xref: /freebsd/sys/contrib/openzfs/module/zfs/dsl_scan.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24  * Copyright 2016 Gary Mills
25  * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26  * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27  * Copyright 2019 Joyent, Inc.
28  */
29 
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/ddt.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/range_tree.h>
55 #ifdef _KERNEL
56 #include <sys/zfs_vfsops.h>
57 #endif
58 
59 /*
60  * Grand theory statement on scan queue sorting
61  *
62  * Scanning is implemented by recursively traversing all indirection levels
63  * in an object and reading all blocks referenced from said objects. This
64  * results in us approximately traversing the object from lowest logical
65  * offset to the highest. For best performance, we would want the logical
66  * blocks to be physically contiguous. However, this is frequently not the
67  * case with pools given the allocation patterns of copy-on-write filesystems.
68  * So instead, we put the I/Os into a reordering queue and issue them in a
69  * way that will most benefit physical disks (LBA-order).
70  *
71  * Queue management:
72  *
73  * Ideally, we would want to scan all metadata and queue up all block I/O
74  * prior to starting to issue it, because that allows us to do an optimal
75  * sorting job. This can however consume large amounts of memory. Therefore
76  * we continuously monitor the size of the queues and constrain them to 5%
77  * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78  * limit, we clear out a few of the largest extents at the head of the queues
79  * to make room for more scanning. Hopefully, these extents will be fairly
80  * large and contiguous, allowing us to approach sequential I/O throughput
81  * even without a fully sorted tree.
82  *
83  * Metadata scanning takes place in dsl_scan_visit(), which is called from
84  * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85  * metadata on the pool, or we need to make room in memory because our
86  * queues are too large, dsl_scan_visit() is postponed and
87  * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88  * that metadata scanning and queued I/O issuing are mutually exclusive. This
89  * allows us to provide maximum sequential I/O throughput for the majority of
90  * I/O's issued since sequential I/O performance is significantly negatively
91  * impacted if it is interleaved with random I/O.
92  *
93  * Implementation Notes
94  *
95  * One side effect of the queued scanning algorithm is that the scanning code
96  * needs to be notified whenever a block is freed. This is needed to allow
97  * the scanning code to remove these I/Os from the issuing queue. Additionally,
98  * we do not attempt to queue gang blocks to be issued sequentially since this
99  * is very hard to do and would have an extremely limited performance benefit.
100  * Instead, we simply issue gang I/Os as soon as we find them using the legacy
101  * algorithm.
102  *
103  * Backwards compatibility
104  *
105  * This new algorithm is backwards compatible with the legacy on-disk data
106  * structures (and therefore does not require a new feature flag).
107  * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108  * will stop scanning metadata (in logical order) and wait for all outstanding
109  * sorted I/O to complete. Once this is done, we write out a checkpoint
110  * bookmark, indicating that we have scanned everything logically before it.
111  * If the pool is imported on a machine without the new sorting algorithm,
112  * the scan simply resumes from the last checkpoint using the legacy algorithm.
113  */
114 
115 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
116     const zbookmark_phys_t *);
117 
118 static scan_cb_t dsl_scan_scrub_cb;
119 
120 static int scan_ds_queue_compare(const void *a, const void *b);
121 static int scan_prefetch_queue_compare(const void *a, const void *b);
122 static void scan_ds_queue_clear(dsl_scan_t *scn);
123 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
124 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
125     uint64_t *txg);
126 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
127 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
128 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
129 static uint64_t dsl_scan_count_data_disks(vdev_t *vd);
130 
131 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
132 static int zfs_scan_blkstats = 0;
133 
134 /*
135  * By default zfs will check to ensure it is not over the hard memory
136  * limit before each txg. If finer-grained control of this is needed
137  * this value can be set to 1 to enable checking before scanning each
138  * block.
139  */
140 static int zfs_scan_strict_mem_lim = B_FALSE;
141 
142 /*
143  * Maximum number of parallelly executed bytes per leaf vdev. We attempt
144  * to strike a balance here between keeping the vdev queues full of I/Os
145  * at all times and not overflowing the queues to cause long latency,
146  * which would cause long txg sync times. No matter what, we will not
147  * overload the drives with I/O, since that is protected by
148  * zfs_vdev_scrub_max_active.
149  */
150 static uint64_t zfs_scan_vdev_limit = 4 << 20;
151 
152 static uint_t zfs_scan_issue_strategy = 0;
153 
154 /* don't queue & sort zios, go direct */
155 static int zfs_scan_legacy = B_FALSE;
156 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
157 
158 /*
159  * fill_weight is non-tunable at runtime, so we copy it at module init from
160  * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
161  * break queue sorting.
162  */
163 static uint_t zfs_scan_fill_weight = 3;
164 static uint64_t fill_weight;
165 
166 /* See dsl_scan_should_clear() for details on the memory limit tunables */
167 static const uint64_t zfs_scan_mem_lim_min = 16 << 20;	/* bytes */
168 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20;	/* bytes */
169 
170 
171 /* fraction of physmem */
172 static uint_t zfs_scan_mem_lim_fact = 20;
173 
174 /* fraction of mem lim above */
175 static uint_t zfs_scan_mem_lim_soft_fact = 20;
176 
177 /* minimum milliseconds to scrub per txg */
178 static uint_t zfs_scrub_min_time_ms = 1000;
179 
180 /* minimum milliseconds to obsolete per txg */
181 static uint_t zfs_obsolete_min_time_ms = 500;
182 
183 /* minimum milliseconds to free per txg */
184 static uint_t zfs_free_min_time_ms = 1000;
185 
186 /* minimum milliseconds to resilver per txg */
187 static uint_t zfs_resilver_min_time_ms = 3000;
188 
189 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
190 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
191 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
192 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
193 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
194 /* max number of blocks to free in a single TXG */
195 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
196 /* max number of dedup blocks to free in a single TXG */
197 static uint64_t zfs_max_async_dedup_frees = 100000;
198 
199 /* set to disable resilver deferring */
200 static int zfs_resilver_disable_defer = B_FALSE;
201 
202 /*
203  * We wait a few txgs after importing a pool to begin scanning so that
204  * the import / mounting code isn't held up by scrub / resilver IO.
205  * Unfortunately, it is a bit difficult to determine exactly how long
206  * this will take since userspace will trigger fs mounts asynchronously
207  * and the kernel will create zvol minors asynchronously. As a result,
208  * the value provided here is a bit arbitrary, but represents a
209  * reasonable estimate of how many txgs it will take to finish fully
210  * importing a pool
211  */
212 #define	SCAN_IMPORT_WAIT_TXGS 		5
213 
214 #define	DSL_SCAN_IS_SCRUB_RESILVER(scn) \
215 	((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
216 	(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
217 
218 /*
219  * Enable/disable the processing of the free_bpobj object.
220  */
221 static int zfs_free_bpobj_enabled = 1;
222 
223 /* the order has to match pool_scan_type */
224 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
225 	NULL,
226 	dsl_scan_scrub_cb,	/* POOL_SCAN_SCRUB */
227 	dsl_scan_scrub_cb,	/* POOL_SCAN_RESILVER */
228 };
229 
230 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
231 typedef struct {
232 	uint64_t	sds_dsobj;
233 	uint64_t	sds_txg;
234 	avl_node_t	sds_node;
235 } scan_ds_t;
236 
237 /*
238  * This controls what conditions are placed on dsl_scan_sync_state():
239  * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
240  * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
241  * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
242  *	write out the scn_phys_cached version.
243  * See dsl_scan_sync_state for details.
244  */
245 typedef enum {
246 	SYNC_OPTIONAL,
247 	SYNC_MANDATORY,
248 	SYNC_CACHED
249 } state_sync_type_t;
250 
251 /*
252  * This struct represents the minimum information needed to reconstruct a
253  * zio for sequential scanning. This is useful because many of these will
254  * accumulate in the sequential IO queues before being issued, so saving
255  * memory matters here.
256  */
257 typedef struct scan_io {
258 	/* fields from blkptr_t */
259 	uint64_t		sio_blk_prop;
260 	uint64_t		sio_phys_birth;
261 	uint64_t		sio_birth;
262 	zio_cksum_t		sio_cksum;
263 	uint32_t		sio_nr_dvas;
264 
265 	/* fields from zio_t */
266 	uint32_t		sio_flags;
267 	zbookmark_phys_t	sio_zb;
268 
269 	/* members for queue sorting */
270 	union {
271 		avl_node_t	sio_addr_node; /* link into issuing queue */
272 		list_node_t	sio_list_node; /* link for issuing to disk */
273 	} sio_nodes;
274 
275 	/*
276 	 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
277 	 * depending on how many were in the original bp. Only the
278 	 * first DVA is really used for sorting and issuing purposes.
279 	 * The other DVAs (if provided) simply exist so that the zio
280 	 * layer can find additional copies to repair from in the
281 	 * event of an error. This array must go at the end of the
282 	 * struct to allow this for the variable number of elements.
283 	 */
284 	dva_t			sio_dva[];
285 } scan_io_t;
286 
287 #define	SIO_SET_OFFSET(sio, x)		DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
288 #define	SIO_SET_ASIZE(sio, x)		DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
289 #define	SIO_GET_OFFSET(sio)		DVA_GET_OFFSET(&(sio)->sio_dva[0])
290 #define	SIO_GET_ASIZE(sio)		DVA_GET_ASIZE(&(sio)->sio_dva[0])
291 #define	SIO_GET_END_OFFSET(sio)		\
292 	(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
293 #define	SIO_GET_MUSED(sio)		\
294 	(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
295 
296 struct dsl_scan_io_queue {
297 	dsl_scan_t	*q_scn; /* associated dsl_scan_t */
298 	vdev_t		*q_vd; /* top-level vdev that this queue represents */
299 	zio_t		*q_zio; /* scn_zio_root child for waiting on IO */
300 
301 	/* trees used for sorting I/Os and extents of I/Os */
302 	range_tree_t	*q_exts_by_addr;
303 	zfs_btree_t	q_exts_by_size;
304 	avl_tree_t	q_sios_by_addr;
305 	uint64_t	q_sio_memused;
306 	uint64_t	q_last_ext_addr;
307 
308 	/* members for zio rate limiting */
309 	uint64_t	q_maxinflight_bytes;
310 	uint64_t	q_inflight_bytes;
311 	kcondvar_t	q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
312 
313 	/* per txg statistics */
314 	uint64_t	q_total_seg_size_this_txg;
315 	uint64_t	q_segs_this_txg;
316 	uint64_t	q_total_zio_size_this_txg;
317 	uint64_t	q_zios_this_txg;
318 };
319 
320 /* private data for dsl_scan_prefetch_cb() */
321 typedef struct scan_prefetch_ctx {
322 	zfs_refcount_t spc_refcnt;	/* refcount for memory management */
323 	dsl_scan_t *spc_scn;		/* dsl_scan_t for the pool */
324 	boolean_t spc_root;		/* is this prefetch for an objset? */
325 	uint8_t spc_indblkshift;	/* dn_indblkshift of current dnode */
326 	uint16_t spc_datablkszsec;	/* dn_idatablkszsec of current dnode */
327 } scan_prefetch_ctx_t;
328 
329 /* private data for dsl_scan_prefetch() */
330 typedef struct scan_prefetch_issue_ctx {
331 	avl_node_t spic_avl_node;	/* link into scn->scn_prefetch_queue */
332 	scan_prefetch_ctx_t *spic_spc;	/* spc for the callback */
333 	blkptr_t spic_bp;		/* bp to prefetch */
334 	zbookmark_phys_t spic_zb;	/* bookmark to prefetch */
335 } scan_prefetch_issue_ctx_t;
336 
337 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
338     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
339 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
340     scan_io_t *sio);
341 
342 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
343 static void scan_io_queues_destroy(dsl_scan_t *scn);
344 
345 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
346 
347 /* sio->sio_nr_dvas must be set so we know which cache to free from */
348 static void
349 sio_free(scan_io_t *sio)
350 {
351 	ASSERT3U(sio->sio_nr_dvas, >, 0);
352 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
353 
354 	kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
355 }
356 
357 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
358 static scan_io_t *
359 sio_alloc(unsigned short nr_dvas)
360 {
361 	ASSERT3U(nr_dvas, >, 0);
362 	ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
363 
364 	return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
365 }
366 
367 void
368 scan_init(void)
369 {
370 	/*
371 	 * This is used in ext_size_compare() to weight segments
372 	 * based on how sparse they are. This cannot be changed
373 	 * mid-scan and the tree comparison functions don't currently
374 	 * have a mechanism for passing additional context to the
375 	 * compare functions. Thus we store this value globally and
376 	 * we only allow it to be set at module initialization time
377 	 */
378 	fill_weight = zfs_scan_fill_weight;
379 
380 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
381 		char name[36];
382 
383 		(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
384 		sio_cache[i] = kmem_cache_create(name,
385 		    (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
386 		    0, NULL, NULL, NULL, NULL, NULL, 0);
387 	}
388 }
389 
390 void
391 scan_fini(void)
392 {
393 	for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
394 		kmem_cache_destroy(sio_cache[i]);
395 	}
396 }
397 
398 static inline boolean_t
399 dsl_scan_is_running(const dsl_scan_t *scn)
400 {
401 	return (scn->scn_phys.scn_state == DSS_SCANNING);
402 }
403 
404 boolean_t
405 dsl_scan_resilvering(dsl_pool_t *dp)
406 {
407 	return (dsl_scan_is_running(dp->dp_scan) &&
408 	    dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
409 }
410 
411 static inline void
412 sio2bp(const scan_io_t *sio, blkptr_t *bp)
413 {
414 	memset(bp, 0, sizeof (*bp));
415 	bp->blk_prop = sio->sio_blk_prop;
416 	bp->blk_phys_birth = sio->sio_phys_birth;
417 	bp->blk_birth = sio->sio_birth;
418 	bp->blk_fill = 1;	/* we always only work with data pointers */
419 	bp->blk_cksum = sio->sio_cksum;
420 
421 	ASSERT3U(sio->sio_nr_dvas, >, 0);
422 	ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
423 
424 	memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
425 }
426 
427 static inline void
428 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
429 {
430 	sio->sio_blk_prop = bp->blk_prop;
431 	sio->sio_phys_birth = bp->blk_phys_birth;
432 	sio->sio_birth = bp->blk_birth;
433 	sio->sio_cksum = bp->blk_cksum;
434 	sio->sio_nr_dvas = BP_GET_NDVAS(bp);
435 
436 	/*
437 	 * Copy the DVAs to the sio. We need all copies of the block so
438 	 * that the self healing code can use the alternate copies if the
439 	 * first is corrupted. We want the DVA at index dva_i to be first
440 	 * in the sio since this is the primary one that we want to issue.
441 	 */
442 	for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
443 		sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
444 	}
445 }
446 
447 int
448 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
449 {
450 	int err;
451 	dsl_scan_t *scn;
452 	spa_t *spa = dp->dp_spa;
453 	uint64_t f;
454 
455 	scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
456 	scn->scn_dp = dp;
457 
458 	/*
459 	 * It's possible that we're resuming a scan after a reboot so
460 	 * make sure that the scan_async_destroying flag is initialized
461 	 * appropriately.
462 	 */
463 	ASSERT(!scn->scn_async_destroying);
464 	scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
465 	    SPA_FEATURE_ASYNC_DESTROY);
466 
467 	/*
468 	 * Calculate the max number of in-flight bytes for pool-wide
469 	 * scanning operations (minimum 1MB). Limits for the issuing
470 	 * phase are done per top-level vdev and are handled separately.
471 	 */
472 	scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
473 	    dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
474 
475 	avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
476 	    offsetof(scan_ds_t, sds_node));
477 	avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
478 	    sizeof (scan_prefetch_issue_ctx_t),
479 	    offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
480 
481 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
482 	    "scrub_func", sizeof (uint64_t), 1, &f);
483 	if (err == 0) {
484 		/*
485 		 * There was an old-style scrub in progress.  Restart a
486 		 * new-style scrub from the beginning.
487 		 */
488 		scn->scn_restart_txg = txg;
489 		zfs_dbgmsg("old-style scrub was in progress for %s; "
490 		    "restarting new-style scrub in txg %llu",
491 		    spa->spa_name,
492 		    (longlong_t)scn->scn_restart_txg);
493 
494 		/*
495 		 * Load the queue obj from the old location so that it
496 		 * can be freed by dsl_scan_done().
497 		 */
498 		(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 		    "scrub_queue", sizeof (uint64_t), 1,
500 		    &scn->scn_phys.scn_queue_obj);
501 	} else {
502 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
503 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
504 		    &scn->scn_phys);
505 		/*
506 		 * Detect if the pool contains the signature of #2094.  If it
507 		 * does properly update the scn->scn_phys structure and notify
508 		 * the administrator by setting an errata for the pool.
509 		 */
510 		if (err == EOVERFLOW) {
511 			uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
512 			VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
513 			VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
514 			    (23 * sizeof (uint64_t)));
515 
516 			err = zap_lookup(dp->dp_meta_objset,
517 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
518 			    sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
519 			if (err == 0) {
520 				uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
521 
522 				if (overflow & ~DSL_SCAN_FLAGS_MASK ||
523 				    scn->scn_async_destroying) {
524 					spa->spa_errata =
525 					    ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
526 					return (EOVERFLOW);
527 				}
528 
529 				memcpy(&scn->scn_phys, zaptmp,
530 				    SCAN_PHYS_NUMINTS * sizeof (uint64_t));
531 				scn->scn_phys.scn_flags = overflow;
532 
533 				/* Required scrub already in progress. */
534 				if (scn->scn_phys.scn_state == DSS_FINISHED ||
535 				    scn->scn_phys.scn_state == DSS_CANCELED)
536 					spa->spa_errata =
537 					    ZPOOL_ERRATA_ZOL_2094_SCRUB;
538 			}
539 		}
540 
541 		if (err == ENOENT)
542 			return (0);
543 		else if (err)
544 			return (err);
545 
546 		/*
547 		 * We might be restarting after a reboot, so jump the issued
548 		 * counter to how far we've scanned. We know we're consistent
549 		 * up to here.
550 		 */
551 		scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
552 
553 		if (dsl_scan_is_running(scn) &&
554 		    spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
555 			/*
556 			 * A new-type scrub was in progress on an old
557 			 * pool, and the pool was accessed by old
558 			 * software.  Restart from the beginning, since
559 			 * the old software may have changed the pool in
560 			 * the meantime.
561 			 */
562 			scn->scn_restart_txg = txg;
563 			zfs_dbgmsg("new-style scrub for %s was modified "
564 			    "by old software; restarting in txg %llu",
565 			    spa->spa_name,
566 			    (longlong_t)scn->scn_restart_txg);
567 		} else if (dsl_scan_resilvering(dp)) {
568 			/*
569 			 * If a resilver is in progress and there are already
570 			 * errors, restart it instead of finishing this scan and
571 			 * then restarting it. If there haven't been any errors
572 			 * then remember that the incore DTL is valid.
573 			 */
574 			if (scn->scn_phys.scn_errors > 0) {
575 				scn->scn_restart_txg = txg;
576 				zfs_dbgmsg("resilver can't excise DTL_MISSING "
577 				    "when finished; restarting on %s in txg "
578 				    "%llu",
579 				    spa->spa_name,
580 				    (u_longlong_t)scn->scn_restart_txg);
581 			} else {
582 				/* it's safe to excise DTL when finished */
583 				spa->spa_scrub_started = B_TRUE;
584 			}
585 		}
586 	}
587 
588 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
589 
590 	/* reload the queue into the in-core state */
591 	if (scn->scn_phys.scn_queue_obj != 0) {
592 		zap_cursor_t zc;
593 		zap_attribute_t za;
594 
595 		for (zap_cursor_init(&zc, dp->dp_meta_objset,
596 		    scn->scn_phys.scn_queue_obj);
597 		    zap_cursor_retrieve(&zc, &za) == 0;
598 		    (void) zap_cursor_advance(&zc)) {
599 			scan_ds_queue_insert(scn,
600 			    zfs_strtonum(za.za_name, NULL),
601 			    za.za_first_integer);
602 		}
603 		zap_cursor_fini(&zc);
604 	}
605 
606 	spa_scan_stat_init(spa);
607 	return (0);
608 }
609 
610 void
611 dsl_scan_fini(dsl_pool_t *dp)
612 {
613 	if (dp->dp_scan != NULL) {
614 		dsl_scan_t *scn = dp->dp_scan;
615 
616 		if (scn->scn_taskq != NULL)
617 			taskq_destroy(scn->scn_taskq);
618 
619 		scan_ds_queue_clear(scn);
620 		avl_destroy(&scn->scn_queue);
621 		scan_ds_prefetch_queue_clear(scn);
622 		avl_destroy(&scn->scn_prefetch_queue);
623 
624 		kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
625 		dp->dp_scan = NULL;
626 	}
627 }
628 
629 static boolean_t
630 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
631 {
632 	return (scn->scn_restart_txg != 0 &&
633 	    scn->scn_restart_txg <= tx->tx_txg);
634 }
635 
636 boolean_t
637 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
638 {
639 	return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
640 	    (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
641 }
642 
643 boolean_t
644 dsl_scan_scrubbing(const dsl_pool_t *dp)
645 {
646 	dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
647 
648 	return (scn_phys->scn_state == DSS_SCANNING &&
649 	    scn_phys->scn_func == POOL_SCAN_SCRUB);
650 }
651 
652 boolean_t
653 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
654 {
655 	return (dsl_scan_scrubbing(scn->scn_dp) &&
656 	    scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
657 }
658 
659 /*
660  * Writes out a persistent dsl_scan_phys_t record to the pool directory.
661  * Because we can be running in the block sorting algorithm, we do not always
662  * want to write out the record, only when it is "safe" to do so. This safety
663  * condition is achieved by making sure that the sorting queues are empty
664  * (scn_queues_pending == 0). When this condition is not true, the sync'd state
665  * is inconsistent with how much actual scanning progress has been made. The
666  * kind of sync to be performed is specified by the sync_type argument. If the
667  * sync is optional, we only sync if the queues are empty. If the sync is
668  * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
669  * third possible state is a "cached" sync. This is done in response to:
670  * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
671  *	destroyed, so we wouldn't be able to restart scanning from it.
672  * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
673  *	superseded by a newer snapshot.
674  * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
675  *	swapped with its clone.
676  * In all cases, a cached sync simply rewrites the last record we've written,
677  * just slightly modified. For the modifications that are performed to the
678  * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
679  * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
680  */
681 static void
682 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
683 {
684 	int i;
685 	spa_t *spa = scn->scn_dp->dp_spa;
686 
687 	ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
688 	if (scn->scn_queues_pending == 0) {
689 		for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
690 			vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
691 			dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
692 
693 			if (q == NULL)
694 				continue;
695 
696 			mutex_enter(&vd->vdev_scan_io_queue_lock);
697 			ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
698 			ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
699 			    NULL);
700 			ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
701 			mutex_exit(&vd->vdev_scan_io_queue_lock);
702 		}
703 
704 		if (scn->scn_phys.scn_queue_obj != 0)
705 			scan_ds_queue_sync(scn, tx);
706 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
707 		    DMU_POOL_DIRECTORY_OBJECT,
708 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
709 		    &scn->scn_phys, tx));
710 		memcpy(&scn->scn_phys_cached, &scn->scn_phys,
711 		    sizeof (scn->scn_phys));
712 
713 		if (scn->scn_checkpointing)
714 			zfs_dbgmsg("finish scan checkpoint for %s",
715 			    spa->spa_name);
716 
717 		scn->scn_checkpointing = B_FALSE;
718 		scn->scn_last_checkpoint = ddi_get_lbolt();
719 	} else if (sync_type == SYNC_CACHED) {
720 		VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
721 		    DMU_POOL_DIRECTORY_OBJECT,
722 		    DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
723 		    &scn->scn_phys_cached, tx));
724 	}
725 }
726 
727 int
728 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
729 {
730 	(void) arg;
731 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
732 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
733 
734 	if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
735 		return (SET_ERROR(EBUSY));
736 
737 	return (0);
738 }
739 
740 void
741 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
742 {
743 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
744 	pool_scan_func_t *funcp = arg;
745 	dmu_object_type_t ot = 0;
746 	dsl_pool_t *dp = scn->scn_dp;
747 	spa_t *spa = dp->dp_spa;
748 
749 	ASSERT(!dsl_scan_is_running(scn));
750 	ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
751 	memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
752 	scn->scn_phys.scn_func = *funcp;
753 	scn->scn_phys.scn_state = DSS_SCANNING;
754 	scn->scn_phys.scn_min_txg = 0;
755 	scn->scn_phys.scn_max_txg = tx->tx_txg;
756 	scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
757 	scn->scn_phys.scn_start_time = gethrestime_sec();
758 	scn->scn_phys.scn_errors = 0;
759 	scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
760 	scn->scn_issued_before_pass = 0;
761 	scn->scn_restart_txg = 0;
762 	scn->scn_done_txg = 0;
763 	scn->scn_last_checkpoint = 0;
764 	scn->scn_checkpointing = B_FALSE;
765 	spa_scan_stat_init(spa);
766 
767 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
768 		scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
769 
770 		/* rewrite all disk labels */
771 		vdev_config_dirty(spa->spa_root_vdev);
772 
773 		if (vdev_resilver_needed(spa->spa_root_vdev,
774 		    &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
775 			nvlist_t *aux = fnvlist_alloc();
776 			fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
777 			    "healing");
778 			spa_event_notify(spa, NULL, aux,
779 			    ESC_ZFS_RESILVER_START);
780 			nvlist_free(aux);
781 		} else {
782 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
783 		}
784 
785 		spa->spa_scrub_started = B_TRUE;
786 		/*
787 		 * If this is an incremental scrub, limit the DDT scrub phase
788 		 * to just the auto-ditto class (for correctness); the rest
789 		 * of the scrub should go faster using top-down pruning.
790 		 */
791 		if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
792 			scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
793 
794 		/*
795 		 * When starting a resilver clear any existing rebuild state.
796 		 * This is required to prevent stale rebuild status from
797 		 * being reported when a rebuild is run, then a resilver and
798 		 * finally a scrub.  In which case only the scrub status
799 		 * should be reported by 'zpool status'.
800 		 */
801 		if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
802 			vdev_t *rvd = spa->spa_root_vdev;
803 			for (uint64_t i = 0; i < rvd->vdev_children; i++) {
804 				vdev_t *vd = rvd->vdev_child[i];
805 				vdev_rebuild_clear_sync(
806 				    (void *)(uintptr_t)vd->vdev_id, tx);
807 			}
808 		}
809 	}
810 
811 	/* back to the generic stuff */
812 
813 	if (zfs_scan_blkstats) {
814 		if (dp->dp_blkstats == NULL) {
815 			dp->dp_blkstats =
816 			    vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
817 		}
818 		memset(&dp->dp_blkstats->zab_type, 0,
819 		    sizeof (dp->dp_blkstats->zab_type));
820 	} else {
821 		if (dp->dp_blkstats) {
822 			vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
823 			dp->dp_blkstats = NULL;
824 		}
825 	}
826 
827 	if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
828 		ot = DMU_OT_ZAP_OTHER;
829 
830 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
831 	    ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
832 
833 	memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
834 
835 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
836 
837 	spa_history_log_internal(spa, "scan setup", tx,
838 	    "func=%u mintxg=%llu maxtxg=%llu",
839 	    *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
840 	    (u_longlong_t)scn->scn_phys.scn_max_txg);
841 }
842 
843 /*
844  * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
845  * Can also be called to resume a paused scrub.
846  */
847 int
848 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
849 {
850 	spa_t *spa = dp->dp_spa;
851 	dsl_scan_t *scn = dp->dp_scan;
852 
853 	/*
854 	 * Purge all vdev caches and probe all devices.  We do this here
855 	 * rather than in sync context because this requires a writer lock
856 	 * on the spa_config lock, which we can't do from sync context.  The
857 	 * spa_scrub_reopen flag indicates that vdev_open() should not
858 	 * attempt to start another scrub.
859 	 */
860 	spa_vdev_state_enter(spa, SCL_NONE);
861 	spa->spa_scrub_reopen = B_TRUE;
862 	vdev_reopen(spa->spa_root_vdev);
863 	spa->spa_scrub_reopen = B_FALSE;
864 	(void) spa_vdev_state_exit(spa, NULL, 0);
865 
866 	if (func == POOL_SCAN_RESILVER) {
867 		dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
868 		return (0);
869 	}
870 
871 	if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
872 		/* got scrub start cmd, resume paused scrub */
873 		int err = dsl_scrub_set_pause_resume(scn->scn_dp,
874 		    POOL_SCRUB_NORMAL);
875 		if (err == 0) {
876 			spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
877 			return (SET_ERROR(ECANCELED));
878 		}
879 
880 		return (SET_ERROR(err));
881 	}
882 
883 	return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
884 	    dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
885 }
886 
887 static void
888 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
889 {
890 	static const char *old_names[] = {
891 		"scrub_bookmark",
892 		"scrub_ddt_bookmark",
893 		"scrub_ddt_class_max",
894 		"scrub_queue",
895 		"scrub_min_txg",
896 		"scrub_max_txg",
897 		"scrub_func",
898 		"scrub_errors",
899 		NULL
900 	};
901 
902 	dsl_pool_t *dp = scn->scn_dp;
903 	spa_t *spa = dp->dp_spa;
904 	int i;
905 
906 	/* Remove any remnants of an old-style scrub. */
907 	for (i = 0; old_names[i]; i++) {
908 		(void) zap_remove(dp->dp_meta_objset,
909 		    DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
910 	}
911 
912 	if (scn->scn_phys.scn_queue_obj != 0) {
913 		VERIFY0(dmu_object_free(dp->dp_meta_objset,
914 		    scn->scn_phys.scn_queue_obj, tx));
915 		scn->scn_phys.scn_queue_obj = 0;
916 	}
917 	scan_ds_queue_clear(scn);
918 	scan_ds_prefetch_queue_clear(scn);
919 
920 	scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
921 
922 	/*
923 	 * If we were "restarted" from a stopped state, don't bother
924 	 * with anything else.
925 	 */
926 	if (!dsl_scan_is_running(scn)) {
927 		ASSERT(!scn->scn_is_sorted);
928 		return;
929 	}
930 
931 	if (scn->scn_is_sorted) {
932 		scan_io_queues_destroy(scn);
933 		scn->scn_is_sorted = B_FALSE;
934 
935 		if (scn->scn_taskq != NULL) {
936 			taskq_destroy(scn->scn_taskq);
937 			scn->scn_taskq = NULL;
938 		}
939 	}
940 
941 	scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
942 
943 	spa_notify_waiters(spa);
944 
945 	if (dsl_scan_restarting(scn, tx))
946 		spa_history_log_internal(spa, "scan aborted, restarting", tx,
947 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
948 	else if (!complete)
949 		spa_history_log_internal(spa, "scan cancelled", tx,
950 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
951 	else
952 		spa_history_log_internal(spa, "scan done", tx,
953 		    "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
954 
955 	if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
956 		spa->spa_scrub_active = B_FALSE;
957 
958 		/*
959 		 * If the scrub/resilver completed, update all DTLs to
960 		 * reflect this.  Whether it succeeded or not, vacate
961 		 * all temporary scrub DTLs.
962 		 *
963 		 * As the scrub does not currently support traversing
964 		 * data that have been freed but are part of a checkpoint,
965 		 * we don't mark the scrub as done in the DTLs as faults
966 		 * may still exist in those vdevs.
967 		 */
968 		if (complete &&
969 		    !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
970 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
971 			    scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
972 
973 			if (scn->scn_phys.scn_min_txg) {
974 				nvlist_t *aux = fnvlist_alloc();
975 				fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
976 				    "healing");
977 				spa_event_notify(spa, NULL, aux,
978 				    ESC_ZFS_RESILVER_FINISH);
979 				nvlist_free(aux);
980 			} else {
981 				spa_event_notify(spa, NULL, NULL,
982 				    ESC_ZFS_SCRUB_FINISH);
983 			}
984 		} else {
985 			vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
986 			    0, B_TRUE, B_FALSE);
987 		}
988 		spa_errlog_rotate(spa);
989 
990 		/*
991 		 * Don't clear flag until after vdev_dtl_reassess to ensure that
992 		 * DTL_MISSING will get updated when possible.
993 		 */
994 		spa->spa_scrub_started = B_FALSE;
995 
996 		/*
997 		 * We may have finished replacing a device.
998 		 * Let the async thread assess this and handle the detach.
999 		 */
1000 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1001 
1002 		/*
1003 		 * Clear any resilver_deferred flags in the config.
1004 		 * If there are drives that need resilvering, kick
1005 		 * off an asynchronous request to start resilver.
1006 		 * vdev_clear_resilver_deferred() may update the config
1007 		 * before the resilver can restart. In the event of
1008 		 * a crash during this period, the spa loading code
1009 		 * will find the drives that need to be resilvered
1010 		 * and start the resilver then.
1011 		 */
1012 		if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1013 		    vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1014 			spa_history_log_internal(spa,
1015 			    "starting deferred resilver", tx, "errors=%llu",
1016 			    (u_longlong_t)spa_approx_errlog_size(spa));
1017 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1018 		}
1019 
1020 		/* Clear recent error events (i.e. duplicate events tracking) */
1021 		if (complete)
1022 			zfs_ereport_clear(spa, NULL);
1023 	}
1024 
1025 	scn->scn_phys.scn_end_time = gethrestime_sec();
1026 
1027 	if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1028 		spa->spa_errata = 0;
1029 
1030 	ASSERT(!dsl_scan_is_running(scn));
1031 }
1032 
1033 static int
1034 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1035 {
1036 	(void) arg;
1037 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1038 
1039 	if (!dsl_scan_is_running(scn))
1040 		return (SET_ERROR(ENOENT));
1041 	return (0);
1042 }
1043 
1044 static void
1045 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1046 {
1047 	(void) arg;
1048 	dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1049 
1050 	dsl_scan_done(scn, B_FALSE, tx);
1051 	dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1052 	spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1053 }
1054 
1055 int
1056 dsl_scan_cancel(dsl_pool_t *dp)
1057 {
1058 	return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1059 	    dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1060 }
1061 
1062 static int
1063 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1064 {
1065 	pool_scrub_cmd_t *cmd = arg;
1066 	dsl_pool_t *dp = dmu_tx_pool(tx);
1067 	dsl_scan_t *scn = dp->dp_scan;
1068 
1069 	if (*cmd == POOL_SCRUB_PAUSE) {
1070 		/* can't pause a scrub when there is no in-progress scrub */
1071 		if (!dsl_scan_scrubbing(dp))
1072 			return (SET_ERROR(ENOENT));
1073 
1074 		/* can't pause a paused scrub */
1075 		if (dsl_scan_is_paused_scrub(scn))
1076 			return (SET_ERROR(EBUSY));
1077 	} else if (*cmd != POOL_SCRUB_NORMAL) {
1078 		return (SET_ERROR(ENOTSUP));
1079 	}
1080 
1081 	return (0);
1082 }
1083 
1084 static void
1085 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1086 {
1087 	pool_scrub_cmd_t *cmd = arg;
1088 	dsl_pool_t *dp = dmu_tx_pool(tx);
1089 	spa_t *spa = dp->dp_spa;
1090 	dsl_scan_t *scn = dp->dp_scan;
1091 
1092 	if (*cmd == POOL_SCRUB_PAUSE) {
1093 		/* can't pause a scrub when there is no in-progress scrub */
1094 		spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1095 		scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1096 		scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1097 		dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1098 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1099 		spa_notify_waiters(spa);
1100 	} else {
1101 		ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1102 		if (dsl_scan_is_paused_scrub(scn)) {
1103 			/*
1104 			 * We need to keep track of how much time we spend
1105 			 * paused per pass so that we can adjust the scrub rate
1106 			 * shown in the output of 'zpool status'
1107 			 */
1108 			spa->spa_scan_pass_scrub_spent_paused +=
1109 			    gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1110 			spa->spa_scan_pass_scrub_pause = 0;
1111 			scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1112 			scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1113 			dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1114 		}
1115 	}
1116 }
1117 
1118 /*
1119  * Set scrub pause/resume state if it makes sense to do so
1120  */
1121 int
1122 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1123 {
1124 	return (dsl_sync_task(spa_name(dp->dp_spa),
1125 	    dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1126 	    ZFS_SPACE_CHECK_RESERVED));
1127 }
1128 
1129 
1130 /* start a new scan, or restart an existing one. */
1131 void
1132 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1133 {
1134 	if (txg == 0) {
1135 		dmu_tx_t *tx;
1136 		tx = dmu_tx_create_dd(dp->dp_mos_dir);
1137 		VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1138 
1139 		txg = dmu_tx_get_txg(tx);
1140 		dp->dp_scan->scn_restart_txg = txg;
1141 		dmu_tx_commit(tx);
1142 	} else {
1143 		dp->dp_scan->scn_restart_txg = txg;
1144 	}
1145 	zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1146 	    dp->dp_spa->spa_name, (longlong_t)txg);
1147 }
1148 
1149 void
1150 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1151 {
1152 	zio_free(dp->dp_spa, txg, bp);
1153 }
1154 
1155 void
1156 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1157 {
1158 	ASSERT(dsl_pool_sync_context(dp));
1159 	zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1160 }
1161 
1162 static int
1163 scan_ds_queue_compare(const void *a, const void *b)
1164 {
1165 	const scan_ds_t *sds_a = a, *sds_b = b;
1166 
1167 	if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1168 		return (-1);
1169 	if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1170 		return (0);
1171 	return (1);
1172 }
1173 
1174 static void
1175 scan_ds_queue_clear(dsl_scan_t *scn)
1176 {
1177 	void *cookie = NULL;
1178 	scan_ds_t *sds;
1179 	while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1180 		kmem_free(sds, sizeof (*sds));
1181 	}
1182 }
1183 
1184 static boolean_t
1185 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1186 {
1187 	scan_ds_t srch, *sds;
1188 
1189 	srch.sds_dsobj = dsobj;
1190 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1191 	if (sds != NULL && txg != NULL)
1192 		*txg = sds->sds_txg;
1193 	return (sds != NULL);
1194 }
1195 
1196 static void
1197 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1198 {
1199 	scan_ds_t *sds;
1200 	avl_index_t where;
1201 
1202 	sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1203 	sds->sds_dsobj = dsobj;
1204 	sds->sds_txg = txg;
1205 
1206 	VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1207 	avl_insert(&scn->scn_queue, sds, where);
1208 }
1209 
1210 static void
1211 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1212 {
1213 	scan_ds_t srch, *sds;
1214 
1215 	srch.sds_dsobj = dsobj;
1216 
1217 	sds = avl_find(&scn->scn_queue, &srch, NULL);
1218 	VERIFY(sds != NULL);
1219 	avl_remove(&scn->scn_queue, sds);
1220 	kmem_free(sds, sizeof (*sds));
1221 }
1222 
1223 static void
1224 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1225 {
1226 	dsl_pool_t *dp = scn->scn_dp;
1227 	spa_t *spa = dp->dp_spa;
1228 	dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1229 	    DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1230 
1231 	ASSERT0(scn->scn_queues_pending);
1232 	ASSERT(scn->scn_phys.scn_queue_obj != 0);
1233 
1234 	VERIFY0(dmu_object_free(dp->dp_meta_objset,
1235 	    scn->scn_phys.scn_queue_obj, tx));
1236 	scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1237 	    DMU_OT_NONE, 0, tx);
1238 	for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1239 	    sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1240 		VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1241 		    scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1242 		    sds->sds_txg, tx));
1243 	}
1244 }
1245 
1246 /*
1247  * Computes the memory limit state that we're currently in. A sorted scan
1248  * needs quite a bit of memory to hold the sorting queue, so we need to
1249  * reasonably constrain the size so it doesn't impact overall system
1250  * performance. We compute two limits:
1251  * 1) Hard memory limit: if the amount of memory used by the sorting
1252  *	queues on a pool gets above this value, we stop the metadata
1253  *	scanning portion and start issuing the queued up and sorted
1254  *	I/Os to reduce memory usage.
1255  *	This limit is calculated as a fraction of physmem (by default 5%).
1256  *	We constrain the lower bound of the hard limit to an absolute
1257  *	minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1258  *	the upper bound to 5% of the total pool size - no chance we'll
1259  *	ever need that much memory, but just to keep the value in check.
1260  * 2) Soft memory limit: once we hit the hard memory limit, we start
1261  *	issuing I/O to reduce queue memory usage, but we don't want to
1262  *	completely empty out the queues, since we might be able to find I/Os
1263  *	that will fill in the gaps of our non-sequential IOs at some point
1264  *	in the future. So we stop the issuing of I/Os once the amount of
1265  *	memory used drops below the soft limit (at which point we stop issuing
1266  *	I/O and start scanning metadata again).
1267  *
1268  *	This limit is calculated by subtracting a fraction of the hard
1269  *	limit from the hard limit. By default this fraction is 5%, so
1270  *	the soft limit is 95% of the hard limit. We cap the size of the
1271  *	difference between the hard and soft limits at an absolute
1272  *	maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1273  *	sufficient to not cause too frequent switching between the
1274  *	metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1275  *	worth of queues is about 1.2 GiB of on-pool data, so scanning
1276  *	that should take at least a decent fraction of a second).
1277  */
1278 static boolean_t
1279 dsl_scan_should_clear(dsl_scan_t *scn)
1280 {
1281 	spa_t *spa = scn->scn_dp->dp_spa;
1282 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1283 	uint64_t alloc, mlim_hard, mlim_soft, mused;
1284 
1285 	alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1286 	alloc += metaslab_class_get_alloc(spa_special_class(spa));
1287 	alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1288 
1289 	mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1290 	    zfs_scan_mem_lim_min);
1291 	mlim_hard = MIN(mlim_hard, alloc / 20);
1292 	mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1293 	    zfs_scan_mem_lim_soft_max);
1294 	mused = 0;
1295 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1296 		vdev_t *tvd = rvd->vdev_child[i];
1297 		dsl_scan_io_queue_t *queue;
1298 
1299 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
1300 		queue = tvd->vdev_scan_io_queue;
1301 		if (queue != NULL) {
1302 			/*
1303 			 * # of extents in exts_by_addr = # in exts_by_size.
1304 			 * B-tree efficiency is ~75%, but can be as low as 50%.
1305 			 */
1306 			mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1307 			    ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1308 			    3 / 2) + queue->q_sio_memused;
1309 		}
1310 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
1311 	}
1312 
1313 	dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1314 
1315 	if (mused == 0)
1316 		ASSERT0(scn->scn_queues_pending);
1317 
1318 	/*
1319 	 * If we are above our hard limit, we need to clear out memory.
1320 	 * If we are below our soft limit, we need to accumulate sequential IOs.
1321 	 * Otherwise, we should keep doing whatever we are currently doing.
1322 	 */
1323 	if (mused >= mlim_hard)
1324 		return (B_TRUE);
1325 	else if (mused < mlim_soft)
1326 		return (B_FALSE);
1327 	else
1328 		return (scn->scn_clearing);
1329 }
1330 
1331 static boolean_t
1332 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1333 {
1334 	/* we never skip user/group accounting objects */
1335 	if (zb && (int64_t)zb->zb_object < 0)
1336 		return (B_FALSE);
1337 
1338 	if (scn->scn_suspending)
1339 		return (B_TRUE); /* we're already suspending */
1340 
1341 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1342 		return (B_FALSE); /* we're resuming */
1343 
1344 	/* We only know how to resume from level-0 and objset blocks. */
1345 	if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1346 		return (B_FALSE);
1347 
1348 	/*
1349 	 * We suspend if:
1350 	 *  - we have scanned for at least the minimum time (default 1 sec
1351 	 *    for scrub, 3 sec for resilver), and either we have sufficient
1352 	 *    dirty data that we are starting to write more quickly
1353 	 *    (default 30%), someone is explicitly waiting for this txg
1354 	 *    to complete, or we have used up all of the time in the txg
1355 	 *    timeout (default 5 sec).
1356 	 *  or
1357 	 *  - the spa is shutting down because this pool is being exported
1358 	 *    or the machine is rebooting.
1359 	 *  or
1360 	 *  - the scan queue has reached its memory use limit
1361 	 */
1362 	uint64_t curr_time_ns = gethrtime();
1363 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1364 	uint64_t sync_time_ns = curr_time_ns -
1365 	    scn->scn_dp->dp_spa->spa_sync_starttime;
1366 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
1367 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
1368 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1369 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1370 
1371 	if ((NSEC2MSEC(scan_time_ns) > mintime &&
1372 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1373 	    txg_sync_waiting(scn->scn_dp) ||
1374 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1375 	    spa_shutting_down(scn->scn_dp->dp_spa) ||
1376 	    (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1377 		if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1378 			dprintf("suspending at first available bookmark "
1379 			    "%llx/%llx/%llx/%llx\n",
1380 			    (longlong_t)zb->zb_objset,
1381 			    (longlong_t)zb->zb_object,
1382 			    (longlong_t)zb->zb_level,
1383 			    (longlong_t)zb->zb_blkid);
1384 			SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1385 			    zb->zb_objset, 0, 0, 0);
1386 		} else if (zb != NULL) {
1387 			dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1388 			    (longlong_t)zb->zb_objset,
1389 			    (longlong_t)zb->zb_object,
1390 			    (longlong_t)zb->zb_level,
1391 			    (longlong_t)zb->zb_blkid);
1392 			scn->scn_phys.scn_bookmark = *zb;
1393 		} else {
1394 #ifdef ZFS_DEBUG
1395 			dsl_scan_phys_t *scnp = &scn->scn_phys;
1396 			dprintf("suspending at at DDT bookmark "
1397 			    "%llx/%llx/%llx/%llx\n",
1398 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1399 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1400 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1401 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1402 #endif
1403 		}
1404 		scn->scn_suspending = B_TRUE;
1405 		return (B_TRUE);
1406 	}
1407 	return (B_FALSE);
1408 }
1409 
1410 typedef struct zil_scan_arg {
1411 	dsl_pool_t	*zsa_dp;
1412 	zil_header_t	*zsa_zh;
1413 } zil_scan_arg_t;
1414 
1415 static int
1416 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1417     uint64_t claim_txg)
1418 {
1419 	(void) zilog;
1420 	zil_scan_arg_t *zsa = arg;
1421 	dsl_pool_t *dp = zsa->zsa_dp;
1422 	dsl_scan_t *scn = dp->dp_scan;
1423 	zil_header_t *zh = zsa->zsa_zh;
1424 	zbookmark_phys_t zb;
1425 
1426 	ASSERT(!BP_IS_REDACTED(bp));
1427 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1428 		return (0);
1429 
1430 	/*
1431 	 * One block ("stubby") can be allocated a long time ago; we
1432 	 * want to visit that one because it has been allocated
1433 	 * (on-disk) even if it hasn't been claimed (even though for
1434 	 * scrub there's nothing to do to it).
1435 	 */
1436 	if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1437 		return (0);
1438 
1439 	SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1440 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1441 
1442 	VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1443 	return (0);
1444 }
1445 
1446 static int
1447 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1448     uint64_t claim_txg)
1449 {
1450 	(void) zilog;
1451 	if (lrc->lrc_txtype == TX_WRITE) {
1452 		zil_scan_arg_t *zsa = arg;
1453 		dsl_pool_t *dp = zsa->zsa_dp;
1454 		dsl_scan_t *scn = dp->dp_scan;
1455 		zil_header_t *zh = zsa->zsa_zh;
1456 		const lr_write_t *lr = (const lr_write_t *)lrc;
1457 		const blkptr_t *bp = &lr->lr_blkptr;
1458 		zbookmark_phys_t zb;
1459 
1460 		ASSERT(!BP_IS_REDACTED(bp));
1461 		if (BP_IS_HOLE(bp) ||
1462 		    bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1463 			return (0);
1464 
1465 		/*
1466 		 * birth can be < claim_txg if this record's txg is
1467 		 * already txg sync'ed (but this log block contains
1468 		 * other records that are not synced)
1469 		 */
1470 		if (claim_txg == 0 || bp->blk_birth < claim_txg)
1471 			return (0);
1472 
1473 		ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1474 		SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1475 		    lr->lr_foid, ZB_ZIL_LEVEL,
1476 		    lr->lr_offset / BP_GET_LSIZE(bp));
1477 
1478 		VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1479 	}
1480 	return (0);
1481 }
1482 
1483 static void
1484 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1485 {
1486 	uint64_t claim_txg = zh->zh_claim_txg;
1487 	zil_scan_arg_t zsa = { dp, zh };
1488 	zilog_t *zilog;
1489 
1490 	ASSERT(spa_writeable(dp->dp_spa));
1491 
1492 	/*
1493 	 * We only want to visit blocks that have been claimed but not yet
1494 	 * replayed (or, in read-only mode, blocks that *would* be claimed).
1495 	 */
1496 	if (claim_txg == 0)
1497 		return;
1498 
1499 	zilog = zil_alloc(dp->dp_meta_objset, zh);
1500 
1501 	(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1502 	    claim_txg, B_FALSE);
1503 
1504 	zil_free(zilog);
1505 }
1506 
1507 /*
1508  * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1509  * here is to sort the AVL tree by the order each block will be needed.
1510  */
1511 static int
1512 scan_prefetch_queue_compare(const void *a, const void *b)
1513 {
1514 	const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1515 	const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1516 	const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1517 
1518 	return (zbookmark_compare(spc_a->spc_datablkszsec,
1519 	    spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1520 	    spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1521 }
1522 
1523 static void
1524 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1525 {
1526 	if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1527 		zfs_refcount_destroy(&spc->spc_refcnt);
1528 		kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1529 	}
1530 }
1531 
1532 static scan_prefetch_ctx_t *
1533 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1534 {
1535 	scan_prefetch_ctx_t *spc;
1536 
1537 	spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1538 	zfs_refcount_create(&spc->spc_refcnt);
1539 	zfs_refcount_add(&spc->spc_refcnt, tag);
1540 	spc->spc_scn = scn;
1541 	if (dnp != NULL) {
1542 		spc->spc_datablkszsec = dnp->dn_datablkszsec;
1543 		spc->spc_indblkshift = dnp->dn_indblkshift;
1544 		spc->spc_root = B_FALSE;
1545 	} else {
1546 		spc->spc_datablkszsec = 0;
1547 		spc->spc_indblkshift = 0;
1548 		spc->spc_root = B_TRUE;
1549 	}
1550 
1551 	return (spc);
1552 }
1553 
1554 static void
1555 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1556 {
1557 	zfs_refcount_add(&spc->spc_refcnt, tag);
1558 }
1559 
1560 static void
1561 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1562 {
1563 	spa_t *spa = scn->scn_dp->dp_spa;
1564 	void *cookie = NULL;
1565 	scan_prefetch_issue_ctx_t *spic = NULL;
1566 
1567 	mutex_enter(&spa->spa_scrub_lock);
1568 	while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1569 	    &cookie)) != NULL) {
1570 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1571 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1572 	}
1573 	mutex_exit(&spa->spa_scrub_lock);
1574 }
1575 
1576 static boolean_t
1577 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1578     const zbookmark_phys_t *zb)
1579 {
1580 	zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1581 	dnode_phys_t tmp_dnp;
1582 	dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1583 
1584 	if (zb->zb_objset != last_zb->zb_objset)
1585 		return (B_TRUE);
1586 	if ((int64_t)zb->zb_object < 0)
1587 		return (B_FALSE);
1588 
1589 	tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1590 	tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1591 
1592 	if (zbookmark_subtree_completed(dnp, zb, last_zb))
1593 		return (B_TRUE);
1594 
1595 	return (B_FALSE);
1596 }
1597 
1598 static void
1599 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1600 {
1601 	avl_index_t idx;
1602 	dsl_scan_t *scn = spc->spc_scn;
1603 	spa_t *spa = scn->scn_dp->dp_spa;
1604 	scan_prefetch_issue_ctx_t *spic;
1605 
1606 	if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1607 		return;
1608 
1609 	if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1610 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1611 	    BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1612 		return;
1613 
1614 	if (dsl_scan_check_prefetch_resume(spc, zb))
1615 		return;
1616 
1617 	scan_prefetch_ctx_add_ref(spc, scn);
1618 	spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1619 	spic->spic_spc = spc;
1620 	spic->spic_bp = *bp;
1621 	spic->spic_zb = *zb;
1622 
1623 	/*
1624 	 * Add the IO to the queue of blocks to prefetch. This allows us to
1625 	 * prioritize blocks that we will need first for the main traversal
1626 	 * thread.
1627 	 */
1628 	mutex_enter(&spa->spa_scrub_lock);
1629 	if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1630 		/* this block is already queued for prefetch */
1631 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1632 		scan_prefetch_ctx_rele(spc, scn);
1633 		mutex_exit(&spa->spa_scrub_lock);
1634 		return;
1635 	}
1636 
1637 	avl_insert(&scn->scn_prefetch_queue, spic, idx);
1638 	cv_broadcast(&spa->spa_scrub_io_cv);
1639 	mutex_exit(&spa->spa_scrub_lock);
1640 }
1641 
1642 static void
1643 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1644     uint64_t objset, uint64_t object)
1645 {
1646 	int i;
1647 	zbookmark_phys_t zb;
1648 	scan_prefetch_ctx_t *spc;
1649 
1650 	if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1651 		return;
1652 
1653 	SET_BOOKMARK(&zb, objset, object, 0, 0);
1654 
1655 	spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1656 
1657 	for (i = 0; i < dnp->dn_nblkptr; i++) {
1658 		zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1659 		zb.zb_blkid = i;
1660 		dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1661 	}
1662 
1663 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1664 		zb.zb_level = 0;
1665 		zb.zb_blkid = DMU_SPILL_BLKID;
1666 		dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1667 	}
1668 
1669 	scan_prefetch_ctx_rele(spc, FTAG);
1670 }
1671 
1672 static void
1673 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1674     arc_buf_t *buf, void *private)
1675 {
1676 	(void) zio;
1677 	scan_prefetch_ctx_t *spc = private;
1678 	dsl_scan_t *scn = spc->spc_scn;
1679 	spa_t *spa = scn->scn_dp->dp_spa;
1680 
1681 	/* broadcast that the IO has completed for rate limiting purposes */
1682 	mutex_enter(&spa->spa_scrub_lock);
1683 	ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1684 	spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1685 	cv_broadcast(&spa->spa_scrub_io_cv);
1686 	mutex_exit(&spa->spa_scrub_lock);
1687 
1688 	/* if there was an error or we are done prefetching, just cleanup */
1689 	if (buf == NULL || scn->scn_prefetch_stop)
1690 		goto out;
1691 
1692 	if (BP_GET_LEVEL(bp) > 0) {
1693 		int i;
1694 		blkptr_t *cbp;
1695 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1696 		zbookmark_phys_t czb;
1697 
1698 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1699 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1700 			    zb->zb_level - 1, zb->zb_blkid * epb + i);
1701 			dsl_scan_prefetch(spc, cbp, &czb);
1702 		}
1703 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1704 		dnode_phys_t *cdnp;
1705 		int i;
1706 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1707 
1708 		for (i = 0, cdnp = buf->b_data; i < epb;
1709 		    i += cdnp->dn_extra_slots + 1,
1710 		    cdnp += cdnp->dn_extra_slots + 1) {
1711 			dsl_scan_prefetch_dnode(scn, cdnp,
1712 			    zb->zb_objset, zb->zb_blkid * epb + i);
1713 		}
1714 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1715 		objset_phys_t *osp = buf->b_data;
1716 
1717 		dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1718 		    zb->zb_objset, DMU_META_DNODE_OBJECT);
1719 
1720 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1721 			dsl_scan_prefetch_dnode(scn,
1722 			    &osp->os_groupused_dnode, zb->zb_objset,
1723 			    DMU_GROUPUSED_OBJECT);
1724 			dsl_scan_prefetch_dnode(scn,
1725 			    &osp->os_userused_dnode, zb->zb_objset,
1726 			    DMU_USERUSED_OBJECT);
1727 		}
1728 	}
1729 
1730 out:
1731 	if (buf != NULL)
1732 		arc_buf_destroy(buf, private);
1733 	scan_prefetch_ctx_rele(spc, scn);
1734 }
1735 
1736 static void
1737 dsl_scan_prefetch_thread(void *arg)
1738 {
1739 	dsl_scan_t *scn = arg;
1740 	spa_t *spa = scn->scn_dp->dp_spa;
1741 	scan_prefetch_issue_ctx_t *spic;
1742 
1743 	/* loop until we are told to stop */
1744 	while (!scn->scn_prefetch_stop) {
1745 		arc_flags_t flags = ARC_FLAG_NOWAIT |
1746 		    ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1747 		int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1748 
1749 		mutex_enter(&spa->spa_scrub_lock);
1750 
1751 		/*
1752 		 * Wait until we have an IO to issue and are not above our
1753 		 * maximum in flight limit.
1754 		 */
1755 		while (!scn->scn_prefetch_stop &&
1756 		    (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1757 		    spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1758 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1759 		}
1760 
1761 		/* recheck if we should stop since we waited for the cv */
1762 		if (scn->scn_prefetch_stop) {
1763 			mutex_exit(&spa->spa_scrub_lock);
1764 			break;
1765 		}
1766 
1767 		/* remove the prefetch IO from the tree */
1768 		spic = avl_first(&scn->scn_prefetch_queue);
1769 		spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1770 		avl_remove(&scn->scn_prefetch_queue, spic);
1771 
1772 		mutex_exit(&spa->spa_scrub_lock);
1773 
1774 		if (BP_IS_PROTECTED(&spic->spic_bp)) {
1775 			ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1776 			    BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1777 			ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1778 			zio_flags |= ZIO_FLAG_RAW;
1779 		}
1780 
1781 		/* issue the prefetch asynchronously */
1782 		(void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1783 		    &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1784 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1785 
1786 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1787 	}
1788 
1789 	ASSERT(scn->scn_prefetch_stop);
1790 
1791 	/* free any prefetches we didn't get to complete */
1792 	mutex_enter(&spa->spa_scrub_lock);
1793 	while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1794 		avl_remove(&scn->scn_prefetch_queue, spic);
1795 		scan_prefetch_ctx_rele(spic->spic_spc, scn);
1796 		kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1797 	}
1798 	ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1799 	mutex_exit(&spa->spa_scrub_lock);
1800 }
1801 
1802 static boolean_t
1803 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1804     const zbookmark_phys_t *zb)
1805 {
1806 	/*
1807 	 * We never skip over user/group accounting objects (obj<0)
1808 	 */
1809 	if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1810 	    (int64_t)zb->zb_object >= 0) {
1811 		/*
1812 		 * If we already visited this bp & everything below (in
1813 		 * a prior txg sync), don't bother doing it again.
1814 		 */
1815 		if (zbookmark_subtree_completed(dnp, zb,
1816 		    &scn->scn_phys.scn_bookmark))
1817 			return (B_TRUE);
1818 
1819 		/*
1820 		 * If we found the block we're trying to resume from, or
1821 		 * we went past it, zero it out to indicate that it's OK
1822 		 * to start checking for suspending again.
1823 		 */
1824 		if (zbookmark_subtree_tbd(dnp, zb,
1825 		    &scn->scn_phys.scn_bookmark)) {
1826 			dprintf("resuming at %llx/%llx/%llx/%llx\n",
1827 			    (longlong_t)zb->zb_objset,
1828 			    (longlong_t)zb->zb_object,
1829 			    (longlong_t)zb->zb_level,
1830 			    (longlong_t)zb->zb_blkid);
1831 			memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
1832 		}
1833 	}
1834 	return (B_FALSE);
1835 }
1836 
1837 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1838     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1839     dmu_objset_type_t ostype, dmu_tx_t *tx);
1840 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1841     dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1842     dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1843 
1844 /*
1845  * Return nonzero on i/o error.
1846  * Return new buf to write out in *bufp.
1847  */
1848 inline __attribute__((always_inline)) static int
1849 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1850     dnode_phys_t *dnp, const blkptr_t *bp,
1851     const zbookmark_phys_t *zb, dmu_tx_t *tx)
1852 {
1853 	dsl_pool_t *dp = scn->scn_dp;
1854 	spa_t *spa = dp->dp_spa;
1855 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1856 	int err;
1857 
1858 	ASSERT(!BP_IS_REDACTED(bp));
1859 
1860 	/*
1861 	 * There is an unlikely case of encountering dnodes with contradicting
1862 	 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1863 	 * or modified before commit 4254acb was merged. As it is not possible
1864 	 * to know which of the two is correct, report an error.
1865 	 */
1866 	if (dnp != NULL &&
1867 	    dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
1868 		scn->scn_phys.scn_errors++;
1869 		spa_log_error(spa, zb);
1870 		return (SET_ERROR(EINVAL));
1871 	}
1872 
1873 	if (BP_GET_LEVEL(bp) > 0) {
1874 		arc_flags_t flags = ARC_FLAG_WAIT;
1875 		int i;
1876 		blkptr_t *cbp;
1877 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1878 		arc_buf_t *buf;
1879 
1880 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1881 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1882 		if (err) {
1883 			scn->scn_phys.scn_errors++;
1884 			return (err);
1885 		}
1886 		for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1887 			zbookmark_phys_t czb;
1888 
1889 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1890 			    zb->zb_level - 1,
1891 			    zb->zb_blkid * epb + i);
1892 			dsl_scan_visitbp(cbp, &czb, dnp,
1893 			    ds, scn, ostype, tx);
1894 		}
1895 		arc_buf_destroy(buf, &buf);
1896 	} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1897 		arc_flags_t flags = ARC_FLAG_WAIT;
1898 		dnode_phys_t *cdnp;
1899 		int i;
1900 		int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1901 		arc_buf_t *buf;
1902 
1903 		if (BP_IS_PROTECTED(bp)) {
1904 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1905 			zio_flags |= ZIO_FLAG_RAW;
1906 		}
1907 
1908 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1909 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1910 		if (err) {
1911 			scn->scn_phys.scn_errors++;
1912 			return (err);
1913 		}
1914 		for (i = 0, cdnp = buf->b_data; i < epb;
1915 		    i += cdnp->dn_extra_slots + 1,
1916 		    cdnp += cdnp->dn_extra_slots + 1) {
1917 			dsl_scan_visitdnode(scn, ds, ostype,
1918 			    cdnp, zb->zb_blkid * epb + i, tx);
1919 		}
1920 
1921 		arc_buf_destroy(buf, &buf);
1922 	} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1923 		arc_flags_t flags = ARC_FLAG_WAIT;
1924 		objset_phys_t *osp;
1925 		arc_buf_t *buf;
1926 
1927 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1928 		    ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1929 		if (err) {
1930 			scn->scn_phys.scn_errors++;
1931 			return (err);
1932 		}
1933 
1934 		osp = buf->b_data;
1935 
1936 		dsl_scan_visitdnode(scn, ds, osp->os_type,
1937 		    &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1938 
1939 		if (OBJSET_BUF_HAS_USERUSED(buf)) {
1940 			/*
1941 			 * We also always visit user/group/project accounting
1942 			 * objects, and never skip them, even if we are
1943 			 * suspending. This is necessary so that the
1944 			 * space deltas from this txg get integrated.
1945 			 */
1946 			if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1947 				dsl_scan_visitdnode(scn, ds, osp->os_type,
1948 				    &osp->os_projectused_dnode,
1949 				    DMU_PROJECTUSED_OBJECT, tx);
1950 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1951 			    &osp->os_groupused_dnode,
1952 			    DMU_GROUPUSED_OBJECT, tx);
1953 			dsl_scan_visitdnode(scn, ds, osp->os_type,
1954 			    &osp->os_userused_dnode,
1955 			    DMU_USERUSED_OBJECT, tx);
1956 		}
1957 		arc_buf_destroy(buf, &buf);
1958 	} else if (!zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_LOG)) {
1959 		/*
1960 		 * Sanity check the block pointer contents, this is handled
1961 		 * by arc_read() for the cases above.
1962 		 */
1963 		scn->scn_phys.scn_errors++;
1964 		spa_log_error(spa, zb);
1965 		return (SET_ERROR(EINVAL));
1966 	}
1967 
1968 	return (0);
1969 }
1970 
1971 inline __attribute__((always_inline)) static void
1972 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1973     dmu_objset_type_t ostype, dnode_phys_t *dnp,
1974     uint64_t object, dmu_tx_t *tx)
1975 {
1976 	int j;
1977 
1978 	for (j = 0; j < dnp->dn_nblkptr; j++) {
1979 		zbookmark_phys_t czb;
1980 
1981 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1982 		    dnp->dn_nlevels - 1, j);
1983 		dsl_scan_visitbp(&dnp->dn_blkptr[j],
1984 		    &czb, dnp, ds, scn, ostype, tx);
1985 	}
1986 
1987 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1988 		zbookmark_phys_t czb;
1989 		SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1990 		    0, DMU_SPILL_BLKID);
1991 		dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
1992 		    &czb, dnp, ds, scn, ostype, tx);
1993 	}
1994 }
1995 
1996 /*
1997  * The arguments are in this order because mdb can only print the
1998  * first 5; we want them to be useful.
1999  */
2000 static void
2001 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2002     dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2003     dmu_objset_type_t ostype, dmu_tx_t *tx)
2004 {
2005 	dsl_pool_t *dp = scn->scn_dp;
2006 	blkptr_t *bp_toread = NULL;
2007 
2008 	if (dsl_scan_check_suspend(scn, zb))
2009 		return;
2010 
2011 	if (dsl_scan_check_resume(scn, dnp, zb))
2012 		return;
2013 
2014 	scn->scn_visited_this_txg++;
2015 
2016 	if (BP_IS_HOLE(bp)) {
2017 		scn->scn_holes_this_txg++;
2018 		return;
2019 	}
2020 
2021 	if (BP_IS_REDACTED(bp)) {
2022 		ASSERT(dsl_dataset_feature_is_active(ds,
2023 		    SPA_FEATURE_REDACTED_DATASETS));
2024 		return;
2025 	}
2026 
2027 	if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2028 		scn->scn_lt_min_this_txg++;
2029 		return;
2030 	}
2031 
2032 	bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2033 	*bp_toread = *bp;
2034 
2035 	if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2036 		goto out;
2037 
2038 	/*
2039 	 * If dsl_scan_ddt() has already visited this block, it will have
2040 	 * already done any translations or scrubbing, so don't call the
2041 	 * callback again.
2042 	 */
2043 	if (ddt_class_contains(dp->dp_spa,
2044 	    scn->scn_phys.scn_ddt_class_max, bp)) {
2045 		scn->scn_ddt_contained_this_txg++;
2046 		goto out;
2047 	}
2048 
2049 	/*
2050 	 * If this block is from the future (after cur_max_txg), then we
2051 	 * are doing this on behalf of a deleted snapshot, and we will
2052 	 * revisit the future block on the next pass of this dataset.
2053 	 * Don't scan it now unless we need to because something
2054 	 * under it was modified.
2055 	 */
2056 	if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2057 		scn->scn_gt_max_this_txg++;
2058 		goto out;
2059 	}
2060 
2061 	scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2062 
2063 out:
2064 	kmem_free(bp_toread, sizeof (blkptr_t));
2065 }
2066 
2067 static void
2068 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2069     dmu_tx_t *tx)
2070 {
2071 	zbookmark_phys_t zb;
2072 	scan_prefetch_ctx_t *spc;
2073 
2074 	SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2075 	    ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2076 
2077 	if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2078 		SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2079 		    zb.zb_objset, 0, 0, 0);
2080 	} else {
2081 		scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2082 	}
2083 
2084 	scn->scn_objsets_visited_this_txg++;
2085 
2086 	spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2087 	dsl_scan_prefetch(spc, bp, &zb);
2088 	scan_prefetch_ctx_rele(spc, FTAG);
2089 
2090 	dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2091 
2092 	dprintf_ds(ds, "finished scan%s", "");
2093 }
2094 
2095 static void
2096 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2097 {
2098 	if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2099 		if (ds->ds_is_snapshot) {
2100 			/*
2101 			 * Note:
2102 			 *  - scn_cur_{min,max}_txg stays the same.
2103 			 *  - Setting the flag is not really necessary if
2104 			 *    scn_cur_max_txg == scn_max_txg, because there
2105 			 *    is nothing after this snapshot that we care
2106 			 *    about.  However, we set it anyway and then
2107 			 *    ignore it when we retraverse it in
2108 			 *    dsl_scan_visitds().
2109 			 */
2110 			scn_phys->scn_bookmark.zb_objset =
2111 			    dsl_dataset_phys(ds)->ds_next_snap_obj;
2112 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2113 			    "traversing; reset zb_objset to %llu",
2114 			    (u_longlong_t)ds->ds_object,
2115 			    ds->ds_dir->dd_pool->dp_spa->spa_name,
2116 			    (u_longlong_t)dsl_dataset_phys(ds)->
2117 			    ds_next_snap_obj);
2118 			scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2119 		} else {
2120 			SET_BOOKMARK(&scn_phys->scn_bookmark,
2121 			    ZB_DESTROYED_OBJSET, 0, 0, 0);
2122 			zfs_dbgmsg("destroying ds %llu on %s; currently "
2123 			    "traversing; reset bookmark to -1,0,0,0",
2124 			    (u_longlong_t)ds->ds_object,
2125 			    ds->ds_dir->dd_pool->dp_spa->spa_name);
2126 		}
2127 	}
2128 }
2129 
2130 /*
2131  * Invoked when a dataset is destroyed. We need to make sure that:
2132  *
2133  * 1) If it is the dataset that was currently being scanned, we write
2134  *	a new dsl_scan_phys_t and marking the objset reference in it
2135  *	as destroyed.
2136  * 2) Remove it from the work queue, if it was present.
2137  *
2138  * If the dataset was actually a snapshot, instead of marking the dataset
2139  * as destroyed, we instead substitute the next snapshot in line.
2140  */
2141 void
2142 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2143 {
2144 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2145 	dsl_scan_t *scn = dp->dp_scan;
2146 	uint64_t mintxg;
2147 
2148 	if (!dsl_scan_is_running(scn))
2149 		return;
2150 
2151 	ds_destroyed_scn_phys(ds, &scn->scn_phys);
2152 	ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2153 
2154 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2155 		scan_ds_queue_remove(scn, ds->ds_object);
2156 		if (ds->ds_is_snapshot)
2157 			scan_ds_queue_insert(scn,
2158 			    dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2159 	}
2160 
2161 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2162 	    ds->ds_object, &mintxg) == 0) {
2163 		ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2164 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2165 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2166 		if (ds->ds_is_snapshot) {
2167 			/*
2168 			 * We keep the same mintxg; it could be >
2169 			 * ds_creation_txg if the previous snapshot was
2170 			 * deleted too.
2171 			 */
2172 			VERIFY(zap_add_int_key(dp->dp_meta_objset,
2173 			    scn->scn_phys.scn_queue_obj,
2174 			    dsl_dataset_phys(ds)->ds_next_snap_obj,
2175 			    mintxg, tx) == 0);
2176 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2177 			    "replacing with %llu",
2178 			    (u_longlong_t)ds->ds_object,
2179 			    dp->dp_spa->spa_name,
2180 			    (u_longlong_t)dsl_dataset_phys(ds)->
2181 			    ds_next_snap_obj);
2182 		} else {
2183 			zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2184 			    "removing",
2185 			    (u_longlong_t)ds->ds_object,
2186 			    dp->dp_spa->spa_name);
2187 		}
2188 	}
2189 
2190 	/*
2191 	 * dsl_scan_sync() should be called after this, and should sync
2192 	 * out our changed state, but just to be safe, do it here.
2193 	 */
2194 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2195 }
2196 
2197 static void
2198 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2199 {
2200 	if (scn_bookmark->zb_objset == ds->ds_object) {
2201 		scn_bookmark->zb_objset =
2202 		    dsl_dataset_phys(ds)->ds_prev_snap_obj;
2203 		zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2204 		    "reset zb_objset to %llu",
2205 		    (u_longlong_t)ds->ds_object,
2206 		    ds->ds_dir->dd_pool->dp_spa->spa_name,
2207 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2208 	}
2209 }
2210 
2211 /*
2212  * Called when a dataset is snapshotted. If we were currently traversing
2213  * this snapshot, we reset our bookmark to point at the newly created
2214  * snapshot. We also modify our work queue to remove the old snapshot and
2215  * replace with the new one.
2216  */
2217 void
2218 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2219 {
2220 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
2221 	dsl_scan_t *scn = dp->dp_scan;
2222 	uint64_t mintxg;
2223 
2224 	if (!dsl_scan_is_running(scn))
2225 		return;
2226 
2227 	ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2228 
2229 	ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2230 	ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2231 
2232 	if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2233 		scan_ds_queue_remove(scn, ds->ds_object);
2234 		scan_ds_queue_insert(scn,
2235 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2236 	}
2237 
2238 	if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2239 	    ds->ds_object, &mintxg) == 0) {
2240 		VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2241 		    scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2242 		VERIFY(zap_add_int_key(dp->dp_meta_objset,
2243 		    scn->scn_phys.scn_queue_obj,
2244 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2245 		zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2246 		    "replacing with %llu",
2247 		    (u_longlong_t)ds->ds_object,
2248 		    dp->dp_spa->spa_name,
2249 		    (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2250 	}
2251 
2252 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2253 }
2254 
2255 static void
2256 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2257     zbookmark_phys_t *scn_bookmark)
2258 {
2259 	if (scn_bookmark->zb_objset == ds1->ds_object) {
2260 		scn_bookmark->zb_objset = ds2->ds_object;
2261 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2262 		    "reset zb_objset to %llu",
2263 		    (u_longlong_t)ds1->ds_object,
2264 		    ds1->ds_dir->dd_pool->dp_spa->spa_name,
2265 		    (u_longlong_t)ds2->ds_object);
2266 	} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2267 		scn_bookmark->zb_objset = ds1->ds_object;
2268 		zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2269 		    "reset zb_objset to %llu",
2270 		    (u_longlong_t)ds2->ds_object,
2271 		    ds2->ds_dir->dd_pool->dp_spa->spa_name,
2272 		    (u_longlong_t)ds1->ds_object);
2273 	}
2274 }
2275 
2276 /*
2277  * Called when an origin dataset and its clone are swapped.  If we were
2278  * currently traversing the dataset, we need to switch to traversing the
2279  * newly promoted clone.
2280  */
2281 void
2282 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2283 {
2284 	dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2285 	dsl_scan_t *scn = dp->dp_scan;
2286 	uint64_t mintxg1, mintxg2;
2287 	boolean_t ds1_queued, ds2_queued;
2288 
2289 	if (!dsl_scan_is_running(scn))
2290 		return;
2291 
2292 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2293 	ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2294 
2295 	/*
2296 	 * Handle the in-memory scan queue.
2297 	 */
2298 	ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2299 	ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2300 
2301 	/* Sanity checking. */
2302 	if (ds1_queued) {
2303 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2304 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2305 	}
2306 	if (ds2_queued) {
2307 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2308 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2309 	}
2310 
2311 	if (ds1_queued && ds2_queued) {
2312 		/*
2313 		 * If both are queued, we don't need to do anything.
2314 		 * The swapping code below would not handle this case correctly,
2315 		 * since we can't insert ds2 if it is already there. That's
2316 		 * because scan_ds_queue_insert() prohibits a duplicate insert
2317 		 * and panics.
2318 		 */
2319 	} else if (ds1_queued) {
2320 		scan_ds_queue_remove(scn, ds1->ds_object);
2321 		scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2322 	} else if (ds2_queued) {
2323 		scan_ds_queue_remove(scn, ds2->ds_object);
2324 		scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2325 	}
2326 
2327 	/*
2328 	 * Handle the on-disk scan queue.
2329 	 * The on-disk state is an out-of-date version of the in-memory state,
2330 	 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2331 	 * be different. Therefore we need to apply the swap logic to the
2332 	 * on-disk state independently of the in-memory state.
2333 	 */
2334 	ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2335 	    scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2336 	ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2337 	    scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2338 
2339 	/* Sanity checking. */
2340 	if (ds1_queued) {
2341 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2342 		ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2343 	}
2344 	if (ds2_queued) {
2345 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2346 		ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2347 	}
2348 
2349 	if (ds1_queued && ds2_queued) {
2350 		/*
2351 		 * If both are queued, we don't need to do anything.
2352 		 * Alternatively, we could check for EEXIST from
2353 		 * zap_add_int_key() and back out to the original state, but
2354 		 * that would be more work than checking for this case upfront.
2355 		 */
2356 	} else if (ds1_queued) {
2357 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2358 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2359 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2360 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2361 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2362 		    "replacing with %llu",
2363 		    (u_longlong_t)ds1->ds_object,
2364 		    dp->dp_spa->spa_name,
2365 		    (u_longlong_t)ds2->ds_object);
2366 	} else if (ds2_queued) {
2367 		VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2368 		    scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2369 		VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2370 		    scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2371 		zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2372 		    "replacing with %llu",
2373 		    (u_longlong_t)ds2->ds_object,
2374 		    dp->dp_spa->spa_name,
2375 		    (u_longlong_t)ds1->ds_object);
2376 	}
2377 
2378 	dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2379 }
2380 
2381 static int
2382 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2383 {
2384 	uint64_t originobj = *(uint64_t *)arg;
2385 	dsl_dataset_t *ds;
2386 	int err;
2387 	dsl_scan_t *scn = dp->dp_scan;
2388 
2389 	if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2390 		return (0);
2391 
2392 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2393 	if (err)
2394 		return (err);
2395 
2396 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2397 		dsl_dataset_t *prev;
2398 		err = dsl_dataset_hold_obj(dp,
2399 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2400 
2401 		dsl_dataset_rele(ds, FTAG);
2402 		if (err)
2403 			return (err);
2404 		ds = prev;
2405 	}
2406 	scan_ds_queue_insert(scn, ds->ds_object,
2407 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2408 	dsl_dataset_rele(ds, FTAG);
2409 	return (0);
2410 }
2411 
2412 static void
2413 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2414 {
2415 	dsl_pool_t *dp = scn->scn_dp;
2416 	dsl_dataset_t *ds;
2417 
2418 	VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2419 
2420 	if (scn->scn_phys.scn_cur_min_txg >=
2421 	    scn->scn_phys.scn_max_txg) {
2422 		/*
2423 		 * This can happen if this snapshot was created after the
2424 		 * scan started, and we already completed a previous snapshot
2425 		 * that was created after the scan started.  This snapshot
2426 		 * only references blocks with:
2427 		 *
2428 		 *	birth < our ds_creation_txg
2429 		 *	cur_min_txg is no less than ds_creation_txg.
2430 		 *	We have already visited these blocks.
2431 		 * or
2432 		 *	birth > scn_max_txg
2433 		 *	The scan requested not to visit these blocks.
2434 		 *
2435 		 * Subsequent snapshots (and clones) can reference our
2436 		 * blocks, or blocks with even higher birth times.
2437 		 * Therefore we do not need to visit them either,
2438 		 * so we do not add them to the work queue.
2439 		 *
2440 		 * Note that checking for cur_min_txg >= cur_max_txg
2441 		 * is not sufficient, because in that case we may need to
2442 		 * visit subsequent snapshots.  This happens when min_txg > 0,
2443 		 * which raises cur_min_txg.  In this case we will visit
2444 		 * this dataset but skip all of its blocks, because the
2445 		 * rootbp's birth time is < cur_min_txg.  Then we will
2446 		 * add the next snapshots/clones to the work queue.
2447 		 */
2448 		char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2449 		dsl_dataset_name(ds, dsname);
2450 		zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2451 		    "cur_min_txg (%llu) >= max_txg (%llu)",
2452 		    (longlong_t)dsobj, dsname,
2453 		    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2454 		    (longlong_t)scn->scn_phys.scn_max_txg);
2455 		kmem_free(dsname, MAXNAMELEN);
2456 
2457 		goto out;
2458 	}
2459 
2460 	/*
2461 	 * Only the ZIL in the head (non-snapshot) is valid. Even though
2462 	 * snapshots can have ZIL block pointers (which may be the same
2463 	 * BP as in the head), they must be ignored. In addition, $ORIGIN
2464 	 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2465 	 * need to look for a ZIL in it either. So we traverse the ZIL here,
2466 	 * rather than in scan_recurse(), because the regular snapshot
2467 	 * block-sharing rules don't apply to it.
2468 	 */
2469 	if (!dsl_dataset_is_snapshot(ds) &&
2470 	    (dp->dp_origin_snap == NULL ||
2471 	    ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2472 		objset_t *os;
2473 		if (dmu_objset_from_ds(ds, &os) != 0) {
2474 			goto out;
2475 		}
2476 		dsl_scan_zil(dp, &os->os_zil_header);
2477 	}
2478 
2479 	/*
2480 	 * Iterate over the bps in this ds.
2481 	 */
2482 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
2483 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2484 	dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2485 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
2486 
2487 	char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2488 	dsl_dataset_name(ds, dsname);
2489 	zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2490 	    "suspending=%u",
2491 	    (longlong_t)dsobj, dsname,
2492 	    (longlong_t)scn->scn_phys.scn_cur_min_txg,
2493 	    (longlong_t)scn->scn_phys.scn_cur_max_txg,
2494 	    (int)scn->scn_suspending);
2495 	kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2496 
2497 	if (scn->scn_suspending)
2498 		goto out;
2499 
2500 	/*
2501 	 * We've finished this pass over this dataset.
2502 	 */
2503 
2504 	/*
2505 	 * If we did not completely visit this dataset, do another pass.
2506 	 */
2507 	if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2508 		zfs_dbgmsg("incomplete pass on %s; visiting again",
2509 		    dp->dp_spa->spa_name);
2510 		scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2511 		scan_ds_queue_insert(scn, ds->ds_object,
2512 		    scn->scn_phys.scn_cur_max_txg);
2513 		goto out;
2514 	}
2515 
2516 	/*
2517 	 * Add descendant datasets to work queue.
2518 	 */
2519 	if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2520 		scan_ds_queue_insert(scn,
2521 		    dsl_dataset_phys(ds)->ds_next_snap_obj,
2522 		    dsl_dataset_phys(ds)->ds_creation_txg);
2523 	}
2524 	if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2525 		boolean_t usenext = B_FALSE;
2526 		if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2527 			uint64_t count;
2528 			/*
2529 			 * A bug in a previous version of the code could
2530 			 * cause upgrade_clones_cb() to not set
2531 			 * ds_next_snap_obj when it should, leading to a
2532 			 * missing entry.  Therefore we can only use the
2533 			 * next_clones_obj when its count is correct.
2534 			 */
2535 			int err = zap_count(dp->dp_meta_objset,
2536 			    dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2537 			if (err == 0 &&
2538 			    count == dsl_dataset_phys(ds)->ds_num_children - 1)
2539 				usenext = B_TRUE;
2540 		}
2541 
2542 		if (usenext) {
2543 			zap_cursor_t zc;
2544 			zap_attribute_t za;
2545 			for (zap_cursor_init(&zc, dp->dp_meta_objset,
2546 			    dsl_dataset_phys(ds)->ds_next_clones_obj);
2547 			    zap_cursor_retrieve(&zc, &za) == 0;
2548 			    (void) zap_cursor_advance(&zc)) {
2549 				scan_ds_queue_insert(scn,
2550 				    zfs_strtonum(za.za_name, NULL),
2551 				    dsl_dataset_phys(ds)->ds_creation_txg);
2552 			}
2553 			zap_cursor_fini(&zc);
2554 		} else {
2555 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2556 			    enqueue_clones_cb, &ds->ds_object,
2557 			    DS_FIND_CHILDREN));
2558 		}
2559 	}
2560 
2561 out:
2562 	dsl_dataset_rele(ds, FTAG);
2563 }
2564 
2565 static int
2566 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2567 {
2568 	(void) arg;
2569 	dsl_dataset_t *ds;
2570 	int err;
2571 	dsl_scan_t *scn = dp->dp_scan;
2572 
2573 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2574 	if (err)
2575 		return (err);
2576 
2577 	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2578 		dsl_dataset_t *prev;
2579 		err = dsl_dataset_hold_obj(dp,
2580 		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2581 		if (err) {
2582 			dsl_dataset_rele(ds, FTAG);
2583 			return (err);
2584 		}
2585 
2586 		/*
2587 		 * If this is a clone, we don't need to worry about it for now.
2588 		 */
2589 		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2590 			dsl_dataset_rele(ds, FTAG);
2591 			dsl_dataset_rele(prev, FTAG);
2592 			return (0);
2593 		}
2594 		dsl_dataset_rele(ds, FTAG);
2595 		ds = prev;
2596 	}
2597 
2598 	scan_ds_queue_insert(scn, ds->ds_object,
2599 	    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2600 	dsl_dataset_rele(ds, FTAG);
2601 	return (0);
2602 }
2603 
2604 void
2605 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2606     ddt_entry_t *dde, dmu_tx_t *tx)
2607 {
2608 	(void) tx;
2609 	const ddt_key_t *ddk = &dde->dde_key;
2610 	ddt_phys_t *ddp = dde->dde_phys;
2611 	blkptr_t bp;
2612 	zbookmark_phys_t zb = { 0 };
2613 
2614 	if (!dsl_scan_is_running(scn))
2615 		return;
2616 
2617 	/*
2618 	 * This function is special because it is the only thing
2619 	 * that can add scan_io_t's to the vdev scan queues from
2620 	 * outside dsl_scan_sync(). For the most part this is ok
2621 	 * as long as it is called from within syncing context.
2622 	 * However, dsl_scan_sync() expects that no new sio's will
2623 	 * be added between when all the work for a scan is done
2624 	 * and the next txg when the scan is actually marked as
2625 	 * completed. This check ensures we do not issue new sio's
2626 	 * during this period.
2627 	 */
2628 	if (scn->scn_done_txg != 0)
2629 		return;
2630 
2631 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2632 		if (ddp->ddp_phys_birth == 0 ||
2633 		    ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2634 			continue;
2635 		ddt_bp_create(checksum, ddk, ddp, &bp);
2636 
2637 		scn->scn_visited_this_txg++;
2638 		scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2639 	}
2640 }
2641 
2642 /*
2643  * Scrub/dedup interaction.
2644  *
2645  * If there are N references to a deduped block, we don't want to scrub it
2646  * N times -- ideally, we should scrub it exactly once.
2647  *
2648  * We leverage the fact that the dde's replication class (enum ddt_class)
2649  * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2650  * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2651  *
2652  * To prevent excess scrubbing, the scrub begins by walking the DDT
2653  * to find all blocks with refcnt > 1, and scrubs each of these once.
2654  * Since there are two replication classes which contain blocks with
2655  * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2656  * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2657  *
2658  * There would be nothing more to say if a block's refcnt couldn't change
2659  * during a scrub, but of course it can so we must account for changes
2660  * in a block's replication class.
2661  *
2662  * Here's an example of what can occur:
2663  *
2664  * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2665  * when visited during the top-down scrub phase, it will be scrubbed twice.
2666  * This negates our scrub optimization, but is otherwise harmless.
2667  *
2668  * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2669  * on each visit during the top-down scrub phase, it will never be scrubbed.
2670  * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2671  * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2672  * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2673  * while a scrub is in progress, it scrubs the block right then.
2674  */
2675 static void
2676 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2677 {
2678 	ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2679 	ddt_entry_t dde = {{{{0}}}};
2680 	int error;
2681 	uint64_t n = 0;
2682 
2683 	while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2684 		ddt_t *ddt;
2685 
2686 		if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2687 			break;
2688 		dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2689 		    (longlong_t)ddb->ddb_class,
2690 		    (longlong_t)ddb->ddb_type,
2691 		    (longlong_t)ddb->ddb_checksum,
2692 		    (longlong_t)ddb->ddb_cursor);
2693 
2694 		/* There should be no pending changes to the dedup table */
2695 		ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2696 		ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2697 
2698 		dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2699 		n++;
2700 
2701 		if (dsl_scan_check_suspend(scn, NULL))
2702 			break;
2703 	}
2704 
2705 	zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2706 	    "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
2707 	    (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2708 
2709 	ASSERT(error == 0 || error == ENOENT);
2710 	ASSERT(error != ENOENT ||
2711 	    ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2712 }
2713 
2714 static uint64_t
2715 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2716 {
2717 	uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2718 	if (ds->ds_is_snapshot)
2719 		return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2720 	return (smt);
2721 }
2722 
2723 static void
2724 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2725 {
2726 	scan_ds_t *sds;
2727 	dsl_pool_t *dp = scn->scn_dp;
2728 
2729 	if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2730 	    scn->scn_phys.scn_ddt_class_max) {
2731 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2732 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2733 		dsl_scan_ddt(scn, tx);
2734 		if (scn->scn_suspending)
2735 			return;
2736 	}
2737 
2738 	if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2739 		/* First do the MOS & ORIGIN */
2740 
2741 		scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2742 		scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2743 		dsl_scan_visit_rootbp(scn, NULL,
2744 		    &dp->dp_meta_rootbp, tx);
2745 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2746 		if (scn->scn_suspending)
2747 			return;
2748 
2749 		if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2750 			VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2751 			    enqueue_cb, NULL, DS_FIND_CHILDREN));
2752 		} else {
2753 			dsl_scan_visitds(scn,
2754 			    dp->dp_origin_snap->ds_object, tx);
2755 		}
2756 		ASSERT(!scn->scn_suspending);
2757 	} else if (scn->scn_phys.scn_bookmark.zb_objset !=
2758 	    ZB_DESTROYED_OBJSET) {
2759 		uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2760 		/*
2761 		 * If we were suspended, continue from here. Note if the
2762 		 * ds we were suspended on was deleted, the zb_objset may
2763 		 * be -1, so we will skip this and find a new objset
2764 		 * below.
2765 		 */
2766 		dsl_scan_visitds(scn, dsobj, tx);
2767 		if (scn->scn_suspending)
2768 			return;
2769 	}
2770 
2771 	/*
2772 	 * In case we suspended right at the end of the ds, zero the
2773 	 * bookmark so we don't think that we're still trying to resume.
2774 	 */
2775 	memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
2776 
2777 	/*
2778 	 * Keep pulling things out of the dataset avl queue. Updates to the
2779 	 * persistent zap-object-as-queue happen only at checkpoints.
2780 	 */
2781 	while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2782 		dsl_dataset_t *ds;
2783 		uint64_t dsobj = sds->sds_dsobj;
2784 		uint64_t txg = sds->sds_txg;
2785 
2786 		/* dequeue and free the ds from the queue */
2787 		scan_ds_queue_remove(scn, dsobj);
2788 		sds = NULL;
2789 
2790 		/* set up min / max txg */
2791 		VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2792 		if (txg != 0) {
2793 			scn->scn_phys.scn_cur_min_txg =
2794 			    MAX(scn->scn_phys.scn_min_txg, txg);
2795 		} else {
2796 			scn->scn_phys.scn_cur_min_txg =
2797 			    MAX(scn->scn_phys.scn_min_txg,
2798 			    dsl_dataset_phys(ds)->ds_prev_snap_txg);
2799 		}
2800 		scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2801 		dsl_dataset_rele(ds, FTAG);
2802 
2803 		dsl_scan_visitds(scn, dsobj, tx);
2804 		if (scn->scn_suspending)
2805 			return;
2806 	}
2807 
2808 	/* No more objsets to fetch, we're done */
2809 	scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2810 	ASSERT0(scn->scn_suspending);
2811 }
2812 
2813 static uint64_t
2814 dsl_scan_count_data_disks(vdev_t *rvd)
2815 {
2816 	uint64_t i, leaves = 0;
2817 
2818 	for (i = 0; i < rvd->vdev_children; i++) {
2819 		vdev_t *vd = rvd->vdev_child[i];
2820 		if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
2821 			continue;
2822 		leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
2823 	}
2824 	return (leaves);
2825 }
2826 
2827 static void
2828 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2829 {
2830 	int i;
2831 	uint64_t cur_size = 0;
2832 
2833 	for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2834 		cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2835 	}
2836 
2837 	q->q_total_zio_size_this_txg += cur_size;
2838 	q->q_zios_this_txg++;
2839 }
2840 
2841 static void
2842 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2843     uint64_t end)
2844 {
2845 	q->q_total_seg_size_this_txg += end - start;
2846 	q->q_segs_this_txg++;
2847 }
2848 
2849 static boolean_t
2850 scan_io_queue_check_suspend(dsl_scan_t *scn)
2851 {
2852 	/* See comment in dsl_scan_check_suspend() */
2853 	uint64_t curr_time_ns = gethrtime();
2854 	uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2855 	uint64_t sync_time_ns = curr_time_ns -
2856 	    scn->scn_dp->dp_spa->spa_sync_starttime;
2857 	uint64_t dirty_min_bytes = zfs_dirty_data_max *
2858 	    zfs_vdev_async_write_active_min_dirty_percent / 100;
2859 	uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2860 	    zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2861 
2862 	return ((NSEC2MSEC(scan_time_ns) > mintime &&
2863 	    (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
2864 	    txg_sync_waiting(scn->scn_dp) ||
2865 	    NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2866 	    spa_shutting_down(scn->scn_dp->dp_spa));
2867 }
2868 
2869 /*
2870  * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2871  * disk. This consumes the io_list and frees the scan_io_t's. This is
2872  * called when emptying queues, either when we're up against the memory
2873  * limit or when we have finished scanning. Returns B_TRUE if we stopped
2874  * processing the list before we finished. Any sios that were not issued
2875  * will remain in the io_list.
2876  */
2877 static boolean_t
2878 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2879 {
2880 	dsl_scan_t *scn = queue->q_scn;
2881 	scan_io_t *sio;
2882 	boolean_t suspended = B_FALSE;
2883 
2884 	while ((sio = list_head(io_list)) != NULL) {
2885 		blkptr_t bp;
2886 
2887 		if (scan_io_queue_check_suspend(scn)) {
2888 			suspended = B_TRUE;
2889 			break;
2890 		}
2891 
2892 		sio2bp(sio, &bp);
2893 		scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2894 		    &sio->sio_zb, queue);
2895 		(void) list_remove_head(io_list);
2896 		scan_io_queues_update_zio_stats(queue, &bp);
2897 		sio_free(sio);
2898 	}
2899 	return (suspended);
2900 }
2901 
2902 /*
2903  * This function removes sios from an IO queue which reside within a given
2904  * range_seg_t and inserts them (in offset order) into a list. Note that
2905  * we only ever return a maximum of 32 sios at once. If there are more sios
2906  * to process within this segment that did not make it onto the list we
2907  * return B_TRUE and otherwise B_FALSE.
2908  */
2909 static boolean_t
2910 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2911 {
2912 	scan_io_t *srch_sio, *sio, *next_sio;
2913 	avl_index_t idx;
2914 	uint_t num_sios = 0;
2915 	int64_t bytes_issued = 0;
2916 
2917 	ASSERT(rs != NULL);
2918 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2919 
2920 	srch_sio = sio_alloc(1);
2921 	srch_sio->sio_nr_dvas = 1;
2922 	SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2923 
2924 	/*
2925 	 * The exact start of the extent might not contain any matching zios,
2926 	 * so if that's the case, examine the next one in the tree.
2927 	 */
2928 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2929 	sio_free(srch_sio);
2930 
2931 	if (sio == NULL)
2932 		sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2933 
2934 	while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2935 	    queue->q_exts_by_addr) && num_sios <= 32) {
2936 		ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2937 		    queue->q_exts_by_addr));
2938 		ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2939 		    queue->q_exts_by_addr));
2940 
2941 		next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2942 		avl_remove(&queue->q_sios_by_addr, sio);
2943 		if (avl_is_empty(&queue->q_sios_by_addr))
2944 			atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
2945 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
2946 
2947 		bytes_issued += SIO_GET_ASIZE(sio);
2948 		num_sios++;
2949 		list_insert_tail(list, sio);
2950 		sio = next_sio;
2951 	}
2952 
2953 	/*
2954 	 * We limit the number of sios we process at once to 32 to avoid
2955 	 * biting off more than we can chew. If we didn't take everything
2956 	 * in the segment we update it to reflect the work we were able to
2957 	 * complete. Otherwise, we remove it from the range tree entirely.
2958 	 */
2959 	if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2960 	    queue->q_exts_by_addr)) {
2961 		range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2962 		    -bytes_issued);
2963 		range_tree_resize_segment(queue->q_exts_by_addr, rs,
2964 		    SIO_GET_OFFSET(sio), rs_get_end(rs,
2965 		    queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2966 		queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
2967 		return (B_TRUE);
2968 	} else {
2969 		uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
2970 		uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
2971 		range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
2972 		queue->q_last_ext_addr = -1;
2973 		return (B_FALSE);
2974 	}
2975 }
2976 
2977 /*
2978  * This is called from the queue emptying thread and selects the next
2979  * extent from which we are to issue I/Os. The behavior of this function
2980  * depends on the state of the scan, the current memory consumption and
2981  * whether or not we are performing a scan shutdown.
2982  * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2983  * 	needs to perform a checkpoint
2984  * 2) We select the largest available extent if we are up against the
2985  * 	memory limit.
2986  * 3) Otherwise we don't select any extents.
2987  */
2988 static range_seg_t *
2989 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
2990 {
2991 	dsl_scan_t *scn = queue->q_scn;
2992 	range_tree_t *rt = queue->q_exts_by_addr;
2993 
2994 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2995 	ASSERT(scn->scn_is_sorted);
2996 
2997 	if (!scn->scn_checkpointing && !scn->scn_clearing)
2998 		return (NULL);
2999 
3000 	/*
3001 	 * During normal clearing, we want to issue our largest segments
3002 	 * first, keeping IO as sequential as possible, and leaving the
3003 	 * smaller extents for later with the hope that they might eventually
3004 	 * grow to larger sequential segments. However, when the scan is
3005 	 * checkpointing, no new extents will be added to the sorting queue,
3006 	 * so the way we are sorted now is as good as it will ever get.
3007 	 * In this case, we instead switch to issuing extents in LBA order.
3008 	 */
3009 	if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3010 	    zfs_scan_issue_strategy == 1)
3011 		return (range_tree_first(rt));
3012 
3013 	/*
3014 	 * Try to continue previous extent if it is not completed yet.  After
3015 	 * shrink in scan_io_queue_gather() it may no longer be the best, but
3016 	 * otherwise we leave shorter remnant every txg.
3017 	 */
3018 	uint64_t start;
3019 	uint64_t size = 1ULL << rt->rt_shift;
3020 	range_seg_t *addr_rs;
3021 	if (queue->q_last_ext_addr != -1) {
3022 		start = queue->q_last_ext_addr;
3023 		addr_rs = range_tree_find(rt, start, size);
3024 		if (addr_rs != NULL)
3025 			return (addr_rs);
3026 	}
3027 
3028 	/*
3029 	 * Nothing to continue, so find new best extent.
3030 	 */
3031 	uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3032 	if (v == NULL)
3033 		return (NULL);
3034 	queue->q_last_ext_addr = start = *v << rt->rt_shift;
3035 
3036 	/*
3037 	 * We need to get the original entry in the by_addr tree so we can
3038 	 * modify it.
3039 	 */
3040 	addr_rs = range_tree_find(rt, start, size);
3041 	ASSERT3P(addr_rs, !=, NULL);
3042 	ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3043 	ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3044 	return (addr_rs);
3045 }
3046 
3047 static void
3048 scan_io_queues_run_one(void *arg)
3049 {
3050 	dsl_scan_io_queue_t *queue = arg;
3051 	kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3052 	boolean_t suspended = B_FALSE;
3053 	range_seg_t *rs;
3054 	scan_io_t *sio;
3055 	zio_t *zio;
3056 	list_t sio_list;
3057 
3058 	ASSERT(queue->q_scn->scn_is_sorted);
3059 
3060 	list_create(&sio_list, sizeof (scan_io_t),
3061 	    offsetof(scan_io_t, sio_nodes.sio_list_node));
3062 	zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3063 	    NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3064 	mutex_enter(q_lock);
3065 	queue->q_zio = zio;
3066 
3067 	/* Calculate maximum in-flight bytes for this vdev. */
3068 	queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3069 	    (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3070 
3071 	/* reset per-queue scan statistics for this txg */
3072 	queue->q_total_seg_size_this_txg = 0;
3073 	queue->q_segs_this_txg = 0;
3074 	queue->q_total_zio_size_this_txg = 0;
3075 	queue->q_zios_this_txg = 0;
3076 
3077 	/* loop until we run out of time or sios */
3078 	while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3079 		uint64_t seg_start = 0, seg_end = 0;
3080 		boolean_t more_left;
3081 
3082 		ASSERT(list_is_empty(&sio_list));
3083 
3084 		/* loop while we still have sios left to process in this rs */
3085 		do {
3086 			scan_io_t *first_sio, *last_sio;
3087 
3088 			/*
3089 			 * We have selected which extent needs to be
3090 			 * processed next. Gather up the corresponding sios.
3091 			 */
3092 			more_left = scan_io_queue_gather(queue, rs, &sio_list);
3093 			ASSERT(!list_is_empty(&sio_list));
3094 			first_sio = list_head(&sio_list);
3095 			last_sio = list_tail(&sio_list);
3096 
3097 			seg_end = SIO_GET_END_OFFSET(last_sio);
3098 			if (seg_start == 0)
3099 				seg_start = SIO_GET_OFFSET(first_sio);
3100 
3101 			/*
3102 			 * Issuing sios can take a long time so drop the
3103 			 * queue lock. The sio queue won't be updated by
3104 			 * other threads since we're in syncing context so
3105 			 * we can be sure that our trees will remain exactly
3106 			 * as we left them.
3107 			 */
3108 			mutex_exit(q_lock);
3109 			suspended = scan_io_queue_issue(queue, &sio_list);
3110 			mutex_enter(q_lock);
3111 
3112 			if (suspended)
3113 				break;
3114 		} while (more_left);
3115 
3116 		/* update statistics for debugging purposes */
3117 		scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3118 
3119 		if (suspended)
3120 			break;
3121 	}
3122 
3123 	/*
3124 	 * If we were suspended in the middle of processing,
3125 	 * requeue any unfinished sios and exit.
3126 	 */
3127 	while ((sio = list_head(&sio_list)) != NULL) {
3128 		list_remove(&sio_list, sio);
3129 		scan_io_queue_insert_impl(queue, sio);
3130 	}
3131 
3132 	queue->q_zio = NULL;
3133 	mutex_exit(q_lock);
3134 	zio_nowait(zio);
3135 	list_destroy(&sio_list);
3136 }
3137 
3138 /*
3139  * Performs an emptying run on all scan queues in the pool. This just
3140  * punches out one thread per top-level vdev, each of which processes
3141  * only that vdev's scan queue. We can parallelize the I/O here because
3142  * we know that each queue's I/Os only affect its own top-level vdev.
3143  *
3144  * This function waits for the queue runs to complete, and must be
3145  * called from dsl_scan_sync (or in general, syncing context).
3146  */
3147 static void
3148 scan_io_queues_run(dsl_scan_t *scn)
3149 {
3150 	spa_t *spa = scn->scn_dp->dp_spa;
3151 
3152 	ASSERT(scn->scn_is_sorted);
3153 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3154 
3155 	if (scn->scn_queues_pending == 0)
3156 		return;
3157 
3158 	if (scn->scn_taskq == NULL) {
3159 		int nthreads = spa->spa_root_vdev->vdev_children;
3160 
3161 		/*
3162 		 * We need to make this taskq *always* execute as many
3163 		 * threads in parallel as we have top-level vdevs and no
3164 		 * less, otherwise strange serialization of the calls to
3165 		 * scan_io_queues_run_one can occur during spa_sync runs
3166 		 * and that significantly impacts performance.
3167 		 */
3168 		scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3169 		    minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3170 	}
3171 
3172 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3173 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3174 
3175 		mutex_enter(&vd->vdev_scan_io_queue_lock);
3176 		if (vd->vdev_scan_io_queue != NULL) {
3177 			VERIFY(taskq_dispatch(scn->scn_taskq,
3178 			    scan_io_queues_run_one, vd->vdev_scan_io_queue,
3179 			    TQ_SLEEP) != TASKQID_INVALID);
3180 		}
3181 		mutex_exit(&vd->vdev_scan_io_queue_lock);
3182 	}
3183 
3184 	/*
3185 	 * Wait for the queues to finish issuing their IOs for this run
3186 	 * before we return. There may still be IOs in flight at this
3187 	 * point.
3188 	 */
3189 	taskq_wait(scn->scn_taskq);
3190 }
3191 
3192 static boolean_t
3193 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3194 {
3195 	uint64_t elapsed_nanosecs;
3196 
3197 	if (zfs_recover)
3198 		return (B_FALSE);
3199 
3200 	if (zfs_async_block_max_blocks != 0 &&
3201 	    scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3202 		return (B_TRUE);
3203 	}
3204 
3205 	if (zfs_max_async_dedup_frees != 0 &&
3206 	    scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3207 		return (B_TRUE);
3208 	}
3209 
3210 	elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3211 	return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3212 	    (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3213 	    txg_sync_waiting(scn->scn_dp)) ||
3214 	    spa_shutting_down(scn->scn_dp->dp_spa));
3215 }
3216 
3217 static int
3218 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3219 {
3220 	dsl_scan_t *scn = arg;
3221 
3222 	if (!scn->scn_is_bptree ||
3223 	    (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3224 		if (dsl_scan_async_block_should_pause(scn))
3225 			return (SET_ERROR(ERESTART));
3226 	}
3227 
3228 	zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3229 	    dmu_tx_get_txg(tx), bp, 0));
3230 	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3231 	    -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3232 	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3233 	scn->scn_visited_this_txg++;
3234 	if (BP_GET_DEDUP(bp))
3235 		scn->scn_dedup_frees_this_txg++;
3236 	return (0);
3237 }
3238 
3239 static void
3240 dsl_scan_update_stats(dsl_scan_t *scn)
3241 {
3242 	spa_t *spa = scn->scn_dp->dp_spa;
3243 	uint64_t i;
3244 	uint64_t seg_size_total = 0, zio_size_total = 0;
3245 	uint64_t seg_count_total = 0, zio_count_total = 0;
3246 
3247 	for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3248 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3249 		dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3250 
3251 		if (queue == NULL)
3252 			continue;
3253 
3254 		seg_size_total += queue->q_total_seg_size_this_txg;
3255 		zio_size_total += queue->q_total_zio_size_this_txg;
3256 		seg_count_total += queue->q_segs_this_txg;
3257 		zio_count_total += queue->q_zios_this_txg;
3258 	}
3259 
3260 	if (seg_count_total == 0 || zio_count_total == 0) {
3261 		scn->scn_avg_seg_size_this_txg = 0;
3262 		scn->scn_avg_zio_size_this_txg = 0;
3263 		scn->scn_segs_this_txg = 0;
3264 		scn->scn_zios_this_txg = 0;
3265 		return;
3266 	}
3267 
3268 	scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3269 	scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3270 	scn->scn_segs_this_txg = seg_count_total;
3271 	scn->scn_zios_this_txg = zio_count_total;
3272 }
3273 
3274 static int
3275 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3276     dmu_tx_t *tx)
3277 {
3278 	ASSERT(!bp_freed);
3279 	return (dsl_scan_free_block_cb(arg, bp, tx));
3280 }
3281 
3282 static int
3283 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3284     dmu_tx_t *tx)
3285 {
3286 	ASSERT(!bp_freed);
3287 	dsl_scan_t *scn = arg;
3288 	const dva_t *dva = &bp->blk_dva[0];
3289 
3290 	if (dsl_scan_async_block_should_pause(scn))
3291 		return (SET_ERROR(ERESTART));
3292 
3293 	spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3294 	    DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3295 	    DVA_GET_ASIZE(dva), tx);
3296 	scn->scn_visited_this_txg++;
3297 	return (0);
3298 }
3299 
3300 boolean_t
3301 dsl_scan_active(dsl_scan_t *scn)
3302 {
3303 	spa_t *spa = scn->scn_dp->dp_spa;
3304 	uint64_t used = 0, comp, uncomp;
3305 	boolean_t clones_left;
3306 
3307 	if (spa->spa_load_state != SPA_LOAD_NONE)
3308 		return (B_FALSE);
3309 	if (spa_shutting_down(spa))
3310 		return (B_FALSE);
3311 	if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3312 	    (scn->scn_async_destroying && !scn->scn_async_stalled))
3313 		return (B_TRUE);
3314 
3315 	if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3316 		(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3317 		    &used, &comp, &uncomp);
3318 	}
3319 	clones_left = spa_livelist_delete_check(spa);
3320 	return ((used != 0) || (clones_left));
3321 }
3322 
3323 static boolean_t
3324 dsl_scan_check_deferred(vdev_t *vd)
3325 {
3326 	boolean_t need_resilver = B_FALSE;
3327 
3328 	for (int c = 0; c < vd->vdev_children; c++) {
3329 		need_resilver |=
3330 		    dsl_scan_check_deferred(vd->vdev_child[c]);
3331 	}
3332 
3333 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3334 	    !vd->vdev_ops->vdev_op_leaf)
3335 		return (need_resilver);
3336 
3337 	if (!vd->vdev_resilver_deferred)
3338 		need_resilver = B_TRUE;
3339 
3340 	return (need_resilver);
3341 }
3342 
3343 static boolean_t
3344 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3345     uint64_t phys_birth)
3346 {
3347 	vdev_t *vd;
3348 
3349 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3350 
3351 	if (vd->vdev_ops == &vdev_indirect_ops) {
3352 		/*
3353 		 * The indirect vdev can point to multiple
3354 		 * vdevs.  For simplicity, always create
3355 		 * the resilver zio_t. zio_vdev_io_start()
3356 		 * will bypass the child resilver i/o's if
3357 		 * they are on vdevs that don't have DTL's.
3358 		 */
3359 		return (B_TRUE);
3360 	}
3361 
3362 	if (DVA_GET_GANG(dva)) {
3363 		/*
3364 		 * Gang members may be spread across multiple
3365 		 * vdevs, so the best estimate we have is the
3366 		 * scrub range, which has already been checked.
3367 		 * XXX -- it would be better to change our
3368 		 * allocation policy to ensure that all
3369 		 * gang members reside on the same vdev.
3370 		 */
3371 		return (B_TRUE);
3372 	}
3373 
3374 	/*
3375 	 * Check if the top-level vdev must resilver this offset.
3376 	 * When the offset does not intersect with a dirty leaf DTL
3377 	 * then it may be possible to skip the resilver IO.  The psize
3378 	 * is provided instead of asize to simplify the check for RAIDZ.
3379 	 */
3380 	if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3381 		return (B_FALSE);
3382 
3383 	/*
3384 	 * Check that this top-level vdev has a device under it which
3385 	 * is resilvering and is not deferred.
3386 	 */
3387 	if (!dsl_scan_check_deferred(vd))
3388 		return (B_FALSE);
3389 
3390 	return (B_TRUE);
3391 }
3392 
3393 static int
3394 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3395 {
3396 	dsl_scan_t *scn = dp->dp_scan;
3397 	spa_t *spa = dp->dp_spa;
3398 	int err = 0;
3399 
3400 	if (spa_suspend_async_destroy(spa))
3401 		return (0);
3402 
3403 	if (zfs_free_bpobj_enabled &&
3404 	    spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3405 		scn->scn_is_bptree = B_FALSE;
3406 		scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3407 		scn->scn_zio_root = zio_root(spa, NULL,
3408 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3409 		err = bpobj_iterate(&dp->dp_free_bpobj,
3410 		    bpobj_dsl_scan_free_block_cb, scn, tx);
3411 		VERIFY0(zio_wait(scn->scn_zio_root));
3412 		scn->scn_zio_root = NULL;
3413 
3414 		if (err != 0 && err != ERESTART)
3415 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3416 	}
3417 
3418 	if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3419 		ASSERT(scn->scn_async_destroying);
3420 		scn->scn_is_bptree = B_TRUE;
3421 		scn->scn_zio_root = zio_root(spa, NULL,
3422 		    NULL, ZIO_FLAG_MUSTSUCCEED);
3423 		err = bptree_iterate(dp->dp_meta_objset,
3424 		    dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3425 		VERIFY0(zio_wait(scn->scn_zio_root));
3426 		scn->scn_zio_root = NULL;
3427 
3428 		if (err == EIO || err == ECKSUM) {
3429 			err = 0;
3430 		} else if (err != 0 && err != ERESTART) {
3431 			zfs_panic_recover("error %u from "
3432 			    "traverse_dataset_destroyed()", err);
3433 		}
3434 
3435 		if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3436 			/* finished; deactivate async destroy feature */
3437 			spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3438 			ASSERT(!spa_feature_is_active(spa,
3439 			    SPA_FEATURE_ASYNC_DESTROY));
3440 			VERIFY0(zap_remove(dp->dp_meta_objset,
3441 			    DMU_POOL_DIRECTORY_OBJECT,
3442 			    DMU_POOL_BPTREE_OBJ, tx));
3443 			VERIFY0(bptree_free(dp->dp_meta_objset,
3444 			    dp->dp_bptree_obj, tx));
3445 			dp->dp_bptree_obj = 0;
3446 			scn->scn_async_destroying = B_FALSE;
3447 			scn->scn_async_stalled = B_FALSE;
3448 		} else {
3449 			/*
3450 			 * If we didn't make progress, mark the async
3451 			 * destroy as stalled, so that we will not initiate
3452 			 * a spa_sync() on its behalf.  Note that we only
3453 			 * check this if we are not finished, because if the
3454 			 * bptree had no blocks for us to visit, we can
3455 			 * finish without "making progress".
3456 			 */
3457 			scn->scn_async_stalled =
3458 			    (scn->scn_visited_this_txg == 0);
3459 		}
3460 	}
3461 	if (scn->scn_visited_this_txg) {
3462 		zfs_dbgmsg("freed %llu blocks in %llums from "
3463 		    "free_bpobj/bptree on %s in txg %llu; err=%u",
3464 		    (longlong_t)scn->scn_visited_this_txg,
3465 		    (longlong_t)
3466 		    NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3467 		    spa->spa_name, (longlong_t)tx->tx_txg, err);
3468 		scn->scn_visited_this_txg = 0;
3469 		scn->scn_dedup_frees_this_txg = 0;
3470 
3471 		/*
3472 		 * Write out changes to the DDT that may be required as a
3473 		 * result of the blocks freed.  This ensures that the DDT
3474 		 * is clean when a scrub/resilver runs.
3475 		 */
3476 		ddt_sync(spa, tx->tx_txg);
3477 	}
3478 	if (err != 0)
3479 		return (err);
3480 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3481 	    zfs_free_leak_on_eio &&
3482 	    (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3483 	    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3484 	    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3485 		/*
3486 		 * We have finished background destroying, but there is still
3487 		 * some space left in the dp_free_dir. Transfer this leaked
3488 		 * space to the dp_leak_dir.
3489 		 */
3490 		if (dp->dp_leak_dir == NULL) {
3491 			rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3492 			(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3493 			    LEAK_DIR_NAME, tx);
3494 			VERIFY0(dsl_pool_open_special_dir(dp,
3495 			    LEAK_DIR_NAME, &dp->dp_leak_dir));
3496 			rrw_exit(&dp->dp_config_rwlock, FTAG);
3497 		}
3498 		dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3499 		    dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3500 		    dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3501 		    dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3502 		dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3503 		    -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3504 		    -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3505 		    -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3506 	}
3507 
3508 	if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3509 	    !spa_livelist_delete_check(spa)) {
3510 		/* finished; verify that space accounting went to zero */
3511 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3512 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3513 		ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3514 	}
3515 
3516 	spa_notify_waiters(spa);
3517 
3518 	EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3519 	    0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3520 	    DMU_POOL_OBSOLETE_BPOBJ));
3521 	if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3522 		ASSERT(spa_feature_is_active(dp->dp_spa,
3523 		    SPA_FEATURE_OBSOLETE_COUNTS));
3524 
3525 		scn->scn_is_bptree = B_FALSE;
3526 		scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3527 		err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3528 		    dsl_scan_obsolete_block_cb, scn, tx);
3529 		if (err != 0 && err != ERESTART)
3530 			zfs_panic_recover("error %u from bpobj_iterate()", err);
3531 
3532 		if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3533 			dsl_pool_destroy_obsolete_bpobj(dp, tx);
3534 	}
3535 	return (0);
3536 }
3537 
3538 /*
3539  * This is the primary entry point for scans that is called from syncing
3540  * context. Scans must happen entirely during syncing context so that we
3541  * can guarantee that blocks we are currently scanning will not change out
3542  * from under us. While a scan is active, this function controls how quickly
3543  * transaction groups proceed, instead of the normal handling provided by
3544  * txg_sync_thread().
3545  */
3546 void
3547 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3548 {
3549 	int err = 0;
3550 	dsl_scan_t *scn = dp->dp_scan;
3551 	spa_t *spa = dp->dp_spa;
3552 	state_sync_type_t sync_type = SYNC_OPTIONAL;
3553 
3554 	if (spa->spa_resilver_deferred &&
3555 	    !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3556 		spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3557 
3558 	/*
3559 	 * Check for scn_restart_txg before checking spa_load_state, so
3560 	 * that we can restart an old-style scan while the pool is being
3561 	 * imported (see dsl_scan_init). We also restart scans if there
3562 	 * is a deferred resilver and the user has manually disabled
3563 	 * deferred resilvers via the tunable.
3564 	 */
3565 	if (dsl_scan_restarting(scn, tx) ||
3566 	    (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3567 		pool_scan_func_t func = POOL_SCAN_SCRUB;
3568 		dsl_scan_done(scn, B_FALSE, tx);
3569 		if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3570 			func = POOL_SCAN_RESILVER;
3571 		zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3572 		    func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
3573 		dsl_scan_setup_sync(&func, tx);
3574 	}
3575 
3576 	/*
3577 	 * Only process scans in sync pass 1.
3578 	 */
3579 	if (spa_sync_pass(spa) > 1)
3580 		return;
3581 
3582 	/*
3583 	 * If the spa is shutting down, then stop scanning. This will
3584 	 * ensure that the scan does not dirty any new data during the
3585 	 * shutdown phase.
3586 	 */
3587 	if (spa_shutting_down(spa))
3588 		return;
3589 
3590 	/*
3591 	 * If the scan is inactive due to a stalled async destroy, try again.
3592 	 */
3593 	if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3594 		return;
3595 
3596 	/* reset scan statistics */
3597 	scn->scn_visited_this_txg = 0;
3598 	scn->scn_dedup_frees_this_txg = 0;
3599 	scn->scn_holes_this_txg = 0;
3600 	scn->scn_lt_min_this_txg = 0;
3601 	scn->scn_gt_max_this_txg = 0;
3602 	scn->scn_ddt_contained_this_txg = 0;
3603 	scn->scn_objsets_visited_this_txg = 0;
3604 	scn->scn_avg_seg_size_this_txg = 0;
3605 	scn->scn_segs_this_txg = 0;
3606 	scn->scn_avg_zio_size_this_txg = 0;
3607 	scn->scn_zios_this_txg = 0;
3608 	scn->scn_suspending = B_FALSE;
3609 	scn->scn_sync_start_time = gethrtime();
3610 	spa->spa_scrub_active = B_TRUE;
3611 
3612 	/*
3613 	 * First process the async destroys.  If we suspend, don't do
3614 	 * any scrubbing or resilvering.  This ensures that there are no
3615 	 * async destroys while we are scanning, so the scan code doesn't
3616 	 * have to worry about traversing it.  It is also faster to free the
3617 	 * blocks than to scrub them.
3618 	 */
3619 	err = dsl_process_async_destroys(dp, tx);
3620 	if (err != 0)
3621 		return;
3622 
3623 	if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3624 		return;
3625 
3626 	/*
3627 	 * Wait a few txgs after importing to begin scanning so that
3628 	 * we can get the pool imported quickly.
3629 	 */
3630 	if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3631 		return;
3632 
3633 	/*
3634 	 * zfs_scan_suspend_progress can be set to disable scan progress.
3635 	 * We don't want to spin the txg_sync thread, so we add a delay
3636 	 * here to simulate the time spent doing a scan. This is mostly
3637 	 * useful for testing and debugging.
3638 	 */
3639 	if (zfs_scan_suspend_progress) {
3640 		uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3641 		uint_t mintime = (scn->scn_phys.scn_func ==
3642 		    POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
3643 		    zfs_scrub_min_time_ms;
3644 
3645 		while (zfs_scan_suspend_progress &&
3646 		    !txg_sync_waiting(scn->scn_dp) &&
3647 		    !spa_shutting_down(scn->scn_dp->dp_spa) &&
3648 		    NSEC2MSEC(scan_time_ns) < mintime) {
3649 			delay(hz);
3650 			scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3651 		}
3652 		return;
3653 	}
3654 
3655 	/*
3656 	 * It is possible to switch from unsorted to sorted at any time,
3657 	 * but afterwards the scan will remain sorted unless reloaded from
3658 	 * a checkpoint after a reboot.
3659 	 */
3660 	if (!zfs_scan_legacy) {
3661 		scn->scn_is_sorted = B_TRUE;
3662 		if (scn->scn_last_checkpoint == 0)
3663 			scn->scn_last_checkpoint = ddi_get_lbolt();
3664 	}
3665 
3666 	/*
3667 	 * For sorted scans, determine what kind of work we will be doing
3668 	 * this txg based on our memory limitations and whether or not we
3669 	 * need to perform a checkpoint.
3670 	 */
3671 	if (scn->scn_is_sorted) {
3672 		/*
3673 		 * If we are over our checkpoint interval, set scn_clearing
3674 		 * so that we can begin checkpointing immediately. The
3675 		 * checkpoint allows us to save a consistent bookmark
3676 		 * representing how much data we have scrubbed so far.
3677 		 * Otherwise, use the memory limit to determine if we should
3678 		 * scan for metadata or start issue scrub IOs. We accumulate
3679 		 * metadata until we hit our hard memory limit at which point
3680 		 * we issue scrub IOs until we are at our soft memory limit.
3681 		 */
3682 		if (scn->scn_checkpointing ||
3683 		    ddi_get_lbolt() - scn->scn_last_checkpoint >
3684 		    SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3685 			if (!scn->scn_checkpointing)
3686 				zfs_dbgmsg("begin scan checkpoint for %s",
3687 				    spa->spa_name);
3688 
3689 			scn->scn_checkpointing = B_TRUE;
3690 			scn->scn_clearing = B_TRUE;
3691 		} else {
3692 			boolean_t should_clear = dsl_scan_should_clear(scn);
3693 			if (should_clear && !scn->scn_clearing) {
3694 				zfs_dbgmsg("begin scan clearing for %s",
3695 				    spa->spa_name);
3696 				scn->scn_clearing = B_TRUE;
3697 			} else if (!should_clear && scn->scn_clearing) {
3698 				zfs_dbgmsg("finish scan clearing for %s",
3699 				    spa->spa_name);
3700 				scn->scn_clearing = B_FALSE;
3701 			}
3702 		}
3703 	} else {
3704 		ASSERT0(scn->scn_checkpointing);
3705 		ASSERT0(scn->scn_clearing);
3706 	}
3707 
3708 	if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3709 		/* Need to scan metadata for more blocks to scrub */
3710 		dsl_scan_phys_t *scnp = &scn->scn_phys;
3711 		taskqid_t prefetch_tqid;
3712 
3713 		/*
3714 		 * Recalculate the max number of in-flight bytes for pool-wide
3715 		 * scanning operations (minimum 1MB). Limits for the issuing
3716 		 * phase are done per top-level vdev and are handled separately.
3717 		 */
3718 		scn->scn_maxinflight_bytes = MAX(zfs_scan_vdev_limit *
3719 		    dsl_scan_count_data_disks(spa->spa_root_vdev), 1ULL << 20);
3720 
3721 		if (scnp->scn_ddt_bookmark.ddb_class <=
3722 		    scnp->scn_ddt_class_max) {
3723 			ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3724 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
3725 			    "ddt bm=%llu/%llu/%llu/%llx",
3726 			    spa->spa_name,
3727 			    (longlong_t)tx->tx_txg,
3728 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3729 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3730 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3731 			    (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3732 		} else {
3733 			zfs_dbgmsg("doing scan sync for %s txg %llu; "
3734 			    "bm=%llu/%llu/%llu/%llu",
3735 			    spa->spa_name,
3736 			    (longlong_t)tx->tx_txg,
3737 			    (longlong_t)scnp->scn_bookmark.zb_objset,
3738 			    (longlong_t)scnp->scn_bookmark.zb_object,
3739 			    (longlong_t)scnp->scn_bookmark.zb_level,
3740 			    (longlong_t)scnp->scn_bookmark.zb_blkid);
3741 		}
3742 
3743 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3744 		    NULL, ZIO_FLAG_CANFAIL);
3745 
3746 		scn->scn_prefetch_stop = B_FALSE;
3747 		prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3748 		    dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3749 		ASSERT(prefetch_tqid != TASKQID_INVALID);
3750 
3751 		dsl_pool_config_enter(dp, FTAG);
3752 		dsl_scan_visit(scn, tx);
3753 		dsl_pool_config_exit(dp, FTAG);
3754 
3755 		mutex_enter(&dp->dp_spa->spa_scrub_lock);
3756 		scn->scn_prefetch_stop = B_TRUE;
3757 		cv_broadcast(&spa->spa_scrub_io_cv);
3758 		mutex_exit(&dp->dp_spa->spa_scrub_lock);
3759 
3760 		taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3761 		(void) zio_wait(scn->scn_zio_root);
3762 		scn->scn_zio_root = NULL;
3763 
3764 		zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3765 		    "(%llu os's, %llu holes, %llu < mintxg, "
3766 		    "%llu in ddt, %llu > maxtxg)",
3767 		    (longlong_t)scn->scn_visited_this_txg,
3768 		    spa->spa_name,
3769 		    (longlong_t)NSEC2MSEC(gethrtime() -
3770 		    scn->scn_sync_start_time),
3771 		    (longlong_t)scn->scn_objsets_visited_this_txg,
3772 		    (longlong_t)scn->scn_holes_this_txg,
3773 		    (longlong_t)scn->scn_lt_min_this_txg,
3774 		    (longlong_t)scn->scn_ddt_contained_this_txg,
3775 		    (longlong_t)scn->scn_gt_max_this_txg);
3776 
3777 		if (!scn->scn_suspending) {
3778 			ASSERT0(avl_numnodes(&scn->scn_queue));
3779 			scn->scn_done_txg = tx->tx_txg + 1;
3780 			if (scn->scn_is_sorted) {
3781 				scn->scn_checkpointing = B_TRUE;
3782 				scn->scn_clearing = B_TRUE;
3783 			}
3784 			zfs_dbgmsg("scan complete for %s txg %llu",
3785 			    spa->spa_name,
3786 			    (longlong_t)tx->tx_txg);
3787 		}
3788 	} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
3789 		ASSERT(scn->scn_clearing);
3790 
3791 		/* need to issue scrubbing IOs from per-vdev queues */
3792 		scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3793 		    NULL, ZIO_FLAG_CANFAIL);
3794 		scan_io_queues_run(scn);
3795 		(void) zio_wait(scn->scn_zio_root);
3796 		scn->scn_zio_root = NULL;
3797 
3798 		/* calculate and dprintf the current memory usage */
3799 		(void) dsl_scan_should_clear(scn);
3800 		dsl_scan_update_stats(scn);
3801 
3802 		zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3803 		    "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3804 		    (longlong_t)scn->scn_zios_this_txg,
3805 		    spa->spa_name,
3806 		    (longlong_t)scn->scn_segs_this_txg,
3807 		    (longlong_t)NSEC2MSEC(gethrtime() -
3808 		    scn->scn_sync_start_time),
3809 		    (longlong_t)scn->scn_avg_zio_size_this_txg,
3810 		    (longlong_t)scn->scn_avg_seg_size_this_txg);
3811 	} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3812 		/* Finished with everything. Mark the scrub as complete */
3813 		zfs_dbgmsg("scan issuing complete txg %llu for %s",
3814 		    (longlong_t)tx->tx_txg,
3815 		    spa->spa_name);
3816 		ASSERT3U(scn->scn_done_txg, !=, 0);
3817 		ASSERT0(spa->spa_scrub_inflight);
3818 		ASSERT0(scn->scn_queues_pending);
3819 		dsl_scan_done(scn, B_TRUE, tx);
3820 		sync_type = SYNC_MANDATORY;
3821 	}
3822 
3823 	dsl_scan_sync_state(scn, tx, sync_type);
3824 }
3825 
3826 static void
3827 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
3828 {
3829 	/*
3830 	 * Don't count embedded bp's, since we already did the work of
3831 	 * scanning these when we scanned the containing block.
3832 	 */
3833 	if (BP_IS_EMBEDDED(bp))
3834 		return;
3835 
3836 	/*
3837 	 * Update the spa's stats on how many bytes we have issued.
3838 	 * Sequential scrubs create a zio for each DVA of the bp. Each
3839 	 * of these will include all DVAs for repair purposes, but the
3840 	 * zio code will only try the first one unless there is an issue.
3841 	 * Therefore, we should only count the first DVA for these IOs.
3842 	 */
3843 	atomic_add_64(&spa->spa_scan_pass_issued,
3844 	    all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
3845 }
3846 
3847 static void
3848 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
3849 {
3850 	/*
3851 	 * If we resume after a reboot, zab will be NULL; don't record
3852 	 * incomplete stats in that case.
3853 	 */
3854 	if (zab == NULL)
3855 		return;
3856 
3857 	for (int i = 0; i < 4; i++) {
3858 		int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3859 		int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3860 
3861 		if (t & DMU_OT_NEWTYPE)
3862 			t = DMU_OT_OTHER;
3863 		zfs_blkstat_t *zb = &zab->zab_type[l][t];
3864 		int equal;
3865 
3866 		zb->zb_count++;
3867 		zb->zb_asize += BP_GET_ASIZE(bp);
3868 		zb->zb_lsize += BP_GET_LSIZE(bp);
3869 		zb->zb_psize += BP_GET_PSIZE(bp);
3870 		zb->zb_gangs += BP_COUNT_GANG(bp);
3871 
3872 		switch (BP_GET_NDVAS(bp)) {
3873 		case 2:
3874 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3875 			    DVA_GET_VDEV(&bp->blk_dva[1]))
3876 				zb->zb_ditto_2_of_2_samevdev++;
3877 			break;
3878 		case 3:
3879 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3880 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
3881 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3882 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
3883 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3884 			    DVA_GET_VDEV(&bp->blk_dva[2]));
3885 			if (equal == 1)
3886 				zb->zb_ditto_2_of_3_samevdev++;
3887 			else if (equal == 3)
3888 				zb->zb_ditto_3_of_3_samevdev++;
3889 			break;
3890 		}
3891 	}
3892 }
3893 
3894 static void
3895 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3896 {
3897 	avl_index_t idx;
3898 	dsl_scan_t *scn = queue->q_scn;
3899 
3900 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3901 
3902 	if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
3903 		atomic_add_64(&scn->scn_queues_pending, 1);
3904 	if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3905 		/* block is already scheduled for reading */
3906 		sio_free(sio);
3907 		return;
3908 	}
3909 	avl_insert(&queue->q_sios_by_addr, sio, idx);
3910 	queue->q_sio_memused += SIO_GET_MUSED(sio);
3911 	range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
3912 	    SIO_GET_ASIZE(sio));
3913 }
3914 
3915 /*
3916  * Given all the info we got from our metadata scanning process, we
3917  * construct a scan_io_t and insert it into the scan sorting queue. The
3918  * I/O must already be suitable for us to process. This is controlled
3919  * by dsl_scan_enqueue().
3920  */
3921 static void
3922 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3923     int zio_flags, const zbookmark_phys_t *zb)
3924 {
3925 	scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3926 
3927 	ASSERT0(BP_IS_GANG(bp));
3928 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3929 
3930 	bp2sio(bp, sio, dva_i);
3931 	sio->sio_flags = zio_flags;
3932 	sio->sio_zb = *zb;
3933 
3934 	queue->q_last_ext_addr = -1;
3935 	scan_io_queue_insert_impl(queue, sio);
3936 }
3937 
3938 /*
3939  * Given a set of I/O parameters as discovered by the metadata traversal
3940  * process, attempts to place the I/O into the sorted queues (if allowed),
3941  * or immediately executes the I/O.
3942  */
3943 static void
3944 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3945     const zbookmark_phys_t *zb)
3946 {
3947 	spa_t *spa = dp->dp_spa;
3948 
3949 	ASSERT(!BP_IS_EMBEDDED(bp));
3950 
3951 	/*
3952 	 * Gang blocks are hard to issue sequentially, so we just issue them
3953 	 * here immediately instead of queuing them.
3954 	 */
3955 	if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
3956 		scan_exec_io(dp, bp, zio_flags, zb, NULL);
3957 		return;
3958 	}
3959 
3960 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3961 		dva_t dva;
3962 		vdev_t *vdev;
3963 
3964 		dva = bp->blk_dva[i];
3965 		vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
3966 		ASSERT(vdev != NULL);
3967 
3968 		mutex_enter(&vdev->vdev_scan_io_queue_lock);
3969 		if (vdev->vdev_scan_io_queue == NULL)
3970 			vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
3971 		ASSERT(dp->dp_scan != NULL);
3972 		scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
3973 		    i, zio_flags, zb);
3974 		mutex_exit(&vdev->vdev_scan_io_queue_lock);
3975 	}
3976 }
3977 
3978 static int
3979 dsl_scan_scrub_cb(dsl_pool_t *dp,
3980     const blkptr_t *bp, const zbookmark_phys_t *zb)
3981 {
3982 	dsl_scan_t *scn = dp->dp_scan;
3983 	spa_t *spa = dp->dp_spa;
3984 	uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
3985 	size_t psize = BP_GET_PSIZE(bp);
3986 	boolean_t needs_io = B_FALSE;
3987 	int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
3988 
3989 	count_block(dp->dp_blkstats, bp);
3990 	if (phys_birth <= scn->scn_phys.scn_min_txg ||
3991 	    phys_birth >= scn->scn_phys.scn_max_txg) {
3992 		count_block_issued(spa, bp, B_TRUE);
3993 		return (0);
3994 	}
3995 
3996 	/* Embedded BP's have phys_birth==0, so we reject them above. */
3997 	ASSERT(!BP_IS_EMBEDDED(bp));
3998 
3999 	ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4000 	if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4001 		zio_flags |= ZIO_FLAG_SCRUB;
4002 		needs_io = B_TRUE;
4003 	} else {
4004 		ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4005 		zio_flags |= ZIO_FLAG_RESILVER;
4006 		needs_io = B_FALSE;
4007 	}
4008 
4009 	/* If it's an intent log block, failure is expected. */
4010 	if (zb->zb_level == ZB_ZIL_LEVEL)
4011 		zio_flags |= ZIO_FLAG_SPECULATIVE;
4012 
4013 	for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4014 		const dva_t *dva = &bp->blk_dva[d];
4015 
4016 		/*
4017 		 * Keep track of how much data we've examined so that
4018 		 * zpool(8) status can make useful progress reports.
4019 		 */
4020 		uint64_t asize = DVA_GET_ASIZE(dva);
4021 		scn->scn_phys.scn_examined += asize;
4022 		spa->spa_scan_pass_exam += asize;
4023 
4024 		/* if it's a resilver, this may not be in the target range */
4025 		if (!needs_io)
4026 			needs_io = dsl_scan_need_resilver(spa, dva, psize,
4027 			    phys_birth);
4028 	}
4029 
4030 	if (needs_io && !zfs_no_scrub_io) {
4031 		dsl_scan_enqueue(dp, bp, zio_flags, zb);
4032 	} else {
4033 		count_block_issued(spa, bp, B_TRUE);
4034 	}
4035 
4036 	/* do not relocate this block */
4037 	return (0);
4038 }
4039 
4040 static void
4041 dsl_scan_scrub_done(zio_t *zio)
4042 {
4043 	spa_t *spa = zio->io_spa;
4044 	blkptr_t *bp = zio->io_bp;
4045 	dsl_scan_io_queue_t *queue = zio->io_private;
4046 
4047 	abd_free(zio->io_abd);
4048 
4049 	if (queue == NULL) {
4050 		mutex_enter(&spa->spa_scrub_lock);
4051 		ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4052 		spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4053 		cv_broadcast(&spa->spa_scrub_io_cv);
4054 		mutex_exit(&spa->spa_scrub_lock);
4055 	} else {
4056 		mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4057 		ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4058 		queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4059 		cv_broadcast(&queue->q_zio_cv);
4060 		mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4061 	}
4062 
4063 	if (zio->io_error && (zio->io_error != ECKSUM ||
4064 	    !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4065 		atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4066 	}
4067 }
4068 
4069 /*
4070  * Given a scanning zio's information, executes the zio. The zio need
4071  * not necessarily be only sortable, this function simply executes the
4072  * zio, no matter what it is. The optional queue argument allows the
4073  * caller to specify that they want per top level vdev IO rate limiting
4074  * instead of the legacy global limiting.
4075  */
4076 static void
4077 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4078     const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4079 {
4080 	spa_t *spa = dp->dp_spa;
4081 	dsl_scan_t *scn = dp->dp_scan;
4082 	size_t size = BP_GET_PSIZE(bp);
4083 	abd_t *data = abd_alloc_for_io(size, B_FALSE);
4084 	zio_t *pio;
4085 
4086 	if (queue == NULL) {
4087 		ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4088 		mutex_enter(&spa->spa_scrub_lock);
4089 		while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4090 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4091 		spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4092 		mutex_exit(&spa->spa_scrub_lock);
4093 		pio = scn->scn_zio_root;
4094 	} else {
4095 		kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4096 
4097 		ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4098 		mutex_enter(q_lock);
4099 		while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4100 			cv_wait(&queue->q_zio_cv, q_lock);
4101 		queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4102 		pio = queue->q_zio;
4103 		mutex_exit(q_lock);
4104 	}
4105 
4106 	ASSERT(pio != NULL);
4107 	count_block_issued(spa, bp, queue == NULL);
4108 	zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4109 	    queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4110 }
4111 
4112 /*
4113  * This is the primary extent sorting algorithm. We balance two parameters:
4114  * 1) how many bytes of I/O are in an extent
4115  * 2) how well the extent is filled with I/O (as a fraction of its total size)
4116  * Since we allow extents to have gaps between their constituent I/Os, it's
4117  * possible to have a fairly large extent that contains the same amount of
4118  * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4119  * The algorithm sorts based on a score calculated from the extent's size,
4120  * the relative fill volume (in %) and a "fill weight" parameter that controls
4121  * the split between whether we prefer larger extents or more well populated
4122  * extents:
4123  *
4124  * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4125  *
4126  * Example:
4127  * 1) assume extsz = 64 MiB
4128  * 2) assume fill = 32 MiB (extent is half full)
4129  * 3) assume fill_weight = 3
4130  * 4)	SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4131  *	SCORE = 32M + (50 * 3 * 32M) / 100
4132  *	SCORE = 32M + (4800M / 100)
4133  *	SCORE = 32M + 48M
4134  *	         ^     ^
4135  *	         |     +--- final total relative fill-based score
4136  *	         +--------- final total fill-based score
4137  *	SCORE = 80M
4138  *
4139  * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4140  * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4141  * Note that as an optimization, we replace multiplication and division by
4142  * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4143  *
4144  * Since we do not care if one extent is only few percent better than another,
4145  * compress the score into 6 bits via binary logarithm AKA highbit64() and
4146  * put into otherwise unused due to ashift high bits of offset.  This allows
4147  * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4148  * with single operation.  Plus it makes scrubs more sequential and reduces
4149  * chances that minor extent change move it within the B-tree.
4150  */
4151 static int
4152 ext_size_compare(const void *x, const void *y)
4153 {
4154 	const uint64_t *a = x, *b = y;
4155 
4156 	return (TREE_CMP(*a, *b));
4157 }
4158 
4159 static void
4160 ext_size_create(range_tree_t *rt, void *arg)
4161 {
4162 	(void) rt;
4163 	zfs_btree_t *size_tree = arg;
4164 
4165 	zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t));
4166 }
4167 
4168 static void
4169 ext_size_destroy(range_tree_t *rt, void *arg)
4170 {
4171 	(void) rt;
4172 	zfs_btree_t *size_tree = arg;
4173 	ASSERT0(zfs_btree_numnodes(size_tree));
4174 
4175 	zfs_btree_destroy(size_tree);
4176 }
4177 
4178 static uint64_t
4179 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4180 {
4181 	(void) rt;
4182 	uint64_t size = rsg->rs_end - rsg->rs_start;
4183 	uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4184 	    fill_weight * rsg->rs_fill) >> 7);
4185 	ASSERT3U(rt->rt_shift, >=, 8);
4186 	return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4187 }
4188 
4189 static void
4190 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4191 {
4192 	zfs_btree_t *size_tree = arg;
4193 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4194 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4195 	zfs_btree_add(size_tree, &v);
4196 }
4197 
4198 static void
4199 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4200 {
4201 	zfs_btree_t *size_tree = arg;
4202 	ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4203 	uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4204 	zfs_btree_remove(size_tree, &v);
4205 }
4206 
4207 static void
4208 ext_size_vacate(range_tree_t *rt, void *arg)
4209 {
4210 	zfs_btree_t *size_tree = arg;
4211 	zfs_btree_clear(size_tree);
4212 	zfs_btree_destroy(size_tree);
4213 
4214 	ext_size_create(rt, arg);
4215 }
4216 
4217 static const range_tree_ops_t ext_size_ops = {
4218 	.rtop_create = ext_size_create,
4219 	.rtop_destroy = ext_size_destroy,
4220 	.rtop_add = ext_size_add,
4221 	.rtop_remove = ext_size_remove,
4222 	.rtop_vacate = ext_size_vacate
4223 };
4224 
4225 /*
4226  * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4227  * based on LBA-order (from lowest to highest).
4228  */
4229 static int
4230 sio_addr_compare(const void *x, const void *y)
4231 {
4232 	const scan_io_t *a = x, *b = y;
4233 
4234 	return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4235 }
4236 
4237 /* IO queues are created on demand when they are needed. */
4238 static dsl_scan_io_queue_t *
4239 scan_io_queue_create(vdev_t *vd)
4240 {
4241 	dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4242 	dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4243 
4244 	q->q_scn = scn;
4245 	q->q_vd = vd;
4246 	q->q_sio_memused = 0;
4247 	q->q_last_ext_addr = -1;
4248 	cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4249 	q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
4250 	    &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
4251 	avl_create(&q->q_sios_by_addr, sio_addr_compare,
4252 	    sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4253 
4254 	return (q);
4255 }
4256 
4257 /*
4258  * Destroys a scan queue and all segments and scan_io_t's contained in it.
4259  * No further execution of I/O occurs, anything pending in the queue is
4260  * simply freed without being executed.
4261  */
4262 void
4263 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4264 {
4265 	dsl_scan_t *scn = queue->q_scn;
4266 	scan_io_t *sio;
4267 	void *cookie = NULL;
4268 
4269 	ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4270 
4271 	if (!avl_is_empty(&queue->q_sios_by_addr))
4272 		atomic_add_64(&scn->scn_queues_pending, -1);
4273 	while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4274 	    NULL) {
4275 		ASSERT(range_tree_contains(queue->q_exts_by_addr,
4276 		    SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4277 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4278 		sio_free(sio);
4279 	}
4280 
4281 	ASSERT0(queue->q_sio_memused);
4282 	range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4283 	range_tree_destroy(queue->q_exts_by_addr);
4284 	avl_destroy(&queue->q_sios_by_addr);
4285 	cv_destroy(&queue->q_zio_cv);
4286 
4287 	kmem_free(queue, sizeof (*queue));
4288 }
4289 
4290 /*
4291  * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4292  * called on behalf of vdev_top_transfer when creating or destroying
4293  * a mirror vdev due to zpool attach/detach.
4294  */
4295 void
4296 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4297 {
4298 	mutex_enter(&svd->vdev_scan_io_queue_lock);
4299 	mutex_enter(&tvd->vdev_scan_io_queue_lock);
4300 
4301 	VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4302 	tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4303 	svd->vdev_scan_io_queue = NULL;
4304 	if (tvd->vdev_scan_io_queue != NULL)
4305 		tvd->vdev_scan_io_queue->q_vd = tvd;
4306 
4307 	mutex_exit(&tvd->vdev_scan_io_queue_lock);
4308 	mutex_exit(&svd->vdev_scan_io_queue_lock);
4309 }
4310 
4311 static void
4312 scan_io_queues_destroy(dsl_scan_t *scn)
4313 {
4314 	vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4315 
4316 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4317 		vdev_t *tvd = rvd->vdev_child[i];
4318 
4319 		mutex_enter(&tvd->vdev_scan_io_queue_lock);
4320 		if (tvd->vdev_scan_io_queue != NULL)
4321 			dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4322 		tvd->vdev_scan_io_queue = NULL;
4323 		mutex_exit(&tvd->vdev_scan_io_queue_lock);
4324 	}
4325 }
4326 
4327 static void
4328 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4329 {
4330 	dsl_pool_t *dp = spa->spa_dsl_pool;
4331 	dsl_scan_t *scn = dp->dp_scan;
4332 	vdev_t *vdev;
4333 	kmutex_t *q_lock;
4334 	dsl_scan_io_queue_t *queue;
4335 	scan_io_t *srch_sio, *sio;
4336 	avl_index_t idx;
4337 	uint64_t start, size;
4338 
4339 	vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4340 	ASSERT(vdev != NULL);
4341 	q_lock = &vdev->vdev_scan_io_queue_lock;
4342 	queue = vdev->vdev_scan_io_queue;
4343 
4344 	mutex_enter(q_lock);
4345 	if (queue == NULL) {
4346 		mutex_exit(q_lock);
4347 		return;
4348 	}
4349 
4350 	srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4351 	bp2sio(bp, srch_sio, dva_i);
4352 	start = SIO_GET_OFFSET(srch_sio);
4353 	size = SIO_GET_ASIZE(srch_sio);
4354 
4355 	/*
4356 	 * We can find the zio in two states:
4357 	 * 1) Cold, just sitting in the queue of zio's to be issued at
4358 	 *	some point in the future. In this case, all we do is
4359 	 *	remove the zio from the q_sios_by_addr tree, decrement
4360 	 *	its data volume from the containing range_seg_t and
4361 	 *	resort the q_exts_by_size tree to reflect that the
4362 	 *	range_seg_t has lost some of its 'fill'. We don't shorten
4363 	 *	the range_seg_t - this is usually rare enough not to be
4364 	 *	worth the extra hassle of trying keep track of precise
4365 	 *	extent boundaries.
4366 	 * 2) Hot, where the zio is currently in-flight in
4367 	 *	dsl_scan_issue_ios. In this case, we can't simply
4368 	 *	reach in and stop the in-flight zio's, so we instead
4369 	 *	block the caller. Eventually, dsl_scan_issue_ios will
4370 	 *	be done with issuing the zio's it gathered and will
4371 	 *	signal us.
4372 	 */
4373 	sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4374 	sio_free(srch_sio);
4375 
4376 	if (sio != NULL) {
4377 		blkptr_t tmpbp;
4378 
4379 		/* Got it while it was cold in the queue */
4380 		ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4381 		ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
4382 		avl_remove(&queue->q_sios_by_addr, sio);
4383 		if (avl_is_empty(&queue->q_sios_by_addr))
4384 			atomic_add_64(&scn->scn_queues_pending, -1);
4385 		queue->q_sio_memused -= SIO_GET_MUSED(sio);
4386 
4387 		ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4388 		range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4389 
4390 		/* count the block as though we issued it */
4391 		sio2bp(sio, &tmpbp);
4392 		count_block_issued(spa, &tmpbp, B_FALSE);
4393 
4394 		sio_free(sio);
4395 	}
4396 	mutex_exit(q_lock);
4397 }
4398 
4399 /*
4400  * Callback invoked when a zio_free() zio is executing. This needs to be
4401  * intercepted to prevent the zio from deallocating a particular portion
4402  * of disk space and it then getting reallocated and written to, while we
4403  * still have it queued up for processing.
4404  */
4405 void
4406 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4407 {
4408 	dsl_pool_t *dp = spa->spa_dsl_pool;
4409 	dsl_scan_t *scn = dp->dp_scan;
4410 
4411 	ASSERT(!BP_IS_EMBEDDED(bp));
4412 	ASSERT(scn != NULL);
4413 	if (!dsl_scan_is_running(scn))
4414 		return;
4415 
4416 	for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4417 		dsl_scan_freed_dva(spa, bp, i);
4418 }
4419 
4420 /*
4421  * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4422  * not started, start it. Otherwise, only restart if max txg in DTL range is
4423  * greater than the max txg in the current scan. If the DTL max is less than
4424  * the scan max, then the vdev has not missed any new data since the resilver
4425  * started, so a restart is not needed.
4426  */
4427 void
4428 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4429 {
4430 	uint64_t min, max;
4431 
4432 	if (!vdev_resilver_needed(vd, &min, &max))
4433 		return;
4434 
4435 	if (!dsl_scan_resilvering(dp)) {
4436 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4437 		return;
4438 	}
4439 
4440 	if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4441 		return;
4442 
4443 	/* restart is needed, check if it can be deferred */
4444 	if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4445 		vdev_defer_resilver(vd);
4446 	else
4447 		spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4448 }
4449 
4450 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
4451 	"Max bytes in flight per leaf vdev for scrubs and resilvers");
4452 
4453 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
4454 	"Min millisecs to scrub per txg");
4455 
4456 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
4457 	"Min millisecs to obsolete per txg");
4458 
4459 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
4460 	"Min millisecs to free per txg");
4461 
4462 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
4463 	"Min millisecs to resilver per txg");
4464 
4465 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4466 	"Set to prevent scans from progressing");
4467 
4468 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4469 	"Set to disable scrub I/O");
4470 
4471 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4472 	"Set to disable scrub prefetching");
4473 
4474 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
4475 	"Max number of blocks freed in one txg");
4476 
4477 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
4478 	"Max number of dedup blocks freed in one txg");
4479 
4480 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4481 	"Enable processing of the free_bpobj");
4482 
4483 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
4484 	"Enable block statistics calculation during scrub");
4485 
4486 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
4487 	"Fraction of RAM for scan hard limit");
4488 
4489 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
4490 	"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4491 
4492 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4493 	"Scrub using legacy non-sequential method");
4494 
4495 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
4496 	"Scan progress on-disk checkpointing interval");
4497 
4498 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
4499 	"Max gap in bytes between sequential scrub / resilver I/Os");
4500 
4501 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
4502 	"Fraction of hard limit used as soft limit");
4503 
4504 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4505 	"Tunable to attempt to reduce lock contention");
4506 
4507 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
4508 	"Tunable to adjust bias towards more filled segments during scans");
4509 
4510 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4511 	"Process all resilvers immediately");
4512