1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2016 Gary Mills 25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 27 * Copyright 2019 Joyent, Inc. 28 */ 29 30 #include <sys/dsl_scan.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_dataset.h> 33 #include <sys/dsl_prop.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/dnode.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/arc.h> 40 #include <sys/zap.h> 41 #include <sys/zio.h> 42 #include <sys/zfs_context.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/zfs_znode.h> 45 #include <sys/spa_impl.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/zil_impl.h> 48 #include <sys/zio_checksum.h> 49 #include <sys/ddt.h> 50 #include <sys/sa.h> 51 #include <sys/sa_impl.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/range_tree.h> 55 #ifdef _KERNEL 56 #include <sys/zfs_vfsops.h> 57 #endif 58 59 /* 60 * Grand theory statement on scan queue sorting 61 * 62 * Scanning is implemented by recursively traversing all indirection levels 63 * in an object and reading all blocks referenced from said objects. This 64 * results in us approximately traversing the object from lowest logical 65 * offset to the highest. For best performance, we would want the logical 66 * blocks to be physically contiguous. However, this is frequently not the 67 * case with pools given the allocation patterns of copy-on-write filesystems. 68 * So instead, we put the I/Os into a reordering queue and issue them in a 69 * way that will most benefit physical disks (LBA-order). 70 * 71 * Queue management: 72 * 73 * Ideally, we would want to scan all metadata and queue up all block I/O 74 * prior to starting to issue it, because that allows us to do an optimal 75 * sorting job. This can however consume large amounts of memory. Therefore 76 * we continuously monitor the size of the queues and constrain them to 5% 77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this 78 * limit, we clear out a few of the largest extents at the head of the queues 79 * to make room for more scanning. Hopefully, these extents will be fairly 80 * large and contiguous, allowing us to approach sequential I/O throughput 81 * even without a fully sorted tree. 82 * 83 * Metadata scanning takes place in dsl_scan_visit(), which is called from 84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all 85 * metadata on the pool, or we need to make room in memory because our 86 * queues are too large, dsl_scan_visit() is postponed and 87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies 88 * that metadata scanning and queued I/O issuing are mutually exclusive. This 89 * allows us to provide maximum sequential I/O throughput for the majority of 90 * I/O's issued since sequential I/O performance is significantly negatively 91 * impacted if it is interleaved with random I/O. 92 * 93 * Implementation Notes 94 * 95 * One side effect of the queued scanning algorithm is that the scanning code 96 * needs to be notified whenever a block is freed. This is needed to allow 97 * the scanning code to remove these I/Os from the issuing queue. Additionally, 98 * we do not attempt to queue gang blocks to be issued sequentially since this 99 * is very hard to do and would have an extremely limited performance benefit. 100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy 101 * algorithm. 102 * 103 * Backwards compatibility 104 * 105 * This new algorithm is backwards compatible with the legacy on-disk data 106 * structures (and therefore does not require a new feature flag). 107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan 108 * will stop scanning metadata (in logical order) and wait for all outstanding 109 * sorted I/O to complete. Once this is done, we write out a checkpoint 110 * bookmark, indicating that we have scanned everything logically before it. 111 * If the pool is imported on a machine without the new sorting algorithm, 112 * the scan simply resumes from the last checkpoint using the legacy algorithm. 113 */ 114 115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *, 116 const zbookmark_phys_t *); 117 118 static scan_cb_t dsl_scan_scrub_cb; 119 120 static int scan_ds_queue_compare(const void *a, const void *b); 121 static int scan_prefetch_queue_compare(const void *a, const void *b); 122 static void scan_ds_queue_clear(dsl_scan_t *scn); 123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn); 124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, 125 uint64_t *txg); 126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg); 127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj); 128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx); 129 static uint64_t dsl_scan_count_leaves(vdev_t *vd); 130 131 extern int zfs_vdev_async_write_active_min_dirty_percent; 132 133 /* 134 * By default zfs will check to ensure it is not over the hard memory 135 * limit before each txg. If finer-grained control of this is needed 136 * this value can be set to 1 to enable checking before scanning each 137 * block. 138 */ 139 int zfs_scan_strict_mem_lim = B_FALSE; 140 141 /* 142 * Maximum number of parallelly executed bytes per leaf vdev. We attempt 143 * to strike a balance here between keeping the vdev queues full of I/Os 144 * at all times and not overflowing the queues to cause long latency, 145 * which would cause long txg sync times. No matter what, we will not 146 * overload the drives with I/O, since that is protected by 147 * zfs_vdev_scrub_max_active. 148 */ 149 unsigned long zfs_scan_vdev_limit = 4 << 20; 150 151 int zfs_scan_issue_strategy = 0; 152 int zfs_scan_legacy = B_FALSE; /* don't queue & sort zios, go direct */ 153 unsigned long zfs_scan_max_ext_gap = 2 << 20; /* in bytes */ 154 155 /* 156 * fill_weight is non-tunable at runtime, so we copy it at module init from 157 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would 158 * break queue sorting. 159 */ 160 int zfs_scan_fill_weight = 3; 161 static uint64_t fill_weight; 162 163 /* See dsl_scan_should_clear() for details on the memory limit tunables */ 164 uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */ 165 uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */ 166 int zfs_scan_mem_lim_fact = 20; /* fraction of physmem */ 167 int zfs_scan_mem_lim_soft_fact = 20; /* fraction of mem lim above */ 168 169 int zfs_scrub_min_time_ms = 1000; /* min millisecs to scrub per txg */ 170 int zfs_obsolete_min_time_ms = 500; /* min millisecs to obsolete per txg */ 171 int zfs_free_min_time_ms = 1000; /* min millisecs to free per txg */ 172 int zfs_resilver_min_time_ms = 3000; /* min millisecs to resilver per txg */ 173 int zfs_scan_checkpoint_intval = 7200; /* in seconds */ 174 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */ 175 int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */ 176 int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */ 177 enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE; 178 /* max number of blocks to free in a single TXG */ 179 unsigned long zfs_async_block_max_blocks = ULONG_MAX; 180 /* max number of dedup blocks to free in a single TXG */ 181 unsigned long zfs_max_async_dedup_frees = 100000; 182 183 int zfs_resilver_disable_defer = 0; /* set to disable resilver deferring */ 184 185 /* 186 * We wait a few txgs after importing a pool to begin scanning so that 187 * the import / mounting code isn't held up by scrub / resilver IO. 188 * Unfortunately, it is a bit difficult to determine exactly how long 189 * this will take since userspace will trigger fs mounts asynchronously 190 * and the kernel will create zvol minors asynchronously. As a result, 191 * the value provided here is a bit arbitrary, but represents a 192 * reasonable estimate of how many txgs it will take to finish fully 193 * importing a pool 194 */ 195 #define SCAN_IMPORT_WAIT_TXGS 5 196 197 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \ 198 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \ 199 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER) 200 201 /* 202 * Enable/disable the processing of the free_bpobj object. 203 */ 204 int zfs_free_bpobj_enabled = 1; 205 206 /* the order has to match pool_scan_type */ 207 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = { 208 NULL, 209 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */ 210 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */ 211 }; 212 213 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */ 214 typedef struct { 215 uint64_t sds_dsobj; 216 uint64_t sds_txg; 217 avl_node_t sds_node; 218 } scan_ds_t; 219 220 /* 221 * This controls what conditions are placed on dsl_scan_sync_state(): 222 * SYNC_OPTIONAL) write out scn_phys iff scn_bytes_pending == 0 223 * SYNC_MANDATORY) write out scn_phys always. scn_bytes_pending must be 0. 224 * SYNC_CACHED) if scn_bytes_pending == 0, write out scn_phys. Otherwise 225 * write out the scn_phys_cached version. 226 * See dsl_scan_sync_state for details. 227 */ 228 typedef enum { 229 SYNC_OPTIONAL, 230 SYNC_MANDATORY, 231 SYNC_CACHED 232 } state_sync_type_t; 233 234 /* 235 * This struct represents the minimum information needed to reconstruct a 236 * zio for sequential scanning. This is useful because many of these will 237 * accumulate in the sequential IO queues before being issued, so saving 238 * memory matters here. 239 */ 240 typedef struct scan_io { 241 /* fields from blkptr_t */ 242 uint64_t sio_blk_prop; 243 uint64_t sio_phys_birth; 244 uint64_t sio_birth; 245 zio_cksum_t sio_cksum; 246 uint32_t sio_nr_dvas; 247 248 /* fields from zio_t */ 249 uint32_t sio_flags; 250 zbookmark_phys_t sio_zb; 251 252 /* members for queue sorting */ 253 union { 254 avl_node_t sio_addr_node; /* link into issuing queue */ 255 list_node_t sio_list_node; /* link for issuing to disk */ 256 } sio_nodes; 257 258 /* 259 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp, 260 * depending on how many were in the original bp. Only the 261 * first DVA is really used for sorting and issuing purposes. 262 * The other DVAs (if provided) simply exist so that the zio 263 * layer can find additional copies to repair from in the 264 * event of an error. This array must go at the end of the 265 * struct to allow this for the variable number of elements. 266 */ 267 dva_t sio_dva[0]; 268 } scan_io_t; 269 270 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x) 271 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x) 272 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0]) 273 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0]) 274 #define SIO_GET_END_OFFSET(sio) \ 275 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio)) 276 #define SIO_GET_MUSED(sio) \ 277 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t))) 278 279 struct dsl_scan_io_queue { 280 dsl_scan_t *q_scn; /* associated dsl_scan_t */ 281 vdev_t *q_vd; /* top-level vdev that this queue represents */ 282 283 /* trees used for sorting I/Os and extents of I/Os */ 284 range_tree_t *q_exts_by_addr; 285 zfs_btree_t q_exts_by_size; 286 avl_tree_t q_sios_by_addr; 287 uint64_t q_sio_memused; 288 289 /* members for zio rate limiting */ 290 uint64_t q_maxinflight_bytes; 291 uint64_t q_inflight_bytes; 292 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */ 293 294 /* per txg statistics */ 295 uint64_t q_total_seg_size_this_txg; 296 uint64_t q_segs_this_txg; 297 uint64_t q_total_zio_size_this_txg; 298 uint64_t q_zios_this_txg; 299 }; 300 301 /* private data for dsl_scan_prefetch_cb() */ 302 typedef struct scan_prefetch_ctx { 303 zfs_refcount_t spc_refcnt; /* refcount for memory management */ 304 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */ 305 boolean_t spc_root; /* is this prefetch for an objset? */ 306 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */ 307 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */ 308 } scan_prefetch_ctx_t; 309 310 /* private data for dsl_scan_prefetch() */ 311 typedef struct scan_prefetch_issue_ctx { 312 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */ 313 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */ 314 blkptr_t spic_bp; /* bp to prefetch */ 315 zbookmark_phys_t spic_zb; /* bookmark to prefetch */ 316 } scan_prefetch_issue_ctx_t; 317 318 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 319 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue); 320 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, 321 scan_io_t *sio); 322 323 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd); 324 static void scan_io_queues_destroy(dsl_scan_t *scn); 325 326 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP]; 327 328 /* sio->sio_nr_dvas must be set so we know which cache to free from */ 329 static void 330 sio_free(scan_io_t *sio) 331 { 332 ASSERT3U(sio->sio_nr_dvas, >, 0); 333 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 334 335 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio); 336 } 337 338 /* It is up to the caller to set sio->sio_nr_dvas for freeing */ 339 static scan_io_t * 340 sio_alloc(unsigned short nr_dvas) 341 { 342 ASSERT3U(nr_dvas, >, 0); 343 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP); 344 345 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP)); 346 } 347 348 void 349 scan_init(void) 350 { 351 /* 352 * This is used in ext_size_compare() to weight segments 353 * based on how sparse they are. This cannot be changed 354 * mid-scan and the tree comparison functions don't currently 355 * have a mechanism for passing additional context to the 356 * compare functions. Thus we store this value globally and 357 * we only allow it to be set at module initialization time 358 */ 359 fill_weight = zfs_scan_fill_weight; 360 361 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 362 char name[36]; 363 364 (void) snprintf(name, sizeof (name), "sio_cache_%d", i); 365 sio_cache[i] = kmem_cache_create(name, 366 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))), 367 0, NULL, NULL, NULL, NULL, NULL, 0); 368 } 369 } 370 371 void 372 scan_fini(void) 373 { 374 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 375 kmem_cache_destroy(sio_cache[i]); 376 } 377 } 378 379 static inline boolean_t 380 dsl_scan_is_running(const dsl_scan_t *scn) 381 { 382 return (scn->scn_phys.scn_state == DSS_SCANNING); 383 } 384 385 boolean_t 386 dsl_scan_resilvering(dsl_pool_t *dp) 387 { 388 return (dsl_scan_is_running(dp->dp_scan) && 389 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER); 390 } 391 392 static inline void 393 sio2bp(const scan_io_t *sio, blkptr_t *bp) 394 { 395 bzero(bp, sizeof (*bp)); 396 bp->blk_prop = sio->sio_blk_prop; 397 bp->blk_phys_birth = sio->sio_phys_birth; 398 bp->blk_birth = sio->sio_birth; 399 bp->blk_fill = 1; /* we always only work with data pointers */ 400 bp->blk_cksum = sio->sio_cksum; 401 402 ASSERT3U(sio->sio_nr_dvas, >, 0); 403 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP); 404 405 bcopy(sio->sio_dva, bp->blk_dva, sio->sio_nr_dvas * sizeof (dva_t)); 406 } 407 408 static inline void 409 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i) 410 { 411 sio->sio_blk_prop = bp->blk_prop; 412 sio->sio_phys_birth = bp->blk_phys_birth; 413 sio->sio_birth = bp->blk_birth; 414 sio->sio_cksum = bp->blk_cksum; 415 sio->sio_nr_dvas = BP_GET_NDVAS(bp); 416 417 /* 418 * Copy the DVAs to the sio. We need all copies of the block so 419 * that the self healing code can use the alternate copies if the 420 * first is corrupted. We want the DVA at index dva_i to be first 421 * in the sio since this is the primary one that we want to issue. 422 */ 423 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) { 424 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas]; 425 } 426 } 427 428 int 429 dsl_scan_init(dsl_pool_t *dp, uint64_t txg) 430 { 431 int err; 432 dsl_scan_t *scn; 433 spa_t *spa = dp->dp_spa; 434 uint64_t f; 435 436 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP); 437 scn->scn_dp = dp; 438 439 /* 440 * It's possible that we're resuming a scan after a reboot so 441 * make sure that the scan_async_destroying flag is initialized 442 * appropriately. 443 */ 444 ASSERT(!scn->scn_async_destroying); 445 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa, 446 SPA_FEATURE_ASYNC_DESTROY); 447 448 /* 449 * Calculate the max number of in-flight bytes for pool-wide 450 * scanning operations (minimum 1MB). Limits for the issuing 451 * phase are done per top-level vdev and are handled separately. 452 */ 453 scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit * 454 dsl_scan_count_leaves(spa->spa_root_vdev), 1ULL << 20); 455 456 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t), 457 offsetof(scan_ds_t, sds_node)); 458 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare, 459 sizeof (scan_prefetch_issue_ctx_t), 460 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node)); 461 462 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 463 "scrub_func", sizeof (uint64_t), 1, &f); 464 if (err == 0) { 465 /* 466 * There was an old-style scrub in progress. Restart a 467 * new-style scrub from the beginning. 468 */ 469 scn->scn_restart_txg = txg; 470 zfs_dbgmsg("old-style scrub was in progress; " 471 "restarting new-style scrub in txg %llu", 472 (longlong_t)scn->scn_restart_txg); 473 474 /* 475 * Load the queue obj from the old location so that it 476 * can be freed by dsl_scan_done(). 477 */ 478 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 479 "scrub_queue", sizeof (uint64_t), 1, 480 &scn->scn_phys.scn_queue_obj); 481 } else { 482 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 483 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 484 &scn->scn_phys); 485 /* 486 * Detect if the pool contains the signature of #2094. If it 487 * does properly update the scn->scn_phys structure and notify 488 * the administrator by setting an errata for the pool. 489 */ 490 if (err == EOVERFLOW) { 491 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1]; 492 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24); 493 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==, 494 (23 * sizeof (uint64_t))); 495 496 err = zap_lookup(dp->dp_meta_objset, 497 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN, 498 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp); 499 if (err == 0) { 500 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS]; 501 502 if (overflow & ~DSL_SCAN_FLAGS_MASK || 503 scn->scn_async_destroying) { 504 spa->spa_errata = 505 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY; 506 return (EOVERFLOW); 507 } 508 509 bcopy(zaptmp, &scn->scn_phys, 510 SCAN_PHYS_NUMINTS * sizeof (uint64_t)); 511 scn->scn_phys.scn_flags = overflow; 512 513 /* Required scrub already in progress. */ 514 if (scn->scn_phys.scn_state == DSS_FINISHED || 515 scn->scn_phys.scn_state == DSS_CANCELED) 516 spa->spa_errata = 517 ZPOOL_ERRATA_ZOL_2094_SCRUB; 518 } 519 } 520 521 if (err == ENOENT) 522 return (0); 523 else if (err) 524 return (err); 525 526 /* 527 * We might be restarting after a reboot, so jump the issued 528 * counter to how far we've scanned. We know we're consistent 529 * up to here. 530 */ 531 scn->scn_issued_before_pass = scn->scn_phys.scn_examined; 532 533 if (dsl_scan_is_running(scn) && 534 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) { 535 /* 536 * A new-type scrub was in progress on an old 537 * pool, and the pool was accessed by old 538 * software. Restart from the beginning, since 539 * the old software may have changed the pool in 540 * the meantime. 541 */ 542 scn->scn_restart_txg = txg; 543 zfs_dbgmsg("new-style scrub was modified " 544 "by old software; restarting in txg %llu", 545 (longlong_t)scn->scn_restart_txg); 546 } else if (dsl_scan_resilvering(dp)) { 547 /* 548 * If a resilver is in progress and there are already 549 * errors, restart it instead of finishing this scan and 550 * then restarting it. If there haven't been any errors 551 * then remember that the incore DTL is valid. 552 */ 553 if (scn->scn_phys.scn_errors > 0) { 554 scn->scn_restart_txg = txg; 555 zfs_dbgmsg("resilver can't excise DTL_MISSING " 556 "when finished; restarting in txg %llu", 557 (u_longlong_t)scn->scn_restart_txg); 558 } else { 559 /* it's safe to excise DTL when finished */ 560 spa->spa_scrub_started = B_TRUE; 561 } 562 } 563 } 564 565 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 566 567 /* reload the queue into the in-core state */ 568 if (scn->scn_phys.scn_queue_obj != 0) { 569 zap_cursor_t zc; 570 zap_attribute_t za; 571 572 for (zap_cursor_init(&zc, dp->dp_meta_objset, 573 scn->scn_phys.scn_queue_obj); 574 zap_cursor_retrieve(&zc, &za) == 0; 575 (void) zap_cursor_advance(&zc)) { 576 scan_ds_queue_insert(scn, 577 zfs_strtonum(za.za_name, NULL), 578 za.za_first_integer); 579 } 580 zap_cursor_fini(&zc); 581 } 582 583 spa_scan_stat_init(spa); 584 return (0); 585 } 586 587 void 588 dsl_scan_fini(dsl_pool_t *dp) 589 { 590 if (dp->dp_scan != NULL) { 591 dsl_scan_t *scn = dp->dp_scan; 592 593 if (scn->scn_taskq != NULL) 594 taskq_destroy(scn->scn_taskq); 595 596 scan_ds_queue_clear(scn); 597 avl_destroy(&scn->scn_queue); 598 scan_ds_prefetch_queue_clear(scn); 599 avl_destroy(&scn->scn_prefetch_queue); 600 601 kmem_free(dp->dp_scan, sizeof (dsl_scan_t)); 602 dp->dp_scan = NULL; 603 } 604 } 605 606 static boolean_t 607 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx) 608 { 609 return (scn->scn_restart_txg != 0 && 610 scn->scn_restart_txg <= tx->tx_txg); 611 } 612 613 boolean_t 614 dsl_scan_resilver_scheduled(dsl_pool_t *dp) 615 { 616 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) || 617 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER)); 618 } 619 620 boolean_t 621 dsl_scan_scrubbing(const dsl_pool_t *dp) 622 { 623 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys; 624 625 return (scn_phys->scn_state == DSS_SCANNING && 626 scn_phys->scn_func == POOL_SCAN_SCRUB); 627 } 628 629 boolean_t 630 dsl_scan_is_paused_scrub(const dsl_scan_t *scn) 631 { 632 return (dsl_scan_scrubbing(scn->scn_dp) && 633 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED); 634 } 635 636 /* 637 * Writes out a persistent dsl_scan_phys_t record to the pool directory. 638 * Because we can be running in the block sorting algorithm, we do not always 639 * want to write out the record, only when it is "safe" to do so. This safety 640 * condition is achieved by making sure that the sorting queues are empty 641 * (scn_bytes_pending == 0). When this condition is not true, the sync'd state 642 * is inconsistent with how much actual scanning progress has been made. The 643 * kind of sync to be performed is specified by the sync_type argument. If the 644 * sync is optional, we only sync if the queues are empty. If the sync is 645 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The 646 * third possible state is a "cached" sync. This is done in response to: 647 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been 648 * destroyed, so we wouldn't be able to restart scanning from it. 649 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been 650 * superseded by a newer snapshot. 651 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been 652 * swapped with its clone. 653 * In all cases, a cached sync simply rewrites the last record we've written, 654 * just slightly modified. For the modifications that are performed to the 655 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed, 656 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped. 657 */ 658 static void 659 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type) 660 { 661 int i; 662 spa_t *spa = scn->scn_dp->dp_spa; 663 664 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_bytes_pending == 0); 665 if (scn->scn_bytes_pending == 0) { 666 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 667 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 668 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue; 669 670 if (q == NULL) 671 continue; 672 673 mutex_enter(&vd->vdev_scan_io_queue_lock); 674 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL); 675 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==, 676 NULL); 677 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL); 678 mutex_exit(&vd->vdev_scan_io_queue_lock); 679 } 680 681 if (scn->scn_phys.scn_queue_obj != 0) 682 scan_ds_queue_sync(scn, tx); 683 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 684 DMU_POOL_DIRECTORY_OBJECT, 685 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 686 &scn->scn_phys, tx)); 687 bcopy(&scn->scn_phys, &scn->scn_phys_cached, 688 sizeof (scn->scn_phys)); 689 690 if (scn->scn_checkpointing) 691 zfs_dbgmsg("finish scan checkpoint"); 692 693 scn->scn_checkpointing = B_FALSE; 694 scn->scn_last_checkpoint = ddi_get_lbolt(); 695 } else if (sync_type == SYNC_CACHED) { 696 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset, 697 DMU_POOL_DIRECTORY_OBJECT, 698 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS, 699 &scn->scn_phys_cached, tx)); 700 } 701 } 702 703 /* ARGSUSED */ 704 static int 705 dsl_scan_setup_check(void *arg, dmu_tx_t *tx) 706 { 707 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 708 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 709 710 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd)) 711 return (SET_ERROR(EBUSY)); 712 713 return (0); 714 } 715 716 static void 717 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx) 718 { 719 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 720 pool_scan_func_t *funcp = arg; 721 dmu_object_type_t ot = 0; 722 dsl_pool_t *dp = scn->scn_dp; 723 spa_t *spa = dp->dp_spa; 724 725 ASSERT(!dsl_scan_is_running(scn)); 726 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS); 727 bzero(&scn->scn_phys, sizeof (scn->scn_phys)); 728 scn->scn_phys.scn_func = *funcp; 729 scn->scn_phys.scn_state = DSS_SCANNING; 730 scn->scn_phys.scn_min_txg = 0; 731 scn->scn_phys.scn_max_txg = tx->tx_txg; 732 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */ 733 scn->scn_phys.scn_start_time = gethrestime_sec(); 734 scn->scn_phys.scn_errors = 0; 735 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc; 736 scn->scn_issued_before_pass = 0; 737 scn->scn_restart_txg = 0; 738 scn->scn_done_txg = 0; 739 scn->scn_last_checkpoint = 0; 740 scn->scn_checkpointing = B_FALSE; 741 spa_scan_stat_init(spa); 742 743 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 744 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max; 745 746 /* rewrite all disk labels */ 747 vdev_config_dirty(spa->spa_root_vdev); 748 749 if (vdev_resilver_needed(spa->spa_root_vdev, 750 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) { 751 nvlist_t *aux = fnvlist_alloc(); 752 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 753 "healing"); 754 spa_event_notify(spa, NULL, aux, 755 ESC_ZFS_RESILVER_START); 756 nvlist_free(aux); 757 } else { 758 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START); 759 } 760 761 spa->spa_scrub_started = B_TRUE; 762 /* 763 * If this is an incremental scrub, limit the DDT scrub phase 764 * to just the auto-ditto class (for correctness); the rest 765 * of the scrub should go faster using top-down pruning. 766 */ 767 if (scn->scn_phys.scn_min_txg > TXG_INITIAL) 768 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO; 769 770 /* 771 * When starting a resilver clear any existing rebuild state. 772 * This is required to prevent stale rebuild status from 773 * being reported when a rebuild is run, then a resilver and 774 * finally a scrub. In which case only the scrub status 775 * should be reported by 'zpool status'. 776 */ 777 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) { 778 vdev_t *rvd = spa->spa_root_vdev; 779 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 780 vdev_t *vd = rvd->vdev_child[i]; 781 vdev_rebuild_clear_sync( 782 (void *)(uintptr_t)vd->vdev_id, tx); 783 } 784 } 785 } 786 787 /* back to the generic stuff */ 788 789 if (dp->dp_blkstats == NULL) { 790 dp->dp_blkstats = 791 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP); 792 mutex_init(&dp->dp_blkstats->zab_lock, NULL, 793 MUTEX_DEFAULT, NULL); 794 } 795 bzero(&dp->dp_blkstats->zab_type, sizeof (dp->dp_blkstats->zab_type)); 796 797 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB) 798 ot = DMU_OT_ZAP_OTHER; 799 800 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, 801 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx); 802 803 bcopy(&scn->scn_phys, &scn->scn_phys_cached, sizeof (scn->scn_phys)); 804 805 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 806 807 spa_history_log_internal(spa, "scan setup", tx, 808 "func=%u mintxg=%llu maxtxg=%llu", 809 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg, 810 (u_longlong_t)scn->scn_phys.scn_max_txg); 811 } 812 813 /* 814 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver. 815 * Can also be called to resume a paused scrub. 816 */ 817 int 818 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func) 819 { 820 spa_t *spa = dp->dp_spa; 821 dsl_scan_t *scn = dp->dp_scan; 822 823 /* 824 * Purge all vdev caches and probe all devices. We do this here 825 * rather than in sync context because this requires a writer lock 826 * on the spa_config lock, which we can't do from sync context. The 827 * spa_scrub_reopen flag indicates that vdev_open() should not 828 * attempt to start another scrub. 829 */ 830 spa_vdev_state_enter(spa, SCL_NONE); 831 spa->spa_scrub_reopen = B_TRUE; 832 vdev_reopen(spa->spa_root_vdev); 833 spa->spa_scrub_reopen = B_FALSE; 834 (void) spa_vdev_state_exit(spa, NULL, 0); 835 836 if (func == POOL_SCAN_RESILVER) { 837 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0); 838 return (0); 839 } 840 841 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) { 842 /* got scrub start cmd, resume paused scrub */ 843 int err = dsl_scrub_set_pause_resume(scn->scn_dp, 844 POOL_SCRUB_NORMAL); 845 if (err == 0) { 846 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME); 847 return (SET_ERROR(ECANCELED)); 848 } 849 850 return (SET_ERROR(err)); 851 } 852 853 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check, 854 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 855 } 856 857 /* ARGSUSED */ 858 static void 859 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx) 860 { 861 static const char *old_names[] = { 862 "scrub_bookmark", 863 "scrub_ddt_bookmark", 864 "scrub_ddt_class_max", 865 "scrub_queue", 866 "scrub_min_txg", 867 "scrub_max_txg", 868 "scrub_func", 869 "scrub_errors", 870 NULL 871 }; 872 873 dsl_pool_t *dp = scn->scn_dp; 874 spa_t *spa = dp->dp_spa; 875 int i; 876 877 /* Remove any remnants of an old-style scrub. */ 878 for (i = 0; old_names[i]; i++) { 879 (void) zap_remove(dp->dp_meta_objset, 880 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx); 881 } 882 883 if (scn->scn_phys.scn_queue_obj != 0) { 884 VERIFY0(dmu_object_free(dp->dp_meta_objset, 885 scn->scn_phys.scn_queue_obj, tx)); 886 scn->scn_phys.scn_queue_obj = 0; 887 } 888 scan_ds_queue_clear(scn); 889 scan_ds_prefetch_queue_clear(scn); 890 891 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 892 893 /* 894 * If we were "restarted" from a stopped state, don't bother 895 * with anything else. 896 */ 897 if (!dsl_scan_is_running(scn)) { 898 ASSERT(!scn->scn_is_sorted); 899 return; 900 } 901 902 if (scn->scn_is_sorted) { 903 scan_io_queues_destroy(scn); 904 scn->scn_is_sorted = B_FALSE; 905 906 if (scn->scn_taskq != NULL) { 907 taskq_destroy(scn->scn_taskq); 908 scn->scn_taskq = NULL; 909 } 910 } 911 912 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED; 913 914 spa_notify_waiters(spa); 915 916 if (dsl_scan_restarting(scn, tx)) 917 spa_history_log_internal(spa, "scan aborted, restarting", tx, 918 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 919 else if (!complete) 920 spa_history_log_internal(spa, "scan cancelled", tx, 921 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 922 else 923 spa_history_log_internal(spa, "scan done", tx, 924 "errors=%llu", (u_longlong_t)spa_get_errlog_size(spa)); 925 926 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) { 927 spa->spa_scrub_active = B_FALSE; 928 929 /* 930 * If the scrub/resilver completed, update all DTLs to 931 * reflect this. Whether it succeeded or not, vacate 932 * all temporary scrub DTLs. 933 * 934 * As the scrub does not currently support traversing 935 * data that have been freed but are part of a checkpoint, 936 * we don't mark the scrub as done in the DTLs as faults 937 * may still exist in those vdevs. 938 */ 939 if (complete && 940 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 941 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 942 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE); 943 944 if (scn->scn_phys.scn_min_txg) { 945 nvlist_t *aux = fnvlist_alloc(); 946 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, 947 "healing"); 948 spa_event_notify(spa, NULL, aux, 949 ESC_ZFS_RESILVER_FINISH); 950 nvlist_free(aux); 951 } else { 952 spa_event_notify(spa, NULL, NULL, 953 ESC_ZFS_SCRUB_FINISH); 954 } 955 } else { 956 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg, 957 0, B_TRUE, B_FALSE); 958 } 959 spa_errlog_rotate(spa); 960 961 /* 962 * Don't clear flag until after vdev_dtl_reassess to ensure that 963 * DTL_MISSING will get updated when possible. 964 */ 965 spa->spa_scrub_started = B_FALSE; 966 967 /* 968 * We may have finished replacing a device. 969 * Let the async thread assess this and handle the detach. 970 */ 971 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 972 973 /* 974 * Clear any resilver_deferred flags in the config. 975 * If there are drives that need resilvering, kick 976 * off an asynchronous request to start resilver. 977 * vdev_clear_resilver_deferred() may update the config 978 * before the resilver can restart. In the event of 979 * a crash during this period, the spa loading code 980 * will find the drives that need to be resilvered 981 * and start the resilver then. 982 */ 983 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) && 984 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) { 985 spa_history_log_internal(spa, 986 "starting deferred resilver", tx, "errors=%llu", 987 (u_longlong_t)spa_get_errlog_size(spa)); 988 spa_async_request(spa, SPA_ASYNC_RESILVER); 989 } 990 } 991 992 scn->scn_phys.scn_end_time = gethrestime_sec(); 993 994 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB) 995 spa->spa_errata = 0; 996 997 ASSERT(!dsl_scan_is_running(scn)); 998 } 999 1000 /* ARGSUSED */ 1001 static int 1002 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx) 1003 { 1004 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1005 1006 if (!dsl_scan_is_running(scn)) 1007 return (SET_ERROR(ENOENT)); 1008 return (0); 1009 } 1010 1011 /* ARGSUSED */ 1012 static void 1013 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx) 1014 { 1015 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan; 1016 1017 dsl_scan_done(scn, B_FALSE, tx); 1018 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY); 1019 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT); 1020 } 1021 1022 int 1023 dsl_scan_cancel(dsl_pool_t *dp) 1024 { 1025 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check, 1026 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED)); 1027 } 1028 1029 static int 1030 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx) 1031 { 1032 pool_scrub_cmd_t *cmd = arg; 1033 dsl_pool_t *dp = dmu_tx_pool(tx); 1034 dsl_scan_t *scn = dp->dp_scan; 1035 1036 if (*cmd == POOL_SCRUB_PAUSE) { 1037 /* can't pause a scrub when there is no in-progress scrub */ 1038 if (!dsl_scan_scrubbing(dp)) 1039 return (SET_ERROR(ENOENT)); 1040 1041 /* can't pause a paused scrub */ 1042 if (dsl_scan_is_paused_scrub(scn)) 1043 return (SET_ERROR(EBUSY)); 1044 } else if (*cmd != POOL_SCRUB_NORMAL) { 1045 return (SET_ERROR(ENOTSUP)); 1046 } 1047 1048 return (0); 1049 } 1050 1051 static void 1052 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx) 1053 { 1054 pool_scrub_cmd_t *cmd = arg; 1055 dsl_pool_t *dp = dmu_tx_pool(tx); 1056 spa_t *spa = dp->dp_spa; 1057 dsl_scan_t *scn = dp->dp_scan; 1058 1059 if (*cmd == POOL_SCRUB_PAUSE) { 1060 /* can't pause a scrub when there is no in-progress scrub */ 1061 spa->spa_scan_pass_scrub_pause = gethrestime_sec(); 1062 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED; 1063 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED; 1064 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1065 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED); 1066 spa_notify_waiters(spa); 1067 } else { 1068 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL); 1069 if (dsl_scan_is_paused_scrub(scn)) { 1070 /* 1071 * We need to keep track of how much time we spend 1072 * paused per pass so that we can adjust the scrub rate 1073 * shown in the output of 'zpool status' 1074 */ 1075 spa->spa_scan_pass_scrub_spent_paused += 1076 gethrestime_sec() - spa->spa_scan_pass_scrub_pause; 1077 spa->spa_scan_pass_scrub_pause = 0; 1078 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED; 1079 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED; 1080 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 1081 } 1082 } 1083 } 1084 1085 /* 1086 * Set scrub pause/resume state if it makes sense to do so 1087 */ 1088 int 1089 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd) 1090 { 1091 return (dsl_sync_task(spa_name(dp->dp_spa), 1092 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3, 1093 ZFS_SPACE_CHECK_RESERVED)); 1094 } 1095 1096 1097 /* start a new scan, or restart an existing one. */ 1098 void 1099 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg) 1100 { 1101 if (txg == 0) { 1102 dmu_tx_t *tx; 1103 tx = dmu_tx_create_dd(dp->dp_mos_dir); 1104 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT)); 1105 1106 txg = dmu_tx_get_txg(tx); 1107 dp->dp_scan->scn_restart_txg = txg; 1108 dmu_tx_commit(tx); 1109 } else { 1110 dp->dp_scan->scn_restart_txg = txg; 1111 } 1112 zfs_dbgmsg("restarting resilver txg=%llu", (longlong_t)txg); 1113 } 1114 1115 void 1116 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp) 1117 { 1118 zio_free(dp->dp_spa, txg, bp); 1119 } 1120 1121 void 1122 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp) 1123 { 1124 ASSERT(dsl_pool_sync_context(dp)); 1125 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags)); 1126 } 1127 1128 static int 1129 scan_ds_queue_compare(const void *a, const void *b) 1130 { 1131 const scan_ds_t *sds_a = a, *sds_b = b; 1132 1133 if (sds_a->sds_dsobj < sds_b->sds_dsobj) 1134 return (-1); 1135 if (sds_a->sds_dsobj == sds_b->sds_dsobj) 1136 return (0); 1137 return (1); 1138 } 1139 1140 static void 1141 scan_ds_queue_clear(dsl_scan_t *scn) 1142 { 1143 void *cookie = NULL; 1144 scan_ds_t *sds; 1145 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) { 1146 kmem_free(sds, sizeof (*sds)); 1147 } 1148 } 1149 1150 static boolean_t 1151 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg) 1152 { 1153 scan_ds_t srch, *sds; 1154 1155 srch.sds_dsobj = dsobj; 1156 sds = avl_find(&scn->scn_queue, &srch, NULL); 1157 if (sds != NULL && txg != NULL) 1158 *txg = sds->sds_txg; 1159 return (sds != NULL); 1160 } 1161 1162 static void 1163 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg) 1164 { 1165 scan_ds_t *sds; 1166 avl_index_t where; 1167 1168 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP); 1169 sds->sds_dsobj = dsobj; 1170 sds->sds_txg = txg; 1171 1172 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL); 1173 avl_insert(&scn->scn_queue, sds, where); 1174 } 1175 1176 static void 1177 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj) 1178 { 1179 scan_ds_t srch, *sds; 1180 1181 srch.sds_dsobj = dsobj; 1182 1183 sds = avl_find(&scn->scn_queue, &srch, NULL); 1184 VERIFY(sds != NULL); 1185 avl_remove(&scn->scn_queue, sds); 1186 kmem_free(sds, sizeof (*sds)); 1187 } 1188 1189 static void 1190 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx) 1191 { 1192 dsl_pool_t *dp = scn->scn_dp; 1193 spa_t *spa = dp->dp_spa; 1194 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ? 1195 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER; 1196 1197 ASSERT0(scn->scn_bytes_pending); 1198 ASSERT(scn->scn_phys.scn_queue_obj != 0); 1199 1200 VERIFY0(dmu_object_free(dp->dp_meta_objset, 1201 scn->scn_phys.scn_queue_obj, tx)); 1202 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot, 1203 DMU_OT_NONE, 0, tx); 1204 for (scan_ds_t *sds = avl_first(&scn->scn_queue); 1205 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) { 1206 VERIFY0(zap_add_int_key(dp->dp_meta_objset, 1207 scn->scn_phys.scn_queue_obj, sds->sds_dsobj, 1208 sds->sds_txg, tx)); 1209 } 1210 } 1211 1212 /* 1213 * Computes the memory limit state that we're currently in. A sorted scan 1214 * needs quite a bit of memory to hold the sorting queue, so we need to 1215 * reasonably constrain the size so it doesn't impact overall system 1216 * performance. We compute two limits: 1217 * 1) Hard memory limit: if the amount of memory used by the sorting 1218 * queues on a pool gets above this value, we stop the metadata 1219 * scanning portion and start issuing the queued up and sorted 1220 * I/Os to reduce memory usage. 1221 * This limit is calculated as a fraction of physmem (by default 5%). 1222 * We constrain the lower bound of the hard limit to an absolute 1223 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain 1224 * the upper bound to 5% of the total pool size - no chance we'll 1225 * ever need that much memory, but just to keep the value in check. 1226 * 2) Soft memory limit: once we hit the hard memory limit, we start 1227 * issuing I/O to reduce queue memory usage, but we don't want to 1228 * completely empty out the queues, since we might be able to find I/Os 1229 * that will fill in the gaps of our non-sequential IOs at some point 1230 * in the future. So we stop the issuing of I/Os once the amount of 1231 * memory used drops below the soft limit (at which point we stop issuing 1232 * I/O and start scanning metadata again). 1233 * 1234 * This limit is calculated by subtracting a fraction of the hard 1235 * limit from the hard limit. By default this fraction is 5%, so 1236 * the soft limit is 95% of the hard limit. We cap the size of the 1237 * difference between the hard and soft limits at an absolute 1238 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is 1239 * sufficient to not cause too frequent switching between the 1240 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's 1241 * worth of queues is about 1.2 GiB of on-pool data, so scanning 1242 * that should take at least a decent fraction of a second). 1243 */ 1244 static boolean_t 1245 dsl_scan_should_clear(dsl_scan_t *scn) 1246 { 1247 spa_t *spa = scn->scn_dp->dp_spa; 1248 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 1249 uint64_t alloc, mlim_hard, mlim_soft, mused; 1250 1251 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 1252 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 1253 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 1254 1255 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE, 1256 zfs_scan_mem_lim_min); 1257 mlim_hard = MIN(mlim_hard, alloc / 20); 1258 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact, 1259 zfs_scan_mem_lim_soft_max); 1260 mused = 0; 1261 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1262 vdev_t *tvd = rvd->vdev_child[i]; 1263 dsl_scan_io_queue_t *queue; 1264 1265 mutex_enter(&tvd->vdev_scan_io_queue_lock); 1266 queue = tvd->vdev_scan_io_queue; 1267 if (queue != NULL) { 1268 /* # extents in exts_by_size = # in exts_by_addr */ 1269 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * 1270 sizeof (range_seg_gap_t) + queue->q_sio_memused; 1271 } 1272 mutex_exit(&tvd->vdev_scan_io_queue_lock); 1273 } 1274 1275 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused); 1276 1277 if (mused == 0) 1278 ASSERT0(scn->scn_bytes_pending); 1279 1280 /* 1281 * If we are above our hard limit, we need to clear out memory. 1282 * If we are below our soft limit, we need to accumulate sequential IOs. 1283 * Otherwise, we should keep doing whatever we are currently doing. 1284 */ 1285 if (mused >= mlim_hard) 1286 return (B_TRUE); 1287 else if (mused < mlim_soft) 1288 return (B_FALSE); 1289 else 1290 return (scn->scn_clearing); 1291 } 1292 1293 static boolean_t 1294 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb) 1295 { 1296 /* we never skip user/group accounting objects */ 1297 if (zb && (int64_t)zb->zb_object < 0) 1298 return (B_FALSE); 1299 1300 if (scn->scn_suspending) 1301 return (B_TRUE); /* we're already suspending */ 1302 1303 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) 1304 return (B_FALSE); /* we're resuming */ 1305 1306 /* We only know how to resume from level-0 and objset blocks. */ 1307 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL)) 1308 return (B_FALSE); 1309 1310 /* 1311 * We suspend if: 1312 * - we have scanned for at least the minimum time (default 1 sec 1313 * for scrub, 3 sec for resilver), and either we have sufficient 1314 * dirty data that we are starting to write more quickly 1315 * (default 30%), someone is explicitly waiting for this txg 1316 * to complete, or we have used up all of the time in the txg 1317 * timeout (default 5 sec). 1318 * or 1319 * - the spa is shutting down because this pool is being exported 1320 * or the machine is rebooting. 1321 * or 1322 * - the scan queue has reached its memory use limit 1323 */ 1324 uint64_t curr_time_ns = gethrtime(); 1325 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 1326 uint64_t sync_time_ns = curr_time_ns - 1327 scn->scn_dp->dp_spa->spa_sync_starttime; 1328 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 1329 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 1330 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 1331 1332 if ((NSEC2MSEC(scan_time_ns) > mintime && 1333 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 1334 txg_sync_waiting(scn->scn_dp) || 1335 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 1336 spa_shutting_down(scn->scn_dp->dp_spa) || 1337 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) { 1338 if (zb && zb->zb_level == ZB_ROOT_LEVEL) { 1339 dprintf("suspending at first available bookmark " 1340 "%llx/%llx/%llx/%llx\n", 1341 (longlong_t)zb->zb_objset, 1342 (longlong_t)zb->zb_object, 1343 (longlong_t)zb->zb_level, 1344 (longlong_t)zb->zb_blkid); 1345 SET_BOOKMARK(&scn->scn_phys.scn_bookmark, 1346 zb->zb_objset, 0, 0, 0); 1347 } else if (zb != NULL) { 1348 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n", 1349 (longlong_t)zb->zb_objset, 1350 (longlong_t)zb->zb_object, 1351 (longlong_t)zb->zb_level, 1352 (longlong_t)zb->zb_blkid); 1353 scn->scn_phys.scn_bookmark = *zb; 1354 } else { 1355 #ifdef ZFS_DEBUG 1356 dsl_scan_phys_t *scnp = &scn->scn_phys; 1357 dprintf("suspending at at DDT bookmark " 1358 "%llx/%llx/%llx/%llx\n", 1359 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 1360 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 1361 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 1362 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 1363 #endif 1364 } 1365 scn->scn_suspending = B_TRUE; 1366 return (B_TRUE); 1367 } 1368 return (B_FALSE); 1369 } 1370 1371 typedef struct zil_scan_arg { 1372 dsl_pool_t *zsa_dp; 1373 zil_header_t *zsa_zh; 1374 } zil_scan_arg_t; 1375 1376 /* ARGSUSED */ 1377 static int 1378 dsl_scan_zil_block(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) 1379 { 1380 zil_scan_arg_t *zsa = arg; 1381 dsl_pool_t *dp = zsa->zsa_dp; 1382 dsl_scan_t *scn = dp->dp_scan; 1383 zil_header_t *zh = zsa->zsa_zh; 1384 zbookmark_phys_t zb; 1385 1386 ASSERT(!BP_IS_REDACTED(bp)); 1387 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1388 return (0); 1389 1390 /* 1391 * One block ("stubby") can be allocated a long time ago; we 1392 * want to visit that one because it has been allocated 1393 * (on-disk) even if it hasn't been claimed (even though for 1394 * scrub there's nothing to do to it). 1395 */ 1396 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa)) 1397 return (0); 1398 1399 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1400 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 1401 1402 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1403 return (0); 1404 } 1405 1406 /* ARGSUSED */ 1407 static int 1408 dsl_scan_zil_record(zilog_t *zilog, lr_t *lrc, void *arg, uint64_t claim_txg) 1409 { 1410 if (lrc->lrc_txtype == TX_WRITE) { 1411 zil_scan_arg_t *zsa = arg; 1412 dsl_pool_t *dp = zsa->zsa_dp; 1413 dsl_scan_t *scn = dp->dp_scan; 1414 zil_header_t *zh = zsa->zsa_zh; 1415 lr_write_t *lr = (lr_write_t *)lrc; 1416 blkptr_t *bp = &lr->lr_blkptr; 1417 zbookmark_phys_t zb; 1418 1419 ASSERT(!BP_IS_REDACTED(bp)); 1420 if (BP_IS_HOLE(bp) || 1421 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) 1422 return (0); 1423 1424 /* 1425 * birth can be < claim_txg if this record's txg is 1426 * already txg sync'ed (but this log block contains 1427 * other records that are not synced) 1428 */ 1429 if (claim_txg == 0 || bp->blk_birth < claim_txg) 1430 return (0); 1431 1432 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1433 lr->lr_foid, ZB_ZIL_LEVEL, 1434 lr->lr_offset / BP_GET_LSIZE(bp)); 1435 1436 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb)); 1437 } 1438 return (0); 1439 } 1440 1441 static void 1442 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh) 1443 { 1444 uint64_t claim_txg = zh->zh_claim_txg; 1445 zil_scan_arg_t zsa = { dp, zh }; 1446 zilog_t *zilog; 1447 1448 ASSERT(spa_writeable(dp->dp_spa)); 1449 1450 /* 1451 * We only want to visit blocks that have been claimed but not yet 1452 * replayed (or, in read-only mode, blocks that *would* be claimed). 1453 */ 1454 if (claim_txg == 0) 1455 return; 1456 1457 zilog = zil_alloc(dp->dp_meta_objset, zh); 1458 1459 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa, 1460 claim_txg, B_FALSE); 1461 1462 zil_free(zilog); 1463 } 1464 1465 /* 1466 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea 1467 * here is to sort the AVL tree by the order each block will be needed. 1468 */ 1469 static int 1470 scan_prefetch_queue_compare(const void *a, const void *b) 1471 { 1472 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b; 1473 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc; 1474 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc; 1475 1476 return (zbookmark_compare(spc_a->spc_datablkszsec, 1477 spc_a->spc_indblkshift, spc_b->spc_datablkszsec, 1478 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb)); 1479 } 1480 1481 static void 1482 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, void *tag) 1483 { 1484 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) { 1485 zfs_refcount_destroy(&spc->spc_refcnt); 1486 kmem_free(spc, sizeof (scan_prefetch_ctx_t)); 1487 } 1488 } 1489 1490 static scan_prefetch_ctx_t * 1491 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, void *tag) 1492 { 1493 scan_prefetch_ctx_t *spc; 1494 1495 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP); 1496 zfs_refcount_create(&spc->spc_refcnt); 1497 zfs_refcount_add(&spc->spc_refcnt, tag); 1498 spc->spc_scn = scn; 1499 if (dnp != NULL) { 1500 spc->spc_datablkszsec = dnp->dn_datablkszsec; 1501 spc->spc_indblkshift = dnp->dn_indblkshift; 1502 spc->spc_root = B_FALSE; 1503 } else { 1504 spc->spc_datablkszsec = 0; 1505 spc->spc_indblkshift = 0; 1506 spc->spc_root = B_TRUE; 1507 } 1508 1509 return (spc); 1510 } 1511 1512 static void 1513 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, void *tag) 1514 { 1515 zfs_refcount_add(&spc->spc_refcnt, tag); 1516 } 1517 1518 static void 1519 scan_ds_prefetch_queue_clear(dsl_scan_t *scn) 1520 { 1521 spa_t *spa = scn->scn_dp->dp_spa; 1522 void *cookie = NULL; 1523 scan_prefetch_issue_ctx_t *spic = NULL; 1524 1525 mutex_enter(&spa->spa_scrub_lock); 1526 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue, 1527 &cookie)) != NULL) { 1528 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1529 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1530 } 1531 mutex_exit(&spa->spa_scrub_lock); 1532 } 1533 1534 static boolean_t 1535 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc, 1536 const zbookmark_phys_t *zb) 1537 { 1538 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark; 1539 dnode_phys_t tmp_dnp; 1540 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp; 1541 1542 if (zb->zb_objset != last_zb->zb_objset) 1543 return (B_TRUE); 1544 if ((int64_t)zb->zb_object < 0) 1545 return (B_FALSE); 1546 1547 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec; 1548 tmp_dnp.dn_indblkshift = spc->spc_indblkshift; 1549 1550 if (zbookmark_subtree_completed(dnp, zb, last_zb)) 1551 return (B_TRUE); 1552 1553 return (B_FALSE); 1554 } 1555 1556 static void 1557 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb) 1558 { 1559 avl_index_t idx; 1560 dsl_scan_t *scn = spc->spc_scn; 1561 spa_t *spa = scn->scn_dp->dp_spa; 1562 scan_prefetch_issue_ctx_t *spic; 1563 1564 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp)) 1565 return; 1566 1567 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg || 1568 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE && 1569 BP_GET_TYPE(bp) != DMU_OT_OBJSET)) 1570 return; 1571 1572 if (dsl_scan_check_prefetch_resume(spc, zb)) 1573 return; 1574 1575 scan_prefetch_ctx_add_ref(spc, scn); 1576 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP); 1577 spic->spic_spc = spc; 1578 spic->spic_bp = *bp; 1579 spic->spic_zb = *zb; 1580 1581 /* 1582 * Add the IO to the queue of blocks to prefetch. This allows us to 1583 * prioritize blocks that we will need first for the main traversal 1584 * thread. 1585 */ 1586 mutex_enter(&spa->spa_scrub_lock); 1587 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) { 1588 /* this block is already queued for prefetch */ 1589 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1590 scan_prefetch_ctx_rele(spc, scn); 1591 mutex_exit(&spa->spa_scrub_lock); 1592 return; 1593 } 1594 1595 avl_insert(&scn->scn_prefetch_queue, spic, idx); 1596 cv_broadcast(&spa->spa_scrub_io_cv); 1597 mutex_exit(&spa->spa_scrub_lock); 1598 } 1599 1600 static void 1601 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp, 1602 uint64_t objset, uint64_t object) 1603 { 1604 int i; 1605 zbookmark_phys_t zb; 1606 scan_prefetch_ctx_t *spc; 1607 1608 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 1609 return; 1610 1611 SET_BOOKMARK(&zb, objset, object, 0, 0); 1612 1613 spc = scan_prefetch_ctx_create(scn, dnp, FTAG); 1614 1615 for (i = 0; i < dnp->dn_nblkptr; i++) { 1616 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]); 1617 zb.zb_blkid = i; 1618 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb); 1619 } 1620 1621 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1622 zb.zb_level = 0; 1623 zb.zb_blkid = DMU_SPILL_BLKID; 1624 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb); 1625 } 1626 1627 scan_prefetch_ctx_rele(spc, FTAG); 1628 } 1629 1630 static void 1631 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1632 arc_buf_t *buf, void *private) 1633 { 1634 scan_prefetch_ctx_t *spc = private; 1635 dsl_scan_t *scn = spc->spc_scn; 1636 spa_t *spa = scn->scn_dp->dp_spa; 1637 1638 /* broadcast that the IO has completed for rate limiting purposes */ 1639 mutex_enter(&spa->spa_scrub_lock); 1640 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 1641 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 1642 cv_broadcast(&spa->spa_scrub_io_cv); 1643 mutex_exit(&spa->spa_scrub_lock); 1644 1645 /* if there was an error or we are done prefetching, just cleanup */ 1646 if (buf == NULL || scn->scn_prefetch_stop) 1647 goto out; 1648 1649 if (BP_GET_LEVEL(bp) > 0) { 1650 int i; 1651 blkptr_t *cbp; 1652 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1653 zbookmark_phys_t czb; 1654 1655 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1656 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1657 zb->zb_level - 1, zb->zb_blkid * epb + i); 1658 dsl_scan_prefetch(spc, cbp, &czb); 1659 } 1660 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1661 dnode_phys_t *cdnp; 1662 int i; 1663 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1664 1665 for (i = 0, cdnp = buf->b_data; i < epb; 1666 i += cdnp->dn_extra_slots + 1, 1667 cdnp += cdnp->dn_extra_slots + 1) { 1668 dsl_scan_prefetch_dnode(scn, cdnp, 1669 zb->zb_objset, zb->zb_blkid * epb + i); 1670 } 1671 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1672 objset_phys_t *osp = buf->b_data; 1673 1674 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode, 1675 zb->zb_objset, DMU_META_DNODE_OBJECT); 1676 1677 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1678 dsl_scan_prefetch_dnode(scn, 1679 &osp->os_groupused_dnode, zb->zb_objset, 1680 DMU_GROUPUSED_OBJECT); 1681 dsl_scan_prefetch_dnode(scn, 1682 &osp->os_userused_dnode, zb->zb_objset, 1683 DMU_USERUSED_OBJECT); 1684 } 1685 } 1686 1687 out: 1688 if (buf != NULL) 1689 arc_buf_destroy(buf, private); 1690 scan_prefetch_ctx_rele(spc, scn); 1691 } 1692 1693 /* ARGSUSED */ 1694 static void 1695 dsl_scan_prefetch_thread(void *arg) 1696 { 1697 dsl_scan_t *scn = arg; 1698 spa_t *spa = scn->scn_dp->dp_spa; 1699 scan_prefetch_issue_ctx_t *spic; 1700 1701 /* loop until we are told to stop */ 1702 while (!scn->scn_prefetch_stop) { 1703 arc_flags_t flags = ARC_FLAG_NOWAIT | 1704 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH; 1705 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1706 1707 mutex_enter(&spa->spa_scrub_lock); 1708 1709 /* 1710 * Wait until we have an IO to issue and are not above our 1711 * maximum in flight limit. 1712 */ 1713 while (!scn->scn_prefetch_stop && 1714 (avl_numnodes(&scn->scn_prefetch_queue) == 0 || 1715 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) { 1716 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1717 } 1718 1719 /* recheck if we should stop since we waited for the cv */ 1720 if (scn->scn_prefetch_stop) { 1721 mutex_exit(&spa->spa_scrub_lock); 1722 break; 1723 } 1724 1725 /* remove the prefetch IO from the tree */ 1726 spic = avl_first(&scn->scn_prefetch_queue); 1727 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp); 1728 avl_remove(&scn->scn_prefetch_queue, spic); 1729 1730 mutex_exit(&spa->spa_scrub_lock); 1731 1732 if (BP_IS_PROTECTED(&spic->spic_bp)) { 1733 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE || 1734 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET); 1735 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0); 1736 zio_flags |= ZIO_FLAG_RAW; 1737 } 1738 1739 /* issue the prefetch asynchronously */ 1740 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa, 1741 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc, 1742 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb); 1743 1744 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1745 } 1746 1747 ASSERT(scn->scn_prefetch_stop); 1748 1749 /* free any prefetches we didn't get to complete */ 1750 mutex_enter(&spa->spa_scrub_lock); 1751 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) { 1752 avl_remove(&scn->scn_prefetch_queue, spic); 1753 scan_prefetch_ctx_rele(spic->spic_spc, scn); 1754 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t)); 1755 } 1756 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue)); 1757 mutex_exit(&spa->spa_scrub_lock); 1758 } 1759 1760 static boolean_t 1761 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp, 1762 const zbookmark_phys_t *zb) 1763 { 1764 /* 1765 * We never skip over user/group accounting objects (obj<0) 1766 */ 1767 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) && 1768 (int64_t)zb->zb_object >= 0) { 1769 /* 1770 * If we already visited this bp & everything below (in 1771 * a prior txg sync), don't bother doing it again. 1772 */ 1773 if (zbookmark_subtree_completed(dnp, zb, 1774 &scn->scn_phys.scn_bookmark)) 1775 return (B_TRUE); 1776 1777 /* 1778 * If we found the block we're trying to resume from, or 1779 * we went past it to a different object, zero it out to 1780 * indicate that it's OK to start checking for suspending 1781 * again. 1782 */ 1783 if (bcmp(zb, &scn->scn_phys.scn_bookmark, sizeof (*zb)) == 0 || 1784 zb->zb_object > scn->scn_phys.scn_bookmark.zb_object) { 1785 dprintf("resuming at %llx/%llx/%llx/%llx\n", 1786 (longlong_t)zb->zb_objset, 1787 (longlong_t)zb->zb_object, 1788 (longlong_t)zb->zb_level, 1789 (longlong_t)zb->zb_blkid); 1790 bzero(&scn->scn_phys.scn_bookmark, sizeof (*zb)); 1791 } 1792 } 1793 return (B_FALSE); 1794 } 1795 1796 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1797 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1798 dmu_objset_type_t ostype, dmu_tx_t *tx); 1799 inline __attribute__((always_inline)) static void dsl_scan_visitdnode( 1800 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1801 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx); 1802 1803 /* 1804 * Return nonzero on i/o error. 1805 * Return new buf to write out in *bufp. 1806 */ 1807 inline __attribute__((always_inline)) static int 1808 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype, 1809 dnode_phys_t *dnp, const blkptr_t *bp, 1810 const zbookmark_phys_t *zb, dmu_tx_t *tx) 1811 { 1812 dsl_pool_t *dp = scn->scn_dp; 1813 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD; 1814 int err; 1815 1816 ASSERT(!BP_IS_REDACTED(bp)); 1817 1818 if (BP_GET_LEVEL(bp) > 0) { 1819 arc_flags_t flags = ARC_FLAG_WAIT; 1820 int i; 1821 blkptr_t *cbp; 1822 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 1823 arc_buf_t *buf; 1824 1825 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1826 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1827 if (err) { 1828 scn->scn_phys.scn_errors++; 1829 return (err); 1830 } 1831 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) { 1832 zbookmark_phys_t czb; 1833 1834 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 1835 zb->zb_level - 1, 1836 zb->zb_blkid * epb + i); 1837 dsl_scan_visitbp(cbp, &czb, dnp, 1838 ds, scn, ostype, tx); 1839 } 1840 arc_buf_destroy(buf, &buf); 1841 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) { 1842 arc_flags_t flags = ARC_FLAG_WAIT; 1843 dnode_phys_t *cdnp; 1844 int i; 1845 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT; 1846 arc_buf_t *buf; 1847 1848 if (BP_IS_PROTECTED(bp)) { 1849 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 1850 zio_flags |= ZIO_FLAG_RAW; 1851 } 1852 1853 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1854 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1855 if (err) { 1856 scn->scn_phys.scn_errors++; 1857 return (err); 1858 } 1859 for (i = 0, cdnp = buf->b_data; i < epb; 1860 i += cdnp->dn_extra_slots + 1, 1861 cdnp += cdnp->dn_extra_slots + 1) { 1862 dsl_scan_visitdnode(scn, ds, ostype, 1863 cdnp, zb->zb_blkid * epb + i, tx); 1864 } 1865 1866 arc_buf_destroy(buf, &buf); 1867 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1868 arc_flags_t flags = ARC_FLAG_WAIT; 1869 objset_phys_t *osp; 1870 arc_buf_t *buf; 1871 1872 err = arc_read(NULL, dp->dp_spa, bp, arc_getbuf_func, &buf, 1873 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb); 1874 if (err) { 1875 scn->scn_phys.scn_errors++; 1876 return (err); 1877 } 1878 1879 osp = buf->b_data; 1880 1881 dsl_scan_visitdnode(scn, ds, osp->os_type, 1882 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx); 1883 1884 if (OBJSET_BUF_HAS_USERUSED(buf)) { 1885 /* 1886 * We also always visit user/group/project accounting 1887 * objects, and never skip them, even if we are 1888 * suspending. This is necessary so that the 1889 * space deltas from this txg get integrated. 1890 */ 1891 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) 1892 dsl_scan_visitdnode(scn, ds, osp->os_type, 1893 &osp->os_projectused_dnode, 1894 DMU_PROJECTUSED_OBJECT, tx); 1895 dsl_scan_visitdnode(scn, ds, osp->os_type, 1896 &osp->os_groupused_dnode, 1897 DMU_GROUPUSED_OBJECT, tx); 1898 dsl_scan_visitdnode(scn, ds, osp->os_type, 1899 &osp->os_userused_dnode, 1900 DMU_USERUSED_OBJECT, tx); 1901 } 1902 arc_buf_destroy(buf, &buf); 1903 } 1904 1905 return (0); 1906 } 1907 1908 inline __attribute__((always_inline)) static void 1909 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds, 1910 dmu_objset_type_t ostype, dnode_phys_t *dnp, 1911 uint64_t object, dmu_tx_t *tx) 1912 { 1913 int j; 1914 1915 for (j = 0; j < dnp->dn_nblkptr; j++) { 1916 zbookmark_phys_t czb; 1917 1918 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1919 dnp->dn_nlevels - 1, j); 1920 dsl_scan_visitbp(&dnp->dn_blkptr[j], 1921 &czb, dnp, ds, scn, ostype, tx); 1922 } 1923 1924 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1925 zbookmark_phys_t czb; 1926 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object, 1927 0, DMU_SPILL_BLKID); 1928 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp), 1929 &czb, dnp, ds, scn, ostype, tx); 1930 } 1931 } 1932 1933 /* 1934 * The arguments are in this order because mdb can only print the 1935 * first 5; we want them to be useful. 1936 */ 1937 static void 1938 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb, 1939 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn, 1940 dmu_objset_type_t ostype, dmu_tx_t *tx) 1941 { 1942 dsl_pool_t *dp = scn->scn_dp; 1943 blkptr_t *bp_toread = NULL; 1944 1945 if (dsl_scan_check_suspend(scn, zb)) 1946 return; 1947 1948 if (dsl_scan_check_resume(scn, dnp, zb)) 1949 return; 1950 1951 scn->scn_visited_this_txg++; 1952 1953 /* 1954 * This debugging is commented out to conserve stack space. This 1955 * function is called recursively and the debugging adds several 1956 * bytes to the stack for each call. It can be commented back in 1957 * if required to debug an issue in dsl_scan_visitbp(). 1958 * 1959 * dprintf_bp(bp, 1960 * "visiting ds=%p/%llu zb=%llx/%llx/%llx/%llx bp=%p", 1961 * ds, ds ? ds->ds_object : 0, 1962 * zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid, 1963 * bp); 1964 */ 1965 1966 if (BP_IS_HOLE(bp)) { 1967 scn->scn_holes_this_txg++; 1968 return; 1969 } 1970 1971 if (BP_IS_REDACTED(bp)) { 1972 ASSERT(dsl_dataset_feature_is_active(ds, 1973 SPA_FEATURE_REDACTED_DATASETS)); 1974 return; 1975 } 1976 1977 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) { 1978 scn->scn_lt_min_this_txg++; 1979 return; 1980 } 1981 1982 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP); 1983 *bp_toread = *bp; 1984 1985 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0) 1986 goto out; 1987 1988 /* 1989 * If dsl_scan_ddt() has already visited this block, it will have 1990 * already done any translations or scrubbing, so don't call the 1991 * callback again. 1992 */ 1993 if (ddt_class_contains(dp->dp_spa, 1994 scn->scn_phys.scn_ddt_class_max, bp)) { 1995 scn->scn_ddt_contained_this_txg++; 1996 goto out; 1997 } 1998 1999 /* 2000 * If this block is from the future (after cur_max_txg), then we 2001 * are doing this on behalf of a deleted snapshot, and we will 2002 * revisit the future block on the next pass of this dataset. 2003 * Don't scan it now unless we need to because something 2004 * under it was modified. 2005 */ 2006 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) { 2007 scn->scn_gt_max_this_txg++; 2008 goto out; 2009 } 2010 2011 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb); 2012 2013 out: 2014 kmem_free(bp_toread, sizeof (blkptr_t)); 2015 } 2016 2017 static void 2018 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp, 2019 dmu_tx_t *tx) 2020 { 2021 zbookmark_phys_t zb; 2022 scan_prefetch_ctx_t *spc; 2023 2024 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET, 2025 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID); 2026 2027 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) { 2028 SET_BOOKMARK(&scn->scn_prefetch_bookmark, 2029 zb.zb_objset, 0, 0, 0); 2030 } else { 2031 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark; 2032 } 2033 2034 scn->scn_objsets_visited_this_txg++; 2035 2036 spc = scan_prefetch_ctx_create(scn, NULL, FTAG); 2037 dsl_scan_prefetch(spc, bp, &zb); 2038 scan_prefetch_ctx_rele(spc, FTAG); 2039 2040 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx); 2041 2042 dprintf_ds(ds, "finished scan%s", ""); 2043 } 2044 2045 static void 2046 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys) 2047 { 2048 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) { 2049 if (ds->ds_is_snapshot) { 2050 /* 2051 * Note: 2052 * - scn_cur_{min,max}_txg stays the same. 2053 * - Setting the flag is not really necessary if 2054 * scn_cur_max_txg == scn_max_txg, because there 2055 * is nothing after this snapshot that we care 2056 * about. However, we set it anyway and then 2057 * ignore it when we retraverse it in 2058 * dsl_scan_visitds(). 2059 */ 2060 scn_phys->scn_bookmark.zb_objset = 2061 dsl_dataset_phys(ds)->ds_next_snap_obj; 2062 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2063 "reset zb_objset to %llu", 2064 (u_longlong_t)ds->ds_object, 2065 (u_longlong_t)dsl_dataset_phys(ds)-> 2066 ds_next_snap_obj); 2067 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN; 2068 } else { 2069 SET_BOOKMARK(&scn_phys->scn_bookmark, 2070 ZB_DESTROYED_OBJSET, 0, 0, 0); 2071 zfs_dbgmsg("destroying ds %llu; currently traversing; " 2072 "reset bookmark to -1,0,0,0", 2073 (u_longlong_t)ds->ds_object); 2074 } 2075 } 2076 } 2077 2078 /* 2079 * Invoked when a dataset is destroyed. We need to make sure that: 2080 * 2081 * 1) If it is the dataset that was currently being scanned, we write 2082 * a new dsl_scan_phys_t and marking the objset reference in it 2083 * as destroyed. 2084 * 2) Remove it from the work queue, if it was present. 2085 * 2086 * If the dataset was actually a snapshot, instead of marking the dataset 2087 * as destroyed, we instead substitute the next snapshot in line. 2088 */ 2089 void 2090 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx) 2091 { 2092 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2093 dsl_scan_t *scn = dp->dp_scan; 2094 uint64_t mintxg; 2095 2096 if (!dsl_scan_is_running(scn)) 2097 return; 2098 2099 ds_destroyed_scn_phys(ds, &scn->scn_phys); 2100 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached); 2101 2102 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2103 scan_ds_queue_remove(scn, ds->ds_object); 2104 if (ds->ds_is_snapshot) 2105 scan_ds_queue_insert(scn, 2106 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg); 2107 } 2108 2109 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2110 ds->ds_object, &mintxg) == 0) { 2111 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1); 2112 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2113 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2114 if (ds->ds_is_snapshot) { 2115 /* 2116 * We keep the same mintxg; it could be > 2117 * ds_creation_txg if the previous snapshot was 2118 * deleted too. 2119 */ 2120 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2121 scn->scn_phys.scn_queue_obj, 2122 dsl_dataset_phys(ds)->ds_next_snap_obj, 2123 mintxg, tx) == 0); 2124 zfs_dbgmsg("destroying ds %llu; in queue; " 2125 "replacing with %llu", 2126 (u_longlong_t)ds->ds_object, 2127 (u_longlong_t)dsl_dataset_phys(ds)-> 2128 ds_next_snap_obj); 2129 } else { 2130 zfs_dbgmsg("destroying ds %llu; in queue; removing", 2131 (u_longlong_t)ds->ds_object); 2132 } 2133 } 2134 2135 /* 2136 * dsl_scan_sync() should be called after this, and should sync 2137 * out our changed state, but just to be safe, do it here. 2138 */ 2139 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2140 } 2141 2142 static void 2143 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark) 2144 { 2145 if (scn_bookmark->zb_objset == ds->ds_object) { 2146 scn_bookmark->zb_objset = 2147 dsl_dataset_phys(ds)->ds_prev_snap_obj; 2148 zfs_dbgmsg("snapshotting ds %llu; currently traversing; " 2149 "reset zb_objset to %llu", 2150 (u_longlong_t)ds->ds_object, 2151 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2152 } 2153 } 2154 2155 /* 2156 * Called when a dataset is snapshotted. If we were currently traversing 2157 * this snapshot, we reset our bookmark to point at the newly created 2158 * snapshot. We also modify our work queue to remove the old snapshot and 2159 * replace with the new one. 2160 */ 2161 void 2162 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx) 2163 { 2164 dsl_pool_t *dp = ds->ds_dir->dd_pool; 2165 dsl_scan_t *scn = dp->dp_scan; 2166 uint64_t mintxg; 2167 2168 if (!dsl_scan_is_running(scn)) 2169 return; 2170 2171 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0); 2172 2173 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark); 2174 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark); 2175 2176 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) { 2177 scan_ds_queue_remove(scn, ds->ds_object); 2178 scan_ds_queue_insert(scn, 2179 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg); 2180 } 2181 2182 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj, 2183 ds->ds_object, &mintxg) == 0) { 2184 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset, 2185 scn->scn_phys.scn_queue_obj, ds->ds_object, tx)); 2186 VERIFY(zap_add_int_key(dp->dp_meta_objset, 2187 scn->scn_phys.scn_queue_obj, 2188 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0); 2189 zfs_dbgmsg("snapshotting ds %llu; in queue; " 2190 "replacing with %llu", 2191 (u_longlong_t)ds->ds_object, 2192 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj); 2193 } 2194 2195 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2196 } 2197 2198 static void 2199 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2, 2200 zbookmark_phys_t *scn_bookmark) 2201 { 2202 if (scn_bookmark->zb_objset == ds1->ds_object) { 2203 scn_bookmark->zb_objset = ds2->ds_object; 2204 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2205 "reset zb_objset to %llu", 2206 (u_longlong_t)ds1->ds_object, 2207 (u_longlong_t)ds2->ds_object); 2208 } else if (scn_bookmark->zb_objset == ds2->ds_object) { 2209 scn_bookmark->zb_objset = ds1->ds_object; 2210 zfs_dbgmsg("clone_swap ds %llu; currently traversing; " 2211 "reset zb_objset to %llu", 2212 (u_longlong_t)ds2->ds_object, 2213 (u_longlong_t)ds1->ds_object); 2214 } 2215 } 2216 2217 /* 2218 * Called when an origin dataset and its clone are swapped. If we were 2219 * currently traversing the dataset, we need to switch to traversing the 2220 * newly promoted clone. 2221 */ 2222 void 2223 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx) 2224 { 2225 dsl_pool_t *dp = ds1->ds_dir->dd_pool; 2226 dsl_scan_t *scn = dp->dp_scan; 2227 uint64_t mintxg1, mintxg2; 2228 boolean_t ds1_queued, ds2_queued; 2229 2230 if (!dsl_scan_is_running(scn)) 2231 return; 2232 2233 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark); 2234 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark); 2235 2236 /* 2237 * Handle the in-memory scan queue. 2238 */ 2239 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1); 2240 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2); 2241 2242 /* Sanity checking. */ 2243 if (ds1_queued) { 2244 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2245 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2246 } 2247 if (ds2_queued) { 2248 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2249 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2250 } 2251 2252 if (ds1_queued && ds2_queued) { 2253 /* 2254 * If both are queued, we don't need to do anything. 2255 * The swapping code below would not handle this case correctly, 2256 * since we can't insert ds2 if it is already there. That's 2257 * because scan_ds_queue_insert() prohibits a duplicate insert 2258 * and panics. 2259 */ 2260 } else if (ds1_queued) { 2261 scan_ds_queue_remove(scn, ds1->ds_object); 2262 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1); 2263 } else if (ds2_queued) { 2264 scan_ds_queue_remove(scn, ds2->ds_object); 2265 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2); 2266 } 2267 2268 /* 2269 * Handle the on-disk scan queue. 2270 * The on-disk state is an out-of-date version of the in-memory state, 2271 * so the in-memory and on-disk values for ds1_queued and ds2_queued may 2272 * be different. Therefore we need to apply the swap logic to the 2273 * on-disk state independently of the in-memory state. 2274 */ 2275 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset, 2276 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0; 2277 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset, 2278 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0; 2279 2280 /* Sanity checking. */ 2281 if (ds1_queued) { 2282 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2283 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2284 } 2285 if (ds2_queued) { 2286 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg); 2287 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg); 2288 } 2289 2290 if (ds1_queued && ds2_queued) { 2291 /* 2292 * If both are queued, we don't need to do anything. 2293 * Alternatively, we could check for EEXIST from 2294 * zap_add_int_key() and back out to the original state, but 2295 * that would be more work than checking for this case upfront. 2296 */ 2297 } else if (ds1_queued) { 2298 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2299 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx)); 2300 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2301 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx)); 2302 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2303 "replacing with %llu", 2304 (u_longlong_t)ds1->ds_object, 2305 (u_longlong_t)ds2->ds_object); 2306 } else if (ds2_queued) { 2307 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset, 2308 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx)); 2309 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset, 2310 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx)); 2311 zfs_dbgmsg("clone_swap ds %llu; in queue; " 2312 "replacing with %llu", 2313 (u_longlong_t)ds2->ds_object, 2314 (u_longlong_t)ds1->ds_object); 2315 } 2316 2317 dsl_scan_sync_state(scn, tx, SYNC_CACHED); 2318 } 2319 2320 /* ARGSUSED */ 2321 static int 2322 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2323 { 2324 uint64_t originobj = *(uint64_t *)arg; 2325 dsl_dataset_t *ds; 2326 int err; 2327 dsl_scan_t *scn = dp->dp_scan; 2328 2329 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj) 2330 return (0); 2331 2332 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2333 if (err) 2334 return (err); 2335 2336 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) { 2337 dsl_dataset_t *prev; 2338 err = dsl_dataset_hold_obj(dp, 2339 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2340 2341 dsl_dataset_rele(ds, FTAG); 2342 if (err) 2343 return (err); 2344 ds = prev; 2345 } 2346 scan_ds_queue_insert(scn, ds->ds_object, 2347 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2348 dsl_dataset_rele(ds, FTAG); 2349 return (0); 2350 } 2351 2352 static void 2353 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx) 2354 { 2355 dsl_pool_t *dp = scn->scn_dp; 2356 dsl_dataset_t *ds; 2357 2358 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2359 2360 if (scn->scn_phys.scn_cur_min_txg >= 2361 scn->scn_phys.scn_max_txg) { 2362 /* 2363 * This can happen if this snapshot was created after the 2364 * scan started, and we already completed a previous snapshot 2365 * that was created after the scan started. This snapshot 2366 * only references blocks with: 2367 * 2368 * birth < our ds_creation_txg 2369 * cur_min_txg is no less than ds_creation_txg. 2370 * We have already visited these blocks. 2371 * or 2372 * birth > scn_max_txg 2373 * The scan requested not to visit these blocks. 2374 * 2375 * Subsequent snapshots (and clones) can reference our 2376 * blocks, or blocks with even higher birth times. 2377 * Therefore we do not need to visit them either, 2378 * so we do not add them to the work queue. 2379 * 2380 * Note that checking for cur_min_txg >= cur_max_txg 2381 * is not sufficient, because in that case we may need to 2382 * visit subsequent snapshots. This happens when min_txg > 0, 2383 * which raises cur_min_txg. In this case we will visit 2384 * this dataset but skip all of its blocks, because the 2385 * rootbp's birth time is < cur_min_txg. Then we will 2386 * add the next snapshots/clones to the work queue. 2387 */ 2388 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2389 dsl_dataset_name(ds, dsname); 2390 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because " 2391 "cur_min_txg (%llu) >= max_txg (%llu)", 2392 (longlong_t)dsobj, dsname, 2393 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2394 (longlong_t)scn->scn_phys.scn_max_txg); 2395 kmem_free(dsname, MAXNAMELEN); 2396 2397 goto out; 2398 } 2399 2400 /* 2401 * Only the ZIL in the head (non-snapshot) is valid. Even though 2402 * snapshots can have ZIL block pointers (which may be the same 2403 * BP as in the head), they must be ignored. In addition, $ORIGIN 2404 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't 2405 * need to look for a ZIL in it either. So we traverse the ZIL here, 2406 * rather than in scan_recurse(), because the regular snapshot 2407 * block-sharing rules don't apply to it. 2408 */ 2409 if (!dsl_dataset_is_snapshot(ds) && 2410 (dp->dp_origin_snap == NULL || 2411 ds->ds_dir != dp->dp_origin_snap->ds_dir)) { 2412 objset_t *os; 2413 if (dmu_objset_from_ds(ds, &os) != 0) { 2414 goto out; 2415 } 2416 dsl_scan_zil(dp, &os->os_zil_header); 2417 } 2418 2419 /* 2420 * Iterate over the bps in this ds. 2421 */ 2422 dmu_buf_will_dirty(ds->ds_dbuf, tx); 2423 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2424 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx); 2425 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2426 2427 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); 2428 dsl_dataset_name(ds, dsname); 2429 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; " 2430 "suspending=%u", 2431 (longlong_t)dsobj, dsname, 2432 (longlong_t)scn->scn_phys.scn_cur_min_txg, 2433 (longlong_t)scn->scn_phys.scn_cur_max_txg, 2434 (int)scn->scn_suspending); 2435 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN); 2436 2437 if (scn->scn_suspending) 2438 goto out; 2439 2440 /* 2441 * We've finished this pass over this dataset. 2442 */ 2443 2444 /* 2445 * If we did not completely visit this dataset, do another pass. 2446 */ 2447 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) { 2448 zfs_dbgmsg("incomplete pass; visiting again"); 2449 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN; 2450 scan_ds_queue_insert(scn, ds->ds_object, 2451 scn->scn_phys.scn_cur_max_txg); 2452 goto out; 2453 } 2454 2455 /* 2456 * Add descendant datasets to work queue. 2457 */ 2458 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) { 2459 scan_ds_queue_insert(scn, 2460 dsl_dataset_phys(ds)->ds_next_snap_obj, 2461 dsl_dataset_phys(ds)->ds_creation_txg); 2462 } 2463 if (dsl_dataset_phys(ds)->ds_num_children > 1) { 2464 boolean_t usenext = B_FALSE; 2465 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) { 2466 uint64_t count; 2467 /* 2468 * A bug in a previous version of the code could 2469 * cause upgrade_clones_cb() to not set 2470 * ds_next_snap_obj when it should, leading to a 2471 * missing entry. Therefore we can only use the 2472 * next_clones_obj when its count is correct. 2473 */ 2474 int err = zap_count(dp->dp_meta_objset, 2475 dsl_dataset_phys(ds)->ds_next_clones_obj, &count); 2476 if (err == 0 && 2477 count == dsl_dataset_phys(ds)->ds_num_children - 1) 2478 usenext = B_TRUE; 2479 } 2480 2481 if (usenext) { 2482 zap_cursor_t zc; 2483 zap_attribute_t za; 2484 for (zap_cursor_init(&zc, dp->dp_meta_objset, 2485 dsl_dataset_phys(ds)->ds_next_clones_obj); 2486 zap_cursor_retrieve(&zc, &za) == 0; 2487 (void) zap_cursor_advance(&zc)) { 2488 scan_ds_queue_insert(scn, 2489 zfs_strtonum(za.za_name, NULL), 2490 dsl_dataset_phys(ds)->ds_creation_txg); 2491 } 2492 zap_cursor_fini(&zc); 2493 } else { 2494 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2495 enqueue_clones_cb, &ds->ds_object, 2496 DS_FIND_CHILDREN)); 2497 } 2498 } 2499 2500 out: 2501 dsl_dataset_rele(ds, FTAG); 2502 } 2503 2504 /* ARGSUSED */ 2505 static int 2506 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg) 2507 { 2508 dsl_dataset_t *ds; 2509 int err; 2510 dsl_scan_t *scn = dp->dp_scan; 2511 2512 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds); 2513 if (err) 2514 return (err); 2515 2516 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) { 2517 dsl_dataset_t *prev; 2518 err = dsl_dataset_hold_obj(dp, 2519 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev); 2520 if (err) { 2521 dsl_dataset_rele(ds, FTAG); 2522 return (err); 2523 } 2524 2525 /* 2526 * If this is a clone, we don't need to worry about it for now. 2527 */ 2528 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) { 2529 dsl_dataset_rele(ds, FTAG); 2530 dsl_dataset_rele(prev, FTAG); 2531 return (0); 2532 } 2533 dsl_dataset_rele(ds, FTAG); 2534 ds = prev; 2535 } 2536 2537 scan_ds_queue_insert(scn, ds->ds_object, 2538 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2539 dsl_dataset_rele(ds, FTAG); 2540 return (0); 2541 } 2542 2543 /* ARGSUSED */ 2544 void 2545 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum, 2546 ddt_entry_t *dde, dmu_tx_t *tx) 2547 { 2548 const ddt_key_t *ddk = &dde->dde_key; 2549 ddt_phys_t *ddp = dde->dde_phys; 2550 blkptr_t bp; 2551 zbookmark_phys_t zb = { 0 }; 2552 int p; 2553 2554 if (!dsl_scan_is_running(scn)) 2555 return; 2556 2557 /* 2558 * This function is special because it is the only thing 2559 * that can add scan_io_t's to the vdev scan queues from 2560 * outside dsl_scan_sync(). For the most part this is ok 2561 * as long as it is called from within syncing context. 2562 * However, dsl_scan_sync() expects that no new sio's will 2563 * be added between when all the work for a scan is done 2564 * and the next txg when the scan is actually marked as 2565 * completed. This check ensures we do not issue new sio's 2566 * during this period. 2567 */ 2568 if (scn->scn_done_txg != 0) 2569 return; 2570 2571 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 2572 if (ddp->ddp_phys_birth == 0 || 2573 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg) 2574 continue; 2575 ddt_bp_create(checksum, ddk, ddp, &bp); 2576 2577 scn->scn_visited_this_txg++; 2578 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb); 2579 } 2580 } 2581 2582 /* 2583 * Scrub/dedup interaction. 2584 * 2585 * If there are N references to a deduped block, we don't want to scrub it 2586 * N times -- ideally, we should scrub it exactly once. 2587 * 2588 * We leverage the fact that the dde's replication class (enum ddt_class) 2589 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest 2590 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order. 2591 * 2592 * To prevent excess scrubbing, the scrub begins by walking the DDT 2593 * to find all blocks with refcnt > 1, and scrubs each of these once. 2594 * Since there are two replication classes which contain blocks with 2595 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first. 2596 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1. 2597 * 2598 * There would be nothing more to say if a block's refcnt couldn't change 2599 * during a scrub, but of course it can so we must account for changes 2600 * in a block's replication class. 2601 * 2602 * Here's an example of what can occur: 2603 * 2604 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1 2605 * when visited during the top-down scrub phase, it will be scrubbed twice. 2606 * This negates our scrub optimization, but is otherwise harmless. 2607 * 2608 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1 2609 * on each visit during the top-down scrub phase, it will never be scrubbed. 2610 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's 2611 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to 2612 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1 2613 * while a scrub is in progress, it scrubs the block right then. 2614 */ 2615 static void 2616 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx) 2617 { 2618 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark; 2619 ddt_entry_t dde; 2620 int error; 2621 uint64_t n = 0; 2622 2623 bzero(&dde, sizeof (ddt_entry_t)); 2624 2625 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) { 2626 ddt_t *ddt; 2627 2628 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max) 2629 break; 2630 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n", 2631 (longlong_t)ddb->ddb_class, 2632 (longlong_t)ddb->ddb_type, 2633 (longlong_t)ddb->ddb_checksum, 2634 (longlong_t)ddb->ddb_cursor); 2635 2636 /* There should be no pending changes to the dedup table */ 2637 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum]; 2638 ASSERT(avl_first(&ddt->ddt_tree) == NULL); 2639 2640 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx); 2641 n++; 2642 2643 if (dsl_scan_check_suspend(scn, NULL)) 2644 break; 2645 } 2646 2647 zfs_dbgmsg("scanned %llu ddt entries with class_max = %u; " 2648 "suspending=%u", (longlong_t)n, 2649 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending); 2650 2651 ASSERT(error == 0 || error == ENOENT); 2652 ASSERT(error != ENOENT || 2653 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max); 2654 } 2655 2656 static uint64_t 2657 dsl_scan_ds_maxtxg(dsl_dataset_t *ds) 2658 { 2659 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg; 2660 if (ds->ds_is_snapshot) 2661 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg)); 2662 return (smt); 2663 } 2664 2665 static void 2666 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx) 2667 { 2668 scan_ds_t *sds; 2669 dsl_pool_t *dp = scn->scn_dp; 2670 2671 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <= 2672 scn->scn_phys.scn_ddt_class_max) { 2673 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2674 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2675 dsl_scan_ddt(scn, tx); 2676 if (scn->scn_suspending) 2677 return; 2678 } 2679 2680 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) { 2681 /* First do the MOS & ORIGIN */ 2682 2683 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg; 2684 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg; 2685 dsl_scan_visit_rootbp(scn, NULL, 2686 &dp->dp_meta_rootbp, tx); 2687 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp); 2688 if (scn->scn_suspending) 2689 return; 2690 2691 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) { 2692 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2693 enqueue_cb, NULL, DS_FIND_CHILDREN)); 2694 } else { 2695 dsl_scan_visitds(scn, 2696 dp->dp_origin_snap->ds_object, tx); 2697 } 2698 ASSERT(!scn->scn_suspending); 2699 } else if (scn->scn_phys.scn_bookmark.zb_objset != 2700 ZB_DESTROYED_OBJSET) { 2701 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset; 2702 /* 2703 * If we were suspended, continue from here. Note if the 2704 * ds we were suspended on was deleted, the zb_objset may 2705 * be -1, so we will skip this and find a new objset 2706 * below. 2707 */ 2708 dsl_scan_visitds(scn, dsobj, tx); 2709 if (scn->scn_suspending) 2710 return; 2711 } 2712 2713 /* 2714 * In case we suspended right at the end of the ds, zero the 2715 * bookmark so we don't think that we're still trying to resume. 2716 */ 2717 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_phys_t)); 2718 2719 /* 2720 * Keep pulling things out of the dataset avl queue. Updates to the 2721 * persistent zap-object-as-queue happen only at checkpoints. 2722 */ 2723 while ((sds = avl_first(&scn->scn_queue)) != NULL) { 2724 dsl_dataset_t *ds; 2725 uint64_t dsobj = sds->sds_dsobj; 2726 uint64_t txg = sds->sds_txg; 2727 2728 /* dequeue and free the ds from the queue */ 2729 scan_ds_queue_remove(scn, dsobj); 2730 sds = NULL; 2731 2732 /* set up min / max txg */ 2733 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds)); 2734 if (txg != 0) { 2735 scn->scn_phys.scn_cur_min_txg = 2736 MAX(scn->scn_phys.scn_min_txg, txg); 2737 } else { 2738 scn->scn_phys.scn_cur_min_txg = 2739 MAX(scn->scn_phys.scn_min_txg, 2740 dsl_dataset_phys(ds)->ds_prev_snap_txg); 2741 } 2742 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds); 2743 dsl_dataset_rele(ds, FTAG); 2744 2745 dsl_scan_visitds(scn, dsobj, tx); 2746 if (scn->scn_suspending) 2747 return; 2748 } 2749 2750 /* No more objsets to fetch, we're done */ 2751 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET; 2752 ASSERT0(scn->scn_suspending); 2753 } 2754 2755 static uint64_t 2756 dsl_scan_count_leaves(vdev_t *vd) 2757 { 2758 uint64_t i, leaves = 0; 2759 2760 /* we only count leaves that belong to the main pool and are readable */ 2761 if (vd->vdev_islog || vd->vdev_isspare || 2762 vd->vdev_isl2cache || !vdev_readable(vd)) 2763 return (0); 2764 2765 if (vd->vdev_ops->vdev_op_leaf) 2766 return (1); 2767 2768 for (i = 0; i < vd->vdev_children; i++) { 2769 leaves += dsl_scan_count_leaves(vd->vdev_child[i]); 2770 } 2771 2772 return (leaves); 2773 } 2774 2775 static void 2776 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp) 2777 { 2778 int i; 2779 uint64_t cur_size = 0; 2780 2781 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 2782 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]); 2783 } 2784 2785 q->q_total_zio_size_this_txg += cur_size; 2786 q->q_zios_this_txg++; 2787 } 2788 2789 static void 2790 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start, 2791 uint64_t end) 2792 { 2793 q->q_total_seg_size_this_txg += end - start; 2794 q->q_segs_this_txg++; 2795 } 2796 2797 static boolean_t 2798 scan_io_queue_check_suspend(dsl_scan_t *scn) 2799 { 2800 /* See comment in dsl_scan_check_suspend() */ 2801 uint64_t curr_time_ns = gethrtime(); 2802 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time; 2803 uint64_t sync_time_ns = curr_time_ns - 2804 scn->scn_dp->dp_spa->spa_sync_starttime; 2805 int dirty_pct = scn->scn_dp->dp_dirty_total * 100 / zfs_dirty_data_max; 2806 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 2807 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 2808 2809 return ((NSEC2MSEC(scan_time_ns) > mintime && 2810 (dirty_pct >= zfs_vdev_async_write_active_min_dirty_percent || 2811 txg_sync_waiting(scn->scn_dp) || 2812 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) || 2813 spa_shutting_down(scn->scn_dp->dp_spa)); 2814 } 2815 2816 /* 2817 * Given a list of scan_io_t's in io_list, this issues the I/Os out to 2818 * disk. This consumes the io_list and frees the scan_io_t's. This is 2819 * called when emptying queues, either when we're up against the memory 2820 * limit or when we have finished scanning. Returns B_TRUE if we stopped 2821 * processing the list before we finished. Any sios that were not issued 2822 * will remain in the io_list. 2823 */ 2824 static boolean_t 2825 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list) 2826 { 2827 dsl_scan_t *scn = queue->q_scn; 2828 scan_io_t *sio; 2829 int64_t bytes_issued = 0; 2830 boolean_t suspended = B_FALSE; 2831 2832 while ((sio = list_head(io_list)) != NULL) { 2833 blkptr_t bp; 2834 2835 if (scan_io_queue_check_suspend(scn)) { 2836 suspended = B_TRUE; 2837 break; 2838 } 2839 2840 sio2bp(sio, &bp); 2841 bytes_issued += SIO_GET_ASIZE(sio); 2842 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags, 2843 &sio->sio_zb, queue); 2844 (void) list_remove_head(io_list); 2845 scan_io_queues_update_zio_stats(queue, &bp); 2846 sio_free(sio); 2847 } 2848 2849 atomic_add_64(&scn->scn_bytes_pending, -bytes_issued); 2850 2851 return (suspended); 2852 } 2853 2854 /* 2855 * This function removes sios from an IO queue which reside within a given 2856 * range_seg_t and inserts them (in offset order) into a list. Note that 2857 * we only ever return a maximum of 32 sios at once. If there are more sios 2858 * to process within this segment that did not make it onto the list we 2859 * return B_TRUE and otherwise B_FALSE. 2860 */ 2861 static boolean_t 2862 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list) 2863 { 2864 scan_io_t *srch_sio, *sio, *next_sio; 2865 avl_index_t idx; 2866 uint_t num_sios = 0; 2867 int64_t bytes_issued = 0; 2868 2869 ASSERT(rs != NULL); 2870 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2871 2872 srch_sio = sio_alloc(1); 2873 srch_sio->sio_nr_dvas = 1; 2874 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr)); 2875 2876 /* 2877 * The exact start of the extent might not contain any matching zios, 2878 * so if that's the case, examine the next one in the tree. 2879 */ 2880 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 2881 sio_free(srch_sio); 2882 2883 if (sio == NULL) 2884 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER); 2885 2886 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2887 queue->q_exts_by_addr) && num_sios <= 32) { 2888 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs, 2889 queue->q_exts_by_addr)); 2890 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs, 2891 queue->q_exts_by_addr)); 2892 2893 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio); 2894 avl_remove(&queue->q_sios_by_addr, sio); 2895 queue->q_sio_memused -= SIO_GET_MUSED(sio); 2896 2897 bytes_issued += SIO_GET_ASIZE(sio); 2898 num_sios++; 2899 list_insert_tail(list, sio); 2900 sio = next_sio; 2901 } 2902 2903 /* 2904 * We limit the number of sios we process at once to 32 to avoid 2905 * biting off more than we can chew. If we didn't take everything 2906 * in the segment we update it to reflect the work we were able to 2907 * complete. Otherwise, we remove it from the range tree entirely. 2908 */ 2909 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs, 2910 queue->q_exts_by_addr)) { 2911 range_tree_adjust_fill(queue->q_exts_by_addr, rs, 2912 -bytes_issued); 2913 range_tree_resize_segment(queue->q_exts_by_addr, rs, 2914 SIO_GET_OFFSET(sio), rs_get_end(rs, 2915 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio)); 2916 2917 return (B_TRUE); 2918 } else { 2919 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr); 2920 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr); 2921 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart); 2922 return (B_FALSE); 2923 } 2924 } 2925 2926 /* 2927 * This is called from the queue emptying thread and selects the next 2928 * extent from which we are to issue I/Os. The behavior of this function 2929 * depends on the state of the scan, the current memory consumption and 2930 * whether or not we are performing a scan shutdown. 2931 * 1) We select extents in an elevator algorithm (LBA-order) if the scan 2932 * needs to perform a checkpoint 2933 * 2) We select the largest available extent if we are up against the 2934 * memory limit. 2935 * 3) Otherwise we don't select any extents. 2936 */ 2937 static range_seg_t * 2938 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue) 2939 { 2940 dsl_scan_t *scn = queue->q_scn; 2941 range_tree_t *rt = queue->q_exts_by_addr; 2942 2943 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 2944 ASSERT(scn->scn_is_sorted); 2945 2946 /* handle tunable overrides */ 2947 if (scn->scn_checkpointing || scn->scn_clearing) { 2948 if (zfs_scan_issue_strategy == 1) { 2949 return (range_tree_first(rt)); 2950 } else if (zfs_scan_issue_strategy == 2) { 2951 /* 2952 * We need to get the original entry in the by_addr 2953 * tree so we can modify it. 2954 */ 2955 range_seg_t *size_rs = 2956 zfs_btree_first(&queue->q_exts_by_size, NULL); 2957 if (size_rs == NULL) 2958 return (NULL); 2959 uint64_t start = rs_get_start(size_rs, rt); 2960 uint64_t size = rs_get_end(size_rs, rt) - start; 2961 range_seg_t *addr_rs = range_tree_find(rt, start, 2962 size); 2963 ASSERT3P(addr_rs, !=, NULL); 2964 ASSERT3U(rs_get_start(size_rs, rt), ==, 2965 rs_get_start(addr_rs, rt)); 2966 ASSERT3U(rs_get_end(size_rs, rt), ==, 2967 rs_get_end(addr_rs, rt)); 2968 return (addr_rs); 2969 } 2970 } 2971 2972 /* 2973 * During normal clearing, we want to issue our largest segments 2974 * first, keeping IO as sequential as possible, and leaving the 2975 * smaller extents for later with the hope that they might eventually 2976 * grow to larger sequential segments. However, when the scan is 2977 * checkpointing, no new extents will be added to the sorting queue, 2978 * so the way we are sorted now is as good as it will ever get. 2979 * In this case, we instead switch to issuing extents in LBA order. 2980 */ 2981 if (scn->scn_checkpointing) { 2982 return (range_tree_first(rt)); 2983 } else if (scn->scn_clearing) { 2984 /* 2985 * We need to get the original entry in the by_addr 2986 * tree so we can modify it. 2987 */ 2988 range_seg_t *size_rs = zfs_btree_first(&queue->q_exts_by_size, 2989 NULL); 2990 if (size_rs == NULL) 2991 return (NULL); 2992 uint64_t start = rs_get_start(size_rs, rt); 2993 uint64_t size = rs_get_end(size_rs, rt) - start; 2994 range_seg_t *addr_rs = range_tree_find(rt, start, size); 2995 ASSERT3P(addr_rs, !=, NULL); 2996 ASSERT3U(rs_get_start(size_rs, rt), ==, rs_get_start(addr_rs, 2997 rt)); 2998 ASSERT3U(rs_get_end(size_rs, rt), ==, rs_get_end(addr_rs, rt)); 2999 return (addr_rs); 3000 } else { 3001 return (NULL); 3002 } 3003 } 3004 3005 static void 3006 scan_io_queues_run_one(void *arg) 3007 { 3008 dsl_scan_io_queue_t *queue = arg; 3009 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 3010 boolean_t suspended = B_FALSE; 3011 range_seg_t *rs = NULL; 3012 scan_io_t *sio = NULL; 3013 list_t sio_list; 3014 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3015 uint64_t nr_leaves = dsl_scan_count_leaves(queue->q_vd); 3016 3017 ASSERT(queue->q_scn->scn_is_sorted); 3018 3019 list_create(&sio_list, sizeof (scan_io_t), 3020 offsetof(scan_io_t, sio_nodes.sio_list_node)); 3021 mutex_enter(q_lock); 3022 3023 /* calculate maximum in-flight bytes for this txg (min 1MB) */ 3024 queue->q_maxinflight_bytes = 3025 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3026 3027 /* reset per-queue scan statistics for this txg */ 3028 queue->q_total_seg_size_this_txg = 0; 3029 queue->q_segs_this_txg = 0; 3030 queue->q_total_zio_size_this_txg = 0; 3031 queue->q_zios_this_txg = 0; 3032 3033 /* loop until we run out of time or sios */ 3034 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) { 3035 uint64_t seg_start = 0, seg_end = 0; 3036 boolean_t more_left = B_TRUE; 3037 3038 ASSERT(list_is_empty(&sio_list)); 3039 3040 /* loop while we still have sios left to process in this rs */ 3041 while (more_left) { 3042 scan_io_t *first_sio, *last_sio; 3043 3044 /* 3045 * We have selected which extent needs to be 3046 * processed next. Gather up the corresponding sios. 3047 */ 3048 more_left = scan_io_queue_gather(queue, rs, &sio_list); 3049 ASSERT(!list_is_empty(&sio_list)); 3050 first_sio = list_head(&sio_list); 3051 last_sio = list_tail(&sio_list); 3052 3053 seg_end = SIO_GET_END_OFFSET(last_sio); 3054 if (seg_start == 0) 3055 seg_start = SIO_GET_OFFSET(first_sio); 3056 3057 /* 3058 * Issuing sios can take a long time so drop the 3059 * queue lock. The sio queue won't be updated by 3060 * other threads since we're in syncing context so 3061 * we can be sure that our trees will remain exactly 3062 * as we left them. 3063 */ 3064 mutex_exit(q_lock); 3065 suspended = scan_io_queue_issue(queue, &sio_list); 3066 mutex_enter(q_lock); 3067 3068 if (suspended) 3069 break; 3070 } 3071 3072 /* update statistics for debugging purposes */ 3073 scan_io_queues_update_seg_stats(queue, seg_start, seg_end); 3074 3075 if (suspended) 3076 break; 3077 } 3078 3079 /* 3080 * If we were suspended in the middle of processing, 3081 * requeue any unfinished sios and exit. 3082 */ 3083 while ((sio = list_head(&sio_list)) != NULL) { 3084 list_remove(&sio_list, sio); 3085 scan_io_queue_insert_impl(queue, sio); 3086 } 3087 3088 mutex_exit(q_lock); 3089 list_destroy(&sio_list); 3090 } 3091 3092 /* 3093 * Performs an emptying run on all scan queues in the pool. This just 3094 * punches out one thread per top-level vdev, each of which processes 3095 * only that vdev's scan queue. We can parallelize the I/O here because 3096 * we know that each queue's I/Os only affect its own top-level vdev. 3097 * 3098 * This function waits for the queue runs to complete, and must be 3099 * called from dsl_scan_sync (or in general, syncing context). 3100 */ 3101 static void 3102 scan_io_queues_run(dsl_scan_t *scn) 3103 { 3104 spa_t *spa = scn->scn_dp->dp_spa; 3105 3106 ASSERT(scn->scn_is_sorted); 3107 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3108 3109 if (scn->scn_bytes_pending == 0) 3110 return; 3111 3112 if (scn->scn_taskq == NULL) { 3113 int nthreads = spa->spa_root_vdev->vdev_children; 3114 3115 /* 3116 * We need to make this taskq *always* execute as many 3117 * threads in parallel as we have top-level vdevs and no 3118 * less, otherwise strange serialization of the calls to 3119 * scan_io_queues_run_one can occur during spa_sync runs 3120 * and that significantly impacts performance. 3121 */ 3122 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads, 3123 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE); 3124 } 3125 3126 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3127 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3128 3129 mutex_enter(&vd->vdev_scan_io_queue_lock); 3130 if (vd->vdev_scan_io_queue != NULL) { 3131 VERIFY(taskq_dispatch(scn->scn_taskq, 3132 scan_io_queues_run_one, vd->vdev_scan_io_queue, 3133 TQ_SLEEP) != TASKQID_INVALID); 3134 } 3135 mutex_exit(&vd->vdev_scan_io_queue_lock); 3136 } 3137 3138 /* 3139 * Wait for the queues to finish issuing their IOs for this run 3140 * before we return. There may still be IOs in flight at this 3141 * point. 3142 */ 3143 taskq_wait(scn->scn_taskq); 3144 } 3145 3146 static boolean_t 3147 dsl_scan_async_block_should_pause(dsl_scan_t *scn) 3148 { 3149 uint64_t elapsed_nanosecs; 3150 3151 if (zfs_recover) 3152 return (B_FALSE); 3153 3154 if (zfs_async_block_max_blocks != 0 && 3155 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) { 3156 return (B_TRUE); 3157 } 3158 3159 if (zfs_max_async_dedup_frees != 0 && 3160 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) { 3161 return (B_TRUE); 3162 } 3163 3164 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time; 3165 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout || 3166 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms && 3167 txg_sync_waiting(scn->scn_dp)) || 3168 spa_shutting_down(scn->scn_dp->dp_spa)); 3169 } 3170 3171 static int 3172 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 3173 { 3174 dsl_scan_t *scn = arg; 3175 3176 if (!scn->scn_is_bptree || 3177 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) { 3178 if (dsl_scan_async_block_should_pause(scn)) 3179 return (SET_ERROR(ERESTART)); 3180 } 3181 3182 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa, 3183 dmu_tx_get_txg(tx), bp, 0)); 3184 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 3185 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp), 3186 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 3187 scn->scn_visited_this_txg++; 3188 if (BP_GET_DEDUP(bp)) 3189 scn->scn_dedup_frees_this_txg++; 3190 return (0); 3191 } 3192 3193 static void 3194 dsl_scan_update_stats(dsl_scan_t *scn) 3195 { 3196 spa_t *spa = scn->scn_dp->dp_spa; 3197 uint64_t i; 3198 uint64_t seg_size_total = 0, zio_size_total = 0; 3199 uint64_t seg_count_total = 0, zio_count_total = 0; 3200 3201 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 3202 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 3203 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue; 3204 3205 if (queue == NULL) 3206 continue; 3207 3208 seg_size_total += queue->q_total_seg_size_this_txg; 3209 zio_size_total += queue->q_total_zio_size_this_txg; 3210 seg_count_total += queue->q_segs_this_txg; 3211 zio_count_total += queue->q_zios_this_txg; 3212 } 3213 3214 if (seg_count_total == 0 || zio_count_total == 0) { 3215 scn->scn_avg_seg_size_this_txg = 0; 3216 scn->scn_avg_zio_size_this_txg = 0; 3217 scn->scn_segs_this_txg = 0; 3218 scn->scn_zios_this_txg = 0; 3219 return; 3220 } 3221 3222 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total; 3223 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total; 3224 scn->scn_segs_this_txg = seg_count_total; 3225 scn->scn_zios_this_txg = zio_count_total; 3226 } 3227 3228 static int 3229 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3230 dmu_tx_t *tx) 3231 { 3232 ASSERT(!bp_freed); 3233 return (dsl_scan_free_block_cb(arg, bp, tx)); 3234 } 3235 3236 static int 3237 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3238 dmu_tx_t *tx) 3239 { 3240 ASSERT(!bp_freed); 3241 dsl_scan_t *scn = arg; 3242 const dva_t *dva = &bp->blk_dva[0]; 3243 3244 if (dsl_scan_async_block_should_pause(scn)) 3245 return (SET_ERROR(ERESTART)); 3246 3247 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa, 3248 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), 3249 DVA_GET_ASIZE(dva), tx); 3250 scn->scn_visited_this_txg++; 3251 return (0); 3252 } 3253 3254 boolean_t 3255 dsl_scan_active(dsl_scan_t *scn) 3256 { 3257 spa_t *spa = scn->scn_dp->dp_spa; 3258 uint64_t used = 0, comp, uncomp; 3259 boolean_t clones_left; 3260 3261 if (spa->spa_load_state != SPA_LOAD_NONE) 3262 return (B_FALSE); 3263 if (spa_shutting_down(spa)) 3264 return (B_FALSE); 3265 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) || 3266 (scn->scn_async_destroying && !scn->scn_async_stalled)) 3267 return (B_TRUE); 3268 3269 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) { 3270 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj, 3271 &used, &comp, &uncomp); 3272 } 3273 clones_left = spa_livelist_delete_check(spa); 3274 return ((used != 0) || (clones_left)); 3275 } 3276 3277 static boolean_t 3278 dsl_scan_check_deferred(vdev_t *vd) 3279 { 3280 boolean_t need_resilver = B_FALSE; 3281 3282 for (int c = 0; c < vd->vdev_children; c++) { 3283 need_resilver |= 3284 dsl_scan_check_deferred(vd->vdev_child[c]); 3285 } 3286 3287 if (!vdev_is_concrete(vd) || vd->vdev_aux || 3288 !vd->vdev_ops->vdev_op_leaf) 3289 return (need_resilver); 3290 3291 if (!vd->vdev_resilver_deferred) 3292 need_resilver = B_TRUE; 3293 3294 return (need_resilver); 3295 } 3296 3297 static boolean_t 3298 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize, 3299 uint64_t phys_birth) 3300 { 3301 vdev_t *vd; 3302 3303 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 3304 3305 if (vd->vdev_ops == &vdev_indirect_ops) { 3306 /* 3307 * The indirect vdev can point to multiple 3308 * vdevs. For simplicity, always create 3309 * the resilver zio_t. zio_vdev_io_start() 3310 * will bypass the child resilver i/o's if 3311 * they are on vdevs that don't have DTL's. 3312 */ 3313 return (B_TRUE); 3314 } 3315 3316 if (DVA_GET_GANG(dva)) { 3317 /* 3318 * Gang members may be spread across multiple 3319 * vdevs, so the best estimate we have is the 3320 * scrub range, which has already been checked. 3321 * XXX -- it would be better to change our 3322 * allocation policy to ensure that all 3323 * gang members reside on the same vdev. 3324 */ 3325 return (B_TRUE); 3326 } 3327 3328 /* 3329 * Check if the txg falls within the range which must be 3330 * resilvered. DVAs outside this range can always be skipped. 3331 */ 3332 if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)) 3333 return (B_FALSE); 3334 3335 /* 3336 * Check if the top-level vdev must resilver this offset. 3337 * When the offset does not intersect with a dirty leaf DTL 3338 * then it may be possible to skip the resilver IO. The psize 3339 * is provided instead of asize to simplify the check for RAIDZ. 3340 */ 3341 if (!vdev_dtl_need_resilver(vd, DVA_GET_OFFSET(dva), psize)) 3342 return (B_FALSE); 3343 3344 /* 3345 * Check that this top-level vdev has a device under it which 3346 * is resilvering and is not deferred. 3347 */ 3348 if (!dsl_scan_check_deferred(vd)) 3349 return (B_FALSE); 3350 3351 return (B_TRUE); 3352 } 3353 3354 static int 3355 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx) 3356 { 3357 dsl_scan_t *scn = dp->dp_scan; 3358 spa_t *spa = dp->dp_spa; 3359 int err = 0; 3360 3361 if (spa_suspend_async_destroy(spa)) 3362 return (0); 3363 3364 if (zfs_free_bpobj_enabled && 3365 spa_version(spa) >= SPA_VERSION_DEADLISTS) { 3366 scn->scn_is_bptree = B_FALSE; 3367 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms; 3368 scn->scn_zio_root = zio_root(spa, NULL, 3369 NULL, ZIO_FLAG_MUSTSUCCEED); 3370 err = bpobj_iterate(&dp->dp_free_bpobj, 3371 bpobj_dsl_scan_free_block_cb, scn, tx); 3372 VERIFY0(zio_wait(scn->scn_zio_root)); 3373 scn->scn_zio_root = NULL; 3374 3375 if (err != 0 && err != ERESTART) 3376 zfs_panic_recover("error %u from bpobj_iterate()", err); 3377 } 3378 3379 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 3380 ASSERT(scn->scn_async_destroying); 3381 scn->scn_is_bptree = B_TRUE; 3382 scn->scn_zio_root = zio_root(spa, NULL, 3383 NULL, ZIO_FLAG_MUSTSUCCEED); 3384 err = bptree_iterate(dp->dp_meta_objset, 3385 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx); 3386 VERIFY0(zio_wait(scn->scn_zio_root)); 3387 scn->scn_zio_root = NULL; 3388 3389 if (err == EIO || err == ECKSUM) { 3390 err = 0; 3391 } else if (err != 0 && err != ERESTART) { 3392 zfs_panic_recover("error %u from " 3393 "traverse_dataset_destroyed()", err); 3394 } 3395 3396 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) { 3397 /* finished; deactivate async destroy feature */ 3398 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx); 3399 ASSERT(!spa_feature_is_active(spa, 3400 SPA_FEATURE_ASYNC_DESTROY)); 3401 VERIFY0(zap_remove(dp->dp_meta_objset, 3402 DMU_POOL_DIRECTORY_OBJECT, 3403 DMU_POOL_BPTREE_OBJ, tx)); 3404 VERIFY0(bptree_free(dp->dp_meta_objset, 3405 dp->dp_bptree_obj, tx)); 3406 dp->dp_bptree_obj = 0; 3407 scn->scn_async_destroying = B_FALSE; 3408 scn->scn_async_stalled = B_FALSE; 3409 } else { 3410 /* 3411 * If we didn't make progress, mark the async 3412 * destroy as stalled, so that we will not initiate 3413 * a spa_sync() on its behalf. Note that we only 3414 * check this if we are not finished, because if the 3415 * bptree had no blocks for us to visit, we can 3416 * finish without "making progress". 3417 */ 3418 scn->scn_async_stalled = 3419 (scn->scn_visited_this_txg == 0); 3420 } 3421 } 3422 if (scn->scn_visited_this_txg) { 3423 zfs_dbgmsg("freed %llu blocks in %llums from " 3424 "free_bpobj/bptree txg %llu; err=%u", 3425 (longlong_t)scn->scn_visited_this_txg, 3426 (longlong_t) 3427 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time), 3428 (longlong_t)tx->tx_txg, err); 3429 scn->scn_visited_this_txg = 0; 3430 scn->scn_dedup_frees_this_txg = 0; 3431 3432 /* 3433 * Write out changes to the DDT that may be required as a 3434 * result of the blocks freed. This ensures that the DDT 3435 * is clean when a scrub/resilver runs. 3436 */ 3437 ddt_sync(spa, tx->tx_txg); 3438 } 3439 if (err != 0) 3440 return (err); 3441 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3442 zfs_free_leak_on_eio && 3443 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 || 3444 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 || 3445 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) { 3446 /* 3447 * We have finished background destroying, but there is still 3448 * some space left in the dp_free_dir. Transfer this leaked 3449 * space to the dp_leak_dir. 3450 */ 3451 if (dp->dp_leak_dir == NULL) { 3452 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 3453 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, 3454 LEAK_DIR_NAME, tx); 3455 VERIFY0(dsl_pool_open_special_dir(dp, 3456 LEAK_DIR_NAME, &dp->dp_leak_dir)); 3457 rrw_exit(&dp->dp_config_rwlock, FTAG); 3458 } 3459 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD, 3460 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3461 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3462 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3463 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD, 3464 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes, 3465 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes, 3466 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx); 3467 } 3468 3469 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying && 3470 !spa_livelist_delete_check(spa)) { 3471 /* finished; verify that space accounting went to zero */ 3472 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes); 3473 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes); 3474 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes); 3475 } 3476 3477 spa_notify_waiters(spa); 3478 3479 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj), 3480 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3481 DMU_POOL_OBSOLETE_BPOBJ)); 3482 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) { 3483 ASSERT(spa_feature_is_active(dp->dp_spa, 3484 SPA_FEATURE_OBSOLETE_COUNTS)); 3485 3486 scn->scn_is_bptree = B_FALSE; 3487 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms; 3488 err = bpobj_iterate(&dp->dp_obsolete_bpobj, 3489 dsl_scan_obsolete_block_cb, scn, tx); 3490 if (err != 0 && err != ERESTART) 3491 zfs_panic_recover("error %u from bpobj_iterate()", err); 3492 3493 if (bpobj_is_empty(&dp->dp_obsolete_bpobj)) 3494 dsl_pool_destroy_obsolete_bpobj(dp, tx); 3495 } 3496 return (0); 3497 } 3498 3499 /* 3500 * This is the primary entry point for scans that is called from syncing 3501 * context. Scans must happen entirely during syncing context so that we 3502 * can guarantee that blocks we are currently scanning will not change out 3503 * from under us. While a scan is active, this function controls how quickly 3504 * transaction groups proceed, instead of the normal handling provided by 3505 * txg_sync_thread(). 3506 */ 3507 void 3508 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx) 3509 { 3510 int err = 0; 3511 dsl_scan_t *scn = dp->dp_scan; 3512 spa_t *spa = dp->dp_spa; 3513 state_sync_type_t sync_type = SYNC_OPTIONAL; 3514 3515 if (spa->spa_resilver_deferred && 3516 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 3517 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 3518 3519 /* 3520 * Check for scn_restart_txg before checking spa_load_state, so 3521 * that we can restart an old-style scan while the pool is being 3522 * imported (see dsl_scan_init). We also restart scans if there 3523 * is a deferred resilver and the user has manually disabled 3524 * deferred resilvers via the tunable. 3525 */ 3526 if (dsl_scan_restarting(scn, tx) || 3527 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) { 3528 pool_scan_func_t func = POOL_SCAN_SCRUB; 3529 dsl_scan_done(scn, B_FALSE, tx); 3530 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) 3531 func = POOL_SCAN_RESILVER; 3532 zfs_dbgmsg("restarting scan func=%u txg=%llu", 3533 func, (longlong_t)tx->tx_txg); 3534 dsl_scan_setup_sync(&func, tx); 3535 } 3536 3537 /* 3538 * Only process scans in sync pass 1. 3539 */ 3540 if (spa_sync_pass(spa) > 1) 3541 return; 3542 3543 /* 3544 * If the spa is shutting down, then stop scanning. This will 3545 * ensure that the scan does not dirty any new data during the 3546 * shutdown phase. 3547 */ 3548 if (spa_shutting_down(spa)) 3549 return; 3550 3551 /* 3552 * If the scan is inactive due to a stalled async destroy, try again. 3553 */ 3554 if (!scn->scn_async_stalled && !dsl_scan_active(scn)) 3555 return; 3556 3557 /* reset scan statistics */ 3558 scn->scn_visited_this_txg = 0; 3559 scn->scn_dedup_frees_this_txg = 0; 3560 scn->scn_holes_this_txg = 0; 3561 scn->scn_lt_min_this_txg = 0; 3562 scn->scn_gt_max_this_txg = 0; 3563 scn->scn_ddt_contained_this_txg = 0; 3564 scn->scn_objsets_visited_this_txg = 0; 3565 scn->scn_avg_seg_size_this_txg = 0; 3566 scn->scn_segs_this_txg = 0; 3567 scn->scn_avg_zio_size_this_txg = 0; 3568 scn->scn_zios_this_txg = 0; 3569 scn->scn_suspending = B_FALSE; 3570 scn->scn_sync_start_time = gethrtime(); 3571 spa->spa_scrub_active = B_TRUE; 3572 3573 /* 3574 * First process the async destroys. If we suspend, don't do 3575 * any scrubbing or resilvering. This ensures that there are no 3576 * async destroys while we are scanning, so the scan code doesn't 3577 * have to worry about traversing it. It is also faster to free the 3578 * blocks than to scrub them. 3579 */ 3580 err = dsl_process_async_destroys(dp, tx); 3581 if (err != 0) 3582 return; 3583 3584 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn)) 3585 return; 3586 3587 /* 3588 * Wait a few txgs after importing to begin scanning so that 3589 * we can get the pool imported quickly. 3590 */ 3591 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS) 3592 return; 3593 3594 /* 3595 * zfs_scan_suspend_progress can be set to disable scan progress. 3596 * We don't want to spin the txg_sync thread, so we add a delay 3597 * here to simulate the time spent doing a scan. This is mostly 3598 * useful for testing and debugging. 3599 */ 3600 if (zfs_scan_suspend_progress) { 3601 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3602 int mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ? 3603 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms; 3604 3605 while (zfs_scan_suspend_progress && 3606 !txg_sync_waiting(scn->scn_dp) && 3607 !spa_shutting_down(scn->scn_dp->dp_spa) && 3608 NSEC2MSEC(scan_time_ns) < mintime) { 3609 delay(hz); 3610 scan_time_ns = gethrtime() - scn->scn_sync_start_time; 3611 } 3612 return; 3613 } 3614 3615 /* 3616 * It is possible to switch from unsorted to sorted at any time, 3617 * but afterwards the scan will remain sorted unless reloaded from 3618 * a checkpoint after a reboot. 3619 */ 3620 if (!zfs_scan_legacy) { 3621 scn->scn_is_sorted = B_TRUE; 3622 if (scn->scn_last_checkpoint == 0) 3623 scn->scn_last_checkpoint = ddi_get_lbolt(); 3624 } 3625 3626 /* 3627 * For sorted scans, determine what kind of work we will be doing 3628 * this txg based on our memory limitations and whether or not we 3629 * need to perform a checkpoint. 3630 */ 3631 if (scn->scn_is_sorted) { 3632 /* 3633 * If we are over our checkpoint interval, set scn_clearing 3634 * so that we can begin checkpointing immediately. The 3635 * checkpoint allows us to save a consistent bookmark 3636 * representing how much data we have scrubbed so far. 3637 * Otherwise, use the memory limit to determine if we should 3638 * scan for metadata or start issue scrub IOs. We accumulate 3639 * metadata until we hit our hard memory limit at which point 3640 * we issue scrub IOs until we are at our soft memory limit. 3641 */ 3642 if (scn->scn_checkpointing || 3643 ddi_get_lbolt() - scn->scn_last_checkpoint > 3644 SEC_TO_TICK(zfs_scan_checkpoint_intval)) { 3645 if (!scn->scn_checkpointing) 3646 zfs_dbgmsg("begin scan checkpoint"); 3647 3648 scn->scn_checkpointing = B_TRUE; 3649 scn->scn_clearing = B_TRUE; 3650 } else { 3651 boolean_t should_clear = dsl_scan_should_clear(scn); 3652 if (should_clear && !scn->scn_clearing) { 3653 zfs_dbgmsg("begin scan clearing"); 3654 scn->scn_clearing = B_TRUE; 3655 } else if (!should_clear && scn->scn_clearing) { 3656 zfs_dbgmsg("finish scan clearing"); 3657 scn->scn_clearing = B_FALSE; 3658 } 3659 } 3660 } else { 3661 ASSERT0(scn->scn_checkpointing); 3662 ASSERT0(scn->scn_clearing); 3663 } 3664 3665 if (!scn->scn_clearing && scn->scn_done_txg == 0) { 3666 /* Need to scan metadata for more blocks to scrub */ 3667 dsl_scan_phys_t *scnp = &scn->scn_phys; 3668 taskqid_t prefetch_tqid; 3669 uint64_t bytes_per_leaf = zfs_scan_vdev_limit; 3670 uint64_t nr_leaves = dsl_scan_count_leaves(spa->spa_root_vdev); 3671 3672 /* 3673 * Recalculate the max number of in-flight bytes for pool-wide 3674 * scanning operations (minimum 1MB). Limits for the issuing 3675 * phase are done per top-level vdev and are handled separately. 3676 */ 3677 scn->scn_maxinflight_bytes = 3678 MAX(nr_leaves * bytes_per_leaf, 1ULL << 20); 3679 3680 if (scnp->scn_ddt_bookmark.ddb_class <= 3681 scnp->scn_ddt_class_max) { 3682 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark)); 3683 zfs_dbgmsg("doing scan sync txg %llu; " 3684 "ddt bm=%llu/%llu/%llu/%llx", 3685 (longlong_t)tx->tx_txg, 3686 (longlong_t)scnp->scn_ddt_bookmark.ddb_class, 3687 (longlong_t)scnp->scn_ddt_bookmark.ddb_type, 3688 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum, 3689 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor); 3690 } else { 3691 zfs_dbgmsg("doing scan sync txg %llu; " 3692 "bm=%llu/%llu/%llu/%llu", 3693 (longlong_t)tx->tx_txg, 3694 (longlong_t)scnp->scn_bookmark.zb_objset, 3695 (longlong_t)scnp->scn_bookmark.zb_object, 3696 (longlong_t)scnp->scn_bookmark.zb_level, 3697 (longlong_t)scnp->scn_bookmark.zb_blkid); 3698 } 3699 3700 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3701 NULL, ZIO_FLAG_CANFAIL); 3702 3703 scn->scn_prefetch_stop = B_FALSE; 3704 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq, 3705 dsl_scan_prefetch_thread, scn, TQ_SLEEP); 3706 ASSERT(prefetch_tqid != TASKQID_INVALID); 3707 3708 dsl_pool_config_enter(dp, FTAG); 3709 dsl_scan_visit(scn, tx); 3710 dsl_pool_config_exit(dp, FTAG); 3711 3712 mutex_enter(&dp->dp_spa->spa_scrub_lock); 3713 scn->scn_prefetch_stop = B_TRUE; 3714 cv_broadcast(&spa->spa_scrub_io_cv); 3715 mutex_exit(&dp->dp_spa->spa_scrub_lock); 3716 3717 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid); 3718 (void) zio_wait(scn->scn_zio_root); 3719 scn->scn_zio_root = NULL; 3720 3721 zfs_dbgmsg("scan visited %llu blocks in %llums " 3722 "(%llu os's, %llu holes, %llu < mintxg, " 3723 "%llu in ddt, %llu > maxtxg)", 3724 (longlong_t)scn->scn_visited_this_txg, 3725 (longlong_t)NSEC2MSEC(gethrtime() - 3726 scn->scn_sync_start_time), 3727 (longlong_t)scn->scn_objsets_visited_this_txg, 3728 (longlong_t)scn->scn_holes_this_txg, 3729 (longlong_t)scn->scn_lt_min_this_txg, 3730 (longlong_t)scn->scn_ddt_contained_this_txg, 3731 (longlong_t)scn->scn_gt_max_this_txg); 3732 3733 if (!scn->scn_suspending) { 3734 ASSERT0(avl_numnodes(&scn->scn_queue)); 3735 scn->scn_done_txg = tx->tx_txg + 1; 3736 if (scn->scn_is_sorted) { 3737 scn->scn_checkpointing = B_TRUE; 3738 scn->scn_clearing = B_TRUE; 3739 } 3740 zfs_dbgmsg("scan complete txg %llu", 3741 (longlong_t)tx->tx_txg); 3742 } 3743 } else if (scn->scn_is_sorted && scn->scn_bytes_pending != 0) { 3744 ASSERT(scn->scn_clearing); 3745 3746 /* need to issue scrubbing IOs from per-vdev queues */ 3747 scn->scn_zio_root = zio_root(dp->dp_spa, NULL, 3748 NULL, ZIO_FLAG_CANFAIL); 3749 scan_io_queues_run(scn); 3750 (void) zio_wait(scn->scn_zio_root); 3751 scn->scn_zio_root = NULL; 3752 3753 /* calculate and dprintf the current memory usage */ 3754 (void) dsl_scan_should_clear(scn); 3755 dsl_scan_update_stats(scn); 3756 3757 zfs_dbgmsg("scan issued %llu blocks (%llu segs) in %llums " 3758 "(avg_block_size = %llu, avg_seg_size = %llu)", 3759 (longlong_t)scn->scn_zios_this_txg, 3760 (longlong_t)scn->scn_segs_this_txg, 3761 (longlong_t)NSEC2MSEC(gethrtime() - 3762 scn->scn_sync_start_time), 3763 (longlong_t)scn->scn_avg_zio_size_this_txg, 3764 (longlong_t)scn->scn_avg_seg_size_this_txg); 3765 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) { 3766 /* Finished with everything. Mark the scrub as complete */ 3767 zfs_dbgmsg("scan issuing complete txg %llu", 3768 (longlong_t)tx->tx_txg); 3769 ASSERT3U(scn->scn_done_txg, !=, 0); 3770 ASSERT0(spa->spa_scrub_inflight); 3771 ASSERT0(scn->scn_bytes_pending); 3772 dsl_scan_done(scn, B_TRUE, tx); 3773 sync_type = SYNC_MANDATORY; 3774 } 3775 3776 dsl_scan_sync_state(scn, tx, sync_type); 3777 } 3778 3779 static void 3780 count_block(dsl_scan_t *scn, zfs_all_blkstats_t *zab, const blkptr_t *bp) 3781 { 3782 int i; 3783 3784 /* 3785 * Don't count embedded bp's, since we already did the work of 3786 * scanning these when we scanned the containing block. 3787 */ 3788 if (BP_IS_EMBEDDED(bp)) 3789 return; 3790 3791 /* 3792 * Update the spa's stats on how many bytes we have issued. 3793 * Sequential scrubs create a zio for each DVA of the bp. Each 3794 * of these will include all DVAs for repair purposes, but the 3795 * zio code will only try the first one unless there is an issue. 3796 * Therefore, we should only count the first DVA for these IOs. 3797 */ 3798 if (scn->scn_is_sorted) { 3799 atomic_add_64(&scn->scn_dp->dp_spa->spa_scan_pass_issued, 3800 DVA_GET_ASIZE(&bp->blk_dva[0])); 3801 } else { 3802 spa_t *spa = scn->scn_dp->dp_spa; 3803 3804 for (i = 0; i < BP_GET_NDVAS(bp); i++) { 3805 atomic_add_64(&spa->spa_scan_pass_issued, 3806 DVA_GET_ASIZE(&bp->blk_dva[i])); 3807 } 3808 } 3809 3810 /* 3811 * If we resume after a reboot, zab will be NULL; don't record 3812 * incomplete stats in that case. 3813 */ 3814 if (zab == NULL) 3815 return; 3816 3817 mutex_enter(&zab->zab_lock); 3818 3819 for (i = 0; i < 4; i++) { 3820 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS; 3821 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL; 3822 3823 if (t & DMU_OT_NEWTYPE) 3824 t = DMU_OT_OTHER; 3825 zfs_blkstat_t *zb = &zab->zab_type[l][t]; 3826 int equal; 3827 3828 zb->zb_count++; 3829 zb->zb_asize += BP_GET_ASIZE(bp); 3830 zb->zb_lsize += BP_GET_LSIZE(bp); 3831 zb->zb_psize += BP_GET_PSIZE(bp); 3832 zb->zb_gangs += BP_COUNT_GANG(bp); 3833 3834 switch (BP_GET_NDVAS(bp)) { 3835 case 2: 3836 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 3837 DVA_GET_VDEV(&bp->blk_dva[1])) 3838 zb->zb_ditto_2_of_2_samevdev++; 3839 break; 3840 case 3: 3841 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 3842 DVA_GET_VDEV(&bp->blk_dva[1])) + 3843 (DVA_GET_VDEV(&bp->blk_dva[0]) == 3844 DVA_GET_VDEV(&bp->blk_dva[2])) + 3845 (DVA_GET_VDEV(&bp->blk_dva[1]) == 3846 DVA_GET_VDEV(&bp->blk_dva[2])); 3847 if (equal == 1) 3848 zb->zb_ditto_2_of_3_samevdev++; 3849 else if (equal == 3) 3850 zb->zb_ditto_3_of_3_samevdev++; 3851 break; 3852 } 3853 } 3854 3855 mutex_exit(&zab->zab_lock); 3856 } 3857 3858 static void 3859 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio) 3860 { 3861 avl_index_t idx; 3862 int64_t asize = SIO_GET_ASIZE(sio); 3863 dsl_scan_t *scn = queue->q_scn; 3864 3865 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3866 3867 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) { 3868 /* block is already scheduled for reading */ 3869 atomic_add_64(&scn->scn_bytes_pending, -asize); 3870 sio_free(sio); 3871 return; 3872 } 3873 avl_insert(&queue->q_sios_by_addr, sio, idx); 3874 queue->q_sio_memused += SIO_GET_MUSED(sio); 3875 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio), asize); 3876 } 3877 3878 /* 3879 * Given all the info we got from our metadata scanning process, we 3880 * construct a scan_io_t and insert it into the scan sorting queue. The 3881 * I/O must already be suitable for us to process. This is controlled 3882 * by dsl_scan_enqueue(). 3883 */ 3884 static void 3885 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i, 3886 int zio_flags, const zbookmark_phys_t *zb) 3887 { 3888 dsl_scan_t *scn = queue->q_scn; 3889 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp)); 3890 3891 ASSERT0(BP_IS_GANG(bp)); 3892 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 3893 3894 bp2sio(bp, sio, dva_i); 3895 sio->sio_flags = zio_flags; 3896 sio->sio_zb = *zb; 3897 3898 /* 3899 * Increment the bytes pending counter now so that we can't 3900 * get an integer underflow in case the worker processes the 3901 * zio before we get to incrementing this counter. 3902 */ 3903 atomic_add_64(&scn->scn_bytes_pending, SIO_GET_ASIZE(sio)); 3904 3905 scan_io_queue_insert_impl(queue, sio); 3906 } 3907 3908 /* 3909 * Given a set of I/O parameters as discovered by the metadata traversal 3910 * process, attempts to place the I/O into the sorted queues (if allowed), 3911 * or immediately executes the I/O. 3912 */ 3913 static void 3914 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 3915 const zbookmark_phys_t *zb) 3916 { 3917 spa_t *spa = dp->dp_spa; 3918 3919 ASSERT(!BP_IS_EMBEDDED(bp)); 3920 3921 /* 3922 * Gang blocks are hard to issue sequentially, so we just issue them 3923 * here immediately instead of queuing them. 3924 */ 3925 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) { 3926 scan_exec_io(dp, bp, zio_flags, zb, NULL); 3927 return; 3928 } 3929 3930 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 3931 dva_t dva; 3932 vdev_t *vdev; 3933 3934 dva = bp->blk_dva[i]; 3935 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva)); 3936 ASSERT(vdev != NULL); 3937 3938 mutex_enter(&vdev->vdev_scan_io_queue_lock); 3939 if (vdev->vdev_scan_io_queue == NULL) 3940 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev); 3941 ASSERT(dp->dp_scan != NULL); 3942 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp, 3943 i, zio_flags, zb); 3944 mutex_exit(&vdev->vdev_scan_io_queue_lock); 3945 } 3946 } 3947 3948 static int 3949 dsl_scan_scrub_cb(dsl_pool_t *dp, 3950 const blkptr_t *bp, const zbookmark_phys_t *zb) 3951 { 3952 dsl_scan_t *scn = dp->dp_scan; 3953 spa_t *spa = dp->dp_spa; 3954 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp); 3955 size_t psize = BP_GET_PSIZE(bp); 3956 boolean_t needs_io = B_FALSE; 3957 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL; 3958 3959 3960 if (phys_birth <= scn->scn_phys.scn_min_txg || 3961 phys_birth >= scn->scn_phys.scn_max_txg) { 3962 count_block(scn, dp->dp_blkstats, bp); 3963 return (0); 3964 } 3965 3966 /* Embedded BP's have phys_birth==0, so we reject them above. */ 3967 ASSERT(!BP_IS_EMBEDDED(bp)); 3968 3969 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn)); 3970 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) { 3971 zio_flags |= ZIO_FLAG_SCRUB; 3972 needs_io = B_TRUE; 3973 } else { 3974 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER); 3975 zio_flags |= ZIO_FLAG_RESILVER; 3976 needs_io = B_FALSE; 3977 } 3978 3979 /* If it's an intent log block, failure is expected. */ 3980 if (zb->zb_level == ZB_ZIL_LEVEL) 3981 zio_flags |= ZIO_FLAG_SPECULATIVE; 3982 3983 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { 3984 const dva_t *dva = &bp->blk_dva[d]; 3985 3986 /* 3987 * Keep track of how much data we've examined so that 3988 * zpool(1M) status can make useful progress reports. 3989 */ 3990 scn->scn_phys.scn_examined += DVA_GET_ASIZE(dva); 3991 spa->spa_scan_pass_exam += DVA_GET_ASIZE(dva); 3992 3993 /* if it's a resilver, this may not be in the target range */ 3994 if (!needs_io) 3995 needs_io = dsl_scan_need_resilver(spa, dva, psize, 3996 phys_birth); 3997 } 3998 3999 if (needs_io && !zfs_no_scrub_io) { 4000 dsl_scan_enqueue(dp, bp, zio_flags, zb); 4001 } else { 4002 count_block(scn, dp->dp_blkstats, bp); 4003 } 4004 4005 /* do not relocate this block */ 4006 return (0); 4007 } 4008 4009 static void 4010 dsl_scan_scrub_done(zio_t *zio) 4011 { 4012 spa_t *spa = zio->io_spa; 4013 blkptr_t *bp = zio->io_bp; 4014 dsl_scan_io_queue_t *queue = zio->io_private; 4015 4016 abd_free(zio->io_abd); 4017 4018 if (queue == NULL) { 4019 mutex_enter(&spa->spa_scrub_lock); 4020 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp)); 4021 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp); 4022 cv_broadcast(&spa->spa_scrub_io_cv); 4023 mutex_exit(&spa->spa_scrub_lock); 4024 } else { 4025 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock); 4026 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp)); 4027 queue->q_inflight_bytes -= BP_GET_PSIZE(bp); 4028 cv_broadcast(&queue->q_zio_cv); 4029 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock); 4030 } 4031 4032 if (zio->io_error && (zio->io_error != ECKSUM || 4033 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) { 4034 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors); 4035 } 4036 } 4037 4038 /* 4039 * Given a scanning zio's information, executes the zio. The zio need 4040 * not necessarily be only sortable, this function simply executes the 4041 * zio, no matter what it is. The optional queue argument allows the 4042 * caller to specify that they want per top level vdev IO rate limiting 4043 * instead of the legacy global limiting. 4044 */ 4045 static void 4046 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags, 4047 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue) 4048 { 4049 spa_t *spa = dp->dp_spa; 4050 dsl_scan_t *scn = dp->dp_scan; 4051 size_t size = BP_GET_PSIZE(bp); 4052 abd_t *data = abd_alloc_for_io(size, B_FALSE); 4053 4054 ASSERT3U(scn->scn_maxinflight_bytes, >, 0); 4055 4056 if (queue == NULL) { 4057 mutex_enter(&spa->spa_scrub_lock); 4058 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes) 4059 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 4060 spa->spa_scrub_inflight += BP_GET_PSIZE(bp); 4061 mutex_exit(&spa->spa_scrub_lock); 4062 } else { 4063 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock; 4064 4065 mutex_enter(q_lock); 4066 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes) 4067 cv_wait(&queue->q_zio_cv, q_lock); 4068 queue->q_inflight_bytes += BP_GET_PSIZE(bp); 4069 mutex_exit(q_lock); 4070 } 4071 4072 count_block(scn, dp->dp_blkstats, bp); 4073 zio_nowait(zio_read(scn->scn_zio_root, spa, bp, data, size, 4074 dsl_scan_scrub_done, queue, ZIO_PRIORITY_SCRUB, zio_flags, zb)); 4075 } 4076 4077 /* 4078 * This is the primary extent sorting algorithm. We balance two parameters: 4079 * 1) how many bytes of I/O are in an extent 4080 * 2) how well the extent is filled with I/O (as a fraction of its total size) 4081 * Since we allow extents to have gaps between their constituent I/Os, it's 4082 * possible to have a fairly large extent that contains the same amount of 4083 * I/O bytes than a much smaller extent, which just packs the I/O more tightly. 4084 * The algorithm sorts based on a score calculated from the extent's size, 4085 * the relative fill volume (in %) and a "fill weight" parameter that controls 4086 * the split between whether we prefer larger extents or more well populated 4087 * extents: 4088 * 4089 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT) 4090 * 4091 * Example: 4092 * 1) assume extsz = 64 MiB 4093 * 2) assume fill = 32 MiB (extent is half full) 4094 * 3) assume fill_weight = 3 4095 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100 4096 * SCORE = 32M + (50 * 3 * 32M) / 100 4097 * SCORE = 32M + (4800M / 100) 4098 * SCORE = 32M + 48M 4099 * ^ ^ 4100 * | +--- final total relative fill-based score 4101 * +--------- final total fill-based score 4102 * SCORE = 80M 4103 * 4104 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards 4105 * extents that are more completely filled (in a 3:2 ratio) vs just larger. 4106 * Note that as an optimization, we replace multiplication and division by 4107 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128). 4108 */ 4109 static int 4110 ext_size_compare(const void *x, const void *y) 4111 { 4112 const range_seg_gap_t *rsa = x, *rsb = y; 4113 4114 uint64_t sa = rsa->rs_end - rsa->rs_start; 4115 uint64_t sb = rsb->rs_end - rsb->rs_start; 4116 uint64_t score_a, score_b; 4117 4118 score_a = rsa->rs_fill + ((((rsa->rs_fill << 7) / sa) * 4119 fill_weight * rsa->rs_fill) >> 7); 4120 score_b = rsb->rs_fill + ((((rsb->rs_fill << 7) / sb) * 4121 fill_weight * rsb->rs_fill) >> 7); 4122 4123 if (score_a > score_b) 4124 return (-1); 4125 if (score_a == score_b) { 4126 if (rsa->rs_start < rsb->rs_start) 4127 return (-1); 4128 if (rsa->rs_start == rsb->rs_start) 4129 return (0); 4130 return (1); 4131 } 4132 return (1); 4133 } 4134 4135 /* 4136 * Comparator for the q_sios_by_addr tree. Sorting is simply performed 4137 * based on LBA-order (from lowest to highest). 4138 */ 4139 static int 4140 sio_addr_compare(const void *x, const void *y) 4141 { 4142 const scan_io_t *a = x, *b = y; 4143 4144 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b))); 4145 } 4146 4147 /* IO queues are created on demand when they are needed. */ 4148 static dsl_scan_io_queue_t * 4149 scan_io_queue_create(vdev_t *vd) 4150 { 4151 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 4152 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP); 4153 4154 q->q_scn = scn; 4155 q->q_vd = vd; 4156 q->q_sio_memused = 0; 4157 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL); 4158 q->q_exts_by_addr = range_tree_create_impl(&rt_btree_ops, RANGE_SEG_GAP, 4159 &q->q_exts_by_size, 0, 0, ext_size_compare, zfs_scan_max_ext_gap); 4160 avl_create(&q->q_sios_by_addr, sio_addr_compare, 4161 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node)); 4162 4163 return (q); 4164 } 4165 4166 /* 4167 * Destroys a scan queue and all segments and scan_io_t's contained in it. 4168 * No further execution of I/O occurs, anything pending in the queue is 4169 * simply freed without being executed. 4170 */ 4171 void 4172 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue) 4173 { 4174 dsl_scan_t *scn = queue->q_scn; 4175 scan_io_t *sio; 4176 void *cookie = NULL; 4177 int64_t bytes_dequeued = 0; 4178 4179 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock)); 4180 4181 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) != 4182 NULL) { 4183 ASSERT(range_tree_contains(queue->q_exts_by_addr, 4184 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio))); 4185 bytes_dequeued += SIO_GET_ASIZE(sio); 4186 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4187 sio_free(sio); 4188 } 4189 4190 ASSERT0(queue->q_sio_memused); 4191 atomic_add_64(&scn->scn_bytes_pending, -bytes_dequeued); 4192 range_tree_vacate(queue->q_exts_by_addr, NULL, queue); 4193 range_tree_destroy(queue->q_exts_by_addr); 4194 avl_destroy(&queue->q_sios_by_addr); 4195 cv_destroy(&queue->q_zio_cv); 4196 4197 kmem_free(queue, sizeof (*queue)); 4198 } 4199 4200 /* 4201 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is 4202 * called on behalf of vdev_top_transfer when creating or destroying 4203 * a mirror vdev due to zpool attach/detach. 4204 */ 4205 void 4206 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd) 4207 { 4208 mutex_enter(&svd->vdev_scan_io_queue_lock); 4209 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4210 4211 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL); 4212 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue; 4213 svd->vdev_scan_io_queue = NULL; 4214 if (tvd->vdev_scan_io_queue != NULL) 4215 tvd->vdev_scan_io_queue->q_vd = tvd; 4216 4217 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4218 mutex_exit(&svd->vdev_scan_io_queue_lock); 4219 } 4220 4221 static void 4222 scan_io_queues_destroy(dsl_scan_t *scn) 4223 { 4224 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev; 4225 4226 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 4227 vdev_t *tvd = rvd->vdev_child[i]; 4228 4229 mutex_enter(&tvd->vdev_scan_io_queue_lock); 4230 if (tvd->vdev_scan_io_queue != NULL) 4231 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue); 4232 tvd->vdev_scan_io_queue = NULL; 4233 mutex_exit(&tvd->vdev_scan_io_queue_lock); 4234 } 4235 } 4236 4237 static void 4238 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i) 4239 { 4240 dsl_pool_t *dp = spa->spa_dsl_pool; 4241 dsl_scan_t *scn = dp->dp_scan; 4242 vdev_t *vdev; 4243 kmutex_t *q_lock; 4244 dsl_scan_io_queue_t *queue; 4245 scan_io_t *srch_sio, *sio; 4246 avl_index_t idx; 4247 uint64_t start, size; 4248 4249 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i])); 4250 ASSERT(vdev != NULL); 4251 q_lock = &vdev->vdev_scan_io_queue_lock; 4252 queue = vdev->vdev_scan_io_queue; 4253 4254 mutex_enter(q_lock); 4255 if (queue == NULL) { 4256 mutex_exit(q_lock); 4257 return; 4258 } 4259 4260 srch_sio = sio_alloc(BP_GET_NDVAS(bp)); 4261 bp2sio(bp, srch_sio, dva_i); 4262 start = SIO_GET_OFFSET(srch_sio); 4263 size = SIO_GET_ASIZE(srch_sio); 4264 4265 /* 4266 * We can find the zio in two states: 4267 * 1) Cold, just sitting in the queue of zio's to be issued at 4268 * some point in the future. In this case, all we do is 4269 * remove the zio from the q_sios_by_addr tree, decrement 4270 * its data volume from the containing range_seg_t and 4271 * resort the q_exts_by_size tree to reflect that the 4272 * range_seg_t has lost some of its 'fill'. We don't shorten 4273 * the range_seg_t - this is usually rare enough not to be 4274 * worth the extra hassle of trying keep track of precise 4275 * extent boundaries. 4276 * 2) Hot, where the zio is currently in-flight in 4277 * dsl_scan_issue_ios. In this case, we can't simply 4278 * reach in and stop the in-flight zio's, so we instead 4279 * block the caller. Eventually, dsl_scan_issue_ios will 4280 * be done with issuing the zio's it gathered and will 4281 * signal us. 4282 */ 4283 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx); 4284 sio_free(srch_sio); 4285 4286 if (sio != NULL) { 4287 int64_t asize = SIO_GET_ASIZE(sio); 4288 blkptr_t tmpbp; 4289 4290 /* Got it while it was cold in the queue */ 4291 ASSERT3U(start, ==, SIO_GET_OFFSET(sio)); 4292 ASSERT3U(size, ==, asize); 4293 avl_remove(&queue->q_sios_by_addr, sio); 4294 queue->q_sio_memused -= SIO_GET_MUSED(sio); 4295 4296 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size)); 4297 range_tree_remove_fill(queue->q_exts_by_addr, start, size); 4298 4299 /* 4300 * We only update scn_bytes_pending in the cold path, 4301 * otherwise it will already have been accounted for as 4302 * part of the zio's execution. 4303 */ 4304 atomic_add_64(&scn->scn_bytes_pending, -asize); 4305 4306 /* count the block as though we issued it */ 4307 sio2bp(sio, &tmpbp); 4308 count_block(scn, dp->dp_blkstats, &tmpbp); 4309 4310 sio_free(sio); 4311 } 4312 mutex_exit(q_lock); 4313 } 4314 4315 /* 4316 * Callback invoked when a zio_free() zio is executing. This needs to be 4317 * intercepted to prevent the zio from deallocating a particular portion 4318 * of disk space and it then getting reallocated and written to, while we 4319 * still have it queued up for processing. 4320 */ 4321 void 4322 dsl_scan_freed(spa_t *spa, const blkptr_t *bp) 4323 { 4324 dsl_pool_t *dp = spa->spa_dsl_pool; 4325 dsl_scan_t *scn = dp->dp_scan; 4326 4327 ASSERT(!BP_IS_EMBEDDED(bp)); 4328 ASSERT(scn != NULL); 4329 if (!dsl_scan_is_running(scn)) 4330 return; 4331 4332 for (int i = 0; i < BP_GET_NDVAS(bp); i++) 4333 dsl_scan_freed_dva(spa, bp, i); 4334 } 4335 4336 /* 4337 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has 4338 * not started, start it. Otherwise, only restart if max txg in DTL range is 4339 * greater than the max txg in the current scan. If the DTL max is less than 4340 * the scan max, then the vdev has not missed any new data since the resilver 4341 * started, so a restart is not needed. 4342 */ 4343 void 4344 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd) 4345 { 4346 uint64_t min, max; 4347 4348 if (!vdev_resilver_needed(vd, &min, &max)) 4349 return; 4350 4351 if (!dsl_scan_resilvering(dp)) { 4352 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4353 return; 4354 } 4355 4356 if (max <= dp->dp_scan->scn_phys.scn_max_txg) 4357 return; 4358 4359 /* restart is needed, check if it can be deferred */ 4360 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)) 4361 vdev_defer_resilver(vd); 4362 else 4363 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER); 4364 } 4365 4366 /* BEGIN CSTYLED */ 4367 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, ULONG, ZMOD_RW, 4368 "Max bytes in flight per leaf vdev for scrubs and resilvers"); 4369 4370 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, INT, ZMOD_RW, 4371 "Min millisecs to scrub per txg"); 4372 4373 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, INT, ZMOD_RW, 4374 "Min millisecs to obsolete per txg"); 4375 4376 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, INT, ZMOD_RW, 4377 "Min millisecs to free per txg"); 4378 4379 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, INT, ZMOD_RW, 4380 "Min millisecs to resilver per txg"); 4381 4382 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW, 4383 "Set to prevent scans from progressing"); 4384 4385 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW, 4386 "Set to disable scrub I/O"); 4387 4388 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW, 4389 "Set to disable scrub prefetching"); 4390 4391 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, ULONG, ZMOD_RW, 4392 "Max number of blocks freed in one txg"); 4393 4394 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, ULONG, ZMOD_RW, 4395 "Max number of dedup blocks freed in one txg"); 4396 4397 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW, 4398 "Enable processing of the free_bpobj"); 4399 4400 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, INT, ZMOD_RW, 4401 "Fraction of RAM for scan hard limit"); 4402 4403 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, INT, ZMOD_RW, 4404 "IO issuing strategy during scrubbing. " 4405 "0 = default, 1 = LBA, 2 = size"); 4406 4407 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW, 4408 "Scrub using legacy non-sequential method"); 4409 4410 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, INT, ZMOD_RW, 4411 "Scan progress on-disk checkpointing interval"); 4412 4413 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, ULONG, ZMOD_RW, 4414 "Max gap in bytes between sequential scrub / resilver I/Os"); 4415 4416 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, INT, ZMOD_RW, 4417 "Fraction of hard limit used as soft limit"); 4418 4419 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW, 4420 "Tunable to attempt to reduce lock contention"); 4421 4422 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, INT, ZMOD_RW, 4423 "Tunable to adjust bias towards more filled segments during scans"); 4424 4425 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW, 4426 "Process all resilvers immediately"); 4427 /* END CSTYLED */ 4428