching, just cleanup */ 1996 if (buf == NULL || scn->scn_prefetch_stop) 1997 goto out; 1998 1999 if (BP_GET_LEVEL(bp) > 0) { 2000 int i; 2001 blkptr_t *cbp; 2002 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2003 zbookmark_phys_t czb; 2004 2005 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2006 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2007 zb->zb_level - 1, zb->zb_blkid * epb + i); 2008 dsl_scan_prefetch(spc, cbp, &czb); 2009 } 2010 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2011 dnode_phys_t *cdnp; 2012 int i; 2013 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2014 2015 for (i = 0, cdnp = buf->b_data; i < epb; 2016 i += cdnp->dn_extra_slots + 1, 2017 cdnp += cdnp->dn_extra_slots + 1) { 2018 dsl_scan_prefetch_dnode(scn, cdnp, 2019 zb->zb_objset, zb->zb_blkid * epb + i); 2020 } 2021 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2022 objset_phys_t *osp = buf->b_data; 2023 2024 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 2025 zb->zb_objset, DMU_META_DNODE_OBJECT); 2026 2027 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2028 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) { 2029 dsl_scan_prefetch_dnode(scn, 2030 &osp->os_projectused_dnode, zb->zb_objset, 2031 DMU_PROJECTUSED_OBJECT); 2032 } 2033 dsl_scan_prefetch_dnode(scn, 2034 &osp->os_groupused_dnode, zb->zb_objset, 2035 DMU_GROUPUSED_OBJECT); 2036 dsl_scan_prefetch_dnode(scn, 2037 &osp->os_userused_dnode, zb->zb_objset, 2038 DMU_USERUSED_OBJECT); 2039 } 2040 } 2041 2042 out: 2043 if (buf != NULL) 2044 arc_buf_destroy(buf, private); 2045 scan_prefetch_ctx_rele(spc, scn); 2046 } 2047 2048 static void 2049 dsl_scan_prefetch_thread(void *arg) 2050 { 2051 dsl_scan_t *scn = arg; 2052 spa_t *spa = scn->scn_dp->dp_spa; 2053 scan_prefetch_issue_ctx_t *spic; 2054 2055 /* loop until we are told to stop */ 2056 while (!scn->scn_prefetch_stop) { 2057 arc_flags_t flags = ARC_FLAG_NOWAIT | 2058 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 2059 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2060 2061 mutex_enter(&spa->spa_scrub_lock); 2062 2063 /* 2064 * Wait until we have an IO to issue and are not above our 2065 * maximum in flight limit. 2066 */ 2067 while (!scn->scn_prefetch_stop && 2068 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 2069 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 2070 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2071 } 2072 2073 /* recheck if we should stop since we waited for the cv */ 2074 if (scn->scn_prefetch_stop) { 2075 mutex_exit(&spa->spa_scrub_lock); 2076 break; 2077 } 2078 2079 /* remove the prefetch IO from the tree */ 2080 spic = avl_first(&scn->scn_prefetch_queue); 2081 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 2082 avl_remove(&scn->scn_prefetch_queue, spic); 2083 2084 mutex_exit(&spa->spa_scrub_lock); 2085 2086 if (BP_IS_PROTECTED(&spic->spic_bp)) { 2087 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 2088 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 2089 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 2090 zio_flags |= ZIO_FLAG_RAW; 2091 } 2092 2093 /* We don't need data L1 buffer since we do not prefetch L0. */ 2094 blkptr_t *bp = &spic->spic_bp; 2095 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 2096 BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2097 flags |= ARC_FLAG_NO_BUF; 2098 2099 /* issue the prefetch asynchronously */ 2100 (void) arc_read(scn->scn_zio_root, spa, bp, 2101 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB, 2102 zio_flags, &flags, &spic->spic_zb); 2103 2104 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2105 } 2106 2107 ASSERT(scn->scn_prefetch_stop); 2108 2109 /* free any prefetches we didn't get to complete */ 2110 mutex_enter(&spa->spa_scrub_lock); 2111 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 2112 avl_remove(&scn->scn_prefetch_queue, spic); 2113 scan_prefetch_ctx_rele(spic->spic_spc, scn); 2114 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 2115 } 2116 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 2117 mutex_exit(&spa->spa_scrub_lock); 2118 } 2119 2120 static boolean_t 2121 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 2122 const zbookmark_phys_t *zb) 2123 { 2124 /* 2125 * We never skip over user/group accounting objects (obj<0) 2126 */ 2127 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 2128 (int64_t)zb->zb_object >= 0) { 2129 /* 2130 * If we already visited this bp & everything below (in 2131 * a prior txg sync), don't bother doing it again. 2132 */ 2133 if (zbookmark_subtree_completed(dnp, zb, 2134 &scn->scn_phys.scn_bookmark)) 2135 return (B_TRUE); 2136 2137 /* 2138 * If we found the block we're trying to resume from, or 2139 * we went past it, zero it out to indicate that it's OK 2140 * to start checking for suspending again. 2141 */ 2142 if (zbookmark_subtree_tbd(dnp, zb, 2143 &scn->scn_phys.scn_bookmark)) { 2144 dprintf("resuming at %llx/%llx/%llx/%llx\n", 2145 (longlong_t)zb->zb_objset, 2146 (longlong_t)zb->zb_object, 2147 (longlong_t)zb->zb_level, 2148 (longlong_t)zb->zb_blkid); 2149 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 2150 } 2151 } 2152 return (B_FALSE); 2153 } 2154 2155 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2156 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2157 dmu_objset_type_t ostype, dmu_tx_t *tx); 2158 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 2159 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2160 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 2161 2162 /* 2163 * Return nonzero on i/o error. 2164 * Return new buf to write out in *bufp. 2165 */ 2166 inline __attribute__((always_inline)) static int 2167 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 2168 dnode_phys_t *dnp, const blkptr_t *bp, 2169 const zbookmark_phys_t *zb, dmu_tx_t *tx) 2170 { 2171 dsl_pool_t *dp = scn->scn_dp; 2172 spa_t *spa = dp->dp_spa; 2173 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 2174 int err; 2175 2176 ASSERT(!BP_IS_REDACTED(bp)); 2177 2178 /* 2179 * There is an unlikely case of encountering dnodes with contradicting 2180 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 2181 * or modified before commit 4254acb was merged. As it is not possible 2182 * to know which of the two is correct, report an error. 2183 */ 2184 if (dnp != NULL && 2185 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 2186 scn->scn_phys.scn_errors++; 2187 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2188 return (SET_ERROR(EINVAL)); 2189 } 2190 2191 if (BP_GET_LEVEL(bp) > 0) { 2192 arc_flags_t flags = ARC_FLAG_WAIT; 2193 int i; 2194 blkptr_t *cbp; 2195 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2196 arc_buf_t *buf; 2197 2198 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2199 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2200 if (err) { 2201 scn->scn_phys.scn_errors++; 2202 return (err); 2203 } 2204 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 2205 zbookmark_phys_t czb; 2206 2207 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2208 zb->zb_level - 1, 2209 zb->zb_blkid * epb + i); 2210 dsl_scan_visitbp(cbp, &czb, dnp, 2211 ds, scn, ostype, tx); 2212 } 2213 arc_buf_destroy(buf, &buf); 2214 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 2215 arc_flags_t flags = ARC_FLAG_WAIT; 2216 dnode_phys_t *cdnp; 2217 int i; 2218 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 2219 arc_buf_t *buf; 2220 2221 if (BP_IS_PROTECTED(bp)) { 2222 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 2223 zio_flags |= ZIO_FLAG_RAW; 2224 } 2225 2226 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2227 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2228 if (err) { 2229 scn->scn_phys.scn_errors++; 2230 return (err); 2231 } 2232 for (i = 0, cdnp = buf->b_data; i < epb; 2233 i += cdnp->dn_extra_slots + 1, 2234 cdnp += cdnp->dn_extra_slots + 1) { 2235 dsl_scan_visitdnode(scn, ds, ostype, 2236 cdnp, zb->zb_blkid * epb + i, tx); 2237 } 2238 2239 arc_buf_destroy(buf, &buf); 2240 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 2241 arc_flags_t flags = ARC_FLAG_WAIT; 2242 objset_phys_t *osp; 2243 arc_buf_t *buf; 2244 2245 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2246 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 2247 if (err) { 2248 scn->scn_phys.scn_errors++; 2249 return (err); 2250 } 2251 2252 osp = buf->b_data; 2253 2254 dsl_scan_visitdnode(scn, ds, osp->os_type, 2255 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 2256 2257 if (OBJSET_BUF_HAS_USERUSED(buf)) { 2258 /* 2259 * We also always visit user/group/project accounting 2260 * objects, and never skip them, even if we are 2261 * suspending. This is necessary so that the 2262 * space deltas from this txg get integrated. 2263 */ 2264 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 2265 dsl_scan_visitdnode(scn, ds, osp->os_type, 2266 &osp->os_projectused_dnode, 2267 DMU_PROJECTUSED_OBJECT, tx); 2268 dsl_scan_visitdnode(scn, ds, osp->os_type, 2269 &osp->os_groupused_dnode, 2270 DMU_GROUPUSED_OBJECT, tx); 2271 dsl_scan_visitdnode(scn, ds, osp->os_type, 2272 &osp->os_userused_dnode, 2273 DMU_USERUSED_OBJECT, tx); 2274 } 2275 arc_buf_destroy(buf, &buf); 2276 } else if (!zfs_blkptr_verify(spa, bp, 2277 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2278 /* 2279 * Sanity check the block pointer contents, this is handled 2280 * by arc_read() for the cases above. 2281 */ 2282 scn->scn_phys.scn_errors++; 2283 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp)); 2284 return (SET_ERROR(EINVAL)); 2285 } 2286 2287 return (0); 2288 } 2289 2290 inline __attribute__((always_inline)) static void 2291 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 2292 dmu_objset_type_t ostype, dnode_phys_t *dnp, 2293 uint64_t object, dmu_tx_t *tx) 2294 { 2295 int j; 2296 2297 for (j = 0; j < dnp->dn_nblkptr; j++) { 2298 zbookmark_phys_t czb; 2299 2300 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2301 dnp->dn_nlevels - 1, j); 2302 dsl_scan_visitbp(&dnp->dn_blkptr[j], 2303 &czb, dnp, ds, scn, ostype, tx); 2304 } 2305 2306 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 2307 zbookmark_phys_t czb; 2308 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 2309 0, DMU_SPILL_BLKID); 2310 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 2311 &czb, dnp, ds, scn, ostype, tx); 2312 } 2313 } 2314 2315 /* 2316 * The arguments are in this order because mdb can only print the 2317 * first 5; we want them to be useful. 2318 */ 2319 static void 2320 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb, 2321 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 2322 dmu_objset_type_t ostype, dmu_tx_t *tx) 2323 { 2324 dsl_pool_t *dp = scn->scn_dp; 2325 2326 if (dsl_scan_check_suspend(scn, zb)) 2327 return; 2328 2329 if (dsl_scan_check_resume(scn, dnp, zb)) 2330 return; 2331 2332 scn->scn_visited_this_txg++; 2333 2334 if (BP_IS_HOLE(bp)) { 2335 scn->scn_holes_this_txg++; 2336 return; 2337 } 2338 2339 if (BP_IS_REDACTED(bp)) { 2340 ASSERT(dsl_dataset_feature_is_active(ds, 2341 SPA_FEATURE_REDACTED_DATASETS)); 2342 return; 2343 } 2344 2345 /* 2346 * Check if this block contradicts any filesystem flags. 2347 */ 2348 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS; 2349 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE) 2350 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2351 2352 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp)); 2353 if (f != SPA_FEATURE_NONE) 2354 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2355 2356 f = zio_compress_to_feature(BP_GET_COMPRESS(bp)); 2357 if (f != SPA_FEATURE_NONE) 2358 ASSERT(dsl_dataset_feature_is_active(ds, f)); 2359 2360 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) { 2361 scn->scn_lt_min_this_txg++; 2362 return; 2363 } 2364 2365 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0) 2366 return; 2367 2368 /* 2369 * If dsl_scan_ddt() has already visited this block, it will have 2370 * already done any translations or scrubbing, so don't call the 2371 * callback again. 2372 */ 2373 if (ddt_class_contains(dp->dp_spa, 2374 scn->scn_phys.scn_ddt_class_max, bp)) { 2375 scn->scn_ddt_contained_this_txg++; 2376 return; 2377 } 2378 2379 /* 2380 * If this block is from the future (after cur_max_txg), then we 2381 * are doing this on behalf of a deleted snapshot, and we will 2382 * revisit the future block on the next pass of this dataset. 2383 * Don't scan it now unless we need to because something 2384 * under it was modified. 2385 */ 2386 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2387 scn->scn_gt_max_this_txg++; 2388 return; 2389 } 2390 2391 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2392 } 2393 2394 static void 2395 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2396 dmu_tx_t *tx) 2397 { 2398 zbookmark_phys_t zb; 2399 scan_prefetch_ctx_t *spc; 2400 2401 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2402 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2403 2404 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2405 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2406 zb.zb_objset, 0, 0, 0); 2407 } else { 2408 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2409 } 2410 2411 scn->scn_objsets_visited_this_txg++; 2412 2413 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2414 dsl_scan_prefetch(spc, bp, &zb); 2415 scan_prefetch_ctx_rele(spc, FTAG); 2416 2417 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2418 2419 dprintf_ds(ds, "finished scan%s", ""); 2420 } 2421 2422 static void 2423 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2424 { 2425 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2426 if (ds->ds_is_snapshot) { 2427 /* 2428 * Note: 2429 * - scn_cur_{min,max}_txg stays the same. 2430 * - Setting the flag is not really necessary if 2431 * scn_cur_max_txg == scn_max_txg, because there 2432 * is nothing after this snapshot that we care 2433 * about. However, we set it anyway and then 2434 * ignore it when we retraverse it in 2435 * dsl_scan_visitds(). 2436 */ 2437 scn_phys->scn_bookmark.zb_objset = 2438 dsl_dataset_phys(ds)->ds_next_snap_obj; 2439 zfs_dbgmsg("destroying ds %llu on %s; currently " 2440 "traversing; reset zb_objset to %llu", 2441 (u_longlong_t)ds->ds_object, 2442 ds->ds_dir->dd_pool->dp_spa->spa_name, 2443 (u_longlong_t)dsl_dataset_phys(ds)-> 2444 ds_next_snap_obj); 2445 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2446 } else { 2447 SET_BOOKMARK(&scn_phys->scn_bookmark, 2448 ZB_DESTROYED_OBJSET, 0, 0, 0); 2449 zfs_dbgmsg("destroying ds %llu on %s; currently " 2450 "traversing; reset bookmark to -1,0,0,0", 2451 (u_longlong_t)ds->ds_object, 2452 ds->ds_dir->dd_pool->dp_spa->spa_name); 2453 } 2454 } 2455 } 2456 2457 /* 2458 * Invoked when a dataset is destroyed. We need to make sure that: 2459 * 2460 * 1) If it is the dataset that was currently being scanned, we write 2461 * a new dsl_scan_phys_t and marking the objset reference in it 2462 * as destroyed. 2463 * 2) Remove it from the work queue, if it was present. 2464 * 2465 * If the dataset was actually a snapshot, instead of marking the dataset 2466 * as destroyed, we instead substitute the next snapshot in line. 2467 */ 2468 void 2469 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2470 { 2471 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2472 dsl_scan_t *scn = dp->dp_scan; 2473 uint64_t mintxg; 2474 2475 if (!dsl_scan_is_running(scn)) 2476 return; 2477 2478 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2479 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2480 2481 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2482 scan_ds_queue_remove(scn, ds->ds_object); 2483 if (ds->ds_is_snapshot) 2484 scan_ds_queue_insert(scn, 2485 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2486 } 2487 2488 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2489 ds->ds_object, &mintxg) == 0) { 2490 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2491 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2492 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2493 if (ds->ds_is_snapshot) { 2494 /* 2495 * We keep the same mintxg; it could be > 2496 * ds_creation_txg if the previous snapshot was 2497 * deleted too. 2498 */ 2499 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2500 scn->scn_phys.scn_queue_obj, 2501 dsl_dataset_phys(ds)->ds_next_snap_obj, 2502 mintxg, tx) == 0); 2503 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2504 "replacing with %llu", 2505 (u_longlong_t)ds->ds_object, 2506 dp->dp_spa->spa_name, 2507 (u_longlong_t)dsl_dataset_phys(ds)-> 2508 ds_next_snap_obj); 2509 } else { 2510 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2511 "removing", 2512 (u_longlong_t)ds->ds_object, 2513 dp->dp_spa->spa_name); 2514 } 2515 } 2516 2517 /* 2518 * dsl_scan_sync() should be called after this, and should sync 2519 * out our changed state, but just to be safe, do it here. 2520 */ 2521 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2522 } 2523 2524 static void 2525 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2526 { 2527 if (scn_bookmark->zb_objset == ds->ds_object) { 2528 scn_bookmark->zb_objset = 2529 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2530 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2531 "reset zb_objset to %llu", 2532 (u_longlong_t)ds->ds_object, 2533 ds->ds_dir->dd_pool->dp_spa->spa_name, 2534 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2535 } 2536 } 2537 2538 /* 2539 * Called when a dataset is snapshotted. If we were currently traversing 2540 * this snapshot, we reset our bookmark to point at the newly created 2541 * snapshot. We also modify our work queue to remove the old snapshot and 2542 * replace with the new one. 2543 */ 2544 void 2545 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2546 { 2547 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2548 dsl_scan_t *scn = dp->dp_scan; 2549 uint64_t mintxg; 2550 2551 if (!dsl_scan_is_running(scn)) 2552 return; 2553 2554 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2555 2556 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2557 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2558 2559 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2560 scan_ds_queue_remove(scn, ds->ds_object); 2561 scan_ds_queue_insert(scn, 2562 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2563 } 2564 2565 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2566 ds->ds_object, &mintxg) == 0) { 2567 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2568 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2569 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2570 scn->scn_phys.scn_queue_obj, 2571 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2572 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2573 "replacing with %llu", 2574 (u_longlong_t)ds->ds_object, 2575 dp->dp_spa->spa_name, 2576 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2577 } 2578 2579 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2580 } 2581 2582 static void 2583 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2584 zbookmark_phys_t *scn_bookmark) 2585 { 2586 if (scn_bookmark->zb_objset == ds1->ds_object) { 2587 scn_bookmark->zb_objset = ds2->ds_object; 2588 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2589 "reset zb_objset to %llu", 2590 (u_longlong_t)ds1->ds_object, 2591 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2592 (u_longlong_t)ds2->ds_object); 2593 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2594 scn_bookmark->zb_objset = ds1->ds_object; 2595 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2596 "reset zb_objset to %llu", 2597 (u_longlong_t)ds2->ds_object, 2598 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2599 (u_longlong_t)ds1->ds_object); 2600 } 2601 } 2602 2603 /* 2604 * Called when an origin dataset and its clone are swapped. If we were 2605 * currently traversing the dataset, we need to switch to traversing the 2606 * newly promoted clone. 2607 */ 2608 void 2609 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2610 { 2611 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2612 dsl_scan_t *scn = dp->dp_scan; 2613 uint64_t mintxg1, mintxg2; 2614 boolean_t ds1_queued, ds2_queued; 2615 2616 if (!dsl_scan_is_running(scn)) 2617 return; 2618 2619 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2620 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2621 2622 /* 2623 * Handle the in-memory scan queue. 2624 */ 2625 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2626 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2627 2628 /* Sanity checking. */ 2629 if (ds1_queued) { 2630 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2631 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2632 } 2633 if (ds2_queued) { 2634 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2635 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2636 } 2637 2638 if (ds1_queued && ds2_queued) { 2639 /* 2640 * If both are queued, we don't need to do anything. 2641 * The swapping code below would not handle this case correctly, 2642 * since we can't insert ds2 if it is already there. That's 2643 * because scan_ds_queue_insert() prohibits a duplicate insert 2644 * and panics. 2645 */ 2646 } else if (ds1_queued) { 2647 scan_ds_queue_remove(scn, ds1->ds_object); 2648 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2649 } else if (ds2_queued) { 2650 scan_ds_queue_remove(scn, ds2->ds_object); 2651 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2652 } 2653 2654 /* 2655 * Handle the on-disk scan queue. 2656 * The on-disk state is an out-of-date version of the in-memory state, 2657 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2658 * be different. Therefore we need to apply the swap logic to the 2659 * on-disk state independently of the in-memory state. 2660 */ 2661 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2662 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2663 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2664 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2665 2666 /* Sanity checking. */ 2667 if (ds1_queued) { 2668 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2669 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2670 } 2671 if (ds2_queued) { 2672 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2673 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2674 } 2675 2676 if (ds1_queued && ds2_queued) { 2677 /* 2678 * If both are queued, we don't need to do anything. 2679 * Alternatively, we could check for EEXIST from 2680 * zap_add_int_key() and back out to the original state, but 2681 * that would be more work than checking for this case upfront. 2682 */ 2683 } else if (ds1_queued) { 2684 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2685 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2686 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2687 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2688 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2689 "replacing with %llu", 2690 (u_longlong_t)ds1->ds_object, 2691 dp->dp_spa->spa_name, 2692 (u_longlong_t)ds2->ds_object); 2693 } else if (ds2_queued) { 2694 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2695 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2696 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2697 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2698 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2699 "replacing with %llu", 2700 (u_longlong_t)ds2->ds_object, 2701 dp->dp_spa->spa_name, 2702 (u_longlong_t)ds1->ds_object); 2703 } 2704 2705 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2706 } 2707 2708 static int 2709 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2710 { 2711 uint64_t originobj = *(uint64_t *)arg; 2712 dsl_dataset_t *ds; 2713 int err; 2714 dsl_scan_t *scn = dp->dp_scan; 2715 2716 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2717 return (0); 2718 2719 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2720 if (err) 2721 return (err); 2722 2723 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2724 dsl_dataset_t *prev; 2725 err = dsl_dataset_hold_obj(dp, 2726 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2727 2728 dsl_dataset_rele(ds, FTAG); 2729 if (err) 2730 return (err); 2731 ds = prev; 2732 } 2733 mutex_enter(&scn->scn_queue_lock); 2734 scan_ds_queue_insert(scn, ds->ds_object, 2735 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2736 mutex_exit(&scn->scn_queue_lock); 2737 dsl_dataset_rele(ds, FTAG); 2738 return (0); 2739 } 2740 2741 static void 2742 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2743 { 2744 dsl_pool_t *dp = scn->scn_dp; 2745 dsl_dataset_t *ds; 2746 2747 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2748 2749 if (scn->scn_phys.scn_cur_min_txg >= 2750 scn->scn_phys.scn_max_txg) { 2751 /* 2752 * This can happen if this snapshot was created after the 2753 * scan started, and we already completed a previous snapshot 2754 * that was created after the scan started. This snapshot 2755 * only references blocks with: 2756 * 2757 * birth < our ds_creation_txg 2758 * cur_min_txg is no less than ds_creation_txg. 2759 * We have already visited these blocks. 2760 * or 2761 * birth > scn_max_txg 2762 * The scan requested not to visit these blocks. 2763 * 2764 * Subsequent snapshots (and clones) can reference our 2765 * blocks, or blocks with even higher birth times. 2766 * Therefore we do not need to visit them either, 2767 * so we do not add them to the work queue. 2768 * 2769 * Note that checking for cur_min_txg >= cur_max_txg 2770 * is not sufficient, because in that case we may need to 2771 * visit subsequent snapshots. This happens when min_txg > 0, 2772 * which raises cur_min_txg. In this case we will visit 2773 * this dataset but skip all of its blocks, because the 2774 * rootbp's birth time is < cur_min_txg. Then we will 2775 * add the next snapshots/clones to the work queue. 2776 */ 2777 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2778 dsl_dataset_name(ds, dsname); 2779 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2780 "cur_min_txg (%llu) >= max_txg (%llu)", 2781 (longlong_t)dsobj, dsname, 2782 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2783 (longlong_t)scn->scn_phys.scn_max_txg); 2784 kmem_free(dsname, MAXNAMELEN); 2785 2786 goto out; 2787 } 2788 2789 /* 2790 * Only the ZIL in the head (non-snapshot) is valid. Even though 2791 * snapshots can have ZIL block pointers (which may be the same 2792 * BP as in the head), they must be ignored. In addition, $ORIGIN 2793 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2794 * need to look for a ZIL in it either. So we traverse the ZIL here, 2795 * rather than in scan_recurse(), because the regular snapshot 2796 * block-sharing rules don't apply to it. 2797 */ 2798 if (!dsl_dataset_is_snapshot(ds) && 2799 (dp->dp_origin_snap == NULL || 2800 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2801 objset_t *os; 2802 if (dmu_objset_from_ds(ds, &os) != 0) { 2803 goto out; 2804 } 2805 dsl_scan_zil(dp, &os->os_zil_header); 2806 } 2807 2808 /* 2809 * Iterate over the bps in this ds. 2810 */ 2811 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2812 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2813 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2814 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2815 2816 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2817 dsl_dataset_name(ds, dsname); 2818 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2819 "suspending=%u", 2820 (longlong_t)dsobj, dsname, 2821 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2822 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2823 (int)scn->scn_suspending); 2824 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2825 2826 if (scn->scn_suspending) 2827 goto out; 2828 2829 /* 2830 * We've finished this pass over this dataset. 2831 */ 2832 2833 /* 2834 * If we did not completely visit this dataset, do another pass. 2835 */ 2836 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2837 zfs_dbgmsg("incomplete pass on %s; visiting again", 2838 dp->dp_spa->spa_name); 2839 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2840 scan_ds_queue_insert(scn, ds->ds_object, 2841 scn->scn_phys.scn_cur_max_txg); 2842 goto out; 2843 } 2844 2845 /* 2846 * Add descendant datasets to work queue. 2847 */ 2848 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2849 scan_ds_queue_insert(scn, 2850 dsl_dataset_phys(ds)->ds_next_snap_obj, 2851 dsl_dataset_phys(ds)->ds_creation_txg); 2852 } 2853 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2854 boolean_t usenext = B_FALSE; 2855 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2856 uint64_t count; 2857 /* 2858 * A bug in a previous version of the code could 2859 * cause upgrade_clones_cb() to not set 2860 * ds_next_snap_obj when it should, leading to a 2861 * missing entry. Therefore we can only use the 2862 * next_clones_obj when its count is correct. 2863 */ 2864 int err = zap_count(dp->dp_meta_objset, 2865 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2866 if (err == 0 && 2867 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2868 usenext = B_TRUE; 2869 } 2870 2871 if (usenext) { 2872 zap_cursor_t zc; 2873 zap_attribute_t za; 2874 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2875 dsl_dataset_phys(ds)->ds_next_clones_obj); 2876 zap_cursor_retrieve(&zc, &za) == 0; 2877 (void) zap_cursor_advance(&zc)) { 2878 scan_ds_queue_insert(scn, 2879 zfs_strtonum(za.za_name, NULL), 2880 dsl_dataset_phys(ds)->ds_creation_txg); 2881 } 2882 zap_cursor_fini(&zc); 2883 } else { 2884 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2885 enqueue_clones_cb, &ds->ds_object, 2886 DS_FIND_CHILDREN)); 2887 } 2888 } 2889 2890 out: 2891 dsl_dataset_rele(ds, FTAG); 2892 } 2893 2894 static int 2895 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2896 { 2897 (void) arg; 2898 dsl_dataset_t *ds; 2899 int err; 2900 dsl_scan_t *scn = dp->dp_scan; 2901 2902 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2903 if (err) 2904 return (err); 2905 2906 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2907 dsl_dataset_t *prev; 2908 err = dsl_dataset_hold_obj(dp, 2909 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2910 if (err) { 2911 dsl_dataset_rele(ds, FTAG); 2912 return (err); 2913 } 2914 2915 /* 2916 * If this is a clone, we don't need to worry about it for now. 2917 */ 2918 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2919 dsl_dataset_rele(ds, FTAG); 2920 dsl_dataset_rele(prev, FTAG); 2921 return (0); 2922 } 2923 dsl_dataset_rele(ds, FTAG); 2924 ds = prev; 2925 } 2926 2927 mutex_enter(&scn->scn_queue_lock); 2928 scan_ds_queue_insert(scn, ds->ds_object, 2929 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2930 mutex_exit(&scn->scn_queue_lock); 2931 dsl_dataset_rele(ds, FTAG); 2932 return (0); 2933 } 2934 2935 void 2936 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2937 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 2938 { 2939 (void) tx; 2940 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 2941 blkptr_t bp; 2942 zbookmark_phys_t zb = { 0 }; 2943 2944 if (!dsl_scan_is_running(scn)) 2945 return; 2946 2947 /* 2948 * This function is special because it is the only thing 2949 * that can add scan_io_t's to the vdev scan queues from 2950 * outside dsl_scan_sync(). For the most part this is ok 2951 * as long as it is called from within syncing context. 2952 * However, dsl_scan_sync() expects that no new sio's will 2953 * be added between when all the work for a scan is done 2954 * and the next txg when the scan is actually marked as 2955 * completed. This check ensures we do not issue new sio's 2956 * during this period. 2957 */ 2958 if (scn->scn_done_txg != 0) 2959 return; 2960 2961 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 2962 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2963 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v); 2964 2965 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg) 2966 continue; 2967 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp); 2968 2969 scn->scn_visited_this_txg++; 2970 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2971 } 2972 } 2973 2974 /* 2975 * Scrub/dedup interaction. 2976 * 2977 * If there are N references to a deduped block, we don't want to scrub it 2978 * N times -- ideally, we should scrub it exactly once. 2979 * 2980 * We leverage the fact that the dde's replication class (ddt_class_t) 2981 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2982 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2983 * 2984 * To prevent excess scrubbing, the scrub begins by walking the DDT 2985 * to find all blocks with refcnt > 1, and scrubs each of these once. 2986 * Since there are two replication classes which contain blocks with 2987 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2988 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2989 * 2990 * There would be nothing more to say if a block's refcnt couldn't change 2991 * during a scrub, but of course it can so we must account for changes 2992 * in a block's replication class. 2993 * 2994 * Here's an example of what can occur: 2995 * 2996 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2997 * when visited during the top-down scrub phase, it will be scrubbed twice. 2998 * This negates our scrub optimization, but is otherwise harmless. 2999 * 3000 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 3001 * on each visit during the top-down scrub phase, it will never be scrubbed. 3002 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 3003 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 3004 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 3005 * while a scrub is in progress, it scrubs the block right then. 3006 */ 3007 static void 3008 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 3009 { 3010 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 3011 ddt_lightweight_entry_t ddlwe = {0}; 3012 int error; 3013 uint64_t n = 0; 3014 3015 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) { 3016 ddt_t *ddt; 3017 3018 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 3019 break; 3020 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 3021 (longlong_t)ddb->ddb_class, 3022 (longlong_t)ddb->ddb_type, 3023 (longlong_t)ddb->ddb_checksum, 3024 (longlong_t)ddb->ddb_cursor); 3025 3026 /* There should be no pending changes to the dedup table */ 3027 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 3028 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 3029 3030 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx); 3031 n++; 3032 3033 if (dsl_scan_check_suspend(scn, NULL)) 3034 break; 3035 } 3036 3037 if (error == EAGAIN) { 3038 dsl_scan_check_suspend(scn, NULL); 3039 error = 0; 3040 3041 zfs_dbgmsg("waiting for ddt to become ready for scan " 3042 "on %s with class_max = %u; suspending=%u", 3043 scn->scn_dp->dp_spa->spa_name, 3044 (int)scn->scn_phys.scn_ddt_class_max, 3045 (int)scn->scn_suspending); 3046 } else 3047 zfs_dbgmsg("scanned %llu ddt entries on %s with " 3048 "class_max = %u; suspending=%u", (longlong_t)n, 3049 scn->scn_dp->dp_spa->spa_name, 3050 (int)scn->scn_phys.scn_ddt_class_max, 3051 (int)scn->scn_suspending); 3052 3053 ASSERT(error == 0 || error == ENOENT); 3054 ASSERT(error != ENOENT || 3055 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 3056 } 3057 3058 static uint64_t 3059 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 3060 { 3061 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 3062 if (ds->ds_is_snapshot) 3063 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 3064 return (smt); 3065 } 3066 3067 static void 3068 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 3069 { 3070 scan_ds_t *sds; 3071 dsl_pool_t *dp = scn->scn_dp; 3072 3073 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 3074 scn->scn_phys.scn_ddt_class_max) { 3075 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3076 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3077 dsl_scan_ddt(scn, tx); 3078 if (scn->scn_suspending) 3079 return; 3080 } 3081 3082 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 3083 /* First do the MOS & ORIGIN */ 3084 3085 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 3086 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 3087 dsl_scan_visit_rootbp(scn, NULL, 3088 &dp->dp_meta_rootbp, tx); 3089 if (scn->scn_suspending) 3090 return; 3091 3092 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 3093 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 3094 enqueue_cb, NULL, DS_FIND_CHILDREN)); 3095 } else { 3096 dsl_scan_visitds(scn, 3097 dp->dp_origin_snap->ds_object, tx); 3098 } 3099 ASSERT(!scn->scn_suspending); 3100 } else if (scn->scn_phys.scn_bookmark.zb_objset != 3101 ZB_DESTROYED_OBJSET) { 3102 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 3103 /* 3104 * If we were suspended, continue from here. Note if the 3105 * ds we were suspended on was deleted, the zb_objset may 3106 * be -1, so we will skip this and find a new objset 3107 * below. 3108 */ 3109 dsl_scan_visitds(scn, dsobj, tx); 3110 if (scn->scn_suspending) 3111 return; 3112 } 3113 3114 /* 3115 * In case we suspended right at the end of the ds, zero the 3116 * bookmark so we don't think that we're still trying to resume. 3117 */ 3118 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 3119 3120 /* 3121 * Keep pulling things out of the dataset avl queue. Updates to the 3122 * persistent zap-object-as-queue happen only at checkpoints. 3123 */ 3124 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 3125 dsl_dataset_t *ds; 3126 uint64_t dsobj = sds->sds_dsobj; 3127 uint64_t txg = sds->sds_txg; 3128 3129 /* dequeue and free the ds from the queue */ 3130 scan_ds_queue_remove(scn, dsobj); 3131 sds = NULL; 3132 3133 /* set up min / max txg */ 3134 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 3135 if (txg != 0) { 3136 scn->scn_phys.scn_cur_min_txg = 3137 MAX(scn->scn_phys.scn_min_txg, txg); 3138 } else { 3139 scn->scn_phys.scn_cur_min_txg = 3140 MAX(scn->scn_phys.scn_min_txg, 3141 dsl_dataset_phys(ds)->ds_prev_snap_txg); 3142 } 3143 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 3144 dsl_dataset_rele(ds, FTAG); 3145 3146 dsl_scan_visitds(scn, dsobj, tx); 3147 if (scn->scn_suspending) 3148 return; 3149 } 3150 3151 /* No more objsets to fetch, we're done */ 3152 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 3153 ASSERT0(scn->scn_suspending); 3154 } 3155 3156 static uint64_t 3157 dsl_scan_count_data_disks(spa_t *spa) 3158 { 3159 vdev_t *rvd = spa->spa_root_vdev; 3160 uint64_t i, leaves = 0; 3161 3162 for (i = 0; i < rvd->vdev_children; i++) { 3163 vdev_t *vd = rvd->vdev_child[i]; 3164 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 3165 continue; 3166 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 3167 } 3168 return (leaves); 3169 } 3170 3171 static void 3172 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 3173 { 3174 int i; 3175 uint64_t cur_size = 0; 3176 3177 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3178 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 3179 } 3180 3181 q->q_total_zio_size_this_txg += cur_size; 3182 q->q_zios_this_txg++; 3183 } 3184 3185 static void 3186 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 3187 uint64_t end) 3188 { 3189 q->q_total_seg_size_this_txg += end - start; 3190 q->q_segs_this_txg++; 3191 } 3192 3193 static boolean_t 3194 scan_io_queue_check_suspend(dsl_scan_t *scn) 3195 { 3196 /* See comment in dsl_scan_check_suspend() */ 3197 uint64_t curr_time_ns = gethrtime(); 3198 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 3199 uint64_t sync_time_ns = curr_time_ns - 3200 scn->scn_dp->dp_spa->spa_sync_starttime; 3201 uint64_t dirty_min_bytes = zfs_dirty_data_max * 3202 zfs_vdev_async_write_active_min_dirty_percent / 100; 3203 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3204 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3205 3206 return ((NSEC2MSEC(scan_time_ns) > mintime && 3207 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 3208 txg_sync_waiting(scn->scn_dp) || 3209 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 3210 spa_shutting_down(scn->scn_dp->dp_spa)); 3211 } 3212 3213 /* 3214 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 3215 * disk. This consumes the io_list and frees the scan_io_t's. This is 3216 * called when emptying queues, either when we're up against the memory 3217 * limit or when we have finished scanning. Returns B_TRUE if we stopped 3218 * processing the list before we finished. Any sios that were not issued 3219 * will remain in the io_list. 3220 */ 3221 static boolean_t 3222 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 3223 { 3224 dsl_scan_t *scn = queue->q_scn; 3225 scan_io_t *sio; 3226 boolean_t suspended = B_FALSE; 3227 3228 while ((sio = list_head(io_list)) != NULL) { 3229 blkptr_t bp; 3230 3231 if (scan_io_queue_check_suspend(scn)) { 3232 suspended = B_TRUE; 3233 break; 3234 } 3235 3236 sio2bp(sio, &bp); 3237 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 3238 &sio->sio_zb, queue); 3239 (void) list_remove_head(io_list); 3240 scan_io_queues_update_zio_stats(queue, &bp); 3241 sio_free(sio); 3242 } 3243 return (suspended); 3244 } 3245 3246 /* 3247 * This function removes sios from an IO queue which reside within a given 3248 * range_seg_t and inserts them (in offset order) into a list. Note that 3249 * we only ever return a maximum of 32 sios at once. If there are more sios 3250 * to process within this segment that did not make it onto the list we 3251 * return B_TRUE and otherwise B_FALSE. 3252 */ 3253 static boolean_t 3254 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 3255 { 3256 scan_io_t *srch_sio, *sio, *next_sio; 3257 avl_index_t idx; 3258 uint_t num_sios = 0; 3259 int64_t bytes_issued = 0; 3260 3261 ASSERT(rs != NULL); 3262 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3263 3264 srch_sio = sio_alloc(1); 3265 srch_sio->sio_nr_dvas = 1; 3266 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 3267 3268 /* 3269 * The exact start of the extent might not contain any matching zios, 3270 * so if that's the case, examine the next one in the tree. 3271 */ 3272 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 3273 sio_free(srch_sio); 3274 3275 if (sio == NULL) 3276 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 3277 3278 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3279 queue->q_exts_by_addr) && num_sios <= 32) { 3280 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 3281 queue->q_exts_by_addr)); 3282 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 3283 queue->q_exts_by_addr)); 3284 3285 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 3286 avl_remove(&queue->q_sios_by_addr, sio); 3287 if (avl_is_empty(&queue->q_sios_by_addr)) 3288 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 3289 queue->q_sio_memused -= SIO_GET_MUSED(sio); 3290 3291 bytes_issued += SIO_GET_ASIZE(sio); 3292 num_sios++; 3293 list_insert_tail(list, sio); 3294 sio = next_sio; 3295 } 3296 3297 /* 3298 * We limit the number of sios we process at once to 32 to avoid 3299 * biting off more than we can chew. If we didn't take everything 3300 * in the segment we update it to reflect the work we were able to 3301 * complete. Otherwise, we remove it from the range tree entirely. 3302 */ 3303 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 3304 queue->q_exts_by_addr)) { 3305 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 3306 -bytes_issued); 3307 range_tree_resize_segment(queue->q_exts_by_addr, rs, 3308 SIO_GET_OFFSET(sio), rs_get_end(rs, 3309 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 3310 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 3311 return (B_TRUE); 3312 } else { 3313 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 3314 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 3315 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 3316 queue->q_last_ext_addr = -1; 3317 return (B_FALSE); 3318 } 3319 } 3320 3321 /* 3322 * This is called from the queue emptying thread and selects the next 3323 * extent from which we are to issue I/Os. The behavior of this function 3324 * depends on the state of the scan, the current memory consumption and 3325 * whether or not we are performing a scan shutdown. 3326 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 3327 * needs to perform a checkpoint 3328 * 2) We select the largest available extent if we are up against the 3329 * memory limit. 3330 * 3) Otherwise we don't select any extents. 3331 */ 3332 static range_seg_t * 3333 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 3334 { 3335 dsl_scan_t *scn = queue->q_scn; 3336 range_tree_t *rt = queue->q_exts_by_addr; 3337 3338 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3339 ASSERT(scn->scn_is_sorted); 3340 3341 if (!scn->scn_checkpointing && !scn->scn_clearing) 3342 return (NULL); 3343 3344 /* 3345 * During normal clearing, we want to issue our largest segments 3346 * first, keeping IO as sequential as possible, and leaving the 3347 * smaller extents for later with the hope that they might eventually 3348 * grow to larger sequential segments. However, when the scan is 3349 * checkpointing, no new extents will be added to the sorting queue, 3350 * so the way we are sorted now is as good as it will ever get. 3351 * In this case, we instead switch to issuing extents in LBA order. 3352 */ 3353 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 3354 zfs_scan_issue_strategy == 1) 3355 return (range_tree_first(rt)); 3356 3357 /* 3358 * Try to continue previous extent if it is not completed yet. After 3359 * shrink in scan_io_queue_gather() it may no longer be the best, but 3360 * otherwise we leave shorter remnant every txg. 3361 */ 3362 uint64_t start; 3363 uint64_t size = 1ULL << rt->rt_shift; 3364 range_seg_t *addr_rs; 3365 if (queue->q_last_ext_addr != -1) { 3366 start = queue->q_last_ext_addr; 3367 addr_rs = range_tree_find(rt, start, size); 3368 if (addr_rs != NULL) 3369 return (addr_rs); 3370 } 3371 3372 /* 3373 * Nothing to continue, so find new best extent. 3374 */ 3375 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3376 if (v == NULL) 3377 return (NULL); 3378 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3379 3380 /* 3381 * We need to get the original entry in the by_addr tree so we can 3382 * modify it. 3383 */ 3384 addr_rs = range_tree_find(rt, start, size); 3385 ASSERT3P(addr_rs, !=, NULL); 3386 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3387 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3388 return (addr_rs); 3389 } 3390 3391 static void 3392 scan_io_queues_run_one(void *arg) 3393 { 3394 dsl_scan_io_queue_t *queue = arg; 3395 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3396 boolean_t suspended = B_FALSE; 3397 range_seg_t *rs; 3398 scan_io_t *sio; 3399 zio_t *zio; 3400 list_t sio_list; 3401 3402 ASSERT(queue->q_scn->scn_is_sorted); 3403 3404 list_create(&sio_list, sizeof (scan_io_t), 3405 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3406 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3407 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3408 mutex_enter(q_lock); 3409 queue->q_zio = zio; 3410 3411 /* Calculate maximum in-flight bytes for this vdev. */ 3412 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3413 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3414 3415 /* reset per-queue scan statistics for this txg */ 3416 queue->q_total_seg_size_this_txg = 0; 3417 queue->q_segs_this_txg = 0; 3418 queue->q_total_zio_size_this_txg = 0; 3419 queue->q_zios_this_txg = 0; 3420 3421 /* loop until we run out of time or sios */ 3422 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3423 uint64_t seg_start = 0, seg_end = 0; 3424 boolean_t more_left; 3425 3426 ASSERT(list_is_empty(&sio_list)); 3427 3428 /* loop while we still have sios left to process in this rs */ 3429 do { 3430 scan_io_t *first_sio, *last_sio; 3431 3432 /* 3433 * We have selected which extent needs to be 3434 * processed next. Gather up the corresponding sios. 3435 */ 3436 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3437 ASSERT(!list_is_empty(&sio_list)); 3438 first_sio = list_head(&sio_list); 3439 last_sio = list_tail(&sio_list); 3440 3441 seg_end = SIO_GET_END_OFFSET(last_sio); 3442 if (seg_start == 0) 3443 seg_start = SIO_GET_OFFSET(first_sio); 3444 3445 /* 3446 * Issuing sios can take a long time so drop the 3447 * queue lock. The sio queue won't be updated by 3448 * other threads since we're in syncing context so 3449 * we can be sure that our trees will remain exactly 3450 * as we left them. 3451 */ 3452 mutex_exit(q_lock); 3453 suspended = scan_io_queue_issue(queue, &sio_list); 3454 mutex_enter(q_lock); 3455 3456 if (suspended) 3457 break; 3458 } while (more_left); 3459 3460 /* update statistics for debugging purposes */ 3461 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3462 3463 if (suspended) 3464 break; 3465 } 3466 3467 /* 3468 * If we were suspended in the middle of processing, 3469 * requeue any unfinished sios and exit. 3470 */ 3471 while ((sio = list_remove_head(&sio_list)) != NULL) 3472 scan_io_queue_insert_impl(queue, sio); 3473 3474 queue->q_zio = NULL; 3475 mutex_exit(q_lock); 3476 zio_nowait(zio); 3477 list_destroy(&sio_list); 3478 } 3479 3480 /* 3481 * Performs an emptying run on all scan queues in the pool. This just 3482 * punches out one thread per top-level vdev, each of which processes 3483 * only that vdev's scan queue. We can parallelize the I/O here because 3484 * we know that each queue's I/Os only affect its own top-level vdev. 3485 * 3486 * This function waits for the queue runs to complete, and must be 3487 * called from dsl_scan_sync (or in general, syncing context). 3488 */ 3489 static void 3490 scan_io_queues_run(dsl_scan_t *scn) 3491 { 3492 spa_t *spa = scn->scn_dp->dp_spa; 3493 3494 ASSERT(scn->scn_is_sorted); 3495 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3496 3497 if (scn->scn_queues_pending == 0) 3498 return; 3499 3500 if (scn->scn_taskq == NULL) { 3501 int nthreads = spa->spa_root_vdev->vdev_children; 3502 3503 /* 3504 * We need to make this taskq *always* execute as many 3505 * threads in parallel as we have top-level vdevs and no 3506 * less, otherwise strange serialization of the calls to 3507 * scan_io_queues_run_one can occur during spa_sync runs 3508 * and that significantly impacts performance. 3509 */ 3510 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3511 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3512 } 3513 3514 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3515 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3516 3517 mutex_enter(&vd->vdev_scan_io_queue_lock); 3518 if (vd->vdev_scan_io_queue != NULL) { 3519 VERIFY(taskq_dispatch(scn->scn_taskq, 3520 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3521 TQ_SLEEP) != TASKQID_INVALID); 3522 } 3523 mutex_exit(&vd->vdev_scan_io_queue_lock); 3524 } 3525 3526 /* 3527 * Wait for the queues to finish issuing their IOs for this run 3528 * before we return. There may still be IOs in flight at this 3529 * point. 3530 */ 3531 taskq_wait(scn->scn_taskq); 3532 } 3533 3534 static boolean_t 3535 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3536 { 3537 uint64_t elapsed_nanosecs; 3538 3539 if (zfs_recover) 3540 return (B_FALSE); 3541 3542 if (zfs_async_block_max_blocks != 0 && 3543 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3544 return (B_TRUE); 3545 } 3546 3547 if (zfs_max_async_dedup_frees != 0 && 3548 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3549 return (B_TRUE); 3550 } 3551 3552 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3553 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3554 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3555 txg_sync_waiting(scn->scn_dp)) || 3556 spa_shutting_down(scn->scn_dp->dp_spa)); 3557 } 3558 3559 static int 3560 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3561 { 3562 dsl_scan_t *scn = arg; 3563 3564 if (!scn->scn_is_bptree || 3565 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3566 if (dsl_scan_async_block_should_pause(scn)) 3567 return (SET_ERROR(ERESTART)); 3568 } 3569 3570 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3571 dmu_tx_get_txg(tx), bp, 0)); 3572 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3573 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3574 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3575 scn->scn_visited_this_txg++; 3576 if (BP_GET_DEDUP(bp)) 3577 scn->scn_dedup_frees_this_txg++; 3578 return (0); 3579 } 3580 3581 static void 3582 dsl_scan_update_stats(dsl_scan_t *scn) 3583 { 3584 spa_t *spa = scn->scn_dp->dp_spa; 3585 uint64_t i; 3586 uint64_t seg_size_total = 0, zio_size_total = 0; 3587 uint64_t seg_count_total = 0, zio_count_total = 0; 3588 3589 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3590 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3591 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3592 3593 if (queue == NULL) 3594 continue; 3595 3596 seg_size_total += queue->q_total_seg_size_this_txg; 3597 zio_size_total += queue->q_total_zio_size_this_txg; 3598 seg_count_total += queue->q_segs_this_txg; 3599 zio_count_total += queue->q_zios_this_txg; 3600 } 3601 3602 if (seg_count_total == 0 || zio_count_total == 0) { 3603 scn->scn_avg_seg_size_this_txg = 0; 3604 scn->scn_avg_zio_size_this_txg = 0; 3605 scn->scn_segs_this_txg = 0; 3606 scn->scn_zios_this_txg = 0; 3607 return; 3608 } 3609 3610 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3611 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3612 scn->scn_segs_this_txg = seg_count_total; 3613 scn->scn_zios_this_txg = zio_count_total; 3614 } 3615 3616 static int 3617 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3618 dmu_tx_t *tx) 3619 { 3620 ASSERT(!bp_freed); 3621 return (dsl_scan_free_block_cb(arg, bp, tx)); 3622 } 3623 3624 static int 3625 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3626 dmu_tx_t *tx) 3627 { 3628 ASSERT(!bp_freed); 3629 dsl_scan_t *scn = arg; 3630 const dva_t *dva = &bp->blk_dva[0]; 3631 3632 if (dsl_scan_async_block_should_pause(scn)) 3633 return (SET_ERROR(ERESTART)); 3634 3635 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3636 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3637 DVA_GET_ASIZE(dva), tx); 3638 scn->scn_visited_this_txg++; 3639 return (0); 3640 } 3641 3642 boolean_t 3643 dsl_scan_active(dsl_scan_t *scn) 3644 { 3645 spa_t *spa = scn->scn_dp->dp_spa; 3646 uint64_t used = 0, comp, uncomp; 3647 boolean_t clones_left; 3648 3649 if (spa->spa_load_state != SPA_LOAD_NONE) 3650 return (B_FALSE); 3651 if (spa_shutting_down(spa)) 3652 return (B_FALSE); 3653 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3654 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3655 return (B_TRUE); 3656 3657 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3658 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3659 &used, &comp, &uncomp); 3660 } 3661 clones_left = spa_livelist_delete_check(spa); 3662 return ((used != 0) || (clones_left)); 3663 } 3664 3665 boolean_t 3666 dsl_errorscrub_active(dsl_scan_t *scn) 3667 { 3668 spa_t *spa = scn->scn_dp->dp_spa; 3669 if (spa->spa_load_state != SPA_LOAD_NONE) 3670 return (B_FALSE); 3671 if (spa_shutting_down(spa)) 3672 return (B_FALSE); 3673 if (dsl_errorscrubbing(scn->scn_dp)) 3674 return (B_TRUE); 3675 return (B_FALSE); 3676 } 3677 3678 static boolean_t 3679 dsl_scan_check_deferred(vdev_t *vd) 3680 { 3681 boolean_t need_resilver = B_FALSE; 3682 3683 for (int c = 0; c < vd->vdev_children; c++) { 3684 need_resilver |= 3685 dsl_scan_check_deferred(vd->vdev_child[c]); 3686 } 3687 3688 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3689 !vd->vdev_ops->vdev_op_leaf) 3690 return (need_resilver); 3691 3692 if (!vd->vdev_resilver_deferred) 3693 need_resilver = B_TRUE; 3694 3695 return (need_resilver); 3696 } 3697 3698 static boolean_t 3699 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3700 uint64_t phys_birth) 3701 { 3702 vdev_t *vd; 3703 3704 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3705 3706 if (vd->vdev_ops == &vdev_indirect_ops) { 3707 /* 3708 * The indirect vdev can point to multiple 3709 * vdevs. For simplicity, always create 3710 * the resilver zio_t. zio_vdev_io_start() 3711 * will bypass the child resilver i/o's if 3712 * they are on vdevs that don't have DTL's. 3713 */ 3714 return (B_TRUE); 3715 } 3716 3717 if (DVA_GET_GANG(dva)) { 3718 /* 3719 * Gang members may be spread across multiple 3720 * vdevs, so the best estimate we have is the 3721 * scrub range, which has already been checked. 3722 * XXX -- it would be better to change our 3723 * allocation policy to ensure that all 3724 * gang members reside on the same vdev. 3725 */ 3726 return (B_TRUE); 3727 } 3728 3729 /* 3730 * Check if the top-level vdev must resilver this offset. 3731 * When the offset does not intersect with a dirty leaf DTL 3732 * then it may be possible to skip the resilver IO. The psize 3733 * is provided instead of asize to simplify the check for RAIDZ. 3734 */ 3735 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3736 return (B_FALSE); 3737 3738 /* 3739 * Check that this top-level vdev has a device under it which 3740 * is resilvering and is not deferred. 3741 */ 3742 if (!dsl_scan_check_deferred(vd)) 3743 return (B_FALSE); 3744 3745 return (B_TRUE); 3746 } 3747 3748 static int 3749 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3750 { 3751 dsl_scan_t *scn = dp->dp_scan; 3752 spa_t *spa = dp->dp_spa; 3753 int err = 0; 3754 3755 if (spa_suspend_async_destroy(spa)) 3756 return (0); 3757 3758 if (zfs_free_bpobj_enabled && 3759 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3760 scn->scn_is_bptree = B_FALSE; 3761 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3762 scn->scn_zio_root = zio_root(spa, NULL, 3763 NULL, ZIO_FLAG_MUSTSUCCEED); 3764 err = bpobj_iterate(&dp->dp_free_bpobj, 3765 bpobj_dsl_scan_free_block_cb, scn, tx); 3766 VERIFY0(zio_wait(scn->scn_zio_root)); 3767 scn->scn_zio_root = NULL; 3768 3769 if (err != 0 && err != ERESTART) 3770 zfs_panic_recover("error %u from bpobj_iterate()", err); 3771 } 3772 3773 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3774 ASSERT(scn->scn_async_destroying); 3775 scn->scn_is_bptree = B_TRUE; 3776 scn->scn_zio_root = zio_root(spa, NULL, 3777 NULL, ZIO_FLAG_MUSTSUCCEED); 3778 err = bptree_iterate(dp->dp_meta_objset, 3779 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3780 VERIFY0(zio_wait(scn->scn_zio_root)); 3781 scn->scn_zio_root = NULL; 3782 3783 if (err == EIO || err == ECKSUM) { 3784 err = 0; 3785 } else if (err != 0 && err != ERESTART) { 3786 zfs_panic_recover("error %u from " 3787 "traverse_dataset_destroyed()", err); 3788 } 3789 3790 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3791 /* finished; deactivate async destroy feature */ 3792 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3793 ASSERT(!spa_feature_is_active(spa, 3794 SPA_FEATURE_ASYNC_DESTROY)); 3795 VERIFY0(zap_remove(dp->dp_meta_objset, 3796 DMU_POOL_DIRECTORY_OBJECT, 3797 DMU_POOL_BPTREE_OBJ, tx)); 3798 VERIFY0(bptree_free(dp->dp_meta_objset, 3799 dp->dp_bptree_obj, tx)); 3800 dp->dp_bptree_obj = 0; 3801 scn->scn_async_destroying = B_FALSE; 3802 scn->scn_async_stalled = B_FALSE; 3803 } else { 3804 /* 3805 * If we didn't make progress, mark the async 3806 * destroy as stalled, so that we will not initiate 3807 * a spa_sync() on its behalf. Note that we only 3808 * check this if we are not finished, because if the 3809 * bptree had no blocks for us to visit, we can 3810 * finish without "making progress". 3811 */ 3812 scn->scn_async_stalled = 3813 (scn->scn_visited_this_txg == 0); 3814 } 3815 } 3816 if (scn->scn_visited_this_txg) { 3817 zfs_dbgmsg("freed %llu blocks in %llums from " 3818 "free_bpobj/bptree on %s in txg %llu; err=%u", 3819 (longlong_t)scn->scn_visited_this_txg, 3820 (longlong_t) 3821 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3822 spa->spa_name, (longlong_t)tx->tx_txg, err); 3823 scn->scn_visited_this_txg = 0; 3824 scn->scn_dedup_frees_this_txg = 0; 3825 3826 /* 3827 * Write out changes to the DDT and the BRT that may be required 3828 * as a result of the blocks freed. This ensures that the DDT 3829 * and the BRT are clean when a scrub/resilver runs. 3830 */ 3831 ddt_sync(spa, tx->tx_txg); 3832 brt_sync(spa, tx->tx_txg); 3833 } 3834 if (err != 0) 3835 return (err); 3836 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3837 zfs_free_leak_on_eio && 3838 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3839 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3840 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3841 /* 3842 * We have finished background destroying, but there is still 3843 * some space left in the dp_free_dir. Transfer this leaked 3844 * space to the dp_leak_dir. 3845 */ 3846 if (dp->dp_leak_dir == NULL) { 3847 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3848 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3849 LEAK_DIR_NAME, tx); 3850 VERIFY0(dsl_pool_open_special_dir(dp, 3851 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3852 rrw_exit(&dp->dp_config_rwlock, FTAG); 3853 } 3854 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3855 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3856 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3857 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3858 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3859 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3860 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3861 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3862 } 3863 3864 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3865 !spa_livelist_delete_check(spa)) { 3866 /* finished; verify that space accounting went to zero */ 3867 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3868 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3869 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3870 } 3871 3872 spa_notify_waiters(spa); 3873 3874 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3875 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3876 DMU_POOL_OBSOLETE_BPOBJ)); 3877 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3878 ASSERT(spa_feature_is_active(dp->dp_spa, 3879 SPA_FEATURE_OBSOLETE_COUNTS)); 3880 3881 scn->scn_is_bptree = B_FALSE; 3882 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3883 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3884 dsl_scan_obsolete_block_cb, scn, tx); 3885 if (err != 0 && err != ERESTART) 3886 zfs_panic_recover("error %u from bpobj_iterate()", err); 3887 3888 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3889 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3890 } 3891 return (0); 3892 } 3893 3894 static void 3895 name_to_bookmark(char *buf, zbookmark_phys_t *zb) 3896 { 3897 zb->zb_objset = zfs_strtonum(buf, &buf); 3898 ASSERT(*buf == ':'); 3899 zb->zb_object = zfs_strtonum(buf + 1, &buf); 3900 ASSERT(*buf == ':'); 3901 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf); 3902 ASSERT(*buf == ':'); 3903 zb->zb_blkid = zfs_strtonum(buf + 1, &buf); 3904 ASSERT(*buf == '\0'); 3905 } 3906 3907 static void 3908 name_to_object(char *buf, uint64_t *obj) 3909 { 3910 *obj = zfs_strtonum(buf, &buf); 3911 ASSERT(*buf == '\0'); 3912 } 3913 3914 static void 3915 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb) 3916 { 3917 dsl_pool_t *dp = scn->scn_dp; 3918 dsl_dataset_t *ds; 3919 objset_t *os; 3920 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0) 3921 return; 3922 3923 if (dmu_objset_from_ds(ds, &os) != 0) { 3924 dsl_dataset_rele(ds, FTAG); 3925 return; 3926 } 3927 3928 /* 3929 * If the key is not loaded dbuf_dnode_findbp() will error out with 3930 * EACCES. However in that case dnode_hold() will eventually call 3931 * dbuf_read()->zio_wait() which may call spa_log_error(). This will 3932 * lead to a deadlock due to us holding the mutex spa_errlist_lock. 3933 * Avoid this by checking here if the keys are loaded, if not return. 3934 * If the keys are not loaded the head_errlog feature is meaningless 3935 * as we cannot figure out the birth txg of the block pointer. 3936 */ 3937 if (dsl_dataset_get_keystatus(ds->ds_dir) == 3938 ZFS_KEYSTATUS_UNAVAILABLE) { 3939 dsl_dataset_rele(ds, FTAG); 3940 return; 3941 } 3942 3943 dnode_t *dn; 3944 blkptr_t bp; 3945 3946 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) { 3947 dsl_dataset_rele(ds, FTAG); 3948 return; 3949 } 3950 3951 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3952 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL, 3953 NULL); 3954 3955 if (error) { 3956 rw_exit(&dn->dn_struct_rwlock); 3957 dnode_rele(dn, FTAG); 3958 dsl_dataset_rele(ds, FTAG); 3959 return; 3960 } 3961 3962 if (!error && BP_IS_HOLE(&bp)) { 3963 rw_exit(&dn->dn_struct_rwlock); 3964 dnode_rele(dn, FTAG); 3965 dsl_dataset_rele(ds, FTAG); 3966 return; 3967 } 3968 3969 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | 3970 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB; 3971 3972 /* If it's an intent log block, failure is expected. */ 3973 if (zb.zb_level == ZB_ZIL_LEVEL) 3974 zio_flags |= ZIO_FLAG_SPECULATIVE; 3975 3976 ASSERT(!BP_IS_EMBEDDED(&bp)); 3977 scan_exec_io(dp, &bp, zio_flags, &zb, NULL); 3978 rw_exit(&dn->dn_struct_rwlock); 3979 dnode_rele(dn, FTAG); 3980 dsl_dataset_rele(ds, FTAG); 3981 } 3982 3983 /* 3984 * We keep track of the scrubbed error blocks in "count". This will be used 3985 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This 3986 * function is modelled after check_filesystem(). 3987 */ 3988 static int 3989 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep, 3990 int *count) 3991 { 3992 dsl_dataset_t *ds; 3993 dsl_pool_t *dp = spa->spa_dsl_pool; 3994 dsl_scan_t *scn = dp->dp_scan; 3995 3996 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds); 3997 if (error != 0) 3998 return (error); 3999 4000 uint64_t latest_txg; 4001 uint64_t txg_to_consider = spa->spa_syncing_txg; 4002 boolean_t check_snapshot = B_TRUE; 4003 4004 error = find_birth_txg(ds, zep, &latest_txg); 4005 4006 /* 4007 * If find_birth_txg() errors out, then err on the side of caution and 4008 * proceed. In worst case scenario scrub all objects. If zep->zb_birth 4009 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to 4010 * scrub all objects. 4011 */ 4012 if (error == 0 && zep->zb_birth == latest_txg) { 4013 /* Block neither free nor re written. */ 4014 zbookmark_phys_t zb; 4015 zep_to_zb(fs, zep, &zb); 4016 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4017 ZIO_FLAG_CANFAIL); 4018 /* We have already acquired the config lock for spa */ 4019 read_by_block_level(scn, zb); 4020 4021 (void) zio_wait(scn->scn_zio_root); 4022 scn->scn_zio_root = NULL; 4023 4024 scn->errorscrub_phys.dep_examined++; 4025 scn->errorscrub_phys.dep_to_examine--; 4026 (*count)++; 4027 if ((*count) == zfs_scrub_error_blocks_per_txg || 4028 dsl_error_scrub_check_suspend(scn, &zb)) { 4029 dsl_dataset_rele(ds, FTAG); 4030 return (SET_ERROR(EFAULT)); 4031 } 4032 4033 check_snapshot = B_FALSE; 4034 } else if (error == 0) { 4035 txg_to_consider = latest_txg; 4036 } 4037 4038 /* 4039 * Retrieve the number of snapshots if the dataset is not a snapshot. 4040 */ 4041 uint64_t snap_count = 0; 4042 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) { 4043 4044 error = zap_count(spa->spa_meta_objset, 4045 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count); 4046 4047 if (error != 0) { 4048 dsl_dataset_rele(ds, FTAG); 4049 return (error); 4050 } 4051 } 4052 4053 if (snap_count == 0) { 4054 /* Filesystem without snapshots. */ 4055 dsl_dataset_rele(ds, FTAG); 4056 return (0); 4057 } 4058 4059 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4060 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4061 4062 dsl_dataset_rele(ds, FTAG); 4063 4064 /* Check only snapshots created from this file system. */ 4065 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg && 4066 snap_obj_txg <= txg_to_consider) { 4067 4068 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds); 4069 if (error != 0) 4070 return (error); 4071 4072 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) { 4073 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4074 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4075 dsl_dataset_rele(ds, FTAG); 4076 continue; 4077 } 4078 4079 boolean_t affected = B_TRUE; 4080 if (check_snapshot) { 4081 uint64_t blk_txg; 4082 error = find_birth_txg(ds, zep, &blk_txg); 4083 4084 /* 4085 * Scrub the snapshot also when zb_birth == 0 or when 4086 * find_birth_txg() returns an error. 4087 */ 4088 affected = (error == 0 && zep->zb_birth == blk_txg) || 4089 (error != 0) || (zep->zb_birth == 0); 4090 } 4091 4092 /* Scrub snapshots. */ 4093 if (affected) { 4094 zbookmark_phys_t zb; 4095 zep_to_zb(snap_obj, zep, &zb); 4096 scn->scn_zio_root = zio_root(spa, NULL, NULL, 4097 ZIO_FLAG_CANFAIL); 4098 /* We have already acquired the config lock for spa */ 4099 read_by_block_level(scn, zb); 4100 4101 (void) zio_wait(scn->scn_zio_root); 4102 scn->scn_zio_root = NULL; 4103 4104 scn->errorscrub_phys.dep_examined++; 4105 scn->errorscrub_phys.dep_to_examine--; 4106 (*count)++; 4107 if ((*count) == zfs_scrub_error_blocks_per_txg || 4108 dsl_error_scrub_check_suspend(scn, &zb)) { 4109 dsl_dataset_rele(ds, FTAG); 4110 return (EFAULT); 4111 } 4112 } 4113 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg; 4114 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 4115 dsl_dataset_rele(ds, FTAG); 4116 } 4117 return (0); 4118 } 4119 4120 void 4121 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4122 { 4123 spa_t *spa = dp->dp_spa; 4124 dsl_scan_t *scn = dp->dp_scan; 4125 4126 /* 4127 * Only process scans in sync pass 1. 4128 */ 4129 4130 if (spa_sync_pass(spa) > 1) 4131 return; 4132 4133 /* 4134 * If the spa is shutting down, then stop scanning. This will 4135 * ensure that the scan does not dirty any new data during the 4136 * shutdown phase. 4137 */ 4138 if (spa_shutting_down(spa)) 4139 return; 4140 4141 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) { 4142 return; 4143 } 4144 4145 if (dsl_scan_resilvering(scn->scn_dp)) { 4146 /* cancel the error scrub if resilver started */ 4147 dsl_scan_cancel(scn->scn_dp); 4148 return; 4149 } 4150 4151 spa->spa_scrub_active = B_TRUE; 4152 scn->scn_sync_start_time = gethrtime(); 4153 4154 /* 4155 * zfs_scan_suspend_progress can be set to disable scrub progress. 4156 * See more detailed comment in dsl_scan_sync(). 4157 */ 4158 if (zfs_scan_suspend_progress) { 4159 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4160 int mintime = zfs_scrub_min_time_ms; 4161 4162 while (zfs_scan_suspend_progress && 4163 !txg_sync_waiting(scn->scn_dp) && 4164 !spa_shutting_down(scn->scn_dp->dp_spa) && 4165 NSEC2MSEC(scan_time_ns) < mintime) { 4166 delay(hz); 4167 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4168 } 4169 return; 4170 } 4171 4172 int i = 0; 4173 zap_attribute_t *za; 4174 zbookmark_phys_t *zb; 4175 boolean_t limit_exceeded = B_FALSE; 4176 4177 za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP); 4178 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP); 4179 4180 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 4181 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4182 zap_cursor_advance(&scn->errorscrub_cursor)) { 4183 name_to_bookmark(za->za_name, zb); 4184 4185 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4186 NULL, ZIO_FLAG_CANFAIL); 4187 dsl_pool_config_enter(dp, FTAG); 4188 read_by_block_level(scn, *zb); 4189 dsl_pool_config_exit(dp, FTAG); 4190 4191 (void) zio_wait(scn->scn_zio_root); 4192 scn->scn_zio_root = NULL; 4193 4194 scn->errorscrub_phys.dep_examined += 1; 4195 scn->errorscrub_phys.dep_to_examine -= 1; 4196 i++; 4197 if (i == zfs_scrub_error_blocks_per_txg || 4198 dsl_error_scrub_check_suspend(scn, zb)) { 4199 limit_exceeded = B_TRUE; 4200 break; 4201 } 4202 } 4203 4204 if (!limit_exceeded) 4205 dsl_errorscrub_done(scn, B_TRUE, tx); 4206 4207 dsl_errorscrub_sync_state(scn, tx); 4208 kmem_free(za, sizeof (*za)); 4209 kmem_free(zb, sizeof (*zb)); 4210 return; 4211 } 4212 4213 int error = 0; 4214 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0; 4215 zap_cursor_advance(&scn->errorscrub_cursor)) { 4216 4217 zap_cursor_t *head_ds_cursor; 4218 zap_attribute_t *head_ds_attr; 4219 zbookmark_err_phys_t head_ds_block; 4220 4221 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP); 4222 head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP); 4223 4224 uint64_t head_ds_err_obj = za->za_first_integer; 4225 uint64_t head_ds; 4226 name_to_object(za->za_name, &head_ds); 4227 boolean_t config_held = B_FALSE; 4228 uint64_t top_affected_fs; 4229 4230 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset, 4231 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor, 4232 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) { 4233 4234 name_to_errphys(head_ds_attr->za_name, &head_ds_block); 4235 4236 /* 4237 * In case we are called from spa_sync the pool 4238 * config is already held. 4239 */ 4240 if (!dsl_pool_config_held(dp)) { 4241 dsl_pool_config_enter(dp, FTAG); 4242 config_held = B_TRUE; 4243 } 4244 4245 error = find_top_affected_fs(spa, 4246 head_ds, &head_ds_block, &top_affected_fs); 4247 if (error) 4248 break; 4249 4250 error = scrub_filesystem(spa, top_affected_fs, 4251 &head_ds_block, &i); 4252 4253 if (error == SET_ERROR(EFAULT)) { 4254 limit_exceeded = B_TRUE; 4255 break; 4256 } 4257 } 4258 4259 zap_cursor_fini(head_ds_cursor); 4260 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor)); 4261 kmem_free(head_ds_attr, sizeof (*head_ds_attr)); 4262 4263 if (config_held) 4264 dsl_pool_config_exit(dp, FTAG); 4265 } 4266 4267 kmem_free(za, sizeof (*za)); 4268 kmem_free(zb, sizeof (*zb)); 4269 if (!limit_exceeded) 4270 dsl_errorscrub_done(scn, B_TRUE, tx); 4271 4272 dsl_errorscrub_sync_state(scn, tx); 4273 } 4274 4275 /* 4276 * This is the primary entry point for scans that is called from syncing 4277 * context. Scans must happen entirely during syncing context so that we 4278 * can guarantee that blocks we are currently scanning will not change out 4279 * from under us. While a scan is active, this function controls how quickly 4280 * transaction groups proceed, instead of the normal handling provided by 4281 * txg_sync_thread(). 4282 */ 4283 void 4284 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 4285 { 4286 int err = 0; 4287 dsl_scan_t *scn = dp->dp_scan; 4288 spa_t *spa = dp->dp_spa; 4289 state_sync_type_t sync_type = SYNC_OPTIONAL; 4290 4291 if (spa->spa_resilver_deferred && 4292 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4293 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 4294 4295 /* 4296 * Check for scn_restart_txg before checking spa_load_state, so 4297 * that we can restart an old-style scan while the pool is being 4298 * imported (see dsl_scan_init). We also restart scans if there 4299 * is a deferred resilver and the user has manually disabled 4300 * deferred resilvers via the tunable. 4301 */ 4302 if (dsl_scan_restarting(scn, tx) || 4303 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 4304 pool_scan_func_t func = POOL_SCAN_SCRUB; 4305 dsl_scan_done(scn, B_FALSE, tx); 4306 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 4307 func = POOL_SCAN_RESILVER; 4308 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 4309 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 4310 dsl_scan_setup_sync(&func, tx); 4311 } 4312 4313 /* 4314 * Only process scans in sync pass 1. 4315 */ 4316 if (spa_sync_pass(spa) > 1) 4317 return; 4318 4319 /* 4320 * If the spa is shutting down, then stop scanning. This will 4321 * ensure that the scan does not dirty any new data during the 4322 * shutdown phase. 4323 */ 4324 if (spa_shutting_down(spa)) 4325 return; 4326 4327 /* 4328 * If the scan is inactive due to a stalled async destroy, try again. 4329 */ 4330 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 4331 return; 4332 4333 /* reset scan statistics */ 4334 scn->scn_visited_this_txg = 0; 4335 scn->scn_dedup_frees_this_txg = 0; 4336 scn->scn_holes_this_txg = 0; 4337 scn->scn_lt_min_this_txg = 0; 4338 scn->scn_gt_max_this_txg = 0; 4339 scn->scn_ddt_contained_this_txg = 0; 4340 scn->scn_objsets_visited_this_txg = 0; 4341 scn->scn_avg_seg_size_this_txg = 0; 4342 scn->scn_segs_this_txg = 0; 4343 scn->scn_avg_zio_size_this_txg = 0; 4344 scn->scn_zios_this_txg = 0; 4345 scn->scn_suspending = B_FALSE; 4346 scn->scn_sync_start_time = gethrtime(); 4347 spa->spa_scrub_active = B_TRUE; 4348 4349 /* 4350 * First process the async destroys. If we suspend, don't do 4351 * any scrubbing or resilvering. This ensures that there are no 4352 * async destroys while we are scanning, so the scan code doesn't 4353 * have to worry about traversing it. It is also faster to free the 4354 * blocks than to scrub them. 4355 */ 4356 err = dsl_process_async_destroys(dp, tx); 4357 if (err != 0) 4358 return; 4359 4360 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 4361 return; 4362 4363 /* 4364 * Wait a few txgs after importing to begin scanning so that 4365 * we can get the pool imported quickly. 4366 */ 4367 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 4368 return; 4369 4370 /* 4371 * zfs_scan_suspend_progress can be set to disable scan progress. 4372 * We don't want to spin the txg_sync thread, so we add a delay 4373 * here to simulate the time spent doing a scan. This is mostly 4374 * useful for testing and debugging. 4375 */ 4376 if (zfs_scan_suspend_progress) { 4377 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4378 uint_t mintime = (scn->scn_phys.scn_func == 4379 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms : 4380 zfs_scrub_min_time_ms; 4381 4382 while (zfs_scan_suspend_progress && 4383 !txg_sync_waiting(scn->scn_dp) && 4384 !spa_shutting_down(scn->scn_dp->dp_spa) && 4385 NSEC2MSEC(scan_time_ns) < mintime) { 4386 delay(hz); 4387 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 4388 } 4389 return; 4390 } 4391 4392 /* 4393 * Disabled by default, set zfs_scan_report_txgs to report 4394 * average performance over the last zfs_scan_report_txgs TXGs. 4395 */ 4396 if (zfs_scan_report_txgs != 0 && 4397 tx->tx_txg % zfs_scan_report_txgs == 0) { 4398 scn->scn_issued_before_pass += spa->spa_scan_pass_issued; 4399 spa_scan_stat_init(spa); 4400 } 4401 4402 /* 4403 * It is possible to switch from unsorted to sorted at any time, 4404 * but afterwards the scan will remain sorted unless reloaded from 4405 * a checkpoint after a reboot. 4406 */ 4407 if (!zfs_scan_legacy) { 4408 scn->scn_is_sorted = B_TRUE; 4409 if (scn->scn_last_checkpoint == 0) 4410 scn->scn_last_checkpoint = ddi_get_lbolt(); 4411 } 4412 4413 /* 4414 * For sorted scans, determine what kind of work we will be doing 4415 * this txg based on our memory limitations and whether or not we 4416 * need to perform a checkpoint. 4417 */ 4418 if (scn->scn_is_sorted) { 4419 /* 4420 * If we are over our checkpoint interval, set scn_clearing 4421 * so that we can begin checkpointing immediately. The 4422 * checkpoint allows us to save a consistent bookmark 4423 * representing how much data we have scrubbed so far. 4424 * Otherwise, use the memory limit to determine if we should 4425 * scan for metadata or start issue scrub IOs. We accumulate 4426 * metadata until we hit our hard memory limit at which point 4427 * we issue scrub IOs until we are at our soft memory limit. 4428 */ 4429 if (scn->scn_checkpointing || 4430 ddi_get_lbolt() - scn->scn_last_checkpoint > 4431 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 4432 if (!scn->scn_checkpointing) 4433 zfs_dbgmsg("begin scan checkpoint for %s", 4434 spa->spa_name); 4435 4436 scn->scn_checkpointing = B_TRUE; 4437 scn->scn_clearing = B_TRUE; 4438 } else { 4439 boolean_t should_clear = dsl_scan_should_clear(scn); 4440 if (should_clear && !scn->scn_clearing) { 4441 zfs_dbgmsg("begin scan clearing for %s", 4442 spa->spa_name); 4443 scn->scn_clearing = B_TRUE; 4444 } else if (!should_clear && scn->scn_clearing) { 4445 zfs_dbgmsg("finish scan clearing for %s", 4446 spa->spa_name); 4447 scn->scn_clearing = B_FALSE; 4448 } 4449 } 4450 } else { 4451 ASSERT0(scn->scn_checkpointing); 4452 ASSERT0(scn->scn_clearing); 4453 } 4454 4455 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 4456 /* Need to scan metadata for more blocks to scrub */ 4457 dsl_scan_phys_t *scnp = &scn->scn_phys; 4458 taskqid_t prefetch_tqid; 4459 4460 /* 4461 * Calculate the max number of in-flight bytes for pool-wide 4462 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max). 4463 * Limits for the issuing phase are done per top-level vdev and 4464 * are handled separately. 4465 */ 4466 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20, 4467 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa))); 4468 4469 if (scnp->scn_ddt_bookmark.ddb_class <= 4470 scnp->scn_ddt_class_max) { 4471 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 4472 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4473 "ddt bm=%llu/%llu/%llu/%llx", 4474 spa->spa_name, 4475 (longlong_t)tx->tx_txg, 4476 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 4477 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 4478 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 4479 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 4480 } else { 4481 zfs_dbgmsg("doing scan sync for %s txg %llu; " 4482 "bm=%llu/%llu/%llu/%llu", 4483 spa->spa_name, 4484 (longlong_t)tx->tx_txg, 4485 (longlong_t)scnp->scn_bookmark.zb_objset, 4486 (longlong_t)scnp->scn_bookmark.zb_object, 4487 (longlong_t)scnp->scn_bookmark.zb_level, 4488 (longlong_t)scnp->scn_bookmark.zb_blkid); 4489 } 4490 4491 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4492 NULL, ZIO_FLAG_CANFAIL); 4493 4494 scn->scn_prefetch_stop = B_FALSE; 4495 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 4496 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 4497 ASSERT(prefetch_tqid != TASKQID_INVALID); 4498 4499 dsl_pool_config_enter(dp, FTAG); 4500 dsl_scan_visit(scn, tx); 4501 dsl_pool_config_exit(dp, FTAG); 4502 4503 mutex_enter(&dp->dp_spa->spa_scrub_lock); 4504 scn->scn_prefetch_stop = B_TRUE; 4505 cv_broadcast(&spa->spa_scrub_io_cv); 4506 mutex_exit(&dp->dp_spa->spa_scrub_lock); 4507 4508 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 4509 (void) zio_wait(scn->scn_zio_root); 4510 scn->scn_zio_root = NULL; 4511 4512 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 4513 "(%llu os's, %llu holes, %llu < mintxg, " 4514 "%llu in ddt, %llu > maxtxg)", 4515 (longlong_t)scn->scn_visited_this_txg, 4516 spa->spa_name, 4517 (longlong_t)NSEC2MSEC(gethrtime() - 4518 scn->scn_sync_start_time), 4519 (longlong_t)scn->scn_objsets_visited_this_txg, 4520 (longlong_t)scn->scn_holes_this_txg, 4521 (longlong_t)scn->scn_lt_min_this_txg, 4522 (longlong_t)scn->scn_ddt_contained_this_txg, 4523 (longlong_t)scn->scn_gt_max_this_txg); 4524 4525 if (!scn->scn_suspending) { 4526 ASSERT0(avl_numnodes(&scn->scn_queue)); 4527 scn->scn_done_txg = tx->tx_txg + 1; 4528 if (scn->scn_is_sorted) { 4529 scn->scn_checkpointing = B_TRUE; 4530 scn->scn_clearing = B_TRUE; 4531 scn->scn_issued_before_pass += 4532 spa->spa_scan_pass_issued; 4533 spa_scan_stat_init(spa); 4534 } 4535 zfs_dbgmsg("scan complete for %s txg %llu", 4536 spa->spa_name, 4537 (longlong_t)tx->tx_txg); 4538 } 4539 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 4540 ASSERT(scn->scn_clearing); 4541 4542 /* need to issue scrubbing IOs from per-vdev queues */ 4543 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 4544 NULL, ZIO_FLAG_CANFAIL); 4545 scan_io_queues_run(scn); 4546 (void) zio_wait(scn->scn_zio_root); 4547 scn->scn_zio_root = NULL; 4548 4549 /* calculate and dprintf the current memory usage */ 4550 (void) dsl_scan_should_clear(scn); 4551 dsl_scan_update_stats(scn); 4552 4553 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 4554 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 4555 (longlong_t)scn->scn_zios_this_txg, 4556 spa->spa_name, 4557 (longlong_t)scn->scn_segs_this_txg, 4558 (longlong_t)NSEC2MSEC(gethrtime() - 4559 scn->scn_sync_start_time), 4560 (longlong_t)scn->scn_avg_zio_size_this_txg, 4561 (longlong_t)scn->scn_avg_seg_size_this_txg); 4562 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 4563 /* Finished with everything. Mark the scrub as complete */ 4564 zfs_dbgmsg("scan issuing complete txg %llu for %s", 4565 (longlong_t)tx->tx_txg, 4566 spa->spa_name); 4567 ASSERT3U(scn->scn_done_txg, !=, 0); 4568 ASSERT0(spa->spa_scrub_inflight); 4569 ASSERT0(scn->scn_queues_pending); 4570 dsl_scan_done(scn, B_TRUE, tx); 4571 sync_type = SYNC_MANDATORY; 4572 } 4573 4574 dsl_scan_sync_state(scn, tx, sync_type); 4575 } 4576 4577 static void 4578 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 4579 { 4580 /* 4581 * Don't count embedded bp's, since we already did the work of 4582 * scanning these when we scanned the containing block. 4583 */ 4584 if (BP_IS_EMBEDDED(bp)) 4585 return; 4586 4587 /* 4588 * Update the spa's stats on how many bytes we have issued. 4589 * Sequential scrubs create a zio for each DVA of the bp. Each 4590 * of these will include all DVAs for repair purposes, but the 4591 * zio code will only try the first one unless there is an issue. 4592 * Therefore, we should only count the first DVA for these IOs. 4593 */ 4594 atomic_add_64(&spa->spa_scan_pass_issued, 4595 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4596 } 4597 4598 static void 4599 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all) 4600 { 4601 if (BP_IS_EMBEDDED(bp)) 4602 return; 4603 atomic_add_64(&scn->scn_phys.scn_skipped, 4604 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 4605 } 4606 4607 static void 4608 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 4609 { 4610 /* 4611 * If we resume after a reboot, zab will be NULL; don't record 4612 * incomplete stats in that case. 4613 */ 4614 if (zab == NULL) 4615 return; 4616 4617 for (int i = 0; i < 4; i++) { 4618 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 4619 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 4620 4621 if (t & DMU_OT_NEWTYPE) 4622 t = DMU_OT_OTHER; 4623 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 4624 int equal; 4625 4626 zb->zb_count++; 4627 zb->zb_asize += BP_GET_ASIZE(bp); 4628 zb->zb_lsize += BP_GET_LSIZE(bp); 4629 zb->zb_psize += BP_GET_PSIZE(bp); 4630 zb->zb_gangs += BP_COUNT_GANG(bp); 4631 4632 switch (BP_GET_NDVAS(bp)) { 4633 case 2: 4634 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 4635 DVA_GET_VDEV(&bp->blk_dva[1])) 4636 zb->zb_ditto_2_of_2_samevdev++; 4637 break; 4638 case 3: 4639 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 4640 DVA_GET_VDEV(&bp->blk_dva[1])) + 4641 (DVA_GET_VDEV(&bp->blk_dva[0]) == 4642 DVA_GET_VDEV(&bp->blk_dva[2])) + 4643 (DVA_GET_VDEV(&bp->blk_dva[1]) == 4644 DVA_GET_VDEV(&bp->blk_dva[2])); 4645 if (equal == 1) 4646 zb->zb_ditto_2_of_3_samevdev++; 4647 else if (equal == 3) 4648 zb->zb_ditto_3_of_3_samevdev++; 4649 break; 4650 } 4651 } 4652 } 4653 4654 static void 4655 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 4656 { 4657 avl_index_t idx; 4658 dsl_scan_t *scn = queue->q_scn; 4659 4660 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4661 4662 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 4663 atomic_add_64(&scn->scn_queues_pending, 1); 4664 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 4665 /* block is already scheduled for reading */ 4666 sio_free(sio); 4667 return; 4668 } 4669 avl_insert(&queue->q_sios_by_addr, sio, idx); 4670 queue->q_sio_memused += SIO_GET_MUSED(sio); 4671 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 4672 SIO_GET_ASIZE(sio)); 4673 } 4674 4675 /* 4676 * Given all the info we got from our metadata scanning process, we 4677 * construct a scan_io_t and insert it into the scan sorting queue. The 4678 * I/O must already be suitable for us to process. This is controlled 4679 * by dsl_scan_enqueue(). 4680 */ 4681 static void 4682 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 4683 int zio_flags, const zbookmark_phys_t *zb) 4684 { 4685 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 4686 4687 ASSERT0(BP_IS_GANG(bp)); 4688 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4689 4690 bp2sio(bp, sio, dva_i); 4691 sio->sio_flags = zio_flags; 4692 sio->sio_zb = *zb; 4693 4694 queue->q_last_ext_addr = -1; 4695 scan_io_queue_insert_impl(queue, sio); 4696 } 4697 4698 /* 4699 * Given a set of I/O parameters as discovered by the metadata traversal 4700 * process, attempts to place the I/O into the sorted queues (if allowed), 4701 * or immediately executes the I/O. 4702 */ 4703 static void 4704 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4705 const zbookmark_phys_t *zb) 4706 { 4707 spa_t *spa = dp->dp_spa; 4708 4709 ASSERT(!BP_IS_EMBEDDED(bp)); 4710 4711 /* 4712 * Gang blocks are hard to issue sequentially, so we just issue them 4713 * here immediately instead of queuing them. 4714 */ 4715 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 4716 scan_exec_io(dp, bp, zio_flags, zb, NULL); 4717 return; 4718 } 4719 4720 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 4721 dva_t dva; 4722 vdev_t *vdev; 4723 4724 dva = bp->blk_dva[i]; 4725 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 4726 ASSERT(vdev != NULL); 4727 4728 mutex_enter(&vdev->vdev_scan_io_queue_lock); 4729 if (vdev->vdev_scan_io_queue == NULL) 4730 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 4731 ASSERT(dp->dp_scan != NULL); 4732 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 4733 i, zio_flags, zb); 4734 mutex_exit(&vdev->vdev_scan_io_queue_lock); 4735 } 4736 } 4737 4738 static int 4739 dsl_scan_scrub_cb(dsl_pool_t *dp, 4740 const blkptr_t *bp, const zbookmark_phys_t *zb) 4741 { 4742 dsl_scan_t *scn = dp->dp_scan; 4743 spa_t *spa = dp->dp_spa; 4744 uint64_t phys_birth = BP_GET_BIRTH(bp); 4745 size_t psize = BP_GET_PSIZE(bp); 4746 boolean_t needs_io = B_FALSE; 4747 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 4748 4749 count_block(dp->dp_blkstats, bp); 4750 if (phys_birth <= scn->scn_phys.scn_min_txg || 4751 phys_birth >= scn->scn_phys.scn_max_txg) { 4752 count_block_skipped(scn, bp, B_TRUE); 4753 return (0); 4754 } 4755 4756 /* Embedded BP's have phys_birth==0, so we reject them above. */ 4757 ASSERT(!BP_IS_EMBEDDED(bp)); 4758 4759 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 4760 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 4761 zio_flags |= ZIO_FLAG_SCRUB; 4762 needs_io = B_TRUE; 4763 } else { 4764 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 4765 zio_flags |= ZIO_FLAG_RESILVER; 4766 needs_io = B_FALSE; 4767 } 4768 4769 /* If it's an intent log block, failure is expected. */ 4770 if (zb->zb_level == ZB_ZIL_LEVEL) 4771 zio_flags |= ZIO_FLAG_SPECULATIVE; 4772 4773 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 4774 const dva_t *dva = &bp->blk_dva[d]; 4775 4776 /* 4777 * Keep track of how much data we've examined so that 4778 * zpool(8) status can make useful progress reports. 4779 */ 4780 uint64_t asize = DVA_GET_ASIZE(dva); 4781 scn->scn_phys.scn_examined += asize; 4782 spa->spa_scan_pass_exam += asize; 4783 4784 /* if it's a resilver, this may not be in the target range */ 4785 if (!needs_io) 4786 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4787 phys_birth); 4788 } 4789 4790 if (needs_io && !zfs_no_scrub_io) { 4791 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4792 } else { 4793 count_block_skipped(scn, bp, B_TRUE); 4794 } 4795 4796 /* do not relocate this block */ 4797 return (0); 4798 } 4799 4800 static void 4801 dsl_scan_scrub_done(zio_t *zio) 4802 { 4803 spa_t *spa = zio->io_spa; 4804 blkptr_t *bp = zio->io_bp; 4805 dsl_scan_io_queue_t *queue = zio->io_private; 4806 4807 abd_free(zio->io_abd); 4808 4809 if (queue == NULL) { 4810 mutex_enter(&spa->spa_scrub_lock); 4811 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4812 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4813 cv_broadcast(&spa->spa_scrub_io_cv); 4814 mutex_exit(&spa->spa_scrub_lock); 4815 } else { 4816 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4817 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4818 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4819 cv_broadcast(&queue->q_zio_cv); 4820 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4821 } 4822 4823 if (zio->io_error && (zio->io_error != ECKSUM || 4824 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4825 if (dsl_errorscrubbing(spa->spa_dsl_pool) && 4826 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) { 4827 atomic_inc_64(&spa->spa_dsl_pool->dp_scan 4828 ->errorscrub_phys.dep_errors); 4829 } else { 4830 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys 4831 .scn_errors); 4832 } 4833 } 4834 } 4835 4836 /* 4837 * Given a scanning zio's information, executes the zio. The zio need 4838 * not necessarily be only sortable, this function simply executes the 4839 * zio, no matter what it is. The optional queue argument allows the 4840 * caller to specify that they want per top level vdev IO rate limiting 4841 * instead of the legacy global limiting. 4842 */ 4843 static void 4844 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4845 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4846 { 4847 spa_t *spa = dp->dp_spa; 4848 dsl_scan_t *scn = dp->dp_scan; 4849 size_t size = BP_GET_PSIZE(bp); 4850 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4851 zio_t *pio; 4852 4853 if (queue == NULL) { 4854 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4855 mutex_enter(&spa->spa_scrub_lock); 4856 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4857 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4858 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4859 mutex_exit(&spa->spa_scrub_lock); 4860 pio = scn->scn_zio_root; 4861 } else { 4862 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4863 4864 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4865 mutex_enter(q_lock); 4866 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4867 cv_wait(&queue->q_zio_cv, q_lock); 4868 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4869 pio = queue->q_zio; 4870 mutex_exit(q_lock); 4871 } 4872 4873 ASSERT(pio != NULL); 4874 count_block_issued(spa, bp, queue == NULL); 4875 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4876 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4877 } 4878 4879 /* 4880 * This is the primary extent sorting algorithm. We balance two parameters: 4881 * 1) how many bytes of I/O are in an extent 4882 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4883 * Since we allow extents to have gaps between their constituent I/Os, it's 4884 * possible to have a fairly large extent that contains the same amount of 4885 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4886 * The algorithm sorts based on a score calculated from the extent's size, 4887 * the relative fill volume (in %) and a "fill weight" parameter that controls 4888 * the split between whether we prefer larger extents or more well populated 4889 * extents: 4890 * 4891 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4892 * 4893 * Example: 4894 * 1) assume extsz = 64 MiB 4895 * 2) assume fill = 32 MiB (extent is half full) 4896 * 3) assume fill_weight = 3 4897 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4898 * SCORE = 32M + (50 * 3 * 32M) / 100 4899 * SCORE = 32M + (4800M / 100) 4900 * SCORE = 32M + 48M 4901 * ^ ^ 4902 * | +--- final total relative fill-based score 4903 * +--------- final total fill-based score 4904 * SCORE = 80M 4905 * 4906 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4907 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4908 * Note that as an optimization, we replace multiplication and division by 4909 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4910 * 4911 * Since we do not care if one extent is only few percent better than another, 4912 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4913 * put into otherwise unused due to ashift high bits of offset. This allows 4914 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4915 * with single operation. Plus it makes scrubs more sequential and reduces 4916 * chances that minor extent change move it within the B-tree. 4917 */ 4918 __attribute__((always_inline)) inline 4919 static int 4920 ext_size_compare(const void *x, const void *y) 4921 { 4922 const uint64_t *a = x, *b = y; 4923 4924 return (TREE_CMP(*a, *b)); 4925 } 4926 4927 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t, 4928 ext_size_compare) 4929 4930 static void 4931 ext_size_create(range_tree_t *rt, void *arg) 4932 { 4933 (void) rt; 4934 zfs_btree_t *size_tree = arg; 4935 4936 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf, 4937 sizeof (uint64_t)); 4938 } 4939 4940 static void 4941 ext_size_destroy(range_tree_t *rt, void *arg) 4942 { 4943 (void) rt; 4944 zfs_btree_t *size_tree = arg; 4945 ASSERT0(zfs_btree_numnodes(size_tree)); 4946 4947 zfs_btree_destroy(size_tree); 4948 } 4949 4950 static uint64_t 4951 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 4952 { 4953 (void) rt; 4954 uint64_t size = rsg->rs_end - rsg->rs_start; 4955 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 4956 fill_weight * rsg->rs_fill) >> 7); 4957 ASSERT3U(rt->rt_shift, >=, 8); 4958 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 4959 } 4960 4961 static void 4962 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 4963 { 4964 zfs_btree_t *size_tree = arg; 4965 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4966 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4967 zfs_btree_add(size_tree, &v); 4968 } 4969 4970 static void 4971 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 4972 { 4973 zfs_btree_t *size_tree = arg; 4974 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4975 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4976 zfs_btree_remove(size_tree, &v); 4977 } 4978 4979 static void 4980 ext_size_vacate(range_tree_t *rt, void *arg) 4981 { 4982 zfs_btree_t *size_tree = arg; 4983 zfs_btree_clear(size_tree); 4984 zfs_btree_destroy(size_tree); 4985 4986 ext_size_create(rt, arg); 4987 } 4988 4989 static const range_tree_ops_t ext_size_ops = { 4990 .rtop_create = ext_size_create, 4991 .rtop_destroy = ext_size_destroy, 4992 .rtop_add = ext_size_add, 4993 .rtop_remove = ext_size_remove, 4994 .rtop_vacate = ext_size_vacate 4995 }; 4996 4997 /* 4998 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4999 * based on LBA-order (from lowest to highest). 5000 */ 5001 static int 5002 sio_addr_compare(const void *x, const void *y) 5003 { 5004 const scan_io_t *a = x, *b = y; 5005 5006 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 5007 } 5008 5009 /* IO queues are created on demand when they are needed. */ 5010 static dsl_scan_io_queue_t * 5011 scan_io_queue_create(vdev_t *vd) 5012 { 5013 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 5014 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 5015 5016 q->q_scn = scn; 5017 q->q_vd = vd; 5018 q->q_sio_memused = 0; 5019 q->q_last_ext_addr = -1; 5020 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 5021 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 5022 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 5023 avl_create(&q->q_sios_by_addr, sio_addr_compare, 5024 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 5025 5026 return (q); 5027 } 5028 5029 /* 5030 * Destroys a scan queue and all segments and scan_io_t's contained in it. 5031 * No further execution of I/O occurs, anything pending in the queue is 5032 * simply freed without being executed. 5033 */ 5034 void 5035 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 5036 { 5037 dsl_scan_t *scn = queue->q_scn; 5038 scan_io_t *sio; 5039 void *cookie = NULL; 5040 5041 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 5042 5043 if (!avl_is_empty(&queue->q_sios_by_addr)) 5044 atomic_add_64(&scn->scn_queues_pending, -1); 5045 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 5046 NULL) { 5047 ASSERT(range_tree_contains(queue->q_exts_by_addr, 5048 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 5049 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5050 sio_free(sio); 5051 } 5052 5053 ASSERT0(queue->q_sio_memused); 5054 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 5055 range_tree_destroy(queue->q_exts_by_addr); 5056 avl_destroy(&queue->q_sios_by_addr); 5057 cv_destroy(&queue->q_zio_cv); 5058 5059 kmem_free(queue, sizeof (*queue)); 5060 } 5061 5062 /* 5063 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 5064 * called on behalf of vdev_top_transfer when creating or destroying 5065 * a mirror vdev due to zpool attach/detach. 5066 */ 5067 void 5068 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 5069 { 5070 mutex_enter(&svd->vdev_scan_io_queue_lock); 5071 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5072 5073 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 5074 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 5075 svd->vdev_scan_io_queue = NULL; 5076 if (tvd->vdev_scan_io_queue != NULL) 5077 tvd->vdev_scan_io_queue->q_vd = tvd; 5078 5079 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5080 mutex_exit(&svd->vdev_scan_io_queue_lock); 5081 } 5082 5083 static void 5084 scan_io_queues_destroy(dsl_scan_t *scn) 5085 { 5086 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 5087 5088 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5089 vdev_t *tvd = rvd->vdev_child[i]; 5090 5091 mutex_enter(&tvd->vdev_scan_io_queue_lock); 5092 if (tvd->vdev_scan_io_queue != NULL) 5093 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 5094 tvd->vdev_scan_io_queue = NULL; 5095 mutex_exit(&tvd->vdev_scan_io_queue_lock); 5096 } 5097 } 5098 5099 static void 5100 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 5101 { 5102 dsl_pool_t *dp = spa->spa_dsl_pool; 5103 dsl_scan_t *scn = dp->dp_scan; 5104 vdev_t *vdev; 5105 kmutex_t *q_lock; 5106 dsl_scan_io_queue_t *queue; 5107 scan_io_t *srch_sio, *sio; 5108 avl_index_t idx; 5109 uint64_t start, size; 5110 5111 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 5112 ASSERT(vdev != NULL); 5113 q_lock = &vdev->vdev_scan_io_queue_lock; 5114 queue = vdev->vdev_scan_io_queue; 5115 5116 mutex_enter(q_lock); 5117 if (queue == NULL) { 5118 mutex_exit(q_lock); 5119 return; 5120 } 5121 5122 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 5123 bp2sio(bp, srch_sio, dva_i); 5124 start = SIO_GET_OFFSET(srch_sio); 5125 size = SIO_GET_ASIZE(srch_sio); 5126 5127 /* 5128 * We can find the zio in two states: 5129 * 1) Cold, just sitting in the queue of zio's to be issued at 5130 * some point in the future. In this case, all we do is 5131 * remove the zio from the q_sios_by_addr tree, decrement 5132 * its data volume from the containing range_seg_t and 5133 * resort the q_exts_by_size tree to reflect that the 5134 * range_seg_t has lost some of its 'fill'. We don't shorten 5135 * the range_seg_t - this is usually rare enough not to be 5136 * worth the extra hassle of trying keep track of precise 5137 * extent boundaries. 5138 * 2) Hot, where the zio is currently in-flight in 5139 * dsl_scan_issue_ios. In this case, we can't simply 5140 * reach in and stop the in-flight zio's, so we instead 5141 * block the caller. Eventually, dsl_scan_issue_ios will 5142 * be done with issuing the zio's it gathered and will 5143 * signal us. 5144 */ 5145 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 5146 sio_free(srch_sio); 5147 5148 if (sio != NULL) { 5149 blkptr_t tmpbp; 5150 5151 /* Got it while it was cold in the queue */ 5152 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 5153 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 5154 avl_remove(&queue->q_sios_by_addr, sio); 5155 if (avl_is_empty(&queue->q_sios_by_addr)) 5156 atomic_add_64(&scn->scn_queues_pending, -1); 5157 queue->q_sio_memused -= SIO_GET_MUSED(sio); 5158 5159 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 5160 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 5161 5162 /* count the block as though we skipped it */ 5163 sio2bp(sio, &tmpbp); 5164 count_block_skipped(scn, &tmpbp, B_FALSE); 5165 5166 sio_free(sio); 5167 } 5168 mutex_exit(q_lock); 5169 } 5170 5171 /* 5172 * Callback invoked when a zio_free() zio is executing. This needs to be 5173 * intercepted to prevent the zio from deallocating a particular portion 5174 * of disk space and it then getting reallocated and written to, while we 5175 * still have it queued up for processing. 5176 */ 5177 void 5178 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 5179 { 5180 dsl_pool_t *dp = spa->spa_dsl_pool; 5181 dsl_scan_t *scn = dp->dp_scan; 5182 5183 ASSERT(!BP_IS_EMBEDDED(bp)); 5184 ASSERT(scn != NULL); 5185 if (!dsl_scan_is_running(scn)) 5186 return; 5187 5188 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 5189 dsl_scan_freed_dva(spa, bp, i); 5190 } 5191 5192 /* 5193 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 5194 * not started, start it. Otherwise, only restart if max txg in DTL range is 5195 * greater than the max txg in the current scan. If the DTL max is less than 5196 * the scan max, then the vdev has not missed any new data since the resilver 5197 * started, so a restart is not needed. 5198 */ 5199 void 5200 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 5201 { 5202 uint64_t min, max; 5203 5204 if (!vdev_resilver_needed(vd, &min, &max)) 5205 return; 5206 5207 if (!dsl_scan_resilvering(dp)) { 5208 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5209 return; 5210 } 5211 5212 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 5213 return; 5214 5215 /* restart is needed, check if it can be deferred */ 5216 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 5217 vdev_defer_resilver(vd); 5218 else 5219 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 5220 } 5221 5222 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW, 5223 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 5224 5225 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW, 5226 "Min millisecs to scrub per txg"); 5227 5228 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW, 5229 "Min millisecs to obsolete per txg"); 5230 5231 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW, 5232 "Min millisecs to free per txg"); 5233 5234 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW, 5235 "Min millisecs to resilver per txg"); 5236 5237 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 5238 "Set to prevent scans from progressing"); 5239 5240 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 5241 "Set to disable scrub I/O"); 5242 5243 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 5244 "Set to disable scrub prefetching"); 5245 5246 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW, 5247 "Max number of blocks freed in one txg"); 5248 5249 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW, 5250 "Max number of dedup blocks freed in one txg"); 5251 5252 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 5253 "Enable processing of the free_bpobj"); 5254 5255 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 5256 "Enable block statistics calculation during scrub"); 5257 5258 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW, 5259 "Fraction of RAM for scan hard limit"); 5260 5261 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW, 5262 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 5263 5264 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 5265 "Scrub using legacy non-sequential method"); 5266 5267 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW, 5268 "Scan progress on-disk checkpointing interval"); 5269 5270 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW, 5271 "Max gap in bytes between sequential scrub / resilver I/Os"); 5272 5273 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW, 5274 "Fraction of hard limit used as soft limit"); 5275 5276 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 5277 "Tunable to attempt to reduce lock contention"); 5278 5279 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW, 5280 "Tunable to adjust bias towards more filled segments during scans"); 5281 5282 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW, 5283 "Tunable to report resilver performance over the last N txgs"); 5284 5285 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 5286 "Process all resilvers immediately"); 5287 5288 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW, 5289 "Error blocks to be scrubbed in one txg"); 5290 /* END CSTYLED */ 5291