1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 static int zfs_scan_blkstats = 0; 133 134 /* 135 * By default zfs will check to ensure it is not over the hard memory 136 * limit before each txg. If finer-grained control of this is needed 137 * this value can be set to 1 to enable checking before scanning each 138 * block. 139 */ 140 static int zfs_scan_strict_mem_lim = B_FALSE; 141 142 /* 143 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 144 * to strike a balance here between keeping the vdev queues full of I/Os 145 * at all times and not overflowing the queues to cause long latency, 146 * which would cause long txg sync times. No matter what, we will not 147 * overload the drives with I/O, since that is protected by 148 * zfs_vdev_scrub_max_active. 149 */ 150 static unsigned long zfs_scan_vdev_limit = 4 << 20; 151 152 static int zfs_scan_issue_strategy = 0; 153 static int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 154 static unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 155 156 /* 157 * fill_weight is non-tunable at runtime, so we copy it at module init from 158 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 159 * break queue sorting. 160 */ 161 static int zfs_scan_fill_weight = 3; 162 static uint64_t fill_weight; 163 164 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 165 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 166 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 167 static int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 168 static int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 169 170 static int zfs_scrub_min_time_ms = 1000; /* min millis to scrub per txg */ 171 static int zfs_obsolete_min_time_ms = 500; /* min millis to obsolete per txg */ 172 static int zfs_free_min_time_ms = 1000; /* min millis to free per txg */ 173 static int zfs_resilver_min_time_ms = 3000; /* min millis to resilver per txg */ 174 static int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 175 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 176 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 177 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 178 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 179 /* max number of blocks to free in a single TXG */ 180 static unsigned long zfs_async_block_max_blocks = ULONG_MAX; 181 /* max number of dedup blocks to free in a single TXG */ 182 static unsigned long zfs_max_async_dedup_frees = 100000; 183 184 /* set to disable resilver deferring */ 185 static int zfs_resilver_disable_defer = B_FALSE; 186 187 /* 188 * We wait a few txgs after importing a pool to begin scanning so that 189 * the import / mounting code isn't held up by scrub / resilver IO. 190 * Unfortunately, it is a bit difficult to determine exactly how long 191 * this will take since userspace will trigger fs mounts asynchronously 192 * and the kernel will create zvol minors asynchronously. As a result, 193 * the value provided here is a bit arbitrary, but represents a 194 * reasonable estimate of how many txgs it will take to finish fully 195 * importing a pool 196 */ 197 #define SCAN_IMPORT_WAIT_TXGS 5 198 199 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 200 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 201 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 202 203 /* 204 * Enable/disable the processing of the free_bpobj object. 205 */ 206 static int zfs_free_bpobj_enabled = 1; 207 208 /* the order has to match pool_scan_type */ 209 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 210 NULL, 211 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 212 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 213 }; 214 215 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 216 typedef struct { 217 uint64_t sds_dsobj; 218 uint64_t sds_txg; 219 avl_node_t sds_node; 220 } scan_ds_t; 221 222 /* 223 * This controls what conditions are placed on dsl_scan_sync_state(): 224 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0 225 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0. 226 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise 227 * write out the scn_phys_cached version. 228 * See dsl_scan_sync_state for details. 229 */ 230 typedef enum { 231 SYNC_OPTIONAL, 232 SYNC_MANDATORY, 233 SYNC_CACHED 234 } state_sync_type_t; 235 236 /* 237 * This struct represents the minimum information needed to reconstruct a 238 * zio for sequential scanning. This is useful because many of these will 239 * accumulate in the sequential IO queues before being issued, so saving 240 * memory matters here. 241 */ 242 typedef struct scan_io { 243 /* fields from blkptr_t */ 244 uint64_t sio_blk_prop; 245 uint64_t sio_phys_birth; 246 uint64_t sio_birth; 247 zio_cksum_t sio_cksum; 248 uint32_t sio_nr_dvas; 249 250 /* fields from zio_t */ 251 uint32_t sio_flags; 252 zbookmark_phys_t sio_zb; 253 254 /* members for queue sorting */ 255 union { 256 avl_node_t sio_addr_node; /* link into issuing queue */ 257 list_node_t sio_list_node; /* link for issuing to disk */ 258 } sio_nodes; 259 260 /* 261 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 262 * depending on how many were in the original bp. Only the 263 * first DVA is really used for sorting and issuing purposes. 264 * The other DVAs (if provided) simply exist so that the zio 265 * layer can find additional copies to repair from in the 266 * event of an error. This array must go at the end of the 267 * struct to allow this for the variable number of elements. 268 */ 269 dva_t sio_dva[0]; 270 } scan_io_t; 271 272 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 273 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 274 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 275 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 276 #define SIO_GET_END_OFFSET(sio) \ 277 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 278 #define SIO_GET_MUSED(sio) \ 279 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 280 281 struct dsl_scan_io_queue { 282 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 283 vdev_t *q_vd; /* top-level vdev that this queue represents */ 284 zio_t *q_zio; /* scn_zio_root child for waiting on IO */ 285 286 /* trees used for sorting I/Os and extents of I/Os */ 287 range_tree_t *q_exts_by_addr; 288 zfs_btree_t q_exts_by_size; 289 avl_tree_t q_sios_by_addr; 290 uint64_t q_sio_memused; 291 uint64_t q_last_ext_addr; 292 293 /* members for zio rate limiting */ 294 uint64_t q_maxinflight_bytes; 295 uint64_t q_inflight_bytes; 296 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 297 298 /* per txg statistics */ 299 uint64_t q_total_seg_size_this_txg; 300 uint64_t q_segs_this_txg; 301 uint64_t q_total_zio_size_this_txg; 302 uint64_t q_zios_this_txg; 303 }; 304 305 /* private data for dsl_scan_prefetch_cb() */ 306 typedef struct scan_prefetch_ctx { 307 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 308 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 309 boolean_t spc_root; /* is this prefetch for an objset? */ 310 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 311 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 312 } scan_prefetch_ctx_t; 313 314 /* private data for dsl_scan_prefetch() */ 315 typedef struct scan_prefetch_issue_ctx { 316 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 317 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 318 blkptr_t spic_bp; /* bp to prefetch */ 319 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 320 } scan_prefetch_issue_ctx_t; 321 322 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 323 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 324 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 325 scan_io_t *sio); 326 327 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 328 static void scan_io_queues_destroy(dsl_scan_t *scn); 329 330 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 331 332 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 333 static void 334 sio_free(scan_io_t *sio) 335 { 336 ASSERT3U(sio->sio_nr_dvas, >, 0); 337 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 338 339 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 340 } 341 342 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 343 static scan_io_t * 344 sio_alloc(unsigned short nr_dvas) 345 { 346 ASSERT3U(nr_dvas, >, 0); 347 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 348 349 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 350 } 351 352 void 353 scan_init(void) 354 { 355 /* 356 * This is used in ext_size_compare() to weight segments 357 * based on how sparse they are. This cannot be changed 358 * mid-scan and the tree comparison functions don't currently 359 * have a mechanism for passing additional context to the 360 * compare functions. Thus we store this value globally and 361 * we only allow it to be set at module initialization time 362 */ 363 fill_weight = zfs_scan_fill_weight; 364 365 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 366 char name[36]; 367 368 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 369 sio_cache[i] = kmem_cache_create(name, 370 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 371 0, NULL, NULL, NULL, NULL, NULL, 0); 372 } 373 } 374 375 void 376 scan_fini(void) 377 { 378 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 379 kmem_cache_destroy(sio_cache[i]); 380 } 381 } 382 383 static inline boolean_t 384 dsl_scan_is_running(const dsl_scan_t *scn) 385 { 386 return (scn->scn_phys.scn_state == DSS_SCANNING); 387 } 388 389 boolean_t 390 dsl_scan_resilvering(dsl_pool_t *dp) 391 { 392 return (dsl_scan_is_running(dp->dp_scan) && 393 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 394 } 395 396 static inline void 397 sio2bp(const scan_io_t *sio, blkptr_t *bp) 398 { 399 memset(bp, 0, sizeof (*bp)); 400 bp->blk_prop = sio->sio_blk_prop; 401 bp->blk_phys_birth = sio->sio_phys_birth; 402 bp->blk_birth = sio->sio_birth; 403 bp->blk_fill = 1; /* we always only work with data pointers */ 404 bp->blk_cksum = sio->sio_cksum; 405 406 ASSERT3U(sio->sio_nr_dvas, >, 0); 407 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 408 409 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t)); 410 } 411 412 static inline void 413 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 414 { 415 sio->sio_blk_prop = bp->blk_prop; 416 sio->sio_phys_birth = bp->blk_phys_birth; 417 sio->sio_birth = bp->blk_birth; 418 sio->sio_cksum = bp->blk_cksum; 419 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 420 421 /* 422 * Copy the DVAs to the sio. We need all copies of the block so 423 * that the self healing code can use the alternate copies if the 424 * first is corrupted. We want the DVA at index dva_i to be first 425 * in the sio since this is the primary one that we want to issue. 426 */ 427 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 428 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 429 } 430 } 431 432 int 433 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 434 { 435 int err; 436 dsl_scan_t *scn; 437 spa_t *spa = dp->dp_spa; 438 uint64_t f; 439 440 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 441 scn->scn_dp = dp; 442 443 /* 444 * It's possible that we're resuming a scan after a reboot so 445 * make sure that the scan_async_destroying flag is initialized 446 * appropriately. 447 */ 448 ASSERT(!scn->scn_async_destroying); 449 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 450 SPA_FEATURE_ASYNC_DESTROY); 451 452 /* 453 * Calculate the max number of in-flight bytes for pool-wide 454 * scanning operations (minimum 1MB). Limits for the issuing 455 * phase are done per top-level vdev and are handled separately. 456 */ 457 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 458 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 459 460 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 461 offsetof(scan_ds_t, sds_node)); 462 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 463 sizeof (scan_prefetch_issue_ctx_t), 464 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 465 466 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 467 "scrub_func", sizeof (uint64_t), 1, &f); 468 if (err == 0) { 469 /* 470 * There was an old-style scrub in progress. Restart a 471 * new-style scrub from the beginning. 472 */ 473 scn->scn_restart_txg = txg; 474 zfs_dbgmsg("old-style scrub was in progress for %s; " 475 "restarting new-style scrub in txg %llu", 476 spa->spa_name, 477 (longlong_t)scn->scn_restart_txg); 478 479 /* 480 * Load the queue obj from the old location so that it 481 * can be freed by dsl_scan_done(). 482 */ 483 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 484 "scrub_queue", sizeof (uint64_t), 1, 485 &scn->scn_phys.scn_queue_obj); 486 } else { 487 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 488 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 489 &scn->scn_phys); 490 /* 491 * Detect if the pool contains the signature of #2094. If it 492 * does properly update the scn->scn_phys structure and notify 493 * the administrator by setting an errata for the pool. 494 */ 495 if (err == EOVERFLOW) { 496 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 497 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 498 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 499 (23 * sizeof (uint64_t))); 500 501 err = zap_lookup(dp->dp_meta_objset, 502 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 503 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 504 if (err == 0) { 505 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 506 507 if (overflow & ~DSL_SCAN_FLAGS_MASK || 508 scn->scn_async_destroying) { 509 spa->spa_errata = 510 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 511 return (EOVERFLOW); 512 } 513 514 memcpy(&scn->scn_phys, zaptmp, 515 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 516 scn->scn_phys.scn_flags = overflow; 517 518 /* Required scrub already in progress. */ 519 if (scn->scn_phys.scn_state == DSS_FINISHED || 520 scn->scn_phys.scn_state == DSS_CANCELED) 521 spa->spa_errata = 522 ZPOOL_ERRATA_ZOL_2094_SCRUB; 523 } 524 } 525 526 if (err == ENOENT) 527 return (0); 528 else if (err) 529 return (err); 530 531 /* 532 * We might be restarting after a reboot, so jump the issued 533 * counter to how far we've scanned. We know we're consistent 534 * up to here. 535 */ 536 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 537 538 if (dsl_scan_is_running(scn) && 539 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 540 /* 541 * A new-type scrub was in progress on an old 542 * pool, and the pool was accessed by old 543 * software. Restart from the beginning, since 544 * the old software may have changed the pool in 545 * the meantime. 546 */ 547 scn->scn_restart_txg = txg; 548 zfs_dbgmsg("new-style scrub for %s was modified " 549 "by old software; restarting in txg %llu", 550 spa->spa_name, 551 (longlong_t)scn->scn_restart_txg); 552 } else if (dsl_scan_resilvering(dp)) { 553 /* 554 * If a resilver is in progress and there are already 555 * errors, restart it instead of finishing this scan and 556 * then restarting it. If there haven't been any errors 557 * then remember that the incore DTL is valid. 558 */ 559 if (scn->scn_phys.scn_errors > 0) { 560 scn->scn_restart_txg = txg; 561 zfs_dbgmsg("resilver can't excise DTL_MISSING " 562 "when finished; restarting on %s in txg " 563 "%llu", 564 spa->spa_name, 565 (u_longlong_t)scn->scn_restart_txg); 566 } else { 567 /* it's safe to excise DTL when finished */ 568 spa->spa_scrub_started = B_TRUE; 569 } 570 } 571 } 572 573 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 574 575 /* reload the queue into the in-core state */ 576 if (scn->scn_phys.scn_queue_obj != 0) { 577 zap_cursor_t zc; 578 zap_attribute_t za; 579 580 for (zap_cursor_init(&zc, dp->dp_meta_objset, 581 scn->scn_phys.scn_queue_obj); 582 zap_cursor_retrieve(&zc, &za) == 0; 583 (void) zap_cursor_advance(&zc)) { 584 scan_ds_queue_insert(scn, 585 zfs_strtonum(za.za_name, NULL), 586 za.za_first_integer); 587 } 588 zap_cursor_fini(&zc); 589 } 590 591 spa_scan_stat_init(spa); 592 return (0); 593 } 594 595 void 596 dsl_scan_fini(dsl_pool_t *dp) 597 { 598 if (dp->dp_scan != NULL) { 599 dsl_scan_t *scn = dp->dp_scan; 600 601 if (scn->scn_taskq != NULL) 602 taskq_destroy(scn->scn_taskq); 603 604 scan_ds_queue_clear(scn); 605 avl_destroy(&scn->scn_queue); 606 scan_ds_prefetch_queue_clear(scn); 607 avl_destroy(&scn->scn_prefetch_queue); 608 609 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 610 dp->dp_scan = NULL; 611 } 612 } 613 614 static boolean_t 615 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 616 { 617 return (scn->scn_restart_txg != 0 && 618 scn->scn_restart_txg <= tx->tx_txg); 619 } 620 621 boolean_t 622 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 623 { 624 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 625 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 626 } 627 628 boolean_t 629 dsl_scan_scrubbing(const dsl_pool_t *dp) 630 { 631 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 632 633 return (scn_phys->scn_state == DSS_SCANNING && 634 scn_phys->scn_func == POOL_SCAN_SCRUB); 635 } 636 637 boolean_t 638 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 639 { 640 return (dsl_scan_scrubbing(scn->scn_dp) && 641 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 642 } 643 644 /* 645 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 646 * Because we can be running in the block sorting algorithm, we do not always 647 * want to write out the record, only when it is "safe" to do so. This safety 648 * condition is achieved by making sure that the sorting queues are empty 649 * (scn_queues_pending == 0). When this condition is not true, the sync'd state 650 * is inconsistent with how much actual scanning progress has been made. The 651 * kind of sync to be performed is specified by the sync_type argument. If the 652 * sync is optional, we only sync if the queues are empty. If the sync is 653 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 654 * third possible state is a "cached" sync. This is done in response to: 655 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 656 * destroyed, so we wouldn't be able to restart scanning from it. 657 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 658 * superseded by a newer snapshot. 659 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 660 * swapped with its clone. 661 * In all cases, a cached sync simply rewrites the last record we've written, 662 * just slightly modified. For the modifications that are performed to the 663 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 664 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 665 */ 666 static void 667 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 668 { 669 int i; 670 spa_t *spa = scn->scn_dp->dp_spa; 671 672 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0); 673 if (scn->scn_queues_pending == 0) { 674 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 675 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 676 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 677 678 if (q == NULL) 679 continue; 680 681 mutex_enter(&vd->vdev_scan_io_queue_lock); 682 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 683 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 684 NULL); 685 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 686 mutex_exit(&vd->vdev_scan_io_queue_lock); 687 } 688 689 if (scn->scn_phys.scn_queue_obj != 0) 690 scan_ds_queue_sync(scn, tx); 691 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 692 DMU_POOL_DIRECTORY_OBJECT, 693 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 694 &scn->scn_phys, tx)); 695 memcpy(&scn->scn_phys_cached, &scn->scn_phys, 696 sizeof (scn->scn_phys)); 697 698 if (scn->scn_checkpointing) 699 zfs_dbgmsg("finish scan checkpoint for %s", 700 spa->spa_name); 701 702 scn->scn_checkpointing = B_FALSE; 703 scn->scn_last_checkpoint = ddi_get_lbolt(); 704 } else if (sync_type == SYNC_CACHED) { 705 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 706 DMU_POOL_DIRECTORY_OBJECT, 707 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 708 &scn->scn_phys_cached, tx)); 709 } 710 } 711 712 int 713 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 714 { 715 (void) arg; 716 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 717 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 718 719 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 720 return (SET_ERROR(EBUSY)); 721 722 return (0); 723 } 724 725 void 726 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 727 { 728 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 729 pool_scan_func_t *funcp = arg; 730 dmu_object_type_t ot = 0; 731 dsl_pool_t *dp = scn->scn_dp; 732 spa_t *spa = dp->dp_spa; 733 734 ASSERT(!dsl_scan_is_running(scn)); 735 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 736 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys)); 737 scn->scn_phys.scn_func = *funcp; 738 scn->scn_phys.scn_state = DSS_SCANNING; 739 scn->scn_phys.scn_min_txg = 0; 740 scn->scn_phys.scn_max_txg = tx->tx_txg; 741 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 742 scn->scn_phys.scn_start_time = gethrestime_sec(); 743 scn->scn_phys.scn_errors = 0; 744 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 745 scn->scn_issued_before_pass = 0; 746 scn->scn_restart_txg = 0; 747 scn->scn_done_txg = 0; 748 scn->scn_last_checkpoint = 0; 749 scn->scn_checkpointing = B_FALSE; 750 spa_scan_stat_init(spa); 751 752 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 753 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 754 755 /* rewrite all disk labels */ 756 vdev_config_dirty(spa->spa_root_vdev); 757 758 if (vdev_resilver_needed(spa->spa_root_vdev, 759 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 760 nvlist_t *aux = fnvlist_alloc(); 761 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 762 "healing"); 763 spa_event_notify(spa, NULL, aux, 764 ESC_ZFS_RESILVER_START); 765 nvlist_free(aux); 766 } else { 767 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 768 } 769 770 spa->spa_scrub_started = B_TRUE; 771 /* 772 * If this is an incremental scrub, limit the DDT scrub phase 773 * to just the auto-ditto class (for correctness); the rest 774 * of the scrub should go faster using top-down pruning. 775 */ 776 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 777 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 778 779 /* 780 * When starting a resilver clear any existing rebuild state. 781 * This is required to prevent stale rebuild status from 782 * being reported when a rebuild is run, then a resilver and 783 * finally a scrub. In which case only the scrub status 784 * should be reported by 'zpool status'. 785 */ 786 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 787 vdev_t *rvd = spa->spa_root_vdev; 788 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 789 vdev_t *vd = rvd->vdev_child[i]; 790 vdev_rebuild_clear_sync( 791 (void *)(uintptr_t)vd->vdev_id, tx); 792 } 793 } 794 } 795 796 /* back to the generic stuff */ 797 798 if (zfs_scan_blkstats) { 799 if (dp->dp_blkstats == NULL) { 800 dp->dp_blkstats = 801 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 802 } 803 memset(&dp->dp_blkstats->zab_type, 0, 804 sizeof (dp->dp_blkstats->zab_type)); 805 } else { 806 if (dp->dp_blkstats) { 807 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t)); 808 dp->dp_blkstats = NULL; 809 } 810 } 811 812 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 813 ot = DMU_OT_ZAP_OTHER; 814 815 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 816 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 817 818 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys)); 819 820 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 821 822 spa_history_log_internal(spa, "scan setup", tx, 823 "func=%u mintxg=%llu maxtxg=%llu", 824 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 825 (u_longlong_t)scn->scn_phys.scn_max_txg); 826 } 827 828 /* 829 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 830 * Can also be called to resume a paused scrub. 831 */ 832 int 833 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 834 { 835 spa_t *spa = dp->dp_spa; 836 dsl_scan_t *scn = dp->dp_scan; 837 838 /* 839 * Purge all vdev caches and probe all devices. We do this here 840 * rather than in sync context because this requires a writer lock 841 * on the spa_config lock, which we can't do from sync context. The 842 * spa_scrub_reopen flag indicates that vdev_open() should not 843 * attempt to start another scrub. 844 */ 845 spa_vdev_state_enter(spa, SCL_NONE); 846 spa->spa_scrub_reopen = B_TRUE; 847 vdev_reopen(spa->spa_root_vdev); 848 spa->spa_scrub_reopen = B_FALSE; 849 (void) spa_vdev_state_exit(spa, NULL, 0); 850 851 if (func == POOL_SCAN_RESILVER) { 852 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 853 return (0); 854 } 855 856 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 857 /* got scrub start cmd, resume paused scrub */ 858 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 859 POOL_SCRUB_NORMAL); 860 if (err == 0) { 861 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 862 return (SET_ERROR(ECANCELED)); 863 } 864 865 return (SET_ERROR(err)); 866 } 867 868 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 869 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 870 } 871 872 static void 873 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 874 { 875 static const char *old_names[] = { 876 "scrub_bookmark", 877 "scrub_ddt_bookmark", 878 "scrub_ddt_class_max", 879 "scrub_queue", 880 "scrub_min_txg", 881 "scrub_max_txg", 882 "scrub_func", 883 "scrub_errors", 884 NULL 885 }; 886 887 dsl_pool_t *dp = scn->scn_dp; 888 spa_t *spa = dp->dp_spa; 889 int i; 890 891 /* Remove any remnants of an old-style scrub. */ 892 for (i = 0; old_names[i]; i++) { 893 (void) zap_remove(dp->dp_meta_objset, 894 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 895 } 896 897 if (scn->scn_phys.scn_queue_obj != 0) { 898 VERIFY0(dmu_object_free(dp->dp_meta_objset, 899 scn->scn_phys.scn_queue_obj, tx)); 900 scn->scn_phys.scn_queue_obj = 0; 901 } 902 scan_ds_queue_clear(scn); 903 scan_ds_prefetch_queue_clear(scn); 904 905 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 906 907 /* 908 * If we were "restarted" from a stopped state, don't bother 909 * with anything else. 910 */ 911 if (!dsl_scan_is_running(scn)) { 912 ASSERT(!scn->scn_is_sorted); 913 return; 914 } 915 916 if (scn->scn_is_sorted) { 917 scan_io_queues_destroy(scn); 918 scn->scn_is_sorted = B_FALSE; 919 920 if (scn->scn_taskq != NULL) { 921 taskq_destroy(scn->scn_taskq); 922 scn->scn_taskq = NULL; 923 } 924 } 925 926 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 927 928 spa_notify_waiters(spa); 929 930 if (dsl_scan_restarting(scn, tx)) 931 spa_history_log_internal(spa, "scan aborted, restarting", tx, 932 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 933 else if (!complete) 934 spa_history_log_internal(spa, "scan cancelled", tx, 935 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 936 else 937 spa_history_log_internal(spa, "scan done", tx, 938 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 939 940 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 941 spa->spa_scrub_active = B_FALSE; 942 943 /* 944 * If the scrub/resilver completed, update all DTLs to 945 * reflect this. Whether it succeeded or not, vacate 946 * all temporary scrub DTLs. 947 * 948 * As the scrub does not currently support traversing 949 * data that have been freed but are part of a checkpoint, 950 * we don't mark the scrub as done in the DTLs as faults 951 * may still exist in those vdevs. 952 */ 953 if (complete && 954 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 955 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 956 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 957 958 if (scn->scn_phys.scn_min_txg) { 959 nvlist_t *aux = fnvlist_alloc(); 960 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 961 "healing"); 962 spa_event_notify(spa, NULL, aux, 963 ESC_ZFS_RESILVER_FINISH); 964 nvlist_free(aux); 965 } else { 966 spa_event_notify(spa, NULL, NULL, 967 ESC_ZFS_SCRUB_FINISH); 968 } 969 } else { 970 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 971 0, B_TRUE, B_FALSE); 972 } 973 spa_errlog_rotate(spa); 974 975 /* 976 * Don't clear flag until after vdev_dtl_reassess to ensure that 977 * DTL_MISSING will get updated when possible. 978 */ 979 spa->spa_scrub_started = B_FALSE; 980 981 /* 982 * We may have finished replacing a device. 983 * Let the async thread assess this and handle the detach. 984 */ 985 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 986 987 /* 988 * Clear any resilver_deferred flags in the config. 989 * If there are drives that need resilvering, kick 990 * off an asynchronous request to start resilver. 991 * vdev_clear_resilver_deferred() may update the config 992 * before the resilver can restart. In the event of 993 * a crash during this period, the spa loading code 994 * will find the drives that need to be resilvered 995 * and start the resilver then. 996 */ 997 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 998 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 999 spa_history_log_internal(spa, 1000 "starting deferred resilver", tx, "errors=%llu", 1001 (u_longlong_t)spa_get_errlog_size(spa)); 1002 spa_async_request(spa, SPA_ASYNC_RESILVER); 1003 } 1004 1005 /* Clear recent error events (i.e. duplicate events tracking) */ 1006 if (complete) 1007 zfs_ereport_clear(spa, NULL); 1008 } 1009 1010 scn->scn_phys.scn_end_time = gethrestime_sec(); 1011 1012 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 1013 spa->spa_errata = 0; 1014 1015 ASSERT(!dsl_scan_is_running(scn)); 1016 } 1017 1018 static int 1019 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1020 { 1021 (void) arg; 1022 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1023 1024 if (!dsl_scan_is_running(scn)) 1025 return (SET_ERROR(ENOENT)); 1026 return (0); 1027 } 1028 1029 static void 1030 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1031 { 1032 (void) arg; 1033 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1034 1035 dsl_scan_done(scn, B_FALSE, tx); 1036 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1037 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1038 } 1039 1040 int 1041 dsl_scan_cancel(dsl_pool_t *dp) 1042 { 1043 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1044 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1045 } 1046 1047 static int 1048 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1049 { 1050 pool_scrub_cmd_t *cmd = arg; 1051 dsl_pool_t *dp = dmu_tx_pool(tx); 1052 dsl_scan_t *scn = dp->dp_scan; 1053 1054 if (*cmd == POOL_SCRUB_PAUSE) { 1055 /* can't pause a scrub when there is no in-progress scrub */ 1056 if (!dsl_scan_scrubbing(dp)) 1057 return (SET_ERROR(ENOENT)); 1058 1059 /* can't pause a paused scrub */ 1060 if (dsl_scan_is_paused_scrub(scn)) 1061 return (SET_ERROR(EBUSY)); 1062 } else if (*cmd != POOL_SCRUB_NORMAL) { 1063 return (SET_ERROR(ENOTSUP)); 1064 } 1065 1066 return (0); 1067 } 1068 1069 static void 1070 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1071 { 1072 pool_scrub_cmd_t *cmd = arg; 1073 dsl_pool_t *dp = dmu_tx_pool(tx); 1074 spa_t *spa = dp->dp_spa; 1075 dsl_scan_t *scn = dp->dp_scan; 1076 1077 if (*cmd == POOL_SCRUB_PAUSE) { 1078 /* can't pause a scrub when there is no in-progress scrub */ 1079 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1080 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1081 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1082 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1084 spa_notify_waiters(spa); 1085 } else { 1086 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1087 if (dsl_scan_is_paused_scrub(scn)) { 1088 /* 1089 * We need to keep track of how much time we spend 1090 * paused per pass so that we can adjust the scrub rate 1091 * shown in the output of 'zpool status' 1092 */ 1093 spa->spa_scan_pass_scrub_spent_paused += 1094 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1095 spa->spa_scan_pass_scrub_pause = 0; 1096 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1097 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1098 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1099 } 1100 } 1101 } 1102 1103 /* 1104 * Set scrub pause/resume state if it makes sense to do so 1105 */ 1106 int 1107 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1108 { 1109 return (dsl_sync_task(spa_name(dp->dp_spa), 1110 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1111 ZFS_SPACE_CHECK_RESERVED)); 1112 } 1113 1114 1115 /* start a new scan, or restart an existing one. */ 1116 void 1117 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1118 { 1119 if (txg == 0) { 1120 dmu_tx_t *tx; 1121 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1122 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1123 1124 txg = dmu_tx_get_txg(tx); 1125 dp->dp_scan->scn_restart_txg = txg; 1126 dmu_tx_commit(tx); 1127 } else { 1128 dp->dp_scan->scn_restart_txg = txg; 1129 } 1130 zfs_dbgmsg("restarting resilver for %s at txg=%llu", 1131 dp->dp_spa->spa_name, (longlong_t)txg); 1132 } 1133 1134 void 1135 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1136 { 1137 zio_free(dp->dp_spa, txg, bp); 1138 } 1139 1140 void 1141 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1142 { 1143 ASSERT(dsl_pool_sync_context(dp)); 1144 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1145 } 1146 1147 static int 1148 scan_ds_queue_compare(const void *a, const void *b) 1149 { 1150 const scan_ds_t *sds_a = a, *sds_b = b; 1151 1152 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1153 return (-1); 1154 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1155 return (0); 1156 return (1); 1157 } 1158 1159 static void 1160 scan_ds_queue_clear(dsl_scan_t *scn) 1161 { 1162 void *cookie = NULL; 1163 scan_ds_t *sds; 1164 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1165 kmem_free(sds, sizeof (*sds)); 1166 } 1167 } 1168 1169 static boolean_t 1170 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1171 { 1172 scan_ds_t srch, *sds; 1173 1174 srch.sds_dsobj = dsobj; 1175 sds = avl_find(&scn->scn_queue, &srch, NULL); 1176 if (sds != NULL && txg != NULL) 1177 *txg = sds->sds_txg; 1178 return (sds != NULL); 1179 } 1180 1181 static void 1182 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1183 { 1184 scan_ds_t *sds; 1185 avl_index_t where; 1186 1187 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1188 sds->sds_dsobj = dsobj; 1189 sds->sds_txg = txg; 1190 1191 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1192 avl_insert(&scn->scn_queue, sds, where); 1193 } 1194 1195 static void 1196 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1197 { 1198 scan_ds_t srch, *sds; 1199 1200 srch.sds_dsobj = dsobj; 1201 1202 sds = avl_find(&scn->scn_queue, &srch, NULL); 1203 VERIFY(sds != NULL); 1204 avl_remove(&scn->scn_queue, sds); 1205 kmem_free(sds, sizeof (*sds)); 1206 } 1207 1208 static void 1209 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1210 { 1211 dsl_pool_t *dp = scn->scn_dp; 1212 spa_t *spa = dp->dp_spa; 1213 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1214 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1215 1216 ASSERT0(scn->scn_queues_pending); 1217 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1218 1219 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1220 scn->scn_phys.scn_queue_obj, tx)); 1221 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1222 DMU_OT_NONE, 0, tx); 1223 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1224 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1225 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1226 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1227 sds->sds_txg, tx)); 1228 } 1229 } 1230 1231 /* 1232 * Computes the memory limit state that we're currently in. A sorted scan 1233 * needs quite a bit of memory to hold the sorting queue, so we need to 1234 * reasonably constrain the size so it doesn't impact overall system 1235 * performance. We compute two limits: 1236 * 1) Hard memory limit: if the amount of memory used by the sorting 1237 * queues on a pool gets above this value, we stop the metadata 1238 * scanning portion and start issuing the queued up and sorted 1239 * I/Os to reduce memory usage. 1240 * This limit is calculated as a fraction of physmem (by default 5%). 1241 * We constrain the lower bound of the hard limit to an absolute 1242 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1243 * the upper bound to 5% of the total pool size - no chance we'll 1244 * ever need that much memory, but just to keep the value in check. 1245 * 2) Soft memory limit: once we hit the hard memory limit, we start 1246 * issuing I/O to reduce queue memory usage, but we don't want to 1247 * completely empty out the queues, since we might be able to find I/Os 1248 * that will fill in the gaps of our non-sequential IOs at some point 1249 * in the future. So we stop the issuing of I/Os once the amount of 1250 * memory used drops below the soft limit (at which point we stop issuing 1251 * I/O and start scanning metadata again). 1252 * 1253 * This limit is calculated by subtracting a fraction of the hard 1254 * limit from the hard limit. By default this fraction is 5%, so 1255 * the soft limit is 95% of the hard limit. We cap the size of the 1256 * difference between the hard and soft limits at an absolute 1257 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1258 * sufficient to not cause too frequent switching between the 1259 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1260 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1261 * that should take at least a decent fraction of a second). 1262 */ 1263 static boolean_t 1264 dsl_scan_should_clear(dsl_scan_t *scn) 1265 { 1266 spa_t *spa = scn->scn_dp->dp_spa; 1267 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1268 uint64_t alloc, mlim_hard, mlim_soft, mused; 1269 1270 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1271 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1272 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1273 1274 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1275 zfs_scan_mem_lim_min); 1276 mlim_hard = MIN(mlim_hard, alloc / 20); 1277 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1278 zfs_scan_mem_lim_soft_max); 1279 mused = 0; 1280 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1281 vdev_t *tvd = rvd->vdev_child[i]; 1282 dsl_scan_io_queue_t *queue; 1283 1284 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1285 queue = tvd->vdev_scan_io_queue; 1286 if (queue != NULL) { 1287 /* 1288 * # of extents in exts_by_addr = # in exts_by_size. 1289 * B-tree efficiency is ~75%, but can be as low as 50%. 1290 */ 1291 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1292 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) * 1293 3 / 2) + queue->q_sio_memused; 1294 } 1295 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1296 } 1297 1298 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1299 1300 if (mused == 0) 1301 ASSERT0(scn->scn_queues_pending); 1302 1303 /* 1304 * If we are above our hard limit, we need to clear out memory. 1305 * If we are below our soft limit, we need to accumulate sequential IOs. 1306 * Otherwise, we should keep doing whatever we are currently doing. 1307 */ 1308 if (mused >= mlim_hard) 1309 return (B_TRUE); 1310 else if (mused < mlim_soft) 1311 return (B_FALSE); 1312 else 1313 return (scn->scn_clearing); 1314 } 1315 1316 static boolean_t 1317 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1318 { 1319 /* we never skip user/group accounting objects */ 1320 if (zb && (int64_t)zb->zb_object < 0) 1321 return (B_FALSE); 1322 1323 if (scn->scn_suspending) 1324 return (B_TRUE); /* we're already suspending */ 1325 1326 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1327 return (B_FALSE); /* we're resuming */ 1328 1329 /* We only know how to resume from level-0 and objset blocks. */ 1330 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1331 return (B_FALSE); 1332 1333 /* 1334 * We suspend if: 1335 * - we have scanned for at least the minimum time (default 1 sec 1336 * for scrub, 3 sec for resilver), and either we have sufficient 1337 * dirty data that we are starting to write more quickly 1338 * (default 30%), someone is explicitly waiting for this txg 1339 * to complete, or we have used up all of the time in the txg 1340 * timeout (default 5 sec). 1341 * or 1342 * - the spa is shutting down because this pool is being exported 1343 * or the machine is rebooting. 1344 * or 1345 * - the scan queue has reached its memory use limit 1346 */ 1347 uint64_t curr_time_ns = gethrtime(); 1348 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1349 uint64_t sync_time_ns = curr_time_ns - 1350 scn->scn_dp->dp_spa->spa_sync_starttime; 1351 uint64_t dirty_min_bytes = zfs_dirty_data_max * 1352 zfs_vdev_async_write_active_min_dirty_percent / 100; 1353 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1354 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1355 1356 if ((NSEC2MSEC(scan_time_ns) > mintime && 1357 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 1358 txg_sync_waiting(scn->scn_dp) || 1359 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1360 spa_shutting_down(scn->scn_dp->dp_spa) || 1361 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1362 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1363 dprintf("suspending at first available bookmark " 1364 "%llx/%llx/%llx/%llx\n", 1365 (longlong_t)zb->zb_objset, 1366 (longlong_t)zb->zb_object, 1367 (longlong_t)zb->zb_level, 1368 (longlong_t)zb->zb_blkid); 1369 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1370 zb->zb_objset, 0, 0, 0); 1371 } else if (zb != NULL) { 1372 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1373 (longlong_t)zb->zb_objset, 1374 (longlong_t)zb->zb_object, 1375 (longlong_t)zb->zb_level, 1376 (longlong_t)zb->zb_blkid); 1377 scn->scn_phys.scn_bookmark = *zb; 1378 } else { 1379 #ifdef ZFS_DEBUG 1380 dsl_scan_phys_t *scnp = &scn->scn_phys; 1381 dprintf("suspending at at DDT bookmark " 1382 "%llx/%llx/%llx/%llx\n", 1383 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1384 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1385 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1386 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1387 #endif 1388 } 1389 scn->scn_suspending = B_TRUE; 1390 return (B_TRUE); 1391 } 1392 return (B_FALSE); 1393 } 1394 1395 typedef struct zil_scan_arg { 1396 dsl_pool_t *zsa_dp; 1397 zil_header_t *zsa_zh; 1398 } zil_scan_arg_t; 1399 1400 static int 1401 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg, 1402 uint64_t claim_txg) 1403 { 1404 (void) zilog; 1405 zil_scan_arg_t *zsa = arg; 1406 dsl_pool_t *dp = zsa->zsa_dp; 1407 dsl_scan_t *scn = dp->dp_scan; 1408 zil_header_t *zh = zsa->zsa_zh; 1409 zbookmark_phys_t zb; 1410 1411 ASSERT(!BP_IS_REDACTED(bp)); 1412 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1413 return (0); 1414 1415 /* 1416 * One block ("stubby") can be allocated a long time ago; we 1417 * want to visit that one because it has been allocated 1418 * (on-disk) even if it hasn't been claimed (even though for 1419 * scrub there's nothing to do to it). 1420 */ 1421 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1422 return (0); 1423 1424 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1425 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1426 1427 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1428 return (0); 1429 } 1430 1431 static int 1432 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg, 1433 uint64_t claim_txg) 1434 { 1435 (void) zilog; 1436 if (lrc->lrc_txtype == TX_WRITE) { 1437 zil_scan_arg_t *zsa = arg; 1438 dsl_pool_t *dp = zsa->zsa_dp; 1439 dsl_scan_t *scn = dp->dp_scan; 1440 zil_header_t *zh = zsa->zsa_zh; 1441 const lr_write_t *lr = (const lr_write_t *)lrc; 1442 const blkptr_t *bp = &lr->lr_blkptr; 1443 zbookmark_phys_t zb; 1444 1445 ASSERT(!BP_IS_REDACTED(bp)); 1446 if (BP_IS_HOLE(bp) || 1447 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1448 return (0); 1449 1450 /* 1451 * birth can be < claim_txg if this record's txg is 1452 * already txg sync'ed (but this log block contains 1453 * other records that are not synced) 1454 */ 1455 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1456 return (0); 1457 1458 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1459 lr->lr_foid, ZB_ZIL_LEVEL, 1460 lr->lr_offset / BP_GET_LSIZE(bp)); 1461 1462 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1463 } 1464 return (0); 1465 } 1466 1467 static void 1468 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1469 { 1470 uint64_t claim_txg = zh->zh_claim_txg; 1471 zil_scan_arg_t zsa = { dp, zh }; 1472 zilog_t *zilog; 1473 1474 ASSERT(spa_writeable(dp->dp_spa)); 1475 1476 /* 1477 * We only want to visit blocks that have been claimed but not yet 1478 * replayed (or, in read-only mode, blocks that *would* be claimed). 1479 */ 1480 if (claim_txg == 0) 1481 return; 1482 1483 zilog = zil_alloc(dp->dp_meta_objset, zh); 1484 1485 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1486 claim_txg, B_FALSE); 1487 1488 zil_free(zilog); 1489 } 1490 1491 /* 1492 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1493 * here is to sort the AVL tree by the order each block will be needed. 1494 */ 1495 static int 1496 scan_prefetch_queue_compare(const void *a, const void *b) 1497 { 1498 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1499 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1500 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1501 1502 return (zbookmark_compare(spc_a->spc_datablkszsec, 1503 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1504 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1505 } 1506 1507 static void 1508 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag) 1509 { 1510 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1511 zfs_refcount_destroy(&spc->spc_refcnt); 1512 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1513 } 1514 } 1515 1516 static scan_prefetch_ctx_t * 1517 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag) 1518 { 1519 scan_prefetch_ctx_t *spc; 1520 1521 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1522 zfs_refcount_create(&spc->spc_refcnt); 1523 zfs_refcount_add(&spc->spc_refcnt, tag); 1524 spc->spc_scn = scn; 1525 if (dnp != NULL) { 1526 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1527 spc->spc_indblkshift = dnp->dn_indblkshift; 1528 spc->spc_root = B_FALSE; 1529 } else { 1530 spc->spc_datablkszsec = 0; 1531 spc->spc_indblkshift = 0; 1532 spc->spc_root = B_TRUE; 1533 } 1534 1535 return (spc); 1536 } 1537 1538 static void 1539 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag) 1540 { 1541 zfs_refcount_add(&spc->spc_refcnt, tag); 1542 } 1543 1544 static void 1545 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1546 { 1547 spa_t *spa = scn->scn_dp->dp_spa; 1548 void *cookie = NULL; 1549 scan_prefetch_issue_ctx_t *spic = NULL; 1550 1551 mutex_enter(&spa->spa_scrub_lock); 1552 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1553 &cookie)) != NULL) { 1554 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1555 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1556 } 1557 mutex_exit(&spa->spa_scrub_lock); 1558 } 1559 1560 static boolean_t 1561 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1562 const zbookmark_phys_t *zb) 1563 { 1564 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1565 dnode_phys_t tmp_dnp; 1566 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1567 1568 if (zb->zb_objset != last_zb->zb_objset) 1569 return (B_TRUE); 1570 if ((int64_t)zb->zb_object < 0) 1571 return (B_FALSE); 1572 1573 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1574 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1575 1576 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1577 return (B_TRUE); 1578 1579 return (B_FALSE); 1580 } 1581 1582 static void 1583 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1584 { 1585 avl_index_t idx; 1586 dsl_scan_t *scn = spc->spc_scn; 1587 spa_t *spa = scn->scn_dp->dp_spa; 1588 scan_prefetch_issue_ctx_t *spic; 1589 1590 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1591 return; 1592 1593 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1594 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1595 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1596 return; 1597 1598 if (dsl_scan_check_prefetch_resume(spc, zb)) 1599 return; 1600 1601 scan_prefetch_ctx_add_ref(spc, scn); 1602 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1603 spic->spic_spc = spc; 1604 spic->spic_bp = *bp; 1605 spic->spic_zb = *zb; 1606 1607 /* 1608 * Add the IO to the queue of blocks to prefetch. This allows us to 1609 * prioritize blocks that we will need first for the main traversal 1610 * thread. 1611 */ 1612 mutex_enter(&spa->spa_scrub_lock); 1613 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1614 /* this block is already queued for prefetch */ 1615 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1616 scan_prefetch_ctx_rele(spc, scn); 1617 mutex_exit(&spa->spa_scrub_lock); 1618 return; 1619 } 1620 1621 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1622 cv_broadcast(&spa->spa_scrub_io_cv); 1623 mutex_exit(&spa->spa_scrub_lock); 1624 } 1625 1626 static void 1627 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1628 uint64_t objset, uint64_t object) 1629 { 1630 int i; 1631 zbookmark_phys_t zb; 1632 scan_prefetch_ctx_t *spc; 1633 1634 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1635 return; 1636 1637 SET_BOOKMARK(&zb, objset, object, 0, 0); 1638 1639 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1640 1641 for (i = 0; i < dnp->dn_nblkptr; i++) { 1642 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1643 zb.zb_blkid = i; 1644 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1645 } 1646 1647 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1648 zb.zb_level = 0; 1649 zb.zb_blkid = DMU_SPILL_BLKID; 1650 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1651 } 1652 1653 scan_prefetch_ctx_rele(spc, FTAG); 1654 } 1655 1656 static void 1657 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1658 arc_buf_t *buf, void *private) 1659 { 1660 (void) zio; 1661 scan_prefetch_ctx_t *spc = private; 1662 dsl_scan_t *scn = spc->spc_scn; 1663 spa_t *spa = scn->scn_dp->dp_spa; 1664 1665 /* broadcast that the IO has completed for rate limiting purposes */ 1666 mutex_enter(&spa->spa_scrub_lock); 1667 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1668 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1669 cv_broadcast(&spa->spa_scrub_io_cv); 1670 mutex_exit(&spa->spa_scrub_lock); 1671 1672 /* if there was an error or we are done prefetching, just cleanup */ 1673 if (buf == NULL || scn->scn_prefetch_stop) 1674 goto out; 1675 1676 if (BP_GET_LEVEL(bp) > 0) { 1677 int i; 1678 blkptr_t *cbp; 1679 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1680 zbookmark_phys_t czb; 1681 1682 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1683 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1684 zb->zb_level - 1, zb->zb_blkid * epb + i); 1685 dsl_scan_prefetch(spc, cbp, &czb); 1686 } 1687 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1688 dnode_phys_t *cdnp; 1689 int i; 1690 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1691 1692 for (i = 0, cdnp = buf->b_data; i < epb; 1693 i += cdnp->dn_extra_slots + 1, 1694 cdnp += cdnp->dn_extra_slots + 1) { 1695 dsl_scan_prefetch_dnode(scn, cdnp, 1696 zb->zb_objset, zb->zb_blkid * epb + i); 1697 } 1698 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1699 objset_phys_t *osp = buf->b_data; 1700 1701 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1702 zb->zb_objset, DMU_META_DNODE_OBJECT); 1703 1704 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1705 dsl_scan_prefetch_dnode(scn, 1706 &osp->os_groupused_dnode, zb->zb_objset, 1707 DMU_GROUPUSED_OBJECT); 1708 dsl_scan_prefetch_dnode(scn, 1709 &osp->os_userused_dnode, zb->zb_objset, 1710 DMU_USERUSED_OBJECT); 1711 } 1712 } 1713 1714 out: 1715 if (buf != NULL) 1716 arc_buf_destroy(buf, private); 1717 scan_prefetch_ctx_rele(spc, scn); 1718 } 1719 1720 static void 1721 dsl_scan_prefetch_thread(void *arg) 1722 { 1723 dsl_scan_t *scn = arg; 1724 spa_t *spa = scn->scn_dp->dp_spa; 1725 scan_prefetch_issue_ctx_t *spic; 1726 1727 /* loop until we are told to stop */ 1728 while (!scn->scn_prefetch_stop) { 1729 arc_flags_t flags = ARC_FLAG_NOWAIT | 1730 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1731 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1732 1733 mutex_enter(&spa->spa_scrub_lock); 1734 1735 /* 1736 * Wait until we have an IO to issue and are not above our 1737 * maximum in flight limit. 1738 */ 1739 while (!scn->scn_prefetch_stop && 1740 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1741 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1742 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1743 } 1744 1745 /* recheck if we should stop since we waited for the cv */ 1746 if (scn->scn_prefetch_stop) { 1747 mutex_exit(&spa->spa_scrub_lock); 1748 break; 1749 } 1750 1751 /* remove the prefetch IO from the tree */ 1752 spic = avl_first(&scn->scn_prefetch_queue); 1753 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1754 avl_remove(&scn->scn_prefetch_queue, spic); 1755 1756 mutex_exit(&spa->spa_scrub_lock); 1757 1758 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1759 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1760 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1761 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1762 zio_flags |= ZIO_FLAG_RAW; 1763 } 1764 1765 /* issue the prefetch asynchronously */ 1766 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1767 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1768 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1769 1770 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1771 } 1772 1773 ASSERT(scn->scn_prefetch_stop); 1774 1775 /* free any prefetches we didn't get to complete */ 1776 mutex_enter(&spa->spa_scrub_lock); 1777 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1778 avl_remove(&scn->scn_prefetch_queue, spic); 1779 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1780 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1781 } 1782 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1783 mutex_exit(&spa->spa_scrub_lock); 1784 } 1785 1786 static boolean_t 1787 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1788 const zbookmark_phys_t *zb) 1789 { 1790 /* 1791 * We never skip over user/group accounting objects (obj<0) 1792 */ 1793 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1794 (int64_t)zb->zb_object >= 0) { 1795 /* 1796 * If we already visited this bp & everything below (in 1797 * a prior txg sync), don't bother doing it again. 1798 */ 1799 if (zbookmark_subtree_completed(dnp, zb, 1800 &scn->scn_phys.scn_bookmark)) 1801 return (B_TRUE); 1802 1803 /* 1804 * If we found the block we're trying to resume from, or 1805 * we went past it, zero it out to indicate that it's OK 1806 * to start checking for suspending again. 1807 */ 1808 if (zbookmark_subtree_tbd(dnp, zb, 1809 &scn->scn_phys.scn_bookmark)) { 1810 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1811 (longlong_t)zb->zb_objset, 1812 (longlong_t)zb->zb_object, 1813 (longlong_t)zb->zb_level, 1814 (longlong_t)zb->zb_blkid); 1815 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb)); 1816 } 1817 } 1818 return (B_FALSE); 1819 } 1820 1821 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1822 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1823 dmu_objset_type_t ostype, dmu_tx_t *tx); 1824 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1825 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1826 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1827 1828 /* 1829 * Return nonzero on i/o error. 1830 * Return new buf to write out in *bufp. 1831 */ 1832 inline __attribute__((always_inline)) static int 1833 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1834 dnode_phys_t *dnp, const blkptr_t *bp, 1835 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1836 { 1837 dsl_pool_t *dp = scn->scn_dp; 1838 spa_t *spa = dp->dp_spa; 1839 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1840 int err; 1841 1842 ASSERT(!BP_IS_REDACTED(bp)); 1843 1844 /* 1845 * There is an unlikely case of encountering dnodes with contradicting 1846 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created 1847 * or modified before commit 4254acb was merged. As it is not possible 1848 * to know which of the two is correct, report an error. 1849 */ 1850 if (dnp != NULL && 1851 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) { 1852 scn->scn_phys.scn_errors++; 1853 spa_log_error(spa, zb); 1854 return (SET_ERROR(EINVAL)); 1855 } 1856 1857 if (BP_GET_LEVEL(bp) > 0) { 1858 arc_flags_t flags = ARC_FLAG_WAIT; 1859 int i; 1860 blkptr_t *cbp; 1861 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1862 arc_buf_t *buf; 1863 1864 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1865 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1866 if (err) { 1867 scn->scn_phys.scn_errors++; 1868 return (err); 1869 } 1870 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1871 zbookmark_phys_t czb; 1872 1873 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1874 zb->zb_level - 1, 1875 zb->zb_blkid * epb + i); 1876 dsl_scan_visitbp(cbp, &czb, dnp, 1877 ds, scn, ostype, tx); 1878 } 1879 arc_buf_destroy(buf, &buf); 1880 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1881 arc_flags_t flags = ARC_FLAG_WAIT; 1882 dnode_phys_t *cdnp; 1883 int i; 1884 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1885 arc_buf_t *buf; 1886 1887 if (BP_IS_PROTECTED(bp)) { 1888 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1889 zio_flags |= ZIO_FLAG_RAW; 1890 } 1891 1892 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1893 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1894 if (err) { 1895 scn->scn_phys.scn_errors++; 1896 return (err); 1897 } 1898 for (i = 0, cdnp = buf->b_data; i < epb; 1899 i += cdnp->dn_extra_slots + 1, 1900 cdnp += cdnp->dn_extra_slots + 1) { 1901 dsl_scan_visitdnode(scn, ds, ostype, 1902 cdnp, zb->zb_blkid * epb + i, tx); 1903 } 1904 1905 arc_buf_destroy(buf, &buf); 1906 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1907 arc_flags_t flags = ARC_FLAG_WAIT; 1908 objset_phys_t *osp; 1909 arc_buf_t *buf; 1910 1911 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 1912 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1913 if (err) { 1914 scn->scn_phys.scn_errors++; 1915 return (err); 1916 } 1917 1918 osp = buf->b_data; 1919 1920 dsl_scan_visitdnode(scn, ds, osp->os_type, 1921 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1922 1923 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1924 /* 1925 * We also always visit user/group/project accounting 1926 * objects, and never skip them, even if we are 1927 * suspending. This is necessary so that the 1928 * space deltas from this txg get integrated. 1929 */ 1930 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1931 dsl_scan_visitdnode(scn, ds, osp->os_type, 1932 &osp->os_projectused_dnode, 1933 DMU_PROJECTUSED_OBJECT, tx); 1934 dsl_scan_visitdnode(scn, ds, osp->os_type, 1935 &osp->os_groupused_dnode, 1936 DMU_GROUPUSED_OBJECT, tx); 1937 dsl_scan_visitdnode(scn, ds, osp->os_type, 1938 &osp->os_userused_dnode, 1939 DMU_USERUSED_OBJECT, tx); 1940 } 1941 arc_buf_destroy(buf, &buf); 1942 } else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) { 1943 /* 1944 * Sanity check the block pointer contents, this is handled 1945 * by arc_read() for the cases above. 1946 */ 1947 scn->scn_phys.scn_errors++; 1948 spa_log_error(spa, zb); 1949 return (SET_ERROR(EINVAL)); 1950 } 1951 1952 return (0); 1953 } 1954 1955 inline __attribute__((always_inline)) static void 1956 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1957 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1958 uint64_t object, dmu_tx_t *tx) 1959 { 1960 int j; 1961 1962 for (j = 0; j < dnp->dn_nblkptr; j++) { 1963 zbookmark_phys_t czb; 1964 1965 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1966 dnp->dn_nlevels - 1, j); 1967 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1968 &czb, dnp, ds, scn, ostype, tx); 1969 } 1970 1971 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1972 zbookmark_phys_t czb; 1973 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1974 0, DMU_SPILL_BLKID); 1975 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1976 &czb, dnp, ds, scn, ostype, tx); 1977 } 1978 } 1979 1980 /* 1981 * The arguments are in this order because mdb can only print the 1982 * first 5; we want them to be useful. 1983 */ 1984 static void 1985 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1986 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1987 dmu_objset_type_t ostype, dmu_tx_t *tx) 1988 { 1989 dsl_pool_t *dp = scn->scn_dp; 1990 blkptr_t *bp_toread = NULL; 1991 1992 if (dsl_scan_check_suspend(scn, zb)) 1993 return; 1994 1995 if (dsl_scan_check_resume(scn, dnp, zb)) 1996 return; 1997 1998 scn->scn_visited_this_txg++; 1999 2000 if (BP_IS_HOLE(bp)) { 2001 scn->scn_holes_this_txg++; 2002 return; 2003 } 2004 2005 if (BP_IS_REDACTED(bp)) { 2006 ASSERT(dsl_dataset_feature_is_active(ds, 2007 SPA_FEATURE_REDACTED_DATASETS)); 2008 return; 2009 } 2010 2011 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 2012 scn->scn_lt_min_this_txg++; 2013 return; 2014 } 2015 2016 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 2017 *bp_toread = *bp; 2018 2019 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 2020 goto out; 2021 2022 /* 2023 * If dsl_scan_ddt() has already visited this block, it will have 2024 * already done any translations or scrubbing, so don't call the 2025 * callback again. 2026 */ 2027 if (ddt_class_contains(dp->dp_spa, 2028 scn->scn_phys.scn_ddt_class_max, bp)) { 2029 scn->scn_ddt_contained_this_txg++; 2030 goto out; 2031 } 2032 2033 /* 2034 * If this block is from the future (after cur_max_txg), then we 2035 * are doing this on behalf of a deleted snapshot, and we will 2036 * revisit the future block on the next pass of this dataset. 2037 * Don't scan it now unless we need to because something 2038 * under it was modified. 2039 */ 2040 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2041 scn->scn_gt_max_this_txg++; 2042 goto out; 2043 } 2044 2045 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2046 2047 out: 2048 kmem_free(bp_toread, sizeof (blkptr_t)); 2049 } 2050 2051 static void 2052 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2053 dmu_tx_t *tx) 2054 { 2055 zbookmark_phys_t zb; 2056 scan_prefetch_ctx_t *spc; 2057 2058 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2059 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2060 2061 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2062 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2063 zb.zb_objset, 0, 0, 0); 2064 } else { 2065 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2066 } 2067 2068 scn->scn_objsets_visited_this_txg++; 2069 2070 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2071 dsl_scan_prefetch(spc, bp, &zb); 2072 scan_prefetch_ctx_rele(spc, FTAG); 2073 2074 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2075 2076 dprintf_ds(ds, "finished scan%s", ""); 2077 } 2078 2079 static void 2080 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2081 { 2082 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2083 if (ds->ds_is_snapshot) { 2084 /* 2085 * Note: 2086 * - scn_cur_{min,max}_txg stays the same. 2087 * - Setting the flag is not really necessary if 2088 * scn_cur_max_txg == scn_max_txg, because there 2089 * is nothing after this snapshot that we care 2090 * about. However, we set it anyway and then 2091 * ignore it when we retraverse it in 2092 * dsl_scan_visitds(). 2093 */ 2094 scn_phys->scn_bookmark.zb_objset = 2095 dsl_dataset_phys(ds)->ds_next_snap_obj; 2096 zfs_dbgmsg("destroying ds %llu on %s; currently " 2097 "traversing; reset zb_objset to %llu", 2098 (u_longlong_t)ds->ds_object, 2099 ds->ds_dir->dd_pool->dp_spa->spa_name, 2100 (u_longlong_t)dsl_dataset_phys(ds)-> 2101 ds_next_snap_obj); 2102 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2103 } else { 2104 SET_BOOKMARK(&scn_phys->scn_bookmark, 2105 ZB_DESTROYED_OBJSET, 0, 0, 0); 2106 zfs_dbgmsg("destroying ds %llu on %s; currently " 2107 "traversing; reset bookmark to -1,0,0,0", 2108 (u_longlong_t)ds->ds_object, 2109 ds->ds_dir->dd_pool->dp_spa->spa_name); 2110 } 2111 } 2112 } 2113 2114 /* 2115 * Invoked when a dataset is destroyed. We need to make sure that: 2116 * 2117 * 1) If it is the dataset that was currently being scanned, we write 2118 * a new dsl_scan_phys_t and marking the objset reference in it 2119 * as destroyed. 2120 * 2) Remove it from the work queue, if it was present. 2121 * 2122 * If the dataset was actually a snapshot, instead of marking the dataset 2123 * as destroyed, we instead substitute the next snapshot in line. 2124 */ 2125 void 2126 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2127 { 2128 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2129 dsl_scan_t *scn = dp->dp_scan; 2130 uint64_t mintxg; 2131 2132 if (!dsl_scan_is_running(scn)) 2133 return; 2134 2135 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2136 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2137 2138 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2139 scan_ds_queue_remove(scn, ds->ds_object); 2140 if (ds->ds_is_snapshot) 2141 scan_ds_queue_insert(scn, 2142 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2143 } 2144 2145 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2146 ds->ds_object, &mintxg) == 0) { 2147 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2148 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2149 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2150 if (ds->ds_is_snapshot) { 2151 /* 2152 * We keep the same mintxg; it could be > 2153 * ds_creation_txg if the previous snapshot was 2154 * deleted too. 2155 */ 2156 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2157 scn->scn_phys.scn_queue_obj, 2158 dsl_dataset_phys(ds)->ds_next_snap_obj, 2159 mintxg, tx) == 0); 2160 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2161 "replacing with %llu", 2162 (u_longlong_t)ds->ds_object, 2163 dp->dp_spa->spa_name, 2164 (u_longlong_t)dsl_dataset_phys(ds)-> 2165 ds_next_snap_obj); 2166 } else { 2167 zfs_dbgmsg("destroying ds %llu on %s; in queue; " 2168 "removing", 2169 (u_longlong_t)ds->ds_object, 2170 dp->dp_spa->spa_name); 2171 } 2172 } 2173 2174 /* 2175 * dsl_scan_sync() should be called after this, and should sync 2176 * out our changed state, but just to be safe, do it here. 2177 */ 2178 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2179 } 2180 2181 static void 2182 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2183 { 2184 if (scn_bookmark->zb_objset == ds->ds_object) { 2185 scn_bookmark->zb_objset = 2186 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2187 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; " 2188 "reset zb_objset to %llu", 2189 (u_longlong_t)ds->ds_object, 2190 ds->ds_dir->dd_pool->dp_spa->spa_name, 2191 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2192 } 2193 } 2194 2195 /* 2196 * Called when a dataset is snapshotted. If we were currently traversing 2197 * this snapshot, we reset our bookmark to point at the newly created 2198 * snapshot. We also modify our work queue to remove the old snapshot and 2199 * replace with the new one. 2200 */ 2201 void 2202 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2203 { 2204 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2205 dsl_scan_t *scn = dp->dp_scan; 2206 uint64_t mintxg; 2207 2208 if (!dsl_scan_is_running(scn)) 2209 return; 2210 2211 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2212 2213 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2214 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2215 2216 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2217 scan_ds_queue_remove(scn, ds->ds_object); 2218 scan_ds_queue_insert(scn, 2219 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2220 } 2221 2222 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2223 ds->ds_object, &mintxg) == 0) { 2224 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2225 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2226 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2227 scn->scn_phys.scn_queue_obj, 2228 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2229 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; " 2230 "replacing with %llu", 2231 (u_longlong_t)ds->ds_object, 2232 dp->dp_spa->spa_name, 2233 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2234 } 2235 2236 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2237 } 2238 2239 static void 2240 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2241 zbookmark_phys_t *scn_bookmark) 2242 { 2243 if (scn_bookmark->zb_objset == ds1->ds_object) { 2244 scn_bookmark->zb_objset = ds2->ds_object; 2245 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2246 "reset zb_objset to %llu", 2247 (u_longlong_t)ds1->ds_object, 2248 ds1->ds_dir->dd_pool->dp_spa->spa_name, 2249 (u_longlong_t)ds2->ds_object); 2250 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2251 scn_bookmark->zb_objset = ds1->ds_object; 2252 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; " 2253 "reset zb_objset to %llu", 2254 (u_longlong_t)ds2->ds_object, 2255 ds2->ds_dir->dd_pool->dp_spa->spa_name, 2256 (u_longlong_t)ds1->ds_object); 2257 } 2258 } 2259 2260 /* 2261 * Called when an origin dataset and its clone are swapped. If we were 2262 * currently traversing the dataset, we need to switch to traversing the 2263 * newly promoted clone. 2264 */ 2265 void 2266 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2267 { 2268 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2269 dsl_scan_t *scn = dp->dp_scan; 2270 uint64_t mintxg1, mintxg2; 2271 boolean_t ds1_queued, ds2_queued; 2272 2273 if (!dsl_scan_is_running(scn)) 2274 return; 2275 2276 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2277 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2278 2279 /* 2280 * Handle the in-memory scan queue. 2281 */ 2282 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2283 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2284 2285 /* Sanity checking. */ 2286 if (ds1_queued) { 2287 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2288 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2289 } 2290 if (ds2_queued) { 2291 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2292 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2293 } 2294 2295 if (ds1_queued && ds2_queued) { 2296 /* 2297 * If both are queued, we don't need to do anything. 2298 * The swapping code below would not handle this case correctly, 2299 * since we can't insert ds2 if it is already there. That's 2300 * because scan_ds_queue_insert() prohibits a duplicate insert 2301 * and panics. 2302 */ 2303 } else if (ds1_queued) { 2304 scan_ds_queue_remove(scn, ds1->ds_object); 2305 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2306 } else if (ds2_queued) { 2307 scan_ds_queue_remove(scn, ds2->ds_object); 2308 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2309 } 2310 2311 /* 2312 * Handle the on-disk scan queue. 2313 * The on-disk state is an out-of-date version of the in-memory state, 2314 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2315 * be different. Therefore we need to apply the swap logic to the 2316 * on-disk state independently of the in-memory state. 2317 */ 2318 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2319 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2320 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2321 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2322 2323 /* Sanity checking. */ 2324 if (ds1_queued) { 2325 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2326 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2327 } 2328 if (ds2_queued) { 2329 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2330 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2331 } 2332 2333 if (ds1_queued && ds2_queued) { 2334 /* 2335 * If both are queued, we don't need to do anything. 2336 * Alternatively, we could check for EEXIST from 2337 * zap_add_int_key() and back out to the original state, but 2338 * that would be more work than checking for this case upfront. 2339 */ 2340 } else if (ds1_queued) { 2341 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2342 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2343 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2344 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2345 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2346 "replacing with %llu", 2347 (u_longlong_t)ds1->ds_object, 2348 dp->dp_spa->spa_name, 2349 (u_longlong_t)ds2->ds_object); 2350 } else if (ds2_queued) { 2351 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2352 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2353 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2354 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2355 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; " 2356 "replacing with %llu", 2357 (u_longlong_t)ds2->ds_object, 2358 dp->dp_spa->spa_name, 2359 (u_longlong_t)ds1->ds_object); 2360 } 2361 2362 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2363 } 2364 2365 static int 2366 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2367 { 2368 uint64_t originobj = *(uint64_t *)arg; 2369 dsl_dataset_t *ds; 2370 int err; 2371 dsl_scan_t *scn = dp->dp_scan; 2372 2373 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2374 return (0); 2375 2376 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2377 if (err) 2378 return (err); 2379 2380 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2381 dsl_dataset_t *prev; 2382 err = dsl_dataset_hold_obj(dp, 2383 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2384 2385 dsl_dataset_rele(ds, FTAG); 2386 if (err) 2387 return (err); 2388 ds = prev; 2389 } 2390 scan_ds_queue_insert(scn, ds->ds_object, 2391 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2392 dsl_dataset_rele(ds, FTAG); 2393 return (0); 2394 } 2395 2396 static void 2397 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2398 { 2399 dsl_pool_t *dp = scn->scn_dp; 2400 dsl_dataset_t *ds; 2401 2402 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2403 2404 if (scn->scn_phys.scn_cur_min_txg >= 2405 scn->scn_phys.scn_max_txg) { 2406 /* 2407 * This can happen if this snapshot was created after the 2408 * scan started, and we already completed a previous snapshot 2409 * that was created after the scan started. This snapshot 2410 * only references blocks with: 2411 * 2412 * birth < our ds_creation_txg 2413 * cur_min_txg is no less than ds_creation_txg. 2414 * We have already visited these blocks. 2415 * or 2416 * birth > scn_max_txg 2417 * The scan requested not to visit these blocks. 2418 * 2419 * Subsequent snapshots (and clones) can reference our 2420 * blocks, or blocks with even higher birth times. 2421 * Therefore we do not need to visit them either, 2422 * so we do not add them to the work queue. 2423 * 2424 * Note that checking for cur_min_txg >= cur_max_txg 2425 * is not sufficient, because in that case we may need to 2426 * visit subsequent snapshots. This happens when min_txg > 0, 2427 * which raises cur_min_txg. In this case we will visit 2428 * this dataset but skip all of its blocks, because the 2429 * rootbp's birth time is < cur_min_txg. Then we will 2430 * add the next snapshots/clones to the work queue. 2431 */ 2432 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2433 dsl_dataset_name(ds, dsname); 2434 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2435 "cur_min_txg (%llu) >= max_txg (%llu)", 2436 (longlong_t)dsobj, dsname, 2437 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2438 (longlong_t)scn->scn_phys.scn_max_txg); 2439 kmem_free(dsname, MAXNAMELEN); 2440 2441 goto out; 2442 } 2443 2444 /* 2445 * Only the ZIL in the head (non-snapshot) is valid. Even though 2446 * snapshots can have ZIL block pointers (which may be the same 2447 * BP as in the head), they must be ignored. In addition, $ORIGIN 2448 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2449 * need to look for a ZIL in it either. So we traverse the ZIL here, 2450 * rather than in scan_recurse(), because the regular snapshot 2451 * block-sharing rules don't apply to it. 2452 */ 2453 if (!dsl_dataset_is_snapshot(ds) && 2454 (dp->dp_origin_snap == NULL || 2455 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2456 objset_t *os; 2457 if (dmu_objset_from_ds(ds, &os) != 0) { 2458 goto out; 2459 } 2460 dsl_scan_zil(dp, &os->os_zil_header); 2461 } 2462 2463 /* 2464 * Iterate over the bps in this ds. 2465 */ 2466 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2467 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2468 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2469 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2470 2471 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2472 dsl_dataset_name(ds, dsname); 2473 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2474 "suspending=%u", 2475 (longlong_t)dsobj, dsname, 2476 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2477 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2478 (int)scn->scn_suspending); 2479 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2480 2481 if (scn->scn_suspending) 2482 goto out; 2483 2484 /* 2485 * We've finished this pass over this dataset. 2486 */ 2487 2488 /* 2489 * If we did not completely visit this dataset, do another pass. 2490 */ 2491 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2492 zfs_dbgmsg("incomplete pass on %s; visiting again", 2493 dp->dp_spa->spa_name); 2494 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2495 scan_ds_queue_insert(scn, ds->ds_object, 2496 scn->scn_phys.scn_cur_max_txg); 2497 goto out; 2498 } 2499 2500 /* 2501 * Add descendant datasets to work queue. 2502 */ 2503 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2504 scan_ds_queue_insert(scn, 2505 dsl_dataset_phys(ds)->ds_next_snap_obj, 2506 dsl_dataset_phys(ds)->ds_creation_txg); 2507 } 2508 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2509 boolean_t usenext = B_FALSE; 2510 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2511 uint64_t count; 2512 /* 2513 * A bug in a previous version of the code could 2514 * cause upgrade_clones_cb() to not set 2515 * ds_next_snap_obj when it should, leading to a 2516 * missing entry. Therefore we can only use the 2517 * next_clones_obj when its count is correct. 2518 */ 2519 int err = zap_count(dp->dp_meta_objset, 2520 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2521 if (err == 0 && 2522 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2523 usenext = B_TRUE; 2524 } 2525 2526 if (usenext) { 2527 zap_cursor_t zc; 2528 zap_attribute_t za; 2529 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2530 dsl_dataset_phys(ds)->ds_next_clones_obj); 2531 zap_cursor_retrieve(&zc, &za) == 0; 2532 (void) zap_cursor_advance(&zc)) { 2533 scan_ds_queue_insert(scn, 2534 zfs_strtonum(za.za_name, NULL), 2535 dsl_dataset_phys(ds)->ds_creation_txg); 2536 } 2537 zap_cursor_fini(&zc); 2538 } else { 2539 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2540 enqueue_clones_cb, &ds->ds_object, 2541 DS_FIND_CHILDREN)); 2542 } 2543 } 2544 2545 out: 2546 dsl_dataset_rele(ds, FTAG); 2547 } 2548 2549 static int 2550 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2551 { 2552 (void) arg; 2553 dsl_dataset_t *ds; 2554 int err; 2555 dsl_scan_t *scn = dp->dp_scan; 2556 2557 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2558 if (err) 2559 return (err); 2560 2561 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2562 dsl_dataset_t *prev; 2563 err = dsl_dataset_hold_obj(dp, 2564 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2565 if (err) { 2566 dsl_dataset_rele(ds, FTAG); 2567 return (err); 2568 } 2569 2570 /* 2571 * If this is a clone, we don't need to worry about it for now. 2572 */ 2573 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2574 dsl_dataset_rele(ds, FTAG); 2575 dsl_dataset_rele(prev, FTAG); 2576 return (0); 2577 } 2578 dsl_dataset_rele(ds, FTAG); 2579 ds = prev; 2580 } 2581 2582 scan_ds_queue_insert(scn, ds->ds_object, 2583 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2584 dsl_dataset_rele(ds, FTAG); 2585 return (0); 2586 } 2587 2588 void 2589 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2590 ddt_entry_t *dde, dmu_tx_t *tx) 2591 { 2592 (void) tx; 2593 const ddt_key_t *ddk = &dde->dde_key; 2594 ddt_phys_t *ddp = dde->dde_phys; 2595 blkptr_t bp; 2596 zbookmark_phys_t zb = { 0 }; 2597 2598 if (!dsl_scan_is_running(scn)) 2599 return; 2600 2601 /* 2602 * This function is special because it is the only thing 2603 * that can add scan_io_t's to the vdev scan queues from 2604 * outside dsl_scan_sync(). For the most part this is ok 2605 * as long as it is called from within syncing context. 2606 * However, dsl_scan_sync() expects that no new sio's will 2607 * be added between when all the work for a scan is done 2608 * and the next txg when the scan is actually marked as 2609 * completed. This check ensures we do not issue new sio's 2610 * during this period. 2611 */ 2612 if (scn->scn_done_txg != 0) 2613 return; 2614 2615 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2616 if (ddp->ddp_phys_birth == 0 || 2617 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2618 continue; 2619 ddt_bp_create(checksum, ddk, ddp, &bp); 2620 2621 scn->scn_visited_this_txg++; 2622 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2623 } 2624 } 2625 2626 /* 2627 * Scrub/dedup interaction. 2628 * 2629 * If there are N references to a deduped block, we don't want to scrub it 2630 * N times -- ideally, we should scrub it exactly once. 2631 * 2632 * We leverage the fact that the dde's replication class (enum ddt_class) 2633 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2634 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2635 * 2636 * To prevent excess scrubbing, the scrub begins by walking the DDT 2637 * to find all blocks with refcnt > 1, and scrubs each of these once. 2638 * Since there are two replication classes which contain blocks with 2639 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2640 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2641 * 2642 * There would be nothing more to say if a block's refcnt couldn't change 2643 * during a scrub, but of course it can so we must account for changes 2644 * in a block's replication class. 2645 * 2646 * Here's an example of what can occur: 2647 * 2648 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2649 * when visited during the top-down scrub phase, it will be scrubbed twice. 2650 * This negates our scrub optimization, but is otherwise harmless. 2651 * 2652 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2653 * on each visit during the top-down scrub phase, it will never be scrubbed. 2654 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2655 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2656 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2657 * while a scrub is in progress, it scrubs the block right then. 2658 */ 2659 static void 2660 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2661 { 2662 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2663 ddt_entry_t dde = {{{{0}}}}; 2664 int error; 2665 uint64_t n = 0; 2666 2667 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2668 ddt_t *ddt; 2669 2670 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2671 break; 2672 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2673 (longlong_t)ddb->ddb_class, 2674 (longlong_t)ddb->ddb_type, 2675 (longlong_t)ddb->ddb_checksum, 2676 (longlong_t)ddb->ddb_cursor); 2677 2678 /* There should be no pending changes to the dedup table */ 2679 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2680 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2681 2682 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2683 n++; 2684 2685 if (dsl_scan_check_suspend(scn, NULL)) 2686 break; 2687 } 2688 2689 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; " 2690 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name, 2691 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2692 2693 ASSERT(error == 0 || error == ENOENT); 2694 ASSERT(error != ENOENT || 2695 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2696 } 2697 2698 static uint64_t 2699 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2700 { 2701 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2702 if (ds->ds_is_snapshot) 2703 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2704 return (smt); 2705 } 2706 2707 static void 2708 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2709 { 2710 scan_ds_t *sds; 2711 dsl_pool_t *dp = scn->scn_dp; 2712 2713 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2714 scn->scn_phys.scn_ddt_class_max) { 2715 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2716 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2717 dsl_scan_ddt(scn, tx); 2718 if (scn->scn_suspending) 2719 return; 2720 } 2721 2722 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2723 /* First do the MOS & ORIGIN */ 2724 2725 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2726 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2727 dsl_scan_visit_rootbp(scn, NULL, 2728 &dp->dp_meta_rootbp, tx); 2729 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2730 if (scn->scn_suspending) 2731 return; 2732 2733 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2734 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2735 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2736 } else { 2737 dsl_scan_visitds(scn, 2738 dp->dp_origin_snap->ds_object, tx); 2739 } 2740 ASSERT(!scn->scn_suspending); 2741 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2742 ZB_DESTROYED_OBJSET) { 2743 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2744 /* 2745 * If we were suspended, continue from here. Note if the 2746 * ds we were suspended on was deleted, the zb_objset may 2747 * be -1, so we will skip this and find a new objset 2748 * below. 2749 */ 2750 dsl_scan_visitds(scn, dsobj, tx); 2751 if (scn->scn_suspending) 2752 return; 2753 } 2754 2755 /* 2756 * In case we suspended right at the end of the ds, zero the 2757 * bookmark so we don't think that we're still trying to resume. 2758 */ 2759 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t)); 2760 2761 /* 2762 * Keep pulling things out of the dataset avl queue. Updates to the 2763 * persistent zap-object-as-queue happen only at checkpoints. 2764 */ 2765 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2766 dsl_dataset_t *ds; 2767 uint64_t dsobj = sds->sds_dsobj; 2768 uint64_t txg = sds->sds_txg; 2769 2770 /* dequeue and free the ds from the queue */ 2771 scan_ds_queue_remove(scn, dsobj); 2772 sds = NULL; 2773 2774 /* set up min / max txg */ 2775 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2776 if (txg != 0) { 2777 scn->scn_phys.scn_cur_min_txg = 2778 MAX(scn->scn_phys.scn_min_txg, txg); 2779 } else { 2780 scn->scn_phys.scn_cur_min_txg = 2781 MAX(scn->scn_phys.scn_min_txg, 2782 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2783 } 2784 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2785 dsl_dataset_rele(ds, FTAG); 2786 2787 dsl_scan_visitds(scn, dsobj, tx); 2788 if (scn->scn_suspending) 2789 return; 2790 } 2791 2792 /* No more objsets to fetch, we're done */ 2793 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2794 ASSERT0(scn->scn_suspending); 2795 } 2796 2797 static uint64_t 2798 dsl_scan_count_data_disks(vdev_t *rvd) 2799 { 2800 uint64_t i, leaves = 0; 2801 2802 for (i = 0; i < rvd->vdev_children; i++) { 2803 vdev_t *vd = rvd->vdev_child[i]; 2804 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache) 2805 continue; 2806 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd); 2807 } 2808 return (leaves); 2809 } 2810 2811 static void 2812 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2813 { 2814 int i; 2815 uint64_t cur_size = 0; 2816 2817 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2818 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2819 } 2820 2821 q->q_total_zio_size_this_txg += cur_size; 2822 q->q_zios_this_txg++; 2823 } 2824 2825 static void 2826 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2827 uint64_t end) 2828 { 2829 q->q_total_seg_size_this_txg += end - start; 2830 q->q_segs_this_txg++; 2831 } 2832 2833 static boolean_t 2834 scan_io_queue_check_suspend(dsl_scan_t *scn) 2835 { 2836 /* See comment in dsl_scan_check_suspend() */ 2837 uint64_t curr_time_ns = gethrtime(); 2838 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2839 uint64_t sync_time_ns = curr_time_ns - 2840 scn->scn_dp->dp_spa->spa_sync_starttime; 2841 uint64_t dirty_min_bytes = zfs_dirty_data_max * 2842 zfs_vdev_async_write_active_min_dirty_percent / 100; 2843 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2844 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2845 2846 return ((NSEC2MSEC(scan_time_ns) > mintime && 2847 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes || 2848 txg_sync_waiting(scn->scn_dp) || 2849 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2850 spa_shutting_down(scn->scn_dp->dp_spa)); 2851 } 2852 2853 /* 2854 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2855 * disk. This consumes the io_list and frees the scan_io_t's. This is 2856 * called when emptying queues, either when we're up against the memory 2857 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2858 * processing the list before we finished. Any sios that were not issued 2859 * will remain in the io_list. 2860 */ 2861 static boolean_t 2862 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2863 { 2864 dsl_scan_t *scn = queue->q_scn; 2865 scan_io_t *sio; 2866 boolean_t suspended = B_FALSE; 2867 2868 while ((sio = list_head(io_list)) != NULL) { 2869 blkptr_t bp; 2870 2871 if (scan_io_queue_check_suspend(scn)) { 2872 suspended = B_TRUE; 2873 break; 2874 } 2875 2876 sio2bp(sio, &bp); 2877 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2878 &sio->sio_zb, queue); 2879 (void) list_remove_head(io_list); 2880 scan_io_queues_update_zio_stats(queue, &bp); 2881 sio_free(sio); 2882 } 2883 return (suspended); 2884 } 2885 2886 /* 2887 * This function removes sios from an IO queue which reside within a given 2888 * range_seg_t and inserts them (in offset order) into a list. Note that 2889 * we only ever return a maximum of 32 sios at once. If there are more sios 2890 * to process within this segment that did not make it onto the list we 2891 * return B_TRUE and otherwise B_FALSE. 2892 */ 2893 static boolean_t 2894 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2895 { 2896 scan_io_t *srch_sio, *sio, *next_sio; 2897 avl_index_t idx; 2898 uint_t num_sios = 0; 2899 int64_t bytes_issued = 0; 2900 2901 ASSERT(rs != NULL); 2902 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2903 2904 srch_sio = sio_alloc(1); 2905 srch_sio->sio_nr_dvas = 1; 2906 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2907 2908 /* 2909 * The exact start of the extent might not contain any matching zios, 2910 * so if that's the case, examine the next one in the tree. 2911 */ 2912 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2913 sio_free(srch_sio); 2914 2915 if (sio == NULL) 2916 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2917 2918 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2919 queue->q_exts_by_addr) && num_sios <= 32) { 2920 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2921 queue->q_exts_by_addr)); 2922 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2923 queue->q_exts_by_addr)); 2924 2925 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2926 avl_remove(&queue->q_sios_by_addr, sio); 2927 if (avl_is_empty(&queue->q_sios_by_addr)) 2928 atomic_add_64(&queue->q_scn->scn_queues_pending, -1); 2929 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2930 2931 bytes_issued += SIO_GET_ASIZE(sio); 2932 num_sios++; 2933 list_insert_tail(list, sio); 2934 sio = next_sio; 2935 } 2936 2937 /* 2938 * We limit the number of sios we process at once to 32 to avoid 2939 * biting off more than we can chew. If we didn't take everything 2940 * in the segment we update it to reflect the work we were able to 2941 * complete. Otherwise, we remove it from the range tree entirely. 2942 */ 2943 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2944 queue->q_exts_by_addr)) { 2945 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2946 -bytes_issued); 2947 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2948 SIO_GET_OFFSET(sio), rs_get_end(rs, 2949 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2950 queue->q_last_ext_addr = SIO_GET_OFFSET(sio); 2951 return (B_TRUE); 2952 } else { 2953 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2954 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2955 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2956 queue->q_last_ext_addr = -1; 2957 return (B_FALSE); 2958 } 2959 } 2960 2961 /* 2962 * This is called from the queue emptying thread and selects the next 2963 * extent from which we are to issue I/Os. The behavior of this function 2964 * depends on the state of the scan, the current memory consumption and 2965 * whether or not we are performing a scan shutdown. 2966 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2967 * needs to perform a checkpoint 2968 * 2) We select the largest available extent if we are up against the 2969 * memory limit. 2970 * 3) Otherwise we don't select any extents. 2971 */ 2972 static range_seg_t * 2973 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2974 { 2975 dsl_scan_t *scn = queue->q_scn; 2976 range_tree_t *rt = queue->q_exts_by_addr; 2977 2978 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2979 ASSERT(scn->scn_is_sorted); 2980 2981 if (!scn->scn_checkpointing && !scn->scn_clearing) 2982 return (NULL); 2983 2984 /* 2985 * During normal clearing, we want to issue our largest segments 2986 * first, keeping IO as sequential as possible, and leaving the 2987 * smaller extents for later with the hope that they might eventually 2988 * grow to larger sequential segments. However, when the scan is 2989 * checkpointing, no new extents will be added to the sorting queue, 2990 * so the way we are sorted now is as good as it will ever get. 2991 * In this case, we instead switch to issuing extents in LBA order. 2992 */ 2993 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) || 2994 zfs_scan_issue_strategy == 1) 2995 return (range_tree_first(rt)); 2996 2997 /* 2998 * Try to continue previous extent if it is not completed yet. After 2999 * shrink in scan_io_queue_gather() it may no longer be the best, but 3000 * otherwise we leave shorter remnant every txg. 3001 */ 3002 uint64_t start; 3003 uint64_t size = 1 << rt->rt_shift; 3004 range_seg_t *addr_rs; 3005 if (queue->q_last_ext_addr != -1) { 3006 start = queue->q_last_ext_addr; 3007 addr_rs = range_tree_find(rt, start, size); 3008 if (addr_rs != NULL) 3009 return (addr_rs); 3010 } 3011 3012 /* 3013 * Nothing to continue, so find new best extent. 3014 */ 3015 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL); 3016 if (v == NULL) 3017 return (NULL); 3018 queue->q_last_ext_addr = start = *v << rt->rt_shift; 3019 3020 /* 3021 * We need to get the original entry in the by_addr tree so we can 3022 * modify it. 3023 */ 3024 addr_rs = range_tree_find(rt, start, size); 3025 ASSERT3P(addr_rs, !=, NULL); 3026 ASSERT3U(rs_get_start(addr_rs, rt), ==, start); 3027 ASSERT3U(rs_get_end(addr_rs, rt), >, start); 3028 return (addr_rs); 3029 } 3030 3031 static void 3032 scan_io_queues_run_one(void *arg) 3033 { 3034 dsl_scan_io_queue_t *queue = arg; 3035 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3036 boolean_t suspended = B_FALSE; 3037 range_seg_t *rs; 3038 scan_io_t *sio; 3039 zio_t *zio; 3040 list_t sio_list; 3041 3042 ASSERT(queue->q_scn->scn_is_sorted); 3043 3044 list_create(&sio_list, sizeof (scan_io_t), 3045 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3046 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa, 3047 NULL, NULL, NULL, ZIO_FLAG_CANFAIL); 3048 mutex_enter(q_lock); 3049 queue->q_zio = zio; 3050 3051 /* Calculate maximum in-flight bytes for this vdev. */ 3052 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit * 3053 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd))); 3054 3055 /* reset per-queue scan statistics for this txg */ 3056 queue->q_total_seg_size_this_txg = 0; 3057 queue->q_segs_this_txg = 0; 3058 queue->q_total_zio_size_this_txg = 0; 3059 queue->q_zios_this_txg = 0; 3060 3061 /* loop until we run out of time or sios */ 3062 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3063 uint64_t seg_start = 0, seg_end = 0; 3064 boolean_t more_left; 3065 3066 ASSERT(list_is_empty(&sio_list)); 3067 3068 /* loop while we still have sios left to process in this rs */ 3069 do { 3070 scan_io_t *first_sio, *last_sio; 3071 3072 /* 3073 * We have selected which extent needs to be 3074 * processed next. Gather up the corresponding sios. 3075 */ 3076 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3077 ASSERT(!list_is_empty(&sio_list)); 3078 first_sio = list_head(&sio_list); 3079 last_sio = list_tail(&sio_list); 3080 3081 seg_end = SIO_GET_END_OFFSET(last_sio); 3082 if (seg_start == 0) 3083 seg_start = SIO_GET_OFFSET(first_sio); 3084 3085 /* 3086 * Issuing sios can take a long time so drop the 3087 * queue lock. The sio queue won't be updated by 3088 * other threads since we're in syncing context so 3089 * we can be sure that our trees will remain exactly 3090 * as we left them. 3091 */ 3092 mutex_exit(q_lock); 3093 suspended = scan_io_queue_issue(queue, &sio_list); 3094 mutex_enter(q_lock); 3095 3096 if (suspended) 3097 break; 3098 } while (more_left); 3099 3100 /* update statistics for debugging purposes */ 3101 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3102 3103 if (suspended) 3104 break; 3105 } 3106 3107 /* 3108 * If we were suspended in the middle of processing, 3109 * requeue any unfinished sios and exit. 3110 */ 3111 while ((sio = list_head(&sio_list)) != NULL) { 3112 list_remove(&sio_list, sio); 3113 scan_io_queue_insert_impl(queue, sio); 3114 } 3115 3116 queue->q_zio = NULL; 3117 mutex_exit(q_lock); 3118 zio_nowait(zio); 3119 list_destroy(&sio_list); 3120 } 3121 3122 /* 3123 * Performs an emptying run on all scan queues in the pool. This just 3124 * punches out one thread per top-level vdev, each of which processes 3125 * only that vdev's scan queue. We can parallelize the I/O here because 3126 * we know that each queue's I/Os only affect its own top-level vdev. 3127 * 3128 * This function waits for the queue runs to complete, and must be 3129 * called from dsl_scan_sync (or in general, syncing context). 3130 */ 3131 static void 3132 scan_io_queues_run(dsl_scan_t *scn) 3133 { 3134 spa_t *spa = scn->scn_dp->dp_spa; 3135 3136 ASSERT(scn->scn_is_sorted); 3137 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3138 3139 if (scn->scn_queues_pending == 0) 3140 return; 3141 3142 if (scn->scn_taskq == NULL) { 3143 int nthreads = spa->spa_root_vdev->vdev_children; 3144 3145 /* 3146 * We need to make this taskq *always* execute as many 3147 * threads in parallel as we have top-level vdevs and no 3148 * less, otherwise strange serialization of the calls to 3149 * scan_io_queues_run_one can occur during spa_sync runs 3150 * and that significantly impacts performance. 3151 */ 3152 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3153 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3154 } 3155 3156 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3157 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3158 3159 mutex_enter(&vd->vdev_scan_io_queue_lock); 3160 if (vd->vdev_scan_io_queue != NULL) { 3161 VERIFY(taskq_dispatch(scn->scn_taskq, 3162 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3163 TQ_SLEEP) != TASKQID_INVALID); 3164 } 3165 mutex_exit(&vd->vdev_scan_io_queue_lock); 3166 } 3167 3168 /* 3169 * Wait for the queues to finish issuing their IOs for this run 3170 * before we return. There may still be IOs in flight at this 3171 * point. 3172 */ 3173 taskq_wait(scn->scn_taskq); 3174 } 3175 3176 static boolean_t 3177 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3178 { 3179 uint64_t elapsed_nanosecs; 3180 3181 if (zfs_recover) 3182 return (B_FALSE); 3183 3184 if (zfs_async_block_max_blocks != 0 && 3185 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3186 return (B_TRUE); 3187 } 3188 3189 if (zfs_max_async_dedup_frees != 0 && 3190 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3191 return (B_TRUE); 3192 } 3193 3194 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3195 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3196 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3197 txg_sync_waiting(scn->scn_dp)) || 3198 spa_shutting_down(scn->scn_dp->dp_spa)); 3199 } 3200 3201 static int 3202 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3203 { 3204 dsl_scan_t *scn = arg; 3205 3206 if (!scn->scn_is_bptree || 3207 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3208 if (dsl_scan_async_block_should_pause(scn)) 3209 return (SET_ERROR(ERESTART)); 3210 } 3211 3212 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3213 dmu_tx_get_txg(tx), bp, 0)); 3214 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3215 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3216 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3217 scn->scn_visited_this_txg++; 3218 if (BP_GET_DEDUP(bp)) 3219 scn->scn_dedup_frees_this_txg++; 3220 return (0); 3221 } 3222 3223 static void 3224 dsl_scan_update_stats(dsl_scan_t *scn) 3225 { 3226 spa_t *spa = scn->scn_dp->dp_spa; 3227 uint64_t i; 3228 uint64_t seg_size_total = 0, zio_size_total = 0; 3229 uint64_t seg_count_total = 0, zio_count_total = 0; 3230 3231 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3232 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3233 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3234 3235 if (queue == NULL) 3236 continue; 3237 3238 seg_size_total += queue->q_total_seg_size_this_txg; 3239 zio_size_total += queue->q_total_zio_size_this_txg; 3240 seg_count_total += queue->q_segs_this_txg; 3241 zio_count_total += queue->q_zios_this_txg; 3242 } 3243 3244 if (seg_count_total == 0 || zio_count_total == 0) { 3245 scn->scn_avg_seg_size_this_txg = 0; 3246 scn->scn_avg_zio_size_this_txg = 0; 3247 scn->scn_segs_this_txg = 0; 3248 scn->scn_zios_this_txg = 0; 3249 return; 3250 } 3251 3252 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3253 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3254 scn->scn_segs_this_txg = seg_count_total; 3255 scn->scn_zios_this_txg = zio_count_total; 3256 } 3257 3258 static int 3259 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3260 dmu_tx_t *tx) 3261 { 3262 ASSERT(!bp_freed); 3263 return (dsl_scan_free_block_cb(arg, bp, tx)); 3264 } 3265 3266 static int 3267 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3268 dmu_tx_t *tx) 3269 { 3270 ASSERT(!bp_freed); 3271 dsl_scan_t *scn = arg; 3272 const dva_t *dva = &bp->blk_dva[0]; 3273 3274 if (dsl_scan_async_block_should_pause(scn)) 3275 return (SET_ERROR(ERESTART)); 3276 3277 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3278 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3279 DVA_GET_ASIZE(dva), tx); 3280 scn->scn_visited_this_txg++; 3281 return (0); 3282 } 3283 3284 boolean_t 3285 dsl_scan_active(dsl_scan_t *scn) 3286 { 3287 spa_t *spa = scn->scn_dp->dp_spa; 3288 uint64_t used = 0, comp, uncomp; 3289 boolean_t clones_left; 3290 3291 if (spa->spa_load_state != SPA_LOAD_NONE) 3292 return (B_FALSE); 3293 if (spa_shutting_down(spa)) 3294 return (B_FALSE); 3295 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3296 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3297 return (B_TRUE); 3298 3299 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3300 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3301 &used, &comp, &uncomp); 3302 } 3303 clones_left = spa_livelist_delete_check(spa); 3304 return ((used != 0) || (clones_left)); 3305 } 3306 3307 static boolean_t 3308 dsl_scan_check_deferred(vdev_t *vd) 3309 { 3310 boolean_t need_resilver = B_FALSE; 3311 3312 for (int c = 0; c < vd->vdev_children; c++) { 3313 need_resilver |= 3314 dsl_scan_check_deferred(vd->vdev_child[c]); 3315 } 3316 3317 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3318 !vd->vdev_ops->vdev_op_leaf) 3319 return (need_resilver); 3320 3321 if (!vd->vdev_resilver_deferred) 3322 need_resilver = B_TRUE; 3323 3324 return (need_resilver); 3325 } 3326 3327 static boolean_t 3328 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3329 uint64_t phys_birth) 3330 { 3331 vdev_t *vd; 3332 3333 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3334 3335 if (vd->vdev_ops == &vdev_indirect_ops) { 3336 /* 3337 * The indirect vdev can point to multiple 3338 * vdevs. For simplicity, always create 3339 * the resilver zio_t. zio_vdev_io_start() 3340 * will bypass the child resilver i/o's if 3341 * they are on vdevs that don't have DTL's. 3342 */ 3343 return (B_TRUE); 3344 } 3345 3346 if (DVA_GET_GANG(dva)) { 3347 /* 3348 * Gang members may be spread across multiple 3349 * vdevs, so the best estimate we have is the 3350 * scrub range, which has already been checked. 3351 * XXX -- it would be better to change our 3352 * allocation policy to ensure that all 3353 * gang members reside on the same vdev. 3354 */ 3355 return (B_TRUE); 3356 } 3357 3358 /* 3359 * Check if the top-level vdev must resilver this offset. 3360 * When the offset does not intersect with a dirty leaf DTL 3361 * then it may be possible to skip the resilver IO. The psize 3362 * is provided instead of asize to simplify the check for RAIDZ. 3363 */ 3364 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth)) 3365 return (B_FALSE); 3366 3367 /* 3368 * Check that this top-level vdev has a device under it which 3369 * is resilvering and is not deferred. 3370 */ 3371 if (!dsl_scan_check_deferred(vd)) 3372 return (B_FALSE); 3373 3374 return (B_TRUE); 3375 } 3376 3377 static int 3378 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3379 { 3380 dsl_scan_t *scn = dp->dp_scan; 3381 spa_t *spa = dp->dp_spa; 3382 int err = 0; 3383 3384 if (spa_suspend_async_destroy(spa)) 3385 return (0); 3386 3387 if (zfs_free_bpobj_enabled && 3388 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3389 scn->scn_is_bptree = B_FALSE; 3390 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3391 scn->scn_zio_root = zio_root(spa, NULL, 3392 NULL, ZIO_FLAG_MUSTSUCCEED); 3393 err = bpobj_iterate(&dp->dp_free_bpobj, 3394 bpobj_dsl_scan_free_block_cb, scn, tx); 3395 VERIFY0(zio_wait(scn->scn_zio_root)); 3396 scn->scn_zio_root = NULL; 3397 3398 if (err != 0 && err != ERESTART) 3399 zfs_panic_recover("error %u from bpobj_iterate()", err); 3400 } 3401 3402 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3403 ASSERT(scn->scn_async_destroying); 3404 scn->scn_is_bptree = B_TRUE; 3405 scn->scn_zio_root = zio_root(spa, NULL, 3406 NULL, ZIO_FLAG_MUSTSUCCEED); 3407 err = bptree_iterate(dp->dp_meta_objset, 3408 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3409 VERIFY0(zio_wait(scn->scn_zio_root)); 3410 scn->scn_zio_root = NULL; 3411 3412 if (err == EIO || err == ECKSUM) { 3413 err = 0; 3414 } else if (err != 0 && err != ERESTART) { 3415 zfs_panic_recover("error %u from " 3416 "traverse_dataset_destroyed()", err); 3417 } 3418 3419 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3420 /* finished; deactivate async destroy feature */ 3421 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3422 ASSERT(!spa_feature_is_active(spa, 3423 SPA_FEATURE_ASYNC_DESTROY)); 3424 VERIFY0(zap_remove(dp->dp_meta_objset, 3425 DMU_POOL_DIRECTORY_OBJECT, 3426 DMU_POOL_BPTREE_OBJ, tx)); 3427 VERIFY0(bptree_free(dp->dp_meta_objset, 3428 dp->dp_bptree_obj, tx)); 3429 dp->dp_bptree_obj = 0; 3430 scn->scn_async_destroying = B_FALSE; 3431 scn->scn_async_stalled = B_FALSE; 3432 } else { 3433 /* 3434 * If we didn't make progress, mark the async 3435 * destroy as stalled, so that we will not initiate 3436 * a spa_sync() on its behalf. Note that we only 3437 * check this if we are not finished, because if the 3438 * bptree had no blocks for us to visit, we can 3439 * finish without "making progress". 3440 */ 3441 scn->scn_async_stalled = 3442 (scn->scn_visited_this_txg == 0); 3443 } 3444 } 3445 if (scn->scn_visited_this_txg) { 3446 zfs_dbgmsg("freed %llu blocks in %llums from " 3447 "free_bpobj/bptree on %s in txg %llu; err=%u", 3448 (longlong_t)scn->scn_visited_this_txg, 3449 (longlong_t) 3450 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3451 spa->spa_name, (longlong_t)tx->tx_txg, err); 3452 scn->scn_visited_this_txg = 0; 3453 scn->scn_dedup_frees_this_txg = 0; 3454 3455 /* 3456 * Write out changes to the DDT that may be required as a 3457 * result of the blocks freed. This ensures that the DDT 3458 * is clean when a scrub/resilver runs. 3459 */ 3460 ddt_sync(spa, tx->tx_txg); 3461 } 3462 if (err != 0) 3463 return (err); 3464 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3465 zfs_free_leak_on_eio && 3466 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3467 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3468 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3469 /* 3470 * We have finished background destroying, but there is still 3471 * some space left in the dp_free_dir. Transfer this leaked 3472 * space to the dp_leak_dir. 3473 */ 3474 if (dp->dp_leak_dir == NULL) { 3475 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3476 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3477 LEAK_DIR_NAME, tx); 3478 VERIFY0(dsl_pool_open_special_dir(dp, 3479 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3480 rrw_exit(&dp->dp_config_rwlock, FTAG); 3481 } 3482 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3483 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3484 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3485 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3486 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3487 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3488 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3489 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3490 } 3491 3492 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3493 !spa_livelist_delete_check(spa)) { 3494 /* finished; verify that space accounting went to zero */ 3495 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3496 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3497 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3498 } 3499 3500 spa_notify_waiters(spa); 3501 3502 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3503 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3504 DMU_POOL_OBSOLETE_BPOBJ)); 3505 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3506 ASSERT(spa_feature_is_active(dp->dp_spa, 3507 SPA_FEATURE_OBSOLETE_COUNTS)); 3508 3509 scn->scn_is_bptree = B_FALSE; 3510 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3511 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3512 dsl_scan_obsolete_block_cb, scn, tx); 3513 if (err != 0 && err != ERESTART) 3514 zfs_panic_recover("error %u from bpobj_iterate()", err); 3515 3516 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3517 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3518 } 3519 return (0); 3520 } 3521 3522 /* 3523 * This is the primary entry point for scans that is called from syncing 3524 * context. Scans must happen entirely during syncing context so that we 3525 * can guarantee that blocks we are currently scanning will not change out 3526 * from under us. While a scan is active, this function controls how quickly 3527 * transaction groups proceed, instead of the normal handling provided by 3528 * txg_sync_thread(). 3529 */ 3530 void 3531 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3532 { 3533 int err = 0; 3534 dsl_scan_t *scn = dp->dp_scan; 3535 spa_t *spa = dp->dp_spa; 3536 state_sync_type_t sync_type = SYNC_OPTIONAL; 3537 3538 if (spa->spa_resilver_deferred && 3539 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3540 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3541 3542 /* 3543 * Check for scn_restart_txg before checking spa_load_state, so 3544 * that we can restart an old-style scan while the pool is being 3545 * imported (see dsl_scan_init). We also restart scans if there 3546 * is a deferred resilver and the user has manually disabled 3547 * deferred resilvers via the tunable. 3548 */ 3549 if (dsl_scan_restarting(scn, tx) || 3550 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3551 pool_scan_func_t func = POOL_SCAN_SCRUB; 3552 dsl_scan_done(scn, B_FALSE, tx); 3553 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3554 func = POOL_SCAN_RESILVER; 3555 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu", 3556 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg); 3557 dsl_scan_setup_sync(&func, tx); 3558 } 3559 3560 /* 3561 * Only process scans in sync pass 1. 3562 */ 3563 if (spa_sync_pass(spa) > 1) 3564 return; 3565 3566 /* 3567 * If the spa is shutting down, then stop scanning. This will 3568 * ensure that the scan does not dirty any new data during the 3569 * shutdown phase. 3570 */ 3571 if (spa_shutting_down(spa)) 3572 return; 3573 3574 /* 3575 * If the scan is inactive due to a stalled async destroy, try again. 3576 */ 3577 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3578 return; 3579 3580 /* reset scan statistics */ 3581 scn->scn_visited_this_txg = 0; 3582 scn->scn_dedup_frees_this_txg = 0; 3583 scn->scn_holes_this_txg = 0; 3584 scn->scn_lt_min_this_txg = 0; 3585 scn->scn_gt_max_this_txg = 0; 3586 scn->scn_ddt_contained_this_txg = 0; 3587 scn->scn_objsets_visited_this_txg = 0; 3588 scn->scn_avg_seg_size_this_txg = 0; 3589 scn->scn_segs_this_txg = 0; 3590 scn->scn_avg_zio_size_this_txg = 0; 3591 scn->scn_zios_this_txg = 0; 3592 scn->scn_suspending = B_FALSE; 3593 scn->scn_sync_start_time = gethrtime(); 3594 spa->spa_scrub_active = B_TRUE; 3595 3596 /* 3597 * First process the async destroys. If we suspend, don't do 3598 * any scrubbing or resilvering. This ensures that there are no 3599 * async destroys while we are scanning, so the scan code doesn't 3600 * have to worry about traversing it. It is also faster to free the 3601 * blocks than to scrub them. 3602 */ 3603 err = dsl_process_async_destroys(dp, tx); 3604 if (err != 0) 3605 return; 3606 3607 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3608 return; 3609 3610 /* 3611 * Wait a few txgs after importing to begin scanning so that 3612 * we can get the pool imported quickly. 3613 */ 3614 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3615 return; 3616 3617 /* 3618 * zfs_scan_suspend_progress can be set to disable scan progress. 3619 * We don't want to spin the txg_sync thread, so we add a delay 3620 * here to simulate the time spent doing a scan. This is mostly 3621 * useful for testing and debugging. 3622 */ 3623 if (zfs_scan_suspend_progress) { 3624 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3625 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3626 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3627 3628 while (zfs_scan_suspend_progress && 3629 !txg_sync_waiting(scn->scn_dp) && 3630 !spa_shutting_down(scn->scn_dp->dp_spa) && 3631 NSEC2MSEC(scan_time_ns) < mintime) { 3632 delay(hz); 3633 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3634 } 3635 return; 3636 } 3637 3638 /* 3639 * It is possible to switch from unsorted to sorted at any time, 3640 * but afterwards the scan will remain sorted unless reloaded from 3641 * a checkpoint after a reboot. 3642 */ 3643 if (!zfs_scan_legacy) { 3644 scn->scn_is_sorted = B_TRUE; 3645 if (scn->scn_last_checkpoint == 0) 3646 scn->scn_last_checkpoint = ddi_get_lbolt(); 3647 } 3648 3649 /* 3650 * For sorted scans, determine what kind of work we will be doing 3651 * this txg based on our memory limitations and whether or not we 3652 * need to perform a checkpoint. 3653 */ 3654 if (scn->scn_is_sorted) { 3655 /* 3656 * If we are over our checkpoint interval, set scn_clearing 3657 * so that we can begin checkpointing immediately. The 3658 * checkpoint allows us to save a consistent bookmark 3659 * representing how much data we have scrubbed so far. 3660 * Otherwise, use the memory limit to determine if we should 3661 * scan for metadata or start issue scrub IOs. We accumulate 3662 * metadata until we hit our hard memory limit at which point 3663 * we issue scrub IOs until we are at our soft memory limit. 3664 */ 3665 if (scn->scn_checkpointing || 3666 ddi_get_lbolt() - scn->scn_last_checkpoint > 3667 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3668 if (!scn->scn_checkpointing) 3669 zfs_dbgmsg("begin scan checkpoint for %s", 3670 spa->spa_name); 3671 3672 scn->scn_checkpointing = B_TRUE; 3673 scn->scn_clearing = B_TRUE; 3674 } else { 3675 boolean_t should_clear = dsl_scan_should_clear(scn); 3676 if (should_clear && !scn->scn_clearing) { 3677 zfs_dbgmsg("begin scan clearing for %s", 3678 spa->spa_name); 3679 scn->scn_clearing = B_TRUE; 3680 } else if (!should_clear && scn->scn_clearing) { 3681 zfs_dbgmsg("finish scan clearing for %s", 3682 spa->spa_name); 3683 scn->scn_clearing = B_FALSE; 3684 } 3685 } 3686 } else { 3687 ASSERT0(scn->scn_checkpointing); 3688 ASSERT0(scn->scn_clearing); 3689 } 3690 3691 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3692 /* Need to scan metadata for more blocks to scrub */ 3693 dsl_scan_phys_t *scnp = &scn->scn_phys; 3694 taskqid_t prefetch_tqid; 3695 3696 /* 3697 * Recalculate the max number of in-flight bytes for pool-wide 3698 * scanning operations (minimum 1MB). Limits for the issuing 3699 * phase are done per top-level vdev and are handled separately. 3700 */ 3701 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 3702 dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20); 3703 3704 if (scnp->scn_ddt_bookmark.ddb_class <= 3705 scnp->scn_ddt_class_max) { 3706 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3707 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3708 "ddt bm=%llu/%llu/%llu/%llx", 3709 spa->spa_name, 3710 (longlong_t)tx->tx_txg, 3711 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3712 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3713 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3714 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3715 } else { 3716 zfs_dbgmsg("doing scan sync for %s txg %llu; " 3717 "bm=%llu/%llu/%llu/%llu", 3718 spa->spa_name, 3719 (longlong_t)tx->tx_txg, 3720 (longlong_t)scnp->scn_bookmark.zb_objset, 3721 (longlong_t)scnp->scn_bookmark.zb_object, 3722 (longlong_t)scnp->scn_bookmark.zb_level, 3723 (longlong_t)scnp->scn_bookmark.zb_blkid); 3724 } 3725 3726 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3727 NULL, ZIO_FLAG_CANFAIL); 3728 3729 scn->scn_prefetch_stop = B_FALSE; 3730 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3731 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3732 ASSERT(prefetch_tqid != TASKQID_INVALID); 3733 3734 dsl_pool_config_enter(dp, FTAG); 3735 dsl_scan_visit(scn, tx); 3736 dsl_pool_config_exit(dp, FTAG); 3737 3738 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3739 scn->scn_prefetch_stop = B_TRUE; 3740 cv_broadcast(&spa->spa_scrub_io_cv); 3741 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3742 3743 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3744 (void) zio_wait(scn->scn_zio_root); 3745 scn->scn_zio_root = NULL; 3746 3747 zfs_dbgmsg("scan visited %llu blocks of %s in %llums " 3748 "(%llu os's, %llu holes, %llu < mintxg, " 3749 "%llu in ddt, %llu > maxtxg)", 3750 (longlong_t)scn->scn_visited_this_txg, 3751 spa->spa_name, 3752 (longlong_t)NSEC2MSEC(gethrtime() - 3753 scn->scn_sync_start_time), 3754 (longlong_t)scn->scn_objsets_visited_this_txg, 3755 (longlong_t)scn->scn_holes_this_txg, 3756 (longlong_t)scn->scn_lt_min_this_txg, 3757 (longlong_t)scn->scn_ddt_contained_this_txg, 3758 (longlong_t)scn->scn_gt_max_this_txg); 3759 3760 if (!scn->scn_suspending) { 3761 ASSERT0(avl_numnodes(&scn->scn_queue)); 3762 scn->scn_done_txg = tx->tx_txg + 1; 3763 if (scn->scn_is_sorted) { 3764 scn->scn_checkpointing = B_TRUE; 3765 scn->scn_clearing = B_TRUE; 3766 } 3767 zfs_dbgmsg("scan complete for %s txg %llu", 3768 spa->spa_name, 3769 (longlong_t)tx->tx_txg); 3770 } 3771 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) { 3772 ASSERT(scn->scn_clearing); 3773 3774 /* need to issue scrubbing IOs from per-vdev queues */ 3775 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3776 NULL, ZIO_FLAG_CANFAIL); 3777 scan_io_queues_run(scn); 3778 (void) zio_wait(scn->scn_zio_root); 3779 scn->scn_zio_root = NULL; 3780 3781 /* calculate and dprintf the current memory usage */ 3782 (void) dsl_scan_should_clear(scn); 3783 dsl_scan_update_stats(scn); 3784 3785 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) " 3786 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)", 3787 (longlong_t)scn->scn_zios_this_txg, 3788 spa->spa_name, 3789 (longlong_t)scn->scn_segs_this_txg, 3790 (longlong_t)NSEC2MSEC(gethrtime() - 3791 scn->scn_sync_start_time), 3792 (longlong_t)scn->scn_avg_zio_size_this_txg, 3793 (longlong_t)scn->scn_avg_seg_size_this_txg); 3794 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3795 /* Finished with everything. Mark the scrub as complete */ 3796 zfs_dbgmsg("scan issuing complete txg %llu for %s", 3797 (longlong_t)tx->tx_txg, 3798 spa->spa_name); 3799 ASSERT3U(scn->scn_done_txg, !=, 0); 3800 ASSERT0(spa->spa_scrub_inflight); 3801 ASSERT0(scn->scn_queues_pending); 3802 dsl_scan_done(scn, B_TRUE, tx); 3803 sync_type = SYNC_MANDATORY; 3804 } 3805 3806 dsl_scan_sync_state(scn, tx, sync_type); 3807 } 3808 3809 static void 3810 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all) 3811 { 3812 /* 3813 * Don't count embedded bp's, since we already did the work of 3814 * scanning these when we scanned the containing block. 3815 */ 3816 if (BP_IS_EMBEDDED(bp)) 3817 return; 3818 3819 /* 3820 * Update the spa's stats on how many bytes we have issued. 3821 * Sequential scrubs create a zio for each DVA of the bp. Each 3822 * of these will include all DVAs for repair purposes, but the 3823 * zio code will only try the first one unless there is an issue. 3824 * Therefore, we should only count the first DVA for these IOs. 3825 */ 3826 atomic_add_64(&spa->spa_scan_pass_issued, 3827 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0])); 3828 } 3829 3830 static void 3831 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp) 3832 { 3833 /* 3834 * If we resume after a reboot, zab will be NULL; don't record 3835 * incomplete stats in that case. 3836 */ 3837 if (zab == NULL) 3838 return; 3839 3840 for (int i = 0; i < 4; i++) { 3841 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3842 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3843 3844 if (t & DMU_OT_NEWTYPE) 3845 t = DMU_OT_OTHER; 3846 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3847 int equal; 3848 3849 zb->zb_count++; 3850 zb->zb_asize += BP_GET_ASIZE(bp); 3851 zb->zb_lsize += BP_GET_LSIZE(bp); 3852 zb->zb_psize += BP_GET_PSIZE(bp); 3853 zb->zb_gangs += BP_COUNT_GANG(bp); 3854 3855 switch (BP_GET_NDVAS(bp)) { 3856 case 2: 3857 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3858 DVA_GET_VDEV(&bp->blk_dva[1])) 3859 zb->zb_ditto_2_of_2_samevdev++; 3860 break; 3861 case 3: 3862 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3863 DVA_GET_VDEV(&bp->blk_dva[1])) + 3864 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3865 DVA_GET_VDEV(&bp->blk_dva[2])) + 3866 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3867 DVA_GET_VDEV(&bp->blk_dva[2])); 3868 if (equal == 1) 3869 zb->zb_ditto_2_of_3_samevdev++; 3870 else if (equal == 3) 3871 zb->zb_ditto_3_of_3_samevdev++; 3872 break; 3873 } 3874 } 3875 } 3876 3877 static void 3878 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3879 { 3880 avl_index_t idx; 3881 dsl_scan_t *scn = queue->q_scn; 3882 3883 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3884 3885 if (unlikely(avl_is_empty(&queue->q_sios_by_addr))) 3886 atomic_add_64(&scn->scn_queues_pending, 1); 3887 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3888 /* block is already scheduled for reading */ 3889 sio_free(sio); 3890 return; 3891 } 3892 avl_insert(&queue->q_sios_by_addr, sio, idx); 3893 queue->q_sio_memused += SIO_GET_MUSED(sio); 3894 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), 3895 SIO_GET_ASIZE(sio)); 3896 } 3897 3898 /* 3899 * Given all the info we got from our metadata scanning process, we 3900 * construct a scan_io_t and insert it into the scan sorting queue. The 3901 * I/O must already be suitable for us to process. This is controlled 3902 * by dsl_scan_enqueue(). 3903 */ 3904 static void 3905 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3906 int zio_flags, const zbookmark_phys_t *zb) 3907 { 3908 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3909 3910 ASSERT0(BP_IS_GANG(bp)); 3911 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3912 3913 bp2sio(bp, sio, dva_i); 3914 sio->sio_flags = zio_flags; 3915 sio->sio_zb = *zb; 3916 3917 queue->q_last_ext_addr = -1; 3918 scan_io_queue_insert_impl(queue, sio); 3919 } 3920 3921 /* 3922 * Given a set of I/O parameters as discovered by the metadata traversal 3923 * process, attempts to place the I/O into the sorted queues (if allowed), 3924 * or immediately executes the I/O. 3925 */ 3926 static void 3927 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3928 const zbookmark_phys_t *zb) 3929 { 3930 spa_t *spa = dp->dp_spa; 3931 3932 ASSERT(!BP_IS_EMBEDDED(bp)); 3933 3934 /* 3935 * Gang blocks are hard to issue sequentially, so we just issue them 3936 * here immediately instead of queuing them. 3937 */ 3938 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3939 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3940 return; 3941 } 3942 3943 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3944 dva_t dva; 3945 vdev_t *vdev; 3946 3947 dva = bp->blk_dva[i]; 3948 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3949 ASSERT(vdev != NULL); 3950 3951 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3952 if (vdev->vdev_scan_io_queue == NULL) 3953 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3954 ASSERT(dp->dp_scan != NULL); 3955 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3956 i, zio_flags, zb); 3957 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3958 } 3959 } 3960 3961 static int 3962 dsl_scan_scrub_cb(dsl_pool_t *dp, 3963 const blkptr_t *bp, const zbookmark_phys_t *zb) 3964 { 3965 dsl_scan_t *scn = dp->dp_scan; 3966 spa_t *spa = dp->dp_spa; 3967 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3968 size_t psize = BP_GET_PSIZE(bp); 3969 boolean_t needs_io = B_FALSE; 3970 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3971 3972 count_block(dp->dp_blkstats, bp); 3973 if (phys_birth <= scn->scn_phys.scn_min_txg || 3974 phys_birth >= scn->scn_phys.scn_max_txg) { 3975 count_block_issued(spa, bp, B_TRUE); 3976 return (0); 3977 } 3978 3979 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3980 ASSERT(!BP_IS_EMBEDDED(bp)); 3981 3982 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3983 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3984 zio_flags |= ZIO_FLAG_SCRUB; 3985 needs_io = B_TRUE; 3986 } else { 3987 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3988 zio_flags |= ZIO_FLAG_RESILVER; 3989 needs_io = B_FALSE; 3990 } 3991 3992 /* If it's an intent log block, failure is expected. */ 3993 if (zb->zb_level == ZB_ZIL_LEVEL) 3994 zio_flags |= ZIO_FLAG_SPECULATIVE; 3995 3996 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 3997 const dva_t *dva = &bp->blk_dva[d]; 3998 3999 /* 4000 * Keep track of how much data we've examined so that 4001 * zpool(8) status can make useful progress reports. 4002 */ 4003 uint64_t asize = DVA_GET_ASIZE(dva); 4004 scn->scn_phys.scn_examined += asize; 4005 spa->spa_scan_pass_exam += asize; 4006 4007 /* if it's a resilver, this may not be in the target range */ 4008 if (!needs_io) 4009 needs_io = dsl_scan_need_resilver(spa, dva, psize, 4010 phys_birth); 4011 } 4012 4013 if (needs_io && !zfs_no_scrub_io) { 4014 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4015 } else { 4016 count_block_issued(spa, bp, B_TRUE); 4017 } 4018 4019 /* do not relocate this block */ 4020 return (0); 4021 } 4022 4023 static void 4024 dsl_scan_scrub_done(zio_t *zio) 4025 { 4026 spa_t *spa = zio->io_spa; 4027 blkptr_t *bp = zio->io_bp; 4028 dsl_scan_io_queue_t *queue = zio->io_private; 4029 4030 abd_free(zio->io_abd); 4031 4032 if (queue == NULL) { 4033 mutex_enter(&spa->spa_scrub_lock); 4034 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4035 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4036 cv_broadcast(&spa->spa_scrub_io_cv); 4037 mutex_exit(&spa->spa_scrub_lock); 4038 } else { 4039 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4040 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4041 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4042 cv_broadcast(&queue->q_zio_cv); 4043 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4044 } 4045 4046 if (zio->io_error && (zio->io_error != ECKSUM || 4047 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4048 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4049 } 4050 } 4051 4052 /* 4053 * Given a scanning zio's information, executes the zio. The zio need 4054 * not necessarily be only sortable, this function simply executes the 4055 * zio, no matter what it is. The optional queue argument allows the 4056 * caller to specify that they want per top level vdev IO rate limiting 4057 * instead of the legacy global limiting. 4058 */ 4059 static void 4060 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4061 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4062 { 4063 spa_t *spa = dp->dp_spa; 4064 dsl_scan_t *scn = dp->dp_scan; 4065 size_t size = BP_GET_PSIZE(bp); 4066 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4067 zio_t *pio; 4068 4069 if (queue == NULL) { 4070 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4071 mutex_enter(&spa->spa_scrub_lock); 4072 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4073 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4074 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4075 mutex_exit(&spa->spa_scrub_lock); 4076 pio = scn->scn_zio_root; 4077 } else { 4078 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4079 4080 ASSERT3U(queue->q_maxinflight_bytes, >, 0); 4081 mutex_enter(q_lock); 4082 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4083 cv_wait(&queue->q_zio_cv, q_lock); 4084 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4085 pio = queue->q_zio; 4086 mutex_exit(q_lock); 4087 } 4088 4089 ASSERT(pio != NULL); 4090 count_block_issued(spa, bp, queue == NULL); 4091 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done, 4092 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4093 } 4094 4095 /* 4096 * This is the primary extent sorting algorithm. We balance two parameters: 4097 * 1) how many bytes of I/O are in an extent 4098 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4099 * Since we allow extents to have gaps between their constituent I/Os, it's 4100 * possible to have a fairly large extent that contains the same amount of 4101 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4102 * The algorithm sorts based on a score calculated from the extent's size, 4103 * the relative fill volume (in %) and a "fill weight" parameter that controls 4104 * the split between whether we prefer larger extents or more well populated 4105 * extents: 4106 * 4107 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4108 * 4109 * Example: 4110 * 1) assume extsz = 64 MiB 4111 * 2) assume fill = 32 MiB (extent is half full) 4112 * 3) assume fill_weight = 3 4113 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4114 * SCORE = 32M + (50 * 3 * 32M) / 100 4115 * SCORE = 32M + (4800M / 100) 4116 * SCORE = 32M + 48M 4117 * ^ ^ 4118 * | +--- final total relative fill-based score 4119 * +--------- final total fill-based score 4120 * SCORE = 80M 4121 * 4122 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4123 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4124 * Note that as an optimization, we replace multiplication and division by 4125 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4126 * 4127 * Since we do not care if one extent is only few percent better than another, 4128 * compress the score into 6 bits via binary logarithm AKA highbit64() and 4129 * put into otherwise unused due to ashift high bits of offset. This allows 4130 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them 4131 * with single operation. Plus it makes scrubs more sequential and reduces 4132 * chances that minor extent change move it within the B-tree. 4133 */ 4134 static int 4135 ext_size_compare(const void *x, const void *y) 4136 { 4137 const uint64_t *a = x, *b = y; 4138 4139 return (TREE_CMP(*a, *b)); 4140 } 4141 4142 static void 4143 ext_size_create(range_tree_t *rt, void *arg) 4144 { 4145 (void) rt; 4146 zfs_btree_t *size_tree = arg; 4147 4148 zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t)); 4149 } 4150 4151 static void 4152 ext_size_destroy(range_tree_t *rt, void *arg) 4153 { 4154 (void) rt; 4155 zfs_btree_t *size_tree = arg; 4156 ASSERT0(zfs_btree_numnodes(size_tree)); 4157 4158 zfs_btree_destroy(size_tree); 4159 } 4160 4161 static uint64_t 4162 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg) 4163 { 4164 (void) rt; 4165 uint64_t size = rsg->rs_end - rsg->rs_start; 4166 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) * 4167 fill_weight * rsg->rs_fill) >> 7); 4168 ASSERT3U(rt->rt_shift, >=, 8); 4169 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start); 4170 } 4171 4172 static void 4173 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg) 4174 { 4175 zfs_btree_t *size_tree = arg; 4176 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4177 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4178 zfs_btree_add(size_tree, &v); 4179 } 4180 4181 static void 4182 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 4183 { 4184 zfs_btree_t *size_tree = arg; 4185 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP); 4186 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs); 4187 zfs_btree_remove(size_tree, &v); 4188 } 4189 4190 static void 4191 ext_size_vacate(range_tree_t *rt, void *arg) 4192 { 4193 zfs_btree_t *size_tree = arg; 4194 zfs_btree_clear(size_tree); 4195 zfs_btree_destroy(size_tree); 4196 4197 ext_size_create(rt, arg); 4198 } 4199 4200 static const range_tree_ops_t ext_size_ops = { 4201 .rtop_create = ext_size_create, 4202 .rtop_destroy = ext_size_destroy, 4203 .rtop_add = ext_size_add, 4204 .rtop_remove = ext_size_remove, 4205 .rtop_vacate = ext_size_vacate 4206 }; 4207 4208 /* 4209 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4210 * based on LBA-order (from lowest to highest). 4211 */ 4212 static int 4213 sio_addr_compare(const void *x, const void *y) 4214 { 4215 const scan_io_t *a = x, *b = y; 4216 4217 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4218 } 4219 4220 /* IO queues are created on demand when they are needed. */ 4221 static dsl_scan_io_queue_t * 4222 scan_io_queue_create(vdev_t *vd) 4223 { 4224 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4225 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4226 4227 q->q_scn = scn; 4228 q->q_vd = vd; 4229 q->q_sio_memused = 0; 4230 q->q_last_ext_addr = -1; 4231 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4232 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP, 4233 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap); 4234 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4235 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4236 4237 return (q); 4238 } 4239 4240 /* 4241 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4242 * No further execution of I/O occurs, anything pending in the queue is 4243 * simply freed without being executed. 4244 */ 4245 void 4246 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4247 { 4248 dsl_scan_t *scn = queue->q_scn; 4249 scan_io_t *sio; 4250 void *cookie = NULL; 4251 4252 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4253 4254 if (!avl_is_empty(&queue->q_sios_by_addr)) 4255 atomic_add_64(&scn->scn_queues_pending, -1); 4256 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4257 NULL) { 4258 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4259 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4260 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4261 sio_free(sio); 4262 } 4263 4264 ASSERT0(queue->q_sio_memused); 4265 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4266 range_tree_destroy(queue->q_exts_by_addr); 4267 avl_destroy(&queue->q_sios_by_addr); 4268 cv_destroy(&queue->q_zio_cv); 4269 4270 kmem_free(queue, sizeof (*queue)); 4271 } 4272 4273 /* 4274 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4275 * called on behalf of vdev_top_transfer when creating or destroying 4276 * a mirror vdev due to zpool attach/detach. 4277 */ 4278 void 4279 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4280 { 4281 mutex_enter(&svd->vdev_scan_io_queue_lock); 4282 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4283 4284 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4285 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4286 svd->vdev_scan_io_queue = NULL; 4287 if (tvd->vdev_scan_io_queue != NULL) 4288 tvd->vdev_scan_io_queue->q_vd = tvd; 4289 4290 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4291 mutex_exit(&svd->vdev_scan_io_queue_lock); 4292 } 4293 4294 static void 4295 scan_io_queues_destroy(dsl_scan_t *scn) 4296 { 4297 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4298 4299 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4300 vdev_t *tvd = rvd->vdev_child[i]; 4301 4302 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4303 if (tvd->vdev_scan_io_queue != NULL) 4304 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4305 tvd->vdev_scan_io_queue = NULL; 4306 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4307 } 4308 } 4309 4310 static void 4311 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4312 { 4313 dsl_pool_t *dp = spa->spa_dsl_pool; 4314 dsl_scan_t *scn = dp->dp_scan; 4315 vdev_t *vdev; 4316 kmutex_t *q_lock; 4317 dsl_scan_io_queue_t *queue; 4318 scan_io_t *srch_sio, *sio; 4319 avl_index_t idx; 4320 uint64_t start, size; 4321 4322 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4323 ASSERT(vdev != NULL); 4324 q_lock = &vdev->vdev_scan_io_queue_lock; 4325 queue = vdev->vdev_scan_io_queue; 4326 4327 mutex_enter(q_lock); 4328 if (queue == NULL) { 4329 mutex_exit(q_lock); 4330 return; 4331 } 4332 4333 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4334 bp2sio(bp, srch_sio, dva_i); 4335 start = SIO_GET_OFFSET(srch_sio); 4336 size = SIO_GET_ASIZE(srch_sio); 4337 4338 /* 4339 * We can find the zio in two states: 4340 * 1) Cold, just sitting in the queue of zio's to be issued at 4341 * some point in the future. In this case, all we do is 4342 * remove the zio from the q_sios_by_addr tree, decrement 4343 * its data volume from the containing range_seg_t and 4344 * resort the q_exts_by_size tree to reflect that the 4345 * range_seg_t has lost some of its 'fill'. We don't shorten 4346 * the range_seg_t - this is usually rare enough not to be 4347 * worth the extra hassle of trying keep track of precise 4348 * extent boundaries. 4349 * 2) Hot, where the zio is currently in-flight in 4350 * dsl_scan_issue_ios. In this case, we can't simply 4351 * reach in and stop the in-flight zio's, so we instead 4352 * block the caller. Eventually, dsl_scan_issue_ios will 4353 * be done with issuing the zio's it gathered and will 4354 * signal us. 4355 */ 4356 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4357 sio_free(srch_sio); 4358 4359 if (sio != NULL) { 4360 blkptr_t tmpbp; 4361 4362 /* Got it while it was cold in the queue */ 4363 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4364 ASSERT3U(size, ==, SIO_GET_ASIZE(sio)); 4365 avl_remove(&queue->q_sios_by_addr, sio); 4366 if (avl_is_empty(&queue->q_sios_by_addr)) 4367 atomic_add_64(&scn->scn_queues_pending, -1); 4368 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4369 4370 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4371 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4372 4373 /* count the block as though we issued it */ 4374 sio2bp(sio, &tmpbp); 4375 count_block_issued(spa, &tmpbp, B_FALSE); 4376 4377 sio_free(sio); 4378 } 4379 mutex_exit(q_lock); 4380 } 4381 4382 /* 4383 * Callback invoked when a zio_free() zio is executing. This needs to be 4384 * intercepted to prevent the zio from deallocating a particular portion 4385 * of disk space and it then getting reallocated and written to, while we 4386 * still have it queued up for processing. 4387 */ 4388 void 4389 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4390 { 4391 dsl_pool_t *dp = spa->spa_dsl_pool; 4392 dsl_scan_t *scn = dp->dp_scan; 4393 4394 ASSERT(!BP_IS_EMBEDDED(bp)); 4395 ASSERT(scn != NULL); 4396 if (!dsl_scan_is_running(scn)) 4397 return; 4398 4399 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4400 dsl_scan_freed_dva(spa, bp, i); 4401 } 4402 4403 /* 4404 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4405 * not started, start it. Otherwise, only restart if max txg in DTL range is 4406 * greater than the max txg in the current scan. If the DTL max is less than 4407 * the scan max, then the vdev has not missed any new data since the resilver 4408 * started, so a restart is not needed. 4409 */ 4410 void 4411 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4412 { 4413 uint64_t min, max; 4414 4415 if (!vdev_resilver_needed(vd, &min, &max)) 4416 return; 4417 4418 if (!dsl_scan_resilvering(dp)) { 4419 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4420 return; 4421 } 4422 4423 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4424 return; 4425 4426 /* restart is needed, check if it can be deferred */ 4427 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4428 vdev_defer_resilver(vd); 4429 else 4430 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4431 } 4432 4433 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4434 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4435 4436 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4437 "Min millisecs to scrub per txg"); 4438 4439 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4440 "Min millisecs to obsolete per txg"); 4441 4442 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4443 "Min millisecs to free per txg"); 4444 4445 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4446 "Min millisecs to resilver per txg"); 4447 4448 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4449 "Set to prevent scans from progressing"); 4450 4451 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4452 "Set to disable scrub I/O"); 4453 4454 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4455 "Set to disable scrub prefetching"); 4456 4457 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4458 "Max number of blocks freed in one txg"); 4459 4460 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4461 "Max number of dedup blocks freed in one txg"); 4462 4463 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4464 "Enable processing of the free_bpobj"); 4465 4466 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW, 4467 "Enable block statistics calculation during scrub"); 4468 4469 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4470 "Fraction of RAM for scan hard limit"); 4471 4472 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4473 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size"); 4474 4475 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4476 "Scrub using legacy non-sequential method"); 4477 4478 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4479 "Scan progress on-disk checkpointing interval"); 4480 4481 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4482 "Max gap in bytes between sequential scrub / resilver I/Os"); 4483 4484 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4485 "Fraction of hard limit used as soft limit"); 4486 4487 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4488 "Tunable to attempt to reduce lock contention"); 4489 4490 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4491 "Tunable to adjust bias towards more filled segments during scans"); 4492 4493 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4494 "Process all resilvers immediately"); 4495